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Preface
In many di�erent scienti�c areas, the use of models to represent the physi-

cal system has become a common strategy. These models receive some input
parameters representing the particular conditions and provide an output re-
presenting the evolution of the system. Usually, these models are integrated
in simulation tools that can be executed on a computer.

A particular case where models are very useful is the prediction of Forest
Fire propagation. Forest �re is a very signi�cant hazard that every year
provokes huge looses from the environmental, economical, social and human
point of view. Particularly dry and hot seasons seriously increase the risk of
forest �res in the Mediterranean area. Therefore, the use of models is very
relevant to estimate �re risk, and predict �re behavior.

However, in many cases models present a series of limitations. Usually,
such limitations are due to the need of a large number of input parameters.
In many cases such parameters present some uncertainty due to the impossi-
bility to measure all of them in real time and must be estimated from indirect
measurements. Moreover, in most cases these models cannot be solved an-
alytically and must be solved applying numerical methods that are only an
approach to reality (still without considering the limitations that present
the translations of these solutions when they are carried out by means of
computers).

In the particular case of forest �re propagation simulators, there are sev-
eral input parameters that present a dynamic behavior and they cannot be
estimated in a precise way in real time. Therefore, such simulators pro-
vide erroneous predictions in many cases due to this imprecision in input
parameter estimation.

This is a signi�cant drawback that should be overcome to improve the
predictions. The most promising approach to reach this goal is to use real
time data assimilation and apply some computational method to analyze the
deviation of the prediction from the real behavior, determine the values of
the parameters that reproduce the behavior of the �re and use these values
in the next simulation step.
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Several methods based on data assimilation have been developed to op-
timize the input parameters. In general, these methods operate over a large
number of input parameters, and, by mean of some kind of optimization,
they focus on �nding a unique parameter set that would describe the previ-
ous behavior in the best form. Therefore, it is hoped that the same set of
values could be used to describe the immediate future.

However, this kind of prediction is based on a single value of parameters
and, as it has been said above, for those parameters that present a dynamic
behavior the new optimized values cannot be adequate for the next step.

The objective of this work is to propose an alternative method. Our
method, called Statistical System for Forest Fire Management, is based on
statistical concepts. Its goal is to �nd a pattern of the forest �re behavior,
independently of the parameters values. In this method, each parameter is
represented by a range of values with a particular cardinality for each one of
them. All possible scenarios considering all possible combinations of input
parameters values are generated and the propagation for each scenario is
evaluated. All results are statically aggregated to determine the burning
probability of each area. This aggregation is used to predict the burned area
in the next step.

To validate our method, we use a set of real prescribed burnings. Fur-
thermore, we compare our method against two other methods. One of these
methods was implemented by us for this work: GLUE (Generalized Like-
lihood Uncertainty Estimation). It corresponds to an adaptation of a hy-
drological method. The other method (Evolutionary method) is a genetic
algorithm previously developed and implemented by our research team.

The proposed system requires a large number of simulations, a reason
why we decide to use a parallel-scheme to implement them. This way of
working is di�erent from traditional scheme of theory and experiment, which
is the common form of science and engineering. The scienti�c computing
approach is in continuous expansion, mainly through the analysis of mathe-
matical models implemented on computers. Scientists and engineers develop
computer programs that model the systems under study. This methodology
is creating a new branch of science based on computational methods that is
growing very fast. This approach is called Computational Science.
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Chapter 1

Introduction

�The one advantage of playing with �re, Lady Caroline, is that one never
gets even singed.�

A woman of no importance, Oscar Wilde

Using computers, scientists and engineers have made a large number of
discoveries that they would not have made otherwise. During the last years,
computers have revolutionized the way that many scientists do their work.

If we need to solve a simple equation or system of two equations and
two unknowns, we do not precise a computer. However, we cannot solve a
problem with millions of variables by hand [67].

Habitually, science was done in a laboratory environment as a combina-
tion of theory and physical experimentation (including hand calculations),
but computers have made possible a new and powerful way of doing science
�numerical simulation� that augments the old. Numerical simulation is the
name for the process of modeling mathematically a physical phenomenon,
and then running an experiment with the mathematical model. Computa-
tional mathematicians or computational scientists play an important role in
this new way of doing science, creating, evaluating, and re�ning the mathe-
matical models used to simulate the physical phenomena.

Simulation can be used when physical experiments are too costly, time
consuming, dangerous, or even impossible. This way of work becomes a new
way of doing science known as computational science.
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1.1 Computational Science vs. Computer Science

Every day we witness how the advances grow in computer technology. At
the same time, demand grows for high performance computers. In di�erent
areas, but mainly in the scienti�c �eld, a greater requirement is in increase.
Most of the problems that scientists work on involve vast amounts of data and
a large number of variables. This type of requirements are hardly provided
by any sequential computer. This situation drove to the science evolution to
a new step that has been called Computational Science. According to Tapia
and Lanius it is possible to de�ne �Computational Science� [67] as:

[...] an interdisciplinary �eld at the intersection of three domains:
mathematics, computer science, and the biological and physical
sciences. The computational scientist uses tools from computer
science and mathematics to study problems from physical science,
social science, engineering, etc.

In �gure 1.1 we can see where it is located this �eld respect to other
sciences.

Science

Mathematics
Computer

Science

Computational
Science

Figure 1.1: Interaction among Mathematics, Computer Science and Biologi-
cal and Physical sciences [67]

Through the advances in computer technology and numerical methods,
mathematicians and scientists are able to work together modeling and solving
problems that were impossible to address several years ago.
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Computational scientists do more than use computers to �nd good so-
lutions to mathematical models developed from scienti�c problems, they
develop new mathematical tools and theory and develop new numerical me-
thods and they also improve the accuracy and speed of existing methods.

Although, Computational Science and Computer Science have very si-
milar names, they refer to di�erent areas of study. On one hand, Com-
putational science uses knowledge and tools from both mathematics and
computer science, but its main focus is designing tools that will be used
on the computer to solve a scienti�c or engineering problem. On the other
hand, Computer Science focuses on both the theory and design of compu-
ters and the phenomena depending on them. Some examples are distributed
programming languages, systems, networking, software, parallel processing,
etc.

1.1.1 Grand Challenge Problem

According to [11] a Grand Challenge Problem �is a general category of un-
solved problems�. However, this de�nition has a certain degree of inherent
subjectivity surrounding what is, or is not, a Grand Challenge. In general,
a Grand Challenge problem exhibits at least the following characteristics:

• The problem is demonstrably hard to solve, requiring several orders-
of-magnitude improvement in the capability required to solve it.

• The problem cannot be unsolvable. If it probably can't be solved,
then it can't be a Grand Challenge. Ideally, quanti�able measures
that indicate progress toward a solution are also de�nable.

• The solution to a Grand Challenge problem must have a signi�cant
economic and/or social impact, such as biomedicine, the environment,
economic competitiveness, and national security.

Many of the original Grand Challenge Problems involved simulations
that, at the time the act passed, could not be completed fast enough or with
enough accuracy.

Some of the Grand Challenges currently underway deal with climate
modeling, convective turbulence and mixing in astrophysics, computational

3



biology, geophysical databases, condensed matter physics, and binary black
holes. They also address problems in areas such as �ow modeling, quantum
chromo dynamics, ground water remediation, and contaminant containment.

1.1.2 HPC, Parallel Computing

A common theme in parallel computing, and in grand challenges in particu-
lar, is the use of the computer simulation paradigm. Computer simulation
involves the use of a mathematical model to simulate a real world situation
or problem, and then the use of computers to calculate the results of these
mathematical models. Often the use of a simulation has many characteristics
that makes it much more desirable than actually performing an experiment
in the real world.

An even more interesting goal is to provide accurate solutions to these
computer models in a reasonable period of time. A reasonable period of time
can range from several days in certain models to several hours in other cases,
as for example weather prediction.

An obvious way to make simulations run faster on a computer is to design
faster computers, but faster isolated computers are not the solution. This
method has speci�c limitations determined by light speed, thermodynamics
laws and economic cost. Then, it is reasonable to present an alternative to
this problem. The design of the algorithms that run on the computer is
equally important, if not more. Ine�cient algorithms can quickly cancel out
faster computers.

Another option is based on using multiple computational resources wor-
king together. This class of systems are called parallel and distributed sys-
tems. This kind of systems allow to share tasks among di�erent processors
with the goal of reducing time [22].

As a direct consequence of the above mentioned systems appears the
parallel process, which is based on the idea of �divide & conquer�, it means
to divide big problems into little sub problems that could be resolved in a
parallel way.

Another achievement that supposes a step forward to the revolution of
scienti�c problems is distributed computation. Under this scenario, a set

4



of connected computers work together on solving an individual large-scale
problem by using some kind of middleware.

The most important factor in distributed computation is cost. Big MPP's
(Massivelly Parallel Processors) are commonly very expensive, however, exe-
cuting the same problem in a set of local computers is not very expensive.
Nevertheless, a common element in the architecture between MPP's and dis-
tributed computation is the notion of message passing. This is a very known
paradigm among others (as for example shared memory, parallelisant com-
pilers, etc.) because it is supported by di�erent multiprocessor and it is used
by a lot of software and hardware systems [49].

As it was mentioned before, communities that need e�cient fast compu-
ters are usually found in scienti�c environment, medical environment, acade-
mic environment, etc. In these areas, many people need to do huge calculus
that could not be a�orded using the traditional computation model and, the
best way to treat with this requirement is using parallel process computers.

The main reasons why the mentioned disciplines require great resources
and capacity of processing, are to obtain numerical solutions of complex
problems and to use computerized simulations.

Essentially, simulations o�er several advantages:

• Computer simulations are cheaper and faster than physical experi-
ments.

• Computers can solve a wider range of problems than speci�c laboratory
equipment can.

• Computational approaches are only limited by computer speed and
memory capacity, while physical experiments have many practical cons-
traints.

It is interesting to note that the majority of the top 500 supercomputers
[68] are running one of the applications listed below which need parallel
processing for obtaining a good performance.

• Predictive Modelling and Simulations: Multidimensional mode-
lling of the atmosphere, the earth environment, outer space, and the
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world economy has become a major concern of world scientists. Pre-
dictive Modelling is done through extensive computer simulation ex-
periments, which often involve large-scale computations to achieve the
desired accuracy and turnaround time.

• Engineering Design and Automation: Supercomputers have been
in high demand for solving many engineering design problems. Indus-
trial development also demands the use of computers to advance au-
tomation, arti�cial intelligence, and remote sensing of earth resources.

• Energy Resources Exploration: Computers play an important role
in exploration of energetic resources: the discovery of oil and gas, the
management of their recovery, development of workable plasma fu-
sion energy and ensuring nuclear reactor safety. Using computers in
the high-energy area results in less production costs and higher safety
measures.

• Medical, Military and Basic Research: In the medical area, fast
computers are needed in computer-assisted tomography (CAT scan),
imaging, arti�cial heart design, liver diagnosis, brain damage estima-
tion and genetic engineering studies. Military defence needs to use
supercomputers for weapon design, e�ects simulation, and other elec-
tronic warfare. Almost all basic research areas demand fast computers
to advance their studies.

• Visualization: Applications of this type are for example: Graphics
generated by computers for animations or �lms, complex or voluminous
data visualization, etc.

1.2 Forest Fire Prediction

Forest �res are a very serious hazard that, every year, causes signi�cant
damage around the world from the ecological, social, economical and human
point of view [48]. These hazards are particularly dangerous when meteoro-
logical conditions are extreme with dry and hot seasons or strong wind. For
example, �re is a recurrent factor in Mediterranean areas. In summer 2003
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(a) (b)

Figure 1.2: (a) Volunteers work to extinguish forest �res in Portugal [29] (b)
Castelo Branco Covihla (Portugal) [38]

the weather was very hot in this area and, in Portugal alone 420,000 hectares
were burned and 20 people died (�gure 1.2 shows volunteers �ghting against
�res). In October of the same year, the strong wind caused a large �re in
California that burned 300,000 hectares, destroying 3,361 houses and killing
26 people. Spain also su�ered the e�ects of devastating forest �res: in 2005
this country was victim of 17 big forest �res (�gure 1.3).

(a) (b)

Figure 1.3: (a) Spain su�ers 17 big forest �res in 2005 [29] (b) A forest �re
kills 11 members of an extinction equipment in Spain (Photo Reuters) [74]

The causes that produce forest �res are many, and the great majority is
related to one or another form of human factors (more than 90% of forest
�res are provoked by human action); in addition, �res in degraded forests
are worse than those that happen in the intact forests [28].
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The forest �res usually can be exacerbated or usually are the result of:

• Deforestation (degraded zones)

• Drought and/or heat

• Previous �res

• Waste, bon�res or burn of rubbish

• Premeditated wild�re

• Accidents

The phenomenon of forest �res has not only given as a result an important
loss of forests and damage in the economy, but it also has seriously a�ected
human health and environment. The �re �ghting should have at its disposal
the most advanced resources and tools to help the use of available resources
in the most e�cient way to diminish �re e�ects as much as possible. It can
be classi�ed in:

• Prevention

• Fire management

• Forecast

• Detection and monitoring

• Fight against wild�re

Simulation of forest �res propagation is an important problem from the
computational point of view due to the complexity of the involved models,
the necessity of numerical methods and the required resources for calculation.
Therefore, we can talk about a Grand Challenge Problem.

Reduction of those negative e�ects of �re requires to improve current
�re risk assessment methods. In this context, the kind of systems presented
in this work (forest �re simulators and alternative methods to apply them)
becomes a very important tool for the authorities to prevent these accidents.
Considering these methods is very important, because they can provide more
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complete information to determine the possible behavior of a wildland �re
and to determine those regions where an ignition is more dangerous.

This danger depends on static factors such as the slope of the terrain or
the vegetation type in that particular region, but also on certain dynamic
factors such as the moisture content in the vegetation or wind conditions.
Since it is not possible to previously determine the current conditions under
which a �re starts, it is not possible to evaluate beforehand the behavior or
the e�ective rate of �re spread, or inclusive �ame intensity in a real situation.

Several propagation models have been developed to predict �re behavior.
These models can be used to develop simulators and tools for preventing and
�ghting forest �res [9, 10, 30, 31, 42]. These models require a set of input
parameters, including vegetation type, moisture contents, wind conditions
and so on, and provide the evolution of the �re line in simulation steps.
However, this work focuses on the consideration that there is no set of input
parameters to be applied to the propagation model because, as has been
observed, it is not possible to know the value of each parameter when a �re
starts.

Considering this uncertainty, the methods studied in this work, try to
determine the possible �re behavior based on di�erent principles: evolu-
tionary algorithms, uncertainty prediction and statistical analysis.

1.2.1 Classical Prediction: Problems

Within the di�erent areas of science we have mentioned, we found out that
in many �elds of environmental science the use of models has been increased
to carry out predictions. The models o�er a series of limitations due to the
lack of precision or because of an illegal validation. Some of these restrictions
can produce dramatic consequences. On the other hand, limitations are
often imposed by the models. Commonly to operate they need an important
number of input variables, and because of the mathematical model's own
characteristics, these variables usually exhibit some degree of uncertainty.
In addition, numerical solutions sometimes are only one approach to reality.
Here it is where simulators (computation programs that represent some given
model) arise as another tool to provide some facilities during the analysis
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of the model characteristics. However, if we consider the limitations that
present the carried out solutions by means of computers, we see that the
breach between reality and the result of the simulation becomes even greater.
Therefore, validation of models, as well as the veri�cation and calibration
become a truly arduous task.

As we mentioned previously, models require static parameters (topology
of the land), parameters that can change very slowly (type of vegetation or
also called �fuel�), parameters that can change most frequently (moisture,
amount of load) and parameters that are completely dynamic (wind condi-
tions). The precision of these parameters is the important point in prediction
of the behavior, and in many cases it is impossible to carry out some type
of measurement, and still worse in case it is not possible to consider the
parameter in a real situation.

The prediction of the behavior can not be reliable due to the di�culty at
the moment of estimating parameters, and the result of a single simulation
can not be a reasonable base to make a decision. This is known as Classical
Prediction.

Classical Prediction simply consists of using any existing �re simulator
to evaluate the �re position after a certain time. The simulator is fed with
all the required parameters (vegetation, meteorological conditions, ignition
point, etc.). Then, the simulator is executed to predict the �re line after a
certain period of time. Some examples of Classical Prediction are [9, 10, 30,
31, 42, 44]

Without this set of information the simulator will not properly work.
Generally, the prediction obtained with this approach disagrees with reality.
One reason for the disagreement between real and simulated propagation
stems from the di�culty of feeding the model with accurate input values.
Uncertainties in the input variables can have a substantial impact on the
result errors and should be considered.

This classical approach is depicted in �gure 1.4. In this scheme, FS

corresponds to the underlying �re simulator, which will be seen as a black-
box. RFL0 is the real �re line at time t0 (initial �re line), whereas RFL1

corresponds to the real �re line at t1. If the prediction process works, after
executing FS (which should be fed with the corresponding input parameters
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RFL0 RFL1

FS PFL
Input Parameters

t = t0 t = t1

time

Figure 1.4: Classical prediction of wildland �re propagation

and RFL0) the predicted �re line at time t1 (PFL) should coincide with
the real �re line (RFL1). Nevertheless, due to the complexity of the �re
behavior modeling, the traditional prediction scheme fairly matches the real
�re propagation, but the result is not as similar to reality as desired.

�
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� ��
�� �
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�� �
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�
ErrorReal

t2

Simulated

Figure 1.5: Error using classical prediction

In �gure 1.5, we illustrate how classical prediction works by showing
the prediction provided by this method in two time instants. Although the
propagations depicted in �gure 1.5 are only hypothetical cases, they clearly
illustrate the error incurred by the classical prediction method.
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1.2.2 Data Driven Prediction

According to the form of operating of forest �re prediction methods, we can
make a classi�cation of such methods according to �gure 1.6. In a �rst level,
we have the case previously commented: the Classic Prediction Method. We
saw that this method simply consists of using any existing �re simulator
behavior to evaluate the position of the �re after a certain initial period. It
is necessary to feed the simulator with all the required parameters (weather
data, vegetation, etc.). Next, the simulator is put into operation to predict
the �re line after a certain time interval.

Fire Prediction

Methods

Data Driven

Prediction

Classical

Prediction

Figure 1.6: Forest �re methods classi�cation

The classic prediction exhibits certain limitations, and the error that
takes place when it is applied not only comes from the problems of the model
(errors due to a poor de�nition of the conditions of limit and also to input
data badly de�ned, associated errors to the measures used in the calibration
of the model, errors due to the de�ciencies in the structure of the model,
etc.) but also from the implementation of the simulator. Even supposing
that we had a perfect simulator, we would conclude that the large source
of errors comes from the lack of precision of the entrance parameters, be-
cause we would have serious di�culties to provide the simulator high quality
parameters values. There are certain parameters that cannot be measured
directly, a reason why they must be estimated from indirect measures (an
example is moisture content in vegetation). Wind o�ers a di�erent situation
to us: it can be measured in de�nite zones, but it is �nally necessary to
interpolate these values to be able to apply it to all the land. Furthermore,
we have a problem with the wind, for citing only one case: it dynamically
changes its values during the course of the �re, which modi�es the previously
calculated values.
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As a second option within the classi�cation, we found the methods of
Data Driven prediction. Under this name we try to group those methods
that, in search of a solution to the problem manifested by the classic methods,
make use of optimization techniques with the purpose of calibrating the input
parameters set. The optimization process objective is to �nd a set of input
values that, if they feed the simulator, would describe the best form of the
previous behavior. Therefore, we would hope that the same set of values
could be used to describe the best possible form for the immediate future.

Schematically, the Data Driven methods operate in a stage that we will
call Calibration Stage (CS box). In �gure 1.7 we can appreciate this idea.

