UNIVERSITAT AUTÒNOMA DE BARCELONA

EL PRINCIPIO ‘AGREGADOS CON ENCLAVES’ EN EL PENSAMIENTO TERRITORIAL SOSTENIBILISTA:
ANÁLISIS DE CINCO PAISAJES DE CATALUÑA

Domène Aran Guiu

Tesis Doctoral codirigida por:
Montserrat Pallarès Barberà Joan Pino Vilalta

DEPARTAMENT DE GEOGRAFIA

Bellaterra, Septiembre de 2007
EL PRINCIPIO ‘AGREGADOS CON ENCLAVES’ EN EL PENSAMIENTO TERRITORIAL SOSTENIBILISTA:
ANÁLISIS DE CINCO PAISAJES DE CATALUÑA

Domènec Aran Guiu

Tesis Doctoral codirigida por:
Montserrat Pallarès Barberà Joan Pino Vilalta

Bellaterra, Septiembre de 2007
‘…space is not a “reflection” of society, it is society’
Manuel Castells, The city and the grassroots

‘Only one approach appears possible concurrently to maintain ecological integrity and basic human needs for the built environment. That is to plan and manage the urban landscape as only one of several linked landscapes considered together. The group as a whole could theoretically be sustainable. Because of massive inputs and outputs involved, the overwhelming focus of planning and management will have to be on the non-urban landscapes to maintain their ecological integrity, and prevent land degradation. In an era of growing city numbers and sizes, this is a non-trivial step to take.’

‘Think globally, plan regionally and then act locally’
Richard T.T. Forman, Land Mosaics

A mi hijo Alberto
AGRADECIMIENTOS

Quiero agradecer especialmente las aportaciones y críticas a lo largo de estos años por parte de mis codirectores, que han moldeado tanto el trabajo como mi propia visión personal. A Joan Pino quien estuvo desde el primer día apoyando el proyecto y evitando que desfalleciera, y a Montserrat Pallarès quien dio también su apoyo, especialmente en los momentos de difícil transición del mismo. Quiero agradecer así mismo a Joan Nunes su aportación como director inicialmente, quien sentó las bases para el tratamiento de los datos. Agradezco al Institut Cartogràfic de Catalunya la cesión de los mapas de datos básicos para el estudio, y a Xavier Baulies su interpretación del proceso. Otros miembros del Departamento de Geografía fueron también de gran ayuda en la realización del trabajo en un momento u otro del mismo, empezando por Ignacio Ferrero como técnico del LIGIT a quien se deben algunas inestimables aportaciones en macros de ARC/Info. Otras personas que han incidido en algún momento inicial en mi investigación y a las cuales agradezco sus comentarios y aportaciones son Xavier Martí, Ramón Fortià, Martí Boada, Antoni Tulla y Anna Badia -quien se involucró además en momentos cruciales para el desarrollo de este trabajo. En realidad es también al programa de doctorado y el conjunto del Departamento de Geografía a quien agradezco el apoyo prestado pacientemente a lo largo de este tiempo. En otros ámbitos, a Eva Serra y Barcelona Regional, quien me facilitó los estudios sobre los paisajes de la región metropolitana. De las estancias de investigación en EEUU y la participación en congresos internacionales, agradecer especialmente a Jack Ahern, Guy Fabos, J.Machado, Joan Iverson Nassauer y -destacadamente- Richard T.T. Forman, su buena predisposición y las ideas dadas para tratar sobre los temas de mi investigación. Igualmente, reconocer el interés prestado a su elaboración y las sugerencias en el terreno de la planificación y el diseño a Juan Manuel López y Iñaki Ábalos. A Javier Gutiérrez Puebla agradezco también las facilidades para trabajar en el laboratorio de SIG de la Complutense. Finalmente y de forma emotiva les agradezco a mi familia y amigos su paciencia y respaldo incondicional, dándome apoyo a lo largo de este dilatado proceso, a pesar de las dificultades y las distancias.
INDICE

1.- INTRODUCCIÓN .. 1
 1.1. Presentación del tema e interés .. 1
 1.2.- Problemática y oportunidad del estudio .. 1
 1.3.- Aproximaciones espaciales al paisaje ... 4
 1.4.- El principio ‘Aggregated With Outliers’ ... 9
 1.4.1.- Modello para la planificación ... 12
 1.4.2.- Alcance .. 13
 1.5.- Estructura del estudio .. 14

2.- EL MARCO CONCEPTUAL .. 17
 2.1.- La unidad espacial del paisaje...
 2.1.1.- El concepto amplio de paisaje ... 18
 2.1.2.- Problemática de las aproximaciones holísticas ... 21
 2.1.3.- Desarrollos hacia la integración .. 23
 2.1.4.- Planificación estratégica y caracterización del territorio ... 28
 2.2.- La perspectiva AWO .. 30
 2.2.1.- Las claves del planteamiento holístico AWO ... 30
 2.2.2.- Valoración de las potencialidades AWO ... 32
 2.3.- Modelización de los sistemas territoriales .. 33
 2.3.2.- El análisis espacial del paisaje como conjunto de ecosistemas ... 34
 2.3.3.- El nivel de la región como conjunto de paisajes ... 37
 2.4.- Las configuraciones del paisaje .. 38
 2.4.1.- El análisis de la heterogeneidad del paisaje ... 39
 2.4.2.- El modelo Tesela-Corredor-Matriz ... 40

3.- ANÁLISIS AWO DE LOS PATRONES ESPACIALES DEL PAISAJE ... 43
 3.1.- Índices espaciales y aproximación AWO ... 43
 3.2.- Características de la aplicación AWO ... 46
 3.2.1.- Tratamiento AWO de las características espaciales del territorio ... 46
 3.2.2.- Escala de análisis y variables utilizadas ... 48
 3.2.3.- Requisitos del análisis a plantear .. 50
 3.2.4.- Principio normativo .. 51
 3.2.5.- Definición conceptual de las tipologías AWO .. 53
 3.3.- Referentes para la modelización espacial AWO .. 55
 3.3.1.- La modelización de la heterogeneidad en el paisaje .. 57
 3.3.2.- Interpretación de la diversidad en base AWO ... 59
 3.3.3.- Modelos de optimización ... 63
 3.3.4.- Modelos de interacción espacial .. 63

4.- PLANIFICACIÓN INTEGRADA EN BASE AWO ... 66
 4.1.- La planificación integrada y los ámbitos territoriales .. 66
 4.2.- La urbanización como factor de cambio y problema medioambiental .. 67
 4.2.1.- La urbanización extensiva ... 67
Indice general

5.- METODOLOGÍA PARA LA APLICACIÓN DEL OPTIMO COMPOSICIONAL AWO 96
5.1.- Hipótesis del estudio... 96
5.2.- Definición del análisis a realizar... 97
5.2.- Metodología aplicada... 98
 5.2.1.- Análisis de la heterogeneidad espacial AWO en el ámbito del paisaje......................... 99
 5.2.2.- Posibilidades de parametrización.. 100
 5.2.3.- Análisis aplicado. Modelo del óptimo composicional... 101
 5.2.4.- Propuesta de aplicación del modelo.. 101
 5.2.5.- Valoración del principio, su modelización y desarrollo... 102

6.- DEFINICIÓN DE LOS ÁMBITOS DE ESTUDIO ... 103

 6.1.- Delimitación de los espacios del paisaje.. 103
 6.1.1.- Límites de los paisajes.. 104
 6.1.2.- Delimitación de los elementos del paisaje... 105
 6.1.3.- Conceptualización de los espacios resultantes.. 106
 6.2.- Descripción geográfica de los paisajes seleccionados... 108
 6.2.1.- Geomorfología... 109
 6.2.2.- Evolución histórica... 110
 6.2.3.- La Región Metropolitana de Barcelona... 112
 6.2.4.- Estrategias territoriales propuestas... 117
 6.2.5.- Indicadores económicos y calidad de vida... 120
 6.3.- La Plana de Vic en la comarca del Osona.. 124
 6.3.1.- Morfología.. 124
 6.3.2.- Clima.. 124
 6.3.3.- Vegetación... 124
 6.3.4.- Condiciones agrícolas... 125
 6.3.5.- Características socioeconómicas y estrategias medioambientales............................. 127
 6.4.- El Pla de la Conca de Barberà.. 130
 6.4.1.- Morfología.. 130
 6.4.2.- Clima.. 131
 6.4.3.- Vegetación... 131
 6.4.4.- Condiciones agrícolas... 132
 6.4.5.- Características socioeconómicas y estrategias medioambientales............................. 132
6.5.- La Plana del Penedès ... 135
 6.5.1.- Morfología .. 135
 6.5.2.- Clima .. 136
 6.5.3.- Vegetación ... 136
 6.5.4.- Condiciones agrícolas ... 137
 6.5.5.- Características socioeconómicas y estrategias medioambientales .. 137
6.6.- El Pla de Bages ... 141
 6.6.1.- Morfología .. 141
 6.6.2.- Clima .. 142
 6.6.3.- Vegetación ... 143
 6.6.4.- Condiciones agrícolas ... 143
 6.6.5.- Características socio-económicas y estrategias medioambientales ... 144
6.7.- La Plana del Vallès ... 148
 6.7.1.- Morfología .. 148
 6.7.2.- Clima .. 149
 6.7.3.- Vegetación ... 149
 6.7.4.- Condiciones agrícolas ... 151
 6.7.5.- Características socio-económicas y estrategias medioambientales ... 152
6.8.- Usos del suelo y ocupación del territorio en los cinco paisajes ... 155
 6.8.1.- Análisis de la diversidad de usos en los cinco paisajes ... 155

