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Abstract

Hundreds of millions of people experiment with drugs of abuse, but only a small percentage of

them become addicted. Vulnerability to develop addiction has been associated with impulsivity or

novelty-seeking. The Roman rats, genetically selected for high (RHA) or low (RLA) active avoidance

acquisition in the two-way shuttle box, appear to be a valid laboratory model of divergent novelty

and substance-seeking profiles and differ in the functionality of the dopaminergic system. So far,

it is known that RHA rats drink ethanol voluntarily whereas RLA rats show aversion to it. In the

present thesis, the Roman rats have been used as a model of differences in vulnerability to

addiction. The aim of the thesis was to understand the neurobiological mechanisms that underlie

such differences in vulnerability between the two Roman rat strains. 

The work has been divided in 3 experimental blocks. First, we studied the behavioral response to

an injection of a low dose of ethanol in the Roman rats. Like those humans that have higher risk

to develop alcoholism, RHA rats were less sensitive to the effects of low-dose of ethanol. Second,

brains of naïve Roman rats were studied in order to characterize several molecular targets of the

dopaminergic system and related neuropeptides: dopamine receptor subtypes were quantified by

means of receptor autoradiography and mRNA coding for neuropeptides were quantified using in

situ hybridization histochemistry. When compared to RLA rats, RHA showed higher binding of D1
and D3 dopamine receptor subtypes and DYN mRNA expression in the nucleus accumbens (NAc)

shell, although they showed lower basal binding of D3 receptors in the Calleja islands. Moreover,

a challenge with a D3 agonist resulted in greater inhibition of locomotor activity as well as

supression of NGFI-A mRNA as measured with in situ hybridization in the Calleja magna in RLA

rats when compared to RHA rats. These results provide further evidences of the differences in

dopamine function between the Roman strains and may represent the neurobiological core of the

divergences in novelty-seeking and preference for addictive drugs such as ethanol. Third,

behavioral sensitization, a model of behavioral and neuronal plasticity secondary to chronic drug

use, was also studied in the Roman rats. Neuronal activity maps with 5 different immediate early

genes were made by means of in situ hybridization. Amphetamine pre-treated RHA rats showed

behavioral sensitization and increased secretogranin and PSD-95 in the NAc core which is

suggestive of increased glutamatergic activity at this site. These findings are discussed in the

context of the laboratory models of chronic drug use. Pretreatment with amphetamine in RLA rats

did not result in behavioral sensitization but induced neuronal adaptations that may be related to

the lack of this phenomenon. Moreover, RLA rats that experienced amphetamine for the first time

showed activation of the central nucleus of the amygdala (CeA). Activation of the CeA was also

seen in mice receiving ethanol and naltrexone, a drug used to prevent relapse in alcoholics. These

findings suggest that the CeA may be a relevant brain structure in preventing drug addiction. 
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Sumari en Català
Només un petit percentatge d’entre tots els individus que experimenten amb drogues d’abús

esdevenen addictes. La vulnerabilitat per a desenvolupar un trastorn addictiu està relacionada amb

trets de personalitat impulsiva o amb apetència per la novetat. Les soques de rata Romanes,

genèticament seleccionades per alta (RHA) o baixa (RLA) adquisició de l’evitació activa en dos sentits,

són un model de laboratori vàlid de les divergències en apetència per la novetat i substàncies

gratificants que s’observen en humans. A més a més, aquestes soques de rata difereixen en la

funcionalitat del sistema dopaminèrgic. Se sap que les rates RHA beuen etanol voluntàriament mentre

que les rates RLA mostren aversió. En aquesta tesis, les rates Romanes s’empren com a model de

vulnerabilitat addictiva. L’objectiu de la tesis ha consistit en entendre els mecanismes neurobiològics

que sustenten les diferències de vulnerabilitat addictiva entre les dues soques de rata Romanes.

El treball s’ha dividit en 3 fases experimentals. En primer lloc, es va avaluar la resposta conductual de

les rates Romanes a la injecció d’una dosi baixa d’etanol. Tal i com s’observa en humans amb elevat

risc d’esdevenir alcohòlics, les rates RHA van ser menys sensibles als efectes conductuals d’aquesta

dosi. En la segona fase, es varen estudiar els cervells de rates Romanes naïve per tal de caracteritzar

vàries dianes moleculars del sistema dopaminèrgic i neuropèptids relacionats: es van quantificar

diferents subtipus de receptor de dopamina per mitjà de la tècnica d’autoradiografia de receptors així

com els nivells d’expressió d’ARNm per diferents neuropèptids mitjançant la tècnica d’hibridació in

situ. Comparades amb les rates RLA, les rates RHA presenten majors nivells de receptors D1 i D3 així

com també d’ARNm per la DYN a nivell de l’escorça del nucli accumbens (NAc). En canvi, presenten

menors nivells d’expressió del receptor D3 a nivell de les illes de Calleja. A més a més, quan

s’administra un agonista D3, les rates RLA mostren major inhibició de l’activitat locomotora i supressió

de l’expressió del gen NGFI-A a la Calleja magna (mesurat per mitjà de tècniques d’hibridació in situ)

que les rates RHA. Aquests resultats afegeixen noves evidències de les diferències en la funcionalitat

del sistema dopaminèrgic i potser representen l’eix central de l’entramat neurobiològic subjacent a les

diferències en apetència per la novetat i preferència per a les drogues d’abús com l’etanol entre les

dues soques. En la tercera fase, es va estudiar el fenomen de sensibilització conductual induït per

amfetamina en les rates Romanes i es van elaborar mapes d’activitat neuronal per mitjà de tècniques

d’hibridació in situ amb cinc gens d’expressió immediata. La sensibilització conductual és un model de

plasticitat conductual i neuronal induïda per l’ús crònic de drogues. Les rates RHA que van rebre un

tractament crònic amb amfetamina van mostrar sensibilització conductual i un augment en l’expressió

dels gens de secretogranina i PSD95 al corus del NAc. Aquestes troballes es discuteixen en el context

d’altres models de laboratori d’ús crònic de drogues. D’altra banda, les rates RLA no van mostrar

sensibilització conductual però en canvi van mostrar adaptacions neuronals que poden estar

relacionades amb la manca de sensibilització. A més a més, les rates RLA que van rebre amfetamina

per primer cop van mostrar activació del nucli central de l’amígdala (CeA). També es va detectar

activació del CeA en ratolins que van rebre un tractament amb etanol i naltrexona, fàrmac que s’empra

a la pràctica clínica per tal de prevenir les recaigudes en alcohòlics. Aquesta troballa suggereix que el

CeA pot ser una estructura del cervell rellevant per tal de frenar el desenvolupament dels trastorns

addictius.
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Introduction

Drug addiction progress through a characteristic clinical course, depends on specified neuronal

mechanisms and its liability is known to be heritable (McLellan et al., 2000). According to the

Diagnostic and Statistical Manual of Mental Disorders by the American Psychiatric Association

(DSM-IV, the main diagnostic tool in psychiatry), the hallmarks of substance dependence (beside

tolerance and withdrawal) are: 1) difficulty to stop or limiting drug use; 2) extremely high

motivation to procure and take the drug; and  3)  drug taking proceeds despite its negative

consequences. Drug dependence is, thus, equated to compulsive drug use. Moreover, addiction

is characterized by a chronic course in which addict’s repeated attempts to quit the use of drugs

are mislead by a high propensity to relapse even after long periods of withdrawal (DeJong, 1994;

Hyman and Malenka, 2001). However, the clinical stage of compulsive drug use plus repeated

relapses is not reached by everybody having experiences with drugs. In fact, only 15 to 17% of

those using drugs develop a behavioral disorder fulfilling the DSM-IV criteria (Anthony et al.,

1994). Vulnerability to develop addictive patterns is influenced by a combination of multiple

genetic and environmental factors (Kreek et al., 2005). Variation in the core neurobiology of

addiction is genetically influenced and vulnerability to drug dependence has a strong genetic

component estimated around 40-60% (Crabbe, 2002; Goldman et al., 2005). 

Nature Neuroscience devoted a monograph to addiction at the end of 2005 which began with a

claim to break stigma and misconception over addicted subjects held by the society (Dackis and

O’Brien, 2005). According to the Health Statistics-Key Data (2002), in the European Union,

cannabis was the illicit drug with the highest last 12 month prevalence (1-9% varying among

member states). Prevalence among younger adults was roughly double the prevalence among all

adults. Use of other addictive drugs was around 1% in all member states and less than 5%

among younger adults. Data collected in the same period shows that life-time prevalence was 2

to 3 times higher than last 12 month prevalence in most places. Addiction is highly expensive for

the society (Dackis and O’Brien, 2005). It is well known, for instance, that alcohol consumption is

highly common in the society: according to a report by RAND Corporation (Horlings and

Scoggins, 2006), 86% of adult Europeans older than 16 years consumed some alcohol and

15.5% could be considered heavy drinkers. In the European Union alcohol is the third leading risk

factor for disease burden after tobacco and obesity and represents 11% of male premature

death. Therefore, establishing the mechanisms for vulnerability to addiction is a crucial step in the

design of new preventive interventions in the community that dampen the impact of such a social

and medical problem.
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1. Temperament as a risk factor for addiction: novelty sensation-seeking in rodent models

Current models of personality define several (3 to 5) basic vectors or behavioral dimensions that

describe the personality of an individual and cover the rich complexity of human temperament

(Eysenck, 1967; Cloninger, 1987; Zuckerman, 1993; Gray and McNaughton, 2000). The

terminology to address personality dimensions and the borders between these dimensions vary

depending on the model. However, among basic traits, variations in impulsivity together with risk

taking, novelty-seeking or sensation-seeking are consistently related to the initiation of drug use

as well as the transition from occasional testing to regular use and addiction (reviewed by Dawe

and Loxton, 2004; Kreek et al., 2005). Zuckerman (1994a, 1994b) clarified the notions of

impulsivity and sensation-seeking and combined them in a supertrait called impulsive sensation-

seeking. Sensation-seeking is defined by the seeking of varied, novel, complex and intense

sensations and experiences, and the willingness to take physical, social, legal and financial risk for

the sake of such experiences. Impulsivity is the tendency to enter into situations, or rapidly

respond to cues of potential reward, without much planning or deliberation and without

consideration of potential punishment or loss of reward.

Novelty- or sensation-seeking can be studied in rodents by behavioral criteria such as exploration

activity in open areas, and this behavioral characteristic is considered an animal model of human

sensation-seeking (Bardo et al., 1996; Zuckerman, 1996). Animals that show high response to

novelty show higher liability to self-administer drugs of abuse (Piazza et al., 1989) and they show

higher levels of dopamine in the nucleus accumbens (NAc) both under basal conditions (Hooks et

al., 1992b), as well as during novel or stressful situations (Rouge-Pont et al., 1993). In fact, it has

been suggested that novelty-seeking is influenced by the reactivity of the mesolimbic

dopaminergic system (Bardo et al., 1996; Zuckerman, 1996). Moreover, marked differences

between inbred strains and within subspecies in exploratory behavior in mice suggest a genetic

control of this trait (Henderson, 1967).

2. Three main neurobiological approaches to explain addiction

Drug addiction is a complex disorder with interacting environmental factors, drug induced

neurobiological changes, comorbility with other psychiatric disorders, personality vulnerabilities

and response to stressful demands. There are three major approaches or ways of thinking to try

to account in neural terms for the development and maintenance of addiction once individuals

have begun to take drugs. They are usually referred to as “incentive sensitization”, “hedonic

allostasis” and “habit formation” theories. The first 2 theories are based on changes in the

motivational or affective systems of the brain induced by drugs. The last one is mainly based on

the automaticity of the behavioral output. They are all based on neuronal adaptations on the

pleasure/aversion central systems schematically drawn in figure 1. These theories explain indeed
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part of the phenomenology of addiction and they should be seen as complementary, maybe as

representative of different stages in the development of the addictive disorders. 

a. Incentive sensitization

This theory postulates that, when chronically administered, drugs of abuse induce an increase of

the responsiveness (sensitization) of dopaminergic mechanisms that mediate incentive salience

(attractiveness) of the drug itself or drug related stimuli. This enhanced dopamine responsiveness

would account for the craving that many addicts experience during abstinence and that likely

leads to relapse (Robinson and Berridge, 1993, 2001). 

b. Hedonic allostasis 

This theory postulates that the appearance of compensatory mechanisms opposing the effects

of the drug leads to a state of allostasis characterized by a brain that is less sensitive to reward.

In this situation, the individuals administer the drug in an attempt to compensate for this situation

(Koob and Le Moal, 1997; Koob et al., 2004). 

c. Habit formation

This theory postulates that drug addiction can be understood as a pathological subversion of

normal brain learning and memory processes strengthened by the motivational impact of drug-

associated stimuli, leading to the establishment of compulsive drug-seeking habits. This

transition would emerge from a switch on the neurobiological substrate of the observed behavior

(Tiffany, 1990; Robbins and Everitt, 1999; Everitt and Robbins, 2005). This is perhaps the oldest

theory of addiction but only recently the neural mechanisms have been specified. 
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Figure 1: Reward pathways in rodent's brain: key neural sites.

This very schematic figure representing a sagittal slice through the rat brain shows the approximate
location of the brain areas that have been related with the processing of reinforcement and reward. In red
appear the mesencephalic projection neurons that send their axons towards the forebrain through the
median forebrain bundle, reaching the striatum with its dorsal and ventral subdivisions, the amygdala and
the prefrontal cortex.  

Prefrontal cortex
Striatum

Amygdala

Mesencephalic nuclei



3. The Roman rat lines/strains as an animal model of vulnerability to drug addiction

Similar to what is observed in humans, only in 15-17% of the rats that could self-administer

cocaine for long periods of time developed addictive-like behavioral patterns as assessed with the

confluence of 3 different addict-like criteria together with high propensity to reinstate self-

administration after extinction (Deroche-Gamonet et al., 2004). This finding points out that there

are individual factors in rodents that, like in humans, predispose individuals to addiction. The

Roman rats are good candidates to study these factors (Driscoll et al., 1998).

a. Psychogenetic selection of the Roman lines and inbreeding program

The first report concerning the Roman High- and Low- Avoidance rats (RHA and RLA respectively)

appeared in 1965. Wistar Rattus norvegicus were psychogenetically selected for their fast (RHA)

or extremely low (RLA) acquisition of two-way active avoidance in the shuttle box (Bignami, 1965).

Sublines have been established in Switzerland and maintained under continuous selective

breeding since 1972 and they have been studied extensively (Driscoll and Bättig, 1982). In 1993

an inbreeding program was started and one inbred colony is currently maintained in the Animal

Facilities of the Medical Psychology Unit at the UAB, Bellaterra, Spain (Driscoll et al., 1998;

Escorihuela et al., 1999). In the present thesis, RHA and RLA will refer to the outbred Roman rat

lines or to findings generalized in both outbred and inbred rats. On the other hand, the use of RHA-

I and RLA-I will always refer to the findings in the inbred strains.

b. General behavioral characteristics of the Roman rat lines

The acquisition of the two-way active avoidance in the shuttle box is inversely related to fear levels

in animals (Fernández-Teruel et al., 1991). Therefore, the Roman rats were selected in a test that

measured fear among other variables. Due to this selection, RHA rats, with high avoidance

acquisition, show lower emotional reactivity than RLA rats (Fernández-Teruel et al., 1997b; Steimer

and Driscoll, 2003). Under circumstances of mild stress like placement in a novel environment,

RLA rats show higher fear or emotional reactivity as measured by time spent in freezing or number

of defecations (Fernández-Teruel et al., 1997b), and higher endocrine response as measured by a

stronger and longer stress induced corticosterone and prolactin release (Steimer et al., 1997;

Steimer and Driscoll, 2003). RLA rats also show increased fear response to a strong aversive

sound as measured by the startle response (Schwegler et al., 1997), and they show higher number

of self-groming episodes, a displacement or conflict activity, when exposed to novelty (Fernández-

Teruel et al., 1997b). 

On the other hand, RHA rats show a more active behavioral response than RLA rats in several

distinct behavioral paradigms: RHA rats show enhanced locomotor response when placed in a

novel environment like the open field, the plus maze, the hole board (Fernández-Teruel et al.,

1997b; Escorihuela et al., 1999; Fernández-Teruel et al., 2002), or the locomotor test cage
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(Giménez-Llort et al., 2005). RHA show stronger and longer lasting attempts to actively remove

the source of pressure than RLA rats when exposed to tail-pinch (Giorgi et al., 2003). In tests were

there is a transition between two areas with different safety value such as the light/dark box or

the plus maze, RHA rats cross the border between the zones at the first attempt whereas RLA

rats usually make many attempts (Fernández-Teruel et al., 1997b; Steimer and Driscoll, 2003).

