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Abstract

Since computer infrastructures are currently getting nvateerable than ever, traditional
security mechanisms are still necessary but not suffici&. need to design effective
response techniques to circumvent intrusions when thegetected. We present in this
dissertation the design of a platform which is intended toagca central point to analyze
and verify network security policies, and to control and faure — without anomalies
or errors — both prevention and detection security compisnewe also present in our
work a response mechanism based on a library that implerdéfeieent types of counter-
measures. The objective of such a mechanism is to be a suppbith order to help
the administrator to choose, in this library, the apprdpr@unter-measure when a given
intrusion occurs. We finally present an infrastructure f@@ communication between the
components of our platform, as well as a mechanism for thieeption of such components.
All these approaches and proposals have been implemerdesaluated. We present the
obtained results within the respectives sections of tlasattation.

This thesis has mainly been funded by the Agency for Admialistn of University and
Research Grants (AGAUR) of the Ministry of Education andugnsities (DURSI) of the
Government of Catalonia (reference number 2003F100126¢. résearch was jointly car-
ried out at theJniversitat Aubnoma de Barcelonand at theEcole Nationale Sugrieure
des Elecommunications de Bretagne

Keywords: Security policies, intrusion detection, response, caumieasures, event cor-
relation, communicatiopublish/subscribgaccess control, components protection.



Resune

Aujourd’hui les systemes informatiques sont plus vuhibdes aux activites malveillantes
gu’'auparavant. C’est pour cela que I'utilisation des mésraes de sécurité tradition-
naux est encore nécessaire mais pas suffisante. Nous delatmaser des méthodes ef-
ficaces de détection et de réeponse aux attaques afintdides evénements détectés. Nous
présentons dans cette these la conception d’une artthréegénérale qui agira en tant que
point central pour analyser et vérifier des politiques elmusité réseaux, et pour contrdler
et configurer — sans anomalies ou erreurs de configuratiors -eaaposants de sécurité
préventifs et de détection. Nous présentons égalemrentécanisme de réponse basé sur
une bibliotheque de differents types de contremesurésbjdctif de ce mécanisme est
d’aider I'administrateur a choisir dans cette bibliajbe la contremesure la mieux adaptée
guand une intrusion est détectée. Nous finissons parekeptation d’'une infrastructure
pour la communication des composants de notre platefortridue mécanisme pour la
protection des composants de celle-ci. Toutes les proposiet approches introduites
dans cette thése ont été implémentées et évaluéass présentons les résultats obtenus
dans les sections respectives de cette dissertation.

Cette these a été principalement financée par 'Agere&dstion d 'Aides Universi-
taires et de Recherche (AGAUR) du Département d’UnivessiRecherche et Société de
I'Information (DURSI) de la Généralité de Catalognerfr&ro de réference 2003FI00126).
Les travaux ont été réalisés conjointement a I'Ursitér Autonome de Barcelone et a
I'Ecole Nationale Supérieure des TélecommunicationBretagne.

Mots clés: Politiques de sécurité, détection d’intrusion, comtesures, corrélation d’'éve-
nements, communicatigrublish/subscribgcontrble d’acces, protection des composants.



Resumen

Puesto que los sistemas informaticos son cada vez maarables a actividades deshones-
tas, los mecanismos tradicionales de seguridad son sodacesarios, pero no suficientes.
Es necesario elaborar nuevos métodos de deteccion ypleesta de manera que sea posi-
ble detener acciones de ataque tan pronto como sean realizZad esta tesis se presenta
el diseflo de una arquitectura de caracter general quengietser utilizada tanto para la
realizacion de tareas de analisis y verificacion detigak de seguridad en red, como para
controlar y configurar — sin anomalias ni errores de configara— componentes de se-
guridad preventivos y de vigilancia. Se presenta tambieasta tesis un mecanismo de
respuesta basado en librerias de contramedidas. Ehabgitieste mecanismo es ayudar
al administrador a escoger posibles respuesta tan promto l&s acciones de ataque vayan
siendo detectadas. Por Ultimo, se introduce tambiéntartie=ss el disefio de unainfrastruc-
tura para la comunicacion entre los componentes de nydateforma, y un mecanismo
para la proteccion de dichos componentes. Todas las poopuss y propuestas han sido
implementadas y evaluadas a lo largo de nuestro trabajo.rdsadtados obtenidos son
presentados en las respectivas secciones de esta disertaci

Esta tesis ha sido principalmente financiada por la Agerei@ektion y Ayudas Univer-
sitarias y de Investigacion (AGAUR) del Departamento dévehsidades, Investigacion y
Sociedad de la Informacion (DURSI) de@eneralitat de Catalunyéum. de referenci
2003F100126). El trabajo ha sido conjuntamente realizadia &niversitat Aubnoma de
Barcelonay la Ecole Nationale Sugrieure des &lecommunications de Bretagne

Palabras clave:Politicas de seguridad, deteccion de intrusos, contlaas, correlacion
de eventos, comunicaci@ublish/subscribgcontrol de acceso, proteccion de componentes.
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Chapter 1

Introduction

“Fiery the angels rose, and as they rose deep thunder roll'd;
Around their shores: indignant burning with the fires of Orc.
— WILLIAM BLAKE

This dissertation is the final result of four years of Ph.dgts in Computer Science at
theUniversitat Aubnoma de Barcelon@JAB, Campus of Bellaterra, Spain) and tBeole
Nationale Suprieure des &lecommunications de Bretag{ENST Bretagne, Campus of
Rennes, France), under the co-supervision of Professoddam Borrell (UAB) and Pro-
fessor Dr. Fredéric Cuppens (ENST Bretagne).

| obtained in Summer 2000 the degreeBaichelor of SciencéB.Sc.) inComputer Man-
agement Engineeringand in Summer 2002 the degreeMaéster of SciencéM.Sc.) in
Computer Engineering both at the UAB and with two extraordinary awards for el
performance as undergraduate student. In September 2084dmted my DEADiploma

of Advanced Studig¢shesis at thénformation and Communications Engineering Depart-
ment(dEIC) of the UAB, with the final score && with honors



2 Introduction

| started the Ph.D. program of Computer Science of the UABapt&nber 2002 and be-
came a teacher assistant at thisrmation and Communications Engineering Department
(dEIC), both at the UAB. In January 2003 | obtained a CatalameBhment Department
DURSI grant of four years to fund my Ph.D. studies (referemaeber 2003FI1126). As a
part of my Ph.D. program | took courses on advanced techsinuayptography and cod-
ing, heuristic methods in optimization, advanced netwausity techniques, and other
subjects. As teacher assistant in the Computer Scienceigadtudies of the UAB, |
taught several subjects and courses, such as Computer tksfv@NU/Linux adminis-
tration, and Computer Network Security. It is worthy of ntik@at some texts related to
the disciplines | taught were edited by tRendacbd Universitat Oberta de Catalunya
[Herrera et al., 2004b, Herrera et al., 2004c]. An extendexion of these documents,
[Herrera et al., 2004a], was later licensed as a free GPLrdeaotl

In February 2004 | obtained a Catalan Government DeparteRSI grant (reference
number 2004ZA0CE1263) to collaborate with Professor DedEric Cuppens in thBe-
partment of Networks, Security, and Multime@®@SM) at the Rennes campus of ENST
Bretagne. In September of 2004, after having demanded tsepervision of my Ph.D.
thesis between the UAB and the ENST Bretagne, | extended rigbooation with the
group of Professor Cuppens at the campus of Rennes. Sintd theve carried out three
internships at the ENST Bretagne. These internships, amet o¢lated research activi-
ties, have been partially funded by the Catalan Governmepament DURSI, with its
grants 2001SGR-219, 2005BE77, and 2006BE569; the Spamgér@ment Commission
CICYT, through its grants TIC2001-5108-E and TIC2003-0QR0#hd the French ministry
of research, under the proje&€ClI DESIRS

Background and Motivation

The research done during these four years of Ph.D. studseesaaly been about com-
puter and network security technologies. Despite the temdvances in this field, such as
firewalls, encrypted communications, and authenticatienlmnisms, there may always be
errors or flaws that can be exploited for unauthorized partMoreover, the proliferation



of Internet access to most network devices, the increasdilitp@f these elements, and
the introduction of network-enabled applications havelezad traditional network-based
security infrastructures vulnerable to a new generaticattaicks.

The use of distributed and coordinated techniques in thieekdf attacks is getting more
common among the attacker community, since it opens thalplitysto perform more
complex tasks, such apordinated port scananddistributed denial of servicé€DDoS)
attacks. These techniques are also useful to make theutaetenore difficult and, nor-
mally, these attacks will not be detected by exclusivelysodering information from iso-
lated sources of the network. Different events and specifarination must be gathered
from all of these sources and combined in order to identigydtiack. Information such
as suspicious connections, initiation of processes, iatddf new files, sudden shifts in
network traffic, and so on, have to be considered.

Intrusion attacks, as defined in [Cuppens and Ortalo, 2@08Jthose combination of unau-
thorized actions performed by a malicious adversary tatthe security policy of a target
computer system or a network domain. Therefore, one mayed#fendetection process of
intrusion attacks as the sequence of elementary actiohshbald be performed in order
to identify and respond to those unauthorized actions gaieintrusion detection systems
(IDSs) the most important component to perform such a peces

The initial motivation of our work was the design of a poliogsed framework for man-
aging detection and prevention of intrusion attacks orritisted heterogeneous systems.
This framework takes the inspiration of policy managem@mraaches, such as the one
proposed in [Moore et al., 2001], where thaicy decision poinis a network policy server
responsible for supplying policy information for networgwices and applications, and the
policy enforcement poirdre network security components, suchfieeswalls and intru-
sion detection systen(Ss), in charge of both detecting and reacting to intmisittacks.
Thus, it was decided to model intrusions in our work as priddibactivities that lead to
security policy violations. This way, it would be feasibtedpecify security requirements
and define mechanisms to translate these requirementsointoate filtering rules and de-
tection signatures (to automatically configure firewalld artrusion detection systems, for
instance). It was hence expected to design a general frarkéovmanage and reason with
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both preventive and detective security components. Furibie, it was also expected to
provide through our approach the necessary mechanismatargee the interoperability
and protection of those security components used in a nktsemurity infrastructure.

The starting point of our work was the recognition processhef intruder’s intentions
proposed in [Cuppens and Miege, 2002]. We further extenddhresults in a number
of ways. First, in [Garcia et al., 2006f, Garcia et al., @f0we proposed a set of algo-
rithms to analyze and rewrite network security policiesnter to properly deploy security
mechanisms over multi-component setups free of anomatiésrasconfiguration. This
approach allows security officers to verify and validatedbeectness of a distributed net-
work security policy in an efficient way — i.e., assuring tleewrity officers that the new
configuration is free of policy anomalies. Second, we predas [Garcia et al., 2005e,
Garcia et al., 2005a] a decentralized exchange of auditnrdtion between those secu-
rity components. Through the use of a publish/subscribeemazur approach allows
such an exchange across multiple nodes of a cooperativernetwhird, we presented
in [Cuppens et al., 2006a, Garcia et al., 2004b] a respopgmach for the selection of
counter-measures and reporting of diagnoses. This apgpradd be further used, for
example, to properly reconfigure the global security pobgymeans of our algorithms,
guaranteeing that the deployment of the new security peliopce reconfigured — contin-
ues free of anomalies. We finally proposed in [Garcia eR@D6b, Garcia et al., 2005b]
the use of a protection model based on a kernel based aca@sslcavhich allows us the
protection of the set of components of the complete framkewor

Contributions

Some parts of this dissertation have been partly publishedhi@onal and international
conference proceedings, national and international gdarand JCR publications. We list
in the following these contributions: [Garcia et al., 280&arcia et al., 2004b; Garcia et
al., 2004c; Cuppens et al., 2005a; Cuppens et al., 2005bijlCas al., 2005a; Castillo et
al., 2005b; Garcia et al., 2005a; Garcia et al., 2005bci@aet al., 2005c; Garcia et al.,



2005d; Cuppens et al., 2006a; Cuppens et al., 2006b; GamdiBarrera, 2006; Garcia et
al., 2006a; Garcia et al., 2006b; Garcia et al., 2006cci@aat al., 2006d; Garcia et al.,
2006e; Garcia et al., 2006f].

It is also worthy of note that the work done during these foeeirg of Ph.D. has included
the collaboration on the development of many software taottuding the implementation
of an audit console for the discovering of policy anomalids Chapter 4, Section 4.4); a
set of libraries for the exchange of IDMEF messages basedpublésh/subscribe model
(cf. Chapter 5, Section 5.3); a set of sensors and attackagosrfor the Cooperative
Intrusion Detection Framework, CRIM, developed at the ENB®dtagne (cf. Chapter 6,
Section 6.4); and a kernel based access control for thegpianeof processes and resources
of the platform (cf. Chapter 7, Section 7.2).

Organization

This dissertation is organized as follows. Chapter 2 inicad the basic concepts and prop-
erties of computer security, and surveys traditional medmas than can be used to enforce
the security of a network system. We also discuss on thisteh#pe necessity of comple-
mentary mechanisms, and we then introducentreision detection systenff>Ss) as the
most important component to perform such a process. Ch8ppeesents related work
that falls into similar research of our dissertation. Th@aeder of chapters is then ded-
icated to present our main contributions. More specific&lyapter 4 presents our set of
algorithms for the deployment and analysis of network sgcpolicies. Chapter 5 intro-
duces our decentralized infrastructure to share messadesidit information between the
components of our platform. Chapter 6 describes our apprfmadhe correlation of this
audit information and the selection of counter-measurésper 7 overviews the use of a
security mechanism to handle the protection of the secooityponents of our framework.
Chapther 8 finally concludes this dissertation and givesudiook on future work.



Chapter 2

Security in Computer Networks

"The security systems have to win every time, the attackigrwas to win once.”
— DUSTIN DYKES (THE ART OF INTRUSION)

Computer and network security is the field of computer s@ahat concerns the control
and protection of data transmission over networked sysi{8tadlings, 1995]. Therefore,
we assume that the security of network communications nmuestagtee that the stream of
data flowing from a source object to a destination entity $$rieted to only those parties
that are authorized to have access. Unauthorized actikasterruption, interception or
injectionof information must be avoided.

Interruptionrefers to those actions against computer networks suctathahauthorized
party makes unavailable the source of the communicatioreyen the communication
channel itself) in order to prevent the flow of data gettirgriceiver (e.g., denial of service
attacks);interceptionrefers to those actions in which an unauthorized entity getgss to
the flow of data in order tonodifyor disclosesuch an information (e.g., passive or active
wiretapping, eavesdropping, sniffing, or snooping attgcad injection refers to those
actions in which an unauthorized entity inserts informatitto the system without having
the source’s object doing anything (e.qg., replay and spgafitacks).
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Those three examples of unauthorized actions listed abiol&te, respectively, the main
security properties that any computer system must guaantdten referred in the litera-
ture asconfidentiality integrity, andavailability [Stallings, 1995] Confidentialityconcerns
the prevention and detection of unauthorized disclosumefofmation (e.g., passive inter-
ception of information with a further disclosure of such aformation);integrity concerns
the prevention and detection of unauthorized modificatiomi@rmation (e.g., active in-
terception of information with a further modification of tii@ercepted information); and
availability concerns the prevention and detection of unauthorizedhwitting of informa-
tion or resources (e.g., interruption of service).

Although these three security requirements must be coregides mandatory, we may also
consider some other security properties, suaioaisrepudiabilityandauthentication Non-
repudiability, for instance, prevents that neither the source’s objedireodestination’s en-
tity may deny the transmitted flow of data. This way, once asags has been transmitted,
the source’s object can prove that such a message has beemdday the destination’s en-
tity; and the destination’s entity can prove that the messtagceived has been sent by the
source’s objectAuthenticationon the other hand, ensures that the origin of an information
is correctly identified, with an assurance that the idensityot false — i.e., it ensures that
the information is authentic.

In order to ensure the security requirements of a computerank, asecurity policymust
be defined by the security officer of such a network.sécurity policyis a set of rules
stating what is permitted and what is not permitted in a systiiring normal opera-
tion [International Organisation for Standardization82P Thus, in the security policy is
defined the complete set of security requirements for theesysAs we can see in Fig-
ure 2.1, before to define the set of security requirementstive security policy, a previous
analysis of threatsnust be done.

Threat Security Security
analysis |:> policy mechanisms

Figure 2.1: The role of the security policy.




2.1 Traditional Security Mechanisms 9

Theanalysis of threatss the process where all the possible risks related to theankéd
system are identified, and a list containing these threatstan severity of each threat is
reported. This listis then used to establish the securiligya.e., the list of rules that state
the security requirements to protect the network systente@efined the security policy,
the security officer must decide whislecurity mechanisnts use to enforce the security
policy. Security mechanismare the technical solutions used to implement the security
policy in the networked system, i.e., to defend the netwagiast unauthorized actions
that attempt to violate its security policy.

Because this dissertation is focused on security mechamsamagement, we oversee in
the rest of this chapter such mechanisms. We first preseheifotlowing section the use
of cryptography and firewalls as traditional mechanismsravent unauthorized parties
from violating the security policy of the network. We therostty discuss the necessity
of complementary measures to these traditional mechanismsder to detect and report
those actions that bypass (or that attempt to bypass) theityepolicy of the system.
We finally present in the last section the use of intrusiorect&in systems (IDSs) as a
complementary third building block (together with fireveadind cryptography) to guarantee
the security of computer network systems.

2.1 Traditional Security Mechanisms

Cryptography

Cryptography is the field of mathematics and computer seiémat concerns the managing
of information to keep messages secure [Schneier, 1998llols us to modify a flow of
information in a way that, even if an unauthorized party cageas to such an information,
it will be unusable for its use. To do so, the original piecenfdrmation is transformed into
a format that hides its substance during a process callag@ian. This transformation
is lossless, since the original message must be recoverdt ail circumstances. Once
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transformed, the new piece of information may be transpasteer an untrusted commu-
nication channel and resist to actions that try to violaednfidentiality and integrity — it
cannot guarantee, however, the availability of the infdroma since an unauthorized entity
may still interrupt the communication between both souradd@estination. The operation
of turning back the transformed information into the oraione is called decryption.

In order to perform the decryption process, modern cryg@plgic algorithms assume the
possession of a secret piece of information (often refeaskayin the literature). Depend-
ing on the keys that are used, one can distinguish the faligiwo approachesymmetric
andasymmetricryptography. Symmetric cryptography, on the first hanguies that the
sender and the receiver agree on a single key. This key mgsffély exchanged before the
encryption process starts, and should remain secret dthrengrhole process. Asymmet-
ric cryptography, on the other hand, elegantly solves tlyeekehange problem by using
two different keys, one called the public key, the other oaked the private key. More
specifically, the receiver generates its public/privatg p&ir and announce its public key.
Anyone can obtain the public key and use it to encrypt messtgs only the receiver,
with the corresponding private key, is able to decrypt. remnore, asymmetric cryptogra-
phy can be easily used to include authentication during din@ngunication process. In this
way, a sender can sign a message by encrypting it with its owatp key; and anyone with
access to the corresponding sender’s public key can véfgignature [Diffie, 1988].

A drawback when using asymmetric cryptography is that wetmprsse the authenticity
of the public key. Otherwise, an attacker could be able terats own public key to
the sender to perform a man-in-the-middle attack and rea@&ven modify, encrypted
communications. In order to solve this problem, we candigéal certificates Digital
certificates bind together a public key, additional infotimaof its owner (such as its name,
organization, and so on), and provide the related data gigyea trusted third party — also
known ascertification authorityor CA. This CA guarantees that the public key belongs to
such a person or institution. In turn, this CA is usually fied by a higher level CA in a
hierarchical fashion, such as the public key infrastrie(@Kl). In the PKI, for example,
one can verify the authenticity of a public key by verifyifgetauthenticity of the involved
chain of CAs until the hierarchy’s top — a special self-s@y@A [Schneier, 1996].
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Firewalls

Similarly to firewalls in building construction, a computeewall is defined as a network
security device that can perform access control at netvewdd - i.e., to limit and regulate
the access to critical resources in network systems [Belland Cheswick, 1994]. There-
fore, firewalls are security mechanisms that allow the prega of certain attacks before
they can actually reach and affect the target. This is donddatifying or authenticating
the party that requests a resource and checking its peongsagainst the rights specified
for the demanded object in the security policy. To do so, fésware typically deployed to
filter traffic between different zones of the network, as vaslto police their incoming and
outcoming interaction with other networks (e.g., Inteyn@hough firewalls may also im-
plement other functionalities not related with the segusitlicy, such as Network Address
Translation (NAT), it is not the purpose of this section te@othese functionalities.

A single firewall is not always suitable for the protectioneofomplete system. Networks
often consist of several nodes which need to be publiclyssibke for untrusted parties,
and private nodes that should be completely protected siggonnections from the outside.
Those networks would benefit from a separation between tiaesgroups. Otherwise, if
an unauthorized party compromises a publicly accessilile behind a single firewall, all
the other machines can also be attacked from this open paimthe network. To prevent
this, one can use several firewalls and the concept of a daraéd zone in between.
Hence, the security administrator may partition, for ins& its network into three different
zones: a demilitarized zone (DMZ for short), a private nekvand a zone for security
administration. In this case, one firewall separates thsideinetwork from the segment
with the publicly accessible nodes; and a second firewallarsges this area from the rest
of the network. The second firewall can be configured in a way dienies all incoming
connection attempts. Thus, even if an intruder compronadasst in the first segment, he
is now unable to immediately attack the rest.

According to [Stallings, 2002], one may classify firewaldad the following three cat-
egories: packet-filtering router, application-level gedg, and circuit-level gateway. A
packet-filtering router, on the first hand, is a forwardingide that applies a set of filtering
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rules to each incoming IP packet flowing in both in- and outigdirections. Through
these filtering rules, it decides whether accept (i.e., &dy)or deny such a packet. Each
filtering rule typically specifies aecision(e.g., accept or deny) that applies to a set of
conditionattributes, such as protocol, source, destination, andhsbittering rules are or-
ganized in a list with a certain default policy enabled. Bniecoming packet is compared
to the rules starting at the head of the list until the first distry matches. In this case,
the corresponding decision is taken. When no matching anebe identified, the default
policy is consulted. It can either be an open or close defality. When a default close
policy is enabled, the packet is simply dropped; otherwtiseaccepted and forwarded. A
close policy demands the security officer to explicitly sfyethe publicly accessible ser-
vices. An open policy, on the other hand, requires the sicofficer to explicitly specify
each known threat for the network and then deny associatatections.

An application-level gateway, also called proxy servets &s a relay on the application
level. The user contacts the gateway which in turn opens aemtion to the intended

target (on behalf of the user). It completely separatesribelé and outside networks at
the network level and allows authentication of the user wdmuests a connection and
session-oriented scanning of the exchanged traffic up t@apipécation level data. This

feature makes application gateways more secure than phlties and offers a broader
range of log facilities. The overhead of such a setup, howeway cause performance
problems under heavy load. To solve this disadvantagejitievel gateway may be used
as a hybrid variant between packet filters and proxy servers.

This third type of firewall (i.e., circuit-level gatewaysart act as a stand-alone system,
similar to a packet filter at the network level. It can also @astan application-level gate-
way performing specialized functions for certain applimas. Hence, one may use it to
authorize connections to a specific target machine (as aymewer does), but perform
network-level filtering (without examining the contentsjce the connection has been set
up. The security function of a circuit-level gateway cotsaf determining which connec-
tions are allowed. Circuit-level gateways are often usethase situations in which one
may trust internal users. Thus, the circuit-level gatewsaganfigured to act as a proxy
server on incoming connections, and as a packet filter oromgglata.



2.2 Necessity of Complementary Technologies 13

2.2 Necessity of Complementary Technologies

Although the use of cryptography and firewalls allows us taimize the number of po-
tential targets, it cannot defend those data or resouregsrthst be publicly accessed (i.e.,
data or resources that can neither be completely protegtentyiptography nor by fire-
walls). This fact leads to a situation where it is still pddsifor unauthorized parties to get
protected components through vulnerabilities within wtgcted resources (and so evad-
ing firewalls and cryptography). Indeed, although the ilfetian of updates and patches
to those unprotected components can minimize their vutr@res, there may always be
errors or flaws that can be exploited for unauthorized partie

The Morris worm incident, for instance, showed in 1988 thegtlulity of attacking the
availability of the majority of components of Internet bypéoiting known vulnerabilities
in Unix sendmail, Finger, rsh/rexec and weak passwordsfi@pa1991]. The Mitnick
attack, on the other hand, showed in 1994 the possibilityedking the confidentiality and
integrity of information. Two different attack mechanismsre used. IP source address
spoofing and TCP sequence number prediction were used tongahaccess to a diskless
workstation being used mostly as an X terminal. After roatess had been obtained, an
existing connection to another system was hijacked [Notth2002].

Although network security technologies have efficientlpleed since then, the number
of vulnerabilities and attack tools continues to incredseuseholder et al., 2002]. Since
1999, with the advent of distributed tools, attackers haentable to manage and coordi-
nate attacks across many Internet systems. In year 200&x&onple, a Distributed Denial
of Service (DDoS) attack stopped several commercial sitefding Yahoo and CNN,
from functioning normally, although they were protectedfibgwalls and cryptography-
based mechanisms. Today, coordinated tools scanning fental victims and compro-
mising vulnerable systems are more active than ever. Ttuatgin shows the inadequacy
of the use of cryptography- and prevention-based mecharmasraingle techniques to guar-
antee the security of a networked system, and leads to tlessigc of additional defense
mechanisms to cope with attacks when this first line of defdns., cryptography and
firewalls) has been evaded.
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Intrusion detection systems (IDSs) were originally praggbs 1980 as a complement to
traditional security mechanisms. In [Anderson, 1980],rdarusion is defined as a violation
of the security policy of a system. Similarly, intrusion eéetion techniques are defined as
those mechanisms that are developed to detect the violatithe system security policy.
Before the formal definition of intrusion detection and usion detection systems, network
administrators performed detection activities by momiigisystem activities and looking
for intrusive or unusual actions. Although this early formimtrusion detection was ef-
fective enough at the time, it was ad hoc and not scalable fHerar and Vigna, 2002].
Current intrusion detection techniques are also basedeagbumption that intrusive and
unusual activities are clearly different from normal anthauized activities. Thus, intru-
sive and unusual activities may be detectable and repddedring, 1987].

The use of intrusion detection systems is currently comeatlas a third line of defense for
computer and network systems. Hence, intrusion detectiost be considered as a com-
plementary approach to traditional security mechanisrh ascryptography and firewalls,
not as a replacement one. The use of IDSs along with firewialtsexample, can con-
siderably enhance the protection of networked systems éyepting and detecting those
actions that bypass (or that attempt to bypass) the sequaiityy of a given system. In the
following section we present a more detailed overview afusion detection systems.