7.- DEFINICIÓN APLICADA DEL PRINCIPIO AWO .. 159

 7.1.- Los criterios y su aplicabilidad ... 159
 7.1.1.- Formulación.. 159
 7.1.2.- Cuantificación y problemática de la proximidad entre espacios .. 163
 7.1.3.- Problemática de la definición de corredores naturales ... 164
 7.1.4.- La alternativa de los enclaves forestales 165
 7.2.- Consideraciones para la modelización 167
 7.2.1.- Conceptualización del tamaño de los espacios y formulación 'adimensional' ... 167
 7.2.2.- Definiciones topológicas .. 169
 7.2.3.- Diferenciación entre los espacios ... 170
 7.2.4.- Desarrollos conceptuales para la aplicación del modelo .. 172

8.- MODELIZACIÓN DE LAS TIPOLOGÍAS AWO .. 174

 8.1.- Variables y descriptivos de referencia 174
 8.1.1.- Usos del suelo y tamaño de los espacios 174
 8.1.2.- Gráficas de distribución de superficies 175
 8.1.3.- Distribuciones de los paisajes y optimización 177
 8.2.- Agregación de los usos .. 182
 8.2.1.- Composición interna del agregado rural 186
 8.2.2.- Composición interna de la clase forestal 187
 8.2.3.- Composición del agregado urbanizado 192
 8.2.4.- Composición de la clase natural no forestal 195
 8.2.5.- Valoración de la agregación .. 198
 8.3.- Clasificación según tamaño de las tipologías 199
 8.3.1.- Tratamiento de la categorización AWO 199
 8.3.2.- Posibles planteamientos de base exploratoria 200
 8.3.3.- Planteamiento adoptado .. 201
 8.3.4.- Interpretación de la clasificación AWO a realizar 203
 8.4.- Metodología cluster utilizada .. 204
 8.5.- Resultados del análisis de aglomeraciones 206
| 8.5.1.- Interpretación de los cortes | 206 |
| 8.5.2.- Valoración de los umbrales obtenidos por tipologías | 210 |

9. ANÁLISIS COMPOSICIONAL SEGÚN TIPOLOGÍAS AWO .. 212

9.1.- Análisis por usos y tamaños	213
9.1.1.- La matriz del paisaje y su interpretación por los resultados	214
9.1.2.- Resultados para los Grandes Espacios	216
9.1.3.- Resultados de la tipología de los espacios medianos	217
9.1.4.- Resultados para los espacios pequeños	218
9.1.5.- Valoración del análisis por tamaños y usos	220
9.2.- Análisis espacial de la densidad interna en la composición del paisaje	223
9.2.1.- Premisas conceptuales	224
9.2.2.- Área y número de espacios	224
9.2.3.- Relación entre el espacio mayor/ Número de espacios	229
9.2.4.- Peso de los grandes espacios y criticalidad	236
9.2.5.- Análisis conjunta de la superficie y la densidad	237
9.3.- Análisis de la diversidad en las agrégaciones	241
9.3.1.- Análisis de la diversidad por usos y tamaños	242
9.3.2.- Valoración y conceptualización de la heterogeneidad espacial	243
9.3.3.- Desarrollo del análisis composicional. Equiprobabilidad	245
9.4.- Las distancias mínimas medias entre agregados y enclaves	246
9.4.1.- La realización del análisis	247
9.4.2.- Resultados del análisis de las distancias medias entre agregados y enclaves	249
9.4.3.- Análisis por usos de las distancias medias	250
9.4.4.- La proximidad de los espacios medianos	252
9.4.5.- La correlación entre distancias y presencia de grandes espacios	254
9.4.6.- Conclusiones sobre la distancia mínima media entre agregados y enclaves	257
9.5.- Valoración del análisis composicional y verificación de hipótesis	258
9.5.1.- Interpretación composicional de las distribuciones espaciales	259
9.5.2.- Oportunidad de definición de las tipologías	260
9.5.3.- Interpretación de los casos de estudio en base al análisis composicional	263
9.5.4.- Implicaciones del tratamiento metodológico	264
9.5.5.- Naturaleza de los desarrollos a efectuar en base AWO	266
9.5.6.- Claves para el desarrollo en base AWO	267

10.- DESARROLLO Y APLICACIÓN DEL MODELO DEL ÓPTIMO COMPOSICIONAL 269

10.1.- Definición del modelo óptimo composicional	269
10.1.1.- Los componentes en la modelización	270
10.2.- Desarrollo del modelo de optimización	271
10.2.1.- Diferenciación de las tipologías por tamaños	274
10.2.2.- Diferenciación de las tipologías por usos	275
10.2.3.- Implicaciones y expectativas del supuesto de modelización	276
10.3.- Procedimiento para la aplicación del Optimo Composicional	277
10.3.1.- Valores diferenciales del Pla de Bages	278
10.3.2.- Valores diferenciales del Pla de la Conca de Barberà	279
10.3.3.- Valores diferenciales de la Plana del Penedès	280
10.3.4.- Valores diferenciales de la Plana del Vallè	281
10.3.5.- Valores diferenciales de la Plana de Vic	282
10.3.6.- Valores porcentuales de las diferencias	282
10.4.- Ensayos de aplicación prescriptiva	284
10.4.1.- Aspectos contextuales: Espacios medianos y grandes espacios naturales	287
10.4.2.- Contextualización de la acción antrópica y su efecto en los diferenciales OC	289
11.- CONCLUSION

11.1.- El principio AWO y el análisis del paisaje ... 291
11.2.- Aportaciones en el estudio de paisajes mediterráneos metropolitanos ... 294
11.3.- Aplicación y desarrollos posibles ... 297

BIBLIOGRAFÍA

... 300

APÉNDICES

... 313
INDICE DE TABLAS

Tabla 1.1.- Los criterios básicos del principio 11
Tabla 3.1.- Relación entre las características del paisaje y la diversidad ecológica 61
Tabla 5.1.- Objetivos generales y metodología 100
Tabla 5.2.- Primer objetivo general 100
Tabla 5.3.- Segundo objetivo general 101
Tabla 5.4.- Tercer objetivo general 102
Tabla 5.5.- Cuarto objetivo general 103
Tabla 5.6.- Quinto objetivo general 103
Tabla 6.1.- Renta bruta familiar disponible 1986-1996 122
Tabla 6.2.- Población de derecho 1991-1999 123
Tabla 6.3.- Valoración de los efectos de la proximidad de Barcelona 123
Tabla 6.4.- Usos del suelo en el año 1992 de la Plana de Vic 127
Tabla 6.5.- Usos del suelo 1992 del Pla de la Conca de Barberà 133
Tabla 6.6.- Usos del suelo 1992 de la Plana del Penedès 138
Tabla 6.7.- Usos del suelo 1992 del Pla del Bages 145
Tabla 6.8.- Usos del suelo 1992 de la Plana del Vallès 152
Tabla 6.9.- Clasificación de las unidades del paisaje mediterráneo 158
Tabla 6.10.- Índices de diversidad de los paisajes según usos del suelo desagregados 159
Tabla 7.1.- Criterios AWO 161
Tabla 7.2.- Calificación simple de los criterios del modelo en los cinco paisajes 165
Tabla 8.1.- Superficies relativas de los usos agregados por paisaje 188
Tabla 8.2.- Resultados de la agregación de los espacios rurales por paisaje 188
Tabla 8.3.- Composición interna de los usos rurales del Pla de la Conca de Barberà 188
Tabla 8.4.- Composición interna de los usos rurales de la Plana de Vic 189
Tabla 8.5.- Resultados de la agregación de los espacios forestales por paisaje 189
Tabla 8.6.- Composición interna de los usos forestales de la Plana de Vic 191
Tabla 8.7.- Composición interna de los usos forestales de la Plana del Vallès 193
Tabla 8.8.- Composición interna de los usos forestales del Pla de Bages 194
Tabla 8.9.- Resultados de la aggregación de los espacios urbanizados por paisaje 194
Tabla 8.10.- Índice de agregación y porcentaje del uso urbanizado en el paisaje 195
Tabla 8.11.- Composición interna de los usos urbanizados de la Plana del Vallès 196
Tabla 8.12.- Composición interna de los usos urbanizados de la Plana del Penedès 196
Tabla 8.13.- Composición interna de los usos urbanizados de la Plana de Vic 196
Tabla 8.14.- Composición interna de los usos urbanizados del Pla de Bages 197
Tabla 8.15.- Composición interna de los usos urbanizados del Pla de la Conca de Barberà 197
Tabla 8.16.- Resultados de la agregación de los espacios naturales no forestales por paisaje 197
Tabla 8.17.- Total del agregado natural no forestal en los paisajes 199
Tabla 8.18.- Composición interna de los usos urbanizados del Pla de Bages 199
Tabla 8.19.- Espacios en la categoría ‘matriz’ 209
Tabla 8.20.- Umbrales inferiores de corte de la tipología Grandes espacios 209
Tabla 8.21.- Umbrales de corte entre espacios medianos-pequeños 211
Tabla 9.1.- Resumen de criterios y procedimientos para el análisis composicional 215
Tabla 9.2.- Primer conglomerado para los cinco paisajes 216
Tabla 9.3.- Series de la tipología de los grandes espacios 218
Tabla 9.4.- Número de espacios medianos y superficie relativa en el paisaje (proporción) 219
Tabla 9.5.- Distribución de la superficie en los usos agregados de los espacios medianos 220
Tabla 9.6.- Número relativo de espacios pequeños y superficie en el paisaje (proporción) 221
Tabla 9.7.- Distribución de la superficie en los usos agregados de los espacios pequeños (proporción) 221
Tabla 9.8.- Peso del primer espacio de la matriz respecto el total
Tabla 9.9.- Superficie y número de espacios agregados de los paisajes
Tabla 9.10.- Porcentajes superficies por usos y tamaños
Tabla 9.11.- Densidades por tamaños
Tabla 9.12.- Ratio entre la superficie del espacio forestal mayor (ha.) y el número de
 espacios
Tabla 9.13.- Ratio entre la superficie del espacio rural mayor (ha.) y el número de
 espacios
Tabla 9.14.- Ratio entre la superficie del espacio urbanizado mayor (ha.) y el número de
 espacios
Tabla 9.15.- Relación entre superficie espacio natural no forestal mayor (Ha.) y el
 número de espacios
Tabla 9.16.- Densidad y superficie relativa de los grandes espacios
Tabla 9.17.- Densidad y superficie relativa de los espacios medianos
Tabla 9.18.- Relación entre la superficie relativa de los espacios grandes/medianos
Tabla 9.19.- Superficie relativa de los cuatro usos en los espacios medianos
Tabla 9.20.- Índices de diversidad según superficies y nº de espacios
Tabla 9.21.- Índices de diversidad (usos x tamaños)
Tabla 9.22.- Índices de diversidad natural y diversidad interna del paisaje según
 superficie de usos
Tabla 9.23.- Distancias medias mínimas entre enclaves y límites de grandes espacios
Tabla 9.24.- Distancia media entre enclaves y grandes espacios para agregados del
 mismo tipo
Tabla 9.25.- Distancias medias (m.) según uso de los enclaves al total de los grandes
 espacios
Tabla 9.26.- Distancias medias mínimas de los enclaves a los grandes espacios
Tabla 9.27.- Distancias medias mínimas entre agregados y enclaves -y variables
 relacionadas
Tabla 9.28.- Densidad enclaves (km2)
Tabla 10.1.- Comportamiento de los índices de varianza y desviación típica respecto a
 la diversidad
Tabla 10.2.- Valores de probabilidad óptima según el tamaño de los espacios
Tabla 10.3.- Valores de probabilidad óptima según usos de los espacios
Tabla 10.4.- Valores óptimos de probabilidad agregada (tamaño y usos)
Tabla 10.5.- Resultados de la modelización para la Plana de Bages
Tabla 10.6.- Resultados de la modelización para la Plana del Penedès
Tabla 10.7.- Resultados de la modelización para la Plana del Vallès
Tabla 10.8.- Resultados de la modelización para la Plana de Vic
Tabla 10.9.- Resultados de la modelización para la Plana de Bages
Tabla 10.10.- Diferencias porcentuales respecto el óptimo de Pla de Bages
Tabla 10.11.- Diferencias porcentuales respecto el óptimo Pla de la Conca de Barberà
Tabla 10.12.- Diferencias porcentuales respecto el óptimo Plana del Penedès
Tabla 10.13.- Diferencias porcentuales respecto el óptimo Plana del Vallès
Tabla 10.14.- Diferencias porcentuales respecto el óptimo por subgrupos Plana de Vic
INDICE DE FIGURAS