Finally, RHA rats show enhanced preference for rewarding substances like saccharine or ethanol

(Driscoll et al., 1990; Razafimanalina et al., 1996; Fernández-Teruel et al., 2002). 

Based on these and other behavioral and endocrine characteristics, Steimer et al. (1997) have

defined a two-dimension model of the “temperament” of RLA and RHA rats in which the

dimensions are relative between the two lines: a conjunction of high emotionality with passive

(reactive) coping style in RLA rats results in increased fearfulness or anxiety; conjunction of low

emotionality with an active (proactive) coping style in RHA rats results in animals that can be seen

as impulsive or novelty-seekers. Increased impulsivity or novelty-seeking in RHA rats, when

compared to RLA rats, is supported by several behavioral evidences and it is the basis of the use

of RHA rats as a model for liability to addiction (Driscoll et al., 1998). Perhaps the more conclusive

evidence supporting an impulsive or novelty-seeking profile in RHA rats is the finding, only in

these rats, of increased amplitude of the visual evoked potential (VEP) as the intensity of the visual

stimuli increases (Siegel et al., 1993; Siegel, 1997). The same finding has been reported in

humans: those identified as high sensation-seekers with the scales developed by Zuckerman

showed increased VEP as a function of increased intensity, whereas a decrease is detected in

humans with low scores in the sensation-seeking scales (Zuckerman, 1974). 

c. The mesocorticolimbic dopaminergic system and the impulsive profile in RHA rats 

As pointed out above, impulsivity or novelty-seeking is thought to be influenced by the reactivity

of the dopaminergic system. Besides the described differences in the reactivity of the HPA axis,

differences in the mesocorticolimbic dopaminergic system between the Roman lines/strains may

account for the described behavioral differences (Driscoll et al., 1998). RHA rats show a more

pronounced dopamine release than RLA rats in the prefrontal cortex under stress conditions

(D’Angio et al., 1988; Giorgi et al., 2003), and this finding correlated with active coping as

previously described (Giorgi et al., 2003). However, RLA rats show higher dopamine release in the

nucleus accumbens (NAc) than RHA rats under stress conditions (Giorgi et al., 2003). When

compared to RLA rats, RHA rats show higher behavioral response to apomorphine (Durcan et al.,

1984; Giménez-Llort et al., 2005) and amphetamine (Driscoll et al., 1986; Cañete et al., 2003) a

direct and indirect dopamine agonist respectively. RHA rats show a more reactive

mesoacumbens pathway than RLA rats as shown by the higher behavioral response and

dopamine release into the NAc induced by administration of abused drugs such as amphetamine,

cocaine, morphine, and ethanol (Giorgi et al., 1997; Corda et al., 2001; Lecca et al., 2004). The

dopaminergic response to these drugs is stronger in the NAc shell when compared to the NAc
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core in RHA rats but it does not differ between accumbal subregions in RLA rats (Lecca et al.,

2004). Moreover, in the NAc shell, RHA show higher density of D1 receptors (Corda et al., 1997).

As discussed below, release of dopamine in the NAc is a common neuronal substrate for the

reinforcing effects of all abused drugs (Imperato and Di Chiara, 1986; Di Chiara and Imperato,

1988), and more recently the increase has been found circumscribed in the shell subregion

(Pontieri et al., 1995). This enhanced responsiveness of the dopaminergic mesoaccumbal system

in RHA rats may underlie their enhanced preference for alcohol and other rewarding substances

(Razafimanalina et al., 1996; Fernández-Teruel et al., 2002). Finally, RHA rats show behavioral

sensitization when they are chronically treated with morphine, amphetamine and cocaine but,

under the same circumstances, this phenomenon is not observed in RLA rats (Piras et al., 2003;

Corda et al., 2005; Giorgi et al., 2005b). 

c. Other rodent models of vulnerability to drug addiction

Maybe the best characterized rodent model of vulnerability to drug addiction is represented by the

High Reactive (HR) and Low Reactive (LR) to novelty rats (reviewed by Piazza et al., 1998). HR and

LR rats display higher or lower novelty-induced locomotor activity than the median in a given rat

stock, and they show higher or lower liability to self-administered drugs (Piazza et al., 1989). Both

HR and LR rats self-administer psychostimulants during the first day of training for self-

administration, but this behavior rapidly extinguishes in LR rats whereas it stabilizes in HR rats

(Piazza et al., 1990; Piazza et al., 1991; Piazza et al., 1993a). When compared to LR rats, HR rats

show: 1) higher seeking for novel and stressful situations (Dellu et al., 1996);  2) higher behavioral

response to administration of psychostimulants (Piazza et al., 1989; Hooks et al., 1991 but see

also Pierre and Vezina, 1997); 3) higher basal, cocaine (Hooks et al., 1992b) and stress-induced

(Rouge-Pont et al., 1993) dopamine release in the NAc; 4) higher sensitivity to other reinforcing

stimuli such as food (Piazza et al., 1998); 5) higher stress-induced corticosterone blood levels. With

regards to sensitization with amphetamine, conflicting results have been reported in the HR/LR

rats: HR rats show stronger behavioral sensitization when sensitization is context dependent (in

other words, induction treatment is paired with the testing conditions) (Hooks et al., 1992a); but

sensitization may exclusively appear in LR rats when sensitization is context independent (Piazza

et al., 1989). 

Table 1 shows a comparison of the HR/LR rats with the RHA/RLA rats in the aspects presented in

the text. In most of the comparisons, HR/LR rats comparisons resemble RHA/RLA rats except for

the basal dopamine levels in the NAc (HR>LR; RHA=RLA) and the reactivity of the HPA axis

(HR>LR; RHA<RLA). HR/LR rats are selected for novelty-induced motor activity, a measure

dependent on accumbal dopamine levels (Koob et al., 1981), and this selection criterion may lead

to two batches of animals differing in basal accumbal dopamine. Since Roman rats also differ in

novelty-induced motor activity and in other measures of the dopamine responsiveness, the

difference between HR/LR and RHA/RLA rats is more likely to represent a quantitative difference.
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However, the differences regarding the HPA axis seem more relevant and may represent a

qualitative difference between HR/LR and RHA/RLA rats. Adrenalectomy abolishes the

differences in novelty-induced locomotion between HR and LR rats (Piazza et al., 1998).

Moreover, whereas suppression of corticosterone levels decreases amphetamine self-

administration in HR rats (Piazza et al., 1994), administration of corticosterone induces the

acquisition and maintenance of amphetamine self-administration in LR rats (Piazza et al., 1991).

It seems, thus, that greater reactivity of the HPA is a key feature in the phenotype of the drug

vulnerable HR rats. It is known that corticosterone participates in the cocaine-induced locomotor

effects (Marinelli et al., 1994) and dopamine release in the accumbens shell (Barrot et al., 2000).

Moreover, rats learn to self-administer corticosterone and HR rats are more sensitive to the

reinforcing effects of this substance (Piazza et al., 1993b). A critical difference in the HPA axis

between the two Roman strains seems to be the effectiveness of the feed-back mechanisms:

RLA show lower dexamethasone suppression of the HPA axis and lower densities in hippocampal

and pituitary glucocorticoid receptors (Steimer et al., 1997). Then, although RHA/RLA rats are not

comparable to HR/LR rats in the reactivity of the HPA axis, the actual central sensitivity of the

Roman lines/strains to corticosterone and its implication in the known novelty- and drug-induced

locomotor activity is not known yet.   

Table 1: Comparison between HR/LR rats and RHA/RLA rats

Several rat lines have been selected for the amount of ethanol ingested in a free choice paradigm:

well characterized examples are the AA/ANA (alcohol preferring Alko, Alcohol and the alcohol

non-preferring Alko, Non-Alcohol) rats and the P/NP (alcohol preferring and non- preferring) rats

(Eriksson, 1968; Lumeng et al., 1977). Besides differing in ethanol preference, these lines also

differ in many other behavioral and neurochemical measures. When compared to NP rats, P rats

show higher preference for sweet solutions, higher locomotor activation induced by novelty and

low doses of ethanol, and no differences in aversion for bitter solutions (Murphy et al., 2002).

When compared to ANA rats, AA rats show higher preference for sweet solutions and lower

aversion for bitter solutions (Badia-Elder and Kiefer, 1999) and no differences in ethanol-induced

locomotor activity (Päivärinta and Korpi, 1993). In humans, lower sensitivity to ethanol is

predictive of higher risk for alcoholism (Schuckit, 1994), but it is not clear whether there is the
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same association in rodents. As in the case of the ethanol preferring RHA rats, both AA and P rats

display higher ethanol-induced dopamine release in the NAc when compared to ANA and NP rats

(Katner and Weiss, 2001; Murphy et al., 2002 respectively). Similarly, both AA and P rats show

higher density of m-opioid receptors in the shell of the NAc than ANA and NP rats (De Waele et

al., 1995; Murphy et al., 2002 respectively), but this parameter is not known for the Roman rats.

An endogenous ligand of m-opioid receptors is b-endorphin, whose blood levels increase after

ethanol consumption (Oswald and Wand, 2004). Therefore, differences in dopaminergic and opioid

function seem to underlie higher ethanol preference in these models. 

4. Neurocircuitry underlying drug addiction 

The use of animal models has allowed the identification of neurobiological processes that underlie

the development of addiction. In this section, an overview of the anatomy and physiology of the

circuits that interact with drugs is presented. 

a. The mesolimbic and mesocortical dopaminergic system 

Although all drugs that humans abuse of differ in their pharmacological profile, they all increase,

to a certain extent, the levels of dopamine in one area of the limbic brain, the NAc (Imperato and

Di Chiara, 1986; Di Chiara and Imperato, 1988; Wise, 1998). Rat models of vulnerability to drug

addiction, including RHA rats, show increased reactivity of the dopaminergic system. This system

is formed by two groups of neurons. One group is located in the substantia nigra pars compacta

and projects through the nigrostriatal pathway to the dorsal striatum. The other group of neurons

is located in the ventral tegmental area (VTA) and projects through the mesolimbic and

mesocortical pathways. The mesolimbic pathway reaches the NAc and the amygdala, and the

mesocortical pathway reaches the prefrontal cortex (PFC). A schematic representation of the main

dopaminergic bundles is shown in figure 2. Dopamine is a modulatory neurotransmitter that mainly

modulates the response of neurons to glutamate and GABA, the main excitatory and inhibitory

neurotransmitter, respectively (revised by Nicola et al., 2000 and West et al., 2003). Dopamine

released by neurons of the nigrostriatal pathway has a prominent role in modulation of movement

and learning of motor skills as evidenced by the appearance of Parkinson disease when these

neurons die (reviewed by Berke and Hyman, 2000; Packard and Knowlton, 2002). Dopamine

neurons of the VTA signal reward or reward related stimuli (Schultz, 1998). Dopamine, in the NAc,

mediates incentive salience and reward learning (Berke and Hyman, 2000; Berridge and Robinson,

2003), and boosts approach component of goal directed behaviors (Cardinal et al., 2002). In the

prefrontal cortex, dopamine modulates cognitive processes related to goal directed behavior

(Tzschentke, 2001). However, the hedonic impact of the reward itself is independent on dopamine

(Berridge and Robinson, 1998) and has been related to the opioid system which is widespread

around the brain (Glass et al., 1999; Kelley et al., 2002).
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b. Anatomical and molecular aspects of the corticostriatal systems 

In the previous section, the dopaminergic system was presented as having different effects in

independent brain areas. In fact the cortex and the striatum work together in circuits arranged in

parallel loops that go from the cortex to the striatum (corticostriatal systems) and return to the

cortex through the pallidum and the thalamus (Alexander et al., 1986; Bolam et al., 2000). The

group of nuclei between the cortex and the thalamus are known as the basal ganglia. The striatum

is the first relay station of the basal ganglia and receives excitatory inputs from the entire cortex

and is connected to the output structures of the basal ganglia, i.e. the substantia nigra reticulata

and entopeduncular nucleus (revised by Albin et al., 1995). Due to the high content of dopamine

and dopamine receptors in the striatum (Mansour et al., 1990; Mansour et al., 1991), and the

importance of dopamine in movement and reinforced behavior, the striatum has been an

important focus of research. The striatum can be divided in terms of embryology, anatomy and

physiology in a dorsal and a ventral part, the latter including the NAc (De Olmos and Heimer,

1999; Heimer, 2003). The dorsal striatum receives its cortical input from somatosensory and

associative cortices. On the other hand, the ventral portion receives converging input from the

hippocampus, the basolateral amygdala and the prefrontal cortex (Voorn et al., 2004). The

histological and physiological characteristics of the dorsal striatum and its integration in the basal

ganglia systems are better characterized. Therefore, a simplified description of the histological

and physiological organization of the dorsal striatum is summarized in box 1 and in figure 3 as an

illustrative example for the whole system. 
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Figure 2: The dopaminergic system.

This schematic figure shows the main dopaminergic pathways arising from the two main groups of
neurons in the mesencephalon that project to the forebrain. One group is located in the substantia nigra
pars compacta (SNC) and projects through the nigrostriatal pathway to the dorsal striatum. The other
group of neurons is located in the ventral tegmental area (VTA) and projects through the mesolimbic and
mesocortical pathways. The mesolimbic pathway reaches the nucleus accumbens (NAc) and the
amygdala (Amy), and the mesocortical pathway reaches the prefrontal cortex (PFC).



Box 1: Simplified circuitry of the basal ganglia through the dorsal striatum.
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To achieve its function, the dorsal
striatum receives converging
inputs from many cortical areas
that form a functional mosaic of
parallel circuits with
topographical organization that is
maintained in the striatal
projection areas (Deniau et al.,
1996).  90% of the neurons in the
striatum are GABAergic
projection spiny neurons that are
subdivided into two groups
(Gerfen, 1992). One group of
spiny neurons expresses D1
receptors, substance P and the
opioid peptide dynorphin. These
neurons conform the so called
direct pathway and directly
project to the output structures of
the basal ganglia: the substantia
nigra reticulata (SNR) and the
entopeduncular nucleus (EP). The
other group of striatal neurons
expresses D2 receptors and the
opioid peptide enkephalin. These neurons
comprise the so called indirect pathway that
successively involves GABAergic neurons in the
globus pallidum (GP) and glutamatergic neurons in
the subthalamic nucleus (STN) that eventually
project to the output structures (Bolam et al., 2000).
The STN also receives direct excitatory input from
motor, premotor and prefrontal areas of the cortex
(Maurice et al., 1998). The output nuclei of the
basal ganglia such as the SNR project to the
thalamus and reenter the corticostriatal loops but
they also project to the brainstem premotor areas
(BSPM) (Alexander et al., 1986; Bolam et al., 2000).
The GABAergic neurons of the output structures
tonically fire under basal conditions and maintain
inhibition of the thalamus and the brainstem
premotor centers (Deniau et al., 1978; Chevalier
and Deniau, 1990). As suggested by Kolomiets et
al. (2003) or Grillner et al. (2005), activation of
neurons in the two striatal pathways and neurons in
the subtalamic nucleus results in selective
inhibition of a group of output neurons. If this
inhibition is achieved, it has a functional
consequence (behavioral output, modulation of
cognitive processes, etc…). The striatum, thus,
works as a gate for competing cortical behavioral
or cognitive signals. 

How do the cells in the striatum work as a gate?
Striatal neurons show two different
electrophysiological states: a hyperpolarized or
silent state (also referred as “down state”)
maintained by rectifying K+ currents, and a more
depolarized state (also named “up state”) in which
neurons may fire action potentials (Wilson and
Kawaguchi, 1996). To reach the “up state”, neurons
must be activated by convergent glutamate
(cortical or thalamic) signals (O’Donnell and Grace,
1995). When neurons are in the silent state,
dopamine, by activating D1 receptors, promote the
K+ rectifying currents and, thus, suppression of
excitability. However, near the depolarized state,
D1 receptor activation enables and maintains the
steady up state. Then, dopamine acts as a
coincidence detector, enhancing glutamate
induced currents when many excitatory synapses
coincide in time and space. Moreover, D1 receptors
are coupled to mechanisms of synaptic plasticity
that eventually may change synaptic strength and
underlie learning processes. This model of
dopamine and glutamate interaction in the striatum
is reviewed by, among others, Nicola et al. (2000),
West et al. (2003) and Kelly (2005). Less is know
about the electrophysiologic consequences of D2
receptors expressed by spiny cells (Nicola et al.,
2000).