Intrusion Detection Systems

An intrusion detection system (IDS) can be defined as thestookthods, and resources to
help identify, assess, and report unauthorized activigiresj a target network. According
to [Debar et al., 1999], an IDS has to fulfill the requiremaritaccuracy (it must not con-
fuse a legitimate action with an intrusion), performants [fierformance must be enough
to carry out real-time intrusion detection), completen@sshould not fail to detect an in-
trusion), fault tolerance (the IDS must itself be resistardttacks) and scalability (it must
be able to process the worst-case number of events withoppaohg information).
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Currently, there are a great number of publications reltdetie design and implementa-
tion of intrusion detection systems that detect and prewgnision attacks. Despite the
differences between all these contributions and the @iffemechanisms used to accom-
plish the basic requirements pointed out above, we canifgehe following components
in most IDS’ architectures (cf. Figure 2.23ensorsanalyzers managersandeffectors
These components are explained in detail in the followirngices.

Events

Sensors Analyzers

v

Target

Reports Knowledge
Alert
System ‘\ erts database
v

Counter-measures
Effectors [« Managers

Long-term
storage

Alerts

Figure 2.2: Components of a standard intrusion detectistesy.

Collection of Audit Information

Sensors are the components of an IDS in charge of collectidg amformation. They
gather data from the system that is being protected and teosrgting events by pre-
processing the collected data. These components are 4gctassified in the literature by
the location where they are placed. The two main categoyi@sdans of this classification
holds as host- and network-based sensors.
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Host-based sensors (often referred in the literature astias®d IDSs or HIDSs) generate
events by using information produced by the host operatystems, such as hosts audit
trails, shell command history, or system calls. In UNIXdi&perating systems, for exam-
ple, audit trails may be directly extracted by the syslogditservice. The syslog facility
[Lonvick, 2001] is a de facto standard for forwarding log segges in UNIX-like operating
systems. It allows security administrators to log valuahfermation that may be used
for intrusion detection purposes. Shell command histanthe second hand, allows secu-
rity administrators to manage the stream of commands, aiddlguments, executed by
unauthorized users or programs [Lee et al., 1999]. The segseof system calls executed
when running processes, on the third hand, may also be usselchyity administrators in
order to catch valuable information. In [Hofmeyr et al., 83%or example, a sensor for
detecting intrusions by tracing sequences of system caissisented.

As a specific case of host-based sensors, we can also cotisidersensors that collect
information not just a host operating level, but also at mapion level. This informa-
tion at application level is usually obtained either usiyglsg facility (already pointed
out above) or by implementing specific audit mechanismsiwitie audited applications.
In [AImgren and Lindgvist, 2001], for instance, the authpresent an application-based
sensor integrated as an extension mechanism of the Apadhseseer to report audit in-
formation regarding the behavior of the web server.

Network-based sensors (often referred in the literatuneedwork-based IDSs or NIDSs)
collect information from network traffic in order to gath@formation that may point out
to unauthorized actions, such as buffer overflows, steath grans, CGI attacks, SMB
probes, OS fingerprinting attempts, and much more [Roe€99]1They are not only lim-
ited to inspecting incoming network traffic. Often, valuabiformation about an ongoing
intrusion can be retrieved from outgoing or local traffic adlwSome attacks might even
be staged from the inside of the monitored network or netwsedment, and are therefore
not regarded as incoming traffic at all. Network-based ssnae very easy to deploy,
and have a minimal impact — compared to host-based sensaorghe anonitored hosts.
Nonetheless, changes in network technology (such as @edrgpmmunications, switched
networks, and high-speed links) may impair the usefulnésgstwork-based sensors.
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Analysis of Audit Information

Analyzers are the components of an IDS responsible for gedcg the audit information
(i.e., events) gathered by their associated sensors. ghibis audit information, analyzers
infer possible violations of the security policy in form daems or alerts (i.e., audit data
at a higher level of abstraction). These components aragnelassified in the literature
by the processing method in which they perform such a deteclihe two main categories
by means of this classification holdsmassuse-andanomaly-based analyzers

The first categorymisuse-based analyzersttempts to identify unauthorized activity by
searching for specific known patterns (e.g., known attackgstem vulnerabilities), called
signatures, in their input stream. Thus, any action thatarams to the pattern of a known
attack or vulnerability is considered intrusive. The auwfibormation collected by the as-
sociated sensors is compared with the content of a databasgnatures and, if a match
is found, an alert is generated. Events that do not match atlyeoattack models are
considered part of legitimate activities. Several appneachave been proposed for per-
forming misuse-based detection, such as [Kumar and Spafi®@®4, ligun et al., 1995,
Mounji, 1997, Porras and Neumann, 1997, Lindqgvist and Bpfr899, Roesch, 1999].

The second categorgnomaly-based analyze@tempts to identify certain deviations from
the expected behavior of a subject (e.g., a user, an apphc¢at host, or a network) that
indicate hostile activities against the protected netwdfke expected behavior may be
learned by observing the subject under normal operatianspecified based on a priori
knowledge. Numerous attempts have been made to build agatetdction models, in-
cluding machine learning and data mining approaches [Teab,d990, Fox et al., 1990],
statistical approaches [Javits and Valdes, 1993, Andersah, 1995b], and specification-
based approaches [Ko et al., 1997, Sekar et al., 2002].

Similarly to virus analyzers, the advantage of misuse-thas®lyzers is its reliable de-
tection of known attacks or vulnerabilities. Hence, mosnoeercial intrusion detection
systems tend to include a misuse-based approach for thgsanaf the audited informa-
tion. Nevertheless, it is important to combine both appnesc in order to detect those
attacks that can remain undetected by slightly deviatsgattern.
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Correlation and Response Mechanisms

A recent trend in intrusion detection is the cooperation ifeEcent security components
in order to increase the detection rate. The idea is to usépteusensors and analyzers
within the intrusion detection system. Then, these lowlleeenponents are intended to
report their events and alarms to higher level componenishyin turn, correlate the
analysis results and the corresponding alerts. The conpetzetween those components
may be achieved by complementing the coverage of differens@'s — i.e., combining
multiple host- and network-based sensors — and complenggtfiie analysis with different
detection techniques —i.e., by combining anomaly- and seidhased analyzers.

Though this approach effectively increases the detedi@té, it also increases the number
of alerts to process, as well as the rate of false alarms. {asaare the components in
charge of managing this process, by using higher-levekgegmns of the policy violations,
and achieving a more global view of the system and its sgasgties. During the execution
of the correlation process, the initial set of alerts is figtmalized and pre-processed. The
resulting alerts are then fused and aggregated into nets adexd finally correlated in order
to reconstruct and verify possible attacks scenarios.

Managers may also be responsible for reacting on detectedlitseviolations by select-
ing appropriate counter-measures to react to such violstiand reporting these counter-
measures to a set of effectors. Effectors are the compomecitarge for initiating actions
to neutralize the effects of the violation once detectedesthactions can either be auto-
mated, acting against the attacker when the intrusionlisrsprogress, or involve human
interaction by raising, for example, alarms or notificai®o warn a system administrator.
Managers may finally perform some other administrative fions such as sensor and an-
alyzer configuration, data consolidation, reporting, amdrs. By implementing a database
manager, for example, it is possible to store all the dataigded by the IDS to enable the
correlation of alerts which occurred at different time pds.

Since this dissertation is focused on intrusion managefmgmheans of component co-
operation and correlation of alerts, the following chapsededicated to a more detailed
introduction to these issues by overviewing some relatedk wothe field.



Chapter 3

Overview of Related Research

"l just read books! We read everything that’s published ia thorld ...
I look for leaks, | look for new ideas ... We read adventures an
novels and journals. I... I... Who'd invent a job like that?”

— JOE TURNER (THREE DAYS OF THE CONDOR)

The work we present in this dissertation falls into the rese@omain of cooperation of
network security mechanisms over distributed environsyemicluding distribution and

analysis of security policies, exchange of informationrelation of the audit data, and
protection of network security components. In this chgptex survey work which has

been previously done in those areas of research. We firstiegaom Section 3.1 existing
approaches to get a distributed network security policymased of multiple network se-
curity components, free of anomalies and misconfiguratie. then deal in Section 3.2
with existing work for the collaboration and exchanging mfiormation between different
network security components. We give in Section 3.3 an olttin related work on the

area of correlation of information reported by collaboratnetwork security components.
We finally conclude this chapter in Section 3.4 by overviepiwwo main approaches for
protecting security resources on modern operating systems
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3.1 Deployment of Components Free of Anomalies

As we pointed out in the previous chapter, once the secufiilyeo of a network system
has performed the analysis of threats and has specified amedecurity policy, he may
implement such a policy by means of security mechanisms.efaéy, this deployment
consists in distributing the security rules expressed is plolicy over different network
security components of the system — such as firewalls, iomgetection systems (IDSs),
proxies, etc. — both at application, system, and networdlléihis implies cohesion of the
security functions supplied by these components. In otluedsy security rules deployed
over the different components must be consistent, not hinand, as far as possible,
optimal.

An approach based on a formal security policy refinement ar@sm (using for instance
abstract machines grounded on set theory and first order)legsures cohesion, com-
pleteness and optimization as built-in properties [Cuppedral., 2004]. Unfortunately, in
most cases, such an approach has not a wide follow and they pslmore often than
not empirically deployed based on security administraiqreetise and flair. It is then
advisable to analyze the security rules deployed to detect,verify, and correct some
policy anomalies — often referred in the literaturardsa- and inter-configuration anoma-
lies [Hamed and Al-Shaer, 2006]. These anomalies might be tlggnooif security holes
and/or heaviness of intrusion prevention and detectioogs®ges. Firewalls and network
intrusion detection systems (NIDSs) are the most commaosdyl unetwork security com-
ponents and, in our work, we focus particularly on their siguules.

As we overviewed in Chapter 2, firewalls are prevention-Oa$evices ensuring access
control at network level. They manage the traffic betweenpiilelic network and the
private network zones on one hand and between private zaorths iocal network in the
other hand. The undesirable traffic is blocked or deviatedumh a component. NIDSs
are detection devices ensuring a monitoring role. They amgponents that supervise the
traffic and generate alerts in the case of suspicious traffie attributes used to block or
to generate alerts are almost the same.
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Main research on firewalls and NIDSs is frequently focusetheir design [Guttman, 1997,
Bartal et al., 1999, Gouda and Liu, 2004], their analysisimatsms [Frantzen et al., 2001,
Kamara et al., 2003], and their packet classification meishas [Srinivasan et al., 1999,
Eppstein and Muthukrishnan, 2001]. The challenge, wheseth&o kinds of components
coexist in the security architecture of an computer netvimtken to avoid inter-configura-
tion anomalies. Nevertheless, none of these approachesssdtie proper management of
anomalies due to conflicts between multiple-componenpsetu

For our work, we define the security rules of both firewalls B Ss as filtering and alert-
ing rules, respectively. In turn, both filtering and alegtimiles are specific cases of a more
general configuration rule, which typically definegaaision (such asleny, alert, accept,

or pass) that applies over a set ebndition attributes, such asrotocol source destina-
tion, classification etc. We define a general configuration rule as follows:

R; : {condition;} — decision;

wherei is the relative position of the rule within the set of ruléepndition;} is the con-
junctive set of condition attributes such tHabndition; } equalsC; A Cy A ... AC, — being

p the number of condition attributes of the given rule — aladision is a boolean value
in {true, false}. Let us notice that the decision of a filtering rule will be.e whether it
applies to a specific value relateddenythe traffic it matches, and wilfalse whether it
applies to a specific value relatedaoceptthe traffic it matches. Similarly, the decision of
an alerting rule will beérue whether it applies to a specific value relatedilert the traffic

it matches, and will bgalse whether it applies a value relatedpassthe traffic.

We presented in [Cuppens et al., 2005a, Cuppens et al., PaA%udit process to manage
intra-firewall policy anomalies, in order to detect and remanomalies within a given fire-
wall. This audit process is based on the existence of reisiips between the condition
attributes of the filtering rules, such as coincidence,udisiion, and inclusion, and pro-
poses a transformation process which derives from an lisigiaof rules — with potential
policy anomalies — to an equivalent one which is completedg of errors. The resulting
rules are moreover completely disjoint, i.e., the ordedhgules is no longer relevant.
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In [Garcia et al., 2006f, Garcia et al., 2006d], we extehdar proposal to a distributed
setup where both firewalls and NIDSs are in charge of the n&taecurity policy. This
way, assuming that the role of both prevention and detectioetwork attacks is assigned
to several components, our objective is to avoid intra aterHoomponent anomalies be-
tween filtering and alerting rules . The proposed approadtased on the similarity be-
tween the parameters of a filtering rule and those of an atgrtile. This way, we can
check whether there are errors in those configurations degpathe policy deployment
over each component which matches the same traffic. We refeeader to Chapter 4 for
a more detailed description of our approach.

Some other proposals, such as [Adiseshu et al., 2000, G238, Gouda and Liu, 2004,
Al-Shaer et al., 2005], also provide means to directly marthg discovery of anomalies
from the components’ configuration. For instance, the astho[Adiseshu et al., 2000]
consider that, in a configuration set, two rules are in canfiieen the first rule in order
matches some packets that match the second rule, and thedsed® also matches some
of the packets that match the first rule. This approach is lieniged since it just de-
tects a particular case of wrongly defined rules in a singésvatl configuration, i.e., just
ambiguity within a intra-firewall configurations could beteeted. It does not provide, fur-
thermore, detection on more complex scenarios, i.e.,-fit@wall configurations, where
more than one component is intended to perform network acedrol.

In [Gupta, 2000], two cases of anomalies are consideredst, FrruleR; is defined as
backward redundant iff there exists another rilewith higher priority in order such that
all the packets that match rulg; also match rule?;. Second, a rulé; is defined as forward
redundant iff there exists another ruke with the same decision and less priority in order
such that the following conditions hold: (1) all the packetat matchR; also matchz;;

(2) for each ruleR;, betweenR; and 1z;, and that matches all the packets that also match
rule R;, R, has the same decision &s.

Although this approach seems to head in the right directi@nconsider it as incomplete,
since it does not detect all the possible cases of intra-ooet anomalies (as the ones
defined in our work). For instance, given the set of rules shimwFigure 3.1(a), Sinc&,
comes aftef?;, rule R, only applies over the intervéh1, 70] —i.e., R, is redundant ta?;,
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since, if we remove this rule from the configuration, the spwiecy is applied by ruleRs.
The detection proposal, as defined in [Gupta, 2000], caneteictithe redundancy of rule
R, within the configuration of such a given firewall. Furthermoneither [Gupta, 2000]
nor [Gouda and Liu, 2004] provide detection on multiple-pament configurations.

Ry : s € [10,50] — true Ry : s €[10,50] — false
Ry : s € [40,70] — false Ry : s €[40,90] — false
R3: s € [50,80] — false Rs3 : s €[30,80] — true

(a) Setof rules A (b) Setof rules B

Figure 3.1: Example of two firewall configurations.

To our best knowledge, the approach presented in [Al-Shadr, 2005] propose the most
efficient set of techniques and algorithms to detect poliognaalies in both single and
multi-firewall configuration setups. In addition to the digery process, their approach also
attempts an optimal insertion of arbitrary rules into ars#®g configuration, through a tree
based representation of the filtering criteria. Nonetlselasd even though the efficiency of
their proposed discovering algorithms and techniquesng pmising, we also consider
this approach as incomplete.

On the one hand, their intra- and inter-component discoa@proach is not complete
since, given a single- or multiple-component security @gltheir detection algorithms
are based on the analysis of relationships between ruledywavo. This way, errors
due to the union of rules are not explicitly considered (asapproach does). For ex-
ample, the set of rules shown in Figure 3.1(b), may lead ttisicovery algorithms to
inappropriate decisions (since the approach defined irspfder and Hamed, 2004] cannot
detect that rule?; will be never applied due to the union of rul& and R,). Though in
[Al-Shaer et al., 2005] the authors pointed out to this pealdtic, claiming that they break
down the initial set of rules into an equivalent set of rulefof overlaps between rules,
no specific algorithms have been provided for solving it il-$haer and Hamed, 2004,
Al-Shaer et al., 2005, Hamed and Al-Shaer, 2006].
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On the other hand, their inter-component discovery approaasiders as anomalies some
situations that, from our point of view, must be suited toidvaconsistent decisions be-
tween components used in the same policy to control or suvelfferent zones. For
instance, given the scenario shown in Figure 3.2 their @hlgos will inappropriately re-
port a redundancy anomaly between filtering rut8§, { R, } and FW,{R;}. This is be-
cause rulef'WW;{ R, } matches every packet that al8$1,{ R, } does. As a consequence,
[Al-Shaer and Hamed, 2004] considers rilél,{ R, } as redundant since packets denied
by this rule are already denied by rutdV,{ R, }. However, this conclusion is not appro-
priate because rulEW;{ R, } applies to packets from the external zone to the private zone
whereas rulg"W,{ R, } applies to packets from the DMZ zone to the private zone. 8e, r
FWy{R,} is useful and cannot be removed.

111.222.0.[0,255] 111.222.1.[0,255]

external /l m /
network 7 w 45’/ private

FW; FW
FW {R,} :p=tcpa s€ anynd e 111.222.1.0/24 A dport= 80 — deny

FW ,{R,} :p=tcpase 111.222.00/24 A d € 111.222.1.0/24 A dport= 80 — deny

Figure 3.2: Example of a distributed control access scenari

Though in [Al-Shaer and Hamed, 2004, Al-Shaer et al., 2008]duthors claim that their
analysis technique marks every rule that is used on a netpaitk no specific algorithms
have been provided for doing so. The net advantage of ouoapprover their approach
is that it includes a model of the traffic which flows througltle@omponent. We con-
sider this is necessary to draw the right conclusion in tagec Furthermore, although in
[Al-Shaer et al., 2005] the authors consider their work aficsently general to be used
for verifying many other filtering based security policiagh as intrusion detection and
prevention systems, no specific mechanisms have been pbiaddoing so.
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3.2 Exchange of Audit Data between Components

Once verified and deployed a distributed network securiticppoone may consider the
exchange of information between the set of components mmgi¢ed in such a policy.
Traditional client/server solutions can be used in ordeddploy multiple sensors at each
host of the protected network. Thus, those sensors cay@cdlect audit data and forward
it to a central point where it can be further analyzed. Eaniguision detection systems, such
as DIDS [Snapp et al., 1991], and STAT [ligun et al., 1995 ttgs approach to process
their data in a central node.

DIDS (Distributed Intrusion Detection System), for instanis one of the earliest systems
referred in the literature for using this approach of manitg [Snapp et al., 1991]. The
main components of DIDS are a central analyzer componelteddalDS director), a set of
host-based sensors installed on each monitored host whikiorotected network, and a set
of network-based sensors installed on each broadcastnges# of the target system. The
communication infrastructure between the central analgre the distributed sensors is
bidirectional. This way, although the sensors are most®tithe sending asynchronously
their reports to the central analyzer, it is also possibé the director directly requests
them for more details.

NetSTAT [Vigna and Kemmerer, 1998, Vigna and Kemmerer, 19988 the other hand,
is an application of STAT (State Transition Analysis Tecjud) [ligun et al., 1995] to
network-based detection. Indeed, in turn, it is the evolutf NSTAT [Kemmerer, 1997].
Based on the attack scenarios and the network fact modelachgper-graph, NetSTAT
automatically chooses places to probe network activittesapplies an analysis of state
transitions. This way, it is possible to decide what infotima it is necessary to collect
within the protected network. Similarly to DIDS, and altlypuNetSTAT collects network
events in a distributed way, it analyzes them in a centralfashion.

The main limitation of both DIDS and NetSTAT is that their Bange of audit data can
quickly become a bottleneck — due to saturation problemsceeted with the service of-
fered by their centralized analyzers. Their monitoringesubs are straightforward as they
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simply push the data to a central node and perform the computhere. Both approaches
try to reduce the audit data before to send it to the centialyais unit — they try to select
interesting parts of the audit stream and compress it. Wnfately, an efficient data reduc-
tion scheme capable of forwarding only relevant data foiti@nty threat scenarios is very
difficult to realize when too many sensors are deployed. Eemben too many sensors are
deployed, the central host is simply overloaded. Furthegmibe use of a single analyzer
also induces a fault tolerance problem. If such a singleyaealcrashes or becomes the
victim of a denial of service (DoS) attack, the whole systeraampletely blinded.

To solve these disadvantages, some other results like G8@2%iford-Chen et al., 1996],
EMERALD [Porras and Neumann, 1997], and AAfID [Spafford aamboni, 2000], pro-
pose the use of layered structures where data is locallpmesssed and filtered, and
further analyzed by intermediate components in a hieraatfiashion. The computational
and network load is distributed over multiple analyzers amghagers, distributed over
different domains to analyze. The analyzers and manage¥aatit domain perform their
detection for just a small section of the whole network. Thbery forward the processed
information to the entity which is on the top of the hierarehye., a master node — which
finally analyzes all the reported incidents of the system.

GrIDS (Graph-based Intrusion Detection System for largevaoeks) is an evolution of
DIDS [Snapp et al., 1991] that aims at large distributedesyst It performs detection
of distributed scans and worms by aggregating computer ahdonk information into
activity graphs [Staniford-Chen et al., 1996]. In contrassthe centralized approach of
DIDS, GrIDS allows the construction of activity graphs tloaly represent hosts and the
network activity between them. Each node of the graph reptesa single host or a group
of nodes, and the edges represent network traffic betweessnddhe audit data of GriIDS
is collected by means of both host- and network-based sereod then forwarded to the
graph manager, which further feeds the collected inforomaitnto the graph. The whole
system deploys several graphs and several graph managarki@marchical fashion, in
order to increase the scalability of the whole system. Tioeee each manager controls
just a subset on the whole graph. Unfortunately, little diet@ere provided regarding the
communication infrastructure for the exchange of infoiorabetween components.
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Similarly, EMERALD (Event Monitoring Enabling ResponsesAnomalous Live Distur-

bances) extends the work of IDES (Intrusion Detection Expgstem) [Lunt et al., 1990]
and NIDES (Next-Generation Intrusion Detection Expertt&yg [Anderson et al., 1995a]
by implementing a recursive framework in which generic iy blocks can be deployed
in a hierarchical fashion [Porras and Neumann, 1997]. Itlwoes host- and network-
based sensors, as well as anomaly- and misuse-based asalifMERALD is focused

on the protection of large-scale enterprise networks tihaturn, are divided into inde-
pendent domains — each one of them with their own securitigyoUnfortunately, and

although the authors were claiming to a very efficient comication infrastructure for the
exchanging of information between components, few detegie provided regarding the
implementation and performance of such an infrastructure.

AAfID (Architecture for Intrusion Detection using Autonarus Agents), on the other
hand, also presents a hierarchical approach to combantitations of centralized propos-
als and, particularly, to resist to denial of service atsa¢Bpafford and Zamboni, 2000]. It
consists of four main components (called agents, filteasisceivers, and monitors) orga-
nized in a tree structure, where child and parent compomemisnunicate with each other.
Regarding the communication subsystem of AAfID, it extslaitvery simplistic design and
does not seem to be resistant to a denial of service attackhdfmore, and although the
set of agents may communicate with each other to agree upomeon suspicion level
at every host, all the relevant data is simply forwarded tomoos (via transceivers) and
require for human interaction in order to detect distriluterusions.

To our best knowledge, and although those hierarchicaloggbies may mitigate some
weaknesses present in centralized schemes, they stilbtamoid bottlenecks, scalabil-
ity problems, and fault tolerance issues due to vulnetasliat the root level. First, and
although the analyzers of those hierarchical variantsrgteo pre-filter the information
within small domains, the massive amount of audit data foed to the higher level com-
ponents is very hard to manage even at those layers. Settmelyoot domain component
crashes or becomes unavailable, the detection processaviiroperly be concluded. In
order to solve these difficulties with both central and menacal data analysis, a decen-
tralized scheme free of dedicated processing nodes iss@ges
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Alternative approaches such as Micael [Queiroz et al., JL99¥A [Asaka et al., 1999],
Sparta [Kruegel and Toth, 2002] and MAIDS [Helmer et al., ZI0@ropose the use of mo-
bile agent technology to gather the pieces of evidence oftiacka(which are scattered
over arbitrary locations). The authors of those approaphstgy the use of mobile agent
technology by the usual reasons mfercoming network latency, reducing network load
or allowing autonomous and asynchronous executidrthile these reasons are perfectly
valid, in most of those approaches the use of agent techyalody mobility is unnecessary
and counterproductive. Mobile agents are used in thosgukesnainly as data containers
(a task that can be performed more efficiently by using a mpdssage passing). They
introduce, moreover, additional security risks and cayssrfmrmance penalty without pro-
viding any clear advantage. Furthermore, none of the palpegems to have a definitive
implementation or any industrial application.

In contrast to those centralized, hierarchical, and madgent-based proposals, we pre-
sented in [Garcia et al., 2005e, Garcia et al., 2005a] ardedized message passing de-
sign which tries to eliminate the limitations and disadegets studied and overviewed
above. Our message passing design proposes an exchangi offaumation across mul-
tiple nodes of a cooperative network through the use of aighulsibscribe model. We
refer the reader to Chapter 5 for more information about suefrk.

3.3 Merging and Correlation of Audit Information

The rise of cooperative frameworks to implement a distedusecurity policy leads to

the reasoning on audit information held by multiple segucbmponents. The merging

and correlation of this information allows us to fulfill déffent goals, such as removal of
redundancy and scenario detection. The managing of thisepsohas been extensively
discussed in recent literature, such as [Valdes and Skig66f, Debar and Wespi, 2001,
Julisch, 2002, Cuppens and Miege, 2002, Ning et al., 200&}ertheless, the goals aimed
by those proposals are different and need to be explained.
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For the discussion in this section, we assume that the panfesierging and correlat-
ing audit information receives as input a stream of aledasfdifferent network security
components (such as NIDSs, firewalls, and so on). Despitdifferences between the
proposals studied in the literature, we can identify the i&lpoocess as a set of phases that
transform the audit information (i.e., alerts) into a mooenplete view of occurring or at-
tempted attack scenarios. The main objective is to procguctbe end of the entire process,
intrusion reports that should advise the security officerulpossible counter-measures —
in order to react to the detected activity. In Figure 3.3 wee@ graphical representation
of such a process. The different steps shown in the figurettedperations performed
within each phase, are explained in the following sections.

< Reports ( Detection of Attack Scenarios

Figure 3.3: Merging and Correlation process overview.

