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Chapter 1

Introduction

If a group of individuals has to decide upon the selection of some feasible alternatives and

individual preferences on the set of alternatives are not aligned, then the institutional

problem of how preferences should be aggregated arises. It is the main objective of Social

Choice Theory to address this question by studying normative properties of different

aggregation rules.

In a lot of socio-economic environments individuals divide alternatives into two indif-

ference classes, the set of good and the set of bad alternatives. According to Roth et al.

[50] the set of donors for a potential receiver of a live kidney is dichotomous and depends

basically on the blood type of the donor. Similarly, Bogomolnaia et. al [12] claim that

individual preferences in time sharing and scheduling problems are dichotomous. As a

last example, consider a firm hiring specialized candidates. If the amount of extractable

information from the applications is rather low and purchasing external information is

expensive, then the recruitment committee members have simple structured preferences.

To assume in this setting that preferences are dichotomous is surely not innocuous, yet it

constitutes an important benchmark case in the analysis of weak preferences.

The aim of the chapters Scoring Rules on Dichotomous Preferences and Approval

Voting on Dichotomous Preferences is to relate some well known social choice functions

and to study their respective properties in order to gain some insight on which rule is

best to apply in the kind of situations described above. In Chapter 2, we concentrate
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on a particular subclass of social choice functions termed scoring rules. The most well

known scoring rule, the Borda Count [14], is defined as follows: Given a strict preference

relation for some individual, assign zero points to her/his worst alternative, one point to

the second worst alternative, and so forth. Then, the alternatives selected for a given

preference profile are those with the highest sum of points.

Our main result states that if we generalize the point assignment process to weak pref-

erences, then the Borda Count coincides with Approval Voting [17] on the dichotomous

preference domain (Proposition 2.1). Remember that according to Approval Voting every

individual can vote for as many alternative as s/he wishes to and for every preference pro-

file all alternatives with the highest number of votes are selected. This result is important,

because the two aggregation rules are not easily compared on richer preference domains

and there has been an active discussion between Saari and van Newenhizen [52] and [53]

and Brams et al. [18] on whether the Borda Count or Approval Voting should be con-

sidered the best alternative method for the widely established Plurality Rule (everybody

can cast one ballot and all alternatives receiving most votes are implemented). More-

over, Approval Voting coincides on this preference domain with the Condorcet Rule [22]

(an alternative is a Condorcet winner if a majority of individuals prefers it to all other

alternatives), and therefore, the criticism on the Borda Count not to select an existing

Condorcet winner is only valid if preferences consist of at least three indifference classes.

In collective choice problems individuals may try to obtain a better outcome by misrep-

resenting their preferences. Since strategy-proofness (truth-telling is a dominant strategy

in the preference revelation game) eliminates strategic voting completely and insures the

selection of the “correct” alternatives, special attention should be given to social choice

functions satisfying this normative property. Brams and Fishburn [17] have shown that

Approval Voting is strategy-proof on the dichotomous preference domain, a result that

opens together with Proposition 2.1 at least two possible lines of investigation. For the re-

mainder Chapter 2, we concentrate on the notion of strategy-proofness and show that any

scoring rule different from the Borda Count is manipulable on the dichotomous preference

domain (Proposition 2.2) and that there does not exist a domain containing dichotomous
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preferences for which the Borda Count is strategy-proof whenever the number of individu-

als participating in the election is different from three (Proposition 2.3). In Chapter 3, on

the other hand, we study the normative properties of Approval Voting in more detail and

offer two different characterization of this rule. First, we show that on the dichotomous

preference domain, a social choice function is anonymous, neutral, strictly monotone and

strategy-proof if and only if it is Approval Voting (Proposition 3.1). Afterwards, we char-

acterize Approval Voting on this domain by means of strict symmetry, neutrality and

efficiency (Proposition 3.2). These results are related to the axiomatic representations

of May [43], Fishburn [35], and Baigent and Xu [3] and support the common opinion

that Approval Voting is a very plausible way to aggregate preferences given the domain

restriction.

One important aim of the literature on Experimental Economics is to check whether

theoretical predictions of economic models withstand tests in the laboratory. In Chapter

4, An Experimental Study of Truth-Telling in a Sender-Receiver Game (joint with San-

tiago Sánchez-Pagés), we show that the rationality assumption underlying the notion of

strategy-proofness -voters take any chance to misrepresent their preferences however small

the expected gains- can be too strong in certain situations. To do so we analyze in the

laboratory a very simple game of “strategic information transmission” [25] and show that

individuals have preferences for truth-telling; that is, individuals want to tell the truth

about their private information although have incentives to lie. Our first result states

that subjects who play the sender-receiver game in the role of the sender tell the truth

significantly more often than predicted by the standard model of preference maximization

(Hypothesis 4.1). To provide evidence that this “overcommunication phenomenon” of Cai

and Wang [20] can be explained because a considerable number of subjects have prefer-

ences for truth-telling we test two hypotheses: First, we show that some subjects who have

been deceived are willed to pay money in order to punish liars (Hypothesis 4.2). After-

wards, it is established that those subjects who account for most of the punishments tend

to tell the truth significantly more than predicted by the standard equilibrium analysis

whereas the rest of the subjects play, on the aggregate, equilibrium strategies (Hypothesis
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4.3). So subjects do not only behave consistently among roles, rather we can partition our

subject pool into two groups, one group with concerns for social preferences and another

one following only incentives.

In rent-seeking situations such as lobbying environments individuals spend valuable

resources in order to raise the probability to win a fixed prize (see e.g. Tullock [60]). This

theoretical finding seems to match empirical observations but bases on the assumption

that individuals are not able to cooperate and share the prize without engaging in conflict.

The objective of the fifth chapter, Coalition Formation in a Contest with Three Heteroge-

neous Players, is to understand in which situations the efficient outcome, a society-wide

agreement, can be achieved and when it is impossible to obtain full cooperation. To

address this question we analyze the behavior of three heterogeneous agents in the follow-

ing two stage model: First, individuals form coalitions according to a bargaining model

similar to the partnership game proposed by Gul [39]. Afterwards, the contest game of

Esteban and Ray [30] is played in the resulting coalition structure of the first stage. The

main result, Proposition 5.2, states that if the relative bargaining power of every indi-

vidual in the bargaining stage is equal to her/his relative efficiency of lobbying in the

contest game, then the efficient grand coalition forms in equilibrium. But, if these two

parameters are too distinct, then full cooperation cannot be reached any more, and, as

a result, the equilibrium level of effort is strictly positive. Thus, our results contrast the

findings of Bloch et al. [10] who show that if individuals are homogenous, then the grand

coalition is the unique equilibrium coalition structure.



Chapter 2

Scoring Rules on Dichotomous

Preferences

2.1 Introduction

We analyze the aggregation of preferences in form of positional voting methods or scoring

rules when individuals have dichotomous preferences on the set of alternatives (there are

just two indifference classes, the set of good alternatives and the set of bad alternatives).

In particular, we are interested in strategy-proof scoring rules; that is, we look for social

choice functions belonging to the class of scoring rules that give individuals incentives to

report preferences truthfully. Our main results show that on the dichotomous preference

domain, the Borda Count [14] is equal to Approval Voting [17] and the only strategy-proof

scoring rule.

In a series of papers, Saari and van Newenhizen [52] and [53] and Brams et al. [18]

discuss the advantages and disadvantages of Approval Voting versus scoring rules in gen-

eral and the Borda Count in particular. The former authors argue that Approval Voting

is highly indeterminate for a lot of preference profiles (many different alternatives can

be selected for a given preference profile) and suggest the Borda Count as an alternative

to the widely established Plurality Rule. But this indeterminacy of Approval Voting is

rather a virtue according to the latter authors, because it eliminates voter’s incentives
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not to vote sincerely whereas scoring rules are considered to be very manipulable (see e.g.

Dummett [29], Saari [51], and Smith [58]).

One way how to contribute to this discussion is to compare scoring rules with Approval

Voting for different preference domains. But this task is not an easy one, because the

rules work quite differently. While scoring rules are social choice functions and thus take

into account the whole preference structure, Approval Voting is a truncated voting rule

that endows individuals with the right to vote for as many alternatives as they wish to

and selects all alternatives with the largest support. Therefore, the level of information

available about individual preferences is generally lower under Approval Voting. This

problem disappears when preferences are restricted to be dichotomous, because if we

interpret voting decisions as the set of good alternatives, then individual preferences are

fully revealed; that is, Approval Voting becomes a social choice function. Since this is

not true any more for larger preference domains, the dichotomous preference domain

constitutes an ideal starting point for comparing scoring rules with Approval Voting.

Proposition 2.1 contributes to the former discussion by showing that if the Borda

Count is generalized to weak preferences in a straightforward way, then it is an affine

transformation of Approval Voting on the domain of dichotomous preferences. Since

Brams and Fishburn [17] have shown that Approval Voting is equal to the Condorcet

Rule [22] on the dichotomous preference domain (remember that the set of Condorcet

winners is non-empty on this domain according to Inada [41]), Proposition 2.1 establishes

additionally that the criticism on the Borda Count not to select an existing Condorcet

winner is only true if preferences consists of at least three indifference classes.

One common way to eliminate individual incentives to vote strategically is to imple-

ment strategy-proof social choice functions. Brams and Fishburn [17] have shown that

Approval Voting is strategy-proof on the dichotomous preference domain, and therefore,

one may wonder whether other scoring rules share the same property. Since Proposition

2.2 gives a negative answer to this question if there are at least three voters, we can con-

clude the Borda Count is the best scoring rule in terms of incentives on the dichotomous

preference domain.
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Finally, we deal with the question of whether we can enlarge the underlying prefer-

ence domain without losing strategy-proofness for Borda Count. Barbie et al. [6] study

strategy-proof domains for the Borda Count under the assumptions that individual pref-

erences are strict and ties are broken in a non-neutral way. Basically, they find that

the Borda Count is non-manipulable on all domains which contain one fixed preference

relation and all its cyclic permutation. Since these domains are rather small, their result

confirms the common opinion that scoring rules are highly manipulable. Proposition 2.3

points into the same direction, because the dichotomous preference domain is the largest

domain for which the Borda Count is strategy-proof if more than three individuals par-

ticipate in the election.

We proceed as follows. In the next section we introduce notation and some basic

definitions. Afterwards, we present our results.

2.2 Notation and Definitions

Consider a group of individuals N = {1, ..., n} with preferences on the set of alternatives

K = {1, ..., k}. The cardinalities of the two sets are finite and equal to n ≥ 2 and k ≥ 3.

We assume that k ≥ 3, because otherwise all scoring rules are going to be equal to the

Borda Count as it will become clear from the definitions later on. Elements of K are

denoted usually by x, y and z, elements of N by i, j and l.

Let Ri be the weak preference relation of individual i on K. We assume that Ri is

reflexive, complete and transitive. The strict and the indifference preference relations

associated with Ri are denoted by Pi and Ii, respectively. The set of all weak preference

relations on K is denoted by R. A domain R̄ is a subset of R. Given a domain R̄ ⊆ R,

a preference profile R = (R1, ..., Rn) ∈ R̄N is a n-tuple of individual preference relations.

The i-variant preference profile (Ri, R−i) is obtained by changing the preference relation

of individual i at profile R from Ri to R′
i ∈ R̄.

The preference relation Ri is dichotomous if it consists of up to two indifference classes,

the set of good alternatives and the set of bad alternatives. Given Ri ∈ R̄, define the
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set of good alternatives associated with Ri as G(Ri) = {x ∈ K : xRiy for all y ∈ K}.

Similarly, let B(Ri) = {x ∈ K : yRix for all y ∈ K} be the set of bad alternatives

corresponding to Ri. The cardinalities of these sets are equal to g(Ri) and b(Ri). Hence,

Ri ∈ R̄ is dichotomous if and only if G(Ri)∪B(Ri) = K. The domain of all dichotomous

preferences is denoted by D ⊂ R and Di ∈ D is a generic dichotomous preference relation

for individual i. The notation G(Di) = ∅ (G(Di) = K) refers to the situation when i is

indifferent between all alternatives and considers no (all) alternative(s) to be acceptable.

Finally, given the dichotomous preference profile D = (D1, ..., Dn) ∈ DN , let Nx(D) =

|{i ∈ N : x ∈ G(Di)}| be the support for x at D.

A social choice function f : R̄N → 2K\{∅} selects for all preference profiles R ∈ R̄N

a non-empty set of alternatives f(R). Any social choice function belonging to the class

of scoring rules can be represented by a vector s = (s0, s1, . . . , sk−1) ∈ Rk satisfying the

conditions sj−1 ≤ sj for all j = 1, ..., k−1 and s0 < sk−1. The range of s is normalized by

assuming that s0 = 0 and sk−1 = k− 1. Scoring rules are typically applied to the domain

of strict preferences P . In this case, points are assigned to every alternative in such a way

that if alternative x is in the j’th position according to Pi, then x receives ps
x(Pi) = sk−j

points from individual i. Given a preference profile P ∈ PN and an alternative x ∈ K, let

ps
x(P ) =

∑n

i=1 ps
x(Pi) be the score of alternative x at P when the scoring rule s is applied.

Society selects for a given preference profile the set of alternatives with the highest score.

However, if preferences are not strict, then the point assignment process has to be

generalized. One possibility is to give to every alternative of the same indifference class

the same amount of points, an extension mentioned in [52]. Formally, this is done as

follows: Let C1(Ri) be the set of top alternatives for individual i when her/his preference

relation is Ri ∈ R̄. The cardinality of C1(Ri) is c1(Ri). Then every alternative y ∈ C1(Ri)

receives ps
y(Ri) = 1

c1(Ri)

∑c1(Ri)
j=1 sk−j points from individual i. Let m ≥ 2 and suppose

that points have been given to all alternatives contained in the first m − 1 indifference

classes of Ri. Moreover, denote the cardinality of the set of all alternatives contained

in the first m − 1 indifference classes according to Ri by rm−1. Let Cm(Ri) be the set

of alternatives belonging to the m’th indifference class of Ri. The cardinality of Cm(Ri)
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is cm(Ri). Then, every alternative z ∈ Cm(Ri) gets ps
z(Ri) = 1

cm(Ri)

∑cm(Ri)
j=1 s(k−rm−1−j)

points from individual i. Given a preference profile R ∈ R̄N and an alternative x ∈ K,

let ps
x(R) =

∑n

i=1 ps
x(Ri) be the score of alternative x at R when the scoring rule s is

applied. Now, we are able to define scoring rules for all weak preference domains.

Definition 2.1. The social choice function fs : R̄N → 2K\{∅} associated to the scoring

rule s is such that for all R ∈ R̄N , x ∈ f(R) if and only if ps
x(R) ≥ ps

y(R) for all y ∈ K.

The most well known scoring rule is the Borda Count. It is defined by the vector

sj = j for all j = 0, ..., k − 1 and denoted by fB. With a slight abuse of notation we

write px(Ri) and px(R) whenever the Borda Count is applied. Finally, we provide some

intuition for the generalized point assignment process corresponding to the Borda Count:

Given Ri ∈ R̄, compare alternative x with every alternative y ∈ K\{x}. If xPiy, then

assign one point to x and zero points to y (give the point to y whenever yPix). If xIiy,

then split the point equally. The sum of points alternative x obtains after performing all

pair-wise comparisons is equal to px(Ri).

Approval Voting is one of the most prominent voting rules both in theory and practice.

The main novelty with respect to the Plurality Rule is that it endows individuals with

the right to vote for not just one but for as many alternatives as they wish to. That

is, the mapping Mi : R̄ → 2K determines for all preference relations Ri ∈ R̄ the set

of alternatives Mi(Ri) ∈ 2K individual i votes for and the Approval Voting function v :
(

2K
)N

→ 2K\{∅} aggregates the individual voting decisions by selecting the alternatives

with the highest number of votes. Hence, for all (M1(R1), . . . ,Mn(Rn)) ∈
(

2K
)N

, x ∈

v (M1(R1), . . . ,Mn(Rn)) if and only if |{i ∈ N : x ∈ Mi(Ri)}| ≥ |{i ∈ N : y ∈ Mi(Ri)}|

for all y ∈ K. In [49] there is a discussion of different probabilistic models that make

assumptions on how the mappings (Mi)i∈N look like in order to compare Approval Voting

in expected terms to social choice functions. But for the case of dichotomous preferences

there is a simpler way how to do this. If the mappings Mi : D → 2K are defined such

that for all i ∈ N and all Di ∈ D, Mi(Di) = G(Di), then the voting decisions reveal

preferences completely. Thus, Approval Voting becomes a social choice function.
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Definition 2.2. The social choice function f : DN → 2K\{∅} is Approval Voting if for

all D ∈ DN , x ∈ f(D) if and only if Nx(D) ≥ Ny(D) for all y ∈ K.

The social choice function corresponding to Approval Voting is denoted by fA. Ap-

proval Voting is not a social choice function any more if preferences are richer, because,

given the voting decision Mi(Ri) for a particular preference relation Ri ∈ R̄ that consists

of at least three indifference classes, it is impossible to recover preferences fully. To see

this let the preference relation of individual i be such that xPiyPiz. In this case, we

cannot infer from Mi(Ri) = {x, y} that xPiy. Similarly, if Mi(Ri) = {x}, then we cannot

deduce that yPiz.

2.3 Results

The dichotomous preference domain is a natural starting point for a comparison of Ap-

proval Voting and scoring rules, because it is the largest domain on which Approval Voting

constitutes a well-defined social choice function. Proposition 2.1 states that the Borda

Count is equivalent to Approval Voting on this domain, because the score of an alterna-

tive under the Borda Count is an affine transformation of the number of individuals who

approve it.

Proposition 2.1. For all D ∈ DN , fB(D) = fA(D).

Proof. Suppose that i’s preferences are represented by the dichotomous preference relation

Di and let the scoring rule s be such that sj = j for all j = 0, ..., k − 1. We deduce from

the equation
∑n

j=1 j = n(n+1)
2

that every alternative x ∈ G(Di) receives

px(Di) =
Pg(Di)

j=1 k−j

g(Di)
=

g(Di)k−
Pg(Di)

j=1 j

g(Di)
= 2g(Di)k−g(Di)(g(Di)+1)

2g(Di)
= 2k−g(Di)−1

2

points from individual i. Similarly, this individual gives to all alternatives y ∈ B(Di),

py(Di) =
Pb(Di)

j=1 k−g(Di)−j

b(Di)
= 2b(Di)(k−g(Di))−b(Di)(b(Di)+1)

2b(Di)
= k−g(Di)−1

2
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points. We complete the proof by showing that, given a preference profile D ∈ DN and

an alternative x ∈ K, the score px(D) is an increasing function of Nx(D). This is done

as follows,

px(D) =
∑

i∈N :x∈G(Di)

px(Di) +
∑

i∈N :x 6∈G(Di)

px(Di)

=
∑

i∈N :x∈G(Di)

2k−g(Di)−1
2

+
∑

i∈N :x 6∈G(Di)

k−g(Di)−1
2

=
∑

i∈N :x∈G(Di)

k
2

+
∑

i∈N

k−g(Di)−1
2

= k
2
Nx(D) + n

2
(k − 1) −

∑

i∈N

g(Di)
2

.

Hence, for all D ∈ DN , Nx(D) ≥ Ny(D) for all y ∈ K if and only if px(D) ≥ py(D) for

all y ∈ K.

One aim of the literature on social choice theory is to study normative properties of

aggregation functions. Special attention should be given to strategy-proof social choice

functions, because they assure that individuals have incentives to represent their prefer-

ences truthfully, or, to say it differently, all room for strategic voting is eliminated. So

far, we cannot define strategy-proofness properly, because we do not know how individ-

uals compare non-empty subsets of alternative. One way to deal with this problem is to

extend preferences. In particular, we assume that the reflexive, complete and transitive

preference relation %Ri
defined on 2K\{∅} satisfies the subsequent properties proposed

by Brams and Fishburn [17]:

1. Condition P: {x} ≻Ri
{x, y} ≻Ri

{y} if and only if x ∈ G(Ri) and y ∈ B(Ri).

2. Condition R: For all S, T ⊆ 2K\{∅}, if S ⊆ G(Ri) or T ⊆ B(Ri) or [S\T ⊆ G(Ri)

and T\S ⊆ B(Ri)], then S %Ri
T .

Now, we can define strategy-proofness in a straightforward way. The social choice

function f : R̄N → 2K\{∅} is manipulable by i on R̄N if for some R ∈ R̄N and R′
i ∈ R̄,

f(R′
i, R−i) ≻Ri

f(R).

Definition 2.3. The social choice function f : R̄N → 2K\{∅} is strategy-proof on R̄ if it

is not manipulable by any individual on R̄N .
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In [17] it is shown that Approval Voting is strategy-proof on the dichotomous pref-

erence domain. According to Proposition 2.2 any scoring rule different from the Borda

Count is manipulable on this domain whenever at least three individuals participate in

the election.

Proposition 2.2. Suppose that n ≥ 3. The social choice function fs : DN → 2K\ {∅}

corresponding to the scoring rule s is strategy-proof if and only if it is the Borda Count.

Proof. The Borda Count is strategy-proof on D according to Brams and Fishburn [17]

and Proposition 2.1. Thus, we only have to show that all scoring rules different from the

Borda Count are manipulable on this preference domain. To do so we construct a set of

necessary conditions and show that only the Borda Count satisfies them.

Given x, y ∈ K, consider the preference profile D ∈ DN which is as follows: For

i, j ∈ N , G(Di) = {x} and G(Dj) = {y}. For all individuals l 6= i, j, Dl is the dichotomous

preference relation where G(Dl) = {x, y}. Then, for any scoring rule s, fs(D) = {x, y}.

We analyze under which conditions individual i may not manipulate fs at D via D′
i, where

D′
i satisfies the conditions g(D′

i) > 1, x ∈ G(D′
i) and y 6∈ G(D′

i).

