
PLATFORM OF I NTRUSION M ANAGEMENT

DESIGN AND I MPLEMENTATION

by

Joaquı́n Garcı́a Alfaro

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OFDOCTOR OFPHILOSOPHY IN COMPUTER SCIENCE

Supervised by

Joan Borrell Viader

Frédéric Cuppens

c© Copyright 2006 by Joaquı́n Garcı́a Alfaro

Abstract

Since computer infrastructures are currently getting morevulnerable than ever, traditional

security mechanisms are still necessary but not sufficient.We need to design effective

response techniques to circumvent intrusions when they aredetected. We present in this

dissertation the design of a platform which is intended to act as a central point to analyze

and verify network security policies, and to control and configure – without anomalies

or errors – both prevention and detection security components. We also present in our

work a response mechanism based on a library that implementsdifferent types of counter-

measures. The objective of such a mechanism is to be a supporttool in order to help

the administrator to choose, in this library, the appropriate counter-measure when a given

intrusion occurs. We finally present an infrastructure for the communication between the

components of our platform, as well as a mechanism for the protection of such components.

All these approaches and proposals have been implemented and evaluated. We present the

obtained results within the respectives sections of this dissertation.

This thesis has mainly been funded by the Agency for Administration of University and

Research Grants (AGAUR) of the Ministry of Education and Universities (DURSI) of the

Government of Catalonia (reference number 2003FI00126). The research was jointly car-

ried out at theUniversitat Aut̀onoma de Barcelonaand at theEcole Nationale Suṕerieure

des T́elécommunications de Bretagne.

Keywords: Security policies, intrusion detection, response, counter-measures, event cor-

relation, communicationpublish/subscribe, access control, components protection.

Résuḿe

Aujourd’hui les systèmes informatiques sont plus vulnérables aux activités malveillantes

qu’auparavant. C’est pour cela que l’utilisation des mécanismes de sécurité tradition-

naux est encore nécessaire mais pas suffisante. Nous devonsélaborer des méthodes ef-

ficaces de détection et de réponse aux attaques afin d’arrêter les événements détectés. Nous

présentons dans cette thèse la conception d’une architecture générale qui agira en tant que

point central pour analyser et vérifier des politiques de s´ecurité réseaux, et pour contrôler

et configurer – sans anomalies ou erreurs de configuration – des composants de sécurité

préventifs et de détection. Nous présentons égalementun mécanisme de réponse basé sur

une bibliothèque de différents types de contremesures. L’objectif de ce mécanisme est

d’aider l’administrateur à choisir dans cette bibliothèque la contremesure la mieux adaptée

quand une intrusion est détectée. Nous finissons par la pr´esentation d’une infrastructure

pour la communication des composants de notre plateforme, et d’un mécanisme pour la

protection des composants de celle-ci. Toutes les propositions et approches introduites

dans cette thèse ont été implémentées et évaluées. Nous présentons les résultats obtenus

dans les sections respectives de cette dissertation.

Cette thèse a été principalement financée par l’Agence de Gestion d ’Aides Universi-

taires et de Recherche (AGAUR) du Département d’Universités, Recherche et Société de

l’Information (DURSI) de la Généralité de Catalogne (numéro de référence 2003FI00126).

Les travaux ont été réalisés conjointement à l’Université Autonome de Barcelone et à

l’Ecole Nationale Supérieure des Télécommunications de Bretagne.

Mots clés: Politiques de sécurité, détection d’intrusion, contremesures, corrélation d’évé-

nements, communicationpublish/subscribe, contrôle d’accès, protection des composants.

Resumen

Puesto que los sistemas informáticos son cada vez más vulnerables a actividades deshones-

tas, los mecanismos tradicionales de seguridad son todavı́a necesarios, pero no suficientes.

Es necesario elaborar nuevos métodos de detección y de respuesta de manera que sea posi-

ble detener acciones de ataque tan pronto como sean realizadas. En esta tesis se presenta

el diseño de una arquitectura de carácter general que pretende ser utilizada tanto para la

realización de tareas de análisis y verificación de polı́ticas de seguridad en red, como para

controlar y configurar – sin anomalias ni errores de configuración – componentes de se-

guridad preventivos y de vigilancia. Se presenta también en esta tesis un mecanismo de

respuesta basado en librerı́as de contramedidas. El objetivo de este mecanismo es ayudar

al administrador a escoger posibles respuesta tan pronto como las acciones de ataque vayan

siendo detectadas. Por último, se introduce también en esta tesis el diseño de una infrastruc-

tura para la comunicación entre los componentes de nuestraplataforma, y un mecanismo

para la protección de dichos componentes. Todas las proposiciones y propuestas han sido

implementadas y evaluadas a lo largo de nuestro trabajo. Losresultados obtenidos son

presentados en las respectivas secciones de esta disertación.

Esta tesis ha sido principalmente financiada por la Agencia de Gestión y Ayudas Univer-

sitarias y de Investigación (AGAUR) del Departamento de Universidades, Investigación y

Sociedad de la Información (DURSI) de laGeneralitat de Catalunya(num. de referenci

2003FI00126). El trabajo ha sido conjuntamente realizado en la Universitat Aut̀onoma de

Barcelonay la Ecole Nationale Suṕerieure des T́elécommunications de Bretagne.

Palabras clave:Polı́ticas de seguridad, detección de intrusos, contramedidas, correlación

de eventos, comunicaciónpublish/subscribe, control de acceso, protección de componentes.

Acknowledgements

This work has been supported by the Spanish Government Commission CICYT, through

the projects TIC2001-5108-E and TIC2003-02041, and by the Ministry of Education and

Universities (DURSI) of the Government of Catalonia, with its grants 2001SGR-219, 2003-

FI00126, 2004ZAOCE1263, 2005BE77, and 2006BE569.

My first thanks go to my family, who always gave me support and encouragement. My

thanks also go to my advisers for giving me the chance to work under their direction and

expert tutelage. I also wish to thank my close friends and colleagues, for giving me their

kindness, enthusiasm, and support during my entire academic career. I would like to list

here a long list of names and situations. But, since I am afraid I might forget some of them,

and rather than offend anyone, I will settle for offending everyone. Finally, I would like to

specially thank Katell Himeur, my significant other, without whose help this dissertation

would never have been completed.

Contents

1 Introduction 1

2 Security in Computer Networks 7

2.1 Traditional Security Mechanisms 9

2.2 Necessity of Complementary Technologies 13

3 Overview of Related Research 19

3.1 Deployment of Components Free of Anomalies 20

3.2 Exchange of Audit Data between Components 24

3.3 Merging and Correlation of Audit Information 28

3.4 Protection of Network Security Components 33

4 Management of Anomalies on Distributed Network Security Policies 37

4.1 Network Model and Topology Properties 38

4.2 Intra-component Classification and Algorithms 40

4.3 Inter-component Classification and Algorithms 56

4.4 Implementation and Performance Evaluation 63

xii CONTENTS

5 Infrastructure for the Exchange of Messages and Audit Information 67

5.1 Publish/Subscribe Model .. 69

5.2 Representation of Messages .. 73

5.3 Communication Infrastructure 77

5.4 Deployment and Evaluation .. 82

6 Anti-correlation and Selection of Counter-Measures 85

6.1 Modeling Intrusions and Counter-Measures 87

6.2 Correlation and Anti-correlation 90

6.3 Using Anti-correlation for Response 95

6.4 Reacting on a Sample Attack Scenario 98

7 Protection of Components based on a Kernel Security Module 105

7.1 Kernel based Control of System Calls 106

7.2 Implementation of a Linux Security Module 108

7.3 Smart-card based Authentication Mechanism 111

7.4 Configuration and Performance Evaluation 121

8 Conclusions 125

Bibliography 130

Index 147

Chapter 1

Introduction

“Fiery the angels rose, and as they rose deep thunder roll’d;

Around their shores: indignant burning with the fires of Orc.”

– WILLIAM BLAKE

This dissertation is the final result of four years of Ph.D. studies in Computer Science at

theUniversitat Aut̀onoma de Barcelona(UAB, Campus of Bellaterra, Spain) and theEcole

Nationale Suṕerieure des T́elécommunications de Bretagne(ENST Bretagne, Campus of

Rennes, France), under the co-supervision of Professor Dr.Joan Borrell (UAB) and Pro-

fessor Dr. Frédéric Cuppens (ENST Bretagne).

I obtained in Summer 2000 the degree ofBachelor of Science(B.Sc.) inComputer Man-

agement Engineering, and in Summer 2002 the degree ofMaster of Science(M.Sc.) in

Computer Engineering– both at the UAB and with two extraordinary awards for excellent

performance as undergraduate student. In September 2004 I presented my DEA (Diploma

of Advanced Studies) thesis at theInformation and Communications Engineering Depart-

ment(dEIC) of the UAB, with the final score ofA with honors.

2 Introduction

I started the Ph.D. program of Computer Science of the UAB in September 2002 and be-

came a teacher assistant at theInformation and Communications Engineering Department

(dEIC), both at the UAB. In January 2003 I obtained a Catalan Government Department

DURSI grant of four years to fund my Ph.D. studies (referencenumber 2003FI126). As a

part of my Ph.D. program I took courses on advanced techniques in cryptography and cod-

ing, heuristic methods in optimization, advanced network security techniques, and other

subjects. As teacher assistant in the Computer Science graduate studies of the UAB, I

taught several subjects and courses, such as Computer Networks, GNU/Linux adminis-

tration, and Computer Network Security. It is worthy of notethat some texts related to

the disciplines I taught were edited by theFundacío Universitat Oberta de Catalunya

[Herrera et al., 2004b, Herrera et al., 2004c]. An extended version of these documents,

[Herrera et al., 2004a], was later licensed as a free GPL document.

In February 2004 I obtained a Catalan Government DepartmentDURSI grant (reference

number 2004ZAOCE1263) to collaborate with Professor Dr. Frédéric Cuppens in theDe-

partment of Networks, Security, and Multimedia(RSM) at the Rennes campus of ENST

Bretagne. In September of 2004, after having demanded the co-supervision of my Ph.D.

thesis between the UAB and the ENST Bretagne, I extended my collaboration with the

group of Professor Cuppens at the campus of Rennes. Since then, I have carried out three

internships at the ENST Bretagne. These internships, and other related research activi-

ties, have been partially funded by the Catalan Government Department DURSI, with its

grants 2001SGR-219, 2005BE77, and 2006BE569; the Spanish Government Commission

CICYT, through its grants TIC2001-5108-E and TIC2003-02041; and the French ministry

of research, under the projectACI DESIRS.

Background and Motivation

The research done during these four years of Ph.D. studies has mainly been about com-

puter and network security technologies. Despite the recent advances in this field, such as

firewalls, encrypted communications, and authentication mechanisms, there may always be

errors or flaws that can be exploited for unauthorized parties. Moreover, the proliferation

3

of Internet access to most network devices, the increased mobility of these elements, and

the introduction of network-enabled applications have rendered traditional network-based

security infrastructures vulnerable to a new generation ofattacks.

The use of distributed and coordinated techniques in these kind of attacks is getting more

common among the attacker community, since it opens the possibility to perform more

complex tasks, such ascoordinated port scansanddistributed denial of service(DDoS)

attacks. These techniques are also useful to make their detection more difficult and, nor-

mally, these attacks will not be detected by exclusively considering information from iso-

lated sources of the network. Different events and specific information must be gathered

from all of these sources and combined in order to identify the attack. Information such

as suspicious connections, initiation of processes, addition of new files, sudden shifts in

network traffic, and so on, have to be considered.

Intrusion attacks, as defined in [Cuppens and Ortalo, 2000],are those combination of unau-

thorized actions performed by a malicious adversary to violate the security policy of a target

computer system or a network domain. Therefore, one may define the detection process of

intrusion attacks as the sequence of elementary actions that should be performed in order

to identify and respond to those unauthorized actions, being theintrusion detection systems

(IDSs) the most important component to perform such a process.

The initial motivation of our work was the design of a policy-based framework for man-

aging detection and prevention of intrusion attacks on distributed heterogeneous systems.

This framework takes the inspiration of policy management approaches, such as the one

proposed in [Moore et al., 2001], where thepolicy decision pointis a network policy server

responsible for supplying policy information for network devices and applications, and the

policy enforcement pointare network security components, such asfirewalls and intru-

sion detection systems(IDSs), in charge of both detecting and reacting to intrusion attacks.

Thus, it was decided to model intrusions in our work as prohibited activities that lead to

security policy violations. This way, it would be feasible to specify security requirements

and define mechanisms to translate these requirements into concrete filtering rules and de-

tection signatures (to automatically configure firewalls and intrusion detection systems, for

instance). It was hence expected to design a general framework to manage and reason with

4 Introduction

both preventive and detective security components. Furthermore, it was also expected to

provide through our approach the necessary mechanisms to guarantee the interoperability

and protection of those security components used in a network security infrastructure.

The starting point of our work was the recognition process ofthe intruder’s intentions

proposed in [Cuppens and Miège, 2002]. We further extend those results in a number

of ways. First, in [Garcı́a et al., 2006f, Garcı́a et al., 2006d] we proposed a set of algo-

rithms to analyze and rewrite network security policies in order to properly deploy security

mechanisms over multi-component setups free of anomalies and misconfiguration. This

approach allows security officers to verify and validate thecorrectness of a distributed net-

work security policy in an efficient way – i.e., assuring the security officers that the new

configuration is free of policy anomalies. Second, we proposed in [Garcı́a et al., 2005e,

Garcı́a et al., 2005a] a decentralized exchange of audit information between those secu-

rity components. Through the use of a publish/subscribe model, our approach allows

such an exchange across multiple nodes of a cooperative network. Third, we presented

in [Cuppens et al., 2006a, Garcı́a et al., 2004b] a response approach for the selection of

counter-measures and reporting of diagnoses. This approach could be further used, for

example, to properly reconfigure the global security policyby means of our algorithms,

guaranteeing that the deployment of the new security policy– once reconfigured – contin-

ues free of anomalies. We finally proposed in [Garcı́a et al.,2006b, Garcı́a et al., 2005b]

the use of a protection model based on a kernel based access control, which allows us the

protection of the set of components of the complete framework.

Contributions

Some parts of this dissertation have been partly published at national and international

conference proceedings, national and international journals, and JCR publications. We list

in the following these contributions: [Garcı́a et al., 2004a; Garcı́a et al., 2004b; Garcı́a et

al., 2004c; Cuppens et al., 2005a; Cuppens et al., 2005b; Castillo et al., 2005a; Castillo et

al., 2005b; Garcı́a et al., 2005a; Garcı́a et al., 2005b; Garcı́a et al., 2005c; Garcı́a et al.,

5

2005d; Cuppens et al., 2006a; Cuppens et al., 2006b; Garcı́aand Barrera, 2006; Garcı́a et

al., 2006a; Garcı́a et al., 2006b; Garcı́a et al., 2006c; Garcı́a et al., 2006d; Garcı́a et al.,

2006e; Garcı́a et al., 2006f].

It is also worthy of note that the work done during these four years of Ph.D. has included

the collaboration on the development of many software tools, including the implementation

of an audit console for the discovering of policy anomalies (cf. Chapter 4, Section 4.4); a

set of libraries for the exchange of IDMEF messages based on apublish/subscribe model

(cf. Chapter 5, Section 5.3); a set of sensors and attack scenarios for the Cooperative

Intrusion Detection Framework, CRIM, developed at the ENST-Bretagne (cf. Chapter 6,

Section 6.4); and a kernel based access control for the protection of processes and resources

of the platform (cf. Chapter 7, Section 7.2).

Organization

This dissertation is organized as follows. Chapter 2 introduces the basic concepts and prop-

erties of computer security, and surveys traditional mechanisms than can be used to enforce

the security of a network system. We also discuss on this chapter the necessity of comple-

mentary mechanisms, and we then introduce theintrusion detection systems(IDSs) as the

most important component to perform such a process. Chapter3 presents related work

that falls into similar research of our dissertation. The remainder of chapters is then ded-

icated to present our main contributions. More specifically, Chapter 4 presents our set of

algorithms for the deployment and analysis of network security policies. Chapter 5 intro-

duces our decentralized infrastructure to share messages and audit information between the

components of our platform. Chapter 6 describes our approach for the correlation of this

audit information and the selection of counter-measures. Chapter 7 overviews the use of a

security mechanism to handle the protection of the securitycomponents of our framework.

Chapther 8 finally concludes this dissertation and gives an outlook on future work.

Chapter 2

Security in Computer Networks

”The security systems have to win every time, the attacker only has to win once.”

– DUSTIN DYKES (THE ART OF INTRUSION)

Computer and network security is the field of computer science that concerns the control

and protection of data transmission over networked systems[Stallings, 1995]. Therefore,

we assume that the security of network communications must guarantee that the stream of

data flowing from a source object to a destination entity is restricted to only those parties

that are authorized to have access. Unauthorized actions like interruption, interception, or

injectionof information must be avoided.

Interruption refers to those actions against computer networks such thatan unauthorized

party makes unavailable the source of the communication (oreven the communication

channel itself) in order to prevent the flow of data getting the receiver (e.g., denial of service

attacks);interceptionrefers to those actions in which an unauthorized entity getsaccess to

the flow of data in order tomodifyor disclosesuch an information (e.g., passive or active

wiretapping, eavesdropping, sniffing, or snooping attacks); and injection refers to those

actions in which an unauthorized entity inserts information into the system without having

the source’s object doing anything (e.g., replay and spoofing attacks).

8 Security in Computer Networks

Those three examples of unauthorized actions listed above violate, respectively, the main

security properties that any computer system must guarantee – often referred in the litera-

ture asconfidentiality, integrity, andavailability [Stallings, 1995].Confidentialityconcerns

the prevention and detection of unauthorized disclosure ofinformation (e.g., passive inter-

ception of information with a further disclosure of such an information);integrityconcerns

the prevention and detection of unauthorized modification of information (e.g., active in-

terception of information with a further modification of theintercepted information); and

availability concerns the prevention and detection of unauthorized withholding of informa-

tion or resources (e.g., interruption of service).

Although these three security requirements must be considered as mandatory, we may also

consider some other security properties, such asnon-repudiabilityandauthentication. Non-

repudiability, for instance, prevents that neither the source’s object nor the destination’s en-

tity may deny the transmitted flow of data. This way, once a message has been transmitted,

the source’s object can prove that such a message has been received by the destination’s en-

tity; and the destination’s entity can prove that the message it received has been sent by the

source’s object.Authentication, on the other hand, ensures that the origin of an information

is correctly identified, with an assurance that the identityis not false – i.e., it ensures that

the information is authentic.

In order to ensure the security requirements of a computer network, asecurity policymust

be defined by the security officer of such a network. Asecurity policyis a set of rules

stating what is permitted and what is not permitted in a system during normal opera-

tion [International Organisation for Standardization, 1989]. Thus, in the security policy is

defined the complete set of security requirements for the system. As we can see in Fig-

ure 2.1, before to define the set of security requirements into the security policy, a previous

analysis of threatsmust be done.

Figure 2.1: The role of the security policy.

2.1 Traditional Security Mechanisms 9

Theanalysis of threatsis the process where all the possible risks related to the networked

system are identified, and a list containing these threats and the severity of each threat is

reported. This list is then used to establish the security policy, i.e., the list of rules that state

the security requirements to protect the network system. Once defined the security policy,

the security officer must decide whichsecurity mechanismsto use to enforce the security

policy. Security mechanismsare the technical solutions used to implement the security

policy in the networked system, i.e., to defend the network against unauthorized actions

that attempt to violate its security policy.

Because this dissertation is focused on security mechanisms management, we oversee in

the rest of this chapter such mechanisms. We first present in the following section the use

of cryptography and firewalls as traditional mechanisms to prevent unauthorized parties

from violating the security policy of the network. We then shortly discuss the necessity

of complementary measures to these traditional mechanisms, in order to detect and report

those actions that bypass (or that attempt to bypass) the security policy of the system.

We finally present in the last section the use of intrusion detection systems (IDSs) as a

complementary third building block (together with firewalls and cryptography) to guarantee

the security of computer network systems.

2.1 Traditional Security Mechanisms

Cryptography

Cryptography is the field of mathematics and computer science that concerns the managing

of information to keep messages secure [Schneier, 1996]. Itallows us to modify a flow of

information in a way that, even if an unauthorized party can access to such an information,

it will be unusable for its use. To do so, the original piece ofinformation is transformed into

a format that hides its substance during a process called encryption. This transformation

is lossless, since the original message must be recovered under all circumstances. Once

10 Security in Computer Networks

transformed, the new piece of information may be transported over an untrusted commu-

nication channel and resist to actions that try to violate its confidentiality and integrity – it

cannot guarantee, however, the availability of the information, since an unauthorized entity

may still interrupt the communication between both source and destination. The operation

of turning back the transformed information into the original one is called decryption.

In order to perform the decryption process, modern cryptographic algorithms assume the

possession of a secret piece of information (often referredaskeyin the literature). Depend-

ing on the keys that are used, one can distinguish the following two approaches:symmetric

andasymmetriccryptography. Symmetric cryptography, on the first hand, requires that the

sender and the receiver agree on a single key. This key must besafely exchanged before the

encryption process starts, and should remain secret duringthe whole process. Asymmet-

ric cryptography, on the other hand, elegantly solves the key exchange problem by using

two different keys, one called the public key, the other one called the private key. More

specifically, the receiver generates its public/private key pair and announce its public key.

Anyone can obtain the public key and use it to encrypt messages that only the receiver,

with the corresponding private key, is able to decrypt. Furthermore, asymmetric cryptogra-

phy can be easily used to include authentication during the communication process. In this

way, a sender can sign a message by encrypting it with its own private key; and anyone with

access to the corresponding sender’s public key can verify the signature [Diffie, 1988].

A drawback when using asymmetric cryptography is that we must prove the authenticity

of the public key. Otherwise, an attacker could be able to offer its own public key to

the sender to perform a man-in-the-middle attack and read, or even modify, encrypted

communications. In order to solve this problem, we can usedigital certificates. Digital

certificates bind together a public key, additional information of its owner (such as its name,

organization, and so on), and provide the related data signed by a trusted third party – also

known ascertification authorityor CA. This CA guarantees that the public key belongs to

such a person or institution. In turn, this CA is usually verified by a higher level CA in a

hierarchical fashion, such as the public key infrastructure (PKI). In the PKI, for example,

one can verify the authenticity of a public key by verifying the authenticity of the involved

chain of CAs until the hierarchy’s top – a special self-signed CA [Schneier, 1996].

2.1 Traditional Security Mechanisms 11

Firewalls

Similarly to firewalls in building construction, a computerfirewall is defined as a network

security device that can perform access control at network level – i.e., to limit and regulate

the access to critical resources in network systems [Bellovin and Cheswick, 1994]. There-

fore, firewalls are security mechanisms that allow the prevention of certain attacks before

they can actually reach and affect the target. This is done byidentifying or authenticating

the party that requests a resource and checking its permissions against the rights specified

for the demanded object in the security policy. To do so, firewalls are typically deployed to

filter traffic between different zones of the network, as wellas to police their incoming and

outcoming interaction with other networks (e.g., Internet). Though firewalls may also im-

plement other functionalities not related with the security policy, such as Network Address

Translation (NAT), it is not the purpose of this section to cover these functionalities.

A single firewall is not always suitable for the protection ofa complete system. Networks

often consist of several nodes which need to be publicly accessible for untrusted parties,

and private nodes that should be completely protected against connections from the outside.

Those networks would benefit from a separation between thesetwo groups. Otherwise, if

an unauthorized party compromises a publicly accessible node behind a single firewall, all

the other machines can also be attacked from this open point within the network. To prevent

this, one can use several firewalls and the concept of a demilitarized zone in between.

Hence, the security administrator may partition, for instance, its network into three different

zones: a demilitarized zone (DMZ for short), a private network and a zone for security

administration. In this case, one firewall separates the outside network from the segment

with the publicly accessible nodes; and a second firewalls separates this area from the rest

of the network. The second firewall can be configured in a way that denies all incoming

connection attempts. Thus, even if an intruder compromisesa host in the first segment, he

is now unable to immediately attack the rest.

According to [Stallings, 2002], one may classify firewalls into the following three cat-

egories: packet-filtering router, application-level gateway, and circuit-level gateway. A

packet-filtering router, on the first hand, is a forwarding device that applies a set of filtering

12 Security in Computer Networks

rules to each incoming IP packet flowing in both in- and out-going directions. Through

these filtering rules, it decides whether accept (i.e., forward) or deny such a packet. Each

filtering rule typically specifies adecision(e.g., accept or deny) that applies to a set of

conditionattributes, such as protocol, source, destination, and so on. Filtering rules are or-

ganized in a list with a certain default policy enabled. Every incoming packet is compared

to the rules starting at the head of the list until the first list entry matches. In this case,

the corresponding decision is taken. When no matching rule can be identified, the default

policy is consulted. It can either be an open or close defaultpolicy. When a default close

policy is enabled, the packet is simply dropped; otherwise it is accepted and forwarded. A

close policy demands the security officer to explicitly specify the publicly accessible ser-

vices. An open policy, on the other hand, requires the security officer to explicitly specify

each known threat for the network and then deny associated connections.

An application-level gateway, also called proxy server, acts as a relay on the application

level. The user contacts the gateway which in turn opens a connection to the intended

target (on behalf of the user). It completely separates the inside and outside networks at

the network level and allows authentication of the user who requests a connection and

session-oriented scanning of the exchanged traffic up to theapplication level data. This

feature makes application gateways more secure than packetfilters and offers a broader

range of log facilities. The overhead of such a setup, however, may cause performance

problems under heavy load. To solve this disadvantage, circuit-level gateway may be used

as a hybrid variant between packet filters and proxy servers.

This third type of firewall (i.e., circuit-level gateways) can act as a stand-alone system,

similar to a packet filter at the network level. It can also actas an application-level gate-

way performing specialized functions for certain applications. Hence, one may use it to

authorize connections to a specific target machine (as a proxy server does), but perform

network-level filtering (without examining the contents) once the connection has been set

up. The security function of a circuit-level gateway consists of determining which connec-

tions are allowed. Circuit-level gateways are often used inthose situations in which one

may trust internal users. Thus, the circuit-level gateway is configured to act as a proxy

server on incoming connections, and as a packet filter on outgoing data.

2.2 Necessity of Complementary Technologies 13

2.2 Necessity of Complementary Technologies

Although the use of cryptography and firewalls allows us to minimize the number of po-

tential targets, it cannot defend those data or resources that must be publicly accessed (i.e.,

data or resources that can neither be completely protected by cryptography nor by fire-

walls). This fact leads to a situation where it is still possible for unauthorized parties to get

protected components through vulnerabilities within unprotected resources (and so evad-

ing firewalls and cryptography). Indeed, although the installation of updates and patches

to those unprotected components can minimize their vulnerabilities, there may always be

errors or flaws that can be exploited for unauthorized parties.

The Morris worm incident, for instance, showed in 1988 the possibility of attacking the

availability of the majority of components of Internet by exploiting known vulnerabilities

in Unix sendmail, Finger, rsh/rexec and weak passwords [Spafford, 1991]. The Mitnick

attack, on the other hand, showed in 1994 the possibility of breaking the confidentiality and

integrity of information. Two different attack mechanismswere used. IP source address

spoofing and TCP sequence number prediction were used to gaininitial access to a diskless

workstation being used mostly as an X terminal. After root access had been obtained, an

existing connection to another system was hijacked [Northcutt, 2002].

Although network security technologies have efficiently evolved since then, the number

of vulnerabilities and attack tools continues to increase [Householder et al., 2002]. Since

1999, with the advent of distributed tools, attackers have been able to manage and coordi-

nate attacks across many Internet systems. In year 2000, forexample, a Distributed Denial

of Service (DDoS) attack stopped several commercial sites,including Yahoo and CNN,

from functioning normally, although they were protected byfirewalls and cryptography-

based mechanisms. Today, coordinated tools scanning for potential victims and compro-

mising vulnerable systems are more active than ever. This situation shows the inadequacy

of the use of cryptography- and prevention-based mechanisms as single techniques to guar-

antee the security of a networked system, and leads to the necessity of additional defense

mechanisms to cope with attacks when this first line of defense (i.e., cryptography and

firewalls) has been evaded.

14 Security in Computer Networks

Intrusion detection systems (IDSs) were originally proposed in 1980 as a complement to

traditional security mechanisms. In [Anderson, 1980], an intrusion is defined as a violation

of the security policy of a system. Similarly, intrusion detection techniques are defined as

those mechanisms that are developed to detect the violationof the system security policy.

Before the formal definition of intrusion detection and intrusion detection systems, network

administrators performed detection activities by monitoring system activities and looking

for intrusive or unusual actions. Although this early form of intrusion detection was ef-

fective enough at the time, it was ad hoc and not scalable [Kemmerer and Vigna, 2002].

Current intrusion detection techniques are also based on the assumption that intrusive and

unusual activities are clearly different from normal and authorized activities. Thus, intru-

sive and unusual activities may be detectable and reported [Denning, 1987].

The use of intrusion detection systems is currently considered as a third line of defense for

computer and network systems. Hence, intrusion detection must be considered as a com-

plementary approach to traditional security mechanism such as cryptography and firewalls,

not as a replacement one. The use of IDSs along with firewalls,for example, can con-

siderably enhance the protection of networked systems by preventing and detecting those

actions that bypass (or that attempt to bypass) the securitypolicy of a given system. In the

following section we present a more detailed overview of intrusion detection systems.

Intrusion Detection Systems

An intrusion detection system (IDS) can be defined as the tools, methods, and resources to

help identify, assess, and report unauthorized activity against a target network. According

to [Debar et al., 1999], an IDS has to fulfill the requirementsof accuracy (it must not con-

fuse a legitimate action with an intrusion), performance (its performance must be enough

to carry out real-time intrusion detection), completeness(it should not fail to detect an in-

trusion), fault tolerance (the IDS must itself be resistantto attacks) and scalability (it must

be able to process the worst-case number of events without dropping information).

