TESI DOCTORAL

ESTUDIO MORFOLÓGICO Y FUNCIONAL DE
NURALAGUS REX (MAMMALIA, LAGOMORPHA, LEPORIDAE)

Josep Quintana Cardona

2005
7.7. EXTREMIDAD POSTERIOR.

7.7.1. PELVIS.

Material. No ha sido posible recuperar ninguna pelvis entera.

Fragmentos de pelvis derechas: 0241, 1344, 1039, 11703, 0902, 1325, 1326, 0145, 0993, 1138, 1288, 1139, 0856, 1021, 1008, 1018, 1235, 12145, 1268, 1050, 1707.

Fragmentos de pelvis izquierdas: 1165, 1163, 0922, 1033, 11760, 11708, 0323, 1176, 0008, 1069, 1469, 11682, 1040, 0888, 11705, 12083, 11684, 11681, 0242, 1448, 1007, 1265, 1264, 1056, 1197, 1032, 1268, 0213, 1050.

Número mínimo de individuos: 29.

Medidas. Al no haberse encontrado ninguna pelvis entera de *N. rex*, la longitud de la pelvis (distancia entre el límite craneal del ilium y el límite caudal de la tuberosidad isquiática) es aproximada y corresponde a la suma de la longitud del ilium (distancia entre el límite craneal del ilium y el margen craneal del acetábulo), del isquium (distancia entre el margen caudal de la tuberosidad isquiática y el margen caudal del acetábulo) y del acetábulo (distancia entre los márgenes caudal y craneal).

Ha de tenerse en cuenta que la longitud del isquium es menor que la longitud real, al no haberse podido medir la longitud correspondiente a la tuberosidad isquiática.

Descripción. La tábula del isquium es transversalmente muy ancha. La tuberosidad isquiática es también transversalmente muy ancha, y las dos porciones en la que se divide forman un ángulo muy suave (fig. 122B). El cuerpo isquiático es muy ancho dorso-ventralmente y cráneo-caudalmente muy corto, de manera que la parte anterior de la tuberosidad isquiática se sitúa ligeramente por delante del límite posterior del foramen obturador, y más próximo al margen posterior del acetábulo. La espina isquiática se sitúa muy próxima al borde anterior de la tuberosidad isquiática. La rama del isquium forma, respecto a la rama caudal del hueso público, un ángulo de 133°. El ilium presenta una anchura dorso-ventral similar en la zona craneal y en su zona media, mientras que el borde craneal es transversalmente muy ancho.

7.7.1.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

La morfología de la pelvis de *N. rex* ha sido comparada con la de *O. cuniculus, L. granatensis* y *P. furnessi.*
Fig. 122. Desarrollo de la tuberosidad isquiática en *N. rex* (A: vista ventral; B: vista caudal) y en *O. cuniculus* (D: vista ventral; E: vista caudal). Las flechas y el punteado indican los límites de la tuberosidad isquiática. Escala gráfica: 5 mm.

Isquium.

En *O. cuniculus*, *L. granatensis* y *P. furnessi*, el margen craneal de la tuberosidad isquiática queda por detrás del margen posterior del foramen obturador y de la espina isquiática, mientras que en *N. rex* la tuberosidad isquiática ocupa una posición intermedia entre el margen posterior del foramen obturador y la espina isquiática.

La tábara del isquium y la tuberosidad isquiática es dorso-ventralmente muy estrecha en *O. cuniculus* y *L. granatensis*, y muy ancha en *P. furnessi* y *N. rex* (figs. 122A,C y 123A). En *P. furnessi*, sin embargo, la zona ventral de la tábara del isquium es cranean-caudalmente más ancha, al presentar un arco isquiótico de contorno muy convexo.

En visión caudal, la tuberosidad isquiática de *O. cuniculus* y *L. granatensis* presenta un contorno triangular y está dividida en dos porciones por una cresta perpendicular a la tábara isquiática; en *P. furnessi*, la tuberosidad isquiática presenta una forma alargada algo sinuosa (figs. 122B, D y 123B).

En *N. rex* no ha sido posible observar la porción ventral de la tuberosidad isquiática, al no haberse conservado. Sin embargo, el margen caudal de la tábara isquiática...
Fig. 123. Desarrollo de la tuberosidad isquiática en *P. furnessi* (A: vista ventral; B: vista caudal). Las flechas y el punteado indican los límites de la tuberosidad isquiática. Escala gráfica: 5 mm.

parece indicar que la tuberosidad isquiática presentaba una forma alargada y menos curvada que en el resto de lepóridos con los que se ha comparado (figs. 122 y 123).

Ilium.

El ala del ilium de *O. cuniculus* y *L. granatensis* es más ancho en su zona craneal, y va estrechándose a medida que se aproxima a la espina iliaca. En *L. granatensis* el ilium presenta un contorno cuadrangular, mientras que en *O. cuniculus* y *P. furnessi* es algo más largo y estrecho. En este sentido, el ala del ilium de *N. rex* se asemeja más al de *O. cuniculus*, al presentar una menor anchura en relación con su longitud.

Pubis.

El ángulo formado por la rama caudal del hueso público en relación a la rama craneal es mayor en *N. rex* que en *O. cuniculus* y *L. granatensis*, formando, respectivamente, unos ángulos de 133°, 112° y 95°. En *P. furnessi* este ángulo tiene un valor de 139°.

7.7.1.2. **PROPORCIONES DE LA PELVIS.**

los pesos de *O. cuniculus*, *S. nuttalli*, *P. rupestris* y *L. granatensis* son los reales, mientras que en el resto de taxones (incluido *N. rex*) corresponden a los valores medios, tal como se indica en la tabla 56. En los valores medios de *L. saxatilis* no se incluyen los datos pertenecientes a *L. crawshayi*, pese a considerarse especies posiblemente sinónimas (Skinner y Smithers, 1990). No se incluyen los valores de *S. brasiliensis*, *N. netscheri*, *P. marjorita* y *C. hispidus* a no disponer de datos fiables referidos al peso de estas especies.

Las medidas reales de todas estas especies aparecen en el anexo III.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>L. del ilium</th>
<th>L. del isquium</th>
<th>L. del acetábulo</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. rex</td>
<td>2-3-4</td>
<td>68,35</td>
<td>49,24</td>
<td>16,40</td>
<td>+</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>36,37</td>
<td>31,88</td>
<td>7,70</td>
<td>*</td>
</tr>
<tr>
<td>O. cuniculus</td>
<td>1</td>
<td>35,02</td>
<td>30,66</td>
<td>7,87</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>31,63</td>
<td>25,19</td>
<td>6,40</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>-</td>
<td>29,09</td>
<td>7,40</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>33,15</td>
<td>29,05</td>
<td>7,72</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>34,97</td>
<td>29,89</td>
<td>7,72</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>31,29</td>
<td>25,22</td>
<td>7,04</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>7,62</td>
<td>*</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>32,03</td>
<td>26,20</td>
<td>7,23</td>
<td>+</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>7,51</td>
<td>+</td>
</tr>
<tr>
<td>O. crassicaudata</td>
<td>1</td>
<td>33,17</td>
<td>-</td>
<td>8,8</td>
<td>+</td>
</tr>
<tr>
<td>S. australis</td>
<td>1</td>
<td>27,12</td>
<td>21,75</td>
<td>6,12</td>
<td>*</td>
</tr>
<tr>
<td>S. australis</td>
<td>1</td>
<td>27,12</td>
<td>21,75</td>
<td>6,12</td>
<td>*</td>
</tr>
<tr>
<td>S. australis</td>
<td>1</td>
<td>34,55</td>
<td>27,73</td>
<td>6,96</td>
<td>+</td>
</tr>
<tr>
<td>S. floridanus</td>
<td>6</td>
<td>45,95</td>
<td>36,31</td>
<td>9,02</td>
<td>*</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>1</td>
<td>44,59</td>
<td>34,57</td>
<td>9,05</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>9,44</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>1</td>
<td>44,72</td>
<td>36,02</td>
<td>9,44</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>1</td>
<td>34,14</td>
<td>30,22</td>
<td>7,43</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>1</td>
<td>45,60</td>
<td>34,3</td>
<td>10,17</td>
<td>*</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>2-4</td>
<td>39,22</td>
<td>35,05</td>
<td>8,82</td>
<td>*</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>1</td>
<td>35,58</td>
<td>31,65</td>
<td>9,14</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>1</td>
<td>41,62</td>
<td>35,19</td>
<td>9,23</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>4</td>
<td>39,66</td>
<td>33,94</td>
<td>8,79</td>
<td>+</td>
</tr>
<tr>
<td>P. rupestris AZ 2000</td>
<td>2</td>
<td>41,05</td>
<td>36,12</td>
<td>9,75</td>
<td>+</td>
</tr>
<tr>
<td>Coeficiente de correlación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Longitud del ilium.

La longitud del ilium de *N. rex* es semejante a la del resto de lepóridos (fig. 124).

Longitud del isquium.

La longitud del isquium de *N. rex* es menor a la del resto de lepóridos (fig. 125). Sin embargo, ha de tenerse en cuenta que la longitud representada del isquium es menor
Fig. 124. Representación alométrica de la longitud del ilium en *N. rex* y algunos lepóridos actuales.

Fig. 125. Representación alométrica de la longitud del isquium en *N. rex* y algunos lepóridos actuales.
que la longitud real, al no incluir la porción correspondiente a la tuberosidad isquiática.

Longitud del acetábulo.

La longitud del acetábulo de *N. rex* es mayor a la del resto de lepóridos (fig. 126).

![Fig. 126. Representación alométrica de la longitud del acetábulo en *N. rex* y algunos lepóridos actuales.](image)

7.7.1.3. **MORFOLOGIA FUNCIONAL DE LA PELVIS DE *N. REX*.**

La pelvis de *N. rex* se diferencia del resto de los leporídos (incluido *P. furnesii*) por las siguientes características:

-El isquium es craneo-caudalmente más corto.

-La tuberosidad y la tábula isquiática son más anchas.

-El acetábulo es más ancho.

La mayor anchura del acetábulo está claramente relacionada con la anchura de la cabeza femoral; las modificaciones en el isquium posiblemente se relacionan con la musculatura insertada en esta zona, donde se originan el músculo semimembranoso, el semitendinoso, el aductor y el biceps crural. Estos músculos, además de flexionar la rodilla, extienden la cadera y rotan la rodilla hacia dentro (semitendinoso y semimembranoso) y hacia fuera (biceps crural), en tanto que el músculo aductor aduce la cadera y la rota hacia dentro (Wirhed, 1993).
Por lo tanto, la mayor anchura de la tuberosidad y la tábula isquiática parece relacionarse con ciertos cambios relacionados con la flexión y la rotación de la rodilla, y con la extensión, aducción y rotación de la cadera.

7.7.2. FÉMUR.

Material.

Fémures derechos: 0170, 0324, 0407, 0400, 11686, 1051, 1174, 1412, 0855, 1258, 1068, 0077, 1324, 1143, 0924, 1162, 0913, 0917, 0070, 1167, 1428, 11706, 0199, 1214, 1404, 11987, 1216, 0949, 1031, 1037, 1349, 0189, 0319, 0451.

Fémures izquierdos: 0314, 1312, 1346, 0328, 0001, 0968, 0368, 0325, 1200, 0395, 0326, 0429, 0384, 0027, 0449, 0410, 0037, 1094, 0215, 0096, 1142, 1140, 11698, 11688, 0272, 0911, 1198, 0903, 1064, 1343, 0238, 0283, 11720, 1066, 0010, 1244, 0009, 0239, 1093, 0012, 1228.

Cabezas de fémur: 0910, 1281, 1277, 0909, 0086.

Diáfisis: 1136, 0383, 1082, 1035, 0998, 0853, 1322, 1320, 0028, 0240, 11989, 12132.

Número mínimo de individuos: 28 (contabilizados a partir de las epífisis proximales de los fémures izquierdos).

Medidas. Las medidas de los fémures de *N. rex* aparecen en el anexo III. Se han tomado las siguientes medidas: longitud máxima y funcional (distancia entre la fosa de la cabeza del fémur hasta la zona media-caudal del cóndilo medial), diámetro transversal y antero-posterior de las epífisis, diámetro transversal y antero-posterior de la diáfisis (el diámetro mínimo y el medido a la zona media), distancia entre trocánters, y diámetros superior-inferior y antero-posterior de la cabeza del fémur.

En la tabla 7 aparecen también los valores del volumen y la superficie de la cabeza del fémur.

Descripción. Aspecto muy robusto. Diáfisis craneo-caudalmente muy poco curvada. El diámetro máximo del trocánter mayor es perpendicular a la cabeza del fémur. La línea media que une el trocánter mayor y la cabeza del fémur forma un ángulo de 19° respecto al tercer trocánter y el trocánter menor. Cabeza del fémur muy inclinada hacia la parte craneal. En visión medial, la fosa de la cabeza del fémur queda alineada con el tercer trocánter. La troclea es muy ancha, con las crestas muy simétricas. El cóndilo lateral presenta un contorno suave, poco convexo.
7.7.2.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

La morfología del fémur de *N. rex* ha sido comparada con la de *L. granatensis*, *L. saxatilis*, *L. capensis*, *B. monticularis*, *P. randensis*, *P. crassicaudatus*, *N. netscheri*, *P. furnessi*, *O. cuniculus* y *P. marjorita* (figs. 127 y 128).

Figura 127. Fémur de *N. rex* (A), *P. furnessi* (B), *N. netscheri* (C), *O. cuniculus* (D), *P. randensis* (E) y *P. crassicaudatus* (F). Escala gráfica: 5 mm.
Epifisis proximal.
En relación al resto de lepóridos con los que ha sido comparado, la cabeza del fémur de *N. rex* está más inclinada hacia la parte craneal. La cabeza del fémur de *P. furnessi* muestra una orientación similar. La cabeza del fémur de *N. rex* es más esférica, de manera que posee una mayor superficie de articulación (fig. 129). Las altas estimacio-
nes del peso corporal obtenidas a partir de la superficie de la cabeza del fémur (tablas 3 y 7), así lo sugieren. En N. rex, el diámetro máximo del trocánter mayor es perpendicular al diámetro transversal de la cabeza del fémur, mientras que en O. cuniculus forma un ángulo oblicuo (fig. 130). La orientación del trocánter mayor y la cabeza del fémur respecto al trocánter menor y el tercer trocánter es diferente en N. rex y O. cuniculus, formando, respectivamente, un ángulo de 19° y 23°.

![Fig. 130. Posición relativa de la cabeza del fémur y del trocánter mayor en N. rex (A) y O. cuniculus (B). Escala gráfica: 5 mm.](image)

Diáfisis.

La diáfisis de N. rex está poco curvada en sentido cráneo-caudal, asemejándose a las diáfisis de P. randensis, P. crassicaudatus, P. furnesii y N. netscheri. B. monticularis, O. cuniculus, L. granatensis, L. saxatilis y L. capensis presentan, en comparación, una diáfisis más curvada (figs. 127 y 128).

Epífisis distal.

N. rex y P. furnesii son los lepóridos que presentan una troclea más ancha y con unas crestas más simétricas. O. cuniculus presenta una troclea muy estrecha; en L. granatensis la troclea es más ancha. En ambos casos, las crestas son más asimétricas que en N. rex y P. furnesii. En comparación a O. cuniculus y L. granatensis, N. rex presenta un cóndilo lateral con un contorno más suave, menos convexo (fig. 131).

7.7.2.2. PROPORCIONES DEL FÉMUR.

Han sido considerados los siguientes parámetros: la longitud funcional, el diámetro transversal y antero-posterior de la diáfisis, medidos en la zona media, y el diámetro transversal de la epífisis distal. Los valores medios de estos parámetros, así como las
ecuaciones alométricas y los coeficientes de correlación aparecen en la tabla 57. El fémur de *N. rex* no ha podido ser comparado con el de *N. netscheri, P. marjorita, C. hispidus* y *S. brasiliensis* al no disponer de datos fiables referidos a los pesos de estas especies.

Longitud

En relación al resto de leporídos, *N. rex* es el que presenta, junto con *P. furnessi* y *R. diazi*, un fémur más corto. En *P. furnessi* y *R. diazi* la longitud del fémur es, sin embargo, mayor que *N. rex* (fig. 132).

Diámetro antero-posterior de la diáfisis.

N. rex presenta un diámetro antero-posterior menor al del resto de leporídos (fig. 133).

Diámetro transversal de la diáfisis.

N. rex es el leporídeo que presenta el diámetro transversal menor; en *P. furnessi*, el diámetro transversal es semejante al del resto de leporídos (fig. 134).

Diámetro transversal de la epífisis distal.

N. rex, al igual que *P. furnessi*, presenta un diámetro transversal semejante al del resto de leporídos (fig. 135).

7.7.2.3. MORFOLOGÍA FUNCIONAL DEL FÉMUR DE N. REX.

El fémur de *N. rex* se diferencia del resto de leporídos por las siguientes características:

- Una longitud menor.

![Fig. 132. Representación alométrica de la longitud del fémur en N. rex y algunos lepóridos actuales.](image-url)

202
Fig. 133. Representación alométrica del diámetro antero-posterior de la diáfisis del fémur en *N. rex* y algunos lepóridos actuales.

Fig. 134. Representación alométrica del diámetro transversal de la diáfisis del fémur en *N. rex* y algunos lepóridos actuales.
Fig. 135. Representación alométrica del diámetro transversal de la epífisis distal del fémur de *N. rex* y algunos lepóridos actuales.