Let m = g(D′
i) − 1 be the difference in the cardinality of the set of good alternatives

with respect to the preference relations D′
i and Di. At (D′

i, D−i) ∈ DN , the score of

alternative x is equal to

ps
x(D

′
i, D−i) =

∑k−1
j=k−m−1 sj

m + 1
+

∑k−2
j=1 sj

k − 1
+ (n − 2)

sk−1 + sk−2

2
,

because ps
x(D

′
i) = 1

m+1

∑m+1
j=1 sk−j, ps

x(Dj) = 1
k−1

∑k−1
j=1 sk−1−j and ps

x(Dl) = 1
2
(sk−1 +sk−2)

for all l 6= i, j. At the same preference profile the score of alternative y is equal to

ps
y(D

′
i, D−i) =

∑k−m−2
j=1 sj

k − m − 1
+ sk−1 + (n − 2)

sk−1 + sk−2

2
,

because ps
y(D

′
i) = 1

k−m−1

∑k−m−1
j=1 sk−(m+1)−j, ps

y(Dj) = sk−1 and ps
y(Dl) = 1

2
(sk−1 + sk−2)

for all l 6= i, j. Since the score of alternative x at (D′
i, D−i) ∈ DN is higher as the

score of any alternative z 6= y (here we need the assumption n ≥ 3), individual i cannot
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manipulate fs at D ∈ DN via D′
i ∈ D whenever px(D

′
i, D−i) ≤ py(D

′
i, D−i), or for all

m = 1, ..., k − 2,
∑k−1

j=k−m−1 sj

m + 1
+

∑k−2
j=1 sj

k − 1
≤ sk−1 +

∑k−m−2
j=1 sj

k − m − 1
.

On the other hand, if the former weak inequality is strict for some m, then i can manip-

ulate fs at (D′
i, D−i) ∈ DN via Di ∈ D. Hence, the set of equations

∑k−1
j=k−m−1 sj

m + 1
+

∑k−2
j=1 sj

k − 1
= sk−1 +

∑k−m−2
j=1 sj

k − m − 1
, (2.1)

for all m = 1, ..., k − 2, defines a set of necessary conditions for strategy-proofness given

the generic social choice function fs. Since the Borda Count is strategy-proof on the

dichotomous preference domain, we already know that it solves the linear system of k− 2

equations (the possible deviations m = 1, ..., k − 2) and k − 2 unknowns (the scores sj

for all j = 1, ..., k − 2). Nonetheless, we present the calculus of the Borda Count before

showing that the system (2.1) has a unique solution.

Suppose that sj = j for all j = 1, . . . , k − 2. We have to verify that the equation

∑k−1
j=k−m−1 j

m + 1
+

∑k−2
j=1 j

k − 1
= k − 1 +

∑k−m−2
j=1 j

k − m − 1

holds. Rewrite it as
∑k−1

j=1 j −
∑k−m−2

j=1 j

m + 1
= k − 1 +

∑k−m−2
j=1 j

k − m − 1
−

∑k−2
j=1 j

k − 1

and apply the equation
∑n

j=1 j = n(n+1)
2

in order to get that the left and the right hand

sides of the former equation are equal to (k−1)k−(k−m−2)(k−m−1)
2(m+1)

and 2(k−1)+(k−m−2)−(k−2)
2

,

respectively. Perform all the necessary multiplications to yield the expression

k2 − k − (k2 − 2km − 3k + m2 + 3m + 2)

2 (m + 1)
=

2 (k − 1) − m

2
.

Simplify this equation to 2km + 2k − m2 − 3m − 2 = (m + 1) (2k − m − 2). The result

follows from simple algebra.

Finally, we prove that there is no other solution to the system of linear equations.

Since sk−1 and s0 are normalized to k − 1 and 0, respectively, we rewrite equation (2.1)
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for the generic parameter m as

∑k−2
j=k−m−1 sj

m + 1
+

∑k−2
j=1 sj

k − 1
−

∑k−m−2
j=1 sj

k − m − 1
=

m(k − 1)

m + 1
.

Next, consider the matrix representation As = b of the former system of equations where

the rows of the matrix A correspond to the different values of m = 1, ..., k − 2. For

example, A =
(

1
k−1

E + Ā
)

, where E is a (k − 2)× (k − 2) matrix with a 1 in every entry

and

Ā =























− 1
k−2 − 1

k−2 ... − 1
k−2

1
2

− 1
k−3 − 1

k−3 ... 1
3

1
3

...
...

...
...

−1
2

1
k−2 ... 1

k−2
1

k−2

1
k−1

1
k−1 ... 1

k−1
1

k−1























.

Moreover, the vector b can be represented as b = 1
k−1

b′, where

b′ =
(

1
2

2
3 ... k−3

k−2
k−2
k−1

)

.

The system of k − 2 linear equations and k − 2 unknowns has a unique solution if and

only if the matrix of coefficients A with the generic element am,r has full rank. Multiply

the m’th row of A by 1
am,k−2

=
(

1
k−1

+ 1
m+1

)−1
= (k−1)(m+1)

m+k
. The resulting matrix Ã has

the same rank as A and it is equal to

Ã =























ã1 ã1 ã1 . . . ã1 ã1 1

ã2 ã2 ã2 . . . ã2 1 1
...

...
...

...
...

...

ãk−3 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1























,

where ãm = (m+1)(k−1)
k+m

(

1
k−1

− 1
k−m−1

)

. Observe that for all m = 1, . . . , k− 3, (m+1)(k−1)
k+m

>

0 and 1
k−1

− 1
k−m−1

< 0. Therefore, ãm < 0 for all m = 1, . . . , k − 3.

Let vr be the vector notation for the r’th column of Ã. The matrix Ã has full rank

if and only if there does not exist a vector λ 6= 0 such that for all r = 1, . . . , k − 2 the

scalar product λ · vr = 0. Suppose otherwise; that is, there exists a λ 6= 0 such that for
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all r = 1, . . . , k− 2, λ ·vr = 0. Consider vk−2 and vk−3. By assumption
∑k−2

j=1 λj = 0 and

λ1ã1 +
∑k−2

j=2 λj = 0. Combining the two equations yields λ1 = λ1ã1. Since ã1 < 0, it has

to be that λ1 = 0. Let m ≥ 2 and suppose that λj = 0 for all j < m < k − 3. To see that

λm+1 = 0 consider vk−2−m and vk−3−m. By the induction hypothesis
∑k−2

j=m+1 λj = 0

and λm+1ãm+1 +
∑k−2

j=m+2 λj = 0. Combining the two equations yields λm+1 = λm+1ãm+1.

Since ãm+1 < 0, we know that λm+1 = 0. We conclude that λj = 0 for all j = 1, ..., k − 3.

Finally, since the scalar product λ · v1 = 0 by assumption, λj = 0 for all j = 1, ..., k − 3,

and ãk−2 = 1 6= 0, we conclude that λk−2 = 0. Hence, Ã has full rank.

The results are mixed for the case when n = 2. To see this suppose that k = 3. Let

the preference profile (D1, D2) be such that G(D1) = {x, z} and G(D2) = {y}. For this

preference profile we find that fs(D) = {y} whenever s1 < 1. Let D′
1 be the preference

relation corresponding to the set of good alternatives G(D′
1) = {x}. It is easy to see that at

(D′
1, D2), fs(D

′
1, D2) = {x, y}. Since individual 1 with the preference relation D1 strictly

prefers {x, y} to {y} according to condition P, we have found a viable manipulation if s1 <

1. On the other, one can show by means of straightforward calculus that any scoring rule

corresponding to the values s1 ≥ 1 is strategy-proof on the dichotomous preference domain

for some reflexive, complete and transitive preference extension satisfying condition P and

condition R (e.g. the cohesive preferences presented in Chapter 3).

Next, we analyze whether the domain restriction can be weakened, or, to say it dif-

ferently, whether there are domains containing the set of dichotomous preferences under

which the Borda Count is strategy-proof. Following Ching and Serizawa [21], the do-

main R̄ ⊆ R is a maximal domain for a list of properties for the social choice function

f : R̄N → 2K\{∅} if (a) f : R̄N → 2K\{∅} satisfies the list of properties, and (b) for all

R̃ ) R̄, f : R̃N → 2K\{∅} does not satisfy the list of properties. In addition to strategy-

proofness we consider a richness condition that eliminates all small domains for which the

Borda Count is strategy-proof. The condition we apply is stronger than the one of Berga

and Serizawa [7] who propose that the domain R̄ ⊆ R is rich if for all x ∈ K there exists

a preference relation Ri ∈ R̄ such that xPiy for all y ∈ K\{x}. Here, the domain R̄ ⊆ R
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is rich if for all x ∈ K there exists a dichotomous preference relation Di ∈ R̄ such that

G(Di) = {x}. This strengthening is needed, because otherwise we cannot calculate scores

and determine the Borda winners. Our final result states that the Borda Count becomes

manipulable as we extend the preference domain.

Proposition 2.3. The dichotomous preference domain is a maximal rich domain for

strategy-proofness for the Borda Count. If n 6= 3, then it is the unique domain.

Proof. The proof is organized in two parts. We show at first that the dichotomous pref-

erence domain is a maximal rich domain for strategy-proofness for the Borda Count.

Afterwards, we proof uniqueness for all cases when n 6= 3.

(1) Since for all x ∈ K the preference relation Di which is such that G(Di) = {x}

belongs to D, it follows that the dichotomous preference domain is rich. Moreover, the

Borda Count is strategy-proof on the dichotomous preference domain due to Brams and

Fishburn [17] and Proposition 2.1. To see that the Borda Count is manipulable if the

underlying preference domain is enlarged, we add the preference relation Ti ∈ R with at

least three indifference classes to the domain D. Assume without loss of generality that

Ti satisfies C1
i = {1, ..., x1}, C2

i = {x1 + 1, ..., x2}, ..., and, Ch
i = {xh−1 + 1, ..., xh}, where

xh = k and h ≥ 3. The cardinality of the generic set C
j
i is equal to |Cj

i | = xj − xj−1 > 0,

where x0 is normalized to 0. Therefore, we consider now the domains R̃ ⊇ D ∪ Ti and

the objective is to show that the Borda Count is manipulable by i on R̃N . Consider the

preference profile D−i ∈ R̃N\{i} which is such that if n = 2, then the preference relation Dj

satisfies G(Dj) = {xh}. On the other hand, if n ≥ 2, then let it be such that the preference

relation Dj satisfies G(Dj) = {xh} and the preference relation Dl for all l 6= i, j is given

by G(Dl) = {x1, xh}. Given the dichotomous preference relation Di for individual i which

corresponds to the set of good alternatives G(Di) = {x1}, we show that individual i can

manipulate the Borda Count at D ∈ R̃N via Ti ∈ R̃. At the preference profile (Ti, D−i),

pxh(Dj) = k − 1, pxh(Di) = 1
xh−xh−1

k−xh−1−1
∑

m=1

m, and for all l 6= i, j, pxh(Dl) = k−1+k−2
2

.

Similar at the preference profile (Ti, D−i), px1(Dj) = 1
k−1

k−2
∑

m=1

m, px1(Di) = 1
x1

k−1
∑

m=k−x1

m,
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and for all l 6= i, j, px1(Dl) = k−1+k−2
2

. Therefore,

pxh(Ti, D−i) = k − 1 + (n − 2)
1

2
(k − 1 + k − 2) +

1

xh − xh−1

k−xh−1−1
∑

m=1

m

and

px1(Ti, D−i) = (n − 2)
1

2
(k − 1 + k − 2) +

1

x1

k−1
∑

m=k−x1

m +
1

k − 1

k−2
∑

m=1

m.

Since for all k > j > 0,

1
xj+1−xj

k−xj−1
∑

m=k−xj+1

m = 1
xj+1−xj

(

k−xj−1
∑

m=1

m −
k−xj+1−1
∑

m=1

m

)

= 1
2

(k−xj−1)(k−xj)
xj+1−xj − 1

2

(k−xj+1−1)(k−xj+1)
xj+1−xj

=
k2−2kxj+(xj)

2
−k+xj

2(xj+1−xj)
−

k2−2kxj+1+(xj+1)
2
−k+xj+1

2(xj+1−xj)

=
−2kxj+(xj)

2
+xj+2kxj+1−(xj+1)

2
−xj+1

2(xj+1−xj)

=
(xj+1−xj)(2k−1)−(xj+1−xj)(xj+1+xj)

2(xj+1−xj)
= 2k−1−xj+1−xj

2

it can be concluded that the difference in the score between xh and x1 at the preference

profile (Ti, D−i), pxh(Ti, D−i) − px1(Ti, D−i), is equal to

2 (k − 1)

2
+

2k − 1 − xh − xh−1

2
−

2k − 1 − x1 − x0

2
−

k − 2

2
=

−xh−1 + x1

2
< 0.

To see this remember that xh = k and x0 = 0. Therefore, fB (Ti, D−i) = {x1}. On

the other hand, the score of x1 and xh are the same at D ∈ R̃N which implies that

fB(D) = {x1, xh}. Note that individual i with the preference relation Di strictly prefers

{x1} to {x1, xh}. This is a manipulation, and therefore, the dichotomous preference

domain is a maximal rich domain for strategy-proofness for the Borda Count.

(2) Assume that n 6= 3. To prove uniqueness, suppose otherwise. Then, there exists

a rich domain R̄ ⊆ R that is not a subset of the dichotomous preference domain and

the Borda Count is strategy-proof on the R̄ domain. Since the domain R̄ is rich, given
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x ∈ K, the dichotomous preference relation Di which is such that G(Di) = {x} belongs

to R̄. Moreover, since R̄ cannot be a proper subset of D, the preference relation Ti with

at least three indifference classes belongs to R̄ as well. Without loss of generality Ti is

as described in the first part of the proof. Construct the preference profile D−i ∈ R̄N\{i}

as follows: If n is even, then let there be n
2
− 1 individuals with the preference relation

Dj which is such that G(Dj) = {x1} and n
2

individuals with the preference relation Dl

which is such that G(Dl) = {xh}. If n is odd, then let there be n−1
2

− 1 individuals with

the preference relation Dj which is such that G(Dj) = {x1}, n−1
2

individuals with the

preference relation Dl which is such that G(Dl) = {xh} and one individual m ∈ N with

the preference relation Dm which is such that G(Dm) = {x2}. If the preference relation

Di is such that G(Di) = {x1}, then it is easy to see that fB(D) = {xh, x1} whenever

n 6= 3 (to see what happens if n = 3 note that fB(D) = K if n = k = 3). Apply the

same calculus as in the first part of the proof this Proposition to see that at (Ti, D−i),

fB (Ti, D−i) = {x1} if n > 3. Since individual i with the preference relation Di strictly

prefers {x1} to {x1, xh}, the Borda Count is manipulable by i at D ∈ R̄N via Ti ∈ R̄

whenever n 6= 3. Therefore, the domain of dichotomous preferences is the unique maximal

rich domain for strategy-proofness for the Borda Count if n 6= 3.

Finally, consider the following example to see why there is another maximal rich

domain for strategy-proofness for the Borda Count if the number of individuals is equal

to three.

Example 2.1. Suppose that n = 3 and K = {x, y, z}. Let the preference domain R̄ =

{Di, Dj, Dl, Ti} be completely prescribed by the sets G(Di) = {x}, G(Dj) = {y}, G(Dl) =

{z}, G(Ti) = {x} and B(Ti) = {z}. Note that the domain R̄ is rich. If the preference

profile R ∈ R̄ is such that two individuals have the same preference relation Dm, m =

i, j, l, or one individual has the preference relation Di and a second individual has the

preference relation Ti, then the Borda Count selects the top alternative according to

Dm or alternative x, respectively. We can see that at these preference profiles the top

alternative of two individuals is chosen. Since the third individual cannot change this by
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misrepresenting her/his preferences, there are only two possible manipulations: Individual

i either manipulates the Borda Count at (Di, Dj, Dl) ∈ R̄N via Ti ∈ R̄ or s/he manipulates

the Borda Count at (Ti, Dj, Dl) ∈ R̄N via Di ∈ R̄. Observe that fB(Di, Dj, Dl) = K and

fB(Ti, Dj, Dl) = {y}. If individual i with the preference relation Di, or Ti respectively,

is indifferent between {y} and {x, y, z} (this does not contradict neither condition P nor

condition R), then the Borda Count is strategy-proof on the {Di, Dj, Dl, Ti} domain.
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Chapter 3

Approval Voting on Dichotomous

Preferences

3.1 Introduction

Our main objective is to study set-valued social choice functions axiomatically when

individuals have dichotomous preferences. Unlike standard approaches to such issues, it

is not assumed that all individuals necessarily vote, nor that all alternatives are necessarily

available. The main results offer two characterizations of Approval Voting [17], one of the

most prominent procedures in both theory and practice.

More concretely, we are interested in the following kind of problems: Consider a job

offer for specialized candidates. Often, firms decide in a multi-stage procedure whom to

contract (e.g. firms invite a number of candidates for an assessment center or a personal

interview before taking the final decision), because the amount of extractable information

from the applications may be rather low and purchasing external information can be very

expensive. In these circumstances, preferences of the recruiting committee members are

likely to have a simple structure at the beginning of the decision process. In an extreme

case, every member of the recruiting committee classifies candidates either as “acceptable”

or as “non-acceptable”; that is, individuals have dichotomous preferences on the set of

candidates. The main purpose is to study how the decision makers should aggregate their
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opinions in this kind of situation and determine the set of pre-selected candidates.

Proposition 3.1 characterizes Approval Voting by means of anonymity, neutrality,

strategy-proofness and strict monotonicity. Further axiomatic representations of Ap-

proval Voting are due to Fishburn [36] and Sertel [56], but the result which is most

closely related to Proposition 3.1 can be found in [35]. There, Fishburn shows that if

individuals have dichotomous preferences, then a family of social choice correspondences

(the set of alternatives is fixed whereas the set of voters is allowed to vary) is anonymous,

neutral, strategy-proof and consistent if and only if it is Approval Voting.1

Proposition 3.1 differs from this result mainly because we use strict monotonicity

instead of consistency, but the characterizations are nevertheless fundamentally distinct

for two reasons. First, consider the following version of May’s Theorem [43]: If the number

of alternatives is equal to two, then a social choice function is anonymous, neutral and

strictly monotone if and only if it is the Majority Rule (Condorcet Rule). Since Brams and

Fishburn [17] have shown that Approval Voting is equal to the Condorcet Rule whenever

individuals have dichotomous preferences (the set of Condorcet Winners is non-empty

on the dichotomous preference domain according to Inada [41]), the main interpretation

of Proposition 3.1 is that May’s Theorem can be extended to any arbitrary number of

alternatives if strategy-proofness is added to the original set of properties. Second, Moulin

[47] has pointed out that neutrality, anonymity, strict monotonicity and Independence

of Irrelevant Alternatives (IIA) characterize the social welfare function corresponding

Approval Voting. Thus, Proposition 3.1 indicates some equivalence between strategy-

proofness of a social choice function and IIA of the corresponding social welfare function.

Such an equivalence has been formally established for strict preference domains by Blair

and Muller [8] but is so far unknown for the dichotomous preference domain.

Afterwards, we show in Proposition 3.2 that Approval Voting is the only strictly sym-

metric, neutral and efficient social choice function.2 This result is related to the following

1Consistency has the following meaning: If some alternatives are selected for two disjoint electorates,
then exactly those alternatives have to be chosen whenever all individuals participate in the election.

2Strict symmetry means that the effect on the image of an alternative to be good is independent of
who considers this alternative to be acceptable and which other alternatives are acceptable for the vary
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characterization of Baigent and Xu [3]: A choice aggregation procedure is neutral, strictly

monotone and satisfies Independence of Symmetric Substitution (ISS) if and only if it is

Approval Voting. Choice aggregation procedures and social choice functions are generally

not comparable, because the domain of the former is the set of all subsets of alternatives

(the alternatives an individual votes for) and not preferences. But if preferences are re-

stricted to be dichotomous and we interpret the observed ballots as the set of acceptable

alternatives, then voting decisions reveal preferences. In this case, strict symmetry im-

plies ISS, but it turns out that this strengthening is necessary in order to apply efficiency

instead of strict monotonicity.

The remainder of the paper is organized as follows. In the next Section, we introduce

notation and definitions. The characterizations are presented in the Sections 3 and 4.

Afterwards, we conclude. Additional examples can be found in the Appendix.

3.2 Basic Notation and Definitions

Consider a group of individuals N with preferences on the set of alternatives K whose

objective is to aggregate their preferences by choosing a non-empty subset of alternatives.

Since individuals may abstain from voting, the actual electorate N̄ is assumed to be a

subset of N . Moreover, it may happen that not all alternatives are feasible, and therefore,

we restrict the set of implementable alternatives to be equal to K̄ ⊆ K. The aggregation

problem is interesting only if |K̄| ≡ k̄ ≥ 2 and |N̄ | ≡ n̄ ≥ 2.

Let Ri be the weak preference relation of individual i on K. We assume that Ri is

reflexive, complete and transitive. The strict and the indifference preference relations

associated with Ri are denoted by Pi and Ii, respectively. The set of all weak preferences

on K is denoted by R. The preference relation Ri is dichotomous if it consists of up

to two indifference classes, the set of good alternatives and the set of bad alternatives.

Given Ri ∈ R, define the set of good alternatives associated with Ri as G(Ri) = {x ∈

K : xRiy for all y ∈ K}. Similarly, let B(Ri) = {x ∈ K : yRix for all y ∈ K} be the

same individual.
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set of bad alternatives corresponding to Ri. The cardinalities of the two sets are equal to

g(Ri) and b(Ri). Then, Ri ∈ R is dichotomous if and only if G(Ri) ∪ B(Ri) = K.