2.2 Necessity of Complementary Technologies 15

Currently, there are a great number of publications relatedto the design and implementa-

tion of intrusion detection systems that detect and preventintrusion attacks. Despite the

differences between all these contributions and the different mechanisms used to accom-

plish the basic requirements pointed out above, we can identify the following components

in most IDS’ architectures (cf. Figure 2.2):sensors, analyzers, managers, andeffectors.

These components are explained in detail in the following sections.

Figure 2.2: Components of a standard intrusion detection system.

Collection of Audit Information

Sensors are the components of an IDS in charge of collecting audit information. They

gather data from the system that is being protected and thus generating events by pre-

processing the collected data. These components are generally classified in the literature by

the location where they are placed. The two main categories by means of this classification

holds as host- and network-based sensors.

16 Security in Computer Networks

Host-based sensors (often referred in the literature as host-based IDSs or HIDSs) generate

events by using information produced by the host operating systems, such as hosts audit

trails, shell command history, or system calls. In UNIX-like operating systems, for exam-

ple, audit trails may be directly extracted by the syslog’s audit service. The syslog facility

[Lonvick, 2001] is a de facto standard for forwarding log messages in UNIX-like operating

systems. It allows security administrators to log valuableinformation that may be used

for intrusion detection purposes. Shell command history, on the second hand, allows secu-

rity administrators to manage the stream of commands, and their arguments, executed by

unauthorized users or programs [Lee et al., 1999]. The sequences of system calls executed

when running processes, on the third hand, may also be used bysecurity administrators in

order to catch valuable information. In [Hofmeyr et al., 1998], for example, a sensor for

detecting intrusions by tracing sequences of system calls is presented.

As a specific case of host-based sensors, we can also considerthose sensors that collect

information not just a host operating level, but also at application level. This informa-

tion at application level is usually obtained either using syslog facility (already pointed

out above) or by implementing specific audit mechanisms within the audited applications.

In [Almgren and Lindqvist, 2001], for instance, the authorspresent an application-based

sensor integrated as an extension mechanism of the Apache web server to report audit in-

formation regarding the behavior of the web server.

Network-based sensors (often referred in the literature asnetwork-based IDSs or NIDSs)

collect information from network traffic in order to gather information that may point out

to unauthorized actions, such as buffer overflows, stealth port scans, CGI attacks, SMB

probes, OS fingerprinting attempts, and much more [Roesch, 1999]. They are not only lim-

ited to inspecting incoming network traffic. Often, valuable information about an ongoing

intrusion can be retrieved from outgoing or local traffic as well. Some attacks might even

be staged from the inside of the monitored network or networksegment, and are therefore

not regarded as incoming traffic at all. Network-based sensors are very easy to deploy,

and have a minimal impact – compared to host-based sensors – on the monitored hosts.

Nonetheless, changes in network technology (such as encrypted communications, switched

networks, and high-speed links) may impair the usefulness of network-based sensors.

2.2 Necessity of Complementary Technologies 17

Analysis of Audit Information

Analyzers are the components of an IDS responsible for processing the audit information

(i.e., events) gathered by their associated sensors. Through this audit information, analyzers

infer possible violations of the security policy in form of alarms or alerts (i.e., audit data

at a higher level of abstraction). These components are generally classified in the literature

by the processing method in which they perform such a detection. The two main categories

by means of this classification holds asmisuse-andanomaly-based analyzers.

The first category,misuse-based analyzers, attempts to identify unauthorized activity by

searching for specific known patterns (e.g., known attacks or system vulnerabilities), called

signatures, in their input stream. Thus, any action that conforms to the pattern of a known

attack or vulnerability is considered intrusive. The auditinformation collected by the as-

sociated sensors is compared with the content of a database of signatures and, if a match

is found, an alert is generated. Events that do not match any of the attack models are

considered part of legitimate activities. Several approaches have been proposed for per-

forming misuse-based detection, such as [Kumar and Spafford, 1994, Ilgun et al., 1995,

Mounji, 1997, Porras and Neumann, 1997, Lindqvist and Porras, 1999, Roesch, 1999].

The second category,anomaly-based analyzers, attempts to identify certain deviations from

the expected behavior of a subject (e.g., a user, an application, a host, or a network) that

indicate hostile activities against the protected network. The expected behavior may be

learned by observing the subject under normal operations, or specified based on a priori

knowledge. Numerous attempts have been made to build anomaly detection models, in-

cluding machine learning and data mining approaches [Teng et al., 1990, Fox et al., 1990],

statistical approaches [Javits and Valdes, 1993, Andersonet al., 1995b], and specification-

based approaches [Ko et al., 1997, Sekar et al., 2002].

Similarly to virus analyzers, the advantage of misuse-based analyzers is its reliable de-

tection of known attacks or vulnerabilities. Hence, most commercial intrusion detection

systems tend to include a misuse-based approach for the analysis of the audited informa-

tion. Nevertheless, it is important to combine both approaches, in order to detect those

attacks that can remain undetected by slightly deviating its pattern.

18 Security in Computer Networks

Correlation and Response Mechanisms

A recent trend in intrusion detection is the cooperation of different security components

in order to increase the detection rate. The idea is to use multiple sensors and analyzers

within the intrusion detection system. Then, these low level components are intended to

report their events and alarms to higher level components which, in turn, correlate the

analysis results and the corresponding alerts. The cooperation between those components

may be achieved by complementing the coverage of different sensors – i.e., combining

multiple host- and network-based sensors – and complementing the analysis with different

detection techniques – i.e., by combining anomaly- and misuse-based analyzers.

Though this approach effectively increases the detection’s rate, it also increases the number

of alerts to process, as well as the rate of false alarms. Managers are the components in

charge of managing this process, by using higher-level descriptions of the policy violations,

and achieving a more global view of the system and its security issues. During the execution

of the correlation process, the initial set of alerts is firstnormalized and pre-processed. The

resulting alerts are then fused and aggregated into new alerts, and finally correlated in order

to reconstruct and verify possible attacks scenarios.

Managers may also be responsible for reacting on detected security violations by select-

ing appropriate counter-measures to react to such violations, and reporting these counter-

measures to a set of effectors. Effectors are the componentsin charge for initiating actions

to neutralize the effects of the violation once detected. These actions can either be auto-

mated, acting against the attacker when the intrusion is still in progress, or involve human

interaction by raising, for example, alarms or notifications to warn a system administrator.

Managers may finally perform some other administrative functions such as sensor and an-

alyzer configuration, data consolidation, reporting, and so on. By implementing a database

manager, for example, it is possible to store all the data generated by the IDS to enable the

correlation of alerts which occurred at different time periods.

Since this dissertation is focused on intrusion managementby means of component co-

operation and correlation of alerts, the following chapteris dedicated to a more detailed

introduction to these issues by overviewing some related work in the field.

Chapter 3

Overview of Related Research

”I just read books! We read everything that’s published in the world ...

I look for leaks, I look for new ideas ... We read adventures and

novels and journals. I... I... Who’d invent a job like that?”

– JOE TURNER (THREE DAYS OF THE CONDOR)

The work we present in this dissertation falls into the research domain of cooperation of

network security mechanisms over distributed environments, including distribution and

analysis of security policies, exchange of information, correlation of the audit data, and

protection of network security components. In this chapter, we survey work which has

been previously done in those areas of research. We first examine on Section 3.1 existing

approaches to get a distributed network security policy composed of multiple network se-

curity components, free of anomalies and misconfiguration.We then deal in Section 3.2

with existing work for the collaboration and exchanging of information between different

network security components. We give in Section 3.3 an outlook on related work on the

area of correlation of information reported by collaborative network security components.

We finally conclude this chapter in Section 3.4 by overviewing two main approaches for

protecting security resources on modern operating systems.

20 Overview of Related Research

3.1 Deployment of Components Free of Anomalies

As we pointed out in the previous chapter, once the security officer of a network system

has performed the analysis of threats and has specified a network security policy, he may

implement such a policy by means of security mechanisms. Generally, this deployment

consists in distributing the security rules expressed in this policy over different network

security components of the system – such as firewalls, intrusion detection systems (IDSs),

proxies, etc. – both at application, system, and network level. This implies cohesion of the

security functions supplied by these components. In other words, security rules deployed

over the different components must be consistent, not redundant and, as far as possible,

optimal.

An approach based on a formal security policy refinement mechanism (using for instance

abstract machines grounded on set theory and first order logic) ensures cohesion, com-

pleteness and optimization as built-in properties [Cuppens et al., 2004]. Unfortunately, in

most cases, such an approach has not a wide follow and the policy is more often than

not empirically deployed based on security administrator expertise and flair. It is then

advisable to analyze the security rules deployed to detect,i.e., verify, and correct some

policy anomalies – often referred in the literature asintra- and inter-configuration anoma-

lies [Hamed and Al-Shaer, 2006]. These anomalies might be the origin of security holes

and/or heaviness of intrusion prevention and detection processes. Firewalls and network

intrusion detection systems (NIDSs) are the most commonly used network security com-

ponents and, in our work, we focus particularly on their security rules.

As we overviewed in Chapter 2, firewalls are prevention-based devices ensuring access

control at network level. They manage the traffic between thepublic network and the

private network zones on one hand and between private zones in the local network in the

other hand. The undesirable traffic is blocked or deviated bysuch a component. NIDSs

are detection devices ensuring a monitoring role. They are components that supervise the

traffic and generate alerts in the case of suspicious traffic.The attributes used to block or

to generate alerts are almost the same.

3.1 Deployment of Components Free of Anomalies 21

Main research on firewalls and NIDSs is frequently focused ontheir design [Guttman, 1997,

Bartal et al., 1999, Gouda and Liu, 2004], their analysis mechanisms [Frantzen et al., 2001,

Kamara et al., 2003], and their packet classification mechanisms [Srinivasan et al., 1999,

Eppstein and Muthukrishnan, 2001]. The challenge, when these two kinds of components

coexist in the security architecture of an computer networkis then to avoid inter-configura-

tion anomalies. Nevertheless, none of these approaches address the proper management of

anomalies due to conflicts between multiple-component setups.

For our work, we define the security rules of both firewalls andNIDSs as filtering and alert-

ing rules, respectively. In turn, both filtering and alerting rules are specific cases of a more

general configuration rule, which typically defines adecision (such asdeny, alert, accept,

or pass) that applies over a set ofcondition attributes, such asprotocol, source, destina-

tion, classification, etc. We define a general configuration rule as follows:

Ri : {conditioni} → decisioni

wherei is the relative position of the rule within the set of rules,{conditioni} is the con-

junctive set of condition attributes such that{conditioni} equalsC1∧C2∧ ...∧Cp – being

p the number of condition attributes of the given rule – anddecision is a boolean value

in {true, false}. Let us notice that the decision of a filtering rule will betrue whether it

applies to a specific value related todenythe traffic it matches, and willfalse whether it

applies to a specific value related toacceptthe traffic it matches. Similarly, the decision of

an alerting rule will betrue whether it applies to a specific value related toalert the traffic

it matches, and will befalse whether it applies a value related topassthe traffic.

We presented in [Cuppens et al., 2005a, Cuppens et al., 2005b] an audit process to manage

intra-firewall policy anomalies, in order to detect and remove anomalies within a given fire-

wall. This audit process is based on the existence of relationships between the condition

attributes of the filtering rules, such as coincidence, disjunction, and inclusion, and pro-

poses a transformation process which derives from an initial set of rules – with potential

policy anomalies – to an equivalent one which is completely free of errors. The resulting

rules are moreover completely disjoint, i.e., the orderingof rules is no longer relevant.

22 Overview of Related Research

In [Garcı́a et al., 2006f, Garcı́a et al., 2006d], we extended our proposal to a distributed

setup where both firewalls and NIDSs are in charge of the network security policy. This

way, assuming that the role of both prevention and detectionof network attacks is assigned

to several components, our objective is to avoid intra and inter-component anomalies be-

tween filtering and alerting rules . The proposed approach isbased on the similarity be-

tween the parameters of a filtering rule and those of an alerting rule. This way, we can

check whether there are errors in those configurations regarding the policy deployment

over each component which matches the same traffic. We refer the reader to Chapter 4 for

a more detailed description of our approach.

Some other proposals, such as [Adiseshu et al., 2000, Gupta,2000, Gouda and Liu, 2004,

Al-Shaer et al., 2005], also provide means to directly manage the discovery of anomalies

from the components’ configuration. For instance, the authors in [Adiseshu et al., 2000]

consider that, in a configuration set, two rules are in conflict when the first rule in order

matches some packets that match the second rule, and the second rule also matches some

of the packets that match the first rule. This approach is verylimited since it just de-

tects a particular case of wrongly defined rules in a single firewall configuration, i.e., just

ambiguity within a intra-firewall configurations could be detected. It does not provide, fur-

thermore, detection on more complex scenarios, i.e., inter-firewall configurations, where

more than one component is intended to perform network access control.

In [Gupta, 2000], two cases of anomalies are considered. First, a ruleRj is defined as

backward redundant iff there exists another ruleRi with higher priority in order such that

all the packets that match ruleRj also match ruleRi. Second, a ruleRi is defined as forward

redundant iff there exists another ruleRj with the same decision and less priority in order

such that the following conditions hold: (1) all the packetsthat matchRi also matchRj;

(2) for each ruleRk betweenRi andRj , and that matches all the packets that also match

ruleRi, Rk has the same decision asRi.

Although this approach seems to head in the right direction,we consider it as incomplete,

since it does not detect all the possible cases of intra-component anomalies (as the ones

defined in our work). For instance, given the set of rules shown in Figure 3.1(a), sinceR2

comes afterR1, ruleR2 only applies over the interval[51, 70] – i.e.,R2 is redundant toR3,

3.1 Deployment of Components Free of Anomalies 23

since, if we remove this rule from the configuration, the samepolicy is applied by ruleR3.

The detection proposal, as defined in [Gupta, 2000], cannot detect the redundancy of rule

R2 within the configuration of such a given firewall. Furthermore, neither [Gupta, 2000]

nor [Gouda and Liu, 2004] provide detection on multiple-component configurations.

R1 : s ∈ [10, 50]→ true
R2 : s ∈ [40, 70]→ false
R3 : s ∈ [50, 80]→ false

(a) Set of rules A

R1 : s ∈ [10, 50]→ false
R2 : s ∈ [40, 90]→ false
R3 : s ∈ [30, 80]→ true

(b) Set of rules B

Figure 3.1: Example of two firewall configurations.

To our best knowledge, the approach presented in [Al-Shaer et al., 2005] propose the most

efficient set of techniques and algorithms to detect policy anomalies in both single and

multi-firewall configuration setups. In addition to the discovery process, their approach also

attempts an optimal insertion of arbitrary rules into an existing configuration, through a tree

based representation of the filtering criteria. Nonetheless, and even though the efficiency of

their proposed discovering algorithms and techniques is very promising, we also consider

this approach as incomplete.

On the one hand, their intra- and inter-component discoveryapproach is not complete

since, given a single- or multiple-component security policy, their detection algorithms

are based on the analysis of relationships between rules twoby two. This way, errors

due to the union of rules are not explicitly considered (as our approach does). For ex-

ample, the set of rules shown in Figure 3.1(b), may lead theirdiscovery algorithms to

inappropriate decisions (since the approach defined in [Al-Shaer and Hamed, 2004] cannot

detect that ruleR3 will be never applied due to the union of rulesR1 andR2). Though in

[Al-Shaer et al., 2005] the authors pointed out to this problematic, claiming that they break

down the initial set of rules into an equivalent set of rules free of overlaps between rules,

no specific algorithms have been provided for solving it in [Al-Shaer and Hamed, 2004,

Al-Shaer et al., 2005, Hamed and Al-Shaer, 2006].

24 Overview of Related Research

On the other hand, their inter-component discovery approach considers as anomalies some

situations that, from our point of view, must be suited to avoid inconsistent decisions be-

tween components used in the same policy to control or surveyto different zones. For

instance, given the scenario shown in Figure 3.2 their algorithms will inappropriately re-

port a redundancy anomaly between filtering rulesFW1{R1} andFW2{R1}. This is be-

cause ruleFW1{R1} matches every packet that alsoFW2{R1} does. As a consequence,

[Al-Shaer and Hamed, 2004] considers ruleFW2{R1} as redundant since packets denied

by this rule are already denied by ruleFW1{R1}. However, this conclusion is not appro-

priate because ruleFW1{R1} applies to packets from the external zone to the private zone

whereas ruleFW2{R1} applies to packets from the DMZ zone to the private zone. So, rule

FW2{R1} is useful and cannot be removed.

FW1 FW2

111.222.1.[0,255]111.222.0.[0,255]

FW 1{R1} : p = tcp s any d 111.222.1.0/24 dport = 80 deny

FW 2{R1} : p = tcp s 111.222.0.0/24 d 111.222.1.0/24 dport = 80 deny

external

network DMZ private

Figure 3.2: Example of a distributed control access scenario.

Though in [Al-Shaer and Hamed, 2004, Al-Shaer et al., 2005] the authors claim that their

analysis technique marks every rule that is used on a networkpath, no specific algorithms

have been provided for doing so. The net advantage of our approach over their approach

is that it includes a model of the traffic which flows through each component. We con-

sider this is necessary to draw the right conclusion in this case. Furthermore, although in

[Al-Shaer et al., 2005] the authors consider their work as sufficiently general to be used

for verifying many other filtering based security policies such as intrusion detection and

prevention systems, no specific mechanisms have been provided for doing so.

3.2 Exchange of Audit Data between Components 25

3.2 Exchange of Audit Data between Components

Once verified and deployed a distributed network security policy, one may consider the

exchange of information between the set of components implemented in such a policy.

Traditional client/server solutions can be used in order todeploy multiple sensors at each

host of the protected network. Thus, those sensors can locally collect audit data and forward

it to a central point where it can be further analyzed. Early intrusion detection systems, such

as DIDS [Snapp et al., 1991], and STAT [Ilgun et al., 1995], use this approach to process

their data in a central node.

DIDS (Distributed Intrusion Detection System), for instance, is one of the earliest systems

referred in the literature for using this approach of monitoring [Snapp et al., 1991]. The

main components of DIDS are a central analyzer component (called DIDS director), a set of

host-based sensors installed on each monitored host withinthe protected network, and a set

of network-based sensors installed on each broadcasting segment of the target system. The

communication infrastructure between the central analyzer and the distributed sensors is

bidirectional. This way, although the sensors are most of the time sending asynchronously

their reports to the central analyzer, it is also possible that the director directly requests

them for more details.

NetSTAT [Vigna and Kemmerer, 1998, Vigna and Kemmerer, 1999], on the other hand,

is an application of STAT (State Transition Analysis Technique) [Ilgun et al., 1995] to

network-based detection. Indeed, in turn, it is the evolution of NSTAT [Kemmerer, 1997].

Based on the attack scenarios and the network fact modeled asa hyper-graph, NetSTAT

automatically chooses places to probe network activities and applies an analysis of state

transitions. This way, it is possible to decide what information it is necessary to collect

within the protected network. Similarly to DIDS, and although NetSTAT collects network

events in a distributed way, it analyzes them in a centralized fashion.

The main limitation of both DIDS and NetSTAT is that their exchange of audit data can

quickly become a bottleneck – due to saturation problems associated with the service of-

fered by their centralized analyzers. Their monitoring schemes are straightforward as they

26 Overview of Related Research

simply push the data to a central node and perform the computation there. Both approaches

try to reduce the audit data before to send it to the central analysis unit – they try to select

interesting parts of the audit stream and compress it. Unfortunately, an efficient data reduc-

tion scheme capable of forwarding only relevant data for arbitrary threat scenarios is very

difficult to realize when too many sensors are deployed. Hence, when too many sensors are

deployed, the central host is simply overloaded. Furthermore, the use of a single analyzer

also induces a fault tolerance problem. If such a single analyzer crashes or becomes the

victim of a denial of service (DoS) attack, the whole system is completely blinded.

To solve these disadvantages, some other results like GrIDS[Staniford-Chen et al., 1996],

EMERALD [Porras and Neumann, 1997], and AAfID [Spafford andZamboni, 2000], pro-

pose the use of layered structures where data is locally pre-processed and filtered, and

further analyzed by intermediate components in a hierarchical fashion. The computational

and network load is distributed over multiple analyzers andmanagers, distributed over

different domains to analyze. The analyzers and managers ofeach domain perform their

detection for just a small section of the whole network. Then, they forward the processed

information to the entity which is on the top of the hierarchy– i.e., a master node – which

finally analyzes all the reported incidents of the system.

GrIDS (Graph-based Intrusion Detection System for large networks) is an evolution of

DIDS [Snapp et al., 1991] that aims at large distributed systems. It performs detection

of distributed scans and worms by aggregating computer and network information into

activity graphs [Staniford-Chen et al., 1996]. In contrastto the centralized approach of

DIDS, GrIDS allows the construction of activity graphs thatonly represent hosts and the

network activity between them. Each node of the graph represents a single host or a group

of nodes, and the edges represent network traffic between nodes. The audit data of GrIDS

is collected by means of both host- and network-based sensors, and then forwarded to the

graph manager, which further feeds the collected information into the graph. The whole

system deploys several graphs and several graph managers ina hierarchical fashion, in

order to increase the scalability of the whole system. Therefore, each manager controls

just a subset on the whole graph. Unfortunately, little details were provided regarding the

communication infrastructure for the exchange of information between components.

3.2 Exchange of Audit Data between Components 27

Similarly, EMERALD (Event Monitoring Enabling Responses to Anomalous Live Distur-

bances) extends the work of IDES (Intrusion Detection Expert System) [Lunt et al., 1990]

and NIDES (Next-Generation Intrusion Detection Expert System) [Anderson et al., 1995a]

by implementing a recursive framework in which generic building blocks can be deployed

in a hierarchical fashion [Porras and Neumann, 1997]. It combines host- and network-

based sensors, as well as anomaly- and misuse-based analyzers. EMERALD is focused

on the protection of large-scale enterprise networks that,in turn, are divided into inde-

pendent domains – each one of them with their own security policy. Unfortunately, and

although the authors were claiming to a very efficient communication infrastructure for the

exchanging of information between components, few detailswere provided regarding the

implementation and performance of such an infrastructure.

AAfID (Architecture for Intrusion Detection using Autonomous Agents), on the other

hand, also presents a hierarchical approach to combat the limitations of centralized propos-

als and, particularly, to resist to denial of service attacks [Spafford and Zamboni, 2000]. It

consists of four main components (called agents, filters, transceivers, and monitors) orga-

nized in a tree structure, where child and parent componentscommunicate with each other.

Regarding the communication subsystem of AAfID, it exhibits a very simplistic design and

does not seem to be resistant to a denial of service attack. Furthermore, and although the

set of agents may communicate with each other to agree upon a common suspicion level

at every host, all the relevant data is simply forwarded to monitors (via transceivers) and

require for human interaction in order to detect distributed intrusions.

To our best knowledge, and although those hierarchical approaches may mitigate some

weaknesses present in centralized schemes, they still cannot avoid bottlenecks, scalabil-

ity problems, and fault tolerance issues due to vulnerabilities at the root level. First, and

although the analyzers of those hierarchical variants attempt to pre-filter the information

within small domains, the massive amount of audit data forwarded to the higher level com-

ponents is very hard to manage even at those layers. Second, if the root domain component

crashes or becomes unavailable, the detection process willnot properly be concluded. In

order to solve these difficulties with both central and hierarchical data analysis, a decen-

tralized scheme free of dedicated processing nodes is necessary.

28 Overview of Related Research

Alternative approaches such as Micael [Queiroz et al., 1999], IDA [Asaka et al., 1999],

Sparta [Kruegel and Toth, 2002] and MAIDS [Helmer et al., 2002], propose the use of mo-

bile agent technology to gather the pieces of evidence of an attack (which are scattered

over arbitrary locations). The authors of those approachesjustify the use of mobile agent

technology by the usual reasons ofovercoming network latency, reducing network load

or allowing autonomous and asynchronous execution. While these reasons are perfectly

valid, in most of those approaches the use of agent technology and mobility is unnecessary

and counterproductive. Mobile agents are used in those designs mainly as data containers

(a task that can be performed more efficiently by using a simple message passing). They

introduce, moreover, additional security risks and cause aperformance penalty without pro-

viding any clear advantage. Furthermore, none of the proposals seems to have a definitive

implementation or any industrial application.

In contrast to those centralized, hierarchical, and mobileagent-based proposals, we pre-

sented in [Garcı́a et al., 2005e, Garcı́a et al., 2005a] a decentralized message passing de-

sign which tries to eliminate the limitations and disadvantages studied and overviewed

above. Our message passing design proposes an exchange of audit information across mul-

tiple nodes of a cooperative network through the use of a publish/subscribe model. We

refer the reader to Chapter 5 for more information about sucha work.

3.3 Merging and Correlation of Audit Information

The rise of cooperative frameworks to implement a distributed security policy leads to

the reasoning on audit information held by multiple security components. The merging

and correlation of this information allows us to fulfill different goals, such as removal of

redundancy and scenario detection. The managing of this process has been extensively

discussed in recent literature, such as [Valdes and Skinner, 2001, Debar and Wespi, 2001,

Julisch, 2002, Cuppens and Miège, 2002, Ning et al., 2002].Nevertheless, the goals aimed

by those proposals are different and need to be explained.

3.3 Merging and Correlation of Audit Information 29

For the discussion in this section, we assume that the process of merging and correlat-

ing audit information receives as input a stream of alerts from different network security

components (such as NIDSs, firewalls, and so on). Despite thedifferences between the

proposals studied in the literature, we can identify the whole process as a set of phases that

transform the audit information (i.e., alerts) into a more complete view of occurring or at-

tempted attack scenarios. The main objective is to produce,at the end of the entire process,

intrusion reports that should advise the security officer about possible counter-measures –

in order to react to the detected activity. In Figure 3.3 we give a graphical representation

of such a process. The different steps shown in the figure, andthe operations performed

within each phase, are explained in the following sections.

Figure 3.3: Merging and Correlation process overview.

Normalization and Preprocessing of Alerts

An alert is an abstraction of an event that can refer to one or more unauthorized actions and

which removes the irrelevant details of those actions. It isoften defined in the literature as a

list of pairs of attributes with their corresponding value sets, where each attribute describes

a certain property (or feature) of the action that this alertrefers to (e.g., classification of a

given attack). Each attribute has a type (e.g., string or integer) and a set of values associated

with it. The value set can be empty when the attribute does notapply to the action (e.g., in

case of attributes specifying network-level properties for a host-based activity) or when no

information has been supplied by the component that generated the alert.

30 Overview of Related Research

Before to combine the set of alerts reported from different security components, it is neces-

sary tonormalizesuch alerts – possibly encoded in different formats – into a standardized

format. This normalization process may guarantee that the syntax and semantics of the

resulting alerts is understood by the components involved in the correlation process. In

order to do so, some specifications have been proposed by the intrusion detection commu-

nity. The Common Intrusion Specification Language (CISL), for instance, was proposed to

allow the components of the Common Intrusion Detection Framework (CIDF) to exchange

data in semantically well-defined ways [Feiertag et al., 1999].

Although the objective of CISL’s authors was to standardizetheir work, it was not well

received by the industry community – probably due to the potential complexity of its pro-

cedures and expressions. But, some of the concepts and ideasproposed by the CIDF com-

munity motivated the creation of the IETF’s Intrusion Detection Exchange Format Working

Group (IDWG) to accomplish an industry standard. Their maingoal is the Intrusion Detec-

tion Message Exchange Format (IDMEF) [Debar et al., 2006], which provides a standard

representation for the exchange of alerts between different security components.

Once normalized the stream of alerts – into the IDMEF format,for example – one may

perform a preprocessing of those resulting alerts. This preprocessing must guarantee that

the complete set of attributes necessary to compare alerts (e.g., classification and name of

the activity, timestamps, source and target, and so on) are included in those alerts.

Aggregation and Fusion of Alerts

After the normalization and preprocessing phases, the stream of alerts collected by the set

of security components is in a suitable manner and a new process to merge similar alerts is

performed – i.e., to reduce information before to start the correlation process.

This new process is often split in two stages (aggregation and fusion). The task of the first

phase is the clustering of alerts that belong to the same activity occurrence – but detected by

different components. To do so, the aggregation process performs an analysis of similarity

between the attributes of each alert to compare, for example, timestamps, source and target

3.3 Merging and Correlation of Audit Information 31

IP address, etc. Once compared the necessary set of attributes of two alerts, the similarity

value of each comparison is generally computed to finally decide whether the two alerts are

related or not to the same activity. If so, these two alerts are grouped in the same cluster,

and then merged into a new alert, often referred in the literature asmeta-alert, during

the alert fusion process. A meta-alert is similar to a normalalert but its attributes are

derived from the attributes of the merged alerts. Each meta-alert also contains references

to all those the alerts that were merged to produce the meta-alert during the alert fusion

process. Furthermore, a meta-alert can be then merged with other alerts or meta-alerts in a

hierarchical manner, where the most recent meta-alert is the root node in the hierarchy, and

all successor nodes can be accessed by following the references to the merged alerts. We

refer the reader to [Kruegel et al., 2005] for further information.

The deployment of the complete process of merging differs among the studied literature.

In [Valdes and Skinner, 2001], for example, a probabilisticsimilarity function is defined

for each attribute. The authors then propose how to obtain anoverall similarity value

by combining similarity functions and using a probabilistic expectation of similarity to

perform the fusion of alerts. A different approach is presented in [Debar and Wespi, 2001],

where similar alerts are previously associated through theuse ofa priori definitions. A

clustering method is presented in [Julisch, 2002], where anoff-line process determines the

causes for what a set of alerts must be fused. Finally, the useof boolean predicates is

proposed by both [Cuppens, 2001] and [Ning et al., 2002], where expert rules are defined

to determine whether two alerts are similar and may be aggregated and fused.

Detection of Attack Scenarios

During this phase, a correlation process is performed in order to link those alerts or meta-

alerts that refer to unauthorized actions (or attacks) launched by an attacker against a given

target. Several approaches have been proposed in order to represent these unauthorized ac-

tions. Among them are languages based on transition of states such as STAT [Ilgun, 1993];

colored petri nets such as CPA [Kumar and Spafford, 1994]; rule-based languages such as

RUSSEL [Mounji et al., 1995] and P-BEST [Lindqvist and Porras, 1999]; languages based

32 Overview of Related Research

on finite state machines such as JFSM [Wu et al., 1999]. The useof formalisms for mod-

eling dynamic systems, such as Chronicles, have also been proposed to perform alert cor-

relation in [Morin et al., 2002]. The representation of unauthorized actions proposed in

[Cuppens and Miège, 2002] is based on LAMBDA [Cuppens and Ortalo, 2000], an attack

description language based on logic, and whose scenarios steps represent the attacker’s

actions (see Chapter 6 for a more detailed description of this language).