- Un diámetro antero-posterior y transversal de la diáfisis menor.
- Mayor inclinación de la cabeza del fémur hacia la parte craneal.
- La cabeza del fémur es más esférica y posee una mayor superficie.
- El diámetro máximo del trocánter mayor es perpendicular al diámetro transversal de la cabeza del fémur.
- La tróclea es más ancha y presenta unas crestas más simétricas.
- El contorno del cóndilo lateral es más suave, menos convexo.

Las características del fémur compartidas por *N. rex* y *P. furnessi* son las siguientes:
- El fémur es más corto.
- La diáfisis está menos curvada en sentido craneo-caudal.
- La tróclea es muy ancha, con unas crestas muy simétricas.
- El contorno del cóndilo lateral es más suave.
- La cabeza del fémur está más inclinada hacia la parte craneal.

N. rex muestra una diáfisis poco curvada en sentido craneo-caudal, al igual que *P. furnessi, N. netscheri* y las tres especies pertenecientes al género *Pronolagus*. La curvatura de la diáfisis es mayor en *O. cuniculus, B. monticularis* y las especies de los géneros *Lepus* y *Sylvilagus* con los que se ha comparado *N. rex*. Estos lepóridos son
típicamente corredores (Rodríguez et al., 1997; Camp y Borell, 1937; Skinner y Smithers, 1983); en cambio, en *P. furnessi, N. netscheri* y las tres especies del género *Pronolagus*, la capacidad para la carrera no parece estar tan desarrollada, al habitar, bien en zonas de vegetación muy densa (*P. furnessi y N. netscheri*) (Jacobson y Kloss, 1919; Flux, 1990; Sugimura, 1990), bien en zonas rocosas (género *Pronolagus*) (Skinner y Smithers, 1983).

La curvatura que presenta un determinado hueso está relacionada con las tensiones y los esfuerzos a los que este está sometido (Currey, 1984). Las tensiones y los esfuerzos aumentan durante la carrera (Biewener, 1989). La diáfisis poco curvada de *N. rex* parece sugerir, por lo tanto, una disminución en las tensiones y los esfuerzos que afectan al fémur y una menor capacidad corredora.

La mayor superficie de la cabeza del fémur y los cambios de orientación que afectan al trocanter mayor y a la cabeza del fémur parecen relacionarse con un cambio de posición del fémur en relación a la pelvis, y con un mayor rango de movimientos del fémur; la posición y la mayor superficie de la cabeza del fémur en *N. rex* favorecerían los movimientos de rotación interna y externa del fémur.

El perfil más suave del cóndilo lateral parece ser indicativo de un mayor rango de movimientos mediolaterales en la rodilla (Ginsburg, 1961; Carrano, 1997).

El acortamiento del fémur *N. rex* parece implicar un cambio en los momentos de fuerza implicados en el movimiento de este hueso.

7.7.3. RÓTULA.

Material.

Rótulas derechas: 1126, 1085, 0450, 0093, 0226, 0894.

Rótulas izquierdas: 0209, 12015, 1229, 12021, 0348, 0017, 12014.

Número mínimo de individuos: 7

Descripción. Contorno piriforme. En visión lateral, el ápice muestra una marcada diferencia de anchura con la base, al ser cráneo-caudalmente y transversalmente más ancho.
7.7.3.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

En comparación con _O. cuniculus_ y _L. granatensis_, la rótula de _N. rex_ es cráneo-caudalmente y transversalmente más ancha. Además, la diferencia de anchuras cráneo-caudales entre el ápice y la base de la rótula es mayor en _N. rex_.

en _O. cuniculus_ y _L. granatensis_ la superficie de articulación es muy alargada, mientras que en _N. rex_ muestra un contorno piriforme.

7.7.4. TIBIA.

Material.

Tibias derechas: 0419, 1199, 0284, 1201, 1438, 1407, 0925, 0099, 0448, 11700, 0948, 1437, 1125, 0966, 11680, 1161, 0965, 0406, 11761, 1426, 11704, 1190, 11702, 0378, 0076, 0405, 1029, 0367.

Tibias izquierdas: 0992, 0366, 1088, 1287, 0871, 1190, 0428, 1137, 0967, 11683, 11993, 0078, 0203, 12000, 1196, 1260, 0277, 11991, 0852, 0275, 0327, 0886, 1446, 11722, 1229, 1036, 1065, 0660, 1441.

Diáfisis: 1027, 0904, 0997, 1006, 1005, 0031.

Número mínimo de individuos: 15 (contabilizados a partir de las epífisis proximales izquierdas).

Medidas. En la tibia se han considerado las siguientes medidas: longitud máxima y funcional, diámetro transversal y antero-posterior de la epífisis proximal, y diámetro mínimo tranversal y antero-posterior de la diáfisis. Los diámetros tranversal y antero-posterior "en la parte media" han sido medidos por debajo del punto de unión de la fibula con la diáfisis de la tibia.

Todas estas medidas aparecen en el anexo III y en las tablas 15 y 16. En la tabla 14 aparecen, además, las medidas correspondientes a las superficies de los cóndilos mediales y laterales de la tibia.

Descripción. Aspecto muy robusto, con la diáfisis muy ancha en relación con la longitud total. La tuberosidad tibial es muy ancha, tanto transversal como dorso-ventralmente, de manera que su límite ventral se sitúa en la zona media comprendida entre la superficie dorsal de la epífisis proximal y el punto más distal de la fibula. La zona distal de la fibula se sitúa en la zona media de la longitud total de la tibia.
7.7.4.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

El carácter que diferencia más claramente _N. rex_ del resto de lepóridos (excepto _Pentalagus_), es la mayor longitud de la tuberosidad tibial en relación a la longitud total de la tibia. _O. cuniculus, B. monticularis_ y las especies de _Lepus_ y _Sylvilagus_ con las que se ha comparado _N. rex_, son los lepóridos que presentan la tuberosidad más
corta en comparación con la longitud de la tibia, mientras que en *N. netscheri* y las tres especies de *Pronolagus* la longitud relativa de la tuberosidad tibial es algo mayor, aunque inferior a la que presenta *N. rex* (figs. 136, 137).

P. furnessi presenta una longitud relativa de la tuberosidad tibial semejante a la de *N. rex*; sin embargo, *P. furnessi* muestra una mayor inclinación de la epífisis proximal
hacia la parte caudal. Como en *N. rex*, el límite distal de la tuberosidad tibial de *P. furnessi* se sitúa en la zona media delimitada por la superficie articular proximal y el extremo distal de la fibula. El extremo distal de esta se encuentra, en *P. furnessi*, más próximo a la epifisis distal de la tibia.

7.7.4.2. PROPORCIONES DE LA TIBIA.

En este caso, se han comparado, en relación con el peso corporal, los siguientes parámetros: longitud funcional de la tibia, diámetro mínimo transversal y antero-posterior de la diáfisis, y diámetro transversal y antero-posterior de la epifisis proximal y distal. Los valores medios de estos parámetros, así como las ecuaciones alométricas y los coeficientes de correlación aparecen en la tabla 58.

Longitud

N. rex es el lepórido que presenta la tibia más corta; *P. furnessi* y *R. diazi* presentan un acortamiento de la tibia similar, significativamente menor al que presenta *N. rex* (fig. 138).

Diámetro antero-posterior de la epifisis proximal.

En relación con el resto de lepóridos, *N. rex* es el que presenta el diámetro antero-posterior menor. *P. furnessi* presenta unos valores muy similares a los de *S. audubonii*, *S. nuttallii* y *P. randensis* (fig. 139).

Diámetro transversal de la epifisis proximal.

N. rex, al igual que *P. furnessi*, presenta un diámetro transversal similar al de los otros lepóridos (fig. 140).

Diámetro antero-posterior de la epifisis distal.

En este caso, el diámetro antero-posterior de la epifisis distal de *N. rex* es menor al del resto de lepóridos (fig. 141).

Diámetro transversal de la epifisis distal.

N. rex presenta un diámetro transversal similar al del resto de lepóridos (fig. 142).

Diámetro mínimo antero-posterior de la diáfisis.

N. rex y *P. furnessi* presentan un diámetro mínimo antero-posterior similar, menor al del resto de lepóridos (fig. 143).
<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>L. funcional</th>
<th>D.A.P. proximal</th>
<th>D.T. proximal</th>
<th>D.A.P. distal</th>
<th>Peso</th>
<th>Coeficiente de correlación</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. rex</td>
<td>1</td>
<td>135,16</td>
<td>24,85</td>
<td>14,92</td>
<td>6,61</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus CBQ 96-1</td>
<td>1</td>
<td>93,68</td>
<td>15,30</td>
<td>13,72</td>
<td>6,13</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus CBQ 98-1</td>
<td>1</td>
<td>85,55</td>
<td>12,31</td>
<td>12,79</td>
<td>5,38</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-2</td>
<td>1</td>
<td>85,25</td>
<td>12,33</td>
<td>13,75</td>
<td>6,01</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-1</td>
<td>1</td>
<td>84,22</td>
<td>12,78</td>
<td>13,86</td>
<td>6,35</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus CBQ 00-1</td>
<td>1</td>
<td>87,72</td>
<td>13,56</td>
<td>13,85</td>
<td>5,95</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-4</td>
<td>1</td>
<td>79,95</td>
<td>12,29</td>
<td>12,61</td>
<td>5,61</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-4</td>
<td>1</td>
<td>85,84</td>
<td>13,09</td>
<td>13,68</td>
<td>6,61</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-3</td>
<td>1</td>
<td>84,36</td>
<td>12,96</td>
<td>13,70</td>
<td>5,88</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-6</td>
<td>1</td>
<td>82,63</td>
<td>13,26</td>
<td>13,23</td>
<td>5,73</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>O. carinatus MAUV-7</td>
<td>1</td>
<td>84,94</td>
<td>13,66</td>
<td>14,28</td>
<td>6,95</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>S. allistati LACM 91174</td>
<td>1</td>
<td>78,08</td>
<td>10,74</td>
<td>11,02</td>
<td>4,63</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>S. keludensei</td>
<td>1</td>
<td>75,45</td>
<td>10,72</td>
<td>10,93</td>
<td>5,14</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>S. hirudin 5</td>
<td>5</td>
<td>90,64</td>
<td>13,00</td>
<td>13,54</td>
<td>5,82</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>R. diast 2</td>
<td>2</td>
<td>47,93</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>P. calvurnus AZ 2400</td>
<td>1</td>
<td>94,56</td>
<td>16,38</td>
<td>16,68</td>
<td>7,55</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>P. randaeni 2</td>
<td>2</td>
<td>97,48</td>
<td>15,28</td>
<td>16,79</td>
<td>7,49</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>P. cornucractus 3</td>
<td>102,82</td>
<td>17,05</td>
<td>17,98</td>
<td>7,80</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>R. manganiger 2</td>
<td>100,12</td>
<td>14,15</td>
<td>14,06</td>
<td>6,83</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>P. forsteri 3</td>
<td>86,34</td>
<td>15,32</td>
<td>17,92</td>
<td>7,83</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L. lefarierei 120,59</td>
<td>17,45</td>
<td>16,21</td>
<td>8,08</td>
<td>*</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. gregoriensis CBQ 97-1</td>
<td>1</td>
<td>107,66</td>
<td>16,88</td>
<td>15,89</td>
<td>7,87</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>L. flavirufus 4</td>
<td>121,14</td>
<td>17,86</td>
<td>17,38</td>
<td>8,51</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L. capensis 4</td>
<td>111,66</td>
<td>17,16</td>
<td>16,49</td>
<td>8,05</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>L. castroviejoi 2</td>
<td>126,95</td>
<td>18,79</td>
<td>18,19</td>
<td>9,51</td>
<td>*</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Coeficiente de correlación</td>
<td>-</td>
<td>R=0.8852</td>
<td>R=0.9359</td>
<td>R=0.9138</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

210
Fig. 138. Representación alométrica de la longitud de la tibia en *N. rex* y algunos leporídos actuales.

Fig. 139. Representación alométrica del diámetro antero-posterior de la epífisis proximal de la tibia en *N. rex* y algunos leporídos actuales.
Fig. 140. Representación alométrica del diámetro transversal de la epífisis proximal de la tibia en *N. rex* y algunos lepóridos actuales.

Fig. 141. Representación alométrica del diámetro antero-posterior de la epífisis distal de la tibia en *N. rex* y algunos lepóridos actuales.
Fig. 142. Representación alométrica del diámetro transversal de la epífisis distal de la tibia en *N. rex* y algunos lepóridos actuales.

Fig. 143. Representación alométrica del diámetro mínimo antero-posterior de la diáfisis de la tibia en *N. rex* y algunos lepóridos actuales.
Diámetro mínimo transversal de la diáfisis.

El diámetro mínimo transversal de *N. rex* es similar al del resto de lepóridos con los que ha sido comparado (fig. 144).

![Graph showing log 10 diámetro mínimo transversal de la diáfisis de la tibia (cm) vs log 10 Peso (g)](image)

*Fig. 144. Diámetro mínimo transversal de la diáfisis de la tibia en *N. rex* y algunos lepóridos actuales.*

**7.7.4.3. MORFOLOGÍA FUNCIONAL DE LA TIBIA DE *N. REX.*

La tibia de *N. rex* se diferencia del resto de lepóridos (excepto *P. furnessi*) por las siguientes características:

-Longitud menor.

-El diámetro antero-posterior de la epífisis proximal y distal es menor, al igual que el diámetro mínimo antero posterior de la diáfisis.

-La longitud de la tuberosidad tibial es mayor en relación a la longitud total de la tibia.

-El extremo distal de la fibula está más próxima a la epífisis distal de la tibia.

N. rex y *P. furnessi* comparten las siguientes características:

-Longitud menor.

-Diámetro mínimo antero-posterior de la diáfisis más estrecho.

-Una mayor inclinación de la epífisis proximal hacia la parte caudal de la tibia.

La mayor longitud relativa de la tuberosidad tibial parece relacionarse con el acortamiento de la tibia. La menor longitud de la tibia acerca el centro de gravedad al suelo, aumentando la estabilidad durante la marcha.
La inclinación de la epífisis proximal es semejante en *N. rex*, *N. netscheri* y las tres especies del género *Pronolagus*, y menor que en *P. furnessi*. En *O. cuniculus*, *B. monticularis* y las especies del género *Lepus* y *Sylvilagus* con las que se ha comparado *N. rex*, la inclinación era menor.

La mayor inclinación de la epífisis proximal de la tibia en *N. rex*, *P. furnessi*, *N. netscheri* y *Pronolagus* podría ser indicativa de un aumento en las tensiones y los esfuerzos en sentido caudal, debidas, posiblemente, a un mayor grado de flexión a nivel de la rodilla (Currey, 1932).

El diámetro antero-posterior menor de la epífisis proximal podría también estar relacionada con un cambio en el grado de flexión - extensión a nivel de la rodilla. De acuerdo con lo anteriormente dicho, podría significar un mayor grado de flexión de la extremidad posterior a nivel de la rodilla y una menor capacidad para la extensión de esta.

7.7.5. PIE.

En este apartado se sigue el mismo esquema que el utilizado para el resto de los huesos de la extremidad posterior, con la enumeración, descripción y comparación cada uno de los huesos del pie *N. rex*. Los huesos navicular, cuboides y cuneiformes tan solo se describirán y compararán morfológicamente con los de *O. cuniculus*. El apartado dedicado a la morfología funcional se aplicará, no a cada hueso en particular, sino al pie como unidad funcional, mediante el estudio morfológico y el análisis de funciones discriminantes.

7.7.5.1. ASTRÁGALO.

Material.

Astágalos izquierdos: 0955, 1166, 1286, 0225, 0401, 12018, 0211, 0134, 0090, 0600, 0912, 12020, 0375, 1048, 1318, 1146 y 11762.
Astrágalos derechos: 11763, 12016, 1218, 0881, 11764, 1145, 12017, 0952, 1319, 12033 y 0210.

Número mínimo de individuos: 17.

Medidas. Se han considerado, únicamente, la longitud y la anchura del astrágalo, que aparecen en el anexo III. En la tabla 59 aparecen los valores medios de estos parámetros, junto con las ecuaciones alométricas y los coeficientes de correlación, tanto de *N. rex* como de otros lepóridos actuales.

Descripción. Hueso de aspecto muy robusto, con la troclea muy ancha en relación con su profundidad. La faceta lateral para el calcaneo está dividida en dos lóbulos, de los que el ventral presenta una superficie menor, y cuyo diámetro máximo es ligeramente oblicuo respecto al eje transversal; el diámetro mayor del lóbulo dorsal de esta misma faceta es oblicuo respecto al eje dorso ventral. En conjunto, la faceta lateral presenta un contorno en forma de “V” muy abierta. La faceta medial para el calcáneo presenta un contorno subcuadrangular. La faceta caudal para el calcáneo posee un contorno triangular y se orienta algo oblicua respecto al plano sagital. El cuello del astrágalo es, en relación con su longitud, muy ancho. La superficie articular de la cabeza del astrágalo para el hueso navicular es muy ancha, tanto transversalmente como craneo-caudalmente, especialmente en la zona craneal.

