
Chapter 5

Towards Vessel Reconstruction
from IVUS Data.

5.0.1 Methodology

In order to obtain experimental vessel wall morpho-geometric measures, an IVUS
pullback of 2090 images corresponding to 45 mm long vessel segment from a patho-
logical right coronary artery (See Fig. 4.2) was obtained. The sequence was acquired
using a Boston Sci. equipment at 40 MHz at constant pullback speed of 0.5 mm/sec
and segmented using the Neural Network procedure described in section 4.3.1. All
geometric parameters have been obtained from an elliptical fitting to the vessel wall
point find out by the Neural Network made it using the procedure described by [52].

Model Assumption.

One of the nice advantages of the proposed approach consists of providing a way
to obtain a 2.5D reconstruction of the vessel wall. The experimental analysis, has
demonstrated that it is possible to separate the geometric vessel properties from
heart dynamics contributions (See Chapter 4). We assume that the vessel wall shape
γ = (x, y, z) at time t from catheter point of view, can be written as an elliptical
approximation given by (See section 4.2):

x(t) = a(t)cos(θ + δ(t)) + cx(t) , y(t) = b(t)sin(θ + δ(t)) + cy(t) , z(t) = cz(t); (5.1)

where (0 < θ ≤ 2π), determines the angular position of the corresponding point on
the ellipse, (a(t), b(t)) are the minor and major radii of the ellipse, given by (Eq. 5.2),
δ(t) is its orientation and C = (cx(t), cy(t), cz(t)) its center at time t. In 2.5D IVUS
reconstruction cz(t) is unknown, but in our model we can take it as the catheter
position in longitudinal direction, cz = vt, where v is the catheter velocity. Taking
into account only the geometrical contributions, an approximated vessel geometry
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106 TOWARDS VESSEL RECONSTRUCTION FROM IVUS DATA.

description from catheter point of view is possible, when lumen center position major
and minor ellipses radii and the ellipses orientation are known.

Parameters Evolution.

In order to reconstruct the vessel wall from catheter point of view the principal ellipses
temporal evolution parameters will be used.

1. Minor and Major Axis. The functional dependence between ellipse eccen-
tricity ε and ellipses axis (see Eq. (4.9)), can be used to modell the temporal
behavior of a(t) and b(t) (see Figures 5.1 and 5.2), as follows:

a(t) = ag(t) + ad(t) , b(t) = bg(t) + bd(t) (5.2)

where (ag(t),bg(t)) and (ad(t), bd(t)) are the major and minor geometrical and
dynamical ellipses axis temporal evolution. These contributions are given as a
Fourier series:

ag(t) =
n=n2∑
n=n1

(
Aa

ncos(nωt) + Ba
nsin(nωt)

)
(5.3)

bg(t) =
n=n2∑
n=n1

(
Cb

ncos(nωt) + Db
nsin(nωt)

)
(5.4)

ad(t) =
n=n4∑
n=n3

(
Aa

ncos(nωt) + Ba
nsin(nωt)

)

bd(t) =
n=n4∑
n=n3

(
Cb

ncos(nωt) + Db
nsin(nωt)

)

2. Ellipse Orientation The ellipse orientation δ(t) shows a bimodal behavior such
as illustrated in Fig 5.3. The temporal dependence can be written as follows:

δ(t) = δg(t) + δd(t) (5.5)

where (δg(t),δd(t)) are the geometric and dynamical dependence respectively.
These contributions can be written as a Fourier series:

δg(t) =
n=n2∑
n=n1

(
Aδ

ncos(nωt) + Bδ
nsin(nωt)

)
(5.6)

δd(t) =
n=n4∑
n=n3

(
Aδ

ncos(nωt) + Bδ
nsin(nωt)

)
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Figure 5.1: Major a(t) ellipses axis temporal evolution (a) and its corresponding
power spectral density (b)

3. Ellipses Center. The coordinates ellipse centers cx(t) and cy(t) follow a peri-
odic bimodal movement (see Figures 5.4 (a) and 5.5 (a)). Their spectral density
shows that there is a bimodal behavior which comes from geometric and dy-
namical contributions (See Figures. 5.4 (b) and 5.5 (b)). Using these results we
can write the ellipse centers temporal evolution as follows:

cx(t) = cxg(t) + cxd(t) , cy(t) = cyg(t) + cyd(t) (5.7)

where (cxg(t),cyg(t)) and (cxd(t), cyd(t)) are the geometrical and dynamical
ellipse center temporal contributions. These contributions are given as a Fourier
series:

cxg(t) =
n=n2∑
n=n1

(
Ac

ncos(nωt) + Bc
nsin(nωt)