Early approaches directly perform the correlation stage atthe merging process. The prob-

abilistic approach presented in [Valdes and Skinner, 2001], for example, tries to detect the

attack scenario as soon as they derive the similarity between rules – computed during the

merging of alerts. Similarly, in [Debar and Wespi, 2001] thecorrelation process is also per-

formed during the aggregation phase, where the different alerts are getting linked by means

of their concept of duplicity of alerts and consequences.

Alternative approaches present a more defined separation ofthe merging and correlation of

alerts. In [Cuppens and Miège, 2002], for example, the use of correlation rules declared by

means of boolean predicates, is proposed. They first specifylogic links between the influ-

ence of an attack performed against the target, and the necessary conditions to perform this

attack. Hence, the pre-conditions to perform an attack are compared to the post-conditions

of previously detected alerts. If the result is positive, alerts are correlated. The result is a

graph representing the attack scenario (see Chapter 6 for a more detailed description of this

approach). In [Ning et al., 2002], on the other hand, the authors present a similar proposal,

also based on boolean predicates, and where those predicates are also used to represent

prerequisites and consequences of actions that may point toan attack scenario.

Reports and Response Mechanisms

The output of the correlation process provides a set of attack scenarios that should advise

the security officer about the intruder’s activity. Nevertheless, just detecting attack scenar-

ios does not prevent the intruder from reaching his objective. An additional mechanism is

often necessary to decide when to execute a counter-measureonce the scenario has been

partially observed.

3.4 Protection of Network Security Components 33

Most of the studied approaches propose few response mechanisms in addition to common

intrusion reports. There is only a small variety of responsetechniques and the decision

criteria that are used to activate the response remains often simplistic. Security officers,

moreover, generally distrust at using the most interestingresponses such as automatic re-

configuration of the network security policy. The main reason against the use of more elab-

orated response mechanisms is mainly due to the lack of confidence in the capabilities of

the detection systems to take the right decision. Security administrators may also fear of not

controlling the consequences of the automation of those counter-measures. Hence, the ob-

jective of most responses consists in stopping an ongoing attack. More elaborate reactions

that are effective to automatically correct the detected vulnerabilities, remain marginal.

In [Cuppens et al., 2006a] we presented an intrusion reaction approach based on a library

that implements different types of counter-measures once an attack scenario is detected.

This proposal is based on a logical representation of both unauthorized actions and counter-

measures, and further extends the recognition process of the intruder’s intentions presented

in [Cuppens and Miège, 2002]. Hence, when an attack scenario is identified, it can antici-

pate on the objective that the intruder attempts to achieve and on the future attacks that the

intruder will perform to achieve it. We refer the reader to Chapter 6 for further information

of this proposal and its implementation.

3.4 Protection of Network Security Components

Current research in network security components, such as firewalls and intrusion detection

systems (IDSs), is mainly focused on improving classification, processing, detection, and

reaction mechanisms, without taking into consideration their own security. The protection

of these components is a serious and important problem whichmust be solved. Otherwise,

if a remote adversary manages to compromise the security of these components, he may

obtain the control of the system itself. These components, as opposite to other network

elements, are almost always working with special privileges in order to execute their tasks.

This fact may lead remote attackers to acquire these privileges in an unauthorized manner.

34 Overview of Related Research

For instance, the existence of programming errors within its internal code, the manipula-

tion of their resources (such as processes, configuration files, log files, and so on) in an

unappropriated manner, or the increase of user privileges by looking for errors at operat-

ing system level, are some examples in which a remote adversary can bypass traditional

security policy controls and get the control of a security component.

There are two main approaches to safely execute processes with special privileges on mod-

ern operating systems. A first approach is to apply a kernel-based access control to the

outcoming system calls. A second approach is the creation ofrestricted environments, in

which the processes will be executed and controlled outsidethe trusted system space.

Regarding the first approach, we presented in [Garcı́a et al., 2005b, Garcı́a et al., 2006b] a

kernel based access control method which intercepts and cancels forbidden system calls

launched by a remote attacker. This way, even if the attackergains administration per-

missions, he will not achieve his purpose. To solve the administration constraints of our

approach, we use a smart-card based authentication mechanism for ensuring the adminis-

trator’s identity. Through the use of a cryptographic protocol, the protection mechanism

verifies administrator’s actions before holding him the indispensable privileges to manip-

ulate a component. Otherwise, the access control enforcement will come to its normal

operation. We refer the reader to Chapter 7 for more information regarding our proposal

and implementation.

The proposals closest to ours are the protection mechanismspresented in [Ott, 2002] and

[Loscocco and Smalley, 2001] for the creation of enhanced access control mechanisms in-

tegrated in the kernel of the GNU/Linux operating system. The main goal behind these

two proposals is to reinforce the complete system by controlling the system calls and en-

suring which process or user does the system call and againstwhat it will be done. The

ability to control the access to the resources allows to protect the security components and

to avoid that nobody (including an attacker with administrator privileges) can disable them.

Nevertheless, both approaches differ from ours in a number of ways. First, and to our best

knowledge, neither [Loscocco and Smalley, 2001] nor [Ott, 2002] do not address the man-

agement of administration constraints, as our proposal does through the two-factor authen-

tication mechanism we present in Chapter 7, Section 7.3. Second, our approach, entirely

3.4 Protection of Network Security Components 35

based on theLinux Security Modules(LSM) framework [Wright et al., 2002], guarantees

the compatibility with previous applications and kernel modules without the necessity of

modifications. However, both [Loscocco and Smalley, 2001] and [Ott, 2002] require the

rewriting of some features of the original Linux kernel to properly work. This situation

may force to recompile existing code and/or modules in orderto obtain the new secu-

rity features. Although it exists a LSM-based prototype forthe approach presented in

[Loscocco and Smalley, 2001], it does not seem to be activelymaintained for the current

Linux-2.6 kernel series.

Regarding the second approach, we find in [Hope, 2002] a protection mechanism for the

creation of restricted environments within Unix setups. The authors in [Hope, 2002] present

the use of a special system call to restrict the access to a specific area of the file system.

This specific area is intended just for the processes that areexecuted under each restricted

environment. Then, this system call properly changes the root directory to the given path.

This way, the process remains in a safe space from where it is not possible to escape –

even if the component is compromised, the whole system will remain safe since the illicit

activities are caught within the replicated file system.

This proposal requires, however, a replicated file system tree for each environment. Hence,

the administrator in charge of the system must reproduce theoriginal file system tree to

include, for example, shared libraries or configuration files, and copy them to the new path.

Other disadvantage of this proposal is that it does not guarantee the correct execution flow

of a process, i.e., the behavior of a process can be modified byusing, for example, a buffer

overflow. Hence, the attacker can overwrite the configuration or logs files of such a process

by simply using an arbitrary code execution attack – since these files remain in the same

environment of the protected security component process.

Extended versions of the previous model, such as [Herzog andShahmehri, 2002], may also

offer support for access control to resources and guaranteethe integrity of the security com-

ponent’s resources. Nonetheless, these extended proposals do not protect from vulnerabil-

ities placed outside the trusted environment. A simple bug in a privileged service, or even

the use of stolen passwords, may lead the attacker from the external environment to attack

the component and its resources.

Chapter 4

Management of Anomalies on

Distributed Network Security Policies

”I know I’ve made some very poor decisions recently, but I can

give you my complete assurance that my work will be back to normal.”

– HAL (2001: A SPACE ODYSSEY)

The use offirewalls and network intrusion detection systems(NIDSs) is the dominant

method to survey and guarantee the security policy in current computer networks. Firewalls

are traditional security components which provide means tofilter traffic within computer

networks, as well as to police the incoming and outcoming interaction with the Internet. On

the other hand, NIDSs are complementary components used to enhance the visibility level

of the system as a whole, pointing out to malicious traffic. Todeploy the configuration of

both firewalls and NIDSs, it is necessary to translate the rules of the network security policy

into a set of filtering and alerting rules. The existence of anomalies between those rules in

distributed multi-component scenarios, is very likely to degrade the network security pol-

icy. The discovering and removal of these anomalies is a serious and complex problem to

solve. In this chapter, we present a set of algorithms for such a management.

38 Management of Anomalies on Distributed Network SecurityPolicies

The remaining of this chapter is organized as follows. Section 4.1 starts by introducing a

network model that is further used in Section 4.2 and Section4.3 when presenting, respec-

tively, our intra and inter-component anomaly’s classifications and algorithms. Section 4.4

overviews a first implementation of our algorithms in order to validate its performance over

real multi-component scenarios.

4.1 Network Model and Topology Properties

The purpose of our network model is to determine which components within the network

are crossed by a given packet, knowing its source and destination. It is defined as follows.

First, and concerning the traffic flowing from two different zones of the distributed policy

scenario, we may determine the set of components that are crossed by this flow. Regarding

the scenario shown in Figure 4.1, for example, the set of components crossed by the net-

work traffic flowing from zoneexternal network to zoneprivate3 equals [C1,C2,C4], and

the set of components crossed by the network traffic flowing from zoneprivate3 to zone

private2 equals [C4,C2,C3].

Figure 4.1: Simple distributed policy setup.

Let C be a set of components and letZ be a set of zones. We assume that each pair of zones

in Z are mutually disjoint, i.e., ifzi ∈ Z andzj ∈ Z thenzi ∩ zj = ∅. We then define the

predicateconnected(c1, c2) as a symmetric and anti-reflexive function which becomestrue

whether there exists, at least, one interface connecting componentc1 to componentc2. On

4.1 Network Model and Topology Properties 39

the other hand, we define the predicateadjacent(c, z) as a relation between components

and zones which becomestrue whether the zonez is interfaced to componentc. Referring

to Figure 4.1, we can verify that predicatesconnected(C1, C2) andconnected(C1, C3), as

well asadjacent(C1, DMZ), adjacent(C2, private1), adjacent(C3, DMZ), and so on,

becometrue. We then define the set of paths,P , as follows. Ifc ∈ C then[c] ∈ P is an

atomic path. Similarly, if[p.c1] ∈ P (be “.” a concatenation functor) andc2 ∈ C, such that

c2 /∈ p andconnected(c1, c2), then[p.c1.c2] ∈ P . This way, we can notice that, concerning

Figure 4.1,[C1, C2, C4] ∈ P and[C1, C3] ∈ P .

Let us now define a set of functions related with the order between paths. We first define

functionsfirst, last, and the order functor between paths. We define functionfirst from

P in C such that ifp is a path, thenfirst(p) corresponds to the first component in the

path. Conversely, we define functionlast from P in C such that ifp is a path, thenlast(p)

corresponds to the last component in the path. We then define the order functor between

paths asp1 ≤ p2, such that pathp1 is shorter thanp2, and where all the components within

p1 are also withinp2. We also define the predicatesisF irewall(c) andisNIDS(c) which

becometrue whether the componentc is, respectively, a firewall or a NIDS.

Two additional functions areroute andminimal route. We first define functionroute

from Z to Z in 2P , such thatp ∈ route(z1, z2) iff the pathp connects zonez1 to zone

z2. Formally, we define thatp ∈ route(z1, z2) iff the predicatesadjacent(first(p), z1)

andadjacent(last(p), z2) becometrue. Similarly, we then defineminimal route from Z

to Z in 2P , such thatp ∈ minimal route(z1, z2) iff the following conditions hold: (1)

p ∈ route(z1, z2); (2) There does not existp′ ∈ route(z1, z2) such thatp′ < p. Regarding

Figure 4.1, we can verify that theminimal route from zoneprivate3 to zoneprivate2

equals[C4, C2, C3], i.e.,minimal route(private3, private2) = {[C4, C2, C3]}.

Let us finally conclude this section by defining the predicateaffects(Z, Ac) as a boolean

expression which becomestrue whether there is, at least, an elementz ∈ Z such that the

configuration ofz is vulnerable to the attack categoryAc ∈ V , whereV is a vulnerability

set built from a vulnerability database, such as CVE/CAN [MITRE Corporation, 2005] or

OSVDB [Open Security Foundation, 2005].

40 Management of Anomalies on Distributed Network SecurityPolicies

4.2 Intra-component Classification and Algorithms

In this section we present our set of intra-component audit algorithms, whose main objec-

tive is the complete discovering and removal of policy anomalies that could exist in a single

component policy, i.e., to discover and warn the security officer about potential anomalies

within the configuration rules of a given component.

Let us start by classifying the complete set of anomalies that can occur within a single

component configuration. An example for each anomaly will beillustrated through the

sample scenario shown in Figure 4.2.

(a) Example scenario of a filtering policy.

(b) Example scenario of an alerting policy.

Figure 4.2: Example of filtering and alerting policies.

4.2 Intra-component Classification and Algorithms 41

Intra-Component Shadowing A configuration ruleRi is shadowed in a set of con-

figuration rulesR whether such a rule never applies because all the packets that Ri may

match, are previously matched by another rule, or combination of rules, with higher prior-

ity. Regarding Figure 4.2, ruleC1{R6} is shadowed by the overlapping of rulesC1{R3}

andC1{R5}.

Intra-Component Redundancy A configuration ruleRi is redundant in a set of configu-

ration rulesR whether the following conditions hold: (1)Ri is not shadowed by any other

rule or set of rules; (2) when removingRi from R, the security policy does not change. For

instance, referring to Figure 4.2, ruleC1{R4} is redundant, since the overlapping between

rulesC1{R3} andC1{R5} is equivalent to the police of ruleC1{R4}.

Intra-Component Irrelevance A configuration ruleRi is irrelevant in a set of configura-

tion rulesR if one of the following conditions holds:

(1) Both source and destination address are within the same zone. For instance, rule

C1{R1} is irrelevant since the source of this address,external network, as well as its

destination, is the same.

(2) The component is not within the minimal route that connects the source zone, concern-

ing the irrelevant rule which causes the anomaly, to the destination zone. Hence, the rule

is irrelevant since it matches traffic which does not flow through this component. Rule

C1{R2}, for example, is irrelevant since componentC1 is not in the path which corre-

sponds to the minimal route between the source zoneunix network to the destination

zonewindows network.

(3) The component is a NIDSs, i.e., the predicateisNIDS(c) (cf. Section 4.1) becomes

true, and, at least, one of the condition attributes inRi is related with a classification

of attackAc which does not affect the destination zone of such a rule – i.e., the predi-

cate affects(zd, Ac) becomesfalse. Regarding Figure 4.2, we can see that ruleC2{R2} is

irrelevant since the nodes in the destination zoneunix network are not affected by vulner-

abilities classified aswinworm.

42 Management of Anomalies on Distributed Network SecurityPolicies

Intra-Component Algorithms

Our proposed audit process is a way to alert the security officer in charge of the network

about these configuration errors, as well as to remove all theuseless rules in the initial

firewall configuration. The data to be used for the detection process is the following. A set

of rulesR as a list of initial sizen, wheren equalscount(R), and where each element is

an associative array with the stringscondition, decision, shadowing, redundancy, and

irrelevance as keys to access each necessary value.

For reasons of clarity, we assume one can access a linked-list through the operatorRi,

wherei is the relative position regarding the initial list size –count(R). We also assume

one can add new values to the list as any other normal variabledoes (element ← value),

as well as to remove elements through the addition of an emptyset (element ← ∅). The

internal order of elements from the linked-listR keeps with the relative ordering of rules.

Algorithm 1 : exclusion(B,A)

C[condition]← ∅;1

C[shadowing]← false;2

C[redundancy]← false;3

C[irrelevance]← false;4

C[decision]← B[decision];5

forall the elements ofA[condition] and B[condition] do6

if ((A1 ∩ B1) 6= ∅ and (A2 ∩B2) 6= ∅7

and ... and (Ap ∩Bp) 6= ∅) then8

C[condition]← C[condition] ∪9

{(B1 −A1) ∧B2 ∧ ... ∧Bp,10

(A1 ∩B1) ∧ (B2 −A2) ∧ ... ∧Bp,11

(A1 ∩B1) ∧ (A2 ∩B2) ∧ (B3 −A3) ∧ ... ∧Bp,12

...13

(A1 ∩B1) ∧ ... ∧ (Ap−1 ∩Bp−1) ∧ (Bp −Ap)};14

else15

C[condition]← (C[condition] ∪B[condition]);16

return C;17

4.2 Intra-component Classification and Algorithms 43

Algorithm 2 : testIrrelevance(c, r)

zs ← source (r);1

zd ← dest (r);2

if (zs = zd) and (¬r[decision]) then3

warning (“First case of irrelevance”);4

else ifzs 6= zd then5

p← minimal route (zs,zd);6

if c /∈ p and (¬r[decision]) then7

warning (“Second case of irrelevance”);8

else if(¬empty (r[Ac])) and (¬affects(zd, r[Ac])) then9

warning (“Third case of irrelevance”);10

else return false;11

return true;12

Algorithm 3 : testRedundancy(R,r)

i← 1;1

temp← r;2

while ¬test and (i ≤ count(R)) do3

temp← exclusion(temp, Ri);4

if temp[condition] =∅ then5

return true;6

i← (i + 1);7

return false;8

44 Management of Anomalies on Distributed Network SecurityPolicies

Algorithm 4 : intra-component-audit(c, R)

begin1

n← count(R);2

/*Phase 1*/3

for i← 1 to (n− 1) do4

for j ← (i + 1) to n do5

if Ri[decision] 6= Rj[decision] then6

Rj ← exclusion (Rj ,Ri);7

if Rj [condition] = ∅ then8

warning (“Shadowing”);9

Rj[shadowing]← true;10

/*Phase 2*/11

for i← 1 to (n− 1) do12

Ra ← {rk ∈ R | n ≥ k > i and13

rk[decision] = ri[decision]};14

if testRedundancy (Ra,Ri) then15

warning (“Redundancy”);16

Ri[condition]← ∅;17

Ri[redundancy]← true;18

else19

for j ← (i + 1) to n do20

if Ri[decision]=Rj[decision] then21

Rj ←exclusion (Rj ,Ri);22

if (¬Rj [redundancy] and23

Rj[condition] = ∅) then24

warning (“Shadowing”);25

Rj [shadowing]← true;26

/*Phase 3*/27

for i← 1 to n do28

if Ri[condition] 6= ∅ then29

if testIrrelevance (c,Ri) then30

Rj [irrelevance]← true;31

r[condition]← ∅;32

end33

4.2 Intra-component Classification and Algorithms 45

Each elementRi[condition] is a boolean expression overp possible attributes. To simplify,

we only consider as attributes the following ones:szone (source zone),dzone (destina-

tion zone),sport (source port),dport (destination port),protocol, andattack class – or

Ac for short – which will be empty whether the component is a firewall. In turn, each

elementRi[decision] is a boolean variable whose values are in{true, false}. Finally,

elementsRi[shadowing], Ri[redundancy], andRi[irrelevance] are boolean variables in

{true, false} – which will be initialized tofalse by default.

We split the whole process in four different algorithms. Thefirst algorithm (cf. Algo-

rithm 1) is an auxiliary function whose input is two rules,A andB. Once executed, this

auxiliary function returns a further rule,C, whose set of condition attributes is the exclu-

sion of the set of conditions fromA overB. In order to simplify the representation of this

algorithm, we use the notationAi as an abbreviation of the variableA[condition][i], and

the notationBi as an abbreviation of the variableB[condition][i] – wherei in [1, p].

The second algorithm (cf. Algorithm 2) is a boolean functionin {true, false} which ap-

plies the necessary verifications to decide whether a ruler is irrelevant for the configura-

tion of a componentc. To properly execute such an algorithm, let us definesource(r) as

a function inZ such thatsource(r) = szone, anddest(r) as a function inZ such that

dest(r) = dzone.

The third algorithm (cf. Algorithm 3) is a boolean function in {true, false}which, in turn,

applies the transformationexclusion(Algorithm 1) over a set of configuration rules to check

whether the rule obtained as a parameter is potentially redundant.

The last algorithm (cf. Algorithm 4) performs the whole process of detecting and removing

the complete set of intra-component anomalies. This process is split in three different

phases. During the first phase, a set of shadowing rules are detected and removed from a

top-bottom scope, by iteratively applying Algorithm 1 – when the decision field of the two

rules is different. Let us notice that this stage of detecting and removing shadowed rules is

applied before the detection and removal of proper redundant and irrelevant rules.

The resulting set of rules is then used when applying the second phase, also from a top-

bottom scope. This stage is performed to detect and remove proper redundant rules, through

46 Management of Anomalies on Distributed Network SecurityPolicies

an iterative call to Algorithm 3 (i.e.,testRedundancy), as well as to detect and remove all the

further shadowed rules remaining during the latter process. Finally, during a third phase the

whole set of non-empty rules is analyzed in order to detect and remove irrelevance, through

an iterative call to Algorithm 2 (i.e.,testIrrelevance).

Applying the Intra-Component Algorithms

In the following we give an outlook on applying our set of intra-component algorithms over

some representative examples. Let us start applying the function exclusion(Algorithm 1)

over a set of two rulesRi andRj , each one of them with two condition attributes –szone

anddzone – and where ruleRj has less priority than ruleRi. In this first example,

Ri[condition] = (szone ∈ [80, 100]) ∧ (dzone ∈ [1, 50])

Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

since(szone ∈ [1, 50]) ∩ (szone ∈ [80, 100]) equals∅, the condition attributes of rulesRi

andRj are completely independent. Thus, the applying ofexclusion(Rj , Ri) is equal to

Rj [condition].

The following three examples show the same execution over a set of condition attributes

with different cases of conflict. A first case is the following,

Ri[condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [1, 30])

Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

where there is a main overlap of attributeszone from Ri[condition] which completely ex-

cludes the same attribute onRj [condition]. Then, there is a second overlap of attribute

dzone from Ri[condition] which partially excludes the range[1, 30] into attributedzone of

Rj [condition], which becomesdzone in [31, 50]. This way,exclusion(Rj , Ri) ← {(s ∈

[1, 50]) ∧ (dzone ∈ [31, 50])}. For reasons of clarity, we do not show the first empty

set corresponding to the first overlap. If shown, the result should become as follows:

exclusion(Rj , Ri)← {∅, (szone ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}.

4.2 Intra-component Classification and Algorithms 47

In this other example,

Ri[condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [20, 30])

Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

there are two simple overlaps of both attributesszone and dzone from Ri[condition]

to Rj[condition], such thatexclusion(Rj , Ri) becomes{(szone ∈ [1, 50]) ∧ (dzone ∈

[1, 19]), (szone ∈ [1, 50]) ∧ (dzone ∈ [31, 50])}.

A more complete example is the following,

Ri[condition] = (szone ∈ [10, 40]) ∧ (dzone ∈ [20, 30])

Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

where exclusion(Rj , Ri) becomes{(szone ∈ [1, 9]) ∧ (dzone ∈ [1, 50]), (szone ∈

[41, 50]) ∧ (dzone ∈ [1, 50]), (szone ∈ [10, 40]) ∧ (dzone ∈ [1, 19]), (szone ∈ [10, 40]) ∧

(dzone ∈ [31, 50])}.

Regarding a full exclusion, let us show the following example,

Ri[condition] = (szone ∈ [1, 60]) ∧ (dzone ∈ [1, 60])

Rj [condition] = (szone ∈ [1, 50]) ∧ (dzone ∈ [1, 50])

where the set of condition attributes of ruleRi completely excludes the ones of ruleRj .

Then, the applying ofexclusion(Rj , Ri) becomes an empty set (i.e.,{∅, ∅} = ∅). Hence,

on a further execution of Algorithm 4 the shadowing field of rule Rj (initialized asfalse

by default) would becometrue (i.e.,Rj [shadowing]← true).

In order to show the execution of Algorithm 4 over a more complete set of rules, we give

an outlook of such an execution over the following set of rules:

R1 : szone ∈ [10, 50]→ true

R2 : szone ∈ [40, 90]→ false

R3 : szone ∈ [60, 100]→ false

R4 : szone ∈ [30, 80]→ true

R5 : szone ∈ [1, 70]→ false

48 Management of Anomalies on Distributed Network SecurityPolicies

We start by showing the initial step within the first phase of Algorithm 4, wherei equals

1, and applied over the previous set of filtering rules. Let us notice that on this first step,

the execution of functionexclusion, with rulesR2 andR1, since their decision is different,

becomes the range[51, 90]. Similarly, the execution of functionexclusion, with rulesR5

andR1 becomes the range{[1, 9], [51, 70]}. The result of this first step is the following:

R1 : szone ∈ [10, 50]→ true

R2 : szone ∈ [51, 90]→ false

R3 : szone ∈ [60, 100]→ false

R4 : szone ∈ [30, 80]→ true

R5 : szone ∈ {[1, 9], [51, 70]} → false

Let us now move to the second step, withi equals2. In this step, the range of ruleR4

decreases since the execution of functionexclusion, with rulesR2 andR4, whose decision

is different, becomes the range[30, 50]:

R1 : szone ∈ [10, 50]→ true

R2 : szone ∈ [51, 90]→ false

R3 : szone ∈ [60, 100]→ false

R4 : szone ∈ [30, 50]→ true

R5 : szone ∈ {[1, 9], [51, 70]} → false

At the end of the first phase, once executed both third and fourth steps, the resulting rules

remain as above:

R1 : szone ∈ [10, 50]→ true

R2 : szone ∈ [51, 90]→ false

R3 : szone ∈ [60, 100]→ false

R4 : szone ∈ [30, 50]→ true

R5 : szone ∈ {[1, 9], [51, 70]} → false

Once finished the first phase and running over the first step of the second phase, i.e.,i

equals1, we notice that: (1) the result of applying functiontestRedundancywith rule R1

4.2 Intra-component Classification and Algorithms 49

as parameter becomesfalse; (2) the execution of functionexclusion, with rulesR4 and

R1, completely excludes the condition attribute of ruleR4. Hence, ruleR4, is reported as

shadowed by the combination of rulesR1 andR2, and its condition attribute becomes an

empty set. Therefore, the status fieldshadowing of ruleR4, i.e.,R4[shadowing], switches

its value totrue:

R1 : szone ∈ [10, 50]→ true

R2 : szone ∈ [51, 90]→ false

R3 : szone ∈ [60, 100]→ false

R4 : ∅ → true

R5 : szone ∈ {[1, 9], [51, 70]} → false

Then, we follow now to the second step of the second phase, i.e., i equals2, and we notice

that ruleR2 disappears since the result of applying functiontestRedundancywith rule R2

as parameter becomestrue. Thus, the condition attribute of ruleR2 becomes an empty set,

and its status fieldredundancy, i.e.,R2[redundancy], switches its value totrue:

R1 : szone ∈ [10, 50]→ true

R2 : ∅ → false

R3 : szone ∈ [60, 100]→ false

R4 : ∅ → true

R5 : szone ∈ {[1, 9], [51, 70]} → false

At the end of the following step, wherei equals3, we notice that the execution of func-

tion testRedundancywith rule R3 as parameter becomesfalse. Thus, we apply function

exclusion, with rulesR5 andR3 as parameters. As a result of this execution, the second

subrange of ruleR5 scarcely decreases from[51, 70] to [51, 59]:

R1 : szone ∈ [10, 50]→ true

R2 : ∅ → false

R3 : szone ∈ [60, 100]→ false

R4 : ∅ → true

R5 : szone ∈ {[1, 9], [51, 59]} → false

50 Management of Anomalies on Distributed Network SecurityPolicies

We do not show the rest of the execution, since the resulting set of filtering rules does not

modify from the previous one, which is the following:

/ ∗ resulting rules ∗ /

R1 : szone ∈ [10, 50]→ true

R3 : szone ∈ [60, 100]→ false

R5 : szone ∈ {[1, 9], [51, 59]} → false

Let us recall that the following two warnings will notice thesecurity officer to the discov-

ering of both shadowing and redundancy anomalies, in order to verify the correctness of

the whole detection and transformation process:

/ ∗ warnings ∗ /

Shadowing onR4 with R2,R1

Redundancy onR2 with R3,R5

To conclude this section, let us finally show the warnings reported when executing Algo-

rithm 4 over the configuration of the two components we showedin Figure 4.2.

/ ∗ warnings ∗ /

First case of irrelevance onC1{R1}

Second case of irrelevance onC1{R2}

Redundancy onC1{R4} with C1{R3},C1{R5}

Shadowing onC1{R6} with C1{R3},C1{R5}

Third case of irrelevance onC2{R2}

4.2 Intra-component Classification and Algorithms 51

Correctness of the Intra-Component Algorithms

Lemma 1 Let Ri : conditioni → decisioni and Rj : conditionj → decisionj be two

configuration rules. Then{Ri, Rj} is equivalent to{Ri, R
′

j} whereR′

j ← exclusion(Rj ,

Ri).

Proof of Lemma 1 Let us assume that:

Ri[condition] = A1 ∧ A2 ∧ ... ∧Ap, and

Rj [condition] = B1 ∧B2 ∧ ... ∧ Bp.

If (A1 ∩B1) = ∅ or (A2 ∩B2) = ∅ or . . . or(Ap ∩Bp) = ∅ thenexclusion(Rj , Ri)← Rj .

Hence, to prove the equivalence between{Ri, Rj} and{Ri, R
′

j} is trivial in this case.

Let us now assume that:

(A1 ∩ B1) 6= ∅ and(A2 ∩ B2) 6= ∅

and ... and(Ap ∩ Bp) 6= ∅.

If we apply rules{Ri, Rj} whereRi comes beforeRj , then ruleRj applies to a given

packet if this packet satisfiesRj [condition] but notRi[condition] (sinceRi applies first).

Therefore, notice thatRj [condition]− Ri[condition] is equivalent to:

(B1 −A1) ∧ B2 ∧ ... ∧ Bp or

(A1 ∩B1) ∧ (B2 − A2) ∧ ... ∧ Bp or

(A1∩B1)∧ (A2∩B2)∧ (B3−A3)∧ ...∧Bp or

...