Figura 2.1.- Niveles de integración del paisaje y la región 34
Figura 1.1.- Los elementos de la matriz del paisaje y algunos de sus principales parámetros 7
Figura 1.2.- Disposición teórica de los espacios del modelo 10
Figura 2.2.- Definición gráfica del modelo tesela-corredor-matriz y de sus escalas de aplicación 42
Figura 4.1.- Tres categorías de la solución espacial 86
Figura 6.1.- Localización de los paisajes 109
Figura 6.2.- Coronas Área Metropolitana de Barcelona y Región Metropolitana de Barcelona 115
Figura 6.3.- Distribución de la vegetación natural en la Plana de Vic 126
Figura 6.4.- Localización de la Plana de Vic 128
Figura 6.5.- Localización del Pla de la Conca de Barberà 132
Figura 6.6.- Localización de la Plana del Penedès 137
Figura 6.7.- Localización del Pla de Bages 144
Figura 6.8.- Cobertura del suelo entorno S.Fruitós de Bages (1993) 148
Figura 6.9.- Localización de la Plana del Vallès 150
Figura 6.10.- Cobertura del suelo de la Plana del Vallès (1993) 155
Figura 8.1.- N° de espacios y superficie acumulada 177
Figura 8.2.- N° de espacios (log) y superficie acumulada 178
Figura 8.3.- Superficies de los espacios (log) y superficie acumulada 179
Figura 8.4.- Ajuste potencial de los diez primeros espacios del paisaje -valores de la ecuación y coeficiente de regresión 180
Figura 8.5.- Ejemplo del ajuste a la tendencia potencial para una distribución rango-tamaño ideal 181
Figura 8.6.- Dos aproximaciones al análisis de las configuraciones óptimas del paisaje 183
Figura 8.7.- N° de espacios y superficies acumuladas tras agregación por tipologías 185
Figura 8.8.- N° de espacios (log) y superficie acumulada tras agregación por tipologías 186
Figura 8.9.- Superficie de los espacios y acumulada tras agregación por tipologías 187
Figura 8.10.- Superficie espacios (log) y superficie acumulada tras agregación por tipologías 187
Figura 8.11.- Distribución de los usos forestales en la Plana del Bages 190
Figura 8.12.- Distribución de los espacios forestales en la Plana de Vic 192
Figura 8.13.- Distribución de los espacios forestales en la Plana del Vallès 193
Figura 9.1.- Tipologías de espacios agregados de la Plana del Vallès 217
Figura 9.2.- Valores de las tipologías de espacios por tamaños (porcentaje de superficies) 224
Figura 9.3.- Tipologías de pendientes 227
Figura 9.4.- Agregado natural no-forestal 228
Figura 9.5.- Agregado forestal 228
Figura 9.6.- Agregado rural 229
Figura 9.7.- Agregado urbanizado 229
Figura 9.8.- Distancias entre agregados y enclaves (metros) 252
Figura 9.9.- Diferencias en las distancias entre tipologías de espacios pequeños-medianos 255
Figura 9.10.- Relación entre la distancia mínima de los agregados y enclaves con la densidad de grandes espacios 257
Figura 9.11.- Relación entre la composición y las distancias de los espacios en el paisaje 258
Figura 10.1.- Solución gráfica a la maximización conjunta de la diversidad y la varianza en el tamaño de los espacios 274
1.- INTRODUCCIÓN

1.1. Presentación del tema e interés

En el presente estudio, se analiza la utilidad del principio teórico ‘Agregados con Enclaves’ (‘Aggregated with Outliers’; AWO en adelante), para el análisis de las configuraciones internas de los usos del suelo -Forman 1995a. Este principio se desarrolla a partir del análisis espacial en Ecología del paisaje y se orienta, en diversos estudios, hacia la planificación.

La distribución espacial de las cubiertas y usos del suelo es un tema común que preocupa a diversas disciplinas. La Geografía es una de estas disciplinas preocupadas por las interrelaciones hombre-medio, que cuenta además con aproximaciones holísticas que le permiten utilizar postulados sistémicos. El conocimiento sintético de la geografía en el análisis de aspectos centrales (como dominios de escala, complejidad estructurada del paisaje heterogéneo), propicia estudios territoriales que aúnan principios sostenibles para la conservación y la gestión del territorio. Sin duda quedan aun retos considerables para integrar las dimensiones antrópica y natural, en el análisis del paisaje y del territorio en general.

A partir del planteamiento de las hipótesis sobre la aplicabilidad del principio AWO, este estudio se desarrolla en cinco paisajes mediterráneos de llanuras sedimentarias -antáño todas rurales-, de Cataluña. Con ello se pretende realizar la prognosis para la planificación integrada de los mencionados paisajes (Planes de Vic, Vallès, Penedès, Pla de Bages y Pla de la Conca de Barberà). El elemento innovador del presente estudio se centra en la metodología del análisis espacial de las configuraciones del paisaje a partir del estudio de su heterogeneidad interna, como característica preeminente del principio AWO -considerada de especial interés y con un gran potencial para la modelización espacial y la planificación.

1.2.- Problemática y oportunidad del estudio

Los paisajes altamente afectados por la acción antrópica presentan unos impactos espacialmente evidenciables, de intensidad creciente especialmente en el caso de los entornos metropolitanos, en tiempos recientes. Estos territorios requieren de una especial ordenación y gestión de sus espacios, para favorecer tanto la preservación de sus
características naturales como la eficiencia en la localización de las actividades humanas. Con una buena planificación, se pueden determinar cuales deben ser las prioridades y su gestión, de cara a mantener y potenciar las capacidades naturales, al tiempo que se integran y facilitan las labores futuras en el análisis de nuevas afectaciones antrópicas.

Entre los principales motivos de estos nuevos enfoques, se constata la importancia de la pérdida de hábitats naturales y seminaturales -definido como el principal problema desde la Biología de la conservación. El reflejo de esta evidencia espacial es la que más ha acentuado la importancia del análisis de los usos del suelo y sus cambios, en los ámbitos extensos del paisaje y la región (Haeuber & Hobbs 2001).