The domain of all dichotomous preferences is denoted by D ⊂ R and let Di ∈ D be

a particular dichotomous preference relation for individual i. We reserve the notation

G(Di) = ∅ (G(Di) = K) for the situation when individual i is indifferent between all

alternatives and considers no (all) alternative(s) to be acceptable. Given the electorate

N̄ , a preference profile DN̄ = (Di)i∈N̄ ∈ DN̄ is a n̄-tuple of dichotomous preference rela-

tions. The i-variant preference profile (D′
i, DN̄\{i}) is obtained by changing the preference

relation of individual i in the profile DN̄ from Di to D′
i ∈ D. Given the preference profile

DN̄ ∈ DN̄ , let N(DN̄ ; x, y) be the individuals who weakly prefer x to y at DN̄ ; that is,

N(DN̄ ; x, y) = {i ∈ N̄ : x ∈ G(Di) or x, y ∈ B(Di)}. Finally, given the preference profile

DN̄ ∈ DN̄ , Nx(DN̄) = |{i ∈ N̄ : x ∈ G(Di)}| denotes the support of alternative x at DN̄ .

A family of social choice functions
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
selects for all sets of

feasible alternatives K̄, all electorates N̄ , and all preference profiles DN̄ ∈ DN̄ (note that

individuals have preferences on K and not on K̄) a non-empty set of feasible alternatives

f K̄,N̄(DN̄). With a slight abuse of notation we write f K̄(DN̄) instead of f K̄,N̄(DN̄).

Moreover, we suppress indexes throughout whenever no restriction is made on the set of

feasible alternatives or the set of individuals.

Two consistency conditions keep track on how the selected set of alternatives varies

as the set of feasible alternatives K̄ or the electorate N̄ changes. The family of social

choice functions
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is consistent in alternatives if for all sets of

feasible alternatives S ⊂ T ⊆ K, all electorates N̄ , and all preference profiles DN̄ ∈ DN̄ ,

fS(DN̄) = fT (DN̄) ∩ S whenever fT (DN̄) ∩ S 6= ∅. Consistency in alternatives has

been studied first by Arrow [2] and can be interpreted in the following way: The decision

makers suppose a priori that every alternative is feasible and determine which alternatives

to pre-select. If it turns out afterwards that fewer alternatives are implementable, then

the set of pre-selected alternatives is restricted accordingly.

Given the electorates A ⊂ C ⊆ N and the preference profile DC ∈ DC , let DC |A ∈ DA

be the profile obtained by restricting DC ∈ DC to A. The family of social choice functions
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{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is consistent in individuals if for all pairs of alternatives (x, y),

all electorates A ⊂ C ⊆ N and all preference profiles DA ∈ DA and DC ∈ DC which are

such that DA = DC |A and xIiy for all i ∈ C\A, the condition f {x,y}(DA) = f {x,y}(DC)

is satisfied. Hence, consistency in individuals requires that if there are just two feasible

alternatives, then individuals who are indifferent between those alternatives cannot alter

the result.

A social choice rule is a family of social choice functions that is consistent in alterna-

tives and individuals. One particular social choice rule is Approval Voting. According to

it all feasible alternatives with the highest support from the electorate are selected.

Definition 3.1. The social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is Approval Voting if

for all sets of feasible alternatives K̄, all electorates N̄ , and all dichotomous preference

profiles DN̄ ∈ DN̄ , x ∈ f K̄(DN̄) if and only if Nx(DN̄) ≥ Ny(DN̄) for all y ∈ K̄.

We denote the generic social choice function f K̄,N̄ associated with Approval Voting by

f
K̄,N̄
A . At this point we are ready to introduce the four axioms used in the first characteri-

zation of Approval Voting. The first property, strategy-proofness, states that truth-telling

is a dominant strategy in the preference revelation game. But since our primitives are so-

cial choice correspondences, we have to know how individuals compare non-empty subsets

of alternatives in order to define strategy-proofness properly. In particular, we assume

that the reflexive, complete and transitive preference relation %Di
on 2K\{∅} derived from

the dichotomous preference relation Di satisfies the subsequent properties proposed by

Brams and Fishburn [17]:

1. Condition P: {x} ≻Di
{x, y} ≻Di

{y} if and only if x ∈ G(Di) and y ∈ B(Di).

2. Condition R: For all S, T ⊆ 2K\{∅}, if S ⊆ G(Di) or T ⊆ B(Di) or [S\T ⊆ G(Di)

and T\S ⊆ B(Di)], then S %Di
T .

Now, we can define strategy-proofness in a straightforward way. Given the set of feasible

alternatives K̄ and the electorate N̄ , the social choice function f K̄,N̄ : DN̄ → 2K̄\{∅} is

manipulable by i if for some DN̄ ∈ DN̄ and D′
i ∈ D, f K̄(D′

i, DN̄\{i}) ≻Di
f K̄(DN̄).
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Definition 3.2. The social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is said to be strategy-

proof if for all sets of feasible alternatives K̄ and all electorates N̄ , f K̄,N̄ is not manipulable

by any individual.

Anonymity (Neutrality) formalizes the democratic idea that there is no a priori bias

in favor of some individual (alternative). Given the preference profile DN̄ ∈ DN̄ and the

permutation σ of N̄ , let Dσ(N̄) ∈ DN̄ be the preference profile obtained by permuting

individuals according to σ; that is, Dσ(N̄) =
(

Dσ(i)

)

i∈N̄
.

Definition 3.3. The social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is said to be anony-

mous if for all sets of feasible alternatives K̄, all electorates N̄ , all preference profiles

DN̄ ∈ DN̄ , and all permutations σ of N̄ , f K̄(Dσ(N̄)) = f K̄(DN̄).

Given the preference profile DN̄ ∈ DN̄ and the permutation µ of K, µ(DN̄) ∈ DN̄ is

the preference profile obtained by permuting alternatives according to µ; that is, for all

i ∈ N̄ and x ∈ K, x ∈ µ(G(Di)) if and only if µ−1(x) ∈ G(Di).

Definition 3.4. The social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is said to be neutral

if for all sets of feasible alternatives K̄, all electorates N̄ , all permutations µ of K, and

all preference profiles DN̄ ∈ DN̄ , f K̄(µ(DN̄)) = µ
(

f K̄(DN̄)
)

.

In the former definition, the set µ
(

f K̄(DN̄)
)

is obtained by applying µ to f K̄(DN̄).

The last property to be introduced is strict monotonicity. To explain it suppose that x and

y are the only feasible alternatives and that both alternatives are selected for a particular

preference profile. The tie occurring in this situation should then be broken in favor of x

whenever this alternative receives additional support everything else unchanged.

Definition 3.5. The social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\ {∅}
}

K̄,N̄
is said to be strictly

monotone if for all pairs of alternatives (x, y), all electorates N̄ , and all preference profiles

DN̄ , D′
N̄
∈ DN̄ which are such that G(D′

i) = G(Di) ∪ {x} and x 6∈ G(Di) for some i ∈ N̄

and DN̄\{i} = D′
N̄\{i}

, the condition x ∈ f {x,y} (DN̄) implies f {x,y}(D′
N̄

) = {x}.
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3.3 A Characterization with Strategy-Proofness

Our main result characterizes Approval Voting by means of strategy-proofness, anonymity,

neutrality and strict monotonicity. The proof we provide is organized along an important

lemma showing that if a social choice rule is neutral and strategy-proof, then it depends on

the individuals who prefer x to y and y to x whenever there are no other feasible alterna-

tives. Formally, the social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
satisfies Independence

of Irrelevant Alternatives (IIA) if for all pairs of alternatives (x, y), all electorates N̄ , and

all preference profiles DN̄ , D′
N̄
∈ DN̄ which are such that N(DN̄ ; x, y) = N(D′

N̄
; x, y) and

N(DN̄ ; y, x) = N(D′
N̄

; y, x), the condition f {x,y}(DN̄) = f {x,y}(D′
N̄

) holds.

Lemma 3.1. If the social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is neutral and strategy-

proof, then it satisfies IIA.

Proof. Suppose otherwise. Then, there is an electorate N̄ and two preference profiles

DN̄ , D′
N̄

∈ DN̄ which are such that for some pair of alternatives (x, y), N(DN̄ ; x, y) =

N
(

D′
N̄

; x, y
)

and N(DN̄ ; y, x) = N
(

D′
N̄

; y, x
)

, whereas the social choice function f {x,y},N̄

satisfies f {x,y}(DN̄) = {x} and f {x,y}
(

D′
N̄

)

∈ {{y}, {x, y}}. Let i ∈ C ⊆ N̄ if and

only if xPiy or yPix. If C = ∅, then xIiy for all i ∈ N̄ . In this case, it has to be that

f {x,y}(DN̄) = {x, y}, because the function f {x,y},N̄ is neutral by assumption and the empty

set cannot be selected. This is a contradiction to f {x,y}(DN̄) = {x}, and therefore, C 6= ∅.

Now, apply consistency in individuals to obtain that f {x,y} (DN̄ |C) = {x}. For simplicity

let the preference profile DC ∈ DC be such that DC = DN̄ |C .

At first we prove that for all j ∈ C, f {x,y}
(

D′
j, DC\{j}

)

= {x}. Suppose otherwise;

that is, f {x,y}
(

D′
j, DC\{j}

)

∈ {{y}, {x, y}}. If xPiy, then j can manipulate f {x,y},C at
(

D′
j, DC\{j}

)

∈ DC via Dj ∈ D. On the other hand, if yPix, then j can manipulate

f {x,y},C at DC ∈ DC via D′
j ∈ D. This is a contradiction, and therefore, we can conclude

that f {x,y}
(

D′
j, DC\{j}

)

= {x}.

Let M ⊂ C be such that j ∈ M , 2 ≤ |M | < |C|, and suppose that for all M̂ ⊆ M

satisfying j ∈ M̂ , f {x,y}
(

D′
M̂

, DC\M̂

)

= {x}. We have to proof that for all M̃ = M ∪{i},
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i ∈ C\M , f {x,y}
(

D′
M̃

, DC\M̃

)

= {x}. Suppose otherwise, that is f {x,y}
(

D′
M̃

, DC\M̃

)

∈

{{y}, {x, y}}. If xPiy, then i can manipulate f {x,y},C at
(

D′
M̃

, DC\M̃

)

∈ DC via Di ∈ D.

On the other hand, if yPix, then i can manipulate f {x,y},C at
(

DM , DC\M

)

∈ DC via D′
i ∈

DC . Hence, it has to be that f {x,y}
(

D′
M̃

, DC\M̃

)

= {x}. In particular, if M = C\{i}, then

f {x,y}
(

D′
M̃

, DC\M̃

)

= f {x,y} (D′
C) = {x}. Finally, f {x,y}

(

D′
C , D′

N̄\C

)

= f {x,y}
(

D′
N̄

)

=

{x}, because the family
{

f {x,y},N̄
}

N̄
is consistent in individuals and xI ′

iy for all i ∈ N̄\C

(to see this remember that the preference profiles DN̄ , D′
N̄

∈ DN̄ satisfy the conditions

N(DN̄ ; x, y) = N
(

D′
N̄

; x, y
)

and N(DN̄ ; y, x) = N
(

D′
N̄

; y, x
)

; thus, xIiy ⇔ xI ′
iy). This

contradicts the assumption y ∈ f {x,y}(D′
N̄

).

We illustrate why it is not possible to dispense of consistency in individuals in Lemma

3.1 before stating our main result. Example 3.1 presents a family of social choice functions

that is neutral, strategy-proof and consistent in alternatives but fails to satisfy IIA.

Example 3.1. The family of social choice functions
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is as

follows: For all sets of feasible alternatives K̄, all electorates N̄ , and all preference profiles

DN̄ ∈ DN̄ , if there is an i ∈ N̄ whose preference relation Di is such that G(Di) = K,

then f K̄(DN̄) = K̄. Otherwise, f K̄(DN̄) = f K̄
A (DN̄). The family

{

f K̄,N̄
}

K̄,N̄
is neutral,

strategy-proof (there are no incentives either to vote for a bad alternative or not to vote

for a good alternative) and consistent in alternatives. To see that this family does not

satisfy IIA consider the case where K = {x, y, z}, N = {1, 2} and the preference profiles

D,D′ ∈ DN are such that G(D1) = {x, y}, G(D′
1) = K and G(D2) = G(D′

2) = {x}.

Then, f {x,y}(D) = {x} and f {x,y}(D′) = {x, y}. This contradicts IIA.

Proposition 3.1. The social choice rule
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
is strategy-proof,

neutral, anonymous and strictly monotone if and only if it is Approval Voting.

Proof. Observe that the social choice rule corresponding to Approval Voting is neutral,

anonymous, strictly monotone and strategy-proof. To prove the other inclusion suppose

that
{

f K̄,N̄ : DN̄ → 2K̄\{∅}
}

K̄,N̄
satisfies the four properties. At first we show that the

family of social choice functions
{

f {x,y},N̄ : DN̄ → 2{x,y}\{∅}
}

N̄
orders x and y according
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to Approval Voting; that is, for all electorates N̄ and all preference profiles DN̄ ∈ DN̄ ,

(a) if Nx(DN̄) = Ny(DN̄), then f {x,y}(DN̄) = {x, y} and (b) if Nx(DN̄) > Ny(DN̄), then

f {x,y}(DN̄) = {x}.

(a) Suppose that given the electorate N̄ and the preference profile DN̄ ∈ DN̄ , Nx(DN̄) =

Ny(DN̄) but the social choice function f {x,y},N̄ is such that f {x,y}(DN̄) = {x}. Since the

family
{

f {x,y},N̄
}

N̄
satisfies IIA by Lemma 1 and all social choice rules are anonymous by

assumption, we deduce that for all electorates N̄ and all preference profiles DN̄ ∈ DN̄ ,

f {x,y},N̄ depends on the numbers |N(DN̄ ; x, y)| = Nx(DN̄) + |{i ∈ N̄ : x, y ∈ B(Di)}|

and |N(DN̄ ; y, x)| = Ny(DN̄) + |{i ∈ N̄ : x, y ∈ B(Di)}|. Let the permutation µ of

K satisfy µ(x) = y, µ(y) = x and µ(z) = z for all z ∈ K\{x, y}. Neutrality im-

plies that f {x,y} (µ(DN̄)) = µ
(

f {x,y}(DN̄)
)

= {y}. At this point it should be noted

that |N(DN̄ ; x, y)| = |N(DN̄ ; y, x)|, because Nx(DN̄) = Ny(DN̄) by assumption. From

this and the construction of µ we deduce that |N(µ (DN̄) ; x, y)| = |N(DN̄ ; x, y)| and

|N(µ (DN̄) ; y, x)| = |N(DN̄ ; y, x)|. Since the social social function f {x,y},N̄ just depends

on these numbers, it has to be that f {x,y},N̄(DN̄) = f {x,y},N̄ (µ(DN̄)). We have reached a

contradiction, because f {x,y}(DN̄) = {x} and f {x,y} (µ(DN̄)) = {y}.

(b) Suppose that given the electorate N̄ and the preference profile DN̄ ∈ DN̄ , Nx(DN̄)−

Ny(DN̄) = 1. Construct the preference profile D′
N̄
∈ DN̄ in the following way: For some

individual i whose preference relation Di is such that x ∈ G(Di) and y ∈ B(Di), the

preference relation D′
i satisfies the condition G(D′

i) = G(Di)\{x}. Moreover, let D′
j = Dj

for all j 6= i. Since Nx(D
′
N̄

) = Ny(D
′
N̄

), it follows from part (a) that f {x,y}(D′
N̄

) = {x, y}.

Apply strict monotonicity to see that f {x,y}(DN̄) = {x}.

Let 2 ≤ m < n̄ and suppose that for all preference profiles DN̄ ∈ DN̄ which are such

that Nx(DN̄) − Ny(DN̄) = m̄ ≤ m, the condition f {x,y}(DN̄) = {x} holds. It remains to

prove that if the preference profile DN̄ ∈ DN̄ satisfies Nx(DN̄) − Ny(DN̄) = m + 1, then

f {x,y}(DN̄) = {x}. Construct the preference profile D′
N̄

∈ DN̄ in the following way: For

some individual i whose preference relation Di is such that x ∈ G(Di) and y ∈ B(Di), the

preference relation D′
i satisfies the condition G(D′

i) = G(Di)\{x}. Moreover, let D′
j = Dj

for all j 6= i. Since Nx(D
′
N̄

) − Ny(D
′
N̄

) = m̄, it has to be that f {x,y}(D′
N̄

) = {x} by
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assumption. Apply strict monotonicity to see that f {x,y}(DN̄) = {x}.

Finally, we show that the four properties imply Approval Voting; that is, for all

sets of feasible alternatives K̄, all electorates N̄ , and all preference profiles DN̄ ∈ DN̄ ,

x ∈ f K̄(DN̄) if and only if Nx(DN̄) ≥ Ny(DN̄) for all y ∈ K̄. Suppose that x ∈ f K̄(DN̄).

Then, x ∈ f {x,y}(DN̄) for all y ∈ K̄\{x} because the social choice rule
{

f K̄,N̄
}

K̄,N̄
is

consistent in alternatives. This together with the fact that the family
{

f {x,y},N̄
}

N̄
orders

x and y according to Approval Voting, implies that Nx(DN̄) ≥ Ny(DN̄) for all y ∈ K̄.

To show the other inclusion suppose that Nx(DN̄) ≥ Ny(DN̄) for all y ∈ K̄. If there is

an alternative y 6= x such that y ∈ f K̄(DN̄), then x ∈ f K̄(DN̄) because x ∈ f {x,z}(DN̄)

for all z ∈ K̄\{x} and f {x,y}(DN̄) = f K̄(DN̄) ∩ {x, y} whenever the latter is non-empty.

If there does not exist any alternative y 6= x such that y ∈ f K̄,N̄(DN̄), then x ∈ f K̄(DN̄)

because f K̄(DN̄) 6= ∅ by assumption.

We show in the Appendix that Proposition 3.1 is tight. The result which is closest

to Proposition 3.1 is due to Fishburn [35]. He characterizes Approval Voting as the only

strategy-proof, neutral, anonymous and consistent family of social choice functions (it

is allowed for a variable electorate whereas the set of feasible alternatives is assumed

to be fixed). Using current notation consistency is defined as follows: Let D̄ be the

domain of dichotomous preferences without the two preference relations indicating that

an individual is indifferent between all alternatives. The family of social choice functions
{

f : D̄N̄ → 2K\{∅}
}

N̄
is consistent if for all disjoint electorates N̂ , Ñ , and all preference

profiles D̄N̂ ∈ D̄N̂ and D̄Ñ ∈ D̄Ñ , f(D̄N̂∪Ñ) = f(D̄N̂)∩f(D̄Ñ) whenever f(D̄N̂)∩f(D̄Ñ) 6=

∅. In the former definition, the preference profile D̄N̂∪Ñ ∈ DN̂∪Ñ is obtained by unifying

the other two preference profiles, e.g. (D̄N̂∪Ñ)
∣

∣

N̂
= D̄N̂ and (D̄N̂∪Ñ)

∣

∣

Ñ
= D̄Ñ . It is easy to

see that the two characterizations are independent from each other, because neither does

Fishburn’s consistency condition imply strict monotonicity nor does strict monotonicity

imply consistency.

Yet, only our characterization can be interpreted as an extension of the following

version of May’s Theorem [43]: Suppose that k = 2. The social choice function f :
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RN → 2K\{∅} is anonymous, neutral, and strictly monotone if and only if it the Majority

(Condorcet) Rule; that is, for all R ∈ RN , x ∈ f(R) if and only if |{i ∈ N : xRiy}| ≥

|{i ∈ N : yRix}|. Since Approval Voting is equivalent to the Condorcet Rule on the

dichotomous preferences domain according to Brams and Fishburn [17], the main insight

of Theorem 1 is that May’s Theorem can be extended to any number of alternatives if

we restrict our attention to social choice rules and add strategy-proofness to the original

properties.

3.4 A Characterization with Efficiency

From now on we restrict our attention to the special case when all individuals reveal their

preferences and all alternatives are feasible. The main idea of the second characterization

is to explore the efficiency of Approval Voting. We use the standard notion of efficiency;

that is, it is not possible to make some individual better off without hurting others.

Definition 3.6. The social choice function f : DN → 2K\{∅} is said to be efficient

if there does not exist a preference profile D ∈ DN and a set S ⊆ 2K\{∅} such that

S %Di
f(D) for all i ∈ N and S ≻Dj

f(D) for some j ∈ N .

Approval Voting is not efficient for all reflexive, complete and transitive preference re-

lations %Di
on 2K\{∅} that satisfy condition P and condition R, because if both good and

bad alternatives are selected, then taking away a bad alternative can leave an individual

indifferent.

Example 3.2. Suppose that K = {x, y, z} and n = 3. If the preference profile D ∈ DN is

equal to G(D1) = {x, y}, G(D2) = {x, z} and G(D3) = {y, z}, then fA(D) = K. Consider

now the preference relations %D1 , %D2 and %D3 which are such that {x, y} ≻D1 K,

{x, y} ∼D2 K and {x, y} ∼D3 K. These partial ordering neither contradict condition P

nor condition R. Thus, Approval Voting is not efficient.

This problem disappears if we put more structure on the preference extension. In



34 3. Approval Voting on Dichotomous Preferences

particular, we are going to assume from now on that every individual evaluates the set

S ⊆ 2K\{∅} according to the proportion of good alternatives contained in S.

Definition 3.7. The preference relation %Di
on 2K\{∅} is said to be cohesive with respect

to Di whenever for all S, T ∈ 2K\{∅}, S %Di
T if and only if |G(Di)∩S|

|S|
≥ |G(Di)∩T |

|T |
(%Di

is

strict whenever the inequality is strict).