Fig. 145. Astrágalo de *N. rex* (A: vista plantar; C: vista medial, donde se aprecia la cuvartura de la faceta lateral para el calcáneo) y *O. cuniculus* (B: vista plantar; D: vista medial). 1: faceta para el calcáneo; 2: faceta para el hueso navicular. Escala gráfica: 3 mm.
7.7.5.1.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

La faceta lateral para el calcáneo es mucho más abierta en *N. rex* que en *O. cuniculus* (fig. 145C, D). A diferencia de *O. cuniculus*, *P. randensis*, *S. audubonii*, *B. monticularis*, *L. saxatilis* y *L. granatensis*, el cuello y la cabeza del astrágalo de *N. rex* y *P. furnessi* forma un ángulo muy oblicuo respecto al cuerpo del astrágalo (figs. 146 y 185).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>Anchura</th>
<th>Longitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. rex</td>
<td>17</td>
<td>11.47</td>
<td>17.85</td>
</tr>
<tr>
<td>O. cuniculus CBQ 96-1</td>
<td>1</td>
<td>6.02</td>
<td>11.31</td>
</tr>
<tr>
<td>O. cuniculus CBQ 98-1</td>
<td>1</td>
<td>5.28</td>
<td>11.13</td>
</tr>
<tr>
<td>O. cuniculus CBQ 98-6</td>
<td>1</td>
<td>5.01</td>
<td>10.03</td>
</tr>
<tr>
<td>O. cuniculus MAUV-2</td>
<td>1</td>
<td>5.23</td>
<td>9.91</td>
</tr>
<tr>
<td>O. cuniculus MAUV-1</td>
<td>1</td>
<td>5.53</td>
<td>11.14</td>
</tr>
<tr>
<td>O. cuniculus CBQ 00-1</td>
<td>1</td>
<td>5.39</td>
<td>11.08</td>
</tr>
<tr>
<td>O. cuniculus MAUV-5</td>
<td>1</td>
<td>5.08</td>
<td>11.05</td>
</tr>
<tr>
<td>O. cuniculus MAUV-8</td>
<td>1</td>
<td>5.21</td>
<td>10.61</td>
</tr>
<tr>
<td>O. cuniculus MAUV-3</td>
<td>1</td>
<td>5.56</td>
<td>10.70</td>
</tr>
<tr>
<td>O. cuniculus MAUV-6</td>
<td>1</td>
<td>4.92</td>
<td>10.64</td>
</tr>
<tr>
<td>O. cuniculus MAUV-7</td>
<td>1</td>
<td>5.56</td>
<td>11.04</td>
</tr>
<tr>
<td>S. mutabilis LACM 91174</td>
<td>1</td>
<td>4.40</td>
<td>9.02</td>
</tr>
<tr>
<td>S. audubonii</td>
<td>4</td>
<td>4.32</td>
<td>9.03</td>
</tr>
<tr>
<td>S. floridanus</td>
<td>2</td>
<td>4.82</td>
<td>10.58</td>
</tr>
<tr>
<td>P. propestris AZ 2400</td>
<td>1</td>
<td>6.57</td>
<td>11.79</td>
</tr>
<tr>
<td>P. randensis</td>
<td>2</td>
<td>7.00</td>
<td>12.25</td>
</tr>
<tr>
<td>B. monticularis</td>
<td>2</td>
<td>5.42</td>
<td>11.05</td>
</tr>
<tr>
<td>P. furnessi</td>
<td>3</td>
<td>7.73</td>
<td>12.78</td>
</tr>
<tr>
<td>L. californicus</td>
<td>6</td>
<td>6.39</td>
<td>12.81</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>1</td>
<td>6.50</td>
<td>13.54</td>
</tr>
<tr>
<td>L. saxatilis</td>
<td>6</td>
<td>6.76</td>
<td>13.70</td>
</tr>
<tr>
<td>L. capensis</td>
<td>2</td>
<td>6.82</td>
<td>13.74</td>
</tr>
<tr>
<td>L. castroviejai</td>
<td>1</td>
<td>6.41</td>
<td>13.02</td>
</tr>
</tbody>
</table>

7.7.5.1.2. PROPORCIONES DEL ASTRÁGALO.

Longitud.

En comparación al resto de lepóridos, *N. rex* es el que presenta un astrágalo más corto (fig. 147).

Anchura.

La anchura del astrágalo de *N. rex* es similar a la del resto de lepóridos (fig. 148).
Fig. 146. El astrágalo y su posición en relación al calcáneo en *O. cuniculus* (A) y en *N. rex* (B). Escala gráfica: 5 mm

Fig. 147. Representación alométrica de la longitud del astrágalo en *N. rex* y algunos lepóridos actuales.

218
7.7.5.2. CALCÁNEO.

Material.

Calcáneos izquierdos: 1046, 1026, 1067, 0204, 1313, 0306, 0919, 0214, 0286, 0120, 1411, 1119.

Calcáneos derechos: 1447, 1204, 0415, 1427, 12011, 1154, 0098, 1405, 1023, 1099, 1118, 0222, 11697.

Número mínimo de individuos: 13

Medidas. En el calcáneo, han sido medidos la longitud, la anchura, y la longitud del proceso, tal como se indica en la figura E (lámina I) del anexo III. Sus valores medios, las ecuaciones alométricas y los coeficientes de correlación aparecen en la tabla 60.

Descripción. Aspecto muy robusto, al presentar el proceso y el cuerpo del calcáneo muy cortos en relación con su anchura. La faceta para el cuboides presenta una superficie convexa y un contorno cuadrangular con la zona dorsal más ancha que la ventral. La faceta para el hueso navicular es muy alargada en sentido medio-lateral, con el margen posterior en contacto con la faceta para el cuboides, y con el margen medial en contacto con la faceta posterior para el astrágalo. La faceta ventral posterior para el astrágalo está orientada hacia la cara medial del calcáneo y en contacto con las facetas para el cuboides y el navicular. La faceta ventral anterior para
el astrágalo presenta un contorno cuadrangular y una superficie ligeramente convexa. La faceta dorsal para el astrágalo muestra un contorno ovalado con el diámetro máximo orientado craneo-caudalmente, con una cresta transversal poco marcada en su zona media.

Fig. 149. Calcáneo de *N. rex* (A: vista dorsal; C: vista craneal) y *O. cuniculus* (B: vista dorsal; D: vista craneal). 1: faceta para el cuboides; 2: faceta para el hueso navicular; 3: facetas para el astrágalo. Escala gráfica: 5 mm.

7.7.5.2.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

N. rex es el lepórido que presenta el calcáneo más robusto. Las principales diferencias entre el calcáneo de *N. rex* y el de *O. cuniculus* se encuentran en la faceta posterior para el astrágalo y en la faceta para el navicular. En *N. rex*, estas dos facetas entran en contacto, y la faceta para el hueso navicular es muy alargada en sentido medio-lateral. En *O. cuniculus*, la faceta para el hueso navicular es más corta y alargada en sentido antero-posterior, de manera que no entra en contacto con la faceta posterior para el astrágalo (fig. 149).
7.7.5.2.2. PROPORCIONES DEL CALCÁNEO.

En este apartado se han estimado los cambios alométricos en la longitud y la anchura del calcáneo, así como en la longitud del proceso y cuerpo del calcáneo, teniendo en cuenta los valores medios de la tabla 60.

<table>
<thead>
<tr>
<th>Tabla 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcáneo</td>
</tr>
<tr>
<td>Taxón</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>N. rex</td>
</tr>
<tr>
<td>O. cueménsis CBQ 96-1</td>
</tr>
<tr>
<td>O. cueménsis CBQ 96-1</td>
</tr>
<tr>
<td>O. cueménsis CBQ 98-0</td>
</tr>
<tr>
<td>O. cueménsis MAUV-2</td>
</tr>
<tr>
<td>O. cueménsis MAUV-1</td>
</tr>
<tr>
<td>O. cueménsis CBQ 00-1</td>
</tr>
<tr>
<td>O. cueménsis MAUV-4</td>
</tr>
<tr>
<td>O. cueménsis MAUV-8</td>
</tr>
<tr>
<td>O. cueménsis MAUV-3</td>
</tr>
<tr>
<td>O. cueménsis MAUV-6</td>
</tr>
<tr>
<td>O. cueménsis MAUV-7</td>
</tr>
<tr>
<td>O. cueménsis MAUV-5</td>
</tr>
<tr>
<td>S. santulli LACM 91174</td>
</tr>
<tr>
<td>S. santulli</td>
</tr>
<tr>
<td>C. auriculata</td>
</tr>
<tr>
<td>Forstenia AZ 2400</td>
</tr>
<tr>
<td>F. erradica</td>
</tr>
<tr>
<td>B. australis</td>
</tr>
<tr>
<td>P. m. mitis</td>
</tr>
<tr>
<td>L. carinifera</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
</tr>
<tr>
<td>L. santulli</td>
</tr>
<tr>
<td>L. eritrosternina</td>
</tr>
<tr>
<td>L. eritrosternina</td>
</tr>
<tr>
<td>Ecología</td>
</tr>
<tr>
<td>Coeficiente de correlación</td>
</tr>
</tbody>
</table>

Longitud.

La longitud del calcáneo de *N. rex* es similar a la del resto de lepóridos (150).

Longitud del proceso del calcáneo.

N. rex es el lepórido que presenta el proceso del calcáneo más corto (fig. 151).

Longitud del cuerpo del calcáneo.

La longitud del cuerpo del calcáneo ha sido calculada mediante la diferencia entre los valores medios de la longitud total del calcáneo y la longitud del proceso del calcáneo. El cuerpo del calcáneo de *N. rex* similar al del resto de lepóridos (fig. 152).
Fig. 150. Representación alométrica de la longitud del calcáneo en *N. rex* y algunos lepóridos actuales.

151. Representación alométrica de la longitud del proceso del calcáneo en *N. rex* y algunos lepóridos actuales.
Fig. 152. Representación alométrica de la longitud del cuerpo del calcáneo en *N. rex* y algunos lepóridos actuales.

Fig. 153. Representación alométrica de la anchura del calcáneo en *N. rex* y algunos lepóridos actuales.
Anchura del calcáneo.

El calcáneo de *N. rex* presenta una anchura menor a la del resto de lepóridos, aunque la diferencia es muy pequeña (fig. 153).

7.7.5.3. NAVICULAR

Material.

Huesos naviculares izquierdos: 11785, 1202, 0026.

Huesos naviculares derechos: 1431, 0466, 0335, 0402, 0956, 12044, 12043.

Número mínimo de individuos: 7.

Medidas. Las medidas del hueso navicular aparecen en la tabla 61, y corresponden al diámetro máximo dorso-plantar, diámetro máximo medio-lateral y al diámetro mínimo craneo-caudal.

Fig. 154. Hueso navicular de *N. rex* (A: vista lateral; B: vista craneal; C: vista caudal) y *O. cuniculus* (D: vista lateral; E: vista craneal; F: vista caudal). 1: faceta para el astrágalo; 2: faceta para el calcáneo; 3: faceta para el cuboides; 4: faceta para el cuneiforme intermedio; 5: faceta para el cuneiforme lateral. Escala gráfica: 5mm.
Descripción. Hueso muy robusto, con la faceta para el hueso cuneiforme intermedio plana, con el diámetro máximo orientado dorso-medialmente. La faceta para el astrágalo presenta un contorno circular y una superficie cóncava. La faceta para el hueso cuboides muestra un contorno cuadrangular, con el límite caudal muy próximo a la faceta para el astrágalo. En visión caudal, el límite plantar de esta misma faceta se sitúa a la misma altura que el límite plantar de la faceta para el astrágalo. En la faceta para el calcáneo el diámetro máximo se orienta dorso-caudalmente y contacta con la faceta para el astrágalo. En visión caudal, el límite dorsal de la faceta para el calcáneo se sitúa por debajo del límite dorsal de la faceta para el astrágalo. La zona lateral de la faceta para el cuneiforme lateral está muy poco desarrollada en comparación a la zona medial y presenta un margen lateral convexo.

7.7.5.3.1. COMPARACIÓN CON OTROS LÉPÓRIDOS.
La zona plantar del hueso navicular de *N. rex* es más plana que en *O. cuniculus*. En *N. rex*, la faceta para el astrágalo forma una concavidad más suave que en *O. cuniculus*; los margenes caudales de la faceta para el cuboides y para el calcáneo quedan más próximos al margen lateral de la faceta para el astrágalo en *N. rex*, mientras que el margen craneal de la faceta para el cuboides no contacta con la faceta para el cuneiforme lateral, mientras que en *O. cuniculus* sí. La faceta para el cuboides y para el calcáneo se orientan lateralmente en *N. rex*, mientras que en *O. cuniculus* la orientación de estas facetas es latero-dorsal.
La zona lateral de la faceta para el cuneiforme intermedio presenta una mayor superficie relativa en *O. cuniculus*, al ser transversalmente más ancha y al estar más desarrollada en la zona plantar (fig.154).

7.7.5.4. CUBOIDES.
Material.
Hueso cuboides izquierdo: 11787.
Huesos cuboides derechos: 12126, 1350, 12102, 12125.
Número mínimo de individuos: 4.
Medidas. Ha sido medido el diámetro máximo dorso-plantar, el diámetro máximo medio-lateral y el diámetro máximo craneo-caudal. Sus valores aparecen en la tabla 61.

Fig. 155. Cuboides de *N. rex* (A: vista medial; B: vista caudal; C: vista craneal) y *O. cuniculus* (D: vista medial; E: vista caudal; F: vista craneal). 1: faceta para el hueso navicular; 2: faceta para el cuneiforme lateral; 3: faceta para el calcáneo; 4: faceta para el cuarto y el quinto metatarso. Escala gráfica: 3 mm.

Descripción. La faceta para el cuneiforme lateral posee un contorno elíptico, con el diámetro máximo ligeramente inclinado respecto al eje dorso-plantar. Por su cara caudal contacta con la faceta para el hueso navicular. La faceta para el calcáneo presenta una superficie convexa, con una zona inclinada dorsalmente y otra zona inclinada plantarmente. La faceta para el cuarto y quinto metatarso muestra una morfología piriforme y una superficie ligeramente cóncava, con el diámetro máximo orientado transversalmente.
7.7.5.4.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

La faceta para el cuneiforme lateral presenta una superficie relativa mayor en *N. rex* que en *O. cuniculus* (fig. 155A, D). Mientras que en *N. rex* esta faceta se orienta medialmente, en *O. cuniculus* está ligeramente inclinada hacia la zona plantar (fig. 155C, F). En comparación con el margen lateral, el margen medial de la faceta para el calcáneo presenta una mayor anchura dorso-plantar en *O. cuniculus*. En *N. rex*, la diferencia de anchuras es menor (fig. 155B, E).

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuralagus 0026</td>
<td>13,19</td>
<td>11,61</td>
<td>5,68</td>
</tr>
<tr>
<td>Nuralagus 0402</td>
<td>13,68</td>
<td>12,48</td>
<td>5,60</td>
</tr>
<tr>
<td>Nuralagus 11784</td>
<td>10,99</td>
<td>12,35</td>
<td>8,75</td>
</tr>
<tr>
<td>Nuralagus 1350</td>
<td>9,93</td>
<td>12,01</td>
<td>8,94</td>
</tr>
<tr>
<td>Nuralagus 0437</td>
<td>8,49</td>
<td>7,17</td>
<td>5,91</td>
</tr>
<tr>
<td>Nuralagus 0438</td>
<td>8,21</td>
<td>6,97</td>
<td>5,81</td>
</tr>
</tbody>
</table>

Tabla 61. Medidas (en mm) del hueso navicular (1), cuboides (2) y cuneiforme lateral (3). A: diámetro máximo dorso-plantar; B: diámetro máximo medio-lateral; C: diámetro craneo-caudal.

7.7.5.5. CUNEIFORME LATERAL.

Material.

Huesos cuneiformes laterales izquierdos: 0379, 0437.

Huesos cuneiformes laterales derechos: 0438, 0347.

Número mínimo de individuos: 2

Medidas. Las medidas del diámetro máximo dorso-plantar, medio-lateral y craneo-caudal aparecen en la tabla 61.

Descripción. La faceta para el cuboides se orienta muy verticalmente y muestra un contorno triangular. En esta faceta, el vértice craneal llega hasta la mitad de la cara lateral; la faceta para el tercer metatarso presenta una forma piriforme de superficie plana. La zona dorsal de la faceta para el hueso navicular presenta una concavidad muy marcada, mientras que el borde ventral es ligeramente convexo. El margen caudal de la faceta para el segundo metatarso es redondeado y llega hasta la mitad de la cara medial; el margen craneal es recto y entra en contacto con la faceta para el tercer metatarso.
7.7.5.5.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

En *N. rex*, la faceta para el hueso navicular es más convexa que en *O. cuniculus*, al presentar el margen dorsal más elevado respecto al margen plantar. La faceta para el segundo metatarso presenta un mayor desarrollo en *N. rex* que en *O. cuniculus*. Además, esta faceta presenta, en *O. cuniculus*, un contorno nítidamente redondo y no contacta, como en *N. rex*, con la faceta para el tercer metatarso. La faceta para el cuboides presenta una superficie plana en *N. rex*, mientras que en *O. cuniculus* es convexa y muy alargada en sentido caudo-ventral. Como en *N. rex*, la faceta para el tercer metatarso de *O. cuniculus* presenta una forma piriforme; sin embargo, en *O. cuniculus* el lóbulo ventral de esta faceta es más alargado (fig. 156).

7.7.5.6. CUNEIFORME INTERMEDIO.

No se ha encontrado ningún cuneiforme intermedio entre el material recuperado de *N. rex*.
7.7.5.7. SEGUNDO METATARSO.

Material.

Segundos metatarsos izquierdos: 1016, 0953.

Segundos metatarsos derechos: 0130, 0857, 0994, 1131, 0131.

Número mínimo de individuos: 5.

Medidas. En el segundo metatarso ha sido medida la longitud, el diámetro transversal y antero-posterior de la epífisis proximal y distal. En la diáfisis, se ha medido el diámetro mínimo, y el diámetro en la longitud media, tal como se indica en la lámina II (figura D) del anexo III.

Fig. 157. Epífisis proximal del segundo metatarso de *N. rex*. A: vista caudal; B: vista plantar; C: vista dorsal; D: vista medial; E: vista lateral. 1: faceta para el hueso navicular; 2: faceta para el cuneiforme intermedio; 3: faceta para el cuneiforme lateral; 4: faceta para el tercer metatarso. Escala gráfica: 5mm.