La necesidad de controlar los crecimientos desorbitados en el territorio que penalizan futuras actuaciones, subyacen igualmente en las nuevas formas de actuación política, ligadas a una ética de la sostenibilidad. En este sentido, el paulatino movimiento hacia la adopción de compromisos de desarrollo sostenible en las políticas de los estados e instituciones, viene a potenciar y confirmar la necesidad de este tipo de aproximaciones integradas. La adopción de políticas medioambientales específicas por los estados y organismos internacionales, son el reflejo de una mayor sensibilidad social hacia los aspectos medioambientales, que surge progresivamente ante la magnitud de los problemas generados. En la ordenación del territorio, se considera la perspectiva del paisaje como unidad de estudio fundamental.¹

A su vez, el concepto de sostenibilidad, considerado desde la perspectiva de la ética medioambiental, involucra la propia definición social y la acción política. En los balances que se realizan desde la Economía Ecológica, se consideran principales la valoración de los aspectos que no intervienen directamente en el mercado, o el análisis de las externalidades generadas por las economías existentes -en contra de las usuales aproximaciones económicas neoclásicas. En este sentido, el Quinto Programa comunitario sobre medio ambiente (Comisión C. Europeas 1992) incidió ya directamente sobre las estrategias de desarrollo de la Comunidad: los temas medioambientales no se trataban como problemas, sino como síntomas de una mala gestión. Se introdujo, por

¹ Entre las iniciativas más destacables, la Estrategia Territorial Europea considera el Paisaje como una variable indispensable de una adecuada ordenación del territorio y, en el mismo sentido, el Convenio Europeo del Paisaje lo considera objeto de valoración y conservación (VVAA 2003).
primer vez, el concepto de responsabilidad compartida, y se propuso la aplicación del principio de subsidiariedad en el campo del medio ambiente.

Es precisamente en el nivel local donde es posible un grado más intensivo de implementación y control de las actuaciones y políticas medioambientales. Sin embargo, según la Ecología del Paisaje, los niveles administrativos y de gestión del medio natural más adecuados se dan a niveles territorialmente más extensos, por lo que el nivel intermedio del paisaje y la región aparecen como los más eficientes de cara a la gestión medioambiental –y sin embargo son los menos explorados (hecho denominado como la paradoja del gestor, ap. 3.2.2 -Forman 1995a).

Cabe notar igualmente la evolución y expansión actual de los planteamientos sistémicos y holísticos en los diversos campos científicos, con la aplicación de las teorías de la complejidad en Geografía (Phillips 1999a., Manson 2001; Portugali 1997). Estos planteamientos se han desarrollado también especialmente desde el análisis de los patrones de organización y estructura de los sistemas vivos (Capra 1996; 2002), los cuales consolidan una visión y significado integrado de las sociedades y las actividades humanas en el territorio, de forma contextualizada y dinámica.

Por sí mismo, el surgimiento en los últimos tiempos de ciencias de síntesis (Ciencia de la sostenibilidad, Biología de la conservación, Ecología del paisaje), para abordar los vacíos existentes entre los campos de estudio de las ciencias sistemáticas tradicionales, es otra evidencia de la tendencia actual a fomentar la visión sintética de los fenómenos complejos -como la interrelación hombre-medio. Esta interrelación ha sido considerada históricamente en Geografía uno de sus objetivos básicos -como reconocen las nuevas disciplinas emergentes.\(^2\) Por su parte, actualmente se plantea que la Geografía puede beneficiarse de ser una ciencia ecléctica, que realiza una labor de síntesis especialmente útil, al interrelacionar las ciencias de la naturaleza y el hombre.\(^3\) A pesar de ello, no se han difundido convenientemente estos nuevos desarrollos, por lo que la traducción de estas

\(^2\) Con ello se hace además patente el ‘problema clave’, o objetivo de la Geografía como disciplina: la comprensión del enorme sistema de interacción, que comprende toda la humanidad y su medio ambiente natural sobre la superficie de la tierra -de forma similar a como postuló Humboldt (Stoddart 1986).

\(^3\) La Geografía, caracterizada habitualmente por una elevada diversidad metodológica, puede beneficiarse de este momento o ‘zeitgeist’ si se integra en un discurso filosófico coherente (Rhoads 1999).
visiones emergentes se considera de la mayor importancia -de cara incluso a la propia supervivencia como disciplina (Turner II 2003).

Hoy en día, la demanda social para la planificación y ordenación del territorio igualmente precisan hoy en día las aproximaciones espaciales integradas de forma urgente. El marco de la síntesis inherente a la actividad de planificación, debe ser el lugar donde se enmarque de manera fructífera la actividad geográfica.⁴

1.3.- Aproximaciones espaciales al paisaje

La creciente evidencia que la preservación de unos cuantos espacios naturales protegidos no comporta, por sí sola, la preservación de la diversidad de las especies y hábitats presentes en el territorio. Por este motivo, ha sido determinante en la aparición de un análisis global de las configuraciones espaciales del territorio, en consonancia con la Ecología espacial en general y la Ecología del paisaje en particular (Noss & Cooperrider 1994). Los desarrollos del análisis espacial en Ecología tienen sus raíces en el análisis de las afectaciones sobre el medio que se han compilado a lo largo de la historia.⁵ Es igualmente un campo de estudio que involucra cualquier consideración sobre las actividades humanas y el funcionamiento de los sistemas ecológicos. Las coincidencias entre los planteamientos ecológicos sistémicos y la tradición sintetizadora de los fenómenos espaciales de la Geografía, se explicitaron ya en el surgimiento de la disciplina de la Ecología del Paisaje. En los inicios de la II Guerra Mundial, se consideraba esta disciplina como una combinación de la aproximación horizontal del geógrafo -al examinar la interrelación espacial de los fenómenos naturales-, con la aproximación vertical del ecólogo -al estudiar la interrelación funcional en un lugar dado, o ecótopo (Zonneveld 1989).

Más recientemente y fruto de los desarrollos científicos del último siglo, tanto en Ecología como en Geografía se considera que los enfoques puramente analíticos o reduccionistas dejan de lado un hecho esencial, como es la interacción entre fenómenos en el espacio y el tiempo. En los postulados del paradigma sistémico o ecológico, la

⁴ Parece acertado en relación a este propósito, por el que se proporcionan los métodos geográficos idóneos de resolución de problemas ‘creados para la Geografía’ (Ackerman 1976).

⁵ Estudios medioambientales como los realizados a mediados del s.XIX por G.P.Marsh (1864), o anteriormente por A. Von Humboldt -con su proyecto de constituir una ‘física del globo’ (Capel 2003a).
conectividad, las relaciones y el contexto son los elementos básicos en el análisis de los fenómenos. Por su parte, el territorio del paisaje y la región se conceptualiza como resultante de la convergencia y la acción combinada de los componentes bióticos y abióticos. Ello sucede precisamente en el nivel de integración del paisaje-región (Forman 1995a). Por otra parte, el ámbito físico del paisaje suele coincidir, en grado diverso, con las estructuras administrativas regionales o comarcales (como sucede con las comarcas de Cataluña), reforzadas por los estrechos vínculos históricos del poblamiento (unidades territoriales estructuradas entorno un núcleo de mercado). Los nuevos retos del desarrollo territorial sostenible han reforzado igualmente el valor del paisaje como elemento identificador del territorio y la cultura, facilitado por una percepción y conciencia que se establece como la ‘cultura del paisaje’ (VVAA 2003).

El vínculo de identificación colectiva con el territorio es otro factor clave a tener en cuenta también, de cara a la concienciación social y la conservación del medio natural - con un menor coste de intervención añadido (Noss & Cooperrider 1994; Forman 1995a). No casualmente, el ámbito de la región como agrupación natural de paisajes se propone como el ámbito más adecuado para la conservación (Noss & Cooperrider 1994). La región aparece también como un nivel de integración que incluye los aspectos socio-económicos (resulta de la agrupación de paisajes adyacentes de parecidas características climatológicas y geomorfológicas, pero también culturales y económicas), propuesto desde la Ecología del Paisaje, y considerado igualmente un sistema en Geografía. Debemos tener en cuenta, sin embargo, la importancia de los cambios territoriales que históricamente se reflejan en las unidades territoriales (escala): el paso en la funcionalidad de las comarcas rurales tradicionales hacia las grandes regiones metropolitanas, puede interpretarse así en clave de expansión (y ruptura) de las antiguas demarcaciones naturales del paisaje, motivada por los procesos de expansión de los sistemas urbanos.

El paisaje y la región han sido el sujeto tradicional de estudio en la ‘identidad ecológica’ de la Geografía, con el problema-clave del estudio de las relaciones (o condición) entre hombre y medio ambiente. Desde las formulaciones corológico-

6 Así, desde tiempos antiguos, el mercado semanal de las capitales comarcales -usualmente en las zonas más pobladas de los valles-, delimitaba áreas de influencia máxima de 1/2 día de viaje a pie (ida y vuelta), coincidiendo con las características orográficas del terreno (cuencas, líneas de cumbre -Solé i Sabarís 1982). Por ello es bastante fácil la identificación de los paisajes de llanuras rurales como los principales ámbitos (integramente configurados y a la vez configuradores) de las estructuras administrativas comarcales.
espaciales, se ha remarcado en cambio la síntesis espacio-temporal como el elemento central de la disciplina. A pesar de todo, se trata también de una aproximación sintética por definición: para ello es esencial ‘pensar geográficamente’. La organización funcional del espacio se ha considerado desde esta perspectiva como el tema central de la Geografía. Esta puede ser también la perspectiva de análisis geográfico, desde la que desarrollar instrumentalmente el modelo conceptual AWO –sin perder de perspectiva la necesidad del análisis holístico. Especialmente, en la referencia común a la funcionalidad de las configuraciones del paisaje de forma espacialmente explícita, con la finalidad declarada de su aplicación en la planificación.

De inicio, por los estudios realizados en campos como los de la Ecología del Paisaje y la Biología de la Conservación, conocemos la relación entre la distribución de los espacios internos del paisaje heterogéneo (el paisaje metropolitano en este caso), y determinados efectos ecológicos, como son los desplazamientos animales, los flujos de materia y energía en el territorio, o la propagación de alteraciones naturales (fuego, etc. - Turner 1989, Forman & Godron 1986). Las interrelaciones entre las actuaciones antrópicas y el medio ambiente son así cada vez mejor conocidas y su estudio incumbe cada vez un mayor número de disciplinas y especialidades. La necesidad de este acercamiento científico integrado remite también a la creciente problemática que afecta la relación entre hombre y medio natural. Cuando se aborda desde una perspectiva holística igualmente, la consideración de la totalidad del territorio en el análisis espacial del paisaje implica necesariamente una aproximación integrada a la planificación física, y las políticas de ordenación del territorio.