Figure 3: 

Excitatory projections are shown by green lines, inhibitory projections by dotted
blue lines, and dopaminergic projections by discontinuous lines. Adapted from
Bolam et al., (2000)



More than 90% of the striatal neurons are spiny GABAergic neurons. D1 and D2 receptors are

generally expressed by different spiny cells that form the direct and indirect pathways respectively

(Gerfen, 1992). However, virtually all spiny neurons express DARPP-32 (Svenningsson et al.,

2004), an intracellular protein with several phosphorylation sites. A schematic representation of

each of these neurons and its molecular signaling pathways is shown in figure 4. The importance

of this signaling protein for the field of addiction was shown by the lack of behavioral effects of

abused drugs in the knock out mice (Svenningsson et al., 2003). D1 and D2 receptors are coupled

to adenyl cyclase and activate or inhibit cAMP dependent protein kinase (PKA) respectively. When

activated by PKA phosphorylation, DARPP-32 becomes a potent inhibitor of protein phosphatase

1 and prevents dephosphorylation of PKA substrates and PKA itself. So, through DARPP-32

modulation, dopamine achieves amplification of its cellular signaling effects (Nishi et al., 1997;

Fienberg et al., 1998; Nishi et al., 2000). Glutamate may alter DARPP-32 phosphorylation at

different sites (Nishi et al., 2005). The exact nature of dopamine/glutamate interactions in DARPP-

32 modulation is not clear yet, though DARPP-32 is a clear candidate cellular site in which this

interaction takes place.
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Figure 4:  Signaling pathways
and dopamine/glutamate
interaction in striatal spiny cells.

This figure depicts the signaling
pathways mediating the major
effects of dopamine, glutamate
and opioids in the two subtypes
of striatal spiny neurons. In
striatonigral neurons, activation
of D1 receptors activates the
adenylyl cyclase which increases
cAMP and activates protein
kinase A (PKA). This protein
phosphorylates many other
proteins which ultimately have
cellular effects. PKA and its
substrates are dephosphorylated
by protein phosphatase 1 (PP1).
Therefore, PP1 brings the effects
of D1 stimulation to an end. By
activating DARPP-32, PKA keeps
PP1 inhibited. Stimulation of
opioid receptors suppresses PKA
activity and, by inhibiting
DARPP-32, relives PP1 from

inhibition and promotes inactivation of PKA and its substrates. Activation of NMDA glutamate receptor
and the subsequent increase in intracellular Ca2+ activates protein phosphatase PP-2B (or calcineurin)
which also suppresses DARPP-32 and relives PP1 from inhibition. In striatopallidal neurons, activation of
D2 receptors inhibits DARPP-32 through two synergic mechanisms: 1) inhibition of adenylyl cyclase, and
2) increase in intracellular Ca2+.
Adapted from Svenningsson et al., (2004)



As suggested by Berke and Hyman, 2000, it may be said that dopamine, through its interaction

with glutamate, facilitates action and regulates learning in processes involving the striatum.

However, in the striatum, dopamine interacts with many other molecules. Some of them, like the

opioid peptides (dynorphin and enkephalin) and cholecystokinin, have been related to vulnerability

to addiction in the HR/LR rats (Lucas et al., 1998). Moreover, the relation of opioid peptides with

alcoholism has already been noticed. The striatum is enriched in opioid receptors (Mansour et al.,

1987). Activation of k-receptors (presumably located presynaptically on the dopamine terminals)

by dynorphin peptides leads to a decrease in dopaminergic transmission (Spanagel et al., 1992).

Moreover, it has been suggested that dynorphin levels upregulate as a result of hyperdopaminergic

activity in an attempt to dampen cellular response to dopamine (Steiner and Gerfen, 1998).

Cholecystokinin reaches the striatum from pyramidal neurons and dopaminergic neurons

(reviewed by Hökfelt et al., 2002), and it has been related to addictive behaviors (reviewed by

Rotzinger and Vaccarino, 2003).

c. The nucleus accumbens and its place in the motive circuit

The corticostriatal loops that flow through the NAc together with the VTA conform what has been

termed the motive circuit. This circuit is implicated in the translation of biological relevant stimuli

into adaptative behavioral responses (Kalivas et al., 1993). The repeated use of addictive drugs

induce neurochemical and structural changes in this circuit which results in behavioral

sensitization (Pierce and Kalivas, 1997) and the increased craving and drug seeking that

predispose addicts to relapse (Kalivas et al., 2005; Kalivas and Volkow, 2005). The NAc can be

divided anatomically, histochemically, pharmacologically, and functionally in distinct subareas: the

shell and the core (reviewed by Pennartz et al., 1994; Zahm, 2000). Whereas the core shares

anatomical and histochemical characteristics with the rest of the striatum, the shell is a transitional

area and also share features with the central nucleus of the amygdala (CeA) (Koob et al., 1998;

Zahm, 1999). The ventral striatum is one of the areas where D3 receptors are expressed (Sokoloff

et al., 1990).

Like other striatal areas, the NAc shell takes part in the reentering corticostriatal loops; it projects

to the ventral pallidum (output structure of the basal ganglia) and through a relay in the thalamus

the information flows again to the cortex (De Olmos and Heimer, 1999; Zahm, 2000). As reviewed

by Zahm et al. (1999), and shown in figure 5, the organization of the parallel corticostriatal loops

is spiral-shaped so that neural information is shunted directly from the shell to the core. This spiral

organization is also seen from the core to more dorsal striatal areas. However, the shell is the only

striatal area projecting to the lateral hypothalamus, an area to which the CeA also projects (Zahm

et al., 1999). The lateral hypothalamus has direct control over hypothalamic and brainstem pattern

generators (Swanson, 2000). Striatal neurons also project to the mesencephalon, where the

dopaminergic neurons are set, and both directly and indirectly control their function. This

regulatory system is also arranged in a spiral way so that the NAc shell and the ventromedial
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ventral pallidum control the dopamine that is released in the NAc core and adjacent parts of the

striatum. These latter areas, in turn, reach dopamine neurons projecting to much of the dorsal

striatum (Haber et al., 2000; Zahm, 2000). As already mentioned, the NAc receives information

from the prelimbic prefrontal cortex, the hippocampal formation and the basolateral amygdala.

Other prefrontal areas innervate the accumbens (Pennartz et al., 1994; Zahm, 2000). The anterior

cingulate cortex, an area involved in discriminative learning, projects to the NAc core and is

necessary for animals to show locomotor approach to conditioned stimuli (Cardinal et al., 2002). 

Figure 5: The motive circuit centered in the nucleus
accumbens shell and spiral organization of the ventral
corticostriatal loops.

This figure depicts the ventral corticostraital loops
centered in the NAc shell and some of its relations with
cortical and subcortical structures. This circuitry has
been called the motive circuit and it is believed to
translate the incentive salience (that is, motivational

impact) of environmental stimuli to goal directed behavior. This figure is simplified so that not all the possible
connections are shown, projections from and to the BLA, the CeA and the CA1/subiculum not related to the NAc
shell have not been systematically considered. The red thick line represents the flow of information processing
through different systems to generate a behavioral output. Dopamine controls the probability of cortical inputs
to generate action potentials in the accumbal spiny neurons. Abbreviations: medial dorsal thalamus (mMDT);
ventromedial thalamus (VM); ventral infralimbic cortex (vIL); ventral prelimbic cortex (vPL); orbitofrontal cortex
(ORB); dorsal prelimbic cortex (dPL);  dorsal agranular insular cortex (dAI); anterior cingulate cortex (CG);
enthorhinal cortex (ENT); dentate gyrus (DG); subiculum (SUB); basolateral amygdala (BLA); central amygdala
(CeA); nucleus accumbens (NAc); substantia nigra reticulata (SNR); ventral pallidum (VP); lateral hypothalamus
(LH); ventral tegmental area (VTA).  Some projections omitted are the projection from the BLA to the NAc core,
the projections from PFC cortex to the CeA and the bidirectional connections between the PFC and the BLA.
The dopaminergic influence of VTA over cortical and amygdalar areas is also omitted to simplify.



It is known that one distinctive feature of the NAc shell is its involvement in unconditioned

behaviors like feeding, maternal behavior, defense or psychostimulant induced locomotion (Kelly

et al., 1975; Stratford and Kelley, 1997; Reynolds and Berridge, 2002; Li and Fleming, 2003). On

the other hand, the NAc core is involved in the control of conditioned locomotor approach and

mediates the motivational impact of conditioned stimuli (Cardinal et al., 2002). This latter function

depends on glutamatergic inputs rather than dopaminergic ones (Di Ciano et al., 2001; Di Ciano

and Everitt, 2001). Although mesolimbic dopamine does not mediate conditioned responses

(Robbins et al., 1989), dopamine in the NAc shell invigorates conditioned responses depending on

the NAc core (Parkinson et al., 1999). The accumbens shell has a negative control over feeding,

an unconditioned behavior, through the lateral hypothalamus. Therefore, the accumbens shell has

been suggested to serve as a fast adaptative switch between different goal directed behavioral

strategies (Kelley et al., 2005). Electrophysiological evidences support this notion. Most of the

accumbal neurons recorded during instrumental behavior show excitation in firing activity either

before the response or short after the response, and another subset of neurons show inhibition

short after the response when the actual “consumption” takes place (Carelli and Deadwyler, 1994;

Carelli et al., 2000; Nicola and Deadwyler, 2000; Carelli and Wondolowski, 2003). Moreover,

neurons in the NAc have been identified to encode the rewarding value of orosensorial stimulation

and firing inhibition has been directly or indirectly associated with consummatory motor generation

(Roitman et al., 2005; Taha and Fields, 2005, 2006). As suggested by Taha and Fields (2005), the

neurons showing inhibition could project to the lateral hypothalamus and, by releasing inhibition,

they could initiate consummatory (motivated) behaviors (or hormonal control). It has been

suggested that the NAc is constituted by several distinct neuronal ensembles (Pennartz et al.,

1994). This view is supported by electrophysiological evidences that demonstrate different

neuronal populations involved in behaviors directed to natural (food and water) and drug rewards

(Carelli et al., 2000; Carelli and Wondolowski, 2003). By contrast, accumbal neurons exhibited

similar firing patterns for different types of water and food rewards (Carelli et al., 2000) regardless

of the palatability or reward value (Roop et al., 2002). In a very interesting review of this issue,

Carelli and Wightman (2004) dropped the idea that neurons activated by drugs could be the same

that underlie sexual behaviors (an old notion, though devoid of precision).

d. The amygdala: a neglected but emergent neuronal structure in addiction circuitry

The amygdala is a heterogeneous structure constituted by a cortical-like glutamatergic projecting

nuclei, like the lateral and basolateral nuclei, and subcortical nuclei constituted by GABAergic

projecting neurons, like the central and the medial nuclei (Swanson and Petrovich, 1998; Alheid,

2003). The cortical-like nuclei project, among others, to the subcortical one in a complicated but

functional fashion (Pitkänen et al., 1997; Swanson and Petrovich, 1998). The best characterized

function of the amygdala is its role in acquisition and expression of learned fear in circuitry

implicating the lateral amygdala, the basolateral amygdala (BLA), and the CeA in a serial

connection (LeDoux, 1996; LeDoux, 2000). However, the amygdala, especially the BLA and CeA,
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have been associated with the regulation of reward related behaviors in a parallel, independent,

way (Cardinal et al., 2002; Balleine and Killcross, 2006). The BLA projects to the NAc core and it

is necessary for transferring the motivational value to environmental stimuli (Cardinal et al., 2002;

Di Ciano and Everitt, 2004). The BLA has reciprocal connections with prefrontal areas and they

work together in regulating emotional behaviors (Cardinal et al., 2002). The CeA massively

projects to the lateral portion of the bed nucleus of the stria terminalis (BNST) (Dong et al., 2001)

and together they form the lateral portion of the extended amygdala (Swanson and Petrovich,

1998). The lateral extended amygdala strongly projects to the mesencephalon and the brain stem

and has access to autonomic and motor behavioral generators (Swanson and Petrovich, 1998;

Sah et al., 2003). The CeA also projects to the lateral hypothalamus and the VTA (Zahm et al.,

1999). The CeA is necessary for the somatic expression of negative emotions like fear (LeDoux,

2000) and positive emotions such as approach to a stimulus paired with reward (autoshaping)

(Cardinal et al., 2002). However, CeA is not necessary for rats to assign a motivational value to

unconditioned stimuli (Hatfield et al., 1996). The CeA also participates in homeostatic regulation

like food intake (Glass et al., 1999), as well as drinking and salt appetite (Johnson et al., 1999).

Koob et al. (1998) have suggested that the NAc shell is part of the extended amygdala and

altogether, the NAc shell and the lateral extended amygdala (the CeA and the lateral BNST), may

represent a common anatomical substrate for acute drug reward and the negative effects of

compulsive drug administration on reward function.

5. Drug induced behavioral and neuronal plasticity 

As discussed previously in the introduction, only a small proportion of those that experiment with

drugs of abuse get hooked and develop addiction. There is a general agreement that there must

be biological processes that lead from sporadic drug use to addiction. The nature of these

processes is the subject of an intense debate. Animal models have made possible the

identification of crucial neurobiological mechanisms and much of the efforts have been focused

on the VTA and the NAc, but new findings are illuminating new brain territories. The literature is

huge and it is beyond the scope of this section to perform a systematic review. I will try, instead,

to summarize part of this debate. 

a. Drug induced molecular adaptations in the striatum

Drugs of abuse have an acute pharmacologic effect on the brain and repeated use progressively

leads to stable molecular and cellular changes that modify the way in which brain controls

behavior (Koob et al., 1998; Berke and Hyman, 2000; Nestler, 2001; Kelley, 2004; Kalivas and

Volkow, 2005). Figure 6 shows a schematic spiny neuron with the molecular changes that have

been described after chronic drug use. One powerful mechanism to achieve stable and

permanent changes is the known drug-induced activation of transcription factors that initiate a

genomic response in neurons (Nestler and Aghajanian, 1997; Nestler, 2001). Acute drug
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administration induces the transient expression of several Fos genes in the striatum codifying for

proteins that form dimers (AP1 complexes) and control the expression of a long list of genes

(Nestler, 2001). Most of these gene responses extinguish with repeated drug exposure (Hope et

al., 1992; Persico et al., 1993; Moratalla et al., 1996; Turgeon et al., 1997). However, extracellular

signaling-regulated kinase (ERK) phosphorylation and NGFI-A induction are required for induction

of behavioral sensitization (Valjent et al., 2005; Valjent et al., 2006). Moreover, DFosB protein is

stable and accumulates in the striatum after chronic drug treatments (Hope et al., 1994; Moratalla

et al., 1996). Increased DFosB expression in the NAc induced sensitized behavior to cocaine

administration (Kelz et al., 1999), increased incentive for cocaine (Colby et al., 2003), and

increased rewarding effects of morphine (Zachariou et al., 2006). DFosB overexpression seems an

interesting molecular candidate in the search of the neurobiological phenomena that makes the

difference and keeps subjects on taking drugs once they have begun (Nestler et al., 2001; Kalivas

and Volkow, 2005). As already mentioned though, both HR and LR rats self-administer drug the

first session but, from the second day on, only HR rats keep on taking it. However, accumulation

of DFosB can be measured only upon chronic drug treatments. Therefore, because of this time

scale, DFosB overexpression is unlikely to account for the differences in drug self-administration

observed between the HR and LR rats. 

Figure 6: Regulation of gene expression by stimulation of different receptor classes on neurons.

This figure shows an integrated picture of how stimulation of different class of receptors expressed by
neurons achieves a quick or a long lasting effect on neuronal function. The long lasting effects require
synthesis of proteins. Changes in neurotransmission lead to changes in intracellular signaling pathways that
regulate transcription of those genes required for new protein synthesis. Adapted from Nestler (2001).



b. Hedonic dysregulation

A clue to the neurobiological factor that makes the difference between those that get addicted

when experimenting with drugs of abuse comes from the theoretical framework developed by

Koob and coworkers. They have systematically shown that the rewarding systems of the brain are

less sensitive during withdrawal of all kind of abused drugs, as measured with intracranial self-

stimulation threshold in the lateral hypothalamus (reviewed by Koob et al., 1998). This observation

led to the hypothesis that the motivational source for drug self-administration must be dual:

search for positive reinforcement and relief of negative emotional state (Koob and Le Moal, 1997).