Descripción. El segundo metatarso es corto, con la faceta para el hueso navicular (facies articulatoria tarsea) dorso-ventralmente muy alargada y con una superficie poco convexa. Los dos márgenes dorsales de la faceta para el cuneiforme intermedio forman un ángulo de 93°. Las dos caras de la faceta para el hueso cuneiforme intermedio son perpendiculares. El tubérculo plantar de la epífisis proximal queda dividido longitudinalmente por un surco. La faceta para el cuneiforme lateral possee un contorno redondeado y queda bien delimitada al sobresalir ligeramente respecto de la superficie que la rodea; la faceta para el tercer metatarso muestra un contorno mal definido, situándose entre la faceta para el cuneiforme lateral y el tubérculo plantar.
<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>L. funcional</th>
<th>D.A. funcional</th>
<th>D.T. funcional</th>
<th>D.A. distal</th>
<th>(A)</th>
<th>Peso (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. cucullus CBQ 96-1</td>
<td>1</td>
<td>30,91</td>
<td>5,84</td>
<td>9,99</td>
<td>3,72</td>
<td>*</td>
<td>1450</td>
</tr>
<tr>
<td>O. cucullus CBQ 98-1</td>
<td>1</td>
<td>29,24</td>
<td>5,14</td>
<td>3,64</td>
<td>3,64</td>
<td>*</td>
<td>1375</td>
</tr>
<tr>
<td>O. cucullus CBQ 98-9</td>
<td>1</td>
<td>28,65</td>
<td>4,97</td>
<td>3,22</td>
<td>3,21</td>
<td>*</td>
<td>925</td>
</tr>
<tr>
<td>O. cucullus MAUV-2</td>
<td>1</td>
<td>27,30</td>
<td>4,94</td>
<td>3,58</td>
<td>3,66</td>
<td>*</td>
<td>1230</td>
</tr>
<tr>
<td>O. cucullus MAUV-1</td>
<td>1</td>
<td>-</td>
<td>5,50</td>
<td>3,73</td>
<td>3,73</td>
<td>*</td>
<td>1175</td>
</tr>
<tr>
<td>O. cucullus CBQ 90-1</td>
<td>1</td>
<td>31,21</td>
<td>5,65</td>
<td>-</td>
<td>3,85</td>
<td>*</td>
<td>950</td>
</tr>
<tr>
<td>O. cucullus MAUV-4</td>
<td>1</td>
<td>27,29</td>
<td>4,87</td>
<td>3,67</td>
<td>3,24</td>
<td>*</td>
<td>1290</td>
</tr>
<tr>
<td>O. cucullus MAUV-5</td>
<td>1</td>
<td>29,33</td>
<td>5,30</td>
<td>3,57</td>
<td>3,56</td>
<td>*</td>
<td>1250</td>
</tr>
<tr>
<td>O. cucullus MAUV-3</td>
<td>1</td>
<td>29,03</td>
<td>5,20</td>
<td>3,42</td>
<td>3,56</td>
<td>*</td>
<td>1230</td>
</tr>
<tr>
<td>O. cucullus MAUV-6</td>
<td>1</td>
<td>29,15</td>
<td>5,28</td>
<td>3,49</td>
<td>3,53</td>
<td>*</td>
<td>1200</td>
</tr>
<tr>
<td>O. cucullus MAUV-7</td>
<td>1</td>
<td>30,35</td>
<td>5,29</td>
<td>3,94</td>
<td>3,83</td>
<td>*</td>
<td>1100</td>
</tr>
<tr>
<td>S. nutalis LACM 91174</td>
<td>1</td>
<td>28,69</td>
<td>3,63</td>
<td>3,05</td>
<td>2,94</td>
<td>*</td>
<td>680</td>
</tr>
<tr>
<td>S. cincosetosa</td>
<td>4</td>
<td>28,86</td>
<td>4,44</td>
<td>3,01</td>
<td>2,94</td>
<td>*</td>
<td>914,7 (1)</td>
</tr>
<tr>
<td>S. longipes</td>
<td>3</td>
<td>32,44</td>
<td>5,13</td>
<td>3,58</td>
<td>3,35</td>
<td>*</td>
<td>1189,2 (2)</td>
</tr>
<tr>
<td>P. propioris AZ 2400</td>
<td>2</td>
<td>32,37</td>
<td>5,47</td>
<td>3,56</td>
<td>3,63</td>
<td>*</td>
<td>2239</td>
</tr>
<tr>
<td>P. randesi</td>
<td>2</td>
<td>29,88</td>
<td>6,29</td>
<td>4,71</td>
<td>3,83</td>
<td>*</td>
<td>2000 (3)</td>
</tr>
<tr>
<td>B. m. m.</td>
<td>1</td>
<td>38,07</td>
<td>6,67</td>
<td>3,80</td>
<td>3,91</td>
<td>*</td>
<td>1500 (3)</td>
</tr>
<tr>
<td>P. fluminea</td>
<td>2</td>
<td>25,57</td>
<td>7,13</td>
<td>6,13</td>
<td>4,63</td>
<td>*</td>
<td>2545,5 (4)</td>
</tr>
<tr>
<td>L. californicus</td>
<td>5</td>
<td>42,27</td>
<td>7,06</td>
<td>4,29</td>
<td>4,31</td>
<td>*</td>
<td>2542,5 (5)</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>1</td>
<td>40,76</td>
<td>6,99</td>
<td>3,96</td>
<td>4,45</td>
<td>*</td>
<td>2065</td>
</tr>
<tr>
<td>L. sexangulus</td>
<td>6</td>
<td>42,90</td>
<td>7,24</td>
<td>4,45</td>
<td>4,69</td>
<td>*</td>
<td>2611 (3)</td>
</tr>
<tr>
<td>L. capensis</td>
<td>2</td>
<td>43,98</td>
<td>7,37</td>
<td>4,19</td>
<td>4,57</td>
<td>*</td>
<td>2040 (3)</td>
</tr>
<tr>
<td>L. castroviejo</td>
<td>1</td>
<td>50,50</td>
<td>7,56</td>
<td>4,81</td>
<td>4,66</td>
<td>*</td>
<td>2905 (6)</td>
</tr>
</tbody>
</table>

Coeficiente de correlación: R = 0.88705, R² = 0.8740, R² = 0.8685, R² = 0.8386

<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>D.T. distal</th>
<th>D.A. distal</th>
<th>D.T. distal</th>
<th>(A)</th>
<th>Peso (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. cucullus CBQ 96-1</td>
<td>1</td>
<td>4,78</td>
<td>2,92</td>
<td>3,26</td>
<td>*</td>
<td>1450</td>
</tr>
<tr>
<td>O. cucullus CBQ 98-1</td>
<td>1</td>
<td>4,60</td>
<td>2,67</td>
<td>3,37</td>
<td>*</td>
<td>1375</td>
</tr>
<tr>
<td>O. cucullus CBQ 98-9</td>
<td>1</td>
<td>4,06</td>
<td>2,34</td>
<td>2,93</td>
<td>*</td>
<td>925</td>
</tr>
<tr>
<td>O. cucullus MAUV-2</td>
<td>1</td>
<td>4,23</td>
<td>2,41</td>
<td>2,81</td>
<td>*</td>
<td>1230</td>
</tr>
<tr>
<td>O. cucullus MAUV-1</td>
<td>1</td>
<td>5,00</td>
<td>2,61</td>
<td>3,16</td>
<td>*</td>
<td>1175</td>
</tr>
<tr>
<td>O. cucullus CBQ 90-1</td>
<td>1</td>
<td>4,57</td>
<td>2,79</td>
<td>3,17</td>
<td>*</td>
<td>950</td>
</tr>
<tr>
<td>O. cucullus MAUV-3</td>
<td>1</td>
<td>4,18</td>
<td>2,49</td>
<td>3,08</td>
<td>*</td>
<td>1290</td>
</tr>
<tr>
<td>O. cucullus MAUV-5</td>
<td>1</td>
<td>4,16</td>
<td>2,49</td>
<td>3,12</td>
<td>*</td>
<td>1250</td>
</tr>
<tr>
<td>O. cucullus MAUV-7</td>
<td>1</td>
<td>4,40</td>
<td>2,70</td>
<td>3,00</td>
<td>*</td>
<td>1230</td>
</tr>
<tr>
<td>O. cucullus MAUV-6</td>
<td>1</td>
<td>4,20</td>
<td>2,74</td>
<td>2,89</td>
<td>*</td>
<td>1200</td>
</tr>
<tr>
<td>O. cucullus MAUV-7</td>
<td>1</td>
<td>4,60</td>
<td>2,54</td>
<td>3,05</td>
<td>*</td>
<td>1100</td>
</tr>
<tr>
<td>S. nutalis LACM 91174</td>
<td>1</td>
<td>3,69</td>
<td>2,15</td>
<td>2,49</td>
<td>*</td>
<td>680</td>
</tr>
<tr>
<td>S. cincosetosa</td>
<td>4</td>
<td>3,73</td>
<td>2,02</td>
<td>2,45</td>
<td>*</td>
<td>914,7 (1)</td>
</tr>
<tr>
<td>S. barnes</td>
<td>3</td>
<td>4,06</td>
<td>2,34</td>
<td>2,85</td>
<td>*</td>
<td>1189,2 (2)</td>
</tr>
<tr>
<td>P. propioris AZ 2400</td>
<td>1</td>
<td>5,33</td>
<td>2,43</td>
<td>3,48</td>
<td>*</td>
<td>2239</td>
</tr>
<tr>
<td>P. randesi</td>
<td>2</td>
<td>5,02</td>
<td>2,43</td>
<td>3,47</td>
<td>*</td>
<td>2300 (3)</td>
</tr>
<tr>
<td>B. m. m.</td>
<td>1</td>
<td>4,93</td>
<td>2,60</td>
<td>3,41</td>
<td>*</td>
<td>1500 (3)</td>
</tr>
<tr>
<td>P. fluminea</td>
<td>2</td>
<td>6,26</td>
<td>2,97</td>
<td>4,52</td>
<td>*</td>
<td>2545,5 (4)</td>
</tr>
<tr>
<td>L. californicus</td>
<td>5</td>
<td>5,07</td>
<td>3,25</td>
<td>3,58</td>
<td>*</td>
<td>2542,5 (5)</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>1</td>
<td>4,96</td>
<td>3,01</td>
<td>1,99</td>
<td>*</td>
<td>2065</td>
</tr>
<tr>
<td>L. sexangulus</td>
<td>6</td>
<td>5,20</td>
<td>3,42</td>
<td>3,67</td>
<td>*</td>
<td>2611 (3)</td>
</tr>
<tr>
<td>L. capensis</td>
<td>2</td>
<td>5,02</td>
<td>3,49</td>
<td>3,61</td>
<td>*</td>
<td>2040 (3)</td>
</tr>
<tr>
<td>L. castroviejo</td>
<td>1</td>
<td>6,34</td>
<td>3,72</td>
<td>3,88</td>
<td>*</td>
<td>2905 (6)</td>
</tr>
</tbody>
</table>

Coeficiente de correlación: R = 0.8636, R = 0.7310, R = 0.8667

7.7.5.7.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

Al igual que *N. rex* (fig.157C, D), el tubérculo plantar de la epífisis proximal de *P. furnessi* queda dividido por un surco, que está ausente en *O. cuniculus* y *L. granatensis*. La faceta para el hueso navicular es dorso-plantarmente alargada en *N. rex*, *O. cuniculus* y *L. granatensis*. En *P. furnessi* esta faceta muestra un contorno circular. La morfología de la faceta para el hueso cuneiforme intermedio y lateral y la faceta para el tercer metatarso presentan unas características similares en los cuatro lepóridos.

7.7.5.8. TERCER METATARSO.

Material.

Terceros metatarsos izquierdos: 0290, 12106, 0154, 1416, 11774, 11770, 0980.

Terceros metatarsos derechos: 0137, 12113, 12108, 12148, 0105, 0177, 12111, 1222, 0174.

Número mínimo de individuos: 9.

Medidas. En el tercer metatarso ha sido medida la longitud, el diámetro transversal y antero-posterior de la epífisis proximal y distal. En la diáfisis, se ha medido el diámetro mínimo, y el diámetro en la longitud media, tal como se indica en la lámina II (figuraD) del anexo III.

![Fig. 158. Epífisis proximal del tercer metatarso de *N. rex*. A: vista caudal; B: vista plantar; C: vista dorsal; D: vista medial. 1: faceta para el cuneiforme lateral; 2 y 4: faceta para el cuarto metatarso; 3: faceta para el segundo metatarso. Escala gráfica: 5 mm.](image)

Descripción. Aspecto muy robusto. La faceta para el cuneiforme lateral se inclina 16° respecto al plano longitudinal de la diáfisis. Los límites plantares de la faceta para el cuneiforme lateral y la epífisis proximal son coincidentes. Los límites de la faceta
Tabla 63

<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>L. funcional</th>
<th>D.A.P. proximal</th>
<th>D.T. proximal</th>
<th>D.A.P. distal (A)</th>
<th>Peso (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. rex</td>
<td>2-4</td>
<td>44,86</td>
<td>9,17</td>
<td>8,10</td>
<td>6,50</td>
<td>14092,2</td>
</tr>
<tr>
<td>O. cuinculus CBQ 96-1</td>
<td>1</td>
<td>34,46</td>
<td>6,15</td>
<td>3,82</td>
<td>3,74</td>
<td>*1450 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 98-1</td>
<td>1</td>
<td>32,23</td>
<td>5,94</td>
<td>3,72</td>
<td>3,59</td>
<td>*1375 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 98-0</td>
<td>1</td>
<td>31,73</td>
<td>5,42</td>
<td>3,28</td>
<td>3,17</td>
<td>*925 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-2</td>
<td>1</td>
<td>31,11</td>
<td>5,20</td>
<td>3,46</td>
<td>3,61</td>
<td>*1230 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-2</td>
<td>1</td>
<td>32,08</td>
<td>5,88</td>
<td>3,54</td>
<td>3,61</td>
<td>*1175 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 90-1</td>
<td>1</td>
<td>34,94</td>
<td>5,97</td>
<td>3,59</td>
<td>3,82</td>
<td>*950 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-4</td>
<td>1</td>
<td>30,54</td>
<td>5,12</td>
<td>3,18</td>
<td>3,04</td>
<td>*1290 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-5</td>
<td>1</td>
<td>32,54</td>
<td>5,65</td>
<td>3,39</td>
<td>3,35</td>
<td>*1250 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-6</td>
<td>1</td>
<td>32,20</td>
<td>5,41</td>
<td>3,34</td>
<td>3,55</td>
<td>*1220 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-7</td>
<td>1</td>
<td>32,56</td>
<td>5,43</td>
<td>3,83</td>
<td>3,56</td>
<td>*1200 *</td>
</tr>
<tr>
<td>S. natalis LACM 91174</td>
<td>1</td>
<td>31,39</td>
<td>4,47</td>
<td>2,91</td>
<td>2,89</td>
<td>*680 *</td>
</tr>
<tr>
<td>S. sandwicensis</td>
<td>3</td>
<td>31,50</td>
<td>4,67</td>
<td>3,03</td>
<td>4,49</td>
<td>*9147 (1)</td>
</tr>
<tr>
<td>S. bovidens</td>
<td>3</td>
<td>35,51</td>
<td>5,33</td>
<td>3,44</td>
<td>3,32</td>
<td>*11892 (2)</td>
</tr>
<tr>
<td>P. purpurea AZ 2400</td>
<td>1</td>
<td>32,17</td>
<td>6,46</td>
<td>4,42</td>
<td>3,74</td>
<td>*2239 *</td>
</tr>
<tr>
<td>P. randomia</td>
<td>2</td>
<td>33,54</td>
<td>6,22</td>
<td>4,30</td>
<td>3,90</td>
<td>*2300 (3)</td>
</tr>
<tr>
<td>R. monticola</td>
<td>2</td>
<td>38,08</td>
<td>6,35</td>
<td>3,75</td>
<td>3,86</td>
<td>*1500 (3)</td>
</tr>
<tr>
<td>L. ciliaticrus</td>
<td>5</td>
<td>45,67</td>
<td>7,16</td>
<td>4,96</td>
<td>4,42</td>
<td>*2545,5 (4)</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>1</td>
<td>44,42</td>
<td>7,14</td>
<td>4,42</td>
<td>4,42</td>
<td>*2065 *</td>
</tr>
<tr>
<td>L. ciliaticrus</td>
<td>6</td>
<td>47,46</td>
<td>7,64</td>
<td>4,74</td>
<td>4,66</td>
<td>*2611 (3)</td>
</tr>
<tr>
<td>L. apennins</td>
<td>2</td>
<td>48,33</td>
<td>7,93</td>
<td>4,68</td>
<td>4,59</td>
<td>*2040 (3)</td>
</tr>
<tr>
<td>L. castroviejoi</td>
<td>1</td>
<td>6,89</td>
<td>5,18</td>
<td>-</td>
<td>-</td>
<td>*2905 (6)</td>
</tr>
</tbody>
</table>