(A1 ∩B1) ∧ ... ∧ (Ap−1 ∩Bp−1) ∧ (Bp −Ap)

which corresponds toR′

j = exclusion(Rj , Ri). This way, ifRj applies to a given packet

in {Ri, Rj}, then ruleR′

j also applies to this packet in{Ri, R
′

j}. Conversely, ifR′

j applies

to a given packet in{Ri, R
′

j}, then this means this packet satisfiesRj [condition] but not

Ri[condition]. So, it is clear that ruleRj also applies to this packet in{Ri, Rj}. Since in

Algorithm 1R′

j [decision] becomesRj[decision], this enables to conclude that{Ri, Rj} is

equivalent to{Ri, R
′

j}. �

52 Management of Anomalies on Distributed Network SecurityPolicies

Theorem 2 Let R be a set of configuration rules and letTr(R) be the resulting rules

obtained by applying Algorithm 4 toR. ThenR andTr(R) are equivalent.

Proof of Theorem 2 Let Tr′1(R) be the set of rules obtained after applying the first phase

of Algorithm 4.

SinceTr′1(R) is derived from ruleR by applyingexclusion(Rj , Ri) to some rulesRj in

R, it is straightforward, from Lemma 1, to conclude thatTr′1(R) is equivalent toR.

Let us now move to the second phase, and let us consider a ruleRi such thattestRedundan-

cy(Ri) (cf. Algorithm 3) istrue. This means thatRi[condition] can be derived by condi-

tions of a set of rulesS with the same decision and that come after in order than ruleRi.

Since every ruleRj with a decision different from the one of rules inS has already been

excluded from rules ofS in the first phase of the Algorithm, we can conclude that ruleRi

is definitely redundant and can be removed without changing the component configuration.

This way, we conclude that Algorithm 4 preserves equivalence in this case.

On the other hand, iftestRedundancy(Ri) is false, then transformation consists in apply-

ing functionexclusion(Rj , Ri) to some rulesRj which also preserves equivalence. Simi-

larly, and once in the third phase, let us consider a ruleRi such thattestIrrelevance(c, Ri)

is true.

This means that this rule matches traffic that will never cross componentc, or that it is irrel-

evant for the component’s configuration. So, we can removeRi from R without changing

such a configuration.

Thus, in this third case, as in the other two cases,Tr′(R) is equivalent toTr′1(R) which, in

turn, is equivalent toR. �

Lemma 3 Let Ri : conditioni → decisioni and Rj : conditionj → decisionj be two

configuration rules. Then rulesRi and R′

j, whereR′

j ← exclusion(Rj , Ri) will never

simultaneously apply to any given packet.

4.2 Intra-component Classification and Algorithms 53

Proof of Lemma 3 Notice that ruleR′

j only applies when ruleRi does not apply. Thus,

if rule R′

j comes before ruleRi, this will not change the final decision since ruleR′

j only

applies to packets that do not match ruleRi. �

Theorem 4 Let R be a set of configuration rules and letTr(R) be the resulting rules

obtained by applying Algorithm 4 toR. Then the following statements hold: (1) Ordering

the rules inTr(R) is no longer relevant; (2)Tr(R) is completely free of anomalies.

Proof of Theorem 4 For any pair of rulesRi andRj such thatRi comes beforeRj , Rj is

replaced by a ruleR′

j obtained by recursively replacingRj by exclusion(Rj , Rk) for any

k < j.

Then, by recursively applying Lemma 3, it is possible to commute rulesR′

i and R′

j in

Tr(R) without changing the policy.

Regarding the second statement –Tr(R) is completely free of anomalies – notice that, in

Tr(R), each rule is independent of all other rules.

Thus, if we consider a ruleRi in Tr(R) such thatRi[condition] 6= ∅, then this rule will

apply to any packet that satisfiesRi[condition], i.e., it is not shadowed.

On the other hand, ruleRi is not redundant because if we remove this rule, since this rule

is the only one that applies to packets that satisfyRi[condition], then configuration of the

component will change if we remove ruleRi from Tr(R).

Finally, and after the execution of Algorithm 4 over the initial set of configuration rules,

one may verify that for each ruleRi in Tr(R) the following conditions hold:

(1) s = z1 ∩ source(r) 6= ∅ andd = z2 ∩ dest(r) 6= ∅ such thatz1 6= z2 and componentc

is in minimal route(z1, z2);

(2) if Ac = attack category(Ri) 6= ∅, the predicateaffects(Ac, z2) becomestrue.

Thus, each ruleRi in Tr(R) is not irrelevant. �

54 Management of Anomalies on Distributed Network SecurityPolicies

Complexity of the Intra-Component Algorithms

In this section, we shortly discuss the degree of computational complexity of our approach’s

main algorithm, i.e., Algorithm 1, with respect to the increase of the initial number of rules

due to the rewriting process. Indeed, in the worst case (cf. Figure 4.3, Algorithm 1 may

generate a huge number of rules. For instance, if we have two rules withp attributes, the

second rule can be replaced byp new rules in the worst case, leading top + 1 rules.

10

20

30

40

50

60

70

10 20 30 40 50 60

accept deny

(d)

(d)

 R
1

 R
3

70

 R
2

 R
4

(a) Best case example (b) Normal case example

(c) Worst case example

Figure 4.3: Best, normal, and worst ruleset examples.

4.2 Intra-component Classification and Algorithms 55

If we now assume that we haven rules (n > 2) with p attributes, then each rule except

the first one can be replaced byp new rules in the first rewriting step of the algorithm. In

the second step, thep rules that replace the second rule are combined with thep rules that

replace rules 3 ton. Thus, each rule from 3 ton can be replaced byp2 new rules. In the third

step, thep2 rules corresponding to rule 3 are combined with thep2 rules corresponding to

rules 4 ton. We can show that this may lead top3 new rules. And so on. Hence, in the worst

case, if we haven rules (n > 2) with p attributes, then we can obtain1+p+p2 + . . .+pn−1

rules when applying Algorithm 1, that isp
n
−1

p−1
rules.

Although this complexity seems very high, in all the experimentations we have done (cf. Sec-

tion 4.4), we were always very far from this case. First, because only attributes source and

destination may significantly overlap and exert a bad influence on the algorithm complexity.

Other attributes, protocols and source and destination port numbers, are generally equal or

completely different when combining configuration rules. Second, administrators generally

use overlapping rules in their configurations to represent rules that may haveexceptions.

This situation is closer to the normal case presented in Figure 4.3 than to the worst case.

Third, when shadowing or redundancy situations are discovered by the algorithm, some

rules are removed – which significantly reduces the algorithm complexity.

Default policies

Each component implements a positive (i.e., close) or negative (i.e., open) policy. If it is

positive, the default decision is toalert or to deny a packet when any configuration rule

applies. By contrast, the negative policy willaccepts or pass a packet when no rule applies.

After rewriting the rules with the intra-component-audit algorithms (cf. Section 4.2), we

can actually remove every rule whose decision ispassor acceptif the policy of this com-

ponent is negative (else this rule is redundant with the default policy); and similarly we can

remove every rule whose decision isdenyor alert if its policy is positive. Thus, we can

consider that our proposedintra-component-auditalgorithm generates a configuration that

only contains positive rules if the component default policy is negative, and negative rules

if the default policy is positive.

56 Management of Anomalies on Distributed Network SecurityPolicies

4.3 Inter-component Classification and Algorithms

The objective of the inter-component audit algorithms is the complete detection of pol-

icy anomalies that could exist in a multi-component policy,i.e., to discover and warn the

security officer about potential anomalies between policies of different components.

The main hypotheses to deploy our algorithms hold the following:

(1) An upstream traffic flows away from the closest component to the origin of this traffic

(i.e., the most-upstream component [Al-Shaer et al., 2005]) towards the closest component

to the remote destination (i.e., the most-downstream component [Al-Shaer et al., 2005]);

(2) Every component’s policy in the network has been rewritten using the intra-component

algorithms defined in Section 4.2, i.e., it does not contain intra-component anomalies and

the rules within such a policy are completely independent between them.

Inter-Component Anomalies Classification

In this section, we classify the complete set of anomalies that can occur within a multi-

component policy. Our classification is based on the networkmodel presented in Sec-

tion 4.1. An example for each anomaly will be illustrated through the distributed multi-

component policy setup shown in Figure 4.4.

Inter-Component Shadowing A shadowing anomaly occurs between two components

whether the following conditions hold: (1) The most-upstream component is a firewall;

(2) The downstream component, where the anomaly is detected, does not block or report

(completely or partially) traffic that is blocked (explicitly, by means of positive rules; or

implicitly, by means of its default policy), by the most-upstream component.

The explicit shadowing as result of the union of rulesC6{R7} andC6{R8} to the traffic that

the componentC3 matches by means of ruleC3{R1} is a proper example offull shadowing

between a firewall and a NIDS. Similarly, the anomaly betweenC3{R2} andC6{R8} shows

an example of anexplicit partial shadowinganomaly between a firewall and a NIDS.

4.3 Inter-component Classification and Algorithms 57

Figure 4.4: An example for a distributed network policy setup.

On the other hand, the implicit shadowing between the ruleC1{R5} and the default policy

of componentC2 is a proper example ofimplicit full shadowingbetween two firewalls. Fi-

nally, the anomaly between the ruleC1{R6}, C2{R1}, and the default policy of component

C2 shows an example of animplicit partial shadowinganomaly between two firewalls.

Inter-Component Redundancy A redundancy anomaly occurs between two components

whether the following conditions hold: (1) The most-upstream component is a firewall; (2)

The downstream component, where the anomaly is detected, blocks or reports (completely

or partially) traffic that is blocked by the most-upstream component.

58 Management of Anomalies on Distributed Network SecurityPolicies

A proper example offull redundancybetween two firewalls is shown by rulesC5{R3} and

C6{R1}; rulesC4{R3} andC6{R5}, on the other hand, show an example offull redundancy

between a firewall and a NIDS.

Similarly, rulesC5{R4} andC6{R2} show a proper example ofpartial redundancybe-

tween two firewalls, whereas rulesC4{R4} andC6{R6} show an example ofpartial redun-

dancybetween a firewall and a NIDS.

Sometimes, this kind of redundancy is expressly introducedby network administrators

(e.g., to guarantee the forbidden traffic will not reach the destination). Nonetheless, it

is important to discover it since, if such a rule is applied, we may conclude that at least one

of the redundant components is wrongly working.

Inter-Component Misconnection A misconnection anomaly occurs between two com-

ponents whether the following conditions hold: (1) The most-upstream component is a

firewall; (2) the most-upstream firewall permits (explicitly, by means of negative rules; or

implicitly, through its default policy) all the traffic – or just a part of it – that is denied or

alerted by a downstream component.

An explicit misconnection anomaly between two firewalls is shown through the rulesC5{R1}

andC2{R2} (full misconnection); and the rulesC5{R2} andC2{R2} (partial misconnec-

tion).

An implicit misconnection anomaly between two firewalls is also shown by the ruleC1{R5}

and the default policy of firewallC2 (full misconnection); and the rulesC1{R6} andC2{R1},

together with the default policy ofC2 (partial misconnection).

Similarly, the pair of rulesC4{R1}-C2{R5} and the pair of rulesC4{R2}-C2{R5} show,

respectively, an explicit example of full and partial misconnection anomaly between a fire-

wall and a NIDS.

Finally, the ruleC4{R5} together with the negative policy of the firewallC2 shows an

example of implicit misconnection anomaly between a firewall and a NIDS.

4.3 Inter-component Classification and Algorithms 59

Inter-Component Analysis Algorithms

For reasons of clarity, we split the whole analysis process in four different algorithms.

The input for the first algorithm (cf. Algorithm 5) is the set of componentsC, such that

for all c ∈ C, we notec[rules] as the set of configuration rules of componentc, and

c[policy] ∈ {true, false} as the default policy of such a componentc.

In turn, each ruler ∈ c[rules] consists of a boolean expression over the attributesszone

(source zone),dzone (destination zone),sport (source port),dport (destination port),

protocol, anddecision (true or false).

Algorithm 5 : inter-component-audit(C)

foreach c ∈ C do1

foreach r ∈ c[rules] do2

Zs ← {z ∈ Z | z ∩ source (r) 6= ∅};3

Zd ← {z ∈ Z | z ∩ dest (r) 6= ∅};4

foreachz1 ∈ Zs do5

foreach z2 ∈ Zd do6

audit (c,r,z1,z2);7

Algorithm 6 : audit(c,r,z1,z2)

foreachp ∈ minimal route (z1,z2) do1

pathd ← tail (p,c);2

pathu ← header (p,c);3

if pathd 6= ∅ and r[decision] =” false”4

and isFirewall (c) then5

cd ← first(pathd);6

downstream (r,c,cd);7

if pathu 6= ∅ then8

cu ← last(pathu);9

if isFirewall (cu) then10

upstream (r,c,cu);11

60 Management of Anomalies on Distributed Network SecurityPolicies

Algorithm 7 : downstream(r,c,cd)

if cd[policy] = true then1

Rdf ← {rd ∈ cd | rd ∽ r ∧ rd[decision] = false};2

if Rdf = ∅ then warning (“Full Misconnection ”);3

else if¬ testRedundancy (Rdf ,r) then4

warning (“Partial Misconnection”);5

Algorithm 8 : upstream(r,c,cu)

Ruf ← {ru ∈ cu | ru ∽ r ∧ ru[decision] = false};1

Rut ← {ru ∈ cu | ru ∽ r ∧ ru[decision] = true};2

if r[decision] =“ true” then3

if testRedundancy (Ruf ,r) then4

warning (“Full Spurious”);5

else ifRua 6= ∅ then6

warning (“Partial Spurious”);7

else iftestRedundancy (Rut,r) then8

warning (“Full Redundancy”);9

else ifRut 6= ∅ then10

warning (“Partial Redundancy”);11

else ifRuf = ∅ and Rut = ∅12

and cu[policy] = false then13

warning (“Full Misconnection”);14

else15

if testRedundancy (Rut,r) then16

warning (“Full Shadowing”);17

else ifRut 6= ∅) then18

warning (“Partial Shadowing”);19

else ifRuf = ∅ and cu[policy] = true then20

warning (“Full Shadowing”);21

else if¬ testRedundancy (Ruf ,r)22

and cu[policy] = true then23

warning (“Partial Shadowing”);24

4.3 Inter-component Classification and Algorithms 61

Let us recall here the functionssource(r) = szone and dest(r) = dzone. Thus, we

compute for each componentc ∈ C and for each ruler ∈ c[rules], each one of the source

zonesz1 ∈ Zs and destination zonesz2 ∈ Zd – whose intersection with respectivelyszone

anddzone is not empty – which become, together with a reference to eachcomponentc

and each ruler, the input for the second algorithm (i.e., Algorithm 6).

Once in Algorithm 6, we compute the minimal route of components that connects zone

z1 to z2, i.e., [C1, C2, . . . , Cn] ∈ minimal route(z1, z2). Then, we decompose the set

of components inside each path in downstream path (pathd) and upstream path (pathu).

To do so, we use functionshead andtail. The first componentcd ∈ pathd, and the last

componentcu ∈ pathu are passed, respectively, as argument to the last two algorithms

(i.e., Algorithm 7 and Algorithm 8) in order to conclude the set of necessary checks that

guarantee the audit process.

The operator “∽” within algorithms 7 and 8 denotes that two rulesri andrj are correlated

if every attribute inRi has a non empty intersection with the corresponding attribute inRj .

Let us conclude by giving an outlook to the set of warnings send to the security officer after

the execution of Algorithm 5 over the scenario of Figure 4.4:

C1{R3} − C6{R3, R4}: Full Shadowing

C1{R4} − C6{R4}: Partial Shadowing

C1{R5} − C2{pol.}: Full Shadowing

C1{R6} − C2{R1, pol.}: Partial Shadowing

C2{R3} − C1{pol.}: Full Misconnection

C2{R4} − C1{R7, pol.}: Partial Misconnection

C3{R1} − C6{R7, R8}: Full Shadowing

C3{R2} − C6{R8}: Partial Shadowing

C4{R1} − C2{R5}: Full Misconnection

C4{R2} − C2{R5}: Partial Misconnection

C4{R3} − C6{R5}: Full Redundancy

C4{R4} − C6{R6}: Partial Redundancy

C4{R5} − C6{pol.}: Full Misconnection

C5{R1} − C2{R2}: Full Misconnection

C5{R2} − C2{R2}: Partial Misconnection

C5{R3} − C6{R1}: Full Redundancy

C5{R4} − C6{R2}: Partial Redundancy

C5{R5} − C6{pol.}: Full Misconnection

62 Management of Anomalies on Distributed Network SecurityPolicies

Correctness of the Inter-Component Algorithms

To prove the correctness of our Inter-Component Algorithms, we first define what is a

deployment without anomalies for a set of rules. For this purpose, let us consider a setR of

configuration rules to be deployed over a setC of components that partitions a network into

a setZ of zones. We also assume thatC has been rewritten by our intra-component-audit

algorithm (cf. Section 4.2).

Let us now consider a ruler ∈ R and let us assume thatr applies to a source zonez1 and

a destination zonez2, i.e.,s = z1 ∩ source(r) 6= ∅ andd = z2 ∩ dest(r) 6= ∅. Let r′ be a

rule identical tor except thatsource(r′) = s anddest(r′) = d. Finally, let us assume that

[C1, C2, ..., Ck] ∈ minimal route(z1, z2).

Deployment algorithm It defines how any ruler ∈ R will be deployed over the setC of

components. There are two different cases:r[decision] = false or r[decision] = true.

If r[decision] = false then, on every component on the minimal route from sources to

destinationd, deploy a negative rule (i.e., anaccept filtering rule if the component is a

firewall, or apass alerting rule if the component is a NIDS).

Conversely, ifr[decision] = true then, the following two possibilities hold: (1) ifr is a fil-

tering rule, then deploy adeny filtering rule on the most-upstream firewall on the minimal

route (if such a firewall does not exist, then generate a deployment error message); (2) ifr

is an alerting rule, then deploy analert rule on the most-upstream NIDS on the minimal

route (if such a NIDS does not exist, then generate a deployment error message).

Based on this deployment algorithm, we can now prove the following theorem:

Theorem 5 Let C be a set of components. The inter-component algorithms presented in

Section 4.3 do not detect any anomaly in the configurations ofC iff there is a setR of rules

such that configurations ofC are obtained by applying the deployment algorithm showed

above.

4.4 Implementation and Performance Evaluation 63

4.4 Implementation and Performance Evaluation

We implemented the intra and inter-component algorithms presented in this chapter in a

software prototype called MIRAGE (which stands for MIsconfiguRAtion manaGEr). MI-

RAGE has been developed using PHP, a general-purpose scripting language that is espe-

cially suited for web services development and can be embedded into HTML for the con-

struction of client-side GUI based applications [Castagnetto et al., 1999]. MIRAGE can be

locally or remotely executed by using a HTTP server (e.g., Apache server over UNIX or

Windows setups) and a web browser.

We evaluated our algorithms through a set of experiments over two different IPv4 real

networks. The topology for the first network consisted of a single firewall based on net-

filter [Welte et al., 2006], and a single NIDS based on snort [Roesch, 1999] – connected

to three different zones with more than 50 hosts. The topology for the second network

consisted of six different components – based on netfilter, ipfilter [Reed, 2005], and snort

– protecting six different zones with more than 200 hosts. The whole of these experiments

were carried out on an Intel-Pentium M 1.4 GHz processor with512 MB RAM, running

Debian GNU/Linux 2.6.8, and using Apache/1.3 with PHP/4.3 configured.

During a first phase, we measured the memory space and the processing time needed to

perform Algorithm 4 over several sets of IPv4 policies for the first IPv4 network, according

to the three following security officer profiles: beginner, intermediate, and expert – where

the probability to have overlaps between rules increases from 5% to 90%. The results of

these measurements are plotted in Figure 4.5 and Figure 4.6.Though those plots reflect

strong memory and process time requirements, we consider they are reasonable for off-line

analysis, since it is not part of the critical performance ofa single component.

We conducted, in a second phase, similar experiments to measure the performance and

scalability of Algorithm 5 through a progressive incrementof auto-generated rules, fire-

walls and zones for the second network. The results of these measurements are plotted in

Figure 4.7 and Figure 4.8. Similarly to the intra-componentevaluation, we consider these

requirements very reasonable for off-line inter-component analysis.

64 Management of Anomalies on Distributed Network SecurityPolicies

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

M
em

or
y

sp
ac

e
(k

b)

Number of rules

Expert
Intermediate

Beginner

Figure 4.5: Memory space evaluation for the intra-component algorithms.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

Number of rules

Expert
Intermediate

Beginner

Figure 4.6: Processing time evaluation for the intra-component algorithms.

4.4 Implementation and Performance Evaluation 65

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

M
em

or
y

sp
ac

e
(k

b)

Number of rules

3 components / 2 zones
5 components / 4 zones
6 components / 6 zones

Figure 4.7: Memory space evaluation for the inter-component algorithms.

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

Number of rules

3 components / 2 zones
5 components / 4 zones
6 components / 6 zones

Figure 4.8: Processing time evaluation for the inter-component algorithms.

66 Management of Anomalies on Distributed Network SecurityPolicies

Summary

We have presented in this chapter an audit process to set a distributed access control policy

free of anomalies. Our audit process has been presented in three main blocks. We first

presented in Section 4.1 a network model to determine which components are crossed by

a given packet knowing its source and destination. We then presented in Section 4.2 a set

of algorithms for the discovering and removal of policy anomalies over single-component

environments. We finally presented in Section 4.3 a set of algorithms for the detection and

reporting of anomalies over a multi-component environments.

The advantages of our set of algorithms, regarding the related work presented in Section 3.1

of Chapter 3, are threefold. First of all, our approach not only considers the analysis of

rules two by two but also a complete analysis of the whole set of rules. This way, those

conflicts due to the union of rules that are not detected in [Al-Shaer et al., 2005] are prop-

erly discovered by our intra- and inter-component algorithms. Second, after applying our

intra-component algorithms the resulting rules of each component are totally disjoint, i.e.,

the ordering of rules is no longer relevant. Hence, one can perform a second transforma-

tion in a positive or negative manner, generating a configuration that only contains positive

rules if the component default policy is negative, and negative rules if the default policy

is positive. Third, our approach also presents a network model to determine which com-

ponents are crossed by a given packet knowing its source and destination, as well as other

network properties. Thanks to this model, we better define all the set of both intra- and

inter-anomalies. Furthermore the lack of this model in [Al-Shaer et al., 2005] may lead to

inappropriate decisions.

We also presented along Section 4.2 and Section 4.3 the correctness of our algorithms and

it complexity. In Section 4.4, moreover, we discussed the implementation of our set of

algorithms in a software prototype and a first evaluation of such an implementation. The

results of performance of our implemented prototype demonstrates the practicability of

our work. Although these results show that our algorithms have strong memory and time

processing requirements, we believe that these requirements are reasonable for off-line

analysis, since it is not part of the critical performance ofthe audited components.

Chapter 5

Infrastructure for the Exchange of

Messages and Audit Information

”I’ve ignored stop signs, I’ve jaywalked, I’ve even opened fires on Jones Beach.

But this is the U.S. Mail! And since I was old enough to lick a stamp,

I was inculcated with the sanctity, the inviolability of themail.”

– JOEL FLEISCHMAN (NORTHERN EXPOSURE)

As pointed out in Chapter 3 (cf. Section 3.2), traditional client/server solutions for the ex-

change of audit information between security components can quickly become a bottleneck

– due to saturation problems associated with the service offered by centralized or master

domain analyzers. On the one hand, traditional systems likeDIDS [Snapp et al., 1991] and

NADIR [Hochberg et al., 1993] process their data in a centralnode although the collection

of data is distributed. These schemes are straightforward as they simply push data to a cen-

tral node and perform the computation there. On the other hand, hierarchical approaches,

such as GrIDS [Staniford-Chen et al., 1996] and NetSTAT [Vigna and Kemmerer, 1999],

have a layered structure where data is locally preprocessedand filtered. Although they

68 Infrastructure for the Exchange of Messages and Audit Information

mitigate some weaknesses present in centralized schemes, they still cannot avoid vulnera-

bilities at the root level. In contrast to these traditionaldesigns, alternative approaches try to

eliminate the need for dedicated elements. The idea of distributing the detection process has

some advantages regarding centralized and hierarchical approaches. Mainly, decentralized

architectures have no single point of failure and bottlenecks can be avoided. Some message

passing designs, such as CSM [White et al., 1999] and Quicksand [Kruegel, 2002], try to

eliminate the need for dedicated elements by introducing a peer-to-peer architecture. In-

stead of having a central monitoring station to which all data has to be forwarded, there

are independent uniform working entities at each host performing similar basic operations,

i.e., the different entities collaborate on the detection activities.

These designs seem to be a promising technology to implementdecentralized architectures

for the detection of attacks. However, the presented systems still exhibit very simplistic

designs and suffer from several limitations. For instance,in some of them, every node

has to have complete knowledge of the system; all nodes have to be connected to each

other which can make the matrix of the connections, that are used for providing the alert

exchanging service, grow explosively and become very costly to control and maintain. An-

other important disadvantage present in this design is thatthe different entities always need

to know where a received notification has to be forwarded (similar to a queue manager).

This way, when the number of possible destinations grows, the network view can become

extremely complex, which leads to a system that is not scalable. Other designs are based

on flooding which makes the system easier to maintain on the cost of scalability, as the

message complexity grows fast with the number of nodes.

Most of these limitations can be solved efficiently by using apublish/subscribe based sys-

tem. The advantage of this model for our problem domain over other communication

paradigms is on the one hand that it keeps the producer of messages separated from the

consumer and on the other hand that the communication is information-driven. This way,

it can avoid problems regarding the scalability and the management inherent to other de-

signs, by means of a network of publishers, brokers, and subscribers. A publisher in a

publish/subscribe system does not need to have any knowledge about any of the entities

that consume the published information. Likewise, the subscribers do not need to know

5.1 Publish/Subscribe Model 69

anything about the publishers. New services can simply be added without any impact on or

interruption of the service to other users.

The rest of this chapter is organized as follows. We start with an introduction to the pub-

lish/subscribe communication paradigm in Section 5.1. In Section 5.2 we briefly overview

the Intrusion Detection Message Exchange Format (IDMEF), which is the format we use

in order to exchange audit information in our proposal. We then discuss in Section 5.3

our communication mechanism and the current state of our implementation based on xml-

Blaster, an open source publish/subscribe message oriented middleware [Ruff, 2006]. We

finally conclude this chapter in Section 5.4 by giving an outlook of the performance ob-

tained with a first deployment of such an implementation.

5.1 Publish/Subscribe Model

The publish/subscribe model is an asynchronous, many-to-many communication model

which is intended for distributed systems [Eugster et al., 2003]. It is often used in those

situations where a message (often referred in the literature asnotification) sent by a single

entity is required by, and should be distributed to, multiple entities. It is often used for

efficient and comfortable information dissemination to group members which may have

individual interests in arbitrary subsets of messages published. In contrast to multicast

communication, clients have the possibility to describe the events they are interested in

more precisely (e.g. based on the contents of the notification). Clients can choose to either

subscribe or unsubscribe to messages as time goes by, and allthe subscribers are indepen-

dent of each other. More formally, and according to [Pietzuch, 2004], we can define the

publish/subscribe communication paradigm as follows.

Definition – The Publish/Subscribe model is based on the use of message publishers –

which produce information (or message publications) – and message subscribers – which

receive such messages. Message subscribers describe the kind of messages that they want

to receive with a message subscription. Messages coming from message publishers will

subsequently be delivered to all interested message subscribers with matching interests.

70 Infrastructure for the Exchange of Messages and Audit Information

Publish/Subscribe Systems

A publish/subscribe system implements the publish/subscribe model and consists of, at

least, one broker forwarding notifications published by clients to other clients that are in-

terested in them. For scalability reasons, it is common to implement a distributed broker

network that forms a so-callednotification servicethrough an overlay network consisting

of brokers.

This service provides a distributed infrastructure for notification routing which includes

the management of subscriptions and the dissemination of notifications in a possibly asyn-

chronous way. Clients can publish notifications and subscribe to filters that are matched

against the notifications passing through the broker network. If a broker receives a new

notification it checks if there is a local client that has subscribed to a filter that matches this

notification. If so, the message is delivered to this client.Additionally, the broker forwards

the message to neighbor brokers according to the applied routing algorithm. We refer to

[Mühl, 2002] for a good survey on the field.

(a) Simple publish/subscribe system.

Publisher 1

Broker

Publisher 3

Subscriber 1 Subscriber 2

Publisher 2

Broker

Subscriber 3

(b) Extended pub/sub system.

Figure 5.1: Examples of simple publish/subscribe topologies.

An example of a simple centralized publish/subscribe system is shown in Figure 5.1(a).

Here, five clients are connected to a single broker: three clients that are publishing noti-

fications and two clients that are subscribed to a subset of the notifications published on

the broker. Subscribers can choose to subscribe to the notifications available through the

5.1 Publish/Subscribe Model 71

broker or cancel existing subscriptions as needed. The broker matches the notifications it

received from the publishers to the subscriptions, ensuring this way that every publication

is delivered to all interested subscribers.

This very basic publish/subscribe setup can be extended by connecting multiple brokers

(cf. Figure 5.1(b)), enabling them to exchange messages. The extended design allows sub-

scribers on one of the brokers to receive messages that have been published on another

broker, further freeing the subscriber from the constraints of connecting to the same bro-

ker the publisher is connected to. Most available implementation make this transparent

for the programmer by keeping the same interface operationsas in the centralized design.

This way, an application can easily be distributed. In Figure 5.2, for instance, we show

a distributed publish/subscribe topology, where a clientp publishes a notificationn that

is matched by filterF , client s subscribed to, while the notification service takes care of

forwarding the notification properly.

Figure 5.2: Example of a distributed publish/subscribe topology.

Regarding the subscription of information, clients are able to formulate their interests

based, mainly, on the contents of the notifications and a special attribute they carry. This is

known as content-based and topic-based subscription, respectively.

