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Chapter 1

Introduction

Symmetry is at the basis of our knowledge of nature. It has been one of the most powerful

tools to build our present understanding in theoretical physics. Let us start by giving a few

examples. The theoretical framework that provides the basis of the fundamental high energy

description of nature is quantum field theory. The standard model (SM) is the quantum field

theory that describes, with an incredible precision, the non-gravitational interactions between

the fundamental particles: the strong and electroweak (EW) gauge interactions. The basic

guide to derive the SM from the experimental results has been symmetry principles. Moreover,

the basic ingredients that lead to a consistent quantum field theory are: symmetry principles,

quantum mechanics and the cluster decomposition principle [1]. The classical theory of gravity,

described by General Relativity, is one of the most beautiful examples of how far we can go

by applying symmetry principles. Also the Hamiltonian formulation of classical mechanics and

the classical unification of electricity and magnetism are based on symmetries.

Thus symmetry has played a crucial role as a guide to build our present knowledge on

the fundamental laws of nature. However, there are many symmetries that are only partially

observed in nature. As a typical example we can mention the Heisenberg ferromagnet, an array

of interacting spin 1/2 magnetic dipoles. Although the Hamiltonian describing this system

is rotationally invariant, the ground state is aligned in some direction breaking the original

symmetry. Concerning particle physics, the usual example is chiral symmetry that, although

spontaneously broken by quark and gluon condensates and explicitly by the quark masses,

provides one of the first successful phenomenological models of hadrons. Other examples are

the EW symmetry of the SM, that is spontaneously broken and the scale invariance of quantum

chromodynamics, broken by quantum effects. The list is very long, but we want to stress here

that breaking symmetries is as important as symmetries they-self. In general, symmetries imply

relations between physical quantities, thus breaking symmetries is not an easy task if one wants

to preserve some properties arising from these relations. One of the problems of the breakdown

of symmetries is that it is not natural to impose different symmetries to different sectors of a
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theory. Quantum effects will in general induce divergent breaking terms, spoiling the properties

inherited from the original invariance. Much of the current research is directly related with the

study and comprehension of this subject. For these reasons this thesis is devoted to the study

of symmetry breaking in particle physics.

In this thesis we will consider the possibility of breaking symmetries in theories with extra

dimensions. The main motivation is that physics of extra dimensions provides new mechanisms

of symmetry breaking. Some of them are based on the possibility of having different compact-

ifications of the extra space. Compactifying the extra dimensions in a smooth manifold the

Lorentz invariance is spoiled. The fields propagating in the compact extra dimensions have to

satisfy a periodicity condition, thus if the lagrangian is invariant under some symmetry group,

it is possible to impose non-trivial boundary conditions for the bulk fields, that can be used to

break 4D symmetries. This is the Scherk-Schwarz mechanism [2]. If the manifold has singular

points translation invariance along the extra dimensions is also broken, the simplest example is

given by one extra dimension compactified on a segment. In this case there are fields that can

propagate only along the boundaries of the space, thus it is also possible to break symmetries

by boundary conditions (assigning different boundary conditions to the components of a given

multiplet). Therefore the symmetry is spoiled on the boundaries, and from the 4D point of view

the theory is no longer symmetric. We want to stress here the following property of symmetry

breaking in extra dimensions: physics of extra dimensions offer the possibility of breaking sym-

metries by 4D non-local mechanisms. One example is given by the Scherk-Schwarz mechanism

described above, where the symmetry breaking is a global effect due to the compactification of

the space. As a second example let us assume that two sectors of a given theory are localized on

different boundaries and respect different symmetries. By exchange of bulk fields the boundary

sectors can be communicated, thus breaking the different symmetries. Since the breakdown is

a nonlocal effect in the extra dimension, it leads to finite corrections of the symmetric sector.

An example is given by the Hosotani mechanism for symmetry breaking [3]. See Ref. [4] for a

complete list of references and a careful description of the Hosotani mechanism.

In this thesis we will consider the breakdown of the chiral and the electroweak symmetries in

the SM. The chiral symmetry of QCD plays a very important role in the low energy description

of hadrons. The QCD lagrangian with massless u and d quarks has an exact SU(2)L⊗SU(2)R

chiral symmetry. This symmetry, if exact and unbroken, would require any hadron state to

exhibit a degeneracy with another hadron state of opposite parity and equal spin, baryon num-

ber and strangeness. But this doubling of states is not observed in the hadron spectrum. Thus

the chiral symmetry SU(2)L⊗SU(2)R must be broken spontaneously to the vector subgroup

SU(2)L+R. The spectrum of hadrons does exhibit an approximate SU(2) isospin symmetry, un-

der which we can group the mesons and baryons in irreducible representations. This symmetry

is not exact because the quark masses break it explicitly. Although we know the fundamental
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lagrangian of QCD, it is not possible with present techniques to show that SU(2)L⊗SU(2)R is

spontaneously broken down to SU(2)L+R. It is also impossible to give analytic predictions of the

scale of the condensates that break these symmetries, the spectrum of hadrons, their couplings

or decay constants from the fundamental theory 1. The reason is that at low energies QCD

is a strongly coupled theory. The SU(2)L+R symmetry can be extended to an even less exact

SU(3)L+R by including the s quark. Thus, as the breaking of the chiral symmetry determines

the low energy phenomenology of hadrons, it is very important to improve our understanding

on this subject. A few years ago, Maldacena stated a conjecture [5] relating a supersymmetric

strongly coupled theory with a string theory in higher dimensions. The conjecture stated that

there is a string theory in a ten dimensional space (AdS5×S5) that is dual to a 4D strongly

coupled conformal field theory (CFT) with N = 4 supersymmetries and a large number of colors

N . Although there is not a mathematical proof of the holographic AdS/CFT conjecture it has

passed many non-trivial tests. By deforming the string theory one can expect to obtain a dual

description of certain deformed 4D theory (for example a non-supersymmetric non-CFT 4D

theory similar to QCD) [6]. Since a higher dimensional string theory can be described at low

energies by an effective field theory in higher dimensions, in some range of energies it should be

possible to describe a strongly coupled 4D theory in terms of a weakly interacting field theory

with extra dimensions [7]. This suggests a more phenomenological approach to 4D strongly in-

teracting theories by using extra dimensional field theories. The higher dimensional description

can not give us information about the fundamental 4D degrees of freedom. Moreover, a theory

with extra dimensions is not even renormalizable. However, in some special regimes, it could

be possible to capture some essential features of the more involved string theory. Thus, there

are several motivations to study physics of extra dimensions in this context. First, it might be

that we can learn something about QCD in particular, and about strongly coupled theories in

general, studying extra dimensional theories. Second, with QCD we have experimental results

of a strong theory that guide us to know what is essential to establish a predictive correspon-

dence. Finally, we are testing the holographic map. Therefore, the first part of this thesis

will be devoted to the study of QCD through extra dimensional theories. We will propose an

effective 5D theory able to describe the spontaneous breakdown of chiral symmetry for mesons.

We will describe the vector, the axial-vector, the scalar and the pseudo-scalar sectors of mesons

with a very simple model in warped 5D space. Since the 5D model is weakly coupled we are

able to do explicit calculations. The model predicts the masses, the decay constants and the

interactions in terms of the 5D parameters. We calculate the different contributions to the low

energy chiral lagrangian for pions of QCD. Almost all the predictions are in good agreement

with the experimental results. We show that our predictions are robust under modifications of

the 5D metric in the IR, and that some of the relations arise as a consequence of the 5D gauge

1Nevertheless by lattice simulations it is possible to obtain numerical results concerning confinement in QCD.
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symmetry.

In the second part of this thesis, we will consider the EW sector of the SM. The SM with

a fundamental scalar Higgs suffers a serious problem of instability that signals our ignorance

over the mechanism of EW symmetry breaking. In this context we can consider the Higgs

only as a parametrization of the EW symmetry breakdown. Therefore we expect new physics

at a scale of a few TeV. The most elegant and economical alternative to explain the EW

symmetry breaking are technicolor theories, where the EW symmetry is spontaneously broken

by a strongly interacting sector [8]. This is inspired in the chiral breaking of QCD. Nevertheless

these theories suffer from large deviations to the EW precision tests. A more sophisticated and

realistic scenario is to have a composite Higgs boson, where the fundamental constituents are

fields of a strongly coupled theory [9]. In this theories, however, due to the EW precision tests,

it is necessary for the Higgs mass to be smaller than the composite scale. This can be achieved

by an approximate global symmetry protecting the mass of the composite Higgs. Again this

idea is inspired in the pion of QCD, a composite scalar particle. The pion mass is protected

because this field is the Goldstone boson corresponding to the spontaneous breaking of the chiral

symmetry. This is a very attractive scenario to explain the origin of the fundamental theory

of EW symmetry breaking. But to really test these proposals, we must be able to calculate

physical quantities with enough precision. The actual non-perturbative techniques are far

away to reach the experimental accuracy. However, inspired by the AdS/CFT conjecture, it

is possible to build extra dimensional theories that resembles strongly interacting 4D theories

with a large number of colors. The extra dimensional theories are weakly coupled, and it is

possible to calculate physical quantities. Thus we will propose a 5D model that can accomplish

a realistic theory of EW symmetry breaking. We will a composite Higgs model along the lines

of Ref.[10]. In this model the Higgs arises from the fifth component of a 5D gauge theory. The

higher dimensional gauge symmetry protects the Higgs from acquiring a mass at tree level.

However, if one breaks the symmetry in one of the boundaries, by quantum corrections one

can generate a potential for the Higgs, that is localized towards the other boundary. As this

is a finite volume effect, the potential is finite. Since the 5D model is weakly interacting we

can compute many physical quantities, as the Higgs potential, the contributions of the strong

sector to the electroweak precision observables and the spectrum of new particles. We will

show that contributions from the top quark can trigger EW symmetry breaking, and that for

a large region of the parameter space, the electroweak precision observables are below their

experimental bounds. The model of Ref.[10] suffers from large deviations to the vertex ZbLb̄L.

In this thesis we will show that there is a subgroup of the custodial symmetry that can protect

the interaction Zbb̄. Therefore, embedding the SM into an appropriate multiplet of the higher

dimensional gauge theory, the extra contributions to ZbLb̄L can be canceled. The model predicts

a light fermionic resonance with a mass of 0.5− 1.5TeV that should be seen at LHC. The top
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quark is mostly a composite state and we expect deviations from the SM in this sector.

The thesis is organized in the following way. We start in chapter 2 with a brief review of

symmetry principles and mechanisms of symmetry breaking in 4D. We consider the effective low

energy description of theories with broken symmetries and its possible high energy completions.

In particular we consider as an example a non-linear σ model.

In chapter 3 we give an introduction to physics of extra dimension. We show how to

describe 5D theories using the holographic prescription. This procedure allows to interpret an

extra dimensional theory in a 4D language. We elaborate on the dictionary relating 5D and

4D theories, with special attention to the phenomenological applications, in particular to the

different mechanisms of symmetry breaking. We consider scalar, fermionic and gauge fields.

We compare the holographic description with the traditional Kaluza-Klein approach. We show

how to localize zero modes in different points of the extra dimension. For the case of AdS5

space we derive the relation between 4D operators of a given scaling dimension and the mass

of the 5D field.

In chapter 4 we propose a 5D model to study the chiral symmetry breaking of QCD in the

meson sector, in particular the vector, axial-vector, scalar and pseudoscalar sectors [11], [12]

(the same model was proposed also in Ref. [13]). We calculate the correlators for the different

sectors of the model, and obtain from them the spectrum and decay constants. We show how

to expand the correlators at large Euclidean momentum and match them with the operator

product expansion of the corresponding correlators in QCD. We also obtain the correlators at

low momentum, and extract from them the low energy constants. The 5D gauge symmetry

leads to several interesting sum rules, and also leads to vector meson dominance for the pion

interactions. We compute the predictions for the constants of the low-energy chiral lagrangian

of QCD, the quark masses and other physical quantities. We show that, within the range of

validity of our model, all the predictions are in good agreement with the experimental results.

Chapter 5 is devoted to study the breakdown of the EW symmetry [14]. First we describe a

model in 4D arising from a strongly coupled theory. The Higgs is a pseudo Goldstone boson of

the strong sector. Integrating out all the resonances leads to an effective 4D lagrangian for the

external sector, that corresponds to the fermions and gauge fields of the SM. The interesting

physical quantities can be expressed in terms of a few correlators that encode the effects of

the strong dynamics. We calculate the Higgs potential and the EW precision parameters

in terms of these correlators. Next we present a 5D model that leads to the same effective

lagrangian after integrating out the bulk degrees of freedom. By matching the correlators

with the 5D predictions we are able to compute the Higgs potential and the EW precision

observables. We show that there there is a symmetry protecting the interaction ZbLb̄L from

extra contributions [15]. We also give several predictions for the spectrum of new particles and

show that there is a correlation between the Higgs mass and the lightest fermionic masses.
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As most of the calculations have been made at tree level, in chapter 6 we develop a formalism

to compute radiative corrections in theories with extra dimensions [16]. We consider the special

case of flat space and expand the propagators in terms of winding modes. Thus instead of

summing over Kaluza-Klein modes, as in the usual approach to extra dimensions, to obtain the

loop corrections we have to sum over winding modes. The method is very useful to separate

finite from divergent contributions. We show a few examples where there are no divergent

corrections and the finite contributions are predictions of the theory. In particular we consider a

mechanism able to stabilize the size of the extra dimension by computing a two loop potential in

a toy model. We also suggest some applications of this method to calculate radiative corrections

in the model of chiral symmetry breaking of chapter 4 and in the model of EW symmetry

breaking of chapter 5.

In chapter 7 we summarize and give a brief discussion of the prospects for the future.
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Chapter 2

Symmetry breaking in 4D and its 5D

completion

A symmetry implies a relation between the different parameters of the theory that in many

cases determines the behavior of the physical states. In general, symmetries lead to interesting

properties at high energies, for example they can protect the masses of the particles against

divergent corrections. This is the case of internal local symmetries that protect the masses

of the gauge bosons. Another example is given by the chiral symmetry that can protect the

masses of the chiral fermions. Thus breaking symmetries is non-trivial if one wants to preserve

some of the properties inherited form the invariance of the theory.

We are interested in the low energy description of theories with spontaneously broken sym-

metries. If the theory we want to study involves different scales of energy, it is possible to

describe the low energy dynamics independently of the details of the high energy physics. The

appropriate framework to describe the low energy physics is effective field theory, where low is

defined with respect to some scale of energy Λ, characterizing the underlying theory. The rele-

vant degrees of freedom of the effective field theory are only those corresponding to the states

with masses m < Λ, the heavier degrees of freedom are integrated out. Thus one obtains a

non-renormalizable theory describing the interactions between the light degrees of freedom, this

interactions can be organized in powers of E/Λ. The effective lagrangian contains all the terms

compatible with the cluster decomposition principle, perturbative unitarity and the symmetries

of the physics that one wants to describe. Although there is an infinite number of terms with

increasing powers of fields, at a given order in the energy expansion, the low energy theory is

specified by a finite number of couplings. Therefore the theory is renormalizable order by order

and one obtains a consistent and predictive theory at low energies. In effective field theories

the symmetries are non-linearly realized, this realization of the symmetries gives extraordinary

constrains in the interactions.
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The most beautiful example of an effective field theory describing broken symmetries is the

chiral lagrangian of QCD, the low energy description of the strong interactions describing the

physics of pions. The building block of this description is the pattern of symmetry breaking.

Given this pattern the lightest degrees of freedom are automatically determined and the inter-

actions are enormously constrained. We will elaborate more on the chiral symmetry breaking

described by the chiral lagrangian in chapter 4.

Another important example of a non-linear realization of a symmetry is given by technicolor.

In this case a strongly interacting sector accounts for the breakdown of the EW symmetry. We

will consider the EW symmetry breakdown by a strong sector in chapter 5.

Both of these examples can be described by an effective non-linear σ model. We will consider

the pattern of symmetry breaking SU(2)L⊗SU(2)R →SU(2)V . Under the conserved (broken)

symmetry transformation with infinitesimal parameter ~θV = σaθ
a
V (~θA) the pion field ~π of the

non-linear σ model rotates as

δV ~π = ~θV × ~π , δA~π = fπ~θA(1− π2

f 2
π

) +
2~π

fπ
(~θA · ~π) . (2.1)

The lagrangian describing the pion interactions is given by

Leff =
1

2

(∂µ~π)2

(1 + π2/f 2
π)

2
+ . . . , (2.2)

where the dots stand for higher order terms. This lagrangian is invariant under the broken

symmetry because the “covariant” derivative ~Dµ = ∂µ~π/(1 + π2/f 2
π) rotates as

δA ~Dµ = 2(~π × ~θA) ~Dµ . (2.3)

Thus ~Dµ transforms linearly (although with a field-dependent parameter) and Eq. (2.2) is

invariant. By including higher order terms we can calculate pion interactions to any desired

order in the pion energy, provided that E < 4πfπ. It is enough to build this higher order terms

by using ~Dµ. In this way the lagrangian Leff is invariant under the full chiral symmetry, but

the symmetry is realized non-linearly.

A non-linear model, being an effective low energy description, has an UV cut-off Λ (Λ ∼ 4πfπ

for the non-linear σ model). This means that at energies larger than Λ one is not allowed to

make an expansion in powers of E/Λ, perturbative unitarity is lost and the theory is not

predictive anymore. Thus one has to replace the effective theory by a new theory including

the degrees of freedom of the heavy particles. We will call this procedure a completion of

the effective theory. To complete an effective theory one has to know which are the relevant

variables at higher energies and also their interactions. For the case of the non-linear σ model

one can consider different possibilities to extend this model at energies higher than the cut-off

scale. One possibility is to include a radial excitation ρ linearizing the σ model. This is what
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happens with the Higgs sector, where the radial excitation corresponds to the physical scalar

field and the angular variables are eaten by the massive gauge bosons. The radial field in this

case is the variable that unitarizes the theory at high energies. The lagrangian of the linear

sigma model is given by

Lφ =
1

2

[
(∂µφ)2 + (∂µσ)2

]
− 1

2
m2(φ2 + σ2)− λ

4
(φ2 + σ2)2 , (2.4)

where φ is a triplet to be associated with the pion field and the field σ has been introduced to

obtain a chiral invariant lagrangian, σ+ i2T aφa transforms as a (2, 2) of SU(2)L⊗SU(2)R, with

T a = σa/2 the SU(2) generators.

The minimum of the scalar potential depends on the sign of m2/λ. Assuming λ > 0,

for m2 > 0 the minimum is at σ = φa = 0, whereas for m2 < 0 there is a minimum at

(φ2+σ2) = |m2/λ|. In this second case there is a spontaneous breakdown of the chiral symmetry.

As we want to preserve unbroken the SU(2)L+R subgroup, the physical vacuum is left invariant

by the generators QaV = QaL +QaR and is broken by the generators QaA = QaL −QaR, where

QaL,R are the generators of SU(2)L,R. This implies that 〈0|φa|0〉 = 0 and 〈0|σ|0〉 = −|m2/λ|1/2.
Thus we can define a physical field σ′ by σ = 〈0|σ|0〉+σ′. Rewriting the lagrangian of Eq. (2.4)

in terms of the new variable we obtain a massive scalar mσ′ =
√

2|µ| and a triplet of massless

pions φa, the Goldstone bosons of the spontaneously broken chiral symmetry.

One can compute the matrix element of the axial current between the vacuum and the

massless φa and one obtains 〈0|σ|0〉 = −fπ. Therefore fπ is the only scale of the theory.

In place of the variables φa and σ, one can define new variables

ρ =
√
φaφa , πa = fπ

φa
φa + ρ

. (2.5)

Integrating out the massive field ρ we obtain the effective non-linear σ model of Eq. (2.2).

The σ model can be extended to account for an explicit breaking of the chiral symmetry,

preserving the SU(2)L+R subgroup. A very simple example is obtained by adding to the la-

grangian a term −νσ. Minimizing the new potential we obtain the following condition for

〈0|σ|0〉
−ν − λ〈0|σ|0〉3 − µ2〈0|σ|0〉 = 0 . (2.6)

By shifting the variable σ = 〈0|σ|0〉 + σ′ we obtain a mass term for the pion fields m2
π =

µ2 + λ〈0|σ|0〉 = ν/fπ. The axial current Aµ is not conserved anymore and we obtain

∂µA
a
µ = m2

πfπφa . (2.7)

This is the PCAC relation. Therefore, due to the explicit breaking the pions are no longer

massless, they become pseudo Goldstone bosons (PGB).
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There is another important property that we want to stress. Introducing an explicit break-

ing of the symmetry, in general has the effect of forcing the direction of the vacuum into an

alignment with the symmetry breaking term. This is known as the vacuum alignment condi-

tion [17].

Another possibility to extend the non-linear effective model is a drastic change of the degrees

of freedom at high energies, like in QCD, where the variables of the non-linear σ model describe

composite states, the pions. In this case the basic constituents of the fundamental theory are

the quarks and gluons. Thus, instead of introducing a radial excitation to recover unitarity,

one has to change the variables at high energies. By describing the theory in terms of quarks

and gluons there are no problems with unitarity. The quark masses give an explicit breaking

of the chiral symmetry inducing a finite mass for the pions. Alternatively ’t Hooft showed that

in the limit of large number of colors, QCD can be described in terms of an infinite number

of stable resonances [18]. With this description there is an appropriate infinite tower of states

that unitarizes the pion interactions at high energies.

We will consider in this thesis the possibility to give a completion of the non-linear σ

model describing the spontaneously broken symmetry by working with extra dimensions. This

is possible because in extra dimensional theories one can break a symmetry group G to a

subgroup H by boundary conditions. Using naive dimensional analysis (NDA) [19, 20, 21], one

can estimate that 5D gauge theories will become strongly interacting at a scale Λ ∼ 24π3/g2
5,

where g5 is the 5D gauge coupling. 1 This cut-off is larger than the 4D non-linear σ model

cut-off 4πfπ. To see this we write the 5D cut-off in terms of 4D quantities as Λ ∼ 12π2fπ/g4

(where the matching conditions are 1/g2
4 = 2πR/g2

5 and g4fπ ∼ 1/R, with 2πR the length of

the extra dimension). Comparing both results, the cut-off of the 5D theory is parametrically

larger by a factor 3π/g4. Physically what happens is the following, every 5D field contains

an infinite tower of 4D fields, the KK modes, thus there is a tower of KK states that ensures

unitarity up to an energy scale Λ which is not arbitrarily large but can be well above the 4D

cut-off 4πfπ.

We have described three different scenarios to complete the effective non-linear σ model.

The different completions of the same low energy physics give different signatures at high

energies. In Fig. 2.1 we show a picture of the amplitude of the elastic W −W scattering (a

similar picture is valid for the elastic pion scattering). The different curves correspond to a

technicolor-like model where unitarization is achieved by the strong dynamics, the SM where

unitarization is accomplished by the Higgs, and finally a model where unitarization is achieved

by a tower of resonances. Therefore we should be able to distinguish between this models in

the future high energy experiments.

1This result is valid whether the gauge group G is broken by boundary conditions or not, provided that the

theory does not contain small parameters.
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Figure 2.1: Picture of the amplitude of the elastic W − W scattering in the three different

examples. The red line corresponds to the linear completion of the σ model, where the Higgs

unitarizes the amplitude. The black line corresponds to a technicolor-like model, where the

amplitude increases as E2 at low energies (continuous line) and unitarization is accomplished

by the unknown underlying fundamental physics (dashed-line). The blue line corresponds to a

model where unitarization is accomplished by a tower of resonances. As can be seen from this

picture the first resonance gives only a partial unitarization. A similar picture is valid for the

π − π elastic scattering.
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Chapter 3

Introduction to 5D spaces and

holography

In this chapter we will consider the KK and the holographic approach for scalar Φ, fermionic

ψ and gauge AM fields in 5D. Both descriptions give the same predictions. As an example

we will show explicitly the spectrum matching. We will discuss how to localize zero modes in

the fifth dimension and also some properties of warped spaces important for phenomenology.

For the particular case of AdS space we will compute the KK wave functions and show, in the

holographic context, how to associate the bulk field masses with the dimension of 4D operators.

We consider a general not factorizable metric, where the 4D Minkowski metric is multiplied

by a warp factor that depends on the extra dimension. In conformal coordinates the 5D metric

is defined by

ds2 = a2(z)(ηµνdx
µdxν − dz2) ≡ gMNdx

MdxN , (3.1)

where a is the warp factor and z is the fifth coordinate. (M = µ, 5) is the 5D spacetime index,

where µ = 0, 1, 2, 3 and ηµν = diag(+ − −−) is the 4D Minkowski metric. In the case of flat

space a = 1 and in the case of AdS5 a is given by

a(z) =
L

z
, (3.2)

where L is the AdS curvature radius. We will compactify the extra dimension by putting two

boundaries, one at z = L0 and another at z = L1. Then the action is defined on the line

segment L0 ≤ z ≤ L1. The boundaries at z = L0 and z = L1 will be called UV and IR

boundary respectively [22].

The 5D action is given by

S5 =
1

g2
5

∫
d4x

∫
dz
√
g
[
− 1

4
AMNA

MN +
1

2
|DMΦ|2 − 1

2
m2

Φ|Φ|2

+
i

2
Ψ̄eMA ΓADMΨ− i

2
(DMΨ)†Γ0eMA ΓAΨ−mΨΨ̄Ψ

]
, (3.3)
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where g is the determinant of the metric, eMA is the inverse vielbein eMA = eBNg
MNηAB. The

vielbein is defined by gMN = eAMe
B
NηAB . The gamma matrices are ΓA = {γµ,−iγ5} and in terms

of the warped factor eMA = δMA /a(z). DM is the gauge covariant derivative and ∇M = DM +

ωMAB [ΓA,ΓB] is the curved space covariant derivative for fermion fields, with ωM AB[ΓA,ΓB]

the spin connection. We have factored out a coefficient 1/g2
5, then g5 is the 5D expansion

parameter. We will work with Dim[A] = 1, Dim[Φ] = 1 and Dim[Ψ] = 3/2, then Dim[g2
5] = −1.

The action (3.3) includes all the 5D quadratic terms consistent with gauge and coordinate

invariance for fields of spin not bigger than one.

On the boundaries of the 5D spacetime, at z = L0, L1, translation symmetry is broken.

This boundaries extend over the xµ directions and we will locate there two 3-branes. These

3-branes can support 4D field theories that can couple to the bulk fields. The 4D action on the

boundaries is

Sbound =

∫
d4x(
√−g0L0 +

√−g1L1) , (3.4)

where g0,1 is the determinant of the metric induced on the branes and L0,1 is the 4D Lagrangian

of the boundary fields.

To obtain the equations of motion of the 5D fields we require an extremum of the action

δS = 0. In theories with boundaries we have to take into account the localized terms also.

For this reason we have to compute the variation of the full action, the bulk terms and the

boundary terms. In general, the variation of the 5D action can be written as [23]

δS = δ(S5 + Sbound) =

∫
d5x δφ(Dφ) +

∫
d4x δφ(Bφ)

∣∣∣
L1

L0

, (3.5)

where φ is any bulk field. Bφ stands for the boundary terms obtained from integration by parts

over the extra coordinate, but also from the variation of the original boundary terms. The

boundary terms arising from integration by parts on the xµ directions are automatically zero

if we assume that φ = 0 at the 4D boundary xµ =∞ (we are not interested on 4D non-trivial

configurations).

Requiring the first term of Eq. (3.5) to vanish we obtain the bulk equation of motion Dφ = 0.

To cancel the second term of Eq. (3.5) we have to impose the appropriate boundary conditions,

that with our notation correspond to δφ|L0,1
= 0 or Bφ|L0,1

= 0.

The usual approach to theories with compact extra dimensions consists in decomposing the

fields in an infinite series of 4D fields, the KK modes, and compute with them the physical

quantities. As these 4D fields are mass-eigenstates, the particle content in a KK description

is very intuitive. However, the KK description is not always the most appropriate approach

to understand the physical results. There is an alternative approach to describe theories with

extra dimensions, called the holographic or boundary description, that in some cases is much
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more useful. It consists in separating the bulk fields from their boundary values and treat

them as different degrees of freedom. In theories with two boundaries, it is possible to consider

a one boundary description, separating just the variables on one boundary (for example at

z = L0) from the other variables, or a two boundary description, separating the variables on

both boundaries from the bulk. Some of the advantages of this approach are [24]

• Theories with a compact extra dimension offer the possibility of breaking symmetries,

like gauge symmetry or supersymmetry, by boundary conditions. This means that the

bulk and the boundaries respect different symmetries. The KK modes are a mixing of

boundary and bulk degrees of freedom and for this reason they do not have well defined

symmetry transformations. On the holographic approach the treatment of the symmetries

is much more transparent, because we separate degrees of freedom supported on the bulk

from degrees of freedom supported on the boundaries.

• If bulk and boundary fields are weakly coupled, it is possible to treat the bulk as a small

perturbation of the boundary. This happens for spaces that can be approximated by

AdS5 for small z, and also if the boundary fields have large kinetic terms. In this case

it is possible to make an expansion in the boundary-bulk coupling that simplifies the

computations.

• Theories with compact extra dimensions have certain properties that resemble 4D strongly

coupled theories with a large number of colors. These theories have an infinite tower of

4D states with the same quantum numbers, that can be associated with the infinite tower

of resonances of a large N theory. Thus it is possible to establish a correspondence where

the bulk is matched to the strong sector of the 4D theory and the boundary fields match

with external sources. This qualitative correspondence has its roots in the Maldacena

conjecture [5], as we will explain later.

3.1 The holographic description

To obtain the holographic description of a 5D theory with boundaries we proceed in the following

way. We consider the partition function Z =
∫
dφ eiS(φ) of the 5D theory. We integrate the

bulk fields fixing their value on the UV boundary φ(x, z = L0) = φ0(x) (one source description)

and obtain a partition function depending on φ0

Z[φ0] =

∫

φ

∣∣
L0

=φ0

dφ eiS(φ) = eiSeff(φ0) . (3.6)

To integrate over the bulk fields we have to solve the 5D equations of motion and substitute

the solution back into the action. In general, for an interacting theory it is not possible to
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solve the equations of motion. Instead we can solve the bulk equations for a free field, this is

equivalent to work at tree level. On the IR boundary we have to choose boundary conditions

that cancel the IR terms Bφ|L1
= 0. For a scalar or a gauge field without boundary terms on

the IR we can either choose Neumann or Dirichlet boundary conditions. The effective action

Seff is a 4D action for the UV field φ0, and in general it is non-local. There can be also extra

terms localized on the UV boundary, Eq. (3.4). If the UV field φ0 is dynamical we have to

integrate over all its possible configurations, obtaining the partition function

Z =

∫
dφ0 ei SUV [φ0]+i Seff [φ0] , (3.7)

where SUV =
∫
d4x
√−g0L0 are the extra local terms on the UV boundary. If the terms on SUV

dominate over the terms of Seff , the effective theory is essentially given by SUV and the bulk

terms give a small correction. In this case the boundary field φ0 has a small mixing with the

bulk resonances and it is an approximate mass-eigenstate. This happens for example for AdS5

spaces, but is possible to mimic this situation in flat 5D spaces by adding large kinetic terms

for the UV boundary fields.

Inspired on the AdS/CFT conjecture, we can establish an holographic correspondence using

the 4D boundary action defined above: the 4D theory on the UV boundary is dual to a 4D

strongly coupled field theory (SCFT) in the limit of large number of colors N . This statement

can be quantified in the following way

Z[φ0] =

∫
dφSCFT e

iSSCFT [φSCFT ]+i
R
d4xφ0O , (3.8)

where SSCFT is the SCFT action with φSCFT the general SCFT fields, and O is an SCFT

operator made of φSCFT . This means that the fields φ0 are the sources for the correlators of

the SCFT operators O. Then at the classical level the 5D theory is equivalent to a 4D SCFT

in the large-N limit.