Ecución

- Y = 0.379X - 0.6113
- Y = 0.586X - 1.3981
- Y = 0.386X - 1.3793
- Y = 0.279X - 1.1428

Coeficiente de correlación

- R² = 0,8310
- R² = 0,7024
- R² = 0,9315
- R² = 0,8657

Tabla 63 (continuación)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>n</th>
<th>D.T. distal</th>
<th>D.A.P. distal</th>
<th>D.T. distal (A)</th>
<th>Peso (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. rex</td>
<td>2-4</td>
<td>8,23</td>
<td>3,91</td>
<td>5,56</td>
<td>*14092,21 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 96-1</td>
<td>1</td>
<td>4,61</td>
<td>2,66</td>
<td>3,1</td>
<td>*1450 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 98-1</td>
<td>1</td>
<td>4,38</td>
<td>2,45</td>
<td>3,04</td>
<td>*1375 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 98-0</td>
<td>1</td>
<td>3,88</td>
<td>2,09</td>
<td>2,65</td>
<td>*925 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-2</td>
<td>1</td>
<td>4,15</td>
<td>2,16</td>
<td>2,71</td>
<td>*1230 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-1</td>
<td>1</td>
<td>4,47</td>
<td>2,29</td>
<td>2,82</td>
<td>*1175 *</td>
</tr>
<tr>
<td>O. cuinculus CBQ 98-0</td>
<td>1</td>
<td>4,25</td>
<td>2,31</td>
<td>2,88</td>
<td>*950 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-4</td>
<td>1</td>
<td>3,92</td>
<td>2,30</td>
<td>2,57</td>
<td>*1290 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-5</td>
<td>1</td>
<td>4,13</td>
<td>2,27</td>
<td>2,94</td>
<td>*1250 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-3</td>
<td>1</td>
<td>4,20</td>
<td>2,32</td>
<td>2,62</td>
<td>*1230 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-6</td>
<td>1</td>
<td>3,95</td>
<td>2,37</td>
<td>2,70</td>
<td>*1200 *</td>
</tr>
<tr>
<td>O. cuinculus MAUV-7</td>
<td>1</td>
<td>4,31</td>
<td>2,20</td>
<td>2,64</td>
<td>*1100 *</td>
</tr>
<tr>
<td>S. natalis LACM 91174</td>
<td>1</td>
<td>3,38</td>
<td>1,96</td>
<td>2,20</td>
<td>*680 *</td>
</tr>
<tr>
<td>S. sandwicensis</td>
<td>3</td>
<td>3,56</td>
<td>1,94</td>
<td>2,20</td>
<td>*9147 (1)</td>
</tr>
<tr>
<td>S. bovidens</td>
<td>3</td>
<td>3,85</td>
<td>2,25</td>
<td>2,69</td>
<td>*11892 (2)</td>
</tr>
<tr>
<td>P. purpurea AZ 2400</td>
<td>1</td>
<td>5,06</td>
<td>2,31</td>
<td>3,34</td>
<td>*2239 *</td>
</tr>
<tr>
<td>P. randomia</td>
<td>2</td>
<td>4,65</td>
<td>2,51</td>
<td>3,16</td>
<td>*2300 (3)</td>
</tr>
<tr>
<td>R. monticola</td>
<td>2</td>
<td>4,37</td>
<td>2,49</td>
<td>2,95</td>
<td>*1500 (3)</td>
</tr>
<tr>
<td>L. ciliaticrus</td>
<td>5</td>
<td>4,88</td>
<td>3,02</td>
<td>3,28</td>
<td>*2542,5 (5)</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>1</td>
<td>4,87</td>
<td>2,70</td>
<td>3,19</td>
<td>*2065 *</td>
</tr>
<tr>
<td>L. ciliaticrus</td>
<td>6</td>
<td>5,11</td>
<td>3,11</td>
<td>3,55</td>
<td>*2611 (3)</td>
</tr>
<tr>
<td>L. apennins</td>
<td>2</td>
<td>5,05</td>
<td>3,32</td>
<td>3,60</td>
<td>*2040 (3)</td>
</tr>
<tr>
<td>L. castroviejoi</td>
<td>1</td>
<td>4,81</td>
<td>3,45</td>
<td>3,59</td>
<td>*2905 (6)</td>
</tr>
</tbody>
</table>

Ecución

- Y = 0.291X - 1.2787
- Y = 0.392X - 1.2497
- Y = 0.322X - 1.5541

Coeficiente de correlación

- R² = 0,8995
- R² = 0,8581
- R² = 0,9060

para el segundo metatarso quedan mal definidos, excepto dorsalmente, donde queda delimitada por un pequeño tubérculo. La faceta plantar para el cuarto metatarso presenta una forma triangular, con el diámetro máximo orientado cráneo-caudalmente. Esta faceta se orienta paralelamente al plano sagital. La faceta dorsal para el cuarto metatarso muestra una superficie muy convexa, con su margen dorsal bien marcado y muy próximo a la superficie dorsal de la epífisis proximal.

7.7.5.8.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

O. cuniculus, L. granatensis y *P. furnessi* muestran, en la epífisis proximal, un tubérculo plantar que sobresale respecto al margen plantar de la faceta para el cuneiforme lateral, y que está ausente en *N. rex* (fig. 158A).

La faceta dorsal para el cuarto metatarso de *N. rex* y *P. furnessi* es más abierta que en *O. cuniculus* y *L. granatensis*, al quedar su margen caudal más próximo al margen lateral de la faceta para el cuneiforme lateral.

En *O. cuniculus* y *L. granatensis*, la cresta plantal de la epífisis distal es ligeramente más alta y estrecha que en *N. rex*.

7.7.5.9. CUARTO METATARSO.

Material.

Cuartos metatarsos izquierdos: 0462, 0216, 0172, 1259, 1038, 0291, 0248.

Cuartos metatarsos derechos: 0316, 0999, 1255, 0455.

Número mínimo de individuos: 7.

Medidas. En el cuarto metatarso ha sido medida la longitud, el diámetro transversal y antero-posterior de la epífisis proximal y distal. En la diáfisis, se ha medido el diámetro mínimo, y el diámetro en la longitud media, tal como se indica en la lámina II (figura D) del anexo III.

Descripción. Aspecto robusto. La zona dorsal de la faceta para el cuboides se inclina, lateralmente, 7°. El tubérculo plantar de la epífisis proximal es corto y ancho. La zona plantar de la faceta para el quinto metatarso es alargada en sentido cráneo-caudal y entra en contacto con la faceta para el cuboides; la zona dorsal de esta misma faceta presenta una superficie cóncava. La faceta plantar para el tercer metatarso presenta un contorno redondeado y una superficie ligeramente convexa. La faceta dorsal para el
tercer metatarsarso presenta también un contorno redondeado y una superficie marcadamente convexa (fig. 159).

Fig. 159. Epífisis proximal del cuarto metatarsarso de N. rex. A: vista caudal; B: vista dorsal; C: vista plantar; D: vista medial; E: vista lateral. 1: faceta para el cuboides; 2: faceta para el tercer metatarsarso; 3: facetas para el quinto metatarsarso. Escala gráfica: 5 mm.

7.7.5.9.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

En O. cuniculus, L. granatensis y P. furnessi, la distancia entre los márgenes plantares de la faceta para el hueso cuboides y el tubérculo plantar es mayor que en N. rex.

En relación a estos tres lepóridos, la epífisis proximal de P. furnessi presenta una mayor inclinación en sentido sagital, al presentar un tubérculo plantar muy prominente en relación a la faceta para el hueso cuboides.

La zona dorsal de la faceta para el quinto metatarsarso muestra una concavidad más abierta en N. rex, de manera que la distancia de separación entre esta faceta y la faceta para el cuboides es proporcionalmente menor que en O. cuniculus y L. granatensis. La faceta dorsal para el tercer metatarsarso de N. rex presenta una menor convexidad si se compara con las facetas de O. cuniculus y L. granatensis.

7.7.5.10. QUINTO METATARSARSO.

Material.

Quintos metatarsaros izquierdos: 1147.

Quintos metatarsaros derechos: 0463, 0908, 1055, 0292, 1054.

Número mínimo de individuos: 5

Medidas. En el quinto metatarsarso ha sido medida su longitud, el diámetro anteroposterior y transversal de la epífisis proximal y distal, y el diámetro mínimo antero-
Tabla 64
Metatarsus 4º

<table>
<thead>
<tr>
<th>N. res</th>
<th>L. funcional</th>
<th>D.A.P. proximal</th>
<th>D.T. proximal</th>
<th>D.A.P. distal</th>
<th>(A)</th>
<th>Peso (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,83</td>
<td>6,0</td>
<td>1,5</td>
<td>2,3</td>
<td>1,5</td>
<td>1,7</td>
</tr>
<tr>
<td>2</td>
<td>15,69</td>
<td>4,2</td>
<td>1,3</td>
<td>2,2</td>
<td>2,1</td>
<td>1,8</td>
</tr>
<tr>
<td>3</td>
<td>33,83</td>
<td>5,8</td>
<td>1,7</td>
<td>2,6</td>
<td>2,6</td>
<td>1,9</td>
</tr>
<tr>
<td>4</td>
<td>15,69</td>
<td>4,5</td>
<td>1,5</td>
<td>2,5</td>
<td>2,5</td>
<td>1,6</td>
</tr>
<tr>
<td>5</td>
<td>33,83</td>
<td>6,1</td>
<td>1,6</td>
<td>2,4</td>
<td>2,4</td>
<td>1,7</td>
</tr>
<tr>
<td>6</td>
<td>15,69</td>
<td>4,3</td>
<td>1,4</td>
<td>2,3</td>
<td>2,3</td>
<td>1,6</td>
</tr>
<tr>
<td>7</td>
<td>33,83</td>
<td>6,0</td>
<td>1,5</td>
<td>2,3</td>
<td>2,3</td>
<td>1,6</td>
</tr>
<tr>
<td>8</td>
<td>15,69</td>
<td>4,2</td>
<td>1,3</td>
<td>2,2</td>
<td>2,2</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Tabla 64 (continuación)

Metatarsus 4º

<table>
<thead>
<tr>
<th>N. res</th>
<th>L. funcional</th>
<th>D.A.P. distal</th>
<th>D.T. distal</th>
<th>(A)</th>
<th>Peso (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33,83</td>
<td>6,0</td>
<td>1,5</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>2</td>
<td>15,69</td>
<td>4,2</td>
<td>1,3</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>3</td>
<td>33,83</td>
<td>6,1</td>
<td>1,6</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>4</td>
<td>15,69</td>
<td>4,5</td>
<td>1,5</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>5</td>
<td>33,83</td>
<td>6,0</td>
<td>1,5</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td>6</td>
<td>15,69</td>
<td>4,2</td>
<td>1,3</td>
<td>2,2</td>
<td>2,2</td>
</tr>
<tr>
<td>7</td>
<td>33,83</td>
<td>6,1</td>
<td>1,6</td>
<td>2,4</td>
<td>2,4</td>
</tr>
<tr>
<td>8</td>
<td>15,69</td>
<td>4,3</td>
<td>1,4</td>
<td>2,3</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Ecuaciones

- $Y = 0.3864X - 0.6732$
- $Y = 0.164X - 1.3444$
- $Y = 0.312X - 1.4395$
- $Y = 0.297X - 1.3595$

Coeficiente de correlación

- $R = 0.8713$
- $R = 0.8978$
- $R = 0.8691$
- $R = 0.8576$

Tabla 64
Medidas del 4º metatarso (en mm) y de pesos (en g), valores medios. Fuentes de procedencia de las medidas (A) y de pesos (B): (1) Medidas propias o museísticas (pesos); (1) Orr, 1940; (2) Chapman y Morgan, 1973; (3) Skinner y Smithers, 1990; (4) Yarnada y Sugimura, 1998; (5) Verhoeff y Taylor, 1933; (6) Palacios, 1983: n: número de individuos. Las ecuaciones de basan en unidades centimétricas y en gramos, convertidos en valores de logaritmos de base 10.

235
posterior y transversal de la diáfisis, tal como se indica en la lámina II (figura D) del anexo III.

Fig. 160. Epífisis proximal del quinto metatarso de *N. rex*. A: vista caudal; B: vista plantar; C: vista dorsal; D: vista lateral; E: vista medial. 1: faceta para el cuarto metatarso; 2: faceta para el cuboides. Escala gráfica: 5mm.

Descripción. Aspecto robusto. Las tres facetas para el cuarto metatarso son craneo-caudalmente alargadas. La faceta dorsal para el cuarto metatarso presenta una superficie convexa. La faceta plantar para el cuarto metatarso muestra una superficie cóncava. La tercera faceta para el cuarto metatarso se sitúa entre la faceta dorsal y la plantar, en contacto con estas, y muestra una superficie muy plana. En comparación con las facetas para el cuarto metatarso, la faceta para el cuboides muestra una superficie mayor, cóncava, inclinada medialmente y con unos márgenes agudos muy bien delimitados (fig.160).

7.7.5.10.1. COMPARACIÓN CON OTROS LEPÓRIDOS.
En comparación con *N. rex*, el quinto metatarso de *O. cuniculus* y *L. granatensis* es menos robusto. Además, la faceta para el hueso cuboides es más cóncavo y está más inclinado hacia la cara externa del metatarso en *O. cuniculus* y *L. granatensis*. En *P. furnessi*, la orientación de la faceta para el hueso cuboides es similar a la de *N. rex*. La cresta plantar de la epífisis distal es más baja y ancha en *N. rex*.

236
<table>
<thead>
<tr>
<th>Taxon</th>
<th>N. res</th>
<th>L. funcional</th>
<th>D.A.P. proximal</th>
<th>D.T. expandible</th>
<th>D.A.P. distal</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. cumulus CBQ 96-1</td>
<td>1</td>
<td>29,81</td>
<td>5,32</td>
<td>5,94</td>
<td>3,19</td>
<td>+</td>
<td>1450+</td>
</tr>
<tr>
<td>O. cumulus CBQ 98-1</td>
<td>1</td>
<td>27,96</td>
<td>4,72</td>
<td>5,19</td>
<td>3,19</td>
<td>+</td>
<td>1375+</td>
</tr>
<tr>
<td>O. cumulus CBQ 98-0</td>
<td>1</td>
<td>26,95</td>
<td>4,33</td>
<td>4,96</td>
<td>2,71</td>
<td>+</td>
<td>925+</td>
</tr>
<tr>
<td>O. cumulus MAUV-2</td>
<td>1</td>
<td>26,42</td>
<td>4,36</td>
<td>5,04</td>
<td>3,06</td>
<td>+</td>
<td>1230+</td>
</tr>
<tr>
<td>O. cumulus MAUV-1</td>
<td>1</td>
<td>27,94</td>
<td>4,59</td>
<td>5,29</td>
<td>3,11</td>
<td>+</td>
<td>1175+</td>
</tr>
<tr>
<td>O. cumulus CBQ 99-1</td>
<td>1</td>
<td>30,24</td>
<td>4,90</td>
<td>5,41</td>
<td>3,40</td>
<td>+</td>
<td>950+</td>
</tr>
<tr>
<td>O. cumulus MAUV-4</td>
<td>1</td>
<td>25,84</td>
<td>3,99</td>
<td>4,59</td>
<td>2,67</td>
<td>+</td>
<td>1290+</td>
</tr>
<tr>
<td>O. cumulus MAUV-5</td>
<td>1</td>
<td>27,99</td>
<td>4,55</td>
<td>5,34</td>
<td>3,02</td>
<td>+</td>
<td>1250+</td>
</tr>
<tr>
<td>O. cumulus MAUV-8</td>
<td>1</td>
<td>27,99</td>
<td>4,12</td>
<td>5,36</td>
<td>3,07</td>
<td>+</td>
<td>1240+</td>
</tr>
<tr>
<td>O. cumulus MAUV-3</td>
<td>1</td>
<td>26,44</td>
<td>4,19</td>
<td>5,19</td>
<td>3,90</td>
<td>+</td>
<td>1230+</td>
</tr>
<tr>
<td>O. cumulus MAUV-6</td>
<td>1</td>
<td>27,34</td>
<td>3,83</td>
<td>4,61</td>
<td>3,91</td>
<td>+</td>
<td>1100+</td>
</tr>
<tr>
<td>S. octodon LACM 91174</td>
<td>1</td>
<td>28,13</td>
<td>3,72</td>
<td>4,36</td>
<td>3,58</td>
<td>+</td>
<td>680+</td>
</tr>
<tr>
<td>S. octodon LACM 91174</td>
<td>1</td>
<td>27,47</td>
<td>3,80</td>
<td>4,46</td>
<td>2,60</td>
<td>+</td>
<td>914+</td>
</tr>
<tr>
<td>S. octodon LACM 91174</td>
<td>1</td>
<td>30,22</td>
<td>4,23</td>
<td>5,10</td>
<td>2,86</td>
<td>+</td>
<td>1189,2(2)</td>
</tr>
<tr>
<td>P. requinti AZ 2400</td>
<td>1</td>
<td>28,02</td>
<td>6,15</td>
<td>7,11</td>
<td>3,62</td>
<td>+</td>
<td>2239+</td>
</tr>
<tr>
<td>P. requinti AZ 2400</td>
<td>2</td>
<td>30,06</td>
<td>6,20</td>
<td>6,83</td>
<td>3,77</td>
<td>+</td>
<td>2300(3)</td>
</tr>
<tr>
<td>P. requinti LACM 91174</td>
<td>1</td>
<td>34,56</td>
<td>5,21</td>
<td>5,85</td>
<td>3,49</td>
<td>+</td>
<td>1220+</td>
</tr>
<tr>
<td>P. requinti LACM 91174</td>
<td>2</td>
<td>23,55</td>
<td>5,83</td>
<td>7,08</td>
<td>3,90</td>
<td>+</td>
<td>2545,5(4)</td>
</tr>
<tr>
<td>L. californicus</td>
<td>5</td>
<td>39,62</td>
<td>5,81</td>
<td>6,61</td>
<td>3,72</td>
<td>+</td>
<td>2542,5(5)</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>1</td>
<td>39,34</td>
<td>5,80</td>
<td>6,51</td>
<td>3,84</td>
<td>+</td>
<td>2065+</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>6</td>
<td>41,27</td>
<td>6,21</td>
<td>6,62</td>
<td>4,01</td>
<td>+</td>
<td>2611(3)</td>
</tr>
<tr>
<td>L. granatensis CBQ 97-0</td>
<td>2</td>
<td>42,26</td>
<td>6,31</td>
<td>6,56</td>
<td>3,99</td>
<td>+</td>
<td>2040(3)</td>
</tr>
<tr>
<td>L. astreius LACM 91174</td>
<td>1</td>
<td>47,40</td>
<td>4,38</td>
<td>5,63</td>
<td>2,86</td>
<td>+</td>
<td>2905(6)</td>
</tr>
<tr>
<td>Ecuación</td>
<td></td>
<td>Y = 0,4235X - 0,651</td>
<td>Y = 0,3888X - 1,5388</td>
<td>Y = 0,364X - 1,4052</td>
<td>Y = 0,3345X - 1,5457</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coeficiente de correlación</td>
<td></td>
<td>R = 0,8579</td>
<td>R = 0,8603</td>
<td>R = 0,9166</td>
<td>R = 0,8757</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

7.7.5.11. PROPORCIONES DEL SEGUNDO, TERCER, CUARTO Y QUINTO METATARSOS.

Han sido estimadas y comparadas la longitud, el diámetro transversal y antero-posterior de la epífisis proximal y distal, así como el diámetro mínimo transversal y antero-posterior de la diáfisis en relación con la masa corporal. Los valores medios de estos parámetros, las ecuaciones alométricas y los coeficientes de correlación aparecen en las tablas 62-65. El porcentaje de variación de los cambios alométricos en los metatarsos aparecen en la tabla 69.