72 Infrastructure for the Exchange of Messages and Audit Information

Topic-based publish/subscribe systems, on the one hand, are the earliest variant of the pub-

lish/subscribe communication model. Here, publishers publish messages with respect to

a topic or subject, and subscribers specify their interest in a topic and receive all mes-

sages published on this topic. Topic-based subscriptions are, in turn, easier to handle than

content-based subscriptions. Since topics can be seen as groups in group communication

[Powell, 1996], topic-based subscription may efficiently be built on top of a group commu-

nication mechanism such as, for example, IP multicast [Deering, 1989].

Two different matching mechanisms are commonly used in topic-based publish/subscribe

systems. One matches subscriptions successfully to notifications if the topic of the sub-

scription exactly matches the topic under which the notification is published. Using this

mechanism, topics become equivalent tochannels. The other mechanism arranges topics

in a subject tree such that subscriptions not only match notifications if the topics are the

same, but also if the topic of the subscription is an ancestorof the notification topic in the

subject tree (in this case, a topic becomes equivalent to atheme).

Content-based publish/subscribe systems, on the other hand, allow subscriptions to evaluate

the whole content of notifications. This way, in content-based selection the structure of a

subscription is not restricted to a topic or a theme – it can beany function over the content

of a message. Here, a subscription can be formulated extremely fine-grained based on the

content of notifications using a query language that can be arbitrarily complex. Moreover,

there does not have to be a system wide agreement on the set of topics as it is generally a

good idea for topic based routing. In particular, this is important for applications that run

on mobile devices with limited processing power and networkbandwidth.

Content-based subscriptions usually depend on the structure of the message. It can be

binary data, name/value pairs, semi-structured data, or even programming language classes

with executable code. A subscription is often expressed in asubscription language that

specifies a filter expressions over messages. For our work, wepropose the use of content-

based subscription over messages with semi-structured data. Indeed, we propose the use

of XML for the structure of a message, and the use of XPath as the subscription language

to specify filter expressions (cf. Section 5.3). In the following, we give an outlook on the

main properties of the format built on top of the XML structure of our messages.

5.2 Representation of Messages 73

5.2 Representation of Messages

In order to exchange audit information in a standard manner,two main specifications have

been considered (cf. Chapter 3, Section 3.3). The Common Intrusion Specification Lan-

guage (CISL), on the one hand, which was initially proposed to allow the components

of the Common Intrusion Detection Framework (CIDF) to exchange data in semantically

well-defined ways [Feiertag et al., 1999]. The Intrusion Detection Message Exchange For-

mat (IDMEF), on the other hand, was proposed by the IETF’s Intrusion Detection Exchange

Format Working Group (IDWG) to accomplish similar purposes[Debar et al., 2006].

Our approach is based on the IDMEF format for three main reasons. First, this format is the

basis for the similarity operator used on the aggregation and fusion phases of our alert cor-

relation approach (cf. Chapter 6). Second, there is a significant number of current tools and

implementations based on the IDMEF format, such as [Migus, 2006], which makes it easy

to integrate it in our work. Third, the exchange of messages between the components of

our framework is compliant with the intrusion detection framework proposed by the IDWG.

Furthermore, IDMEF allows the specification of messages generated by different network

security components, such asfirewallsandnetwork intrusion detection systems(NIDSs),

and it can be extended to incorporate additional data information, such as diagnoses and

counter-measures, inside their proposed format.

Up to now, IDMEF is aninternet draftapproved by the IESG (Internet Steering Group) as

an IETF’s RFC (Request For Comments). It is represented in anobject-oriented fashion.

The class hierarchy of IDMEF has been represented by using the Extensible Markup Lan-

guage (XML). The rationale for choosing XML is explained in [Debar et al., 2006], as well

some examples of using IDMEF to describe IDS’s alerts and theIDMEF’s associate Doc-

ument Type Definition (DTD) – although one may still find the current version of IDMEF

defined by using DTDs, the authors also offer a new definition that uses XML Schemas

instead of DTDs.

We show in Figure 5.3 the two main kind of messages supported by IDMEF: heartbeatsand

alerts. Heartbeats, on the one hand, are periodic messages betweencomponents, in order

74 Infrastructure for the Exchange of Messages and Audit Information

Figure 5.3: The IDMEF’s message class.

to inform that they are operational. Alerts, on the other hand, carry audit information, such

as the component that produced it, the classification of the detected activity, the source and

target ports related to this activity, and other optional data. In the following, we summarize

the main properties of IDMEF’s alert class, concerning relevant aspects to our work such

as determining the component which created the message, thetime in which the message

was created, the kind of activity the message is pointing out, and so on.

We start by overviewing the analyzer class which identifies the component from which the

message originates. Only one component is encoded for each message – i.e., the one at

which the message originated. The class is composed, in turn, of three aggregate classes:

node, which includes information about the node on which the component resides;process,

5.2 Representation of Messages 75

which holds information about the process in which the component is executing; andana-

lyzer, which carries information about other component which, inturn, has forwarded the

original information.

The idea behind the recursive aggregation of component’s references within the IDMEF’s

analyzer class is that when a component receives an IDMEF’s alert, and wants to forward

it to another component, it needs to substitute the originalcomponent information with its

own – since, as we pointed out above, just one component is encoded for each message.

This way, and in order to preserve the original component information, it may be included

in the new component definition as a reference to the previouscomponent. This mechanism

will allow component path tracking.

The class analyzer has eight attributes:analyzerid, name, manufacturer, model, version,

class, ostype, andosversion. Themanufacturer, model, version, andclassattributes’ con-

tents are vendor-specific, but may be used together to identify different types of compo-

nents. Theostypeandosversionattributes’ contents are, respectively, the operating system

name and the operating system version in which the component’s process is executed. Fi-

nally, theanalyzeridandnameattributes’ contents provide, respectively, the unique identi-

fier and the explicit name for the component in the system.

Regarding the timestamps of a message, the IDMEF standard defines the following three

different classes to represent time: (1)CreateTime, which is the time when the message is

created by a component; (2)DetectTime, which is the time when the event or events that

caused the creation of a message were detected; (3)AnalyzerTime, which is the time at the

original component whether the message has been forwarded.The final object for each

instance contains information such as the number of secondssince theepoch, the local

GMT offset, and the number of microseconds. Even though all the three timestamps can

be provided by each component when generating a message, just the one defined by the

CreateTimeclass is considered mandatory by the IDMEF standard.

The classes source and target contain, respectively, information about the possible origin

and destination of the events that motivated the generationof the message. An event may

have more than one source (e.g., a distributed denial of service attack), more than one

76 Infrastructure for the Exchange of Messages and Audit Information

target (e.g., a port sweep). Both source and target classes are composed of information

about thenode, theuser, theprocess, and thenetwork servicethat motivated the message.

The target class includes, moreover, a list of affectedfiles. Referring to their attributes, both

source and target classes have the following two common attributes: (1)ident, which is a

unique identifier for either the source or target class; (2)interface, which may be used by

a component multiple interfaces to indicate which interface this source or target was seen

on. Furthermore, the class source includes the attributespoofed, which indicates whether

the source is, as far as the component can determine, a spoofed address. Similarly, the class

target includes the attributedecoy, to indicate whether the target is, as far as the analyzer

can determine, a decoy.

The classification class contains thenameof the event that motivated the creation of a mes-

sage, or other information which allows the components to determine what is the message

pointing out. It is composed of one aggregate class, the class reference, which contains

information about external documentation sites, that willprovide background information

about such an event. Similarly, the assessment class is usedto provide the component’s

assessment of an event, and it is composed of information about the impact, actionsthat

may be taken in response, and a measurement of the confidence the component has in its

evaluation of the event.

Finally, the IDMEF’s alert class can be augmented with additional information by means of

the aggregate classesAdditionalData, CorrelationAlert, ToolAlert, andOverflowAlert. The

information aggregated by those classes is often useful in order to associate different mes-

sages pointing out to similar activities – and reported by different components – as well

as to extend the standard IDMEF model with additional features, such as complex data

types and relationships. TheAdditionalDataclass, on the first hand, includes information

that does not fit into the IDMEF’s data model. This may be an atomic piece of data, or a

large amount of data. TheCorrelationAlertclass, on the second hand, may include addi-

tional information related to the correlation process in which this message is involved. The

OverflowAlertandToolAlertclasses, on the third hand, include, respectively, information

related to buffer overflow attacks, and information relatedto the use of attack tools or other

malevolent programs (e.g.,trojan horses, rootkits, and so on).

5.3 Communication Infrastructure 77

5.3 Communication Infrastructure

In this section we give an outlook to the operational detailsof the communication infras-

tructure presented in [Garcı́a et al., 2004b, Garcı́a et al., 2005e]. As our motivation is not

targeted on developing a new publish/subscribe system, we try to reuse as much available

code and tools as possible. For our experiments (cf. Section5.4) we usedxmlBlaster, an

open source publish/subscribe message oriented middleware [Ruff, 2006]. It connects a set

of nodes that build up the infrastructure for exchanging alerts using the interface operations

offered by the underlying middleware.

Each xmlBlaster’s message consists of a header filtering that can be applied to, a body, and

a system control section. The body of a xmlBlaster’s messageis formulated using IDMEF

format (cf. Section 5.2). On the other hand, filters are XPathexpressions that are evaluated

over the header to decide if a message has to be delivered to a subscriber. We discuss the

essential interface operations offered by xmlBlaster in the following section.

Interface Operations

Conceptually, the alert communication infrastructure offered through xmlBlaster can be

viewed as a black box with aninterface(cf. Figure 5.4). It offers a number ofoperations,

each of which may take a number ofparameters. Clients can invokeinput operationsfrom

the outside, and the system itself invokesoutput operationsto deliver information to clients.

Publish/Subscribe System

Clients

sub(F)
unsub(F)
pub(a)

notify(a)

Interface

...

Interaction

Figure 5.4: Black box view of a publish/subscribe system.

78 Infrastructure for the Exchange of Messages and Audit Information

We list the main operations that are of interest for our work in Table 5.1. To publish alerts,

clients invoke thepub(a) operation, giving the alerta as parameter. The published alert can

potentially be delivered to all clients connected to the system via an output operation called

notify(a). Clients register their interest in specific kinds of alerts by issuing subscriptions

via thesub(F) operation, which takes a filterF as parameter. Each client can have multiple

active subscriptions which must be revoked separately by using theunsub() operation.

pub(C, a) ClientC publishes alerta
sub(C, F) ClientC subscribes to filterF
notify(C, a) ClientC is notified about alerta
unsub(C, F) ClientC unsubscribes to filterF

Table 5.1: Main interface operations.

All these operations are instantaneous and take parametersfrom the set of all clientsC, set

of all alertsA, and the set of all filtersF . Formally, a filterF ∈ F is a mapping defined by

F : a −→ {true, false} ∀a ∈ A

We say that anotificationn matches filterF ∈ F iff F (a) = true. We also assume that each

alert can only be published once and that every filter is associated with a unique identifier

in order to enable the alert communication infrastructure to identify a specific subscription.

Components and Interactions

As shown in Figure 5.5, and according to the general framework overviewed in Chapter 2

(cf. Section 2.2), each node of the architecture is made up ofa set of local analyzers (with

their respective detection units or sensors), a set of alertmanagers (to perform alert pro-

cessing and manipulation functions), and a set of local reaction units (or effectors). These

components, the interactions between them, and the alert communication infrastructure,

are described below.

Analyzers, on the first hand, are local elements which are responsible for processing local

audit data. They process the information gathered by associated sensors to infer possible

5.3 Communication Infrastructure 79

Figure 5.5: Overview of the main components and their interactions.

alerts. Their task is to identify occurrences which are relevant for the execution of the

different steps of an attack and pass this information to thecorrelation manager via the

publish/subscribe system. They are interested in local alerts. Each local alert is detected

in a sensor’s input stream and published through the publish/subscribe system by invoking

the pub(la) operation, giving thelocal alert la as parameter. Local alerts are exchanged

using IDMEF messages (cf. Section 5.2).

Each notificationla has a unique classification and a list of attributes with their respective

types to identify the analyzer that originated the alert (AnalyzerID), the time the alert was

created (CreateTime), the time the event(s) leading up to the alert was detected in the sen-

sor’s input stream (DetectTime), the current time on the analyzer (AnalyzerTime), and the

source(s) and target(s) of the event(s) (SourceandTarget). All possible classifications and

their respective attributes must be known by all system components (i.e. sensors, analyz-

ers and managers) and all analyzers are capable of publishing instances of local alerts of

arbitrary types.

Managers, on the second hand, are the components in charge ofperforming aggregation

and correlation of local alerts and external events. As pointed out in Chapter 3 (cf. Sec-

tion 3.3), the use of multiple analyzers and sensors together with heterogeneous detection

techniques increases the detection rate, but it also increases the number of information to

process. In order to reduce the number of false negatives anddistribute the load that is im-

posed by the alerts our architecture provides a set of aggregation and correlationmanagers,

which perform aggregation and correlation of both, local alerts (i.e., messages provided

80 Infrastructure for the Exchange of Messages and Audit Information

by the node’s analyzers) and external messages (i.e., the information received from other

collaborating nodes). We describe in the following the basic interactions of the two main

managers:aggregationandcorrelationmanagers.

Aggregation Manager – The basic functionality of each aggregation manager is to cluster

alerts that correspond to the same occurrence of an action (cf. Chapter 3, Section 3.3).

Each aggregation manager registers its interest in a subsetLA of local alerts published by

analyzers on the same node by invoking thesub(LA) operation, which takes the filterLA

as parameter, with

LA(a) =

{

true , a ∈ LA

false , otherwise.

Similarly, the aggregation manager also registers its interest in a set of related external

alertsEA by invoking thesub(EA) operation with filterEA as parameter, and

EA(a) =

{

true , a ∈ Ea

false , otherwise.

Finally, it registers its interest in local correlated alertsCA by invoking thesub(CA) opera-

tion with

CA(a) =

{

true , a ∈ CA

false , otherwise.

Once subscribed to these three filters, the communication infrastructure will notify the

subscribed managers of all matching alerts via the output operationsnotify(la), notify(ea)

andnotify(ca) with la ∈ LA, ea ∈ EA and ca ∈ CA. All notified alerts are processed

and, depending on the clustering and synchronization mechanism, the aggregation manager

can publish global and external alerts by invokingpub(ga) andpub(ea). Finally, it can

revoke active subscriptions separately by using the operationsunsub(CA), unsub(EA) and

unsub(LA).

5.3 Communication Infrastructure 81

Correlation Manager – The main task of this manager is the correlation of alerts de-

scribed in the following chapter (cf. Chapter 6). It operates on the set of global alertsGA

published by the aggregation manager. To register its interest in these alerts, it invokes

sub(GA), which takes the filterGA as parameter with

GA(a) =

{

true , a ∈ GA

false , otherwise.

The notification service will then notify the correlation manager of all matched alerts with

the output operationnotify(ga), ga ∈ GA. Each time a new alert is received, the correlation

mechanism finds a set of action models that can be correlated in order to form a scenario

leading to an objective. It then includes this information into theCorrelationAlertfield of

a new IDMEF message and publishes the correlated alert by invoking pub(ca), giving the

notificationca ∈ CA as parameter. To revoke the subscription, it usesunsub(GA).

The correlation manager is also responsible for reacting ondetected security violations.

The algorithm used is based on the anti-correlation of actions to select appropriate counter-

measures in order to reconfigure, for instance, the securitypolicy (cf. Chapter 3, Sec-

tion 3.3). As soon as a scenario is identified, the correlation mechanism may look for

possible action models that can be anti-correlated with theindividual actions of the sup-

posed scenario, or even with the goal objective.

The set of anti-correlated actions represents the set of counter-measures available for the

observed scenario. The definition of each anti-correlated action contains a description of

the counter-measures which should be invoked (e.g. hardening the security policy). Such

counter-measures are included into theAssessmentfield of a new IDMEF message and

published by invokingpub(aa), using theassessment alertaa as parameter.

Finally, a policy managerwill register and revoke its interest in these assessment alerts

by invoking sub(AA) and unsub(AA). Once notified, the policy manager may perform

the post-processing of the received alerts before sending them, for example, to a set of

associated policy reconfiguration effectors.

82 Infrastructure for the Exchange of Messages and Audit Information

5.4 Deployment and Evaluation

In order to evaluate the performance of our proposal, we deployed a set of analyzers and

managers publishing and receiving IDMEF messages based on theDARPA Intrusion Detec-

tion Evaluation Data Sets[Lippmann et al., 2000]. This evaluation data set contains more

than 300 instances of 38 different automated attacks that were launched against victim hosts

in seven weeks of training data and two weeks of test data.

The complete set of messages were published as local and external alerts through the noti-

fication service of xmlBlaster, and then processed and republished in turn to the set of sub-

scribed managers. The exchange of alerts proved to be satisfactory, obtaining a throughput

performance higher than 150 messages per second on an Intel-Pentium M 1.4 GHz pro-

cessor with 512 MB RAM, analyzers and managers on the same machine running Linux

2.6.8, using Java HotSpot Client VM 1.4.2 for the Java based broker. Message delivery did

not become a bottleneck as all messages were processed in time and we never reached the

saturation point.

The implementation of both publishers and subscribers was based on thelibidmef C li-

brary [Migus, 2006] in order to build and parse compliant IDMEF messages. In turn,li-

bidmef is built over the libxml library [Veillard, 2006]. The libxml library provides two

interfaces to parser XML data: a DOM style tree interface, and a SAX style event based

interface. Up to now, we are using for our implementation theDOM interface due to its

easiness of use. Its main drawback is, however, that its memory usage is proportional to the

size of the XML data. For this reason, we are actually moving our current implementation

to the SAX based interface. This would help us to decrease thecurrent amount of memory

that is currently necessary to maintain the entire XML tree in memory.

The communication between analyzers and managers through xmlBlaster brokers was

based on the xmlBlaster internal socket protocol and implemented using the xmlBlaster

client C socket library [Ruff, 2006], which provides asynchronous callbacks to Java based

brokers. The managers formulated their subscriptions using XPath expressions, filtering

the messages they wished to receive from the broker.

5.4 Deployment and Evaluation 83

In Figure 5.6 we show the processing time and memory space used by brokers during the

exchange of alerts. The first curve represents the percentage of CPU load used by each

broker. The second curve represents the quantity of memory used by each broker. As

we can notice in the first curve, the percentage of processingtime used by the brokers is

quite stable and negligible for the normal performance of a normal system. The second

curve reflects, however, that the cost in memory is quite intensive. We consider that this

consumption is due to the managing of messages and we hope that the new version of our

prototype based on a more efficient XML parsing and building scheme will decrease it.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000

U
sa

ge
 (

%
)

Number of messages

Brokers’ CPU usage
Brokers’ Memory usage

Subscribers’ CPU usage
Subscriber’s Memory usage

Publisher’s CPU usage
Publisher’s Memory usage

Figure 5.6: Processing and memory consumption.

Similarly, Figure 5.6 also shows the processing time and memory space used by publishers

and subscribers. Here, we noticed again that the main drawback were the memory con-

sumption due to the XML parsing and building. We consider this intensive use of memory

will be decreased on the new version of our prototype based onthe SAX based interface –

avoiding the necessity of maintaining the entire XML tree ofmessages in both publishers

and subscribers’ memory.

84 Infrastructure for the Exchange of Messages and Audit Information

Summary

We presented in this chapter a message passing design for theexchange of audit information

between the components of our platform by means of a publish/subscribe model. Instead of

having a central or master monitoring station to which all data has to be forwarded, there are

independent uniform working entities at each host performing similar basic operations. The

information gathered by each entity is exchanged to the restthrough a publish/subscribe

system which allows messages to be sent via a push or pull dataexchange.

As we pointed out in Section 5.1, the advantage of this model for the exchange of au-

dit information between components is, on the one hand, thatit keeps the producer of

messages separated from the consumer and, on the other hand,that the communication

is information-driven. This way, it allows us to avoid problems regarding the scalability

and the management inherent to other designs, by means of a network of publishers, bro-

kers, and subscribers. A publisher in a publish/subscribe system does not need to have any

knowledge about any of the entities that consume the published information. Likewise,

the subscribers do not need to know anything about the publishers. Services can be added

without any impact on or interruption of the service to otherelements.

We then introduced in Section 5.2 the main properties of the Intrusion Detection Message

Exchange Format (IDMEF) as the format that is built on top of the XML structure of the

messages exchanged between the components of our platform;we presented in Section5.3

the operational details (interface operations and interaction) of our communication infras-

tructure; and we discussed and overviewed the initial results of a first prototype of our

approach in Section 5.4. We consider these results give us a good hope that the use of a

publish/subscribe system for the communication infrastructure indeed increases the scala-

bility of the proposed architecture. Regarding the high memory usage, and as pointed out

in Section 5.4, we are actually moving our current implementation to the SAX interface,

since it does not maintain the entire XML tree in memory, which means that the load will

considerably decrease.

Chapter 6

Anti-correlation and Selection of

Counter-Measures

”What is the concept of defense? The parrying of a blow.

What is its characteristic feature? Awaiting the blow.”

– CARL VON CLAUSEWITZ (ON WAR)

The use of traditional security mechanisms, such as firewalls and cryptography, is not

enough to guarantee the security of a given network system. Complementary mechanisms

are necessary in order to cope with attacks when the first lineof defense (i.e., cryptogra-

phy and firewalls) has been evaded. Up to now,Intrusion detection systems(IDSs) have

become the most important component of such a complementarykind of security mecha-

nisms. They offer the necessary tools, methods, and resources to identify, assess, and report

unauthorized activity against a target network.

A recent trend in intrusion detection is to try to understandand model intrusion strate-

gies to provide a more global and precise diagnostic of the intrusion [Cuppens, 2001,

Ning and Xu, 2003]. Although these approaches represent a step in the right direction, they

86 Anti-correlation and Selection of Counter-Measures

are not sufficient. It is also necessary to develop automateddefenses capable of appropriate

responses to counter intrusions when they occur. Several response strategies are possible

including launching counter measures against the intruderto prevent his or her malicious

activity to proceed or acting on the target system to stop theintrusion and recover in a

safe state [Gombault and Diop, 2002]. Direct responses against the intruder, however, is a

complex problem that includes several technical difficulties.

In this chapter, we describe the main features of the reaction approach we presented in

[Cuppens et al., 2006a]. This approach is intended to help security officers to choose proper

counter-measures when an intrusion occurs. Such counter-measures generally depend on

the type of intrusion being performed. For instance, the responses will not be the same

in the case of a denial of service (DoS) attack or a user to root(U2R) attack. Thus, our

approach is based on a library of responses that contains different types of possible counter-

measures which the officer can launch to stop the detected intrusions.

Our approach is based on a logical formalization of both intrusions and counter-measures.

This formalism is used to derive, from the intrusion description (specially the effects of an

intrusion on the target system), one or several counter-measures that may circumvent the

attack. For this purpose, we define in Section 6.2 the notion of anti-correlation. This notion

is used to determine the counter-measures that will have a negative effect on the intrusion

and therefore will enable the administrator to stop the attack.

The remainder of this chapter is organized as follows. In Section 6.1, we present our for-

malism to model intrusions and counter-measures. This formalism is based on LAMBDA,

a language suggested in [Cuppens and Ortalo, 2000] to model intrusions. We then suggest

in Section 6.1 how to use LAMBDA to model counter-measures. Section 6.2 recalls the

definition of correlation presented in [Cuppens and Miège,2002] and introduces the notion

of anti-correlation. In Section 6.3, we show how to use anti-correlation to determine rel-

evant counter-measures, either to act on the objective of anintrusion or to cut an ongoing

attack scenario by acting on a given step of this scenario. Wealso present how our ap-

proach provides means to parameterize the selected counter-measures. Section 6.4 gives

an example to illustrate the response mechanism suggested in this chapter.

6.1 Modeling Intrusions and Counter-Measures 87

6.1 Modeling Intrusions and Counter-Measures

In this section, we present our formalism, based on LAMBDA [Cuppens and Ortalo, 2000],

to model both intrusions and counter-measures. LAMBDA is the acronym for LAnguage

to Model a dataBase for Detection of Attacks. It is used to provide a logical description of

an attack. The description of an attack specified by LAMBDA isgeneric, in the sense that

it does not include elements specific to a particular intrusion detection process.

A LAMBDA description of an attack is composed of the following four attributes:

• pre-condition – defines the state of the system needed in to carry out the desired

attack or action.

• post-condition –defines the state of the system after a successfully execution of the

attack.

• detection – is a description of the expected alert corresponding to the detection of

the attack.

• verification – specifies the conditions to verify the success of the attack.

The alerts launched by a detection system provide evidence of the occurrence of some

malicious events but are not sufficient to conclude that these events will actually cause

some damage to the target system.. This is why a LAMBDA description also includes a

verification attribute that provides conditions to be checked to conclude that the execution

of the action has been successful.

On the other hand, we define anobjectiveas a specific system state. This state is char-

acteristic of a violation of the security policy [Cuppens and Miège, 2002]. A LAMBDA

description of an intrusion objective is composed by only one attribute:

• state –defines the state of the given system that corresponds to a security policy

violation.

88 Anti-correlation and Selection of Counter-Measures

As explained above, LAMBDA is used to describe possible violations of security policy

(intrusion objective) and possible actions (attack) an intruder can perform on a system to

achieve an intrusion objective. This database of LAMBDA descriptions is used to recognize

an intrusion process and predict the intention of the intruder.

Let us present here an example of intrusion modeled with LAMBDA. First an intruder

scans port 139. If it is open, he concludes that theoperating systemis windowsand uses

theNetBiosservice. The intruder can then execute awinnuke attackon this target system

that will cause a denial of service. We show in figures 6.1 and 6.2, respectively, the proper

description in LAMBDA of theport-scanandwinnukeattacks– performed by a malicious

agent on a given host.

attack port scan(A, H, P)
pre: open(H, P) – portP is open on hostH
detection: classification(Alert,’TCP Scan’) – the classification is ’TCP Scan’

∧ source(Alert, A) – the source in alert isA

∧ target(Alert, H) – the target in alert isH

∧ target service port(Alert, P) – the scanned port isP
post: knows(A, open(H, P)) – agentA knows that portP is open
verification: true – always true

Figure 6.1:port-canattack performed by an agentA on a given hostH.

attack winnuke(A, H, S)
pre: use os(H, windows) – OS on hostH is Windows

∧ use service(H,’Netbios’) – hostH uses ’Netbios’ service

∧ open(H, 139) – port 139 is open on hostH
detection: classification(Alert,’Winnuke’) – alert classification is ’Winnuke’

∧ source(Alert, A) – source in alert isA

∧ target(Alert, H) – target in alert isH
post: deny of service(H) – deny of service onH
verification: unreachable(H) – hostH does not reply

Figure 6.2:winnukeattack performed by an agentA on a given hostH.

6.1 Modeling Intrusions and Counter-Measures 89

Let us also show how to model a violation of security policy. In Figure 6.3, for example, a

policy violation after a web server goes down is presented.

objective webserver failure(H)
state: deny of service(H) – deny of service on hostH

∧ server(H, http) – hostH is an http server

Figure 6.3: Intrusion objective: denial of service (DoS) ona web server.

As we can see in these three examples, each LAMBDA description uses several variables

(corresponding to terms starting with an upper case letter). When an alert can be associated

with a LAMBDA description through thedetectionattribute, we can then unify variables

with values. We callattack occurrencea LAMBDA description where variables have been

unified with values.

Using LAMBDA to Model Counter-Measures

In [Cuppens et al., 2006a] we suggest adopting the same formalism shown above to model

counter-measures. Thus, a counter-measure has similar attributes to an attack. The main

difference is that thedetectionattribute associated with an attack is replaced by the attribute

action. This leads to the following model for representing counter-measures:

• pre-condition – defines the system state required for the success of the counter-

measure.

• post-condition –defines the system state after applying the counter-measure.

• action – defines the actions necessary to perform the counter-measure.

• verification – specifies the conditions to verify the success of the counter-measure.

Figure 6.4 provides an example of counter-measure specifiedin this model. It consists in

closing all connections between a given sourceS and a given targetT .

90 Anti-correlation and Selection of Counter-Measures

counter-measureclose remote access(S, T)
pre: remote access(S, T) – S has a remote access toT

action: TCP reset(S, T) – aTCP reset closes the connection
post: not(remote access(S, T)) – connections closed between both side
verification: not(TCP connection(S, T)) – verify that all connections are closed

Figure 6.4: Counter-measure: closing a TCP connection.

As for the attacks and objectives, the approach is to use thisformalism to specify a library

of possible counter-measures that apply to the system to block an intrusion. We shall

now define a response mechanism to select the adequate counter-measures for a detected

scenario. This mechanism is based on a principle calledanti-correlationwhich is close to

the correlation principle suggested in [Cuppens and Miège, 2002]. These two principles

are formally presented in the following section.

6.2 Correlation and Anti-correlation

Our response mechanism is based on recognizing the intruder’s intentions. Using LAMB-

DA, [Cuppens and Miège, 2002] shows how to correlate detected attacks to identify a sce-

nario. This approach was initially implemented in a PROLOG prototype called CRIM (Co-

opeRative Intrusion detection Module) and it has recently been improved in an enhanced

version, implemented in C and C++, which also includes new features such as aggregating,

merging, and weighted classification of correlated scenarios [Autrel, 2005].

In this section we first recall the definition of the correlation principle of both versions of

CRIM. We also show how to extrapolate this definition to predict future attacks that the in-

truder will probably perform and the objective that he or sheattempts to achieve. We then

define a second notion, calledanti-correlation, in order to formally design the response pro-

cess, and we discuss how to use an anti-correlation process to select the counter-measures

candidates as the response to the detected activity.

6.2 Correlation and Anti-correlation 91

Correlation

Let so start by recalling the correlation approach as it was initially introduced for the first

version of CRIM in [Cuppens and Miège, 2002]. Such a correlation process is based on

the unification principle on predicates. Leta and b be two LAMBDA descriptions of

attacks. posta is the set of literals ofpost-conditionof the descriptiona (i.e., posta =

expra1 ∧ expra2 ∧ . . . ∧ expram) andpreb is the set of literals ofpre-conditionof the

descriptionb (i.e.,preb = exprb1 ∧ exprb2 ∧ . . . ∧ exprbn).