RFL0 RFL1 RFL2

FS PFL
Optimal Input

ParametersInput Parameters

t = t0 t = t1 t = t2

time

CS

Calibration/

Optimization

Unique

solution

A large ensemble

of parameters

One parameters

set

FS

Figure 1.7: Data Driven prediction of wildland �re propagation

Fundamentally, beyond the type of calibration or optimization which the
methods make in CS box, this class of methodologies agree in one point:
they make the process look for a unique set of values (parameters set) to do
the prediction in the following time. Therefore, we can say that Classical
prediction methods and Data Driven methods give only one solution.

1.2.3 Thesis contribution

Our proposal is to extend the given classi�cation, o�ering a new method
which we called Statistical System for Forest Fire Management (S2F 2M),
which will be in a new branch of Data Driven methods with Multiple Over-
lapping Solution. In �gure 1.8 we can see there is a new branch opened
because the proposed method, although it belongs to the Data Driven, ge-
nerates prediction based on the totality of the proposed cases.

The S2F 2M objective is to look for a behavior pattern of the forest
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Figure 1.8: Forest �re methods: New classi�cation

�re, independently of the parameters values. For this reason, the method
operates with a large number of parameters sets, which we have denominated
scenarios, and statistically tries to describe the behavior of the real �re in
a near past. In this way, we hope that this behavior pattern stays still
within a certain limit of time in order to use this criterion within such limit
and to obtain a future prediction very similar to reality. Therefore, our
method is based on a general behavior, obtained from the consideration of
all scenarios evaluated. Thus, it proposes an alternative to those methods
centered in strict observation of the values of parameters that take part in
the simulation and it presents an option to the resolution of the problem by
means of the use of multiple cases instead of doing a prediction from only
one set of parameters.

In �gure 1.9 we can observe how the operation scheme di�ers from the
traditional Data Driven methods. The text in red indicates the fundamental
di�erences. As in �gure 1.7, the stage in charge of the processing of the
method has been labeled CS box. This has been done to avoid details and
only showing the stages in a conceptual form.

S2F 2M considers at any moment the total set of scenarios to carry out
the search of the forest �re behavior. Unlike the methods of unique solution,
S2F 2M does not make distinction between better and worse cases (or at least
it does not try to make any type of classi�cation), because the interesting
fact of its methodology is that every case, every scenario, can contribute to
�nd that the �nal result, the found pattern, is better. Finally, between the
contributions of the present work, we also presented a comparison between
two methods of Data Driven prediction and our method, with the objective

14



RFL0 RFL1 RFL2

FS FP PFLInput

Parameters

t = t0 t = t1 t = t2

time

Input

Parameters

CS CS

Calibration/
Optimization

A large ensemble

of parameters

Multiple

solution

FS

Figure 1.9: Data Driven prediction of wildland �re propagation using Mul-
tiple solution

of showing the e�ectiveness of our proposal of Data Driven prediction with
Multiple Overlapping Solution during the application on real forest �res.

1.3 Work organization

This work is organized as follows: In the following chapter we give a general
description about Fire Simulator Systems and summarize the main aspects
of Rothermel Model. Then, we analyze some of the most important forest
�re simulators at the present time. Finally, we comment some characteristics
about the selected simulator to apply the methods to compare (Chapter 2).

In Chapter 3, we describe two Data Driven Prediction Methods. We will
describe the method and implementation for each one of them.

In Chapter 4 we describe the methodology of statistical method and also
explain its implementation. Furthermore, as a �rst example of experimental
study, we show the results obtained when we apply the method on a synthetic
forest �re.

Chapter 5 is dedicated to depict the experiments (terrain, platform, etc.).
We compare the obtained results after applying the three methods on �ve
di�erent real forest �res.

Chapter 6 describes the results obtained after applying the statistical
method on real situations (for example, generating risk maps).

In Chapter 7, we discuss possible ways to improve the statistical method
to obtain better results and/or to arrive the result in a shortest time. In the
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same manner, we explain the problems found when we apply these variants.
Finally, the main conclusions and open lines that can extend this research

are reported in Chapter 8.
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Chapter 2

Forest Fire Simulator

�No pretendas apagar con fuego un incendio, ni remediar con agua una inun-
dación.�

Confucio

A Forest Fire Spread Simulator is the last echelon of the stair composed
by the construction of a mathematical model, the design of a numerical
algorithm to solve the model and, �nally, building the computer code that
implements the algorithm. Once all this process is �nished, we are in front of
a forest �re spread simulator. In this chapter, we will describe the �ve most
outstanding and used forest �re simulators at the current time. All of them
are based on the propagation model proposed by Rothermel in 1972 [61].
This model is classi�ed as a semi-physical model because it combines physical
techniques and empirical correlations obtained from experimental data. The
results of this type of model are trustworthy, although they have a rank of
validity limited within the speci�c conditions in which the experiments were
carried out. In the following section, we will analyze the general structure
of a �re spread simulator. Next, we will introduce the basic equations of a
Rothermel model and, subsequently, the BehavePlus, FARSITE, FOFEM,
NEXUS and �reLib simulators will be described according to the general
structure previously commented.
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2.1 A General Fire Simulator System

The global and local models (these two models consider two di�erent scales:
the global model considers the �re line as a whole unit �geometrical unit�
that evolves in time and space; the local models consider the small units
�points, cells, etc.� that constitute the �re line) and the required environ-
mental information must be integrated to obtain a simulation system that
provides the space-time forest �re evolution. A scheme of an ideal structure
is shown in �gure 2.1.
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Figure 2.1: Components of an ideal �re simulation system

The main components are the following:

1. Input information databases, concerning the physical environment, in-
cluding: ignition point or current status of the �re line, vegetation
maps that include the characteristics of the vegetation of each region,
topographic information of the terrain where the �re is burning, and
meteorological information.

2. Propagation models: the global and local models.

3. Complementary models: these models include those parameters with
a dynamic behavior.

4. Output: mainly is the prediction of forest �re propagation, in addition
to others outputs like heat �ux and smoke emission.

However, the current state of forest �re research does not allow us to
include all the components in a real system. There is an active research in
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all these �elds [23, 35, 50, 58, 62, 69, 73], but there are no �nal results that
can be included in the simulation systems. For this reason, the real current
simulation systems have a simpli�ed structure. This scheme can be seen in
�gure 2.2.
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Figure 2.2: Components of a �re simulation system

2.2 Rothermel Model Summary

There are several models in literature to describe the behavior of forest �re
propagation, which can be divided into three main categories [54]: physical,
empirical and semi-physical models. Physical models rely on theoretical
aspects of �re propagation such as the heat transfer process (for example
[33, 6, 70]). However, though theoretical aspects can help on understanding
the mechanisms of �re spread, physical models are not currently operational
as they require information of many parameters almost impossible to measure
in the �eld [12]. Moreover, the heat transfer processes modelled are neither
spatially nor temporally constant.

However, there are authors who have developed empirical models to over-
come the problems derived from the complexity of the theoretical approaches.
These models have been largely developed in Australia ([46, 39, 26]) and
Canada ([65, 45]) where extensive databases of wild and prescribed �res
are available. Such empirical models are basically statistical models. They
have a main drawback: they should be used with great caution under other
conditions than those of the original �res.

Finally, the semi-physical option combines empirical and physical tech-
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niques. This approach looks for operational models which can be used under
a wide range of conditions. Concretely, while the main structure of the
equations of the model is based on physical relationship, these equations
are adjusted and modi�ed considering the results of experimental studies in
the laboratory. Therefore, due to their intermediate features, semi-physical
models can be currently applied with predictive purposes in real events.

A good example of a semi-physical model is the Rothermel model [61].
This model is, by far, the most used semi-physical model in �re modellin.
In fact, although there are several spatially explicit models being currently
applied to predict the behaviour of wild and prescribed �res, such as FAR-
SITE [30], FIRESTATION [31] or BehavePlus [10], the majority of them
have in their core the set of equation given by Rothermel.

However, the Rothermel model has at least two big drawbacks:

1. Rothermel equations were derived in an empiric way in a laboratory at
a spacial scale of a few square meters, but are now currently used to
predict the �re behavior over wide areas [63]. Since exhaustive spatial
information of variables involved is not available, a simpli�ed approach
based on maps has been usually used.

2. Data for many input variables is needed to apply the Rothermel equa-
tions, and some of these variables may be very costly and di�cult to
obtain. Hence, a reduction in the number of variables is highly advis-
able in order to achieve an operational use of the model [63].

The Rothermel model has two main outputs: the rate of spread of a
point in the �re front (R; in length ∗ time−1) and the reaction intensity
(IR) which is the energy released per unit area for a speci�c period of time
(energy ∗ time−1 ∗ length−2).

Since 1972, several modi�cations have been proposed for the Rothermel
basic model of �re spread. Some examples are the work of Albini [5], a�ec-
ting the net fuel loading and the optimum reaction velocity, and those of
Catchpole and Catchpole [25], based on Wilson [72], which eliminate the use
of the moisture content of extinction and give a new formula for pre-ignition
heat.
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The equation for the rate of spread of a point in the �re front (R) is given
by the following equation (see [61] for a detailed description of the original
equation).

R =
IR ∗ ξ ∗ (1 + φw + φs)

(ρb ∗ ε ∗Qig)

where ξ is the propagating �ux ratio; φw the wind coe�cient; φs the slope
coe�cient; ρb the oven-dry bulk density; ε the e�ective heating number; and
Qig the heat of pre-ignition.

The IR term also can be calculated as follows:

IR = Γ′ ∗Wn ∗ h ∗ ηM ∗ ηs

where Γ′ is the optimun reaction velocity, Wn is the fuel loading, h is the
fuel particle low heat content, ηM the moisture dumping coe�cient and ηs

the mineral dumping coe�cient.
All these terms are, in turn, functions of the 10 input variables listed in

table 2.1 (see [63] and [61] for details).

Parameter Symbol Units

Fuel bed depth f feet
Surface area-to-volume ratio s sq ft fuel / cu ft fuel
Low heat of combustion H BTU/lb fuel
Ovendry particle density ρp D.W. g cm−3

Moisture content of the live fuel lm lb water / lb fuel
Moisture content of the dead fuel dm lb water / lb fuel
Total silica content St lb silica / lb fuel
Slope φ ◦

Wind speed at mid �ame height U feet / min
Dead fuel loading vs. total loading P lb / feet3

Table 2.1: Input parameters for the Rothermel model (Note: D.W. means
dry weight)
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2.3 Forest Fire Simulators

In this section, we will describe the relevant characteristics of the most widely
used forest �re simulators.

2.3.1 BehavePlus

BEHAVE [9] was developed in the 80's to calculate a few projections of
�re behavior simultaneously and to show the results in a table. At that
moment, modeling the �re growth was a new interesting theme of research.
The �re was simulated through a vector of land, fuel, and climatic conditions
that varied spatially and temporarily. Such models made highly repetitive
calculations from each starting point towards multiple destiny points, and
this process was repeated for each point in the map and each time interval
in the simulation. This resulted in millions of iterations. BEHAVE was
formed by a set of �ve programs that were executed under DOS, three of
them were available in 1984. This separation of programs was made because
of computational restrictions of that moment.

BehavePlus [10] is the successor of BEHAVE system. The BehavePlus
system is a program based on PC (Personal Computer) that groups models
that describe the �re and its environment of development. It is a �exible
system that produces tables and diagrams, and can be used for an ample
range of applications of administration before �re situations. BehavePlus
works on Windows and o�ers a friendly interface. A sample of diagram
output can be seen in �gure 2.3

Some of the capacities that BehavePlus o�ers are the following:

• Surface �re spread and intensity

• Safety zone size

• Spotting distance

• Crown scorch height

• Tree mortality
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Figure 2.3: Rate of Spread graph with 1 hr dead fuel moisture and mid�ame
wind speed as the independent variables. When up to two input variables
have multiple values Behave Plus produces customizable graphs [32]

BehavePlus also o�ers other capacities: the user can de�ne his own fuel
models in addition to the standards. Between the operational capacities, it
o�ers diverse diagrams, photographies of the Rothermel models, and user
interface in di�erent languages, among others.

2.3.2 FARSITE

FARSITE [30], also based on the model of Rothermel, automatically com-
putes wild�re growth and behavior for long time periods under heterogeneous
conditions of terrain, fuel, and weather. It uses existing �re behavior models
for surface and crown �res, post-frontal combustion, and fuel moisture. It
is a deterministic model, which means the user can relate simulation results
directly to the inputs.

FARSITE produces outputs that are compatible with PC, Workstation
graphics and GIS software (Geographic Information System) for later analy-
sis and display. Furthermore, it can simulate air and ground suppression
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actions. Finally, it accepts both GRASS1 and ARC/INFO2 GIS raster data.
A screen shot can be seen on �gure 2.4.

Version 4.0 is multi-threaded, which means the program can be divided
in pieces that are executed separately. Multi-threading is used to separate
the growth of the �re from the interface, to allow so computation takes place
in more than one processor.

Figure 2.4: Screen shot of a FARSITE v4.00 simulation utilizing the post-
frontal combustion model [32]

1GRASS (Geographic Resources Analysis Support System) is an open source GIS ap-
plication. It is a good system to work with raster data and it is very extended in the
academic scope.

2ARCINFO: ArcInfo Workstation includes tools for edition, publication, transactions
management, database manager, etc.
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2.3.3 FOFEM

First Order Fire E�ects Model, FOFEM [60], is a computer program de-
veloped to ful�ll the needs of resource managers, planners, and analysts in
predicting and planning �re e�ects.

Quantitative predictions of �re e�ects are needed for planning prescribed
�res that best accomplish resource needs, for impact assessment, and for
long-range planning and policy development. The program FOFEM was
developed to meet this information.

The FOFEM developers explain that FOFEM will be useful in a variety
of situations. Some examples include: setting acceptable upper and lower
fuel moistures for conducting prescribed burns; determining the number of
acres that may be burned on a given day without exceeding particulate emis-
sion limits; assessing e�ects of wild�re; developing timber salvage guidelines
following wild�re; and comparing expected outcomes of alternative actions.

First order �re e�ects are those that concern direct, indirect or immediate
consequences of �re. First order �re e�ects form an important basis for
prediction of secondary e�ects such as tree regeneration plant succession,
and changes in site productivity, but these long-term e�ects generally involve
interaction with many variables (for example, weather, animal use, insects,
and disease) and are not directly predicted by this program. Currently,
FOFEM provides quantitative �re e�ects information for tree mortality, fuel
consumption, mineral soil exposure, smoke and soil heating.

2.3.4 NEXUS

NEXUS 2.0 [32] is a crown �re hazard analysis software that links separate
models of surface and crown �re behavior to compute indices of relative
crown �re potential. NEXUS is useful to compare crown �re potential for
di�erent stands, and to compare the e�ects of alternative fuel treatments on
crown �re potential. It includes several visual tools useful for understanding
how surface and crown �re models interact.

Crown �re hazard assessment and behavior prediction is an emerging
science. NEXUS linked existing models of surface and crown �re behavior
to produce a system to assess the potential for crown �res at the stand
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level. In 1998 the modeling system was initially implemented in a Microsoft
Excel spreadsheet. At that time the authors envisioned a short life-span for
NEXUS as other more established programs incorporated similar modeling
capabilities. In 2001, the authors updated the spreadsheet and produced an
online user's guide, but still did not envision a long life for it. In 2003, the
authors �nally accepted that many of the concepts and modeling simulated in
NEXUS are unique enough to warrant its maintenance independent of other
programs. Therefore, the authors obtained funding to re-code NEXUS as a
stand-alone computer program, shedding the Excel spreadsheet interface.

There are other modeling systems whose functions partially overlap with
those of NEXUS. BehavePlus is the industry standard tool for modeling
surface �re behavior. The current version simulates only surface �re spread,
but later versions may include crown �re simulation capability.

2.3.5 �reLib

�reLib [15] is a C language function library for predicting the spread rate,
intensity, �ame length, and scorch height of free-burning surface �res. It is
derived directly from the BEHAVE �re behavior algorithms for predicting �re
spread in two dimensions, but it is optimized for highly iterative applications
such as cell-based or wave-based �re growth simulation.

The �reLib library was developed to give �re growth modellers a simple,
common, and optimized application programming interface (API) to use in
their applications. It is written entirely in ANSI standard C and also com-
piles under a wide range of Kernighan & Ritchie [43] (pre-ANSI standard) C
and C++ compilers on a variety of personal computers and work stations.

The library contains 13 functions, as few as 4 functions are required
to create a simple yet e�cient and functional �re growth simulator. The
�re propagation and intensity computation can be imagined as a pipeline
through which the sets of parameters are introduced.

Although the characteristics of the fuel vary through the land, these
usually are considered invariant within the frame of time of a �re simulation.
An improvement in bene�t of the model is to make the computation and to
store variables that depend on the intermediate fuel in each model.
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2.4 Why �reLib?

In table 2.2 we summarize the main characteristics of the �ve forest �re
simulators previously described. The features shown in this table have been
divided in two categories: model and implementation characteristics. The
�rst set of characteristics is related to the type of �re approach by the simu-
lator. The rest of characteristics determine how the simulator code works.
When we consider all these topics, it is easy to understand the reason for
choosing �reLib as a kernel of our system. Although it does not supply si-
mulation about crown �res or spotting �res, it o�ers freedom in respect of
certain aspects related to implementation.

. Model Characteristics Implementation Characteristics
Simulator Surface Crown Spot C.A. Portability Platform Ouput
Behave Yes Yes Yes No No Windows Tab./Graph

FARSITE Yes Yes Yes No No Windows Graph
FOFEM No No No No No Windows Graph
NEXUS Yes* Yes* No No No Windows Tab./Graph
�reLib Yes No No Yes Yes Linux/W. Text

Table 2.2: Summary of forest �re simulators characteristics. (Note: C.A.
means Code Accessibility, Tab. means Tables , W. means Windows and *
means that Nexus only produces ratio index, but not behavior)

�reSim is a simulator proposed by Colins D. Bevins, implemented us-
ing the �reLib library [15] previously commented. The simulator uses an
approach based on cells. The land is divided into cells, and the relationship
with the adjacent neighbors is used to evaluate if the cell has been burned
and in which moment this happens.

The simulator accepts as inputs the map of the land, the characteristics
of the vegetation, the wind and the ignition map. The output consists of a
map of the land where each cell is labeled with its time of ignition.

Following, we enumerate the reasons why we decided to use the �resim
as simulator in our experiments:

• �reSim is a simple and functional simulator. The power and bene�t of
this tool is in its simplicity. Its scheme of work, based on cells, o�ers
enough freedom and the possibility of adjusting land units.
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• �reSim was written in ANSI C, which is a general-purpose language
with a good economy of expressions. Therefore, we obtain a portable
simulator.

• �reSim has a solid base because it derives from another simulator (BE-
HAVE). �reSim has the same functionality of BEHAVE, and it has
been optimized for highly iterative applications, such as simulation of
�re propagation through cells.

• It is based in the Rothermel Model, what can be seen as an advantage,
since it is one of the most used models within �re propagation models.
However, it has the model's limitations commented in section 2.2.

• The source code is open source which simpli�es its adaptation and
modi�cation.

2.4.1 FireSim

Once we have seen the functionality o�ered by �reLib, we will schematically
describe the �reSim structure.

Parameters definition

Maps Initializations

(model, wind, moisture, etc)

Creation of catalogs,

models, etc

Loop {Computation of

moment when each cell is

reached by fire}

Write output files

Figure 2.5: Structure of �reSim code
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In �gure 2.5 we can observe the simulator simplicity. The structure is
divided in �ve blocks: Parameters de�nition, maps initialization, creation of
catalogs, main loop, and writing of output �les. The main loop deserves a
special mention, since it operates through an algorithm of �Contagion� [15]
applied to the eight neighboring cells of the analyzed cell in a given moment.
By each burned cell, the algorithm analyzes the eight neighboring cells and
determines the time of ignition for them, as long as conditions (humidity,
wind, etc.) allow the �re arrive them.

2.4.2 Forest �re calculation

As �gure 2.6 shows, calculation of �re spread under �reLib simulator can be
represented as a pipeline compound by four stages. In the �rst stage, the cha-
racteristics fuel area, load, etc, are calculated. The Fire_FuelCombustion()
function performs this stage.