In SCFT we can calculate n-point functions as

〈O · · ·O〉 =
δn lnZ[φ0]

δφ0 · · · δφ0

∣∣∣
φ0=0

. (3.9)

At the classical level Eq. (3.9) simplifies to

〈O · · ·O〉 =
δnSeff [φ0]

δφ0 · · · δφ0

∣∣∣
φ0=0

, (3.10)

and we obtain the connected Green functions of the SCFT from the on-shell bulk action. In

theories with a large number of colors N , the n-point functions can be written as an infinite sum

over narrow resonances. This is a consequence of the large-N limit [18]. On the 5D side, the

n-point functions are calculated in terms of 5D propagators that can be decomposed as infinite
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sums over the 4D propagators of the KK modes. In this way the infinite tower of resonances

of the SCFT match with the infinite tower of KK modes. Let us consider as an example the

two-point function that in the lowest order in 1/N can be written as [25]

〈O(p)O(−p)〉 =
∑

n

F 2
n

p2 +m2
n

, (3.11)

where mn and Fn = 〈0|O|n〉 are respectively the masses and decay constants of the resonances

created by O. The matrix element of an operator between the vacuum and a resonance is of

order
√
N , i.e. Fn ∼

√
N and in the 5D theory Fn ∼ 1/g5, where g5 is the expansion parameter

of the 5D theory, Eq. (3.3). These results can be generalized to n-point functions, with n > 2,

and the correspondence between the 4D and the 5D theories can be established in a similar

way.

The above approach is inspired in the AdS/CFT conjecture. This correspondence was first

stated by Maldacena [5]. It related a string theory in some specific geometry (type IIB string

theory on AdS5× S5) with a 4D supersymmetric theory (N = 4 SU(N) 4D gauge theory,

with N the number of supersymmetry generators). Although there is no rigorous proof of

this correspondence it has passed many nontrivial tests, and it is conjectured to be an exact

duality. However in this work we are interested in a more phenomenological version of this

correspondence, although still able to capture some essential features of the duality. This is

the correspondence we described in the previous paragraphs. This correspondence assumes the

existence of a 4D SCFT with a set of operators O that couple to external sources φ0. Moreover,

this SCFT should have certain properties related to properties of the 5D weakly coupled theory,

according to Eq. (3.8). For example, given that the 5D theory has a set of symmetries, after

integrating out the bulk fields the resulting generating function Z will have some properties

related to these symmetries. This means that the SCFT should reflect these symmetries also.

But in general we are not able to calculate in an SCFT, we ignore the nature of the operators,

the spectrum, the couplings. We can not even know if an SCFT with the same Z as that of

the 5D theory can exist. Therefore, we should consider the holographic interpretation as a

4D description of the 5D effective theory, very useful in some particular cases. However we

can still learn many things about SCFT from the holographic interpretation. The holographic

approach that we have described can also help to determine what is essential to establish a

more sophisticated version of the correspondence. Then it is important to obtain a dictionary

relating the different theories.

We will discuss briefly some entries of the dictionary:

• The internal local symmetries of the 5D bulk correspond to global symmetries of the 4D

SCFT. This can be understood because the bulk fields have well defined transformations

properties, then integrating out this fields we end up with an effective action Seff that
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contains information about the bulk symmetries. As the n-point functions are derived

from Seff , they will satisfy the Ward identities corresponding to the symmetries of the

bulk. On the other hand, the boundary action SUV can respect different symmetries, that

will correspond to symmetries of the external sector of the SCFT, the sources φ0.

• The symmetries of the 5D spacetime correspond to symmetries of the spacetime of the

SCFT. The most popular example corresponds to the 5D spacetime being AdS5, with no

boundaries, i.e.: L0 → 0 and L1 → ∞. The AdS5 space has a local SO(4,2) symmetry,

that corresponds in the 4D theory to a conformal symmetry of the quantum field theory

(CFT). In a conformal theory it is not possible to define a space of mass eigenstates, and

the natural objects are the operators O made up of elementary fields. These operators

can be organized by their dimensions under scale transformations, thus the momentum

dependence of the n-point functions 〈O · · ·O〉 is dictated by the dimensions of the oper-

ators.

• Another important entry is the one related to broken symmetries. Let us consider an

SCFT with a symmetry broken in the IR. This happens for example in QCD where the

scale invariance is broken at low energies. Introducing an IR boundary on a 5D theory

we sharply end the space breaking the translation symmetry. Thus we introduce a mass

scale m ∼ 1/(L1 − L0), as can be seen by computing the spectrum. This breaking of the

symmetry is reflected on the n-point functions at energies below the mass scale E ≤ m.

For AdS5 space, the dual 4D theory has conformal symmetry. In a conformal theory it is

not possible to define particle states or a S matrix. Adding an IR brane corresponds to a

deformation on the 4D theory leading to a breakdown of the conformal invariance in the

IR. Therefore the theory has a spectrum of particles and one can define a S matrix.

• The energy scales in the 5D theory are scaled by the warp factor a(z). If the 5D spacetime

can be approximated by AdS5 in the UV boundary, the presence of an UV brane can be

associated to an UV scale ΛUV ∼ 1/L0. This corresponds to putting an UV cutoff on

the SCFT. Thus at energies below ΛUV the 4D theory is conformal but at E ∼ ΛUV this

symmetry is explicitly broken. Taking the limit ΛUV →∞ the SCFT remains conformal

at high energies. However, we can also work with a finite ΛUV that means that the

sources φ0 become dynamical fields. In this case the SCFT will induce kinetic terms for

the sources that will be contained in Seff defined in Eq. (3.6). It is also possible to add

explicit kinetic terms in the UV brane SUV .

• It is well known that in extra dimensional theories with boundaries one can break sym-

metries by boundary conditions. An example is given by a 5D theory in AdS5 with a

gauge symmetry G in the bulk. One can break this symmetry to a smaller group H ⊂ G
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by assigning Dirichlet boundary conditions to the generators we want to break. Since

an internal gauge symmetry in the bulk corresponds to a global symmetry in the SCFT,

breaking the local symmetry in the IR by boundary conditions corresponds to a global

symmetry in the SCFT broken at low energies E ∼ 1/L1.

3.2 Scalar fields

We consider now the case of a free scalar field in warped space. We will work in momentum

space along the four non-compact dimensions. From Eq. (3.3) we can obtain the 5D equation

of motion for a free scalar field (leading order in g5) in conformal coordinates

[
∂2 − a−3∂5a

3∂5 + a2m2
φ

]
Φ = 0 , (3.12)

where ∂2 = ηµν∂µ∂ν .

After integration by parts we obtain the following boundary term

Lbound = − 1

2g2
5

[
a3Φ∂5Φ

]∣∣L1

L0
+ a4m2

UV Φ2
∣∣
L0
− a4m2

IRΦ2
∣∣
L1
, (3.13)

where we have included masses mUV and mIR on the UV and IR boundaries. We have not

consider UV or IR kinetic terms, but they can be included straightforward.

We will compare now the KK and the holographic description of the scalar theory.

3.2.1 Kaluza-Klein description of a 5D scalar field

To obtain the KK description we perform a separation of variables and express the 5D field Φ

as an infinite sum over 4D fields

Φ(x, z) =
∑

n

φ(n)(x)fφn (z) . (3.14)

φ(n) are mass eigenstates satisfying ∂2φ(n)(x) = −m2
φn
φ(n)(x) and fφn (z) are the KK wave

functions that describe the bulk profile of the KK modes. Introducing Eq. (3.14) into the bulk

equation of motion we obtain

(−a−3∂5a
3∂5 + a2m2

φ)f
φ
n (z) = m2

φnf
φ
n (z) , (3.15)

with fφn (z) normalized as ∫
dz a3fφm(z)fφn (z) = δmn (3.16)

to obtain canonical kinetic terms for the KK modes. The KK Eq. (3.15) is a linear equation of

second order and it has two solutions hφ1(mn, z) and hφ1 (mn, z) that depend on the particular
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profile of the metric. To obtain the explicit form of hφ1,2 we have to specify the z dependence of

the warp factor. We can write the KK wave function in terms of generic functions hφ1,2(mn, z)

as

fφn (z) =
1

Nn

[
hφ1(mφn , z) + b(mφn) h

φ
2(mφn , z)

]
, (3.17)

where Nn is a normalization constant determined by Eq. (3.16) and b depends on the boundary

conditions.

To fully determine the KK wave functions we have to specify the boundary conditions that

fix the coefficient b and the masses mn. Imposing boundary conditions to cancel the UV and

IR boundary terms we obtain two equations

b(mφn) = − ∂5h
φ
1 (mφn, z) + 2ag2

5m
2
IRh

φ
1(mφn , z)

∂5h
φ
2 (mφn, z) + 2ag2

5m
2
UV h

φ
2(mφn , z)

∣∣∣
L0

,

b(mφn) = − ∂5h
φ
1 (mφn, z) + 2ag2

5m
2
IRh

φ
1 (mφn , z)

∂5h
φ
2 (mφn, z) + 2ag2

5m
2
IRh

φ
2 (mφn , z)

∣∣∣
L1

. (3.18)

The UV and IR boundary conditions interpolate between Neumann and Dirichlet for mUV,IR =

0,∞. Eq. (3.18) determines the mass spectrum.

When the spacetime is a slice of AdS5, the functions hφ1,2 are given in terms of Bessel

functions [26]

hφ1(mφn , z) =
z2

L2
1

Jβ(mφnz) , hφ2(mφn , z) =
z2

L2
1

Yβ(mφnz) , (3.19)

where

β =
√

4 +m2
φL

2 . (3.20)

If the space is asymptotically AdS on the UV, the functions hφ1,2 can be approximated by

Bessel functions for z → 0. If on the IR the metric has deviations of order one with respect to

AdS we expect hφ1,2 to deviate order one with respect to the Bessel functions deep in the IR.

Let us consider the zero mode of a scalar field in AdS5 space. The zero mode wave function

is obtained from Eq. (3.15) imposing mφ0
= 0 and the general solution is

fφ0 (z) = c1z
2−β + c2z

2+β (3.21)

where c1 and c2 are integration constants to be determined imposing the boundary conditions.

Imposing Neumann or Dirichlet boundary conditions leads to c1 = c2 = 0 and there is no zero

mode. This means that to obtain a zero mode we have to include boundary terms, as the UV

and IR mass terms in Eq. (3.13). In this case the boundary conditions lead to the following

equations for c1,2:

c1z
1−β
0 (2− β + 2g2

5Lm
2
UV ) + c2z

1+β
0 (2 + β + 2g2

5Lm
2
UV ) = 0 , (3.22)

c1z
1−β
1 (2− β + 2g2

5Lm
2
IR) + c2z

1+β
1 (2 + β + 2g2

5Lm
2
IR) = 0 . (3.23)
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with β defined in Eq. (3.20).

For general values of mUV and mIR these equations lead to c1 = c2 = 0 again. But for

special values of the boundary masses there is a zero mode. Of special interest is the situation

when either c1 or c2 vanishes, that corresponds to

(2 + β + 2g2
5Lm

2
UV ) = (2 + β + 2g2

5Lm
2
IR) = 0 ⇒ c1 = 0 , (3.24)

(2− β + 2g2
5Lm

2
UV ) = (2− β + 2g2

5Lm
2
IR) = 0 ⇒ c2 = 0 . (3.25)

Thus the zero mode is given by

fφ0 =
zγ

N0

, (3.26)

where N0 is a normalization constant and

γ ≡ γ± = 2± β . (3.27)

For real values of β (which implies m2
φ > −4/L2 that is the bound for the stability of AdS

space [27]) the exponent takes values over −∞ < 2 − β < ∞, leading to the possibility of

having a localized zero mode. By comparing the kinetic term of the zero mode with the case

of flat space, we obtain that the zero mode is flat for γ = 1, it is localized towards the UV for

γ < 1 and it is localized in the IR for γ > 1. Since γ+ = 2 + β, the zero mode in this case is

always localized in the IR. For γ− = 2−β the zero mode can be localized in the UV (1 < β), in

the IR (0 ≤ β < 1) or it can be delocalized (β = 1). Therefore the localization of the massless

mode can be determined choosing the value of the boundary and bulk masses.

3.2.2 Holographic description of a 5D scalar field

Let us study now the holographic approach for a theory with scalar fields (we follow refer-

ence [23]). We will consider the holographic description with sources in the UV. We work in

momentum space on the 4D direction and in coordinate space in the extra dimension. The

solution of the 5D equation of motion (3.12) can be expressed in terms of the functions hφ1,2 as

Φ(p, z) = hφ1(p, z) + b(p) hφ2(p, z) , (3.28)

where p is the 4D momentum. The factor b(p) is determined imposing the IR boundary condi-

tions

b(p) = −∂5h
φ
1(p, L1) + 2ag2

5m
2
IRh

φ
1 (p, L1)

∂5h
φ
2(p, L1) + 2ag2

5m
2
IRh

φ
2 (p, L1)

. (3.29)

Substituting the solution back into the action we obtain an effective lagrangian that corre-

sponds, according to the holographic prescription, to the generating functional of the two-point

function

Leff =
1

2g2
5

a3Φ
(
∂5Φ + 2g2

5am
2
UV Φ

)∣∣
L0
. (3.30)
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As we said before, Eq. (3.8), the boundary field play the role of the external source coupled to

the SCFT. In general the matching of the 5D field on the boundary Φ
∣∣
L0

= Φ0 with the 4D

source φ̃ is given by

Φ
∣∣
L0
≡ Φ0 = αφ̃ , (3.31)

where α is a normalization constant to be computed in every specific model. After this nor-

malization of the boundary fields we obtain

Leff =
1

2
Πφ(p

2)φ̃2 , (3.32)

The correlator Πφ is obtained by substitution of the solution of the bulk equation of mo-

tion (3.28) into the effective lagrangian (3.30)

Πφ(p
2) =

α2a3

g2
5

∂5(h
φ
1 + b hφ2 ) + 2g2

5am
2
UV (hφ1 + b hφ2)

hφ1 + b hφ2

∣∣∣
L0

. (3.33)

In some cases the matching of the boundary field with the SCFT source involves a fifth

derivative. We will see an explicit example in chapter 4, where the holographic approach is

used to describe a 5D model of mesons. In that model the pion field is related to the fifth

derivative of a 5D field. Therefore the relation between the sources is given by

∂5Φ
∣∣
L0

= αφ̃ . (3.34)

Introducing Eq. (3.34) into the effective lagrangian of Eq. (3.30) we obtain the following corre-

lator

Πφ(p
2) =

α2a3

g2
5

hφ1 + b hφ2

∂5(h
φ
1 + b hφ2 ) + 2g2

5am
2
UV (hφ1 + b hφ2)

∣∣∣
L0

. (3.35)

According to Eq. (3.9), for a nondynamical source field the poles of Πφ determine the pure

SCFT mass spectrum. It is straightforward to see that poles of the correlator Πφ correspond to

the KK spectrum of the bulk scalar field defined by Eq. (3.18) with the appropriate boundary

conditions. The spectrum determined by Eq. (3.33) match with the KK spectrum for a field with

UV Dirichlet boundary conditions, and the poles of Eq. (3.35) match with the KK spectrum

for a field with Neumann boundary conditions.

To avoid UV boundary effects, that in the 4D theory corresponds to the effects of the

external source, we have to take the limit L0 → 0. In this process we usually find divergent

terms that have to be cancelled by adding the appropriate counterterms. Then the correlator

Πφ and the two-point function 〈OO〉 differ by local divergent terms

〈OO〉 = lim
L0→0

(Πφ + counterterms) . (3.36)

However, as these divergences are local, the poles of Πφ and 〈OO〉 coincide. We will elaborate

more on this for AdS space.
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We will discuss the scaling properties and the effects of the UV cutoff for spaces that are

AdS on the UV. We will consider the case in which the boundary field Φ0 matches with the

SCFT source φ̃ according to Eq. (3.31). For AdS space the functions hφ1,2 are explicitly given

in terms of Bessel functions

hφ1(p, z) = z2Jβ(pz) , hφ2(p, z) = z2Yβ(pz) , (3.37)

where β is defined in Eq. (3.20).

To obtain massless resonances, we will include boundary masses satisfying either Eq. (3.24)

or (3.25). The different boundary conditions will give rise to different holographic branches,

corresponding to γ± in Eq. (3.27).

γ− branch

We start with the γ− branch. As a first step we study the properties of the 5D theory integrating

the bulk and after that we present a 4D SCFT lagrangian with the same properties. Taking

the limit L0 → 0 in Eq. (3.33), the correlator can be approximated by

Πφ(p
2) ' α2 L

g2
5

[ p2

2β − 2
− p2βL2β−2

0

21−2βπ

Γ(β)2

( 1

b(p)
+ cotg(πβ)

)
+ . . .

]
, (3.38)

where the dots stand for higher order terms, we have absorbed a warp factor a(L0) = L/L0

in the coefficient α of Eq. (3.31). In Eq. (3.38) we have included only the first analytic term

and the first non-analytic term. This expression is valid for non-integer β, for integer β the

term cotg(πβ) is absent and there is a logarithm instead. The non-analytic term corresponds

to the SCFT contribution to the two-point function. The poles of the correlator are given by

the zeroes of b(p), defined in Eq. (3.29). They depend on the details of the metric in the IR

and coincide with the poles of 〈OO〉.
To analyze the scaling dimensions of the operator O we take the limit of large Euclidean

momentum. If the space is AdS also in the IR, the factor 1/b(p) in Eq. (3.38) is exponentially

suppressed ∼ e−pL1. Therefore, for large momentum the leading non-analytic contribution to

the correlator scales with momentum as p2β. To extract the leading non-analytic term we

rescale the field φ̃ by an amount zβ−1
0 Thus from Eqs. (3.36)and (3.38) we get

〈O(p)O(−p)〉 = lim
L0→0

(Πφ + counterterms) = −α2p2β L

g2
5

21−2βπ cotg(πβ)

Γ(β)2
. (3.39)

To obtain the dimensions of the operator O we Fourier transform the correlator 〈OO〉 to

coordinate space

〈O(x)O(0)〉 =

∫
d4p

(2π)4
eipx〈O(p)O(−p)〉 . (3.40)
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Therefore the operator O has dimension scale

dimO = 2 + β = 2 +
√

4 +m2
φ . (3.41)

This is a very important property of 5D theories in AdS5, it allows us to relate the masses of

5D fields with the dimension of the operators in the SCFT.

Extra UV degrees of freedom can be introduced by keeping L0 finite. In this case the

boundary field can mix with the bulk fields. Then to obtain the mass spectrum one has to

invert the whole quadratic term in SUV + Seff . If the UV action SUV is absent the spectrum is

given by the zeroes of Πφ, that matches with the KK mass spectrum of Eq. (3.18) for Neumann

boundary conditions on the UV.

If the space is AdS also in the IR, b(p) can be obtained in terms of Bessel functions by using

Eq. (3.37). Expanding the two-point function for small momentum pL1 → 0 we obtain

Πφ(p
2) ' α2 L

g2
5

[ p2

2β − 2

(
1− (

z0
z1

)2β−2
)

+ . . .
]
, (3.42)

where the dots stand for higher order analytic terms. In this limit the non-analytic term of

Eq. (3.38) vanishes and the kinetic term receives an extra contribution from the massive bulk

states.

It is possible to write a dual 4D lagrangian describing an SCFT coupled to an external

source, that agrees with the holographic description of the 5D theory given above. Below the

UV scale this lagrangian is given by [23]

L4D =
Zφ
2

(∂µφ̃)2 +
ωφ

Λβ−1
UV

φ̃O + LUV(φ̃) + LSCFT + . . . , (3.43)

where Zφ and ωφ are dimensionless running couplings. We have written only the dominant

higher dimensional term. This lagrangian describes a massless dynamical source φ̃ linearly

coupled to the SCFT. The bare kinetic term Zφ is matched to the first analytic term in Eq. (3.38)

at scale ΛUV : Zφ(ΛUV ) = L/g2
5(2β − 2). Taking ΛUV = 1/L0 → ∞ the source becomes non-

normalizable and decouples from the SCFT. Keeping ΛUV finite the source φ̃ can propagate.

Since it is coupled to the SCFT operators, there is a mixing between the source and the SCFT

bound states. For β−1 > 0 the coupling of the source to the SCFT is irrelevant, it corresponds

in the 5D description to a zero mode localized on the UV brane, i.e.: γ− > 1. The mixing with

the SCFT is negligible at low energies and the source is an approximate massless state. On the

other hand, for β − 1 = 0 (−1 < β − 1 < 0) the coupling to the SCFT is marginal (irrelevant).

In these cases the massless state is a mixture of the source and the SCFT resonances. In the

5D side it corresponds to a flat zero mode (localized in the IR brane).
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Running coupling between the scalar source and the SCFT

The coupling between the source and the SCFT can be understood in terms of a renormalization

group equation. Following [28] and [23] we define a dimensionless coupling at low energy

µ ∼ 1/L1 by λ(µ) = ω(µ)(µ/ΛUV )β−1/
√
Z(µ) that satisfies the renormalization group equation

µ
dλ

dµ
= (dim[O]− 3)λ+ c

N

16π2
λ3 + . . . , (3.44)

where c is a constant, dim[O] = 2 + β as defined in Eq. (3.41) and we have defined the large

number colors N by
L

g2
5

=
N

16π2
. (3.45)

The dots in Eq. (3.44) stand for higher order terms. The second term of Eq. (3.44) arises

from the SCFT contribution to the wave function renormalization. The low energy value of λ

depends on the dimension of O. For β − 1 ≥ 0 the coupling decreases with the energy scale µ

and we obtain

λ(µ) ∼ (
µ

ΛUV
)β−1 , (3.46)

therefore the mixing between the source and the SCFT is very small at low energies. For

−1 ≤ β − 1 ≤ 0 the coupling flows towards a fixed point

λ(µ) = 4π

√
1− β
cN

. (3.47)

In this case the mixing between the source and the SCFT states is large.

γ+ branch

We consider now the description corresponding to the branch γ+. We describe first the prop-

erties of the 5D theory in the holographic approach and then we present the dual 4D SCFT.

Taking the limit L0 → 0 in Eq. (3.33), the correlator can be approximated by

Πφ(p
2) ' α2 L

g2
5

[
− 2β

L2
0

+
p2

2β − 2
− p2βL2β−2

0

21−2βπ

Γ(β)2

( 1

b(p)
+ cotg(πβ)

)
+ . . .

]
, (3.48)

where the dots stand for higher order terms. To obtain Eq. (3.48) we have absorbed a warp

factor a(L0) = L/L0 in the coefficient α (defined in Eq. (3.31)). This correlator agrees with the

result for the γ− case, except for the constant term. Since the scaling properties are the same,

dimO = 2 +
√

4 +m2
φL

2.

At low energy the behavior of the theory is different is different than in the γ− case. To

understand this branch we consider that the space is AdS also in the IR and take the low

momentum limit pL1 → 0, thus

Πφ(p
2) ' L

g2
5

[
− 2β

L2
0

+
p2

2β − 2
− 1

(pL1)2
(
L0

L1
)2β−1 8β2(1 + β)

L1
+ . . .

]
, (3.49)
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where the dots stand for higher order terms. At low energies the correlator has a pole at

zero momentum, corresponding to a massless composite state. In the 5D theory this pole

corresponds to a zero KK mode localized in the IR boundary. The source receives a mass of

order 1/L0 and becomes very heavy. The dual lagrangian below the UV scale is given by [23]

L4D =
Zφ
2

(∂µφ̃)2 − m2
0

2
φ̃2 +

ωφ

Λβ−1
UV

φ̃O + LUV(φ̃) + LSCFT + . . . , (3.50)

where m0 and Zφ are the source mass and kinetic term. By matching the dual theory with

the 5D description at scale ΛUV = 1/L0 we obtain: m2
0(ΛUV ) = 2Lβ/(g5L0)

2 and Zφ(ΛUV ) =

L/g2
5/(2β − 2). For infinite ΛUV the source decouples from the CFT. For ΛUV finite the source

receives a mass of order Λ2
UV . The SCFT has a massless composite state. For β ≥ 1 the

coupling between the source and the SCFT sector is irrelevant, and the mixing can be neglected.

Therefore the massless eigenstate is mostly a composite SCFT state. For 0 ≤ β ≤ 1 the coupling

is marginal or relevant and the massless state is a mixing between the source and the SCFT

states.

3.3 Fermionic fields

We will study the KK and the holographic description for the fermion field of Eq. (3.3) (we

will follow reference [28] for the holographic description).

The Clifford algebra in five dimensions includes the four Dirac matrices γµ plus an additional

γ5 matrix. This γ5 is the parity transformation matrix for 4D spinors. Therefore a 5D spinor

contains left- and right-handed 4D components, and the simplest 5D spinor is a Dirac spinor

instead of a Weyl or a Majorana spinor. This means that a bulk fermion is not chiral but

vector like. However the SM contains chiral fermions. To obtain chiral fermions in 5D theories

(and in general in higher dimensional theories) we will consider extra spaces with boundaries

(orbifolds). Therefore imposing appropriate boundary conditions over the fermion fields it is

possible to obtain chiral fermions from higher dimensions.

A 5D fermion is a Dirac fermion Ψ = ΨL + ΨR, where ΨL and ΨR are the left- and right-

handed components respectively, defined by γ5ΨL,R = ∓ΨL,R. To obtain the equation of motion

for the fermion field we have to calculate the variation of the action with respect to Ψ and Ψ̄.

As in this process one generates boundary terms we will explain it in detail. To obtain the

variation with respect to Ψ̄ we have to integrate by parts the term of Eq. (3.3) containing

(DMΨ)† and we obtain

1

g2
5

∫
d4x

∫ L1

L0

dz
√
g
[
i Ψ̄DΨ

]
+

1

2g2
5

∫
d4x a4(Ψ̄RΨL − Ψ̄LΨR)

∣∣L1

L0
, (3.51)
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where D = eMA ΓADM −M is the 5D Dirac operator. To obtain the variation with respect to Ψ

we integrate by parts the term of Eq. (3.3) containing (DMΨ) and get

1

g2
5

∫
d4x

∫ L1

L0

dz
√
g
[
iDΨΨ

]
+

1

2g2
5

∫
d4x a4(Ψ̄LΨR − Ψ̄RΨL)

∣∣L1

L0
. (3.52)

We vary Eq. (3.51) with respect to Ψ̄ and Eq. (3.52) with respect to Ψ. The variation of the

bulk terms leads to the 5D Dirac equation, therefore the bulk action is minimized if the bulk

fields satisfy DΨ = 0. If we do not include extra terms on the branes the variation of the

boundary terms leads to

0 =
1

2g2
5

∫
d4x
√−gind

(
Ψ̄L δΨR + δΨ̄R ΨL − Ψ̄R δΨL − δΨ̄L ΨR

) ∣∣∣
L1

L0

. (3.53)

The IR boundary term vanishes if we impose a Dirichlet condition ΨL

∣∣
L1

= 0 (or ΨR

∣∣
L1

= 0)

and we are left with just the UV boundary term.

3.3.1 Kaluza-Klein description of a 5D fermionic field

In the KK description we cancel the UV boundary term by imposing a Dirichlet boundary

condition ΨL

∣∣
L0

= 0 (or ΨR

∣∣
L0

= 0) (see ref. [29] and references therein for a general review of

the KK decomposition of fermions in 5D spaces). The 5D equation of motion relates ΨL and

ΨR and is given by

6pΨL,R ∓ (2
∂5a

a
+ ∂5 ± amψ)ΨR,L = 0 , (3.54)

where 6 p = pµγ
µ. We apply separation of variables and decompose the 5D fermion field as an

infinite series of 4D fields

Ψ(x, z)L,R =
∑

n

ψ
(n)
L,R(x)fψL,Rn (z) . (3.55)

where ψ
(n)
L,R are mass eigenstates satisfying 6 p ψ(n)

L,R(x) = mL,Rnψ
(n)
L,R(x) and f

ψL,R
n (z) are the

KK wave functions that describe the bulk profile of the KK modes. We insert Eq. (3.55) into

Eqs. (3.54) and after some manipulation we obtain two separate equations of second order for

the wave functions f
ψL,R
n

[
m2
L,Rn + (2a−1∂5a+ ∂5)

2 − a2m2
ψ ±mψ∂5a

]
fψL,Rn(z) = 0 . (3.56)

The wave functions f
ψL,R
n (z) are normalized as

∫
dz a4fψL,Rm (z)fψL,Rn (z) = δmn (3.57)

to obtain canonic kinetic terms for the 4D fields ψ
(n)
L,R. Similar to the scalar field, Eq. (3.56)

has two independent solutions h
ψL,R
1,2 that depend on the specific profile of the warp factor a(z).
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We write f
ψL,R
n in terms of h

ψL,R
1,2 as

fψL,Rn (z) =
1

Nn

[
h
ψL,R
1 (mL,Rn, z) + bL,R(mL,Rn) h

ψL,R
2 (mL,Rn, z)

]
, (3.58)

where Nn is a normalization constant determined by Eq. (3.57) and b depends on the bound-

ary conditions. As Eq. (3.54) relates the left- and the right-handed fermions, once we fix one

component on each boundary the other component is automatically fixed. For example, im-

posing Dirichlet boundary conditions on the UV or IR boundaries for one of the components:

f
ψR,L
0

∣∣
L0,1

= 0, Eq. (3.54) leads to the UV or IR boundary conditions for the other component:

[2a−1∂5a + ∂5 − amψ]f
ψL,R
0

∣∣
L0,1

= 0. Therefore b is given by

bL,R(mL,Rn) = − h̃
ψL,R
1 (mL,Rn, z)

h̃
ψL,R
2 (mL,Rn, z)

∣∣∣
L0

,

bL,R(mL,Rn) = − h̃
ψL,R
1 (mL,Rn, z)

h̃
ψL,R
2 (mL,Rn, z)

∣∣∣
L1

. (3.59)

Imposing Dirichlet boundary conditions for the right-handed component we obtain h̃ψR1,2 = hψR1,2

and h̃ψL1,2 = [2a−1∂5a+∂5−amψ]hψL1,2. On the other hand, imposing Dirichlet boundary conditions

for the lefft-handed component h̃ψL1,2 = hψL1,2 and h̃ψR1,2 = [2a−1∂5a + ∂5 − amψ]hψR1,2 . Eq. (3.59)

determines the mass spectrum mL,R n. For AdS space the functions h
ψL,R
1,2 are given in terms of

Bessel functions

h
ψL,R
1 (mL,Rn, z) =

z5/2

L
5/2
1

JβL,R(mL,Rnz) , h
ψL,R
2 (mL,Rn, z) =

z5/2

L
5/2
1

YβL,R(mL,Rnz) , (3.60)

where the index β is strictly positive and it is given by

β = βL,R = |mψ L± 1/2| . (3.61)

If the 5D space is AdS only in the UV, the functions h
ψL,R
1,2 can be approximated by Bessel

functions only for z → 0.

We are interested in the zero mode of a fermion field because it will correspond to the SM

fermions. We consider AdS5 space and solve the KK Eq. (3.56) for mL,R0
= 0. The solution is

given by

f
ψL,R
0 (z) =

z2∓mψL

NL,R 0
(3.62)

where N0 is the normalization constant determined by

1 =

∫ L1

L0

dz a(z)4 z
4∓2mψL

N2
L,R 0

=

∫ L1

L0

dz
z∓2mψL

N2
L,R 0

. (3.63)

The discussion on the boundary conditions implies that just one of the zero modes survive, either

the left- or the right-handed component. In this way 5D theories with boundaries generate a
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chiral spectrum. On the other hand the massive modes are vector-like. For different values of

mψ it is possible to localize the zero mode in the boundaries. To understand this localization

it is useful to consider Eq. (3.63) in the limit of L1 → ∞ [29]. For a Left (Right) zero mode

the integral is convergent if mψL > −1/2 (mψL < 1/2), and thus the Left (Right) fermion

is localized on the UV brane. Sending L0 → 0 the integral is convergent for mψL < −1/2

(mψL > 1/2), and thus the Left (Right) fermion is localized on the IR brane. For mψL = −1/2

(mψL = 1/2) the Left (Right) zero mode is delocalized.