Repeated chronic amphetamine and cocaine administration enhances the function of the

constitutive transcription factor CREB in the NAc (Nestler, 2001). Enhanced CREB function

decreases the rewarding effects of drugs (Carlezon et al., 1998) and natural rewards such as

sucrose (Barrot et al., 2002). Enhanced CREB is also responsible for dynorphin upregulation

(Carlezon et al., 1998), which decreases dopamine release (Spanagel et al., 1992), induces

dysphoria (Spanagel et al., 1994; Hyman, 1996) and dampens cellular responsiveness (Steiner

and Gerfen, 1998). Enhanced CREB function is, thus, a homeostatic mechanism that diminishes

drug effects in the brain. However, CREB and dynorphin function return to baseline after

withdrawal and they seem to be involved in the aversive effects experienced by addicts during

early phases of withdrawal (Nestler, 2001), as well as decreased interest for other sources of

reward. The same is true for the observed decrease in dopamine release during withdrawal (Weiss

et al., 1992), as well as the increased reactivity of the HPA axis and expression of CRH mRNA in

the extended amygdala (Zhou et al., 1996). Decreased reward function may play a role in the

“decision” that HR and LR rats take the second self-administration session. Decreased reward

function has been suggested to be a determinant factor in an animal model of transition to

addiction: rats that have long access to drug (long training sessions) escalate drug intake over

days whereas drug intake remains stable in rats that have short access to the drug (Koob et al.,

2004). Consistent with a model of transition to addiction, long access rats develop compulsive

cocaine intake: they show increased drug seeking after abstinence in models of relapse (Ahmed

et al., 2000; Ferrario et al., 2005); and they do not stop taking cocaine although they receive

contingent electric shocks that suppressed cocaine taking in the same rats before they went

through long access sessions (Vanderschuren and Everitt, 2004). However, the differences in

brain reward can not underlie relapse since reward function recovers after long withdrawal. 

c. Disentangling the circuitry underlying relapse

Rats that have extinguished the self administration behavior and are kept abstinent for a long

period may show reinstatement of drug seeking after a non-contingent administration of the drug,

drug conditioned stimuli or stress. This is considered to model the circumstances that induce

craving and subsequent relapse in humans. Decades of research has made it possible to gain

quite a complete picture of the neurobiological substrates underling relapse to heroin- and

cocaine-seeking (reviewed by Shalev et al., 2002). Increased glutamate release of prefrontal origin
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in the NAc core is a common feature that provoking situations achieve to induce reinstatement of

drug seeking (Kalivas et al., 2005; Kalivas and Volkow, 2005). Glutamate receptor expression in the

NAc is increased up to 90 days after withdrawal from cocaine self-administration in rats (Lu et al.,

2003). Cocaine-induced reinstatement requires integrity of the VTA, PFC and NAc core (McFarland

and Kalivas, 2001), and cocaine-induced dopamine release in the prefrontal cortex induces

glutamate release in the NAc core (Kalivas and Volkow, 2005). Reinstatement induced by

conditioned stimuli depends on the integrity of the BLA (Meil and See, 1997; Kantak et al., 2002),

probably through its interaction with the NAc core (Di Ciano and Everitt, 2004). Stress induced

reinstatement is dependent on a neuronal pathway that projects from the CeA to the BNST and

uses CRH as a neuromodulator (Erb and Stewart, 1999; Erb et al., 2001). However, stress induced

reinstatement must recruit the PFC, probably through the NAc shell (McFarland et al., 2004). This

suggests that stress activates the extended amygdala and this latter structure eventually activates

the pathway running from the PFC to the core. 

d. Molecular adaptation behind behavioral sensitization

Behavioral sensitization is the long-lasting increase in psychomotor effects of drugs after repeated

administration in humans and laboratory animals (Robinson and Becker, 1986; Stewart and

Badiani, 1993). The appearance of behavioral sensitization is associated with increased incentive

motivation for the drug (Vezina, 2004), and it is a model of the behavioral and neuronal plasticity

induced by chronic drug effects that may underlie craving and relapse in abstinent addicts

(Robinson and Berridge, 1993, 2001). Pharmacological evidence supports the relationship

between sensitization and reinstatement of drug use (De Vries et al., 1998; De Vries et al., 2002).

Sensitization induced by the non-contingent administration of drugs in laboratory animals has

been widely used for the study of the neurological phenomena underlying behavioral sensitization

(Pierce and Kalivas, 1997; Wolf, 1998; Vanderschuren and Kalivas, 2000). 

The neuronal correlates of behavioral sensitization strongly depend on the drug used as well as on

the conditions surrounding drug administration (Vanderschuren and Kalivas, 2000). The induction

of psychostimulant sensitization is dependent on glutamate neurotransmission in the VTA (Pierce

and Kalivas, 1997; Wolf, 1998; Vanderschuren and Kalivas, 2000). The expression, better observed

after relatively long withdrawal periods (Robinson and Becker, 1986; Pierce and Kalivas, 1997), is

dependent on dopamine and glutamate transmission in the NAc (Vanderschuren and Kalivas,

2000). Expression is normally accompanied by increased dopamine release in the NAc (Pierce and

Kalivas, 1997; Vanderschuren and Kalivas, 2000), but it has been observed in animals with

unchanged dopamine release at this site (Berke and Hyman, 2000). Withdrawal from chronic

cocaine treatment induces a decrease in the activity of the glutamate/cystine exchanger that

results in low extracellular glutamate and increased glutamate release in subsequent cocaine

administration (Baker et al., 2003). Recent works addressing dopamine release in sensitization

considered the shell/core subdivisions and found increased dopamine release selectively in the
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core of the NAc (Cadoni et al., 2000; Giorgi et al., 2005a), the same is true for increased glutamate

release (Pierce et al., 1996). Behavioral sensitization induces increased density of dendritic spines

in the NAc and prefrontal cortex (Robinson and Kolb, 1997; Li et al., 2004). Although Kalivas

(2005) stressed that sensitization and reinstatement differ in the relative importance of dopamine,

a comparison of the neuronal mechanisms underlying sensitization clearly evidences an overlap

with those underlying reinstatement to drug seeking. Moreover, sensitization enhances

reinstatement of cocaine-seeking when AMPA, a glutamate agonist, is infused into the NAc (Suto

et al., 2004). 

We already know that, contrary to RLA rats, RHA rats show behavioral sensitization when they

are chronically administered with amphetamine (Corda et al., 2005), cocaine (Giorgi et al., 2005a)

and morphine (Piras et al., 2003). Therefore, these rats emerge as a valuable tool to study the

neurobiology of behavioral sensitization as a model of drug induced neuronal plasticity underlying

relapse. They offer the opportunity not only to further characterize the described phenomena in

RHA rats, but also to disentangle the biological phenomena that block the emergence of

sensitization in RLA.    

6. Study of the neuroanatomical substrate of behavior with immediate early genes or other

genes regulated by neuronal activity

Immediate early genes (IEG) are a class of genes that are rapidly up-regulated following neuronal

stimulation and are, therefore, extensively used to perform functional mapping studies of the brain

after a given stimulation or behaviorally relevant situation (reviewed by Farivar et al., 2004 and

Guzowski et al., 2005). IEG encode a diverse range of proteins including regulatory transcription

factors, structural and scaffolding proteins, signal transduction proteins, growth factors,

proteases, and enzymes (Guzowski et al., 2005). The most common ways to use IEG to map

neural circuits is the use of immunohistochemistry or in situ hybridization to detect IEG protein or

mRNA, respectively. IEG levels are measured by means of densitometric methods, especially with

the use of isotopic in situ hybridization, or by means of cell counts (Guzowski et al., 2005). 

More than 30 genes were found to be upregulated upon activation of D1 receptors in the striatum

(Berke et al., 1998). However, c-fos and NGFI-A (also known as zif268, Krox-24 or Egr1) are

among the most used IEG (Farivar et al., 2004). c-fos has low basal expression in most neural

systems, its up-regulation is readily detectable and mRNA picks up after about 20-60 minutes

and falls to basal levels by about 2 hours (Zangenehpour and Chaudhuri, 2002). NGFI-A has high

level of expression in many neural systems (Knapska and Kaczmarek, 2004). NGFI-A is up-

regulated in neurons with stimuli that also induce c-fos, but its down-regulation can also be

studied (Farivar et al., 2004). NGFI-A plays a critical role in several memory and learning tasks due

to its role in neuronal plasticity (Knapska and Kaczmarek, 2004); it especially plays a critical role

in reconsolidation processes (Lee et al., 2004). Although it is clearly established that acute
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administration of psychostimulants like amphetamine and cocaine induce expression of IEG like

c-fos and NGFI-A in the striatum and several cortical areas (Bhat et al., 1992; Moratalla et al., 1992;

Persico et al., 1993; Uslaner et al., 2001), this response undergoes tolerance with chronic

treatments (Hope et al., 1992; Persico et al., 1993; Steiner and Gerfen, 1993). 

Secretogranin and PSD-95 genes were also considered interesting to study since they are

regulated by neuronal activity.  Secretogranin is a secretory protein stored with other

neuropeptides (Fischer-Colbrie et al., 1987) that can be used as a presynatic marker (Iwazaki et

al., 2004). Secretogranin gene transcript is regulated by neuronal activity and accumulates upon

chronic neuronal stimulation (Shen and Gundlach, 1996). Therefore, contrary to c-fos and NGFI-A,

secretogranin is more likely to detect effects of chronic treatments when mapping neuronal activity

(Kuzmin and Johansson, 1999). PSD-95 is a scaffolding protein enriched in the glutamatergic

postsynaptic density that binds to the plasma membrane AMPA and NMDA glutamate receptors,

other receptors, and proteins related to postsynaptic transmission among other proteins (Kennedy,

2000). As shown in figure 7, PSD-95 forms complexes with a transmembrane protein and a

synaptically released protein, and when these complexes are formed, AMPA mediated glutamate

transmission is increased (Fukata et al., 2006).  In different neuronal models, PSD-95 mRNA and

protein levels were up-regulated upon neuronal activity (Skibinska et al., 2001; Bao et al., 2004;

Van Zundert et al., 2004). Therefore, this gene emerges as a marker of neuronal activity at the

glutamatergic synapses. 

Figure 7: PSD-95 and synaptic
transmission.

PSD-95 is a scaffolding protein
associated to AMPA glutamate receptors
and multiple signaling proteins. LGI1, a
secreted protein thought to be secreted
by the presynaptic neuron, is an oligomer
that binds to two proteins of ADAM22 on
the surface of the postsynaptic
membrane through interaction with PSD-
95. When LGI1 is binding ADAM22, the
synaptic transmission is strengthened.
Adapted from Snyder (2006).



Aims of the Present Thesis

The present thesis was aimed to study biological factors of vulnerability to addiction in a rat

model. For this purpose several behavioral and neurochemical variables were studied in the

Roman rats, a potential rodent model of differences in vulnerability to addiction. 

Three main aims were defined:

1. To study the behavioral response to acute administration of low doses of ethanol in the 

Roman strains.

2. To characterize several molecular targets of the dopaminergic system and related 

neuropeptides in these rats. 

a. To quantify the basal expression levels of D1, D2 and D3 dopamine receptor subtypes and

DARPP-32 mRNA.

b. To study the behavioral and neurochemical response to a challenge with a selective D3
agonist.

c. To quantify the basal expression levels of preprodynorphin (DYN), preproenkephalin (ENK)

and preprocholecystokinin (CCK).

3. To study behavioral sensitization to amphetamine in the Roman rats and to identify brain 

areas implicated in their differential vulnerability. 

a. To characterize the induction and expression of behavioral sensitization.

b. To make a map of neuronal activity with different IEGs upon a challenge with 

amphetamine in sensitized or control rats.

The study of effects of naltrexone on ethanol induced neuronal activity are integrated in this thesis

as a collateral aim because it reinforces the results obtained in aim number 3, revealing a possible

role of the central amygdala in the vulnerability to addiction. 

31

Aims



Brief Description of Materials and Methods

Table 2: Experimental methods used in the different papers

This table summarizes the different experimental procedures (animals used and kind of

experiments) generally described in this section and fully described in each of the papers. * The

animals used in the behavioral experiments were not the same as the animals used in

histochemical experiments. #Histochemical studies were only performed on the brains of the

Roman rats.   

1. Animals

The subjects of the present study were the Roman rats. As shown in table 2, in some studies, SD-

OFA rats were included as standard rats to compare the behavioral phenotypes observed in the

Roman rats. The last study included in the present thesis was performed on mice because it

belongs to another project and is included in this thesis as a collateral aim.

Rats were used in all the experiments described in this thesis except in the experiments described

in paper VI where NMRI (Naval Medical Research Institute) mice were used. In papers I-V, Roman

rats (see introduction) bred in the animal facilities of the Medical Psychology Unit were used. In

paper IV and V, Sprague-Dawley-OFA (SD-OFA) rats supplied by the General Animal Facilities at

the UAB (Bellaterra) were also used. These animals were used in the Medical Psychology Unit

(Bellaterra) and were housed in the same conditions as the Roman rats for 2 weeks before the

experiments began. NMRI mice were supplied by Charles River (Uppsala; Sweden) and were used

in the Center for Molecular Medicine (Stockholm) where they arrived 5 days before experiments

began. For more details about the animals, look at the respective papers.
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All experiments were conducted in accordance with guidelines and protocols approved by the

European Economic Community (86/609/EEC Council) regarding the care and use of animals for

experimental procedures and by the Ethics Commission of the Autonomous University of

Barcelona.

2. Behavioral procedures 

a. The hole board test 

The hole board apparatus used in the present thesis consisted in a white 66 x 66 x 47 cm wooden

box divided into 16 equal squares and containing four holes (diameter: 3,7 cm) on the floor. Four

identical objects (plastic balls partially hidden in metal containers) were placed under the holes.

Each animal was placed individually in the centre of the hole-board and was allowed to explore

it during 5 minutes. The measures done were: 1) horizontal crossings; 2) vertical rearing activities;

3) number of head-dips; 4) number of different explored holes; 5) time spent head-dipping; 6)

latency to self-grooming; 7) number of grooming episodes; and 8) time spent in grooming. 

This test performed as described above allows the measurement of novelty-seeking behavior (as

measured by head-dipping variables) independently from measurements of locomotor activity

(horizontal crossings and vertical activity) (Escorihuela et al., 1999). For this reason, we used this

test to characterize the acute response of the Roman rats to a low dose of forced ethanol

(0.25g/Kg; i.p.). For more details see paper I.

b. Measures of locomotor activity  

Locomotor activity was determined in two different ways depending on the experiments. In the

experiments described in paper III, 4 animals were placed in single plexiglass test cages

(dimensions: 40 x 40 x 40 cm) and locomotor activity was determined by means of light-beam

breaks (Panlab S.L.). In the ones described in paper IV and V, animals were placed in the same

plexiglass test cages described above and were simultaneously recorded with video. The

videotapes were analyzed using a video-computerized system (SMART, Panlab S.L.) which

detects the position of the animal at each moment, draws its trajectory and calculates the total

distance (in cm) covered by the animal during a certain period of time. 

In paper III we studied the locomotor activity induced by novelty in RHA and RLA rats and its

modulation by the putative D3 agonist PD128907. RHA-I and RLA-I rats were placed in the

locomotor cage after administration of saline or either 0.01 or 0.1 mg/Kg of PD128907.

Locomotor was measured for 1 hour and afterwards rats were killed and their brains collected.

In papers IV and V we studied both the induction and the expression of behavioral sensitization

with amphetamine, in each of the RHA, RLA and SD-OFA rats. Before the beginning of the
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sensitization regime, rats were counterbalanced according to their response to saline injection in

order to avoid differences in the basal activity between treatment groups of the same strain. We

submitted RHA, RLA and SD-OFA rats to an 11 days treatment with either 1mg/Kg of

amphetamine or vehicle. Every second day (days 1, 3, 5, 7, 9, and 11) rats were habituated for 1

hour to the locomotor test cage and then received the treatment and were placed for 2 hours in

the test cage. The other days (days 2, 4, 6, 8, and 10) rats received the treatment and were placed

back in the home cage. Rats were left for a 14 days withdrawal period and were only manipulated

for the routine animal department cleaning procedures. Thereafter, all rats were challenged with

0.25mg/Kg of amphetamine regardless of the induction treatment (amphetamine or saline). The

challenge session was divided in 3 phases in which locomotor activity was measured for 1 hour:

spontaneous activity after placement in the test cage; reactivity to a saline injection; challenge

proper with amphetamine.