FUEL MOISTURE WIND DIRECTION

Figure 2.6: Pipeline structure of �relib

Fuel moisture, wind speed, and wind direction are more temporal. Fuel
moisture is introduced in the second stage of the pipeline, because the
Rothermel �re model uses fuel moisture to determine the heat sink term
in deriving �re reaction intensity and the no-wind no-slope spread rate. The
Fire_SpreadNoWindNoSlope() function performs the second stage compu-
tations.

Rothermel modelled the e�ect of slope on the �re behavior using the
same mechanism as for wind; he calls the combined e�ect of slope and wind
the e�ective windspeed. In the third stage the maximum spread rate and di-
rection of maximum spread are calculated by Fire_SpreadWindSlopeMax()
function.

Finally, in stage four, �re behavior in any compass direction is determined
using the elliptical growth model developed by Anderson [7] and employed
by BEHAVE [9]. The four vector-dependent �re behavior outputs of spread
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rate, Byram's �re line intensity, �ame length, and height are derived by the
�reLib Fire_SpreadAtAzimuth() function.

Signi�cant improvement in the �re model performance is realized by par-
titioning the �re behavior computation into these four stages [15].

2.4.3 Catalog

The �reLib API employ the concepts of fuel catalog, fuel model, and fuel
particle. A �reLib application may contain one or more fuel catalogs. A fuel
catalog is a collection of zero or more �re behavior fuel models, and each fuel
model contain zero or more fuel particles.

• Fuel Catalog Objects is a collection of fuel models. In addition
to fuel data, it serves as a container for state information on function
status, error messages, and use of the optional �ame length table. Each
fuel catalog is identi�ed by a handle returned by one of the fuel catalog
creation functions. All other functions require this handle as an input
argument. Example: The following call creates a Catalog called �new�
with enough space to store from 0 to MaxModels fuel models. The
handle is stored in my_catalog, with type FuelCatalogPtr.

my_catalog = Fire_FuelCatalogCreate(``new'', MaxModels);

• Fuel Model describes the fuel particles and fuel bed arrangement
for a representative fuel condition. The fuel model object also serves
as a container for all the current �re environment, fuel bed, and �re
behavior state information relating the fuel model.

Each model within a catalog is identi�ed by a unique integer number.
This number may range from zero to the maximum number of models
allowed in the catalog. All �reLib �re behavior functions require the
fuel catalog handle and the fuel model number as input arguments (in
the example, MaxModels). The following example shows the creation
of a model called �shortGrass� which has a height equal to 0.5 feet,
moisture equal to 0.12 lb water/lb fuel and only one particle.
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Fire_FuelModelCreate(my_catalog, 1,``shortGrass'',``first
model'', 0.5, 0.12, 1, 1);

This results in a model with the following characteristics:

� Model number: 1

� Name: shortGrass

� Description: �rst model

� Height: 0.5 feet

� Extinction Moisture: 0.12 lb water/lb fuel

� Particles: 1

• Fuel Particle is a speci�c type of fuel component found in a fuel
model (needle, grass, or foliage litter, etc). Fuel particles are assigned
an index number (starting with 0) as they are added to the fuel model.

For example, the added particle to the model previously created could
have the following values:

� Particle index = 0

� Type: 1 (Fire_Type_Herb)

� Load: 0.034 lb fuel /sq feet

� Ratio surface/volumen: 3500

� Density: 35 lbs fuel/cu ft fuel

� Combustion heat: 8000 BTU/lb fuel

� Total Silica content: 0.0555 lb silica/lb fuel

� E�ective silica content: 0.01 lb silica/lb fuel

2.4.4 Accessing Object Properties using macros

�reLib functions return a success or failure code rather than computation
result. Access to catalog, fuel model, and fuel particle properties, including
all input variables, stored intermediates, and all �re behavior outputs, is
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available to the programmer via C macros. These macros are used like C
function calls to access or update current object properties.

A property macro consists of the �Fuel_� pre�x followed by a descriptive
label and 1, 2 or 3 arguments. The �rst argument is always the catalog han-
dle. If two or more arguments, the second is always the fuel modelNumber.
If three or more arguments, the third argument is either the fuel particle
index, life class index, or moisture class index.

Some examples are:

/* to obtain the error message */
message = FuelCat_error(catalog);

/* returning the fuel height of model 11 within the catalog */
depth = Fuel_Depth(catalog, 11);

/* it recovers the load of particle 1 within the model 11 in
the catalog */

load = Fuel_Load(catalog, 11, 1);

2.4.5 Functionality

There are eight functions for creating, querying, and destroying fuel catalog,
fuel model, fuel particle, and �ame length table objects, and four functions
for determining �re behavior for fuel models.

It is possible to create a fuel catalog to include the 13 standard �re
behavior, or to create an independent catalog and to append new models
using calls to create models.

A catalog also can be destroyed.
On the other hand, the models consist of three functions: one for creating,

one for destroying and the third to verify if a model exists. The particles
only can be created. The form to eliminate them is destroying the model
or the catalogue that contains them. In order to change something in their
characteristics the user must resort to the use of the macros.

The functions of �re behavior calculation are interesting. We comment
some of them:
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int Fire_FuelCombustion (
FuelCatalogPtr catalog,
size_t modelNumber)

Calculates all intermediate fuel bed and combustion variables that are
solely dependent upon fuel bed characteristics (stage 1 in the pipeline). It
is normally not called directly by the user as it is automatically called by
Fire_SpreadWind- NoSlope() whenever fuel modelNumber has been de�ned
or updated. The function returns FIRE_STATUS_OK on success or, on failure,
the constant FIRE_STATUS_ERROR.

A large number of intermediate fuel and combustion variables are cal-
culated and stored by this function. The original BEHAVE System spends
approximately 80% of its computation time in the redundant calculation
of these non-variant values. Isolating these computations within a function
which is called only once per fuel model dramatically improves the perfor-
mance.

int Fire_SpreadNoWindNoSlope (
FuelCatalogPtr catalog,
size-t modelNumber,
double moisture[FIRE_MCLASSES])

Calculates reaction intensity, heat per unit area, and no-wind no-slope
�re spread rate for fuel modelNumber. It automatically calls Fire_FuelCom-
bustion() if needed for modelNumber. The moisture[] array contains the
current fuel moistures of dead fuel. The functions returns FIRE_STATUS_OK
on success or FIRE_STATUS_ERROR on failure.

int Fire_SpreadWindSlopeMax (
FuelCatalogPtr catalog,
size_t modelNumber,
double windFpm,
double windDeg,
double slope,
double aspect)
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Calculates the maximum spread rate and direction of maximum spread
given the wind and terrain conditions. Once Fire_SpreadNoWindNoSlope()
has been called to establish initial conditions for this fuel modelNumber,
Fire_SpreadWindSlopeMax() may be called repeatedly with di�erent in-
put arguments to optimize simulation performance. The function returns
FIRE_STATUS_OK on success or FIRE_STATUS_ERROR on failure.

int Fire_SpreadAtAzimuth (
FuelCatalogPtr catalog,
size_t modelNumber,
double azimuth,
size_t whichOutputs)

Calculates spread rate along the requested compass azimuth for fuel mo-
delNumber, an optionally calculates Byram's �re line intensity, �ame length,
and/or scorch height along azimuth as requested by whichOutputs. Once
Fire_SpreadWindSlopeMax() has been called to establish initial conditions,
Fire_SpreadAtAzimuth() may be called repeatedly to get �re behavior at
multiple azimuths. The function returns FIRE_STATUS_OK on success or
FIRE_STATUS_ERROR on failure.

int Fire_FlameScorch (
FuelCatalogPtr catalog,
size_t modelNumber,
size_t whichOutputs)

Calculates the �ame length or scorch height along the azimuth established
by th most recent call to Fire_SpreadAtAzimuth(). The function returns
FIRE_STATUS_OK on success or FIRE_STATUS_ERROR on failure.
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Chapter 3

Data Driven Prediction
Methods

�PLAN: To bother about the best method of accomplishing an accidental
result.�

The Devil's Dictionary, Ambrose Bierce

Nowadays, �re spread models are complex models designed to simulate
forest �res occurring under heterogeneous conditions ([9, 10, 30, 31, 44]).
These models are very data-demanding; they need a large quantity of in-
formation on topography, on some fuel characteristics (static and dynamic)
and on wind speed and direction as it has been mentioned in Chapter 1.
However, an important problem is that such data may not be entirely avai-
lable. It is implicitly assumed that if all this information is correct, then the
model will correctly predict the spread of �re. But this is not usually the
situation with complex, distributed environmental models of any kind [13].
Therefore, in all circumstances, a calibration of the model using observed �re
behavior data is essential [21, 24]. In fact, this is being done manually, in a
non-systematic way, by �re analysts using fragmentary data on �re spread
and behavior.

As we commented in Chapter 1, instead of using the Classical Prediction
Method, it is possible to use a di�erent approach, what we call Data Driven
strategies. To summarize, this alternative methodology is based on executing
a large number of simulations in order to select the best parameters set for
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doing the prediction in a future time. Within these methods, we will analyze
two cases:

• GLUE: This method is based on the Generalized Likelihood Uncer-
tainty Estimation [13], which is a framework for estimating predictive
uncertainty of complex environmental models. Originally, GLUE was
developed for being used with hydrological models, but it has subse-
quently been applied to a wide range of environmental systems.
GLUE framework supposes that all model structures, parameters, and
observations must be in error. Then, there is no reason to look for
a single `true' set of parameter values. So, the GLUE methodology
makes suggestions by considering a high number of possible sets of
parameter values.

• Evolutionary Algorithms: They mimic the metaphor of natural biologi-
cal evolution. Evolutionary algorithms operate a population of poten-
tial solutions applying the principle of survival of the �ttest to produce
even better approximations to a solution.
Evolutionary algorithms model natural processes, such as selection, re-
combination, mutation, migration, locality and neighborhood. Evolu-
tionary algorithms work on populations of individuals instead of single
solutions, which allows to perform the search in a parallel manner.

In the following section, we will describe these methods in detail.

3.1 GLUE

Empirical calibration of parameters has become a usual practice to minimize
some of the limitations when we use models. Most of the current methods
consider the model as a representation of reality and, under this assumption,
they try to �nd a parameter set to reproduce the available observational data
as closely as possible. An alternative to this type of model is the GLUE
framework [13] which supposes that all model structures, parameters, and
observations must be in error. Therefore, there is no reason to look for a
single set of parameter values. Instead of that, GLUE works with a large set
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of parameters combinations assigning di�erent weights (likelihoods) to them
by analyzing their ability to make accurate predictions of the observed data.
This process can be carried out sequentially (i.e. every time there is new
information on the evolution of the �re event the likelihoods are updated).
After comparing the di�erent parameter sets with the �rst data available the
prior likelihood is modi�ed in accordance with the model performance and
a posterior likelihood is calculated (a Bayesian approach). Those parameter
sets that obtain higher likelihood are selected as good predictors and are
used for future forecasting [56].

3.1.1 Method description

The GLUE method of Beven and Binley [13] is a Monte Carlo [55, 57] si-
mulation based approach to model conditioning and uncertainty estimation.
It rejects the idea that there is only one optimum parameter set in a model
calibration. It considers that there are multiple parameter sets and even
multiple model structures that may be acceptable in simulating the system
under study. Therefore, it is possible to evaluate the relative likelihood of a
given model and parameter set in reproducing the available data to test the
models. Then, uncertainty in the predictions may be estimated by calcu-
lating a likelihood weighted cumulative distribution of a predicted variable
based on the simulated values from all the retained simulations (those with a
likelihood value greater than zero). Thus, for any model predicted variable,
Z :

P (Ẑt < z) =
N∑

i=1

L
[
M(Θi)|Ẑt,i < z

]

where P (Ẑt < z) are prediction quantiles, Ẑt,i is the value of variable Z
at time t simulated by model M(Θi) with parameter set Θi and likelihood
L[M(Θi)]. Then, the accuracy in estimating such prediction quantiles will
depend on having a suitable sample of models to represent the behavioral
part of the model. In this framework the parameter values are treated as a
set with their associated likelihood value so that any interactions between
parameter values in �tting the available observations are included implicitly
in the conditioning process.
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In this case, a fuzzy measure of goodness of �t has been used. Initial
prior likelihoods were set to zero for all the parameter sets. The updating
of likelihoods from one time step to the following one consisted in averaging
the prior and the current likelihoods. In order to make the uncertainty limits
converge when the current rate of spread did not change, this average can
be raised, optionally, to a power p (p ≤ 1):

Lp(M(Θi)) =
[L0(M(Θi)) + L(M(Θi)|Y )]p

C

where L0(M(Θi)) is the prior likelihood of the model M with the parameter
set Θi; L(M(Θi)|Y ) is the goodness of �t of the model M with the parameter
set Θi to the latest observations Y ; Lp(M(Θi)) is the posterior likelihood of
the model M with the parameter set Θi; and C is a constant which ensures
the sum of the posterior likelihoods of all the parameters equals 1.

3.1.2 Method implementation

Figure 3.1 shows how the GLUE method has been applied for �re prediction
purpose. Di�erent from classical prediction, GLUE considers a high num-
ber of possible sets of parameters values which are stored in the PS box
(Parameters Sets) where the likelihood of parameters sets are updated. To
reduce the divergence between classical prediction and real-�re propagation,
we need to evaluate the goodness of the results provided by the simulator.
For this purpose, a Fitness Function must be included (FF box). This func-
tion will somehow determine the degree of matching between the predicted
�re line and the real �re-line.

RFL0 RFL1 RFL2

FFFS FS PFLThe best

parameter setInput Parameters

t = t0 t = t1 t = t2

time

PSCS Input Parameters for next time

Figure 3.1: GLUE implementation
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Then, according to their ability to make a proper prediction (evaluated
by FF box), the likelihood of each parameter set is updated. This process is
performed N times (being N the number of sets). Finally, once FF has been
evaluated for the whole parameter sets, the best set of input parameters is
used as the input set for the underlying �re simulator, in order to obtain the
predicted position of the �re front (PLF ) in the very near future (t2 in �gure
3.1). This process is repeated each time a new �re-line feeds the process in
order to readjust the prediction as the �re goes on.

The GLUE software was coded in the C language. The program has a
simple structure showed in �gure 3.2.

Parameter Reception

Initialize

Parameter Sets creation

Main loop{

Fitness evaluation}

Ending

Simulation

(simula function)

Figure 3.2: GLUE: application structure

Some details about these stages are:

• Parameter Reception. The parameter set necessary is the following:
Parameters �le, for each parameter it contains information relative to
the �re model, values of climatic factors, etc. The format is: #Name
Inferior_Edge Superior_Edge; Real Fire File, it contains a matrix re-
presenting the evolution of the real �re. The cells have real values to
represent the time in which each cell has been burned. If this has not
happened, the value that appears is zero. This �le is used to initialize
the �re map, determining from which cells the �re will propagate; Time
interval to de�ne the simulation, the third and fourth value that sys-
tem receives are the times between which the simulation is considered.
These times have to be �xed in minutes.
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• Initialize. The initialization stage consists of dynamic creation of
matrixes which will contain the initial �re map. Note that in Parameter
Sets Creation stage, the generation of each set is made in a random
way, and these random sets will keep invariant for each simulation step.

• Main Loop. The main loop is in charge of calculating the �tness
for each set of parameters. The obtained results are sent to a �le
for a posterior analysis. In order to have a fault tolerant system, every
certain number of iterations the current state is recorded in a 'backup'.
Consequently, if the system falls, execution would continue from the
closer saved point recorded. Once all iterations have been concluded,
it is possible to calculate the ignition probability to each cell.

• Output. GLUE method continuously generates output �les containing
information about parameters sets and their �tness and likelihood.

Figure 3.3 shows that it is possible to match a Master-Worker struc-
ture with the GLUE scheme. As we can observe, the Master process has
a data reception stage which will be followed by an initialization stage for
data structures. Once these initial stages have been carried out, the Mas-
ter process will enter its main loop. In the main loop, the Master process
distributes scenarios to the workers, waits for results, receives results and
distributes more data to idle workers (if there are more parameters sets to
simulate).

The Worker structure is complementary. It is necessary to add a data
reception stage (to initialize terrain size, slope). Following this, it enters a
loop to receive scenarios from the Master process to activate the simulation
function for calculating �re spread.

3.2 Evolutionary Computation

The prediction method proposed by B. Abdalhaq in [3] and commented in
this section is a step forward in respect of the classical methodology. This
approach also focuses on overcoming the input-parameter uncertainty pro-
blem by introducing the idea of applying an optimization scheme to calibrate
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(simula function)

Figure 3.3: How Master-Worker is matched to the GLUE structure

the set of input parameter with the aim of �nding an optimal set of inputs,
thus improving the results provided by the �re-spread simulator. The aim
of the optimization process is to �nd a set of input parameter to feed the
simulator; this set should describe �re behavior in the past. Therefore, the
idea is to expect that the same set of parameters could be used to improve
the prediction of �re behavior in the near future by assuming that these
parameters will remain valid for a period of time (predictability limit).

3.2.1 Method description

Formally, optimization is associated with the speci�cation of a mathematical
objective function (called L) and a collection of parameters that should be
adjusted (tuned) to optimize the objective function. This set of parameters
is represented by a vector referred to as θ∗. Consequently, we can formulate
an optimization problem as follows:

Find θ∗ that solves minθ∈SL(θ)

where L represents some objective function to be minimized (or maximized).
The optimization problem deals with the aim of de�ning a process to �nd
a setting for the parameter vector θ, which provides the best value (mi-
nimum or maximum) for the objective function L. This search is carried
out according to certain restrictions of the values that each parameter can
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take. The whole range of possibilities that can be explored in obtaining the
optimization goal is called the search space, which is referred to as S.

After accommodating the �re prediction elements to this optimization
description, the resulting scheme is shown in �gure 3.4.

RFL0 RFL1 RFL2

FF OPTFS FS PFL
Optimal Input

ParametersInput Parameters

t = t0 t = t1 t = t2

time

CS

Figure 3.4: Evolutionary wildland �re prediction method

Now we will see the correspondences between the depicted boxes and the
optimization components. First of all, the vector θ corresponds to the set of
input parameters to be optimized. The length of this vector will depend on
the underlying simulator, but in general, as the majority of �re simulators
are based on the above-mentioned Rothermel model, it will not have less
than 10 components.

Both, the �re simulator (FS box) and the �tness function (FF box),
conform the objective function L together. Finally, the OPT box will include
the optimization strategy selected to solve the problem. The goal of the
optimization strategy consists in generating a new set of input parameters,
which minimizes the underlying error prediction, taking into account the
information provided by L (FS and FF boxes). The optimization process is
performed in an iterative way, which is represented in �gure 3.4 by the dotted
arrow. This feedback loop will be repeated until either a �good� solution is
found or a predetermined number of iterations has been reached. At that
point, an �optimal� set of input parameters might be found, which will be
used as the input set for the underlying �re simulator, in order to obtain the
predicted position of the �re front (PLF ) in the very near future (t2 in �gure
3.4). This process is repeated each time a new �re-line feeds the process in
order to readjust the prediction.
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3.2.2 Method implementation

A great improvement at the time of making implementation is to consider not
only one guess at a time, but a wide set of guesses and, based on the results
obtained for all of these, to automatically generate a new set of guesses and
re-evaluate the objective function for them.

If this extended optimization procedure is applied to the evolutionary
prediction scheme, we obtain the extended scheme depicted in �gure 3.5.

RFL0 RFL1 RFL2

FF

OPT

FS

FS PFL
Optimal Input

Parameters

Input Parameters 1

t = t0 t = t1 t = t2

time

FFFS
Input Parameters 2

FFFS
Input Parameters n

Figure 3.5: Parallel implementation of the evolutionary wildland �re predic-
tion method

Having in mind the optimization goal, an optimization framework called
BBOF (Black-Box Optimization Framework) [1] was developed, which con-
sists of a set of C++ abstract-based classes that must be implemented in
order to �t both the particular function being optimized and the speci�c
optimization technique. Because these two elements are independent of each
other, it is possible to experiment in a �plug&play� fashion with di�erent
complex objective functions and optimization techniques. BBOF works in
an iterative way, where it moves step-by-step from an initial set of guesses
to a �nal value that is expected to be closer to the optimal vector of para-
meters than the initial one. This goal is reached because, at each iteration
of this process, a preset optimization technique is applied to generate a new
set of guesses that should be better than the previous one. Schematically,
this process proceeds with the following iterative steps:
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1. Create a set of initial vectors randomly or distributed around some
expected vector of parameters.