Bogolmolnaia et al. [12] show that Approval Voting is efficient whenever preferences

are cohesive (see their Proposition 1). Moreover, the following interpretation makes this

preference extension particularly appealing: If we think of f(D) as the set of pre-selected

alternatives from which a unique winning alternative has to be determined via a lottery

and individuals are expected utility maximizers, then individuals care only about the

probability that a good alternative is chosen. If, in addition, individuals assign to all

alternatives belonging to f(D) the same winning probability, then the lottery with support

on S is weakly preferred to the lottery with support on T if and only if S %Di
T .

Neutrality and strict symmetry are the other properties applied in the second char-

acterization. The intuition of strict symmetry is simple: Suppose that there are two

different preference profiles which differ from each other just because some alternative

that is good for the first individual and bad for the second individual according to the

first preference profile is good for the second individual and bad for the first individ-

ual according to the second preference profile. This variation in preferences should not

provoke any change in the chosen set of alternatives. Formally, the preference profiles

D,D′ ∈ DN are x-symmetric if for some pair of individuals (i, j), G(D′
i) ∪ {x} = G(Di),

G(D′
j) = G(Dj) ∪ {x}, where x 6∈ G(D′

i) ∪ G(Dj), and D′
l = Dl for all l 6= i, j.

Definition 3.8. The social choice function f : DN → 2K\ {∅} is said to be strictly

symmetric if for all x ∈ K and all x-symmetric preference profiles D,D′ ∈ DN , f(D) =

f(D′).

Lemma 2 shows that the social choice function f : DN → 2K\{∅} depends on the

k-dimensional vector (Nx(D))x∈K if and only if f is strictly symmetric. Formally, the
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social choice function f : DN → 2K\{∅} depends on the support of the alternatives if for

all preference profiles D,D′ ∈ DN which are such that Nx(D) = Nx(D
′) for all x ∈ K,

the condition f(D) = f(D′) holds.

Lemma 3.2. The social choice function f : DN → 2K\{∅} depends on the support of

the alternatives if and only if it is strictly symmetric.

Proof. It is easy to see that if f depends on the support of the alternatives, then f

is strictly symmetric. To show the other inclusion suppose that f : DN → 2K\{∅} is

strictly symmetric and consider two preference profiles D,D′ ∈ DN which are such that

Nx (D) = Nx (D′) for all x ∈ K. The following algorithm proves by double induction that

f(D) = f(D′).

Step 1: In the beginning, define the set S1 as S1 = K\{{G(D1) ∩ G(D′
1)} ∪ {B(D1) ∩

B(D′
1)}}. Notice that S1 consists of all alternatives which are differently ordered for

individual 1 according to the preference relations D1 and D′
1. Let s1 = |S1| ≥ 0. If

s1 = 0, then D1 = D′
1. In this case, let D1 ∈ DN be equal to D ∈ DN . We conclude

that f(D1) = f(D) and Ny(D
1) = Ny(D) for all y ∈ K. If s1 > 0, then, without loss

of generality, we can order the alternatives in S1 according to the one-to-one mapping

g : S1 → N+ which is such that g(S1) = {1, 2, ..., s1} (g(S1) is the set obtained by applying

the mapping g to all elements of S1). Now proceed to step 1.1 of the algorithm.

Step 1.1: Suppose that g(x) = 1. If x ∈ G(D1) and x 6∈ G(D′
1), then there is an individual

i > 1 such that x ∈ G(D′
i) and x 6∈ G(Di), because Ny(D) = Ny(D

′) for all y ∈ K and

in particular for alternative x ∈ S1. Let 1 < i ≤ n be the smallest integer such that

x ∈ G(D′
i) and x 6∈ G(Di). Next, set the preference profile D1.1 equal to G(D1.1

1 ) =

G(D1)\{x}, G(D1.1
i ) = G(Di) ∪ {x} and D1.1

l = Dl for all l 6= 1, i. Since f is strictly

symmetric, f(D1.1) = f(D). Notice that for all y ∈ K, Ny(D
1.1) = Ny(D). On the other

hand, if x ∈ G(D′
1) and x 6∈ G(D1), then there is an individual j > 1 such that x ∈ G(Dj)

and x 6∈ G(D′
j), because Ny(D) = Ny(D

′) for all y ∈ K and in particular for alternative

x ∈ S1. Let 1 < j ≤ n be the smallest integer such that x ∈ G(Dj) and x 6∈ G(D′
j). Next,

set the preference profile D1.1 equal to G(D1.1
1 ) = G(D1) ∪ {x}, G(D1.1

j ) = G(Dj)\{x}
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and D1.1
l = Dl for all l 6= 1, j. Since f is strictly symmetric, f(D1.1) = f(D). Notice that

for all y ∈ K, Ny(D
1.1) = Ny(D).

Let M = {1, ...,m} ⊆ S1, 2 ≤ m < s1, be the set of the first m alternatives of S1.

Suppose that for all M̄ = {1, ..., m̄} ⊆ M , f(D1.m̄) = f(D1.m̄−1) and for all y ∈ K,

Ny(D
1.m̄) = Ny(D

1.m̄−1). We show that given the set M ∪{m+1}, f(D1.m+1) = f(D1.m)

and Ny(D
1.m+1) = Ny(D

1.m) for all y ∈ K.

Step 1.m+1: Suppose that g(z) = m + 1. If z ∈ G(D1.m
1 ) and z 6∈ G(D′

1), then there

is an individual i > 1 such that z ∈ G(D′
i) and z 6∈ G(D1.m

i ), because by the induction

hypothesis Ny(D
1.m) = Ny(D

′) for all y ∈ K and in particular for alternative z ∈ S1. Let

1 < i ≤ n be the smallest integer such that z ∈ G(D′
i) and z 6∈ G(D1.m

i ). Next, set the

preference profile D1.m+1 equal to G(D1.m+1
1 ) = G(D1.m

1 )\{z}, G(D1.m+1
i ) = G(D1.m

i )∪{z}

and D1.m+1
l = D1.m

l for all l 6= 1, i. Since f is strictly symmetric, f(D1.m+1) = f(D1.m).

Notice that for all y ∈ K, Ny(D
1.m+1) = Ny(D

1.m). On the other hand, if z ∈ G(D′
1) and

z 6∈ G(D1.m
1 ), then there is an individual j > 1 such that z ∈ G(D1.m

j ) and z 6∈ G(D′
j),

because by the induction hypothesis Ny(D
1.m) = Ny(D

′) for all y ∈ K and in particular

for alternative z ∈ S1. Let 1 < j ≤ n be the smallest integer such that z ∈ G(D1.m
j )

and z 6∈ G(D′
j). Next, set the preference profile D1.m+1 equal to G(D1.m+1

1 ) = G(D1.m
1 ) ∪

{z}, G(D1.m+1
j ) = G(D1.m

j )\{z} and D1.m+1
l = D1.m

l for all l 6= 1, j. Since f is strictly

symmetric, f(D1.m+1) = f(D1.m). Notice that for all y ∈ K, Ny(D
1.m+1) = Ny(D

1.m).

Let D1 ∈ DN be equal to D1.s1 ∈ DN . So far it has been shown by induction that

at D1 = (D′
1, D

1
2, ..., D

1
n) ∈ DN , f(D1) = f(D) and Ny(D

1) = Ny(D) for all y ∈ K.

Let 2 ≤ t < n − 1, and, given the integer t, define the preference profile Dt as Dt =
(

D′
1, ..., D

′
t, D

t
t+1, ..., D

t
n

)

∈ DN . Suppose that for all 2 ≤ t̄ ≤ t, f
(

Dt̄
)

= f
(

Dt̄−1
)

and Ny

(

Dt̄
)

= Ny(D
t̄−1) for all y ∈ K. To finish the proof we have to show that

f(Dt+1) = f(Dt).

Step t+1: In the beginning, define the set St+1 as St+1 = K\{{G(Dt
t+1) ∩ G(D′

t+1)} ∪

{B(Dt
t+1) ∩ B(D′

t+1)}}. Notice that St+1 consists of all alternatives which are ordered

differently for individual t + 1 according to the preference relations Dt
t+1 and D′

t+1. Let
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st+1 = |St+1| ≥ 0. If st+1 = 0, then Dt
t+1 = D′

t+1. In this case, let Dt+1 ∈ DN be equal to

Dt ∈ DN . We conclude that f(Dt+1) = f(Dt) and Ny(D
t+1) = Ny(D

t) for all y ∈ K. If

st+1 > 0, then, without loss of generality, we can order the alternatives in St+1 according

to the one-to-one mapping g : St+1 → N+ which is such that g(St+1) = {1, 2, ..., st+1}

(g(St+1) is the set obtained by applying the mapping g to all elements of St+1). Now

proceed to step t + 1.1 of the algorithm.

Step t+1.1: Suppose that g(x) = 1. If x ∈ G(Dt
t+1) and x 6∈ G(D′

t+1), then there is

an individual i > t + 1 such that x ∈ G(D′
i) and x 6∈ G(Dt

i), because by the induction

hypothesis Ny(D
t) = Ny(D

′) for all y ∈ K (and in particular for alternative x ∈ St+1) and

Dt
l = D′

l for all l ≤ t. Let t + 1 < i ≤ n be the smallest integer such that x ∈ G(D′
i) and

x 6∈ G(Dt
i). Next, set the preference profile Dt+1.1 equal to G(Dt+1.1

t+1 ) = G(Dt
t+1)\{x},

G(Dt+1.1
i ) = G(Dt

i)∪{x} and Dt+1.1
l = Dt

l for all l 6= t+1, i. Since f is strictly symmetric,

f(Dt+1.1) = f(Dt). Notice that for all y ∈ K, Ny(D
t+1.1) = Ny(D

t). On the other hand,

if x ∈ G(D′
t+1) and x 6∈ G(Dt

t+1), then there exists an individual j > t + 1 such that

x ∈ G(Dt
j) and x 6∈ G(D′

j), because by the induction hypothesis Ny(D
t) = Ny(D

′) for

all y ∈ K (and in particular for alternative x ∈ St+1) and Dt
l = D′

l for all l ≤ t. Let

t + 1 < j ≤ n be the smallest integer such that x ∈ G(Dt
j) and x 6∈ G(D′

j). Next, set the

preference profile Dt+1.1 equal to G(Dt+1.1
t+1 ) = G(Dt

t+1) ∪ {x}, G(Dt+1.1
j ) = G(Dt

j)\{x}

and Dt+1.1
l = Dt

l for all l 6= 1, j. Since f is strictly symmetric, f(Dt+1.1) = f(Dt). Notice

that for all y ∈ K, Ny(D
t+1.1) = Ny(D

t).

Let M = {1, ...,m} ⊆ St+1, 2 ≤ m < st+1, be the set of the first m alternatives

of St+1. Suppose that for all M̄ = {1, ..., m̄} ⊆ M , f(Dt+1.m̄) = f(Dt+1.m̄−1) and for

all y ∈ K, Ny(D
t+1.m̄) = Ny(D

t+1.m̄−1). We show that given the set M ∪ {m + 1},

f(Dt+1.m+1) = f(Dt+1.m) and Ny(D
t+1.m+1) = Ny(D

t+1.m) for all y ∈ K.

Step t+1.m+1: Suppose that g(z) = m+1. If z ∈ G(Dt+1.m
1 ) and z 6∈ G(D′

t+1), then there

is an individual i > t+1 such that z ∈ G(D′
i) and z 6∈ G(Dt+1.m

i ), because by the induction

hypothesis Ny(D
t+1.m) = Ny(D

′) for all y ∈ K (and in particular for alternative z ∈ St+1)

and Dt
l = D′

l for all l ≤ t. Let t + 1 < i ≤ n be the smallest integer such that z ∈ G(D′
i)
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and z 6∈ G(Dt+1.m
i ). Next, set the preference profile Dt+1.m+1 equal to G(Dt+1.m+1

1 ) =

G(Dt+1.m
1 )\{z}, G(Dt+1.m+1

i ) = G(Dt+1.m
i ) ∪ {z} and Dt+1.m+1

l = Dt+1.m
l for all l 6= 1, i.

Since f is strictly symmetric, f(Dt+1.m+1) = f(Dt+1.m). Notice that for all y ∈ K,

Ny(D
t+1.m+1) = Ny(D

t+1.m). On the other hand, if z ∈ G(D′
t+1) and z 6∈ G(Dt+1.m

1 ), then

there is an individual j > t + 1 such that z ∈ G(Dt+1.m
j ) and z 6∈ G(D′

j), because by the

induction hypothesis Ny(D
t+1.m) = Ny(D

′) for all y ∈ K (and in particular for alternative

z ∈ St+1) and Dt+1.m+1
l = Dt+1.m

l for all l 6= 1, i. Let t+1 < j ≤ n be the smallest integer

such that z ∈ G(Dt+1.m
j ) and z 6∈ G(D′

j). Next, set the preference profile Dt+1.m+1 equal to

G(Dt+1.m+1
1 ) = G(Dt+1.m

1 ) ∪ {z}, G(Dt+1.m+1
j ) = G(Dt+1.m

j )\{z} and Dt+1.m+1
l = Dt+1.m

l

for all l 6= 1, j. Since f is strictly symmetric, f(Dt+1.m+1) = f(Dt+1.m). Notice that for

all y ∈ K, Ny(D
t+1.m+1) = Ny(D

t+1.m).

The algorithm finishes after n − 1 steps, because the conditions Dn−1
i = D′

i for all

i 6= n and Ny(D
n−1) = Ny(D

′) for all y ∈ K imply that Sn = ∅.

At this point we are ready to state the second characterization.

Proposition 3.2. The social choice function f : DN → 2K\ {∅} is strictly symmetric,

neutral and efficient for the cohesive preference extension if and only if it is Approval

Voting.

Proof. Observe that Approval Voting is strictly symmetric, neutral and efficient. In order

to prove the other inclusion suppose that the social choice function f : DN → 2K\{∅}

satisfies the three properties. It remains to show that for all preference profiles D ∈ DN ,

x ∈ f(D) if and only if Nx(D) ≥ Ny(D) for all y ∈ K.

Consider the preference profile D′ ∈ DN which is such that for all i ∈ N and x ∈ K,

x ∈ G(D′
i) if and only if i ≤ Nx(D). Since Ny(D

′) = Ny(D) for all y ∈ K and f depends

on the support of the alternatives by Lemma 2, f(D′) = f(D). Define p = min
y∈K

Ny(D
′)

and q = max
y∈K

Ny(D
′), respectively. We prove at first that f(D′) ⊆ G

(

D′
q

)

by efficiency.

Suppose otherwise, that is for some y ∈ K, y ∈ f(D′) and y 6∈ G
(

D′
q

)

. By construction

of the preference profile D′ ∈ DN , p ≤ Ny(D
′) < q. Let x ∈ G

(

D′
q

)

and observe that

for all i ∈ N , {x} %Di
f(D′) due to the cohesive preference extension. Moreover, for
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individual q, {x} ≻Dq
f(D′), because x ∈ G

(

D′
q

)

and y 6∈ G
(

D′
q

)

. We conclude that f is

not efficient, and therefore, f(D′) ⊆ G(D′
q).

Apply neutrality to obtain f(D′) = G
(

D′
q

)

. Finally, we show that x ∈ f(D) if and

only if Nx(D) ≥ Ny(D) for all y ∈ K. Suppose that x ∈ f(D). Then, x ∈ Gq(D
′),

because we have already seen that f(D) = f(D′) = Gq(D
′). Since Nx(D

′) ≥ Ny(D
′) for

all y ∈ K by construction and Nz(D
′) = Nz(D) for all z ∈ K, the first inclusion has to be

true. To show the other inclusion suppose that Nx(D) ≥ Ny(D) for all y ∈ K. Consider

the preference profile D′ ∈ DN as described above. Since Nz(D
′) = Nz(D) for all z ∈ K

by construction, Nx(D
′) ≥ Ny(D

′) for all y ∈ K. Thus, x ∈ Gq(D
′) again by construction

of D′ ∈ DN . The result follows, because f(D) = f(D′) = Gq(D
′).

We show in the Appendix that Proposition 3.2 is tight. Baigent and Xu [3] charac-

terize the choice aggregation procedure corresponding to Approval Voting. Formally, let

M(Ri) ∈ 2K be the alternatives individual i votes for when her/his preference relation is

Ri. A choice aggregation procedure c :
(

2K
)N

→ 2K\{∅} aggregates the collective voting

decisions (M(R1), ...,M(Rn)) by selecting a non-empty set of alternatives. Choice aggre-

gation procedures and social choice functions are not comparable for general preference

domains, however they can be related to each other whenever preferences are dichoto-

mous. To do so we interpret the alternatives an individual votes for as the set of her/his

good alternatives (incentive-compatibility legitimates this approach); that is, for all i ∈ N

and all Di ∈ D, M(Di) = G(Di). In this way, we are able to recover preferences from

the observed voting decision, or, to say it differently, choice aggregation procedures and

social choice functions coincide.

Baigent and Xu [3] characterize Approval Voting by means of Independence of Sym-

metric Substitutions (ISS), strict monotonicity and neutrality. Using our notation ISS

is defined as follows: The social choice function f : DN → 2K\{∅} satisfies Indepen-

dence of Symmetric Substitutions (ISS) if for all preference profiles D,D′ ∈ DN which

are such that for some pair of individuals (i, j) and some pair of alternatives (x, y),

G(D′
i) ∪ {y} = G(Di) ∪ {x} and G(D′

j) ∪ {x} = G(Dj) ∪ {y} where y 6∈ G(D′
i) ∪ G(Dj)
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and x 6∈ G(Di) ∪ G(D′
j), and D′

l = Dl for all l 6= i, j, the condition f(D′) = f(D) holds.

Strict symmetry is obviously stronger than ISS, and therefore, it is a logical question to

ask whether we can relax the latter property and characterize Approval Voting using ISS,

neutrality and efficiency. In the Appendix, we provide a social social function different

from Approval Voting that satisfies these properties. In this sense, the strengthening from

ISS to strict symmetry is not only sufficient but also necessary in order to explore the

efficiency of Approval Voting.

3.5 Conclusion

Brams and Fishburn [16] have recently outlined the practical importance of Apoproval

Voting, and therefore, it is a logical consequence to ask for theoretical support of this

aggregation rule. Our goal has been to look for new normative foundations of Approval

Voting under the assumption of dichotomous preferences.

Working with dichotomous preferences is surely not innocuous, but if one wants to

compare Approval Voting axiomatically with well known social choice functions such as

Scoring Rules or Voting by Committees, then we necessarily have to restrict ourselves

to this preference domain. To see this in an easy example suppose that there are three

alternatives x, y and z and let the preference relation for individual i be such that xPiyPiz.

In this case, individual i either votes for alternative x or for the set {x, y} (see e.g. Luo

et al. [42]). But if M(Ri) = {x, y}, then we cannot deduce that xPiy. Similarly, if

M(Ri) = {x}, then we do not know that yPiz. Things become only different if preferences

are dichotomous, because then individuals want to vote exactly for their set of good

alternatives and the observed voting decision is as if individuals had fully revealed their

preferences. Thus, the assumption of dichotomous preference is necessary if we want to

define Approval Voting as a social choice function.

Finally, it should be noted that the literature on social choice has concentrated to large

extend on the analysis of strict preferences although indifferences play an important role

in a lot of problems of collective choice. The dichotomous preference domain constitutes
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without any doubt an important benchmark case in the analysis of those situations.

Appendix

Tightness of Proposition 3.1

We exhibit four social choice rules different from Approval Voting that violate only one

different property each.

Strategy-Proofness:

The Borda Count is equivalent to Approval Voting on the dichotomous preference do-

main according to Proposition 2.1. Since all scoring rules are anonymous, neutral and

strictly monotone, any scoring rule different from the Borda Count is manipulable on the

dichotomous preference domain.

Neutrality:

Define the social choice rule
{

f
K̄,N̄
1 : DN̄ → 2K\{∅}

}

K̄,N̄
as follows: For all sets of feasible

alternatives K̄, all electorates N̄ , and all preference profiles DN̄ ∈ DN̄ , f K̄
1 (DN̄) = {x}

whenever x ∈ f K̄
A (DN̄). Otherwise, f K̄

1 (DN̄) = f K̄
A (DN̄). Note that

{

f
K̄,N̄
1

}

K̄,N̄
is anony-

mous, strictly monotone and strategy-proof. The following example illustrates that it is

not neutral.

Let K = {x, y} and N = {1, 2}. If the preference profile D ∈ DN is equal to G(D1) =

G(D2) = {x, y}, then f K̄
1 (DN̄) = {x}. Define the permutation µ of K as µ(x) = y and

µ(y) = x. Since µ(DN̄) = DN̄ , it has to be that f K̄
1 (µ(DN̄)) = f K̄

1 (DN̄) = {x}. On the

other hand, we observe that µ
(

f K̄
1 (DN̄)

)

= {y}. Thus, µ
(

f K̄
1 (DN̄)

)

6= f K̄
1 (µ(DN̄)), a

contradiction.

Anonymity:

Define the social choice rule
{

f
K̄,N̄
2 : DN̄ → 2K̄\{∅}

}

K̄,N̄
as follows: For all sets of feasible

alternatives K̄, all electorates N̄ , and all preference profiles DN̄ ∈ DN̄ , if the conditions



42 3. Approval Voting on Dichotomous Preferences

{1} ∈ N̄ , 0 < g(D1) < k̄, and G(D1) ∩ f K̄
A (DN̄) 6= ∅ are satisfied, then f K̄

2 (DN̄) =

G(D1) ∩ f K̄
A (DN̄). Otherwise, f K̄

2 (DN̄) = f K̄
A (DN̄). Note that the social choice rule

{

f
K̄,N̄
2

}

K̄,N̄
is strategy-proof, strictly monotone and neutral. The following example

illustrates that it is not anonymous.