3. Histochemical procedures

Histochemical techniques used in the experiments described in papers I, II, III, V and VI were

performed at Karolinska Institute (Sweden). In all instances, animals were killed by decapitation

and the brains rapidly removed and frozen by contact with dry ice. Afterwards, brains were stored

at -80oC until they were processed.

a. Cryostat sectioning

The brains were placed in the cryostat for 15 to 20 minutes to increase their temperature from 

-80 oC to -20 oC and were mounted onto a holder in the cryostat. 14 µm-thick coronal sections

were cut and thaw-mounted onto SuperFrost Plus (Menzel-Gläser, Braunschweig, Germany)

slides. Slides were frozen again and stored at -20 °C until used. Equivalent sections for all brains

in the same experiment were collected at different levels according to Paxinos and Watson (1998)

atlas. This allowed us to map different brain areas along the rostrocaudal axis (see in the papers

for the exact levels chosen in each experiment). For the identification of the different brain

structures, adjacent sections to those used for in situ hybridization or autoreceptor experiments,

they were stained with cresyl violet as described by Johansson et al. (1994).

b. In situ hybridization 

An in situ hybridization procedure was used in order to analyze the levels of mRNA that had to be

studied. An oligodeoxyribonucleotide probe complementary to rat mRNAs coding for the gene that

we wanted to study in each experiment (see the respective paper for details about the

oligonucleotide sequence and synthesis) was selected and was labeled at the 3´- end with [33P]-

dATP (300 Ci/mmol; NEN, Perkin Elmer) using terminal deoxynucleotidyl-transferase (Amersham).

The slides with the cryostat sections were dried in front of a fan for 30 to 45 minutes and thereafter
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they were incubated for 16-20 h at 42°C with a hybridization cocktail containing approx. 106 cpm

of the labelled oligonucleotide probe. Following hybridization, the sections were washed four

times in 1 x SSC (1 x SSC=0.15 M sodium chloride/0.015 M sodium citrate, pH 7.0) at 55°C for

15 min each time, rinsed in water at room temperature for 1 min, dehydrated through EtOH (60%,

95% and 100% 1 min each), and air-dried. Brain sections were exposed to Kodak Biomax film

(Amersham) for 2-12 days. The specificity of the oligonucleotide was checked on one slide by the

addition to the hybridization cocktail of a 225x excess of unlabelled probe. This manipulation

blocked the signal, whereas the signal was not influenced by a 225x excess of a non-related

oligonucleotide  

c. Receptor autoradiography

The protocol of receptor autoradiography was slightly different depending on the radiolabeled

ligand used: [3H]SCH 23390 for D1 receptors, [3H]raclopride for D2 receptors, and [3H]PD128907

for D3 receptors (see paper II for more details). Slides were dried for 60 min at room temperature

and then incubated for a variable period of time (varying from 60 to 150 minutes) at room

temperature with a buffer specific for each radiolabeled ligand and containing a specific amount

of it. When needed, non-labeled ligands were added to the incubating buffer to block the binding

of the radiolabeled ligand to receptors sites that were not aimed to be studied. After incubation,

slides were washed several times for a determined period of time (depending on the ligand) in ice-

cold buffer, they were briefly rinsed once in ice-cold distilled water, and eventually they were dried

at 4ºC over a strong fan. Slides were exposed for a period of time depending on the ligand to

Hyperfilm-3H (Amersham) together with plastic standards (Amersham) at 4ºC. 

To measure the non-specific binding, a slide adjacent to the one incubated with radiolabeled

ligand was incubated in the same conditions but with the addition of (+) butaclamol (Sigma) to the

incubation buffer. (+) Butaclamol is a ligand structurally unrelated to the radioligands used and

was added to the buffer in a concentration about 1000 times the dissociation constant at the

receptor that was studied. 

d. Analysis of autoradiograms

A Macintosh computer using the public domain NIH Image program (US National Institutes of

Health; see http://rsb.info.nih.gov/nih-image) was employed for the analysis of the

autoradiograms. Optical densities, expressed in grey levels, were measured on both cerebral

hemispheres at the desired areas and the corresponding background was subtracted for each

measurement. Data of both hemispheres was pooled for each animal. During the whole analytical

procedure, analysis in individual batches and measurements by researchers blinded to the

experimental conditions were used in order to avoid methodological bias. 
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4. Statistical analysis

In each experiment the data obtained was expressed in different units: number of horizontal

crossings or head-dips among others for the hole board test; cm for the locomotor tests; optical

density in arbitrary units for the in situ hybridization experiments; and fmol receptor/mg protein for

the receptor autoradiography experiments. In all instances, the results are expressed as a mean +

or - SEM. Data was analyzed using Student’s t test or ANOVA depending on the number of factors

and the number of groups within a factor. The factors considered were “strain” (mainly RHA and

RLA but in some cases also SD-OFA) and “treatment” when the effect of a pharmacological

manipulation (either acute or chronic) was studied. For the measurements of locomotor activity,

data was analyzed considering the effect of time over the measures and then, a repeated factor

was added to the standard ANOVA. When adding a repeated factor, one must check the sphericity

of the distribution. In case sphericity was not achieved, the effects of the repeated factor and its

interactions with other factors were analyzed using Huynh-Feldt corrected test that adjusts the

degrees of freedom to the average tests of significance (online manual SPSS, version 12). When

appropriate, multiple group comparisons were performed using the post hoc Duncan’s tests.   
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Results Summary

1. Differential response to acute ethanol in the Roman strains (Paper I)

RHA-I rats showed higher novelty-seeking behavior (number of head dips) and locomotor activity

(number of horizontal crossings) than RLA-I rats when they were injected with saline. However,

RLA-I rats showed an increase of novelty-seeking behavior after being injected with 0.25 g/Kg

ethanol, whereas RHA-I rats did not. The increase in novelty-seeking behavior after ethanol

administration in RLA-I rats was independent of any increase in locomotor activity as ethanol did

not modify this latter variable. 

2. Basal differences in the anatomical pattern of D1 and D3 binding and DARPP-32 mRNA

in the Roman strain (Paper II)

Receptor autoradiography experiments using [3H]SCH23390, [3H]raclopride and [3H]PD128907

were performed to detect dopamine D1, D2, and D3 receptor subtype binding, respectively. When

compared to RLA-I rats, RHA-I rats showed higher D1 and D3 binding in the medial and ventral

subdivisions of the NAc shell than RLA-I. Moreover, RHA-I rats showed higher D1 binding in the

lateral hypothalamus and the tail of the caudate putamen, and higher D3 in ventral striatal areas

besides the NAc. On the other hand, RLA-I rats showed higher D3 binding than RHA-I rats in the

Calleja islands. Finally, no differences between the two Roman strains were found in any of the

measured areas in D2 binding.

Quantification of DARPP-32 mRNA by means of in situ hybridization revealed higher expression

of this gene transcript in RHA-I rats than in RLA-I rats in several limbic areas: prelimbic cortex,

rostral and medial cingulate cortex, dentate gyrus, a restricted subdivision of the caudal striatum

(see paper II for exact location) and central nucleus of the amygdala.  

3. Further characterization of the D3 dopamine receptor system in the Roman strains: 

behavioral and neurochemical response to a challenge with a selective D3 agonist

(Paper III)

We measured novelty induced locomotor activity in RHA-I and RLA-I rats after administration of

saline, 0.01 or 0.1 mg/Kg of the putative D3 agonist PD128907. When treated with saline, RHA-I

rats showed higher locomotor activity during the first 10-minute interval than RLA-I rats which is

indicative of higher locomotor activity induced by novelty in the former strain. Moreover, RLA rats

were more sensitive to the D3 receptor agonist administration: the low dose of the agonist only

suppressed locomotor activity in RLA rats; the high dose was effective in both strains but the

suppression of locomotor activity was stronger in RLA rats.
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In the same animals, we also looked at the expression level of NGFI-A mRNA in several brain areas

including the Calleja magna (the biggest Calleja island with a consistent anatomical location) and

the striatum. Administration of PD128907 caused a higher suppression of NGFI-A mRNA in the

Calleja magna of RLA-I rats when compared to RHA-I rats. The high dose suppressed NGFI-A in

the Calleja magna of both strains but this effect only reached statistical significance in RLA-I rats.

The low dose of agonist suppressed NGFI-A at this location in RLA-I rats although this effect was

not statistically significant. A positive correlation between NGFI-A mRNA expression levels in the

Calleja magna and total locomotor activity performed during the test was found in both strains. In

the striatum, the low dose of agonist had no effect in NGFI-A mRNA expression in any strain,

whereas the high dose suppressed NGFI-A mRNA expression in restricted subdivisions of the

dorsal striatum in both strains. No suppression of NGFI-A mRNA was seen in the NAc. 

4. Basal differences in DYN, ENK and CCK mRNA expression levels in the Roman strains 

(Paper I)

Quantification of the opioid peptides mRNA by means of in situ hybridization in the brain of naive

rats revealed higher expression in RHA-I rats than in RLA-I rats of DYN gene transcript in the

medial and ventral portions of the NAc shell, and of ENK gene transcript in the caudal portion of

the anterior cingulate cortex. However, RLA rats showed higher expression of ENK gene

transcripts in the rostral dorsolateral caudate putamen.  

In situ hybridization with an oligonucleotide complementary to CCK mRNA revealed that RHA-I

rats had higher expression of CCK mRNA than RLA-I rats in the agranular insular cortex, layer 2

of the cingulate cortex, layer 1 and 2 of the motor cortex and in CA3 of the dorsal hippocampus.

In this latter area, we found dots of CCK staining outside the pyramidal layer. We measured the

number of spots and found that RLA-I rats showed a higher number of these dots than RHA-I rats.  

5. Divergent induction and expression of behavioral sensitization in the Roman strains and

comparison to SD-OFA rats (Paper IV and V) 

a. Induction of behavioral sensitization

Induction of behavioral sensitization was studied during 11 days. On the previous day (day 0), all

rats were tested for their basal locomotor activity (spontaneous activity) for counterbalancing

purposes. On this day, the three strains showed the habituation pattern already described in our

laboratory (Giménez-Llort et al., 2005). Namely, SD-OFA rats developed less total motor activity

than the Roman rats. RLA-I and RHA-I rats could only be distinguished during the first 10-minute

interval and therefore, when the total amount of spontaneous locomotor activity was considered

there was a lack of differences between RHA-I and RLA-I. 

Changes in spontaneous activity during the induction of behavioral sensitization were studied by

measuring it for 1 hour before administration of the respective treatment every second day. There
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was not any statistically significant difference between treatment groups of the same strain and,

therefore, the data concerning spontaneous activity was pooled in strains. However, the 3 strains

showed a different evolution of their spontaneous motor activity as the induction treatment

progressed. SD-OFA rats decreased their spontaneous activity the second time they were placed

in the test cage and their spontaneous activity did not decrease any further as the induction

treatment progressed. RHA-I rats did not show changes in their spontaneous activity although

they were repeatedly placed in the test cage as induction treatment progressed. RLA-I showed

increased spontaneous activity on day 5 and 7 with a posterior decrease on day 9. Except from

day 0, before sensitization treatment began, RLA-I rats showed higher spontaneous activity than

RHA-I rats, and these latter rats showed higher spontaneous activity than SD-OFA rats.

During the induction procedure, administration of amphetamine (1mg/Kg) induced more

locomotor activity than saline. Moreover, amphetamine always induced greater locomotor activity

in RLA-I rats than in RHA-I rats, and greater in the latter strain than in SD-OFA rats. Locomotor

activity induced by amphetamine or saline in SD rats was not modified although the treatment

was repeated 11 times. However, repeated administration of saline in RLA-I and RHA-I rats or

amphetamine in RHA-I rats resulted in an increased motor activity compared to the respective

motor activity on day 1 (RLA-saline in day 5, 7 and 11; RHA-saline in days 3, 5, 7 and 11; RHA-

amphetamine in days 7, 9 and 11). The increases in induced locomotor activity observed after

saline injections in RLA-I and RHA-I rats could be due to repeated exposition to the activity cage.

If this was the case, a statistic analysis that included spontaneous activity as a covariant would

allow us to see only those changes in induced locomotor activity that are independent of the

repeated exposure to the activity cage. In fact, when such an analysis was performed, only RHA

rats that received amphetamine showed an increase in induced motor activity on day 9 and 11

when compared to day 1. Therefore, it seems that the changes observed during induction

treatment with saline in the Roman strains were due to a factor already present during the

habituation and independent of the treatment itself.

b. Expression of behavioral sensitization 

Once the induction of behavioral sensitization was finished, animals remained undisturbed for 14

days. After this withdrawal period, all rats were challenged to detect behavioral sensitization.

Animals were treated equally in 3 phases in which locomotor activity was measured for 1 hour:

spontaneous activity after placement in the test cage; reactivity to a saline injection; the actual

challenge with amphetamine (0.25mg/Kg). Spontaneous activity or the reactivity to a saline

injection was not modified by the induction treatment (either amphetamine or saline) in any of the

strains. However, the locomotor activity induced by the amphetamine challenge was increased

(behavioral sensitization) in RHA-I and SD-OFA rats that received amphetamine as induction

treatment when compared to the animals of the same strain that received saline as induction

treatment. The response to the amphetamine challenge was not modified by the induction
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treatment (lack of behavioral sensitization) in RLA-I rats. When the challenge with amphetamine

that lasted for 1 hour was analysed at 10-minute intervals, SD-OFA rats that received

amphetamine as induction treatment developed greater motor activity to the challenge than their

controls (induction with saline) only in the second 10-min interval. By contrast, in RHA-I rats, the

expression of behavioral sensitization was longer, as the enhanced motor activity in the group that

received amphetamine during induction persisted for 50 minutes (statistically significant in the first,

second, third and fifth 10-minute intervals). After the challenge with amphetamine, RLA-I rats

developed greater motor activity than RHA-I rats, and the latter more than SD-OFA rats. 

6. Differential neuronal activity map with immediate early genes upon a challenge with

amphetamine in sensitized and control Roman rats (Paper V)

The expression levels of NGFI-A, DYN, ENK, secretogranin and PSD-95 mRNA were measured in

multiple brain areas 1 hour after the challenge with 0.25 mg/Kg in the experiment described above

only in the Roman rats. 

Compared to RHA-I rats that received saline during induction, RHA-I rats pretreated with

amphetamine showed: 1) increased expression levels of NGFI-A in the rostral dorsomedial

striatum, the rostral ventral striatum and the piriform cortex; 2) increased DYN mRNA in the medial

subdivision of the rostral striatum; 3) increased ENK mRNA expression in the medial subdivision

of the rostral striatum; and 4) higher secretogranin and PSD-95 mRNA in the NAc core.

Compared to RLA-I rats that received saline as induction treatment, RLA-I rats pretreated with

amphetamine showed: 1)  higher expression levels of NGFI-A in the rostral medial striatum and the

rostral ventral striatum; 2) lower level of NGFI-A in the central nucleus of the amygdala; 3)

increased ENK mRNA expression in the central subdivision of the caudal striatum; 4) increased

secretogranin mRNA expression in the infraorbital cortex and in CA3 field of the ventral

hippocampus; and 5) decreased PSD-95 mRNA in the NAc core. 

7. Effects of naltrexone on alcohol induced neuronal activity measured with immediate early

genes in mice (Paper VI)

NMRI mice were injected with either saline or 15 mg/kg naltrexone and half an hour later they

received an injection of either saline or 2 g/kg ethanol. Brains were collected half hour after the

second injection to perform an in situ hybridization with NGFI-A. Mice treated with ethanol or

naltrexone alone showed an increase in NGFI-A mRNA levels when compared to vehicle-treated

mice in the CeA. The combination of these two treatments had a synergic effect and induced

NGFI-A mRNA expression to levels higher than those observed in mice treated with either of the

drugs alone.   
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Discussion

1. Differential behavioral response to acute ethanol and its place in the divergent sensitivity

to drugs of abuse between the Roman rats 

The results obtained in the present thesis show that RHA-I and RLA-I differ in the acute response

to low doses of ethanol. Although this result and its implication for the validity of RHA-I rats as an

animal model for vulnerability of alcoholism has extensively been discussed in paper I, a brief

discussion will be summarized here.