Direct correlation: a andb are directly correlated if there existsi ∈ [1, m] andj ∈ [1, n]

such that:(exprai ∧ exprbj) ∨ ((not(exprai)) ∧ (not(exprbj))) becomestrue; and the

literals exprai andexprbj are unifiable through a most global unifier (mgu)θ.

This definition of direct correlation represents the idea ofpositive influence between two

attacks. We say that attacka has a positive influence over attackb if a is directly correlated

to b. In such a case, the effects ofa, namely the set of predicates inposta, allows to satisfy

a subset of the pre-requisites ofpreb. The notion of attack correlation allows us to find

correlated attacks that are part of the same scenario.

In [Cuppens and Miège, 2002] it is also defined the notion ofKnowledge gathering corre-

lation as a variation of the above definition of correlation. This second notion is useful to

integrate, in the detection process, preliminary steps theintruder performs to collect data

on the target system.

Knowledge gathering correlation: a andb are correlated by means of knowledge gather-

ing if there existsi ∈ [1, m] andj ∈ [1, n] such that:((knows(Agent, exprai)) ∧ exprbj)

∨ ((knows(Agent, (not(exprai))) ∧ (not(exprbj))) becomestrue; and the literalsexprai

andexprbj are unifiable through a most global unifier (mgu)θ.

This definition generally applies to the first steps of an intrusion. We say “generally” be-

cause an intruder may have no knowledge about the target machine. An intruder may

directly try to exploit a vulnerability on a machine withouttrying to know if this security

hole is present on the machine, but we argue that most of the time, the intruder will try to

92 Anti-correlation and Selection of Counter-Measures

gather some information about the target. Hence the gathered knowledge may influence

the attacker on the next attacks he will execute.

As an example, there is a knowledge gathering correlation between the Port-Scan attack

(cf. Figure 6.1) and thewinnukeattack (cf. Figure 6.2) through the predicateopen and the

unifier that matches variableH in both attack definitions and variableP in the Port-Scan

attack to constant 139. This means that an intruder who knowsthat port 139 is open on a

given host, can then perform awinnukeattack on this host.

We now define the notion of correlation unifier that allows us to apply on-line correlation.

Correlation unifier: denotedΞab, is the set of all possible unifiers – i.e. both direct or

knowledge gathering correlation unifiers – to correlateposta andpreb.

Since two attacksa andb are correlated as soon as they have one predicate in common in

posta andpreb, we may have several unifiers for two attacks. The set of correlation unifiers

allows us to know which attack can be correlated with a given attack under some unification

condition between their variables. Applying on-line correlation consists in exploring the

set of correlation unifiers each time a new alert is received,given that the alert corresponds

to an instance of an attack model.

We can apply the notion of direct correlation between two attacks to an intrusion objective

and an attack. This allows us to detect that some attack may allow to reach or help to reach

an intrusion objective. In this case, we simply have to substitute the termpre-conditionby

statein the definition of direct correlation.

How to use correlation

Once attacks and intrusion objectives are specified in LAMBDA, we can generate all corre-

lation unifiers between each pair of attacks (respectively between an attack and an intrusion

objective). When two attack occurrences are detected, if some unifier in the unifier set is

identified, we can then say that these attack occurrences arecorrelated in the same intru-

sion scenario. Using this approach, it is possible to build acorrelation graph. Figure 6.5

6.2 Correlation and Anti-correlation 93

presents such a correlation graph where nodes are LAMBDA descriptions and edges are

correlation unifiers.

Correlation

attacka(X)

post :p(X)
pre : . . .

attackb(X ′, Y ′, Z′)
pre :p(X ′)
post :q(Y ′, Z′)

post : . . .
pre :p(X ′′), q(Y ′′, Z′′)
attackc(X ′′, Y ′′, Z′′)

Ξab = {{X/X ′}}

Ξbc = {{Y/Y ′′, Z/Z′′}}Ξac = {{X/X ′′}}

Figure 6.5: Correlation graph example.

When first steps of a given intrusion scenario are identified,we can, with the same mech-

anisms, predict possible continuations of this scenario. We can generate hypothesis about

future attacks and the intrusion objectives the intruder attempts to achieve. We shall call

virtual attackan attack predicted by this process of intention recognition. A virtual attack

becomes effective once its occurrence is detected.

Thus, it is sometimes possible to anticipate on the actions performed by the intruder and

develop a specific counter-measure in response. This means that our approach may be used

to launch a counter-measure not only after a given intrusionobjective is achieved by the

intruder but also when the beginning of a given scenario is detected. In this latter case, the

counter-measure will be used to prevent continuations of this starting scenario.

We show now in the following section how to define and use the anti-correlation principle

to elaborate the counter-measures. This new feature was recently included in a new version

of the module CRIM, presented in [Autrel, 2005], which also includes the previous features

for correlation and hypothesis generation.

94 Anti-correlation and Selection of Counter-Measures

Anti-correlation

Let a and b be respectively LAMBDA descriptions of a counter-measure and an attack.

posta is the set of literals ofpost-conditionof descriptiona (i.e.,posta = expra1 ∧ expra2 ∧

. . . ∧ expram) andpreb is the set of literals ofpre-conditionof descriptionb (i.e., preb =

exprb1 ∧ exprb2 ∧ . . . ∧ exprbn).

Anti-correlation: the descriptionsa andb are anti-correlated if there existsi ∈ [1, m] and

j ∈ [1, n] such that:(exprai ∧ (not(exprbj))) ∨ ((not(exprai)) ∧ exprbj) becomestrue;

and the literalsexprai andexprbj are unifiable through a most global unifier (mgu)θ.

This definition formalizes the notion of negative impact of acounter-measure over an in-

trusion scenario. A counter-measure is an action which prevents the execution of an attack.

Since our model of an attack includes the necessary conditions the system’s state must meet

in order to execute the attack, we can prevent the execution of an attack by making one of

those conditions false.

Therefore, a counter-measurec for an attacka is a LAMBDA model of which the post-

condition contains a predicate that contradicts one predicate ofprea. We can then say that

c is anti-correlated witha. Even though it may be sufficient for a counter-measure to anti-

correlate an attack through only one predicate, it is also possible for a counter-measure to

anti-correlate an attack through several predicates.

Anti-correlation unifier: denotedΨab, is the set of all unifiersθ possible to anti-correlate

posta andpreb.

As for a correlation unifier, an anti-correlation unifier defines which attacks can be anti-

correlated by a counter-measure. It tells how the variablesmust be unified in the predicates

which are involved in the anti-correlation link. Using the same approach, it is possible

to define anti-correlation between a counter-measure and anintrusion objective. We have

simply to replacepre-conditionby statein the previous definition.

6.3 Using Anti-correlation for Response 95

6.3 Using Anti-correlation for Response

When a scenario is identified, the correlation process provides a graph of attack occur-

rences, virtual attacks and intrusion objective. A counter-measure will apply to invalidate

future attacks or invalidate an intrusion objective. Thus,we have two response mechanisms,

one that applies against virtual attacks and the other on an intrusion objective.

Response to an Intrusion Objective

In this case, response aims at updating the system state to invalidate the intrusion objective

in an intrusion scenario.

Let o be an intrusion objective. To invalidate this intrusion objective, we must find a

LAMBDA definition r of a counter-measure such thatΨro 6= ∅. Then, it is possible to

parameterize this counter-measure candidate with the unifier of correlationΨro.

In the following figure, for example, we assume that two occurrences of attack are detected:

an occurrence ofa with argumentX = x and an occurrence ofb with argumentY = y.

Anti−correlation

Correlation

post :q(Y)
pre : . . .
attackb(Y) objectiveo(X ′, Y ′)

state :p(X ′), q(Y ′)

counter-measurer0(X
′′)

pre :p(X ′′)
post :not(p(X ′′))

attacka(X)

post :p(X)
pre : . . .

counter-measurer1(Y
′′)

pre : q(Y ′′)
post :not(q(Y ′′))

Ψr1o = {{Y ′′/Y ′}}

Ψr0o = {{X ′′/X ′}}
Ξao = {{X/X ′}}

Ξbo = {{Y/Y ′}}

Figure 6.6: Correlation graph with direct response on the objective.

96 Anti-correlation and Selection of Counter-Measures

The correlation process shown in Figure 6.6 diagnoses that the two attacksa and b are

correlated with a given intrusion objectiveo, and that this objective has been achieved. The

response process then finds two counter-measure candidates.

The first counter-measure,r0, with the parameterX ′′ = X ′, and provided byΨr0,o, suggests

the possibility to invalidate conditionp (and thus objectiveo). The second countermeasure,

r1, with parameterY ′′ = Y ′, and provided byΨr1,o, suggests the possibility to invalidate

the conditionq (and thus also the objectiveo).

By combiningΞa,o with Ψr0,o, we can derive that counter-measurer0 may apply with pa-

rameterX ′′ = X ′ = X = x and similarly counter-measurer1 may apply with parameter

Y ′′ = y. Thus this provides means to derive which parameters must beselected when ap-

plying the counter-measure. In our approach, these two counter-measures are suggested to

the administrator who can select one of them (or both).

Finally, theverificationfield of the selected counter-measure is then evaluated to check

whether the counter-measure was executed successfully. Ifthis is the case, we can reeval-

uate the state condition of the intrusion objective to false.

Response to an Ongoing Scenario

It is possible that a counter-measure may not apply directlyto an intrusion objective if one

of these conditions holds:

• There is not any counter-measure in the response library which may apply to invali-

date the intrusion objective.

• The counter-measure does not apply to the system state because the pre-condition of

this counter-measure is evaluated to false.

• All counter-measure candidates were launched without success.

6.3 Using Anti-correlation for Response 97

In these cases, a possible solution is to modify the system state to invalidate one attack in

a sequence of virtual attacks. When the correlation engine receives a new alert, it tries to

find a path of correlated virtual attacks leading to one (or more) intrusion objective(s).

The path of virtual attacks and the intrusion objective found represents a possible evolution

of the ongoing scenario. Leta1...an be a sequence of virtual attacks ando an intrusion

objective such that for everyi ∈ [1, n − 1], ai is correlated withai+1 andan is correlated

with o. The affirmation stating that for everyi ∈ [1, n−1], ai is correlated withai+1 andan

is correlated witho is not necessarily true for the entire set of virtual attack generated. But

we can always find a subset of virtual attack satisfying this condition in the set of generated

virtual attacks, given that the set of generated virtual attacks leads to an intrusion objective.

Anti−correlation
Correlation

counter-measurer(X ′′)
pre :p(X ′′)
post :not(p(X ′′))

post :q(Y)
pre :p(X ′)
attackb(X ′, Y) objectiveo(Y ′)

state :q(Y ′)

attacka(X)

post :p(X)
pre : . . . Ψrb = {{X ′′/X ′}}

Ξab = {{Y/Y ′}}

Ξbo = {{Y/Y ′}}

Figure 6.7: Correlation graph with response on a sequence ofvirtual attacks.

To block this sequence of attacks, we must find a valid LAMBDA counter-measurer such

thatr is anti-correlated with one of the attacksak (k ∈ [1, n]). For instance, let us assume, in

Figure 6.7, that we detect an occurrence ofa. The recognizing intention process identifies

that the intruder may performb aftera to achieve the objectiveo. In this case, the response

process can find a counter-measurer to invalidate thepre-conditionof b. This will prevent

performance of attackb and invalidate this scenario.

98 Anti-correlation and Selection of Counter-Measures

6.4 Reacting on a Sample Attack Scenario

This section presents the use of the response mechanism introduced in this chapter, together

with the rest of components overviewed in previous chapters, and the enhanced version of

CRIM [Cuppens and Miège, 2002] presented in [Autrel, 2005]. To illustrate the use of our

approach, let us consider the Mitnick attack as defined in [Northcutt, 2002]. This attack

tries to exploit the trust relationship between two computers to achieve an illegal remote

access using the coordination of three techniques. First, aSYN flooding DoS attack to

keep the trusted system from being able to transmit. Second,a TCP sequence prediction

against the target system to obtain its following TCP sequence numbers. And third, an

unauthorized remote shell by spoofing the IP address of the trusted system (while it is

in a mute state) and using the sequence number that the targetsystem is expecting. The

correlation graph for this attack is presented in the following figure:

Figure 6.8: Correlation graph for the Mitnick attack scenario.

6.4 Reacting on a Sample Attack Scenario 99

attack syn flood(A, H)
pre: remote access(A,H) – attacker has a remote access on the target

∧ vulnerable(H,’syn flood’) – target is vulnerable to ’syn flood’ attack
detection: classification(Alert,’syn flood’) – the alert classification is ’syn flood’

∧ source(Alert, A) – the source in alert is agentA

∧ target(Alert, H) – the target in alert is hostH
post: deny of service(H) – deny of service on hostH
verification: unreachable(H) – hostH does not reply
attack tcp sequence prediction(A, H)
pre: remote access(A,H) – attacker has a remote access on the target

∧ tcp sequence(H) – the TCP sequence ofH is predictable
detection: classification(Alert,’TCP seq prediction’) – the alert classification is ’TCP seq prediction’

∧ source(Alert, A) – the source in alert is agentA

∧ target(Alert, H) – the target in alert is hostH
post: knows(A, tcp sequence(H)) – attacker knows the TCP sequence of target
verification: true – always true
attack IP spoofing(A, H1, H2)
pre: remote access(A,H2) – attacker has a remote access onH2

∧ knows(A, tcp sequence(H2)) – attacker knows the TCP sequence ofH2

∧ deny of service(H1) – deny of service on hostH1

detection: classification(Alert,’IP spoofing’) – the alert classification is ’IP spoofing’
∧ source(Alert, A) – the source in alert is agentA

∧ source(Alert, spoofed) – the source is spoofed
∧ additional data(Alert, spoofed addr, H1) – the spoofed address isH1

∧ target(Alert, H2) – the target in alert is hostH2

post: spoofed connection(A,H1, H2) – attacker has a spoofed connection onH2 asH1

verification: unreachable(H1) – hostH1 does not reply
counter-measure block spoofed connection(A,H1, H2)
pre: spoofed connection(A,H1, H2) – attacker has a spoofed connection onH2 asH1

action: block IP datagrams(A, H1, H2) – a packet filtering blocks the connection
post: not(spoofed connection(A, H1, H2)) – spoofed connections blocked between both sides
verification: not(TCP spoofed connection(A,H1, H2)) – verify that spoofed connections are blocked
attack spoofed remote shell(A,H1, H2)
pre: spoofed connection(A,H1, H2) – attacker has a spoofed connection onH2 asH1

detection: classification(Alert,’spoofed rshell’) – the alert classification is ’spoofed rshell’
∧ source(Alert, A) – the source in alert is agent A
∧ source(Alert, spoofed) – the source is spoofed
∧ additional data(Alert, spoofed addr, H1) – the spoofed address isH1

∧ target(Alert, H2) – the target in alert is hostH2

post: remote shell(A, H2) – attacker has a remote shell on hostH2

verification: unreachable(H1) – hostH1 does not reply
counter-measure block remote shell(A, H)
pre: remote shell(A, H) – attacker has a remote shell on the target
action: block IP datagrams(A, H) – a packet filtering blocks the connection
post: not(remote shell(A,H)) – remote shell betweenA andH2 is blocked
verification: not(remote shell traffic(A, H)) – verify that the remote shell connection is blocked
objective illegal remote shell(A,H)
state: remote shell(A, H) – attacker has a remote shell on hostH

∧ not(authorized(remote shell(A,H))) – attacker is not authorized to have this remote shell

Figure 6.9: LAMBDA models of the Mitnick attack scenario.

100 Anti-correlation and Selection of Counter-Measures

The LAMBDA models for each attack that composes the whole scenario, together with the

intrusion objective, are shown in Figure 6.9. In the first step, A (the agent that performs the

whole attack) floods a given hostH1. In the second step,A sends a TCP sequence predic-

tion attack against hostH2 to obtain its following TCP sequence numbers. Then, by using

these TCP sequence numbers,A starts a spoofed remote shell session to the hostH2 as it

would come from hostH1. SinceH1 is in a mute state,H2 will not receive the RST packet

to close this connection. If the third and fourth steps are successful,A will establish an ille-

gal remote shell session to systemH2. The model of Figure 6.9 also proposes two counter-

measures to prevent the Mitnick attack. First, a counter-measure can apply before the intru-

sion objective is achieved. This counter-measure, calledblock spoofedconnection, blocks

the spoofed connection between the host and the intruder. Second, a counter-measure can

apply directly on the intrusion objective. This counter-measure, calledblock remoteshell,

blocks the remote shell connection between the host and the intruder.

To show how the components of our architecture would handle the attack, let us consider the

sequence of alerts described in Figure 6.10. There, we assume that an intruder targeting the

networkvictim.orgwill use resources from another network to perform the attack. We

also assume that this network is protected by a set offirewalls, network intrusion detection

systems(NIDSs), the policy manager presented in Chapter 4, and an instance of CRIM on

each node of the network. Moreover, those components are exchanging IDMEF messages

through the notification service presented in Chapter 5. To simplify, we consider that the

different parts of the attack are only detected by three different nodes, namednode1, node2,

andnode3. For each node, we show in Figure 6.10 just such relevant messages published

and notified within the system. We have also simplified quite alot the information and

format of each alert for clarity reasons. Each alert is so denoted with ordered identifiersti,

which correspond to theDetectionTimefield of each IDMEF message.

When alerts corresponding to different steps of the Mitnickattack scenario are raised within

the complete system, the instances of CRIM installed on eachnode will apply the corre-

lation mechanism to recognize the global scenario. For example, when the alerts corre-

sponding to the attacksyn flood(A, H1) and the attacktcp sequence prediction(A, H2)

6.4 Reacting on a Sample Attack Scenario 101

are raised, respectively,node1andnode2(cf. cluster alertst2 andt4 in Figure 6.10) the cor-

relation mechanism of CRIM onnode3, which receives thosecluster alertspublished by

the other two nodes asglobal alerts, will generate the virtual alerts corresponding to the at-

tacksIP spoofing(A, H1, H2) andspoofed remote shell(A, H1, H2), and the objective

illegal remote shell(A, H2). The correlation engine of CRIM recognizes the whole sce-

nario since the post-conditiondeny of service(H1) of the attacksyn flood(A, H1) is cor-

related with the pre-conditiondeny of service(H1) of IP spoofing(A, H1, H2), and the

post-conditionknows(A, tcp sequence(H)) of tcp sequence prediction(A, H) is corre-

lated with the pre-conditionknows(A, tcp sequence(H2)) of IP spoofing(A, H1, H2).

Once this diagnosis is processed, the response module of CRIM installed onnode3can se-

lect the two possible counter-measures discussed above. The counter-measureblock spoof-

ed connectionis chosen since its post-conditionnot(spoofed connection(A, H1, H2)) is

anti-correlated with the pre-conditionspoofed connection(A, H1, H2) from the attackspo-

ofed remote shell(A, H1, H2). Likewise, the counter-measureblock remoteshellis cho-

sen since its predicatenot(remote shell(A, H2)) is then anti-correlated with the predicate

remote shell(A, H2) of the objectiveillegal remote shell(A, H2).

At this point, the response module of CRIM onnode3generates theassessment alerts

t5 and t6 with the actions specified on counter-measuresblock spoofedconnectionand

block remoteshell. Those two counter-measures are then notified to the policy manager

as IDMEF assessment alerts, which provides the security officer with the actions showed

in Figure 6.9. Thus, the administrator can select one of those actions, in order to recon-

figure, for example, the security policy, before the attacksIP spoofing(A, H1, H2) and

spoofed remote shell(A, H1, H2) will be performed, i.e., before the intrusion objective

illegal remote shell(A, H2) will be reached.

As we will further discuss in Chapter 8, we only use this response approach to provide

a support to the administrator who takes the final decision tochoose and launch a given

response. We do not consider, expressly, a proactive response since it could, in certain

cases, be leveraged by the attacker to damage the system itself or to cause a denial of

service to authorized users.

102 Anti-correlation and Selection of Counter-Measures

Figure 6.10: Sequence of alerts raised inside each node during the attack.

Let us finally suppose, to conclude our example, that the security officer does not launch

neither the counter-measureblock spoofedconnectionnor the counter-measureblock remo-

te shell. In this case, we can assume that the two local alertst7 and t8 may be detected

by the components installed onnode3, leading the correlation engine of CRIM to deter-

mine that the intrusion objectiveillegal remote shell(A, H2) has been reached. It may

manage such a conclusion since the pre-conditionspoofed connection(A, H1, H2) of the

attackspoofed remote shell(A, H1, H2) is correlated to the post-conditionspoofed con-

nection(A, H1, H2) of IP spoofing(A, H1, H2), the pre-conditionknows(A, tcp sequen-

ce(H2)) of IP spoofing(A, H1, H2) is correlated with the post-conditionknows(A, tcp-

sequence(H2)) of tcp sequence prediction(A, H2), and the intrusion objective statere-

mote shell(A, H2) is then correlated with the post-conditionremote shell(A, H2) of the

attackspoofed remote shell(A, H1, H2).

6.4 Reacting on a Sample Attack Scenario 103

Summary

In this chapter we have presented a response mechanism to select and apply counter-

measures when an intrusion attack is detected. We first presented in Section 6.1 LAMBDA,

an algebraic language that allows us to provide a logical description of system’s actions;

we then discussed how to use such a language to model both attacks and counter-measures;

and we finally provided some examples of both intrusions actions and counter-measures

expressed in this language.

In Section 6.2 we showed out how the correlation approach implemented in CRIM, a mod-

ule for management of intrusion alerts. It uses LAMBDA to correlate detected attacks, and

to identify a scenario that leads from an initial state to a final intrusion objective – where

the security policy has been violated. We also showed in Section 6.2 how to use the semi-

explicit correlation approach and discussed how we can use ageneration of hypothesis to

anticipate the occurrence of a possible complex intrusion scenario before this scenario will

be successful. This last feature allows us to anticipate on the actions performed by the

intruder and develop a specific response for a given scenario.

We then defined in Section 6.3 the notion of anti-correlationand discussed some examples

to show how we can use this feature to determine relevant counter-measures, either to act

on the objective of an intrusion or to stop an ongoing attack scenario by acting on a given

step of this scenario. In Section 6.4 we offered an extended example to illustrate the use

of the anti-correlation approach, together with the rest offeatures of CRIM. We discussed

the detection of a complete attack, and the sequence of counter-measures offered by our

approach in order to respond to different steps of the attack. These counter-measures are

intended to help the security officer to decide which appropriate actions may be launched

in order to terminate or to respond to the given attack. This is a prudent strategy that may

only be used to provide a support to the administrator who takes the final decision to choose

and launch a given response. We do not consider up to now a realtime response. More

investigation has to be done before to extend our approach inthat way.

Chapter 7

Protection of Components based on a

Kernel Security Module

”They don’t advertise for killers in the newspaper. That was

my profession. Ex-cop. Ex-blade runner. Ex-killer.”

– RICK DECKARD (BLADE RUNNER)

Contrary to many other elements of a network, security components, such as firewalls and

network intrusion detection systems (NIDSs), are almost always working with special priv-

ileges to properly execute their tasks. This situation is very likely to lead remote attackers

to acquire these privileges in an unauthorized manner. Onceacquired, the attacker can

manage to compromise those elements, or even to obtain the control of the system itself.

The existence of programming errors within the code of the component’s elements, the il-

licit manipulation of their related resources (such as processes, configuration files, log files,

and so on), or even the increase of privileges though operating system’s errors, are just a

few examples regarding means in which an attacker can bypasstraditional security policy

controls. The protection of these elements is a serious and important problem which must

be solved. In this chapter, we overview a preventive mechanism which is intended for the

106 Protection of Components based on a Kernel Security Module

protection of the network security components of our framework. Our proposal consists

of a kernel access control scheme which handles the protection of each security compo-

nent and its elements (i.e., processes, files, and so on), andwhich intercepts and cancels

forbidden system calls launch by a remote intruder.

The remainder of this chapter is organized as follows. Section 7.1 gives an outlook to our

protection strategy in order to protect the critical resources processes with special priv-

ileges. Section 7.2 takes a closer look at the development ofthe proposed mechanism.

Section 7.3 presents a smart-card based authentication protocol intended to solve the ad-

ministration constraints introduced by our protection mechanism. Finally, the configuration

of our proposal and an evaluation concerning the efficiency and security of its implemen-

tation is presented in Section 7.4.

7.1 Kernel based Control of System Calls

As we introduced above, our main motivation is the protection of the network security com-

ponents of our platform, such asfirewallsandnetwork intrusion detection systems(NIDSs),

which, if successfully attacked, are very likely to lead an intruder to get the control of the

whole system. This problem leads to the necessity for introducing a protection mechanism

on the different elements of each component, keeping with their protection and mitigating

– or even eliminating – any attempt to attack or compromise the component’s elements and

their operations. This way, even if an attacker compromisesthe security of the component,

he would not be able to achieve his purpose.

According to [Onabuta et al., 2001], we consider the protection of the elements carried by

the kernel of the operating system as a proper solution for such a protection.

On the first hand, the protection at kernel level avoids that potentially dangerous system

calls (e.g.,killing a process) could be produced from one element against another one. This

protection is achieved by incorporating an access control mechanism into the kernel system

7.1 Kernel based Control of System Calls 107

calls. This way, one may allow or deny a system call based on several criteria – such as

the identifier of the process making the call, some parameters of the given call, and so on.

The kernel’s access control allows to eliminate the notion of trust associated to privileged

users, delegating the authorization for the execution of a given system call to the internal

access control mechanisms. In addition, and contrary to other approaches, it provides a

unified solution, avoiding the implementation of differentspecific mechanisms for each

component.

On the other hand, this mechanism allows us to enforce the compartmentalization princi-

ple [Viega and McGraw, 2002]. This principle is based in the segmentation of a system, so

several elements can be protected independently one from another. This ensures that even

if one of the elements is compromised, the rest of them can operate in a trusted way.

In our case, several elements from each component are executed as processes. By speci-

fying the proper permission based on the process ID, we can limit the interaction between

these elements of the component. If an intruder takes control of a process associated to a

given component (through a buffer overflow, for example), hewill be limited to make the

system call for this given process.

It is not always possible, however, to achieve a complete independence between the ele-

ments. There is a need to determine which system calls may be considered as a threat when

launched against an element from the component. This requires a meticulous study of each

one of the system calls provided by the kernel, and how they can be misused. On the other

hand, we have to define the access control rules for each one ofthese system calls. For our

approach, we propose the following three protection levelsto classify the system calls: (1)

critical process protection; (2) communication mechanisms protection; and (3) protection

of files associated to the elements.

The first level of protection (critical processes) comprises actions that can cancel the proper

execution of the processes associated to a component, either by interaction over them by

signals, or the manipulation of the memory space. Some examples are: execution of a

new application already in memory, cancellation or manipulation of the address space and

process traces, and so on.

108 Protection of Components based on a Kernel Security Module

The second level (communication mechanisms protection) includes the protection of all

those processes that allows an attacker to modify, generateor eliminate any kind of mes-

sages exchanged between component’s elements. Finally, the third level of protection (pro-

tection of files associated to the elements) takes into account all those actions that can ma-

liciously address the set of files used by the elements of the component, such as executable,

configuration, or log files.

7.2 Implementation of a Linux Security Module

In this section we outline the current implementation of ourapproach in a research proto-

type called SMARTCOP (which stands forSmart Card Enhanced Linux Security Module

for Component Protection). It consists of a kernel based access control mechanism, and

its development has been done over theLinux Security Modules(LSM) framework for

GNU/Linuxsystems [Wright et al., 2002].

The LSM framework does not consist of a single specific accesscontrol mechanism; instead

it provides a generic framework, which can accommodate several approaches. It supplies

several hooks (i.e., interception points) across the kernel that can be used to implement

different access control strategies. Such hooks are:Task hooks, Program Loading Hooks,

File systems HooksandNetwork hooks.

These LSM hooks, can be used to provide protection at the three levels commented in the

previous section. Furthermore, LSM adds a set of benefits to our implementation: first,

it introduces a minimum load to the system when comparing it to kernels without LSM,

and does not interfere with the detection and reaction processes (cf. Section 7.4); second,

the access control mechanism can be composed in the system asa module, without having

to recompile the kernel; and third, it provides a high degreeof flexibility and portabil-

ity to our implementation when compared to other proposals for the Linux kernel, such

as [Onabuta et al., 2001] and [Ott, 2002], where the implementation requires the modifica-

tion of some features of the original operating system’s kernel.

7.2 Implementation of a Linux Security Module 109

The LSM interface provides an abstraction, which allows themodules to mediate between

the users and the internal objects from the operating system’s kernel. To this effect, before

accessing the internal object, the hook calls the function provided by the module and which

will be responsible to allow or deny the access. In Figure 7.1we show how a module may

register one function just to make a validation over thei-nodesof the filesystem.

Figure 7.1: Linux Security Modules (LSM) Hooks.

At the same time, LSM allows us to keep thediscretionary access control(DAC) provided

by the operating system’s kernel, by standing between the discretionary control and the

object itself. This way, if a user does not have permissions in relation to a given file, the

DAC of the operating system will not allow the access and no call to the function registered

by the LSM will be made. This feature reduces the load of the system when compared to an

access control check centralized in the operating system call interface, which always gets

used for all the system calls.

The component’s elements will be allowed to make operationsonly permitted to the sys-

tem administrator – such as packet filtering and process or application cancellation. This

implies that the system processes associated to each element will be executed by the ad-

ministrator – i.e., root user in Unix systems. On the contrary, if we associate the processes

110 Protection of Components based on a Kernel Security Module

to a non privileged user, the discretionary access control of the operating system’s kernel

will not allow the execution of some specific calls.

The internal access control mechanisms at the kernel is based in the process identifier (PID)

that makes the system call, which will be associated to a specific element. Each function

registered by a LSM module, determines which component is making the call from the PID

of the associated process. It then, applies the access control constraints taking also into ac-

count the parameters of the system call. Thus, for example, agiven element can access its

own configuration files but not configuration files from other elements. In Figure 7.2, for

example, we show how a function registered by our LSM protection module may allow or

deny the modification of a configuration file.