2. Evaluate the objective function for each vector.

3. Apply an optimization technique to move from the current set of vec-
tors to a better set.

4. Repeat 2 and 3 until satisfying the exit conditions (number of iterations
or accepted value).

This optimization scheme is adequate to be implemented into the Master-
Worker [37, 71] programming paradigm working in an iterative scheme.
An iterative Master-Worker application consists of two entities: a Master
and multiple Workers. The Master process is responsible for decomposing
the problem into small tasks (and distributing these tasks among worker
processes), as well as for gathering the partial results in order to produce
the total result of computation. The Master also runs the code of the opti-
mization algorithm as it is shown in �gure 3.6. The worker processes receive
a message from the Master indicating the next task. Each worker processes
the task, and sends the result to the Master. The Master process may carry
out certain computation while tasks of a given batch are being completed.
After that, a new batch of tasks is assigned to the Master, and this process
is repeated several times until completion of the problem.

Master

RFL0 RFL1 RFL2

FF

OPT

FS

FS PFL
Optimal Input

Parameters

Input Parameters 1

t = t0 t = t1 t = t2

time

FFFS
Input Parameters 2

FFFS
Input Parameters n

Worker 1

Worker n

Figure 3.6: How the Master-Worker scheme is applied over BBOF elements
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Subsequently, we comment the most relevant classes within BBOF [3].

• BBOF_objective_function this class corresponds to the objective
function to be optimized. This is the only function that the user has to
change if he or she wants to optimize a di�erent objective function. It
takes an individual, evaluates the objective function according to the
parameters vector and modi�es the individual to hold the objective
function evaluation result. This class executes on the worker.

• BBOF_guess this class is identi�ed with a vector of real numbers
and the value of the objective function. This class represents the in-
formation related to the tasks to be executed by the workers.

• BBOF_guess_set is a set of BBOF_guess classes (vector guesses)
and the current iteration number. One important method within this
class is the method denoted by BBOF_optimization_technique, which
is the optimization technique to be applied. This class keeps the best
individual and it generates a report about the set characteristics and
status (like average of the �tnesses and standard deviation).

It is possible to match each element of this Master-Worker scheme with
the main components of the iterative optimization framework BBOF. Since
evaluations of the objective function for each guess are independent from
each other, they can be identi�ed as the work done by the workers. The
responsibility for gathering all the results from the di�erent workers and for
generating the next set of guesses by applying a given optimization technique
will be centralized on the Master process.

This framework also was developed to be executed on a cluster system
and to use MPI [51] for communication.
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Chapter 4

S2F 2M - Statistical System for
Forest Fire Management

�Todas las teorías son legítimas y ninguna tiene importancia. Lo que importa
es lo que se hace con ellas.�

Jorge Luis Borges

This chapter focuses on the complete description of the proposed method
S2F 2M . The S2F 2M characteristics and its implementation details are
analyzed.

As we described in chapter 3, it is possible to minimize the input parame-
ter problem by using techniques such as parameter optimization [2]. These
techniques have the aim of determining, as precisely as possible, the values
of the input parameters that provide a �re spread prediction as close as po-
ssible to the real �re propagation. The method described in this chapter
also concentrates its e�ort on processing the input parameters in order to
improve the �re propagation prediction. However, instead of searching for
an unique 'good' solution, our goal was to develop a methodology based on
statistical analysis to determine the most probable behavior of a forest �re.
S2F 2M (Statistical System for Forest Fire Management) [17] does not feed
the simulation core with �known� single values, but rather carries out a set of
simulations considering a range of possible values for the input parameters
that are more uncertain.

47



Originally, this method was conceived as a statistical system to be useful
as a part of a decision support system (DSS) [59]. However, during the initial
development process and after the experimentation study published on [16],
we glimpsed the possibility of applying the underlying concepts of the system
as a prediction method.

4.1 Method description

The methodology of S2F 2M is based on statistics. There are two possible
ways of collecting data about an event. In an observational study the
researcher only takes notes without interacting in the situation. Data are
obtained as they appear. Another way is through designed experiments.
In this kind of experiments it is possible to make deliberate changes in the
controlled variables of a system or process. Results are observed and then
it is possible to either make an inference or make a decision about variables
that are responsible for changes. When there are a lot of signi�cant factors
involved (i.e. weather, wind speed, slope, etc.), the best strategy is to use a
factorial experiment. A factorial experiment is one in which the factors
vary at the same time [47] (for example, wind conditions, moisture content
and vegetation parameters). A scenario represents each particular situation
that results from a set of values.

For a given time interval, we want to know whether a portion of the
terrain (called a cell) will be burnt or not. If n is the total number of
scenarios and nA is the number of scenarios in which the cell A was burned,
we can calculate the ignition probability as:

Pign(A) = nA/n

The next step is to generalize this reasoning and apply it to some set of
cells. As a consequence, we obtain a matrix with a value associated to each
cell that represents the probability of each cell to be catch by the �re (Pign)
taking into account n scenarios. The set of cells whose Pign value is bigger
or equal to a certain particular value PK , where 0 ≤ PK ≤ 1, conforms what
we call the probability map with probability PK .
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It should be noticed that, although two di�erent cells may have the same
Pign() value, this does not mean that the set of parameters that generate this
probability in each cell should be the same. Consequently, it is not possible
to know the set of scenarios that generate a particular probability map.

0 1/4 1/4

1/4 1 1/2

1/2 3/4 1/2

burned cell

unburned cell

0 1 2

0

1

2

a) b) c) d)

e)

Figure 4.1: Example of cells probability

Figure 4.1 shows a simple case to exemplify this fact. For this simple
example the number of scenarios is equal to 4 and the outputs produced by
the simulator for each scenario are supposed to be the ones depicted in �gures
4.1.a, 4.1.b, 4.1.c and 4.1.d respectively. The �nal map provided by S2F 2M

once Pign() has been evaluated for each cell would be the matrix shown in
�gure 4.1.e. As we can observe, there are three cells with Pign() = 1/2,
however, the Pign() for cell (2,0) has been obtained as an overlapping of
results provided by scenarios a and c, whereas the Pign() of cell (2,2) is
obtained from scenarios a and b. Therefore, since the number of cells is high
in a real case and the number of scenarios is a huge number too, to determine
the set of parameter (scenarios) that generate a particular Pign() value in an
individual cell becomes an impracticable task.

Once we have obtained the output matrix, which includes all the pro-
bability maps, the next step consists on comparing the real �re against this
matrix. The objective of such a comparison is to search for a particular
value of Pign whose associated probability map provides the best matching
with the real �re propagation. In other words, we are interested on �nding
what we refer to as a Key Ignition number (Kign), which accomplishes the
following condition:
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{x : Pign(x) >= Kign/n | Kign ∈ N}

with n equal to the number of scenarios and Pign(x) varying from Kign/n to
1, i.e., the set of cells (x) which have been burned at least Kign times.

We can clarify this concept graphically. See �gure 4.2. In this example,
the objective is �nding an horizontal cut in the cone (for us, this value will
be the Kign value), hoping that the surface of that section will result similar
to the real surface (in our case, this second surface corresponds to the real
�re area).
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Figure 4.2: Graphic scheme of S2F 2M method

For height a, the �tness is f(a), for b is f(b), and so on. In the inferior
part of the �gure we can see the superposition of sections. At least, between
these four situations it is possible to identify that in b case the cut surface is
very close to the real area. Then, we have found a Kign (b in the example)
which de�nes a similar area to the real situation. So we can use this value to
predict in the next step the possible �re behavior; this means the cut with
height b in the next cone will be the prediction.

A scheme of a whole prediction system is presented in �gure 4.3. As
we can observe, the prediction process needs a calibration stage just at the
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beginning (time period that goes t0 to t1 in �gure 4.3) to �rstly obtain a
Kign value to start-up the prediction chain. Once this �rst Kign has been
obtained, both the prediction operation for time ti and the calibration stage
for time ti + 1 will be overlapped on time ti + 1. This situation is the one
depicted in �gure 4.3 for time t2. As we can observe, the output generated
by SS box (Statistic System) is used for a double purpose. On one hand,
the probability maps are used as an input of the SK box (Search Kign) to
search for the current Kign, which will be used at the next prediction time
(t3). On the other hand, the SS box output enters a Fire Prediction box
(FP), which will be in charge of generating the prediction map for time t2

taking into account the Kign evaluated at t1. This process will be repeated
in time as the system is 'fed' with new information about the �re situation.

RFL0 RFL1

SSFSInput

Parameters

t = t0 t = t1

time

Input

Parameters

SK FF

RFL2

FS PFL

t = t2

CSCS FP

Figure 4.3: S2F 2M implementation scheme

S2F 2M uses a forest �re simulator as a black box which needs to be fed
with di�erent parameters in order to work. A particular setting of the set of
parameters de�nes an individual scenario. These parameters correspond to
the parameters proposed in the Rothermel model [61].

For each parameter we de�ne a range and an increment value, which are
used to move throughout the interval. For a given parameter i (which we will
refer to as Parameter_i) the associated interval and increment is expressed
as:

[Inferior_threshold_i, Superior_threshold_i], Increment_i

Then, for each parameter i, it is possible to obtain a number Ci, which
expresses the parameter domain cardinality, i.e. how many di�erent values
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could take the parameter i according to its associated interval and increment.
Parameter Domain Cardinality is calculated as follows:

Ci =
((Superior_threshold_i− Inferior_threshold_i) + Increment_i)

Increment_i

Finally, from cardinality of each parameter it is possible to calculate the
total number of scenarios obtained from variations of all possible combina-
tions:

#Scenarios =
p∏

i=1

Ci

where p is the number of parameters.

4.2 Method implementation

S2F 2M system has been completely written in C language for some simple
reasons: the code of the simulator �reSim is written in ANSI C and is ne-
cessary to include it within the S2F 2M ; the language is quite powerful and
has good economy of expression.

The basic program structure can be seen in �gure 4.4.

Parameter Reception

Initialize

Main loop

Probabilities calculation

Output

Simulation

(simula function)

Figure 4.4: S2F 2M : application structure

Following, we explain some details about these stages (see [16] for a
comprehensive review of this theme).

• Parameter Reception The �rst part of the system is the data recep-
tion. The necessary parameters set is the following: Parameters �le,

52



for each parameter it contains information relative to the �re model,
values of climatic factors, etc. The format is: #Name Inferior_Edge
Superior_Edge Increase; Real Fire File, it contains a matrix repre-
senting the evolution of the real �re. The cells have real values to
represent the time in which each cell has been burned. If this has not
happened, the value that appears is zero. This �le is used to initia-
lize the �re map, determining from which cells the �re will propagate;
Time interval to de�ne the simulation, the third and fourth value the
system receives are the times between which the simulation is consid-
ered. These times have to be �xed in minutes; Output File, it is only
necessary a name for this �le. It will have an analogous format to the
real �re, but instead of time, it will contain the number of times that
each cell has been burned.

• Initialization The initialization stage consists on dynamic creation of
the matrixes that will contain the initial �re map and the map that will
be accumulating the number of scenarios in which each cell has been
burned. The cardinal number is calculated as well for each parameter
in this section of the program. This is necessary to know which value
must have each parameter in each of the di�erent scenarios.

• Main Loop Its value is calculated for each one of the parameters for
the present number of scenario. Once all the values have been updated,
it is possible to call to the simula() function. The function returns
a matrix which will be added to a Sumas matrix. Over this matrix
is computed the Pign which will be used in the next step to compute
the prediction (represented as �tness). To provide S2F 2M with fault
tolerance, each certain number of iterations is recorded in a �le with
the present state of the �re front (backup). If the system failed, the
execution would continue from this point. Once all the iterations have
been concluded, it is possible to calculate the ignition probability for
each cell.

• Simulation Function simula() receives a set of parameters. The �rst
consist of a structure containing the parameters values (wind, slope,

53



moisture, etc.), the second parameter corresponds to the ignition map
and the following parameters are the map dimension and the cells size.
With these data, the function e�ectuates the simulation and returns
the resultant map.

• Output In this section of the program, to have a better representation
of the output, the Gnuplot library has been used [36] to generate a
graph from the collected data. An example is showed on �gure 4.5

Figure 4.5: The system shows a view in three dimensions, in which X-Y axes
indicate the cells division, and Z axis shows the ignition probability for each
cell

To reduce the execution time we used multiple computational resources
working in parallel to obtain better e�ciency. Keeping in mind the nature of
the problem that S2F 2M tries to solve, we believe a Master-Worker architec-
ture is suitable to achieve this aim, because a main processor can calculate
each combination of parameters and send them to a set of Workers. These
Workers carry out the simulation and return the map to the Master. This
resulting map indicates which cells are burned and which are not.
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4.3 Parallelizing S2F 2M

The Master-Worker paradigm is based on real world organizations. It con-
sists of two entities: a Master and multiple Workers. The Master is respon-
sible for decomposing the problem into small tasks and distributing these
tasks among a farm of Workers processes, as well as for gathering the par-
tial results in order to produce the �nal result of computation. The Workers
processes receive a message from the Master with the next task, and send the
result to the Master. The Master process may carry out some computations
while tasks of a given work are being completed.

In the �gure 4.6 we see that it is possible to match the Master-Worker
structure with the S2F 2M scheme. The Master process has a data reception
stage. After this there is an initialization stage for data structures. In the
main loop, the Master process distributes scenarios to the Workers, waits for
results, receives results and distributes more data to idle Workers (if there
are more scenarios to simulate). Finally, it gives a graphical output.
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Figure 4.6: S2F 2M structure related to a Master-Worker scheme

The Worker structure is complementary. It is necessary to add to it a
data reception stage (to initialize terrain size, slope). After this, it enters a
loop to receive scenarios from the Master process to activate the simulation
function for calculating �re spread.

The method works using all possible solutions to �nd the Kign number.
The SS box needs the resulting map of each simulation. While each simula-
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tion is independent from the others, we can evaluate them in parallel (�gure
4.7). We can assign for each available processor a scenario to be simulated.
Following, the Master process needs to collect these results. Once the SS

box has added all results, the system does two things: FP box makes the
prediction using the map resulting from SS box, and SK box calculates the
Kign for the next step. See [16] for more information.
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Figure 4.7: How Master-Worker is matched to the S2F 2M structure

4.4 Tests on synthetic forest �res

Before beginning with tests on real cases, we thought that an important
assay was to evaluate the S2F 2M 's capacity to �nd a Key Ignition Number
(and, hence, a good prediction level) in a synthetic forest �re.

First of all, it is necessary to explain the concept of synthetic forest �re. A
synthetic forest �re consists of an arti�cial forest �re obtained using a forest
�re simulator and known input parameters. Thus, all in it is synthetic: the
terrain dimension, the slope, the type of fuel, meteorological conditions and
the beginning �re line. We feed the simulator with a particular set of values
which have been set up in a manual way, and then we obtain as output a map
that represents the spread of this synthetic �re after a certain period of time.
Now, we use this map as input for S2F 2M , and we de�ne a range �le that
includes the original values for each parameter. This is a good manner to
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test the S2F 2M 's behavior (although it can be used on di�erent methods).
Following, we will see an example. Here, we show only one case with three

di�erent interpretations according to time and steps. The shape reached by
this synthetic forest �re is showed on �gure 4.8, and table 4.1 presents the
initial values for each parameter.

Figure 4.8: Synthetic plot behavior viewed in minutes

We made this case with similar characteristics to the real cases. The plot
dimension are: 31 columns by 41 rows, with a cell of 1 m2.

Parameter Value

Model 2
Wind Speed 2.01

Wind Direction 60
Slope 7
Aspect 180

Moisture 1h 0.1
Moisture 10h 0.3
Moisture 100h 0.5
Moisture herb 0.1

Table 4.1: Parameter values for a synthetic forest �re

The parameters �le is shown in table 4.2. It give us a number of scenarios
equal to 56940.

We have divided the experimental study in three cases which have been
done in the same synthetic forest �re. The di�erence between the experi-
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Parameter Initial Final Step
Model 1 13 1
WindSpd 0.67 10.28 0.67
WindDir 0.0 360.0 5.0
Slope 7.0 7.0 1.0
Aspect 180.0 180.0 1.0
M1 0.1 0.3 0.2
M10 0.1 0.5 0.2
M100 0.1 0.5 0.2
Mherb 0.1 0.1 1.0

Table 4.2: Parameters �le for synthetic plot

ments consists of: initial time, �nal time and step duration. In tables 4.3,
4.4, 4.5, 4.6, 4.7 and 4.8, we show in pairs the �tness values reached on three
experiments, but we do not only show the �tness as a prediction result; we
also present the �tness found during the stage of search for the Key Ignition
Number. Furthermore, we present the same results for the best individual
scenario (i.e., among all scenarios analyzed, we look for the best scenario to
check if there really is a set of parameters that �ts with the forest �re in
each interval of time).

Interval Ignition Found Predicted
Time Number Fitness Fitness
1-3 17545 0.5600 ...
3-5 17144 0.6779 0.6694
5-7 20112 0.7078 0.6888
7-9 20395 0.7105 0.7066

Table 4.3: Fitness of �rst experiment on synthetic forest �re for S2F 2M

method

In order to understand better the information listed on the following
tables, it is necessary to explain some things about the numbers they include.
Let us analyze an individual row of any table. The �rst column represents
the time interval where the simulation has been done (for example 1-3 means
an analysis between minute 1 and 3 on table 4.3). The second column has
a di�erent meaning depending on which table we analyze. In tables 4.3, 4.5
and 4.7 that column is the Key Ignition Number (Kign). On the one hand, as
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we saw in section 4.1, the Key Ignition Number represents an addition which
optimizes the �tness value for the current step. The other tables simply lists
the Scenario Number that provides the best �tness.

Interval Scenario Found Predicted
Time Number Fitness Fitness
1-3 16602 1.0000 ...
3-5 45266 0.9540 0.8965
5-7 2367 0.9621 0.9621
7-9 45266 0.9388 0.9388

Table 4.4: Fitness of �rst experiment on synthetic forest �re for the best
scenario of S2F 2M method

Interval Ignition Found Predicted
Time Number Fitness Fitness
2-4 16386 0.6641 ...
4-6 17917 0.6724 0.6690
6-8 18206 0.7153 0.7050
0-10 20414 0.7538 0.7264

Table 4.5: Fitness of second experiment on synthetic forest �re for S2F 2M

method

Interval Scenario Found Predicted
Time Number Fitness Fitness
2-4 45266 0.9836 ...
4-6 2366 0.9396 0.9017
6-8 45266 0.9610 0.9325
8-10 45266 0.9554 0.9554

Table 4.6: Fitness of second experiment on synthetic forest �re for the best
scenario of S2F 2M method

The third column represent the �tness found when the Key Ignition Num-
ber is applied to the current time (0.56 for the same example), or the �tness
found for the scenario identi�ed in the second column, if we consider the
table of the best case (the �tness value for scenario number 16602 is equal to
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1.0, that is to say the perfect �tness, on table 4.4). Finally, the last column
exhibits the value of �tness corresponding to the application of the key Ig-
nition found in the previous step, or the �tness value corresponding to the
best scenario found in the previous step.

As we can see, on the �rst row this value does not appear because we
need the �rst step to look for the Key Ignition Number. Therefore, in this
step is not possible to do a prediction about the �re behavior. We can make
these two activities in the following steps.

Interval Ignition Found Predicted
Time Number Fitness Fitness
4-5 15876 0.7507 ...
5-6 20106 0.7029 0.7000
6-7 20289 0.7582 0.7341
7-8 16361 0.7055 0.7004

Table 4.7: Fitness of third experiment on synthetic forest �re for S2F 2M

method

Interval Scenario Found Predicted
Time Number Fitness Fitness
4-5 1952 0.7812 ...
5-6 45656 0.8275 0.7088
6-7 1994 0.8243 0.7808
7-8 2746 0.8372 0.7976

Table 4.8: Fitness of third experiment on synthetic forest �re for the best
scenario of S2F 2M method

In general, we can observe that the best scenarios achieve very good
�tness values, and hence, the S2F 2M response is also good.