3.3.2 Holographic description of a 5D fermionic field

We turn to the holographic description of a fermionic field in terms of an UV source. As the

5D action contains first-order derivatives only, it is not possible to fix on the UV ΨL and ΨR

independently. We are allowed to fix just one of the fields, obtaining a left- or right-handed

description, but not both of them. We will take as the fixed variable the left-handed component

ΨL(x, z = L0) = Ψ0
L (to obtain the right-handed description one has to fix ΨR(x, z = L0) = Ψ0

R,

see ref. [28]). This means that δΨL|L0
= 0 and ΨR is free to vary on the UV. Therefore we

must add an extra term to the action, adjusted to cancel the variation of the UV term

S̃UV =
1

2g2
5

∫
d4x a4

(
Ψ̄LΨR + Ψ̄RΨL

) ∣∣
L0
. (3.64)

We can also add extra UV terms SUV , but only for the source field ΨL

SUV [Ψ0
L] =

∫
d4x
√−g0L0(Ψ

0
L) =

∫
d4x a4(L0)

[
− Ψ̄0

L 6pΨ0
L + . . .

]
. (3.65)

To obtain the left-handed description we have to solve the 5D Dirac equation and insert

it back into the action. The bulk terms cancel out but the boundary term S̃UV , defined in

Eq. (3.64), gives a contribution Seff . Hence the whole boundary action is given by SUV + Seff .

To solve the 5D Dirac equation we write the 5D field ΨL,R as a function of its boundary value

Ψ0
L,R

ΨL,R(p, z) =
fL,R(p, z)

fL,R(p, L0)
Ψ0
L,R(p) , (3.66)

where p =
√
p2. Inserting Eq. (3.66) into Eqs. (3.54), we obtain two first-order coupled equa-

tions for fL,R. We transform them in two separate equations of second order

[
p2 + (2a−1∂5a + ∂5)

2 − a2m2
ψ ±mψ∂5a

]
fL,R(p, z) = 0 , (3.67)

with two independent solutions each. Proceeding similar to the KK decomposition we write

fL,R in terms of the independent solutions h
ψL,R
1,2

fL,R(p, z) = h
ψL,R
1 (p, z) + bL,R(p) h

ψL,R
2 (p, z) , (3.68)
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where b depends on the boundary conditions. If there are not extra boundary terms b is given

by

bL,R(p) = − h̃
ψL,R
1 (p, L1)

h̃
ψL,R
2 (p, L1)

, (3.69)

where h̃ψR1,2 = hψR1,2 and h̃ψL1,2 = [2a−1∂5a + ∂5 − amψ]hψL1,2 for a right-handed component with

Dirichlet conditions on the IR, and h̃ψL1,2 = hψL1,2 and h̃ψR1,2 = [2a−1∂5a + ∂5 − amψ]hψR1,2 for a

left-handed component with Dirichlet conditions on the IR. Eqs. (3.66) and (3.54) lead to a

relation between the boundary fields Ψ0
L,R

6p Ψ0
L,R

fL,R(p, L0)
= p

Ψ0
R,L

fR,L(p, L0)
. (3.70)

From this equation we can obtain Ψ0
R as a function of Ψ0

L and inserting it into the boundary

action S̃UV we obtain the boundary action for the left-source.

∫
d4x Ψ̄0

L

a4(L0)pfR(p, L0)

g2
5 6pfL(p, L0)

Ψ0
L . (3.71)

To canonically normalize the kinetic term of the source in Eq. (3.65) we define

Ψ̃0
L =

Ψ0
L

a(L0)3/2
. (3.72)

Therefore the whole boundary action is SUV [Ψ̃0
L] + Seff [Ψ̃0

L], with the effective lagrangian given

by

Leff = ¯̃Ψ
0

LΠψ(p)Ψ̃0
L , (3.73)

where

Πψ(p) =
a(L0)pfR(p, L0)

g2
5 6pfL(p, L0)

=
a(L0)p

g2
5 6p

hψR1 + bR(p)hψR2

hψL1 + bL(p)hψL2

∣∣∣
L0

. (3.74)

The holographic procedure says that the correlator Πψ corresponds to the two-point function

〈OROR〉 of a 4D theory with a source L = Ψ̃0
LOR. For a non-dynamical source field the poles

of Πψ determine the pure SCFT mass spectrum. If we don’t introduce UV boundary terms

(SUV = 0) to cancel S̃UV defined in Eq. (3.64) we have to impose Ψ0
R = 0. This condition can

be obtained computing the variation of S̃UV with respect to Ψ0
L. In the KK description the

condition Ψ0
R = 0 corresponds to an even bulk fermion ΨL, as can be checked by comparing

with the KK spectrum calculated above. To obtain a bulk fermion ΨL with odd UV boundary

conditions, in the KK description we have to impose Ψ0
L = 0. In the holographic description

we have to add and extra fermion Ψ′
R on the UV boundary that acts as a Lagrange multiplier.

By adding the UV term

LUV =
a(L0)

g2
5

Ψ̄′
RΨ0

L + h.c. , (3.75)
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the equation of motion for Ψ′
R gives Ψ0

L = 0. Thus in this case Ψ0
L acts as a non-dynamical

source coupled to the SCFT.

We will discuss the scaling properties and the effects of the UV cutoff for the fermion fields

when the space is AdS5 (we will follow Ref. [28]). In this case the functions h
ψL,R
1,2 are given by

h
ψL,R
1 (p, z) =

z5/2

L
5/2
1

JβL,R(pz) , h
ψL,R
2 (p, z) =

z5/2

L
5/2
1

YβL,R(pz) , (3.76)

where the index β is defined in Eq. (3.61). Thus the correlator is

Πψ(p) =
Lp

g2
5L0 6p

JβR(pL0) + bR(p)YβR(pL0)

JβL(pL0) + bL(p)JβL(pL0)
, (3.77)

where b depends on the IR boundary conditions. For ΨR|L1
= 0 we obtain

bL(p) = −JβL−1(pL1)

YβL−1(pL1)
, bR(p) = −JβR(pL1)

YβR(pL1)
(3.78)

and for ΨL|L1
= 0 b is given by

bL(p) = −JβL(pL1)

YβL(pL1)
, bR(p) = −JβR+1(pL1)

YβR+1(pL1)
(3.79)

For different values of mψ we obtain different holographic theories. This behaviour can be

expected from the localization of the zero modes. Therefore we consider three different cases,

depending on whether mψL is bigger, equal or lower than 1/2.

Holographic theory for mψL > 1/2

We consider first the case mψL > 1/2. We change to Euclidean momentum and take the limits

L0 → 0 and L1 →∞ in Eq. (3.77), and get

Πψ(p) ' iL 6p
g2
5

[ 1

2βL − 2
− 21−2βLΓ(1− βL) cos(πβL)

Γ(βL)
(pL0)

2βL−2 + . . .
]
, (3.80)

where we have included just the first analytic and non-analytic terms, the dots stand for higher

order terms. The analytic term gives a kinetic term for the source. The non-analytic term

corresponds to the contribution of the SCFT states to the two point function. To extract the

scaling dimensions of the operator OR coupled to the source ψ0
L we re-scale the field ψ0

L by an

amount Lβ−1
0 and get

〈OR(p)OR(−p)〉 = lim
L0→0

(Πψ + counterterms) =6pp2β−2 L

g2
5

21−2βLΓ(1− βL) cos(πβL)

Γ(βL)
. (3.81)

To obtain the dimensions of the operator OR we Fourier transform the correlator 〈OROR〉 to

coordinate space and get

dimOR = 3/2 + βL = 3/2 + |mψL + 1/2| . (3.82)
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Thus for fermion fields we can relate the 5D masses with the dimension of the operators in the

SCFT through Eq. (3.82).

The spectrum of the pure SCFT is given by the poles of Eq. (3.77) in the limit L0 → 0.

Keeping the UV brane at finite L0, the divergent terms are interpreted as terms for the source

field that becomes dynamical, as can be seen from the kinetic term in Eq. (3.80). This means

that the boundary field becomes dynamical and can mix with the bulk. To obtain the mass

spectrum we have to invert the whole quadratic term in SUV + Seff . If SUV is absent the

spectrum corresponds to the zeroes of Πψ, that matches with the KK spectrum of a fermion

with even boundary conditions in the UV.

To obtain information about the massless states we take the limit of low momentum pL1 →
0. From the KK decomposition we know that if the left-handed component satisfies Dirichlet

conditions on both boundaries, the right-handed component has a zero mode. Moreover, for

mψL > 1/2 this mode is localized on the IR boundary. Therefore we should find a massless

pole in the correlator in this case. Expanding Eq. (3.77) with the specified boundary conditions

we obtain

Πψ(p) ' L

g2
5

1

6p
βLL

2βL−2
0 2

L2βL
1

+ . . . , (3.83)

where the dots stand for higher orders in powers of pL1. The pole in the correlator signals

the massless right-handed mode. Imposing Dirichlet boundary conditions in the IR for the

right-handed component the pole is absent. This is consistent with the KK picture.

It is possible to write a dual 4D lagrangian with the same properties as the ones described

above. It consists in a 4D SCFT coupled to an external left-handed source Ψ0
L [28]

L = Zψ Ψ̄0
L 6pΨ0

L +
ω

ΛβL−1
UV

(
Ψ̄0
LOR + h.c.

)
− iξ ŌR 6pOR

Λ2βL
UV

+ LUV(Ψ0
L) + LSCFT + . . . , (3.84)

where Z0, ω and ξ are dimensionless running couplings. The dots stand for higher dimensional

operators, suppressed by higher powers of ΛUV . This lagrangian describes a source Ψ0
L linearly

coupled to the SCFT. The scaling dimension of the operator O agrees with Eq. (3.82). We

match the bare kinetic term Zψ with the first analytic term in Eq. (3.80) at the scale ΛUV :

Zψ(ΛUV ) = L/g2
5(2βL − 2). As mψL > 1/2, the coupling of the source with the SCFT is

always irrelevant, and the mixing of the source with the SCFT is negligible. Taking the limit

ΛUV → ∞ the source decouples from the SCFT. The non-analytic factor (L0/L1)
2βL−2 in

Eq. (3.83) indicates that the massless resonance is excited by the source through the coupling

of Eq. (3.84).

Holographic theory for −1/2 ≤ mψL ≤ 1/2

In this case the 4D dual lagrangian is the same as Eq. (3.84). Most of the properties of this

theory are the same as the one described above. In particular the scaling dimensions of the
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operator O are given by the same equation. However there is an important difference with

that case: for these values of the 5D fermion mass the coupling of the source and the SCFT is

always relevant. Thus the mixing between the source and the resonances can not be neglected.

This picture is consistent with the KK approach because for these range of masses the zero

mode becomes delocalized.

Holographic theory for mψL < −1/2

To study the holographic theory in this range of 5D fermionic masses we start by taking the

limits L0 → 0 and L1 →∞ in Eq. (3.77). By working in Euclidean momentum we obtain

Πψ(p) ' iL 6p
g2
5

[ 2βL
(pL0)2

+
21+2βLΓ(1 + βL)

2cotan(πβL)

π
(pL0)

2βL−2 + . . .
]
, (3.85)

where we show only the first analytic and non-analytic terms. There is an important difference

with the first case: the pole at zero momentum. It means that the source at the boundary excites

a massless state from the bulk. The non-analytic term corresponds to the SCFT contribution

to the two-point function. The dimension of the operator OR that couples to the source is given

by Eq. (3.82).

The massive spectrum of the theory is given by the poles of Πψ in the limit of L0 → 0. In

this limit the source decouples and we are left with just the bulk spectrum that coincides with

the KK massive spectrum, as can be checked from Eq. (3.77). To obtain information about the

massless states we consider first the case ΨL|L1
= 0. From the analysis of the KK spectrum we

know that if ΨL has Dirichlet boundary conditions in the UV also, then there is a right-handed

zero mode. Therefore the correlator Πψ must reproduce this result. Taking the limit pL1 → 0

in Eq. (3.77) with the specified IR boundary condition we obtain

Πψ(p) '
L

g2
5

(2βL
6pL2

0

+ . . .
)
, (3.86)

where the dots stand for convergent terms. As we expected there is massless right-handed state

in this case. We turn to the case ΨR|L1
= 0. Since ΨL|L0

= 0, non of the components have

Neumann boundary conditions on both branes, and from the KK analysis we know that there

is no chiral spectrum. By expanding Eq. (3.77) for pL1 → 0 with L0 small but finite we get

Πψ(p) ' 2βL 6pL
g2
5

1− (L0/L1)
2βL−2

4βL(βL − 1)− (pL1)2(L0/L1)2βL
. (3.87)

Taking the limit p→ 0 there is no massless pole in the correlator. However, if we take first the

limit L0 → 0, we obtain the correlator of Eq. (3.86).

The dual 4D SCFT is more involved in this case. The pole in Eq. (3.85) can not be assigned

to an SCFT resonance, because in the limit L1 → ∞ the conformal symmetry is restored. It
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can not be cancelled by a counterterm because it is not a local term. To explain this term we

have to introduce a new degree of freedom, an elementary field χR, that couples to the source.

Therefore the source excites this new field and gives the pole in Eq. (3.85). The 4D lagrangian

is

L =LCFT + LUV(Ψ0
L) + Z0 Ψ̄0

L 6pΨ0
L + Z̃0 χ̄R 6pχR + ηΛUV

(
χ̄RΨ0

L + Ψ̄0
LχR

)

+

[
ω

ΛβL−1
UV

Ψ̄0
LOR − i

ω̃

ΛβL
UV

χ̄R 6pOR + h.c.

]
− iξ ŌR 6pOR

Λ2βL
UV

+ . . . ,
(3.88)

where the field χR couples to the source through a mass term of order ΛUV , and it couples to the

SCFT through the same operator OR. The field χR and the source ΨL marry each other and

become massives, with a large mass ∼ ΛUV . In the case ΨL|L1
= 0, we obtained a massless pole

in the correlator that corresponds to an exchange of the field χR. This means that the SCFT

is not chiral in this case, since we have associated the massless right-handed KK mode to χR.

On the other hand, for ΨR|L1
= 0, there is no massless pole in the correlator, Eq. (3.87). As

in the 4D dual lagrangian χR is a chiral field that can lead to a massless pole, the SFCT must

have a massless resonance which marries χR. Therefore the SCFT is chiral, it has a massless

left-handed resonance which acquires a mass by marrying χR.

Running coupling between the fermionic source and the SCFT

We can interpret the coupling of the source with the SCFT in terms of the renormalization

equation group, similar to the case of the scalar field. Following ref. [10] we define a dimen-

sionless coupling at low energy µ ∼ 1/L1 by λ(µ) = ω(µ)(µ/ΛUV )βL−1/
√
Z(µ) that satisfies

the renormalization group equation

µ
dλ

dµ
= (dim[OR]− 5/2)λ+ c

N

16π2
λ3 + . . . , (3.89)

where c is a constant and N is defined in Eq. (3.45). The dots stand for higher order terms.

The first term corresponds to the anomalous dimension of the operator OR. The second term

arises from the SCFT contribution to the wave function renormalization. The low energy value

of λ depends on the dimension of OR. For dim[OR] > 5/2 the coupling decreases with the

energy scale µ. At energies below the IR cutoff 1/L1 we obtain

λ(µ) ∼ (
µIR

ΛUV
)dim[OR]−5/2 , (3.90)

therefore the mixing between the source and the SCFT is very small at low energies. For

dim[OR] < 5/2 the coupling flows towards a fixed point

λ(µ) = 4π

√
5/2− dim[OR]

cN
. (3.91)

In this case the mixing between the source and the SCFT states is large.
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3.4 Gauge fields

The KK and the holographic description for gauge fields will be studied in detail in next

chapters. However in this section we will derive the equation of motion and will briefly elaborate

on the KK and the holographic description for a general warped space.

To study the gauge fields we have to fix the gauge. We choose to work in the unitary gauge

where only physical configurations survive. Thus we add to Eq. (3.3) the following gauge fixing

term

LGF = − a

2ξg2
5

[
∂µAµ −

ξ

a
∂5(aA5)

]2

. (3.92)

By taking the limit ξ →∞ we obtain an equation for A5

∂5(aA5) = 0 . (3.93)

After integration by parts, the 5D equation of motion for the vector Aµ is

[
(∂2 − a−1∂5a∂5)ηµν − ∂µ∂ν

]
Aν = 0 . (3.94)

The are also boundary terms due to the integration by parts

Lbound =
a

2g2
5

(Aµ∂5Aµ − 2Aµ∂µA5)
∣∣∣
L1

L0

. (3.95)

We have not included extra terms on the boundaries.

3.4.1 Kaluza-Klein description of a 5D gauge field

To obtain the KK description we expand the vector field as Aµ(x, z) =
∑

nA
(n)
µ (x)fAn (z). The

KK equation is given by

(−a−1∂5a∂5)f
A
n = m2

Anf
A
n . (3.96)

The wave functions fAn are normalized according to
∫
dz a fAmf

A
n = δmn. Formally we can

express the KK wave functions in terms of two independent solutions, as we did for the scalar

and fermion fields

fAn (z) =
1

Nn

[
hA1 (mAn , z) + b(mAn) h

A
2 (mAn, z)

]
, (3.97)

where b and mAn are determined by the boundary conditions. The solutions h̃A1,2 depend on the

specific profile of the warp factor. To cancel the boundary terms in Eq. (3.95) we can either

choose Dirichlet or Neumann boundary conditions, therefore b is given by

b(mAn) = − h̃A1 (mAn , L0)

h̃A2 (mAn , L0)
, (3.98)

b(mAn) = − h̃A1 (mAn , L1)

h̃A2 (mAn , L1)
, (3.99)
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where h̃A1,2 = hA1,2, ∂5h
A
1,2 respectively for Dirichlet and Neumann boundary conditions. Eq. (3.98)

determines the KK massive spectrum of the vector fields.

For AdS5 space the functions hA1,2 are Bessel functions

hA1 (mAn , z) =
z

L1
J1(mAnz) , hA2 (mAn , z) =

z

L1
Y1(mAnz) . (3.100)

A 5D gauge field has a zero mode only for Neumann boundary conditions in both boundaries.

Since the KK equation of the zero mode is ∂5f
A
0 = 0, the zero mode wave function is flat.

Imposing Neumann boundary conditions on Aµ, the field A5 must satisfy Dirichlet boundary

conditions to cancel the boundary terms. Therefore Eq. (3.93) implies that A5 = 0. On

the other hand, if some of the components Aa
µ have Dirichlet boundary conditions on one of

the branes at least, there are no zero modes for these components. The symmetry along the

generators T a is broken. Breaking gauge symmetries by boundary conditions is a very efficient

method that will be used in chapter 5 to build a model of EW symmetry breaking.

On the other hand, if Aµ|L0,1
= 0, we can impose Neumann boundary conditions for A5:

∂5aA5|L0,1
= 0. Thus there is a zero mode A0

5 with a wave function proportional to the inverse

warp factor fA5

0 = a−1/N0. In chapter 5 this zero mode will be associated with the Higgs field.

By the 5D gauge invariance a potential for A5 is forbidden, but as we will see a finite potential

can be generated by quantum effects.

3.4.2 Holographic description of a 5D gauge field

In chapter 4 we will give a detailed holographic description of a 5D gauge field. We will consider

the holographic description with sources on the UV brane only. The solution of the 5D equation

of motion for Aµ is a linear combination of hA1,2:

Aµ(p, z) = A0
µ(p)

hA1 (p, z) + b(p) hA2 (p, z)

hA1 (p, L0) + b(p) hA2 (p, L0)
, (3.101)

where A0
µ(p) is the value of the gauge field in the UV: Aµ(p, L0) = A0

µ(p), and b(p) is determined

by the IR boundary conditions. If we do not include extra terms in the IR, we obtain

b(p) = − h̃
A
1 (p, L1)

h̃A2 (p, L1)
, (3.102)

with h̃A1,2 = hA1,2, ∂5h
A
1,2 respectively for Dirichlet and Neumann boundary conditions. Substi-

tuting the solution back into the action we obtain the effective lagrangian that corresponds to

the generating functional of the two-point function

Leff = −Pµν
2g2

5

aAµ∂5Aν
∣∣
L0

=
Pµν
2
A0
µΠA(p)A0

ν . (3.103)
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where Pµν = ηµν − pµpν/p2 and ΠA is given by

ΠA(p) = −a(L0)

g2
5

∂5h
A
1 (p, L0) + b(p) ∂5h

A
2 (p, L0)

hA1 (p, L0) + b(p) hA2 (p, L0)
. (3.104)

The boundary field plays the role of the external source coupled to the SCFT. For a non-

dynamical source the poles of the correlator give the spectrum of the pure CFT, they correspond

to the KK spectrum of a gauge field with Dirichlet boundary conditions on the UV. To decouple

the sources from the CFT we have to send the UV cutoff to infinity, i.e. L0 → 0. Keeping L0

small but finite the CFT generates a kinetic term for the source, thus the source mixes with

the resonances. To obtain the mass spectrum one has to invert the whole kinetic term. If there

are not extra UV kinetic terms the spectrum is determined by the zeroes of ΠA, that matches

with the KK spectrum for Neumann boundary conditions on the UV.

As discussed in chapter 2, global symmetries lead to conserved currents ∂µJµ = 0. Let as

check that the effective theory described by Eq. (3.103) also leads to a conserved current. The

current Jµ is obtained by the variation of the effective lagrangian with respect to the source.

Therefore in momentum space ∂µJµ is given by

−pµPµν
2

ΠA(p)A0
ν = 0 . (3.105)

where the equality follows from the contraction Pµνpµ. Thus a gauge symmetry in the bulk leads

to a global conserved current. A gauge symmetry can be spontaneously broken by the Higgs

mechanism, leading to massive vector bosons for the broken generators. This mechanism of

symmetry breaking can also be implemented in a 5D theory, leading to massive 5D vector fields.

Since 5D gauge symmetries correspond in the holographic description to global 4D symmetries,

a spontaneous breaking of a local 5D symmetry corresponds to a spontaneous breaking of a 4D

global symmetry, thus leading to massless Goldstone boson. In chapter 4 we will use this entry

of the dictionary to obtain pions as Goldstone bosons.

If the space is AdS, the functions hA1,2 are given in terms of Bessel functions

hA1 (p, z) = zJ1(pz) , hA2 (p, z) = zY1(pz) . (3.106)

where b(p) = −Jβ(pL1)/Yβ(pL1), with β = 1, 0 respectively for Dirichlet and Neumann bound-

ary conditions on the IR. Therefore the correlator ΠA is given by

ΠA(p2) = − L
g2
5

p

L0

J0(pL0) + b(p)Y0(pL0)

J1(pL0) + b(p)J1(pL0)
. (3.107)
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Chapter 4

Chiral symmetry breaking from five

dimensional spaces

4.1 Introduction

The string/gauge duality [5] has allowed us in the last years to gain new insights into the problem

of strongly coupled gauge theories. Although a string description of real QCD has not yet been

formulated, different string constructions have been able to describe gauge theories with certain

similarities to QCD. In Refs. [30] several authors computed the spectrum of glueballs and the

glueball condensates from higher dimensional models. Recently, the incorporation of D7-branes

in the AdS5×S5 background [31] has allowed to address flavor issues [32].

We will consider a more phenomenological approach to QCD by using 5D field theories in

Anti-de-Sitter (AdS) (some examples of related approaches can be found in [33]-[47], the list

is not exhaustive). This approach is based on the AdS/CFT correspondence [7] that relates

strongly coupled conformal field theories (CFT) to weakly coupled 5D theories in AdS. This

is a more modest attempt but, in certain regimes, it grasps the generic features of the more

involved string constructions.

This approach can be useful to study chiral symmetry breaking in the sector of mesons of

QCD. It is known from the OPE that the vector-vector current correlator for large Euclidean

momentum, p� ΛQCD, is given in the chiral limit by [48]

ΠV (p2) = p2

[
β ln

µ2

p2
+
γ

p4
+

δ

p6
+ · · ·

]
, (4.1)

where β ' Nc/(12π2), γ ' αs〈G2
µν〉/12π and δ ' −28παs〈q̄q〉2/9 are almost momentum-

independent coefficients. Similar expression holds for the axial-axial, scalar and pseudoscalar

correlators. Therefore QCD behaves in Eq. (4.1) as a near-conformal theory in the ultraviolet

(UV) in which the breaking of the conformal symmetry is given by the condensates. The
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correlator ΠV , on the other hand, must have, according to the large-Nc expansion, single poles

in the imaginary axis of p corresponding to colorless vector resonances. These properties of

QCD can be implemented in a 5D theory in AdS. The condensates 〈O〉 are described, in the

AdS side, by vacuum expectation values (VEV) of scalars Φ whose masses are related to the

dimension d of O by Eq. (3.41) [7]. Confinement and the mass gap in QCD can be obtained

in the AdS5 by compactifying the fifth dimension. Alike large-Nc QCD, the 5D theory is also

described as a function of weakly coupled states corresponding to the mesons.

In this chapter we will present a simple 5D model to study chiral symmetry breaking in

QCD [11, 12]. We will calculate the vector, axial, scalar and pseudoscalar correlators, ΠV ,ΠAΠS

and ΠP , and derive from them the masses and decay constants of the vector, axial-vector, scalar

and pseudo-Goldstone (PGB) mesons. We will also calculate their interactions and show some

generic properties of 5D models. As an example, we will study the electromagnetic form factor

of the pions and show how vector-meson dominance (VMD) appears. We will also compute the

scalar contribution to the PGB interactions. Finally, we will derive the PGB chiral lagrangian

arising from this 5D model and we will give the predictions for the Li coefficients as well as for

the PGB masses. We will compare all these predictions with the experimental data.

4.2 A 5D model for chiral symmetry breaking

The 5D analog of QCD with 3 flavors consists in a theory with a SU(3)L⊗SU(3)R gauge

symmetry in the 5D bulk and a parity defined as the interchange L↔ R. We will not consider

the extra U(1)L,R that involves the anomaly. We will work in conformal coordinates with the

metric defined in Eq. (3.1). We will compactify the space by putting two boundaries, one at

z = L0 (UV-boundary) and another at z = L1 (IR-boundary). The limit L0 → 0 should be

taken after divergences are canceled by adding counterterms on the UV boundary [7].

The only fields in the bulk that we will consider are the gauge boson fields, LM and RM ,

and a scalar field Φ transforming as a (3L,3̄R) whose VEV will be responsible for the breaking

of the chiral symmetry. The action is given by

S5 =

∫
d4x

∫
dz L5 , (4.2)

where

L5 =
√
gM5 Tr

[
−1

4
LMNL

MN − 1

4
RMNR

MN +
1

2
|DMΦ|2 − 1

2
M2

Φ|Φ|2
]
, (4.3)

the covariant derivative is defined as

DMΦ = ∂MΦ + iLMΦ− iΦRM , (4.4)

and g is the determinant of the metric. We have defined LM = LaMT
a where M = (µ, 5),

Φ = 1l/
√

3 Φs + ΦaTa and Tr[T aT b] = δab. The coefficient M5 = 1/g2
5 (see chapter 3) has been
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factored out in front of the lagrangian so that 1/
√
M5 is the 5D expansion parameter playing

the role of 1/
√
Nc in QCD. We will parametrize the scalar field as Φ = (v + S) eiP/v(z) where

v(z) ≡ 〈Φ〉 and S corresponds to a real scalar and P to a real pseudoscalar (S → S and

P → −P under L↔ R). They transform as 1 + 8 under SU(3)V .

Let us study v(z) in the case of AdS5. We assume M2
Φ = −3/L2 that corresponds in the

CFT to an operator of dimension 3 such as q̄q, as we can see from Eq. (3.41). Solving the bulk

equation of motion for 〈Φ〉 we get

v(z) = c1 z + c2 z
3 , (4.5)

where c1 and c2 are two integration constants. They can be determined as a function of the

value of v(z) at the boundaries:

c1 =
M̃qL

3
1 − ξ L2

0

LL1(L2
1 − L2

0)
, c2 =

ξ − M̃qL1

LL1(L2
1 − L2

0)
, (4.6)

where we have defined

M̃q ≡
L

L0

v
∣∣
L0
, ξ ≡ L v

∣∣
L1
. (4.7)

By the AdS/CFT correspondence, a nonzero M̃q is equivalent to put an explicit breaking of

the chiral symmetry in the CFT (such as adding quark masses). On the other hand, a nonzero

value of c2 corresponds to an spontaneous breaking of the chiral symmetry in the IR, playing

the role of the condensate 〈q̄q〉 in QCD. Therefore the value of c2 is determined dynamically

by minimizing the action. In order to get a nonzero value for c2 in the chiral limit (M̃q = 0)

we add a potential for Φ on the IR-boundary:

LIR = −a4V (Φ)
∣∣
L1
, V (Φ) = −1

2
m2
b Tr |Φ|2 + λTr |Φ|4 . (4.8)

An origin for this type of potentials can be found in string constructions [32, 38]. To determine

the value of c2, or equivalently the value of ξ, we must minimize the effective 4D action obtained

after substituting Eq. (4.5) into the 5D action. For L0 → 0, this is given by

Seff ' −
∫
d4xTr

{
M5L

[
−M̃2

q

2L2
0

+
M̃2

q

L2
1

− 2
ξM̃q

L3
1

+
3

2

ξ2

L4
1

]
+ V (ξ)

L4

L4
1

}
, (4.9)

that is minimized for

ξ2 =
1l

4λ

(
m2
bL

2 − 3M5L
)

+O(M̃q) . (4.10)

This 5D model depends on 5 parameters: 1 M̃q, M5, L1, ξ and λ. The value of M̃q is

related to the quark masses as we will see below. The value of M5 is related to Nc and 1/L1

1We trade m2
b for ξ by means of Eq. (4.10). In the following we will take ξ → ξ1l +O(M̃q) and treat ξ as a

parameter.
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corresponds to the mass gap to be related to ΛQCD. The model has then two extra parameters

with respect to QCD, ξ and λ. However, as we will see, the vector, axial and pseudoscalar

sectors of the model does not depend on the value of λ. Therefore we can fix the value of the

other four parameters by matching this sector of the model with the corresponding sector of

QCD. The scalar sector will fix the value of λ. An estimate of its value can be obtained using

naive dimensional analysis (NDA) that gives λ ∼ 1/(16π2) ∼ 10−2 − 10−3.

Few comments are in order. Using naive dimensional analysis one can estimate that this

5D theory becomes strongly coupled at a scale ∼ 24π3M5. This implies that extra (stringy)

physics must appear at this scale or, equivalently, that this is the scale that suppresses higher

dimensional operators in Eq. (4.3). We estimate this scale to be around few GeV. Second, we

are neglecting the backreaction on the metric due to the presence of the scalar VEV. Although

a nonzero energy-momentum tensor of Φ will affect the geometry of the space producing a

departure from AdS, this effect will only be relevant at z very close to the IR-boundary, and

therefore it will not substantially change our results. We will comment on this in the last section.

Notice that neglecting the backreaction corresponds to freeze other possible condensates that

turn on in the presence of the quark condensate.

4.3 Vector, axial-vector, scalar and PGB sectors

We are interested in studying the different sectors of the model. It is convenient to define the

vector and axial gauge bosons:

VM =
1√
2

(
LM +RM ) ,

AM =
1√
2

(
LM − RM) . (4.11)

Let us first consider the chiral limit M̃q = 0. In this case we have v ∝ 1l and the symmetry

breaking pattern U(3)L⊗ U(3)R → U(3)V . By adding the gauge fixing terms

LVGF = −M5a

2ξV
Tr

[
∂µVµ −

ξV
a
∂5(aV5)

]2

,

LAGF = −M5a

2ξA
Tr

[
∂µAµ −

ξA
a
∂5(aA5)− ξA

√
2a2vP

]2

,

(4.12)

the gauge bosons Vµ and Aµ do not mix with the scalars A5 and P . We will take the limit

ξV,A →∞, i.e.