Operating System
DAC

DENY
Operating

System
returns

with error

ACCEPT

Does
the admin

do the
syscall ?

NO

YES
Does

the pro-
cess do the

syscall ?

NO

Is the call
against a
node com-
ponent ?

Access Control
based on the

syscall parameters

Is the
auth. device
connected ?

Possible
system

compromised

ACCEPT

NO YES

Call the
original
syscall

NO

YES

DENY

YES

Call the
original
syscall

Figure 7.2: Access control example through our protection module.

An important issue in the implementation is the administration of the access control mecha-

nisms and the management of each one of the elements. As pointed out in previous sections,

the administrators should not be able to throw a system call,which may suppose a threat to

the component. This prevents an intruder doing any harm to the component even if he could

7.3 Smart-card based Authentication Mechanism 111

scale his privileges to the administrator ones. This contrasts with the administration of the

component, since, if an administrator can not interact withthe elements of the component,

he will not be able to carry out any management or configuration process and activities.

To solve this hazard, we propose a smart-card based authentication mechanism. Specif-

ically, we use the functionality of a smart-card for ensuring the administrator’s identity.

Through the use of an authentication protocol, the LSM module verifies administrator’s

actions before holding him the indispensable privileges tomanipulate the component. Oth-

erwise, the access control enforcement will come to its normal operation. In the following

section, a detailed description of such a mechanism is given.

7.3 Smart-card based Authentication Mechanism

In order to better assure the administrator’s identity of SMARTCOP, we propose the use

of a two-factor authentication mechanism based on the cryptographic functions of a smart-

card. This mechanism is intended for authenticating the administrator to the LSM modules

and holds with the following requirements:

• The actions must be authorized by the use of a smart-card;

• The smart-card only authorizes one action iff the PIN is correct;

• The LSM module only authorizes the action iff the smart-cardresponse is valid.

Authentication Protocol Description

In this section we give a first pair of cryptographic protocols that lead our smart-card based

authentication mechanism. Let us recall that the cryptographic engine of such a smart-card

is capable of performing several cryptographic functions,such as symmetric key genera-

tion, symmetric cryptographic algorithms execution, and so on.

112 Protection of Components based on a Kernel Security Module

A first protocol is defined as follows.

Protocol 1

1. The system administrator opens a new console and he requests an actionX. It is

assumed thatX must be authorized by using the smart-card;

2. The LSM module receives the request from the console and itdoes the following

steps:

(a) Open a connection to the smart-card reader device, and protect the channel

between the smart-card reader device and the LSM module itself to avoid being

tampered or sniffed by any other process;

(b) Print a message in the console, asking for the smart-cardinsertion to the smart-

card reader device;

(c) While the smart-card has not been inserted do;

i. Detect the insertion of the smart-card;

(d) Print a message in the console asking for the operation PIN;

3. The system administrator types the operation PIN in the keyboard.

4. The LSM module does the following steps:

(a) Obtain the operation PIN;

(b) Obtain a NONCE value at random;

(c) Compute the Message Authentication Code (MAC) of NONCE with the shared

keyK, µ1 = MAC(K, NONCE);

(d) Execute the Procedure 1 inside the smart-card using the operation PIN and the

NONCE, and obtain a responseµ2;

(e) Print a message in the console to remove the smart-card from the smart-card

reader device;

7.3 Smart-card based Authentication Mechanism 113

(f) While the smart-card has not been removed do;

i. Detect the removing of the smart-card;

(g) if µ2 is ERROR the LSM module does not authorize the actionX;

(h) else do:

i. if µ1 6= µ2 the LSM module does not authorize the actionX;

ii. if µ1 = µ2 the LSM module authorizes the actionX;

As we can see in Protocol 1, anoperation PINand oneadministration passwordare used

in our protocol. The operation PIN is at least six digits long. We use the operation PIN

in order to authorize the actions. On the other hand, the administration password is used

to change the operation PIN and other management tasks. The system administrator has

three consecutive chances to enter the operation PIN. In thethird chance if the smart-card

receives an incorrect operation PIN it blocks itself. The smart-card only can be unblocked

with the administration password. Again, there are three chances to enter the correct ad-

ministration password. If the smart-card is blocked with the administration password the

smart-card becomes useless.

The security parameters of the LSM module are properly initialized when it is installed.

The system administrator inserts a smart-card in the readerdevice and the cardlet applica-

tion is downloaded to the smart-card. Once the applet has been downloaded and registered,

the system administrator introduces the administration password and the operation PIN.

The LSM module then sends the shared keyK – it stores the sharedK in a secure file, so

the file can be read exclusively by the LSM module.

Then, the smart-card and the LSM module share a secret keyK. In Step 1 of such a

protocol, the system administrator requests an action to the LSM module which, in turn,

blocks the communication channel between the smart-card reader and the LSM module.

The data sent between the LSM module and the smart-card can neither be sniffed nor

tampered because the channel is blocked (cf. Step 2a). The protocol avoids the smart-card

remains in the smart-card reader when is not necessary. In Step 2c, the LSM module waits

until the smart-card insertion, and in Step 4f the LSM moduledoes not proceed since the

smart-card has been removed.

114 Protection of Components based on a Kernel Security Module

In Step 3 the operation PIN travels in a secure way from the keyboard since, as we recalled

above, the LSM module has blocked the channel between the reader and the module itself

(cf. Step 2a). Then, the LSM module sends a NONCE obtained at random and the PIN

in Step 4d. The smart-card returns a Message AuthenticationCode (MAC) of the NONCE

computed with the shared keyK. In the last Step, i.e., Step 4h, the LSM module verifies

whether the MAC has been properly computed.

Let us now define Procedure 1, which is executed within the smart-card to validate the

operation PIN. If the operation PIN is correct, it computes the MAC of NONCE with the

shared keyK.

Procedure 1 [PIN , NONCE]

1. Validate the operation PIN;

2. If the operation PIN is correct do:

(a) Compute the Message Authentication Code (MAC) of NONCE with the shared

keyK, µ2 = MAC(K, NONCE);

(b) returnµ2;

3. If the operation PIN is no correct returnERROR;

For performance improvement purposes, let us also show an alternative version of Proto-

col 1, where a smart-card reader device with a key-pad is used. This way, the operation

PIN is not typed in the keyboard of the computer but in the keypad of the smart-card reader

device. Such an alternative version (i.e., Protocol 2) is described as follows:

Protocol 2

1. The system administrator opens a new console and he requests an actionX. We

assumeX must be authorized using the smart-card;

7.3 Smart-card based Authentication Mechanism 115

2. The LSM module receives the request from the console and itdoes the following

steps:

(a) Open a connection to the smart-card reader device, and protect the channel

between the smart-card reader device and the LSM module itself to avoid being

tampered or sniffed by any other process;

(b) Print a message in the console, where ask for to insert thesmart-card to the

smart-card reader;

(c) While the smart-card has not been inserted do;

i. Detect the insertion of the smart-card;

(d) Print a message in the console asking for the operation PIN;

3. The system administrator types the operation PIN in the key-pad of the smart-card

reader. The PIN can not be obtained by any process running in the system;

4. The LSM does the following steps:

(a) Obtain a NONCE value at random;

(b) Compute the Message Authentication Code (MAC) of NONCE with the shared

keyK, µ1 = MAC(K, NONCE);

(c) Execute the Procedure 1 inside the smart-card using the NONCE, and obtain a

responseµ2;

(d) Print a message in the console to remove the smart-card from the smart-card

reader;

(e) While the smart-card has not been removed do;

i. Detect the removing of the smart-card;

(f) if µ2 is ERROR the LSM does not authorize the actionX;

(g) else do:

i. if µ1 6= µ2 the LSM does not authorize the actionX;

ii. if µ1 = µ2 the LSM authorizes the actionX;

116 Protection of Components based on a Kernel Security Module

Asymmetric version of our Cryptographic Protocol

Alternatively to protocols 1 and 2, we propose a second authentication mechanism using

asymmetric cryptography. Let us start by introducing the necessary structure and elements

for this second proposal. We first define the necessary architecture as a hierarchical struc-

ture with several organizational units, where the computernetwork is divided, in turn, in

hierarchical domains, and where each domain of the network has several components that

must be protected. We name such a component as SMARTCOP Node (SCN). Finally,

each domain has a SMARTCOP Server (SCS), and each potential administrator holds a

SMARTCOP Card (SCC). These components are briefly describedbelow.

SMARTCOP Server (SCS) –Each SCS owns a cryptographic key pairmaster keyand the

corresponding certificate. This certificate has been issuedby the upper SCS in the hierarchy

and identifies the lower SCS as a valid SCS. This certificate isencoded as an X.509 At-

tribute Certificate [International Organisation for Standardization, 2000], where the issuer

is the upper SCS master key and the subject is the lower SCS master key. The SCS of do-

main B can issue certificates authorizing a concrete SCC as anadministration of the domain

B (similar to the certificates between SCSs). Normally the SCS will be managed by the of-

ficer in charge of the network administration in the given domain – or organizational unit.

That is, the person who has more knowledge about the network domain and its potential

administrators, and, at the same time, the one that has the greatest interest in performing a

good administration. This is a key point of the SMARTCOP framework, which enables the

distribution of the administrative management between domains or organizational units.

SMARTCOP Node (SCN) –Each SCN is a component which has the SMARTCOP LSM

module. The security parameters of the LSM module are properly initialized when it is

installed. The main parameter is theSource-of-Authority(SoA), which is represented by a

master-key. More precisely, themaster-keyof the top SCS. When an administrator requests

a protected action on a given SCN, by using Protocol 3, the SCNverifies the certificate

from the SCC. Then, if it comes from a certificate path rooted at the SoA’smaster-key, the

operation is accepted.

7.3 Smart-card based Authentication Mechanism 117

SMARTCOP Card (SCC) – The SCC is owned by potential administrators. In order to

be able to perform administrative tasks on a given domain, the SCC must be authorized

(i.e., certified) by the SCS of the domain or an upper one in thehierarchy.

Each SCC has a key pair, which has to be certified by amaster-key(i.e., a key from a

SCS). Let us recall that the cryptographic engine of such a smart-card is capable of per-

forming several cryptographic functions, such as asymmetric key generation, asymmetric

cryptographic algorithms execution, and so on. The SCC has an operation PINand an

administration password.

The operation PIN is at least six digits long and is used to authorize the protected actions.

On the other hand, the administration password is used to change the operation PIN and

other management tasks. The system administrator has threeconsecutive chances to en-

ter the operation PIN. In the third entry, if the smart-card receives an incorrect operation

PIN, it blocks itself. The smart-card can only be unblocked with the administration pass-

word. Again, there are three chances to enter the correct administration password. Finally,

if the smart-card blocks itself after the failing of three consecutive wrong administration

passwords, it becomes useless.

Protocol Description

We give in this section a detailed description of the asymmetric cryptographic protocol

version (cf. Protocol 3). In Step 1 of such a protocol, the system administrator requests an

action to the LSM module which, in turn, blocks the communication channel between the

smart-card reader and the LSM module. The data sent between the LSM module and the

smart-card can neither be sniffed nor tampered because the channel is blocked (cf. Step 2a).

The protocol does not allow the smart-card to remain in the reader when is not necessary. In

Step 2c, the LSM module waits for the smart-card insertion, and in Step 4e the LSM module

does not proceed until the smart-card has been removed. In Step 3 the operation PIN travels

in a secure way from the keyboard because the LSM module has blocked the channel

between the keyboard and the module itself. Then, LSM sends aNONCE obtained at

random and the PIN in step 4c. The smart-card returns the digital signature of the NONCE

118 Protection of Components based on a Kernel Security Module

computed with the smart-card’s private key. Finally, in Step 4g LSM verifies whether the

digital signature has been computed properly and the digital certificate is valid.

Protocol 3

1. The system administrator opens a new console and he requests an actionX. It is

assumed thatX must be authorized by using the smart-card;

2. LSM receives the request from the console and it does the following steps:

(a) Open a connection to the smart-card reader device, and protect the channel

between the smart-card reader device and the LSM module itself to avoid being

tampered or sniffed by any other process;

(b) Print a message in the console, asking to insert the smart-card into the smart-

card reader;

(c) While the smart-card has not been inserted do;

i. Detect the insertion of the smart-card;

(d) Print a message in the console asking for the operation PIN;

3. The system administrator types the operation PIN in the keyboard;

4. The LSM does the following steps:

(a) Obtain the operation PIN;

(b) Obtain a NONCE value at random;

(c) Execute the Procedure 2 inside the smart-card by using the operation PIN and

the NONCE, and obtain a responseµ;

(d) Print a message in the console to remove the smart-card from the smart-card

reader;

7.3 Smart-card based Authentication Mechanism 119

(e) While the smart-card has not been removed do;

i. Detect the removing of the smart-card;

(f) if µ is ERROR the LSM does not authorize the actionX;

(g) else do:

i. Check if the digital signature has been computed with a public key, which

belongs to a certification path rooted at themaster key(SoA).

ii. Verify the smart-card certificate against a valid CRL.

iii. Verify the digital signatureµ with the public keyPK obtained from the

smart-card certificate,PK(µ)
?
= H(NONCE);

iv. if the verification is correct the LSM authorizes the actionX;

v. if the verification is not correct the LSM does not authorize the actionX;

The Procedure 2 is executed within the smart-card. The smart-card validates the operation

PIN. If the operation PIN is valid it computes the digital signature of NONCE with the

smart-card private key.

Procedure 2 [PIN , NONCE]

1. Validate the operation PIN;

2. If the operation PIN is correct do:

(a) Compute the digital signature of NONCE with the private keySK ,

µ = SK(NONCE);

(b) returnµ;

3. If the operation PIN is no correct returnERROR;

120 Protection of Components based on a Kernel Security Module

Security Considerations

To ensure the proper execution of both protocols and procedures shown above, we must

consider the protection of the entities and the channels involved in such a process, avoiding

attacks like impersonation or channels data manipulation.The lack of ability to avoid these

attacks and their impact makes our proposed protection mechanism usefulness.

Regarding the different entities that take part in the protocol, we suggest in this section

the following considerations. First, the possible consoleattacks could be directed against

the binary executable file and the console process in execution time. If this happens, an

overwrite of the executable console’s file using malicious code could lead an attacker to

take the control of the authentication process, giving him the possibility to complete the

protocol and get the control of the system – and even to steal the smart-card’s PIN. To

eliminate this attack, the LSM module guarantees that the binary file of the console can not

be overwritten by anybody (even the administrator), remaining the permissions as read-

only. Second, the binary executable of the administration console is compiled in a static

manner. this allows us to reduce the complexity of the protection’s console process, since

we do not need to consider tasks introduced by the loading of dynamic or shared libraries

and its associated files.

At the same time, it enables us to centralize and reduce the failure points that could be

used by an intruder to tamper the console’s process. Thus, and to protect the process

associated to the console, the LSM module controls that eachsystem call launched by some

process can not be dangerous for the correct execution flow ofthe console process, such

as keyboard key capture, cancellation, or debugging process system calls. Let us recall

that the communication channels can not be manipulated by any opponent. To achieve

this purpose, the LSM mediates between the system calls related with the communication

channels and the entities that take part within the protocol(the LSM module, the smart-card

and the console process).

To conclude, and as pointed out in [Biondi, 2003], the LSM module does not need to be

directly protected since we can assume the kernel environment as a trusted area – since it

is mandatory for the kernel security model of our prototype’s operating system.

7.4 Configuration and Performance Evaluation 121

7.4 Configuration and Performance Evaluation

In order to define the objects and resources to protect, SMARTCOP can actually be config-

ured through a set of security rules. Each security rule defines anaction in {deny, accept}

that applies over a set ofconditionattributes, such as userid (UID), processid (PID), de-

vice, i-node, etc. These security rules are stored in a set ofconfiguration files that are

loaded at boot time through theproc file system. Theproc file system(procfs) is a special

virtual file system in the Linux kernel which allows user space programs to access to kernel

data structures. We do not consider for the moment the reloadof rules at runtime.

Up to now, we can define several sets of rules regarding the three basic levels of protection

stated in Section 7.1. In Figure 7.3, for instance, we show anexample of seven different

configuration points through procfs for configuring the protection of, respectively, i-node

permission verification, i-node renaming, i-node permission changing, i-node removing,

process tracing, process creation, and process termination.

-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/iperms
-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/iren
-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/isetattr
-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/iunlink
-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/ptrace
-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/tcreate
-rw------- 1 root root 0 jul 23 13:28 /proc/smartcop/tkill

Figure 7.3: Sample configuration points of SMARTCOP.

The four first configuration points (i.e., iperms, iren, isetattr, and iunlink) refer to i-node

related operations. Hence, they can be used not only for the protection of file resources,

but also for the protection of communication operations through, for example, sockets and

pipes. On the other hand, the three last configuration points(i.e., ptrace, tcreate, and tkill)

are related to process operations. More specifically, the configuration pointptraceallows

the protection of the system callptrace()that is often used from some processes to control

the execution of other processes; the configuration pointtcreateallows the configuration

122 Protection of Components based on a Kernel Security Module

of rules related with the creation of new processes through the system callfork(); and the

last configuration pointtkill allows the configuration of rules related with the managing of

processes (such as termination, blocking, and resuming) through the system callsyskill() .

Through the configuration points showed in Figure 7.3, we conducted several tests steered

towards measuring the penalty introduced by the installation of SMARTCOP as a LSM

module, over the normal operation of the system. The tests and benchmarks were based

on the use of the Strace [Akkerman, 2003] and the LMbench [McVoy and Staelin, 1996]

tools. Strace is a debugging tool, which allows us to trace the system calls made after the

execution of a given process. This can be used to analyze and evaluate the time taken by

these calls. On the other hand, LMbench is used to performmicrobenchmarks, which are

used to take more precise measures of the time taken for file access, memory access, and

so on. The evaluation was carried out on a single machine withan Intel-Pentium M 1.4

GHz, with 512 MB of RAM memory and an IDE hard disc of 5400 rpm, running a Debian

GNU/Linux operating system and ext3 file system.

The objective of these testbeds is to compare the performance of the system using a normal

Linux 2.6.15 kernel without LSM support towards the performance of the same system

and kernel but with LSM support and the SMARTCOP module loaded. The results of

the testbeds are shown in Figure 7.4. They are organized in three tables depending on

the three protection levels stated in Section 7.1. As it can be appreciated in the results,

the penalty introduced by SMARTCOP has a minimum impact on the performance of a

standard GNU/Linux 2.6.15 system.

The first table (Process tests) shows the latency in microseconds for a set of operations re-

lated to the execution of processes and system calls such as process creation throughfork(),

fork()+exec()andsh(), process cancellation throughkill() , descriptor waiting throughse-

lect(), opening and closing files throughopen()/close(), signal installation, and so on. This

first category of tests shows that more than the 50% of the tests indicate a performance

penalty below 2%. For example, the process creation withfork() is scarcely penalized with

a 0.9%. The same can be noticed for process creation withfork()+exec()andsh(), which

have an approximate penalty of 3.3%. On the other hand, the higher performance penalty is

presented by the process cancellation through the system call kill() with a 4.6%. This higher

7.4 Configuration and Performance Evaluation 123

Figure 7.4: Performance evaluation of the protection module.

penalty is produced by the access control verifications of SMARTCOP at kernel level, dur-

ing the identification checks of the process, system call parameters, etc. The second set of

tests shown in the second table of Figure 7.4, presents the bandwidth of operations related

to communication issues such as reading, writing and copy ofmemory sections through

read()andmmap(), Inter Process Communications (IPC) using TCP, pipes and sockets of

the Unix address family (AF Unix sockets), etc. Again, the results show a minimum penalty

in the performance. In this case the greater penalty (3.8% approx.) is found in the reading

and summing of a file via the memory mappingmmap()interface.

Finally, the set of tests from the third table (Figure 7.4) shows the latency found in oper-

ations related to file and memory manipulation. The performance penalty of the system

is also minimum. The greater penalty being introduced by thefile elimination due to the

verifications performed by SMARTCOP during the associated system calls.

124 Protection of Components based on a Kernel Security Module

Summary

In this chapter we have presented an access control mechanism intended for the protection

of network security components, such as firewalls and intrusion detection systems. When-

ever one of these components, or one of its elements, is compromised by an attacker, it may

lead her to obtain the full control of the network. Our proposed solution consists of a kernel

based access control method which intercepts and cancels forbidden system calls. Hence,

even if an attacker gains administration permissions, he will not achieve its purposes.

We first introduced in Section 7.1 the motivation of using a kernel based approach and we

gave an outlook to our protection strategy. We then discussed in Section 7.2 the choice of

theLinux Security Modules(LSM) framework to implement our approach. The use of LSM

allows us to use our kernel based access control in new components by just considering its

environment and its interactions. It reinforces moreover the modularity of the system and

provides an easy and generic way to introduce new elements without having to consider

each component separately.

Our strategy introduces however some administration constraints, since administration of-

ficers should not be able to throw system calls that are definedas possible threats to the

component. To solve these constraints, we presented in Section 7.3 a smart-card based au-

thentication mechanism, which acts as a reinforcement of the kernel based access control.

The objective of this complementary mechanism is twofold. First, it holds to the admin-

istrator the indispensable privileges to carry managementand configuration activities just

when he verifies his identity through a two-factor authentication mechanism. Second, it

allows us to avoid some kind of logical attacks focused on getting the rights of the admin-

istrative entity, such as password forgery or buffer overflows.

We finally discussed in Section 7.4 some configuration issuesof our proposal and presented

the evaluation results of several tests steered towards measuring the overhead introduced

by our strategy, over the normal operations of a given system. These results showed that

our approach offers a good degree of transparency to the administrator in charge, and it

does not interfere directly with user space’s processes.

Chapter 8

Conclusions

”The reward of a thing well done is to have done it.”

– RALPH WALDO EMERSON

In this dissertation we have presented our theoretical and practical work for the design and

development of a policy-based framework, whose main purpose is the managing of both

detection and prevention of intrusion attacks. This framework is proposed as a comple-

mentary element to traditional network security mechanisms, such as firewalls and cryp-

tography, in order to detect and prevent network security policy violations. Our proposal is

intended to act as a central point within a given network security infrastructure, in order to

specify security requirements free of anomalies, and deploy the necessary mechanisms to

guarantee the interoperability, cooperation, and protection of the security components used

within such a security infrastructure.

The first part of the dissertation (i.e., chapters 2 and 3) introduced the basic concepts of

computer and network security, provided an overview of the classical security mechanisms

(e.g., cryptography and firewalls) to guarantee the security of a network system, discussed

126 Conclusions

the necessity of complementary mechanisms (i.e., intrusion detection systems), and sur-

veyed some related work which has been previously done in theareas of research in which

this dissertation falls into. The second part of the dissertation described the contributions

we have done in the research domain of cooperation and protection of network security

components, exchange of audit information, and analysis ofnetwork security policies.

More specifically, we started in Chapter 4 by giving and outlook to the audit process we

presented in [Garcı́a et al., 2006f, Garcı́a et al., 2006d] to set a distributed security scenario

composed of bothfirewallsandnetwork intrusion detection systems(NIDSs) free of anoma-

lies. Our audit process has been presented in two main blocks. We presented, in Section 4.2,

a set of algorithms for intra-component analysis, according to the discovering and removal

of policy anomalies over single-component environments; and, in Section 4.3, we presented

a set of algorithms for inter-component analysis, in order to detect and warn the security

officer about the complete existence of anomalies over a multi-component environment.

The main advantages of our approach are the following. First, our process verifies that

the resulting rules are completely independent between them. Otherwise, each rule con-

sidered as useless during the process is reported to the security officer, in order to verify

the correctness of the whole process. Second, the network model presented in Section 4.1

allows us to determine which components are crossed by a given packet knowing its source

and destination, as well as other network properties. Thanks to this model, our approach

better defines all the set of anomalies studied in the relatedwork, and it reports, moreover,

two new anomalies (irrelevanceandmisconnection) not reported, as defined in our work,

in none of the other approaches. Furthermore, the lack of this model in other approaches

(e.g., [Al-Shaer et al., 2005]) leads to inappropriate decisions.

The implementation of our approach in a software prototype demonstrates the practicability

of our work. We shortly discussed this implementation, based on a scripting language

[Castagnetto et al., 1999], and presented an evaluation of its performance. Although these

experimental results show that our algorithms have strong requirements, we believe that

these requirements are reasonable for off-line analysis, since it is not part of the critical

performance of the audited component.

127

In order to communicate effectively and efficiently the different components of our plat-

form, we presented in Chapter 5 an infrastructure to share messages and audit information

between those components [Garcı́a et al., 2005a, Garcı́a etal., 2005e]. The framework it-

self is based on IDMEF [Debar et al., 2006] (Intrusion Detection Message Exchange For-

mat) and the publish/subscribe communication paradigm (cf. sections 5.1 and 5.2).

In contrast to traditional client/server solutions, wherecentralized or hierarchical approa-

ches quickly become a bottleneck due to saturation problemsassociated with the service

offered by centralized or master domain analyzers, the information exchange between peers

in our design achieves a more complete view of the system in whole.

We then presented in Section 5.3 an audit information exchange between components based

on XML messages and XPATH filters, implemented in our proposal via a push or pull

data exchange, and based on an open source publish/subscribe message oriented middle-

ware [Ruff, 2006]. We also conducted experiments showing that the proposal is performant

enough for the application in real-world scenarios (cf. Section 5.4).

In Chapter 6, we discussed the reaction mechanism presentedin [Cuppens et al., 2006a].

This proposal extends the detection process introduced in [Cuppens and Miège, 2002], in

order to select and apply a response mechanism when an intrusion occurs. It is based on

an attack description language based on logic, and whose scenarios steps represent the

attacker’s actions [Cuppens and Ortalo, 2000]. In Section 6.1, we suggest how to use such

a language to build libraries of intrusions and counter-measures.

The notion of anti-correlation is then used to select relevant responses to a given intrusion

in order to help the administrator to decide which appropriate counter-measures may be

launched. This mechanism is integrated together with the communication infrastructure

presented in Chapter 5, and some examples have been shown to illustrate the applicability

of our approach in real-world scenarios.

Up to now, we only use this approach to provide a support to theadministrator who takes

the final decision to choose and launch a given response. Thisis a prudent strategy but it

introduces an overhead that is sometimes incompatible withreal time response.

128 Conclusions

We finally described in Chapter 7 an access control mechanismspecially suited for the pro-

tection of network security components, such asfirewallsandnetwork intrusion detection

systems(NIDSs) [Garcı́a et al., 2005b, Garcı́a et al., 2005c]. As pointed out in [Geer, 2004],

when one of these components, or one of its elements, is compromised by a remote ad-

versary, it may lead such an adversary to obtain the full control of the network and its

components.

The solution we provided proposes the protection of the components by making use of the

Linux Security Modules(LSM) framework for the Linux kernel over GNU/Linux systems

[Wright et al., 2002]. The developed mechanism works by providing and enforcing access

control rules at system calls, and is based on a protection module integrated into the op-

erating system’s kernel, providing a high degree of modularity and independence between

elements.

The use of LSM allows our protection system to be used in new components and elements,

by just considering its environment and its interactions (regarding access control). It rein-

forces the modularity of the system and provides an easy and generic way to introduce new

elements without having to consider each component separately. Thus, we consider that

our proposal provides a high degree of scalability. The introduction of new components

provides a minimum performance penalty, because the LSM framework and the access

control schema do not introduce an excessive computationalcomplexity. We also mea-

sured the penalty introduced by our approach against the usual performance of the system.

The results show the minimum performance impact of our proposal.

To reinforce the protection mechanism itself, our implementation provides a complemen-

tary authentication method, based on smart-card technology. This additional enhancement

is based both on a secret (smart-card PIN) and a physical token (the smart-card itself). This

way, we can prevent some logical attacks (e.g., password forgery) against the protection

mechanism itself. For all these reasons, we may conclude that the enhanced access control

proposed, and integrated inside the operating system’s kernel through theLinux Security

Modules(LSM) framework, offers a good degree of transparency to thesecurity officer,

and it does not interfere directly with user space’s processes.

129

Future Work

As an extension of the work presented in Chapter 4, we may consider the study of anomaly

problems of security rules in the case where the security architecture not only includes

firewalls and IDS, but also IPSec devices. More specifically,when the configuration of a

network includes security rules of these three enforcementdevices, and although there is

a real similarity between the parameters of those devices’ rules, a more complete set of

anomalies may be addressed. Up to now, our study just addresses to single-trigger policies,

i.e., a list of predicates leading a one possible action. Nevertheless, when considering

IPSec devices, a new kind of policies appear. These policies, referred in the literature

as multi-trigger policies, often represent a collection ofpredicates leading to more than

one action. Multi-trigger policies are used on IPSec devices to represent network traffic

transformations, such as sign and crypt the traffic by using different algorithms.

In parallel to this work, we are also considering to extend the approach presented in Chap-

ter 4 to the analysis of stateful policies. For the moment, just static non-stateful policies

have been studied. Stateful policies allows firewalls for dynamically inspecting network

traffic by keeping the state of each connection that is established between the surveyed

zones. In order to do so, this state is kept in dynamic tables at the memory of the device,

and it allows it to inspect the actions that will follow the initial one. More investigation

has to be done in order to extend our proposal for using these new classes of policies (i.e.,

multi-trigger and stateful policies).

As an extension of the work presented in Chapter 5, we may firstconsider to secure the

communication partners by utilizing the SSL protocol [Schneier, 1996]. This way, each

node will receive a private and a public key. The public key ofeach node will be signed

by a certification authority (CA), that is responsible for the protected network. Hence, the

public key of the CA has to be distributed to every node as well. The secure SSL channel

will allow the communicating peers to communicate privately and to authenticate each

other, thus preventing malicious nodes from impersonatinglegal ones. The implications

coming up with this new feature, such as compromised key management or certificate

revocation, would be part of this future work.

130 Conclusions

We may also consider as further work to the approach presented in Chapter 5 a more in-

depth study about privacy mechanisms by exchanging alerts in a pseudonymous manner.

By doing this, one may provide the destination and origin information of alerts (Source

andTargetfield of IDMEF messages) without violating the privacy of publishers and sub-

scribers located on different domains. Our study could cover the design of a pseudonymous

identification scheme, trying to find a balance between identification and privacy. This also

represents further work that remains to be done.