De forma usual, en el estudio de los fenómenos complejos que configuran el paisaje, se recurre a modelar sus características espaciales, en busca de las regularidades (tamaño, composición, forma, etc.) que caracterizan a los sistemas naturales y urbanos – Fig. 1.1.

7 En realidad será una aproximación alternativa a la definición tradicional de las ciencias desde el sXIX, la cual configurará la ‘otra’ identidad básica de la Geografía (corológico-espacial) frente a las aproximaciones paisajísticas (Turner II 2003).
8 O estructurar la mente filtrando los fenómenos, subrayando su distribución espacial y sus correlaciones múltiples, para tratar las pautas en toda su complejidad (Ackerman 1976).
9 En base al análisis de sistemas, el ajuste espacial que se realiza en los subsistemas terrestres es una de las fronteras de la investigación sistemática que puede abordar la Geografía, en este caso en colaboración estrecha con las disciplinas científicas que han sentado las bases del análisis espacial de los ecosistemas y el paisaje, como la propia Ecología del Paisaje (Ackerman 1976).
Figura 1.1.- Los elementos de la matriz del paisaje y algunos de sus principales parámetros

Es habitual también la tipificación de los espacios en grandes agregaciones según su naturalidad en la escala territorial del paisaje, de cara al análisis conjunto de las configuraciones espaciales existentes (p.e. usos urbanos/ rurales/ forestales). La aproximación espacial y el lenguaje común propiciado por la disciplina de la Ecología del Paisaje, resulta así en la definición de unas tipologías generales de espacios (corredores, teselas y matriz –ap.2.4.2) que se configuran de forma universal, por los procesos y flujos naturales comunes en el territorio.¹⁰

Sin embargo, la modelización espacial del paisaje, aún disponiendo de las herramientas más adecuadas, requiere hoy día de una base de conceptualización teórica, que oriente y articule el posterior desarrollo del proceso de análisis y modelización –aun a nivel exploratorio, con la necesaria definición de los objetos de estudio. En este sentido, se valora especialmente el análisis y desarrollo del principio conceptual AWO, dado que

¹⁰ La configuración resultante de los espacios y del mosaico del paisaje en conjunto, está bajo las fuerzas de la estructura, función y cambio existentes a una escala extensa (espacial y temporal – Forman 1995b).
1. INTRODUCCION

establece de forma normativa unos criterios universales de optimicidad de las distribuciones en el paisaje.

La hipótesis de trabajo, a nivel metodológico, se basa entonces en que con el análisis composicional en base AWO del paisaje se pueden evidenciar ya las funcionalidades y las principales afectaciones del territorio, en los subsistemas natural y antrópico. La existencia de este tipo de evidencias composicionales cuantificadas es susceptible de proporcionar indicaciones útiles para su diagnóstico y las actuaciones correctoras, especialmente en los casos en que se requiere una actuación urgente -como sucede hoy día frecuentemente en el terreno de la conservación natural o la ordenación del territorio.

Con este estudio se pretende, en cualquier caso, valorar las posibilidades de AWO para el análisis y prospección en una escala extensa como la del paisaje: En especial para detectar los posibles rastros composicionales (o ‘huellas’ de los fenómenos y procesos), indicativos de los procesos e impactos antrópicos que se dan actualmente en el territorio, y que afectan en gran manera las capacidades y funcionalidades ecológicas de los sistemas naturales.\(^{11}\) Se realiza por ello en los cinco paisajes mencionados de Cataluña.

Instrumentalmente, son de destacar las coincidencias entre el enfoque del presente estudio y los planteamientos que remarcan la importancia del análisis agregado de los usos del suelo -según su naturalidad, o como espacios multifuncionales-, para la conservación y gestión del territorio (Parks 1991; Schanze 2003). También las formulaciones que remarcan la necesidad de ‘creación’ deliberada del paisaje mediante planificación (o ‘ecodiseño’), como una herramienta para las aproximaciones estratégicas integradas del territorio –realizadas p.e. en el contexto de la European Landscape Convention (European Centre for Nature Conservation 1999).

De forma coincidente con los planteamientos de la corriente espacial en Ecología del Paisaje y las técnicas de análisis en Geografía, el desarrollo de las tecnologías de la información ha conllevado el incremento en ambas disciplinas el uso de los denominados

\(^{11}\) El análisis composicional es en este sentido una de las herramientas consideradas de mayor relevancia, en la Ecología del Paisaje (Gustafson 1998).
El principio ‘agregados con enclaves’

Sistemas de Información Geográfica (SIG). Con ellos, se ha hecho posible el tratamiento de unos volúmenes de datos considerados ingentes hasta hace poco (usos del suelo, reflectometría por satélite, etc.), necesario para el estudio de los fenómenos y procesos naturales y humanos, y para el diagnóstico de grandes áreas como el paisaje.12

1.4.- El principio ‘Aggregated With Outliers’ (AWO)

El principio AWO se basa fundamentalmente en el análisis de los usos agregados del suelo, desarrollado a partir de los principios y modelos conceptuales establecidos desde la disciplina ecológica.13 El análisis de las distribuciones según tamaño de estas tipologías de espacios agregados que propone AWO, supone por su parte el estudio del ‘grano’ del paisaje, o de la variación de la distribución por tamaño de los espacios. Es necesario para valorar la funcionalidad y potencialidades que tienen los espacios y el paisaje, en su conjunto.

AWO es por tanto uno de los principios espaciales que se formulan desde la Ecología del paisaje. Este principio se formula igualmente con el lenguaje espacial explícito de la disciplina de que proviene.14 En este contexto, es un principio de planificación del territorio que deductivamente –y de forma provocadora- pretende resolver una cuestión central: ¿‘Cual es la distribución espacial óptima de los usos del suelo en un paisaje?’ (Forman 1995a). 15

12 El tratamiento mediante el SIG ARC/Info (en estación de trabajo, plataforma SUN SPARC), ha sido la base para la interpretación y el análisis posteriores del estudio, finalmente tratados en la investigación mediante paquetes estadísticos convencionales (SPSS principalmente), además de los implementados en ARC/Info.

13 Dentro de la disciplina de la Ecología del Paisaje, se han formulado un elevado número de principios espaciales (más de 60) sobre las características estructurales y funcionales del paisaje, y de los procesos de cambio (Forman 1995a). Igualmente, la parametrización de las diferentes características de los espacios que forman el mosaico y el paisaje en su conjunto, es otro de los intereses básicos de la disciplina (Harrison & Fahrig 1995; Wiens 1995; Forman 1995ª; Gustafson 1998).

14 Un lenguaje (‘taxonomía espacial’ -Forman & Godron 1986) que se ha convertido en una herramienta común de intercambio de ideas y experiencias, entre diferentes disciplinas (Forman & Hersperger 1997).

15 Se formula desde la experiencia del autor, en el campo del análisis ecológico espacial y la planificación del paisaje. Igualmente, la profundización en su lógica llevará a los contactos (inicialmente por las estancias de investigación 1995-1996) con el profesor Richard R.T. Forman (Graduate School of Design, Harvard University), de la que surgirá la aproximación del presente estudio.
1. INTRODUCCIÓN

Figura 1.2.- Disposición teórica de los espacios del modelo

Fuente: Forman & Hersperger 1997
B: Built, P: Pasture, N: Natural.

El principio AWO sintetiza para ello los principales requerimientos de las configuraciones espaciales considerados óptimos o deseados, en base a la agregación de los usos del suelo (según su grado de naturalidad: p.e. forestal, agrícola, urbanizado).\(^{16}\) Lo hace además desde la división inicial entre espacios según tamaño: grandes espacios o ‘agregados’ y pequeños espacios o ‘enclaves’, dispuestos de manera que potencien las funcionalidades ecológicas (y humanas) del mosaico del paisaje –figura 1.2.

Su formulación es de hecho la de un modelo teórico normativo, que recoge las certezas establecidas por la Ecología del Paisaje cuanto a una gran diversidad de temas, dentro de la modelización del paisaje como sistema: cuestiones sobre la estructura, la función y el cambio (como sucede con los sistemas vivos), que se reflejan además espacialmente –tabla 1.1.\(^{17}\)

\(^{16}\) Ello se propone desde el conocimiento de las principales relaciones en las funcionalidades ecológicas del territorio, y la plasmación espacial de sus efectos. La urgencia de las tareas conservacionistas, y la posibilidad de actuar sin un conocimiento mucho más detallado sobre el funcionamiento de los ecosistemas, es también destacado por su autor (Forman 1995a).

\(^{17}\) Frente a la visión reduccionista de los hábitats homogéneos (teoría bioinsular, McArthur & Wilson 1967), el reconocimiento de la heterogeneidad y el cambio de los hábitats ha propiciado análogamente la visión de los hábitats como sistemas abiertos. En este sentido, las investigaciones en el campo de la Ecología del Paisaje se consideran el motor de dicho cambio (Naveh & Lieberman 1984).
El principio ‘agregados con enclaves’

Tabla 1.1.- Los criterios básicos del principio

1. Existencia de grandes bloques de vegetación natural. Se pone énfasis en que los grandes bloques de vegetación natural son ecológicamente importantes al menos por 6 motivos: protección de los acuíferos, protección de los cursos altos de las corrientes fluviales, proporcionar hábitat para especies de grandes necesidades de territorio, soporte a poblaciones viables de especies faunísticas con hábitats de interiores de bosque, permitir los regímenes de alteraciones generales necesarias en el paisaje (fuegos forestales, etc.), y mantener un gradiente de proximidad de microhábitats para especies de múltiples hábitats.