Aggregation

Normalization and Preprocessing of Alerts

An alert is an abstraction of an event that can refer to oneawemnauthorized actions and
which removes the irrelevant details of those actions.dftisn defined in the literature as a
list of pairs of attributes with their corresponding valetss where each attribute describes
a certain property (or feature) of the action that this akeiers to (e.g., classification of a
given attack). Each attribute has a type (e.g., string egiext) and a set of values associated
with it. The value set can be empty when the attribute doespply to the action (e.g., in
case of attributes specifying network-level propertiessfbost-based activity) or when no
information has been supplied by the component that gesgbthe alert.
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Before to combine the set of alerts reported from differecusity components, it is neces-
sary tonormalizesuch alerts — possibly encoded in different formats — inttaadardized
format. This normalization process may guarantee that yhtas and semantics of the
resulting alerts is understood by the components involweithé correlation process. In
order to do so, some specifications have been proposed bytthsion detection commu-
nity. The Common Intrusion Specification Language (CISa),fistance, was proposed to
allow the components of the Common Intrusion Detection Enaark (CIDF) to exchange
data in semantically well-defined ways [Feiertag et al.,2199

Although the objective of CISL's authors was to standardiegr work, it was not well
received by the industry community — probably due to the micaecomplexity of its pro-
cedures and expressions. But, some of the concepts andoidgassed by the CIDF com-
munity motivated the creation of the IETF’s Intrusion Détexc Exchange Format Working
Group (IDWG) to accomplish an industry standard. Their ngaal is the Intrusion Detec-
tion Message Exchange Format (IDMEF) [Debar et al., 2008jchvprovides a standard
representation for the exchange of alerts between diffesieurity components.

Once normalized the stream of alerts — into the IDMEF forrmf@at,example — one may
perform a preprocessing of those resulting alerts. Thiprpmessing must guarantee that
the complete set of attributes necessary to compare agegs ¢lassification and name of
the activity, timestamps, source and target, and so onhaheded in those alerts.

Aggregation and Fusion of Alerts

After the normalization and preprocessing phases, thamatd alerts collected by the set
of security components is in a suitable manner and a new gsdoemerge similar alerts is
performed —i.e., to reduce information before to start threatation process.

This new process is often split in two stages (aggregatidnfasion). The task of the first
phase is the clustering of alerts that belong to the samaétgaccurrence — but detected by
different components. To do so, the aggregation proces$srpes an analysis of similarity
between the attributes of each alert to compare, for exariiplestamps, source and target
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IP address, etc. Once compared the necessary set of atribiutvo alerts, the similarity
value of each comparison is generally computed to finallyd#gewhether the two alerts are
related or not to the same activity. If so, these two alesgaouped in the same cluster,
and then merged into a new alert, often referred in the tileeaasmeta-alert during
the alert fusion process. A meta-alert is similar to a noraiatt but its attributes are
derived from the attributes of the merged alerts. Each raletd-also contains references
to all those the alerts that were merged to produce the nhetieluring the alert fusion
process. Furthermore, a meta-alert can be then merged thizh alerts or meta-alerts in a
hierarchical manner, where the most recent meta-alereisoibt node in the hierarchy, and
all successor nodes can be accessed by following the retse¢a the merged alerts. We
refer the reader to [Kruegel et al., 2005] for further infation.

The deployment of the complete process of merging differeragrthe studied literature.
In [Valdes and Skinner, 2001], for example, a probabilistioilarity function is defined
for each attribute. The authors then propose how to obtaiovanall similarity value
by combining similarity functions and using a probabibséxpectation of similarity to
perform the fusion of alerts. A different approach is preésdmn [Debar and Wespi, 2001],
where similar alerts are previously associated throughutieeofa priori definitions. A
clustering method is presented in [Julisch, 2002], wherefilne process determines the
causes for what a set of alerts must be fused. Finally, theolib®olean predicates is
proposed by both [Cuppens, 2001] and [Ning et al., 2002],revle&pert rules are defined
to determine whether two alerts are similar and may be ag¢gdaand fused.

Detection of Attack Scenarios

During this phase, a correlation process is performed ieraiallink those alerts or meta-
alerts that refer to unauthorized actions (or attacks)daad by an attacker against a given
target. Several approaches have been proposed in ord@réseat these unauthorized ac-
tions. Among them are languages based on transition okstatéh as STAT [ligun, 1993];
colored petri nets such as CPA [Kumar and Spafford, 19948:bbased languages such as
RUSSEL [Mounji et al., 1995] and P-BEST [Lindqvist and Perrd999]; languages based



32 Overview of Related Research

on finite state machines such as JFSM [Wu et al., 1999]. Thefukemalisms for mod-
eling dynamic systems, such as Chronicles, have also bepos®d to perform alert cor-
relation in [Morin et al., 2002]. The representation of uthawized actions proposed in
[Cuppens and Miege, 2002] is based on LAMBDA [Cuppens artdl®r2000], an attack
description language based on logic, and whose scenagps stpresent the attacker’s
actions (see Chapter 6 for a more detailed description sfdniguage).

Early approaches directly perform the correlation stagheamerging process. The prob-
abilistic approach presented in [Valdes and Skinner, 200t pxample, tries to detect the
attack scenario as soon as they derive the similarity betwaes — computed during the
merging of alerts. Similarly, in [Debar and Wespi, 2001] toerelation process is also per-
formed during the aggregation phase, where the differentssdre getting linked by means
of their concept of duplicity of alerts and consequences.

Alternative approaches present a more defined separattbe aferging and correlation of
alerts. In [Cuppens and Miege, 2002], for example, the fisemelation rules declared by
means of boolean predicates, is proposed. They first spegiy links between the influ-
ence of an attack performed against the target, and thessgeonditions to perform this
attack. Hence, the pre-conditions to perform an attack amgpared to the post-conditions
of previously detected alerts. If the result is positivere are correlated. The resultis a
graph representing the attack scenario (see Chapter 6 foradetailed description of this
approach). In [Ning et al., 2002], on the other hand, theansthresent a similar proposal,
also based on boolean predicates, and where those predarat@lso used to represent
prerequisites and consequences of actions that may pantattack scenario.

Reports and Response Mechanisms

The output of the correlation process provides a set oflaaenarios that should advise
the security officer about the intruder’s activity. Neveildss, just detecting attack scenar-
ios does not prevent the intruder from reaching his objectin additional mechanism is
often necessary to decide when to execute a counter-measceethe scenario has been
partially observed.
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Most of the studied approaches propose few response msaiaim addition to common
intrusion reports. There is only a small variety of respotessniques and the decision
criteria that are used to activate the response remains siteplistic. Security officers,
moreover, generally distrust at using the most interestsgonses such as automatic re-
configuration of the network security policy. The main reaagainst the use of more elab-
orated response mechanisms is mainly due to the lack of emagdin the capabilities of
the detection systems to take the right decision. Secutityigistrators may also fear of not
controlling the consequences of the automation of thosateoumeasures. Hence, the ob-
jective of most responses consists in stopping an ongotaglkatMore elaborate reactions
that are effective to automatically correct the detectddemabilities, remain marginal.

In [Cuppens et al., 2006a] we presented an intrusion reaefpproach based on a library
that implements different types of counter-measures oncattack scenario is detected.
This proposal is based on a logical representation of battinorized actions and counter-
measures, and further extends the recognition process afttluder’s intentions presented
in [Cuppens and Miege, 2002]. Hence, when an attack saersaidentified, it can antici-
pate on the objective that the intruder attempts to achiedeoa the future attacks that the
intruder will perform to achieve it. We refer the reader tca@ter 6 for further information
of this proposal and its implementation.

3.4 Protection of Network Security Components

Current research in network security components, sucheagdils and intrusion detection
systems (IDSs), is mainly focused on improving classifagtprocessing, detection, and
reaction mechanisms, without taking into considerati@irtbwn security. The protection
of these components is a serious and important problem whiddt be solved. Otherwise,
if a remote adversary manages to compromise the securityesetcomponents, he may
obtain the control of the system itself. These componest®pposite to other network
elements, are almost always working with special priviteigeorder to execute their tasks.
This fact may lead remote attackers to acquire these pyesén an unauthorized manner.
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For instance, the existence of programming errors wittgnnternal code, the manipula-
tion of their resources (such as processes, configuraties) fibg files, and so on) in an
unappropriated manner, or the increase of user privilegdsdking for errors at operat-
ing system level, are some examples in which a remote adyetaa bypass traditional
security policy controls and get the control of a securitsnponent.

There are two main approaches to safely execute procesespecial privileges on mod-
ern operating systems. A first approach is to apply a keraséth access control to the
outcoming system calls. A second approach is the creatioestficted environments, in
which the processes will be executed and controlled outhiglérusted system space.

Regarding the first approach, we presented in [Garcia,et@5b, Garcia et al., 2006b] a
kernel based access control method which intercepts antklsaforbidden system calls
launched by a remote attacker. This way, even if the attagaars administration per-
missions, he will not achieve his purpose. To solve the adhtnation constraints of our
approach, we use a smart-card based authentication meohéori ensuring the adminis-
trator’s identity. Through the use of a cryptographic poodo the protection mechanism
verifies administrator’'s actions before holding him theispeénsable privileges to manip-
ulate a component. Otherwise, the access control enforgewi# come to its normal
operation. We refer the reader to Chapter 7 for more infaonaegarding our proposal
and implementation.

The proposals closest to ours are the protection mechamsssnted in [Ott, 2002] and
[Loscocco and Smalley, 2001] for the creation of enhancedseccontrol mechanisms in-
tegrated in the kernel of the GNU/Linux operating systeme Timain goal behind these
two proposals is to reinforce the complete system by cdirigpthe system calls and en-
suring which process or user does the system call and agalastit will be done. The
ability to control the access to the resources allows togatdhe security components and
to avoid that nobody (including an attacker with adminiirarivileges) can disable them.
Nevertheless, both approaches differ from ours in a numbeags. First, and to our best
knowledge, neither [Loscocco and Smalley, 2001] nor [(2§2Z do not address the man-
agement of administration constraints, as our proposa ttweugh the two-factor authen-
tication mechanism we present in Chapter 7, Section 7.3or8e®ur approach, entirely
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based on thé&inux Security ModulefLSM) framework [Wright et al., 2002], guarantees
the compatibility with previous applications and kerneldukes without the necessity of
modifications. However, both [Loscocco and Smalley, 2001 pOtt, 2002] require the
rewriting of some features of the original Linux kernel tmperly work. This situation
may force to recompile existing code and/or modules in otdesbtain the new secu-
rity features. Although it exists a LSM-based prototype tioe approach presented in
[Loscocco and Smalley, 2001], it does not seem to be activigintained for the current
Linux-2.6 kernel series.

Regarding the second approach, we find in [Hope, 2002] a grotemechanism for the
creation of restricted environments within Unix setupse @hthors in [Hope, 2002] present
the use of a special system call to restrict the access todfisparea of the file system.
This specific area is intended just for the processes thaba@®uted under each restricted
environment. Then, this system call properly changes thedivectory to the given path.
This way, the process remains in a safe space from where dtipossible to escape —
even if the component is compromised, the whole system entlain safe since the illicit
activities are caught within the replicated file system.

This proposal requires, however, a replicated file systemftir each environment. Hence,
the administrator in charge of the system must reproduceriiginal file system tree to
include, for example, shared libraries or configuratiorsfiend copy them to the new path.
Other disadvantage of this proposal is that it does not geeahe correct execution flow
of a process, i.e., the behavior of a process can be modifiediby, for example, a buffer
overflow. Hence, the attacker can overwrite the configunatidogs files of such a process
by simply using an arbitrary code execution attack — sineséHfiles remain in the same
environment of the protected security component process.

Extended versions of the previous model, such as [Herzoghatimehri, 2002], may also
offer support for access control to resources and guarémestegrity of the security com-
ponent’s resources. Nonetheless, these extended preplmsabt protect from vulnerabil-
ities placed outside the trusted environment. A simple loug privileged service, or even
the use of stolen passwords, may lead the attacker from teenak environment to attack
the component and its resources.



Chapter 4

Management of Anomalies on
Distributed Network Security Policies

"I know I've made some very poor decisions recently, but | can
give you my complete assurance that my work will be back tomabr
— HAL (2001: A SPACE ODYSSEY)

The use offirewalls and network intrusion detection syster{NIDSs) is the dominant
method to survey and guarantee the security policy in cto@mputer networks. Firewalls
are traditional security components which provide mearfdtey traffic within computer
networks, as well as to police the incoming and outcomingradtion with the Internet. On
the other hand, NIDSs are complementary components usethémee the visibility level
of the system as a whole, pointing out to malicious traffic.déploy the configuration of
both firewalls and NIDSs, it is necessary to translate thesraf the network security policy
into a set of filtering and alerting rules. The existence afmalies between those rules in
distributed multi-component scenarios, is very likely ggcade the network security pol-
icy. The discovering and removal of these anomalies is @se&nd complex problem to
solve. In this chapter, we present a set of algorithms foh sumanagement.
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The remaining of this chapter is organized as follows. $edi.1 starts by introducing a
network model that is further used in Section 4.2 and Seeti8rwhen presenting, respec-
tively, our intra and inter-component anomaly’s classtf@as and algorithms. Section 4.4
overviews a first implementation of our algorithms in ordevalidate its performance over
real multi-component scenarios.

4.1 Network Model and Topology Properties

The purpose of our network model is to determine which coreptswithin the network
are crossed by a given packet, knowing its source and dastinét is defined as follows.
First, and concerning the traffic flowing from two differemtrnes of the distributed policy
scenario, we may determine the set of components that assaztdy this flow. Regarding
the scenario shown in Figure 4.1, for example, the set of corapts crossed by the net-
work traffic flowing from zonexxternal network to zoneprivates equals 1,C5,C4], and
the set of components crossed by the network traffic flowinghfeoneprivates to zone

C2 C4
external
network G
Ca

Figure 4.1: Simple distributed policy setup.

privates equals {'y,Cs,C5).

Let C' be a set of components and lebe a set of zones. We assume that each pair of zones
in Z are mutually disjoint, i.e., it; € Z andz; € Z thenz; N z; = (. We then define the
predicateconnected(cy, ¢o) as a symmetric and anti-reflexive function which becomes
whether there exists, at least, one interface connectingpoaent:; to component;. On
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the other hand, we define the predicatgacent(c, z) as a relation between components
and zones which becomes.e whether the zone is interfaced to component Referring
to Figure 4.1, we can verify that predicatesinected(C,, Cy) andconnected(Cy, Cs), as
well asadjacent(Cy, DM Z), adjacent(Cy, privatey), adjacent(Cs, DM Z), and so on,
becomelrue. We then define the set of paths, as follows. Ifc € C then[c¢] € P is an
atomic path. Similarly, ifp.c;] € P (be “.” a concatenation functor) and € C, such that
¢ ¢ p andconnected(cq, c2), thenlp.c;.co] € P. This way, we can notice that, concerning

Figure 4.1,[01,02, 04] epP and[Cl, Cg] e P.

Let us now define a set of functions related with the order betwpaths. We first define
functionsfirst, last, and the order functor between paths. We define functiost from

P in C such that ifp is a path, thenfirst(p) corresponds to the first component in the
path. Conversely, we define functiésst from P in C such that ifp is a path, thetiast(p)
corresponds to the last component in the path. We then déferter functor between
paths ag, < p,, such that path, is shorter tham,, and where all the components within
py are also withirp,. We also define the predicatéd irewall(c) andisN1DS(c) which
becomerue whether the components, respectively, a firewall or a NIDS.

Two additional functions areoute and minimal_route. We first define functionoute
from Z to Z in 2F, such thatp € route(z, 2,) iff the pathp connects zone, to zone
zo. Formally, we define that € route(zy, z2) iff the predicatesidjacent(first(p), z1)
andadjacent(last(p), zo) becomérue. Similarly, we then definevinimal _route from Z
to Z in 2F, such thap € minimal route(zy, 2o) iff the following conditions hold: (1)
p € route(z1, 29); (2) There does not exigt € route(zy, z2) such thap’ < p. Regarding
Figure 4.1, we can verify that th@inimal_route from zoneprivates t0 zoneprivates
equalgCy, Cs, Csl, i.e.,minimal_route(privates, privates) = {[Cy, Ca, Cs]}.

Let us finally conclude this section by defining the prediatectsZ, A.) as a boolean
expression which becomeésue whether there is, at least, an elemer¢ 7 such that the
configuration ofz is vulnerable to the attack categafty € V, whereV is a vulnerability

set built from a vulnerability database, such as CVE/CANTRE Corporation, 2005] or
OSVDB [Open Security Foundation, 2005].
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4.2 Intra-component Classification and Algorithms

In this section we present our set of intra-component algitrahms, whose main objec-
tive is the complete discovering and removal of policy ankiesdhat could exist in a single
component policy, i.e., to discover and warn the securiigef about potential anomalies
within the configuration rules of a given component.

Let us start by classifying the complete set of anomalies ¢ha occur within a single
component configuration. An example for each anomaly wilillustrated through the
sample scenario shown in Figure 4.2.

external
network

windows
network

unix
network

C |

192.170.26.[0,255] 192.170.21.[0,255] 192.170.33.[0,255]

C+{R+} : {tcp, 192.170.26.[10,20]:any, 192.170.26.[50,60]:any} -> false
C+{Ra2} : {tcp, 192.170.26.[0,255]:any, 192.170.33.[0,255]:any} - false
C+{Rs} : {tcp, 192.170.21.[1,30]:any, 192.170.26.[20,45]:any} - true
C+{Ra4} : {tcp, 192.170.21.[20,60]:any, 192.170.26.[25,35]:any} - false
C+{Rs} : {tcp, 192.170.21.[30,70]:any, 192.170.26.[20,45]:any} - false
C1{Re} : {tcp, 192.170.21.[15,45]:any, 192.170.26.[25,30]:any} > true

(a) Example scenario of a filtering policy.

external
network

windows
network

unix
network

% Q

192.170.26.[0,255] 192.170.21.[0,255] 192.170.33.[0,255]

- {tcp, 192.170.26.[0,255]:any, 192.170.33.[0,255]:any, payload:, winworm} = true
: {tep, 192.170.26.[0,255]:any, 192.170.21.[0,255]:any, payload,, winworm} -> true
- {tcp, 192.170.33.[0,255]:any, 192.170.21.[0,255]:any, payloads, unixworm} - true
: {tcp, 192.170.26.[1,30]:any, 192.170.21.[20,45]:any, payload,, unixworm} -> true
: {tep, 192.170.26.[20,60]:any, 192.170.21.[25,35]:any, payloads, unixworm} - true
: {tcp, 192.170.26.[10,40]:any, 192.170.21.[25,30]:any, payloads, unixworm} - true
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(b) Example scenario of an alerting policy.

Figure 4.2: Example of filtering and alerting policies.
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Intra-Component Shadowing A configuration ruleR; is shadowed in a set of con-
figuration rulesk whether such a rule never applies because all the packet®timay
match, are previously matched by another rule, or comhinatf rules, with higher prior-
ity. Regarding Figure 4.2, rul€',{Rs} is shadowed by the overlapping of rul€s{ s}
andC{Rs}.

Intra-Component Redundancy A configuration ruleR; is redundant in a set of configu-
ration rulesRk whether the following conditions hold: (3; is not shadowed by any other
rule or set of rules; (2) when removirig} from R, the security policy does not change. For
instance, referring to Figure 4.2, rulg { R, } is redundant, since the overlapping between
rulesC{R3} andC}{ Rs} is equivalent to the police of rul€;{R,}.

Intra-Component Irrelevance A configuration ruleR; is irrelevant in a set of configura-
tion rulesR if one of the following conditions holds:

(1) Both source and destination address are within the same. zFor instance, rule
C1{R;} is irrelevant since the source of this addres&ernal network, as well as its
destination, is the same.

(2) The component is not within the minimal route that conséoe source zone, concern

ing the irrelevant rule which causes the anomaly, to theinkgstn zone. Hence, the rule
is irrelevant since it matches traffic which does not flow tlgio this component. Rule
C1{R,}, for example, is irrelevant since componéit is not in the path which corre-
sponds to the minimal route between the source zone network to the destination

zonewindows network.

(3) The component is a NIDSs, i.e., the predicat®¥ / DS(c) (cf. Section 4.1) becomes
true, and, at least, one of the condition attributesinis related with a classification
of attack A. which does not affect the destination zone of such a rule.;-the predi-
cate affectgzy, A.) becomesfalse. Regarding Figure 4.2, we can see that Wig R, } is
irrelevant since the nodes in the destination zené: network are not affected by vulner-
abilities classified asiinworm.
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Intra-Component Algorithms

Our proposed audit process is a way to alert the securityeofficcharge of the network
about these configuration errors, as well as to remove alugiedess rules in the initial
firewall configuration. The data to be used for the detectimcgss is the following. A set
of rulesR as a list of initial sizen, wheren equalscount(R), and where each element is
an associative array with the stringsdition, decision, shadowing, redundancy, and
irrelevance as keys to access each necessary value.

For reasons of clarity, we assume one can access a linkettiiegigh the operatoR;,
wherei is the relative position regarding the initial list sizeeunt(R). We also assume
one can add new values to the list as any other normal varitd@s ¢lement «— value),
as well as to remove elements through the addition of an esgitg¢lcment < ). The
internal order of elements from the linked-liBtkeeps with the relative ordering of rules.

Algorithm 1: excl usi on(B,A)

1 C[condition] « 0;

2 C[shadowing| < false;

3 C[redundancy] <« false;

4 Clirrelevance] «— false;

5 Cldecision] < Bldecision];

6 forall the elements ofl[condition] and B[condition] dO
7 if ((AlﬁBl) #@and (AQHBQ) 7&@

g8 | and...and(A,N B,) # () then

9 Clcondition] < C[condition] U

10 {(Bi — A1) ABa A ... A By,

11 (A1 N By) A (By — A2) A ... A By,

12 (A1 (1 B1) A (A3 1 Ba) A (Bs — Ag) A ... A By,

13

14 (AiNB1) A A (Apm1 N Bp_1) AN(Bp — Ap) 1

15 | else

16 | Cleondition] — (C|condition] U Blcondition]);

17 return C;
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Algorithm 2: test I rrel evance(c,r)

zs «+—source (r);
zq < dest (r);
if (25 = z4) and (—r[decision]) then
‘ war ni ng (“ First case of irrelevance”);
else ifz, # z4 then
p < m ni mal _r out e (z,24);
if ¢ ¢ pand (—r[decision]) then
‘ war ni ng (“Second case of irrelevance”);
else if(—enpt y (r[A.])) and (—affectgz,, r[A.])) then
‘ war ni ng (“Third case of irrelevance”);
else return false;
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return true;

Algorithm 3: t est Redundancy(R,r)

11« 1;

2 temp < r;

3 while —test and (i < count(R)) do
4 temp < excl usi on(temp, R;);
if temp[condition] =0 then

| retumn true;

i (i+1);
8 return false;

o O

~
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Algorithm 4: i ntr a- conponent - audi t (¢, R)

1 begin

2 | n <« count(R);

3 | xPhase 1/

4 | fori—1to(n—1)do
5 for j «— (i+1)tondo
6

7

8

9

if R;[decision] # R;[decision] then
R; «— excl usi on (R;,R;);
if R;[condition] = () then
war ni ng (“Shadowing”);
10 R;[shadowing] « true;
1 | /+Phase 2/
12 | fori—1to(n—1)do
13 R, —{rr€e R|n>k>iand
14 ri[decision] = r;|decision]};
15 if t est Redundancy (R,,R;) then
16 war ni ng (“ Redundancy”);
17 R;[condition] «— 0;
18 R;[redundancy] < true;
19 else
20 for j — (i+1)tondo
21 if R;[decision]=R;[decision]then
22 R; —excl usi on (R;,1);
23 if (—R;[redundancy]and
24 R;[condition] = () then
25 war ni ng (“ Shadowing”);
26 L R;[shadowing| « true;

27 /;Phase 3%/
28 for : — 1ton do

29 if R;[condition] # () then

30 iftestlrrel evance (c,R;) then
31 R;[irrelevance] « true;

32 L rlcondition] < (;

33 end
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Each elemenk;[condition] is a boolean expression ovepossible attributes. To simplify,
we only consider as attributes the following onesone (source zone)dzone (destina-
tion zone),sport (source port)dport (destination port)protocol, andattack_class — or
A, for short — which will be empty whether the component is a fakkwIn turn, each
elementR;[decision] is a boolean variable whose values are{tnue, false}. Finally,
elementsR;[shadowing|, R;[redundancy], and R;[irrelevance] are boolean variables in
{true, false} —which will be initialized tofalse by default.

We split the whole process in four different algorithms. Thet algorithm (cf. Algo-
rithm 1) is an auxiliary function whose input is two rule$,and B. Once executed, this
auxiliary function returns a further rulé€/, whose set of condition attributes is the exclu-
sion of the set of conditions from over B. In order to simplify the representation of this
algorithm, we use the notatias; as an abbreviation of the variablgcondition]|i], and
the notationB; as an abbreviation of the variablgcondition][i] — wherei in [1, p].

The second algorithm (cf. Algorithm 2) is a boolean functio{true, false} which ap-
plies the necessary verifications to decide whether arrigdarrelevant for the configura-
tion of a component. To properly execute such an algorithm, let us definerce(r) as
a function inZ such thatsource(r) = szone, anddest(r) as a function inZ such that

dest(r) = dzone.

The third algorithm (cf. Algorithm 3) is a boolean function{itrue, false} which, in turn,
applies the transformatiaxclusion(Algorithm 1) over a set of configuration rules to check
whether the rule obtained as a parameter is potentiallyncalut.

The last algorithm (cf. Algorithm 4) performs the whole pess of detecting and removing
the complete set of intra-component anomalies. This peoesplit in three different
phases. During the first phase, a set of shadowing rules &eeted and removed from a
top-bottom scope, by iteratively applying Algorithm 1 — wahide decision field of the two
rules is different. Let us notice that this stage of detgcéind removing shadowed rules is
applied before the detection and removal of proper reduratzshirrelevant rules.

The resulting set of rules is then used when applying thergbpbase, also from a top-
bottom scope. This stage is performed to detect and remopepredundant rules, through
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an iterative call to Algorithm 3 (i.etestRedundangyas well as to detect and remove all the
further shadowed rules remaining during the latter pradéisslly, during a third phase the
whole set of non-empty rules is analyzed in order to detettamove irrelevance, through
an iterative call to Algorithm 2 (i.etestlrrelevancg

Applying the Intra-Component Algorithms

In the following we give an outlook on applying our set of astomponent algorithms over
some representative examples. Let us start applying thetitumexclusion(Algorithm 1)
over a set of two rule®; and R;, each one of them with two condition attributeszene
anddzone —and where rulg?; has less priority than rul®;. In this first example,

R;[condition] = (szone € [80,100]) A (dzone € [1,50])
R;[condition] = (szone € [1,50]) A (dzone € [1,50])

since(szone € [1,50]) N (szone € [80,100]) equals), the condition attributes of rules;
and R; are completely independent. Thus, the applyingaafusion(R;, R;) is equal to

R;[condition)].