Longitud.

Todos los metatarsos de *N. rex* muestran, en comparación con el resto de lepóridos, una longitud menor (fig. 161). Ninguna de las ecuaciones alométricas de las tablas 62-65 incluyen los valores de *P. furnessi*, *P. rupestris* y *P. randensis*.

Diámetro antero-posterior de la epífisis proximal.

El diámetro antero-posterior de todos los metatarsos (excepto del tercer metatarso, que no ha podido ser medido) es, en *N. rex* y en comparación con el del resto de lepóridos, más estrecho (fig. 162).

Diámetro transversal de la epífisis proximal.

El diámetro transversal de *N. rex* es similar al del resto de lepóridos en el segundo, tercero y cuarto metatarsos (fig. 163); el diámetro del quinto metatarso de *N. rex* es, sin embargo, menor al del resto de lepóridos (fig. 164), si bien la diferencia es pequeña.

Diámetro antero-posterior de la epífisis distal.

El diámetro antero-posterior de todos los metatarsos de *N. rex* (excepto del tercero, que no ha podido ser medido) es similar al del resto de lepóridos (fig. 165).

Diámetro transversal de la epífisis distal.

El diámetro transversal de todos los metatarsos de *N. rex* es similar al del resto de lepóridos (fig.166).

Diámetro mínimo antero-posterior de la diáfisis.

El diámetro mínimo antero-posterior del cuarto y quinto metatarsos (excepto el tercer metatarso, que no ha podido ser medido) de *N. rex* es, en comparación con el resto de lepóridos, más estrecho (fig. 167), si bien la diferencia es pequeña. El diámetro del segundo metatarso de *N. rex* es similar al del resto de lepóridos (fig. 168).
Fig. 161. Representación alométrica de la longitud del 2º metatarso en *N. rex* y algunos lepóridos actuales. El tercero, cuarto y quinto metatarso de *N. rex* muestran un acortamiento similar de su longitud.

Fig. 162. Representación alométrica del diámetro antero-posterior de la epifisis proximal del 2º metatarso de *N. rex*. La reducción del diámetro en el resto de metatarsos de *N. rex* es similar a la del segundo metatarso.
Fig. 163. Representación alométrica del diámetro transversal de la epífisis proximal del 2º metatarso en *N. rex* y algunos lepóridos actuales. El tercer y cuarto metatarso de *N. rex* muestran, para el diámetro transversal, unas relaciones alométricas semejantes a las del 2º metatarso.

Fig. 164. Representación alométrica del diámetro transversal de la epífisis proximal del 5º metatarso en *N. rex* y algunos lepóridos actuales.
Fig. 165. Representación alométrica del diámetro antero-posterior de la epífisis distal del 2º metatarso en *N. rex* y algunos lepúridos actuales. El resto de metatarsos de *N. rex* muestran unas relaciones alométricas del diámetro antero-posterior similares a las del 2º metatarso.

Fig. 166. Representación alométrica del diámetro transversal de la epífisis distal del 2º metatarso de *N. rex*. El resto de metatarsos de *N. rex* muestran unas relaciones alométricas similares.
Fig. 167. Representación alométrica del diámetro mínimo antero-posterior de la diáfisis del 5° metatarso en *N. rex* y algunos lepóridos actuales. La relación alométrica es semejante a la del cuarto metatarso de *N. rex*.

Fig. 168. Representación alométrica del diámetro mínimo antero-posterior de la diáfisis del 2° metatarso en *N. rex* y algunos lepóridos actuales.
Diámetro mínimo transversal de la diáfisis.
El diámetro mínimo transversal de todos los metatarsos de *N. rex* es similar al del resto de lepóridos (fig. 169).

![Graph showing the relationship between body weight and diaphysis diameter.](image)

Fig. 169. Representación alométrica del diámetro mínimo transversal de la diáfisis del 2° metatarso en *N. rex* y algunos lepóridos actuales.

7.7.5.12. PRIMERA FALANGE DEL PIE.

Material. 1262, 0403, 0341, 0085, 11793, 11791, 0337, 1178, 0421, 0114, 0261, 1181, 0255, 0256, 0252, 11796, 11788, 1177, 0254, 1293, 1127, 0088, 0294, 0442, 0322, 1000, 0958, 0321, 0422, 0865, 11790, 0253, 0987, 11789, 0801, 0089, 1203, 0260, 1168, 0434, 11787, 1417.

Medidas. En las primeras falanges se han medido la longitud, el diámetro transversal y antero-posterior de la epífisis proximal y distal, y el diámetro mínimo transversal y antero-posterior de la diáfisis, tal como se indica en la lámina II (figura F) del anexo III.

Descripción. Aspecto muy robusto. La epífisis proximal presenta un contorno cuadrangular, con la zona media dorsal ligeramente prominente en relación a los márgenes dorsales medial y lateral. Las facetas articulatorias de la epífisis proximal muestran una superficie ligeramente convexa. Los márgenes internos de estas facetas son paralelos o ligeramente divergentes. La zona articular de la epífisis distal presenta unas crestas muy suaves. Las fosetas laterales de la epífisis distal son anchas y poco profundas.
7.7.5.12.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

En relación con los lepóridos actuales con los que han sido comparadas, las primeras falanges de pie de *N. rex* y de *P. furnessi* son más robustas (fig. 170).

La superficie de articulación proximal es menos cóncava en *N. rex* que en *O. cuniculus* o *L. granatensis*. Las crestas de la superficie articular distal son más suaves en *N. rex*.

![Fig. 170. Primera falange del pie de *N. rex* (A y B: vista dorsal de dos falanges diferentes; C: vista lateral; D: vista de la faceta proximal) y *O. cuniculus* (E: vista dorsal; F: vista lateral; G: vista de la faceta proximal). Segunda falange del pie de *N. rex* (H: vista dorsal; I: vista lateral; J: vista de la faceta proximal) y *O. cuniculus* (K: vista dorsal; L: vista lateral; M: vista de la faceta proximal). Escala gráfica: 5 mm.](image)

7.7.5.12.2. PROPORCIONES DE LA PRIMERA FALANGE DEL PIE.

Las longitudes de las primeras falanges de un mismo pie varían en relación con el dedo en el que estas se encuentren. Las falanges más largas corresponden a los dos dedos centrales, y las más cortas, a los dos dedos laterales. Debido a esta variación, y a la variación interespecífica, resulta muy difícil poder determinar, en *N. rex*, la situación exacta de cada falange en el pie. En este sentido, la única primera falange fácilmente identificable por su morfología es la del quinto dedo, que además, es la más corta. De esta forma, se han considerado únicamente los cambios alométricos en la longitud, diámetro transversal y antero-posterior de la epifisis proximal y distal, y
<table>
<thead>
<tr>
<th>Taxo</th>
<th>n</th>
<th>L. funcional</th>
<th>D.A. P. proximal</th>
<th>D.A. P. distal</th>
<th>(A)</th>
<th>Peso</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. res</td>
<td>2</td>
<td>17,32</td>
<td>5,78</td>
<td>8,46</td>
<td>4,62 +</td>
<td>14092,2 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus CBQ 96-1</td>
<td>1</td>
<td>12,05</td>
<td>3,32</td>
<td>3,61</td>
<td>2,33 +</td>
<td>1450 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus CBQ 88-1</td>
<td>1</td>
<td>11,25</td>
<td>3,00</td>
<td>3,53</td>
<td>2,11 +</td>
<td>1378 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus CBQ 98-0</td>
<td>1</td>
<td>10,47</td>
<td>2,44</td>
<td>2,95</td>
<td>1,94 +</td>
<td>925 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-3</td>
<td>1</td>
<td>11,67</td>
<td>2,92</td>
<td>3,72</td>
<td>2,26 +</td>
<td>1173 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-4</td>
<td>1</td>
<td>12,15</td>
<td>3,00</td>
<td>3,39</td>
<td>2,28 +</td>
<td>950 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-5</td>
<td>1</td>
<td>10,42</td>
<td>2,64</td>
<td>3,22</td>
<td>1,82 +</td>
<td>1290 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-6</td>
<td>1</td>
<td>10,64</td>
<td>2,85</td>
<td>3,33</td>
<td>1,99 +</td>
<td>1230 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-7</td>
<td>1</td>
<td>11,14</td>
<td>2,80</td>
<td>3,27</td>
<td>2,13 +</td>
<td>1200 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-8</td>
<td>1</td>
<td>11,22</td>
<td>2,86</td>
<td>3,26</td>
<td>2,03 +</td>
<td>1160 +</td>
<td></td>
</tr>
<tr>
<td>O. cucullus MAUV-4</td>
<td>1</td>
<td>11,44</td>
<td>3,08</td>
<td>3,23</td>
<td>2,2 +</td>
<td>1250 +</td>
<td></td>
</tr>
<tr>
<td>S. saubini LACM 91174</td>
<td>1</td>
<td>11,42</td>
<td>2,24</td>
<td>3,00</td>
<td>1,77 +</td>
<td>680 +</td>
<td></td>
</tr>
<tr>
<td>S. sandwicensis</td>
<td>3</td>
<td>11,30</td>
<td>2,39</td>
<td>2,86</td>
<td>2,53 +</td>
<td>914,7 (1)</td>
<td></td>
</tr>
<tr>
<td>S. floridanus</td>
<td>1</td>
<td>10,85</td>
<td>2,98</td>
<td>3,29</td>
<td>2,31 +</td>
<td>1189,2 (2)</td>
<td></td>
</tr>
<tr>
<td>F. praepotteri AZ 2400</td>
<td>1</td>
<td>14,69</td>
<td>3,47</td>
<td>4,51</td>
<td>2,47 +</td>
<td>2239 +</td>
<td></td>
</tr>
<tr>
<td>F. rauei</td>
<td>1</td>
<td>14,84</td>
<td>3,64</td>
<td>4,49</td>
<td>2,60 +</td>
<td>2300 (3)</td>
<td></td>
</tr>
<tr>
<td>R. monticola</td>
<td>2</td>
<td>13,36</td>
<td>3,12</td>
<td>3,67</td>
<td>2,25 +</td>
<td>1500 (3)</td>
<td></td>
</tr>
<tr>
<td>P. formosus</td>
<td>3</td>
<td>9,78</td>
<td>4,08</td>
<td>5,04</td>
<td>2,77 +</td>
<td>2545,5 (4)</td>
<td></td>
</tr>
<tr>
<td>L. californicus</td>
<td>4</td>
<td>16,10</td>
<td>3,76</td>
<td>4,10</td>
<td>2,74 +</td>
<td>2542,5 (5)</td>
<td></td>
</tr>
<tr>
<td>L. gracilis CBQ 97-0</td>
<td>1</td>
<td>14,43</td>
<td>3,57</td>
<td>3,95</td>
<td>2,71 +</td>
<td>2065 +</td>
<td></td>
</tr>
<tr>
<td>L. agrifolia</td>
<td>6</td>
<td>16,40</td>
<td>3,90</td>
<td>4,86</td>
<td>2,77 +</td>
<td>2651 (3)</td>
<td></td>
</tr>
<tr>
<td>L. caespitosa</td>
<td>2</td>
<td>16,63</td>
<td>3,92</td>
<td>3,94</td>
<td>2,81 +</td>
<td>2040 (3)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 66. Medidas de la 1ª fálsafe del 5º dedo del pie (en mm) y de pesos (en g), valores medios. Fuentes de procedencia de las medidas (A) y de pesos (B): (1) medidas propias o museísticas (pesos); (1) O'or, 1940; (2) Chapman y Morgan, 1973; (3) Skinner y Smithers, 1990; (4) Yamada y Sugimura, 1998; (5) Vorheis y Taylor, 1933. n: número de individuos. Las ecuaciones de basan en unidades centimétricas y en gramos, convertidos en valores de logaritmos de base 10.
el diámetro mínimo transversal y antero-posterior de la diáfisis de la primera falange del quinto dedo. Los valores medios de estos parámetros, las ecuaciones alométricas y los coeficientes de correlación aparecen en la tabla 66.

Longitud.

N. rex, al igual que *P. furnessi*, muestra una primera falange más corta (fig. 171). La ecuación alométrica de la longitud (tabla 66) no incluye los valores de *P. furnessi*.

![Fig. 171. Representación alométrica de la longitud de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.](image)

Diámetro transversal de la epífisis proximal.

N. rex muestra un diámetro transversal similar al del resto de lepóridos (fig. 172).

Diámetro transversal de la epífisis distal.

El diámetro transversal de *N. rex* es similar al del resto de lepóridos (fig. 173).

Diámetro mínimo transversal de la diáfisis.

El diámetro mínimo transversal de *N. rex* y *P. furnessi* es, en relación al resto de lepóridos, más ancho (fig. 174). La ecuación alométrica referente al diámetro transversal de la epífisis distal de la tabla 66 no incluye los valores de *P. furnessi*.

Diámetro antero-posterior de la epífisis proximal.

N. rex muestra un diámetro antero-posterior menor al del resto de lepóridos (fig. 175). La semejanza existente con un único ejemplar de *O. cuniculus* no puede considerarse relevante.
Fig. 172. Representación alométrica del diámetro transversal de la epífisis proximal de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.

Fig. 173. Representación alométrica del diámetro transversal de la epífisis distal de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.
Fig. 174. Representación alométrica del diámetro mínimo transversal de la diáfisis de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.

Fig. 175. Representación alométrica del diámetro antero-posterior de la epífisis proximal de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.
Fig. 176. Representación alométrica del diámetro antero-posterior de la epífisis distal de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.

Fig. 177. Representación alométrica del diámetro mínimo antero-posterior de la diáfisis de la 1ª falange del dedo V en *N. rex* y algunos lepóridos actuales.
Diámetro antero-posterior de la epífisis distal.
El diámetro antero-posterior de *N. rex* es similar al del resto de lepóridos (fig. 176).

Diámetro mínimo antero-posterior de la diáfisis.
El diámetro mínimo antero-posterior de *N. rex* es similar al del resto de lepóridos (fig. 177).

7.7.5.13. SEGUNDA FALANGE DEL PIE.

Material. 1179, 1063, 11786, 1062, 0446, 1464, 12056, 11809, 0345, 11802, 0295, 11799, 11788, 1221, 1086, 11800, 0296, 1130, 12058, 11808.

Medidas. En la segunda falange del pie se han tomado las siguientes medidas: longitud, diámetro transversal y antero-posterior de la epífisis proximal y distal, y diámetro mínimo transversal y antero-posterior de la diáfisis, tal como se indica en la lámina II (figura F) del anexo III.

Descripción. Aspecto muy robusto. La superficie de articulación proximal presenta una concavidad muy marcada, con el margen plantar y dorsal situados en un plano perpendicular a la longitud máxima de la falange. La superficie de articulación distal muestra unas crestas muy suaves. Las fosetas laterales de la epífisis distal son anchas y poco profundas.

7.7.5.13.1. COMPARACIÓN CON OTROS LEPÓRIDOS.

En comparación con *O. cuniculus* y *L. granatensis*, *L. capensis*, *L. saxatilis*, *L. californicus*, *B. monticularis*, *S. floridanus*, *S. nuttallii*, *S. audubonii*, *P. rupestris*, *P. randensis* y *P. marjorita*, *N. rex* presenta una segunda falange del pie mucho más robusta. En este sentido, *P. furnessi* es similar a *N. rex*. No se han podido comparar las segundas falanges de *N. rex* con las de *N. netscheri*, *C. hispidus* y *R. diazi*.

Tanto en *N. rex* como en *P. furnessi*, el margen dorsal de la epífisis proximal está en una posición más adelantada en relación al margen plantar (fig. 170l). En *O. cuniculus*, sin embargo, el margen dorsal ocupa una posición más atrasada en relación al margen plantar (fig 170L). Las fosetas laterales de la epífisis distal de *N. rex* están más inclinadas hacia la zona media dorsal que en *O. cuniculus*.
7.7.5.13.2. PROPORCIONES DE LA SEGUNDA FALANGE DEL PIE.

Ninguna de las segundas falanges muestra una morfología particular que permita ubicarlas de forma exacta en alguno de los dedos del pie. Las diferencias morfométricas existentes entre los diferentes individuos de *N. rex* impiden distinguirlas a partir de su longitud. Por tanto, a la hora de evaluar los cambios alométricos se ha optado por utilizar los valores medios de todas las segundas falanges pertenecientes a una misma especie, tal como se indica en la tabla 67.