∂5(aV5) = 0 , P = − 1√
2a3v

∂5(aA5) . (4.13)
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After integration by parts the 5D quadratic terms for the gauge bosons, the scalar and the

pseudoscalar A5 are

LV =
aM5

2
Tr
{
Vµ
[
(∂2 − a−1∂5a∂5)ηµν − ∂µ∂ν

]
Vν
}
,

LA =
aM5

2
Tr
{
Aµ
[
(∂2 − a−1∂5a∂5 + 2v2a2)ηµν − ∂µ∂ν

]
Aν
}
,

LS = −a
3M5

2
Tr
{
S[∂2 − a−3∂5a

3∂5 + a2M2
Φ]S
}
,

LA5
= −aM5

2
Tr
{
A5

[
∂2D +D(2v2a2D)

]
A5

}
,

(4.14)

where D is a differential operator defined by

D = 1− ∂5

(
1

2v2a3
∂5a

)
. (4.15)

There are also boundary terms that, after using the 5D equation of motion for A5 (i.e.,

DA5 = −∂2A5/(2v
2a2)) and Eq. (4.10), can be written as 2

Lbound =
M5a

2
Tr
[
Vµ∂5Vµ − 2Vµ∂µV5 + Aµ∂5Aµ − 2Aµ∂µA5 − A5

∂2

2v2a3
∂5(aA5)− a2S∂5S

]∣∣∣
L1

L0

− a4V (S)
∣∣
L1

+M5a
3 Tr[S]∂5v

∣∣
L0
, (4.16)

where

V (S)
∣∣
L1

= m2
S Tr[S2]

∣∣
L1

+O(S3), m2
S =

4λξ2

L2
− 3M5

2L
+O(M̃q) . (4.17)

The IR-boundary terms can be cancelled by imposing the following boundary conditions:

∂5Vµ
∣∣
L1

= V5

∣∣
L1

= ∂5Aµ
∣∣
L1

= A5

∣∣
L1

=
[
M5∂5 + 2am2

S

]
S
∣∣
L1

= 0 . (4.18)

The UV-boundary conditions will be discussed later. The interactions between the fields that

we will be considering are

LV AA5
= i
√

2aM5 Tr

[
Aµ[∂5Vµ, π] +

1

2
Aµ[Vµ, A5]δ(z − L0)

]
, (4.19)

LV A5A5
=

iaM5√
2

Tr (∂µA5[Vµ, A5]) +
iM5

2
√

2a3v2
Tr (∂µ∂5(aA5)[Vµ, ∂5(aA5)]) , (4.20)

LSA5A5
=

a3M5

2
Tr

[
S

v3a6

(
∂µ∂5(aA5)

)2

− 4vS(DA5)
2

]
, (4.21)

LA4
5

=
M5

96a9v6
Tr
[(
∂5(aA5)

←→
∂µ ∂5(aA5)

)2]
. (4.22)

The SV V interaction is absent. This is a consequence of the U(3)V invariance and the fact that

only dimension-four operators are considered in Eq. (4.3). This interaction, however, could be

induced by higher-dimensional operators or loop effects.

2One obtains the same result if, instead of the equation of motion, one uses the mass eigenfunction equation,

DA5 = m2A5/(2v2a2), as we will do later to perform a KK decomposition of the sector.
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With the above lagrangian for the scalar and pseudoscalar sector we can calculate any

relevant physical quantity. We will be considering two approximations. First, we will be

working at the tree-level. According to the discussions in chapter 3 this corresponds to work

in the large-Nc limit. Since loop effects are expected to be of order 1/Nc, our predictions for

QCD quantities will have a 30% uncertainty. Second, we will take the chiral limit M̃q → 0. For

the pseudoscalar sector this limit will be taken in the following way. We will first perform the

calculations with c1 → 0 and fixed L0 (this is equivalent to M̃q → ξL2
0/L

3
1 and c2 → ξ/(LL3

1)).

Next we will take the limit L0 → 0. This procedure simplifies the calculations and avoids

singularities at z = L0.

4.3.1 The current-current correlators ΠV,A

The vector and axial vector correlators of QCD are defined by

Πµν
V,A(p2) =

∫
d4xeipx〈JµV,A(x)JνV,A(0)〉 , (4.23)

where JµV = q̄γµq and JµA = q̄γµγ5q.

In QCD the generating functional S of the current-current correlators is calculated by

integrating out the quarks and gluons as a function of the external sources. This must be

equivalent in the large-Nc limit to integrate all the colorless resonances at tree-level. The

AdS/CFT correspondence tells us that this generating functional is the result of integrating

out, at tree-level, the 5D gauge fields restricted to a given UV-boundary value:

Vµ
∣∣
L0

= vµ , Aµ
∣∣
L0

= aµ . (4.24)

The boundary fields vµ and aµ play the role of external sources coupled respectively to the vector

and axial-vector QCD currents. The effective lagrangian that gives the generating functional

of the two-point correlators ΠV,A is given by:

Leff =
Pµν
2

Tr
[
vµΠV (p2)vν + aµΠA(p2)aν

]
. (4.25)

For the AdS5 space the ΠV can be calculated analytically (see Eq. (3.106) and refs. [49, 10]):

ΠV (p2) = −M5L
ip

L0

J0(ipL1)Y0(ipL0)− J0(ipL0)Y0(ipL1)

J0(ipL1)Y1(ipL0)− J1(ipL0)Y0(ipL1)
, (4.26)

where Jn, Yn are Bessel functions of order n and p is the Euclidean momentum. For large

momentum, pL1 � 1, the dependence on p of the correlators is dictated by the conformal

symmetry and we find

ΠV (p2) ' −M5L

2
p2 ln(p2L2

0) . (4.27)
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1/L0 plays the role of a UV-cutoff that can be absorbed in the bare kinetic term of vµ. The

coefficient of Eq. (4.27) must be matched to the QCD β-function of Eq. (4.1). We get

M5L =
Nc

12π2
≡ Ñc , (4.28)

that fixes the value of the 5D coupling. The next to leading terms in the large momentum

expansion of Eq. (4.27) appear suppressed exponentially with the momentum ∼ e−pL1 , contrary

to the QCD ΠV correlator of Eq. (4.1). This is because in our 5D model the vector VM does not

couple to 〈Φ〉2, and therefore it does not feel the breaking of the conformal symmetry coming

from 〈Φ〉2. In fact the only breaking of the conformal symmetry that VM feels arises from

the IR-boundary that sharply cuts the AdS5 space, but these effects decouple exponentially at

large momentum. To reproduce the extra terms of Eq. (4.1), we would have to consider either

higher-dimensional operators mixing VM with 〈Φ〉2 or IR deviations from the AdS5 space.

In large-Nc QCD the correlators ΠV,A can be rewritten as a sum over narrow resonances:

ΠV = p2
∑

n

F 2
Vn

p2 +M2
Vn

, ΠA = p2
∑

n

F 2
An

p2 +M2
An

+ F 2
π . (4.29)

FVn and FAn are the vector and axial-vector decay constants and the poles of ΠV,A give the

mass spectrum. For the AdS5 space the masses MVn are determined by the poles of Eq. (4.26):

J0(MVnL1) ' 0 −→ MVn '
(
n− 1

4

)
π

L1
. (4.30)

For the n = 1 resonance, the rho meson, we have Mρ ' 2.4/L1 that we will use to determine

the value of L1

Mρ ' 770 MeV → 1

L1

' 320 MeV . (4.31)

The vector decay constants are given by the residues of the poles of ΠV /p
2. We obtain

F 2
Vn = Ñc

πMVn

L1

Y0(MVnL1)

J1(MVnL1)
. (4.32)

Using Eqs. (4.28), (4.31) and (4.32) we obtain FV1
' 140 MeV to be compared with the

experimental value Fρ = 153 MeV. For the higher resonances we obtain FV2,3
' 210, 270 MeV.

The correlator ΠA depends on the z-dependent mass of Aµ and cannot be calculated an-

alytically. Numerical analysis is therefore needed to obtain the masses and decay constants

of the axial-vector mesons. Analytical formulas, however, can be obtained if we approximate

the 5D mass of Aµ as a IR-boundary 4D mass, MIR. This is expected to be a good approxi-

mation since the scalar VEV v(z) that gives a mass to Aµ grows towards the IR-boundary as

v(z) ' (z/L1)
3ξ/L and is only relevant for values of z close to the IR-boundary. The value of

MIR is determined by
∫ L1

L0

dz a3(z)M2
IRAµ δ(z − L1) = M5

∫ L1

L0

dz 2a3(z)v2(z)Aµ . (4.33)
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The effect of a IR-boundary mass is simply to change the IR-boundary condition from Eq. (4.18)

to
[
M5∂5+a

2M2
IR

]
Aµ
∣∣
L1

= 0 [26], and therefore the equation that determines the mass spectrum

changes from Eq. (4.30) to

J0(MAnL1) ' −
∫ L1

L0

dz
2a3(z)v2(z)

MAnL
zJ1(MAnz) . (4.34)

In Fig. 4.1 we show the value of the mass of the lowest state as a function of ξ. We compare the

exact numerical value of MA1
and the approximate value coming from Eq. (4.34). We see that

the difference is below the 10%. For ξ ' 4 we find that MA1
coincides with the experimental

mass of the a1, Ma1 ' 1230 MeV. We then see that the experimental data favor values of ξ

around 4. For this value ξ ' 4 we also find that FA1
' 160 MeV. For the second resonance

we find, for ξ = 4, MA2
' 2 GeV and FA2

' 200 MeV. For heavier axial-vector resonances the

right-hand side of Eq. (4.34) can be neglected and then their masses approach to the values of

the vector masses Eq. (4.30) (and similarly for the decay constants).

1 2 3 4 5 6
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

PSfrag replacements

mA1
[GeV]

ξ

Figure 4.1: Mass of the first axial-vector resonance as a function of ξ. The solid line is the

exact result, while the dashed line corresponds to the approximate value coming from Eq. (4.34).

The shadow band shows the experimental value Ma1 = 1230± 40 MeV.

In the large and small momentum limits the correlator ΠA can also be calculated analytically

without the need of the above approximation. Furthermore these analytical expressions simplify

enormously if ξ � 1. In this limit we find that the dependence of ΠA on ξ is simply dictated

by the conformal symmetry. For small p, we have

ΠA(p2) = ΠA(0) + p2Π′
A(0) +O(p4) , (4.35)

where for ξ � 1

ΠA(0) = F 2
π '

25/3π

31/6Γ(1
3
)2

Ñc ξ
2/3

L2
1

, (4.36)

Π′
A(0) ' −Ñc

[
ln
L0

L1

+ ln ξ1/3 +
4γ + π

√
3− ln 12

12

]
. (4.37)
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From Eq. (4.36), making use of Eqs. (4.28) and (4.31), we get

Fπ ' 87

(
ξ

4

) 1

3

MeV , (4.38)

in excellent agreement with the experimental value for ξ ' 4. We have checked that the

approximate value of Fπ Eq. (4.38) differs from the exact value by less than 10% if ξ & 3.

Adding an explicit breaking of the chiral symmetry, M̃q 6= 0, gives an extra contribution to

ΠA(0). By expanding around M̃q = 0, we obtain ΠA(0) = Π
(0)
A (0) + M̃qL1Π

(1)
A (0) + · · · , where,

in the limit ξ � 1, Π
(0)
A is given by Eq. (4.36) and

Π
(1)
A (0) ' 28/332/3π

Γ(1
6
)2

Ñc ξ
1/3

L2
1

(
1− 2Γ(1

6
)

64/3
√
π

1

ξ2/3

)
. (4.39)

Eq. (4.39) gives a contribution to Fπ proportional to the quark masses M̃q.

In the large momentum limit ΠA is given in the chiral limit by

ΠA(p2) = −p2

[
Ñc

2
ln(p2L2

0) +
c6
p6

+O(
1

p12
)

]
, where c6 = −16

5

Ñc ξ
2

L6
1

. (4.40)

As we said before, corrections to Eq. (4.40) are expected if the 5D metric departs in the IR from

AdS. Nevertheless, these corrections cancel out in the left-right correlator ΠLR = ΠV − ΠA.

Therefore, at large momentum we have

ΠLR(p2) ' c6
p4

+ · · · , (4.41)

independently of variations in the AdS5 metric. Eq. (4.40) gives

c6 ' −1.4× 10−3

(
ξ

4

)2

GeV6 , (4.42)

to be compared with the QCD value c6 = −4παs〈q̄q〉2 ' −1.3 × 10−3 GeV6 extracted from

the evaluation of the condensate of Ref. [50]. We must notice, however, that Eq. (4.41) will be

affected by higher-dimensional operators such as Tr[Φ†LMNΦRMN ].

From the analysis of the vector and axial-vector sectors we have determined the values of

M5 = Nc/12π2, L1 ' 1/320 Mev−1 and ξ ' 4. They can be fixed by using, for example, the

QCD values for Nc, Mρ and Ma1 . Our predictions for the scalar and pseudoscalar sectors and

for the interactions will be given using the above values (although in certain cases we will study

the dependence of the predictions on ξ). This leaves the scalar sector of the theory depending

only on one parameter, λ.
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4.3.2 The scalar and pseudoscalar correlators ΠS,P

In this section we will calculate the scalar and pseudoscalar two-point correlator. In QCD these

are defined as

ΠS,P (p2) = −
∫
d4xeipx〈JS,P (x)JS,P (0)〉 , (4.43)

where JS = q̄q and JP = iq̄γ5q. The correlators ΠS,P can be obtained from the generating

functional S according to

ΠS =
δ2S
δs2

, ΠP =
δ2S
δp2

s

, (4.44)

where s and ps are the scalar and pseudoscalar external sources coupled to QCD:

L = −Tr[q̄L φ qR] + h.c., φ = Mq + s+ ips . (4.45)

The UV boundary condition for the 5D scalar field is

Φ
∣∣
L0

= α
L0

L
φ , (4.46)

where the constant α will be determined by matching with the QCD correlators in the UV as

we will see later. Up to the quadratic order in the fields, Eq. (4.46) leads to

S
∣∣
L0

= α
L0

L

(
s+ α

p2
s

2M̃q

)
, P

∣∣
L0

= −∂5(aA5)√
2a3v

∣∣∣
L0

= α
L0

L
ps . (4.47)

Let us calculate S =
∫
d4xLeff at the quadratic level for S and A5. By solving the equa-

tions of motion from Eq. (4.14) with the boundary conditions of Eqs. (4.18) and (4.47), and

substituting the solution back into the action, we get (in momentum space) 3

Leff =
1

2
ΠS(p

2) Tr[s2] +
1

2
ΠP (p2) Tr[p2

s] + ΓS Tr[s] . (4.48)

For a AdS5 space ΠS can be given analytically at the tree-level. We obtain

ΠS(p
2) = α2M5L

[
1

L2
0

+
ip

L0

J0(ipL0) + b(p)Y0(ipL0)

J1(ipL0) + b(p)Y1(ipL0)

]
, (4.49)

where Jn, Yn are Bessel functions, p is the Euclidean momentum and b(p) is determined by the

IR-boundary condition of Eq. (4.18):

b(p) = −
ipL1J2(ipL1)− 8λξ2

M5L
J1(ipL1)

ipL1Y2(ipL1)− 8λξ2

M5L
Y1(ipL1)

. (4.50)

Taking the limit L0 → 0 we find

ΠS(p
2) ' α2M5L

[
1

L2
0

+
1

2
p2 ln(p2L2

0) +
πp2

2b(p)

]
. (4.51)

3There is also a mixing term between ps and the longitudinal part of Aµ|L0
that we are not writing.
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The divergent terms for L0 → 0 can be absorbed in a bare mass and a bare kinetic term for s.

After this renormalization the correlator is finite. For large momentum pL1 � 1, we find

ΠS(p
2) ' α2M5L

2
p2 ln p2 , (4.52)

as expected from the conformal symmetry. Matching with QCD in which at large momentum

we have

ΠQCD
S (p2) ' Nc

8π2
p2 ln p2 , (4.53)

we obtain, using Eq. (4.28),

α =
√

3 . (4.54)

The next to leading terms in the large momentum expansion in Eq. (4.52) are suppressed

exponentially, contrary to QCD where one finds that the scalar correlator has power corrections.

This is because we assumed, for simplicity, that the scalar had a potential only on the IR-

boundary. In more realistic models such as those arising from string theories the scalar potential

is present in the 5D bulk (although peaked towards the IR). In these cases the scalar correlator

has power corrections. Also, if the 5D metric deviate in the IR from AdS or if higher-dimensional

operators are included in Eq.(4.3), then power corrections can be present in ΠS.

For small momentum ΠS(p
2) can be approximated by

ΠS(p
2) ' 3Ñc

[
− 2

L2
1

+
Ñc

2λξ2L2
1

]
+O(p2) . (4.55)

The scalar correlator Eq. (4.49) can also be written as a sum over infinitely narrow resonances,

similarly as in large-Nc QCD:

ΠS(p
2) =

∑

n

F 2
SnM

2
Sn

p2 +M2
Sn

. (4.56)

Therefore the masses of the scalar resonances can be determined by finding the poles of

Eq. (4.51), i.e., by the equation b(p) = 0. In Fig. 4.2 we plot the value of the mass of the

first and second scalar resonance as a function of λ for ξ = 4, that is the preferred value of ξ for

the axial sector. The first resonance mass ranges from MS1
= 0 MeV (λ → 0) to MS1

= 1226

MeV (λ → ∞). We compare this value with the masses of the a0 states (since these are the

QCD scalars whose masses are not very sensitive to Mq). We see that for a value of λ close

to its NDA estimate, λ ∼ 10−2 − 10−3, the mass of the first scalar resonance is closer to that

of a0(980) than to that of a0(1450). Nevertheless we must recall that we are working in the

large-Nc limit and then corrections can be as large as 30%. Consequently we cannot discard to

associate S(1) with a0(1450). The scalar decay constants FSn are determined by the residues of

ΠS. We obtain

F 2
Sn =

3ÑcπM
2
Sn

(
8λξ2

M5L
Y1(MSnL1)−MSnL1Y2(MSnL1)

)

MSnL1

(
1− 8λξ2

M5L

)
J0(MSnL1) +

(
8λξ2

M5L
+M2

Sn
L2

1 − 2
)
J1(MSnL1)

. (4.57)
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Figure 4.2: Mass of the first and second scalar resonances as a function of λ for ξ = 4. The

dashed lines show the experimental values for the masses of the scalar resonances a0(980) and

a0(1450).

For λ ' 10−3 we obtain MS1
' 1 GeV and FS1

' 260 MeV, while for the second resonance we

get MS2
' 1900 MeV and FS2

' 370 MeV. Using this result we can calculate the value of the

coupling cm defined in Ref. [52]. We obtain cm = FS1
MS1

/(4B0) ' 41 MeV (taking the value

of B0 from Eq. (4.100)) very close to the value used in Ref. [52]: cm ' 42 MeV.

To calculate the pseudoscalar correlator ΠP we must rely on numerical analysis. Only for

small and large momentum we are able to give analytical results. For large momentum pL1 � 1

we have

ΠP (p2) =
3Ñc

L2
0

+ p2

[
3Ñc

2
ln(p2L2

0)−
cP6
p6

+O(
1

p12
)

]
, where cP6 = −64

5

3Ñc ξ
2

L6
1

. (4.58)

Again the divergences can be cancelled by adding a proper mass and a kinetic term for the

pseudoscalar ps on the UV-boundary. From Eqs. (4.52) and (4.58) we can obtain the correlator

ΠSP = ΠS − ΠP at large momentum. It drops as ΠSP ∼ cP6 /p
4. Comparing with ΠLR =

ΠV − ΠA ∼ c6/p
4, we find cP6 = 12 c6 in strong disagreement with QCD in which one has

cP6 = 3 c6. This can be improved if, as we said, we consider more realistic theories where the

scalar potential is present in the 5D bulk and therefore ΠS has power corrections.

At low momentum 4 and for ξ � 1 we find

ΠP (p2) ' 2B̃2
0F

2
π

p2
− ÑcB̃

2
0 +O(p2) , (4.59)

where

B̃0 =
2
√

3Ñcξ

F 2
πL

3
1

. (4.60)

4In order to obtain the correct result it is important to take the limit L0 → 0 before taking p2 → 0 [28].
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Figure 4.3: Mass of the first massive pseudoscalar resonance as a function of ξ. The shadow

band shows the experimental value for π(1800).

The first term of Eq. (4.59) shows a pole at p2 = 0 as expected due to the presence of the

massless PGB.

By looking at the poles of ΠP we can find the pseudoscalar masses. The lowest mode is the

massless PGB of the spontaneous chiral symmetry breaking. There is a nonet of PGBs but

we must recall that the inclusion of the U(1)A-anomaly will give mass to the singlet [38]. The

mass of the first massive resonance is shown in Fig. 4.3 as a function of ξ. We see that its value

is far from the mass of the π(1300) state. Nevertheless, we find that, for ξ ' 4, MP1
is close

to the mass of π(1800) suggesting that this could be the state to be associated with our first

massive pseudoscalar resonance. For this resonance we find a decay constant FP1
' 374 MeV.

Finally, we calculate the linear term in Eq. (4.48) to be associated in QCD with the q̄q

condensate: ΓS = −〈JS〉. We find

ΓS =
√

3Ñc
M̃qL

2
1 + 2ξL2

0/L1 − 3M̃qL
2
0

L2
0(L

2
1 − L2

0)

fMq→0−→ 2
√

3Ñc ξ

L1(L2
1 − L2

0)

L0→0−→ 2
√

3Ñc ξ

L3
1

. (4.61)

4.4 Interactions

To calculate the couplings between the resonances it is convenient to perform a Kaluza-Klein

(KK) decomposition of the 5D fields. We expand the fields in a tower of 4D mass-eigenstates,

Vµ(x, z) = 1√
M5L

∑
n f

V
n (z)V

(n)
µ (x), and equivalently for the other fields (see chapter 3 for the

details). To cancel the UV-boundary terms of Eq. (4.16) we impose

Vµ
∣∣
L0

= Aµ
∣∣
L0

= S
∣∣
L0

= 0 , P
∣∣
L0
∝ ∂5(aA5)

∣∣
L0

= 0 . (4.62)
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For the electromagnetic subgroup of SU(3)V , however, we must consider the boundary condition

∂5Vµ
∣∣
L0

= 0 in order to have a massless mode in the spectrum, the photon, whose wave-function

satisfies

∂5f
V
0 = 0 . (4.63)

In the limit L0 → 0 this state becomes non-normalizable since its kinetic term diverges as

Ñc ln (L1/L0). To keep it as a dynamical field, we can fix 1/L0 to a large but finite value. In

the absence of UV-boundary kinetic terms, this value of 1/L0 defines the scale of the Landau

pole [49]: 5

1

e2(µ)
= −Ñc ln (L0µ) . (4.64)

The wave-functions of the KK modes V
(n)
µ (n 6= 0) are given for the AdS5 case by Eq. (3.100)[26]:

fVn (z) =
z

NVnL1
[J1(MVnz) + b(MVn)Y1(MVnz)]

L0→0−→ z

NVnL1
J1(MVnz) , (4.65)

where b(MVn) = −J1(MVnL0)

Y1(MVnL0)
and NVn is a constant fixed by canonically normalizing the field.

The masses MVn are determined by the condition ∂5f
V
n (z)

∣∣
L1

= 0 that coincides with the poles

of Eq. (4.26). For the vector KK modes associated to the electromagnetic subgroup, we have

b(MVn) = −J0(MVnL0)

Y0(MVnL0)
. In this case the KK masses are different by factors of order e2 from the

values of Eq. (4.30). This is expected since the KK modes are mass-eigenstates and their masses

incorporate corrections due to the mixing of the resonances in Eq. (4.29) with the photon. In

Fig. 4.4 we plot the wave-function of the first two KK modes.
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Figure 4.4: Wave-function of the n = 1, 2 vector resonance, the n = 1 axial-vector resonance

and the PGB.

For the axial-vector Aµ there is no massless mode. The KK wave-functions cannot be

obtained analytically and one must rely in numerical analysis. In Fig. 4.4 we plot the wave-

5This is equivalent to add a kinetic term on the UV-boundary with coupling 1/e2
0 = Ñc ln (L0µ) + 1/e2(µ)

that cancels, in the limit L0 → 0, the divergence in the kinetic term of the massless mode and normalizes this

state.
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Figure 4.5: Wave-functions of the n = 1, 2 scalar resonance, the PGB and the first massive

pseudoscalar for ξ = 4 and λ = 10−3.

function of the first KK mode, the a1, for the AdS5 case. Throughout this section we will work

in the chiral limit.

The wave-functions of the KK-modes S(n) are given by

fSn (z) =
z2

NSnL
2
1

[
J1(MSnz)−

J1(MSnL0)

Y1(MSnL0)
Y1(MSnz)

]
L0→0−→ z2

NSnL
2
1

J1(MSnz) , (4.66)

where NSn is a constant fixed by canonically normalizing the fields,
∫
a3(fSn )2dz/L = 1. In

Fig. 4.5 we plot the wave-functions of the first two KK-modes.

Finally, the equation that determines the wave-functions of the pseudoscalars can be ob-

tained from Eq. (4.14). This is given by

DfPn =
M2

Pn

2v2a2
fPn . (4.67)

The lowest state, P (0) ≡ π, is the PGB arising from the chiral symmetry breaking, that in the

limit L0 → 0 is massless. Its wave-function is given by

fπ(z)
L0→0−→ z3

L3
1N0

[
I2/3

(√
2ξ

3

z3

L3
1

)
− I2/3

(√
2ξ/3

)

K2/3

(√
2ξ/3

)K2/3

(√
2ξ

3

z3

L3
1

)]
, (4.68)

where N0 is determined by the condition − 1
2a2v2L

fπ∂5(af
π)|L0

= 1. The wave-function of the

massive modes must be obtained numerically from Eq. (4.67) with the normalization condition∫
dz (fPnMPn)

2/(2v2aL) = 1. The wave-functions of π and P (1) are shown in Fig. 4.5 (the π

wave-function is also shown in Fig. 4.4).
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4.4.1 Vector-PGB meson interactions

The interactions between the different resonances are easily obtained from Eqs. (4.19)-(4.22)

and integrating over z with the corresponding wave-functions. Here we present some phe-

nomenologically relevant examples. The first one is the coupling of the photon to A
(n)
µ π. Using

Eqs. (4.19), (4.62) and (4.63), we obtain that this coupling is zero:

gAnγπ = 0 . (4.69)

Eq. (4.69) is a consequence of electromagnetic gauge invariance which implies that pνMµν = 0

where pν is the momentum of the photon and Mµν is the vertex A
(n)
µ γνπ. In the 5D model

of Eq. (4.3), in which only dimension 4 operators are considered, we have at tree level that

Mµν can only be proportional to gµν and then Eq. (4.69) follows from the condition of gauge

invariance. Eq. (4.69) has the interesting consequence that, at the leading order in large-Nc,

the branching ratio of a1 → γπ vanishes. This coupling, however, could be induced from 5D

higher-dimensional operators or quantum loop effects.

Another example is the vector coupling to two PGB. From Eq. (4.20) we get

LVnππ = i
gnππ√

2
Tr
(
∂µπ[V (n)

µ , π]
)
, (4.70)

where gnππ is given by

gnππ =
1√
M5L3

∫
dz afVn

[
(fπ0 )2 +

(∂5(af
π
0 ))2

2a4v2

]
. (4.71)

In Fig. 4.6 we show the coupling of the first three KK modes as a function of ξ for the AdS5

case. One can see that the heavier is the KK mode (larger n), the smaller is its coupling to

PGB. This can be understood as a consequence of the increase in the oscillations of the KK

wave-function as n increases (see Fig. 4.4), that implies a smaller contribution to the integral

Eq. (4.71) for larger n.

Finally, we consider the four-pion interaction. It receives contributions coming from the

exchange of vector resonances, scalar resonances, and the four-interaction of Eq. (4.22). At the

order p2, the chiral symmetry tells us that this coupling must be (1/12F 2
π) Tr[(π

←→
∂µ π)2]. This

implies the following sum rule:

gπ4 +
∑

n

g2
nππ

M2
Vn

=
1

3F 2
π

, (4.72)

where gπ4 denotes the four-interaction

gπ4 =
1

24M5L2

∫
dz

[∂5(af
π)
]4

a9v6
. (4.73)
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Figure 4.6: Coupling of the n = 1, 2, 3 vector resonance to two PGB. We also show the approx-

imate value for n = 1 given by gapp1ππ = MV1
/(
√

3Fπ) -see Eq. (4.74).

We find that for values ξ & 3 the contribution gπ4 is small and only the vector contribution

dominates. This is saturated (at the 90% level) by the first resonance, the rho meson, leading

to the following approximate relation

M2
ρ ' 3F 2

πg
2
ρππ . (4.74)

In Fig. 4.6 we plot the approximate value of g1ππ that arises from Eq. (4.74), and it is shown

that the difference from its exact value is only ∼ 10%. Eq. (4.74) differs by a factor 2/3 from

the KSRF relation [53], M 2
ρ ' 2F 2

πg
2
ρππ, that is known to be experimentally very successful. The

approximate relation Eq. (4.74) had been found previously in a specific extra dimensional model

[36]. We have shown here, however, that it is a general prediction of 5D models independent of

the space geometry. It only relies on the 5D gauge symmetry that forbids terms with four A5.

4.4.2 The electromagnetic form factor of the pion

The electromagnetic form factor of the pion, Fπ(p) where p is the momentum transfer, corre-

sponds to the coupling of the pion to the external vector field vµ. In the 5D picture the pion

does not couple directly to vµ but only through the interchange of the vector resonances. This

is because the pion wave-function is zero at the UV-boundary and therefore the pion can only

couple to the UV-boundary fields through the KK states. This implies that the form factor of

the pion can be written as

Fπ(p) =
∑

n

gnππ
MVnFVn
p2 +M2

Vn

. (4.75)

The quantization of the electric charge of the pion implies Fπ(0) = 1 from which one can derive

the sum rule
∑

n gnππFVn/MVn = 1. Above we saw that the coupling gnππ and the inverse of
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the mass decrease as n increases implying that this sum rule is mostly dominated by the first

resonance and therefore

gρππFρ 'Mρ . (4.76)

For ξ ' 4, this relation is fulfilled at the 88% level. For larger values of ξ, however, Eq. (4.76)

is not so well satisfied since the contribution of the second resonance becomes important.

Eq. (4.76) together with Eq. (4.74) allows us to write a relation between the ρ and π decay

constants

Fρ '
√

3Fπ . (4.77)

At large momentum the contribution of each n > 1 resonance to Fπ(p) becomes sizable since

the small value of gnππ for n > 1 is compensated by the large value of MVnFVn . Nevertheless,

the total contribution coming from summing over all the modes with n > 1 approximately

cancels out, implying that the rho meson dominates in Eq. (4.75) even at large momentum.

This can be seen in Fig. 4.7 where we compare the exact result for Fπ(p) to the result in which

only one resonance is considered Fπ(p) = M2
ρ/(p

2 +M2
ρ ). The cancellation of the contribution

of the heavy modes to Fπ(p) is a consequence of the conformal symmetry. At large momentum

transfer the conformal symmetry tells us that the electromagnetic form factor of a scalar hadron

drops as 1/p(2τh−2) where τh =Dim[Oh]− s being Oh the local operator that creates the hadron

from the vacuum and s the spin of the operator [33]. For the case of the pion we have that

τh = 2 (where Oh is the axial-vector current operator) and then Fπ(p) must drop as 1/p2. This

large momentum behaviour coincides with that of the rho contribution to Fπ(p).
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Figure 4.7: Electromagnetic pion form factor as a function of the transfer momentum p for

ξ = 4. The solid line is the exact result, while the dashed line is obtained by considering only

the rho meson (VMD).