The following three examples show the same execution ovet afscondition attributes
with different cases of conflict. A first case is the followjng

R;[condition] = (szone € [1,60]) A (dzone € [1,30])
Rj[condition] = (szone € [1,50]) A (dzone € [1,50])

where there is a main overlap of attributeone from R;[condition] which completely ex-
cludes the same attribute d®[condition|. Then, there is a second overlap of attribute
dzone from R;[condition] which partially excludes the rangg 30] into attributedzone of
R;[condition], which becomesdzone in [31,50]. This way,exclusion(R;, R;) «— {(s €
[1,50]) A (dzone € [31,50])}. For reasons of clarity, we do not show the first empty
set corresponding to the first overlap. If shown, the reduttugd become as follows:
exclusion(R;, R;) < {0, (szone € [1,50]) A (dzone € [31,50])}.
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In this other example,

R;[condition] = (szone € [1,60]) A (dzone € [20, 30])
R;[condition] = (szone € [1,50]) A (dzone € [1,50])

there are two simple overlaps of both attributesne and dzone from R;[condition]
to R;[condition], such thatzclusion(R;, R;) becomes{(szone € [1,50]) A (dzone €
[1,19)), (szone € [1,50]) A (dzone € [31,50])}.

A more complete example is the following,

R;[condition] = (szone € [10,40]) A (dzone € [20, 30])
Rj[condition] = (szone € [1,50]) A (dzone € [1,50])

where exclusion(R;, R;) becomes{(szone € [1,9]) A (dzone € [1,50]), (szone €
[41,50]) A (dzone € [1,50]), (szone € [10,40]) A (dzone € [1,19]), (szone € [10,40]) A
(dzone € [31,50])}.

Regarding a full exclusion, let us show the following exaenpl

R;[condition] = (szone € [1,60]) A (dzone € [1,60])
R;[condition] = (szone € [1,50]) A (dzone € [1,50])

where the set of condition attributes of rule completely excludes the ones of rufs.
Then, the applying ofzclusion(R;, R;) becomes an empty set (i.¢(), 0} = 0). Hence,
on a further execution of Algorithm 4 the shadowing field deri; (initialized asfalse
by default) would become-ue (i.e., R;[shadowing] « true).

In order to show the execution of Algorithm 4 over a more catgket of rules, we give
an outlook of such an execution over the following set ofsule

Ry : szone € [10,50] — true
Ry : szone € [40,90] — false
Rj : szone € [60,100] — false
Ry : szone € [30,80] — true
Rs : szone € [1,70] — false
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We start by showing the initial step within the first phase tgakithm 4, wherei equals

1, and applied over the previous set of filtering rules. Let osce that on this first step,

the execution of functioexclusion with rulesR, and R, since their decision is different,

becomes the rangé1, 90]. Similarly, the execution of functioaxclusion with rules R
and R, becomes the rangg1, 9], [51, 70]}. The result of this first step is the following:

Ry
Ry

Ry

: szone € [10,50] — true
: szone € [51,90] — false
Rs: [

Ry :
: szone € {[1,9],[51,70]} — false

szone € [60,100] — false
szone € [30,80] — true

Let us now move to the second step, witbquals2. In this step, the range of rulg,

decreases since the execution of funceanlusion with rules R, and R4, whose decision

is different, becomes the ran@i¥), 50:

Ry
Ry

Rs

: szone € [10,50] — true
: szone € [51,90] — false
R : [

R,
: szone € {[1,9], [51,70]} — false

szone € [60,100] — false

szone € [30,50] — true

At the end of the first phase, once executed both third andH@teps, the resulting rules

remain as above:

Ry
Ry

Rs

: szone € [10,50] — true
: szone € [51,90] — false
Rs : [

R,
: szone € {[1,9], [51,70]} — false

szone € [60,100] — false

szone € [30,50] — true

Once finished the first phase and running over the first stepeoécond phase, i.e.,

equalsl, we notice that: (1) the result of applying functitestRedundancyith rule R,
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as parameter becomgsalse; (2) the execution of functioexclusion with rules R, and
Ry, completely excludes the condition attribute of ride Hence, ruleR,, is reported as
shadowed by the combination of rul&s and R,, and its condition attribute becomes an
empty set. Therefore, the status figlthdowing of rule Ry, i.e., Ry[shadowing], switches

its value totrue:

Ry
Ry
Rs

Ry

: szone € [10,50] — true

: szone € [51,90] — false
: szone € [60,100] — false
R,
: szone € {[1,9],[51,70]} — false

0 — true

Then, we follow now to the second step of the second phase, eguals2, and we notice
that rule R, disappears since the result of applying functiestRedundanacyith rule R,
as parameter becoma&s.e. Thus, the condition attribute of rule, becomes an empty set,

and its status fieldedundancy, i.e., Ry[redundancy], switches its value torue:

Ry
Ry

Rg:
R4:

Rs

: szone € [10,50] — true

0 — false
szone € [60,100] — false
0 — true
: szone € {[1,9], [51,70]} — false

At the end of the following step, wherieequals3, we notice that the execution of func-

tion testRedundancyith rule R; as parameter becomégalse. Thus, we apply function

exclusion with rules R; and i3 as parameters. As a result of this execution, the second
subrange of rulé?; scarcely decreases fropi, 70] to [51, 59]:

: szone € [10,50] — true

() — false

: szone € [60,100] — false

0 — true

: szone € {[1,9], [51,59]} — false
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We do not show the rest of the execution, since the resulehgfdiltering rules does not
modify from the previous one, which is the following:

/ * resulting rules x /

Ry : szone € [10,50] — true
R3 : szone € [60,100] — false
Rs : szone € {[1,9],[51,59]} — false

Let us recall that the following two warnings will notice teecurity officer to the discov-
ering of both shadowing and redundancy anomalies, in oaleetify the correctness of
the whole detection and transformation process:

/ * warnings x /

Shadowing ok, with Ry, R,
Redundancy ok, with Rs,R;

To conclude this section, let us finally show the warningoregad when executing Algo-
rithm 4 over the configuration of the two components we showéstgure 4.2.

/ * warnings x /

First case of irrelevance ath { R, }

Second case of irrelevance 6h{ Ry}
Redundancy o6, { R4} with C1{R3},C1{R5}
Shadowing orC { Rg } with C1{R3},C1{R5}
Third case of irrelevance afx{ R»}
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Correctness of the Intra-Component Algorithms

Lemmal LetR; : condition; — decision; and R; : condition; — decision; be two
configuration rules. ThedR;, R;} is equivalent to[ R;, R} whereR); « exclusion(R;,
R;).

Proof of Lemma 1 Let us assume that:

R;[condition] = Ay N Ay A ... N A, and
Rj;[condition] = By A By A ... \ By,

If (A;NBy)=0or(AyNBy)=0or...or(A,N B,) = 0 thenexclusion(R;, R;) < R;.
Hence, to prove the equivalence betwgéh, R;} and{ R;, R} is trivial in this case.

Let us now assume that:

(A; N By) # 0 and(Ay N By) # 0
and ... and A, N B,) # 0.

If we apply rules{R;, R;} where R, comes before?;, then ruleR,; applies to a given
packet if this packet satisfid$;[condition] but not R;[condition] (SinceR; applies first).
Therefore, notice thak;[condition] — R;[condition] is equivalent to:

(Bi — A1) ANBy A ...\ B,or
(AyNBy) A (By— As) A ... NB,or
(A1NBy) A (A2 N By) A (Bs—A3) A...A B, or

(AL NBY) A . A(Ayy N Byy) A (B, — A)

which corresponds t&’; = exclusion(R;, ;). This way, if R; applies to a given packet
in {R;, R;}, then ruleR’ also applies to this packet in?;, R’ }. Conversely, ifR; applies
to a given packet i i;, R}, then this means this packet satisfiegcondition] but not
R;[condition]. So, itis clear that rulé?; also applies to this packet §R;, R,}. Since in
Algorithm 1 R’[decision] becomesi;[decision], this enables to conclude thgk;, i;} is
equivalent to{ R;, R} }. O
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Theorem 2 Let R be a set of configuration rules and I&-(R) be the resulting rules
obtained by applying Algorithm 4 t8. ThenR and7'r(R) are equivalent.

Proof of Theorem 2 LetTr|(R) be the set of rules obtained after applying the first phase
of Algorithm 4.

SinceT'r}(R) is derived from ruleR by applyingexclusion(R;, R;) to some rulesk; in
R, itis straightforward, from Lemma 1, to conclude tfiat (R) is equivalent taR.

Let us now move to the second phase, and let us consider Brsleh thatest Redundan-
cy(R;) (cf. Algorithm 3) istrue. This means thaR;|condition] can be derived by condi-
tions of a set of rule$ with the same decision and that come after in order thaniule

Since every rulgz; with a decision different from the one of rules $hhas already been
excluded from rules of in the first phase of the Algorithm, we can conclude that rgle
is definitely redundant and can be removed without chandnegdmponent configuration.

This way, we conclude that Algorithm 4 preserves equivadenchis case.

On the other hand, tfest Redundancy(R;) is false, then transformation consists in apply-
ing functionexclusion(R;, R;) to some rulesk; which also preserves equivalence. Simi-
larly, and once in the third phase, let us consider a Rjlsuch thatestIrrelevance(c, R;)

is true.

This means that this rule matches traffic that will never ssmponent, or thatiitis irrel-
evant for the component’s configuration. So, we can renfovieom R without changing
such a configuration.

Thus, in this third case, as in the other two ca8&s$(R) is equivalent tdl'r} (R) which, in
turn, is equivalent tag. U

Lemma 3 Let R; : condition; — decision; and R; : condition; — decision; be two
configuration rules. Then ruleg; and R}, where R, « exclusion(R;, R;) will never
simultaneously apply to any given packet.
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Proof of Lemma 3 Notice that rulef?’ only applies when rule?; does not apply. Thus,
if rule R; comes before rulé;, this will not change the final decision since rute only
applies to packets that do not match rélg U

Theorem 4 Let R be a set of configuration rules and I&(R) be the resulting rules
obtained by applying Algorithm 4 t8. Then the following statements hold: (1) Ordering
the rules inT'r(R) is no longer relevant; (2Y'r(R) is completely free of anomalies.

Proof of Theorem 4 For any pair of rules?; and?; such that?; comes befordi;, R, is
replaced by a rulge; obtained by recursively replacin; by exclusion(R;, Ry,) for any
k<j.

Then, by recursively applying Lemma 3, it is possible to camterrulesz; and R’ in
Tr(R) without changing the policy.

Regarding the second statemerif= R) is completely free of anomalies — notice that, in
Tr(R), each rule is independent of all other rules.

Thus, if we consider a rul&; in 7r(R) such thatR;[condition] # 0, then this rule will
apply to any packet that satisfi&s|condition], i.e., it is not shadowed.

On the other hand, rul&; is not redundant because if we remove this rule, since tlas ru
is the only one that applies to packets that satigfiyondition|, then configuration of the
component will change if we remove rulg from 7'r(R).

Finally, and after the execution of Algorithm 4 over the ialitset of configuration rules,
one may verify that for each rulg; in 7 (R) the following conditions hold:

(1) s = 21 N source(r) # () andd = z, N dest(r) # () such that; # 2, and component

iS in minimal_route(zy, 23);
(2) if A. = attack_category(R;) # (), the predicate f fects(A., z2) becomesrue.

Thus, each rul&; in Tr(R) is not irrelevant. O
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Complexity of the Intra-Component Algorithms

In this section, we shortly discuss the degree of computaticomplexity of our approach’s

main algorithm, i.e., Algorithm 1, with respect to the ingse of the initial number of rules

due to the rewriting process. Indeed, in the worst case (gure 4.3, Algorithm 1 may

generate a huge number of rules. For instance, if we haveules withp attributes, the

second rule can be replaced pppew rules in the worst case, leadingite- 1 rules.
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If we now assume that we haverules (» > 2) with p attributes, then each rule except
the first one can be replaced pyhew rules in the first rewriting step of the algorithm. In
the second step, therules that replace the second rule are combined with thides that
replace rules 3 ta. Thus, each rule from 3 tocan be replaced by’ new rules. In the third
step, they? rules corresponding to rule 3 are combined with gheules corresponding to
rules 4 ton. We can show that this may leadtbnew rules. And so on. Hence, in the worst
case, if we have rules ( > 2) with p attributes, then we can obtain-p+p>+ ... +p" !
rules when applying Algorithm 1, that f%"_‘—ll rules.

Although this complexity seems very high, in all the expemtations we have done (cf. Sec-
tion 4.4), we were always very far from this case. First, lbsezonly attributes source and
destination may significantly overlap and exert a bad infteeam the algorithm complexity.
Other attributes, protocols and source and destinatioiponbers, are generally equal or
completely different when combining configuration rulesc@&nd, administrators generally
use overlapping rules in their configurations to represelatsrthat may havexceptions
This situation is closer to the normal case presented inr€igiB than to the worst case.
Third, when shadowing or redundancy situations are digeavby the algorithm, some
rules are removed — which significantly reduces the algaritbmplexity.

Default policies

Each component implements a positive (i.e., close) or negéte., open) policy. If it is
positive, the default decision is tdert or to deny a packet when any configuration rule
applies. By contrast, the negative policy witlcept s or pass a packet when no rule applies.

After rewriting the rules with the intra-component-audga@ithms (cf. Section 4.2), we
can actually remove every rule whose decisiopassor acceptif the policy of this com-
ponent is negative (else this rule is redundant with theudigfelicy); and similarly we can
remove every rule whose decisiondsnyor alert if its policy is positive. Thus, we can
consider that our proposéatra-component-audilgorithm generates a configuration that
only contains positive rules if the component default polecnegative, and negative rules
if the default policy is positive.
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4.3 Inter-component Classification and Algorithms

The objective of the inter-component audit algorithms s tomplete detection of pol-
icy anomalies that could exist in a multi-component poliay,, to discover and warn the
security officer about potential anomalies between pdiofedifferent components.

The main hypotheses to deploy our algorithms hold the fahgw

(1) An upstream traffic flows away from the closest componeié origin of this traffic
(i.e., the most-upstream component [Al-Shaer et al., 200%jards the closest component
to the remote destination (i.e., the most-downstream commgAl-Shaer et al., 2005]);

(2) Every component’s policy in the network has been reamitising the intra-component
algorithms defined in Section 4.2, i.e., it does not contairatcomponent anomalies and
the rules within such a policy are completely independetwéen them.

Inter-Component Anomalies Classification

In this section, we classify the complete set of anomalies ¢An occur within a multi-
component policy. Our classification is based on the netwooklel presented in Sec-
tion 4.1. An example for each anomaly will be illustratedotigh the distributed multi-
component policy setup shown in Figure 4.4.

Inter-Component Shadowing A shadowing anomaly occurs between two components
whether the following conditions hold: (1) The most-upatrecomponent is a firewall;
(2) The downstream component, where the anomaly is detedted not block or report
(completely or partially) traffic that is blocked (expligit by means of positive rules; or
implicitly, by means of its default policy), by the most-tigam component.

The explicit shadowing as result of the union of rulég R, } andCs{ Rs} to the traffic that
the component’s matches by means of rul&;{ R, } is a proper example déll shadowing
between afirewall and a NIDS. Similarly, the anomaly betw@gfz, } andCgs{ Rs } shows
an example of aexplicit partial shadowinganomaly between a firewall and a NIDS.
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C+{Rs} : {tcp 200.160.1.[0,255]:any, 10.0.16.[0,255]:any} > false C2{R4} : {tcp 10.0.31.[15,17]:any, 200.160.1.[0,255]:any} > false
C+{R2} : {tcp 200.160.1.[0,255]:any, 10.0.16.[0,255]:any} > false C2{R2} : {tcp 10.0.32.[0,70]:any, 10.0.35.[0,255]:any} > false
C+{Ra} : {tcp 192.170.21.[20,33]:any, 200.160.1.[20,30]:any} > false C2{Rs} : {tcp 10.0.32.[0,70]:any, 200.160.2.[0,255]:any} -> false
C+{R4} : {tcp 192.170.21.[60,80]:any, 200.160.1.[20,30]:any} > false C2{R4} : {tcp 10.0.33.[0,255]:any, 200.160.1.[0,255]:any} -> false
C+{Rs} : {tcp 10.0.33.[0,30]:any, 200.160.2.[10,30]:any} - false C»{Rs} : {tcp 10.0.32.[0,70]:any, 10.0.25.[0,255]:any} > false
C+{Re} : {tcp 10.0.31.[10,20]:any, 200.160.1.[0,255]:any} > false Co{Re} : {tcp 200.160.[1.0,2.255]:any, 10.0.16.[0,255]:any} > false
C+{Ry} : {tcp 10.0.33.[0,255]:any, 200.160.1.[10,12]:any} > false
CofR1} : {tcp 10.0.31.15,17]:any, 200.160.1.00,255]:any, pa1, cs1} > false|| Ce{Ful : {tcp 10.0.32.10:any, 10.0.25.[0,255]any, Pe-1, Cas} = true
CofRo} : {tcp 10.0.32.[0,70]:any, 10.0.35.[0,255]:any, psa, Csa} > false C4{R2} : {tcp 10.0.32.[60,80]:any, 10.0.25.[0,255]:any, ps-2, Cs-2} = true
) o e e C4{R3} : {tcp 192.170.22.[15,30]:any, 10.0.24.[0,255]:any, pa-3, Cs3} > true
CofR1) - {tcp 192.170.22.[0,255]-any, 10.0.34.]0,255]any} > true Cu{R4} : {tcp 192.170.23.[0,255]:any, 10.0.24.[0,255]:any, ps-s, Ca«} > true
CdRy) - {mp192.170_23_[1520]:3”% 10.0_34_[01255]:“” i C4{Rs} : {tcp 192.170.21.[18,20]:any, 10.0.27.[0,255]:any, pa.s, Cs.5} = true
Cs{Ra} : {tcp 192.170.21.[10,40]:any, 200.160.1.[0,255]:any} > true - - -
Cs{Rs} : {tcp 192.170.21.[65,70]:any, 200.160.1.[0,255]:any} > true Cs{Ry} : {tcp 10.0.32.10:any, 10.0.35.[0,255]:any} > true
Cs{Rs} : {tcp 192.170.22.[0,255]:any, 10.0.24.[0,255]:any} > true Cs{Rz} : {tcp 10.0.32.[60,80]:any, 10.0.35.[0,255]:any} > true
Ce{Rs} : {tcp 192.170.23.[18,20]:any, 10.0.24.[0,255]:any} > true Cs{Rs} : {tcp 192.170.22.[15,30]:any, 10.0.34.[0,255]:any} > true
Ce{R7} : {tcp 192.170.21.[10,40]:any, 10.0.26.[0,255]:any} > true Cs{Ra4} : {tcp 192.170.23.[0,255]:any, 10.0.34.[0,255]:any} > true
Ce{R} : {tcp 192.170.21.[65,70]:any, 10.0.26.[0,255]:any} > true Cs{Re} : {tcp 192.170.21.[18,20]:any, 10.0.36.0,255]:any} > true

Figure 4.4: An example for a distributed network policy getu

On the other hand, the implicit shadowing between the @45} and the default policy
of component’, is a proper example amplicit full shadowingoetween two firewalls. Fi-

nally, the anomaly between the rilg{ R}, C2{ R, }, and the default policy of component

C5 shows an example of amplicit partial shadowinganomaly between two firewalls.

Inter-Component Redundancy A redundancy anomaly occurs between two components
whether the following conditions hold: (1) The most-upatrecomponent is a firewall; (2)
The downstream component, where the anomaly is detectszksobr reports (completely

or partially) traffic that is blocked by the most-upstrearmponent.
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A proper example ofull redundancybetween two firewalls is shown by rulé§{ R;} and
Ce{ Ry }; rulesC,{ R3} andCg{ R5}, on the other hand, show an exampléutfredundancy
between a firewall and a NIDS.

Similarly, rulesCs{ R4} and Cs{R,} show a proper example @fartial redundancybe-
tween two firewalls, whereas rulé§{ R} andCs{ R} show an example gfartial redun-
dancybetween a firewall and a NIDS.

Sometimes, this kind of redundancy is expressly introdumgchetwork administrators
(e.g., to guarantee the forbidden traffic will not reach tlestohation). Nonetheless, it
is important to discover it since, if such a rule is applied,iway conclude that at least one
of the redundant components is wrongly working.

Inter-Component Misconnection A misconnection anomaly occurs between two com-
ponents whether the following conditions hold: (1) The rgsstream component is a
firewall; (2) the most-upstream firewall permits (expligithy means of negative rules; or
implicitly, through its default policy) all the traffic — ougt a part of it — that is denied or
alerted by a downstream component.

An explicit misconnection anomaly between two firewallsiewn through the ruleSs{ R, }
andCy{ R} (full misconnectio}y and the rules’s{ R,} andCy{ R, } (partial misconnec-
tion).

An implicit misconnection anomaly between two firewallslseshown by the rulé’, { R5 }
and the default policy of firewadl’, (full misconnectio}y and the rule€’, { R} andC>{ R, },
together with the default policy d@f, (partial misconnectioh

Similarly, the pair of rulesCy{ R }-C2{ Rs} and the pair of rule€’,{ R, }-Co{ R5} show,
respectively, an explicit example of full and partial misoection anomaly between a fire-
wall and a NIDS.

Finally, the ruleC,{R5} together with the negative policy of the firewal, shows an
example of implicit misconnection anomaly between a fireaad a NIDS.
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Inter-Component Analysis Algorithms

For reasons of clarity, we split the whole analysis procestur different algorithms.
The input for the first algorithm (cf. Algorithm 5) is the sdt@mponents”, such that
for all ¢ € C, we notec[rules] as the set of configuration rules of componenand
c[policy] € {true, false} as the default policy of such a component

In turn, each rule- € c[rules| consists of a boolean expression over the attribstese
(source zone)dzone (destination zone)sport (source port),dport (destination port),
protocol, anddecision (true or false).

Algorithm 5: i nt er - conponent - audi t (C)
1 foreachc € C' do

2 | foreachr € c[rules] do

3 Z,+— {z€ Z|znsource (r)# 0};
4 Zy— {z€Z|zndest (r)# 0},
5

6

7

foreachz, € Z, do
foreachz, € Z,; do
L audi t (c,r,z1,22);

Algorithm 6 : audi t (¢,r,21,22)
1 foreachp € m ni mal _r out e (z1,2;) do
pathy — tail (p,c);
path, «— header (p,c);
if pathy # () and r[decision] =" false”
andi sFirewal | (¢)then

cq < First (pathy);

downst r eam(r,c,cy);
if path,, # 0 then

cy < | ast (path,);

ifi sFirewal |l (c,)then

upst ream(r,c,c,);
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Algorithm 7 : downst r ean(r,c,cy)

1 if ¢q[policy] = true then

a A WO N

Ry — {rqa € cq | rq «~ r Arg[decision] = false};
if Ry = (0 then war ni ng (“ Full Misconnection™);
else if—t est Redundancy (R4,r) then

war ni ng (“ Partial Misconnection”);

Algorithm 8: upst r ean(r,c,c,)
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Ry« {ry € cy | ry -~ v Aryldecision] = false};

Ryt — {ry € ey | 7y «~ 7 A ry[decision] = true};
if r[decision] =" true” then

if t est Redundancy (R,y,r) then

‘ war ni ng (“ Full Spurious”);
elseifR,, # () then

‘ war ni ng (“ Partial Spurious”);
else ift est Redundancy (R.,r) then

‘ war ni ng (“ Full Redundancy”);
elseif R, # 0 then

‘ war ni ng (“ Partial Redundancy”);
elseifR,; =0and R, =0
and ¢, [policy| = false then

L war ni ng (“ Full Misconnection”);

else

if t est Redundancy (R,,r) then
‘ war ni ng (“ Full Shadowing”);
else if R,; # 0) then
‘ war ni ng (“ Partial Shadowing”);
else if R, = 0 and ¢, [policy] = true then
‘ war ni ng (“ Full Shadowing”);
else if—t est Redundancy (R,;,r)
and ¢, [policy] = true then
L war ni ng (“ Partial Shadowing”);
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Let us recall here the functionsurce(r) = szone anddest(r) = dzone. Thus, we
compute for each component C and for each rule € c[rules], each one of the source
zonesz; € Z, and destination zones € Z,; — whose intersection with respectivelyone
anddzone is not empty — which become, together with a reference to eantponent
and each rule, the input for the second algorithm (i.e., Algorithm 6).

Once in Algorithm 6, we compute the minimal route of compdaehat connects zone
21 10 2y, €., [C1,Cy, ..., Cy] € minimal_route(z, z2). Then, we decompose the set
of components inside each path in downstream paibh() and upstream pathpth,,).
To do so, we use functionscad andtail. The first component; € pathy, and the last
component, € path, are passed, respectively, as argument to the last two tigwi
(i.e., Algorithm 7 and Algorithm 8) in order to conclude thet ®f necessary checks that
guarantee the audit process.

The operator &” within algorithms 7 and 8 denotes that two rulesandr; are correlated
if every attribute inR; has a non empty intersection with the corresponding atgilour ;.

Let us conclude by giving an outlook to the set of warningsigerthe security officer after
the execution of Algorithm 5 over the scenario of Figure 4.4:

Cl{R3} — Cﬁ{Rg, R4}: Full Shadowing C4{R1} — 02{R5}: Full Misconnection
C1{R4} — Cs{R4}: Partial Shadowing Cy{R2} — C2{R5}: Partial Misconnection
C1{Rs5} — Ca{pol.}: Full Shadowing Cy{R3} — Cs{Rs5}: Full Redundancy

C1{Rg} — C2{R1,pol.}: Partial Shadowing || C4{R4} — Cs{Rs}: Partial Redundancy
C4{R5} — Cg{pol.}: Full Misconnection
Co{R3} — C1{pol.}: Full Misconnection
Co{R4} — C1{Ry7,pol.}: Partial Misconnection C5{R;} — C2{R2}: Full Misconnection
C5{Rs} — C2{ Ry }: Partial Misconnection
C3{R1} — Cs{ Ry, Rg}: Full Shadowing C5{R3} — Cs{R1}: Full Redundancy
C3{Rs2} — Cs{Rg}: Partial Shadowing C5{R4} — Cs{Ro}: Partial Redundancy
C5{R5} — Cg{pol.}: Full Misconnection
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Correctness of the Inter-Component Algorithms

To prove the correctness of our Inter-Component Algorithme first define what is a
deployment without anomalies for a set of rules. For thippse, let us consider a setof
configuration rules to be deployed over aGeif components that partitions a network into
a setZ of zones. We also assume tltathas been rewritten by our intra-component-audit
algorithm (cf. Section 4.2).

Let us now consider a rule € R and let us assume thaiapplies to a source zong and
a destination zone, i.e.,s = z; N source(r) # ) andd = z, Ndest(r) # 0. Letr’ be a
rule identical tor except thakource(r’) = s anddest(r’) = d. Finally, let us assume that

[Cy, Cy, ..., Cy| € minimal_route(zy, z3).