In the hole board test, RHA-I rats showed higher locomotor and exploratory activity than RLA-I

rats when they were administered with saline as it has already been observed using this test in

the inbred Roman strains (Escorihuela et al., 1999; Fernández-Teruel et al., 2002), as well as in

the outbred rats (Fernández-Teruel et., 1997). However, after receiving a low dose of ethanol ip

(0.25 g/Kg), RLA-I rats showed an increase in exploratory activity independent of locomotor

activity whereas RHA-I did not show any effect of such a dose. The lack of effect in RHA-I cannot

be attributed to a ceiling effect because RHA-I rats with early life manipulations have shown

higher rates of exploratory behavior in the hole board test than those observed in the present

thesis (Fernández-Teruel et al., 2002). Therefore, it was concluded that the alcohol-preferring RHA

rats were less sensitive to administration of a low dose of ethanol than the alcohol non-preferring

RLA rats. 

In humans, low sensitivity to ethanol has been suggested to be a risk factor for alcoholism

(Schuckit, 1994). In this regard, the alcohol preferring RHA-I rats would be less sensitive to

ethanol than the alcohol non-preferring RLA-I rats: we already knew that RHA-I rats are less

sensitive than RLA-I rats to the hypnotic effects of high doses of ethanol (Fernández-Teruel et al.,

1997a); now, lower sensitivity to administration of a low dose of ethanol has been added to the

phenotype of these alcohol preferring rat strain. However, Murphy et al. (2002) suggested that the

ethanol preference in the alcohol preferring P rats was related to the higher response to the low-

dose locomotor stimulant effects when compared to the alcohol non preferring NP rats. Following

the psychomotor stimulant theory of addiction (Wise and Bozarth, 1987), Murphy and coworkers

interpreted that low ethanol doses with locomotor activation effects induce activation of

mesolimbic dopaminergic system. In this context, locomotor activity represents a model of the

euphoric effects and rewarding properties of ethanol. However, a survey of the literature as

presented in paper I demonstrates that low doses of ethanol does not always induce locomotor

activity in commonly studied rat strains, maybe because of the implication of other

neurotransmitter systems besides dopamine in the effects of ethanol. Although P rats are

normally more sensitive than NP rats to low doses of ethanol (Murphy et al., 2002), this is not

always the case (Criswell et al., 1994). Other alcohol preferring strains like the AA rats or the Fawn
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hooded rats also show no effects of low doses of ethanol (Päivärinta and Korpi, 1993; Criswell et

al., 1994). As concluded in paper I, there is a lack of consistent association between the preference

of ethanol and the sensitivity to low psychostimulant doses of the drug in rodent models. The

lower sensitivity to the psychomotor activating doses of ethanol is another trait to be added to the

novelty- and incentive- seeking profile which defines RHA rats. This result gives further validity to

the RHA-I rats to model vulnerability to addiction since they are more novelty-seekers and they

also show lower response to ethanol, both considered risk factors for drug addiction in humans,

particularly for ethanol.

2. Basal neurochemical and neuroanatomical characterization of the brain of the Roman

rats: implications for drug addiction

The results of this thesis also demonstrate differences in the expression levels of several molecular

targets of the dopaminergic system and related neuropeptides. Among all mapped areas, the NAc

shell is the area that concentrates most differences, namely differences in D1, D3 receptors

subtypes and DYN mRNA. Moreover, a challenge with a D3 agonist resulted in different behavioral

and neurochemical responses between RHA-I and RLA-I. An individualized discussion of these

neuroanatomical, molecular and functional results is found throughout paper I, II and III and will be

summarized here. The discussion will be extended in an attempt to bring all the results to an

anatomical model and to relate them to the differences in vulnerability to addiction between the

Roman rats. 

a. D1 and D2 dopamine receptor subtypes

The use of receptor autoradiography allowed us to measure D1 and D2 binding in up to 24 areas.

Among all these areas, differences were restricted to 3 areas. Inbred RHA-I rats showed higher

binding of D1 than inbred RLA-I rats in the NAc shell, the lateral hypothalamus and the tail of the

caudate putamen, while no differences were found between the Roman strains in D2 binding.

These results are in accordance with a previous study in tissue homogenates that reported the

same difference in the accumbens shell between outbred RHA and RLA rats (Corda et al., 1997).

As discussed in the introduction, RHA rats show higher dopaminergic function as assessed in

behavioral paradigms and microdialysis experiments. Although dopamine receptors could be

down-regulated as a compensatory mechanism, the fact that D1 receptors are up-regulated in the

NAc shell suggests that the higher dopamine function at this anatomical site is an important

feature shaping the behavioral phenotype of RHA-I rats as novelty-seeker animals. The lateral

hypothalamus is the site through which the medial forebrain bundle runs from the mesencephalon

to the forebrain (Paxinos and Watson, 1998). The significance of higher D1 binding at this site is,

however, unknown.
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b. D3 receptor subtype

The Roman strains showed a differential distribution of dopamine D3 receptors subtypes: when

compared to each other higher D3 receptor binding in the ventral striatum including the NAc shell

was measured in RHA-I rats, whereas higher D3 receptor binding in the Calleja islands was

measured in RLA-I rats. Pharmacological studies with selective D3 agonists and antagonists have

suggested that D3 stimulation has inhibitory effects on locomotion (Richtand et al., 2001). In fact,

it is known that stimulation of D3 receptors inhibits locomotor activity induced by novelty

(Pritchard et al., 2003). Deletion of D3 receptors in knock-out mice (Accili et al., 1996; Xu et al.,

1997) or down-regulation with antisense oligonucleotides in wild type animals (Ekman et al., 1998;

Menalled et al., 1999) induces an increase in locomotor activity induced by novelty. RLA-I show

much greater locomotor inhibition and enhanced yawning behavior than RHA-I rats when treated

with low doses of the direct dopamine agonist apomorphine (Giménez-Llort et al., 2005), which

could be related to higher D3 receptor function in RLA-I rats. As discussed previously, RHA

lines/strains of rats show higher levels of exploratory behavior in tests of novelty-seeking when

compared to RLA lines/strains of rats (Fernández-Teruel et al., 1997b; Escorihuela 1999; Steimer

and Driscoll, 2003; Giménez-Llort et al., 2005). Therefore, a simple association between higher D3
receptor binding and decreased locomotor activity cannot be held as enhanced novelty induced

locomotor activity in RHA-I rats is associated with higher D3 binding in the ventral striatum.

Probably, regional differences of D3 receptor expression may underlie some of the behavioral

differences between the two strains.

In the Calleja islands as well as in the nucleus accumbens, D3 and D1 receptors are coexpressed

by the same cells in most instances (Schwartz et al., 1998). Evidences supporting a different role

of D3 receptors depending on the brain area where they are expressed are summarized in paper

II and III. In the experiments described in paper III, stimulation of D3 receptors with PD128907

induced higher locomotor inhibition in RLA-I rats expressing higher D3 in the Calleja islands.

Moreover, stimulation of D3 receptors had a stronger neurochemical effect in the Calleja magna

of RLA-I rats as assessed with NGFI-A expression. Finally, locomotor activity induced by novelty

correlated with the measure of neuronal activity in the Calleja magna in both RLA-I and RHA-I

rats. These findings were interpreted as convincing evidence supporting that D3 stimulation of the

Calleja islands play a role in controlling locomotor activity under circumstances that induce mild

stimulation of the mesolimbic dopaminergic system. Therefore, the higher behavioral activation

induced by novelty in RHA-I rats may be due to the lower levels of D3 binding in the Calleja

islands when compared to RLA-I rats.

On the other hand, the differences in D3 receptors found in the ventral striatum would have quite

different consequences. The highly selective D3 receptor antagonist SB-277011-A decreases the

reactivity to drug-associated stimuli as well as the motivation to self-administer cocaine under

schedules where the response requirements are high (reviewed by Heidbreder et al., 2005; Le Foll
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et al., 2005). Moreover, the D3 receptor agonist 7-OH-DPAT increased the reinforcing properties of

cocaine although it decreased dopamine levels in the NAc (Parsons et al., 1996). There is evidence

for the existence of a crosstalk between D1 and D3 receptors in the ventral striatum (Ridray et al.,

1998; Karasinska et al., 2005). As extensively discussed in paper II and III, the study of D3
receptors’ role in behavioral sensitization also support the view that stimulation of accumbal D3
receptors elicits behavior. In this context, RHA-I rats would have a stronger dopamine modulation

over spiny neurons in the NAc shell when compared to RLA-I. Therefore, differences in accumbal

D3 receptors seem to contribute to the novelty-seeking profile shown by RHA-I rats. 

c. DARPP-32 mRNA

DARPP-32 mRNA expression differed between the two Roman strains, RHA-I rats showing greater

gene expression than RLA-I rats in the prelimbic cortex, the cingulate cortex, the dentate gyrus,

and the dorsomedial subdivision of the caudal striatum. In order to perform a reliable interpretation

of the functional implication of these findings, it would be necessary to address the

phosphorylation state of DARPP-32 in limbic areas (Svenningsson et al., 2004). Our methodology,

quantifying DARPP-32 mRNA using in situ hybridization, leaves out important post-translational

regulation of DARPP-32 activity. However, strain differences in expression which are always in the

same direction and mainly restricted to limbic areas seem to have a functional significance. 

d. Opioid peptide mRNA

Opioid peptides mRNA levels differed between RHA-I and RLA-I in the striatum: DYN mRNA levels

were higher in the nucleus accumbens and ENK mRNA levels were lower in the rostral dorsolateral

caudate putamen of RHA-I rats. As discussed in the introduction, the opioid peptides have a

reciprocal interaction with dopamine. In paper I, these findings were interpreted in the light of the

evidences that changes in opioid peptide gene expression in the striatum are likely to be

compensatory: an effect rather than a cause. As discussed several times in this thesis, higher

reactivity of dopamine system can be measured in RHA rats. In this regard, higher DYN in the NAc

shell can be clearly interpreted as a neuronal correlate of increased dopaminergic reactivity at this

site and it is added to the differences in D1 and D3 receptors. HR rats also show higher DYN

mRNA levels than LR rats in the nucleus accumbens and the striatum (Lucas et al., 1998) and

basal and induced DA levels at this site (Hooks et al., 1991). As discussed in the introduction, DYN

peptides have a dysphoric effect and higher DYN expression may lead to decreased basal reward

function (Koob et al., 1998). In an attempt to avoid this situation of lowered reward function, RHA

and HR rats may take the drug (ethanol or amphetamine respectively) when they have the

opportunity. Thus, higher DYN mRNA levels may contribute to the vulnerability to addiction

observed in these animals. Similarly to the compensatory role described for DYN, higher ENK

mRNA levels in the rostral dorsolateral caudate putamen in RLA-I could be a correlate of a lower

dopaminergic input in these rats. This could be related to the lower score of motor stereotypes

induced by high doses of apomorphine (Durcan et al., 1984; Giménez-Llort et al., 2005) and
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amphetamine (Driscoll et al., 1986; Cañete et al., 2003) in RLA rats when compared to RHA rats. 

We also found higher ENK mRNA in the caudal portion of anterior cingulate areas of RHA-I rats.

This area belongs to the rat medial prefrontal cortex which conforms the visceromotor network

and works together with the viscerosensory network located in the orbital prefrontal cortex (Öngür

and Price, 2000). It receives nocioceptive information and coordinates autonomic responses

(Gray and McNaughton, 2000; Vogt et al., 2004). It is known that the cingulate cortex projects to

the accumbens core (Zahm and Brog, 1992). This projection from the anterior cingulate to the

accumbens core is necessary for conditioned locomotor approach or autoshaping when more

than one stimulus is on play (Cardinal et al., 2002). Much more research is needed to clarify which

are the neurons that express ENK mRNA in the cingulate cortex and their physiological role.

However, one part of the network related to the stimuli-response association is richer in ENK-

derived peptides in RHA-I rats compared to RLA-I rats. This neurochemical difference may have

some relevance in the final subjective experience of these rats when interacting with drugs and

drug related stimuli.

e. Cholecystokinin

Striking between-strain differences were found in CCK mRNA expression in superficial layers of

the prefrontal agranular insular cortex, the anterior cingulate cortex, the motor cortex and the

dorsal hippocampus. In this latter area RHA-I rats showed higher expression of CCK mRNA in the

pyramidal layer while RLA-I rats had more spots of CCK staining in the other two layers. In paper

I, these differences were interpreted as representing different anatomical distribution of the CCK

neuronal networks. CCK-interneuron activity may be superimposed on the synchronized firing

pattern of pyramidal and parvalbumin-containing cells and drive mood and emotional influences

both in the hippocampus and supposedly in the isocortex (Freund, 2003). Consequently,

functional differences of the areas where the two strains differ in CCK may be expected and may

underlie, in part, the differences in “temperament” that have been described by Steimer et al.

(1997) and presented in the introduction, especially with regard to the coping style. However, the

Roman strains do not differ in the CCK mRNA expressed by dopaminergic neurons. Therefore,

the differences in the dopaminergic function can not be accounted by different CCK regulation of

dopamine neurons firing as was suggested for HR/LR rats (Lucas et al., 1998).

f. The nucleus accumbens shell and a brain model of vulnerability to addiction 

In figure 8, the representation of the motive circuit shown in the introduction has been

complemented with numbers that indicate each basal neurochemical finding. It can be

appreciated that the NAc shell concentrates basal differences in D1 and D3 binding and DYN

mRNA expression. As discussed above, the differences concentrated in the nucleus accumbens

are related to higher accumbal dopaminergic function in RHA-I rats when compared to RLA-I rats.

Some findings can be localized in cortical areas forming the motive circuit. Only the anterior
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cingulate cortex shows similar concentration of findings, namely basal differences in ENK, CCK

and DARPP-32 mRNA. However, as it can be appreciated in the respective papers, the differences

between strains in ENK and CCK mRNA levels are localized in different subdivisions of the anterior

cingulate cortex. 

Figure 8: The motive circuit centered in the nucleus accumbens shell and spiral organization of the ventral
corticostriatal loops.

The same figure previously used to illustrate the motive circuit has been modified to show the hypothetical
control of the NAc shell over locomotor activity through its projection to the ventral pallidum and ultimately to
the peduncolopontine nucleus. The areas where RHA and RLA differ in neurochemical measures are given a
number whose legend can be read on the figure. Abbreviations: medial dorsal thalamus (mMDT); ventromedial
thalamus (VM); ventral infralimbic cortex (vIL); ventral prelimbic cortex (vPL); orbitofrontal cortex (ORB); dorsal
prelimbic cortex (dPL);  dorsal agranular insular cortex (dAI); anterior cingulate cortex (CG); enthorhinal cortex
(ENT); dentate gyrus (DG); subiculum (SUB); basolateral amygdala (BLA); central amygdala (CeA); nucleus
accumbens (NAc); substantia nigra reticulata (SNR); ventral pallidum (VP); lateral hypothalamus (LH); ventral
tegmental area (VTA); pedunculopontine nucleus (PPN).  
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As discussed in the introduction, higher dopaminergic function has been associated with the

novelty-seeking profile of RHA rats as well as in HR rats when compared to RLA and LR rats,

respectively. Higher novelty-seeking in RHA rats when compared with RLA rats is in the basis of

the use of this strain to model novelty-seeking in humans (Driscoll et al., 1998). As discussed

previously, human personality theories postulate a connection between preference for novel

situations and preference for rewarding substances (Zuckerman, 1996; Bardo et al., 1996;

reviewed by Dawe and Loxton, 2005). This notion is supported by the higher vulnerability to self-

administer amphetamine shown by HR rats when compared to LR rats (Piazza et al., 1989). The

fact that RHA rats drink ethanol voluntarily whereas RLA rats do not (Driscoll et al., 1990;

Razafimanalina et al., 1996; Fernández-Teruel et al., 2002) is also in line with such an assumption.

Matching the psychostimulant theory of addiction, it is known that RHA rats, compared to RLA

rats, respond with higher DA release in the nucleus accumbens after cocaine, amphetamine and

morphine administration (Giorgi et al., 1997; Lecca et al., 2004), as well as during voluntary

ethanol consumption (Corda et al., 2001). Similarly higher ethanol-induced dopamine release in

the NAc has also been reported for the alcohol-preferring AA and P rats when compared to

alcohol non-preferring ANA and NP rats (Katner, 2001 and Murphy et al., 2002, respectivelly). HR

rats also show higher cocaine induced DA levels at this site than LR rats (Hooks et al., 1992b).