![Tabla 67](image)

251
Fig. 178. Representación alométrica de la longitud de la 2ª falange del pie en *N. rex* y algunos lepóridos actuales.

Fig. 179. Representación alométrica del diámetro transversal de la epífisis proximal de la 2ª falange del pie en *N. rex* y algunos lepóridos actuales.
Fig. 180. Representación alométrica del diámetro transversal de la epífisis distal de la 2ª falange del pie en *N. rex* y algunos leopridos actuales.

Fig. 181. Representación alométrica del diámetro mínimo transversal de la diáfisis de la 2ª falange del pie en *N. rex* y algunos leopridos actuales.
Fig. 182. Representación alométrica del diámetro antero-posterior de la epífisis proximal de la 2ª falange del pie en *N. rex* y algunos lepóridos actuales.

Fig. 183. Representación alométrica del diámetro antero-posterior de la epífisis distal de la 2ª falange del pie en *N. rex* y algunos lepóridos actuales.
Longitud.
La longitud media de las segundas falanges del pie de *N. rex* y *P. furnessi* es menor en comparación al resto de lepóridos (fig. 178). La ecuación alométrica de la longitud (tabla 67) no incluye los valores de *P. furnessi*.
Los diámetros transversales y antero-posteriores de la epífisis proximales y distales, así como los diámetros mínimos transversales y antero-posteriores de la diáfisis de *N. rex* son similares a los del resto de lepóridos con los que han sido comparados (figs. 179-184).

7.7.5.14. TERCERA FALANGE DEL PIE.
Véase apartado 7.6.5.19 (pág. 174), referente a la tercera falange de la mano.

7.7.5.15. COMPARACIÓN DEL PIE DE *N. REX* CON EL DE OTROS LEPÓRIDOS.
El pie de *N. rex* (los huesos del tarso y del metatarso) han sido comparado con el de *P. furnessi, O. cuniculus, P. randensis, P. rupestris, S. audubonii, B. monticularis, L. saxatilis, L. capensis, L. granatensis y P. marjorita* (fig. 185).
N. rex se diferencia de estos lepóridos (excepto *P. furnessi*) por las siguientes características:

-El astrágalo, los metatarsos, la primera y la segunda falange son más cortos.
-Un pie más ancho.
-El cuello del astrágalo está muy inclinado en relación al plano sagital del pie.
-La epífisis proximal de los metatarsos es dorso-ventralmente más estrecha.
-El diámetro mínimo dorso-ventral de la diáfisis de los metatarsos es también más estrecho.

N. rex se diferencia de *P. furnessi* por las siguientes características:

-El pie es más ancho.
-El diámetro mínimo dorso-ventral de la diáfisis de los metatarsos es más estrecho.
-El diámetro dorso-ventral de la epífisis proximal de los metatarsos es más estrecho.
-El cuerpo del astrágalo se orienta perpendicularamente al plano sagital del pie.
Al igual que *N. rex*, *P. furnessi* presenta los metatarsos, la primera y la segunda falange muy cortos. En *P. furnessi*, el cuello y el cuerpo forman un ángulo más oblicuo en relación al plano sagital del pie.

La particular orientación del astrágalo de *P. furnessi* parece indicar que el pie de este lepórido se orienta oblicuamente en relación al plano sagital de la tibia.

7.7.5.16. **PROPORCIONES DEL PIE.**

Ha sido considerada únicamente la longitud del pie, es decir, la distancia entre la troclea del astrágalo y la tercera falange del dedo III. La anchura del pie es tratada en el apartado de morfología funcional del pie, mediante el análisis de funciones discriminantes. Los valores correspondientes a las longitudes de los pies y los pesos aparecen en la tabla 68.

Longitud del pie

La ecuación que relaciona el peso y la longitud del pie es:

\[Y = 0,2605X + 0,108 \]

La ecuación no incluye los valores correspondientes a *P. furnessi*.

Coeficiente de correlación:

\[R = 0,8324 \]

N. rex presenta, al igual que *P. furnessi*, un pie muy corto (fig. 186). *P. rupestris* y *P. randensis* presentan también un pie muy corto, situándose entre los valores de *N. rex* y *P. furnessi* y el resto de lepóridos representados.

![Fig. 186. Representación alométrica de la longitud del pie en *N. rex* y algunos lepóridos actuales.](image)
7.7.5.17. MORFOLOGÍA FUNCIONAL DEL PIE DE *N. REX*.

El estudio funcional del pie de *N. rex* permitirá conocer la forma habitual en la que el pie se apoyaba en el suelo, es decir, si corresponde a un pie plantigrado o digitigrado. Cada uno de estos modelos conlleva unas implicaciones funcionales muy diferentes, no solo para el pie, sino también para la extremidad posterior en su conjunto. El estudio del pie nos informará, en definitiva, del tipo de locomoción de *N. rex*.

El estudio funcional del pie de *N. rex* se ha realizado, por una parte, mediante el estudio morfológico de los huesos del tarso y del metatarso y, en menor medida, de la tibia y el fémur y, por otra parte, mediante el análisis estadístico de funciones discriminantes, siguiendo la metodología de Carrano (1997).

7.7.5.17.1. ESTUDIO MORFOLÓGICO

La plantigradia y la unguligradia son los modelos extremos referentes a la posición del pie en los mamíferos. El término intermedio es la digitigradia. En los animales plantigrados, la digitigradia se produce también como fase final en el paso (Gray, 1968).

En la unguligradia (perisodáctilos y artiodáctilos), es la tercera falange la que contacta con el suelo; en los plantigrados, todo el pie descansa en el suelo, mientras en los digitigrados el talón y los metatarsos permanecen elevados, siendo las falanges las que se apoyan en el suelo (Gregory, 1912; Ginsburg, 1961; Lessertisseur y Saban, 1967).

Existen una serie de caracteres morfológicos, de carácter general, que permiten separar los plantigrados de los digitigrados.

Los animales digitigrados se caracterizan por las siguientes características morfológicas (Carrano, 1996):

- Metatarsos largos y poco extendidos medio-lateralmente;
- Talón largo;
- Astrágalo con unos cóndilos simétricos;
- Tróclea profunda en el astrágalo y en el fémur;
- La tibia rota sobre el astrágalo en un plano perpendicular al plano que forman los huesos del tarso y del metatarso.

En cambio, los animales plantigrados presentan las siguientes características:

- Metatarsos cortos y muy extendidos medio-lateralmente;
- Talón corto;

258
-Astrágalo con unos cóndilos asimétricos;
-Tróclea poco profunda en el astrágalo y en el fémur;
-La tibia rota sobre el astrágalo en un plano inclinado respecto al plano formado por los huesos del tarso y del metatarso.

El pie puede considerarse biomecánicamente como una palanca, en la que el astrágalo funcionaría como punto de apoyo y centro de rotación, y el calcáneo, los huesos del tarso y metatarso como el brazo de palanca, sobre los que actuarían las fuerzas musculares.

Así, el talón corto de los animales plantigrados se traduce en un movimiento del pie potente y lento, mientras que el talón de los animales digitigrados (más largo), permite un movimiento más rápido y poco potente, a partir de una menor fuerza muscular (Gregory, 1912; Smith y Savage, 1956; Hildebrand, 1985; Alexander, 1985; McClearn, 1985; Thomason, 1985).

Los digitigrados, al apoyar en el suelo una parte del pie, evitan el efecto de la fricción con el suelo; la tróclea más simétrica, estrecha y profunda del astrágalo, y más profunda y estrecha del fémur, confinan el movimiento del pie y la rodilla a un plano sagital, lo que confiere a la extremidad posterior mayor estabilidad durante la carrera y/o el salto.

La fricción del pie con el suelo es mayor en los plantigrados, al ser más corto y más amplio. Al presentar un astrágalo con una tróclea poco profunda, unos cóndilos muy disimétricos y separados, y una tróclea del fémur también poco profunda y ancha, la tibia tiene más libertad de movimientos en el plano mediolateral. La menor estabilidad debida a los movimientos mediolaterales de la extremidad posterior queda compensada con la estabilidad obtenida mediante un pie más corto y ancho (Gregory, 1912; Ginsburg, 1961; Van Valkenburgh, 1987; Gebo y Rose, 1993; Wang, 1993, Carrano, 1996).

La morfología del pie de N. rex ha sido comparada con tres leporídeos actuales, O. cuniculus, L. granatensis y P. farnessi. Se ha comparado la longitud y anchura del pie, la longitud del talón, la simetría y la separación de los cóndilos y la profundidad de la tróclea del astrágalo y el fémur, y el movimiento de la tibia en relación con el pie. Algunos caracteres morfológicos del pie de N. rex se han comparado con otros taxones, plantigrados y digitigrados, aplicando el análisis estadístico y los datos de Carrano (1997).
Longitud y anchura del pie

O. cuniculus, B. monticularis, L. californicus, L. granatensis, L. capensis, L. saxatilis, S. muttallii, S. audubonii, S. floridanus y S. brasielensis (fig. 185) muestran un pie muy estrecho y alargado, mientras que N. rex presenta unos metatarsos muy cortos y separados, es decir, un pie más ancho. En P. furnessi, el pie no es tan ancho como en N. rex; sin embargo, la orientación de la troclea del astrágalo en P. furnessi parece indicar que el pie no se orienta según el plano sagital, sino oblicuamente. En ambos casos la superficie de apoyo del pie se ve incrementada y por tanto, la estabilidad durante la marcha.

Longitud del talón

Los lepóridos corredores presentan un talón muy alargado, como corresponde a unos animales digitigrados. El calcáneo transmite al pie la fuerza del músculo gastrocnemius, cuyo momento de fuerza es bajo, de manera que el movimiento del pie es rápido y poco potente. N. rex presenta un talón con una longitud menor a la del resto de lepóridos (fig. 151); en los lepóridos actuales, el talón alargado es compatible con la plantigradía. La coincidencia de estas dos características comporta, sin embargo, una flexión muy marcada a nivel de la rodilla, con lo que se contrarresta el exceso de tensión del tendón común del calcáneo cuando el pie se apoya totalmente en el suelo. El talón corto de N. rex parece indicar una menor flexión en la extremidad posterior.

Simetría de los cóndilos y profundidad y anchura de la troclea del astrágalo.

La troclea del astrágalo de N. rex es poco profunda y ancha. Los cóndilos presentan un desarrollo similar (son muy simétricos), mientras que en O. cuniculus y L. granatensis el cóndilo medial está algo menos desarrollado, al presentar un perfil más redondeado (fig. 187). La mayor separación del los cóndilos del astrágalo en N. rex favorecerían un mayor rango de movimientos mediolaterales en el tobillo. Sin embargo, estos se verían limitados por el mayor desarrollo de la cresta medial.

Profundidad de la troclea y separación de los cóndilos del fémur

Los cóndilos del fémur de N. rex son muy anchos y presentan una superficie ligeramente convexa. La troclea es también muy ancha. Las crestas que la delimitan son muy simétricas y presentan un perfil muy redondeado (fig. 131).
Estas características podrían ser indicativas de un mayor rango de movimientos mediolaterales en la rodilla (Ginsburg, 1961; Carrano, 1997).

Fig. 187. Astrágalo de *N. rex* (A) y *O. cuniculus* (B), vista proximal. Escala gráfica: 5 mm.

Movimiento de la tibia en relación con los huesos del tarso y del metatarso.

El movimiento de rotación sagital de la tibia sobre el astrágalo es mayor en *L. granatensis* (ángulo de flexión máxima: 70°; ángulo de extensión máxima: 159°) que en *O. cuniculus* (ángulo de flexión máxima: 55°; ángulo de flexión máxima: 139°). Es decir, en *L. granatensis* los ángulos de flexión y extensión son mayores a los de *Oryctolagus*, existiendo una diferencia de 15° y 20° respectivamente. En *N. rex*, la rotación de la tibia varía desde los 56° de máxima flexión, a los 142° de máxima extensión. En este sentido, los valores se aproximan más a los valores de *O. cuniculus*, ya que la diferencia entre los ángulos de flexión es de solo de 1°, y la diferencia entre los ángulos de extensión es de 3°. Tanto en *O. cuniculus* como en *L. granatensis* la tibia no se desplaza en un arco perpendicular al plano formado por los huesos del tarso y del metatarso, sino que el arco se inclina ligeramente hacia la parte externa del pie. Pese a esta inclinación de la tibia, las fosetas de la tibia para el astrágalo son profundas y alargadas, de manera que los movimientos mediolaterales a nivel de la articulación de la tibia y el astrágalo quedan muy limitados.
En *N. rex*, sin embargo, la tibia describe un arco perpendicular al plano formado por los huesos del tarso y del metatarso. Las fosetas de la tibia para el astrágalo son más amplias y menos profundas que en *O. cumiculus* y *L. granatensis*, permitiendo una mayor libertad para los movimientos mediolaterales del pie.

En conjunto, los caracteres morfológicos analizados indican que *N. rex* presenta algunas características típicamente plantigradas y que no están presentes en la mayoría de lepóridos: pie corto y ancho, y una tróclea del astrágalo y del fémur ancha y poco profunda, con unas crestas redondeadas, que confieren un mayor rango de movimientos mediolaterales en el tobillo y en la rodilla. Asimismo, el movimiento perpendicular de la tibia sobre el plano formado por los huesos del tarso y del metatarso, y la simetría de los cóndilos del astrágalo, más propios de la digitigradía, confieren una mayor estabilidad en la extremidad posterior y contrarestan, en cierta medida, los movimientos mediolaterales en la rodilla y el tobillo.

7.7.5.17.2. ANÁLISIS DE FUNCIONES DISCRIMINANTES

Se ha realizado a partir de los datos y la metodología utilizados en el trabajo de Carrano (1997), utilizando el análisis de las funciones discriminantes del progama SPSS versión 10.0, utilizando valores logarítmicos de base 10.

En *N. rex*, se ha efectuado las siguientes medidas, que corresponden a la media de la totalidad de las medidas tomadas (*n*):

- Longitud de la circunferencia de la diáfisis en la parte media del fémur (*FEMC*): 38,23 mm (*n*=13)
- Distancia entre los cóndilos del fémur (*FEMW*): 11,69 mm (*n*=16)
- Profundidad de la tróclea del fémur (*FEMD*): 1,88 mm (*n*=15)
- Profundidad de la tróclea del astrágalo (*ASTD*): 1,42 mm (*n*=12)
- Longitud del arco del cóndilo medial del astrágalo (*ASTC*): 20,13 mm (*n*=11)
- Longitud en los puntos opuestos del arco (*ASTL*): 12,20 mm (*n*=11)
- Diámetro del tubérculo del calcáneo en la parte media (*CALW*): 17,37 mm (*n*=12)
- Longitud del tubérculo del calcáneo (*CALL*): 8,71 mm (*n*=12)
- Diámetro del tercer metatarso en su parte media (*MT3W*): 5,63 mm (*n*=4)
- Longitud del tercer metatarso (*MT3L*): 44,81 mm (*n*=2)
- Amplitud de los metatarsos en la zona proximal (*MTS1*): 27,03 mm (*n*=1)

262
-Amplitud de los metatarsos en la zona distal (MTS2): 40,18 mm (n=1)

No ha sido posible medir la distancia entre los cóndilos del astrágalo (ASTW1 y ASTW2), y las mediciones correspondientes a la cabeza del astrágalo (ASTH1 y ASTH2).

Cada uno de estos parámetros ha sido comparado con los mismos parámetros de 32 taxones digitigrados y 30 taxones plantigrados, incluidos en los artiodáctilos, carnívoros, lagomorfos, perisodáctilos, primates y roedores.

Resultados del análisis de las funciones discriminantes.

Se ha utilizado el análisis de una única función discriminante, para la que se ha obtenido un autovalor de 2,669° y una correlación del 0,853.

Para esta función, y para cada uno de los parámetros utilizados, se han obtenido los siguientes coeficientes estandarizados: FEMC: -0,384; FEMW: 0,465; FEMD: -0,482; ASTD: -0,320; ASTC: 0,967; ASTL: -0,125; CALL: -0,073; CALW: -1,846; MT3L: 1,739; MT3W: 2,446; MTS1: 0,232; MST2: -2,416

![Diagrama de dispersión](image_url)

Fig. 188. Situación de *N. rex* en relación con los taxones plantigrados y digitigrados

La función en el centroide del grupo de los digitigrados tiene un valor de 1,556, mientras que la función en el centroide de los plantigrados tiene un valor de -1,660.

263
De esta manera, el grupo pronosticado en el que ha sido incluido *N. rex* es el de los plantigrados (fig. 188), dado que, para *N. rex*, la distancia de Mahalanobis al cuadrado hasta el centroide del grupo de los plantigrados es tan solo de 0,112, mientras que la distancia de Mahalanobis al cuadrado hasta el centroide de los digitigrados es mucho mayor, de 12,604 (fig. 188).

Esto separa claramente *N. rex* del resto de los lagomorfos, incluidos, en el estudio de Carrano (1997) (*O. cuniculus*, *S. aquaticus* y *L. americanus*), dentro del grupo de los digitigrados. Pese a incluirse en el grupo de los digitigrados, *O. cuniculus*, *S. aquaticus* y *L. americanus* presentan un cierto grado de plantigradia. Sin embargo, y según se desprende de los valores de la distancia al centroide del grupo de los plantigrados, *N. rex* puede considerarse como un lepórido netamente plantigrado.

7.7.6. PROPORTIONES DE LA EXTREMIDAD POSTERIOR.

Se han comparado las longitudes medias del fémur, la tibia y el pie de *N. rex* y otros lepóridos, y la longitud total de la extremidad posterior, calculada a partir de los valores que aparecen en la tabla 68.