On one hand, seeing in detail the �tness values for S2F 2M , we discover
that in average we are obtaining �tness equal to 0.7027. On the other, the
individual predictions done by single scenarios, are very high. In average
they give us a �tness equal to 0.8749.
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Chapter 5

Comparative Study on Real
cases

�[...] a me pare che quelle scienze siano vane e piene di errori, le quali non
sono nate dall'esperienza, madre di ogni certezza, e che non terminano in
nota esperienza, cioè che la loro origine o mezzo o �ne non passa per nessuno
de' cinque sensi.�

Leonardo Da Vinci

Once the descriptions and analysis of each method have been concluded,
we e�ectuate diverse tests to evaluate and to compare these methods. Such
tests were performed with real prescribed �res. The information about the
burns was obtained in Portugal1.

Along this chapter we will concentrate on describing the experiments
related to �re on �elds. Over them we will analyze the obtained results.

5.1 Platform description

The results presented in this chapter, were obtained by executing the S2F 2M

system on a cluster computer. The used cluster is composed by 32 PCs with
the same basic hardware con�guration, what allow us to consider the group
as homogeneous.

1ADAI Laboratory (Association for the Development of Industrial Aerodynamics) -
Coimbra, Portugal
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The con�guration was the following:

• Processor PENTIUM IV 3.0 Ghz

• 1 GB DDR-SDRAM 400 Mhz

• Ethernet card Broadcom NetXtreme Gigabit

Furthermore, the operating system installed was Fedora Core 4. All the
machines were con�gured to use NFS (Network File System) based on one
server which has the same characteristics of the machines. The middle-
ware used to make parallel programs was MPI [40, 41]. MPI is a library
speci�cation for message-passing. It is basically composed of a programming
interface de�nition plus a binding collection for more extended languages in
the parallel computer user community (C and FORTRAN).

5.2 Terrain description

The study area is located in Central Portugal (Gestosa, 40◦15'N, 8◦10'O), in
a hillside of Serra de Lousã whose altitude is between 800 and 950 m above
sea level. The burns were part of the SPREAD project [64] (Gestosa �eld
experiments 2002 and 2004 [34]). The experiments of Gestosa �eld began
in 1998 and have �nished in December 2004, and aimed to collect experi-
mental data to support the development of new concepts and models, and
to validate existing methods or models in various �elds of �re management.
These experiments involved several research teams from the European Union
and covered a very extensive characterization of variables related to the �re
behavior.

To safeguard the safety of the burns and to carry out di�erent sorts of
tests and measurements, the terrain was divided into dedicated plots with
regular shape and dimensions separated by �rewalls to limit �re spread and
to keep it inside the desired boundaries during each burn.

These experimental burning plots were established in Forest Service lands,
in Gestosa forestry perimeter. Figure 5.1 presents a picture of the area.

The characteristics of the �ve plots used in our study (dimensions, slope
and height) are showed in table 5.1.
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Figure 5.1: Gestosa area photography

Plot Width m Length m Slope

520 89 91 18◦

533 95 123 21◦

534 75 126 19◦

751 20 30 6◦

752 20 30 6◦

Table 5.1: Plot characteristics for each experiment

In general, these experimental plots are located together, in the same
vegetation mosaic, which consists in shrub with some isolated Pinus pinaster
trees. Three arboreal species are dominant in the area: Erica umbellata,
Erica australis and Chamaespartium tridentatum.

5.3 Experiment description

During the experiments, di�erent plots have been burned, each one to study
di�erent aspects related to forest �res ( e�ect of retardants, smoke produc-
tion, analysis of behavior patterns, etc.). As we mentioned, we worked with
�ve plots: 520, 533, 534, 751 and 752, which were represented as follows:

• Plot 520: by means of a grid of 89 columns x 109 rows (each cell was
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1m x 1m).

• Plot 533: by means of a grid of 95 columns x 123 rows (each cell was
1m x 1m).

• Plot 534: by means of a grid of 75 columns x 126 rows (each cell was
1m x 1m).

• Plot 751: by means of a grid of 60 columns x 90 rows (each cell was
0.333m x 0.3333m).

• Plot 752: by means of a grid of 60 columns x 90 rows (each cell was
0.333m x 0.3333m).

In order to gather as much information as possible about the �re-spread
behavior, a camera recorded the complete evolution of the �re (�gure 5.2).
The video obtained was analyzed and several images were extracted every
certain quantity of minutes according to the experiment.

Figure 5.2: Ground and aerial cameras recorded the experiments

From those images, the corresponding �re contours were obtained and
converted to cell format in order to be correctly interpreted by the program
involved in the di�erent prediction methods. In �gure 5.3, we can observe
one frame of the recorded �eld �re (�gure 5.3.a). Figure 5.3.b shows the
obtained �re front after processing the recorded image.

From picture on �gure 5.3(b), which �rst must be corrected according
to the perspective, we obtain a set of pairs representing coordinates. Af-
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(a) (b)

Figure 5.3: (a) Real �re during the burns (plot 520) (b) Fire line obtained
from the image on minute 8

terwards, these pairs were processed for creating a matrix representing the
burned cells. On �gure 5.4 we can see a simple example to illustrate this
transformation.

" 1", .403106497148371, .523973611081191

" 2", .30086444867948, 13.9068026572691

" 3", 9.0719095850867, 26.680575377737

" 4", 13.4357997465183, 32.3293352848914

" 5", 25.426459206945, 36.8424206669448

" 6", 28.537895613538, 34.7417603150042

" 7", 39.3868624187337, 39.0930578754336

" 8", 46.2945741017092, 33.1357010887857

" 9", 52.9533242027606, 38.2149280957073

" 10", 61.619179282736, 33.3658656028762

" 11", 69.7194488684484, 34.4576323020525

" 12", 78.5090958879127, 43.2714157108274

" 13", 81.285584035602, 41.8754432213699

" 14", 87.8836578502442, 30.201163198811

" 15", 88.2257621152451, 1.23252408601981

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 8 8 8 8 0 0 8 8 0 0 0 8 0 8 8 8 0

0 0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 0 8 8 8 8 8 8 8

0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Figure 5.4: Conversion of pairs of �re line on a matrix which indicate the
time of burn on each cell

5.4 Fitness Function

As we previously mentioned, it is necessary to de�ne a criterion to compare
the results of each method with reality. To evaluate the system's response we
de�ned a �tness function. Since the simulator uses an approximation based
on cells, the �tness function is de�ned as a quotient. The following equation
shows the expresion:
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Fitness =
(#cells

⋂−#IgnitionCells)
(#cells

⋃−#IgnitionCells)

where, #cells
⋂ represents the number of cells in the intersection between

the simulation results and the real map, #cells
⋃ is the number of cells in the

union of the simulation results and the real situation, and #IgnitionCells

represents the number of burned cells before starting the simulation.
Figure 5.5 shows an example of how to calculate this function for a terrain

made of 5x5 cells. In this case, the �tness function is (7−2)/(10−2) = 0.625.

Real burned area Simulated burned area cells in the union cells in the intersection

� ���� �

in the interseccionburned cells in the unionignition burned cells

�

Figure 5.5: Calculating the �tness for a 5 x 5 cell terrain

A �tness value equal to one corresponds to the perfect prediction because
it means that the predicted area is equal to the real burned area. On the
other hand, a �tness equal to zero indicates the maximum error, because in
this case our experiment did not coincide with reality at all.

5.4.1 Fitness function on GLUE

An important point to emphasize before analyzing the results, is a clari�ca-
tion about GLUE predictions. When we did the experiments using GLUE,
we discovered a problem related to the method. According to the metho-
dology explained in section 3.1, the GLUE idea is that a set of scenarios
improve their likelihood while the steps are being simulated. In this manner,
those good sets of parameter can distinguish themselves from others not so
good. Therefore, after certain steps, we could have a population of good
cases. However, after experimentation, we discovered that no case stands
out about the others. The possible reason is that no scenario can maintain
itself as better over all steps. This is straightforward to prove. If we see
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the values obtained by each parameter in every scenario, we discover that
sometimes they reach a very high �tness, and, we think, they will reach an
interesting likelihood. However, normally those good scenarios do not ob-
tain an acceptable �tness in the next step. Then, their likelihoods can not
improve, and, �nally, none can be chosen as a good scenario due to the fact
that all have similar values.

Finally we do not use the concept of likelihood during experimentation,
instead we only use �tness, and we choose the best set of parameters (sce-
nario) to use in the next step.

The following values are an example of the previous explanation. They
have been obtained from a simulation of each plot. In the tables it is possible
to compare how working with �tness values instead of using the likelihood
concept improves predictions.

Observing Likelihood Observing Fitness
Time Likelihood Fitness Likelihood Fitness
6.0 0.000010 0.0098 0.000052 0.4188
8.0 0.000047 0.3236 0.000059 0.6907
10.0 0.000064 0.2559 0.000068 0.3014
12.0 0.000052 0.2300 0.000061 0.7675
14.0 0.000078 0.1889 0.000079 0.2093

Table 5.2: Plot 520. Comparison between values obtained by GLUE when
it worked with likelihood and when it worked using �tness

Observing Likelihood Observing Fitness
Time Likelihood Fitness Likelihood Fitness
6.0 0.000008 0.0000 0.000119 0.3554
8.0 0.000096 0.3071 0.000114 0.5788
10.0 0.000104 0.3672 0.000114 0.5748
12.0 0.000103 0.1899 0.000097 0.3646

Table 5.3: Plot 533. Comparison between values obtained by GLUE when
it worked with likelihood and when it worked using �tness

Observing the tables (5.2, 5.3, 5.3, 5.4, 5.6), we can easily verify that
it is not advisable to use the likelihood. As we have already explained, the
likelihood value does not improve, and since plots have changing climatic
conditions from one step to the following one, the set of parameters that
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Observing Likelihood Observing Fitness
Time Likelihood Fitness Likelihood Fitness
5.0 0.000010 0.0000 0.000124 0.2056
6.0 0.000098 0.2083 0.000158 0.5820
7.0 0.000175 0.6466 0.000175 0.6466
8.0 0.000171 0.4221 0.000167 0.5025
9.0 0.000136 0.1338 0.000149 0.3122

Table 5.4: Plot 534. Comparison between values obtained by GLUE when
it worked with likelihood and when it worked using �tness

Observing Likelihood Observing Fitness
Time Likelihood Fitness Likelihood Fitness
6.0 0.000007 0.0000 0.000041 0.6895
8.0 0.000045 0.5990 0.000050 0.7083
10.0 0.000051 0.5235 0.000057 0.6068

Table 5.5: Plot 751. Comparison between values obtained by GLUE when
it worked with likelihood and when it worked using �tness

better adapts to the situation usually is very di�erent in each step.
Furthermore, it is interesting to see that in many cases, the likelihood

obtained for prediction is even higher when we use Fitness as criterion.

Observing Likelihood Observing Fitness
Time Likelihood Fitness Likelihood Fitness
6.0 0.000008 0.0000 0.000041 0.5092
8.0 0.000037 0.3703 0.000041 0.4984
10.0 0.000043 0.6754 0.000047 0.4948

Table 5.6: Plot 752. Comparison between values obtained by GLUE when
it worked with likelihood and when it worked using �tness

Finally, after doing an intensive experimentation over GLUE, repeating
at least 15 times each experiment, we did not �nd any distribution around
the sets of parameters. Therefore, we conclude that an operational GLUE
should not work using the Likelihood pattern.

5.5 Experiments results

In this section, we will proceed to describe in detail each experiment and
the result of the comparison. We present some important information con-
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cerning the development of the experiments, namely the beginning and the
end time of each plot burning, information with regard to some particular
techniques to ignite the �re, and, obviously, the found �tness after applying
each method.

During the total burning time for each experiment, we picked up several
instants (t0, t1,... etc.). Then, we extracted a �re line from the recorded
�lm at each of the selected instants (RFL0, RFL1,... etc.). We used the
�rst �re line (RFL0) as the initial �re line. The duration of the simulation
time was equal to the time period we chose between the initial �re line time
and the next extracted �re line time (∆t1 = t1 − t0). The �re line that the
simulator creates when executed with these settings and a set of parameters
is the �re line predicted using the classical method. To evaluate the quality
of prediction, it is necessary to use the �re line extracted from the recorded
�lm at the next instance and to apply the Fitness function. In this work,
we do not evaluate the classical method because in previous works we had
proved that data driven methods (GLUE, S2F 2M and Evolutionary) are
better than classical [1, 2, 4, 17, 19].

Basically, the steps to apply the prediction methods are the following: We
used the �rst �re line as initial �re line (RFL0). We used the �re line for the
next time (RFL1) as the reference �re line to optimize the parameters. The
result of the optimization process is a set of parameters that minimizes the
prediction error (in GLUE or Evolutionary) or a Key Ignition value (Kign)
for S2F 2M . We substitute the expected parameters used in the classical
way with the optimized parameters resulting from the optimization process,
then as in the classical method, we run the simulator using the optimized
parameters to predict the �re line at the next instance t2 (in GLUE and
Evolutionary). At that moment, we have a �re line that predicts the �re line
at time t2. Then, as in the classical prediction method, we use the Fitness
function to estimate the prediction quality by comparing the estimated �re
line with the real �re line.

In the case of S2F 2M , we use the key Ignition value after calculating
all scenarios in the next instance t2 to show the behavior pattern. Also, the
prediction quality is calculated using the Fitness function.

When the burns time has reached the time t2, we repeat the same process,
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but advancing the time by one. The initial �re line becomes the �re line at
the time instance t1, and the real �re line to be used as reference will be at
the beginning of the time t2 and the time of the predicted �re line will be
t3, and so on till the end of available time instants.

It is important to remark that these methods need more �re lines than
the classical prediction time so we cannot apply it at the �rst time t1. In the
experiment, we want to compare three methods so, we cannot show some
result at the �rst time (t1) because we have no results to compare.

An important point to highlight before describing the results, is to men-
tion that the showed values for GLUE and Evolutionary method are the
average of ten executions. In the case of S2F 2M this is not necessary be-
cause it gives a deterministic result.

5.5.1 Experiment 1: Plot 520

According to the known information about the experiment and the models
of Rothermel, for some of the parameters certain ranges have been speci�ed.
A part of this information has been measured during the experiment, and
the remainder has been taken from standard values used by BehavePlus.
Therefore, ranges �le was de�ned as we show on table 5.7:

Parameter Initial Final Step
Model 1 13 1
WindSpd 0.67 10.289 0.67
WindDir 0.0 360.0 5.0
Slope 18.0 18.0 1.0
Aspect 180.0 180.0 1.0
M1 0.1 0.3 0.2
M10 0.1 0.5 0.2
M100 0.1 0.5 0.2
Mherb 0.1 0.1 1

Table 5.7: Parameters �le for Plot 520

In order to be able to compare all predictions methods, we need to �x an
initial time (t0) and a certain time step. These values have both been �xed
to 2 minutes. Observing the real case (�gure 5.6), we can see the burned area
between these times. Notice that in this �gure X-Y axes indicate the cells
division (89 x 91). And, according to the colour of each cell, it is possible
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to know the time of burn (black colour indicates not burned terrain). As
we can observe, this is a case of line ignition at bottom using pyrotechnic
devices.

Figure 5.6: Real spread for plot 520, considering steps of 2 minutes

After the application of each method, we obtained the �tness values
shown on table 5.8. The second row of the table means that if we are at
time 4 minutes and we make a prediction for 6 minutes, we will get a �tness
of 0.5345 for S2F 2M , 0.4188 for GLUE and 0.4513 for Evolutionary method.

Initial Final Fitness
Time Time S2F 2M GLUE Evolutionary
2.0 4.0 - - -
4.0 6.0 0.5345 0.4188 0.4513
6.0 8.0 0.7495 0.6907 0.6985
8.0 10.0 0.4413 0.3014 0.4173
10.0 12.0 0.7625 0.7623 0.6231
12.0 14.0 0.4354 0.2093 0.3956

Table 5.8: Comparative of found �tness in each method for plot 520

We can observe that the prediction proposed by S2F 2M always over-
comes the GLUE and Evolutionary methods. The highest �tness value
(0.7625) is reached at time 12. In fact, it is possible to observe that in
�nal time 10 and 14, the �tness value becomes signi�cantly lower. Since this
behavior has been observed in the majority of the analyzed cases, we provide
a more detailed discussion about this fact later on this chapter (section 5.6).
However, that value is still above GLUE �tness and above Evolutionary case.
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5.5.2 Experiment 2: Plot 533

The second experiment has a similar duration to the previous burning, ho-
wever, it is very di�erent. In the present case the �le of ranges exhibits
some di�erence with the previous one because the experiment presents other
characteristics: the wind speed is di�erent and also the slope. Finally, the
�le of ranges was de�ned as we show on table 5.9.

Parameter Initial Final Step
Model 1 13 1
WindSpd 12.97 26.619 0.8
WindDir 0.0 360.0 5.0
Slope 21.0 21.0 1.0
Aspect 180.0 180.0 1.0
M1 0.1 0.3 0.2
M10 0.1 0.5 0.2
M100 0.1 0.5 0.2
Mherb 0.1 0.1 1

Table 5.9: Parameters �le for Plot 533

In �gure 5.7 we can see the real area. It shows the �re spread at intervals
of 2 minutes. The �nal time has been �xed at minute 12. It is interesting
to see the wind e�ect. This is an experiment started with only one ignition
point. Because of direction and speed of wind, �re grows in an elliptical way.

Figure 5.7: Real spread for plot 533, considering steps of 2 minutes

After the application of each method, we obtained the �tness values
shown on the table 5.10.

This is an interesting case to analyze, because in it our method has a
lower �tness than the others on two of four points. Such a situation has
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Initial Final Fitness
Time Time S2F 2M GLUE Evolutionary
2.0 4.0 - - -
4.0 6.0 0.4745 0.3554 0.4326
6.0 8.0 0.5208 0.5788 0.8292
8.0 10.0 0.4675 0.5748 0.6914
10.0 12.0 0.4501 0.3646 0.6654

Table 5.10: Comparative of found �tness in each method for plot 533

an explanation, which is related to the method. If we look at �gure 5.8, in
this simple example we have only three scenarios. Scenario number 3 has a
behavior similar to the real case, but when we choose Pign(1) or Pign(2) or
Pign(3), we discover that on each case �tness is lower than those individual
cases.

scenario 3ignition point

P
ign

(1) P
ign

(2) P
ign

(3)
real case

Figure 5.8: Explanation

On the other hand, in this experiment it is interesting to observe that,
though the �tness reached by S2F 2M is not very high, the value obtained
by this function is really constant (around 0.5). This shows that although
simulator can not correctly reproduce the �re behavior, it attempts to follow
the real behavior (that, as we can see in �gure 5.7, is quite constant).

Finally, with exception of the �rst step, in this experiment the best results
are achieved by Evolutionary method.

5.5.3 Experiment 3: Plot 534

This experiment has similar characteristics to the previous one (the dimen-
sions are analogous and both are started with a single ignition point), but
its duration is inferior. The initial time t0 was chosen as minute 3. Since the
step was de�ned to one minute, the �rst adjustment was made on minute 4,
and, therefore, the �rst prediction was e�ectuated on minute 5.
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Parameter Initial Final Step
Model 1 13 1
WindSpd 0.0 19.014 1.5
WindDir 0.0 360.0 5.0
Slope 19.0 19.0 1.0
Aspect 180.0 180.0 1.0
M1 0.1 0.3 0.2
M10 0.1 0.5 0.2
M100 0.1 0.5 0.2
Mherb 0.1 0.1 1

Table 5.11: Parameters �le for Plot 534

The parameters �le is listed in table 5.11
If we compare the parameters �les of plots 534 and 533, it is possible

to distinguish the di�erence between the wind speed range. This is a very
important factor that could modify entirely the �re behavior.