2. Tamaño del grano. Un paisaje que contenga varianza en el tamaño del grano (mayor variación en la distribución según tamaño de los espacios), en especial con predominio de espacios de tamaño ‘grande’ y ‘pequeño’, es importante para la configuración espacial –ya que se desconocen según el autor las ventajas del grano intermedi o de los espacios (Forman 1995a). El modelo de agregados con enclaves es de grano grande, pero contiene grano pequeño cerca de los límites e intersecciones entre grandes espacios.

3. Se considera necesario la existencia de más de un gran bloque del uso del suelo en las categorías de vegetación natural o suelo agrícola, para disminuir el riesgo de dispersión de plagas.

4. Además de grandes espacios son necesarios los pequeños enclaves. Se asegura con ello la variación genética, importante para proporcionar grupos con resistencia a las perturbaciones o hacer frente a los cambios medioambientales. Esta variación también es necesaria entre las poblaciones humanas.

5. Diseño de las zonas de contacto. La zona más extensa de límite entre usos del suelo, incluyendo las porciones de los límites de cada gran bloque adyacente, es frecuentemente útil para los enclaves. Si los enclaves se encuentran localizados a lo largo de un limite, no perforan totalmente ni destruyen las ventajas de los grandes espacios. La curvilinealidad de los límites reduce el aparente efecto barrera de las fronteras rectilíneas, y copia los resultados de los procesos naturales.

6. Pequeños bloques de vegetación natural. Como una excepción importante al punto anterior, los pequeños enclaves o espacios de vegetación natural deben estar también presentes en la totalidad de la extensión del paisaje, incluidas las grandes áreas construidas y agrícolas. Es debido a que tienen una función ecológica importante puesto que son también espacios significativos como suplemento (no como reemplazo) de grandes espacios.

 Así, estos pequeños espacios sirven de apoyo a la dispersión de las especies, y proporcionan hábitat y apoyo para la recolonización que sigue a las extinciones locales. Igualmente, proporcionan heterogeneidad a la matriz de fondo del paisaje, disminuyendo los efectos del viento y la erosión del agua. Estos espacios contienen especies de hábitat de zonas de contacto (especies generalistas) con unas poblaciones densas, y generalmente también unas densidades elevadas de especies.

7. Corredores, de dos tipos: los de vegetación natural fomentan importantes procesos naturales como el movimiento de especies o aguas superficiales; los corredores compuestos de diferentes usos del suelo de poca extensión, resultan en el movimiento eficiente de humanos, y las especies multihabitat entre estos usos. Los dos tipos tienen una concentración de especies generalistas en una pequeña área, y sirven como un filtro importante entre los grandes bloques adyacentes. Los dos tipos de corredores concentran así el movimiento entre grandes espacios, minimizando los movimientos no deseados entre ellos.

Pretende entonces establecer de forma normativa unos criterios ineludibles para la correcta planificación y gestión del territorio, superando las tradicionales aproximaciones por índices selectivos -redundantes muchas veces-, con que tradicionalmente se ha abordado el análisis de las configuraciones del paisaje. Para ello establece los vínculos entre las configuraciones espaciales y la funcionalidad ecológica de un territorio de forma
simple, sobre la base de variables de fácil representación espacial. Por el estudio no obstante, se pretende valorar especialmente sus posibilidades para la cuantificación del fenómeno fundamentalmente analizado (heterogeneidad espacial del paisaje -cap. 3), de cara a su desarrollo y aplicación mediante modelización.

1.4.1.- *Modelo para la planificación*

El principio conceptual AWO es parte además de una ‘*Spatial Solution*’ más amplia (Forman 1995a; Forman & Collinge 1996; 1997). Esta tiene por objetivo garantizar un marco sostenible para el planeamiento integrado en paisajes humanizados, en base a los criterios de la Ecología del Paisaje. Su integración en dichos procesos se ve promovida entonces por tener en cuenta las dimensiones cultural y socio-económica: Con ello, entra de lleno en la definición y valoración de la sostenibilidad del territorio, así como de las actuaciones de planificación en el ámbito del paisaje. Tiene por objetivo también reducir los costes o externalidades, generadas por los procesos de planificación ineficientes o erróneos (Forman & Hersperger 1997). Son de remarcar igualmente los beneficios directos para el hombre que esta aproximación integrada supone según su autor (Forman 1995a):

- Proporcionar un número de asentamientos muy variado;
- Localización adecuada tanto a los nuevos desarrollos urbanísticos como a asentamientos periféricos o marginales;
- Escalas pequeñas donde lugar de trabajo, viviendas, escuelas y tiendas estén próximos entre sí;
- Eficiencia para los movimientos humanos (transporte) a lo largo de los corredores entre ciudades, así como entre ciudades y asentamientos periféricos;
- Vegetación natural y agricultura cortando los corredores mayores, previniendo así el desarrollo de un continuo urbanizado, fomentando además la identidad del vecindario o ciudad;
- Especialización dentro de áreas urbanas agregadas (ciudades p.e.);
- Áreas verdes urbanas;
- Grandes áreas eficientes para la extracción de recursos;
- Limitación de las dificultades que las explotaciones agrarias tienen cuando están aisladas;
- Una varianza del tamaño del grano que proporciona diversidad visual.
El principio ‘agregados con enclaves’

En este sentido, el desarrollo del principio AWO puede considerarse como una incursión desde la Ecología del Paisaje en el campo de la gestión y planificación sostenible del territorio, con la adopción de las bases teóricas para el correcto funcionamiento e interrelación entre los espacios urbanizados y los espacios naturales del paisaje. Supone también una actitud deliberada de ‘creación del paisaje’, coincidentemente con las aproximaciones que se proponen actualmente como necesarias para la correcta toma de decisiones en el territorio.\(^{18}\)

1.4.2.- Alcance

Cabe considerar entonces la formulación AWO como una propuesta hasta cierto punto provocadora (más que idealista), promotora del cambio necesario y que presenta un gran número de conexiones (sólo sugeridas, o no explicitadas de inicio) con diferentes principios y teorías ecológicas –‘principios primeros’ de otras disciplinas, igualmente. Por el estudio se pretende valorar estas conexiones, dado que –a pesar de su simplicidad– realiza de manera efectiva una síntesis en las diferentes dimensiones del análisis holístico del paisaje, donde se integran o asimilan los conceptos provenientes de la extensa cosmovisión y disciplinas implicadas en la conservación, planificación y gestión medioambiental –siempre que sean adecuados al análisis espacial. Ello resulta, finalmente, en la suelta pero universal definición AWO de las configuraciones espaciales óptimas del paisaje. Es considerada por ello una contribución al pensamiento territorial, y cabe analizarla como tal.

El análisis por si solo de los criterios del principio AWO merece pues el mayor interés: Su formulación responde, específicamente, a la necesidad de definir las aplicaciones espaciales útiles en la planificación integrada del territorio. La formulación de una hipótesis que refiere composicionalmente a la optimización propuesta desde AWO, es entonces la base para indagar en sus posibilidades de aplicación y su validez. En el presente estudio se pretende evaluar, particularmente, sus posibilidades para la definición de los modelos necesarios de cara al análisis sintético de las configuraciones del paisaje - más allá de su formulación como directrices independientes. Se considera que su

\(^{18}\)Como se destaca en los foros de gestión del territorio, con repercusión a nivel del Consejo de Europa: Proceedings of the European Workshop on Landscape Assessment as a policy tool – ECNC 1999.
desarrollo permitirá a su vez una valoración más amplia del principio, así como de sus capacidades de implementación en la planificación.

Como parte esencial de los intereses del estudio, se plantea por tanto el desarrollo de AWO como modelo espacial, encaminado a la planificación y gestión del territorio extenso del paisaje. Como tal, será valorado como posible modelo de optimización espacial para los procesos de planificación, con unas características destacadas: será un desarrollo espacial explícito aplicable en cualquier territorio, desde la conceptualización de la funcionalidad ecológica del mosaico del paisaje -mediante la definición de su heterogeneidad en base a tipologías de espacios AWO.

1.5.- Estructura del estudio

El estudio refiere primeramente cuáles son los elementos contextuales que enmarcan el posterior análisis en base AWO. Por la síntesis que realiza AWO, se considera de especial importancia hacer aflorar las conexiones con los diferentes principios conceptuales, métodos y estrategias de la Ecología y otros campos, que por la experiencia del autor se significan en el análisis espacial del paisaje –las cuales se refieren a veces indirectamente. Con su estudio, se realiza de hecho un análisis de especial interés para la definición de propuestas integradoras en la definición de estrategias de planificación. Para ello, se adentra en el análisis científico holístico del paisaje, y de las características sistémicas del ámbito territorial del paisaje y la región.

La estructura de análisis en el estudio sigue por ello las dimensiones o requisitos necesarios para el análisis holístico del paisaje. En base al cual, es posible establecer tres aspectos o dimensiones, en el proceso de integración holística de los sistemas natural y antrópico (Schanze 2003):

- La dimensión causal-analítica, referida a las interacciones entre la sociedad y el medio. A su entorno, se sitúan los factores de cambio económico y social (driving forces) al igual que las retroacciones medioambientales, y sus respectivas consecuencias como impactos en los sistemas sociales.
- La dimensión normativa, que refiere a los prerrequisitos para la evaluación de los procesos.
Finalmente, la dimensión del planeamiento implica el marco y las tareas de desarrollo social del paisaje.