Let K = {x, y} and N = {1, 2}. Consider the preference profile D ∈ DN corresponding

to G(D1) = {x} and G(D2) = {y}. In this case, f2(D) = {x}. If the permutation σ of N

is defined as σ(1) = 2 and σ(2) = 1, then f2

(

Dσ(N)

)

= {y}. Thus f2

(

Dσ(N)

)

6= f2(D, a

contradiction.

Strict Monotonicity:

Given the set of feasible alternatives K̄, the electorate N̄ , and the preference profile

DN̄ ∈ DN̄ , let C ⊆ N̄ be such that i ∈ C if and only if 0 < g(Di) < k̄. Define the social

choice rule
{

f
K̄,N̄
3 : DN̄ → 2K̄\{∅}

}

K̄,N̄
as follows: For all sets of feasible alternatives K̄,

all electorates N̄ , and all preference profiles DN̄ ∈ DN̄ , f K̄
3 (DN̄) = {x ∈ K̄ : Nx(DN̄ |C) ≥

1} whenever C 6= ∅. Otherwise, f K̄
3 (DN̄) = K̄. Observe that the social choice rule

{

f
K̄,N̄
3

}

K̄,N̄
is strategy-proof, neutral and anonymous. The following example illustrates

that it is not strictly monotone.

Suppose that K = {x, y, z} and N = {1, 2}. Let the preference profiles D,D′ ∈ DN

be such that G(D1) = {y}, G(D′
1) = {x, y} and G(D2) = G(D′

2) = {x}. Then, C =

C ′ = {1, 2} which implies that f
{x,y}
3 (D) = f

{x,y}
3 (D′) = {x, y}. This contradicts strict

monotonicity.

Tightness of Proposition 3.2

We exhibit three social choice functions different from Approval Voting that violate only

one different property each.

Neutrality:

The non-neutral social choice function f1 is strictly symmetric and efficient.

Efficiency:
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Define the social choice function g : DN → 2K\{∅} as follows: For all preference profiles

D ∈ DN , g(D) = {x ∈ K : Nx(D) ≥ 1} whenever this set is non-empty. Otherwise,

f(D) = K. Note that g is strictly symmetric and neutral. The following example illus-

trates that it is not efficient.

Let K = {x, y, z} and N = {1, 2, 3}. If preference profile D ∈ DN is equal to

G(D1) = {x}, G(D2) = {y} and G(D3) = K, then g(D) = {x, y, z}. Since {x, y} ≻D1 K,

{x, y} ≻D2 K, and {x, y} ∼D3 K by the cohesive preference extension, we conclude that

g is not efficient.

Strict Symmetry:

Define the social choice function h : DN → 2K\{∅} as follows: If the preference profile

D ∈ DN is such that for some i ∈ N and some x ∈ K, G(Di) = {x} and for all j 6= i,

G(Dj) = {y} for some y ∈ K\{x}, then h(D) = {x, y}. Otherwise, h(D) = fA(D). Note

that h is neutral, efficient and satisfies ISS. The following example illustrates that it is

not strictly symmetric.

Let K = {x, y} and N = {1, 2, 3}. If the preference profiles D,D′ ∈ DN are such that

G(D1) = G(D′
1) = G(D2) = {x}, G(D3) = {y}, G(D′

2) = {x, y} and G(D′
3) = ∅, then

h(D) = {x, y} and h(D′) = {x}. Since h(D) 6= h(D′), we conclude that h is not strictly

symmetric.
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Chapter 4

An Experimental Study of

Truth-Telling in a Sender-Receiver

Game

4.1 Introduction

In several situations individuals who lie about their private information can obtain a

higher payoff at the costs of others.12 But by behaving strategically individuals disrespect

one of the oldest ethical principles, a social norm telling us not to lie. This tension between

incentives and normative social behavior makes it difficult to predict the outcome of

this type of interactions. It is our objective to show, with the help of an experiment,

that in situations that can be modelled as a particularly simple sender-receiver game, a

considerable number of subjects have preferences for truth-telling, whereas the rest of the

subjects follow only material incentives.

Strategic information transmission, introduced by Crawford and Sobel [25], is an ob-

vious way of modelling the tension described above. In this class of games, the “sender”

has private information about the true state of the world. She transmits a message about

1This chapter is jointly written with Santiago Sánchez-Pagés from the University of Edinburgh.
2Examples include income tax evasion (Alingham and Sandmo [1]), oligopolistic competition (Galor

[37]), financial advice (Morgan and Stocken [46]), and electoral competition (Heidhues and Lagerlof [40]).
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the actual state to the “receiver” who takes a subsequent action that is payoff-relevant

for both participants. The main insight of Crawford and Sobel [25] is that less informa-

tion about the true state is transmitted as the preferences of the sender and the receiver

become less aligned.

In the first experimental study on strategic information transmission, Dickhaut et. al

[26] corroborated this theoretical prediction. More recently, Gneezy [38] has shown that

if preferences are not aligned (whenever an outcome is good for the receiver it is bad for

the sender and vice versa), then the probability of lying is increasing in the potential

gains of the sender and decreasing in the potential loss of the receiver. Finally, Cai and

Wang [20] have offered clear experimental evidence of an overcommunication phenomenon:

Senders truthfully reveal their private information more often than predicted by the most

informative equilibrium of the standard model of preference maximization. Although the

authors explain this abnormality successfully by means of a behavioral type analysis (see

among others Bosch-Domènech et. al [15], Costa-Gomes et. al [23] and Crawford [24])

and the Logit Quantal Response equilibrium concept (McKelvey and Palfrey [44] and

[45]), they leave it as an open question whether the overcommunication phenomenon is

caused by social preferences such as trust or honesty.

Our aim is to show that the tension between incentives and normative social behavior

is the driving force underlying the overcommunication result. To this end, we study the

experimental behavior of a group of subjects in two very similar constant-sum sender-

receiver games. The Benchmark Game proceeds as follows: In the beginning of the game,

one out of two payoff tables is randomly picked. The selected table determines players’

(strictly positive) payoffs as a function of the receiver’s action to be taken later on. Then,

the sender, who is the only player informed about Nature’s choice, submits a message

about the actual payoff table; hence, she implicitly decides to tell the truth or to lie.

After observing this message, the receiver takes an action that reveals whether he trusted

or distrusted the sender. Finally, both participants are paid accordingly.

Since the payoff tables are constructed in such a way that the preferences of the

sender and the receiver are not aligned, the sender does not have incentives to transmit
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information, or, to say it differently, the sender plays a strategy such that the posterior

beliefs of the receiver remain equal to the prior beliefs. Given our model specification, only

those strategies in which the sender lies with probability one-half generate these beliefs

consistently and can thus be supported in equilibrium. In the first step of our analysis,

we recover the overcommunication phenomenon: subjects playing the Benchmark Game

in the role of the sender lie significantly less than predicted by the equilibrium analysis

(Hypothesis 4.1).

To show that this result is caused by a considerable number of subjects with preferences

for truth-telling we extend our original set-up. In the Punishment Game, the receiver is

informed about the actual payoff table once he has taken an action. Then, he chooses

between accepting the payoff distribution induced by the Benchmark Game and reducing

the payoffs of both participants to zero.

According to the standard model of preference maximization individuals care only

about their own payoffs, and therefore, the receiver should never punish the sender. But

the limitations of the purely rational model are already well-documented. For example,

the inequality aversion models of Fehr and Schmidt [33] and Bolton and Ockenfels [13]

explain the empirical observation that some individuals are willing to pay money in order

to reduce income disparities. Recently Brandts and Charness [19] have found evidence

of even more complex preferences. Individuals do not only take into account the whole

payoff distribution, rather the notion of procedural justice3 - the utility attached to a payoff

distribution depends on how this distribution has been reached - plays a crucial role in

socio-economic interactions. As a matter of fact, the authors study in the laboratory a

game in which the sender transmits a message regarding her/his intended play in a 2× 2

simultaneous move game and show that the receiver’s willingness to punish the sender

after revealing the result from the simultaneous move game depends on whether or not

the sender played according to the reported message.

We derive our predictions with respect to the extended game by looking at the punish-

3The concept of procedural justice has been introduced in decision theory by Sen [55] as an extension
of the standard model of preference maximization over material outcomes.
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ment rates after different histories. Since the game is symmetric, histories can be summa-

rized by whether or not a message is truthful and whether or not the receiver trusts that

message. The punishment rates are equal to 0% after history (truth,trust), 1.6% after

(lie,distrust), 5.4% after (truth,distrust), and 25.2% after (lie,trust). The fact that the

payoff distribution after history (truth,distrust) is equal to the one after (lie,trust) allows

us then to confirm the importance of procedural justice in socio-economic interactions

(Hypothesis 4.2).

Finally, we show that the overcommunication phenomenon can be explained in terms

of social preferences for truth-telling. First, we identify all subjects with strong concerns

for procedural justice. In particular, we find find that 15 out of 66 individuals punish

liars frequently after the history (lie,trust). Not surprisingly this group of individuals

accounts for 90% of all punishments after this history. Then, we analyze how these

subjects behave in the role of the sender. It turns out that they tell the truth in over 70%

of all observations whereas the rest of subjects do so only in 52% (the overall percentage

of truth-telling in the Punishment Game is equal to 57%). This result supports our

intuition that individuals with a strong sense for procedural justice should, consistently,

be responsible for the overcommunication result (Hypothesis 4.3).

We proceed as follows: In the next Section, we formally introduce the games and

our experimental hypotheses. In Section 3, we explain the experimental procedures. In

the following Section, we present our results. We conclude in Section 5. The proof

of Proposition 4.1 and the instructions of the Punishment Game can be found in the

Appendix.

4.2 Theoretic Analysis and Experimental Predictions

In this Section, we introduce the Benchmark and the Punishment Game and derive sev-

eral null hypotheses from the corresponding sequential equilibria. Moreover, we present

our alternative hypotheses deduced from the overcommunication phenomenon and the

incorporation of procedural justice.
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The Benchmark Game

Let N = {sender,receiver} be the set of players. At the beginning of the game, Nature

picks payoff table A and B with equal probability, e.g. p(A) = p(B) = 0.5. Only the

sender is informed about the payoff table actually chosen. Selecting table x ∈ {A,B}

means that the final payoffs are realized according to x. Both tables depend only on the

action U or D taken by the receiver later on.

Table A Sender Receiver

Action U 2 1

Action D 1 2

Table B Sender Receiver

Action U 1 2

Action D 2 1

Table 4.1: Payoff Tables

After the sender has been informed, she chooses a mixed strategy with support on the

message space M = {A,B}. Formally, if Nature selects table A, the sender communicates

with probability pA that table A represents the actual payoff scheme. Thus, she lies in

this case with probability 1 − pA. Similarly, if Nature selects table B, then the sender

communicates with probability 1 − pB that table B represents the actual payoff scheme.

Thus, she lies in this case with probability pB.

Next, we describe the receiver’s belief system. If m = {A} (the sender transmits

message A), the receiver believes with probability µ(A|A) that the actual payoff scheme

is represented by table A whereas he thinks with probability µ(B|A) = 1 − µ(A|A) that

table B is the one determining payoffs. If m = {B}, the receiver believes with probability

η(A|B) that table A determines payoffs and with probability η(B|B) = 1 − η(A|B) that

table B is the one doing so. Taking into account these beliefs, the receiver chooses a mixed

strategy with support on the action set A = {U,D}. Formally, if m = {A}, the receiver

takes action U with probability qA and action D with probability 1 − qA. Similarly, if

m = {B}, the receiver takes action U with probability qB and action D with probability

1 − qB. Finally, both individuals receive their payments.
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Figure 4.1: The Benchmark Game

The Benchmark Game is well suited to analyze the tension between social preferences

for truth-telling and material incentives for two reasons. First, in order to minimize

the possibility of mistakes made by subjects, the Benchmark Game has a simple payoff

structure and a very intuitive set of equilibria. Second, truth-telling is a dichotomous

choice in the sense that (a) there are only two state variables and (b) the sender’s strategy

set boils down to the messages truth and lie. This is important, because otherwise a

message may contain a richer meaning. To see this suppose that the state and message

space are both equal to {1, 2, 3}. In this case individuals do not only tell the truth or

lie, because they also choose a “level” of deceit whenever the true state is {1} or {3}.

Hence, richer state and message spaces give room to a wide variety of behaviors and to a

complexity that lies out of the scope of the paper.4

Proposition 4.1. The set of sequential equilibria of the Benchmark Game is given by

the set of strategies (p∗A, p∗B, q∗A, q∗B) = (p, p, q, q), where p, q ∈ [0, 1], and the supporting

belief system (µ∗(A|A), η∗(B|B)) =
(

1
2
, 1

2

)

.

4The importance of the size of the message space is reported by Blume et. al [11]. The authors show
that in a sender-receiver game with multiple equilibria it depends on the size of message space whether
subjects converge to play a separating or a pooling equilibrium.
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Proof. See the Appendix.

The intuition of Proposition 4.1 is as follows: Since the preferences of the sender

and the receiver are not aligned, the sender plays a strategy that leaves the receiver’s

prior beliefs unchanged. The strategies generating these posterior beliefs in a consistent

manner are all those in which the sender submits message A with a constant probability,

e.g. pA = pB = p ∈ [0, 1]. To see this note that if the sender plays for example the strategy

“always transmit message A” (this strategy is equal to pA = pB = 1), then the receiver

does not get any additional information from the message. Hence, the receiver can as

well ignore it. This game becomes thus equivalent to the following one: Nature selects

the tables A and B with equal probability and the receiver chooses q (the probability to

play U) to maximize his expected payoff. Since the expected payoff is equal to p(A)(q +

2(1 − q)) + p(B)(2q + 1 − q) = 1.5 and thus independent of q, any constant strategy

qA = qB = q ∈ [0, 1] is optimal.

The set of pooling equilibria is quite large, yet there is an easy way to identify them.

Given pA and pB, the probability that the sender lies in the Benchmark Game is equal

to l1(pA, pB) = p(A)(1 − pA) + p(B)pB. With a slight abuse of notation let p(m = x) be

the probability that the sender transmits message x ∈ {A,B} given pA and pB. Then,

the probability that the receiver trusts the sender in the Benchmark Game is equal to

t1(pA, pB) = p(m = A)µ(A|A) + p(m = B)η(B|B). Proposition 2 establishes that the

sender lies with probability one-half in any sequential equilibrium of the Benchmark

Game, a strategy foreseen correctly by the receiver in terms of trust.

Proposition 4.2. Let (p∗A, p∗B) be an equilibrium strategy for the sender in the Benchmark

Game. Then, l1(p
∗
A, p∗B) = t1(p

∗
A, p∗B) = 1

2
.

Proof. The proof is straightforward and thus omitted.

Our first null hypothesis is given by Proposition 4.2. The corresponding alternative

hypothesis is divided into two parts. First, the sender should lie less than predicted by the

standard model according to the overcommunication phenomenon of Cai and Wang [20].
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If this prediction is true, the best response function of the receiver dictates to take action

D after message A and action U after message B, or, to say it differently, the receiver

should always take the action trust.5 This observation leads us to hypothesize additionally

that the receivers take the action trust in more than fifty percent of all occasions.

HYPOTHESIS 4.1. In the Benchmark Game, the senders lie in less than fifty percent and

the receivers trust the senders in more than fifty percent of all observations.

Next, we introduce punishments into the Benchmark Game in order to study whether

the source of the overcommunication phenomenon are preferences for truth-telling shared

by a considerable number of subjects.

The Punishment Game

The Punishment Game extends the Benchmark Game. Let H be the set of all histories of

the Benchmark Game. Given h ∈ H, with probability r2(h) ∈ [0, 1] the receiver reduces

the payoffs of both participants to 0 and with probability 1− r2(h) he accepts the payoff

distribution induced by the Benchmark Game. Finally, both individuals receive their

payments.

Given the strategy (pA, pB) of the sender in the Punishment Game, l2(pA, pB) and

t2(pA, pB) denote the probabilities that the sender lies and that the receiver trusts the

sender’s message, respectively. It is easy to calculate the set of sequential equilibria of the

Punishment Game, because from a purely materialistic point of view it is never optimal for

the receiver to reduce payoffs. This observation allows us to draw the following conclusion.

Proposition 4.3. In all sequential equilibria of the Punishment Game, (a) for all h ∈

H, r∗2(h) = 0 and (b) l2(p
∗
A, p∗B) = t2(p

∗
A, p∗B) = 1

2
.

Proof. The proof is straightforward and thus omitted.

5We interpret the revealed decision of the receiver as the result from a maximization process involving
subjective beliefs about the truthfulness of the message (see for example Farrell and Rabin [32]).
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The second null hypothesis is given by Proposition 4.3. To derive the corresponding

alternative hypothesis note that the set H can be summarized by the histories h1 =

(truth,trust), h2 = (truth,distrust), h3 = (lie,trust), and h4 = (lie,distrust).6 Different

punishment rates after these histories will reveal the presence of social preferences.

The inequality aversion models of Fehr and Schmidt [33] and Bolton and Ockenfels

[13] take into account that some individuals care not only about their own payoff but

about the whole payoff distribution. Brandts and Charness [19] have shown that receivers

punish the senders more often if a payoff distribution results from a deceptive message, and

therefore, the utility attached to a particular payoff distribution also depends on how it has

been reached. Following this experimental finding, the receiver should punish the sender

more frequently after history h3 = (lie,trust) than after history h2 = (truth,distrust)

although both payoff distributions are identical. Still, we expect the punishment rate

after history h2 = (truth,distrust) to be strictly positive, because some individuals may

be inequality averse and prefer the payoff distribution (0,0) over (2,1). We do not expect

any punishments after the histories h1 = (truth,trust) and h4 = (lie,distrust), because

the receiver interpreted the message correctly and the resulting payoff distribution (1,2) is

favorable to him. If we reject the null hypothesis in favor of the alternative one, a sender

who lies is in more danger of being punished than a truth-teller. As a consequence, we

hypothesize that truth-telling is enhanced in the Punishment Game with respect to the

Benchmark Game and that the receivers trust more in the former than in the latter.

HYPOTHESIS 4.2. In the Punishment Game, the receivers punish the senders only af-

ter the histories h2 = (truth, distrust) and h3 = (lie, trust) with the punishment rate

being higher after h3. Moreover, the senders lie less and the receivers trust more in the

Punishment than in the Benchmark Game.

According to our main hypothesis the overcommunication phenomenon is caused by num-

ber of individuals with preferences for truth-telling. To check this we perform a final

6In our experimental sessions we do not ask subjects to elicit their mixed strategies, rather we derive
them from the repeated observation of pure strategies. Then, since the payoff tables A and B are
symmetric and the probabilities p(A) and p(B) are identical, we can write the set H as described.
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consistency test on the Punishment Game. After observing the experimental results, we

divide our subject pool into two different groups, one group of subjects punishing liars

frequently after history h3 = (lie,trust) and another group containing the rest of the

subjects. Given this division, the third null hypothesis states that there is no difference

in the level of truth-telling between the two groups when subjects play the Punishment

Game as senders.7 The corresponding alternative hypothesis, on the other hand, states

that the group of subjects with a high sense of procedural justice accounts for most of the

overcommunication phenomenon; that is, these subjects tell the truth very often whereas

the rest of the subjects lie in about fifty percent of the occasions.

HYPOTHESIS 4.3. The group of subjects punishing liars frequently after history h3 =

(lie,trust) accounts for most of the overcommunication phenomenon.

4.3 Experimental Design and Procedures

We conducted our experimental sessions at the University of Edinburgh in May 2004.

Since all economic students at this university have an E-mail account associated to their

matriculation number, we promoted the experiment mainly via electronic newsletters.

Students from other academic disciplines were recruited through flyers distributed on

the campus and further announcements made on information boards. As a result, 132

undergraduate students from nearly all faculties participated in one of our experimental

sessions. We organized a total of ten sessions, five on the Benchmark and five on the

Punishment Game. Twelve subjects participated in the first four sessions and eighteen

subjects in the fifth and last session of each treatment. No subject took part in more

than one session.

To perform the experiment we employed the computer software Z-Tree developed by

Fischbacher [34]. At the beginning of a session, subjects met in a computer room and sat

down in front of one of the computers. The computers were placed in such a way that all

7We use a role rotation mechanism in our experimental sessions so that every subject plays the
Punishment Game half of the time in each role. For more on this see the next section.
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subjects could only look at their own screen. We placed next to each computer a closed

envelope containing instructions, a questionnaire, and a payment receipt. After subjects

had filled out the questionnaire we read the instructions aloud (see the Appendix for the

instructions corresponding to the Punishment Game).

Before the first round of a session, the computer randomly divided subjects into groups

of six without revealing the matching. We informed every subject that s/he would only

play against subjects belonging to the same group. Therefore, the fact that the num-

ber of subjects differed across sessions should not matter. So we implicitly divided our

subject pool into a total of twenty-two groups of six subjects, eleven groups playing each

treatment. In each of the fifty rounds of an experimental session the computer matched

the subjects belonging to the same group into three new pairs and assigned different roles

(sender or receiver) within pairs. The matchings were balanced so that after fifty rounds

every subject played the game exactly ten times against each of her/his five opponents.

Moreover, every subject met every opponent five times in each role.

In every round, after pairs had been formed and roles had been assigned, the sender

was informed of whether table A or B had been selected. Then, the sender transmitted a

message from the message space M = {A,B} telling the receiver which table corresponds

to the actual payoff scheme. Afterwards, the receiver chose an action from the action set

A = {U,D}. This constituted the end of the round in the Benchmark Game. In the

sessions corresponding to the Punishment Game, the receiver was further informed about

the induced payoffs of her/his action. Finally, s/he had to decide between accepting these

payoffs or reducing the payoff of both participants to zero.