Deployment algorithm It defines how any rule € R will be deployed over the sét of
components. There are two different casegecision| = false or r[decision] = true.

If r[decision] = false then, on every component on the minimal route from sourtee
destinationd, deploy a negative rule (i.e., atcept filtering rule if the component is a
firewall, or apass alerting rule if the component is a NIDS).

Conversely, ifr[decision] = true then, the following two possibilities hold: (1)fis a fil-
tering rule, then deploy deny filtering rule on the most-upstream firewall on the minimal
route (if such a firewall does not exist, then generate a gepot error message); (2):f

is an alerting rule, then deploy athert rule on the most-upstream NIDS on the minimal
route (if such a NIDS does not exist, then generate a deployereor message).

Based on this deployment algorithm, we can now prove thewviofig theorem:

Theorem 5 LetC be a set of components. The inter-component algorithmpted in
Section 4.3 do not detect any anomaly in the configurationsitifthere is a seir of rules
such that configurations af' are obtained by applying the deployment algorithm showed
above.
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4.4 Implementation and Performance Evaluation

We implemented the intra and inter-component algorithnesgmted in this chapter in a
software prototype called MIRAGE (which stands for MiscgofRAtion manaGEr). MI-
RAGE has been developed using PHP, a general-purposeirsgtigmguage that is espe-
cially suited for web services development and can be endzeoido HTML for the con-
struction of client-side GUI based applications [Castdignet al., 1999]. MIRAGE can be
locally or remotely executed by using a HTTP server (e.gadke server over UNIX or
Windows setups) and a web browser.

We evaluated our algorithms through a set of experiments e different IPv4 real
networks. The topology for the first network consisted ofragk firewall based on net-
filter [Welte et al., 2006], and a single NIDS based on snodg$th, 1999] — connected
to three different zones with more than 50 hosts. The topofogthe second network
consisted of six different components — based on netfilpéttar [Reed, 2005], and snort
— protecting six different zones with more than 200 host® Whole of these experiments
were carried out on an Intel-Pentium M 1.4 GHz processor @ith MB RAM, running
Debian GNU/Linux 2.6.8, and using Apache/1.3 with PHP/48figured.

During a first phase, we measured the memory space and thespnog time needed to

perform Algorithm 4 over several sets of IPv4 policies fa fiist IPv4 network, according

to the three following security officer profiles: beginnatermediate, and expert — where
the probability to have overlaps between rules increases 6% to 90%. The results of

these measurements are plotted in Figure 4.5 and FigureTh@&ugh those plots reflect

strong memory and process time requirements, we consielgatie reasonable for off-line

analysis, since it is not part of the critical performanca sfngle component.

We conducted, in a second phase, similar experiments toureeéise performance and
scalability of Algorithm 5 through a progressive incremehtauto-generated rules, fire-
walls and zones for the second network. The results of thessuanements are plotted in
Figure 4.7 and Figure 4.8. Similarly to the intra-compormraluation, we consider these
requirements very reasonable for off-line inter-compa@ealysis.
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Summary

We have presented in this chapter an audit process to sdtiautisd access control policy
free of anomalies. Our audit process has been presentedem itiain blocks. We first
presented in Section 4.1 a network model to determine wloahmponents are crossed by
a given packet knowing its source and destination. We thesgmted in Section 4.2 a set
of algorithms for the discovering and removal of policy arabes over single-component
environments. We finally presented in Section 4.3 a set aratgns for the detection and
reporting of anomalies over a multi-component environrsent

The advantages of our set of algorithms, regarding theaglaork presented in Section 3.1
of Chapter 3, are threefold. First of all, our approach ndy @onsiders the analysis of
rules two by two but also a complete analysis of the whole tetiles. This way, those
conflicts due to the union of rules that are not detected ingBder et al., 2005] are prop-
erly discovered by our intra- and inter-component algongh Second, after applying our
intra-component algorithms the resulting rules of eachpament are totally disjoint, i.e.,
the ordering of rules is no longer relevant. Hence, one cafoime a second transforma-
tion in a positive or negative manner, generating a configurahat only contains positive
rules if the component default policy is negative, and negaules if the default policy
is positive. Third, our approach also presents a networkeahtaddetermine which com-
ponents are crossed by a given packet knowing its sourceestthdtion, as well as other
network properties. Thanks to this model, we better defihéhalset of both intra- and
inter-anomalies. Furthermore the lack of this model in $kaer et al., 2005] may lead to
inappropriate decisions.

We also presented along Section 4.2 and Section 4.3 thectwess of our algorithms and
it complexity. In Section 4.4, moreover, we discussed thplé@mentation of our set of
algorithms in a software prototype and a first evaluationuahsan implementation. The
results of performance of our implemented prototype defnates the practicability of
our work. Although these results show that our algorithmsehsirong memory and time
processing requirements, we believe that these requitsnaea reasonable for off-line
analysis, since it is not part of the critical performancéhefaudited components.



Chapter 5

Infrastructure for the Exchange of
Messages and Audit Information

"I've ignored stop signs, I've jaywalked, I've even openedsfion Jones Beach.
But this is the U.S. Mail! And since | was old enough to lickagp,
| was inculcated with the sanctity, the inviolability of thmail”
— JOEL FLEISCHMAN (NORTHERN EXPOSURE

As pointed out in Chapter 3 (cf. Section 3.2), tradition&at/server solutions for the ex-
change of audit information between security componemtgjogckly become a bottleneck
— due to saturation problems associated with the serviezenffby centralized or master
domain analyzers. On the one hand, traditional system®Ilik& [Snapp et al., 1991] and
NADIR [Hochberg et al., 1993] process their data in a cemtoagle although the collection
of data is distributed. These schemes are straightforwatigesy simply push data to a cen-
tral node and perform the computation there. On the othed,Haierarchical approaches,
such as GrIDS [Staniford-Chen et al., 1996] and NetSTAT fdgnd Kemmerer, 1999],
have a layered structure where data is locally preprocessddiltered. Although they
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mitigate some weaknesses present in centralized schdmegsstill cannot avoid vulnera-
bilities at the root level. In contrast to these traditiot@signs, alternative approaches try to
eliminate the need for dedicated elements. The idea oflalisiing the detection process has
some advantages regarding centralized and hierarchipedaghes. Mainly, decentralized
architectures have no single point of failure and bottl&s®@an be avoided. Some message
passing designs, such as CSM [White et al., 1999] and Quickg&ruegel, 2002], try to
eliminate the need for dedicated elements by introducingea-fo-peer architecture. In-
stead of having a central monitoring station to which alladas to be forwarded, there
are independent uniform working entities at each host peiftg similar basic operations,
i.e., the different entities collaborate on the detectictivéies.

These designs seem to be a promising technology to implesieepntralized architectures
for the detection of attacks. However, the presented sysiih exhibit very simplistic
designs and suffer from several limitations. For instameesome of them, every node
has to have complete knowledge of the system; all nodes loalie tonnected to each
other which can make the matrix of the connections, that seel fior providing the alert
exchanging service, grow explosively and become verygésttontrol and maintain. An-
other important disadvantage present in this design ighleadifferent entities always need
to know where a received notification has to be forwardedi(gino a queue manager).
This way, when the number of possible destinations grovesn#twork view can become
extremely complex, which leads to a system that is not stalaDther designs are based
on flooding which makes the system easier to maintain on teeafcscalability, as the
message complexity grows fast with the number of nodes.

Most of these limitations can be solved efficiently by usingualish/subscribe based sys-
tem. The advantage of this model for our problem domain oWleerocommunication
paradigms is on the one hand that it keeps the producer ofagesseparated from the
consumer and on the other hand that the communication iemafiton-driven. This way,
it can avoid problems regarding the scalability and the rgameent inherent to other de-
signs, by means of a network of publishers, brokers, andcsiless. A publisher in a
publish/subscribe system does not need to have any knoevigogut any of the entities
that consume the published information. Likewise, the subsers do not need to know
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anything about the publishers. New services can simply decdithout any impact on or
interruption of the service to other users.

The rest of this chapter is organized as follows. We stath ait introduction to the pub-
lish/subscribe communication paradigm in Section 5.1.dati®n 5.2 we briefly overview
the Intrusion Detection Message Exchange Format (IDMER)¢clvis the format we use
in order to exchange audit information in our proposal. Wentkiscuss in Section 5.3
our communication mechanism and the current state of oueimgntation based on xml-
Blaster, an open source publish/subscribe message atiendelleware [Ruff, 2006]. We
finally conclude this chapter in Section 5.4 by giving an ookl of the performance ob-
tained with a first deployment of such an implementation.

5.1 Publish/Subscribe Model

The publish/subscribe model is an asynchronous, manyat@eyncommunication model
which is intended for distributed systems [Eugster et 803. It is often used in those
situations where a message (often referred in the litezatsmotification) sent by a single
entity is required by, and should be distributed to, mudtiphtities. It is often used for
efficient and comfortable information dissemination tougranembers which may have
individual interests in arbitrary subsets of messagesighdad. In contrast to multicast
communication, clients have the possibility to describe ¢hents they are interested in
more precisely (e.g. based on the contents of the notificat@lients can choose to either
subscribe or unsubscribe to messages as time goes by, dhd silibscribers are indepen-
dent of each other. More formally, and according to [Pielz@©04], we can define the
publish/subscribe communication paradigm as follows.

Definition — The Publish/Subscribe model is based on the use of messaisheus —
which produce information (or message publications) — am$sage subscribers — which
receive such messages. Message subscribers describathef knessages that they want
to receive with a message subscription. Messages comingrfressage publishers will
subsequently be delivered to all interested message shbecwith matching interests.
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Publish/Subscribe Systems

A publish/subscribe system implements the publish/sittesenodel and consists of, at
least, one broker forwarding notifications published bgrds to other clients that are in-
terested in them. For scalability reasons, it is common tolément a distributed broker
network that forms a so-calletbtification serviceghrough an overlay network consisting
of brokers.

This service provides a distributed infrastructure foriffeztion routing which includes
the management of subscriptions and the disseminationtibications in a possibly asyn-
chronous way. Clients can publish notifications and subsdw filters that are matched
against the notifications passing through the broker nétwtira broker receives a new
notification it checks if there is a local client that has sulted to a filter that matches this
notification. If so, the message is delivered to this clié&aditionally, the broker forwards
the message to neighbor brokers according to the appligthgoalgorithm. We refer to
[Muhl, 2002] for a good survey on the field.

[Publisher 1] [Publisher 2] ( Publisher 3] [ Publisher 1 Publisher 2 Publisher 3

Subscriber 1 l Subscribeer [ Subscriber 1 ] [ Subscriber 2 ] [ Subscriber 3 ]

(a) Simple publish/subscribe system. (b) Extended pub/sub system.

Figure 5.1: Examples of simple publish/subscribe topa@sgi

An example of a simple centralized publish/subscribe systeshown in Figure 5.1(a).
Here, five clients are connected to a single broker: thremtdithat are publishing noti-
fications and two clients that are subscribed to a subseteofhdtifications published on
the broker. Subscribers can choose to subscribe to thecatitins available through the
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broker or cancel existing subscriptions as needed. Theebmoktches the notifications it
received from the publishers to the subscriptions, enguhis way that every publication
is delivered to all interested subscribers.

This very basic publish/subscribe setup can be extendediyecting multiple brokers
(cf. Figure 5.1(b)), enabling them to exchange messageseXtended design allows sub-
scribers on one of the brokers to receive messages that leavegublished on another
broker, further freeing the subscriber from the constsagitconnecting to the same bro-
ker the publisher is connected to. Most available impler@m make this transparent
for the programmer by keeping the same interface operaéisms the centralized design.
This way, an application can easily be distributed. In Fegbr2, for instance, we show
a distributed publish/subscribe topology, where a cliepublishes a notificatiom that

is matched by filterF, clients subscribed to, while the notification service takes care of
forwarding the notification properly.

p: pub(n),

] : Client e . Broker B;

Figure 5.2: Example of a distributed publish/subscrib@togy.

Regarding the subscription of information, clients areeatd formulate their interests
based, mainly, on the contents of the notifications and aatribute they carry. This is
known as content-based and topic-based subscriptiorecesgly.
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Topic-based publish/subscribe systems, on the one hantheearliest variant of the pub-
lish/subscribe communication model. Here, publisherdigplilmessages with respect to
a topic or subject and subscribers specify their interest in a topic and vecail mes-
sages published on this topic. Topic-based subscriptignsraturn, easier to handle than
content-based subscriptions. Since topics can be seem@3sgn group communication
[Powell, 1996], topic-based subscription may efficientiyduilt on top of a group commu-
nication mechanism such as, for example, IP multicast [[Dgel989].

Two different matching mechanisms are commonly used irctbpsed publish/subscribe
systems. One matches subscriptions successfully to it if the topic of the sub-
scription exactly matches the topic under which the notificais published. Using this
mechanism, topics become equivalentbhannels The other mechanism arranges topics
in a subject tree such that subscriptions not only matcHioations if the topics are the
same, but also if the topic of the subscription is an ancedttre notification topic in the
subject tree (in this case, a topic becomes equivalenthierag.

Content-based publish/subscribe systems, on the othdy abow subscriptions to evaluate
the whole content of notifications. This way, in contentdzhselection the structure of a
subscription is not restricted to a topic or a theme — it caariyefunction over the content
of a message. Here, a subscription can be formulated exiréime-grained based on the
content of notifications using a query language that can ln&arily complex. Moreover,
there does not have to be a system wide agreement on the sgiax &s it is generally a
good idea for topic based routing. In particular, this is artpnt for applications that run
on mobile devices with limited processing power and netwiakdwidth.

Content-based subscriptions usually depend on the steuofuthe message. It can be
binary data, name/value pairs, semi-structured data,esr programming language classes
with executable code. A subscription is often expressed salescription language that
specifies a filter expressions over messages. For our worRrep®se the use of content-
based subscription over messages with semi-structured tadeed, we propose the use
of XML for the structure of a message, and the use of XPathasubscription language
to specify filter expressions (cf. Section 5.3). In the failog, we give an outlook on the
main properties of the format built on top of the XML struewf our messages.
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5.2 Representation of Messages

In order to exchange audit information in a standard manwermain specifications have
been considered (cf. Chapter 3, Section 3.3). The Commaousionh Specification Lan-
guage (CISL), on the one hand, which was initially proposedltow the components
of the Common Intrusion Detection Framework (CIDF) to exdfedata in semantically
well-defined ways [Feiertag et al., 1999]. The Intrusionda&bn Message Exchange For-
mat (IDMEF), on the other hand, was proposed by the IETFtsigion Detection Exchange
Format Working Group (IDWG) to accomplish similar purpof@ebar et al., 2006].

Our approach is based on the IDMEF format for three main readéirst, this format is the
basis for the similarity operator used on the aggregatiahfasion phases of our alert cor-
relation approach (cf. Chapter 6). Second, there is a stgmifinumber of current tools and
implementations based on the IDMEF format, such as [Mig0862 which makes it easy
to integrate it in our work. Third, the exchange of messaggw/den the components of
our framework is compliant with the intrusion detectiomfiawvork proposed by the IDWG.
Furthermore, IDMEF allows the specification of messagegigaad by different network
security components, such fsewalls and network intrusion detection systerfi$IDSs),
and it can be extended to incorporate additional data irdtion, such as diagnoses and
counter-measures, inside their proposed format.

Up to now, IDMEF is arinternet draftapproved by the IESG (Internet Steering Group) as
an IETF's RFC (Request For Comments). It is represented iobgact-oriented fashion.
The class hierarchy of IDMEF has been represented by usengxtensible Markup Lan-
guage (XML). The rationale for choosing XML is explained Bebar et al., 2006], as well
some examples of using IDMEF to describe IDS’s alerts andDMEF's associate Doc-
ument Type Definition (DTD) — although one may still find theremt version of IDMEF
defined by using DTDs, the authors also offer a new definitiat tses XML Schemas
instead of DTDs.

We show in Figure 5.3 the two main kind of messages suppoptdMEF: heartbeatand
alerts. Heartbeats, on the one hand, are periodic messages beta@@onents, in order
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to inform that they are operational. Alerts, on the otherdha@arry audit information, such
as the component that produced it, the classification of ¢éteatled activity, the source and
target ports related to this activity, and other optionahd#n the following, we summarize
the main properties of IDMEF’s alert class, concerningvaht aspects to our work such
g the component which created the messagmién which the message

as determinin

+
ToolAlert

Figure 5.3: The IDMEF's message class.

was created, the kind of activity the message is pointingand so on.

We start by overviewing the analyzer class which identifiesdomponent from which the
message originates. Only one component is encoded for easbage — i.e., the one at
which the message originated. The class is composed, indgbithree aggregate classes:

node whichin

cludes information about the node on which the congmt residegrocess
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which holds information about the process in which the congmb is executing; anana-
lyzer, which carries information about other component whichtum, has forwarded the
original information.

The idea behind the recursive aggregation of componeriésarces within the IDMEF’s
analyzer class is that when a component receives an IDMHEg#s and wants to forward
it to another component, it needs to substitute the origitoaiponent information with its
own — since, as we pointed out above, just one component ededdor each message.
This way, and in order to preserve the original componemtrmation, it may be included
in the new component definition as a reference to the prewioogponent. This mechanism
will allow component path tracking.

The class analyzer has eight attributasialyzerid name manufacturer mode| version
class ostype andosversion Themanufacturermode] version andclassattributes’ con-
tents are vendor-specific, but may be used together to fgatifierent types of compo-
nents. Theostypeandosversiorattributes’ contents are, respectively, the operatingesys
name and the operating system version in which the compsraotcess is executed. Fi-
nally, theanalyzeridandnameattributes’ contents provide, respectively, the uniquentd
fier and the explicit name for the component in the system.

Regarding the timestamps of a message, the IDMEF stand&rgsl¢he following three
different classes to represent time: (IeateTimewhich is the time when the message is
created by a component; (PetectTimewhich is the time when the event or events that
caused the creation of a message were detecte@n@yzerTimewhich is the time at the
original component whether the message has been forwarteel final object for each
instance contains information such as the number of secsinds theepoch the local
GMT offset, and the number of microseconds. Even thoughaltiiree timestamps can
be provided by each component when generating a messag#gusne defined by the
CreateTimetlass is considered mandatory by the IDMEF standard.

The classes source and target contain, respectivelyniafiton about the possible origin
and destination of the events that motivated the generafitimee message. An event may
have more than one source (e.g., a distributed denial ofcgeattack), more than one
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target (e.g., a port sweep). Both source and target clasesesomposed of information
about thenode theuser, theprocessand thenetwork servicehat motivated the message.
The target class includes, moreover, a list of affediled Referring to their attributes, both
source and target classes have the following two commoibutes: (1)ident which is a
unique identifier for either the source or target classjr{@rface which may be used by

a component multiple interfaces to indicate which intezftfus source or target was seen
on. Furthermore, the class source includes the attrpoefed which indicates whether
the source is, as far as the component can determine, a gpamdfeess. Similarly, the class
target includes the attributtecoy to indicate whether the target is, as far as the analyzer
can determine, a decoy.

The classification class contains themeof the event that motivated the creation of a mes-
sage, or other information which allows the components terd@ne what is the message
pointing out. It is composed of one aggregate class, thes otdisrence which contains
information about external documentation sites, that pritivide background information
about such an event. Similarly, the assessment class istoggdvide the component’s
assessment of an event, and it is composed of informationtabeimpact actionsthat
may be taken in response, and a measurement of the confidencerhponent has in its
evaluation of the event.

Finally, the IDMEF’s alert class can be augmented with addél information by means of
the aggregate classasdditionalDatg CorrelationAlert ToolAlert andOverflowAlert The
information aggregated by those classes is often usefulderdo associate different mes-
sages pointing out to similar activities — and reported bfetBnt components — as well
as to extend the standard IDMEF model with additional festusuch as complex data
types and relationships. ThelditionalDataclass, on the first hand, includes information
that does not fit into the IDMEF’s data model. This may be amat@iece of data, or a
large amount of data. Th@orrelationAlertclass, on the second hand, may include addi-
tional information related to the correlation process inclilthis message is involved. The
OverflowAlertand ToolAlert classes, on the third hand, include, respectively, infoiona
related to buffer overflow attacks, and information relatethe use of attack tools or other
malevolent programs (e.drpjan horsesrootkits, and so on).
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5.3 Communication Infrastructure

In this section we give an outlook to the operational detgiilthe communication infras-
tructure presented in [Garcia et al., 2004b, Garcia g2@05e]. As our motivation is not
targeted on developing a new publish/subscribe systemiwte teuse as much available
code and tools as possible. For our experiments (cf. Sebt®we usedkmiBlaster an
open source publish/subscribe message oriented midaéi¢Raff, 2006]. It connects a set
of nodes that build up the infrastructure for exchangingsiesing the interface operations
offered by the underlying middleware.

Each xmIBlaster's message consists of a header filteririgéimabe applied to, a body, and
a system control section. The body of a xmIBlaster’s messafpemulated using IDMEF
format (cf. Section 5.2). On the other hand, filters are XRafhressions that are evaluated
over the header to decide if a message has to be deliveredutssariber. We discuss the
essential interface operations offered by xmIBlaster enfthllowing section.

Interface Operations

Conceptually, the alert communication infrastructureedtl through xmiBlaster can be
viewed as a black box with anterface(cf. Figure 5.4). It offers a number operations
each of which may take a numbermdrametersClients can invokénput operationgrom
the outside, and the system itself invokegput operationso deliver information to clients.

-CJ) -3

Interaction notify(a) unsub(F)
pub(a)

Interface
Publish/Subscribe System

Figure 5.4: Black box view of a publish/subscribe system.
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We list the main operations that are of interest for our workable 5.1. To publish alerts,
clients invoke thgub(a) operation, giving the alert as parameter. The published alert can
potentially be delivered to all clients connected to theéesysvia an output operation called
notify(a). Clients register their interest in specific kinds of adry issuing subscriptions
via thesul F') operation, which takes a filtdf as parameter. Each client can have multiple
active subscriptions which must be revoked separately imgukeunsulf) operation.

pub(C, a) ClientC publishes alert
sub(C, F') ClientC subscribes to filtef’
notify(C,a) | ClientC is notified about alert
unsub(C, F') | ClientC unsubscribes to filteF’

Table 5.1: Main interface operations.

All these operations are instantaneous and take paranfieisrshe set of all clientg, set
of all alerts.4, and the set of all filter§. Formally, a filterF" € F is a mapping defined by

F: a — {truefalse} Vaec A

We say that aotificationn matches filte#” € Fiff F'(a) = true. We also assume that each
alert can only be published once and that every filter is agmtwith a unique identifier
in order to enable the alert communication infrastructaneéntify a specific subscription.

Components and Interactions

As shown in Figure 5.5, and according to the general framieweerviewed in Chapter 2
(cf. Section 2.2), each node of the architecture is made apset of local analyzers (with
their respective detection units or sensors), a set of alartagers (to perform alert pro-
cessing and manipulation functions), and a set of locatiaanits (or effectors). These
components, the interactions between them, and the alentncmication infrastructure,
are described below.

Analyzers, on the first hand, are local elements which argoresble for processing local
audit data. They process the information gathered by assacsensors to infer possible
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Analyzers] [Aggregatlon]
Manager

sub(LA),sub(EA) .
sublCA)unsub(ca)| [notifv(a) - SEbOR
pub(ia)|  ynsub(EA),unsub(LA)| | notify(ea)

: pub(aa)
pub(ga),pub(ea) notify(ca) pub(ca)

Correlation
Manager

Policy
Manager

Effectors

sub(AA)
unsub(AA)

notify(ga)

notify(aa)

r Notification Service V]

Figure 5.5: Overview of the main components and their ictévas.

alerts. Their task is to identify occurrences which arevaté for the execution of the
different steps of an attack and pass this information tocthreelation manager via the
publish/subscribe system. They are interested in localsal&ach local alert is detected
in a sensor’s input stream and published through the publiblscribe system by invoking
the pub(la) operation, giving thdocal alert la as parameter. Local alerts are exchanged
using IDMEF messages (cf. Section 5.2).

Each notificatioria has a unique classification and a list of attributes withrtrespective
types to identify the analyzer that originated the al@riglyzerlD, the time the alert was
created CreateTimg the time the event(s) leading up to the alert was detectéuel sen-
sor’s input streametectTimg the current time on the analyzekr{alyzerTimg and the
source(s) and target(s) of the event&drceandTarge). All possible classifications and
their respective attributes must be known by all system amapts (i.e. sensors, analyz-
ers and managers) and all analyzers are capable of pulgliststances of local alerts of
arbitrary types.

Managers, on the second hand, are the components in chapgefofming aggregation
and correlation of local alerts and external events. Astpdiout in Chapter 3 (cf. Sec-
tion 3.3), the use of multiple analyzers and sensors togeiltle heterogeneous detection
techniques increases the detection rate, but it also isesethe number of information to
process. In order to reduce the number of false negativediatribute the load that is im-
posed by the alerts our architecture provides a set of agtioegand correlatiomanagers
which perform aggregation and correlation of both, locertsl (i.e., messages provided
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by the node’s analyzers) and external messages (i.e., fiveniation received from other
collaborating nodes). We describe in the following the basieractions of the two main
managersaggregatiorandcorrelationmanagers.

Aggregation Manager — The basic functionality of each aggregation manager isuster
alerts that correspond to the same occurrence of an actio€ljapter 3, Section 3.3).
Each aggregation manager registers its interest in a sdhset local alerts published by
analyzers on the same node by invoking s L. A) operation, which takes the filtdrA
as parameter, with

LA(a) true , ae€ Ly
a) =
false , otherwise.

Similarly, the aggregation manager also registers itga@stein a set of related external
alerts€ 4 by invoking thesul £ A) operation with filter£' A as parameter, and

EA(a) true , a€é,
a) =
false , otherwise.

Finally, it registers its interest in local correlated #&d&t, by invoking thesul(C' A) opera-
tion with

t C
OA(a):{ rue , acCy

false , otherwise.

Once subscribed to these three filters, the communicatiwastnucture will notify the
subscribed managers of all matching alerts via the outpettadipnsnotify(/a), notify(ea)
and notify(ca) with la € L4, ea € £4 andca € C4. All notified alerts are processed
and, depending on the clustering and synchronization nmesimathe aggregation manager
can publish global and external alerts by invokmgi(ga) and pub(ea). Finally, it can
revoke active subscriptions separately by using the opeasaunsul{C' A), unsulf £~ A) and
unsulgLA).
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Correlation Manager — The main task of this manager is the correlation of alerts de-
scribed in the following chapter (cf. Chapter 6). It opesab@ the set of global alerts,
published by the aggregation manager. To register itsaaten these alerts, it invokes
sul(G A), which takes the filte€z A as parameter with

true , ae€ gy
false , otherwise.