El planteamiento normativo AWO integra potencialmente las tres dimensiones mencionadas, aunque no sea una aproximación que pretenda, explicitamente, la integración holística de los ámbitos social y económico del territorio. Su orientación declarada a la planificación estratégica, sin embargo, refuerza esta perspectiva. Por ello, y de manera coincidente, el marco conceptual del estudio se estructura siguiendo estas dimensiones. Se refiere primeramente el marco teórico, desde el que se analizan las causalidades entre las distribuciones de los elementos que componen el paisaje, y la funcionalidad ecológica de los mismos (y el propio paisaje como sistema -cap. 2).

A continuación, se realiza la definición normativa AWO de las configuraciones del paisaje (cap. 3). Las formulaciones de las políticas de planificación actuales, y el análisis de las metodologías usuales centradas en la planificación sistémica, establecen finalmente las referencias del potencial integrador de la ‘Spatial Solution’ en la planificación (cap. 4).

Después de la presentación de la metodología de estudio (cap. 5), en el siguiente bloque se presentan las características de los territorios de análisis (cap. 6). Se explicita la delimitación AWO de los paisajes, haciendo hincapié en las cuestiones del análisis de la heterogeneidad y la influencia de la escala de estudio. A continuación se realizan la descripción física y socioeconómica de los territorios, así como de la región metropolitana en conjunto.

En el bloque de la modelización aplicada, se realiza el análisis exhaustivo del principio AWO (cap. 7). A continuación, se realiza la definición aplicada de las tipologías de espacios AWO, y el análisis composicional de los paisajes en base AWO (cap. 8-9). Como resultado, se propone un desarrollo metodológico propio, basado en las premisas conceptuales y metodológicas anteriormente establecidas (cap. 10).

En el bloque de la aplicación prescriptiva del modelo desarrollado, se realiza un ensayo para la planificación. Se realiza a partir del análisis de los déficits composicionales y las potencialidades de los territorios -sintetizando en parte los requisitos de la
planificación territorial estratégica integrada (cap. 11). La discusión sobre los principales aspectos de análisis considerados, así como sus implicaciones, concluyen el estudio (cap. 12).
2.- **EL MARCO CONCEPTUAL**

En la tradición del análisis científico del paisaje en que se formula el principio AWO, el paisaje se somete a las mismas consideraciones que se realizan sobre los sistemas vivos. El análisis de sus características cuanto a estructura, función y cambio es precisamente el objeto de la disciplina de la Ecología del Paisaje. Dentro del extenso campo de acepciones que histórica y culturalmente ha tenido el término ‘paisaje’, en Ecología el análisis científico del mismo toma una dimensión claramente espacial, además de funcional. Los sistemas naturales se hacen espacialmente explícitos a partir del nivel del ecosistema, y en la descripción del sistema natural del paisaje usualmente se considera que la interrelación entre su configuración, funcionalidad ecológica y cambio es interdependiente.

Esto es, la disposición espacial (configuración interna) de los elementos del mosaico del paisaje, además de ser resultado de, tiene una clara influencia sobre la funcionalidad del sistema. Es posible por tanto caracterizar un determinado número de tipologías generales de mosaicos del paisaje, los cuales tienen una correspondencia con sus funcionalidades. La Ecología del Paisaje tiene por objeto su estudio, frecuentemente desde la modelización espacial.

La contextualización espacial y funcional de los sistemas naturales en el paisaje, unido al factor de cambio temporal a largo plazo que produce la variabilidad del sistema (y que resulta en heterogeneidad espacial), da pie a una formulación de una serie de principios, que en base a la integridad ecológica de los sistemas naturales y la valoración de la sostenibilidad, anticipa las consecuencias de determinadas decisiones y actuaciones en la planificación y ordenación del territorio. Este es el referente conceptual en el análisis del paisaje desde el que se formula AWO, definido por unas determinadas características.

2.1.- La unidad espacial del paisaje

La riqueza de acepciones que puede contener el término paisaje nos obliga a especificar, de forma precisa, en qué referente semántico nos movemos, al realizar un estudio de tal ámbito espacial. De forma genérica, por paisaje se ha entendido históricamente el medio físico externo. En su interpretación sin embargo, se han realizado aproximaciones desde diversas perspectivas, que median entre la simple descripción o
caracterización del medio físico, pasando por las explicaciones teóricas universales19, hasta la percepción subjetiva del entorno experimentada por el hombre.

Esta duplicidad de visiones se manifiesta hoy día en el acercamiento a su estudio, desde diferentes sensibilidades y ámbitos profesionales. Así, la definición depende en muchos casos del bagaje cultural de los investigadores; la misma palabra (‘paisaje’) contiene implícitas diferentes connotaciones en diversas lenguas.20

\textbf{2.1.1.- El concepto amplio de paisaje}

El concepto de paisaje surge, como término geográfico y científico, durante los inicios del s. XIX, introducido por A.Von Humboldt. Éste lo define como el ‘carácter total de la Tierra’, incluyendo ya entonces las dimensiones económicas y culturales, además de las físicas (Petch & Kolejka 1993). Tiene por objetivo la comprensión del paisaje en su orden y función, y de los fenómenos diversos que lo causan y se dan en él, incluyendo los humanos. Posteriormente, con el crecimiento de la Geografía clásica occidental, la Geología y las ciencias de la tierra, el término se vio limitado en su significado a la caracterización de los elementos fisiográficos, geológicos y geomorfológicos de la costra terrestre, como sinónimo de las ‘formas del relieve’ -\textit{landforms}.

Hoy en día (y dado el progresivo reconocimiento de la necesidad de gestionar el espacio y los recursos naturales de forma global, de cara a mantener los procesos que se establecen en los ecosistemas)21, se reclama desde diferentes disciplinas el paisaje como el marco idóneo de trabajo, donde realizar la comprensión y el análisis de los procesos ecológicos en una escala de estudio relevante. El análisis visual del paisaje se incorpora también en el estudio científico, como otro campo que integra tanto los aspectos físicos como perceptuales y estéticos del espacio de estudio.

Igualmente, en la definición de la sostenibilidad, las dimensiones natural y humana del territorio se encuentran estrechamente imbricadas en un ámbito espacial común.

19 Desde la Grecia Antigua hay constancia de la división en el estudio geográfico entre una aproximación descriptiva de la diferenciación de las partes de la Tierra (Estrabón), y una aproximación (mediante leyes matemáticas generales) para proporcionar una visión integrada del ‘todo’ (Ptolomeo) (Johnston et al 1986).

20 European Environment Agency – Joint publication (2001b).

21 Hecho éste puesto en evidencia en primer lugar por el mejor conocimiento del funcionamiento de los sistemas naturales (Noss & Cooperrider 1994).
El principio ‘agregados con enclaves’

(básicamente de ámbito local y regional), que se formaliza en las configuraciones de los componentes espaciales del paisaje. La integración sistémica de los factores antrópicos y naturales es la que conforma actualmente la visión holística y interdisciplinaria del paisaje. Es una visión de la interrelación o condición hombre-medio ambiente, que se remonta a finales del s. XVIII en el campo de la Geografía.22 Esta visión holística se ha reclamado con especial énfasis desde corrientes de pensamiento geográfico, como el culturalismo (Sauer 1956) y la denominada Berkeley School.

Por su parte, la disciplina de la Ecología del Paisaje ha establecido en las últimas décadas las bases conceptuales y metodológicas para un amplio espectro de la investigación medioambiental y la planificación. Con ello se han sentado los cimientos para las aproximaciones sistémicas y holísticas del paisaje que se requieren. En la definición de la Ecología del Paisaje como disciplina, G.Troll (1950, 1971) formuló desde el inicio la interacción entre las dimensiones funcional y espacial del paisaje (asociadas con las disciplinas Ecológica y Geográfica respectivamente). Describió de forma pionera los desarrollos semánticos y epistemológicos del término ‘paisaje’, llegando finalmente a definir el paisaje como la ‘entidad visual y espacial total del espacio humano vivido’, integrando la geosfera con la biosfera y los artefactos humanos (noosfera). Se entiende así el paisaje como una entidad holística plenamente integrada, refiriéndose a un ‘todo’, que era más que la suma de sus partes, y que debía ser estudiada por tanto en su totalidad.

El esfuerzo por integrar todas estas realidades del término se ha sintetizado, por parte de algunos autores, en la definición del paisaje como un ‘sistema complejo de interrelaciones en el territorio, fruto de los factores bióticos, abióticos y humanos’ (Zonneveld 1989). El análisis de su complejidad, de las interacciones y del contexto existente son entonces los elementos que se remarcan especialmente en las aproximaciones holísticas, en las que participan diversas disciplinas.

El concepto entonces está vinculado a lo natural y a lo cultural, o al resultado de la interacción entre hombre y naturaleza. Puede conceptualizarse igualmente como el reflejo de un estilo de vida; o como el marco territorial de un sistema productivo local o regional

único, con unos problemas en común que los definen (medioambientales, socio-económicos, culturales), y requeridos de unas políticas de desarrollo características (ICDT-DATAR 2002). En estas definiciones, en suma, es posible incorporar la percepción humana del territorio, teniendo en cuenta además que el paisaje es un conjunto forjado históricamente (Ekbo 1974).

Se pueden realizar sin embargo definiciones más parciales del paisaje, entre las que destacan el paisaje como la realidad percibida, el paisaje como mosaico de unidades estructurales (geomorfológicas p.e.), o el paisaje como ecosistema (Pino & Rodà 1999). En estas definiciones parciales, entramos a considerar de hecho cuál es la interpretación que realizamos del fenómeno externo que es el paisaje, y que nos proporciona información: el hombre establece su relación con el paisaje como receptor de información, y lo analiza científicamente o lo experimenta emocionalmente (Calatayud e Iglesias 1992).