The hypothesis that the electromagnetic form factor of the pion is dominated by the rho

meson, that goes under name of VMD, was proposed long ago. It did not have any theoretical

motivation, but it led to a good agreement with experiments tough. We have seen, however,
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Figure 4.8: Coupling of the n = 1, 2, 3 scalar resonance to two PGBs as a function of λ for

ξ = 4 (solid line) and ξ = 3 (dashed line).

that VMD in Fπ(p) appears as an unavoidable consequence of this 5D model for ξ ∼ 4 (see

also Ref. [36]).

4.4.3 Scalar-PGB meson interactions

We consider the coupling between scalar and pesudoscalar fields. The coupling of a scalar to

two PGBs comes from Eq. (4.21). We obtain

LSnππ = Gnππ Tr[S(n)(∂µπ)2] , (4.78)

where Gnππ is given by

Gnππ =
1√
M5L3

∫
dz fSn

[∂5(af
π)]2

2a3v3
. (4.79)

In Fig. 4.8 we show the coupling of the first modes as a function of λ for ξ = 3, 4. We find that

Gnππ becomes smaller as n increases. This property is also present in the coupling between a

vector resonance and two PGBs, and it is due to the oscillatory behaviour of the KK wave-

functions. Associating S(1) with a0(980), we find that MS1
' 980 MeV for λ ' 10−3, and

the prediction of the 5D model for the a0πη coupling is G1ππ ' 5.4 GeV−1 for ξ = 4. In the

notation of Ref. [52] we find cd = F 2
πG1ππ/2 ' 20 MeV to be compared to the value |cd| ' 32

MeV given there. If the width of a0(980) is dominated by the decay to ηπ we find

Γ(a0 → ηπ) ' 27− 56 MeV , for ξ = 4− 3 . (4.80)

Unfortunately, the experimental value of the width of a0(980) has a large uncertainty Γ(a0) =

50− 100 MeV [54].
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4.4.4 (Pseudo)Scalar contributions to PGB interactions

By integrating the heavy scalar resonances we obtain the following four-PGB interaction

L(8)
π4 =

1

2

{
Tr[(∂µπ)2(∂νπ)2]− 1

3
Tr2[(∂µπ)2]

}∑

n

G2
nππ

p2 +M2
Sn

, (4.81)

from the scalar octet and

L(1)

π4 =
1

6
Tr2[(∂µπ)2]

∑

n

G2
nππ

p2 +M2
Sn

, (4.82)

from the scalar singlet. The sum over the KK-modes in Eqs. (4.81) and (4.82) is dominated by

the first resonance. At large momentum we find that the first resonance gives 82% of the total

contribution and this percentage rises to 94% at zero momentum (for λ ' 10−3). Therefore, as

in the vector case, we find that the scalar mediation of the four-PGB interaction is dominated

by the exchange of the first resonance.

Four-PGB interactions can also arise from Eq. (4.22). We find

Lπ4 =
gπ4

4
Tr[(π

←→
∂µ π)2] , (4.83)

with gπ4 defined in Eq. (4.73). At high energies the four-PGB amplitude arising from Eq. (4.83)

grows as ∼ E2. Nevertheless, this bad energy behaviour of the four-PGB amplitude is cured

by the contribution arising from Eqs. (4.81) and (4.82) that cancels the E2 terms. This occurs

thanks to the sum rule ∑

n

G2
nππ = 6 gπ4 . (4.84)

Eq. (4.84) is a property of any 5D model in which the breaking of the chiral symmetry is realized

by the Higgs mechanism.

We can also calculate the coupling of the PGB to the source s that defines the scalar form

factor of the PGB. Apart from a contact piece given by

Lπ2s = −B̃0 Tr[π2s] , (4.85)

this coupling is mediated by the octet and singlet scalar resonances that gives respectively

L(8)
π2s =

{
Tr[(∂µπ)2s]− 1

3
Tr[(∂µπ)2] Tr[s]

}∑

n

GnππFSnMSn

p2 +M2
Sn

,

L(1)

π2s =
1

3
Tr[(∂µπ)2] Tr[s]

∑

n

GnππFSnMSn

p2 +M2
Sn

. (4.86)

The scalar form factor of the PGB is then given by (normalized to unity at zero momentum)

FSπ (p) = 1− p2

2B̃0

∑

n

GnππFSnMSn

p2 +M2
Sn

. (4.87)
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At low momentum the sum in Eq. (4.87) is dominated by the first resonance that gives 75% of

the total contribution (for λ ' 10−3). At large momentum we find that the form factor goes as

1/p2, as expected from the conformal symmetry [33]. The cancellation of the constant term in

FSπ (p) occurs due to the sum rule
∑

n

GnππFSnMSn = 2B̃0 . (4.88)

This sum rule is fulfilled in any 5D model whose metric approaches to AdS5 for z → 0 (con-

formal theories in the UV). In Eq. (4.88) we find that the first two resonances give a similar

contribution, while the contributions of the heavier resonances tend to cancel out. Therefore

we see that FS
π (p) is very well approximated by the exchange of only the first two resonances.

4.4.5 The effective lagrangian for the ρ meson

We have seen that the rho meson gives the largest contribution to the pion couplings. Therefore

in order to obtain the chiral lagrangian for the PGB, it is convenient to write first the effective

lagrangian for the rho meson.

In order to make contact with the literature [51], we will write the effective lagrangian not

in the mass-eigenstate basis but in the basis defined by vµ as in Eq. (4.24) and the rho field Vµ

transforming under the SU(3)V symmetry as Vµ → hVµh
† + i/g h∂µh

†. From now on we will

follow the notation and definitions of Ref. [51]. The effective lagrangian for Vµ invariant under

the chiral symmetry can be written as

LV = −1

4
Tr[VµνV

µν ] +
1

2
M2

ρ Tr
[
Vµ −

i

g
Γµ
]2 − F̃ρ

2
√

2Mρ

Tr[Vµνf
µν
+ ] + · · · , (4.89)

where

Γµ =
1

2

{
u†(∂µ − iRµ)u+ u(∂µ − iLµ)u†

}
, fµν+ = uF µν

L u† + u†F µν
R u , (4.90)

and u2 = U being U a parametrization of the PGB:

U = ei
√

2π/Fπ . (4.91)

The lagrangian Eq. (4.89) does not contain all possible chiral terms of O(p4). We have neglected

couplings between π and Vµ involving more than one derivative since these couplings do not

arise from a 5D lagrangian. (We have also neglected trilinear couplings between vectors since

they do not play any role in our analysis).

Matching the above lagrangian with the 5D AdS theory we obtain

1

g
= 2

√
2gρππ

F 2
π

M2
ρ

,

F̃ρ = Fρ −
Mρ√
2g

. (4.92)
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Notice that our 5D model predicts a nonzero value for F̃ρ (we find F̃ρ ' 40 MeV for ξ = 4)

differently from Ref. [51] or models where the rho is considered a Yang-Mills field [55] in which

one has F̃ρ = 0.

4.5 The chiral lagrangian for the PGB

By integrating all the heavy resonances we can obtain the effective lagrangian for the PGB.

This lagrangian is fixed by the chiral symmetry up to some unknown coefficients. In these

section we will give the prediction of the AdS5 model for these coefficients.

At low energies it is almost impossible to describe QCD in terms of the fundamental degrees

of freedom, quarks and gluons. Instead, it is natural to describe the physics in terms of the

asymptotic hadronic states. Due to the big number of such states, this description is also

very difficult. However, at very low energies there is a great simplification. Below the scale

of the massive resonances Λ ∼ mρ, the spectrum contains only an octet of light particles,

the PGB, whose interactions are constrained by the pattern of symmetry breaking. The basic

ingredients to build the low energy effective lagrangian are the chiral symmetry and a systematic

expansion in terms of increasing powers of momentum. Assuming the spontaneous symmetry

breaking SU(3)L⊗SU(3)R →SU(3)V , the Goldstone theorem says that there is an octet of

pseudoscalar massless bosons. If the chiral symmetry is explicitly broken by an external source,

the pseudoscalars will become massives (PGB). The PGB fields π can be written as a function

of a unitary matrix U(π), transforming under the chiral group as

U(π)→ gR U(π) g†L , (4.93)

where gL,R are elements of SU(3)L,R. The 3× 3 matrix π is given by

π ≡ T aπa =




π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K̄0 −2η8√
6


 (4.94)

We organize the chiral lagrangian for the PGB π in increasing powers of momentum. Due

to the unitarity of the matrix U at least two derivatives are needed to obtain a non trivial

lagrangian. Up to O(p2), this is given by

L2 =
F 2
π

4
Tr
[
∂µU

†∂µU
]
. (4.95)

This effective description becomes more powerful if we introduce external sources. The

external fields can be used to incorporate electroweak interactions and explicit breaking of the

chiral symmetry. Moreover the external sources allow us to obtain the effective realization of
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the n-point functions of the fundamental theory. We introduce external sources Lµ and Rµ

associated to the left and right currents of the chiral symmetry, and a complex scalar source

χ associated to the scalar and pseudoscalar currents. Therefor the lowest order lagrangian

consistent with the chiral symmetry is

L2 =
F 2
π

4
Tr
[
DµU

†DµU + U †χ + χ†U
]
, (4.96)

where

DµU = ∂µU − iRµU + iULµ , (4.97)

and

χ = 2B0 (Mq + ip) , Mq = Diag(mu, md, ms) . (4.98)

The constant B0 is related to the quark condensate by 〈q̄q〉 = −B0F
2
π . In the AdS5 model Fπ

is given by Eq. (4.36).

For the prediction of B0 we can use Eq. (4.61):

〈q̄q〉 = −F 2
πB0 = −2

√
3Ñc

ξ

L3
1

' −(226 MeV)3

(
ξ

4

)
, (4.99)

that leads to

B0 =
2
√

3Ñcξ

F 2
πL

3
1

' 1520

(
ξ

4

) 1

3

MeV . (4.100)

Notice that B0 = B̃0 as it should be, since the first term of Eq. (4.59) can also be deduced by

integrating out the PGB at tree-level in the chiral lagrangian. The relation B0 = B̃0 also leads

to the right matching of Eq. (4.85) with the chiral lagrangian. The value of the quark masses

Mq is related to the VEV of Φ on the UV-boundary. Using Eqs. (4.7), (4.46) and (4.54) we

obtain 6

Mq =
1√
3
M̃q . (4.101)

From the chiral lagrangian we have

(m2
π)ab = 2B0 Tr [MqTaTb] , (4.102)

that for mπ0 ' 135 MeV and mK0 ' 498 MeV gives

mu +md = 11.5 MeV , ms = 150 MeV . (4.103)

The value of the quark masses in Eq. (4.103) are scale independent. This is because we took

M2
Φ = −3/L2 that corresponds, by the AdS/CFT dictionary, to fix the dimension of Mq to be

6In Refs. [13, 11] the quark masses did not have the correct normalization since the value of α was not

calculated.
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exactly one. In QCD however the quark masses evolve with the energy scale µ. To minimize

this discrepancy we must compare our predictions with the experimental values of the quark

masses taken at the lowest energy scale (∼ 1 GeV). From Ref. [54] we have mu +md = 7− 16

MeV and ms = 108− 175 MeV at µ ∼ 1 GeV in good agreement with Eq. (4.103).

At the O(p4) the chiral lagrangian has extra terms given by [56]

L4 = L1 Tr2
[
DµU

†DµU
]

+ L2 Tr
[
DµU

†DνU
]
Tr
[
DµU †DνU

]
+ L3 Tr

[
DµU

†DµUDνU
†DνU

]

+ L4 Tr
[
DµU

†DµU
]
Tr
[
U †χ + χ†U

]
+ L5 Tr

[
DµU

†DµU
(
U †χ+ χ†U

) ]

+ L6 Tr2
[
U †χ + χ†U

]
+ L7 Tr2

[
U †χ− χ†U

]
+ L8 Tr

[
χ†Uχ†U + U †χU †χ

]

− iL9 Tr
[
F µν
R DµUDνU

† + F µν
L DµU

†DνU
]
+ L10 Tr

[
U †F µν

R UFLµν
]
. (4.104)

The coefficients L1,2,3 are responsible for four-pion interactions at O(p4), while L9 gives a

contribution to the electromagnetic form factor of the pion at O(p2). From the discussion of

the previous section we know that the dominant contribution to these processes arises from the

rho meson exchange. Therefore the main contribution to L1,2,3,9 will arise by integrating out

this particle. Thus we will give first the vector contributions to the coefficients Li. Using the

effective lagrangian Eq. (4.89) with Eqs. (4.92), we obtain 7

L1 =
g2
ρππF

4
π

8M4
ρ

, (4.105)

L2 = 2L1 , L3 = −6L1 , (4.106)

L9 =
gρππFρF

2
π

2M3
ρ

. (4.107)

Using Eqs. (4.74) and (4.76), we get

L1 '
F 2
π

24M2
ρ

, L9 '
F 2
π

2M2
ρ

. (4.108)

The coefficients L4,6 are zero at the tree-level (leading order in the large-Nc expansion). L7 will

not be studied here since it arises from integrating out the singlet PGB that becomes massive

when the U(1)A anomaly is considered. L8 only receives contributions from the scalar sector.

L5 and L10 can be calculated from the correlators ΠV,A:

L5 =
1

16B0

dΠA

dMq

∣∣∣∣
Mq=0

, (4.109)

L10 =
1

4

[
Π′
A(0)− Π′

V (0)
]
, (4.110)

7These coefficients are induced after performing the redefinition Vµ → Vµ + iΓµ/g in Eq. (4.89). After this

redefinition the rho meson couples to the pion only at O(p3) and then it does not induce a contribution to

Eq. (4.104) when it is integrated out.
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From Eqs. (4.26), (4.36)-(4.39) and (4.99) we obtain for ξ � 1 with λξ2 fixed

L5 '
Ñcπ

3

√
3Γ(1

3
)6

[
1− 2Ñc

3F 2
πL

2
1

]
+

F 4
πL

4
1

192λξ4
' 1.2 · 10−3

[
1− 0.23

(
4

ξ

) 2

3

+ 0.09

(
10−3

λ

)(
4

ξ

) 8

3

]
,

(4.111)

L10 ' −Ñc

4

[
ln ξ1/3 +

4γ + π
√

3− ln 12

12

]
' −5.7 · 10−3

[
ln

(
ξ

4

) 1

3

+ 1

]
. (4.112)

The coefficient L5 can also be calculated from the scalar sector (see below).

At tree-level, the (pseudo)scalar resonances only contribute to L1,3,4,5,6,8. The contribu-

tions to the coefficients L1 and L3 coming from the octet and singlet scalar can be read from

Eqs. (4.81) and (4.82). We obtain

L
(8)
1 = −1

3
L

(8)
3 , L

(1)
1 = −L(8)

1 , (4.113)

L
(8)
3 =

∑

n

G2
nππF

4
π

8M2
Sn

, L
(1)
3 = 0 . (4.114)

The octet and singlet contribution to the coefficient L1 cancels out, as expected from large-Nc

[56], and only L3 gets a nonzero scalar contribution. For λ ' 10−3 and ξ = 4 (3) we obtain

L
(8)
3 ' 0.2 · 10−3 (0.3 · 10−3). Adding the vector contribution to L3 we get L3 ' −2.4 · 10−3

(−1.7 · 10−3) to be compared with the experimental value [57] Lexp
3 ' −3.5 ± 1.1. The scalar

contribution to L4 and L5 can be obtained from Eq. (4.86):

L
(8)
4 = −1

3
L

(8)
5 , L

(1)
4 = −L(8)

4 , (4.115)

L
(8)
5 =

F 2
π

8B0

∑

n

GnππFSn
MSn

, L
(1)
5 = 0 . (4.116)

As expected from large-Nc, the total contribution to L4 is zero. The value of L5 is shown in

Fig. 4.9 as a function of MS1
for ξ = 3, 4. For MS1

∼ 1 GeV we obtain L5 ' 1.1 · 10−3 in good

agreement with experiments.

Finally, the coefficient L6,8 can be computed from the correlators ΠS,P . We have

L
(8)
6 = −1

3
L

(8)
8 , L

(1)
6 = −L(8)

6 , (4.117)

L
(8)
8 =

1

32B2
0

d

dp2

[
p2
(
ΠS(p

2)− ΠP (p2)
)]∣∣∣∣

p2=0

, L
(1)
8 = 0 . (4.118)

Then L6 = L
(8)
6 + L

(1)
6 = 0, as expected from large-Nc. Using Eqs. (4.55), (4.59) and (4.100) in

the above equation, we obtain

L8 '
Ñc

32

[
1− 6

B2
0L

2
1

+
3Ñc

2λξ2B2
0L

2
1

]
' 8 · 10−4

[
1− 0.27

(
4

ξ

) 2

3

+ 0.11

(
10−3

λ

)(
4

ξ

) 8

3

]
.

(4.119)
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Figure 4.9: Prediction for L5 and L8 as a function of MS1
. The horizontal line corresponds to

the experimental value with the error bands [57].

Notice that this expression is only valid for ξ � 1 with λξ2 fixed. In Fig. 4.9 we show the exact

value of L8 as a function of MS1
. For MS1

' 1 GeV and ξ = 4 we obtain L8 ' 0.6 · 10−3 again

in good agreement with the experimental value. From Fig. 4.9 one can see that small values of

MS1
are preferred. The coefficient L8 can also be written as

L8 =
1

32B2
0

[
F 2
S1

+
∞∑

n=1

(
F 2
Sn+1
− F 2

Pn

)]
, (4.120)

that shows that in the limit where the chiral symmetry is restored, ξ → 0 and FSn+1
→ FPn,

only the first term remains. For ξ ' 4 we find that the first term still dominates (it gives 70%

of the total contribution for λ ' 10−3) since the other resonances, being so heavy, are not very

sensitive to chiral symmetry breaking.

To summarize, in Table 1 we compare the experimental values of Li with the predictions of

our AdS5 model for the value ξ = 4. We give the exact values of our predictions although we

find that the predictions in the limit ξ � 1 differ by less than a 10% from the exact results.

Comparing the predictions with the experimental values we find that the discrepancy is always

below the 30%.

Finally, we also calculate the coefficient of the operator Tr[QRUQLU
†] responsible for the

electromagnetic pion mass difference (QL,R are the left- and right-handed charges) [52]. This

coefficient is given by e2C = (m2
π+ −m2

π0)F 2
π/2 where

mπ+ −mπ0 ' 3α

8πmπF 2
π

∫ ∞

0

dp2
(
ΠA − ΠV

)
. (4.121)

Taking ΠV from Eq. (4.26) and calculating ΠA numerically in the chiral limit for ξ = 4 (5) we

find ∆mπ ' 3.6 (4) MeV to be compared with the experimental value ∆mπ ' 4.6 MeV.
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Experiment AdS5

L1 0.4± 0.3 0.4

L2 1.4± 0.3 0.9

L3 −3.5± 1.1 −2.4

L4 −0.3± 0.5 0.0

L5 1.4± 0.5 0.9

L6 −0.2± 0.3 0.0

L8 0.9± 0.3 0.6

L9 6.9± 0.7 5.4

L10 −5.5± 0.7 −5.5

Table 4.1: Experimental values of the Li at the scale Mρ in units of 10−3 [57] and the predictions

of the AdS5 model for the value ξ = 4.

The coefficients Li and C have been previously calculated using different approximations.

For example, in Refs. [52, 58] these coefficients were calculated from an effective theory of

resonances, showing a good agreement with the experimental data. It would be interesting to

study the relation between the approach presented here with those of Refs. [52, 58].

4.6 Conclusions

We have presented a 5D model that describes some of the properties of QCD related to chiral

symmetry breaking. Alike large-Nc QCD, this model is defined by a set of infinite weakly

coupled resonances. The vector, axial vector and PGB sectors depend only on one parameter,

ξ, related to the quark condensate (apart from the other 3 parameters of the model that are

fixed by the 3 parameters that define QCD: the mass gap ΛQCD, Mq, and Nc). The scalar

sector depends also on the parameter λ. We have obtained predictions for the masses and

decay constants of the vector, axial-vector, PGB and scalar mesons. These predictions are in

good agreement with the experimental data. A summary of some of the results is given in

Table 1 and Figs. 4.9 and 4.10 that shows that, within a 30%, they agree with the data.

The 5D gauge invariance of the model leads to interesting sum rules among the couplings

and masses of the resonances from which we obtain M 2
ρ ' 3 g2

ρππF
2
π , Fρ '

√
3Fπ, and the

vanishing of the BR of a1 into πγ at the tree-level. Another prediction of the model is the

realization of VMD in the electromagnetic form factor of the pion.
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Figure 4.10: Predictions of the model for some physical quantities as a function of ξ divided by

their experimental value. We have taken Mq = 0.

We have found a good agreement for the the quark masses. For the first massive pseudoscalar

resonance we have obtained a mass around 1800 MeV, quite different from the mass of the lowest

QCD pseudoscalar resonance π(1300). This has suggested us to associate this state to π(1800).

We have also given predictions for the scalar couplings and decay constants but the absence of

clean experimental data has not allowed us to compare them with QCD.

Previous approaches to calculate the scalar and pseudoscalar spectrum and/or determine

their contribution to Li can be found in Refs. [58]-[61]. In particular, the analysis of Refs. [59,

60] has certain similarity with ours. Refs. [59, 60] work in the large-Nc limit where QCD is

described as a theory of infinite hadron resonances. These sets of infinite hadrons, however, are

approximated in Refs. [59, 60] by taking only the lowest modes, and their masses and couplings

are determined by demanding a good high-energy behaviour of the correlators and form factors.

In our approach we have shown that the correlators and form factors have the correct high-

energy behaviour since this is dictated by the conformal symmetry. We have also found that,

in certain cases, it can be a good approximation to take only the lowest resonance. Therefore

in these cases our approach and that of Refs. [59, 60] give similar results. Nevertheless, we

have showed that the single-resonance approximation is not always justified (for example in

Eq. (4.88)) and this approximation can lead to large errors in the determination of the scalar

parameters.

Since the results presented here depend on the AdS5 metric Eq. (3.2), one can wonder

whether the results are robust under possible deviations from AdS. For example, if the backre-

action on the metric due to 〈Φ〉2 or other possible condensates are included in the model, we

66



expect the warp factor a(z) to depart from AdS in the IR. Nevertheless if we want the theory

to be almost conformal in the UV, the warp factor for z � L1 (where 1/L1 gives the mass gap)

must behave as

a(z) ' L

z

[
1 +

∑

i

ci

(
z

L1

)di]
, (4.122)

where ci are numerical constants related to the singlet condensates 〈Oi〉 and di = Dim[Oi]. In

QCD di ≥ 4. Eq. (4.122) implies that only for values of z quite close to L1 the metric will

deviate from AdS. Therefore, unless the coefficients ci are very large, we do not expect large

deviations from our results. The ci, however, are restricted by the curvature of the space R. We

have checked that for R ∼ 1/L2
1, our results are not substantially modified by deformations of

the AdS metric in the IR. As an example, we have compared some of our results to those with

the metric of Ref. [31], 8 a(z) = πL
2L1 sin[πz/2L1]

, and we have found that the differences are smaller

than 10%. We can then conclude that more realistic string constructions of QCD, such as those

of Refs. [32], must lead to quantitatively similar results. In Ref. [45] a systematic expansion

of the metric has been done, matching the coefficients ci of Eq. (4.122) with the OPE of the

vector and axial-vector correlators.

8This is the induced metric on the D7-brane on which the gauge bosons propagate in Ref. [31].
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Chapter 5

Electroweak symmetry breaking from

five dimensions:

a composite Higgs model

5.1 Introduction

The standard model (SM) has had an incredible phenomenological success describing the physics

at energies below the electroweak (EW) scale. However the SM is not the fundamental theory

of EW symmetry breaking. The main reason is that the Higgs potential of the SM is not stable

under quantum corrections. This problem suggests that the SM should be replaced by another

theory, like a supersymmetric theory, a string theory, a quantum theory of gravity or a strongly

coupled theory.

The aim of models beyond the SM can be summarize in the following three minimal re-

quirements:

• Provide a solution to the hierarchy problem, i.e.: they provide a natural mechanism

to explain why the Planck scale MP l ∼ 1018 GeV is much bigger than the EW scale

MEW ∼ 102 GeV. Let us give a very brief description of the hierarchy problem. The

quantum corrections to the Higss mass are quadratically divergent with the cut-off of the

theory. Thus to obtain a light Higgs with parameters of O(1) the scale of new physics

must be ΛNP ≤ 1 TeV. On the oder hand, if the new physics scale is so low, we should see

any indirect effect in the precision tests. For example, we expect new physics to induce

higher dimensional operators, like four fermion interaction suppressed by this scale. The

precision tests constrain ΛNP to be larger than a few TeV, thus we are led to the LEP

paradox [62]. Therefore the ambitious solution to the hierarchy problem is to give a

picture for physics up to the Planck scale, stabilizing this hierarchy and explaining the
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EW symmetry breaking.

• Explain the flavor structure of the SM. A complete model would have to predict the

fermionic spectrum of the SM, the masses and mixing angles. Although explaining the

flavor structure can be too ambitious, there is a minimal requirement: operators inducing

flavor changing neutral currents must be suppressed. Thus the models beyond the SM

must provide a GIM-like mechanism. One also needs to suppress operators inducing

proton decay.

• Pass the precision EW tests. Any theory beyond the SM is constrained by high precision

experiments at LEP and SLAC, and the deviations from the SM at low energies must

be very small. Models beyond the SM are called universal if the deviations from the SM

reside only in the self-energies of the vector bosons. In this case, and if the scale of new

physics is sensibly higher than MEW , the deviations from the SM are described by four

parameters that encode the low energy behaviour of the vector self-energies [63, 64]. Since

high precision experiments constrain this parameters, the universal theories beyond the

SM must be compatible with the experimental bounds to be realistic alternatives. The

models we will be interested in are universals up to the interaction Zbb̄. Thus we have to

check that they satisfy the constraints for deviations in this interaction.

In chapter 4 we considered the AdS/CFT duality to study different properties of strongly

interacting theories. We introduced a simple model with fundamental fields in AdS5 to inves-

tigate the chiral symmetry breaking of QCD in the sector of mesons. Thus, in this chapter, we

will consider the breaking of the EW symmetry by a strongly interacting sector in the context of

the AdS/CFT conjecture. Moreover, we also aim the new sector to explain the flavor structure

of the SM and to pass the EW precision tests.

One of the most economical alternatives to explain the breaking of the EW symmetry

are technicolor theories. In these theories the EW symmetry is broken by the interactions

with a strongly coupled sector. This idea is inspired in QCD, where the strong interactions

spontaneously break the chiral symmetry SU(2)L⊗SU(2)R →SU(2)L+R, as explained in the

previous chapter. However, in technicolor theories, due to the strong interactions, it is not

possible to calculate the precision parameters. In some cases it is possible to estimate them,

and their contribution to the Peskin-Takeuchi S parameter is larger than the experimental

bound. From 5D higgsless models we can obtain analytical predictions for the S parameter.

In terms of L10 computed in the previous chapter S is given by S = −16πL10, with Fπ = 246

GeV. Electroweak precision tests tell us that S . 0.3, a constraint difficult to be satisfied in
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the present Higssless models [65, 66]. From Eq. (A.7) we can derive the dependence of S on d

S ' −4πNc

[
ln ξ1/d +

γ + ψ
(

2+d
2d

)
− ψ

(
2
d

)
− ψ

(
1
d

)
− ln d2

2

2d

]
. (5.1)

For a fixed value of Fπ we find that the dependence on d is very weak, and S changes only a

few per cent when varying d. This implies that S in these type of models is always sizable.

In this chapter we will consider the alternative of having a Higgs as a composite particle

arising from a strongly coupled field theory. In these theories there is a scale ΛNP at which new

particles appears, like mρ in QCD. This scale must be larger than the scale of the Higgs mass to

avoid constraints from searches of new particles states ΛNP > MEW . Therefore the Higgs mass

must be protected by some approximate symmetry even below the scale of new particles. The

pion of QCD provides a good example, it is a Goldstone boson coming from the spontaneous

breaking of the chiral symmetry. There is an explicit breaking of the chiral symmetry due to

the gauging of the EW group and the quark masses, and the pion becomes a pseudo Goldstone

boson (PGB) with a small mass. This suggests that the Higgs could be a PGB of a strongly

interacting sector, with a global symmetry explicitly broken by the SM external sector. The

Higgs mass is generated by quantum effects between the SM and the strong sector. The analog

of the pion decay constant fπ sets the scale of EW symmetry breaking, and as in QCD it is

related to the scale of new physics by fπ ∼ ΛNP/(4π). There are additional conditions over this

composite Higgs. In order to obtain a large enough Higgs mass, the quartic self-coupling must

be O(1). Also the Yukawa couplings to the quark and lepton fields must have the appropriate

values. In this kind of models the precision parameters will receive contributions from the strong

sector and one has to calculate their values to know if the model passes the EW precision tests.

As we will see the most constraining observable is the Peskin-Takeuchi S parameter. In this

chapter we will describe a model with the properties mentioned above and will calculate some

physical quantities as the Higgs mass, the precision parameters and the masses of the lightest

new particles.

The most important obstacle to test whether the theory depicted above can be a serious

model of EW symmetry breaking is calculability. It is very difficult to obtain quantitative

predictions in a strongly coupled theory because of the non perturbative effects. To avoid this

problem we will consider the holographic approach from 5D theories in a slice of AdS5. As

we argue in section 3.1, models in AdS5 can mimic strongly coupled conformal field theories

(CFT) with a large number of colors N .

In this chapter we present a model along the lines of Ref. [10]. In that paper the authors

considered a 4D model with an SO(5)⊗U(1)X global symmetry. This is the minimal group

with the following properties: it contains the EW gauge group, after spontaneous symmetry

breaking it generates a Goldstone boson corresponding to the Higgs field and it has an un-
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broken SO(3) custodial symmetry. The Higgs is the Goldstone boson corresponding to the

spontaneous breaking SO(5)→SO(4) by the strong dynamics, thus it is a 4 of SO(4). Since

SO(4)∼SU(2)L⊗SU(2)R (with a parity L↔ R), the Goldstone boson has the appropriate quan-

tum numbers to be associated with the Higgs field. The SM fermions are assumed to couple

linearly to the fermionic operators of the CFT that form complete multiplets of SO(5). The

authors considered these operators to be a 4 of SO(5). The SM sector explicitly breaks down

the global symmetry to the EW subgroup and by loop effects it generates a mass for the PGB.

In this model one can calculate the Higgs potential at one loop in terms of the two-point func-

tions of the SM vector and fermion fields. These functions encode all the effects of the strong

dynamics, thus they are computed in a 5D model that mimics the strong sector. In a large

range of the parameter space EW symmetry breaking is triggered by the top quark contribu-

tions to the Higgs potential. The Higgs acquires a vacuum expectation value (VEV) that is

related to the EW symmetry breaking scale fπ by v = εfπ. The value of the parameter ε is

model dependent, and for small ε the S parameter is small enough to pass the EW precision

tests. The model predicts a very light Higgs, mH ≤ 140GeV. A complete analysis of the EW

precision tests is performed in Ref. [68]. In particular the authors perform a detailed analysis

of the decay Z → bLb̄L and conclude that to satisfy the experimental bounds on this decay one

needs a significant tuning of a few percent. A priori it is not easy to avoid large contributions

to Zbb̄ because the top, being heavy, couples strongly to the strong sector, and since bL is in

the same doublet as tL, one expects large modifications to Zbb̄. We will show that there is a

subgroup of the custodial symmetry that can protect the interaction Zbb̄. This is the same

subgroup that protects the T parameter of the SM from radiative corrections. This symme-

try cannot protect simultaneously Ztt̄ and Wtb̄. Therefore, by an appropriate election of the

representation of the fermionic operators Zbb̄ is protected and the theory is realistic in a large

region of the parameter space. We also expect large modifications of the interactions Ztt̄ and

Wtb̄ that could be observed in the future experiments. This symmetry can be used for any

model beyond the SM with a new sector that is invariant under the global custodial symme-

try. In this chapter we will show the general argument to protect these interactions and will

consider its application to our model. Thus, by embedding the fermionic fields in appropriate

multiplets, the model can pass these EW precision tests. In particular, for a 10 of SO(5), qL is

included in a bidoublet (2, 2) of SU(2)L⊗SU(2)R, and Zbb̄ is protected. Therefore we present

an extension of the minimal model [10], with the fermions embedded in a 10 of SO(5). We will

compute the Higgs potential and other physical quantities. We will show that the S parameter

constrain excludes 75% of the parameter space. We obtain a correlation between the Higgs

mass and the lightest fermionic resonance mH ∼ m1. Thus a small Higgs mass implies a small

m1 ∼ 0.5−1.5TeV, and we obtain a little hierarchy between mH and the scale of new fermionic

resonances. The vector resonances are similar to the original model and in general are heavier
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than the fermionic resonances ∼ 1− 3TeV.