GA(a) = {

The notification service will then notify the correlation nager of all matched alerts with
the output operationotify(ga), ga € G4. Each time a new alert is received, the correlation
mechanism finds a set of action models that can be correlatedler to form a scenario
leading to an objective. It then includes this informatintoitheCorrelationAlertfield of

a new IDMEF message and publishes the correlated alert lokimy pul(ca), giving the
notificationca € C4 as parameter. To revoke the subscription, it usesilfG A).

The correlation manager is also responsible for reactingaiacted security violations.

The algorithm used is based on the anti-correlation of astio select appropriate counter-
measures in order to reconfigure, for instance, the secpaligy (cf. Chapter 3, Sec-

tion 3.3). As soon as a scenario is identified, the corredatiechanism may look for

possible action models that can be anti-correlated withrtiidual actions of the sup-

posed scenario, or even with the goal objective.

The set of anti-correlated actions represents the set oftepmeasures available for the
observed scenario. The definition of each anti-correlattidracontains a description of

the counter-measures which should be invoked (e.g. hargehe security policy). Such

counter-measures are included into #h&sessmerfteld of a new IDMEF message and
published by invokingpub(aa), using theassessment aletitz as parameter.

Finally, apolicy managemwill register and revoke its interest in these assessmeintsal
by invoking sufAA) andunsul§AA). Once notified, the policy manager may perform
the post-processing of the received alerts before sentdmg,tfor example, to a set of
associated policy reconfiguration effectors.
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5.4 Deployment and Evaluation

In order to evaluate the performance of our proposal, weayepl a set of analyzers and
managers publishing and receiving IDMEF messages basdédBARPA Intrusion Detec-
tion Evaluation Data Setf.ippmann et al., 2000]. This evaluation data set containsem
than 300 instances of 38 different automated attacks tha lenched against victim hosts
in seven weeks of training data and two weeks of test data.

The complete set of messages were published as local amdaaéerts through the noti-
fication service of xmiBlaster, and then processed and teghdal in turn to the set of sub-
scribed managers. The exchange of alerts proved to bessatisf, obtaining a throughput
performance higher than 150 messages per second on arPérgisrm M 1.4 GHz pro-
cessor with 512 MB RAM, analyzers and managers on the sambinganning Linux
2.6.8, using Java HotSpot Client VM 1.4.2 for the Java basekidn. Message delivery did
not become a bottleneck as all messages were processectiarianwe never reached the
saturation point.

The implementation of both publishers and subscribers vaagd on thdibidmef C Ii-
brary [Migus, 2006] in order to build and parse compliant IBMmessages. In turt;
bidmefis built over the libxml library [Veillard, 2006]. The libxiibrary provides two
interfaces to parser XML data: a DOM style tree interfacel arBAX style event based
interface. Up to now, we are using for our implementation@®@M interface due to its
easiness of use. Its main drawback is, however, that its meansage is proportional to the
size of the XML data. For this reason, we are actually movimgaurrent implementation
to the SAX based interface. This would help us to decreaseutrent amount of memory
that is currently necessary to maintain the entire XML treenemory.

The communication between analyzers and managers thromifBlaster brokers was
based on the xmiBlaster internal socket protocol and implaed using the xmiBlaster
client C socket library [Ruff, 2006], which provides asynmmous callbacks to Java based
brokers. The managers formulated their subscriptionsggusiPath expressions, filtering
the messages they wished to receive from the broker.
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In Figure 5.6 we show the processing time and memory spackhysbrokers during the
exchange of alerts. The first curve represents the percefaGPU load used by each
broker. The second curve represents the quantity of memseyg by each broker. As
we can notice in the first curve, the percentage of processmgused by the brokers is
guite stable and negligible for the normal performance obamal system. The second
curve reflects, however, that the cost in memory is quitensite. We consider that this
consumption is due to the managing of messages and we hdpbehsw version of our
prototype based on a more efficient XML parsing and buildictgesne will decrease it.

30

Brokers’ CPU usage —*—

Brokers’ Memory usage ---#---

Subscribers’ CPU usage ---®---
25 | Subscriber's Memory usage a

Publisher's CPU usage --&--

Publisher's Memory usage ---&--

20 - B

15 | 4

Usage (%)

0 200 400 600 800 1000
Number of messages

Figure 5.6: Processing and memory consumption.

Similarly, Figure 5.6 also shows the processing time and amgispace used by publishers
and subscribers. Here, we noticed again that the main dckwlvare the memory con-
sumption due to the XML parsing and building. We consides thiensive use of memory
will be decreased on the new version of our prototype basdtle@B8AX based interface —
avoiding the necessity of maintaining the entire XML trearassages in both publishers
and subscribers’ memory.
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Summary

We presented in this chapter a message passing design éxdha&nge of audit information
between the components of our platform by means of a publiblstribe model. Instead of
having a central or master monitoring station to which a&dweas to be forwarded, there are
independent uniform working entities at each host perfogwsimilar basic operations. The
information gathered by each entity is exchanged to thethestigh a publish/subscribe
system which allows messages to be sent via a push or pulégelange.

As we pointed out in Section 5.1, the advantage of this moaetife exchange of au-
dit information between components is, on the one hand, itHaeps the producer of
messages separated from the consumer and, on the otherthanthe communication
is information-driven. This way, it allows us to avoid prebis regarding the scalability
and the management inherent to other designs, by means oivarkef publishers, bro-
kers, and subscribers. A publisher in a publish/subscyibEm does not need to have any
knowledge about any of the entities that consume the puddishformation. Likewise,
the subscribers do not need to know anything about the gdrss Services can be added
without any impact on or interruption of the service to otelements.

We then introduced in Section 5.2 the main properties of tfr@i$ion Detection Message
Exchange Format (IDMEF) as the format that is built on tophaf XML structure of the
messages exchanged between the components of our platferpresented in Section5.3
the operational details (interface operations and intemacof our communication infras-
tructure; and we discussed and overviewed the initial tesafl a first prototype of our
approach in Section 5.4. We consider these results give e lgope that the use of a
publish/subscribe system for the communication infrastne indeed increases the scala-
bility of the proposed architecture. Regarding the high menusage, and as pointed out
in Section 5.4, we are actually moving our current impleragan to the SAX interface,
since it does not maintain the entire XML tree in memory, \mmteans that the load will
considerably decrease.



Chapter 6

Anti-correlation and Selection of
Counter-Measures

"What is the concept of defense? The parrying of a blow.
What is its characteristic feature? Awaiting the blow.”
— CARL VON CLAUSEWITZ (ON WAR)

The use of traditional security mechanisms, such as firevaald cryptography, is not
enough to guarantee the security of a given network systemrmp&mentary mechanisms
are necessary in order to cope with attacks when the firsolimefense (i.e., cryptogra-
phy and firewalls) has been evaded. Up to nbwrusion detection systenffDSs) have
become the most important component of such a complemekitadhyof security mecha-
nisms. They offer the necessary tools, methods, and resotoddentify, assess, and report
unauthorized activity against a target network.

A recent trend in intrusion detection is to try to understamdl model intrusion strate-
gies to provide a more global and precise diagnostic of tteeision [Cuppens, 2001,
Ning and Xu, 2003]. Although these approaches represegparsthe right direction, they
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are not sufficient. Itis also necessary to develop autondgézhses capable of appropriate
responses to counter intrusions when they occur. Sevespbnse strategies are possible
including launching counter measures against the intrt@lprevent his or her malicious
activity to proceed or acting on the target system to stopiritresion and recover in a
safe state [Gombault and Diop, 2002]. Direct responsesiagtie intruder, however, is a
complex problem that includes several technical diffieslti

In this chapter, we describe the main features of the reacetpproach we presented in
[Cuppens et al., 2006a]. This approach is intended to helrgg officers to choose proper
counter-measures when an intrusion occurs. Such courgasumes generally depend on
the type of intrusion being performed. For instance, thpagases will not be the same
in the case of a denial of service (DoS) attack or a user to(td2R) attack. Thus, our
approach is based on a library of responses that contafesatif types of possible counter-
measures which the officer can launch to stop the detectedions.

Our approach is based on a logical formalization of botrugibns and counter-measures.
This formalism is used to derive, from the intrusion dedarip (specially the effects of an
intrusion on the target system), one or several countessurea that may circumvent the
attack. For this purpose, we define in Section 6.2 the nofi@mt-correlation This notion

is used to determine the counter-measures that will havegatine effect on the intrusion
and therefore will enable the administrator to stop thechtta

The remainder of this chapter is organized as follows. IrtiBe®&.1, we present our for-
malism to model intrusions and counter-measures. Thisdbsm is based on LAMBDA,
a language suggested in [Cuppens and Ortalo, 2000] to mmuidesions. We then suggest
in Section 6.1 how to use LAMBDA to model counter-measuresctisn 6.2 recalls the
definition of correlation presented in [Cuppens and Mi&f§$2] and introduces the notion
of anti-correlation. In Section 6.3, we show how to use antrelation to determine rel-
evant counter-measures, either to act on the objective oftarsion or to cut an ongoing
attack scenario by acting on a given step of this scenario.aM present how our ap-
proach provides means to parameterize the selected caurtesures. Section 6.4 gives
an example to illustrate the response mechanism suggestieid chapter.
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6.1 Modeling Intrusions and Counter-Measures

In this section, we present our formalism, based on LAMBDAp@ens and Ortalo, 2000],
to model both intrusions and counter-measures. LAMBDA e&sdhronym for LAnguage

to Model a dataBase for Detection of Attacks. It is used to/pi®a logical description of

an attack. The description of an attack specified by LAMBDAeéseric, in the sense that
it does not include elements specific to a particular intnusietection process.

A LAMBDA description of an attack is composed of the followifour attributes:

e pre-condition — defines the state of the system needed in to carry out theedesir
attack or action.

e post-condition —defines the state of the system after a successfully exeaitihe
attack.

e detection —is a description of the expected alert corresponding to #gieation of
the attack.

e verification — specifies the conditions to verify the success of the attack.

The alerts launched by a detection system provide evidehteeooccurrence of some
malicious events but are not sufficient to conclude thatehmgents will actually cause
some damage to the target system.. This is why a LAMBDA dpsorn also includes a

verification attribute that provides conditions to be cleztko conclude that the execution
of the action has been successful.

On the other hand, we define abjectiveas a specific system state. This state is char-
acteristic of a violation of the security policy [Cuppensiaviiége, 2002]. A LAMBDA
description of an intrusion objective is composed by onlg attribute:

o state —defines the state of the given system that corresponds touaitgegolicy
violation.
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As explained above, LAMBDA is used to describe possibleatiohs of security policy
(intrusion objective) and possible actions (attack) arugher can perform on a system to
achieve an intrusion objective. This database of LAMBDAalggions is used to recognize
an intrusion process and predict the intention of the irgrud

Let us present here an example of intrusion modeled with LAMBFirst an intruder
scans port 139. If it is open, he concludes thatdperating systerns windowsand uses
the NetBiosservice. The intruder can then execut@ianuke attaclon this target system
that will cause a denial of service. We show in figures 6.1 aBdréspectively, the proper
description in LAMBDA of theport-scanandwinnukeattacks— performed by a malicious
agent on a given host.

attack port_scan(A, H, P)
pre: open(H, P) — port P is open on host{
detection:  classification(Alert, TCP_Scan’) - the classification isT’CP_Scan’
A source(Alert, A) — the source in alert id
A target(Alert, H) —the target in alert i$/
A target_service_port(Alert, P) — the scanned port iB
post: knows(A, open(H, P)) —agent4 knows that port” is open
verification: true — always true

Figure 6.1:port-canattack performed by an ageAton a given host{.

attack winnuke(A, H, S)
pre: use_os(H, windows) — OS on host{ is Windows
A use_service(H, Netbios’) —hostH uses Netbios’ service
A open(H, 139) — port 139 is open on hod#
detection:  classification(Alert, Winnuke') — alert classification isWinnuke’
A source(Alert, A) —source in alert it
A target(Alert, H) —target in alert is{
post: deny_of _service(H) — deny of service ot/
verification: wunreachable(H) —hostH does not reply

Figure 6.2:winnukeattack performed by an agedton a given host{.
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Let us also show how to model a violation of security policyFigure 6.3, for example, a
policy violation after a web server goes down is presented.

objective webserver_failure(H)
state: deny_of _service(H) — deny of service on hogf
A server(H, http) — hostH is an http server

Figure 6.3: Intrusion objective: denial of service (DoS)aoweb server.

As we can see in these three examples, each LAMBDA desarnipses several variables
(corresponding to terms starting with an upper case letféhen an alert can be associated
with a LAMBDA description through theetectionattribute, we can then unify variables
with values. We calattack occurrenca LAMBDA description where variables have been
unified with values.

Using LAMBDA to Model Counter-Measures

In [Cuppens et al., 2006a] we suggest adopting the same lisrmshown above to model
counter-measures. Thus, a counter-measure has simiiautds to an attack. The main
difference is that thdetectiorattribute associated with an attack is replaced by théatti
action This leads to the following model for representing cowmerasures:

pre-condition — defines the system state required for the success of thearount
measure.

post-condition —defines the system state after applying the counter-measure

action —defines the actions necessary to perform the counter-nmeeasur

verification — specifies the conditions to verify the success of the coumesasure.

Figure 6.4 provides an example of counter-measure speaifiils model. It consists in
closing all connections between a given souscnd a given targef’.
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counter-measure close_remote_access(S,T)

pre: remote_access(S,T) — S has a remote accessto

action: TCP_reset(S,T) —aTCP_reset closes the connection
post: not(remote_access(S,T')) — connections closed between both s|de
verification: not(T'C P_connection(S,T)) - verify that all connections are closed

Figure 6.4: Counter-measure: closing a TCP connection.

As for the attacks and objectives, the approach is to usédingalism to specify a library
of possible counter-measures that apply to the system wklda intrusion. We shall
now define a response mechanism to select the adequate reme#sures for a detected
scenario. This mechanism is based on a principle calledcorrelationwhich is close to
the correlation principle suggested in [Cuppens and Miege, 2002]. Theseprinciples
are formally presented in the following section.

6.2 Correlation and Anti-correlation

Our response mechanism is based on recognizing the insudintions. Using LAMB-
DA, [Cuppens and Miege, 2002] shows how to correlate detkattacks to identify a sce-
nario. This approach was initially implemented in a PROLOGtqtype called CRIM (Co-
opeRative Intrusion detection Module) and it has recenéigrbimproved in an enhanced
version, implemented in C and C++, which also includes natufes such as aggregating,
merging, and weighted classification of correlated scesdAutrel, 2005].

In this section we first recall the definition of the corradatiprinciple of both versions of
CRIM. We also show how to extrapolate this definition to pcetliture attacks that the in-
truder will probably perform and the objective that he or attempts to achieve. We then
define a second notion, calledti-correlation in order to formally design the response pro-
cess, and we discuss how to use an anti-correlation prozesgdect the counter-measures
candidates as the response to the detected activity.
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Correlation

Let so start by recalling the correlation approach as it wéglly introduced for the first
version of CRIM in [Cuppens and Miege, 2002]. Such a coti@taprocess is based on
the unification principle on predicates. Letandb be two LAMBDA descriptions of
attacks. post, is the set of literals opost-conditionof the description (i.e., post, =
EXPTa1 A €TPTa2 A --- A EXPTqy) @ndpre, is the set of literals of pre-conditionof the
descriptiorb (i.e.,pre, = expryy A €xprog A - - - A €TPThn)-

Direct correlation: a andb are directly correlated if there existsc [1,m] andj € [1,n]
such that: (exprq; A expry;) V ((not(exprai))  (not(expry;))) becomesrue; and the
literals expr,; andexpr,; are unifiable through a most global unifier (mg)

This definition of direct correlation represents the idepaditive influence between two
attacks. We say that attaakhas a positive influence over attalck « is directly correlated
to b. In such a case, the effects@fnamely the set of predicatesjnst,, allows to satisfy
a subset of the pre-requisites pfe,. The notion of attack correlation allows us to find
correlated attacks that are part of the same scenario.

In [Cuppens and Miége, 2002] it is also defined the notioKmdwledge gathering corre-
lation as a variation of the above definition of correlation. Thisogel notion is useful to
integrate, in the detection process, preliminary stepsrtnmeder performs to collect data
on the target system.

Knowledge gathering correlation: ¢ andb are correlated by means of knowledge gather-
ing if there exists € [1,m] andj € [1,n] such that:((knows(Agent, expry;)) N expry;)

V ((knows(Agent, (not(exprq;))) A (not(expry;))) becomesrue; and the literalsexpr,;
andexpr,; are unifiable through a most global unifier (mgt)

This definition generally applies to the first steps of anusiton. We say “generally” be-
cause an intruder may have no knowledge about the targetimeactAn intruder may
directly try to exploit a vulnerability on a machine withaunying to know if this security
hole is present on the machine, but we argue that most ofrties the intruder will try to
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gather some information about the target. Hence the gatHerewledge may influence
the attacker on the next attacks he will execute.

As an example, there is a knowledge gathering correlatitwedsn the Port-Scan attack
(cf. Figure 6.1) and thevinnukeattack (cf. Figure 6.2) through the predicaien and the
unifier that matches variabl€ in both attack definitions and variablin the Port-Scan
attack to constant 139. This means that an intruder who krlostsport 139 is open on a
given host, can then performvannukeattack on this host.

We now define the notion of correlation unifier that allowsagapply on-line correlation.

Correlation unifier: denoted=,, is the set of all possible unifiers — i.e. both direct or
knowledge gathering correlation unifiers — to correlatest, andpre;,.

Since two attacks andb are correlated as soon as they have one predicate in common in
post, andpre,, we may have several unifiers for two attacks. The set of tadioa unifiers
allows us to know which attack can be correlated with a giveack under some unification
condition between their variables. Applying on-line ctatmn consists in exploring the

set of correlation unifiers each time a new alert is receiga@n that the alert corresponds

to an instance of an attack model.

We can apply the notion of direct correlation between twacks to an intrusion objective
and an attack. This allows us to detect that some attack @y & reach or help to reach
an intrusion objective. In this case, we simply have to stilistthe ternpre-conditionby
statein the definition of direct correlation.

How to use correlation

Once attacks and intrusion objectives are specified in LAMB®Re can generate all corre-
lation unifiers between each pair of attacks (respectivetwben an attack and an intrusion
objective). When two attack occurrences are detectednifesenifier in the unifier set is
identified, we can then say that these attack occurrencesamdated in the same intru-
sion scenario. Using this approach, it is possible to buibd@elation graph. Figure 6.5
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presents such a correlation graph where nodes are LAMBDArig¢i®ns and edges are
correlation unifiers.

attacka(X) S = {{X/X'}} attackb(X',Y’, Z")
pre : ... - pre :p(X’)
post :p(X) post:q(Y', Z")
Eae = {{X/X"}} \ Eve = {{Y/Y",2/2"}}
attacke(X",Y", Z")
———>  Correlation pre :p(X"),q(Y",Z")
post: ...

Figure 6.5: Correlation graph example.

When first steps of a given intrusion scenario are identifieglcan, with the same mech-
anisms, predict possible continuations of this scenarie.céh generate hypothesis about
future attacks and the intrusion objectives the intrudemapts to achieve. We shall call
virtual attackan attack predicted by this process of intention recogmit® virtual attack
becomes effective once its occurrence is detected.

Thus, it is sometimes possible to anticipate on the actien®pned by the intruder and

develop a specific counter-measure in response. This mieainsur approach may be used
to launch a counter-measure not only after a given intrusigective is achieved by the

intruder but also when the beginning of a given scenariotedaled. In this latter case, the
counter-measure will be used to prevent continuationsisfstiarting scenario.

We show now in the following section how to define and use thecmrelation principle
to elaborate the counter-measures. This new feature wasthencluded in a new version
of the module CRIM, presented in [Autrel, 2005], which alsdudes the previous features
for correlation and hypothesis generation.
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Anti-correlation

Let « andb be respectively LAMBDA descriptions of a counter-measurd an attack.
post, is the set of literals opost-conditiorof descriptior: (i.e.,post, = exprqi o €xprae A
. A €Tprayn) @andpre, is the set of literals opre-conditionof descriptiond (i.e., pre, =

EXPTL A ETPTE2 A - - - A ETPTHn)-

Anti-correlation: the descriptiong andb are anti-correlated if there existse [1,m] and
J € [1,n] such that:(exprq; A (not(expry;))) V ((not(expry)) A expry;) becomesgrue;
and the literalsexpr,; andexpr,; are unifiable through a most global unifier (mgt)

This definition formalizes the notion of negative impact afaunter-measure over an in-
trusion scenario. A counter-measure is an action whichgoravhe execution of an attack.
Since our model of an attack includes the necessary conditie system’s state must meet
in order to execute the attack, we can prevent the executian attack by making one of
those conditions false.

Therefore, a counter-measurdor an attacka is a LAMBDA model of which the post-
condition contains a predicate that contradicts one pagelicfpre,. We can then say that
c is anti-correlated witla. Even though it may be sufficient for a counter-measure tis ant
correlate an attack through only one predicate, it is alssibde for a counter-measure to
anti-correlate an attack through several predicates.

Anti-correlation unifier: denotedV, is the set of all unifierg possible to anti-correlate
post, andprey,.

As for a correlation unifier, an anti-correlation unifier def which attacks can be anti-
correlated by a counter-measure. It tells how the variablest be unified in the predicates
which are involved in the anti-correlation link. Using thanse approach, it is possible
to define anti-correlation between a counter-measure amatrarsion objective. We have
simply to replacere-conditionby statein the previous definition.
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6.3 Using Anti-correlation for Response

When a scenario is identified, the correlation process gesv/a graph of attack occur-
rences, virtual attacks and intrusion objective. A counteasure will apply to invalidate
future attacks or invalidate an intrusion objective. Thwshave two response mechanisms,
one that applies against virtual attacks and the other ontausion objective.

Response to an Intrusion Objective

In this case, response aims at updating the system stateatwlate the intrusion objective
in an intrusion scenario.

Let o be an intrusion objective. To invalidate this intrusion aexttjve, we must find a
LAMBDA definition » of a counter-measure such thit, # (). Then, it is possible to
parameterize this counter-measure candidate with thesuoificorrelationVy,.,.

In the following figure, for example, we assume that two ooenees of attack are detected:
an occurrence af with argumentX = x and an occurrence oéfwith argument” = y.

attacka(X) counter-msasure)(x”)
pre ... pre :p(X")
| post :not(p(X"))

post :p(X)
' rgo = ({X"/X"}}
Eao = {({X/X'}}
attackb(Y") ObJeC'“Veo X LY
pre ... Q —>© state :p(X’), q(Y")
post Zq(Y) S, = {{Y/Y }} A

L W= (Y)Y}

. |
——>»  Correlation

. , counter-measure; (Y")
- - - -» Anti—correlation <:> pre :q(Y")
post :not(q(Y"))

Figure 6.6: Correlation graph with direct response on thedtive.



96 Anti-correlation and Selection of Counter-Measures

The correlation process shown in Figure 6.6 diagnoses tigatwo attacks: andb are
correlated with a given intrusion objectivgand that this objective has been achieved. The
response process then finds two counter-measure candidates

The first counter-measurae,, with the parameteK” = X', and provided by, ,, suggests
the possibility to invalidate conditiom(and thus objective). The second countermeasure,
r1, with paramete™ = Y’, and provided byV,, ,, suggests the possibility to invalidate
the conditiong (and thus also the objectivg.

By combining=, , with ¥, ,, we can derive that counter-measugemay apply with pa-
rameterX” = X’ = X = x and similarly counter-measurg may apply with parameter
Y"” = y. Thus this provides means to derive which parameters mustleeted when ap-
plying the counter-measure. In our approach, these twotecumeasures are suggested to
the administrator who can select one of them (or both).

Finally, theverificationfield of the selected counter-measure is then evaluateddokch
whether the counter-measure was executed successfultys It the case, we can reeval-
uate the state condition of the intrusion objective to false

Response to an Ongoing Scenario

It is possible that a counter-measure may not apply diréotin intrusion objective if one
of these conditions holds:

e There is not any counter-measure in the response librarghwhay apply to invali-
date the intrusion objective.

e The counter-measure does not apply to the system statedeetteipre-condition of
this counter-measure is evaluated to false.

e All counter-measure candidates were launched withoutesscc
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In these cases, a possible solution is to modify the systata &1 invalidate one attack in
a sequence of virtual attacks. When the correlation engiceives a new alert, it tries to
find a path of correlated virtual attacks leading to one (orepmtrusion objective(s).

The path of virtual attacks and the intrusion objective fbugpresents a possible evolution
of the ongoing scenario. Let;...a, be a sequence of virtual attacks amdn intrusion
objective such that for everye [1,n — 1], a; is correlated withz;,, anda, is correlated
with o. The affirmation stating that for eveiye [1,n — 1], a; is correlated withy; . ; anda,,

is correlated withv is not necessarily true for the entire set of virtual attaekeyated. But
we can always find a subset of virtual attack satisfying thirgdition in the set of generated
virtual attacks, given that the set of generated virtualckis leads to an intrusion objective.

counter-measure(X")
O
. "
attacka(X) . Postinat(p(X™)
pre ... AN U, = IX"/X'
post :p(X) AN = U
A S =Y
\
O i -
Eab = {Y/Y'}} i
i attackb(X',Y) objectiveo(Y
—_— Cor.re ation . pre p(X) state q(Y)
- - - - » Anti—correlation post :g(Y)

Figure 6.7: Correlation graph with response on a sequencietoél attacks.