)
(5.8)

cyg(t) =
n=n2∑
n=n1

(
Cc

ncos(nωt) + Dc
nsin(nωt)

)
(5.9)

cxd(t) =
n=n4∑
n=n3

(
Ac

ncos(nωt) + Bc
nsin(nωt)

)

cyd(t) =
n=n4∑
n=n3

(
Cc

ncos(nωt) + Dc
nsin(nωt)

)
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Figure 5.2: Minor b(t) ellipses axis temporal evolution (a) and its corresponding
power spectral density (b).
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Figure 5.3: Ellipse orientation δ temporal evolution (a) and its corresponding power
spectral density (b).
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Figure 5.4: Ellipse center cx(t) temporal evolution (a) and its corresponding spec-
tral density (b)

The Fourier coefficients (An, Bn, Cn,Dn) in the range interval [n1, n2] for geometrical
contributions and [n3, n4] for dynamical contributions, are obtained from the temporal
evolution analysis of each dynamic parameter.

5.1 2.5D Vessel Reconstruction.

The 2.5D vessel reconstruction is possible taking only the Fourier coefficient that
corresponds to the geometrical contribution. Therefore, Eq. 5.10 can be rewritten as
follows:

x(t) = ag(t)cos(θ + δg(t)) + cxg(t)
y(t) = bg(t)sin(θ + δg(t)) + cyg(t)
z(t) = vt

where (0 < θ ≤ 2π) determines the angular position of the corresponding point on
the ellipse, (ag(t), bg(t), δg, cxg, cyg) are the minor and major axis radii, orientation,
ellipse centers at time t and v = 0.5 mm/s the catheter velocity.
Figure 5.6 shows two views of a 2.5D vessel reconstruction of an IVUS pullback of
2090 images corresponding to 45 mm long vessel segment before rotation suppression
and (Fig. 5.7) display two views of the same vessel when the dynamics suppression
methodology has been applied.
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Figure 5.5: Ellipse center cy(t) temporal evolution (a) and its corresponding spectral
density (b)
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Figure 5.6: Two views of 2.5D vessel wall reconstruction before dynamic suppres-
sion.
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Figure 5.7: Two views of 2.5D vessel wall reconstruction after dynamic suppression.



Chapter 6

Conclusions and Future Lines

Although IVUS is continuously gaining its use in practice due to its multiple clinical
advantages, the technical process of IVUS image generation, geometrical and dynam-
ical aspect of the vessel wall evolution are not known by doctors and researchers
developing IVUS image analysis. We developed in this thesis three complementary
research studies: First one, we created a basic simulation model in order to generate
2D IVUS images. Second one, based on experimental results we introduced a new
methodology to study the vessel wall appearance and its corresponding temporal evo-
lution. Third, we introduced the main conceptual strategy that allows the 2.5D IVUS
reconstruction.

1. IVUS Images Simulation Model. We discussed a basic physical model to gen-
erate synthetic 2D IVUS images. The model has different utilities: Firstly,
expert can generate simulated IVUS images in order to observe different arte-
rial structures of clinical interest and their grey level distribution in real images.
Secondly, researchers and doctors can use our model to learn and to compare
the influence of different physical parameters in the IVUS image formation, for
example: the ultrasound frequency, the attenuation coefficient, the beam num-
ber influence, and the artifact generations. Third, this model can generate large
database of synthetic data under different devices and acquisition parameters
to be used to validate the robustness of image processing techniques. The IVUS
image generation model provides a basic methodology that allows to observe
the most important real image emulation aspects. This initial phase does not
have the intention to compare pixel to pixel values generation, showing the co-
incidence with the real image, but looks for a global comparison method based
on grey level difference distribution. The input model applies standard param-
eters that have been extracted from the literature. Hence this model is generic
in terms that the model allows simulating different processes, parameters, and
makes possible to compare to real data and to justify the generated data from
the technical point of view.
The model is based on the interaction of the ultrasound waves with a discrete
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scatterer distribution of the main arterial structures. The obtained results of
the validation of our model illustrate a good approximation to the image for-
mation process. The 2D IVUS images show a good correspondence between
the arterial structures that generate the image structures and their grey level
values. The simulations of the regions and tissue transitions of interest lumen
and adventitia, have been achieved in a satisfactory degree. Interested readers
are invited to check the generation model in (http://www.cvc.uab.es/∼misael).