This chapter is organized in the following way. In section 5.2 we describe the 4D CFT

model. We will integrate out all the CFT and obtain an effective low energy lagrangian that,

at the quadratic level, can be parametrized in terms of a few form factors. We will derive

the one loop Higgs potential in section 5.3. In section 5.4 we will present the 5D model that

leads to same effective lagrangian as the 4D theory. We will compute the tree level two point

functions and match the 4D form factors to the 5D ones. In section 5.5 we will show our results

for the precision EW parameters. We will also give predictions for the spectrum of the model.

In section 5.6 we show symmetry protecting Zbb̄ and calculate the extra contributions to the

vertex ZbLb̄L in our model. In section 5.7 we give our conclusions.

5.2 4D model

We will consider a 4D theory with a strongly interacting sector with a large number of colors

N . We assume that the theory is conformal at high energies and that the conformal symmetry

is spontaneously broken at a IR scale of order TeV. Thus there is a mass gap and the theory

has a discrete spectrum of particles with the lightest masses of order TeV. The theory has a

global symmetry SU(3)c⊗SO(5)⊗U(1)X , and hence the operators and states of this sector are

in complete multiplets of this group. We assume that this global symmetry is spontaneously

broken by the strong dynamics to SU(3)c⊗SO(4)⊗U(1)X at a scale fπ. We will assume that the

operator breaking the global symmetry has a large scaling dimension. Due to the spontaneous

breaking there is a Goldstone boson that is a 4 of SO(4), with the right quantum numbers to be

the Higgs boson. It is a real bidoublet (2, 2) of SU(2)L⊗SU(2)R. The SM fields are elementary

and are external to the CFT. The SU(2)⊗U(1)Y symmetry included in the global group of

the CFT is gauged by the external fields, that couple to the conserved currents of the CFT.

Hypercharge is given by Y = T 3R+X. As the SU(3)c does not play any role in our analysis we

will neglect it in the following. The SM fermions also couple to the strong sector, we assume

that they couple linearly through CFT operators L = λΨ̄O, with O transforming as a 10 of

SO(5). The lagrangian of the model is given by

L = LCFT + LSM + JaL µLaµ + JµYBµ +
∑

r

λr ψ̄rOr + h.c. , (5.2)

where ψr = {qL, uR, dR, lL, eR} are the SM fermions and Laµ (a = 1, 2, 3), Bµ stand for the

SU(2)L and U(1)Y gauge bosons. A family index is understood.

From chapter 3 we know that the running coupling λ satisfies a renormalization group

equation. By choosing the scaling dimension of the fermionic operator O, it is possible to

determine the value of the running coupling λ. Therefore depending on dim[O], the fermions
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will have a small (large) mixing with the CFT, and thus a small (large) Yukawa coupling. To

obtain a large enough top mass, we will need a large Yukawa coupling, and thus the top will

be mostly composite.

At tree level, due to the SO(5)→SO(4) breaking, the theory has a large space of degenerate

vacua. A subspace of vacua preserve the SM SU(2)⊗U(1)Y symmetry, and the orthogonal

subspace does not preserve this symmetry. Therefore the EW symmetry can be broken or

not by the vacuum depending on the strong dynamics. The SM fields do no respect the full

SO(5) global symmetry of the CFT. Thus, due to the couplings with the SM fields, the global

symmetry is explicitly broken, and the Higgs acquires a mass. This means that the large space

of vacua is lifted by loop effects and the Higgs becomes a PGB. The gauge contributions to

the potential tend to align the vacuum along the EW preserving subspace of vacua, and do not

trigger EW symmetry breaking [9]. The fermion contribution to the potential can misalign the

vacuum, being the top contribution the biggest one.

The Higgs is the Goldstone boson and is parametrized in terms of a unitary matrix Σ(Π),

where Π is given in terms of the broken generators T â, â = 1, 2, 3, 4 as

Σ = Σ0e
Π/fπ , Σ0 = (0, 0, 0, 0, 1) , Π = −iT âhâ

√
2 . (5.3)

The tree level vacuum is characterized by Σ0. Σ can be simplified by using the SO(5) generators

Σ =
sin h/fπ

h

(
h1, h2, h3, h4, h coth/fπ

)
, h =

√
(hâ)2 . (5.4)

Quantum effects will generate a potential for h. The VEV of h is determined by minimizing

this potential. Defining ε = sin〈h〉/fπ, the true vacuum is characterized by

〈Σ〉 =
(
0, 0, ε, 0,

√
1− ε2

)
. (5.5)

ε takes values between 0 and 1, for ε = 0 there is no EW symmetry breaking and for ε = 1

there is maximal EW symmetry breaking.

We can obtain a low energy effective lagrangian of the above theory by integrating out all

the heavy resonances of the CFT, thus obtaining a non-local lagrangian for the external fields.

As this effective lagrangian will respect the symmetries of the strong sector, it is convenient to

write it in an SO(5) invariant form. Since the SM fields do not fill complete multiplets of SO(5),

we will promote them to obtain complete multiplets. The elementary fermions are promoted to

fill complete adjoint representations of SO(5). An adjoint representation of SO(5) has ten com-

ponents, a 10 of SO(5) is decomposed under SO(4) as 10 ∼ 4+6. As SO(4)∼SU(2)L⊗SU(2)R

(with a parity L ↔ R), it is useful to decompose this multiplet under the SU(2)L⊗SU(2)R

group. A 10 of SO(5) contains a bidoublet, a right triplet and a left triplet of SU(2)L×SU(2)R:

10 ∼ (3, 1)+(2, 2)+(1, 3). The SM model fermions qL, uR, dR are embedded into the adjoint
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representation as

Ψq =




(3, 1)qL

(2, 2)qL =

[
q′L

qL

]

(1, 3)qL



, Ψu =




(3, 1)uR

(2, 2)uR

(1, 3)uR =



χuR

uR

d ′
R







, Ψd =




(3, 1)dR

(2, 2)dR

(1, 3)dR =



χdR

u′R

dR







.

(5.6)

The extra components are non-dynamical external sources of the CFT sector. They are not

physical degrees of freedom and they are introduced to write an SO(5) invariant effective la-

grangian. The leptons are embedded into adjoint representations in a similar way. As we

want the SM fermions to have the right hypercharge, the X charge of the fermions can be 2/3

or −1/3. Eq. (5.6) corresponds to X= 2/3, that as we will explain later, suppress the extra

contributions to the interaction Zbb̄.

We also introduce additional non-dynamical components in the gauge sector to fill complete

adjoint representations Aµ and B′
µ of SO(5)×U(1)X , but only the gauge fields of SU(2)L×U(1)Y

are dynamical.

We can now write the non-local lagrangian for the sources in a SO(5)×U(1)X invariant way.

It is given by the most general lagrangian compatible with the symmetries. After integrating

out all the CFT states at tree level, including fluctuations of the Higgs field around a constant

classical background Σ, the most general effective Lagrangian for the external fields is, in

momentum space and at the quadratic level,

Leff =
1

2
Pµν

[
ΠB

0 (p)B
′µB

′ν + Π0(p) Tr
[
AµAν

]
+ Π1(p) ΣAµAνΣT

]

+
∑

r=q,u,d

[
Tr
[
Ψ̄r 6pΠr

0(p)Ψr

]
+ ΣΨr 6pΠr

1(p)ΨrΣ
T
]

+
∑

r=u,d

[
Tr
[
Ψ̄qM

r
0 (p)Ψr

]
+ ΣΨqM

r
1 (p)ΨrΣ

T
]
,

(5.7)

where Pµν = ηµν − pµpν/p2. In Eq. (5.7) we have not written terms for the dynamical external

fields not induced by the strong dynamics, as bare kinetic terms and gauge fixing terms. But

they can be included straightforward, and we will consider the effect of bare kinetic terms in our

analysis. The effects of the strong dynamics are contained on the form factors Π(p),M(p) and

they can not be computed perturbatively in the 4D theory. If the sources are non-dynamical

the poles of the two-point functions give the spectrum of the theory. On the other hand, if

the sources are dynamical we have to invert the whole quadratic action. If there are not extra

boundary terms, the spectrum is given by the zeroes of the two-point functions. As we will

see below, to calculate the S parameter and the Higgs potential we only need these two-point

functions.
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From Eq. (5.7) one can derive the low-energy effective theory. This is the theory of the light

states, the SM fields and the Higgs. This procedure is equivalent to the chiral lagrangian in

QCD. It is obtained by performing an expansion in derivatives and light fields over mρ:

L = Lkin + Lyuk − V (Σ) + ∆L . (5.8)

The term Lkin contains the kinetic terms of the dynamical fields

Lkin =
f 2
π

2
(DµΣ) (DµΣ)T +

∑

r=q,u,d

Zr ψ̄r 6Dψr −
1

4g2
W aL

µνW
aL µν − 1

4g′ 2
BµνB

µν , (5.9)

where Zq = Πq
0(0)+Πq

1(0)/2, Zu,d = Πu,d
0 (0), f 2

π = Π1(0), 1/g2 = −Π′
0(0), 1/g′ 2 = −[ΠB ′

0 (0) + Π′
0(0)].

The kinetic term for Σ includes the gauge field mass term, we obtain M 2
W = g2v2/4, where we

have defined the EW symmetry breaking scale

v ≡ εfπ = fπ sin
〈h〉
fπ

= 246 GeV . (5.10)

The term Lyuk contains the Yukawa couplings between the Higgs and the elementary fermions

and comes from the expansion of the last term of Eq. (5.7):

Lyuk =
sin(h/fπ) cos(h/fπ)

4

[
Mu

1 (0) q̄L

(
uR

0

)
+
√

2Md
1 (0) q̄L

(
0

dR

)
+ h.c.

]
. (5.11)

When the Higgs acquires a VEV the fermions get a mass that is given by the zeroes of the

corresponding two-point function. However, for ε = 1, although there is EW symmetry breaking

the Yukawa coupling vanishes, and the SM fermions are massless. This is because the remaining

SO(4) is aligned in a direction such that it protects the SM fermions from acquiring a mass.

For ε� 1 the fermion mass terms derived from Eq. (5.11) can be approximated by

mu '
Mu

1 (0)

4
√
ZqZu

v

fπ
≡ yu v , md '

√
2Md

1 (0)

4
√
ZqZd

v

fπ
≡ yd v . (5.12)

By NDA yu,d ∼ λu,dλq
√
N/4π. According to chapter 3 the coupling of the fermions to the CFT

depends on the value of γq,u,d = dimOq,u,d − 5/2. Then by choosing them to be positive λq,u,d

are strongly suppressed at low energies. This mechanism can explain the hierarchical structure

of the fermion masses in a natural way [26]:

mu,d ∼
√
N

4π

(µIR

Λ

)γq+γu,d
v . (5.13)

To obtain a large top mass we require γu < 0 and γq ' 0 for the third quark generation. A

negative γu implies that the physical right-handed top quark is mostly composite. Flavour

changing neutral current (FCNC) effects are also suppressed by the small couplings λu,d,q, the

theory has GIM-like mechanism (see, for example [26, 70, 71, 72]).
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The Higgs potential is generated at one loop. The gauge contributions tend to align the

vacuum along an SU(2)L×U(1)Y -preserving direction, but the fermion contributions can trigger

EW symmetry breaking, playing the top quark the most important role. The Higgs acquires a

VEV and breaks the SO(4) symmetry to the custodial SO(3).

The term ∆L contains the higher order operators of the expansion. Among them there are

the operators contributing to the precision parameters constrained by LEP. We will consider

the case of ΛNP > MEW , then the universal effects of the new sector can be parametrized by a

set of coefficients that describe the low energy behaviour of the SM vector self-energies. Based

on symmetry principles and absence of fine-tuning, the most relevant effects of new physics can

be encoded in the following form factors [64]

Adimensional form factors custodial SU(2)L

Ŝ = g2Π′
W3B

(0) + −
T̂ = g2

M2
W

[ΠW3W3
(0)− ΠW+W−(0)] − −

Y =
g2M2

W

2
Π′′
BB(0) + +

W =
g2M2

W

2
Π′′
W3W3

(0) + +

In this table we also show the symmetries that these form factors preserve. There are higher

derivative terms contributing to the two-point functions, but if ΛNP is big enough compared

with MEW , as is the case in our model, they can be neglected. Experimental data constrain

the new physics contributions to these form factors to be very small. In universal models,

regardless the value of the Higgs mass, Ŝ, T̂ ,W and Y must be of order 10−3. The authors

of [64] performed a global fit with a light and a heavy Higgs, obtaining

mH 103Ŝ 103T̂ 103Y 103W

115GeV 0.0± 1.3 0.1± 0.9 0.1± 1.2 −0.4± 0.8

800GeV −0.9± 1.3 2.0± 1.0 0.0± 1.2 −0.2± 0.8

In the 4D model described above, the T̂ parameter does not receive any contribution at tree level

from the CFT due to the custodial symmetry. Nevertheless, we expect quantum contributions

to this parameter, being the most important due to top interactions. The authors of ref. [68]

calculated the one-loop contribution to T̂ in the minimal composite Higgs model. The leading

effect comes from tR fermions running in the loop. The authors conclude that the corrections

to T̂ are compatible with current data and they don not imply a significant amount of tuning.

The Ŝ parameter receives contributions from the third term of Eq. (5.7):

∆L ⊃ 1

2
Π′

1(0)W aL
µν B

µν ΣT aLY ΣT , (5.14)

where T aL , Y are respectively the generators of SU(2)L and hypercharge. By defining S =

77



g2/(16π)Ŝ, Eq. (5.14) gives

S = 4πΠ′
1(0)ε2 . (5.15)

The parameters W and Y are small in the present model, since they arise from dimension-six

operators and are thus suppressed by a factor (g2f 2
π/m

2
ρ) compared to S and T .

5.3 Higgs potential

The elementary sector explicitly breaks the SO(5) symmetry, then loops of elementary fields

can transmit this breaking to the CFT sector and generate a Higgs potential. The main

contributions come from the top quark, that couples strongly to the CFT sector, and from the

gauge and bottom fields. At one loop the Coleman-Weinberg potential is

V (h) =
9

2

∫
d4p

(2π)4
log ΠW − (2Nc)

∫
d4p

(2π)4

[
log ΠbL + log

(
p2ΠtLΠtR − Π2

tLtR

) ]
, (5.16)

where Πi(p) are the self-energies of the corresponding SM fields in the background of h. These

can can be written as functions of the form factors of Eq. (5.7)

ΠW = Π0 +
Π1

4
sin2 h

fπ
, (5.17)

ΠtLtR =
Mu

1

4
sin(

h

fπ
) cos(

h

fπ
) , (5.18)

ΠbL = Πq
0 +

Πq
1

2
[1− sin2(

h

fπ
)] , (5.19)

ΠtL = Πq
0 +

Πq
1

2
[1− 1

2
sin2(

h

fπ
)] , (5.20)

ΠtR = Πu
0 +

Πu
1

4
sin2(

h

fπ
) . (5.21)

The potential of Eq. (5.16) has a constant divergent term. Up to this piece the potential is

finite, because the form factors Π1,M1 decay for large momentum as |〈Φ〉|2/p2d (with Euclidean

momentum), where Φ is the CFT operator of dimension d � 1 responsible for the SO(5)

breaking. Then we can expand the logarithms in Eq. (5.16) and write an approximate formula

V (h) ' α + β sin2(
h

fπ
) + γ sin4(

h

fπ
) , (5.22)

where α is a divergent constant and

β =

∫
d4p

(2π)4

[9Π1

8Π0
+ 2Nc

( 3Πq
1

4Πq
0 + 2Πq

1

− Πu
1

4Πu
0

− (Mu
1 )2

−p2Πu
0(16Πq

0 + 8Πq
1)

)]
, (5.23)

γ =

∫
d4p

(2π)4

{−9Π 2
1

64Π 2
0

+ 2Nc

[ (Πq
1)

2

2(2Πq
0 + Πq

1)
2

+
Πq

1Π
u
1 − (Mu

1 )2/p2

8Πu
0(2Πq

0 + Πq
1)

+
1

8

( Πq
1

2Πq
0 + Πq

1

− Πu
1

2Πu
0

− (Mu
1 )2

−4p2Πu
0(2Πq

0 + Πq
1)

)2]}
. (5.24)
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Minimizing this potential we obtain

ε =

√
− β

2γ
. (5.25)

For β < 0 there is dynamical EW symmetry breaking. The gauge fields contribution to β is

positive and thus it tends to align the VEV in the SU(2)L preserving direction. The fermions

qL and uR contribute with different signs and tend to cancel, but the qL term has a coefficient 3

compared to the uR term. If the last term of Eq. (5.23) is large enough we obtain a misalignment

of the vacuum.

We can approximate the physical Higgs mass for ε� 1 by the following equation

m2
Higgs '

8γ ε2

f 2
π

∼ 4
Nc

N
y2
t v

2 . (5.26)

The Higgs mass results from the interaction of the external sources with the CFT, and it is

proportional to 1/N . This is easy to understand from the 5D point of view, the Higgs mass

arises from the gauge interaction whose expansion parameter is g2
5, and as we saw in section 3.1

N ∼ 1/g2
5. Remarkably, the quartic coupling is O(1).

To verify if this theory can be a real alternative of EW symmetry breaking we have to

compute β, γ and the electroweak precision observables as the S parameter. As the 4D theory

is strongly coupled we will calculate these quantities in the 5D theory.

5.4 5d model

In this section we describe a 5D model that can mimic the 4D strongly coupled theory presented

before. The holographic model is weakly coupled and we show how to compute the relevant

form factors. We will see that at low energies this 5D model can be described by the effective

lagrangian of Eq. (5.7). We consider a 5D spacetime that is a slice of AdS5, with the metric

given by Eqs. (3.1) and (3.2).

5.4.1 Gauge sector

We will consider a 5D gauge symmetry SU(3)c×SO(5)×U(1)X reduced to SU(3)c× SU(2)L×U(1)Y

on the UV-brane and to SU(3)c×SO(4)×U(1)X on the IR-brane. This breaking is accomplished

by imposing Dirichlet boundary conditions for the gauge fields corresponding to the broken gen-

erators. As the SU(3)c does not play any role in our analysis we will neglect it.

The 5D action for the gauge sector is

S5 =

∫
d4x

∫
dz
√
g

[
− 1

4g2
5

Tr(AMNA
MN)− 1

4g
′2
5

B′
MNB

′MN)

]
, (5.27)

79



where g is the determinant of the metric, g5 and g′5 are respectively the 5D gauge couplings of

the SO(5) and U(1)X groups. The covariant derivative is defined by

DM = ∂M + i(g5AM + g′5B
′
M) , (5.28)

where AM = AbMT
b, M = (µ, 5) and Tr[T aT b] = δab.

We split the SO(5) gauge fields into the SO(5)/SO(4) coset components and the SO(4)

components. As SO(4)∼SU(2)L×SU(2)R we write AM as

AM = LbMT
L b +Rb

MT
Rb +X b̂

MT
b̂ , (5.29)

where LbM ≡ WL b
M , b = 1, 2, 3 and b̂ = 1, 2, 3, 4. The unbroken generators correspond to the

following linear combinations

Laµ , Bµ =
g′5R

3
µ + g5B

′
µ√

g2
5 + g

′2
5

. (5.30)

We will analyze the 5D quadratic terms for AM (it is straightforward to include the U(1)X

gauge field). We work in the unitary gauge by adding the gauge fixing term

LGF = − 1

2g2
5ξ kz

Tr [∂µAµ − ξ z∂5(A5/z)]
2 . (5.31)

In this gauge there is no mixing between the Aµ and A5 fields in the bulk. Taking the limit

ξ →∞ (see refs. [69],[11])

∂z(A5/z) = 0 (5.32)

The 5D quadratic terms for the gauge fields are

L5 =
1

2g2
5kz

Tr

{
Aµ

[
(∂2 − kz∂5

1

kz
∂5)ηµν − ∂µ∂ν

]
Aν + A5∂

2A5

}
. (5.33)

There are also boundary terms

Lbound =
1

2g2
5kz

Tr (Aµ∂5Aµ − 2Aµ∂µA5)
∣∣∣
L1

L0

. (5.34)

The boundary conditions for A5 are Dirichlet for the fields of the unbroken generators (to

cancel the mixing boundary terms) and Neumann for the fields whose generators we want

to break. This implies that A5 is non-vanishing only in its SO(5)/SO(4) components (see

section 3.4). Solving Eq. (5.32) with the specified boundary conditions we get

La5(x, z) = Ra
5(x, z) = 0 ,

X â
5 (x, z) = ζ(z)hâ(x) , ζ(z) = z

√
2/(L2

1 − L2
0) , (5.35)
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here and after a and â run respectively over the SO(4) generators (unbroken on the IR-brane)and

the SO(5)/SO(4) generators (broken on the IR-brane). In Eq. (5.35) ζ(z) is normalized to obtain

a canonical kinetic term for h(x). Physical fluctuations of X5 correspond to a 4D scalar field

h(x) transforming as a 4 of SO(4), the Higgs. From the point of view of the 5D theory, a

potential for X5 is forbidden at tree level by gauge invariance, but it is generated radiatively as

a finite-volume effect from non-local operators. This is the Hosotani mechanism for symmetry

breaking [3]. This means that the Higgs is massless at tree level, but it can acquire a finite

mass by quantum effects. The fields in the boundary break the symmetry protecting the Higgs

mass, and transmit this breaking through the exchange of virtual particles.

5.4.2 Fermion sector

The SM fermions are embedded into 5D Dirac spinors ξi that live in the bulk and belong to

the 102/3 representation of SO(5)×U(1)X . For each quark family we define

ξq =




(3, 1)qL(−−) (3, 1)qR(++)

(2, 2)qL =

[
q′L(−+)

qL(++)

]
(2, 2)qR =

[
q′R(+−)

qR(−−)

]

(1, 3)qL(−−) (1, 3)qR(++)




ξu =




(3, 1)uL(++) (3, 1)uR(−−)

(2, 2)uL(+−) (2, 2)uR(−+)

(1, 3)uL =



χuL(++)

uc ′L (−+)

dc ′L (++)


 (1, 3)uR =



χuR(−−)

uR(+−)

d′R(−−)







ξd =




(3, 1)dL(++) (3, 1)dR(−−)

(2, 2)dL(+−) (2, 2)dR(−+)

(1, 3)dL =



χdL(++)

uc ′′L (++)

dc ′′L (−+)


 (1, 3)dR =



χdR(−−)

u′R(−−)

dR(+−)







(5.36)

where leptons are realized in a similar way. Here (±,±) is a shorthand notation to denote a

Neumann (+) or Dirichlet (−) boundary condition on each brane. Chiralities under the 4D

Lorentz group have been denoted with L,R. We have split the 102/3 of SO(5) in multiplets of

SU(2)L × SU(2)R . As explained in section 3.3, massless modes in Eq. (5.36) arise from (+,+)
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fields, these are qL, (3, 1)qR,(1, 3)qR, (3, 1)u,dL , uc ′′L , dc ′L and χu,dL .

It is possible to write mass and kinetic mixing terms between the different fermions ξq, ξu, ξd

respecting the gauge symmetry. The bulk kinetic and mass terms can be simultaneously di-

agonalized. We will work in this basis. In the IR boundary one can include SO(4)-invariant

masses.

We will associate zero modes with the SM model fermions. To get rid of the extra massless

states we add extra fields on the IR-brane, (̃3, 1)R and (̃1, 3)R and the following SO(4)-invariant

IR boundary terms

(3, 1)
u,d

L (̃3, 1)R + (1, 3)
u,d

L (̃1, 3)R (5.37)

and

M̃u,d

[
(3, 1)

u,d

L (3, 1)qR + (1, 3)
u,d

L (1, 3)qR] + m̃u,d(2, 2)
q

L(2, 2)u,dR . (5.38)

The extra fields on the IR will marry the extra zero modes. Therefore, the massless states

become a mixture of different fields

• qL mixes with quL and qdL, these are the SU(2)L doublets with T 3
R = −1/2 in ξu and ξd

respectively;

• uR mixes with uqR and ũR, these are the T 3
R = 0 component of (1, 3)qR and (̃1, 3)R respec-

tively;

• dR mixes with dqR and d̃R, these are the T 3
R = −1 component of (1, 3)qR and (̃1, 3)R

respectively.

The mixing angles depend on the 5D bulk masses M i
5 = cik and on the IR masses m̃u,d, M̃u,d.

The Yukawa couplings are gauge couplings with X5, included in the 5D covariant derivative

of the bulk fermions. As the fermions belong to a 10 of SO(5), X5 only connects the bidoublets

of SU(2)L×SU(2)R with the triplets of SU(2)L or with the triplets of SU(2)R. Moreover X5

connects fermions of opposite Lorentz chirality inside the same multiplet ξi, for example

(2, 2)iL ← X5 → (3, 1)iR , (2, 2)iL ← X5 → (1, 3)iR , (5.39)

for i = q, u, d. The physical masses arise from the Yukawa couplings between the massless

states, and can be suppressed depending on the mixing angles.

5.4.3 Matching to the 4D theory through the holographic approach

To obtain the 5D prediction for the form factors of Eq. (5.7) we match the two theories on the

SO(4)-invariant vacuum: Σ = Σ0 (i.e. h = 0). We compute first the gauge sector. We solve
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the 5D equations of motion for the gauge fields at the quadratic level, restricted to the proper

UV-boundary conditions, and get

Leff =
1

2
Pµν
[
Πa(p)A

a µAa ν + Πâ(p)A
â µAâ ν

]
. (5.40)

As before, indexes a (â) run over the SO(4) (SO(5)/SO(4)) generators, and

Πa,â(p) = − 1

g2
5k

p

L0

Y0(pL0)J̃0,1(pL1)− Ỹ0,1(pL1)J0(pL0)

Y1(pL0)J̃0,1(pL1)− Ỹ0,1(pL1)J1(pL0)
, (5.41)

where the functions J̃0,1 are given by

J̃1(pL1) = J1(pL1) , J̃0(pL1) = J0(pL1)−
g2
5k

g2
IR

pL1 J1(pL1) (5.42)

and similar equations hold for Ỹ0,1. The factor 1/g2
IR is the coefficient of the SO(4) boundary

kinetic term on the IR-brane. For simplicity we have not included the U(1)X gauge boson in

Eq. (5.40), but it is straightforward to include it. Its correlator is given by similar formulas.

We have not written down possible boundary kinetic terms on the UV-brane though they can

be included directly, we will consider the effects of these terms in our analysis. Eq. (5.40) must

be matched to Eq. (5.7) after setting Σ→ Σ0. Identifying the fields with Neumann (Dirichlet)

boundary conditions on the UV-brane with the dynamical (non-dynamical) external fields of

the 4D theory we get

Πa(p) = Π0(p) , Πâ(p) = Π0(p) +
1

2
Π1(p) . (5.43)

From this equation we obtain the gauge form factors:

Π0(p) = Πa(p) , Π1(p) = 2
[
Πâ(p)− Πa(p)

]
. (5.44)

To make contact with the 4D strongly coupled theory described in section 5.2 we will

define the number of colors N in the CFT in terms of the 5D parameters. We will match the

perturbative expansion parameter 1/N in the 4D theory with perturbative expansion parameter

in 5D according to Eq. (3.45). For the large N description of the 4D theory to be reliable the

condition N � 1 has to be satisfied, implying a maximum value for the 5D coupling in units

of the curvature. As we want the 5D theory to be weakly coupled, from NDA we obtain:

π

ΛSL
=

g2
5

24π2L
� 1 , (5.45)

where ΛS is the strong cutoff scale of the 5D theory. By demanding the value of the effective

SU(2)L coupling to match with its electroweak value g ' 0.65, we can derive a lower bound for

g2
5k. We express g in terms of g5 and the boundary gauge couplings as:

1

g2
=

ln(L1/L0)

g2
5k

+
1

g2
UV

+
1

g2
IR

, (5.46)
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where 1/g2
UV and 1/g2

IR are the SU(2)L UV-brane and the SO(4) IR-brane kinetic terms. From

Eq. (5.46) we obtain
g2
5

L
> g2 ln

L1

L0
∼ 16 . (5.47)

Using Eq. (3.45) to express g5 in terms of N we get an upper bound for N . Therefore N is

restricted in the interval 1� N . 10.

The fermionic form factors can be obtained integrating out the bulk fermionic fields with

fixed values on the UV-boundary. It is possible to fix on the boundary either the left- or the

right-handed component of each fermion (but not both of them) obtaining the left- or right-

handed source description [28] (see section 3.3). As ξq contains the SM fermion qL we will fix

the left-handed component of this field on the UV-brane, ξq L =
(
(3, 1)qL, (2, 2)qL, (1, 3)qL

)T
. For

ξu, that contains the SM fermion uR, we will fix the right-handed component on the UV-brane,

ξuR =
(
(3, 1)uR, (2, 2)uR, (1, 3)uR

)T
. For simplicity we omit ξd. Integrating out the bulk fields at

tree level, we obtain the following quadratic terms for the fermionic boundary fields

Leff =Π(2,2)q
L
(p) (2, 2)

q

L 6p(2, 2)qL + Π(3,1)q
L
(p) (3, 1)

q

L 6p(3, 1)qL + Π(1,3)q
L
(p) (1, 3)

q

L 6p(1, 3)qL

+ Π(2,2)u
R
(p) (2, 2)

u

R 6p(2, 2)uR + Π(3,1)u
R
(p) (3, 1)

u

R 6p(3, 1)uR + Π(1,3)u
R
(p) (1, 3)

u

R 6p(1, 3)uR

+M(2,2)u(2, 2)
q

L(2, 2)uR +M(3,1)u(3, 1)
q

L(3, 1)uR +M(1,3)u(1, 3)
q

L(1, 3)uR .

(5.48)

The fermionic form factors Πi,Mi depend on the IR boundary masses m̃u,d, M̃u,d that mix the

different 5D multiplets. In the appendix B we compute the form factors in terms of the 5D

propagators. By matching Eq. (5.48) with Eq. (5.7) in the vacuum Σ0 we obtain

Πr
0(p) = Π(3,1)r(p) = Π(1,3)r(p) ,

Πr
1(p) = 2

[
Π(2,2)r(p)− Π(3,1)r(p)

]
,

M s
0 (p) = M(3,1)s(p) = M(1,3)s(p) ,

M s
1 (p) = 2

[
M(2,2)s(p)−M(3,1)s(p)

]
,

(5.49)

where r = q, u, d and s = u, d.

As usual in the AdS/CFT correspondence, the 5D fermion masses mi are related to the

anomalous dimensions of the CFT operators. The precise relation depends on the chirality of

the source on the UV-brane, and is given by [28]

γq =

∣∣∣∣mqL+
1

2

∣∣∣∣− 1 , γu,d =

∣∣∣∣mu,dL−
1

2

∣∣∣∣− 1 . (5.50)

For the light fermions we can satisfy Eq. (5.13) by fixing γq,u,d > 0. This implies mqL > 1/2

and mu,dL < −1/2. For the top we will require γq ' 0 and γu < 0, this implies mqL ' 1/2 and

|muL| < 1/2.