Figure 5.9: Real spread for plot 534, considering steps of 1 minute

Figure 5.9 shows that in this case the wind speed is inferior that in the
previous one. However, the big problem is that the speed range is wider
than in the previous case. This factor is a very inconstant parameter, and,
although we consider the amplitude of variation of such parameter, this can
a�ect the prediction quality. Table 5.12 presents the obtained �tness.

It is interesting to observe that the three methods have a similar behavior
relating to the �tness reached: in all three cases the �tness function has an
ascendant behavior until a certain point (�nal time 7 for GLUE and S2F 2M ,
and �nal time 8 for Evolutionary). After this point, the �tness function
declines (only Evolutionary method maintains certain level).

As we mentioned before, for a more detailed explanation about this fact,
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Initial Final Fitness
Time Time S2F 2M GLUE Evolutionary
3.0 4.0 - - -
4.0 5.0 0.2565 0.2056 0.2162
5.0 6.0 0.5336 0.5820 0.4811
6.0 7.0 0.7036 0.6466 0.6358
7.0 8.0 0.6074 0.5025 0.7728
8.0 9.0 0.4161 0.3122 0.7468

Table 5.12: Comparative of found �tness in each method for plot 534

we provide discussion about it later on this chapter (section 5.6).

5.5.4 Experiment 4: Plot 751

This is another short experiment. The reason is the reduced plot size. For
this cause, the representation was 60 x 90 cells, using a smaller cell size. In
this way, we can obtain a better de�nition. The duration of the burn in the
experiment is 9 minutes. In this case, we applied the methods four times at
time instances 4, 6, 8 and 10 minutes. The table 5.13 shows the parameters
range. The value of slope is 6 degrees, therefore, the land inclination is not
a determinant factor in the �re behavior, at least for this case.

Parameter Initial Final Step
Model 1 13 1
WindSpd 0.0 12.3 0.67
WindDir 0.0 360.0 5.0
Slope 6.0 6.0 1.0
Aspect 180.0 180.0 1.0
M1 0.1 0.3 0.2
M10 0.1 0.5 0.2
M100 0.1 0.5 0.2
Mherb 0.1 0.1 1

Table 5.13: Parameters �le for Plot 751

In �gure 5.10 we can observe that the lines of the �re appear regularly,
which re�ects that the �re is quite continuous. Also, we can see that this is
another case of linear ignition, started with pyrotechnic devices.

The results are summarized in table 5.14. Once again we can easily
conclude that S2F 2M method provides better results than the GLUE scheme
and Evolutionary method.
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Figure 5.10: Real spread for plot 751, considering steps of 2 minutes

Initial Final Fitness
Time Time S2F 2M GLUE Evolutionary
2.0 4.0 - - -
4.0 6.0 0.8819 0.6895 0.8230
6.0 8.0 0.7917 0.7083 0.7450
8.0 10.0 0.7073 0.6068 0.7068

Table 5.14: Comparative of found �tness in each method for plot 751

5.5.5 Experiment 5: Plot 752

The last experiment, as the previous, has a reduced plot size. For this reason,
once again we de�ne a small cell size to maximize the number of cells in the
grid. We de�ned the cells dimensions equal to the Plot 751. The duration
of this experiment was very short. A possible reason is the wind e�ect:
with a high wind speed the ROS (ratio of spread) and the �ame intensity
can become very high. The combination of these factors produces a fast
propagation, and, therefore, a more dangerous �re.

In this case, the plot was burned by linear ignition on left border. This,
and the posterior advance to right size, can be observed on �gure 5.11.

The table 5.15 shows the values of the parameters that have been used
for the experiment.

Finally, table 5.16 lists the resultant �tness values after applying the
methods to predict the �re behavior on this experiment.

In this last experiment, we discover that, though the �tness values are
very similar between the three methods, in general we can see that the
statistical method is better than others. Also, it is positive that statistical
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Parameter Initial Final Step
Model 1 13 1
WindSpd 2.13 5.81 0.21
WindDir 0.0 360.0 5.0
Slope 6.0 6.0 1.0
Aspect 180.0 180.0 1.0
M1 0.1 0.3 0.2
M10 0.1 0.5 0.2
M100 0.1 0.5 0.2
Mherb 0.1 0.1 1

Table 5.15: Parameters �le for Plot 752

Figure 5.11: Real spread for plot 752, considering steps of 2 minutes

predictions are increasing on each step. Contrary to that, GLUE predictions
have been declining on each point. On the other hand, the Evolutionary
prediction has a behavior very similar to S2F 2M .

Initial Final Fitness
Time Time S2F 2M GLUE Evolutionary
2.0 4.0 - - -
4.0 6.0 0.4976 0.5092 0.4640
6.0 8.0 0.5257 0.4984 0.4539
8.0 10.0 0.6451 0.4948 0.4964

Table 5.16: Comparative of found �tness in each method for plot 752

5.6 Summarizing the experiments

The following �gures (5.12, 5.13, 5.14, 5.15, 5.16) correspond to the tables
(5.8, 5.10, 5.12, 5.14, 5.16), but they show graphically the �tness behavior
on each method and for each experiment.
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Figure 5.12: Plot 520 - Comparison between the methods results

In general, we saw that �tness function increases in certain intervals and
decreases in others. The reason could be because of quick weather changes
which are present during the burning. For example, if we �nd a parameter
set that is suitable for a speci�c time z, and in this set of parameter the wind
speed value is high, when we use this set of values in a time z + 1 where the
wind speed value changes suddenly, this new prediction will be distant from
the real situation.

Figure 5.13: Plot 533 - Comparison between the methods results
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Figure 5.14: Plot 534 - Comparison between the methods results

Furthermore, there is always the possibility of not �nding a good para-
meters set that explains the �re behavior. This is the case when the �tness
is lower than previous step; we found between all cases analyzed a certain
number of scenarios which in some aspects have a similar behavior to the
real scenario, but in general the global case has an acceptable behavior. In
the same way, we also have positive peaks where the �tness is really good,
and, therefore, they can be useful as predictors.

Figure 5.15: Plot 751 - Comparison between the methods results
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Figure 5.16: Plot 752 - Comparison between the methods results

5.7 Speed-up Test

As we mentioned on chapters 3 and 4, the three methods work under a pa-
rallel scheme to reduce the execution time. This has an explanation: each
method needs to e�ectuate a large quantity of computation (in average,
according to the experiments done, they have computed around 65,000 sim-
ulations on each step), which always translates into a substantial cost on
time. Using the parallel processing it is possible to reduce the time spent in
a drastic way.

In this section we will address how much the parallelism can reduce exe-
cution time, and how much it can scale by adding more processors. For this
reason, we have analyzed speedup improvement for the methods as the num-
ber of processors increases. For this reason, the performance has been ana-
lyzed using the measure known as Speed-Up, which is derived from Amdahl
law. Originally, this law was de�ned to show that vectorizing of a program
can only a�ect that part of the program which lends itself to vectorizing.
The Amdahl law can be written as:

Seff =
Sf

Sf (1− f) + f

where f is the fraction of the program that can be improved, Sf is the
improvement factor on this fraction, and Seff is the overall improvement
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achieved. Obviously, for small f , Seff ≈ 1 , whatever the value of Sf , i.e.
insigni�cant overall gain is achieved.

As an alternative, we can see the formula only expressed in function of
execution time [57]. Speedup is de�ned as the time it takes a program to
execute in serial (with one processor) divided by the time it takes to execute
in parallel (with many processors). The formula for speedup S is:

S =
t(1)
t(N)

where t(1) is the running time of the best available sequential algorithm and
t(N) is the running time of the parallel algorithm using N processors.

As we mentioned before, the proposed methods have been executed in
a Linux cluster under MPI environment. The number of processors used
were 1, 2, 4, 8, 16 and 32. Figure 5.17 shows the values obtained as an
average of all experiments. In purple colour we can see the S2F 2M speed-
up, in brown the GLUE speed-up, in blue the Evolutionary speed-up and
in cyan the linear case (the ideal case). From 4, GLUE method decreases
lightly until 16. This behavior is even worse between 16 and 32 processors.
Moreover, S2F 2M method maintains the same level of performance from 1
to 32 processors, maintaining itself lightly under the linear case.

A di�erent subject is the execution time. If we only consider the execu-
tion time, the method with better behavior is GLUE. At �rst, this appears
like a S2F 2M disadvantage, but when we consider the speed-up reached by
each method, we discover the following: using 32 processors, this di�erence
in time becomes less than a half. An example of this is the scenario number
three (plot 534). When we are using one processor, the execution time for
S2F 2M is 1297.6 minutes (21.6 hours), and the GLUE time is 307 minutes
(5.11 hours). Here we can see that the relationship is 1 to 4 approximately.
Therefore, when we use 32 processors, the S2F 2M time is only 44.8 minutes,
and GLUE spends 23.9 minutes to �nalize.

Also, there are even better situations, like for example experiment three.
In this case, when we are working with one processor, the relationship is
almost 1 to 3, but if we apply the method over 32 processors, the execution
time reached is practically the same (5.9 minutes for S2F 2M and 5.2 minutes
for GLUE).
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Figure 5.17: Speed-up for the methods for di�erent number of processors

According to the measurements of time made on the experiments, the
ratio between calculation time and communication time indicates that in
average 98% of the total execution time is used for the calculation of the
simulations on the side of workers. Therefore, sending and reception of data
between master and workers are well overlapped within the total time of
execution. Nevertheless, because data size handled between the master and
each worker is not large (in average in our experiments the real land �le has
44 Kbytes and the �le of parameters has 200 bytes), the time dedicated to
the data communication is little.

Related to this last topic, we can explain the low speed-up reached by
GLUE when there is an important number of processors. GLUE method
needs a smaller amount of operations (S2F 2M works in a intensive way on
matrixes), then the necessary time by each worker does not reach to overlap
the communication, and for this reason, when the parallelism level is very
high, the successive increase in the number of processors does not o�er the
speed-up awaited.

On the other hand, in di�erent experiments where the land has greater
dimensions, the time dedicated to the communication can be larger. Howe-
ver, this is a factor of relative importance since the tradeo� between time and
level of detail of the cells (wide and long) can be modi�ed according to the
requirements and, therefore, a land with large dimensions can be represented
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by means of a little matrix with large cells.
If we paid attention to the dimensions of each plot, we can see that plot

751 and 752 are smaller than the others. However, we represent them with
matrixes not much smaller than other plots, since the cell size was 1/3 of
others cells (0.333 vs. 1 m). The resulting land �les in all the cases have
similar sizes although the land that represent are di�erent. This has direct
relationship with the tradeo� between time and precision. If we want, we
can obtain a result quickly, but sacri�cing the quality of our prediction.
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Chapter 6

Applying S2F 2M on real
situations

�En realidad las cosas verdaderamente difíciles son todo lo que la gente cree
poder hacer a cada momento.�

Julio Cortázar

As we previously commented, the S2F 2M method was, at the beginning,
only considered as an statistical method to be added to a DSS. The method,
working in this manner, operates correctly (this was shown in [16]). For
this reason, we evaluated our method within a grid environment, and, as
a di�erent test, our method was used as a tool to generate Risk Maps.
Following we explain these topics.

6.1 Grid Computing

Sun Microsystems Ibérica along with the Universidad Politécnica de Valen-
cia (UPV), the Parque Cientí�co de Madrid (PCM), the Universidad Com-
plutense de Madrid (UCM) and the Universitat Autònoma de Barcelona
(UAB) made a conjunct work. This was performed within the framework
of the Summer course called �High Performance Computing, Clusters and
Grid Computing� [53] (El Escorial - Spain, July 2004). The practical part
of this course consisted in testing the connection of the nodes of the �ve
mentioned centers, with the purpose of verifying the e�ciency reached when
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Grid Computing technology is used. In �gure 6.1 it is possible to visualize
the scheme of this grid.

Cluster UPV

Internet

Cluster UAB

Cluster SUN

Cluster UCM

Cluster PCM

Figure 6.1: Scheme of grid interconnection

The initiative is framed within the Proyecto de Portal de Ciencia
Colaborativa for the Spanish Researching Community. In this project a
total of eight universities and three research centers work together. Founda-
tion Telefónica and Sun Microsystems Ibérica [66] also participate.

In order to carry out this test, all the necessary infrastructure of hard-
ware, software and communications, have been prepared on Linux and Solaris
to start up the Grid, in which have been executed successfully applications
like treatment of medical image, design of processors, and our method of �re
prediction.

This experience allows the users to proceed to the gradual de�nition of the
concrete programs of research, applications and processes that would bene�t
from this project, between which we can identify di�erent areas: Physics,
Mathematics, Sciences of the Life and other �elds of Biomedical Computer
Science. Also, the application of the additional resources of computation
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would adapt to the necessities that the scienti�c community has in any other
ambit, in Computer Science equipment performance, of applications and data
treatment in general.

To do this experiment, we work with four plots: two real cases and two
done in laboratory. We veri�ed that when in our own cluster were launched
other tasks which competed for CPU time the processes migrated to the
other clusters. Finally, we saw that the results were correct and they did not
take more time than in a normal situation.

The latest objective of the project is to create a platform that allows to
use in an e�cient form the resources of the di�erent groups from investigation
and Universities, multiplying the possibilities that the Grid technologies o�er
at the current time.

6.2 Risk Maps

As we mentioned before, we also used the method to generate risk maps.
Most �re-risk mapping techniques evaluate the ignition danger based on me-
teorological conditions (temperature, humidity, rainfall, etc) and on human
factors (negligence, arson, etc.), but do not take into account the propaga-
tion danger itself once a �re has been ignited. This feature is very important,
because it can provide more complete information to determine the possible
behaviour of a wildland �re and to determine those regions where an igni-
tion is more dangerous by considering the possible rate of spread or �ame
intensity.

The �re behavior depends on static factors (for instance the slope of
the terrain or the vegetation type in that particular region), but also on
certain dynamic factors such as the wind conditions or the moisture content
in the vegetation. It is not therefore possible to previously determine the
present conditions when a �re begins. Finally, it is not possible to evaluate
beforehand the e�ective rate of spread or �ame intensity in a real situation.

Considering this uncertainty, our statistical method is suitable for deter-
mining the possible rate of spread and �ame intensity. The method proposed
takes the static parameters of the region under consideration (slope and fuel
type) and applies statistical analysis by simulating the �re propagation, con-
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sidering a wide range of parameter combinations to determine the average
rate of spread and �ame intensity in that particular region. This rate of
spread and �ame intensity represents the potential propagation danger for
that region.

This methodology requires each region to be represented by an average
slope and a dominant fuel type. The size of such cells cannot therefore be
too large, so as to maintain a high degree of uniformity.

The methodology is promising, but it is not useful if only applied at a
local scale: it must also be applied at a regional, national or even interna-
tional scale (i.e. the Mediterranean region). Therefore, the whole region
under consideration must be divided into a set of uniform areas, and the
methodology must then be applied to all the areas within the region as a
whole to provide a wildland-�re propagation danger map.

6.2.1 Rate of spread and �ame intensity of a particular area

To determine the rate of spread and the �ame intensity of an area, it is
necessary to apply some form of statistical method, since we have a set of
values corresponding to each scenario (for this reason, we can apply our
system). One possibility would be to select the maximum value as being the
value that represents the area under study. This approach would represent
the most dangerous scenario, as the behaviour of that area and this approach
is very restrictive, corresponding as it does to extreme situations that are
not completely representative. The average of these results is more feasible
than the value representing the area.

The output generated by the simulator consists of two maps of the ter-
rain. In the �rst, each cell is labeled with its ignition time; in the second,
each cell is labeled with its �ame height. This information must be used to
calculate the rate of spread and an average from all �ame heights.

To calculate the rate of spread, the distance between the ignition point
and each particular cell in the terrain is divided by the ignition time of that
particular cell. This calculation is repeated for each cell in the terrain to
determine the maximum value of the rate of spread. This maximum value
will be used as the rate of spread for that particular situation (�gure 6.2).
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The �ame intensity (height) for that terrain is calculated by evaluating
the average �ame intensity in the whole terrain.

To evaluate the rate of spread for a particular scenario (input parameter
combination) in a given terrain, it is therefore necessary to simulate the
�re propagation and then estimate the rate of spread and average �ame
height. This single calculation for a particular scenario is not very computer
demanding and can be carried out on a single PC in a few seconds.

cell

terrain

ignition point burned cell

 

a) b)

Figure 6.2: Methodology for calculating rate of spread. a) Ignition point in
the middle; b) Search for maximal spread

However, it should be recalled that the amount of scenarios to be evalua-
ted for each terrain (slope and fuel type) is very large, as is the number of
di�erent terrains. Therefore, the total computation time required to estimate
all the rates of spread is extremely large. The use of parallel/distributed sys-
tems therefore appears as the only solution to make this approach feasible.

6.2.2 Experimental results

In order to obtain a global view of risk associated to fuel loads, terrain
characteristics and wind �ows, a global simulation analysis was performed.
This analysis tried to obtain average values of rate of spread and �ame length,
considering di�erent wind and topographic conditions for the estimated fuel
maps of the whole EUMed area. This attempt should be considered as
a general overview of average expected �re behaviour at global scale, in
order to rank di�erent danger levels according to the combination of fuel
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and terrain spatial patterns.
To provide the propagation danger map, we created a set of prototype

plots, considering all the fuel models from Rothermel classi�cation and a
certain slope percentage (from 0 to 100%, with a step of 5%). On �gure 6.3
we can see an scheme of this prototypes generation.

Slope 100%Slope 5%Slope 0%

Slope 100%Slope 5%Slope 0%

Model 1:Short Grass

Model 13: Heavy Logging Slash

Figure 6.3: Synthetic Plot generation

The total number of plots was therefore 273. Each plot consisted of a
grid of cells with 11 columns x 11 rows (each cell measured 100m2). The
ignition point was located in the middle of plot. For each plot, many input
parameter combinations were used to simulate the wildland �re behaviour
and the average rate of spread and �ame height were also calculated. The
parameters considered for variation were: 1-hr dead fuel moisture, 10-hr
dead fuel moisture, 100-hr dead fuel moisture, live herbaceous moisture.
The ranges applied to these parameters and the precision considered were
those established by Farsite Simulator [30]. These values are shown in table
6.1.

Parameter Inferior Threshold Superior Threshold Increment
1-hr dead fuel moisture 0.03 0.12 0.01
10-hr dead fuel moisture 0.04 0.13 0.01
100-hr dead fuel moisture 0.05 0.14 0.01
Live herb. fuel moist. 0.7 1.7 0.3

Table 6.1: Parameter values
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Considering these ranges and precision steps, the number of simulations
per plot was 4300, and the total number of simulations was 1,173,900.

For each independent result (scenario), a value of �ame height is obtained
as the average among the �ame height for each cell. Then, the value used
is the average for all di�erent resulting cases from combinations of moisture
content. These values are shown in �gure 6.4. It can be observed that each
model has a well-de�ned height rank, with a minimum and a maximum.
However, it is interesting to observe that, in certain cases (for example,
models 3 or 4), this is not completely linear or incremental according to the
slope.

Flame height for each fuel model
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Figure 6.4: Flame height

On the other hand, each rate of spread found is averaged to calculate
a representative value. These values are presented in �gure 6.5. In this
diagram, we can see that the more inclined the terrain, the faster the pro-
pagation. Therefore, the more dangerous the �re.

Observing the two �gures at the same time, it is possible to conclude that
�ame height has no direct relation to rate of spread. For example, model
1 has a high rate of spread on a high slope, but its average �ame height is
not particularly great. This behaviour must be taken into account to avoid
erroneous conclusions: in a wildland �re, this could be very dangerous.

Finally, these results can be applied to an European scale. To do so,
S2F 2M requires a European map divided into cells including the average
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Rate of spread for each fuel model
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Figure 6.5: Rate of spread

slope and dominant fuel model for each cell. When the European maps
are available, it is possible to elaborate two di�erent maps: one for rate
of spread-propagation danger and one for �ame-height propagation danger.
These maps are shown in �gure 6.6 and �gure 6.7.