Therefore, drug-induced dopamine release seems to be the common feature leading animals to

higher drug preference (ethanol in RHA, P and AA rats and amphetamine in HR rats). 

Dopaminergic tone in the NAc has been linked with the motor activity and exploration induced by

novelty (Koob et al., 1981; Jones and Robbins, 1992). When animals are placed in a novel

environment, the cortex is activated and sends signals, among other areas, to the NAc shell.

Considering the model of the basal ganglia presented in the introduction and figure 8, higher

dopamine release in the NAc shell will be translated into higher flow of the cortical activity

reaching it. Namely, spiny neurons are going to fire much more easily and increased neuronal

activity is going to reach the ventral pallidum. A subset of neurons in the ventral pallidum

projecting to the pedunculopontine nucleus becomes inhibited and exploratory locomotor activity

is generated (Pennartz et al., 1994). Higher dopamine release during initial self-administration

session will also result in higher flow of information through the corticostriatal loops and rats may

much more easily learn the contingencies between the unconditioned pharmacological stimulus

inducing dopamine release preferentially in the shell (Pontieri et al., 1995), and the lever press that

requires a complex motor pattern depending on somatosensory corticostriatal loops (Yin et al.,

2005a; Yin et al., 2005b). In agreement with this model, rats will acquire cocaine self-

administration into the NAc shell but not into the NAc core (Rodd-Henricks et al., 2002), although

lesion of the NAc shell does not disrupt acquisition of intravenous cocaine self-administration (Ito

et al., 2004). Lever pressing for cocaine (Phillips et al., 2003) or food (Roitman et al., 2004) is

preceded by a transient increase in dopamine in the NAc. Electrical stimulation of the VTA

resulting in phasic dopamine release in the NAc is effective in initiating the goal directed behaviors

that eventually end in pressing the lever (Phillips et al., 2003). This latter evidence clearly shows
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the role of dopamine to gate, initiate, goal directed behaviors such as lever pressing. It appears,

thus, that novelty induced locomotor activity is predictive of higher drug self-administration

because, as predicted by Wise and Bozarth (1987) in their psychostimulant theory of addiction,

this two phenomena share neurobiological substrate. A prediction of this model would be that RHA

rats will be more liable than RLA rats to learn a self-administration task for psychostimulant.

However, as discussed in the introduction, the differences in dopamine function are stronger in

HR/LR rats. This quantitative difference could make the differences in self-administration smaller

in RHA/RLA rats in comparison to HR/LR. Moreover, NAc shell administration of amphetamine

increases dopamine levels at this site and it also increases conditioned responses depending on

the NAc core (Parkinson et al., 1999; Wyvell and Berridge, 2000). Therefore, rats with higher

dopamine function in the NAc shell, such as RHA rats, are more likely to show stronger drug

seeking supported by conditioned stimuli.

In the present thesis, differences in D3 binding in the Calleja islands have also been identified as

a contributing neurobiological factor that makes the difference between RHA-I and RLA-I in terms

of novelty induced locomotor activity. In one set of experiments using HR and LR rats, Pierre and

Vezina (1997) studied the impact of a context dependent sensitization regime with amphetamine

in the self-administration acquisition and maintenance. As expected, they found that all HR rats

showed higher amphetamine self-administration than LR rats during the first 6 days. However, in

the following days, only amphetamine pretreated HR rats maintained this higher self-

administration behavior. According to them, the response to novelty predicted, at least in their

experiment, the propensity to get sensitized and its facilitatory effects on subsequent drug self-

administration rather than vulnerability to self-administration itself. The differences in D3 receptors

described between RHA-I and RLA-I rats support this notion: one of the factors that determine low

novelty-seeking, namely high D3 binding in the Calleja islands, may also dampen the effects of

chronic drug administration preventing sensitization. As discussed in paper III, the novelty-seeking

RHA-I rats show a sensitized-like D3 receptor system. On the other hand, higher levels of D3
receptors in the Calleja islands may dampen the impact of chronic treatments with drugs of abuse

on the dopaminergic system in RLA-I rats and contribute to the lack of sensitization observed in

these animals.

3. Behavioral sensitization in the Roman rats, a model of divergent vulnerability to

behavioral and neurochemical drug induced plasticity

The present thesis revealed that although RLA-I showed higher amphetamine induced locomotor

activity, they did not show behavioral sensitization whereas RHA-I rats did so. Moreover, RHA-I

rats showed stronger behavioral sensitization when compared to SD-OFA rats. The differences in

behavioral sensitization between RHA-I and RLA-I rats have been associated with differences in

the neuronal activity maps as assessed with several different IEG. These results are extensively

discussed in manuscripts IV and V. Here, a summary of the previous discussions is going to be
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integrated with an attempt to understand the mechanisms of the observed differences in

behavioral sensitization between the two Roman strains, the relationship with the basal

differences, as well as the implications for the model of vulnerability to addiction.

Induction and expression of behavioral sensitization are two distinct neurological processes

(Pierce and Kalivas, 1997; Vanderschuren and Kalivas, 2000) and it is commonly accepted that

behavioral sensitization is better observed after a withdrawal period, suggesting that it needs an

incubation period (Pierce and Kalivas 1997). As presented in papers IV and V, both RHA-I and SD-

OFA rats showed behavioral sensitization but two observations related to these neurological

processes indicate that RHA-I rats are more vulnerable to behavioral sensitization than a standard

strain like the SD-OFA: 1) RHA-I rats already showed behavioral sensitization the last 2 days of

the induction phase which may be interpreted as greater sensitivity of neural systems underlying

induction or alternatively the appearance of the phenomenon before withdrawal; 2) the sensitized

response upon a challenge with amphetamine after 14 days withdrawal is longer-lasting in 

RHA-I rats than in SD rats. 

RLA-I rats did not show behavioral sensitization either during the induction treatment or upon a

challenge with amphetamine after 14 days of withdrawal. However, RLA-I rats showed higher

amphetamine induced locomotor activity than RHA-I rats in all instances when amphetamine was

administered in agreement with previous work performed with the inbred rats (Cañete et al.,

2003). As presented in the introduction, this result contrasts with the amphetamine response

reported for the outbred rats that has been related to higher amphetamine induced dopamine

release in the NAc shell (Giorgi et al., 1997; Lecca et al., 2004; Corda et al., 2005). As extensively

discussed in paper IV and V, experiments done with the inbred rats have been replicating the

known differences in the dopaminergic system between RHA and RLA rats including reactivity to

novelty. Some of these experiments, such as dopamine receptor studies, have been presented in

the present thesis. Instead, as extensively discussed in paper IV, the noradrenergic system may

be implicated in this high response to amphetamine. Pharmacological interventions that reduce

the central noradrenergic tone also decrease the acute response to amphetamine (Drouin et al.,

2002; Vanderschuren et al., 2003) without effect on expression of behavioral sensitization

(Vanderschuren et al., 2003). The fact that RLA-I rats do not show behavioral sensitization

regardless of their higher response to acute amphetamine also supports the idea that the

difference between inbred and outbred Roman rats does not lie on the dopaminergic system.

Moreover, described differences in susceptibility to amphetamine sensitization between outbred

Roman lines (Corda et al., 2005; Giorgi et al., 2005a) have been maintained with inbreeding. 

It could be questioned whether RLA-I rats are constitutively sensitized to amphetamine effects.

However, as discussed in paper V, pharmacological manipulations have evidenced that the acute

response to amphetamine is dissociated from its sensitizing effects. As extensively shown in the

introduction, behavioral sensitization may be seen as a model of behavioral and neuronal
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plasticity induced by chronic drug treatments and underlying relapse (Robinson and Berridge,

1993; 2001). Moreover, animals showing behavioral sensitization also show increased liability to

self-administer psychostimulants (Vezina, 2004). Although the use of a more robust or extended

sensitization regime could have increased the motor response of RLA-I rats beyond their initial

amphetamine response, it is a fact that they did not develop behavioral sensitization with the

protocol used in the present thesis. Differences in behavioral sensitization observed between RHA-I

and RLA-I rats may represent, thus, different vulnerability to develop such plastic events induced

by chronic amphetamine administration. The study of the brain neuronal activity maps upon a

challenge with amphetamine may shed light on the brain areas and possible cellular mechanisms

involved in divergent vulnerability to behavioral sensitization. We performed neuronal activity maps

with five different activity regualated genes: NGFI-A, DYN, ENK, secretogranin and PSD-95. 

As extensively discussed in paper V, previous studies that assessed the response of c-fos, NGFI-

A, DYN or ENK mRNA to an amphetamine challenge after a withdrawal did not detect an effect of

chronic amphetamine treatment in most areas of the brain (Wang and McGinty, 1995; Hu et al.,

2002; Ostrander et al., 2003). Similar results have been obtained when mapping neuronal activity

in the Roman rats after the amphetamine challenge. However, two findings deserve special

consideration: 1) RLA-I pre-treated with saline and receiving amphetamine for the first time the day

of the challenge showed a massive activation of NGFI-A gene expression in the CeA. This

response was not observed in amphetamine pretreated RLA-I rats. As argued in paper V, activation

of c-fos in the CeA has already been found in rats not developing behavioral sensitization

(Ostrander et al., 2003). Moreover, induction of NGFI-A mRNA in the CeA is a neuronal correlate

of unconditioned fear (Malkani and Rosen, 2001). Although much research must be done to

understand the significance of this finding, CeA activation might be a correlate of unconditioned

fear induced by the first amphetamine experience in RLA-I and may be a neuronal event that

prevents sensitization to occur in that strain; 2) amphetamine pre-treated RHA-I rats showed an

increased response of DYN and ENK to the challenge with amphetamine than saline pre-treated

RHA-I. The coincident up-regulation of both opioid peptides in the ventral striatum may be a

correlate of adaptations in cellular responsiveness underlying vulnerability to sensitization in RHA-I.

In RHA-I rats, behavioral sensitization was associated with higher secretogranin and PSD-95

expression in the NAc core. Yao et al. (2004) found that PSD-95 was constitutively down-regulated

in genetic and pharmacological models of cocaine sensitization. However, they did not measure

PSD-95 after a challenge with cocaine. It is known that extracellular glutamate is decreased after

chronic cocaine treatment but a challenge restores glutamate levels (Baker et al., 2003). As argued

in paper IV, this finding is suggestive of increased amphetamine induced glutamatergic activity in

the NAc core of RHA-I pretreated with amphetamine during induction. Some have argued that

chronic cocaine depresses excitatory transmission (White et al., 1995; Thomas et al., 2001), but a

close survey of these evidence demonstrates that decreased excitatory transmission may rather

be related to a short cocaine abstinence period (3 and 1 day withdrawal respectively). In fact,
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excitatory transmission in the NAc is enhanced by a chronic cocaine treatment after longer

cocaine withdrawal (Kourrich et al., 2006). PSD-95 is a scaffolding protein that binds to plasma

membrane AMPA and NMDA glutamate receptors and proteins related to the postsynaptic

transmission among other proteins (Kennedy, 2000). As presented in the introduction and

discussed in paper V, increased glutamatergic activity at this site is a common finding associated

with psychomotor sensitization (Vanderschuren and Kalivas, 2000). Moreover, an amphetamine

sensitization regime enhances reinstatement of cocaine-seeking induced by AMPA agonist

infusion into the NAc-core (Suto et al., 2004). 

However, glutamate is not always involved in expression of amphetamine sensitization

(Vanderschuren and Kalivas, 2000). In the present thesis, the sensitization protocol used implied

pairing the induction and the challenge environment in half of the days. Pairing the challenge

environment with the environment where rats receive induction treatment is known to increase

behavioral sensitization (Robinson et al., 1998). The main factor enhancing sensitization is the fact

that the test cage is different from the home cage (Badiani et al., 1995; Browman et al., 1998a,

1998b; Crombag et al., 2001). Amphetamine experienced in a novel environment induces IEG in

D1-receptor containing and D2-receptor containing neurons (Jaber et al., 1995; Badiani et al.,

1999; Ferguson and Robinson, 2004) whereas amphetamine experienced in the home cage only

induces IEG in D1 neurons (Berretta et al., 1992; Johansson et al., 1994). The combined neuronal

response in D1 and D2 containing cells is dependent on cortical glutamatergic activity (Fergusson

and Robinson, 2004). As discussed in the introduction, dopamine preferentially facilitates

changes at the active glutamatergic synapses. Therefore, the placement in the test cage every

two days during induction may enhance sensitization by favoring glutamate release that interacts

with dopamine in the striatum. Similarly, HR rats show stronger behavioral sensitization when

sensitization is context dependent (Hooks et al., 1992a) but sensitization may exclusively appear

in LR rats when sensitization is context independent (Piazza et al., 1989). This may be interpreted

as higher dopamine-glutamate interaction, mainly because of increased dopamine, in RHA and

HR rats when compared to RLA and LR rats, respectively.

In the previous sections, the observed differences in NAc shell dopamine function between RHA

and RLA rats has been placed on the basis of the observed differences in novelty induced

locomotor activity, the main symptom of novelty-seeking in rodents. The same aggregate of

results is the base for a predicted stronger psychostimulant self-administration. In the present

section, I will argue that higher dopamine function in the NAc shell plays a role in the enhanced

vulnerability to develop sensitization in RHA-I rats. Robbins and Everitt (2002) hypothesized that

as a consequence of extended self-administration training a shift in the brain systems controlling

behavior takes place: ventral corticostriatal loops initially underlying goal directed drug seeking

behavior may eventually consolidate dorsal corticostriatal loops underlying stimulus-response

drug seeking. The anatomical fundaments enabling this shift have been presented in the

introduction. Dorsalization of the striatal portion involved in controlling behavior can be seen as
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the self-administration training progresses: the NAc shell is involved in acquisition of self-

administration (Rodd-Henricks et al., 2002), although it is not necessary for rats to learn the task

(Ito et al., 2004); the NAc core is necessary for conditioned stimuli to guide lever pressing behavior

(Corbit et al., 2001; Di Ciano and Everitt, 2001, , 2004; Ito et al., 2004). Moreover, as previously

discussed in this thesis, glutamate rather than dopamine in the NAc core is involved in cocaine-

seeking mediated by cues (Di Ciano and Everitt, 2001; Park et al., 2002; Di Ciano and Everitt,

2004), or by cocaine itself (Kalivas and Volkow, 2005). The ability of glutamate to cause behavioral

activation (drug seeking) independently of dopamine when applied in the NAc core may be the

heart of an addicted state. As discussed in the introduction, dopamine gates cortical activity in the

striatum. However, after chronic drug exposure, conditioned stimuli or drug administration induces

glutamate release in the core which is necessary and sufficient for drug seeking in reinstatement

and second order schedule paradigms. This suggests that effectiveness of glutamate transmission

must be enhanced once the stimulus has become conditioned. When a cocaine paired stimulus is

presented non-contingently to a rat, dopamine is released in the NAc core (Ito et al., 2000; Weiss

et al., 2000; Phillips et al., 2003). However, when this stimulus supports lever pressing as a

conditioned stimulus (cocaine-seeking) in a second order schedule, dopamine release occurs in

the dorsal striatum (Ito et al., 2002), and this task is disrupted by dopamine and AMPA glutamate

antagonist infusion in the dorsal striatum (Vanderschuren et al., 2005). Acquisition of responding

for a conditioned reinforcement is not dependent on dorsal striatal dopamine (Taylor and Robbins,

1986; Kelley and Delfs, 1991). This cue-induced dopamine release in the dorsal striatum observed

in long trained animals may be gating, and consolidating, the formation of habits. One may

hypothesize that dorsal striatal dopamine response disappears in longer-trained animals. 

A progressive involvement of more dorsal striatal portions may also account for sensitization:

dopamine release is circumscribed in the NAc shell after acute psychostimulant administration

(Pontieri et al., 1995; Lecca et al., 2004) but the sensitized dopamine response is found in the NAc

core (Cadoni et al., 2000; Giorgi et al., 2005a; Di Chiara et al., 2006). In the model presented in

figure 9, the development of behavioral sensitization in RHA-I rats is explained in these terms. The

differences in dopamine function described in the previous section could account for the elevated

vulnerability to develop behavioral sensitization observed in RHA-I rats. If dorsalization played a

role in sensitization as suggested by these evidence, increased vulnerability to develop

sensitization in RHA rats could be explained by higher dopaminergic function in the NAc shell.