Having matched the 4D form factors with their 5D predictions, we can compute the relevant

physical quantities.
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5.5 Predictions from 5 dimensions

The 5D model presented in the last section has the same effective lagrangian as the 4D strongly

coupled CFT containing the Higgs boson. Once we match the correlators of both theories,

we can make predictions on the physical observables using the 5D correlators. As we argue

in section 3.1, the n-point functions of the strongly coupled CFT in the large N limit can be

written as an infinite sum over narrow resonances. We start with the sector of vector resonances,

that is the same as in the minimal composite model. We write the correlators Πa,â as

Πa(p) = p2
∑

n

F 2
an

p2 +m2
an

, Πâ(p) = p2
∑

n

F 2
ân

p2 +m2
ân

+
1

2
f 2
π . (5.51)

To obtain f 2
π we evaluate the correlator Πâ of Eq. (5.41) at zero momentum and get

f 2
π =

4L

g2
5

1

L2
1

. (5.52)

We can also calculate the masses and decay constants from Eq. (5.41). For the first massive

resonances the masses can be approximated by

mρ ≡ ma1 '
3π/4√

1 + 9π2/32 zIR

1

L1
, mâ1 '

5π

4

1

L1
, (5.53)

where zIR = g2
5/g

2
IRL.

5.5.1 Electroweak precision tests

One of the most constraining physical quantities is the S parameter, given in Eq. (5.15) in

terms of the vector correlators. Using Eqs. (5.41) and (5.44) we obtain the prediction of the

5D model for S

S =
3

8

N

π
ε2
[
1 +

4

3
zIR

]
. (5.54)

As discussed in section 5.2, LEP experiments give a very stringent bound on the S parameter:

S . 0.3 [64], that can be translated into a bound over the parameter ε of the model

ε . 0.5

√(
10

N

)
1

1 + 4/3 zIR
. (5.55)

Thus the maximum value of ε depends on the large number of colors N and also on the IR

kinetic term. Low values of N lead to less stringent bounds on ε, however for low N the

perturbative expansion is not trustable. By fixing fπε = v, and using the value for fπ and L1

from Eqs. (5.52) and (5.53), we can translate the bound over ε as a condition over the first

vector state mρ [10]. Therefore imposing S . 0.3 the lowest vector resonance depends on the

ratio zIR. For zIR = 0 (zIR =∞) mρ must be heavier than ∼ 2.3TeV (∼ 1.6TeV).
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To obtain the value of ε we have to calculate the Higgs potential of Eq. (5.16). By using

the correlators obtained from the 5D model we can calculate ε and check whether there is EW

symmetry breaking. We also have to check that the S parameter is below the upper bound

of Eq. (5.55) and that the top quark mass acquires the correct value after EW symmetry

breaking. As the potential cannot be computed analytically we relay on numerical analysis.

The 5D correlators depend on the following parameters: the 5D gauge coupling of the SO(5)

group g5, the UV kinetic terms for the SU(2)L group 1/g2
UV , the IR kinetic term for the SO(4)

group 1/g2
IR, the bulk fermion masses mq and mu, and the IR masses m̃u and M̃u. For simplicity

we have not considered the effect of fermion kinetic terms on the boundaries, as well as the

contribution to the potential due to the bottom quark an the hypercharge field. We fix the

value of the parameters in the following way. The value of the UV gauge coupling gUV is fixed

by requiring that the effective SU(2)L coupling has its experimental value, Eq. (5.46). The

value of the IR gauge coupling gIR is set to be of loop order 1/g2
IR = 1/(4π)2. We express

the value of the bulk coupling g5 in terms of the large number of colors N , that is constrained

to 1 � N ≤ 10. Typically we take N = 4, 6, 8, 10. The value of the bulk fermion masses

lie in the interval −1/2 < mq,uL < 1/2. For masses out of this range the top mass becomes

too small. The IR fermion masses take values O(1), we have used −2.2 ≤ m̃uL ≤ 2.2 and

−2.2 ≤ M̃uL ≤ 2.2. L1 is fixed by Eq. (5.10).

We perform a detailed scanning over the parameter space in the following way. We fix the

IR boundary masses m̃u and M̃u, and the number of colors N , and vary mq and mu over the

specified values. Therefore for every (m̃u, M̃u, N) we obtain a plot in the plane (mu, mq). We

define four regions in this plane:

1. A region were there is no electroweak symmetry breaking: ε = 0,

2. A region where there is electroweak symmetry breaking and the S parameter satisfies the

experimental bound: 0 ≤ ε ≤ 0.5[10/(N(1 + 4/3zIR))]1/2,

3. A region where there is electroweak symmetry breaking but the S parameter is bigger

than the experimental bound: 0.5[10/(N(1 + 4/3zIR))]1/2 ≤ ε ≤ 1,

4. A region where there is electroweak symmetry breaking but the SM fermions are massless:

ε = 1.

Given that there is EW symmetry breaking and the SM fermions are massive, comparing

the second and third regions we obtain the constrains in the parameter space for (m̃u, M̃u, N)

fixed.

In Fig. 5.1 we show the predictions of the model for m̃uL = 1, M̃uL = −2 and N = 4, 6, 8.

Due to the N dependence of the upper bound for ε, Eq. (5.55), the allowed region is bigger for
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Figure 5.1: Values of ε in the plane (mu, mq) for IR boundary masses m̃uL = 1, M̃uL = −2 and

N = 4, 6, 8. The red dots correspond to ε = 0, 0.5[10/(N(1 + 4/3zIR))]1/2, 1, from left to right.

The black dots correspond to mt = 150 GeV. The red lines interpolates between the red points,

and are given by mu = a
√
m2
q − b2, with a ∼ 1.5 and b ∼ 0.4/L.

smaller N . Changing the values of the IR masses the different regions in the plane (mq, mu)

change, but the tuning does not change much. Scanning over the parameter space we obtain

that the region allowed by the S parameter constrain is of order 25%.

The top mass is not fixed in the plots of Fig. 5.1, thus mt varies over the plane. The dashed

lines in the plot correspond to mt = 150 GeV. For N ≥ 10 the top mass is in general smaller

than its experimental value, only for very special values of the IR masses the top becomes heavy

enough.

5.5.2 Spectrum of resonances

The spectrum of vector resonances is the same as in the minimal composite Higgs model (see

Ref. [68] for a detailed analysis of the vector spectrum). Before EW symmetry breaking the L

and B vector resonances, Eq. (5.30), are CFT composite states with a small a mixing with the

external sources proportional to the UV boundary gauge coupling. Their spectra are given by

the zeroes of (Π0−p2/g2
UV ) and (Π0 +ΠB

0 −p2/g
′2
UV ) respectively, where g′UV is the kinetic term

of the U(1)Y in the UV and ΠB
0 is similar to Π0 changing {g5, gIR} → {g′5, g′IR}, with g′IR the

IR kinetic term of the U(1)X .

The other vector resonances are pure CFT composite states. There is a tower of fields

transforming as 2±1/2 under SU(2)⊗U(1)Y , whose masses are given by the poles of (Π0 +Π1/2).

There is also a tower of fields transforming as 1±1, whose masses correspond to the poles of Π0,

and a tower of singlets whose masses are given by the poles of (Π0 − ΠB
0 ).

87



After EW symmetry breaking the different towers are mixed by the Higgs VEV. Therefore

the spectrum of charged L vectors is given by

zeroes
[
Π0 +

ε2

4
Π1 −

p2

g2
UV

]
, (5.56)

and the tower of neutral vectors (Z) is given by

zeroes
[
(Π0 −

p2

g2
UV

)(Π0 + ΠB
0 −

p2

g
′2
UV

) +
ε2

4
Π1(Π

B
0 + 2Π0 −

p2

g2
UV

− p2

g
′2
UV

)
]
. (5.57)

For moderate values of the parameters the Higgs mass is bigger than 100 GeV. Remarkably

it is heavier than in Ref. [10]. Adjusting the parameters to obtain mt = 150 GeV, the Higgs

mass is almost constant for constant N . For N = 4, 6, 8 we obtain mH ∼ 160, 180, 220 GeV

respectively.

The spectrum of fermion resonances is more complicate due to the mixing of the different

towers accomplished by the IR masses and the Higgs VEV. Following Ref. [68], we will consider

as an example the case of two sources Ψ1,2 coupled to two mixed towers of resonances. Thus

the two-point function obtained after integrating-out all the resonances is 2× 2 matrix Π(p)ij,

i, j = 1, 2. If both sources are dynamical the spectrum is given by the zeroes of the determinant

of Π(p). This is because diagonalizing Π(p) each tower of resonances couple to one independent

combination of the sources, thus the zeroes of the eigenvalues of Π(p) correspond to the zeroes

of its determinant. If both sources are non-dynamical, the spectrum is given by the poles of

any Π(p)ij. The poles of the eigenvalues of Π(p) correspond to the poles of any of the elements

Π(p)ij. If Ψ1 is dynamical and Ψ2 is not, the physical spectrum is given by the zeroes of Π(p)11.

Although Ψ1 is directly coupled to one tower of resonances only, it can probe all the spectrum

of resonances due to the mixings.

Before EW symmetry breaking there are towers of qL, tR and bR whose spectrum are given

respectively by the zeroes of 6p(Πq
0 +Πq

1/2), 6pΠu
0 and 6pΠd

0. There are also towers of q′L (27/6), χR

(15/3) and a triplet (32/3), whose spectrum are given respectively by the poles of 6p(Πq
0 + Πq

1/2),

6pΠu
0 and 6pΠd

0.

After EW symmetry breaking there is tower of t′s (with hypercharge +2/3) with masses

zeroes
[
p2(Πq

0 +
Πq

1

2
)Πu

0 + p2 ε
2

4
(Πq

0Π
u
1 − Πu

0Π
q
1)− p2 ε

4

16
Πq

1Π
u
1 −

ε2 − ε4
16

Mu 2
1

]
, (5.58)

and a tower of b′s (with hypercharge −1/3) whose masses are given by

zeroes
[
Πq

0 + Πq
1

1− ε2
2

]
. (5.59)

The lightest resonance is given by the first fermionic KK state qL 1. In Fig. 5.2 we show

the mass of this resonance as a function of the 5D mass mu. The different colors indicate that
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Figure 5.2: Mass of the lightest resonance, mqL 1
, as a function of mu.The red, yellow and green

points correspond to constant ε and N = 4, 6, 8. The violet, blue and light blue points correspond

to mt = 150 GeV and N = 4, 6, 8.

we have given different values to the 5D parameters. We have fixed either mt = 150 GeV or ε

such that it saturates its upper bound, and N = 4, 6, 8. The points of constant ε correspond

to the lower values of mqL 1
. The points giving large masses for mu → ±1/2L correspond to

mt = 150 GeV. In this case mqL 1
becomes very large because ε is too small.

The mass of the lightest fermionic resonance has a correlation with the Higgs mass. To

obtain an approximate equation relating both masses we can approximate the coefficient γ of

Eq. (5.24) by

γ ' −Nc

∫
d4p

(2π)4

(Mu
1 )2

8p2Πu
0(Π

q
0 + Πq

1/2)
, (5.60)

where we only keep the term of Eq. (5.24) that gives the most important contribution. By

defining the mass scale Λ

Λ2 = −2

∫
dp p

FM(p)

FM(0)
, where FM (p) =

Mu
1 (p)2

Πu
0(Π

q
0 + Πq

1/2)]
(5.61)

we can approximate the Higgs mass by

m2
h '

Nc

π2

m2
t

v2
ε2Λ2 , (5.62)

with mt given by Eq. (5.12). As the form factor FM(p) is dominated by the first resonance, the

scale Λ satisfies Λ ∼ mqL 1
. Scanning over the parameter space this relation is fulfilled with an

error that oscillates between 20−40%. Therefore the Higgs mass is proportional to the lightest

fermionic resonance mH ∼ mqL 1
. In Fig. 5.3 we show the correlation between them for N = 8

and mt = 150 GeV. The parameter ε is such that it saturates the upper bound of Eq. (5.55).

By fixing these parameters the resulting Higgs mass is light 116 GeV ≤ mH ≤ 161 GeV.
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Figure 5.3: Correlation between the Higgs mass and the lightest resonance mass. The points are

obtained scanning over the parameter space with N = 8, mt = 150GeV and ε ' 0.52 defined by

the upper bound of Eq. (5.55).

5.6 A symmetry for Zbb̄

To obtain a successful model of EW symmetry breaking it is necessary to pass the EW precision

tests. In models where the top has a strong coupling with the new sector, we expect large

modifications in the interactions Ztt̄. Since bL is in the same multiplet as tL, we also expect

large corrections in the coupling Zbb̄. As this coupling is in agreement with its SM value at

the 0.25%, it is difficult to success in this sector. In fact, in the minimal Higgs model [10], the

contribution of the KK modes to the decay Z → bLb̄L is too large. To make this corrections

small enough one needs an amount of tuning of order a few percent in that model.

We will show in this section that there is a subgroup of the custodial symmetry that can

protect the interaction Zbb̄ from these large corrections. Moreover, the interaction ZbLb̄L is

safe even in the case of large contributions to the vertices ZtLt̄L and WtLb̄L, that are obtained

from the first one by SU(2)L transformations. The custodial symmetry can protect also the

coupling ZbRb̄R. However experimental data suggest that this coupling deviates from its SM

prediction. As we will see, the symmetries protecting these interactions can be implemented in

a large class of models.

Let us consider a new sector with the pattern of global symmetry breaking

SU(2)L ⊗ SU(2)R → SU(2)V , (5.63)

and a parity under the interchange L↔ R (PLR). We can classify the operators O of this new

sector by their transformation properties under this global symmetry, in particular by their

isospin number TL,R and its third component T 3
L,R. Let us assume that each SM field is coupled
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to a single operator O, such that we can assign a {TL,R, T 3
L,R} to each SM field, although they

are not in complete representations of SU(2)L⊗SU(2)R. We consider then the corrections to

the coupling ZΨΨ̄ at zero momentum, with Ψ a SM fermion. This interaction is given by

ig

cos θW

[
Q3
L −Q sin2 θW

]
Zµψ̄γµψ , (5.64)

where Q3
L and Q are respectively the third component of the left charge and the electric charge.

As the electric charge is conserved, it can not receive corrections. On the other hand, there are

two subgroups of the custodial group that can protect Q3
L. The first one is U(1)L⊗U(1)R⊗PLR

that is broken to U(1)V ⊗ PLR. PLR is a symmetry of the new sector, but in general it is not a

symmetry of the SM sector. Thus in general the coupling Lint = Ψ̄OΨ + h.c. between the new

sector and the field Ψ of the SM breaks PLR. Nevertheless, if Ψ is an eigenstate of PLR, PLR is

a good symmetry of the interaction. In this case the quantum numbers of Ψ satisfy

TL = TR , T 3
R = T 3

L . (5.65)

Therefore the correction to the charge Q3
L of Ψ vanishes. The proof is the following. The

charge Q3
V = Q3

L +Q3
R is conserved due to the U(1)V invariance, thus it is not modified by the

interactions and we obtain

δQV = δQ3
L + δQ3

R = 0 . (5.66)

The PLR symmetry impose the corrections to Q3
L to be equal to the corrections to Q3

R for an

eigenstate Ψ:

δQ3
L = δQ3

R . (5.67)

From Eqs. (5.66) and (5.67) we obtain δQ3
L = 0. Thus the interaction ZΨΨ̄, with Ψ a SM

fermion that satisfies Eq. (5.65), is protected by the U(1)V ⊗ PLR symmetry.

The other subgroup of the custodial symmetry that can protect Q3
L is given by the following

discrete transformation T 3
L,R → −T 3

L,R. We will denote this symmetry by PC . Under PC :

L3 → −L3, and Ψ is an eigenstate of PC if

T 3
L = T 3

R = 0 . (5.68)

In this case we obtain δQ3
L = 0. The proof is the following. The current Ψ̄γµΨ is even under

PC if Ψ is an eigenstate of this symmetry. Since L3
µ is odd under PC , the interaction is not

present. Therefore, the interaction ZΨΨ̄ is protected by PC invariance if Ψ satisfies Eq. (5.68).

Since this symmetries protect the interactions with the Z only at zero momentum, we expect

corrections of order p2/Λ2
NP .

According to the previous discussion, if the new sector respects the custodial symmetry, it

is possible to embed the SM fermions in multiplets such that the interaction Zbb̄ is protected.

Assigning to bL the quantum numbers

bL : TL = 1/2 = TR , T 3
L = −1/2 = T 3

R , (5.69)
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the coupling ZbLb̄L does not receive corrections from the new sector. As tL is in the same

SU(2)L doublet as bL, it has the following quantum numbers:

tL : TL = 1/2 = TR , T 3
L = 1/2 = −T 3

R . (5.70)

Therefore ZtLt̄L is not protected and we expect large modifications. The same happens for

WtLb̄L, thus as the couplings of the top with the gauge bosons are poorly known, future

experiments will be able to test this scenario.

5.6.1 Operator analysis

We consider an operator analysis for the coupling of qL = (tL, bL) and tR to the gauge bosons W

and Z and analyze the consequences of the custodial symmetry. To obtain the assignments of

Eqs. (5.69) and (5.70) we have to embed qL in a 42/3 multiplet of SO(4)⊗U(1)X , or, equivalently,

qL ∈ (2, 2)2/3 ≡ QL , (5.71)

multiplet of SU(2)L⊗SU(2)R⊗ U(1)X . In the low energy effective theory there are two single-

trace dimension 4 operators that can contribute to the Z couplings:

L = ic1 Tr
[
Q̄Lγ

µQLV̂µ]− ic2 Tr
[
Q̄Lγ

µVµQL] , (5.72)

where QL = σµQ
µ
L is a 2× 2 matrix field 1, Vµ = (DµU)U †, V̂µ = (DµU)†U , and the covariant

derivative is defined as DµU = ∂µU + igσaW
a
µU/2− ig′BµUσ3/2. U is the unitary matrix that

contains the Goldstone boson that parametrize the symmetry breaking SU(2)L⊗SU(2)R →SU(2)V .

By imposing PLR, under which U → U †, Vµ ↔ V̂µ and QL → σ†
µQ

µ
L, we obtain c1 = c2. There

is also a double-trace operator that can contribute to the Z coupling to qL:

L = ic3 Tr
[
Q̄Lγ

µDµU ] Tr[U †QL] + h.c. . (5.73)

This operator is however subleading with respect to those of Eq. (5.72) in a 1/N expansion

of the sector beyond the SM. In the 5D models this means that it can only be induced at the

one-loop level.

To obtain the contributions to ZbLb̄L, ZtLt̄L and WtLb̄L we plug in Eqs. (5.72) and (5.73)

QL = σ−bL + σ0tL + ... , U = 1l , DµU =
igσ3

2 cos θW
Zµ +

igσ+√
2
W+

µ + ... , (5.74)

where σ± = (σ1 ± iσ2)/2 and σ0 = (1l + σ3)/2. This gives

g

cos θW

[
c1 − c2

2
b̄Lγ

µbL +
c1 + c2 − c3

2
t̄Lγ

µtL

]
Zµ +

g√
2

(c2 − c3) t̄LγµbLW+
µ + h.c. . (5.75)

1We use the basis σµ = (1l, iσ1, iσ2, iσ3) where σa are the Pauli matrices.
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As expected from the symmetry argument, the contributions to ZbLb̄L cancels if invariance

under PLR is imposed (c1 = c2), while the contributions to the top couplings are different from

zero.

The embedding of tR in a multiplet of the custodial group is determined by the top mass

operator q̄LUtR. These operator can arise from two SU(2)L⊗SU(2)R⊗ U(1)X invariant opera-

tors:

a) (2, 2)
2/3(2, 2)0(1, 1)2/3 , or b) (2, 2)

2/3(2, 2)0(1, 3)2/3 . (5.76)

This implies respectively the two following embeddings for tR:

a) tR ∈ (1, 1)2/3 , or b) tR ∈ (1, 3)2/3 + (3, 1)2/3 . (5.77)

They corresponds respectively to a 12/3 and a 62/3 multiplet of SO(4)⊗U(1)X . In both cases

tR has T 3
L = T 3

R = 0 that corresponds to the condition Eq. (5.68). Therefore its coupling to

the Z is protected by the PC symmetry. 2 We can also perform an operator analysis for the Z

coupling to tR. For the case (a), no invariant operator can be written since Tr[Vµ] = Tr[V̂µ] = 0.

For the case (b), we have that tR corresponds to the T 3
L = T 3

R = 0 state in (1, 3)2/3 ≡ UR. We

have two dimension 4 operators that can contribute to the Z coupling of tR:

L = ic4 Tr
[
ŪRγ

µURV̂µ] + ic5 Tr
[
ŪRγ

µV̂µUR] . (5.78)

Using UR = σ3tR + ... we find that, as expected, the contribution to ZtRt̄R vanishes.

In theories in which the Higgs arises as a PGB from the symmetry breaking O(5)→ O(4),

we must embed the fermion multiplets into SO(5) representations. We find two very simple

options. For the case (a) we can use the 52/3 multiplet that decomposes as

52/3 = (2, 2)2/3 + (1, 1)2/3 , (5.79)

and contains the multiplets of Eqs. (5.71) and (5.77). For the case (b) we can embed the top

in the 102/3 multiplet:

102/3 = (2, 2)2/3 + (3, 1)2/3 + (1, 3)2/3 . (5.80)

In Ref. [10] the SM fermions were embedded in the 4 of SO(5). We see that just by changing

their embedding from the 4 to the 5 (or the 10) of SO(5) we are automatically driven to

the right charge assignment for bL.
3 This leads to composite Higgs models with the same

properties as those of Ref. [10], with the exception of the large corrections to Zb̄LbL.

2For the case (a) it is interesting to remark that tR is a singlet of the custodial symmetry and therefore loop

effects involving this field will not generate corrections to the T parameter.
3It would be possible, for example, to embed the SM fermions into a 10

−1/3 of SO(5) also. In this case bL

has non zero axial charge, with T 3L = −T 3R = −1/2, and the vertex ZbLb̄L is not protected.
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5.6.2 Zbb̄ in the 5D model

To compute the correction to the interaction ZΨΨ̄ it is convenient to use the KK description.

A tree level there are two types of contributions: mediated by vector resonances and mediated

by fermionic resonances. Concerning the vector fields, the most important piece comes from the

exchange of the first KK resonances Lµ and Rµ at zero momentum. Therefore, for 5D fermion

masses satisfying |mL| < 1/2 (as is the case for the top and bottom), it can be approximated

by

δg ' (T 3R − T 3L)ε2
√

2

L2
1m

2
ρ

1/2−mL
1− 2mL/3

, (5.81)

where mρ is the mass of the first KK vector resonance. Thus assigning to bL the charges of

Eq. (5.69) the gauge contribution to ZbLb̄L vanishes.

The contributions from the first fermion KK resonance are the dominant one, and are of

the form

δg ' (T 3L
KK − T 3L) sin2 θKK , (5.82)

where θKK is the mixing angle between the KK mode and the SM fermion after EW symmetry

breaking.

For qL embedded in (2, 2)2/3 of SU(2)L⊗SU(2)R⊗U(1)X , only fermionic KKs in the repre-

sentations (1, 1)2/3, (1, 3)2/3 ⊕ (3, 1)2/3 and (3, 3)2/3 can mix with bL or tL at order ε. The

coefficients of the operators in Eqs. (5.72) and (5.73) then read:

c1 = c2 '
1− 2mqL

2
√

2(3− 2mqL)
ε2 +

1

2
sin2 θ

(1,1)
KK +

1

2
sin2 θ

(3,1)
KK −

3

4
sin2 θ

(3,3)
KK , c3 = 0 . (5.83)

Here θ
(1,1)
KK is the mixing angle between tL and the KK in the (1, 1)2/3 representation, and θ

(3,1)
KK

(θ
(3,3)
KK ) is the mixing angle between bL and the KK in the (3, 1)2/3 ((3, 3)2/3) representation. In

the case of a composite Higgs model where qL is embedded in a 102/3 of SO(5), the result is that

of Eq. (5.83) with only the gauge and (3, 1)2/3 fermionic contributions turned on. Eq. (5.75)

together with Eq. (5.83) gives us the tree-level correction to the couplings of the Z and the W

to the SM fermions. Corrections of order ∼ 10% or even larger are thus possible if qL is strongly

coupled to the 5D bulk dynamics (i.e.: for −1/2 < mqL . 0), and they could be observed in

future experiments that probe the couplings of the top quark.

5.7 Conclusions

The theory of EW symmetry breaking is still unknown. The most popular model beyond the

SM, supersymmetry, is already highly constrained. For this reason it is very important to look

for new alternatives. The idea of a Higgs arising as a PGB can explain the hierarchy between
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the EW scale and the scale of new physics. In particular, a Higgs as composite of a strong sector

is one of the most economical scenarios, but until recently it has evade a detailed quantitative

calculation.

Inspired in the AdS/CFT conjecture, models with extra dimensions can be interpreted as

strongly coupled field theories. In Refs. [69, 10], two examples of holographic models were given.

The last model provides a realistic description of EW symmetry breaking, but the interaction

Zbb̄ receives large corrections. In this chapter we have presented an extension of this minimal

model by embedding the fermionic fields in a higher representation of the symmetry group,

a 10 of SO(5). We showed that the top quark can trigger EW symmetry breaking, and that

the S parameter constrains are satisfied in a large region of the parameter space. Moreover,

constrains from the decay Z → b̄LbL, that were a serious problem for the minimal model, is not

an issue in the extended model. We have shown that the custodial symmetry SU(2)V ⊗ PLR
can protect the interaction Zbb̄ from corrections. However, the interactions Ztt̄ and Wtb̄ can

not be protected at the same time and can receive large corrections. The model predicts a light

Higgs boson with mass 116 GeV. mH . 161 GeV, that has a correlation with the lightest

fermionic resonance 600 GeV. mqL 1
. 1100 GeV. The lightest vector resonances are heavier

than the fermionic resonances ∼ 1− 3 TeV. Thus the model gives definite predictions that can

be tested in the future high energy experiments like LHC.
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Chapter 6

Radiative corrections in 5D theories

expanding in winding modes

6.1 Introduction

In this chapter we will develop a formalism that allows to compute loop corrections in field

theories with extra dimensions, separating UV divergences from finite contributions. In order

to do so we will decompose the propagators in winding modes. In a 5D theory these modes are

obtained by propagation around the circle of the extra dimension. Two paths with different

windings are topologically different because one can not deform one into the other, thus they

give different contributions to physical quantities. We will show that UV divergences in loop

integrals are associated to the zero winding mode and that non zero modes correspond to long

distances and therefore they give finite contributions [73].

We will use the winding decomposition of the 5D propagators to compute radiative correc-

tions on 5D theories in flat space [16]. The results corresponding to the divergent corrections

are valid for curved spaces also. We will consider theories compactified in a smooth space and

we will also consider singular spaces (orbifolds) where translation symmetry is broken. We will

show that the boundaries can support 4D fields by calculating the one loop corrections that lead

to localized terms. As an interesting application we will apply this formalism to compute a two

loop effective potential. We will show that this potential can stabilize large extra dimensions

when there are terms localized on the boundaries. The method can be extended to compute

radiative corrections in realistic models. In particular it would be very interesting to calculate

radiative corrections in the holographic duals of QCD, where we expect corrections to be of

order 30%.

This chapter is organized in the following way. In section 6.2 we define winding modes

working on a mixed momentum-coordinate representation. We apply this idea to a 5D toy

97



model in section 6.3 and show the simplicity of this method in some particular cases. In section

6.4 we compute a two loop effective potential and section 6.5 is for conclusions.

6.2 Winding modes

Let us consider a 5D space that is a direct product of a 4D Minkowski spaceM4 an a compact

manifold C1, thus the 5D space is given by M4 × C1. We assume that the 1D compact space

can be obtained by identifying the real line with a discrete infinite group G acting freely on R1,

thus we can express the compact space as C1 = R1/G. In this case one can associate a winding

mode to every element of the group G. The simplest example of a compact space obtained in

this way is the circle C1 = S1, where G = Z, the set of integer numbers, with the sum defined

as the group operation. In this example we obtain the compact space identifying y ∼ y+n2πR,

where R is the radius of the circle. Due to the identification 0 ≤ y < 2πR. The index n labels

the winding modes. It is immediate to generalize this method to higher dimensional spaces (see

Ref. [16] for a generalization to 6D spaces).

The procedure we described above to compactify an infinite space suggests the following

algorithm to obtain the 5D propagators: we calculate the propagators of the 5D fields in the

infinite space and identifying y ∼ y + n2πR we obtain the corresponding ones on the compact

space.

As an example we will calculate the massless scalar propagator on Euclidean 5D spacetime.

We will work on a mixed representation (pµ, y), where pµ is the 4D momentum and y is the

coordinate in the extra dimension. The propagator is determined by the following equation

(p2 − ∂2
y)G̃(p; y − y′) = δ(y − y′), (6.1)

where we have Fourier transform to momentum space only on the 4D space, and p2 = pµpµ.

Solving this equation we obtain

G̃(p; y − y′) =
e−p|y−y

′|

2p
. (6.2)

As translation invariance is not broken the propagator only depends on |y− y ′|. If we consider

a massive scalar field we just have to replace p2 → p2 + m2. To obtain the propagator in the

compact space we have to identify |y − y′| ∼ |y − y′ + 2nπR| (see Fig. 6.1), thus we restrict

y, y′ ∈ [0, 2πR) and summing over windings we obtain

G̃cir(p; y, y′) =
n=∞∑

n=−∞
G̃(p; y − y′ + 2nπR) =

∑

n

e−p|y−y
′+2nπR|

2p
. (6.3)

The series can be resumed but we want to consider the contribution of each mode. In the last

equation we can see that for n 6= 0 the propagator is exponentially damped at high energies,
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therefore loop integrals involving the propagator with non zero winding modes will lead to finite

results. On the other hand, for n = 0, the propagator decays as p−1 for y = y′ and there is no

factor that can force the momentum integrals to be finite. For these reason, if we compactify the

extra dimension on a circle, we will obtain divergent contributions from the winding zero mode,

and finite contributions from the other modes. Therefore, using the winding formalism, it is

very easy to separate divergent from finite contributions. The divergent terms are associated

to short distances, thus divergences arising from zero modes are the same as the divergences of

the uncompactified theory.

PSfrag replacements

0 0
11
nn

yy

y′+ 2πR

y′y′

Figure 6.1: Two equivalent contributions for the propagator between y and y ′. In the vertical

axis we represent the number of windings.

Let us compare the winding mode expansion with the KK approach with a specific example.

The radiative corrections to the mass terms are dominated by high energy effects. Thus, as

high energies implies small distances, the small winding contributions dominate over the large

winding ones, and in general it is enough to consider the first terms in the series to obtain the

most important part. This is not the case when we do KK decomposition, where we have to

sum over all the tower of KK resonances to obtain the final result. Therefore in this case the

winding method is much simpler.

Orbifold compactification

Orbifolds are used to obtain 4D chiral fermions from a higher dimensional theory. In general

we can obtain an orbifold with a discrete group F acting non-freely on the compact space C.
The points of C left invariant by F are the fixed points of the extra space, and therefore C/F is

singular. The simplest example is the orbifold S1/Z2, where Z2 is the parity transformation in

the extra dimension, Z2 : y → −y. Due to this identification the extra coordinate is restricted

to a smaller interval, 0 ≤ y ≤ πR. The fixed points are located at y = 0, πR. As the fields also

transform under a parity transformation, we have to specify the field parities.

we will consider a scalar field on S1/Z2 with parity Z2φ(xµ, y) = φ(xµ,−y) = ±φ(xµ, y).

Due to the identification y ∼ −y, the propagation from y to y ′ and the propagation from y to

−y′ describe the same process, thus the propagator is given by [74]

G̃orb
± (p; y, y′) =

∑

n

(
e−p|y−y

′+2nπR|

2p
± e−p|y+y

′+2nπR|

2p
), (6.4)

where y, y′ ∈ [0, πR], and ± stands for the field parity. This propagator depends on (y + y ′)

due to the breaking of translation invariance. In this equation we can see that the propagator
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decays as p−1 for (y → 0, y′ → 0, n = 0) and (y → πR, y′ → πR, n = −1), thus we expect

divergences localized on the fixed points of the orbifold [75]. These localized terms are not

forbidden because they do not break any symmetry of the theory.