2. Modelling Vessel Wall Dynamics. We developed a geometric and kinematic
model in order to study the evolution of coronary artery wall from catheter
point of view. The model is based on the supposition that the evolution of
the arterial wall, can be modelled assuming two principal contributions that
come from different physical reasons. The first one, a systematic contribution
caused by geometric intrinsic arterial properties and the second one, an oscil-
lating contribution that comes from ventricle dynamics. These contributions
govern in major degree the profiles appearance of arterial wall in longitudinal
views. Using these assumption we generate the methodological strategy in order
to estimate and suppress IVUS dynamical distortions.
The vessel wall radial deformation on the IVUS images not only depends on the
blood pressure variation, but also depends on the artifact produced by oscillat-
ing obliquity induced by the ventricle pulsatile dynamics. Any effort to obtain
in situ vessel wall elastic properties using IVUS sequences should emphasize
on the suppression of radial deformation that are blood pressure independent.
We introduce a new conceptual formulation that permits to separate geometric
contribution depending on intrinsical vessel wall micro-architecture from dy-
namical contribution that comes from heart movement. Our model only takes
into account those transformations that maintain invariant the image dimen-
sions, therefore the radial expansion and the catheter obliquity have not been
treated, still these contributions predominate once suppressed the rotation.

3. 2.5D Vessel Reconstruction. Being possible to separate the geometric contri-
bution from dynamics contribution, we developed the basis to 2.5D vessel re-
construction only using IVUS data. This thesis gives an important advance in
vessel wall dynamics estimation such as to introduce an alternative technique
to estimate local heart dynamics. In this way, we provide a new possibility of
studying robustly the vessel dynamics and establishing new diagnostic tools.
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6.1 Future Lines

An important future line in this research can be oriented to IVUS Functional Image.
The principal objective in this investigation way should be focused to find significative
statistical correlation between static and dynamica morpho-geometric IVUS param-
eters and their corresponding cardiological functional dependence. In order to fulfill
this general objective, the following research aspect can be consider as plausible:

1. Once separated the heart dynamics influence from geometric vessel wall con-
tributions, we can characterize vessel wall mechanical properties evaluating the
elastic constant σk extracted from the relative radial deformation ∆Rk/Rk for
each frame k. This technique can be a novel and direct method to obtain plaque
and tissue characterization by patient in vivo.

2. Using IVUS technique by frequencies greater than 40 MHz it is possible to
observe the fibers configuration in cross sectional images. An exhaustive study
of IVUS images textural properties, could be used to estimate the fiber density,
allowing to obtain intrinsical properties of vessel wall, that can give an important
valuation on functional and local physiological state of an artery.

3. Our dynamical and geometric model can be used in two ways: 1.- Suppression
of dynamical distortion in order to obtain 3D IVUS reconstruction. 2.- Once
suppressed the dynamics effect, in vivo vessel wall elastic properties can be esti-
mated. 3.- Parameters validation that can be used to estimate heart dynamics.

4. The IVUS rotation as a global phenomena can be used to evaluate the pumping
heart percentage efficiency. An extensive study of the IVUS rotation images
versus pumping heart efficiency obtained experimentally using a diastolic and
systolic angiography heart views, should demonstrate a positive correlation be-
tween heart rotation and heart efficiency.
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Appendix A

Eccentricity Definition

In order to describe the IVUS rotation effect respect to the catheter spatial position,
we define from (Fig. A.1 (a)) the catheter eccentricity as: ξ = |rc1/r|, where rc1 =
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Figure A.1: Catheter eccentricity ξ geometric definitions (a) ξ vs lumen center
spatial position rc1 (b)

(xc2
1 + yc2

1)
1/2 is the spatial relative catheter position to the lumen center and r is a

region of interest (ROI) located on the vessel wall. Figure A.1 (b) shows the linear
dependence of eccentricity ξ versus lumen center spatial position, rc1. The definition
of catheter eccentricity ξ can be used to achieve a better description of the heart
dynamics influence and vessel geometry contributions to the longitudinal IVUS cuts’
shape appearance.
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Appendix B

Kinematic Approach to IVUS
Rotation Estimation.