At the end of a session, we called subjects one by one to step forward to the control

desk for payment. In addition to the five pounds show up fee, subjects received ten

pence per point obtained. As a result, the average payment in the one hour session

corresponding to the Benchmark and the Punishment Game was equal to 12.5 pounds

and 11.74 pounds, respectively.
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4.4 Results

4.4.1 Overcommunication in the Benchmark Game

According to our first null hypothesis, the senders lie in the Benchmark Game with

probability one-half. In the histogram in the left part of Figure 4.2, we represent the

frequencies of truthful messages in the sessions corresponding to the Benchmark Game.

Since a subject was exactly 25 times in the role of the sender, in equilibrium s/he should

tell the truth 12.5 times. The data seem to be slightly shifted to the right of the theoretical

mean, but it is not clear-cut enough to reject the null hypothesis immediately. In the

right panel of Figure 4.2, we observe that the percentage of subjects telling the truth is

extraordinary high in the first rounds and declines over time in such a way that it stays

on average just above the 50%-line predicted by the standard theory. We eliminate this

learning effect by excluding the data from the first ten rounds in our statistical analysis.
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Figure 4.2: Sender’s Behavior in the Benchmark Game

Since subjects belonging to the same group play the Benchmark Game more than

once against the other group members, actions within a given group are likely to be

correlated over time. One way of obtaining independent observations is to calculate for

every group the percentage of truthful messages over the last forty rounds. This procedure

allows us to derive a total of eleven independent observations, one for each group. The

overall percentage of truth-telling in the last forty rounds is equal to 55.07%, a percentage

significantly greater than 50% (p-value of the one-tailed Wilcoxon rank-sum test = 0.0615;

p-value of the one-tailed t-test = 0.0459).
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Next, we provide evidence in favor of the second part of Hypothesis 4.1, namely that

the receivers adjust their beliefs in the correct direction and trust the senders in more

than fifty percent of all occasions. To this end, we interpret the action of the receiver as

the result of a maximization process involving subjective beliefs about the truthfulness of

the message. For example, if a subject observes message A and takes action D afterwards,

then this action reveals in our understanding that the subject trusted the sender’s message.

In the histogram in the left panel of Figure 4.3 we can clearly see that a lot of receivers

trust more often than the theoretical prediction of 12.5 times. Moreover, the evolution of

this percentage over time (the right panel of Figure 4.3) is such that it is particularly low

in the first rounds before it stabilizes well above the 50%-line.
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Figure 4.3: Receiver’s Behavior in the Benchmark Game

In the last forty rounds of the experiment the receivers trusted the senders’ mes-

sages in 58.7% of all observations. This value is significantly greater than the theoretical

prediction. (p-value of the one-tailed Wilcoxon rank-sum test < 0.0001; p-value of the

one-tailed t-test < 0.0001). Hence, we reject the prediction of the standard model in favor

of Hypothesis 4.1.

4.4.2 Procedural Justice in the Punishment Game

So far we have shown the existence of an overcommunication phenomenon in the Bench-

mark Game. Analyzing the Punishment Game will help us to identify the origin of this

result. In Table 4.2 below we present the punishment behavior of the receivers. For
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consistency reasons we only consider punishments in the last forty rounds which amount

to a total of 1320 observations (11 groups of 40 rounds and 3 observations per round).

The senders told the truth 740 times and lied in 580 occasions. The receivers trusted 520

times when the sender had told the truth and 396 times when the sender had lied.

Truth Lie

Trust 0 0,25253

Distrust 0,05455 0,0163

Table 4.2: Punishment Behavior

The punishment rate is highest, more than 25%, after history h3 = (lie,trust). We

use the normal approximation of the binomial distribution in order to establish that this

proportion is significantly greater than zero (p-value of the one-tailed Z-test < 0.0001).

We also find, as expected, that the punishment rate after history h2 = (truth,distrust) is

significantly greater than zero. We attribute the positive punishment rate after history

h4 = (lie,distrust) to mistakes made by some subjects. Yet, our main prediction is

confirmed: The willingness to punish the sender depends on whether or not a payoff

distribution has been reached by means of a deceptive message, because the punishment

rate after history h3 = (lie,trust) is greater than the one after history h2 = (truth,distrust).

A test of equal proportions confirms this observation (p-value of the one-tailed Z-test

< 0.0001).

We investigate next whether subjects behave consistently across the two treatments.

The histogram in left panel of Figure 4.4 looks quite similar to the one corresponding to

sender’s behavior in the Benchmark Game although it seems that the shift to the right

from the theoretical mean has increased. In the right panel of Figure 4.4, we observe that

the percentage of subjects telling the truth is quite high in the first rounds and declines

over time, a behavior we have already encountered before. Nevertheless, in the latter

rounds there are now less values below the fifty percent line.
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Figure 4.4: Sender’s Behavior in the Punishment Game

The percentage of subjects telling the truth in the last forty rounds of the Punishment

Game is equal to 56.29%. This percentage is significantly greater than the equilibrium

prediction (p-value of the one-tailed Wilcoxon rank-sum test = 0.0499; p-value of the one-

tailed t-test = 0.0343), but it is not significantly greater than the corresponding value for

the Benchmark Game (p-value of the one-tailed Wilcoxon rank-sum test = 0.40; p-value

of the one-tailed t-test = 0.385).

The picture looks quite different if we compare the receivers’ behavior across the two

treatments. The histogram in the left panel of Figure 4.5 indicates that the receivers trust

more in the Punishment than in the Benchmark Game. This intuition is confirmed in the

right panel of Figure 4.5, because the percentage of receivers trusting the sender seems to

increase over time and stays well above the equilibrium prediction. On the aggregate, the

percentage of trustful receivers in the last forty rounds is equal to 69.3%. This percentage

is significantly greater than the corresponding value of the Benchmark Game (p-value of

the one-tailed Wilcoxon rank-sum and t-test < 0.0001).
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Figure 4.5: Receiver’s Behavior in the Punishment Game
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To summarize: We have confirmed the importance of procedural justice in socio-

economic interactions. Moreover, the introduction of punishments seems to induce the

receivers to believe that the senders will often tell the truth in order to avoid a possible

moral outrage caused by deceptive messages. But on the contrary, when subjects play

as senders they seem to consider the punishment as an incredible threat, because barely

change their behavior with respect to the original set-up.

4.4.3 The Separability Hypothesis

In the previous two parts of this Section we have prepared the ground for our main con-

tribution, namely that that the tension between normative social behavior and incentives

is driving the overcommunication phenomenon. After observing the experimental results,

we divide our subject pool into two groups, one group containing all those subjects who

punish liars frequently after history h3 = (lie,trust) and another group containing the rest

of subjects. We obtain this division in the following way: In the last forty rounds of an ex-

perimental session corresponding to the Punishment Game every subject is twenty times

in the role of the receiver. Since the sender lies with probability 0.437 and the receiver

trusts the message with probability 0.694, every subject plays, in expected terms, the

history h3 = (lie,trust) 6.06 times in the role of the receiver. The punishment rate after

h3 is equal to 0.2525, and therefore, every subject is expected to punish the sender 1.53

times. Hence, all subjects that punish the sender in at least three occasions after h3 reveal

serious concerns for procedural justice. This condition is met by fifteen out of sixty-six

subjects. Not surprisingly, this group of subjects accounts for 90% of all punishments.

Given this classification, the role rotation mechanism allows us to study how these

fifteen subjects behave in the Punishment Game. On the aggregate, they tell the truth

in 70.66% of all observations. This probability is significantly greater than 56.29%, the

percentage of truth-telling corresponding to the whole subject pool (p-value of the one-

tailed Z-test < 0.0001). The rest of the subjects, on the other hand, tell the truth in only

52.05% of the cases, a percentage not significantly greater than the equilibrium prediction
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(p-value of the one-tailed Z-test ≥ 0.0945). Therefore, we reject the third null hypothesis

- the percentage is the same for both groups of subjects - in favor of Hypothesis 4.3.

This result suggests not only that individuals with a strong notion of procedural justice

behave consistently across roles, rather they are responsible for nearly all information

transmitted by the senders. This interpretation is further strengthened if we analyze how

the beliefs of these two groups vary. Subjects with a serious notion for procedural justice

trust the senders’ message in 86% of all occasions, whereas the rest of subjects do so only

in 64,51%.

4.5 Conclusion

Communication is the most natural way how to exchange information. Experimental

studies such as the ones of Duffy and Feltovich [27] and [28] have shown that individuals

are able to achieve Pareto improving allocations by means of cheap talk. In particular,

the authors show that if subjects announce to cooperate in the Prisoner’s Dilemma,

then this message often reflects the truth. Moreover, receivers reciprocate and cooperate

as well so the Pareto-efficient outcome is sometimes implemented. On the other hand,

Crawford [24] shows that in some sequential equilibria of a sender-receiver game a rational

individual can feint a boundedly rational one. These results raise some questions. In

which situations can the receiver trust the senders’ messages? And why do the senders

transmit truthful messages if incentives suggest otherwise? Our aim was to show that

the overcommunication phenomenon is not necessarily due to a lack of sophistication or

rationality but results from the fact that some individuals take into account social norms

such as truth-telling.

To this end, we studied the behavior of a group of subjects in a simple game of

strategic information transmission. In the first step, we recovered the overcommunication

phenomenon of Cai and Wang [20] (e.g. on the aggregate the senders tell the truth

more often than predicted by the standard model of preference maximization). Then, we

introduced punishments and showed that, in accordance with the results of Brandts and
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Charness [19], the willingness to punish the sender is higher after a deceptive message.

Finally, we sustained our main hypothesis by showing that if we subtract from our subject

pool the group of subjects who punish liars frequently after a deceptive message, then

that very same group tells the truth very often whereas the rest of the subjects behave

roughly according to the standard equilibrium prediction. Thus, if moral subjects are

excluded, the overcommunication phenomenon vanishes.

The existence of moral individuals who reject material incentives to misbehave opens

some fascinating questions: What are the implications on mechanism design? Or on the

organization of the firm? And on the elaboration of policy prescriptions?

Appendix

Proof of Proposition 4.1

Recall that pA (or pB, respectively) denotes the probability that the sender submits mes-

sage A when the actual payoff scheme is represented by table A (or table B, respectively).

We divide our analysis into three different cases.

Case 1: Suppose that 0 < pA + pB < 2. We derive the best response correspondence

for the receiver who takes the strategy (pA, pB) of the sender as given. Suppose that the

sender transmits message A. By sequential rationality the receiver updates his beliefs

according to Bayes’ rule, and therefore, he thinks that the probability µ(θ = A|m = A)

(e.g. the true payoff scheme is given by table A conditional on message A) is equal to

µ(θ = A|m = A) = p(m=A|θ=A)p(A)
p(m=A)

= 0.5pA

0.5pA+0.5pB
= pA

pA+pB
≡ µ.

Let µ(θ = B|m = A) = 1 − µ be the belief that table B represents payoffs when the

sender submitted message A before. Given µ, the receiver chooses qA (the probability to

take action U conditional on message A) in order to

max
qA

(µ (qA + 2 (1 − qA)) + (1 − µ) (2qA + 1 − qA)) .
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This maximization problem is equivalent to

max
qA

(1 + µ + qA (1 − 2µ)) ,

and therefore, the best response correspondence for the receiver is

q∗A (µ) =











1 if µ < 1
2

[0, 1] if µ = 1
2

0 if µ > 1
2 ,

, or, q∗A (pA, pB) =











1 if pA < pB

[0, 1] if pA = pB

0 if pA > pB.

If, on the other hand, the sender submits message B, then the belief that the actual

payoff scheme is represented by table B is equal to

η(θ = B|m = B) = p(m=B|θ=B)p(B)
p(m=B)

= 0.5(1−pB)
0.5(1−pA)+0.5(1−pB)

= 1−pB

2−pA−pB
≡ η.

Let η(θ = A|m = B) = 1−η be the belief that table A represents the payoff scheme when

the sender submitted message B before. Given η, the receiver chooses qB (the probability

to take action U conditional on message B) in order to

max
qB

((1 − η) (qB + 2 (1 − qB)) + η (2qB + 1 − qB)) .

This maximization problem is equivalent to

max
qB

(2 − η + qB (2η − 1)) ,

and therefore, the best response correspondence of the receiver is

q∗B (η) =











1 if η > 1
2

[0, 1] if η = 1
2

0 if η < 1
2 ,

, or, q∗B (pA, pB) =











1 if pA > pB

[0, 1] if pA = pB

0 if pA < pB.

Next, we calculate the optimal mixed strategy (p∗A, p∗B) for the sender. To do so we

consider three different cases:

Case A: Suppose that p∗A < p∗B. Then, it follows from the optimal behavior of the receiver

that q∗A(p∗A, p∗B) = 1 and q∗B(p∗A, p∗B) = 0. Thus, the optimal strategy (p∗A, p∗B) must be the

solution of the following maximization problem: Choose pA and pB in order to

max
pA,pB

0.5 (2pA + pB + 1 − pA + 2 (1 − pB)) .
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This maximization problem is equivalent to

max
pA,pB

0.5 (3 + pA − pB) .

But the solution to this problem is such that p∗A = 1 and p∗B = 0, and therefore, we have

reached a contradiction. We conclude that there does not exist any equilibrium in which

p∗A < p∗B.

Case B: Suppose that p∗A > p∗B. Then, it follows from the optimal behavior of the receiver

that q∗A(p∗A, p∗B) = 0 and q∗B(p∗A, p∗B) = 1, and therefore, the optimal strategy (p∗A, p∗B) must

be the solution of the following maximization problem: Choose pA and pB in order to

max
pA,pB

0.5 (pA + 2 (1 − pA) + 2pB + 1 − pB) .

This maximization problem is equivalent to

max
pA,pB

0.5 (3 − pA + pB) .

But the solution to this problem is such that p∗A = 0 and p∗B = 1, and therefore, we have

reached a contradiction. We conclude that there does not exist any equilibrium in which

p∗A > p∗B.

Case C: Suppose that p∗A = p∗B. Then, it follows from the best response correspondences

of the receiver that q∗A ∈ [0, 1] and q∗B ∈ [0, 1]. Thus, the sender faces the problem

max
pA,pB

0.5pA (2qA + 1 − qA) + 0.5 (1 − pA) (2qB + 1 − qB) +

0.5pB (qA + 2 (1 − qA)) + 0.5 (1 − pB) (qB + 2 (1 − qB)) ,

a problem that is equivalent to

max
pA,pB

0.5 (3 + pA (qA − qB) + pB (qB − qA)) .

Hence, the best response correspondences for the sender are

p∗A (qA, qB) =











1 if qA > qB

[0, 1] if qA = qB

0 if qA < qB

and p∗B (qA, qB) =











1 if qA < qB

[0, 1] if qA = qB

0 if qA > qB.
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From inspection we see that the set of mixed strategies (p∗A, p∗B; q∗A, q∗B) = (p, p; q, q), where

p ∈ (0, 1) and q ∈ [0, 1], can be sustained as equilibrium strategies. Finally, one can easily

check that the corresponding beliefs are µ∗(θ = A|m = A) = η∗(θ = B|m = B) = 1
2
.

Case 2: Suppose that p∗A = p∗B = 0. Observe from the best correspondence of the sender

in case 1.C that p∗A = p∗B = 0 can only be sustained as an equilibrium strategy if q∗A = q∗B.

Moreover, p∗A = p∗B = 0 implies that η∗(θ = B|m = B) = 1
2

and q∗B(η∗) ∈ [0, 1]. Since the

sequential game we study consists of two-periods and the cardinality of the action space

of both players is equal to two, any belief µ ∈ [0, 1] is consistent. Yet, we obtain from the

best response correspondence q∗A(µ) in case 1 that q∗A = q∗B if and only if µ = 1
2
. Therefore,

we conclude that the set of mixed strategies (p∗A, p∗B; q∗A, q∗B) = (0, 0; q, q), where q ∈ [0, 1],

together with the belief system µ∗(θ = A|m = A) = η∗(θ = B|m = B) = 1
2

constitutes a

set of sequential equilibria.

Case 3: Suppose that p∗A = p∗B = 1. Observe from the best correspondence of the sender

in case 1.C that p∗A = p∗B = 1 can only be sustained as an equilibrium strategy if q∗A = q∗B.

Moreover, p∗A = p∗B = 1 implies that µ∗(θ = A|m = A) = 1
2

and q∗A(µ∗) ∈ [0, 1]. Although

any belief η ∈ [0, 1] is consistent, we obtain from the best response correspondence q∗B(η)

in case 1 that q∗A = q∗B if and only if η = 1
2
. Therefore, we conclude that the set of mixed

strategies (p∗A, p∗B; q∗A, q∗B) = (1, 1; q, q), where q ∈ [0, 1], together with the belief system

µ∗(θ = A|m = A) = η∗(θ = B|m = B) = 1
2

constitutes a set of sequential equilibria. �
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Instructions of the Punishment Game

Welcome

Thank you for coming. The purpose of this session is to study how people make decisions in a

particular situation. If you have any questions, feel free to raise your hand and your question

will be answered so everyone can hear. From now until the end of the session unauthorized

communication of any nature with any other participant is prohibited. The experiment will be

conducted through computers and all interactions between you will take place through them.

During the session you will play a game that gives you the opportunity to make money. What

you earn depends partly on your decisions and partly on the decisions of others. At the end of

the session, the amount you earned will be paid to you privately in cash.

We start with a brief instruction period. During the instruction period you will be given a

description of the experiment. We are about to begin.

General Instructions

In your envelope you will find a questionnaire and an official receipt. Fill in the questionnaire

and write down your name and matriculation number in the receipt. You will need both forms

to receive your payment at the end of the session. Your personal data will be kept confidential

and will be used for statistical purposes only.

You will play a game which is repeated for 50 rounds. Before the first round, the computer will

randomly divide the participants into groups of six. This division will last for the entire session.

Participants within each group will play only among themselves. The assignment process is

random and anonymous so you will not know who is in your group.

Next, we will go over a brief tutorial. Please interrupt at any time if you have a question.

At the beginning of each round, you will be randomly joined with another participant from your

group to form a pair. In each pair, one participant is randomly chosen to be the Sender, and

one to be the Receiver. Remember that this process is random and the assignment changes

every round.

Each round, after pairs have been formed and roles have been assigned, the computer selects

one of the following two payoff tables. Final payoffs for both participants will be determined
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according to the selected table and the action U or D taken by the Receiver later on.

Table A Sender Receiver

Action U 2 Points 1 Point

Action D 1 Point 2 Points

Table B Sender Receiver

Action U 1 Point 2 Points

Action D 2 Points 1 Point

Sender’s Instructions

At the beginning of the round only the Sender will be informed about the actual payoff table

chosen by the computer. The Sender is the first one to take a decision in the game. S/He must

communicate to the Receiver whether the payoff table chosen by the computer is either table

A or table B. Please, take into account that the Sender is free to tell the truth or to

lie. The computer screen for the Sender is as follows:

1 out of 50

At the top of the screen you recognize the tables A and B. Below you find the information

whether table A or table B was chosen by the computer (in our example it is table B). On the

inferior right corner there are two buttons labelled A and B. By clicking on the buttons A or

B you inform the Receiver that you have observed the corresponding table. The Sender has 20

seconds to take the decision. This is the only decision the Sender takes.

Receiver’s Instructions

The Receiver takes two decisions. First, once the Receiver got the Sender’s message, s/he

has to decide between actions U and D. The computer screen for the Receiver is as follows:
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1 out of 50

The two tables at the top of the screen represent payoffs according to tables A and B. Below you

find the message from the Sender regarding the table s/he observed (in our example the Sender

has informed the Receiver that s/he observed table A). On the inferior right corner there are

two buttons labelled U and D. By clicking on the buttons U or D you take the corresponding

action. The Receiver has 20 seconds to take this decision. Once this action is taken, a new

screen appears summarizing the outcome of the round so far.

Rodriguez-BeltranRodriguez-BeltranRodriguez-BeltranRodriguez-Beltran
1 out of 50

Now the Receiver is asked to take the second decision: S/He must either accept the current payoff

distribution or reduce the payoff of both participants to zero. By clicking on the button Reduce



4.5. Conclusion 69

Payoffs or Accept Payoffs, the Receiver takes the corresponding action. The Receiver has 15

seconds to take this decision.

Summary of the Round

The final screen is a summary of the round: It indicates the actual payoff table, the message

chosen by the Sender, the actions taken by the Receiver, and the earnings of both participants

in this round. Additionally, you are also informed about your accumulated payoff.

1 out of 50

The screen above is the Receiver’s summary. It indicates that the Sender chose message A

whereas the Receiver took action D and accepted the payoffs. Therefore, the Sender gets 2

Points and the Receiver 1 Point. At the end of a round, click on Continue. The experiment

will nevertheless proceed automatically to the next round in 10 seconds.

Payment

The Points you accumulate during the course of the session will determine your payment in

addition to the £5 show-up fee. The exchange rate Points/£ is 10p per Point. At the end of

the experiment, take your questionnaire and receipt to the counter for payment. They will be

matched to our computer printout. Once you are paid, you may leave.
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Chapter 5

Coalition Formation in a Contest

with Three Heterogenous Players

5.1 Introduction

A contest is a socio-economic environment in which players spend valuable resources in

order to raise their probabilities of winning a fixed prize. Here, we analyze the incentives

for cooperation of three players in the presence of the strong non-cooperative threat

of a contest. In particular, we consider players who differ in their efficiency of effort

or represent exogenously given groups of different size. Our main result states that a

society-wide agreement may not be reached if the discrepancy between the distribution

of the exogenously given group sizes and the distribution of the relative bargaining power

is too high. In this case the equilibrium level of conflict is strictly positive.