6.3 5D radiative corrections in the model λφ4

We will consider a toy model with a scalar self-interacting field and we will calculate the one-

loop radiative corrections to the mass and the coupling. The scalar action is defined by

S =

∫
d4x dy [

1

2
(∂Mφ)2 − λ

4!
φ4]. (6.5)

By naive dimensional analysis the theory has a cutoff Λ ∼ 24π3λ−1. Therefore in perform-

ing quantum corrections we will cutoff the 4D momentum integral at the scale Λ. The loop

contributions that depend on Λ will signal the divergences of the 5D theory.

PSfrag replacements λλ

λ

Figure 6.2: Feynman diagrams for one-loop mass and vertex in the scalar interacting theory.

In Fig. 6.2 we show the Feynman diagrams that renormalize the two point function and

the coupling at one loop. Thus the effective action with one-loop quantum corrections can be

written as

Seff = Scl + S2 + S4 + ... = Scl −
∫
dy m2(y)φ2(y)−

∫
dydy′φ2(y)λ(y, y′)φ2(y′) + ... (6.6)

where Scl corresponds to the tree level action and Sn correspond the one-loop term with n-fields.

We will consider first the case of an extra dimension compactified on a circle. In this case the

one loop contribution to the two-point function with zero external momentum is given by

m2
cir =

λ

2

∫
d4p

(2π)4
(

1

2p
+
∑

n6=0

e−p2|n|πR

2p
) =

λ

16π2
(
Λ3

6
+

1

(2πR)3

∑

n6=0

1

|n|3 ), (6.7)

where we have thrown away terms that cancel when ΛR → ∞. This result can be compared

with the result in terms of KK modes [76]. As we argued in the previous section, divergences

are associated to the zero winding modes and finite terms to n 6= 0. If there is a symmetry (like

supersymmetry or a gauge symmetry) protecting the mass term from divergent contributions,

the finite term is a prediction of the theory.
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Next we calculate the term S4 at one loop. For simplicity, we will take φ(y) = φc =constant.

We expand the propagators in powers of the external momentum and keep the zeroth order

terms. Thus S4 is given by

S4 = −λ
2φ4

c

2

∫
dy

∫
dy′
∑

n,n′

∫
d4p

(2π)4
G̃(p, y − y′ + 2nπR)G̃(p, y′ − y + 2n′πR). (6.8)

As there are two propagators involved, we have to sum over two winding indexes. When the

topology of the extra space is more complicated (for example when there is more than one extra

dimension) it is useful to express this equation in terms of just one propagator as

S4 = −Iλ2φ4
c/2, (6.9)

where I is given by 1

I = −
∫
dy
∑

n

∫
d4p

(2π)4

d

dp2
G̃(p; y, y + 2nπR). (6.10)

Integrating over the coordinates and momentum the one-loop contribution to λ(y, y ′) is given

by

λcir =
λ2

64π2
(Λ−

∑

n6=0

1

|n|πR), φ = φc. (6.11)

As the sum over windings is logarithmically divergent in the IR, we have to introduce an IR cut-

off. This means that we sum until a maximum winding number nmax = (2πRµir)
−1 regulating

the long distance behavior. If the field is massive the mass is the natural cut-off and there are

no IR divergences. The IR logarithm is similar to the 4D case, this can be easily understood

in terms of the KK modes. The zero K-K mode is massless, therefore this mode can propagate

long distances inducing the IR divergence.

6.3.1 Radiative corrections on orbifolds

We consider the same scalar theory of Eq. 6.5 with the extra dimension compactified on an

orbifold. The one-loop contributions to S2 on S1/Z2 are generated from the following equation

(in Ref. [77] the same calculation was performed using the KK description)

S2 = −λ
2

∫ πR

0

dy φ2(y)

∫
d4p

(2π)4

∑

n

(
e−p2|n|πR

2p
± e−p2|y+nπR|

2p
) ≡ SS ± SZ , (6.12)

where SS stands for the same contribution to S2 as in the circle case, except that y ∈ (0, πR).

The second term depends on y and it gives a new contribution. It has divergences for n = 0,−1.

1To see that Eq. (6.8) and Eq. (6.9) are the same we can write Eq. (6.8) in K-K modes without external

momenta as
∑

p5

∫
d4p

(2π)4
1

(p2+p2

5
)2

, with p5 the momentum in the extra dimension. The integrand can be written

as 1
(2π)4

−d
dp2 (p2 + p2

5)
−1, and by Fourier transformation we obtain Eq. (6.9).
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To separate the localized divergent contributions from the constant ones we expand φ2(y) in

powers of y around the fixed points yfp. Expanding φ2 to second order, SZ is given by

SZ ' −
λ

16π2

∑

fp

{
φ2(yfp)

[ ∑

n6=0,−1

(1 + 2n)sgn(n)

n2(1 + n)232π2R2
+

Λ2

8
− 1

16π2R2

]
+ ∂2

yφ
2(yfp)

log(ΛR)

16

}
.

(6.13)

The quadratic divergences are associated to the zero winding mode when y → 0 and to the

winding mode n = −1 when y → πR, thus these divergences are localized on the fixed points

of the orbifold. There is also a logarithmically divergent kinetic term along the direction of the

extra dimension.

From Eq. (6.12) we can see that m2(y) has two contributions. The first one is the same as in

the circle, Eq. (6.7), and the second contribution depends on the position in the extra dimension.

If we split m2(y) in a divergent and a finite contributions as m2(y) = m2
div(y) + m2

f (y), the

divergent contribution is given by

m2
div±(y) =

λ

16π2

{Λ3

6
±
∑

fp

δfp[
Λ2

8
+

log(ΛR)

16
∂2
y ]
}
. (6.14)

The finite term can be computed for a constant field, and is given by

m2
f± =

λ

128π5R3

[∑

n6=0

1

|n|3 ±
∑

n6=0,−1

(1 + 2n)sgn(n)

2n2(1 + n)2
∓ 1
]
, φ = φc. (6.15)

To obtain the radiative correction to S4 we expand the fields in powers of y around the fixed

points yfp. We just take the zeroth order term in the power series and use Eqs. (6.9) and (6.10)

with the propagator of the orbifold space. In this case S4 is given by

S4 ' −
λ2

16π2

∑

fp

φ4(yfp)
[ΛπR

8
+
∑

n>1

(
1

4n
± 1

8
log

n+ 1

n− 1
)± log(ΛR)

4

]
. (6.16)

The linear UV divergence is due to the zero winding mode. The logarithmic divergence is

localized on the fixed points and is associated to n = 0,−1, thus it is a 4D divergence. Therefore

we can write S4 as

S4 = −
∫
dy λ±(y) φ4(y), (6.17)

λ±(y) = λ±f (y) +
λ2

64π2

∑

fp

δfp[
ΛπR

2
± log(ΛR)], (6.18)

where λ±f (y) is a finite coupling. For a constant field λ±
f is given by

λ±f (y) =
λ2

16π2

[ 1

πR

∑

n>1

(
1

2n
± 1

4
log

n + 1

n− 1
)
]
, φ = φc. (6.19)
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If the field is even there are logarithmic IR divergences, as in the circle, on the other hand if the

field is odd there are not IR divergences. This is easier to understand in terms of KK modes:

only the even field has a massless mode that can propagate long distances and induce the IR

divergence.

In dimensional regularization scheme, the effective scale Λ in the 4D logarithm of the cou-

pling, Eq. (6.18), is replaced by an arbitrary scale µ. Further discussions in this scheme can be

found in Ref. [75].

6.3.2 One-loop contribution to the gauge coupling

We consider as an application of the previous formalism, a 5D theory with gauge fields and

a scalar charged field, transforming with a representation S of the gauge group. We want to

obtain the radiative contributions to gauge coupling due to the interactions with the scalar

fields in a orbifold space. Thus we consider the one loop scalar contribution to the vacuum

polarization ΠMN . This have been computed with KK modes in Ref. [78], here we will obtain

the same result with winding modes.

As we want to obtain the effective 4D theory, we consider constant fields in the bulk (zero

KK modes) and integrate over the extra dimension. We define g0 as the effective 4D coupling

of an abelian theory at the scale Λ. Thus, after some manipulations, we can write the main

contribution to the one-loop vacuum polarization as

Π(k2 = 0) =
g2
0

3

∑

q5

∫
d4q

(2π)4

1

(q2
4 + q2

5)
2

= −g
2
0

3

∫
dy

∫
d4p

(2π)4

d

dp2
G̃orb

± (p; y, y). (6.20)

As there two scalar propagators with vanishing external momentum, the momentum integral

is the same as in the one loop contribution to the self-coupling λ . On the right hand side

of Eq. (6.20) we have written the vacuum polarization in terms of one propagator, as we did

for the scalar coupling. Thus, using the results obtained in the previous section, the gauge

coupling of the effective 4D theory is given by

g−2 = g−2
0 [1 + g2

0β0 log(µirR)− g2
0β1 log(ΛR)], (6.21)

where we only show the logarithmic contribution and

β0

2
= β1 =

1

48π2
. (6.22)

In Eq. (6.21), as in Eq. (6.18) for the one-loop scalar coupling, the log(ΛR) is due to localized

contributions.

If the gauge group is non-abelian, we only have to modify the charges and multiply by t(S),

where tr[Ta(S)Tb(S)] = t(S)δab. Eq. (6.21) gives the scalar contribution to the 4D effective
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coupling at one loop, for a theory with a cut-off scale Λ. We can consider a theory with a

different cut-off Λ′, and one-loop coupling g′. Then the relation between the couplings g and

g′ is given by

g′ = g[1 + g2
0β1 log

Λ′

Λ
]. (6.23)

6.4 Radion stabilization by two loop effects

As an application of the winding formalism, we compute in this section the leading two loop

contributions to the effective potential for the radion in a product space R4 × S1/Z2. We will

see that under certain symmetry assumptions we can obtain a Coleman-Weinberg potential

that can stabilize a large extra dimension

6.4.1 Scalar potential

Let us consider a scalar 5D theory as the one described in section 6.3.1, with the extra dimen-

sion compactified in an orbifold (in Refs. [79] the authors considered more realistic set-ups).

Since the effective potential for the radion vanishes at tree level, we have to compute radiative

corrections to obtain a sensible effective potential (see Fig. 6.3) 2. To calculate the quantum

corrections we will use the winding formalism. Let us start with the one-loop term correction

to the radion potential. In terms of KK modes the one loop effective potential is given by

V (1) =
∑

k5

∫
d4k

(2π)4
log(k2 + k2

5) . (6.24)

To transform this potential to the winding representation we can write the last equation as

V (1) =
∑

k5

∫
d4k

(2π)4

∫
dk2 1

(k2 + k2
5)
. (6.25)

The last factor is the scalar propagator expanded in KK modes, thus we can replace it by the

one with winding modes and integrate over momentum and coordinate space:

V (1) =
∑

n

∫
d4k

(2π)4

∫
dk2

∫ πR

0

dy [G̃(k, 2nπR)± G̃(k, 2y + 2nπR)]

=
1

8π2

[Λ5

5
πR− 3ζ(5)

8π4R4
∓ Λ4

16

]
,

(6.26)

where G̃ is defined in Eq. (6.2) and ζ is the Riemann zeta function (ζ(α) =
∑

n>0 1/nα). The

finite term corresponds to non zero windings and the terms O(Λ4) and O(Λ5) correspond to

localized and bulk divergences respectively.

2If the scalar vev 〈φ〉 6= 0, we also have to include a two loop diagram, with two three-point vertices, each of

them proportional to the vev [80].
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(a) (b) (c)

Figure 6.3: Perturbative expansion of the effective potential for the radion. The first diagram

(a) is the tree level contribution, it cancels out in the present toy model.

Next we calculate the two loop term V (2), shown in (c) of Fig. 6.3. It is given by

V (2) =
λ

2

∑

n,n′

∫ πR

0

dy

∫
d4k

(2π)4

d4q

(2π)4
[G̃(k, 2nπR)± G̃(k, 2y + 2nπR)]

×[G̃(q, 2n′πR)± G̃(q, 2y + 2n′πR)].

(6.27)

Once more zero winding modes give divergent contributions and non zero modes give the finite

corrections. If we call G̃S the first term of the orbifold propagator (equal to the circle propaga-

tor) and G̃Z the second term of the orbifold propagator (obtained with Z2 identification), that

is G̃orb
± = G̃S± G̃Z , then we can write equation (6.27) as V (2) = VSS±2VSZ +VZZ. We consider

first the term VSS, every loop is similar to the one loop contribution to the mass. Thus VSS of

Eq. (6.27) can be interpreted as one loop with a massless propagator G̃S and a mass insertion

m2
cir ∝ λ[Λ3/6 + ζ(3)/(8π3R3)], as is shown in the following Feynman diagramPSfrag replacements

VSS ==+

m2
cir

However, since the mass mcir is of order Λ, it can not be considered a perturbation. Therefore

we have to consider terms with arbitrary number of mass insertions, as is shown in Fig. 6.4. If

we sum the series of Fig. 6.4, we obtain a loop with a massive propagator and a mass vertex.

As we discussed in section 6.2, a massive propagator is obtained replacing p→
√
p2 +m2

cir. If

the mass is large, mcir � R−1 (as is the case because mcir ∼ Λ � R−1), we can approximate

the propagator by e−mcir |y+2nπR|/mcir. In this case the propagator is exponentially damped and

cancels before making windings. Then the only relevant contributions are divergent, and VSS '
2λΛ6πR/(96π2)2. If there is a symmetry that protects the masses form divergent contributions,

as a local gauge symmetry, then the finite contributions are given by VSS ' 2λζ(3)2/(1282π9R5).
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Figure 6.4: Feynman diagrams giving the one loop effective potential with mass insertions. The

mass mcir itself is one loop, it is given by the one loop contribution to the mass. The continuous

lines are for massless propagators and the dashed line is for the massive one.

We can make a similar analysis for the other topologies obtaining similar results. Summing

over topologies we get

V (2) =
λ

64π4
[A (πR)Λ6 +BΛ5 + C(πR)−5], (6.28)

where A ∼ 10−1, B ∼ 10−1, C ∼ 10−2, and the sign of B depends on field parity under Z2. If

there is no symmetry protecting V from divergences, the divergent terms are dominant, in the

other case we only get the R−5 finite term.

6.4.2 Effect of brane kinetic terms

We want to obtain a potential able to stabilize a large extra dimension. Therefore we consider

new interactions localized on the boundaries: we add to the previous set-up fermion fields

localized on the fixed points of the extra dimension. If these 4D fields couple to the bulk ones,

there are new contributions to the two loop effective potential. At two loops there is a new

term with a fermionic-loop localized on the branes and a scalar-loop on the bulk, as is shown

in Fig. 6.5.

PSfrag replacements

0 πR

λy

λy

Figure 6.5: Feynman diagram with one localized fermionic loop and one bulk scalar loop, con-

tributing to the effective potential.

We will consider the following interaction between the bulk and boundary fields: Lint =

δ(y)λyφψ̄ψ and we will calculate the two loop contribution due to this new vertex. The 4D
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fermionic loop has several terms given by

λ2
y

8π2
[−2Λ2 +

5

3
q2 − q2 log

q2

Λ2
]. (6.29)

We are interested in the logarithmic kinetic contributions. The first and second terms are local,

but the third is not local and will lead to new interesting effects. The term of the scalar effective

action that couples to the brane loop is

λ2
y

8π2

∫ πR

0

dy

∫ πR

0

dy′
∫

d4p

(2π)4
δ(y)δ(y′)φ(y)p2 log(

p2

Λ2
)φ(y′). (6.30)

Thus the two loop contribution to the radion potential with a loop localized on one of the

branes is given by

V
(2)
b =

λ2
y

8π2

∑

n

∫
d4p

(2π)4
G̃(p; 2nπR)p2 log(

p2

Λ2
)

=
λ2
y

64π4
[
Λ5

25
+
∑

n6=0

50− 24γ − 24 log(2nπRΛ)

(2nπR)5
],

(6.31)

where as usual the divergent term is due to the zero winding mode contribution.

To obtain the potential at two loops we have to add V (1) +V (2) +V
(2)
b . Let us suppose that

for each boson there is a fermion with equal boundary conditions. Then the finite part of V (1)

cancels out because the fermionic loops have a minus sign compared with the bosonic ones.

Furthermore, if there is a symmetry protecting the effective potential from divergent terms,

then only the finite terms in V (2) and V
(2)
b remain, and the two-loop effective potential is given

by

V ∼ 1

R5
[D − log(ΛR)], whereD ∼ 1. (6.32)

This is a Coleman-Weinberg potential [81] that can stabilize a large extra dimension, R� Λ−1,

with 5D parameters of the same order. When we calculated the radiative corrections in the

previous sections, we assumed the extra dimension to be large compared with the inverse cut-off.

Thus stabilizing a large extra dimension we obtain a consistent scenario.

6.5 Conclusions and discussions

We have used the winding formalism to compute radiative corrections on a theory with extra

dimensions. It allows us to separate, in a very clear and intuitive way, cut-off dependent

from finite corrections. Radiative corrections also generate masses, kinetic terms and couplings

localized on the boundaries. We also obtained the logarithmic contribution to the 4D effective

gauge coupling.
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We analyzed the possibility of getting a potential stabilizing the size of the extra dimension

with a toy model. We saw that it is very simple to compute the two loop effective potential

with winding modes. We also showed a scenario with brane terms and bulk fields where the

extra volume can be stabilized with a Coleman-Weinberg potential. This mechanism can be

extended to more realistic models.

In the previous chapters we argue that higher dimensional theories can mimic strongly

coupled 4D theories with a large number of colors. In chapter 4 we proposed a 5D model in

warped space to study the chiral breaking of QCD. All the calculations were given at tree level,

that corresponds in the 4D theory to the leading order in 1/N . Since in QCD N = 3 we expect

corrections of order 30% in the expansion in powers of 1/N . In the 5D model this corrections

will correspond to the expansion in powers of the 5D coupling g5. There are interesting cases

where one can compute the loop modifications to the tree level predictions. In particular

we will consider the holographic model of chiral symmetry breaking. First, we consider the

decay a1 → πγ. In our model with only dimension 4 operators this decay vanishes. We know

from experimental results, that this decay ratio, although being small, is different from zero.

Therefore it would be very interesting to compute this interaction at one loop level. Another

tree level result is the relation m2
ρ = 3g2

ρππF
2
π , that is a consequence of the 5D gauge invariance,

and is independent of the details of the metric. Thus this prediction is robust, but it differs by

2/3 from the KSRF relation m2
ρ = 2g2

ρππF
2
π , that is consistent with the experimental results.

It would be important to calculate the one loop correction to this relation, to see whether it

decreases the factor 3 or not.

There are also interesting radiative calculations concerning the 5D model of EW symmetry

breaking that we presented in chapter 5. In particular, one of the most constraining observables

in this kind of models is the S parameter. Thus it would be interesting to compute the one

loop correction to the operator responsible for S parameter. It is important to know if these

contributions make the S parameter larger or not.
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Chapter 7

Conclusions

In this thesis we have used extra dimensions to study symmetry breaking in particle physics.

In particular we have presented two different models with extra dimensions to study symmetry

breaking in the SM. We have shown that there is a symmetry able to protect the Zbb̄ interaction

that is very useful to build models of EW symmetry breaking. We have also shown a method

to calculate radiative corrections in theories with extra dimensions.

First, we have investigated the chiral symmetry breaking of QCD. We presented a 5D model

describing different properties of QCD related to the chiral symmetry breaking. In particular

it can describe the vector, the axial-vector, the scalar and pseudoscalar sectors of mesons. The

model has 5 parameters, three are related to the parameters of QCD (the number of colors Nc,

the mass gap ΛQCD and the quark mass Mq) and the other two parameters are free. One of

them is related to the quark condensate that spontaneously breaks the chiral symmetry, and

the other only affects the scalar sector of the theory, and is thus fixed by the mass of the first

scalar resonance. Similar to large Nc QCD, the model has infinite towers of resonances that

are weakly coupled, therefore we are able to do perturbative calculations and make predictions.

The masses, decay constants and couplings of the resonances are in very good agreement with

the experimental values for QCD. By computing the correlators in the Euclidean we can also

make predictions for the condensates and for the low energy constants, that in general are in

good agreement with their experimental values.

The 5D gauge invariance of the model determines some very interesting sum rules involving

the couplings, masses and decay constants. In particular the model predicts vector meson

dominance for the pion interactions. It also predicts a vanishing branching ratio a1 → πγ and

a modified KSFR relation m2
ρ = 3g2

ρππF
2
π . As we discussed in the previous chapter, it would

very interesting to calculate the radiative corrections to this relations.

We have also calculated the predictions for the low energy effective lagrangian of QCD,

the chiral lagrangian for the pions, as well as the quark masses. All the results are in good

agreement with the experimental data.
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We have checked that the predictions are robust under modifications of the 5D metric in

the IR. By including power corrections to the AdS metric it is possible to account for for other

condensates of QCD. We expect this corrections to appear if we include the backreaction of

the metric due to the vacuum expectation value of the scalar fields. Another approach would

be to consider higher dimensional operators. We have checked that these higher dimensional

operators play the role of z dependent masses or can be absorbed as corrections to the metric.

We point out that in this process we end up with different effective metrics, depending on

the fields and on the operators that we include. Thus higher dimensional operators will give

contributions to the operator product expansion (OPE) of the different correlators. One has to

check that the coefficients of the OPE match with the QCD prediction and that the spectrum

reproduce the experimental results. As there are many operators that one can include, it would

be nice to obtain a relation between them from the DBI action. We are working on this subject.

This analysis can be extended to include the effects of ms, to compute three- and four-point

functions, and to study other sectors of QCD. We are also working on this subject.

In the second part of this thesis we have investigated the EW symmetry breaking. We

have presented a 5D model that describes the dynamical breakdown of the EW symmetry by a

strong sector. This kind of models open up the possibility of studying the dynamical breaking

of the EW symmetry at a quantitative level and they should be taken as a real alternative to

go beyond the SM, at the same level as supersymmetry. Our model consists in the SM fermions

and gauge bosons plus extra dimensions that play the role of a strong sector. The sector beyond

the SM contains a massless composite Higgs arising from a spontaneous breakdown of a global

symmetry. The remaining global symmetry is broken by the gauge sector of the SM and the

Higgs acquires a finite mass by radiative corrections. The fermions are coupled linearly to the

strong sector and can trigger EW symmetry breaking. The model is fully realistic and pass the

EW precision tests in a large region of the parameter space. It predicts a Higgs mass of order

∼ 116− 250 GeV, and the lightest resonance corresponding to a fermionic particle is of order

∼ 0.6 − 1.5 TeV. The lightest vector resonances of the model are heavier than the fermionic

ones, and in order to have a large top mass the top sector must be almost composite. This are

predictions of the model that can be tested at LHC in the next years.

We have also shown that there is a symmetry that can protect the extra contributions to

the vertex ZbLb̄L. This symmetry is a subgroup of the custodial group that protects the T

parameter from radiative corrections, plus a discrete parity defined as the interchange L↔ R.

This allows to protect the decay Z → bb̄, that are strongly constrained by experiments. This

symmetry can also protect Zψψ̄, with ψ any fermion of the SM. However it is not possible to

protect several fermions at the same time. As the top couplings are poorly known, it is enough

obtaining a cancellation of the contributions to the bottom vertex. Thus we expect corrections

in the interactions Ztt̄ and Wtb̄.
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Finally we have shown a method to compute radiative corrections in theories with extra

dimensions in terms of winding modes. We considered several toy models and calculated the

one-loop contributions to the masses and couplings. We also found a two loop potential able to

stabilize the size of the extra dimension. This mechanism can be generalized to more realistic

theories.

The methods of the last chapter can be used to calculate the radiative corrections of either

the higher dimensional model of QCD or the higher dimensional model of EW symmetry break-

ing. We have suggested several sectors where it would be interesting to compute the radiative

corrections.
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Appendix A

Chiral symmetry breaking induced by

an operator of dimension d

In this appendix we give the expression for ΠA in the different limits studied in the text for

the case in which the breaking of the chiral symmetry arises from a VEV of a scalar Φ with an

arbitrary 5D mass MΦ. This corresponds in the CFT to turning on an operator of dimension

d =
√

4 +M2
ΦL

2 + 2.

For small momentum we have ΠA(p) = Π
(0)
A (0) +MqL1Π

(1)
A (0) + p2Π′

A(0) + · · · where in the

limit ξ � 1:

Π
(0)
A (0) ' 2(1−1/d)d(1−2/d)π

sin(π/d) Γ(1
d
)2

Ñc ξ
2/d

L2
1

, (A.1)

Π
(1)
A (0) ' 2(1−1/d)Γ(2+d

2d
)Γ(3

d
)

d(1−2/d)Γ(4+d
2d

)

Ñc ξ
1−2/d

L2
1

(
1− d2/dΓ(4+d

2d
)Γ(4

d
)

21/dΓ(6+d
2d

)Γ(1
d
)

1

ξ2/d

)
, (A.2)

Π′
A(0) ' −Ñc ln

L0

L1
− Ñc

[
ln ξ1/d +

γ + ψ
(

2+d
2d

)
− ψ

(
2
d

)
− ψ

(
1
d

)
− ln d2

2

2d

]
, (A.3)

where ψ(x) = Γ′(x)/Γ(x).

In the large momentum limit we have

ΠA(p2) = −p2

[
Ñc

2
ln(p2L2

0) +
c2d
p2d

+ · · ·
]
, (A.4)

where

c2d = − d
√
π

2(d− 1)

Γ(d)3

Γ(d+ 1
2
)

Ñc ξ
2

L2d
1

. (A.5)

From the above expressions we can derive L5 and L10:

L5 ' Ñc

2(−2−2/d)πΓ(2+d
2d

)Γ(3
d
)

sin(π/d) Γ(4+d
2d

)Γ(1
d
)2

(
1− d2/dΓ(4+d

2d
)Γ(4

d
)

21/dΓ(6+d
2d

)Γ(1
d
)

1

ξ2/d

)
, (A.6)
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L10 ' −
Ñc

4

[
ln ξ1/d +

γ + ψ
(

2+d
2d

)
− ψ

(
2
d

)
− ψ

(
1
d

)
− ln d2

2

2d

]
. (A.7)
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Appendix B

Fermionic propagator and self-energies

in AdS5

In this appendix we will derive the 5D propagator for a fermionic field. We consider first the

5D scalar propagator Gφ in AdS5 space with boundary masses. From Eq. (3.3) we can obtain

the equation for the propagator

[
z2∂2

z + z∂z −
(
−p2z2 + β2

)]
Ĝφ(z, z′; p) = −z

k
δ(z − z′). (B.1)

where β =
√

4 +m2
φ/k

2, and Ĝφ is the propagator for the re-scaled field Φ̂ = Φ/(kz)2. The

relation between Ĝφ and Gφ is Gφ = (kz)2(kz′)2Ĝφ.

We Fourier transform to Euclidean momentum space in the xµ directions, and imposing

modified Neumann boundary conditions, the scalar propagator is

Ĝ(z, z′; p) =
−L0

(XI/XK − ZI/ZK)

×
(
Iβ(|p|z<)− ZI

ZK
Kβ(|p|z<)

)(
Iβ(|p|z>)− XI

XK
Kβ(|p|z>)

)
,

(B.2)

where z< (z>) is the smaller (grater) of z and z′, and Iβ, Kβ are modified Bessel functions. The

coefficients XI , XK, ZI and ZK are obtained by imposing the boundary conditions

XI = |p|L1Iα−1(|p|L1)−
(
α− s/2− z1|p|2L2

1L
−1
0 −m1L0

)
Iα(|p|L1),

XK = −|p|L1Kα−1(|p|L1)−
(
α− s/2− z1|p|2L2

1L
−1
0 −m1L0

)
Kα(|p|L1),

(B.3)

ZI = |p|L0Iα−1(|p|L0)−
(
α− s/2 + z0|p|2L0 +m0L0

)
Iα(|p|L0),

ZK = −|p|L0Kα−1(|p|L0)−
(
α− s/2 + z0|p|2L0 +m0L0

)
Kα(|p|L0),

(B.4)

The 5D fermion propagator between the points z, z ′ in the extra dimension is given by (see
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for example [69]):

S(p, z, z′) = (k2zz′)5/2

[
6p+ γ5

(
∂z +

1

2z

)
+
mψ

kz

]
[PRGR(p, z, z′) + PLGL(p, z, z

′)] , (B.5)

where PR,L = (1±γ5)/2 andGR is given by the scalar propagator with β = |mψ/k+1/2|, mUV =

−mIR = −mψ and L0 = L1 = 0. GL is obtained from GR by changing mψ → mψ.

We calculate the self-energies Πq,u,d(p) and Mu,d(p) in terms of the 5D propagators. These

correlators are given by the inverse of the propagator with z = z ′ = L0. Adding IR masses

m̃u, M̃u, the different fermionic fields can mix. Resumming the perturbative series of IR mass

insertions one obtains [10]

Π(2,2)q
L
(p) =

k

p2

1

G
(++)
Rq (L0, L0)

{
1−

G
(++)
R q (L0, L1)G

(++)
R q (L1, L0)

G
(++)
Rq (L0, L0)

×

×
m̃2
u p

2 (kL1)
2G

(−+)
L qu (L1, L1)

1− m̃2
u p

2 (kL1)2G
(−+)
Rq (L1, L1)G

(−+)
L qu (L1, L1)

}
,

(B.6)

Π(3,1)q
L
(p) =

k

p2

1

G
(+−)
RQ (L0, L0)

{
1−

G̃
(−+)
LQ (L0, L1)G̃

(+−)
RQ (L1, L0)

G
(+−)
RQ (L0, L0)

×

×
M̃2

u (kL1)
2G

(++)
RQu(L1, L1)

1− M̃2
u p

2 (kL1)2G
(++)
LQ (L1, L1)G

(++)
RQu(L1, L1)

}
,

(B.7)

Π(2,2)u
R
(p) =

k

p2

1

G
(++)
L qu (L0, L0)

{
1−

G
(++)
L qu (L0, L1)G

(++)
L qu (L1, L0)

G
(++)
Lqu (L0, L0)

×

×
m̃2
u p

2 (kL1)
2G

(−+)
R q (L1, L1)

1− m̃2
u p

2 (kL1)2G
(−+)
L qu (L1, L1)G

(−+)
Rq (L1, L1)

}
,

(B.8)
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Π(3,1)u
R
(p) =

k

p2

1

G
(+−)
LQu (L0, L0)

{
1−

G̃
(−+)
RQu(L0, L1)G̃

(+−)
LQu (L1, L0)

G
(+−)
LQu (L0, L0)

×

×
M̃2

u (kL1)
2G

(++)
LQ (L1, L1)

1− M̃2
u p

2 (kL1)2G
(++)
RQu(L1, L1)G

(++)
LQ (L1, L1)

}
,

(B.9)

M(2,2)u(p) =− m̃uk
2L1

G
(++)
Lqu (L0, L1)G

(++)
Rq (L1, L0)

G
(++)
Lqu (L0, L0)G

(++)
Rq (L0, L0)

×

× 1

1− m̃2
u p

2 (kL1)2G
(−+)
Rq (L1, L1)G

(−+)
Lqu (L1, L1)

,

(B.10)

M(3,1)u(p) =− M̃uk
2L1

p2

G̃
(−+)
RQu(L0, L1)G̃

(+−)
RQ (L1, L0)

G
(+−)
LQu (L0, L0)G

(+−)
RQ (L0, L0)

×

× 1

1− M̃2
u p

2 (kL1)2G
(++)
LQ (L1, L1)G

(++)
RQu(L1, L1)

.

(B.11)

where the functions G̃R,L(z, z
′) are defined by

G̃R,L(z, z
′) =

[
±∂z +

(c± 1/2)

z

]
GR,L(z, z

′) . (B.12)
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