 

Figure 6.6: Flame-height propagation danger Map of the EUMed

For more information, the reader can see a more complete description
about these results on [18], [20] and [27].
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Figure 6.7: Rate of spread-propagation danger Map of the EUMed
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Chapter 7

Method Re�nements

�La vida es tan corta y el o�cio de vivir tan difícil, que cuando uno empieza
a aprenderlo, ya hay que morirse.�

Ernesto Sabato

In this chapter, we want to describe some changes and optimizations
applied to the S2F 2M method. Although some of these changes did not
report the expected improvement over the method, we believe it is important
to explain and document these variations over the method. At a �rst moment
these approaches appear like a good solution or improvement, but after doing
the experimentation, we found the problem su�ered by these techniques.

Having in mind the needed time to execute any of the described methods,
in this chapter we describe some modi�cations included to reduce the number
of iterations or simulations necessary to reach a �good� solution. Mainly,
these techniques have the goal of �nding a better solution than classical
predictions, but on the other hand, in comparison they spend much more
time. Then, we are also interested in reducing the time, maybe to reach real
time.

We did three types of tests: on one hand, applying the sensitivity index
proposed by B. Abdalhaq in [3] over the set of parameters; and, on the other
hand, we tried to collect only the best scenarios and discard all those bad
cases and, �nally, we tried to reduce the parameter range using additional
information.
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7.1 Applying the Sensitivity Index

As we mentioned above, with the goal of �nding a better prediction, we
applied one of the results obtained by B. Abdalhaq: the sensitivity analysis.
This analysis �asses the impact on output of each input parameter and, con-
sequently, it will allow us to determine which parameters are worth spending
time on tuning and which are better to avoid spending such e�ort on� [3].

At �rst, as it is possible to understand from the previous paragraph,
the sensitivity analysis was proposed as a necessary way of accelerating the
convergence of Evolutionary Method. This acceleration was reached by mean
of three ways:

1. Fixing some parameters to their nominal values

2. Introducing a certain degree of knowledge

3. Sampling the search space

At that moment was proved that these techniques were useful to acce-
lerate the optimization process and, therefore, they would be useful in the
case of real-time constraint.

The way to calculate the sensitivity index was focused on the propa-
gation speed, thus the wind had only one scalar value, which is the wind
speed in the direction of �re propagation. To calculate the sensitivity index
for each parameter, it was necessary to de�ne a minimum and a maximum
value for the parameter. These values were obtained from �eld and lab
measurements. For all possible combinations of the other parameters, two
simulations were needed, considering the minimum and maximum value of
the parameter studied currently. The speed di�erence between both propa-
gation simulations represents the e�ect of changing that particular parameter
from its minimum to its maximum for some particular combination of the
other parameters. If Vik is the e�ect of varying factor i from its minimum
to its maximum at case k, the total e�ect of parameter i is de�ned as the
addition of the e�ect of each possible case:

Vi =
∑

∇k

Vik
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where k is all possible cases.
Finally, Vi is the sensitivity index for the parameter i. Table 7.1 shows

the values obtained for each parameter. For example, the most important
parameter is load with a sensitivity equal to 0.77.

Parameter Symbol Index

Surface area-to-volume ratio s 0.56
Low heat of combustion H 0.13
Loading l 0.77
Moisture content Mf 0.61
Total silica content St 0.03
E�ective silica content Se 0.16
Wind speed at mid �ame height U 0.71
Dead fuel extension moisture content df 0.28

Table 7.1: Sensitivity index for each parameter

On the information presented in table 7.1, it is necessary to clarify that
some values (for example the humidity content Mf ) are considered di�erently
from chapter 2. The reason is that this table was calculated to be used in
a di�erent simulator (ISS forest-�re simulator [42]), which uses a slightly
di�erent set of parameter. Then, to apply them to �reSim, we adapt them
to our format. However, the problem is minor, because both simulators
are based on the same scheme (Rothermel model [61]) and, although the
number of parameters is not the same, in the background they represent the
same behavior, because some parameters are dependent from others, and
viceversa.

In our case, we applied this index with a di�erent intention. We wanted
to avoid wasting simulations on cases that do not contribute to the �nal
results. That is to say, if a case doesn't propagate, it doesn't collaborate
because in the sum of all cases it is a null case that only spends processor
time. In this way, we use the index sensitivity to adjust the values of step
in the parameter �le we use to feed the S2F 2M system. We respected the
same number of scenarios, but the variations of parameters are di�erent.
That is to say, now the responsible for generating more o minus scenarios
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are di�erent from the proposed experiments of chapter 5. Table 7.2 presents
the new values for each parameter after applying the index.

Step
Parameter Plot520 Plot533 Plot534 Plot751 Plot752
Model 1 1 1 1 1
WindSpd 1.0687 4.549 4.75 1.23 0.368
WindDir 32.4 81.0 60.0 51.42 51.42
Slope 1.0 1.0 1.0 1.0 1.0
Aspect 1.0 180.0 1.0 1.0 1.0
M1 0.049 0.066 0.066 0.066 0.066
M10 0.39 0.133 0.199 0.133 0.133
M100 0.39 0.133 0.199 0.39 0.39
Mherb 0.39 0.133 0.199 0.39 0.39

Table 7.2: Parameters �le for each plot using sensitivity analysis

Afterwards, we re-executed the simulations for each experiment, and
found the results shown in tables 7.3, 7.4, and 7.5.

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.4214 0.5345
6.0 8.0 0.7058 0.7495
8.0 10.0 0.3333 0.4413
10.0 12.0 0.7604 0.7625
12.0 14.0 0.2437 0.4354

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.5034 0.4745
6.0 8.0 0.6110 0.5208
8.0 10.0 0.4861 0.4675
10.0 12.0 0.3923 0.4501

Table 7.3: Fitness for plot 520 and plot 533 using sensitivity analysis

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
3.0 4.0 - -
4.0 5.0 0.1601 0.2565
5.0 6.0 0.3293 0.5336
6.0 7.0 0.4238 0.7036
7.0 8.0 0.4449 0.6074
8.0 9.0 0.4301 0.4161

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.8482 0.8819
6.0 8.0 0.7400 0.7917
8.0 10.0 0.7310 0.7073

Table 7.4: Fitness for plot 534 and plot 751 using sensitivity analysis

As we can see, in general terms, the information presented on tables
demonstrates that when we use the sensibility analysis, the prediction done
by S2F 2M does not improve (the values shown in column Fitness S2F 2M*
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Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.3914 0.4976
6.0 8.0 0.4540 0.5257
8.0 10.0 0.6038 0.6451

Table 7.5: Fitness for plot 752 using sensitivity analysis

are the original values described on chapter 5.). If we pay attention to each
particular case, we can observe in Plot 533 the �tness value on each step
is higher than in the original experiment. Therefore, at least for these �ve
examples, only in one case the sensitivity index is useful, hence, in a 20%.
However, this can have another explanation; it is strange that the only case
improved is the same case that in the original experiment had a �tness very
slow on each stage.

Maybe in this situation, using the values modi�ed by index helped to
guide to search for good results. However, in general we believe that to
allow a wide range is better for the method behavior.

7.2 Considering only the best scenarios

Another type of test done using the intrinsic characteristics of S2F 2M was
to select only those scenarios that surpass a certain threshold-�tness.

The goals of this re�nement were:

• reaching a better result (a prediction nearest to reality)

• accelerating the method (obtaining result in less time).

The �rst objective is similar to the goal explained in the previous section,
but with some di�erences. In this case, after each simulation we evaluate
the �tness value for each scenario. If the value reaches a previously de�ned
threshold-�tness, we allow the scenario participate in the next step. In this
way, we would be working only with a set of good scenarios, and, as the
number of scenarios will decrease on each step, the simulation time should
be inferior.
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The reasoning was the following: when we are doing a simulation, we
hope that the values for every parameter will be in certain domain; to wit,
inside demarcated margins. Therefore, the prediction level should be im-
proved step by step. Avoiding the cases that are distant from the real case,
the error level added to the statistic result must tend to zero. In �gure 7.1
we can see the idea.

using

filtering
Wind

real caseignition point

t i t i+1

scenario 3

Figure 7.1: The method allows only the best cases and discards those that
do not surpass the threshold

It is possible to observe that in this simple example (�gure 7.1), scenario
3 has a distant behavior from real case. Let us to suppose that it does not
surpass the threshold-�tness. Then, scenario 3 is avoided and it is not used
in the next step (ti+1). As we can see, the other scenarios have a similar
behavior to the real case, and, therefore, the �nal prediction �tness will
not be very di�erent from reality. However, in �gure 7.2 we can discover a
problem that arises when meteorological conditions are too inconstant.

without

filtering
W

ind

t i t i+1

real caseignition point

scenario 3

Figure 7.2: The method allows good and bad cases in order to contemplate
di�erent situations

In this example, we use again the statistical method without re�nements.
Here, we observe again the same scenarios than in the previous example.
Nevertheless, now we permit scenario 3 work in step ti+1. Notice that al-
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though scenario 3 has a very di�erent behavior from other cases, in this
situation is very useful, because wind conditions have changed. Now, sce-
nario 3 coincides with real case, and thanks to it, the prediction in step ti+1

is better. If we cut scenario 3 like in the example shown in �gure 7.1, the
�nal result would be worse (�gure 7.3).

using

filtering
W

ind

t i t i+1

real caseignition point

scenario 3

Figure 7.3: Possible problem when the method allows only the best cases

This is only a simple schematic example, anyhow, this was demonstrated
doing the appropriated experimentation. The results can be observed on
tables 7.6, 7.7 and 7.8 (Fitness S2F 2M* means the original values).

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.4394 0.5345
6.0 8.0 0.5362 0.7495
8.0 10.0 0.2804 0.4413
10.0 12.0 0.3493 0.7625
12.0 14.0 0.2263 0.4354

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.2820 0.4745
6.0 8.0 0.2889 0.5208
8.0 10.0 0.3590 0.4675
10.0 12.0 0.3099 0.4501

Table 7.6: a) Fitness for plot 520 using a threshold-value equal to 0.8 b)
Fitness for plot 533 using a threshold-value equal to 0.53

It is important to clarify that the values chosen as threshold are based
on the possible values reached by scenarios on each plot. These values have
been obtained during the experimentation stage explained on chapter 5 (it
does not have sense to put like threshold a value that no panorama could
reach, because we will lose all possible scenarios in the �rst step).

Moreover, it is important to know which is the percentage of �cutting�,
that is to say, which is the ratio between the number of scenarios discarded
and the number of scenarios that will be used in the next step. In all studied
cases, this cut has been found between the �rst and second step. In general,
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Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
3.0 4.0 - -
4.0 5.0 0.2429 0.2565
5.0 6.0 0.4200 0.5336
6.0 7.0 0.5833 0.7036
7.0 8.0 0.6824 0.6074
8.0 9.0 0.5849 0.4161

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.8721 0.8819
6.0 8.0 0.7810 0.7917
8.0 10.0 0.7142 0.7073

Table 7.7: a) Fitness for plot 534 using a threshold-value equal to 0.57 b)
Fitness for plot 751 using a threshold-value equal to 0.85

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.4589 0.4976
6.0 8.0 0.3083 0.5257
8.0 10.0 0.2705 0.6451

Table 7.8: Fitness for plot 752 using a threshold-value equal to 0.77

those scenarios, which have passed the �rst step, are capable to pass the
next steps. According to the numbers chosen as threshold, the percentage
of scenarios that surpass the threshold are the following:

• Plot 520: 1.1% (The �rst step starts analyzing 59,940 scenarios, and
in the following steps remain 665)

• Plot 533: 0.32% (This experiment starts analyzing 68,328 scenarios,
and in the following steps there are only 220)

• Plot 534: 2.9% (The �rst step of this case starts with 49,348 scenarios,
and in the following steps we work with 1436 scenarios)

• Plot 751: 5.72% (This case starts analyzing 72,124 scenarios, and in
the following steps we work with 4128 scenarios)

• Plot 752: 3.2% (The �rst step starts analyzing 68,328 scenarios, and
in the following steps there were 2189)

After seeing these numbers, it is interesting to analyze their meaning. We
have seen that the prediction level is not better than the level originally cal-
culated. But, in some cases, the �tness reached is not very di�erent from the
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�tness computed when the method is applied without improvements (that is
to say, without threshold). Then, if necessary, we should de�ne a trade o�
between time and precision. As we can see, the number of resulting scenarios
is substantially smaller than the number present in the �rst step according
to the level of cutting. Therefore, the execution time can be reduced in a
extraordinary way.

In average, the execution time can be represented according to the follo-
wing expression:

time = t1 + (N − 1) ∗ (pr/100) ∗ t1

where, t1 represents the time necessary to e�ectuate the simulations for step
1, N is the number of steps, and pr represents the percentage of scenarios
that surpass the threshold in step 1 (in other words, the number of active
scenarios in step 2 and following ones). According to the values seen in the
�ve experiments, pr would be equal to 2.65, hence, the total time can be
considered practically as t1, because the consumed time by remaining steps
is signi�cantly inferior.

7.3 Range reduction

Finally, we test the e�ect of reducing the range of some wide range parame-
ters on the S2F 2M behavior. This experimentation arises as an initial step
for further improvements of the method where certain degree of parameter
knowledge would be take into account. In this case, the reasoning is very
easy to understand: if we reduce the possible values of a parameter and limit
it within a range near to the ideal value, then, we could obtain a simulation
more similar to the real forest �re.

To prove this concept, instead of doing an adjust on the �y, we decide to
guide the simulation. For this purpose, certain parameters that initially had
a very wide range were chosen to reduce their variation range. The modi�ed
parameters were wind speed and wind direction. We used the information
shown on table 7.9 to change the parameters �le on each plot.

Obviously, after changing the parameters �le, the number of scenarios
becomes smaller, because we are discarding some values for the a�ected
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parameter, and, therefore, we are reducing the number of combinations.
Finally, similarly to the previous section, the simulation time is also reduced
as a consequence of decreasing the number of scenarios.

In tables 7.10, 7.11 and 7.12 we can see the �tness values found for each
plot.

Wind Speed Average Wind Direction
Plot (Milla/hour) Average
520 4.608 176.47◦
533 12.907 45.00◦
534 11.855 56.00◦
751 4.697 260.00◦
752 3.802 285.00◦

Table 7.9: Wind speed and wind direction average for each plot

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.4612 0.5345
6.0 8.0 0.4608 0.7495
8.0 10.0 0.2523 0.4413
10.0 12.0 0.3643 0.7625
12.0 14.0 0.1941 0.4354

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.1849 0.4745
6.0 8.0 0.2862 0.5208
8.0 10.0 0.2065 0.4675
10.0 12.0 0.2163 0.4501

Table 7.10: a) Fitness using reduced ranges for plot 520 b) Fitness using
reduced ranges for plot 533

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M

3.0 4.0 - -
4.0 5.0 0.0948 0.2565
5.0 6.0 0.0837 0.5336
6.0 7.0 0.1376 0.7036
7.0 8.0 0.2589 0.6074
8.0 9.0 0.1914 0.4161

Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.7692 0.8819
6.0 8.0 0.7738 0.7917
8.0 10.0 0.6842 0.7073

Table 7.11: a) Fitness using reduced ranges for plot 534 b) Fitness using
reduced ranges for plot 751

We can clearly verify that, in four of the �ve experiments, the �tness
values obtained are evidently inferior to those found during the experimen-
tation stage (chapter 5). Only in one case (experiment on plot 752) it is
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Initial Final Fitness Fitness
Time Time S2F 2M S2F 2M*
2.0 4.0 - -
4.0 6.0 0.6661 0.4976
6.0 8.0 0.5628 0.5257
8.0 10.0 0.5707 0.6451

Table 7.12: Fitness using reduced ranges for plot 752

possible to observe a pair of values that are higher than the original �tness.
These correspond to times 4 and 6. On the other hand, we also found other
results. An example is the experiment on plot 534. As we can appreciate,
the �tness value is clearly low in all steps. The extremely low values are
in time 4 (0.0948) and 5 (0.0837). These are unacceptable values for any
prediction.

From the obtained results we can conclude that, since S2F 2M has a
inherently statistic core, it is not recommended to modify neither certain
method characteristics or the input data, because a good result can be se-
riously damaged. Although the number of experiments is reduced, they are
a good help to see what is the tendency of the behavior. Moreover, these
experiments are useful to prove that, at least on S2F 2M , guiding the si-
mulation (to introduce knowledge, in other words) is not possible. Maybe
introducing knowledge is feasible on the other methods, but in S2F 2M this
is a practice that does not report any improvements.
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Chapter 8

Conclusions

�We know very little, and yet it is astonishing that we know so much, and
still more astonishing that so little knowledge can give us so much power.�

Bertrand Russell

This chapter presents the conclusions and results obtained from our work.
The chapter also describes the possible open lines that can be undertaken in
the future in order to continue research on forest �re prediction.

8.1 Conclusions and observations

In this work we have treated a very important problem that requires a precise
prediction to minimize its e�ects: Forest �res.

The main purpose of existing works in the �eld of wild�re simulation
is to create operational tools to help forest �re �ghting in two ways: �re
prevention and �re �ghting. In both cases, we need to decide on the best
way to act so as to minimize the losses. Therefore, good prediction tools are
vital for making good decisions.

However, most of the existing wildland �re models are not able to predict
exactly real �re spread behavior. This disagreement between real and simu-
lated propagation arises for di�erent reasons (model imprecision, limitations
of numerical solutions, input data uncertainty, etc.)

In this work, we have proposed and developed a statistical method, called
S2F 2M (Statistical System for Forest Fire Management), that improves the
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prediction of �re propagation by focusing on the imprecision of the input
data. However, in this work, we do not only concentrate our e�ort on �nd-
ing the best set of input parameters that provide the best �re prediction,
but we o�er a prediction by combining the e�ects of a large number of po-
ssible scenarios (set of parameters). Since the proposed method is very time
consuming, we have used High Performance Computing as a tool to reduce
its execution time.

We developed and coded a �rst version of our system as a statistical
method which would be a DSS (Decision Support System) of low level (level
1). Let us clarify this version only considers homogeneous terrain (respect to
vegetation, slope and climatic factors). It is undoubtedly true that working
with a more detailed representation is better, because the simulated situa-
tion will be more resembling to reality. However, we think that to prove the
concepts introduced by this thesis, it is not needful to establish an extremely
real environment. Furthermore, reaching such situation carries a large num-
ber of design and implementation problems that do not concern the scope of
this work.

We showed that S2F 2M was useful testing with laboratory and �eld �res.
The description, development and results of these tests can be found in:

Bianchini G., �Sistema de Ayuda a la Decisión para la Gestión de
Incendios Forestales�. Experimental work for postgraduate pro-
gram for Computer Architecture and Parallel Processing. Uni-
versitat Autònoma de Barcelona (Spain). July 2004.

Bianchini G., Cortés A., Margalef T., Luque E., �S2F 2M - Statis-
tical System for Forest Fire Management�. ICCS 2005 - Interna-
tional Conference on Computational Science, Emory University
Atlanta, USA. LNCS 3514, pp. 427-434. 2005.

Bianchini G., Cortés A., Margalef T., Luque E., �S2F 2M - Sis-
tema Estadístico para la Predicción de Incendios Forestales�.
CEDI 2005. pp. 623-629.

We have also used S2F 2M as a tool to evaluate �re propagation danger on
the Mediterranean region. The amount of simulations that must be carried
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out is enormous and it is necessary to apply high-performance computing
techniques to make the methodology feasible. The results show that S2F 2M

is a good tool to create risk maps. A summary of this experimental study
can be found in:

Bianchini G., Cortés A., Margalef T., Luque E., Chuvieco E.,
Camia A., �Wildland Fire Propagation Danger Maps Based on
Factorial Experimentation�. Information Technologies in Envi-
ronmental Engineering (ITEE'2005). pp. 173-185. 2005

Chuvieco E., Camia A., Bianchini G., Margalef T., Koutsias N.,
Martínez J., �Using remote sensing and GIS for global assess-
ment of �re danger�. XXII International Cartographic Confe-
rence (ICC2005).