Exposure to amphetamine in the RHA lines/strains induces a more pronounced DA release in the

NAc shell (Lecca et al., 2004), which may lead to higher gating of cortical activity through the NAc

shell and increased cortical activity to the NAc core (Zahm, 1999). Increased DA release in the NAc

core occurs in outbred RHA rats sensitized to amphetamine (Giorgi et al., 2005a). In a protocol

where the context is involved, e.g. the protocol used in the present thesis, increased glutamate in

the NAc during induction can be expected. Therefore, plasticity at the striatal glutamatergic

synapses dependent on the local concurrence of DA and glutamate (White, 1996; Berke and

Hyman, 2000) could occur. Psychostimulant sensitization increases the density of dendritic spines
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in the NAc which is understood as a rearrangement of the synaptic convergence of dopamine and

glutamate in the spiny neurons (Robinson and Kolb, 1997, 1999). The increased secretogranin

and PSD-95 mRNA expression in the NAc-core in sensitized RHA-I rats lend support to the

dorsalization hypothesis of sensitization. A prediction that could be tested emerges from this

model: longer sensitization regimes will sensitize dopamine response in the dorsal striatum. In this

context, a chronic psychostimulant treatment would enable certain neurochemical phenomena to

happen.  When these phenomena took place in the context of drug self-administration, they

became the basis of phenomena leading to habit formation as well as the persistent

hypersensitivity to stimuli that engage the NAc core glutamate system such as drugs and drug

associated stimuli (Robinson and Berridge, 1993; Kalivas et al., 1998; Vezina, 2004). 
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Figure 9: A neuronal model to explain the different vulnerability to behavioral sensitization between RHA and
RLA rats  

This figure summarizes the findings regarding regional neuronal activity upon a challenge with amphetamine
in saline or amphetamine pretreated RHA and RLA rats. The results described in this thesis are integrated in
a model of suggested mechanisms that explain how the different vulnerability to behavioral sensitization
between the Roman rats may emerge. The neurochemical results regarding the first amphetamine
administration were obtained in animals that received saline as induction treatment and were challenged with
amphetamine on the challenge day. The anatomical structures are identified by the following abbreviations:
pl-d for prelimbic dorsal cortex; pl-v for prelimbic ventral cortex; io for infraorbital cortex; ash for accumbens
shell; ac for accumbens core; c for central subdivision of the caudal striatum; cea for central amygdala; bla
for basolateral amygdala; and vta for ventral tegmental area. In each schema only the relevant connections
are depicted. The yellow area represents the dopaminergic projection from VTA. The suggested mechanisms
are depicted in a color code that allows localization in the corresponding schema.



On the other hand, in RLA-I rats, the lack of behavioral sensitization in amphetamine pre-treated

animals was associated with an increase in secretogranin expression in the infraorbital cortex and

decreased PSD-95 in the NAc. The lack of sensitized behavior in RLA-I rats is less understood

than the increased vulnerability in RHA-I rats. However, as shown in figure 9, a constellation of

neuronal adaptations in RLA-I rats chronically treated with amphetamine were found despite the

lack of behavioral sensitization. First, decreased PSD-95 mRNA in the NAc core, which is the

opposite of what it is observed in the sensitized RHA-I rats, may be related to a dampened

response in accumbal glutamatergic synapses. Second, amphetamine-pretreated RLA-I rats show

increased secretogranin mRNA in the infraorbital cortex and increased ENK mRNA in the central

caudal striatum. The orbitofrontal cortex projects to the central subdivision of the caudal striatum

(Berendse et al., 1992). This multi-axon corticostriatal loop may be involved in dampening the

effect of chronic amphetamine treatment. Rats that self-administer amphetamine for 14-20 days

show, 1 month after withdrawal, a decrease in spine density in pyramidal neurons of the

orbitofrontal cortex. This result was interpreted as a correlate of the cognitive deficits observed in

animals chronically treated with psychostimulants (Crombag et al., 2005). Although speculative,

increased secretogranin is more suggestive of increased synaptic contacts. If these were the case,

amphetamine pre-treated RLA-I rats would show, again, a neuronal finding opposed as the one

found in standard animals after chronically experiencing psychostimulants. Finally, the

amphetamine challenge caused high induction of NGFI-A mRNA in the CeA of RLA-I rats receiving

amphetamine for the first time, and this response was not seen in RLA-I rats chronically treated

with amphetamine. All these structures (CeA, infraorbital cortex and NAc-core) receive afferents

from the BLA (Gray and McNaughton, 2000; De Olmos et al., 2004). Therefore, as a hypothesis,

repeated exposure to amphetamine triggers activity in the BLA in RLA-I rats, which organizes a

differential response in its efferents and eventually prevents behavioral sensitization from occurring

in these animals. Thus, a lack of sensitization may be explained by active homeostatic

mechanisms rather than a lack of neurochemical responses to the drug.

4. Converging evidence point to the central nucleus of the amygdala as a possible candidate

for limiting addiction   

In parallel experiments performed in NMRI mice, it was found that the mixed opioid antagonist

naltrexone, a drug used to prevent relapse in alcoholics, interacts synergically with ethanol to

induce a massive activation of NGFI-A in the CeA. It was already known that ethanol induces 

c-fos in the CeA (Chang et al., 1995; Hitzemann and Hitzemann, 1997), that this structure is

necessary for rats to keep on drinking (Möller et al., 1997), and that naltrexone infused in the CeA

reduces ethanol drinking in rats (Foster et al., 2004). However, it was unexpected that naltrexone

would add to the effects of ethanol in the CeA. A discussion of the possible implications of this

finding can be found in paper VI. In summary, naltrexone is known to devaluate the reinforcing

effect of ethanol leading to extinction (Sinclair, 2001). On the other hand, the opioid system within

the CeA contributes to the assignment of hedonic impact of ingested foods or liquids (Glass et al.,
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1999), whereas NGFI-A is known to trigger cellular events that are necessary for reconsolidation

of memory traces in the hippocampus and the BLA (Lee et al., 2004; Lee et al., 2005). Activation

of this IEG in the CeA could represent the neurological correlate of reassigning, in the brain, a new

hedonic value to ethanol when experienced under the effects of naltrexone. This devaluated

hedonic representation of ethanol would leave ethanol without reinforcing value. However, if

ethanol is experienced again in a naltrexone-free state, ethanol might recover its hedonic value

and relapse could happen again. 

This massive activation of the CeA when ethanol was given together with naltrexone resembles

the massive activation of NGFI-A in the CeA observed in RLA-I rats experiencing amphetamine

for the first time. However, this response underwent tolerance since it was not observed anymore

in RLA-I rats chronically treated with amphetamine. As extensively discussed previously, RLA-I

rats seem to model those individuals that do not become addicted even though they have access

to drugs. Until now, experimental evidence has only shown that RLA-I does not drink ethanol

when it is available. Future experiments must demonstrate wheter the hypothesized lack of

addiction is still observed when these animals have free access to psychostimulants. The

sensitization experiments show that after a chronic amphetamine treatment these rats did not

show behavioral and neuronal plasticity that seems to underlie relapse after withdrawal.

Activation of the ERK signaling pathway (ERK phosphorylation) in the CeA parallel incubation (e.g.

time-dependent increase) of cue-induced reinstatement during drug withdrawal: cue-induced

reinstatement and ERK activation in the CeA is only seen after 30 days of withdrawal. Moreover,

inhibition of ERK phosphorylation decreases cue-induced drug seeking (Lu et al., 2005). These

results show that time-dependent increases in the responsiveness of CeA ERK pathway to cues

mediate the incubation of cocaine-seeking. The activation of the ERK pathway may contribute to

drug induced expression of IEG like c-fos and NGFI-A (Sgambato et al., 1998; Valjent et al., 2005).

However, this is not always the case and sensitivity to ERK inhibition depends on IEG, brain area

and whether drug treatment is acute or chronic: in the CeA, NGFI-A is induced by acute cocaine

in an ERK dependent manner. This response shows tolerance after chronic treatment without

withdrawal, although it is still induced when compared to saline treated animals (Radwanska et

al., 2005). The lack of withdrawal period hinders comparison with our study or the study by Lu et

al. However, amphetamine pre-treated RLA-I rats showed tolerance to CeA activation (measured

with NGFI-A mRNA) when challenged with amphetamine, whereas activation of the CeA

(measured with ERK phosphorylation) underlies cue mediate craving. Again, RLA-I rats show the

opposite neuronal correlate of the expected in addicted subjects. 

The coincidence of CeA activation in two rodent models that simulate lack of effect of a chronic

drug treatment suggests that CeA could make the difference between those that have restricted

experience with drugs and those that go on taking them and eventually develop addiction.

Moreover, the CeA has a heavy projection to the lateral hypothalamus, a brain area recently

related to escalation of drug intake in an animal model (Ahmed et al., 2005). It is tempting to

55

Discussion



speculate that massive activation of the CeA may block the neuronal adaptations that normally

take place in the lateral hypothalamus and lead animals to escalate their drug intake. The CeA

might be a crucial brain area in determining which individuals develop behavioral and neuronal

plasticity upon a chronic drug treatment. A first experiment to test this hypothesis would be to test

whether inactivation of NGFI-A in the CeA during induction makes RLA-I rats prone to

amphetamine sensitization.   
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Conclusions

This thesis has shown that RHA-I and RLA-I rats, a rodent model of divergent novelty- and

sensation-seeking, differ in behavioral and neurochemical parameters that may explain their

different sensitivity to drugs of abuse. RHA-I rats showed lower behavioral response when they

were injected with a low dose of ethanol and this difference adds to the already known alcohol

preference and makes RHA-I a unique rodent model of predisposition to alcoholism in humans.

This thesis also revealed that RHA-I rats show higher expression levels of D1 and D3 dopamine

receptor binding and DYN mRNA in the NAc shell. These differences are related to higher

dopaminergic tone at this site and it may be a key neurobiological feature that determines

increased novelty-seeking and drug preference in RHA-I rats when compared to RLA-I rats.

Furthermore, RHA-I rats showed lower levels of D3 dopamine receptors in the Calleja islands that

may explain the differences in locomotor activity developed by RHA-I and RLA-I rats when they

are placed in a novel environment. 

RHA-I rats showed increased vulnerability to behavioral sensitization to amphetamine than SD-

OFA rats, whereas RLA-I rats did not show behavioral sensitization despite their hyperresponse

to acute amphetamine administration. The study of the neuronal activity maps with several IEG

has allowed the identification of candidate anatomical structures and molecular mechanisms that

may underlie vulnerability to addiction. As expected, increased glutamatergic transmission in the

NAc core has been linked to the expression of behavioral sensitization in RHA-I rats. On the other

hand, dampened glutamatergic transmission in the NAc core and changes in a parallel

corticostriatal loop running from the orbitofrontal cortex to the central caudal striatum has been

linked to the lack of behavioral sensitization in RLA-I rats that were chronically treated with

amphetamine. Finally, activation of the CeA has been identified in two different models or

situations, in animals, which simulate the blockade of consequences of chronic drug use, namely

RLA-I rats receiving amphetamine for the first time and mice treated with ethanol and naltrexone,

a drug used to prevent relapse in alcoholism. This latter finding suggests that activation of the

CeA could be the neurological mechanism that makes the brain’s difference between people who

have a brief affair with drugs and people who go on taking them compulsively and develop

addiction.
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Table (supplementary material): In situ hybridization of NGFI-A, DYN, ENK, secretogranin and
PSD-95 in SD-OFA rats.
Results of in situ hybridization for NGFI-A, DYN, ENK, secretogranin, and PSD-95 gene transcripts
in saline and amphetamine pretreated SD-OFA rats. The pretreated rats were challenged with
amphetamine before analysis. Results are expressed as mean optical density in the specific areas
± SEM. The number next to each area corresponds to the identification number in figure 2. The
statistical analysis was performed using a t-test analysis: * p<.05 compared to the respective saline
pretreated group.

There are not widespread adaptations in gene transcripts in amphetamine-sensitized SD-OFA rats.
A survey of these data show that SD-OFA rats pre-treated with amphetamine had, when compared
to saline pre-treated SD-OFA rats, increased NGFI-A in the dorsomedial portion of the rostral
striatum and increased PSD-95 in the olfactory tubercle but decreased NGFI-A in the core of the
nucleus accumbens and decreased PSD-95 in the medial part of the nucleus accumbens shell. 

Although the pattern of adaptations detected in SD-OFA is not localized in the same
neuroanatomical regions as in RHA-I rats, the two groups of animals that expressed amphetamine
sensitization showed to a certain degree similar changes in NGFI-A and PSD-95. Both RHA-I and
SD-OFA rats pre-treated with amphetamine showed increased NGFI-A mRNA in the dorsomedial
portion of the rostral striatum and increased PSD-95 in one subdivision of the ventral striatum, the
nucleus accumbens core in RHA-I rats and the olfactory tubercle in SD-OFA rats. The different
location of the increased challenge-induced PSD-95 may be explained by the neuroanatomical
organization of the striatum. It is known that the corticostriatal loops that are the basis of the
anatomical and functional organization of the basal ganglia are arranged so that ventral areas of the
striatum influence neuronal activity in cortical areas that, at the same time, project to a more dorsal
striatal region (Zahm, 1999; Voorn et al., 2004). It is also known that acute amphetamine
administration induces dopamine release in the shell of the nucleus accumbens (Pontieri et al.,
1995) whereas the increased dopamine release induced by systemic psychostimulant administration
in behaviorally sensitized animals is found selectively in the core of the nucleus accumbens when
shell/core subdivisions are studied (Cadoni et al., 2000; Giorgi et al., 2005). This dorsalization of the
neuronal adaptations with time may be a common phenomenon in long-term psychostimulant
administration as it is discussed in the main text. However, RHA-I and SD-OFA rats may differ in the
sensitivity of their mesolimbic dopaminergic system as they differ in their novelty-induced motor
activity (Gimenéz-Llort et al., 2005) and in their initial motor response induced by amphetamine
(results shown in the main text). Therefore, it may be that given the same sensitization regime, the
two strains differing in their basal dopamine responsiveness (RHA-I > SD-OFA rats) as well as in the
extent of expression of behavioral sensitization (RHA-I > SD-OFA rats) showed different ventral to
dorsal localization of neuronal adaptations related with expression of behavioral sensitization. RHA-
I rats would show increased glutamate induced neuronal activation in the core of the nucleus
accumbens whereas SD-OFA rats would show this neuronal adaptation in the olfactory tubercle.  

However, we also found two neuronal adaptations in amphetamine pre-treated SD-OFA rats that do
not have any equivalent in the RHA-I rats, namely decreased PSD-95 in the nucleus accumbens
shell and decreased NGFI-A in the core of the nucleus accumbens. This latter finding was actually
unexpected since several recent reports have shown enhanced c-fos immunoreactivity in the
intermediate area of the accumbens shell (Todtenkopf et al., 2002) or in the nucleus accumbens in
general (Crombag et al 2002; Hope et al., 2006) upon a challenge with cocaine in sensitized
animals. In a study of amphetamine sensitization, increased c-fos immunoreactivity upon a
challenge was detected preferably in the nucleus accumbens core (Hedou et al., 2002). In these
reports there is no agreement in the exact location of the neuronal adaptation inside the nucleus
accumbens, but in all of them an increase and not a decrease is reported. However, we studied
NGFI-A mRNA expression in an amphetamine sensitization paradigm. The main difference with
these cited reports is the protocol used to challenge the animals: in the experiments reported by
Crombag et al. (2002) and Hope et al. (2006) animals were habituated to the test cage for 30
minutes before the challenge and in Hédou et al. (2002) animals were not habituated. In our
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experiment animals were habituated for one hour and challenged with saline for 1 more hour before
the actual challenge with amphetamine was administered. Considering the fast response of NGFI-A
mRNA induction (Moratalla et al., 1992; Berke et al., 1998) and the low dose used for the challenge,
differences in the challenge protocol may have been determinant. Moreover, the fact that we also
found decreased PSD-95 in the nucleus accumbens shell in the same group of SD-OFA rats strongly
suggest that in these animals, using the present sensitization protocol, behavioral sensitization is
associated with increased glutamate-induced cellular responsiveness in the olfactory tubercle and
decreased cellular responsiveness in striatal areas dorsal to the olfactory tubercle. 
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