In order to find the rotation profile of the sequence when 0 ≤ ξ ≤ 10%, we assume
[27] that the vessel wall can be consider as a discrete linear elastic oscillating system
[19]. Using polar coordinates to describe the vessel wall temporal evolution, it follows
that its trajectory is given by: (x, y) = (r(t)cos(θ(t)), r(t)sin(θ(t))), then an element
of the vessel wall has the following total energy:

Ei = Ti + Ui (B.1)

where Ti = miv
2
i

2 + mi

2 (riωi)2 Ui = kir
2
i

2

vi =
√

vx2
i + vy2

i ri =
√

x2
i + y2

i wi = ∂θi

∂t

Ti and Ui, are the kinetic and elastic energy of the i-th discrete element of the vessel
wall respectively, mi,vi, ωi and ki are the mass, tangential velocity, angular velocity
and elasticity constant of the i-th element of the vessel wall. The mass of one element
can be estimated considering the minimal ”voxel” volume sweeping by the ultrasound
beam, being this Vb ≈ 6.4 × 10−5 mm3 [51]. Using this fact, the element of mass is
m = ρ ∗ Vb ≈ 1.09 grs

cm3 ∗ 6.4× 10− 8grs ≈ 6.97× 10−5kg, where ρ is the typical tissue
density [48]. Within the above kinematic framework, it is sufficient to provide the
temporal evolution of a single point on the vessel wall structure [42, 44], to measure
the angular difference between two consecutive frames. Therefore, spatial location of
this reference point was determined as the position ij of the vessel wall that has a
minimal total energy given by (Eq. B). The spatial location of this point is put into
the image spatial coordinates which reaches the condition:

(xc, yc) = argminij

fn∑
k=1

Ek
ij

where fn = 25 is the image number used to evaluate this condition and ij are the row
an columns of the average IVUS images.

119



120 KINEMATIC APPROACH TO IVUS ROTATION ESTIMATION.



Appendix C

Vessel and Ventricle Dynamic
Interaction

The spatial-time evolution of an artery which is modelled for a generatrix curve G(s,t),
is governed by the left ventricle (LV) evolution model specified in [40] (See Appendix
C). The basic geometric model is given in a prolate sphere, whose parameters are
shown in (Fig. C.1 (a)). A point (λ, η, φ) in prolate spheroidal coordinates has the

Figure C.1: Prolate coordinates (a) used to represent the LV surface (b)

following Cartesian coordinates:

x = δsinhλsin(η)cos(φ) , y = δsinhλsin(η)sin(φ) , z = δcoshλcos(η)

where (λ, η, φ) are the radius, elevation and azimuthal angles respectively and δ is
the focal radius. The evolution spatial and temporal of the generatrix curve G(s, t)
can be rewritten as a function of the curve g(u(λ, φ, η), v(λ, φ, η), w(λ, φ, η)) on the
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surface of the prolate sphere, as follow:

G(s(λ, φ, η), t) = gx(s(u(λ, φ, η)), t) + gy(s(v(λ, φ, η)), t) + gz(s(w(λ, φ, η)), t) (C.1)

The general matrix equation that transform one point G(s, t) in G(s + δs, t + δt) on
the surface of the ventricle is given as:

G(s + δs, t + δt) = FaF6F5F4F3F2F1FoG(s, t) (C.2)

Fo =




a1/3

0
0
0

0

a1/3

0
0

0
0

a1/3

0

0
0
0

a1/3


 F1 =




ε
0
0
0

0
ε
0
0

0
0
ε
0

0
0
0
ε




F2 =




cos(b)/|r1|
sin(b)/|r1|

0
0

−sin(b)/|r1|
cos(b)/|r1|

0
0

0
0
1
0

0
0
0
1




where a is the correctional parameter that transform a prolate spheroidal shell
into a more spherical shape in anticipation of the next transformation, ε =

(
1 +

3k1Vw

4π|FoG(s,t)|
)1/3 , Vw is the wall ventricle volume, in our model Vw = 1, b = ak2z1 and

r1 = F1FoG(s, t) = [x1, y1, z1, 1]t

F3 =




a−1/3exp(k4 − (k3/2))
0
0
0

0

a−1/3exp(k4 − (k3/2))
0
0

0
0

a2/3exp(k3)
0

0
0
0

a−1/3




F4 =




1
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1 + k2
5

0
0

0
0
1
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0
0
1


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
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Fa = A4A3A2A1
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ki Dependence

k1 Radially dependent compression

k2 Left ventricular torsion

k3 Ellipticallization in long axis plane

k4 Ellipticallization in short axis plane

k5 Shear in x direction

k6 Shear in y direction

k7 Shear in z direction

k8 Rotation about x-axis

k9 Rotation about y-axis

k10 Rotation about z-axis

k11 Translation in x direction

k12 Translation in y direction

k13 Translation in z direction

The temporal and spatial evolution of the ventricle surface is given by the evolution of
the ki parameters given in the model by Arts et al. [38]. Fig. C.2 show the temporal
evolutions from k1 to k13 for two cardiac cycles.
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