Economists study contest games since the seminal work on rent-seeking by Tullock

[60]. In the rent-seeking literature the individual expenditure is usually interpreted as

lobbying effort in terms of time or money and the prize is taken to be a monopoly right

or a license. But “lobbying” is far from being the only example, because contest games

have been applied to patent races by Peréz-Castrillo and Verdier [48], to market share

competition by Schmalensee [54], and to financial institutions and money by Shapley

and Shubik [57]. One of the latest developments is due to Esteban and Ray [30] who
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concentrate on the relationship between the distribution of society into interest groups

and the level of conflict defined as the social loss induced by the non-productive efforts.

Our contribution is to consider coalitions among players in a contest game. This

extension is of special interest, because there is empirical evidence for the formation

of coalitions in contest environments. Consider for instance a country in transition to

democracy which is split into ethnic or religious groups. Often, all groups know that

socially it would be best to agree on a new constitution and divide the political power, but

finally, negotiation fails and a conflict between the groups emerges. A possible explanation

is that if one group has a high bargaining power but is relatively small in size, then the

other groups prefer to stop negotiations and fight for their political influence instead of

signing an agreement in favor of the small group. The next example is an application to

patent races. We observe that firms form joint ventures in research and development in

order to share their knowledge and become more efficient. This means firms can raise the

probability of making the next invention and to get access to a monopoly for some time

through cooperation. Finally, remember the latest Soccer World Cup in Japan and South

Korea which is just one example of administrations bidding jointly for the concession of

a big cultural or sporting event.

Since we want to be explicit about the non-cooperative bargaining foundations of

coalition formation, we use the common approach of dividing the model into two stages.

In the first stage, players form coalitions and negotiate about the sharing rules of the

cooperative payoffs. The coalition formation game we use is inspired by the partnership

game of Gul [39] with the important difference that we allow players to exit the coalition

formation game in order to free-ride on the coalition formation of the other players. In

the second stage, coalitions play a contest game similar to the one proposed by Esteban

and Ray [30] within the resulting coalition structure of the first stage. Finally, coalitions

divide their obtained payoffs according to the sharing rules negotiated in the coalition

formation game.

We solve the two stages by backward induction and determine at first the expected

utility each coalition can assure itself in every possible coalition structure. Our natural
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prediction for this value is the unique Nash equilibrium payoff of the contest game played

within the considered coalition structure. We prove in Proposition 5.1 and specially in

Corollary 5.1 that the expected utility of a player who faces two single players is different

from the expected utility s/he would get if the other two players have formed a coalition.

Because of this externality the underlying contest game is a partition function game.

In the next step, we solve the coalition formation game for the equilibrium coalition

structures and the equilibrium expected utilities using stationary strategies. We show in

Proposition 5.2 that if the relative efficiency of effort is distributed in the same way as

the relative bargaining power, then the grand coalition forms. Moreover, if players are

sufficiently patient, then every player receives in equilibrium her/his relative efficiency of

effort. Finally, we show by means of a graphical analysis and an example that the grand

coalition is no longer the unique equilibrium coalition structure if every player has the

same bargaining power. Therefore, we may observe a strictly positive level of effort in

equilibrium which to our knowledge is a new result in models of coalition formation based

on bargaining.

Few papers have analyzed the question of coalition formation in contest games. Tan

and Wang [59] study the formation of alliances in a rent-seeking model with heterogenous

players and exogenously given effort levels. They show in a model of repeated conflict (if a

coalition of more than one player wins the prize, then the members of the alliance compete

further until a unique winner is determined) that an equilibrium coalition structure exists

for the case of three individuals and that in this case generally the two weak individuals

form a coalition against the strong one. Baik and Lee [4] and [5] study a rent-seeking model

with a linear cost function. They use the open membership game as coalition formation

game and obtain that coalitions with about fifty percent of the individuals are formed.

Esteban and Sákovics [31] consider a model of repeated conflict with endogenous effort

and bilateral coalition formation. For the case of three individuals their results predict

the formation of a coalition of size two. Finally, Bloch et al. [10] study the endogenous

formation of coalitions in a simplified version of the contest game of Esteban and Ray [30]

with a quadratic cost function. Their main result states that the grand coalition is the
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unique equilibrium coalition structure of the size announcement game by Bloch [9]. Since

a finite number of individuals are assumed to be identical, two individuals who belong to

the same coalition receive the same share of the coalitional payoff. Therefore, the prize

is divided equally among all individuals and the equilibrium level of conflict is zero.

The remainder is structured as follows: In the next Section, we introduce the contest

game and derive the partition function game. In Section 5.3, we solve the bargaining

model, and in Section 5.4, we discuss some of our modelling choices. The proof of Propo-

sition 5.2 can be found in the Appendix.

5.2 Contest as a Partition Function Game

Consider three individuals who fight over a prize with a value normalized to 1. Let

N = {1, 2, 3} be the set of individuals. A coalition C is a nonempty subset of N . A

coalition structure π is a partition of N . The set of all coalition structures is denoted by

Π. Let V (C, π) be the worth of coalition C in π.

We start by describing the expected utility maximization problem for the generic

individual of the coalition structure π = {1 |2| 3}. Every individual i makes at the same

time and independently of the others a non-productive effort ri ∈ R+. The efficiency of

effort of individual i is common knowledge and denoted by ni > 0. We normalize the

parameter vector n = (n1, n2, n3) to
∑3

i=1 ni = 1. We order the individuals by assuming

that n1 ≥ n2 ≥ n3 and define the total level of conflict as R =
∑3

j=1 njrj. The probability

that individual i wins the contest is assumed to be of the proportional form

pi (r;n) =
niri

∑3
j=1 njrj

.

If rj = 0 for all j, then pi (r;n) = ni by convention. Moreover, let the cost of effort be

equal to the level of effort.1 Therefore, the expected utility maximization problem for

1We make this assumption for purely technical reasons, because if we had considered a convex cost
function, then the calculation of the Nash equilibrium in the coalition structure π = {1 |2| 3} would have
become far too complicated.
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individual i given r−i is to choose ri ∈ R+ in order to

max
ri≥0

(

niri
∑3

j=1 njrj

− ri

)

. (5.1)

This part of our model is similar to a special case of the contest model proposed by

Esteban and Ray [30].2 In their model the cost of effort is a convex function, whereas we

consider the linear cost function suggested by Tullock [60]. The difference of our model

to the latter one stems from the fact that Tullock’s analysis is restricted to the case of

identical individuals.

Consider now the coalition structure π = {ij |k}. We assume that if a coalition forms,

then the members of a coalition agree to expend the same amount of effort and to choose

the common effort level in order to maximize the coalitional payoff.3 Therefore, the

coalition {i, j} has the following expected utility maximization problem: given rk, choose

rij ∈ R+ in order to

max
rij≥0

(

(ni+nj)rij

(ni+nj)rij+nkrk
− rij

)

. (5.2)

Accordingly, the expected utility maximization problem for individual k is: given rij,

choose rk ∈ R+ in order to

max
rk≥0

(

nkrk

(ni+nj)rij+nkrk
− rk

)

. (5.3)

If rk = rij = 0, then pij (rij, rk;n) = ni + nj and pk (rij, rk;n) = nk by convention.

So far we have described two of the three possible types of coalition structures. The

optimal decision of the grand coalition is to put zero effort, because it receives the private

good anyway. Therefore, it has a worth of 1.

Suppose that the coalition structure π is the outcome of the coalition formation game.

Since the contest game is a simultaneous move game, we take the Nash equilibrium of the

2Our interpretation of the parameter vector n is not the same as the one of Esteban and Ray [30],
because they regard ni as the relative size of the exogenously given group i. We discuss this point in
detail in the last Section of the paper.

3We could define the objective function of the coalition {i, j} by assuming that individuals do not
make the same amount of effort, an argument which has been brought forward by Bloch et al. [10]. We
provide evidence that our main results are invariant with respect to this change in our model later on.
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contest game played within π as the natural prediction of the effort vector. Proposition

5.1 characterizes the unique Nash equilibrium for every non-trivial coalition structure.

Proposition 5.1. (a) The unique Nash equilibrium (r∗1, r
∗
2, r

∗
3) in the coalition structure

π = {1 |2| 3} is as follows: (a.1) if n3 > 0.25, then r∗i =
2njnk(ninj+nink−njnk)

(ninj+nink+njnk)2
for all i;

(a.2) if n3 ≤ 0.25, then r∗3 = 0 and r∗1 = r∗2 = n1n2

(n1+n2)2
. (b) The unique Nash equilibrium

(

r∗ij, r
∗
k

)

in the coalition structure π = {ij |k} is r∗ij = r∗k = (ni + nj) nk.

Proof. a) Consider the coalition structure π = {1 |2| 3} and in particular, the maximiza-

tion problem (5.1) for player i. From the first order condition we obtain

niR−n2
i ri

R2 − 1 = 0 ⇔ ni

R

(

R
R
− niri

R

)

= 1 ⇔ pi = 1 − R
ni

. (5.4)

Since the level of conflict in equilibrium is implicitly given by the equation
∑3

i=1 p∗i = 1,

the equation
∑3

i=1

(

1 − R∗

ni

)

= 1 must be satisfied. Straightforward calculus yields

R∗ =
2n1n2n3

n1n2 + n1n3 + n2n3

=
2

m
,

where m ≡ n1n2+n1n3+n2n3

n1n2n3
is the harmonic mean of n. Plug R∗ into the last equation of

(5.4) to obtain p∗i =
ninj+nink−njnk

ninj+nink+njnk
. Rewrite the first equality of (5.4) in terms of ri to

deduce that

r∗i = niR
∗−(R∗)2

n2
i

=
ni2ninjnk(ninj+nink+njnk)−4n2

i n2
jn2

k

n2
i (ninj+nink+njnk)2

=
2njnk(ninj+nink−njnk)

(ninj+nink+njnk)2
. (5.5)

Hence, r∗i is positive if and only if ninj + nink − njnk > 0. We rewrite the condition

for player 1 and 2 as n1n2 + n3 (n1 − n2) > 0 and n2n3 + n1 (n2 − n3) > 0, respectively.

Since n1 ≥ n2 ≥ n3, it is obvious that both conditions are satisfied. Finally, consider

the condition for player 3 which can be stated as n3 > n1n2

n1+n2
. Since the weak inequality

1
4
(t1 + t2) ≥ t1t2 holds for any t1, t2 ∈ [0, 1], we have as a particular case 1

4
(n1 + n2) ≥

n2n1. Hence, n3 > 0.25 is a necessary condition for r∗ > 0. Evaluating the second order

condition at the unique critical point yields

(n2
i−n2

i )(R∗)2−2R∗ni(niR
∗−n2

i r∗i )
R4 < 0,
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where the inequality holds because of R∗ − nir
∗
i =

∑

j 6=i njr
∗
j > 0. Hence, if n3 > 0.25,

then r∗i =
2njnk(ninj+nink−njnk)

(ninj+nink+njnk)2
for all i constitutes the unique Nash equilibrium of the

contest game in the coalition structure π = {1 |2| 3}.

Suppose that n3 ≤ 0.25. Then r∗3 = 0, and the first order condition of the max-

imization problem (5.1) for player i, given r3 = 0 and rj, is ni

niri+njrj
(1 − pi) = 1.

We rewrite it as p∗i (1 − p∗i ) = r∗i . We use p∗3 = 0 and obtain p∗1p
∗
2 = r∗1 = r∗2. Fi-

nally, because p∗i =
nir

∗
i

nir
∗
i +njr∗j

, we verify that r∗1 = r∗2 = n1n2

(n1+n2)2
. Since the first or-

der condition is as well sufficient we have shown that if n3 ≤ 0.25, then the vector

(r∗1, r
∗
2, r

∗
3) =

(

n1n2

(n1+n2)2
, n1n2

(n1+n2)2
, 0
)

constitutes the unique Nash equilibrium of the contest

game in the coalition structure π = {1 |2| 3}.

(b) We turn now to the coalition structure π = {ij |k}. The first order condition of

the maximization problems (5.2) and (5.3) are

ni+nj

(ni+nj)rij+nkrk
(1 − pij) − 1 = 0 and nk

(ni+nj)rij+nkrk
(1 − pk) − 1 = 0. (5.6)

We multiply the first equation of (5.6) by rij and the second one by rk and obtain

the condition p∗ijp
∗
k = r∗ij = r∗k. In the next step, we use the definitions of pij and pk

in order to get that r∗ij = (ni + nj) nk. Finally, we evaluate the second order condi-

tions in the corresponding critical points. Since it is easy to verify that the conditions

−
2(ni+nj)

2nkr∗
k

((ni+nj)r∗ij+nkr∗
k)

3 < 0 and −
(ni+nj)n

2
k
r∗ij

((ni+nj)r∗ij+nkr∗
k)

3 < 0 hold, we have shown that the vec-

tor
(

r∗ij, r
∗
k

)

= ((ni + nj) nk, (ni + nj) nk) constitutes the unique Nash equilibrium in the

coalition structure π = {ij |k}.

We comment on Proposition 5.1 with respect to two points. First, the corner equilib-

rium in the coalition structure π = {1 |2| 3} for n3 ≤ 0.25 is due to the assumption of a

linear cost function (a sufficient condition assuring the existence of an interior equilibrium

is limri→0 c′(ri) → 0). The intuition of this result is as follows: If the efficiency of effort

of individual 3 is rather small and individual 1 and 2 play best responses, then individual

3 has a negative expected payoff by exerting a strictly positive level of effort because the

costs of a small effort do not tend sufficiently fast to zero given the negligible probability
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of winning the prize. Hence, individual 3 prefers not to make any effort at all, and, as a

consequence, the other two individuals behave as if the third individual would not exist.

Second, notice that coalition {i, j} and individual k exert the same level of effort in the

unique equilibrium in the coalition structure π = {ij |k}. This is a known result for the

rent seeking model of Tullock [60] with two identical individuals. The difference is that

due to the heterogeneity factor, coalition {i, j} and individual k do not have any more

the same winning probability which implies that the expected utilities differ.

We derive the partition function game V from Proposition 5.1 by plugging the equilib-

rium efforts for every type of coalition structure into the corresponding objective functions.

Corollary 5.1. The partition function game V is equal to

V (123, {123}) = 1

V (ij, {ij |k}) = (ni + nj)
2

V (k, {ij |k}) = n2
k

V (k, {i |j| k}) =



















(

1 − 2ninj

ninj+nink+njnk

)2

if n3 > 0.25
(

nk

n1+n2

)2

if n3 ≤ 0.25 and k 6= 3

0 if n3 ≤ 0.25 and k = 3.

5.3 The Coalition Formation Game

Since V summarizes all necessary information of the contest game, we are ready to address

the question of coalition formation. As it has already been outlined, the main difference

between our coalition formation game and the partnership game of Gul [39] is that our

game allows coalitions to opt out, a change which is crucial for deriving non-efficient

outcomes. The game is parameterized by a common discount factor 0 < δ < 1 and a

probability vector q = (q1, q2, q3) representing the relative bargaining power of the players.

The Bilateral Bargaining Game

Period 0:

Players decide sequentially and publicly whether to stay in the coalition formation game
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or to leave it according to the ordering 1, 2, 3. Every player who exits the coalition

formation game forms a coalition on his own. Let S0 be the set of players who decide to

stay and denote by s0 the cardinality of S0. If s0 ≤ 1, then the contest game is played

within the coalition structure {1 |2| 3}. If s0 ≥ 2, then a randomly selected bilateral

meeting among the players in S0 takes place. We assume that every possible meeting

occurs with equal probability. Suppose that i and j meet each other. Player i is chosen

with probability qi,j = qi

qi+qj
to make an offer x0

i,j ∈ R+ which can be accepted or rejected

by j. The offer describes j’s share of the payoff V (ij, {ij |k}). If j rejects x0
i,j, then we

set π0 = {1 |2| 3} and pass to the next period. If j accepts x0
i,j, then the coalition {i, j}

forms and the actual coalition structure becomes π0 = {ij |k}. If k 6∈ S0, then the process

of coalition formation stops and the contest game is played within the coalition structure

π0. If k ∈ S0, then we pass to the next period.

Period t:

The game arrives at period t > 0 if (a) πt−1 = {1 |2| 3} and st−1 ≥ 2, or if (b) πt−1 =

{ij |k} and st−1 = 3. Players in St−1 decide sequentially and publicly according to the

ordering 1, 2, 3 restricted to St−1 whether to stay or to leave the coalition formation game.

Let St be the set of players who decide to stay and denote by st the cardinality of St.

Suppose that πt−1 = {1 |2| 3}. If st ≤ 1, then the contest game is played within the

coalition structure πt−1. If st ≥ 2, then a randomly selected bilateral meeting among

players in St takes place. Every possible meeting occurs with equal probability. Suppose

that i and j meet each other. Player i is chosen with probability qi,j = qi

qi+qj
to make an

offer of xt
i,j ∈ R+ which can be accepted or rejected by j. If j rejects xt

i,j, then we set

πt = πt−1 and pass to the next period. If j accepts xt
i,j, then the coalition {i, j} forms

and the actual coalition structure becomes πt = {ij |k}. If k 6∈ St, then the process of

coalition formation stops and the contest game is played within the coalition structure

πt. If k ∈ St, then we pass to the next period.

Suppose that πt−1 = {ij |k}. If st < 3, then the final coalition structure is πt−1

and the corresponding contest game is played. If st = 3, then player i, who represents
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the coalition {i, j} and is the first in the ordering between i and j generated by 1,2,3,

and player k meet. Player i is chosen with probability qij,k = qi + qj to make an offer

xt
ij,k ∈ R+ which can be accepted or rejected by k. The offer describes k’s share of the

payoff V (123, {123}). If k rejects xt
ij,k, then we set πt = πt−1 and pass to the next period.

If k accepts xt
ij,k, then the grand coalition forms and payoffs are assigned accordingly.

Figure 5.1 below represents the Bilateral Bargaining game for t = 0 and t = 1.

t=0Sequential opting out

All players stayAll other nodes

1/3
1/3

1/3

1

3 AR

 { 1,3}  forms
t=1

Sequential opting out

Follow the protocol of t=0

2 opts out

All other nodes All players stay

{1,2}
{1,3}

{2,3}

3

1

2 AR

{ 1,2,3} formsFollow the protocol of t=1

2

1 and 2 opt out

 forms

31

1

qq

q

+ 31

3

qq

q

+

0
3,1x

1
2,13x

31 qq +
2q

{ }321

 forms{ }213

{{1 ,3},2}

1

Figure 5.1: The Bilateral Bargaining Game

We would like to characterize the equilibrium coalition structures and utilities for any

arbitrary vector q. Unfortunately, our parameter space would be enlarged too much,

because our results have to rely partly on a graphical analysis even for a fixed q. There-

fore, we analyze the bilateral bargaining game for the probability vectors (n1, n2, n3) and
(

1
3
, 1

3
, 1

3

)

. The first probability vector is focal, because it reflects symmetry between bar-

gaining power and efficiency of effort, the other one has been studied by Gul [39].
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Proposition 5.2. Suppose that q = n. For all δ < 1, the bilateral bargaining game has a

unique stationary subgame perfect equilibrium outcome. Let U∗
i (δ) be the expected utility

of player i in the equilibrium corresponding to δ. Then limδ→1 U∗
i (δ) = ni. Moreover, the

grand coalition is the unique equilibrium coalition structure.

The detailed proof can be found in the Appendix and is sketched now: We solve the

coalition formation game by backward induction. To do so suppose that the offer xt
i,j

has been accepted by j in period t and that coalition {i, j} and individual k are still

in the coalition formation game at t + 1. Then, it is easy to show that the offers xt+1
k,ij

and xt+1
ij,k are acceptable offers (Lemma 5.2) and that is optimal for coalition {i, j} and

individual k to make offers which leaves the other party indifferent between accepting and

rejecting it. Given the optimal offers x∗
ij,k = δ2nk and x∗

k,ij = δ2 (ni + nj) it is possible to

calculate the one-period discounted expected utilities (U∗
i (δ, xt

i,j)+U∗
i (δ, xt

i,j) = δ(ni +nj)

and U∗
k (δ, xt

i,j) = δnk) and to see that no individual has incentives to drop out of the

coalition formation game in the beginning of period t + 1 (Lemma 5.3). Therefore, the

grand coalition is the unique coalition structure to be observed after the formation of

coalition {i, j} when individual k has not opted out before. Next, we solve for the optimal

strategies at t and analyze whether coalition {i, j} really forms. If no individual has

left the coalition formation game until the beginning of period t, then Nature chooses

among six different options, because there are three different coalitions with two different

proposers each. Again it is optimal for i to make an offer xt
i,j which leaves j indifferent

between accepting and rejecting it, an observation which allows us to derive a linear

system of three equations with the expected utilities as unknown variables (Lemma 5.4).

At this stage every individual incorporates the knowledge that the grand coalition forms

for sure afterwards. The solution of the linear system is such that every individual gets

his efficiency of effort as the discount rate tends to 1. Finally, we check that no individual

wants to opt out in the beginning of period t (Lemma 5.5).

Proposition 5.2 is an efficiency result which provides a planner with important infor-

mation how to minimize conflict in society. But since there is empirical evidence for a
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positive level of conflict, we show next that it is possible to sustain other coalition struc-

tures in equilibrium if the vector of relative bargaining power q is sufficiently different

from the vector of relative efficiency n. With respect to the examples stated before we

have the following situations in mind:

• There are countries where big ethnic groups have little political power. In certain

situations, these groups are not willed to negotiate over political decisions with the

ruling party and rather decide to fight for their preferred outcome.

• New biotechnological firms entering a market can be very efficient in developing

patents and medicaments. Often, these firms form joint ventures with incumbents

that have a high bargaining power due to their financial assets.

• Japan and South Korea have little influence within the FIFA (Fédération Interna-

tionale de Football Association) who decides where to organize the Soccer World

Cup. On the other hand, both countries are able to make big marketing efforts and

provide up to date infrastructures.