![Fig. 189. Representación alométrica de las longitudes del fémur, la tibia y el pie en *N. rex* y algunos lepóridos actuales.](image)

Atendiendo a las diferencias de longitudes entre el fémur y el pie pueden distinguirse, dentro de los lepóridos, dos grupos diferentes: el formado por *L. californicus*, *L. saxatilis*, *L. capensis*, *L. granatensis*, *B. monticularis*, *O. cuniculus* y *S. muttallii*, en los que la
diferencia de longitud entre el fémur y el pie es muy marcada, y el formado por *P. furnessi*, *P. rupestris*, *P. randensis* y *N. rex*, en el que las diferencias de longitud son pequeñas o muy pequeñas (fig. 189). En este sentido, la diferencia entre la longitud del pie y del fémur parece separar los lepóridos típicamente corredores, de los lepóridos cuya capacidad para la carrera está menos desarrollada (véase apartado 7.7.2.3 sobre la morfología funcional del fémur), entre los que se incluye *N. rex*.

Fig. 190. Representación alométrica de la longitud de la extremidad posterior en *N. rex* y algunos lepóridos actuales.

Considerando la longitud de la extremidad posterior (*Y = 0.2918X + 0.4948, R = 0.8869*) (fig. 190), *N. rex* es, junto con *P. furnessi*, el lepórido que presenta la extremidad posterior más corta. En *N. rex*, la reducción en la longitud de la extremidad posterior es, en relación con el valor medio, de un 25 %, mientras que en *P. furnessi* es de un 21%. La reducción en la longitud de la extremidad posterior es muy importante en la primera y segunda falange, y en los metatarsos, especialmente en el segundo y el quinto, donde la longitud se ha reducido en más de un 50% (tabla 69).

**7.7.7. MORFOLOGÍA FUNCIONAL DE LA EXTREMIDAD POSTERIOR DE *N. REX*.

Los principales cambios en la extremidad posterior de *N. rex* son los siguientes:
- Extremidad posterior corta.
Pie plantigrado.
-Cambio de orientación y mayor superficie de la cabeza femoral.
-Tróclea del fémur más ancha.
-La superficie articulatoria del cóndilo lateral del fémur forma un arco muy suave.
-Menor curvatura de la diáfisis del fémur.
-Mayor inclinación de la epífisis proximal de la tibia.
-Acortamiento del isquium, y mayor anchura de la tuberosidad y de la tábula isquiática.
-Tercera falange más curvada.
El acortamiento de la extremidad posterior y la plantigradía del pie de _N. rex_ son claramente contrarios a la locomoción basada en la velocidad, desarrollada a partir de la elongación de los huesos distales que forman la extremidad posterior, es decir, la tibia y los huesos del pie.
El pie plantigrado de _N. rex_ y la mayor inclinación de la epífisis proximal de la tibia parecen indicar una mayor flexión de la extremidad posterior. La mayor flexión en la extremidad posterior y el acortamiento del talón habrían contrarrestado el exceso de tensión en el tendón común del calcáneo al apoyarse el pie totalmente en el suelo.
Los cambios observados en el cóndilo lateral, la tróclea y en la cabeza del fémur, así como en el isquium, parecen estar también relacionados con la plantigradía de _N. rex_ y con un cambio de locomoción en la que se ven incrementados los movimientos mediolaterales frente a los movimientos sagitales.
La marcada curvatura de la tercera falange de _N. rex_ posee una clara función de agarre (tal como sucede en las aves rapaces y en los felinos), al actuar como ganchos. Esta morfología es claramente contraria a la locomoción basada en la velocidad, en la que se minimiza al máximo el rozamiento de las zonas que contactan con el suelo.
<table>
<thead>
<tr>
<th>Especie</th>
<th>Peso (g)</th>
<th>Fémur</th>
<th>Tibia</th>
<th>Astrágalo-metatarso</th>
<th>Falange I</th>
<th>Falange II</th>
<th>Falange III</th>
<th>Pie</th>
<th>L.total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuralagus</td>
<td>14092</td>
<td>123,88</td>
<td>135,16</td>
<td>72,32*</td>
<td>19,50</td>
<td>12,99</td>
<td>17,26</td>
<td>122,07</td>
<td>381,11</td>
</tr>
<tr>
<td>O. cuniculus CBQ 96-1</td>
<td>1450</td>
<td>76,18</td>
<td>93,68</td>
<td>49,36</td>
<td>14,89</td>
<td>9,45</td>
<td>8,98</td>
<td>82,68</td>
<td>252,54</td>
</tr>
<tr>
<td>O. cuniculus CBQ 98-1</td>
<td>1375</td>
<td>73,04</td>
<td>85,55</td>
<td>46,74</td>
<td>14,42</td>
<td>9,38</td>
<td>9,17</td>
<td>79,71</td>
<td>238,30</td>
</tr>
<tr>
<td>O. cuniculus CBQ 98-0</td>
<td>925</td>
<td>67,28</td>
<td>83,15</td>
<td>44,93</td>
<td>13,17</td>
<td>8,72</td>
<td>7,49</td>
<td>74,31</td>
<td>224,74</td>
</tr>
<tr>
<td>O. cuniculus CBQ 96-0</td>
<td>3500</td>
<td>90,17</td>
<td>105,43</td>
<td>59,73</td>
<td>18,69</td>
<td>11,30</td>
<td>11,03</td>
<td>100,75</td>
<td>296,35</td>
</tr>
<tr>
<td>O. cuniculus CBQ 96-2</td>
<td>3500</td>
<td>88,93</td>
<td>104,93</td>
<td>61,33</td>
<td>19,15</td>
<td>12,37</td>
<td>11,61</td>
<td>104,46</td>
<td>297,50</td>
</tr>
<tr>
<td>O. cuniculus CBQ 96-3</td>
<td>4000</td>
<td>89,93</td>
<td>105,77</td>
<td>61,90</td>
<td>18,90</td>
<td>12,35</td>
<td>11,18</td>
<td>104,33</td>
<td>300,03</td>
</tr>
<tr>
<td>O. cuniculus CBQ 97-2</td>
<td>-</td>
<td>75,09</td>
<td>89,83</td>
<td>-</td>
<td>16,33</td>
<td>9,99</td>
<td>8,97</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus CBQ 99-1</td>
<td>-</td>
<td>88,30</td>
<td>103,58</td>
<td>57,03</td>
<td>18,46</td>
<td>11,09</td>
<td>10,65</td>
<td>97,23</td>
<td>289,11</td>
</tr>
<tr>
<td>O. cuniculus MNCN 11378</td>
<td>-</td>
<td>66,88</td>
<td>80,72</td>
<td>46,19</td>
<td>13,04</td>
<td>8,75</td>
<td>7,59</td>
<td>75,62</td>
<td>223,22</td>
</tr>
<tr>
<td>O. cuniculus MNCN 11379</td>
<td>-</td>
<td>66,76</td>
<td>81,53</td>
<td>45,32</td>
<td>14,10</td>
<td>8,95</td>
<td>7,72</td>
<td>76,09</td>
<td>224,37</td>
</tr>
<tr>
<td>O. cuniculus MNCN 11380</td>
<td>-</td>
<td>67,23</td>
<td>80,04</td>
<td>45,99</td>
<td>13,71</td>
<td>8,02</td>
<td>7,52</td>
<td>75,24</td>
<td>222,51</td>
</tr>
<tr>
<td>O. cuniculus CBQ 00-1</td>
<td>950</td>
<td>70,30</td>
<td>87,72</td>
<td>49,67</td>
<td>15,93</td>
<td>10,11</td>
<td>8,22</td>
<td>83,93</td>
<td>241,95</td>
</tr>
<tr>
<td>O. cuniculus MAUV 2</td>
<td>1230</td>
<td>70,68</td>
<td>85,25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 1</td>
<td>1275</td>
<td>69,57</td>
<td>84,22</td>
<td>48,07</td>
<td>15,17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 4</td>
<td>1290</td>
<td>65,46</td>
<td>79,95</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 8</td>
<td>1250</td>
<td>70,70</td>
<td>85,84</td>
<td>-</td>
<td>15,01</td>
<td>-</td>
<td>8,11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 3</td>
<td>1230</td>
<td>68,70</td>
<td>84,36</td>
<td>46,46</td>
<td>14,29</td>
<td>-</td>
<td>8,81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 6</td>
<td>1200</td>
<td>68,66</td>
<td>82,63</td>
<td>46,96</td>
<td>14,53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 7</td>
<td>1100</td>
<td>71,91</td>
<td>84,94</td>
<td>49,2</td>
<td>14,54</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O. cuniculus MAUV 5</td>
<td>1100</td>
<td>70,41</td>
<td>-</td>
<td>46,56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 84810</td>
<td>-</td>
<td>52,90</td>
<td>63,25</td>
<td>38,64</td>
<td>13,58</td>
<td>8,24</td>
<td>6,02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53868</td>
<td>-</td>
<td>62,20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53867</td>
<td>-</td>
<td>59,14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<p>| S. audubonii LACM 53866 | - | 59,30 | - | - | - | - | - | - | - |</p>
<table>
<thead>
<tr>
<th>Especie</th>
<th>Peso (g)</th>
<th>Fémur</th>
<th>Tibia</th>
<th>Astrágalo - metatarso</th>
<th>Falange I</th>
<th>Falange II</th>
<th>Falange III</th>
<th>Pie</th>
<th>L. total</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. audubonii LACM 53870</td>
<td>-</td>
<td>60,42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53869</td>
<td>-</td>
<td>60,99</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53871</td>
<td>-</td>
<td>54,85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 84809</td>
<td>-</td>
<td>61,95</td>
<td>44,10</td>
<td>15,73</td>
<td>9,45</td>
<td>6,88</td>
<td>76,16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53872</td>
<td>-</td>
<td>55,55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53873</td>
<td>-</td>
<td>60,80</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53874</td>
<td>-</td>
<td>59,33</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53877</td>
<td>-</td>
<td>59,00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53878</td>
<td>-</td>
<td>59,41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53879</td>
<td>-</td>
<td>58,40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii LACM 53880</td>
<td>-</td>
<td>60,77</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii AMNH 188554</td>
<td>-</td>
<td>63,05</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii AMNH 137370</td>
<td>-</td>
<td>65,69</td>
<td>82,98</td>
<td>48,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. audubonii AMNH 135107</td>
<td>-</td>
<td>65,39</td>
<td>80,12</td>
<td>46,06</td>
<td>13,60</td>
<td>7,93</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. nuttallii LACM 91127</td>
<td>-</td>
<td>62,45</td>
<td>78,08</td>
<td>43,17</td>
<td>14,07</td>
<td>9,19</td>
<td>7,23</td>
<td>73,66</td>
<td>214,19</td>
</tr>
<tr>
<td>S. nuttallii LACM 91174</td>
<td>-</td>
<td>680</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. floridanus LACM 58785</td>
<td>-</td>
<td>75,90</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. floridanus LACM 58787</td>
<td>-</td>
<td>79,82</td>
<td>92,03</td>
<td>47,41</td>
<td>14,92</td>
<td>8,45</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. floridanus MNCN 11590</td>
<td>-</td>
<td>66,93</td>
<td>77,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. floridanus AMNH 71186</td>
<td>-</td>
<td>73,98</td>
<td>91,39</td>
<td>51,43</td>
<td>-</td>
<td>-</td>
<td>8,21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. floridanus AMNH 71187</td>
<td>-</td>
<td>71,47</td>
<td>86,72</td>
<td>-</td>
<td>15,03</td>
<td>9,43</td>
<td>8,73</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. floridanus AMNH 137364</td>
<td>-</td>
<td>74,36</td>
<td>92,44</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. brasiliensis AMNH 134233</td>
<td>-</td>
<td>74,97</td>
<td>77,96</td>
<td>39,46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. brasiliensis AMNH 134267</td>
<td>-</td>
<td>74,43</td>
<td>77,93</td>
<td>41,22</td>
<td>12,28</td>
<td>7,67</td>
<td>7,36</td>
<td>68,53</td>
<td>220,89</td>
</tr>
<tr>
<td>P. rupestris AZ / 2400</td>
<td>2239</td>
<td>87,42</td>
<td>94,56</td>
<td>47,76</td>
<td>16,43</td>
<td>10,48</td>
<td>9,01</td>
<td>83,68</td>
<td>265,66</td>
</tr>
<tr>
<td>Especie</td>
<td>Peso (g)</td>
<td>Fémur</td>
<td>Tibia</td>
<td>Astrágalo-metatarso</td>
<td>Falange I</td>
<td>Falange II</td>
<td>Falange III</td>
<td>Pie</td>
<td>L. total</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>L. capensis AZ / 678</td>
<td>-</td>
<td>91,63</td>
<td>109,56</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. saxatilis AZ / 511</td>
<td>-</td>
<td>87,89</td>
<td>104,11</td>
<td>57,23</td>
<td>15,19</td>
<td>8,95</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. saxatilis AZ / 419</td>
<td>-</td>
<td>92,51</td>
<td>112,53</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. saxatilis AZ / 1635</td>
<td>-</td>
<td>100,60</td>
<td>122,26</td>
<td>65,30</td>
<td>18,97</td>
<td>11,69</td>
<td>10,13</td>
<td>106,09</td>
<td>328,95</td>
</tr>
<tr>
<td>L. saxatilis AZ / 956</td>
<td>-</td>
<td>105,21</td>
<td>128,30</td>
<td>70,39</td>
<td>22,00</td>
<td>12,90</td>
<td>11,45</td>
<td>116,74</td>
<td>350,25</td>
</tr>
<tr>
<td>L. saxatilis AZ / 957</td>
<td>-</td>
<td>101,53</td>
<td>122,28</td>
<td>66,79</td>
<td>20,60</td>
<td>12,16</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. saxatilis KM 30881</td>
<td>-</td>
<td>108,45</td>
<td>131,08</td>
<td>72,90</td>
<td>19,52</td>
<td>13,72</td>
<td>11,07</td>
<td>117,21</td>
<td>356,74</td>
</tr>
<tr>
<td>L. crawshayi AZ / 670</td>
<td>-</td>
<td>98,93</td>
<td>124,01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. crawshayi AZ / 673</td>
<td>-</td>
<td>102,93</td>
<td>125,35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. crawshayi AZ / 672</td>
<td>-</td>
<td>94,78</td>
<td>118,55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. californicus LACM 87443</td>
<td>-</td>
<td>91,43</td>
<td>115,78</td>
<td>61,67</td>
<td>19,63</td>
<td>11,98</td>
<td>10,37</td>
<td>103,65</td>
<td>310,86</td>
</tr>
<tr>
<td>L. californicus LACM 90014</td>
<td>-</td>
<td>91,09</td>
<td>117,43</td>
<td>61,47</td>
<td>19,92</td>
<td>11,64</td>
<td>9,99</td>
<td>103,02</td>
<td>311,54</td>
</tr>
<tr>
<td>L. californicus LACM 90240</td>
<td>-</td>
<td>92,55</td>
<td>120,05</td>
<td>63,59</td>
<td>19,42</td>
<td>12,03</td>
<td>11,05</td>
<td>106,09</td>
<td>318,69</td>
</tr>
<tr>
<td>L. californicus LACM 28181</td>
<td>-</td>
<td>92,42</td>
<td>122,50</td>
<td>63,36</td>
<td>20,53</td>
<td>11,85</td>
<td>9,88</td>
<td>105,62</td>
<td>320,54</td>
</tr>
<tr>
<td>L. californicus LACM 30729</td>
<td>-</td>
<td>97,96</td>
<td>127,22</td>
<td>-</td>
<td>22,05</td>
<td>13,28</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>L. californicus LACM 53884</td>
<td>-</td>
<td>96,37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabla 68. Pesos y longitudes del fémur, la tibia, astrágalo-metatarso, falanges y pies en N. rex y algunos lepóridos actuales. Las longitudes del fémur y la tibia corresponden a las medidas nº2 del anexo III. Las longitudes del astrágalo-metatarso y las falanges aparecen también en el anexo III. La longitud del pie corresponde a la suma de longitudes del astrágalo-metatarso y de las tres falanges correspondientes al dedo III. La longitud de la extremidad posterior corresponde a la suma de la longitud del fémur, la tibia y el pie.
<table>
<thead>
<tr>
<th>N. rex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
</tr>
<tr>
<td>Tibia</td>
</tr>
<tr>
<td>2° metatarso</td>
</tr>
<tr>
<td>3° metatarso</td>
</tr>
<tr>
<td>4° metatarso</td>
</tr>
<tr>
<td>5° metatarso</td>
</tr>
<tr>
<td>1° falange</td>
</tr>
<tr>
<td>2° falange</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. farnesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
</tr>
<tr>
<td>Tibia</td>
</tr>
<tr>
<td>2° metatarso</td>
</tr>
<tr>
<td>3° metatarso</td>
</tr>
<tr>
<td>4° metatarso</td>
</tr>
<tr>
<td>5° metatarso</td>
</tr>
<tr>
<td>1° falange</td>
</tr>
<tr>
<td>2° falange</td>
</tr>
</tbody>
</table>

Tabla 69. Cambios alométricos en la extremitad posterior de N. rex. Los cambios más significativos vienen expresados en porcentajes, tanto negativos (reducción de la longitud o el diámetro) como positivos (aumento de la longitud o el diámetro). Cuando no se expresan los porcentajes, las longitudes o los diámetros quedan incluidos dentro del rango de variación de los lepóridos con lo que han sido comparados. En este caso, los valores pueden quedar por debajo (.), por encima (+) o coinciden (*) con la recta de regresión.

271