To block this sequence of attacks, we must find a valid LAMB@Ater-measure such
thatr is anti-correlated with one of the attacks(k € [1, n]). Forinstance, let us assume, in
Figure 6.7, that we detect an occurrence o he recognizing intention process identifies
that the intruder may perforinaftera to achieve the objective In this case, the response
process can find a counter-measute invalidate thepre-conditionof b. This will prevent
performance of attackand invalidate this scenario.
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6.4 Reacting on a Sample Attack Scenario

This section presents the use of the response mechanismungd in this chapter, together
with the rest of components overviewed in previous chapterd the enhanced version of
CRIM [Cuppens and Miege, 2002] presented in [Autrel, 200%]illustrate the use of our
approach, let us consider the Mitnick attack as defined intidoitt, 2002]. This attack
tries to exploit the trust relationship between two compmite achieve an illegal remote
access using the coordination of three techniques. FirStyM flooding DoS attack to
keep the trusted system from being able to transmit. Sea@nidP sequence prediction
against the target system to obtain its following TCP segeerumbers. And third, an
unauthorized remote shell by spoofing the IP address of tistetl system (while it is
in a mute state) and using the sequence number that the sggjein is expecting. The
correlation graph for this attack is presented in the foiffigure:

attack syn_flood(A,H)

pre : remote_access(A,H),
vulnerable(H;,syn_flood)

post: deny_of_service(H:)

attack tcp_sequence_prediction(A,H,)

pre : remote_access(A,H.),
tcp_sequence(Hy)

post: knows(A,tcp_sequence(Hz))

attack IP_spoofing(A,Hy,Hy)

pre : remote_access(A,Hz),
knows(A.tcp_sequence(Hy)),
deny_of_service(H,)

post: spoofed_connection(A,H;,Hy)

counter-measure block_spoofed_connection(A,H+,H,)
pre : spoofed_connection(A,Hq,Hz)
post: not(spoofed_connection(A,Hy,Hy))

attack spoofed_remote_shell(A,H1,Hy)
pre : spoofed_connection(A,Hq,Hz)

counter-measure block_remote_shell(A,H,) post: remote_shell(A,Hz)

pre : remote-shell(A,Hy)
post: not(remote_shell(A,H,))

-
-~
~
-~
~

-~

T
objective ilegal_remote_shell(A,H,) ———» Correlation
state : remote_shell(A,H.), ) i
not(authorized(remote_shell(A,Hz))) — —— — - Anti-correlation

Figure 6.8: Correlation graph for the Mitnick attack scémar
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attack syn_flood(A, H)
pre: remote_access(A, H) — attacker has a remote access on the target
A vulnerable(H, syn_flood’) — target is vulnerable tosyn_flood’ attack
detection: classification(Alert, syn_flood") —the alert classification isyn._flood’
A source(Alert, A) —the source in alert is agent
A target(Alert, H) —the target in alert is hod’
post: deny-of _service(H) — deny of service on hogf
verification: unreachable(H) — hostH does not reply
attack tep_sequence_prediction(A, H)
pre: remote_access(A, H) — attacker has a remote access on the target
A tep_sequence(H) —the TCP sequence &f is predictable
detection: classification(Alert, TC P_seq-prediction’)  —the alert classification i¥'C P_seq-prediction’
A source(Alert, A) —the source in alert is agerit
A target(Alert, H) —the target in alert is hogfl
post: knows(A,tep_sequence(H)) — attacker knows the TCP sequence of target
verification: true — always true
attack IP_spoofing(A, Hi, Ha)
pre: remote_access(A, Ha) — attacker has a remote accessfn
A knows(A, tep-sequence(H2)) — attacker knows the TCP sequencebf
A deny_of _service(H) —deny of service on hodt;
detection: classi fication(Alert,’ I P_spoofing’) — the alert classification id'P_spoo fing'
A source(Alert, A) —the source in alert is agent
A source(Alert, spoofed) — the source is spoofed
A additional_data(Alert, spoofed_addr, H1)  —the spoofed address i$;
A target(Alert, Ha) —the target in alert is hodf
post: spoofed_connection(A, Hi, Ha) — attacker has a spoofed connectionfénas H1
verification: unreachable(H1) —hostH; does not reply
counter-measure block_spoo fed_connection(A, H1, Ha)
pre: spoofed_connection(A, Hi, Ha) — attacker has a spoofed connectionfénas H1
action: block_I P_datagrams(A, Hi, Ha) — a packet filtering blocks the connection
post: not(spoofed_connection(A, Hi, H2)) — spoofed connections blocked between both sideg
verification: not(TC'P_spoofed_connection(A, Hi, H2)) — verify that spoofed connections are blocked
attack spoofed_remote_shell(A, Hy, Ha)
pre: spoofed_connection(A, Hi, Ha) — attacker has a spoofed connectionfénas H1
detection: classification(Alert, spoofed_rshell”) —the alert classification ispoo fed_rshell’
A source(Alert, A) —the source in alert is agent A
A source(Alert, spoofed) — the source is spoofed
A additional_data(Alert, spoofed_addr, Hy) — the spoofed address £$;
A target(Alert, Ha) —the target in alert is hodf»
post: remote_shell(A, Ha) — attacker has a remote shell on hékt
verification: unreachable(H1) — hostH; does not reply
counter-measure block_remote_shell(A, H)
pre: remote_shell(A, H) — attacker has a remote shell on the target
action: block_I P_datagrams(A, H) — a packet filtering blocks the connection
post: not(remote_shell(A, H)) — remote shell betweeA and H is blocked
verification: not(remote_shell_traf fic(A, H)) — verify that the remote shell connection is blocked
objective illegal_remote_shell(A, H)
state: remote_shell(A, H) — attacker has a remote shell on hést
A not(authorized(remote_shell(A, H))) — attacker is not authorized to have this remote shel

Figure 6.9: LAMBDA models of the Mitnick attack scenario.
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The LAMBDA models for each attack that composes the wholeate, together with the
intrusion objective, are shown in Figure 6.9. In the firspsfe(the agent that performs the
whole attack) floods a given hogt;. In the second stepy sends a TCP sequence predic-
tion attack against hogf, to obtain its following TCP sequence numbers. Then, by using
these TCP sequence numbeksstarts a spoofed remote shell session to the Hgsds it
would come from hosH;. SinceH; is in a mute statef/, will not receive the RST packet
to close this connection. If the third and fourth steps aseassful A will establish an ille-
gal remote shell session to systéfy. The model of Figure 6.9 also proposes two counter-
measures to prevent the Mitnick attack. First, a countemsuee can apply before the intru-
sion objective is achieved. This counter-measure, chlleck spoofedconnectionblocks

the spoofed connection between the host and the intrudean8ga counter-measure can
apply directly on the intrusion objective. This counterasere, calledblock remoteshell,
blocks the remote shell connection between the host anathusler.

To show how the components of our architecture would hahealattack, let us consider the
sequence of alerts described in Figure 6.10. There, we a&sthanan intruder targeting the
networkvi ct i m or g will use resources from another network to perform the &ttsiée
also assume that this network is protected by a sétevfalls, network intrusion detection
systemgNIDSs), the policy manager presented in Chapter 4, andstanoe of CRIM on
each node of the network. Moreover, those components altepeging IDMEF messages
through the notification service presented in Chapter 5.iMpl#y, we consider that the
different parts of the attack are only detected by threekfit nodes, nametwdel node2
andnode3 For each node, we show in Figure 6.10 just such relevantagesgublished
and notified within the system. We have also simplified quitetdhe information and
format of each alert for clarity reasons. Each alert is smtehwith ordered identifiers,
which correspond to thBetectionTimdield of each IDMEF message.

When alerts corresponding to different steps of the Mitaitt&ck scenario are raised within
the complete system, the instances of CRIM installed on eade will apply the corre-
lation mechanism to recognize the global scenario. For pi@mvhen the alerts corre-
sponding to the attackyn_flood(A, H;) and the attackep_sequence_prediction(A, Hy)
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are raised, respectivelypdelandnode2(cf. cluster alert$, andt, in Figure 6.10) the cor-
relation mechanism of CRIM onode3 which receives thoseluster alertspublished by
the other two nodes a@gobal alerts will generate the virtual alerts corresponding to the at-
tacks! P_spoofing(A, Hy, Hy) andspoo fed_remote_shell(A, Hy, Hs), and the objective
illegal_remote_shell(A, Hy). The correlation engine of CRIM recognizes the whole sce-
nario since the post-conditielany_of _service( H;) of the attacksyn_flood(A, H,) is cor-
related with the pre-conditiotfeny o f _service(H,) of I P_spoofing(A, Hy, Hs), and the
post-conditionknows(A, tep_sequence(H)) of tep_sequence_prediction(A, H) is corre-
lated with the pre-conditiohnows(A, tep_sequence(Hs)) of I P_spoofing(A, Hy, Hy).

Once this diagnosis is processed, the response module & @©Rtalled onnode3can se-
lect the two possible counter-measures discussed aboeeolimter-measutdock spoof-
ed connectionis chosen since its post-conditiant (spoo fed_connection(A, Hy, Hy)) is
anti-correlated with the pre-conditiepoo f ed_connection(A, Hy, Hy) from the attackspo-
ofed_remote_shell(A, Hy, Hs). Likewise, the counter-measupck remoteshellis cho-
sen since its predicatet(remote_shell( A, Hy)) is then anti-correlated with the predicate
remote_shell(A, Hy) of the objectivellegal remote_shell(A, Hy).

At this point, the response module of CRIM oiwde3generates thassessment alerts
ts andtg with the actions specified on counter-measurkxk spoofedconnectionand
block remoteshell Those two counter-measures are then notified to the polayager
as IDMEF assessment alerts, which provides the securitgeofivith the actions showed
in Figure 6.9. Thus, the administrator can select one ofelamsions, in order to recon-
figure, for example, the security policy, before the attatRsspoofing(A, H,, H) and
spoo fed_remote_shell(A, Hy, Hy) will be performed, i.e., before the intrusion objective
illegal_remote_shell(A, Hy) will be reached.

As we will further discuss in Chapter 8, we only use this remgoapproach to provide
a support to the administrator who takes the final decisiochtwose and launch a given
response. We do not consider, expressly, a proactive respgince it could, in certain
cases, be leveraged by the attacker to damage the systdhoitse cause a denial of
service to authorized users.
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By

(b)

By By

Notification Service

Global alert(t,):
classification=syn-flood
source=node1
destination=n1.victim.org

Local alert(ts):

classification=tcp-sequence-prediction

source=node2
destination=n2.victim.org

Cluster alert(ts):

classification=tcp-sequence-prediction

source=node2
destination=n2.victim.org

node2
()

(c)

Local alert(ty):
classification=syn-flood
source=node1
destination=n1.victim.org
additionaldata=Ng

Cluster alert(tz):
classification=syn-flood

node1

Global alert(t,):
classification=syn-flood
source=node1
destination=n1.victim.org

node3

Global alert(ts):
classification=tcp-sequence-prediction
source=node2
destination=n2.victim.org

Assessment alert(ts):
-block-spoofed-connection

Assessment alert(ts):
-block-remote-shell

Local alert(t7):
classification=IP_spoofing
source=n1.victim.org
destination=n2.victim.org

Local alert(tg):
classification=spoofed_remote_shell
source=n1.victim.org
destination=n2.victim.org

Correlated alert(to):
classification=illegal-remote-shell
source=node3
destination=n2.victim.org

source=node1
destination=n1.victim.org

Figure 6.10: Sequence of alerts raised inside each nodegpline attack.

Let us finally suppose, to conclude our example, that therggaificer does not launch
neither the counter-measu®ck spoofedconnectiomor the counter-measupéock remo-
te_shell In this case, we can assume that the two local aterésdts may be detected
by the components installed srode3 leading the correlation engine of CRIM to deter-
mine that the intrusion objectivélegal_remote_shell(A, Hy) has been reached. It may
manage such a conclusion since the pre-condijon f ed_connection(A, Hy, Hy) of the
attackspoo fed_remote_shell(A, Hy, Hy) is correlated to the post-conditiepoo f ed_con-
nection(A, Hy, Hy) of I P_spoofing(A, Hy, Hy), the pre-conditioftnows(A, tep_sequen-
ce(Hy)) of IP_spoofing(A, Hy, Hy) is correlated with the post-conditidmows(A, tcp-
_sequence(Hs)) of tep_sequence_prediction(A, Hy), and the intrusion objective state-
mote_shell( A, Hs) is then correlated with the post-conditioamote_shell( A, Hy) of the
attackspoo fed_remote_shell(A, Hy, Hs).
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Summary

In this chapter we have presented a response mechanismetd aeldd apply counter-
measures when an intrusion attack is detected. We firstqiegbsan Section 6.1 LAMBDA,
an algebraic language that allows us to provide a logicatrg@son of system’s actions;
we then discussed how to use such a language to model batksadiad counter-measures;
and we finally provided some examples of both intrusionsoastiand counter-measures
expressed in this language.

In Section 6.2 we showed out how the correlation approachemented in CRIM, a mod-
ule for management of intrusion alerts. It uses LAMBDA toretate detected attacks, and
to identify a scenario that leads from an initial state to alfintrusion objective — where
the security policy has been violated. We also showed in@e6ét2 how to use the semi-
explicit correlation approach and discussed how we can ggmaration of hypothesis to
anticipate the occurrence of a possible complex intrustenario before this scenario will
be successful. This last feature allows us to anticipateherattions performed by the
intruder and develop a specific response for a given scenario

We then defined in Section 6.3 the notion of anti-correlatind discussed some examples
to show how we can use this feature to determine relevanttepumeasures, either to act
on the objective of an intrusion or to stop an ongoing attaenario by acting on a given
step of this scenario. In Section 6.4 we offered an extendathple to illustrate the use
of the anti-correlation approach, together with the redeatures of CRIM. We discussed
the detection of a complete attack, and the sequence of @eom@asures offered by our
approach in order to respond to different steps of the attdblese counter-measures are
intended to help the security officer to decide which appateractions may be launched
in order to terminate or to respond to the given attack. Thes prudent strategy that may
only be used to provide a support to the administrator wheg#ke final decision to choose
and launch a given response. We do not consider up to now déimealesponse. More
investigation has to be done before to extend our approaittairway.



Chapter 7

Protection of Components based on a
Kernel Security Module

"They don't advertise for killers in the newspaper. That was
my profession. Ex-cop. Ex-blade runner. Ex-killer”
— RicKk DECKARD (BLADE RUNNER)

Contrary to many other elements of a network, security camepts, such as firewalls and
network intrusion detection systems (NIDSs), are almagags working with special priv-
ileges to properly execute their tasks. This situation iy ligely to lead remote attackers
to acquire these privileges in an unauthorized manner. @uqaired, the attacker can
manage to compromise those elements, or even to obtain thekcof the system itself.
The existence of programming errors within the code of thammnent’s elements, the il-
licit manipulation of their related resources (such as esses, configuration files, log files,
and so on), or even the increase of privileges though operagistem’s errors, are just a
few examples regarding means in which an attacker can byrassonal security policy
controls. The protection of these elements is a seriousrapdrtant problem which must
be solved. In this chapter, we overview a preventive meanmanvhich is intended for the
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protection of the network security components of our framw Our proposal consists
of a kernel access control scheme which handles the protectieach security compo-
nent and its elements (i.e., processes, files, and so on)yhicth intercepts and cancels
forbidden system calls launch by a remote intruder.

The remainder of this chapter is organized as follows. 8ectil gives an outlook to our
protection strategy in order to protect the critical resesrprocesses with special priv-
ileges. Section 7.2 takes a closer look at the developmetiteoproposed mechanism.
Section 7.3 presents a smart-card based authenticatitmcptantended to solve the ad-
ministration constraints introduced by our protection hadsm. Finally, the configuration
of our proposal and an evaluation concerning the efficiemcysecurity of its implemen-

tation is presented in Section 7.4.

7.1 Kernel based Control of System Calls

As we introduced above, our main motivation is the protentibthe network security com-
ponents of our platform, such ireewallsandnetwork intrusion detection syste(iDSs),
which, if successfully attacked, are very likely to lead atrider to get the control of the
whole system. This problem leads to the necessity for inicod) a protection mechanism
on the different elements of each component, keeping weéh girotection and mitigating
— or even eliminating — any attempt to attack or compromisetimponent’s elements and
their operations. This way, even if an attacker comprontisesecurity of the component,
he would not be able to achieve his purpose.

According to [Onabuta et al., 2001], we consider the pradeadf the elements carried by
the kernel of the operating system as a proper solution fdn alprotection.

On the first hand, the protection at kernel level avoids tled¢mtially dangerous system
calls (e.g.killing a process) could be produced from one element against amwibeThis
protection is achieved by incorporating an access conteghanism into the kernel system
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calls. This way, one may allow or deny a system call based werakcriteria — such as
the identifier of the process making the call, some parametethe given call, and so on.
The kernel’s access control allows to eliminate the notibtmust associated to privileged
users, delegating the authorization for the execution a¥angsystem call to the internal
access control mechanisms. In addition, and contrary terajproaches, it provides a
unified solution, avoiding the implementation of differesgiecific mechanisms for each
component.

On the other hand, this mechanism allows us to enforce thgpadmentalization princi-
ple [Viega and McGraw, 2002]. This principle is based in tegraentation of a system, so
several elements can be protected independently one frothean This ensures that even
if one of the elements is compromised, the rest of them caratgpe a trusted way.

In our case, several elements from each component are egeasitprocesses. By speci-
fying the proper permission based on the process ID, we oahthe interaction between
these elements of the component. If an intruder takes dawitepprocess associated to a
given component (through a buffer overflow, for example)wiliebe limited to make the
system call for this given process.

It is not always possible, however, to achieve a completepeddence between the ele-
ments. There is a need to determine which system calls magrisedered as a threat when
launched against an element from the component. This egjaimeticulous study of each
one of the system calls provided by the kernel, and how theyeamisused. On the other
hand, we have to define the access control rules for each dhes# system calls. For our
approach, we propose the following three protection letetdassify the system calls: (1)

critical process protection; (2) communication mechasigmotection; and (3) protection

of files associated to the elements.

The first level of protection (critical processes) comsiaetions that can cancel the proper
execution of the processes associated to a component; bytheteraction over them by
signals, or the manipulation of the memory space. Some ebegngpe: execution of a
new application already in memory, cancellation or marapah of the address space and
process traces, and so on.
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The second level (communication mechanisms protectiaiydes the protection of all
those processes that allows an attacker to modify, genera#minate any kind of mes-
sages exchanged between component’s elements. Finallyitt level of protection (pro-
tection of files associated to the elements) takes into ad@lthose actions that can ma-
liciously address the set of files used by the elements ofdhgonent, such as executable,
configuration, or log files.

7.2 Implementation of a Linux Security Module

In this section we outline the current implementation of approach in a research proto-
type called SMARTCOP (which stands f8mart Card Enhanced Linux Security Module
for Component Protectign It consists of a kernel based access control mechanistn, an
its development has been done over tiieux Security Module$LSM) framework for
GNU/Linuxsystems [Wright et al., 2002].

The LSM framework does not consist of a single specific aco@sgsol mechanism; instead
it provides a generic framework, which can accommodaterakapproaches. It supplies
several hooks (i.e., interception points) across the kehat can be used to implement
different access control strategies. Such hooks Bek hooks, Program Loading Hooks,
File systems HookandNetwork hooks

These LSM hooks, can be used to provide protection at the thuwels commented in the
previous section. Furthermore, LSM adds a set of benefitaitonoplementation: first,
it introduces a minimum load to the system when comparing kernels without LSM,
and does not interfere with the detection and reaction gsEse(cf. Section 7.4); second,
the access control mechanism can be composed in the systemadule, without having
to recompile the kernel; and third, it provides a high degyedéexibility and portabil-
ity to our implementation when compared to other proposaidte Linux kernel, such
as [Onabuta et al., 2001] and [Ott, 2002], where the impleatem requires the modifica-
tion of some features of the original operating system'si&er
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The LSM interface provides an abstraction, which allowsrttoelules to mediate between
the users and the internal objects from the operating systamel. To this effect, before

accessing the internal object, the hook calls the functromigded by the module and which
will be responsible to allow or deny the access. In FigurewgXlhow how a module may
register one function just to make a validation overithedesof the filesystem.

User Level process } User space

,,,,l ,,,,,,,,,,,,,,

open system call } Kernel space

look up inode

error checks

DAC checks LSM Module Policy Engine
Examine context.
"OK with you?"| .
Yes or No Does request pass policy?
Grant or deny.

Figure 7.1: Linux Security Modules (LSM) Hooks.

LSM hook

access inode

At the same time, LSM allows us to keep tiiscretionary access contr@DAC) provided
by the operating system’s kernel, by standing between tberetionary control and the
object itself. This way, if a user does not have permissionglation to a given file, the
DAC of the operating system will not allow the access and fid@#he function registered
by the LSM will be made. This feature reduces the load of tiséesy when compared to an
access control check centralized in the operating systdnmtaface, which always gets
used for all the system calls.

The component’s elements will be allowed to make operatoyig permitted to the sys-
tem administrator — such as packet filtering and processmrcagpion cancellation. This
implies that the system processes associated to each ¢lenlidre executed by the ad-
ministrator — i.e., root user in Unix systems. On the comfriémve associate the processes
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to a non privileged user, the discretionary access confrifle@operating system’s kernel
will not allow the execution of some specific calls.

The internal access control mechanisms at the kernel islliiagiee process identifier (PID)
that makes the system call, which will be associated to aifgpetement. Each function
registered by a LSM module, determines which component isnmgadhe call from the PID
of the associated process. It then, applies the acces®tootistraints taking also into ac-
count the parameters of the system call. Thus, for examgeen element can access its
own configuration files but not configuration files from othkaneents. In Figure 7.2, for
example, we show how a function registered by our LSM prataahodule may allow or
deny the modification of a configuration file.

Operating

DENY Access Control System DENY

Operating System

v

Possible
system
compromised

A

based on the
syscall parameters

ACCEPT

A4

Call the
original
syscall

Is the
auth. device
connected ?

returns
with error

A

Does
the pro-
cess do the
syscall ?

Is the call
against a
node com-
ponent ?

DAC

ACCEPT

Does
the admin
do the
syscall ?

NO

Call the
original
syscall

Figure 7.2: Access control example through our protectiodute.

An important issue in the implementation is the adminigtrabf the access control mecha-
nisms and the management of each one of the elements. As@onitin previous sections,
the administrators should not be able to throw a systemwhith may suppose a threat to
the component. This prevents an intruder doing any harnetogimponent even if he could
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scale his privileges to the administrator ones. This cetgravith the administration of the
component, since, if an administrator can not interact tighelements of the component,
he will not be able to carry out any management or configungirocess and activities.

To solve this hazard, we propose a smart-card based awthoni mechanism. Specif-
ically, we use the functionality of a smart-card for ensgrthe administrator’s identity.
Through the use of an authentication protocol, the LSM medelrifies administrator’s
actions before holding him the indispensable privilegesamipulate the component. Oth-
erwise, the access control enforcement will come to its mboperation. In the following
section, a detailed description of such a mechanism is given

7.3 Smart-card based Authentication Mechanism

In order to better assure the administrator’s identity of A COP, we propose the use
of a two-factor authentication mechanism based on the egypphic functions of a smart-
card. This mechanism is intended for authenticating theimdtrator to the LSM modules

and holds with the following requirements:

e The actions must be authorized by the use of a smart-card,
e The smart-card only authorizes one action iff the PIN isecir

e The LSM module only authorizes the action iff the smart-gasponse is valid.

Authentication Protocol Description

In this section we give a first pair of cryptographic protaciblat lead our smart-card based
authentication mechanism. Let us recall that the crypfadgaengine of such a smart-card
is capable of performing several cryptographic functiash as symmetric key genera-
tion, symmetric cryptographic algorithms execution, an@s.
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A first protocol is defined as follows.

Protocol 1

1. The system administrator opens a new console and he msgaesctionX. It is
assumed thaX must be authorized by using the smart-card;

2. The LSM module receives the request from the console atwkg the following
steps:

(a) Open a connection to the smart-card reader device, amdept the channel
between the smart-card reader device and the LSM modulétidseroid being
tampered or sniffed by any other process;

(b) Printa message in the console, asking for the smart-cesertion to the smart-
card reader device;

(c) While the smart-card has not been inserted do;
i. Detect the insertion of the smart-card,

(d) Print a message in the console asking for the operatid Pl
3. The system administrator types the operation PIN in tiybdard.
4. The LSM module does the following steps:

(a) Obtain the operation PIN;
(b) Obtain a NONCE value at random;

(c) Compute the Message Authentication Code (MAC) of NONi@Etke shared
keyK, 1y = MAC(K, NONCE);,

(d) Execute the Procedure 1 inside the smart-card using pieeadion PIN and the
NONCE, and obtain a respongs;

(e) Print a message in the console to remove the smart-card the smart-card
reader device;
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() While the smart-card has not been removed do;

i. Detect the removing of the smart-card;
(9) if uo is ERRORthe LSM module does not authorize the action
(h) else do:

I. if uy # pe the LSM module does not authorize the action
il. if uy, = py the LSM module authorizes the actidn

As we can see in Protocol 1, aperation PINand oneadministration passwordre used
in our protocol. The operation PIN is at least six digits loje use the operation PIN
in order to authorize the actions. On the other hand, the mdtration password is used
to change the operation PIN and other management tasks. yStesrsadministrator has
three consecutive chances to enter the operation PIN. lthittechance if the smart-card
receives an incorrect operation PIN it blocks itself. Thesgreard only can be unblocked
with the administration password. Again, there are thresnchs to enter the correct ad-
ministration password. If the smart-card is blocked wita #uministration password the
smart-card becomes useless.

The security parameters of the LSM module are properlyailutd when it is installed.
The system administrator inserts a smart-card in the redelece and the cardlet applica-
tion is downloaded to the smart-card. Once the applet hasd@enloaded and registered,
the system administrator introduces the administratissward and the operation PIN.
The LSM module then sends the shared kéy- it stores the sharefl in a secure file, so
the file can be read exclusively by the LSM module.

Then, the smart-card and the LSM module share a secretskeyn Step 1 of such a
protocol, the system administrator requests an actiongd - 8M module which, in turn,
blocks the communication channel between the smart-cadereand the LSM module.
The data sent between the LSM module and the smart-card ¢dmembe sniffed nor
tampered because the channel is blocked (cf. Step 2a). ©hecpt avoids the smart-card
remains in the smart-card reader when is not necessaryefn2st the LSM module waits
until the smart-card insertion, and in Step 4f the LSM modldes not proceed since the
smart-card has been removed.
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In Step 3 the operation PIN travels in a secure way from thé#asd since, as we recalled
above, the LSM module has blocked the channel between tderaad the module itself
(cf. Step 2a). Then, the LSM module sends a NONCE obtainedratom and the PIN

in Step 4d. The smart-card returns a Message Authentic@oaie (MAC) of the NONCE
computed with the shared kdy. In the last Step, i.e., Step 4h, the LSM module verifies
whether the MAC has been properly computed.

Let us now define Procedure 1, which is executed within thertsoaad to validate the
operation PIN. If the operation PIN is correct, it computes MAC of NONCE with the
shared keyx'.