In order to derive the inefficiency result we consider now the case when q =
(

1
3
, 1

3
, 1

3

)

.

Since the calculations for characterizing the stationary subgame perfect equilibrium of

the corresponding bilateral bargaining game become even much longer, we do not present

a formal derivation of the result. Rather, we concentrate on a graphical representation

and calculate a detailed example.

In Figure 5.2, the set of points (n1, n2, n3) fulfilling the constraints n1 ≥ n2 ≥ n3 and

n1 + n2 + n3 = 1 are the ones lying within the triangle indicated by the thicker lines.

The grand coalition forms for sure for all combinations of points (n1, n2, n3) lying in non-

shaded area of the triangle. The lightly grey shaded area within the triangle corresponds

to the set of points (n1, n2, n3) for which the grand coalition forms with probability 2
3
.

The grand coalition forms with probability 1
3

for the set of points (n1, n2, n3) lying in the

darkly grey shaded area within the triangle. The black shaded area within the triangle

corresponds to set of points (n1, n2, n3) for which the grand coalition does not form.
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1nn 21 =+

184.0n3 =

25.0n3 =
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21 nn = 578.0n1 =

1n

2n

Figure 5.2: Equilibrium Coalition Structures

Example 5.1. Let n = ( 8
10

, 1
10

, 1
20

). The partition function game V is equal to

V (123, {123}) = 1

V (12, {12 |3}) = 0.81 V (13, {13 |2}) = 0.81 V (23, {23 |1}) = 0.04

V (3, {12 |3}) = 0.01 V (2, {13 |2}) = 0.01 V (1, {23 |1}) = 0.64

V (1, {1 |2| 3}) = 0.79 V (2, {1 |2| 3}) = 0.015 V (3, {1 |2| 3}) = 0.

Suppose that δ → 1. We solve the coalition formation game using stationary strategies

for the vector of relative bargaining powers q =
(

1
3
, 1

3
, 1

3

)

. If j has accepted the offer xt
i,j

and if st+1 = 3, then the optimal offers in period t + 1 are accepted and are such that

x∗
ij,k = 1

3
and x∗

k,ij = 2
3
. Therefore, in this subgame the one-period discounted utilities are

equal to

U∗
i (xt

i,j) = 2
3
(1 − x∗

ij,k)(1 − xt
i,j) + 1

3
x∗

k,ij(1 − xt
i,j) = 2

3
(1 − xt

i,j)

U∗
j (xt

i,j) = 2
3
(1 − x∗

ij,k)x
t
i,j + 1

3
x∗

k,ijx
t
i,j = 2

3
xt

i,j

U∗
k (xt

i,j) = 2
3
x∗

ij,k + 1
3
(1 − x∗

k,ij) = 1
3
.

We check that (a) if {i, j} = {1, 2} or if {i, j} = {1, 3}, then coalition {i, j} leaves the

coalition formation game after its formation and the coalition structure π = {ij |k} forms,

and (b) if {i, j} = {2, 3}, then individual 1 opts out of the coalition formation game and

the final coalition structure is equal to π = {23 |1}. This information is incorporated
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by the individuals in order to determine their optimal offer in period t. If st = 3, then

i makes an offer x∗
i,j which is such that x∗

i,j = U∗
j , where U∗

j is the expected utility of

the game being equal to the expected continuation utility from rejecting the offer. In

particular,

U∗
1 = 1

6
(0.81 − U∗

2 ) + 1
6
(0.81 − U∗

3 ) + 1
3
0.64 + 1

3
U∗

1

U∗
2 = 1

6
(0.81 − U∗

1 ) + 1
6
(0.04 − U∗

3 ) + 1
3
0.01 + 1

3
U∗

2

U∗
3 = 1

6
(0.81 − U∗

1 ) + 1
6
(0.04 − U∗

2 ) + 1
3
0.01 + 1

3
U∗

3 .

In order to see this consider the expected utility U∗
1 of individual 1. With probability

1
6

individual 1 is the proposer of coalition {1, j}, j = 2, 3. Since coalition {1, j} leaves

the coalition formation game after its formation, the coalition gets a final payoff of 0.81

from which individual 1 has to give U∗
j to j. Nature proposes the coalition {2, 3} with

probability 1
3
. In this case, individual 1 opts out after the formation of the coalition and

gets his stand alone value in the coalition structure {23 |1} which is equal to 0.64. Finally,

with probability 1
3

individual 1 acts as a responder and gets his expected continuation

value U∗
1 . The solution of the linear system of three equation is U∗

1 = 0.70 and U∗
2 =

U∗
3 = 0.03. Notice that if k is the only individual leaving the coalition formation game

at t, then coalition {i, j} splits the value V (ij, {ij |k}) equally in the unique stationary

subgame perfect equilibrium of the continuation game. Therefore, individuals opt out

according to the following graph in the beginning of period t.
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Figure 5.3: Stage t Opting Out Game
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As indicated by the arrows no individual leaves the coalition in period t, and therefore,

in equilibrium every two person coalition forms with probability 1
3
.

Finally, we comment which coalition structure forms in equilibrium in the other black

shaded area in Figure 5.2. If n = (0.65, 0.25, 0.1) (this vector belongs to the black area

divided by the dark grey areas), n = (0.5, 0.3, 0.52) (this is the dark area to the left)

and n = (0.6, 0.35, 0.05) (this is the area to the upper left), then the unique equilibrium

coalition structure is the one consisting of singletons.

5.4 Discussion

It is difficult to generalize our findings to more than three players, because we cannot write

the worth of a coalition in a coalition structure as a function of the size of coalitions. In the

literature this special function is termed “valuation”. To derive it one has to concentrate

on the case of identical individuals as it has been done by Bloch et al. [10]. This is the

main reason why we restrict our analysis to the case of three individuals.

The next point regards the interpretation of the parameter vector n. So far we have

considered a model with three individuals who differ in the efficiency of effort. Esteban

and Ray [30] assume that the prize is an excludable public good and define the parameter

ni as the relative size of the exogenously given group i. Following their assumption that

all individuals who belong to the same group i are enforced by a binding agreement

to make the same level of effort ri, we interpret equation (5.1) as the expected utility

maximization problem of the representative individual of group i. Accordingly, if two

groups i and j form a coalition, then the relative group size of coalition {i, j} becomes

ni + nj. Hence, equation (5.2) states the expected utility maximization problem of the

representative individual of coalition {i, j}.

Finally, we want to introduce a different objective function for coalition {i, j}. Bloch

et al. [10] analyze a model with a finite number of homogeneous individuals. In their

model individual i and j do not necessarily make the same amount of effort after the

formation of coalition {i, j} has been formed. Nonetheless, it is assumed that it is still
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in the interest of the individuals to maximize the joint profits. The new expected utility

maximization problem of coalition {i, j} is to take rk as given and to choose ri and rj in

order to

max
ri,rj≥0

(

niri+njrj

niri+njrj+nkrk
− ri − rj

)

.

Similarly, the new expected utility maximization problem for individual k is to take ri

and rj as given and to choose rk in order to

max
rk≥0

(

nkrk

niri+njrj+nkrk
− rk

)

.

It is easy to see that if ni > nj, then r∗j = 0. This result can be interpreted as a buy-out

of individual j by individual i. By making all the necessary calculations we establish that

the corresponding values of the partition function game become

V (ij, {ij |k}) =
(

max{ni;nj}

max{ni;nj}+nk

)2

and V (k, {ij |k}) =
(

nk

max{ni,nj}+nk

)2

.

We do not show formally that Proposition 5.2 does not change due to the new values.

The key point is to check whether a player wants to opt out of the coalition formation

game after the formation of coalition {i, j}. All players stay in the game if and only if

ni+nj ≥
(

max{ni;nj}

max{ni;nj}+nk

)2

and nk ≥
(

nk

max{ni;nj}+nk

)2

. We rewrite the first weak inequality

as (1 − nk) (1 − nj)
2 ≥ (1 − nj − nk)

2 and reduce it to ni + nj ≥ n2
j . Since nj ≥ n2

j , the

weak inequality holds. We rewrite the second inequality as n2
i ≥ nk (1 − nk − 2ni) =

nk (nj − ni). Since ni ≥ nj by assumption, the weak inequality holds.

Appendix

We prove Proposition 5.2 in a series of Lemmata. Since we restrict ourselves to stationary

strategies, let xS,T be the offer made by S to T at any t. Furthermore, the partition

function game V is said to be strictly superadditive if for all π ∈ Π and for all S, T ∈ π

we have that V (S ∪ T, {(π\T\S) ∪ (S ∪ T )}) > V (S, {π}) + V (T, {π}).

Lemma 5.1. The partition function game V is strictly superadditive.
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Proof. We prove that Ṽ (n) ≡ V (ij, {ij |k}) − V (i, {i |j| k}) − V (j, {i |j| k}) > 0 for all

n by means of a geometric argument. Suppose that n3 > 0.25. In Figure 5.4 we draw

the level curve Ṽ (n) = 0 when {i, j} = {1, 2}. The three straight lines correspond to

the set of points satisfying the conditions n1 = 0.25, n2 = 0.25 and n1 + n2 = 0.75.

Therefore, the shaded triangle in the center of the figure is the set of points (n1, n2, n3)

where n1 > 0.25, n2 > 0.25 and n1 + n2 < 0.75. Notice that this area is bounded away

from the level curve at zero. Since Ṽ (n) is a continuous function in n, the result follows

if we find a point (n1, n2, n3) in the shaded area for which Ṽ (n) > 0. If ni = 1
3

for all i,

then Ṽ
(

1
3
, 1

3
, 1

3

)

= 4
9
− 2

9
= 2

9
which proves the result.

25.0n2 =

25.0n1 = 25.0n3 =

( ) 0nV
~ =

1n

2n

Figure 5.4: Ṽ (n) = 0 when n3 > 0.25

Suppose now that n3 ≤ 0.25. By Corollary 5.1, taking k = 3, we have to prove that

the inequality Ṽ (n) = (n1 + n2)
2 −

n2
1+n2

2

(n1+n2)2
> 0 holds. We use Figure 5.5 to establish the

result. The four straight lines correspond to the conditions n1 + n2 = 0.75, n1 + n2 = 1,

n1 = n2 and n2 = n3. The shaded area indicates the set of points (n1, n2, n3) satisfying the

conditions 0.75 < n1 + n2 ≤ 1 and n1 ≥ n2 ≥ n3. Using the point (n1, n2, n3) =
(

2
5
, 2

5
, 1

5

)

we establish that Ṽ
(

2
5
, 2

5
, 1

5

)

= 0.409 − 0.32 > 0. Hence, Ṽ (n) takes strictly positive

values in this area whenever nl > 0 for all l.

Similarly, by Corollary 5.1 and taking i = 3, we have to prove that (n3 + nj) (1 − n3) >

nj. This inequality is equivalent to n3 (1 − n3 − nj) = n3nk > 0. Hence, individual

3 and j profit from forming a coalition. Finally, we have to check that the inequality
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2n

1nn 21 =+

( ) 0nV =

25.0n3 =

32 nn =

21 nn =

1n

Figure 5.5: Ṽ (n) = 0 when n3 ≤ 0.25

V (123, {123}) > V (ij, {ij |k}) + V (k, {ij |k}) holds for all possible permutations of the

set of players. This follows, because the equilibrium level of conflict R∗ is strictly positive

in any coalition structure of the type π = {ij |k}.

Lemma 5.2. Let q = n and suppose that xi,j has been accepted at t. If st+1 = 3, then

x∗
k,ij and x∗

ij,k are acceptable offers.

Proof. Suppose that x∗
k,ij is not an acceptable offer. If x∗

ij,k is not an acceptable offer

either, then coalition {i, j} and player k will negotiate for ever, because by stationarity

st+m = 3 for all m ≥ 2. In this case the final utility of every player is zero. But if player k

had left the game before, then s/he would have received an utility of n2
k > 0 from playing

the contest game within the coalition structure π = {ij |k}. Hence, we have reached a

contradiction to st+1 = 3 and conclude that x∗
ij,k must be an acceptable offer. Since x∗

k,ij

is not acceptable by assumption, the one-period discounted expected utility of player k

is equal to

Uk

(

δ, x∗
i,j

)

= δ
(

(ni + nj) x∗
ij,k + δnk (ni + nj) x∗

ij,k + δ2n2
k (ni + nj) x∗

ij,k + ...
)

= δ (ni + nj) x∗
ij,k

∞
∑

τ=0

δτnτ
k = δ

(ni+nj)x
∗
ij,k

1−δnk
.

Player k accepts the offer xij,k if and only if it is at least as high as the discounted value

of the expected continuation utility from rejecting it; that is, x∗
ij,k ≥ δUk (δ, xi,j). On the
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other hand player i will not offer more than Uk (δ, xi,j). Thus, x∗
ij,k =

δ(ni+nj)

1−δnk
x∗

ij,k. Since

δ(ni+nj)

1−δnk
6= 1 for all δ < 1, we must have x∗

ij,k = 0. This is a contradiction to st+1 = 3,

because player k can get strictly more by leaving the game and playing the contest game

within the coalition structure π = {ij |k}.

Lemma 5.3. Let q = n and suppose that xi,j has been accepted at t. If st = 3, then the

grand coalition forms and the one-period discounted expected utilities are equal to

(

U∗
i (δ, xi,j) , U∗

j (δ, xi,j) , U∗
k (δ, xi,j)

)

= (δ (ni + nj) (1 − xi,j) , δ (ni + nj) xi,j, δnk).

Proof. Suppose that st+1 = 3. Since we know from Lemma 5.2 that x∗
k,ij and x∗

ij,k are

acceptable offers, the one-period discounted expected utilities are given by

U∗
i (δ, xi,j) = δ

(

(ni + nj) (1 − xi,j)
(

1 − x∗
ij,k

)

+ nk (1 − xi,j) x∗
k,ij

)

U∗
j (δ, xi,j) = δ

(

(ni + nj) xi,j

(

1 − x∗
ij,k

)

+ nkxi,jx
∗
k,ij

)

U∗
k (δ, xi,j) = δ

(

(ni + nj) x∗
ij,k + nk

(

1 − x∗
k,ij

))

.

(5.7)

Player i accepts x∗
k,ij if and only if (1 − xi,j) x∗

k,ij ≥ δU∗
i (δ, xi,j). Therefore, in equilibrium

the equation must be satisfied with equality. Using a similar argument we establish that

x∗
ij,k = δU∗

k (δ, xi,j). The solution of the system of linear equations (5.7), given xi,j, is

(

x∗
ij,k, x

∗
k,ij

)

= (δ2nk, δ
2 (ni + nj))

(

U∗
i (δ, xi,j) , U∗

j (δ, xi,j) , U∗
k (δ, xi,j)

)

= (δ (ni + nj) (1 − xi,j) , δ (ni + nj) xi,j, δnk) .

This would be an equilibrium if it is optimal for every player to stay in the game after

the formation of coalition {i, j}. If player k had left the game before, then s/he would

have received an expected utility of δn2
k which is strictly less than δnk. If player j had

opted out, then s/he would have received an expected utility of δ (ni + nj)
2
xi,j which is

strictly less than U∗
j (δ, xi,j). Finally, player i does not to opt out either, because if s/he

did so, then her/his expected utility would be equal to δ (n1 + n2)
2 (1 − xi,j). But this is

strictly less than U∗
i (δ, xi,j).

Lemma 5.4 Let q = n and suppose that st = 3. Then the one-period discounted expected

utility of player l is equal to U∗
l (δ) = δnl for all l = 1, 2, 3.
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Proof. If player j accepts the offer xi,j at t, then U∗
i (δ, xi,j) + U∗

j (δ, xi,j) = δ (ni + nj).

The corresponding stand alone expected utility of individual k is U∗
k (δ, xi,j) = δnk. Since

the final utility of coalition {i, j} is independent of the applied sharing rule, player i

selects the offer that makes individual j indifferent between accepting and rejecting

it. That is, δ (ni + nj) x∗
i,j = δU∗

j (δ), where U∗
j (δ) is the expected utility of player j

at the beginning of stage t. Hence, the share which remains for player i is equal to

δ (ni + nj)
(

1 − x∗
i,j

)

= δ (ni + nj) − δU∗
j (δ). Player i meets player j and is chosen to

make the offer with probability 1
3

ni

ni+nj
. Player j and k meet with probability 1

3
. In this

case player i gets his stand alone value δni. Finally, player i meets j in the role of the

responder with probability 1
3

nj

ni+nj
. Therefore, the expected utilities of the players are

U∗
1 (δ) = 1

3
n1

n1+n2
[δ (n1 + n2) − δU∗

2 (δ)] + 1
3

n1

n1+n3
[δ (n1 + n3) − δU∗

3 (δ)] + 1
3
δn1+

+1
3

(

n2

n1+n2
+ n3

n1+n3

)

δU∗
1 (δ)

U∗
2 (δ) = 1

3
n2

n1+n2
[δ (n1 + n2) − δU∗

1 (δ)] + 1
3

n2

n2+n3
[δ (n2 + n3) − δU∗

3 (δ)] + 1
3
δn2+

+1
3

(

n1

n1+n2
+ n3

n2+n3

)

δU∗
2 (δ)

U∗
3 (δ) = 1

3
n3

n1+n3
[δ (n1 + n3) − δU∗

1 (δ)] + 1
3

n3

n2+n3
[δ (n2 + n3) − δU∗

2 (δ)] + 1
3
δn3+

+1
3

(

n1

n1+n3
+ n2

n2+n3

)

δU∗
3 (δ) .

The solution of the system of three linear equation and three unknowns is U∗
l (δ) = δnl

for all l = 1, 2, 3.

Lemma 5.5. Let q = n. Then, no player leaves the game at t.

Proof. Assume that only player k leaves the game at t. Since the partition function game

V is strictly superadditive by Lemma 5.1, we can apply similar arguments to the ones used

in Lemmata 5.2 and 5.3 to show that player i and j form a coalition and adopt the sharing

rules
(

x∗
i,j, x

∗
j,i

)

=
(

δ2 nj

ni+nj
, δ2 ni

ni+nj

)

in the unique stationary subgame perfect equilibrium

of the continuation game. This implies that the expected utilities of the players in this

subgame are equal to
(

U∗
i (δ) , U∗

j (δ) , U∗
k (δ)

)

= (δni (ni + nj) , δnj (ni + nj) , δn2
k). Using

all payoffs of the stationary equilibrium of the continuation games that we have already

obtained, we represent in Figure 5.6 the game tree at t.



5.4. Discussion 91

1

2 2

3 3 3 3

stay leave

stay leave stay leave

stay leave stay leave stay leave stay leave

















3

2

1

n

n

n ( )
( )
















+
+

2
3

212

211

n

nnn

nnn ( )

( )















+

+

313

2
2

311

nnn

n

nnn }{( )
}{( )
}{( )
















321,3

321,2

321,1

V

V

V }{( )
}{( )
}{( )
















321,3

321,2

321,1

V

V

V}{( )
}{( )
}{( )
















321,3

321,2

321,1

V

V

V}{( )
}{( )
}{( )
















321,3

321,2

321,1

V

V

V

( )
( )
















+
+

323

322

2
1

nnn

nnn

n
δ δ δ δ δ δ δ δ

Figure 5.6: The Opting Out Game at t

We prove in the next step that player 3 may only leave the game whenever player 1

and 2 have left the game before. If n3 ≤ 0.25, then player 3 can do stay, because in this

case V (3, {1 |2| 3}) = 0. Assume now that n3 > 0.25. In Figure 5.7, we draw the level

curve V̂ (n) ≡ ni (ni + nj) −
(

1 − 2njnk

ninj+nink+njnk

)2

= 0. The shaded area corresponds to

the set of points (n1, n2, n3) where ni ≥ 0.25. We check that V̂
(

1
3
, 1

3
, 1

3

)

= 2
9
− 1

9
= 1

9
> 0.

Hence, by continuity of V̂ (n) and since the shaded area and the indifference curve do

not intersect, we have that V̂ (n) takes positives values all over the area of interest. We

conclude that player 3 stays in the game.

( ) 0nV̂ =

25.0n2 =

2n

25.0n3 =25.0n1 =

1n

Figure 5.7: V̂ (n) when n3 > 0.25
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We turn now to the stay or exit decision of player 2 given that player 3 stays in the

game afterwards. Since n2 > n2
2, s/he stays in the game whenever player 1 has decided

to stay in the game before. Suppose that player 1 has left the game and that n3 > 0.25.

Player 2 does not leave the game, because by taking i = 2 and j = 3 in Figure 5.6, we

can prove that s/he gains from staying. Suppose now that n3 ≤ 0.25. Player 2 stays in

the game if and only if the condition n2 (n2 + n3) ≥
(

n2

n2+n1

)2

is satisfied. We restate

the weak inequality in the form (1 − n1) (1 − n3)
2 ≥ n2 = 1 − n1 − n3. This condition is

equivalent to (1 − n1 − n3 + n1n3) (1 − n3) ≥ 1 − n1 − n3. We perform all the necessary

multiplications to arrive at n1 (1 − n3) − n3 (1 − n1 − n3) ≥ 0. Since n2
3 > 0, we have

shown that it is optimal for player 2 to stay in the game. Finally, player 1 decides to stay

given that player 2 and 3 do not leave the game afterwards, because her/his payoff from

leaving is δn2
1 < δn1.

Proof of Proposition 5.2. By Lemma 5.5 we have that st = 3. Therefore, we can

apply Lemma 5.4 to get that U∗
l (δ) = δnl for all l which reduces to U∗

l (δ) = nl as δ → 1.

Moreover, the grand coalition forms independently of the Nature moves, because it has

been seen in Lemmata 5.2 and 5.4 that every offer is accepted in equilibrium. �
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