A possible extension of the work presented in Chapter 6 wouldbe the analysis of situations

where it would be possible toautomaticallydecide to launch the response. Notice that

a possible response consists in reconfiguring the security policy to prevent a new occur-

rence of a given intrusion. However, as suggested in [Petkacand Badger, 1997], dynamic

changes of the security policy may cause failure of some software components. This is

why [Petkac and Badger, 1997] suggests the notion of security agility, a strategy to provide

software components with adaptability to security policy changes.

Security agility might be nicely included into the intrusion detection and response frame-

work suggested in Chapter 6. This represents a possible extension of our work. When

using anti-correlation, moreover, several responses may be selected. In this case, it would

be interesting to rank these different responses and a possible ranking criteria would be to

properly evaluate the effectiveness of the responses to stop the attack. A possible extension

of our response formalism would be the use of temporal logic to include the fact that a

given response will stop an intrusionuntil another additional event occurs. More difficult

is performing an action that will cause this additional event, more effective is the response.

Finally, as an extension of the work we presented in Chapter 7we are considering im-

proving the customizing of policies. Up to now, the specific policy that is enforced by our

protection module is loaded at boot time through theproc file system(procfs). We are plan-

ning to extend this feature to add the possibility of using text-based configuration files and

the reload of policies at runtime. We are also considering tocontinue our study to address

the security of the system from an intrusion tolerance pointof view [Deswarte et al., 1991],

i.e., the inclusion of mechanisms that may allow the system to maintain its services in an

acceptable manner, though possibly degraded, despite being attacked.

Bibliography

[Adiseshu et al., 2000] Adiseshu, H., Suri, S., and Parulkar, G. (2000). Detecting and

resolving packet filter conflicts. In19th Annual Joint Conference of the IEEE Computer

and Communications Societies, pages 1203–1212.

[Akkerman, 2003] Akkerman, W. (2003). STRACE: System call trace debugging tool.

http://www.liacs.nl/∼wichert/strace/.

[Al-Shaer and Hamed, 2004] Al-Shaer, E. and Hamed, H. (2004). Discovery of policy

anomalies in distributed firewalls. In23rd Conference of the IEEE Communications

Society (INFOCOM’04), pages 2605–2616.

[Al-Shaer et al., 2005] Al-Shaer, E., Hamed, H., Boutaba, R., and Hasan, M. (2005). Con-

flict classification and analysis of distributed firewall policies. IEEE Journal on Selected

Areas in Communications, 23(10):2069–2084.

[Almgren and Lindqvist, 2001] Almgren, M. and Lindqvist, U.(2001). Application-

integrated data collection for security monitoring. InFourth International Symposium

on Recent Advances in Intrusion Detection (RAID2001), pages 22–36, Davis, CA, USA.

[Anderson et al., 1995a] Anderson, D., Frivold, T., and Valdes, A. (1995a). Next-

generation Intrusion Detection Expert System (NIDES): a summary. SRI International,

Computer Science Laboratory.

[Anderson et al., 1995b] Anderson, D., Lunt, T. F., Javits, H., Tamaru, A., and Valdes,

A. (1995b). Detecting unusual program behavior using the statistical components of

NIDES. NIDES technical report, SRI International.

132 BIBLIOGRAPHY

[Anderson, 1980] Anderson, J. P. (1980). Computer securitythreat monitoring and surveil-

lance. James P. Anderson Co., Fort Washington, PA.

[Asaka et al., 1999] Asaka, M., Taguchi, A., and Goto, S. (1999). The implementation

of IDA: An intrusion detection agent system. In11th Annual FIRST Conference on

Computer Security Incident Handling and Response (FIRST’99).

[Autrel, 2005] Autrel, F. (2005).Fusion, Weighted Correlation and Reaction in a Cooper-

ative Intrusion Detection Framework. PhD thesis, SUPAERO, France.

[Bartal et al., 1999] Bartal, Y., Mayer, A. J., Nissim, K., and Wool, A. (1999). Firmato: a

novel firewall management toolkit. InIEEE Symposium on Security and Privacy, pages

17–31, Oakland, CA, USA.

[Bellovin and Cheswick, 1994] Bellovin, S. M. and Cheswick,W. R. (1994). Network

firewalls. IEEE Communications Magazine, 32(9):50–57.

[Biondi, 2003] Biondi, P. (2003). Linux kernel level security. Free and Open source Soft-

ware Developers’ European Meeting (FOSDEM), Brussels.

[Castagnetto et al., 1999] Castagnetto, J., Rawat, H., Schumann, S., Scollo, C., and

Veliath, D. (1999).Professional PHP Programming. Wrox Press Inc.

[Castillo et al., 2005a] Castillo, S., Garcı́a, J., and Borrell, J. (2005a). Design and devel-

opment of the detection and reaction subsystem of a platformthat prevents coordinated

attacks. InThird Spanish Symposium on Electronic Commerce (SCE 2005), pages 47–

58, Illes Balears, Spain.In Spanish.

[Castillo et al., 2005b] Castillo, S., Garcı́a, J., Navarro, G., and Borrell, J. (2005b). Protec-

tion of the components of a platform that prevents coordinated attacks. InFirst Spanish

Conference on Informatics (CEDI 2005), Information Security Symposium, pages 265–

272, Granada, Spain.In Spanish.

[Cuppens, 2001] Cuppens, F. (2001). Managing alerts in a multi-intrusion detection en-

vironment. In17th Annual Computer Security Applications Conference (ACSAC’01),

pages 22–32, New Orleans, Lousiana.

BIBLIOGRAPHY 133

[Cuppens et al., 2006a] Cuppens, F., Autrel, F., Bouzida, Y., Garcı́a, J., Gombault, S., and

Sans, T. (2006a). Anti-correlation as a criterion to selectappropriate counter-measures

in an intrusion detection framework.Annals of Telecommunications, 61(1-2):192–217.

[Cuppens et al., 2005a] Cuppens, F., Cuppens, N., and Garcı́a, J. (2005a). Detection and

removal of firewall misconfiguration. In2005 IASTED International Conference on

Communication, Network and Information Security, pages 154–162, Phoenix, AZ, USA.

[Cuppens et al., 2005b] Cuppens, F., Cuppens, N., and Garcı́a, J. (2005b). Misconfigura-

tion management of network security components. In7th International Symposium on

System and Information Security (SSI 2005), pages 1–10, Sao Paulo, Brazil.

[Cuppens et al., 2006b] Cuppens, F., Cuppens, N., and Garcı́a, J. (2006b). Detection of

network security component misconfiguration by rewriting and correlation. In5th Con-

ference on Security and Network Architectures, pages 225–240, Seignose, France.

[Cuppens et al., 2004] Cuppens, F., Cuppens, N., Sans, T., and Miège, A. (2004). A for-

mal approach to specify and deploy a network security policy. In Second Workshop on

Formal Aspects in Security and Trust, pages 203–218, Toulouse, France.

[Cuppens and Miège, 2002] Cuppens, F. and Miège, A. (2002). Alert correlation in a co-

operative intrusion detection framework. InIEEE Symposium on Security and Privacy,

pages 202–215, Oakland, CA, USA.

[Cuppens and Ortalo, 2000] Cuppens, F. and Ortalo, R. (2000). LAMBDA: A language

to model a database for detection of attacks. InThird International Workshop on the

Recent Advances in Intrusion Detection (RAID’2000), volume 1907 ofSpringer LNCS,

pages 197–216, Toulouse, France.

[Debar et al., 2006] Debar, H., Curry, D., and Feinstein, B. (2006). Intrusion detection

message exchange format data model and extensible markup language. Technical report.

[Debar et al., 1999] Debar, H., Dacier, M., and Wespi, A. (1999). Towards a taxonomy of

intrusion detection systems.Computer Networks, 31(8):805–822.

134 BIBLIOGRAPHY

[Debar and Wespi, 2001] Debar, H. and Wespi, A. (2001). Aggregration and correlation

of intrusion-detection alerts. In4th International Symposium on Recent Advances in

Intrusion detection, pages 85–103.

[Deering, 1989] Deering, S. (1989). Host Extensions for IP Multicasting. STD 5, RFC

1112, Stanford University, May 1988.

[Denning, 1987] Denning, D. (1987). An Intrusion-Detection Model. IEEE Transactions

on Software Engineering, 13(2):222–232.

[Deswarte et al., 1991] Deswarte, Y., Blain, L., and Fabre, J. C. (1991). Intrusion tolerance

in distributed computing systems. InIEEE Symposium on Security and Privacy, pages

110–121, Oakland, CA, USA.

[Diffie, 1988] Diffie, W. (1988). The first ten years of public-key cryptography.Proceed-

ings of the IEEE, 76(5):560–577.

[Eppstein and Muthukrishnan, 2001] Eppstein, D. and Muthukrishnan, S. (2001). Internet

packet filter management and rectangle geometry. In12th annual ACM-SIAM sympo-

sium on Discrete Algorithms, pages 827–835, Washington, DC, USA.

[Eugster et al., 2003] Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A. (2003). The

many faces of publish/subscribe.ACM Computing Surveys, 35(2):114–131.

[Feiertag et al., 1999] Feiertag, R., Kahn, C., Porras, P., Schnackenberg, D., Staniford-

Chen, S., and Tung, B. (1999). A Common Intrusion Specification Language. CIDF

working group document.

[Fox et al., 1990] Fox, K. L., Henning, R. R., Reed, J. H., and Simonian, R. (1990). A neu-

ral network approach towards intrusion detection. In13th National Computer Security

Conference, pages 125–134, Washington, DC, USA.

[Frantzen et al., 2001] Frantzen, M., Kerschbaum, F., Schultz, E., and Fahmy, S. (2001).

A framework for understanding vulnerabilities in firewallsusing a dataflow model of

firewall internals.Journal of Computers and Security, 20(3):263–270.

BIBLIOGRAPHY 135

[Garcı́a et al., 2004a] Garcı́a, J., Autrel, F., Borrell, J., Bouzida, Y., Castillo, S., Cuppens,

F., and Navarro, G. (2004a). Preventing coordinated attacks via alert correlation. In9th

Nordic Workshop on Secure IT Systems (NORDSEC 2004), pages 110–117, Helsinki,

Finland.

[Garcı́a et al., 2004b] Garcı́a, J., Autrel, F., Borrell, J., Castillo, S., Cuppens, F., and

Navarro, G. (2004b). Decentralized publish-subscribe system to prevent coordinated

attacks via alert correlation. InSixth International Conference on Information and Com-

munications Security, volume 3269 ofSpringer LNCS, pages 223–235, Málaga, Spain.

[Garcı́a and Barrera, 2006] Garcı́a, J. and Barrera, I. (2006). Distributed exchange of alerts

for the managing of coordinated attacks. InSpanish Meeting on Cryptology and Infor-

mation Security (IX RECSI), Barcelona, Spain.In Spanish.

[Garcı́a et al., 2005a] Garcı́a, J., Borrell, J., Jaeger, M.A., and Mühl, G. (2005a). An

alert communication infrastructure for a decentralized attack prevention framework. In

IEEE International Carnahan Conference on Security Technology, pages 234–237, Las

Palmas de G.C., Spain.

[Garcı́a et al., 2006a] Garcı́a, J., Castillo, S., Castell`a, J., and Navarro, G. (2006a). Pro-

tection of security devices based on a kernel access control. In Spanish Meeting on

Cryptology and Information Security (IX RECSI), Barcelona, Spain.In Spanish.

[Garcı́a et al., 2006b] Garcı́a, J., Castillo, S., Castell`a, J., Navarro, G., and Borrell, J.

(2006b). Protection of components based on a security module. In 1st International

Workshop on Critical Information Infrastructures Security, Springer LNCS, pages 129–

140, Samos, Greece.

[Garcı́a et al., 2006c] Garcı́a, J., Castillo, S., Castell`a, J., Navarro, G., and Borrell, J.

(2006c). SMARTCOP - A Smart Card Based Access Control for theProtection of Net-

work Security Components. InInternational Workshop on Information Security (IS’06),

2006 International OTM Conference, volume 4277 ofSpringer LNCS, pages 415–424,

Montpellier, France.

136 BIBLIOGRAPHY

[Garcı́a et al., 2004c] Garcı́a, J., Castillo, S., Navarro,G., and Borrell, J. (2004c). Design

and development of a collaborative system to prevent coordinated attacks. InAdvances

in Crytptology and Information Security (VIII RECSI), pages 475–493, Madrid, Spain.

In Spanish.

[Garcı́a et al., 2005b] Garcı́a, J., Castillo, S., Navarro,G., and Borrell, J. (2005b). ACAPS:

An Access Control Mechanism to Protect the Components of an Attack Prevention Sys-

tem. Journal of Computer Science and Network Security, 5(11):87–94.

[Garcı́a et al., 2005c] Garcı́a, J., Castillo, S., Navarro,G., and Borrell, J. (2005c). Mecha-

nisms for attack protection on a prevention framework. InIEEE International Carnahan

Conference on Security Technology, pages 137–140, Las Palmas de G.C., Spain.

[Garcı́a et al., 2005d] Garcı́a, J., Cuppens, F., Autrel, F., Castellà, J., Borrell, J., Navarro,

G., and Ortega, J. A. (2005d). Protecting on-line casinos against fraudulent player drop-

out. In 2005 IEEE International Conference on Information Technology (ITCC 2005),

volume 1, pages 500–506, Nevada, USA.

[Garcı́a et al., 2006d] Garcı́a, J., Cuppens, F., and Cuppens, N. (2006d). Analysis of policy

anomalies on distributed network security setups. In11th European Symposium On

Research In Computer Security (Esorics2006), volume 4189 ofSpringer LNCS, pages

496–511, Hamburg, Germany.

[Garcı́a et al., 2006e] Garcı́a, J., Cuppens, F., and Cuppens, N. (2006e). Anomaly analysis

of network access control policies. InSpanish Meeting on Cryptology and Information

Security (IX RECSI), Barcelona, Spain.In Spanish.

[Garcı́a et al., 2006f] Garcı́a, J., Cuppens, F., and Cuppens, N. (2006f). Towards filtering

and alerting rule rewriting on single-component policies.In 25th Conference on Com-

puter Safety, Reliability, and Security (Safecomp 2006), volume 4166 ofSpringer LNCS,

pages 182–194, Gdansk, Poland.

[Garcı́a et al., 2005e] Garcı́a, J., Jaeger, M. A., Mühl, G., and Borrell, J. (2005e). De-

coupling components of an attack prevention system using publish/subscribe. InIFIP

BIBLIOGRAPHY 137

conference on Intelligence in Communication Systems, volume 190 ofIFIP series, pages

87–98, Montreal, Canada.

[Geer, 2004] Geer, D. (2004). Just how secure are security products? IEEE Computer,

37(6):14–16.

[Gombault and Diop, 2002] Gombault, S. and Diop, M. (2002). Response function. In

First Symposium on Real Time Intrusion Detection (NATO), Lisbon, Portugal.

[Gouda and Liu, 2004] Gouda, M. G. and Liu, A. X. (2004). Firewall design: consistency,

completeness and compactness. In24th IEEE International Conference on Distributed

Computing Systems (ICDCS’04), pages 320–327.

[Gupta, 2000] Gupta, P. (2000).Algorithms for Routing Lookups and Packet Classifica-

tion. PhD thesis, Stanford University, Department of Computer Science.

[Guttman, 1997] Guttman, J. D. (1997). Filtering postures:local enforcement for global

policies. InIEEE Symposium on Security and Privacy, pages 120–129, Oakland, CA,

USA.

[Hamed and Al-Shaer, 2006] Hamed, H. and Al-Shaer, E. (2006). Taxonomy of conflicts

in network security policies.IEEE Communications Magazine, 44(3):134–141.

[Helmer et al., 2002] Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., Lutz, R.,

and Wang, Y. (2002). Software fault tree and colored petri net based specification,

design and implementation of agent-based intrusion detection systems. Submitted to

IEEE Transaction of Software Engineering.

[Herrera et al., 2004a] Herrera, J., J.Garcı́a, and Perramn, X. (2004a).Aspectos avanzados

de seguridad en redes. Fundaci Universitat Oberta de Catalunya. 370 p.

[Herrera et al., 2004b] Herrera, J., J.Garcı́a, and Perramn, X. (2004b).Seguretat en xarxes

de computadors. Fundaci Universitat Oberta de Catalunya. 283 p.

[Herrera et al., 2004c] Herrera, J., J.Garcı́a, and Perramn, X. (2004c).Seguridad en redes

de computadores. Fundaci Universitat Oberta de Catalunya. 287 p.

138 BIBLIOGRAPHY

[Herzog and Shahmehri, 2002] Herzog, A. and Shahmehri, N. (2002). Using the java sand-

box for resource control. In7th Nordic Workshop on Secure IT Systems (NORDSEC),

Linköpings Universitet, Linköping, Sweden.

[Hochberg et al., 1993] Hochberg, J., Jackson, K., Stallins, C., McClary, J. F., DuBois, D.,

and Ford, J. (1993). NADIR: An automated system for detecting network intrusion and

misuse.Journal of Computers and Security, 12(3):235–248.

[Hofmeyr et al., 1998] Hofmeyr, S., Forrest, S., and Somayaji, A. (1998). Intrusion detec-

tion using sequences of system calls.Journal of Computer Security, 6(3):151–180.

[Hope, 2002] Hope, P. (2002). Using jails in freebsd for fun and profit. Login; The Maga-

zine of Usenix & Sage, 27(3):48–55.

[Householder et al., 2002] Householder, A., Houle, K., and Dougherty, C. (2002). Com-

puter attack trends challenge internet security.IEEE Computer, 35(4):5–8.

[Ilgun, 1993] Ilgun, K. (1993). USTAT: A Real-Time Intrusion Detection System for

UNIX. In IEEE Symposium on Security and Privacy, pages 16–28, Oakland, CA, USA.

[Ilgun et al., 1995] Ilgun, K., Kemmerer, R. A., and Porras, P. A. (1995). State transition

analysis: A rule-based intrusion detection approach.IEEE Transactions on Software

Engineering, 21(3):181–199.

[International Organisation for Standardization, 1989] International Organisation for

Standardization (1989). ITUT Rec. X.800—ISO 7498-2, Information processing

systems-open systems interconnection - basic reference model - part 2: security

architecture. ISO/ITU, 7498-2 edition.

[International Organisation for Standardization, 2000] International Organisation for

Standardization (2000). ITU-T Recommendation X.509, The Directory: Public-key

and Attribute certificate frameworks. International Telecommunication Union, Geneva.

[Javits and Valdes, 1993] Javits, H. and Valdes, A. (1993). The NIDES statistical compo-

nent: Description and Justification. SRI Anual Report A010,SRI International, Com-

puter Science Laboratory.

BIBLIOGRAPHY 139

[Julisch, 2002] Julisch, K. (2002). Mining alarm clusters to improve alarm handling effi-

ciency. In17th Annual Computer Security Applications Conference (ACSAC), volume 2,

pages 111–136.

[Kamara et al., 2003] Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., and Frantzen,

M. (2003). Analysis of vulnerabilities in Internet firewalls. Journal of Computers and

Security, 22(3):214–232.

[Kemmerer and Vigna, 2002] Kemmerer, R. and Vigna, G. (2002). Intruder detection: A

brief history and overview.IEEE Computer, 35(4):27–30.

[Kemmerer, 1997] Kemmerer, R. A. (1997). NSTAT: A model-based real-time network

intrusion detection system. Technical Report TRCS97-18, Reliable Software Group,

Department of Computer Science, University of California Santa Barbara.

[Ko et al., 1997] Ko, C., Ruschitzka, M., and Levitt, K. (1997). Execution monitoring of

security-critical programs in a distributed systems: A specification-based approach. In

IEEE Symposium on Security and Privacy, pages 175–187, Oakland, CA, USA.

[Kruegel, 2002] Kruegel, C. (2002).Network Alertness - Towards an adaptive, collabo-

rating Intrusion Detection System.PhD thesis, Technical University of Vienna.

[Kruegel and Toth, 2002] Kruegel, C. and Toth, T. (2002). Flexible, mobile agent based

intrusion detection for dynamic networks. InEuropean Wireless, Italy.

[Kruegel et al., 2005] Kruegel, C., Valeur, F., and Vigna, G.(2005). Intrusion Detection

and Correlation: Challenges and Solutions. Springer, first edition.

[Kumar and Spafford, 1994] Kumar, S. and Spafford, E. H. (1994). A pattern matching

model for misuse intrusion detection. In17th National Computer Security Conference,

pages 11–21.

[Lee et al., 1999] Lee, W., Stolfo, S. J., and Mok, K. W. (1999). A data mining framework

for building intrusion detection models. InIEEE Symposium on Security and Privacy,

pages 120–132, Oakland, CA, USA.

140 BIBLIOGRAPHY

[Lindqvist and Porras, 1999] Lindqvist, U. and Porras, P. A.(1999). Detecting computer

and network misuse through the production-based expert system toolset (P-BEST). In

IEEE Symposium on Security and Privacy, pages 146–165, Oakland, CA, USA.

[Lippmann et al., 2000] Lippmann, R., Haines, J., Fried, D.,Korba, J., and Das, K.

(2000). The 1999 DARPA off-line intrusion detection evaluation. Computer Networks,

(34):579–595.

[Lonvick, 2001] Lonvick, C. (2001). The BSD Syslog Protocol. Rfc3164.

[Loscocco and Smalley, 2001] Loscocco, P. and Smalley, S. (2001). Integrating flexible

support for security policies into the linux operating system. In11th FREENIX Track:

2001 USENIX Annual Technical Conference, USA.

[Lunt et al., 1990] Lunt, T., Tamaru, A., Gilham, F., Jagannathan, R., Neumann, P. G., and

Jalali, C. (1990). IDES: A progress report. In6th Annual Computer Security Applica-

tions Conference, Tucson, AZ, USA.

[McVoy and Staelin, 1996] McVoy, L. and Staelin, C. (1996). LMbench, portable tools for

performance analysis. InUSENIX 1996 Annual Technical Conference, San Diego, CA,

USA.

[Migus, 2006] Migus, A. C. (2006). IDMEF XML library version. http://source-

forge.net/projects/libidmef/.

[MITRE Corporation, 2005] MITRE Corporation (2005). Common vulnerabilities and ex-

posures.http://cve.mitre.org/.

[Moore et al., 2001] Moore, B., Ellesson, E., Strassner, J.,and Westerinen, A. (2001). Pol-

icy core information model – version 1 specification. Request for comments 3060.

[Morin et al., 2002] Morin, B., Mé, L., Debar, H., and Ducassé, M. (2002). M2D2: a

formal data model for intrusion alarm correlation. InFifth International Symposium on

Recent Advances in Intrusion Detection (RAID2002), Zurich, Switzerland.

BIBLIOGRAPHY 141

[Mounji, 1997] Mounji, A. (1997).Languages and Tools for Rule-Based Distributed In-

trusion Detection. PhD thesis, University of Namur, Belgium.

[Mounji et al., 1995] Mounji, A., Charlier, B. L., Zampunieris, D., and Habra, N. (1995).

Distributed audit trail analysis. InSymposium on Network and Distributed System Secu-

rity, pages 102–112.

[Mühl, 2002] Mühl, G. (2002). Large-Scale Content-Based Publish/Subscribe Systems.

PhD thesis, Technical University of Darmstadt.

[Ning et al., 2002] Ning, P., Cui, Y., and Reeves, D. S. (2002). Analyzing intensive in-

trusion alerts via correlation. InFifth International Symposium on Recent Advances in

Intrusion Detection (RAID2002), pages 74–94, Zurich, Switzerland.

[Ning and Xu, 2003] Ning, P. and Xu, D. (2003). Learning attack strategies from intrusion

alerts. In10th ACM Conference on Computer and Communication Security, pages 200–

209, Washington DC, USA.

[Northcutt, 2002] Northcutt, S. (2002).Network Intrusion Detection: An analyst’s Hand

Book. New Riders Publishing, third edition.

[Onabuta et al., 2001] Onabuta, T., Inoue, T., and Asaka., M.(2001). A protection mech-

anism for an intrusion detection system based on mandatory access control. In13th

Annual Computer Security Incident Handling Conference, Toulouse, France.

[Open Security Foundation, 2005] Open Security Foundation(2005). Open source vulner-

ability database.http://www.osvdb.org/.

[Ott, 2002] Ott, A. (2002). The role compatibility securitymodel. In7th Nordic Workshop

on Secure IT Systems (NORDSEC), Linköpings Universitet, Linköping, Sweden.

[Petkac and Badger, 1997] Petkac, M. and Badger, L. (1997). Security agility in response

to intrusion detection. In16th Annual Computer Security Applications Conference (AC-

SAC), New-Orleans, LA, USA.

142 BIBLIOGRAPHY

[Pietzuch, 2004] Pietzuch, P. (2004).Hermes: A Scalable Event-Based Middleware. PhD

thesis.

[Porras and Neumann, 1997] Porras, P. A. and Neumann, P. G. (1997). EMERALD: Event

monitoring enabling responses to anomalous live disturbances. In20th National Infor-

mation Systems Security Conference, pages 353–365.

[Powell, 1996] Powell, D. (1996). Group communication.Communications of the ACM,

39(4):50–53.

[Queiroz et al., 1999] Queiroz, J. D., da Costa Carmo, L. F. R., and Pirmez., L. (1999).

Micael: An autonomous mobile agent system to protect new generation networked ap-

plications. In2nd Annual Workshop on Recent Advances in Intrusion Detection, Purdue,

IN, USA.

[Reed, 2005] Reed, D. (2005). Ip filter.http://www.ja.net/CERT/Software/ip-

filter/ip-filter.html.

[Roesch, 1999] Roesch, M. (1999). Snort: Lightweight intrusion detection for networks.

In 13th Conference on Systems Administration, pages 229–238. USENIX Association.

[Ruff, 2006] Ruff, M. (2006). XmlBlaster: open source message oriented middleware.

http://www.xmlblaster.org/.

[Schneier, 1996] Schneier, B. (1996).Applied Cryptography. John Wiley and Sons, second

edition.

[Sekar et al., 2002] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., and

Zhou, S. (2002). Specification-based anomaly detection: A new approach for detecting

network intrusions. In9th ACM conference on computer and communications security,

pages 265–274, Washington, DC, USA.

[Snapp et al., 1991] Snapp, S. R., Brentano, J., Dias, G. V., Goan, T. L., Heberlein, L. T.,

Ho, C., K. N. Levitt, Mukherjee, B., Smaha, S. E., Grance, T.,Teal, D. M., and Mansur,

D. (1991). DIDS (distributed intrusion detection system) -motivation, architecture and

an early prototype. In14th National Security Conference, pages 167–176.

BIBLIOGRAPHY 143

[Spafford, 1991] Spafford, E. (1991). The Internet Worm Incident Technical Report CSD-

TR-933. Department of Computer Sciences, Purdue University, West Lafavette, USA.

[Spafford and Zamboni, 2000] Spafford, E. H. and Zamboni, D.(2000). Intrusion detec-

tion using autonomous agents.Computer Networks, 34(4):547–570.

[Srinivasan et al., 1999] Srinivasan, V., Suri, S., and Varghese, G. (1999). Packet classi-

fication using tuple space search.Computer ACM SIGCOMM Communication Review,

29(4):135–146.

[Stallings, 1995] Stallings, W. (1995).Network and internetwork security: principles and

practice. Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

[Stallings, 2002] Stallings, W. (2002).Network Security Essentials: Applications and

Standards. Prentice Hall Professional Technical Reference.

[Staniford-Chen et al., 1996] Staniford-Chen, S., Cheung,S., Crawford, R., Dilger, M.,

Frank, J., Levitt, J. H. K., Wee, C., Yip, R., and Zerkle, D. (1996). GrIDS – a graph-

based intrusion detection system for large networks. In19th National Information Sys-

tems Security Conference.

[Teng et al., 1990] Teng, H. S., Chen, K., and Lu, S. C. (1990).Adaptive real-time

anomaly detection using inductively generated sequentialpatterns. InIEEE Symposium

on Security and Privacy, pages 278–284, Oakland, CA, USA.

[Valdes and Skinner, 2001] Valdes, A. and Skinner, K. (2001). Probabilistic alert corre-

lation. In Fourth International Symposium on Recent Advances in Intrusion Detection

(RAID2001), pages 58–68, Davis, CA, USA.

[Veillard, 2006] Veillard, D. (2006). The XML C library for Gnome (libxml).

http://www.xmlsoft.org.

[Viega and McGraw, 2002] Viega, J. and McGraw, G. (2002).Building Secure Software -

How to Avoid Security Problems the Right Way. Addison-Wesley.

144 BIBLIOGRAPHY

[Vigna and Kemmerer, 1998] Vigna, G. and Kemmerer, R. A. (1998). NetSTAT: A

network-based intrusion detection approach. In14th Annual Security Applications Con-

ference, pages 25–34, Scottsdale, AZ, USA. IEEE Press.

[Vigna and Kemmerer, 1999] Vigna, G. and Kemmerer, R. A. (1999). NetSTAT: A

network-based intrusion detection system.Journal of Computers and Security, 7(1):37–

71.

[Welte et al., 2006] Welte, H., Kadlecsik, J., Josefsson, M., McHardy, P., and et. al

(2006). The Netfilter project: firewalling, NAT, and packet mangling for linux 2.4.

http://www.netfilter.org/.

[White et al., 1999] White, G. B., Fisch, E. A., and Pooch, U. W. (1999). Cooperating

security managers: A peer-based intrusion detection system. IEEE Network, 7:20–23.

[Wright et al., 2002] Wright, C., Cowan, C., Smalley, S., Morris, J., and Kroah-Hartman,

G. (2002). Linux Security Modules: General security support for the linux kernel. In

11th USENIX Security Symposium, San Francisco, CA, USA.

[Wu et al., 1999] Wu, S., Chang, H., Jou, F., Wang, F., Gong, F., Sargor, C., Qu, D., and

Cleaveland, R. (1999). JiNao: Design and implementation ofa scalable intrusion detec-

tion system for the OSPF routing protocol.Journal of Computer Networks and ISDN

Systems.

Joaquı́n Garcı́a Alfaro

Bellaterra, September 2006