Procedure 1 [PIN, NONCE]

1. Validate the operation PIN;
2. If the operation PIN is correct do:

(&) Compute the Message Authentication Code (MAC) of NONi@tEtlwe shared
keyK, 1y = MAC(K, NONCE);

(b) return ps.;
3. If the operation PIN is no correct retufBRROR;
For performance improvement purposes, let us also showtamative version of Proto-
col 1, where a smart-card reader device with a key-pad is.usk way, the operation

PIN is not typed in the keyboard of the computer but in the kelypf the smart-card reader
device. Such an alternative version (i.e., Protocol 2) scdbed as follows:

Protocol 2

1. The system administrator opens a new console and he msgaesactionX. We
assumeX must be authorized using the smart-card;
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2. The LSM module receives the request from the console atwkg the following
steps:

(a) Open a connection to the smart-card reader device, amdept the channel
between the smart-card reader device and the LSM modulgtidsevoid being
tampered or sniffed by any other process;

(b) Print a message in the console, where ask for to insersthart-card to the
smart-card reader;

(c) While the smart-card has not been inserted do;
i. Detect the insertion of the smart-card,;
(d) Printa message in the console asking for the operatid Pl

3. The system administrator types the operation PIN in tlyepleel of the smart-card
reader. The PIN can not be obtained by any process runninigarsystem;

4. The LSM does the following steps:

(a) Obtain a NONCE value at random;

(b) Compute the Message Authentication Code (MAC) of NONi@tEtlwe shared
keyK, 1y = MAC(K, NONCE),

(c) Execute the Procedure 1 inside the smart-card using (OBIGE, and obtain a

responseus;

(d) Print a message in the console to remove the smart-card the smart-card
reader;

(e) While the smart-card has not been removed do;

i. Detect the removing of the smart-card;
(f) if o iIs ERRORthe LSM does not authorize the actian
(9) else do:

i. If uy # po the LSM does not authorize the actidn
ii. if 3 = ps the LSM authorizes the actioX;



116 Protection of Components based on a Kernel Security Mode

Asymmetric version of our Cryptographic Protocol

Alternatively to protocols 1 and 2, we propose a second atitaion mechanism using
asymmetric cryptography. Let us start by introducing theassary structure and elements
for this second proposal. We first define the necessary antbre as a hierarchical struc-
ture with several organizational units, where the compnétwork is divided, in turn, in
hierarchical domains, and where each domain of the netwasksbveral components that
must be protected. We name such a component as SMARTCOP [$@M).(Finally,
each domain has a SMARTCOP Server (SCS), and each potedtmahiatrator holds a
SMARTCOP Card (SCC). These components are briefly deschbleslv.

SMARTCOP Server (SCS) -Each SCS owns a cryptographic key pagster keyand the
corresponding certificate. This certificate has been iseyége upper SCS in the hierarchy
and identifies the lower SCS as a valid SCS. This certificaene®ded as an X.509 At-
tribute Certificate [International Organisation for Stardization, 2000], where the issuer
is the upper SCS master key and the subject is the lower SC&mhkay. The SCS of do-
main B can issue certificates authorizing a concrete SCC adramistration of the domain
B (similar to the certificates between SCSs). Normally th& 3@l be managed by the of-
ficer in charge of the network administration in the given dam+ or organizational unit.
That is, the person who has more knowledge about the networiaoh and its potential
administrators, and, at the same time, the one that has¢laéegt interest in performing a
good administration. This is a key point of the SMARTCOP feavork, which enables the
distribution of the administrative management betweenalosor organizational units.

SMARTCOP Node (SCN) —Each SCN is a component which has the SMARTCOP LSM
module. The security parameters of the LSM module are plppatialized when it is
installed. The main parameter is tBeurce-of-AuthoritySoA), which is represented by a
master-keyMore precisely, thenaster-keyf the top SCS. When an administrator requests
a protected action on a given SCN, by using Protocol 3, the 8€#ies the certificate
from the SCC. Then, if it comes from a certificate path rooteiti@ SoAsmaster-keythe
operation is accepted.



7.3 Smart-card based Authentication Mechanism 117

SMARTCOP Card (SCC) — The SCC is owned by potential administrators. In order to
be able to perform administrative tasks on a given domam S8C must be authorized
(i.e., certified) by the SCS of the domain or an upper one irhibearchy.

Each SCC has a key pair, which has to be certified Iogaster-keyi.e., a key from a
SCS). Let us recall that the cryptographic engine of such artsoard is capable of per-
forming several cryptographic functions, such as asymmk#y generation, asymmetric
cryptographic algorithms execution, and so on. The SCC hasparation PINand an
administration password

The operation PIN is at least six digits long and is used tb@ige the protected actions.
On the other hand, the administration password is used tagehthe operation PIN and
other management tasks. The system administrator hasdbnsecutive chances to en-
ter the operation PIN. In the third entry, if the smart-cagdaives an incorrect operation
PIN, it blocks itself. The smart-card can only be unblockethwhe administration pass-
word. Again, there are three chances to enter the correan@tration password. Finally,

if the smart-card blocks itself after the failing of threensecutive wrong administration
passwords, it becomes useless.

Protocol Description

We give in this section a detailed description of the asymimetyptographic protocol
version (cf. Protocol 3). In Step 1 of such a protocol, theeysadministrator requests an
action to the LSM module which, in turn, blocks the communaachannel between the
smart-card reader and the LSM module. The data sent betwedrSiM module and the
smart-card can neither be sniffed nor tampered becaus@dmael is blocked (cf. Step 2a).
The protocol does not allow the smart-card to remain in tadeewhen is not necessary. In
Step 2c, the LSM module waits for the smart-card insertiod,ia Step 4e the LSM module
does not proceed until the smart-card has been removedepr83he operation PIN travels
in a secure way from the keyboard because the LSM module lwa&dd the channel
between the keyboard and the module itself. Then, LSM semd®IEHCE obtained at
random and the PIN in step 4c. The smart-card returns theabgggnature of the NONCE
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computed with the smart-card’s private key. Finally, ingS4g LSM verifies whether the
digital signature has been computed properly and the dptéficate is valid.

Protocol 3

1. The system administrator opens a new console and he msgaesctionX. It is
assumed thaX must be authorized by using the smart-card;

2. LSM receives the request from the console and it does ibeviiog steps:

(&) Open a connection to the smart-card reader device, amdept the channel
between the smart-card reader device and the LSM modulgtisevoid being
tampered or sniffed by any other process;

(b) Print a message in the console, asking to insert the sowat into the smart-
card reader;

(c) While the smart-card has not been inserted do;
i. Detect the insertion of the smart-card;

(d) Printa message in the console asking for the operatid Pl

3. The system administrator types the operation PIN in tiybdard;

4. The LSM does the following steps:

(a) Obtain the operation PIN;
(b) Obtain a NONCE value at random;

(c) Execute the Procedure 2 inside the smart-card by usiagperation PIN and
the NONCE, and obtain a respongg

(d) Print a message in the console to remove the smart-card the smart-card
reader;
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(e) While the smart-card has not been removed do;

i. Detect the removing of the smart-card;
(f) if uis ERRORthe LSM does not authorize the actidn

(9) else do:

i. Check if the digital signature has been computed with dipley, which
belongs to a certification path rooted at theaster key(SoA).

ii. Verify the smart-card certificate against a valid CRL.

iii. Verify the digital signaturey with the public keyPx obtained from the
smart-card certificatePr (1) ZH (NONCE);

iv. if the verification is correct the LSM authorizes the antiX;

v. if the verification is not correct the LSM does not authetize actionX;

The Procedure 2 is executed within the smart-card. The staadtvalidates the operation
PIN. If the operation PIN is valid it computes the digital sagure of NONCE with the
smart-card private key.

Procedure 2 [PIN, NONCE]

1. Validate the operation PIN;
2. If the operation PIN is correct do:

(&) Compute the digital signature of NONCE with the privatg ¥,

(b) returny;

3. If the operation PIN is no correct retufBRROR;
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Security Considerations

To ensure the proper execution of both protocols and praescghown above, we must
consider the protection of the entities and the channetdved in such a process, avoiding
attacks like impersonation or channels data manipulafibe.lack of ability to avoid these
attacks and their impact makes our proposed protection amesin usefulness.

Regarding the different entities that take part in the prokowe suggest in this section
the following considerations. First, the possible consatacks could be directed against
the binary executable file and the console process in exectithe. If this happens, an
overwrite of the executable console’s file using malicioadeccould lead an attacker to
take the control of the authentication process, giving Him possibility to complete the
protocol and get the control of the system — and even to dteasmnart-card’s PIN. To
eliminate this attack, the LSM module guarantees that thariifile of the console can not
be overwritten by anybody (even the administrator), remgirthe permissions as read-
only. Second, the binary executable of the administratmmsole is compiled in a static
manner. this allows us to reduce the complexity of the ptaies console process, since
we do not need to consider tasks introduced by the loadingmdmiic or shared libraries
and its associated files.

At the same time, it enables us to centralize and reduce theegoints that could be

used by an intruder to tamper the console’s process. Thuktaprotect the process
associated to the console, the LSM module controls that®atbm call launched by some
process can not be dangerous for the correct execution flalneodonsole process, such
as keyboard key capture, cancellation, or debugging psosgstem calls. Let us recall
that the communication channels can not be manipulated ¥ypponent. To achieve

this purpose, the LSM mediates between the system calkedelth the communication

channels and the entities that take part within the prot@@helLSM module, the smart-card
and the console process).

To conclude, and as pointed out in [Biondi, 2003], the LSM oieddoes not need to be
directly protected since we can assume the kernel envirohagea trusted area — since it
is mandatory for the kernel security model of our prototgpmgerating system.
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7.4 Configuration and Performance Evaluation

In order to define the objects and resources to protect, SMXPBH can actually be config-
ured through a set of security rules. Each security rule defmactionin {deny, accept}
that applies over a set gbnditionattributes, such as useat (UID), processd (PID), de-
vice, i-node, etc. These security rules are stored in a sebwfiguration files that are
loaded at boot time through tlproc file systemThe proc file systenfprocfs) is a special
virtual file system in the Linux kernel which allows user spacograms to access to kernel
data structures. We do not consider for the moment the relbades at runtime.

Up to now, we can define several sets of rules regarding tlkee thasic levels of protection
stated in Section 7.1. In Figure 7.3, for instance, we showample of seven different
configuration points through procfs for configuring the patiton of, respectively, i-node
permission verification, i-node renaming, i-node pernoissthanging, i-node removing,
process tracing, process creation, and process ternminatio

STW--- - 1 root root O jul 23 13:28 /proc/snmartcop/iperns
SPW- - - 1 root root O jul 23 13:28 /proc/smartcop/iren
STW--- - - 1 root root O jul 23 13:28 /proc/snartcop/isetattr
SPW- - 1 root root O jul 23 13:28 /proc/smartcop/iunlink
STW---- - 1 root root O jul 23 13:28 /proc/snartcop/ptrace
SPW- - - 1 root root O jul 23 13:28 /proc/smartcop/tcreate
SPW- - - 1 root root O jul 23 13:28 /proc/smartcop/tkill

Figure 7.3: Sample configuration points of SMARTCOP.

The four first configuration points (i.e., iperms, iren, &t and iunlink) refer to i-node
related operations. Hence, they can be used not only forrifteqiion of file resources,
but also for the protection of communication operationstigh, for example, sockets and
pipes. On the other hand, the three last configuration p@iets ptrace, tcreate, and tkill)
are related to process operations. More specifically, tnéguaration pointptraceallows

the protection of the system caitrace()that is often used from some processes to control
the execution of other processes; the configuration gomeateallows the configuration
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of rules related with the creation of new processes throbghsystem calfork(); and the
last configuration poinikill allows the configuration of rules related with the managihg o
processes (such as termination, blocking, and resumingydh the system cadlyskill() .

Through the configuration points showed in Figure 7.3, walooted several tests steered
towards measuring the penalty introduced by the instaltatif SMARTCOP as a LSM
module, over the normal operation of the system. The testdbanchmarks were based
on the use of the Strace [Akkerman, 2003] and the LMbench @nd Staelin, 1996]
tools. Strace is a debugging tool, which allows us to traeesistem calls made after the
execution of a given process. This can be used to analyzevahabée the time taken by
these calls. On the other hand, LMbench is used to perfaronobenchmarksvhich are
used to take more precise measures of the time taken for tilssacmemory access, and
so on. The evaluation was carried out on a single machine amtmtel-Pentium M 1.4
GHz, with 512 MB of RAM memory and an IDE hard disc of 5400 rpomming a Debian
GNU/Linux operating system and ext3 file system.

The objective of these testbeds is to compare the perforenafrtbe system using a normal
Linux 2.6.15 kernel without LSM support towards the perfarmoe of the same system
and kernel but with LSM support and the SMARTCOP module ldad&he results of

the testbeds are shown in Figure 7.4. They are organizedée tlables depending on
the three protection levels stated in Section 7.1. As it camjpreciated in the results,
the penalty introduced by SMARTCOP has a minimum impact enpérformance of a

standard GNU/Linux 2.6.15 system.

The first table Process tes)sshows the latency in microseconds for a set of operations re
lated to the execution of processes and system calls sucb@ssg creation througdbrk(),
fork()+exec()andsh(), process cancellation throudil(), descriptor waiting througke-
lect(), opening and closing files througipen(Jclose() signal installation, and so on. This
first category of tests shows that more than the 50% of the tedicate a performance
penalty below 2%. For example, the process creation fwitk() is scarcely penalized with

a 0.9%. The same can be noticed for process creationfauikif)+exec()andsh(), which
have an approximate penalty of 3.3%. On the other hand, feehperformance penalty is
presented by the process cancellation through the systehill{a with a 4.6%. This higher
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2.6.15 + % Overhead 2.6.15 + % Overhead

Test Type | 2.6.15 | smartcop || with smartcop Test Type || 2.6.15 | smartcop || with smartcop

null call || 0.255 0.255 0% pipe || 1342 1338 02%

kill || 231.10 241.65 4.6% AF Unix || 1334 1320 1%

stat 1.99 2.03 2% TCP || 1088 1078 0.9%

open/close || 2.96 3.02 1.9% file read || 1330 1308 1.6%

select TCP || 18.63 18.86 1.2% mmap read || 1480 1425 3.8%

sig inst 0.9 0.9 0% mem becopy || 5278 5277 0.01%

sig handl 1.85 1.88 0.1% mem bzero || 4548 4548 0%

fork proc || 95.61 96.52 0.9% mem read || 25600 25590 0.03%

exec proc || 100.50 103.86 3.3% mem write || 24888 24869 0.07%
sh proc || 2227 2302 3.3%

Local communication bandwidth in MB/s

Process tests, time in pseconds

2.6.15 + % Overhead

Test Type || 2.6.15 | smartcop | with smartcop

OK file create 193 193 0%
OK file delete 489 489 0%
10K file create 175 176 0.5%
10K file delete 658 668 1.5%
mmap latency || 2348 2348 0%
par mem 1.26 1.26 0%
page fault || 0.974 0.981 0.8%

File and VM sytem latencies, time in pseconds

Figure 7.4: Performance evaluation of the protection medul

penalty is produced by the access control verifications oABVICOP at kernel level, dur-
ing the identification checks of the process, system calpaters, etc. The second set of
tests shown in the second table of Figure 7.4, presents tienidth of operations related
to communication issues such as reading, writing and copyerhory sections through
read() andmmap() Inter Process Communications (IPC) using TCP, pipes ackkes® of
the Unix address familyAF Unix socketk etc. Again, the results show a minimum penalty
in the performance. In this case the greater penalty (3.8%0ap is found in the reading
and summing of a file via the memory mappmgnap()interface.

Finally, the set of tests from the third table (Figure 7.49wh the latency found in oper-
ations related to file and memory manipulation. The perfortegoenalty of the system
is also minimum. The greater penalty being introduced byfitaeslimination due to the
verifications performed by SMARTCOP during the associaystiesn calls.
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Summary

In this chapter we have presented an access control meohariended for the protection
of network security components, such as firewalls and irdrudetection systems. When-
ever one of these components, or one of its elements, is comged by an attacker, it may
lead her to obtain the full control of the network. Our prog@solution consists of a kernel
based access control method which intercepts and canebldden system calls. Hence,
even if an attacker gains administration permissions, flenai achieve its purposes.

We first introduced in Section 7.1 the motivation of using enkébased approach and we
gave an outlook to our protection strategy. We then disclgs8ection 7.2 the choice of
theLinux Security Module.SM) framework to implement our approach. The use of LSM
allows us to use our kernel based access control in new caenp®hy just considering its
environment and its interactions. It reinforces moreotiermodularity of the system and
provides an easy and generic way to introduce new elemethgutihaving to consider
each component separately.

Our strategy introduces however some administration caings, since administration of-
ficers should not be able to throw system calls that are defisgabssible threats to the
component. To solve these constraints, we presented irp8é&c8 a smart-card based au-
thentication mechanism, which acts as a reinforcementeokénnel based access control.
The objective of this complementary mechanism is twofolastFit holds to the admin-
istrator the indispensable privileges to carry manageraedtconfiguration activities just
when he verifies his identity through a two-factor autheattan mechanism. Second, it
allows us to avoid some kind of logical attacks focused otiggethe rights of the admin-
istrative entity, such as password forgery or buffer over§lo

We finally discussed in Section 7.4 some configuration isstiesr proposal and presented
the evaluation results of several tests steered towardsurieg the overhead introduced
by our strategy, over the normal operations of a given systEnese results showed that
our approach offers a good degree of transparency to thengtrator in charge, and it

does not interfere directly with user space’s processes.



Chapter 8

Conclusions

"The reward of a thing well done is to have done it”
— RALPH WALDO EMERSON

In this dissertation we have presented our theoretical aactipal work for the design and
development of a policy-based framework, whose main p@p®she managing of both
detection and prevention of intrusion attacks. This framws proposed as a comple-
mentary element to traditional network security mechasissach as firewalls and cryp-
tography, in order to detect and prevent network securiticywiolations. Our proposal is
intended to act as a central point within a given network sgcinfrastructure, in order to
specify security requirements free of anomalies, and gejble necessary mechanisms to
guarantee the interoperability, cooperation, and primecf the security components used
within such a security infrastructure.

The first part of the dissertation (i.e., chapters 2 and 3pchiced the basic concepts of
computer and network security, provided an overview of thesical security mechanisms
(e.g., cryptography and firewalls) to guarantee the sacafia network system, discussed
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the necessity of complementary mechanisms (i.e., intnudegection systems), and sur-
veyed some related work which has been previously done iartees of research in which
this dissertation falls into. The second part of the disdiem described the contributions
we have done in the research domain of cooperation and piosteaf network security
components, exchange of audit information, and analysietfork security policies.

More specifically, we started in Chapter 4 by giving and aaklto the audit process we
presented in [Garcia et al., 2006f, Garcia et al., 200®dt a distributed security scenario
composed of botfirewallsandnetwork intrusion detection syste(iDSs) free of anoma-
lies. Our audit process has been presented in two main blddkpresented, in Section 4.2,
a set of algorithms for intra-component analysis, accgtirthe discovering and removal
of policy anomalies over single-component environmemntd; an Section 4.3, we presented
a set of algorithms for inter-component analysis, in ordedétect and warn the security
officer about the complete existence of anomalies over atmthponent environment.

The main advantages of our approach are the following. ,Fonat process verifies that
the resulting rules are completely independent betweem.ti@therwise, each rule con-
sidered as useless during the process is reported to thetgeifticer, in order to verify
the correctness of the whole process. Second, the netwadklpoesented in Section 4.1
allows us to determine which components are crossed by a gaeket knowing its source
and destination, as well as other network properties. Thamkhis model, our approach
better defines all the set of anomalies studied in the relatell, and it reports, moreover,
two new anomaliesiffelevanceandmisconnectiopnot reported, as defined in our work,
in none of the other approaches. Furthermore, the lack sfrititidel in other approaches
(e.g., [Al-Shaer et al., 2005]) leads to inappropriate sieais.

The implementation of our approach in a software prototygraa@hstrates the practicability
of our work. We shortly discussed this implementation, dase a scripting language
[Castagnetto et al., 1999], and presented an evaluatids p&rformance. Although these
experimental results show that our algorithms have streggirements, we believe that
these requirements are reasonable for off-line analysisest is not part of the critical
performance of the audited component.
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In order to communicate effectively and efficiently the eiffnt components of our plat-
form, we presented in Chapter 5 an infrastructure to shassages and audit information
between those components [Garcia et al., 2005a, Garala 2005e]. The framework it-
self is based on IDMEF [Debar et al., 2006] (Intrusion DatettMessage Exchange For-
mat) and the publish/subscribe communication paradignségitions 5.1 and 5.2).

In contrast to traditional client/server solutions, wheeatralized or hierarchical approa-

ches quickly become a bottleneck due to saturation prob&sssciated with the service

offered by centralized or master domain analyzers, thenmition exchange between peers
in our design achieves a more complete view of the system oilevh

We then presented in Section 5.3 an audit information exggabrtween components based
on XML messages and XPATH filters, implemented in our propg&aa push or pull
data exchange, and based on an open source publish/sgbse#sage oriented middle-
ware [Ruff, 2006]. We also conducted experiments showiagttie proposal is performant
enough for the application in real-world scenarios (cf.tbec5.4).

In Chapter 6, we discussed the reaction mechanism presenf€dppens et al., 2006a].

This proposal extends the detection process introduce@upgens and Miege, 2002], in
order to select and apply a response mechanism when aniomruscurs. It is based on

an attack description language based on logic, and whosesae steps represent the
attacker’s actions [Cuppens and Ortalo, 2000]. In Sectiénv@e suggest how to use such
a language to build libraries of intrusions and countersuess.

The notion of anti-correlation is then used to select relevasponses to a given intrusion
in order to help the administrator to decide which apprdpr@ounter-measures may be
launched. This mechanism is integrated together with tmenconication infrastructure
presented in Chapter 5, and some examples have been shdlustrate the applicability
of our approach in real-world scenarios.

Up to now, we only use this approach to provide a support t@thministrator who takes
the final decision to choose and launch a given response.isTaiprudent strategy but it
introduces an overhead that is sometimes incompatibler@@htime response.
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We finally described in Chapter 7 an access control mechaspsweially suited for the pro-
tection of network security components, sucHiesvallsandnetwork intrusion detection
system¢NIDSs) [Garcia et al., 2005b, Garcia et al., 2005c]. Aisfeal outin [Geer, 2004],
when one of these components, or one of its elements, is comiged by a remote ad-
versary, it may lead such an adversary to obtain the fullrcbrf the network and its
components.

The solution we provided proposes the protection of the arapts by making use of the
Linux Security Moduled.SM) framework for the Linux kernel over GNU/Linux systems
[Wright et al., 2002]. The developed mechanism works by jgiog and enforcing access
control rules at system calls, and is based on a protectiatutaontegrated into the op-

erating system’s kernel, providing a high degree of modlyland independence between
elements.

The use of LSM allows our protection system to be used in nenpoments and elements,
by just considering its environment and its interactiorgérding access control). It rein-
forces the modularity of the system and provides an easy anerig way to introduce new
elements without having to consider each component seharathus, we consider that
our proposal provides a high degree of scalability. Theoohiiction of new components
provides a minimum performance penalty, because the LSMdvweork and the access
control schema do not introduce an excessive computatmraplexity. We also mea-
sured the penalty introduced by our approach against the pstformance of the system.
The results show the minimum performance impact of our psapo

To reinforce the protection mechanism itself, our impletagan provides a complemen-
tary authentication method, based on smart-card techypoldgs additional enhancement
is based both on a secret (smart-card PIN) and a physical {tike smart-card itself). This
way, we can prevent some logical attacks (e.g., passwogeiigr against the protection
mechanism itself. For all these reasons, we may concludé¢ht@nhanced access control
proposed, and integrated inside the operating systemrgekéirough theLinux Security
Modules(LSM) framework, offers a good degree of transparency tostéurity officer,
and it does not interfere directly with user space’s proegess
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Future Work

As an extension of the work presented in Chapter 4, we mayidenhe study of anomaly

problems of security rules in the case where the securityiteicture not only includes

firewalls and IDS, but also IPSec devices. More specificallyen the configuration of a

network includes security rules of these three enforcerdevices, and although there is
a real similarity between the parameters of those deviadssy a more complete set of
anomalies may be addressed. Up to now, our study just a@drassingle-trigger policies,

i.e., a list of predicates leading a one possible action. eNbeless, when considering
IPSec devices, a new kind of policies appear. These paolicegerred in the literature

as multi-trigger policies, often represent a collectiorpodédicates leading to more than
one action. Multi-trigger policies are used on IPSec devtcerepresent network traffic
transformations, such as sign and crypt the traffic by usifigrdnt algorithms.

In parallel to this work, we are also considering to exteredapproach presented in Chap-
ter 4 to the analysis of stateful policies. For the momerdt giiatic non-stateful policies
have been studied. Stateful policies allows firewalls fanaiwically inspecting network
traffic by keeping the state of each connection that is estadd between the surveyed
zones. In order to do so, this state is kept in dynamic talléseamemory of the device,
and it allows it to inspect the actions that will follow thatial one. More investigation
has to be done in order to extend our proposal for using theseclasses of policies (i.e.,
multi-trigger and stateful policies).

As an extension of the work presented in Chapter 5, we maycimssider to secure the
communication partners by utilizing the SSL protocol [Seilen 1996]. This way, each
node will receive a private and a public key. The public keyath node will be signed

by a certification authority (CA), that is responsible foe frotected network. Hence, the
public key of the CA has to be distributed to every node as.wiéie secure SSL channel
will allow the communicating peers to communicate privatehd to authenticate each
other, thus preventing malicious nodes from impersondeggl ones. The implications
coming up with this new feature, such as compromised key gemant or certificate

revocation, would be part of this future work.
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We may also consider as further work to the approach presémt€hapter 5 a more in-
depth study about privacy mechanisms by exchanging aledspseudonymous manner.
By doing this, one may provide the destination and origiminfation of alerts $ource
andTargetfield of IDMEF messages) without violating the privacy of psbers and sub-
scribers located on different domains. Our study could ctheedesign of a pseudonymous
identification scheme, trying to find a balance between itleation and privacy. This also
represents further work that remains to be done.

A possible extension of the work presented in Chapter 6 woelthe analysis of situations
where it would be possible tautomaticallydecide to launch the response. Notice that
a possible response consists in reconfiguring the secuwligypto prevent a new occur-
rence of a given intrusion. However, as suggested in [PetkddBadger, 1997], dynamic
changes of the security policy may cause failure of somevsoft components. This is
why [Petkac and Badger, 1997] suggests the notion of sgagility, a strategy to provide
software components with adaptability to security polibgieges.

Security agility might be nicely included into the intrusidetection and response frame-
work suggested in Chapter 6. This represents a possiblasateof our work. When
using anti-correlation, moreover, several responses raaglected. In this case, it would
be interesting to rank these different responses and algp@sanking criteria would be to
properly evaluate the effectiveness of the responsespdis¢cattack. A possible extension
of our response formalism would be the use of temporal logimtlude the fact that a
given response will stop an intrusiemtil another additional event occurs. More difficult
is performing an action that will cause this additional dyerore effective is the response.

Finally, as an extension of the work we presented in Chaptee @are considering im-
proving the customizing of policies. Up to now, the specifiqy that is enforced by our
protection module is loaded at boot time throughphse file systenfprocfs). We are plan-
ning to extend this feature to add the possibility of using-teased configuration files and
the reload of policies at runtime. We are also consideringptdinue our study to address
the security of the system from an intrusion tolerance pafintew [Deswarte et al., 1991],
i.e., the inclusion of mechanisms that may allow the systemaintain its services in an
acceptable manner, though possibly degraded, despitg attacked.
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