Bianchini G., Cortés A., Margalef T., Luque E., Chuvieco E.,
Camia A., �Wildland Fire Risk Maps using S2F2M�. Journal of
Computer Science & Technology (JCS&T) - Special Issue on Se-
lected Papers from CACIC 2005. Vol. 5 No. 4. pp. 244-249.
2005.

We have compared two optimization techniques (GLUE and Evolutionary
methods) whose goal consist on searching a unique set of input parameters
to perform �re spread prediction, against our method. The obtained results
allow us conclude that S2F 2M is a powerful tool for solving this kind of
problem, which can be considered a Grand Challenge Problem.

On the one hand, another important development of this work was GLUE
implementation to compare it against our system. At the moment of consi-
dering GLUE as an interesting concept for contrasting our methodology, it
had been implemented on a demonstrative software by means of Java Applet
as a simple 1-D model [56]. Therefore, we decided to re-implement it in C
language in a functional 2-D model.

During the experimentation stage, we discovered that a part of the GLUE
methodology did not operate correctly. Finally, we opted for applying GLUE
method without making use of the concept of likelihood, which we com-
mented in Chapter 7.
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On the other hand, we want to highlight that the Evolutionary Method
has been developed within our team. It has been proven in previous works
and it has also appeared in several papers [1, 2, 3, 4].

It is important to remark that we have compared the three methods using
a set of �ve real cases. The �rst relevant results from these experiment, in
addition to a description of the methodology, have been published in:

Bianchini G., Cortés A., Margalef T., Luque E., �Improved pre-
diction methods for Wild�res using High Performance Compu-
ting: A comparison�. ICCS 2006 - International Conference on
Computational Science, University of Reading, UK. LNCS 3991,
pp. 539-546. 2006.

Bianchini G., DenhamM., Cortés A., Margalef T., Luque E., �Im-
proving forest-�re prediction by applying a statistical approach�.
V International Conference on Forest Fire Research, Figueira da
Foz, Coimbra, Portugal. Paper in press.

An important advantage of S2F 2M in relation to the other methods is
that, in the case of acting as a preventive method, it does not need feedback
from real forest �re. As we explain above, it can work as a statistical method,
and therefore its result is not a prediction of a particular forest �re, but it
gives probability of ignition for certain terrains (for example, the case of risk
maps). On the other hand, GLUE and Evolutionary method require this
information to work.

Finally, comparing the three methods, we found that the disadvantages of
GLUE and Evolutionary methods are that the set of parameters selected as
best predictor can disagree with the real set of parameters �and generally
it is thus�. However, this can never occur using S2F 2M because it has
a di�erent basis, and precisely, it uses all combinations of parameters to
compute the prediction.

8.2 Open lines

During the development of this thesis, we discovered a lot of topics that can
be the goal of future work. Some of these open lines have a direct connection
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with our work, and others are related but belong to other areas.
In the following paragraphs we highlight some possible lines to continue

the work. The potential lines are presented in order according to its com-
plexity level.

An immediate work to do, will be to make an analysis focused in the
tradeo� time-precision. As we explained, the terrain is represented by a
matrix. Then, the question is: What is it the ideal cell size? According to
the cell size, the matrix has more or minus cells, and therefore the simulation
time changes in a drastic way. If we are capable of calculating this relation,
we would save valuable time and resources.

Currently, we consider the terrain as a matrix with homogeneous cells;
that is to say, within each scenario, the characteristics of each cell are the
same (vegetation, moisture, meteorological conditions, etc.). An improve-
ment in the current model, would be to de�ne heterogeneous terrains, where
variables as slope, fuel or moisture can be di�erent along the land. This
change could o�er a more realistic simulation.

A more ambitious goal is to add the wind �eld model to the simulator.
Although speed and wind direction are two parameters that also vary within
all the possible combinations of scenarios, the problem is that we are conside-
ring the wind like a homogeneous parameter in all the terrain. A interesting
option would be to simultaneously consider a behavior wind model and make
it vary with the rest of the parameters.

There are other aspects that deserve consideration, but they have strict
relation with experimentation. In order to be able to validate these methods
correctly and to carry out the pertinent comparisons, it is necessary to have
abundant information of real cases. It is feasible to �nd information of forest
�re, but generally this information is fragmented, and therefore not useful
for our intention. Therefore, as an immediate continuation of this work, it
would be advisable to collect data to continue experimenting and testing the
system.

The study presented in this work deals with the analysis of parameter
optimization and prediction on a postmortem system. However, it would be
desirable to operate with the methods under the real time constraints. In
order to do this, we needed to optimize the methods (as we did in a �rst
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intent in chapter 6). But not only the method, it is also necessary to optimize
the implementation to improve the data structure and communication.

Related with the last topic, we discover another big challenge: obtaining
all necessary information in real time (terrain, vegetation, meteorological
conditions, etc.). This is an important work that needs contributions from
di�erent �elds, using di�erent technologies. Furthermore, a necessary thing
is to establish the mechanisms to integrate in a unique system such contri-
butions.

It is necessary to tackle the problem of forest �res from many di�erent
ways. We trust our work is an important contribution from Computational
Science to palliate this problem. We hope investigation continues on this
area, then we will be able to see in an immediate future the results of such
advances in practice in real systems.

112



Bibliography

[1] Abdalhaq B., Cortés A., Margalef T., Luque E., �Evolutionary Op-
timization Techniques on Computational Grids�. International Confe-
rence on Computational Science. LNCS 2329. pp. 513-522. 2002.

[2] Abdalhaq B., Bianchini G., Cortés A., Margalef T., Luque E., �Im-
proving Wildland Fire Prediction on MPI Clusters�. PVM/MPI. pp.
520-528. 2003.

[3] Abdalhaq B., �A methodology to enhance the Prediction of Forest
Fire Propagation�. Ph. D Thesis. Universitat Autònoma de Barcelona
(Spain). June 2004.

[4] Abdalhaq B., Bianchini G., Cortés A., Margalef T., Luque E., �Between
Classical and Ideal: Enhancing Wild-land Fire Prediction Using Clus-
ter Computing�. Journal of Cluster Computing Special Issue on cluster
computing in science and engineering. Vol 8, No. 4. 2004

[5] Albini F. A. �Estimating wild�re behavior and e�ects�. Tech. Rep. INT-
30. Ogden, UT: U.S. Department of Agriculture, Forest Service, Inter-
mountain Forest and Range Experiment Station; pp. 91. 1976.

[6] Albini F. A. �A model for �re spread in wildland fuels by radiation�.
Combustion Science and Technology 42. pp. 229-258. 1985.

[7] Anderson H. E. �Predicting wind-driven wildland �re size and shape�.
Research Paper INT-305. Ogden, UT: U.S. Department of Agriculture,
Forest Service, Intermountain Forest and Range Experiment Station.
pp. 26. 1983.

113



[8] André J. C. S., �A theory on the propagation of surface forest �re fronts�
PhD Dissertation (in portuguese), Universidade de Coimbra, Portugal.
1996.

[9] Andrews P. L. �BEHAVE: Fire Behavior prediction and modeling sys-
tems - Burn subsystem, part 1�. General Technical Report INT-194.
Odgen, UT, US Department of Agriculture, Forest Service, Intermoun-
tain Research Station. pp. 130. 1986.

[10] Andrews P. L., Bevins C. D., Seli R. C. �BehavePlus �re modeling
system, version 2.0: User's Guide�. Gen. Tech. Rep. RMRS-GTR-
106WWW. Ogden, UT: Department of Agriculture, Forest Service,
Rocky Mountain Research Station. pp. 132. 2003.

[11] Answers.com: Information from Grand Challenge Problem
http://www.answer.com
Accessed on May 2006.

[12] Beer T. �Bush�re rate of spread forecasting: deterministic and statistical
approaches to �re modelling�. Journal of Forecasting 10. pp. 301-307.
1991.

[13] Beven K., Binley A., �The future of distributed models: model calibra-
tion and uncertainty prediction�. Hydrological Processes 6. pp. 279-298.
1992.

[14] Beven K. �Towards a coherent philosophy for environmental modelling�.
Proc. Roy. Soc. Lond. A 458, in press.

[15] Bevins C. D. , �FireLib User Manual & Technical Reference�, 1996.
http://www.�re.org
Accessed on January 2004.

[16] Bianchini G., �Sistema de Ayuda a la Decisión para la Gestión de In-
cendios Forestales�. Experimental work for postgraduate program for
Computer Architecture and Parallel Processing. Universitat Autònoma
de Barcelona (Spain). July 2004.

114



[17] Bianchini G., Cortés A., Margalef T., Luque E., �S2F 2M - Statistical
System for Forest Fire Management�. LNCS 3514, pp. 427-434. 2005.

[18] Bianchini G., Cortés A., Margalef T., Luque E., Chuvieco E., Camia
A., �Wildland Fire Propagation Danger Maps Based on Factorial Ex-
perimentation�. Information Technologies in Environmental Engineering
(ITEE'2005). Shaker Verlag. pp. 173-185. 2005.

[19] Bianchini G., Cortés A., Margalef T., Luque E., �Improved prediction
methods for Wild�res using High Performance Computing: A compari-
son�. ICCS 2006 - International Conference on Computational Science,
University of Reading, UK. LNCS 3991, pp. 539-546. 2006.

[20] Bianchini G., Cortés A., Margalef T., Luque E., Chuvieco E., Camia A.,
�Wildland Fire Risk Maps using S2F 2M �. Journal of Computer Science
& Technology (JCS&T) - Special Issue on Selected Papers from CACIC
2005. Vol. 5 No. 4. pp. 244-249. 2005.

[21] Binley A. M., Beven K. J., Calver A., Watts L. G., �Changing responses
in hydrology: assessing the uncertainty in physically based model pre-
dictions�. Water Resources Research, Vol. 27. pp. 1253-1261. 1991.

[22] Buyya R., �High Performance Cluster Computing: Programming and
Applications� (v.2) Prentice Hall, 1999.

[23] Calogine D., Seró-Guillaume O., �Air �ow model in a tree crown�, Forest
�re Research & Wildland Fire Safety. On CD-ROM, Millpress. 2002.

[24] Calver A., �Calibration, sensitivity and validation of a physically-based
rainfall-runo� model�. J. Hydrology, 103. pp. 103-115. 1998.

[25] Catchpole E. A., Catchpole W. R., �Modelling moisture damping for
�re spread in a mixture of live and dead fuels�. International Journal of
Wildland Fire 1. pp. 101-106. 1991.

[26] Cheney N. P., Gould J. S., Catchpole W. R., �The in�uence of fuel,
weather, and �re shape variables on �re spread in grasslands�. Interna-
tional Journal of Wildland Fire 3. pp. 31-44. 1993.

115



[27] Chuvieco E., Camia A., Bianchini G., Margalef T., Koutsias N.,
Martínez J., �Using remote sensing and GIS for global assessment of
�re danger�. XXII International Cartographic Conference (ICC2005).
2005.

[28] Cochrane M. A., �Se extienden como un reguero de pólvora� Publi-
cado por el Programa de las Naciones unidas para el Medio Ambiente
(PNUMA). 2002.

[29] ElPais.es International, �Una ola de incendios sacude el norte y centro
de Portugal�. 5 de Agosto de 2005.
http://www.elpais.es/articulo/20050805elpepuint_11/Tes/elpporint/
Accessed on December 2005.

[30] Finney M. A., �FARSITE: Fire Area Simulator-model development and
evaluation�. Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of
Agriculture, Forest Service, Rocky Mountain Research Station. pp. 47.
1998

[31] FIRESTATION: ADAI Products
http://www.adai.pt/products/�restation/
Accessed on June 2004.

[32] FIRE.ORG - Public Domain Software for the Wildland �re Community
http://www.�re.org
Accessed on May 2006.

[33] Frandsend W. H. �Fire spread through porous fuels through the conser-
vation of energy�. Combustion and Flame 16. pp. 9-16. 1971.

[34] GESTOSA: ADAI - CEIF (Center of Forest Fire Studies)
http://www.adai.pt/ceif/Gestosa/
Accessed on January 2005.

[35] Gillon D., Valette J. C., Moro C., �Foliage moisture content and spectral
characteristics using near infrared re�ectance spectroscopy (NIRS) �.
Forest �re Research & Wildland Fire Safety. On CD-ROM, Millpress.
2002.

116



[36] Gnuplot homepage, http://www.gnuplot.info/index.html
Accessed on May 2006.

[37] Grama A., Gupta A., Karypis G., Kumar V., �Introduction to Parallel
Computing. Second Edition.� Pearson Addison Wesley. 2003.

[38] Greenpeace España, �Incendios�. 23 de Agosto de 2004.
http://www.greenpeace.org/espana/campaigns/bosques/incendios
Accessed on January 2006.

[39] Green D. G., Gill A. M., Noble I. R. �Shapes of similar �res in discrete
fuels�. Ecological Modelling 20. pp. 21-32. 1983

[40] Groop W. D, Lusk E., �User's Guide for mpich, a Portable Implemen-
tation of MPI�, Mathematics and Computer Science Division, Argonne
National Laboratory, 1996.

[41] Groop W. D, Lusk E., Doss N., Skjellum A., �A high-performance,
portable implementation of the MPI message passing interface stan-
dard�, Parallel Computing, volume 22-6, pp.789-828, September 1996.

[42] Jorba J., Margalef T., Luque E., J. Campos da Silva, Viegas D. X., �Pa-
rallel Approach to the Simulation of Forest Fire Propagation�. Proc. 13
International Symposium �Informatik fur den Umweltshutz� der Gesell-
shaft Fur Informatik (GI). pp. 68-81. 1999.

[43] Kernighan B. W., Ritchie D., �El Lenguaje de Programación C�, Pren-
tice Hall, 1991.

[44] Mandel J., Bennethum L. S., Chen M., Coen J. L., Douglas C. C.,
Franca L. P., Johns C. J., Kim M., Knyazev A. V., Kremens R., Kulka-
rni V., Qin G., Vodacek A., Wu J., Zhao W., Zornes A., �Towards
a Dynamic Data Driven Application System for Wild�re Simulation�,
LNCS 3515, pp. 632-639. 2005.

[45] McAlpine R. S., �Testing the e�ect of fuel consumption on �re spread
rate�. International Journal of Wildland Fire 5. pp. 143-152. 1995.

117



[46] McArthur A. G., �Weather and grassland �re behavior�. Australian
Forestry and Timber Bureau Lea�et 100, Camberra, AFTB. 1966.

[47] Montgomery D. C., Runger G. C., �Probabilidad y Estadística aplicada
a la Ingeniería�, Limusa Wiley, 2002.

[48] Morgan P., Hardy C., Swetnam T.W., Rollins M. G., Long D. G. Map-
ping �re regimes across time and space: Understanding coarse and �ne-
scale �re patterns. International Journal of Wildland Fire, Vol. 10. pp.
329-342. 2001.

[49] Morrison R. S., �Cluster Computing: Architectures, Operating Systems,
Parallel Processing and Programming Languages�, 2002.
http://www.ace.ual.es/∼jaberme/docsppal/cluster/
Accessed on May 2006.

[50] Morvan D., Tauleigne V., Dupuy J. L., �Wind e�ects on wild�re propa-
gation through a Mediterranean shrub�. Forest �re Research &Wildland
Fire Safety. On CD-ROM, Millpress. 2002.

[51] MPI: The Message Passing Interface Standard.
http://www-unix.mcs.anl.gov/mpi/
Accessed on May 2006.

[52] Ortigosa P. M., García I., Jelasity M., �Reliability and Performance of
UEGO, clustering-based global optimizer�, Journal of Global Optimiza-
tion, 19(3). pp. 265-289. 2001.

[53] Parque Cientí�co de Madrid, http://www.fpcm.es/amT3_2004.htm
Accessed on April 2006.

[54] Perry G. L. W., �Current approaches to modelling the spread of wildland
�re: a review�. Progress in Physical Geography 22. pp. 22-245. 1998.

[55] Pincus M., �A Monte Carlo Method for the Approximate Solution of
Certain Types of Constrained Optimization Problems�, Operations Re-
search, 18. pp. 1225-1228. 1970.

118



[56] Piñol J., Salvador R., Beven K., �Model Calibration and uncertainty
prediction of �re spread�. Forest �re Research & Wildland Fire Safety.
On CD-ROM, Millpress. 2002.

[57] Quinn M. J., �Parallel Programming in C with MPI and Open Mp�.
First Edition. McGraw-Hill, 2004.

[58] Riaño D., Meier E., Allgöwer B., Chuvieco E., �Generation of vegetation
height, vegetation cover and crown bulk density from airborne laser
scanning data�. Forest �re Research & Wildland Fire Safety. On CD-
ROM, Millpress. 2002.

[59] Ríos Insua S., Bielza Loyola C., Mateos Caballero A., �Fundamento de
los Sistemas de Ayuda a la decisión�. RaMa, 2002.

[60] Reinhardt E. D., Keane R. E., Brown J. K., �First Order Fire E�ects
Model: FOFEM 4.0, User's Guide�. General Technical Report INT-
GTR- 344. 1997.

[61] Rothermel R. C., �A mathematical model for predicting �re spread in
wildland fuels�, USDA FS, Ogden TU, Res. Pap. INT-115, 1972.

[62] Ruiz A. D., Maseda C. M., Lourido C., �Possibilities of dead �ne fuels
moisture prediction in Pinus pinaster Ait. stands as 'Cordal de Ferreiros'
(Lugo, North-western of Spain)�. Forest Fire Research & Wildland Fire
Safety. On CD-ROM, Millpress. 2002.

[63] Salvador R., Piñol J., Tarantola S., Pla E., �Global sensitivity analysis
and scale e�ects of a �re propagation model used over Mediterranean
shrublands�. Ecological Modelling 136. pp. 175-189. 2001.

[64] SPREAD Project, Forest Fire Spread Prevention and Mitigation
http://www.adai.pt/spread/
Accessed on May 2004.

[65] Stocks B. J., Lawson B. D., Alexander M. E., van Wagner C. E.,
McAlpine R. S., Lynham T. J., Dubé D. E., �The Canadian forest �re
danger rating system: and overview�. Forestry Chronicle 65. pp. 450-
457. 1989.

119



[66] SUN Microsystems, �Noticias SUN España, SUN Microsystems�, 8 de
Julio de 2004
http://es.sun.com/infospain/noticias/2004/julio/040708.html
Accessed on April 2006.

[67] Tapia Richard A., Lanius C., Mc Zeal C. M., Parks Teresa A., �Com-
putational Science: Tools for a Changing World�. Rice University.
http://ceee.rice.edu/Books/CS/index.html
Accessed on May 2006.

[68] Top 500 Supercomputer Sites
http://www.top500.org/
Accessed on November 2005.

[69] Viegas D. X., Ribeiro L. M., Matos L., Palheiro P., Pita L. P., Al-
fonso C., �Slope and wind e�ects on �re spread�. Forest Fire Research
& Wildland Fire Safety. On CD-ROM, Millpress. 2002.

[70] Weber R. O., �Thermal theory for determining the burning velocity of
a laminar �ame using the in�ection point in the temperature pro�le�.
Combustion Science Technology 64. pp. 135-139. 1989.

[71] Wilkinson B., Allen M., �Parallel Programming - Techniques and Appli-
cations Using Networked Workstations and Parallel Computers. Second
Edition�. Pearson Prentice Hall. 2005.

[72] Wilson R.A., �Reexamination of Rothermel's �re spread equations in no-
wind and no-slope conditions� Jr. 1990. Res. Pap. INT-434. Ogden, UT:
U.S. Department of Agriculture, Forest Service, Intermountain Forest
and Range Experiment Station; pp. 13. 1990.

[73] Xanthopoulos G., Manasi M., �A practical methodology for the deve-
lopment of shrub fuel models for �re behavior prediction�. Forest Fire
Research & Wildland Fire Safety. On CD-ROM, Millpress. 2002.

[74] 20Minutos.es, �La sequía recrudece ...�, 18 de Julio de 2005
http://www.20minutos.es/noticia/39307/0/SEQUIA/EUROPA/
Accessed on April 2006.

120