El paisaje se considera igualmente una unidad territorial particularmente útil para la comprensión y aplicación de conceptos como la integridad ecológica: por definición incluye una mezcla de elementos humanos y naturales, con numerosos ecosistemas que interactúan como bosques, campos, cursos fluviales y asentamientos humanos. Es posible definir de hecho la integridad ecológica de un territorio siguiendo el enfoque holístico de la disciplina de la Ecología del Paisaje (Forman 1995a).

Por otro lado, en las aproximaciones integradas que se proponen para las políticas y planificación estratégica del territorio, actualmente se considera el paisaje como un concepto especialmente válido en la definición de estrategias de sostenibilidad. Desde una perspectiva holística, el concepto de paisaje abarca múltiples aspectos sectoriales de los sistemas humanos y naturales, siendo el interfaz entre las dimensiones naturales y culturales. Mediante la comprensión de la naturaleza de estas interacciones, es posible afrontar de manera aplicada cuestiones ecológicas sistémicas, en períodos largos de tiempo. El reflejo espacial de las citadas interacciones es lo que da al concepto holístico del paisaje una creciente popularidad como aproximación teórica, para establecer de forma coherente los objetivos de sostenibilidad de un territorio23.

23 Como se refleja en la signatura de la European Landscape Convention (20/10/2000), Consejo de Europa.
2.1.2.- Problemática de las aproximaciones holísticas

Para la caracterización y aplicación de AWO, sin embargo, deben tenerse en cuenta los problemas conceptuales de la aproximación holística al paisaje y la región –siendo como es una referencia en la formulación del planteamiento AWO. En la base y utilidad de las aproximaciones holísticas, se destaca habitualmente la necesidad de mecanismos innovadores, que faciliten la investigación de los complejos problemas interdisciplinarios de las sociedades y el medio actuales (los cuales abarcan escalas espaciales y temporales múltiples). Esto, junto con la demanda de un trabajo de integración, acontece en los interfaces entre política-ciencia y gestión-ciencia (International Council for Science 2002).

De inicio, desde la Teoría General de Sistemas se ha enfatizado la importancia de las interrelaciones en el análisis de los sistemas (Bertalanffy 1968). Es por tal motivo que las hipótesis constructivistas sucumben cuando se enfrentan a los problemas de la escala y la complejidad, y por lo que el análisis de los fenómenos emergentes y las propiedades de los sistemas es uno de los tópicos de mayor actualidad científica.

Como problemática en su aplicación, cabe destacar en primer lugar el hecho de trabajar con objetivos múltiples y principios multidisciplinarios, a la vez que se da una dualidad entre las dimensiones objetiva y subjetiva en estos campos. El problema metodológico de trabajar con una visión holística que tiende a la integración de los aspectos analizados, cuando por el contrario la tendencia analítica usual es a la desintegración de los componentes de estudio para su análisis, es otra de las grandes cuestiones del debate (Schanze 2003). Como otra característica, existe también una cierta tensión en la aproximación holística entre las ciencias ‘duras’ y las ciencias ‘ blandas’ (o sociales), así como algunos problemas conceptuales y metodológicos que hacen que se requiera un gran desarrollo teórico, al iniciarse una aproximación paisajística en el análisis del territorio (Schanze 2003). Ello ha provocado una diversidad de respuestas y aplicaciones en los análisis del paisaje que se han realizado hasta hoy -con aplicaciones desarrolladas principalmente a nivel estatal.

La disyuntiva también se plantea a la hora de evaluar las características del paisaje y gestionarlo: en la pretensión de conjugar lo que es ‘único’ a escala local, y los intereses
nacionales. Igualmente, la necesidad de establecer prioridades en el análisis de determinados paisajes, o la necesidad de entender el vínculo entre los procesos existentes en el paisaje a la vez que los factores de cambio, supone un gran esfuerzo conceptual añadido.

Dentro del análisis holístico del paisaje, un reto conceptual previo (tratado en la disciplina geográfica entre otras) es el poder descifrar si existe una incommensurabilidad de la naturaleza, cuando es vista y descrita en diferentes dominios de escalas –en relación con determinadas metodologías de análisis: micro, meso y macroescalas. Desde la Ecología del Paisaje, el supuesto de existencia de dominios escalares (ecosistema, paisaje, región...) cimenta precisamente aproximaciones como la del principio AWO. Ello plantea la cuestión de si estos dominios de escala son una representación adecuada del mundo, y si existen realmente diferentes niveles de conocimiento -cada uno con sus propias complejidades y leyes fundamentales. Desde la perspectiva de las teorías de la complejidad, parece responderse afirmativamente a la existencia de dominios de escala y discontinuidades: no es factible demostrar interdependencias entre los fenómenos de escalas extremas (sin posible transición escalar por tanto). Esto es, aunque están evidentemente relacionados unos sistemas y otros, existen límites prácticos que evidencian su independencia como dominios (Phillips 1999b).

Cabe destacar también que desconocemos las metodologías con que realizar las transiciones entre los dominios de escalas, lo cual se apunta por sí solo como prueba de la existencia de tales dominios. Sin embargo, otros autores remarcan que la discretización que se efectúa muchas veces de los espacios como elementos del análisis geográfico, carece de una definición adecuada, o bien es directamente inapropiada.

24 Especialmente los afectados por los cambios de usos del suelo, como los periurbanos, o los impactados por infraestructuras de transporte (Owen 1999).
25 Esta suposición habitual de la existencia de dominios de escala donde realizar la síntesis holística, sin embargo puede ser objeto de debate y no estar conceptualmente bien fundada para algunos, siendo sólo un reflejo parcial de la metodología utilizada (Bauer et al. 1999).
26 Se proponen entonces técnicas basadas en modelos de procesos espacio-tiempo, geoestadística y ‘fuzzy-logics’ para el tratamiento de campos de datos continuos, en sustitución o de forma complementaria al actual paradigma metodológico de entidades geográficas discretizadas (Wilson & Burrough 1999).
Aceptando la prevención y los requerimientos conceptuales en la formulación de entidades discretas, algunos autores sugieren por otra parte contemplar los lugares (places), paisajes y regiones como posibles fenómenos emergentes, y trabajar en primer lugar para comprender las reglas de su emergencia.

As geographers studying place, we have a tendency to include as many details as possible in simulation models. The goal of the science of complexity, to understand how complex systems emerge from simple processes, should be considered useful in helping us to find parsimonious models for the emergence of places (Malanson 1999 -p.752)

Resultado en parte de estas dificultades y la diversidad de planteamientos para abordar su aplicación, la sensación de que se ‘reinventa la rueda’ aparece frecuentemente en los foros paisajísticos (caso de la Landscape European Convention –ECNC 1999). Para superar este estadio, y con mandatos expresos de las instituciones europeas (Consejo de Europa, Comisión Europea), se han lanzado proyectos para la formulación de aproximaciones integradas al paisaje, que contemplan la necesidad de establecer clasificaciones de las tipologías de paisajes, su evaluación y los estudios de impactos con unas bases conceptuales comunes (Klijn1999).

2.1.3.- Desarrollos hacia la integración

El ámbito del paisaje y la región se consideran sin duda los niveles espaciales con la escala adecuada, de cara a la conservación y la formulación y desarrollo de políticas de sostenibilidad. En el ámbito teórico, aproximaciones basadas en la distribución de las diferentes poblaciones interconectadas por redes de espacios, o el diseño de corredores entre estos (metapoblaciones), han coincidido en su adopción como la unidad territorial básica, siendo como es uno de los niveles superiores de integración de los sistemas de interacciones ecológicas:

‘El paisaje regional es una escala apropiada en la cual se puede identificar las localizaciones y las estructuras importantes, y gestionar y restaurar el territorio para los propósitos conservacionistas (...) Una estrategia de conservación de la biodiversidad sólo está completa cuando se extiende a estas escalas’ (Noss & Cooperrider 1994, p.13).

Por otro lado, usualmente se establece que para mostrar la interacción entre los sistemas antrópicos y el medio naturgénico (casi-natural)\(^ {27} \), son deseables las aproximaciones sistémicas holísticas, a pesar de sus restricciones epistemológicas

\(^ {27} \text{En contraposición a los medios artificiales, ya que aunque no se pueden definir como naturales, su génesis y renovación se basan aún en la auto-organización de la naturaleza (Forman 1995a).}\)
2. El marco conceptual

(Naveh & Lieberman 1984). Sin embargo, es la creciente demanda de unas ciencias sintéticas y un conocimiento integrado de los fenómenos biológicos, lo que está promoviendo precisamente una aproximación holística al estudio de los sistemas naturales y humanos, centrada en contextos locales como el paisaje (Kates et al. 2001). El interés de abordar la complejidad conceptual del paisaje es debido después de todo a su utilidad, como herramienta para el análisis de la sostenibilidad.

‘In the light of the rather complex environmental themes such as biodiversity, indicators and driving forces, the question arises why this interest for the relatively undefined policy field of landscape? Among the many answers that could be given, one word is key to the understanding of this phenomenon: sustainability. Like hardly any other discipline, the landscape approach offers holistic assessment and planning tools to define and develop the interface between nature and culture. Hence, landscape, as the place of human interaction with nature appears to be at the heart of sustainability’ (ECNC 1999).

Paralelamente se ha promovido el estudio de este ámbito desde instituciones y organismos europeos e internacionales en los últimos años, con programas específicos sobre el paisaje y la confluencia en su estudio integrado (Comisión Europea, Consejo de Europa, OCDE). Diversas instituciones y redes de ámbito europeo desarrollan específicamente investigaciones sobre la multifuncionalidad del paisaje. Esta visión surge también desde perspectivas de conservación del patrimonio arquitectónico, histórico y cultural europeo (campaña del Consejo de Europa 1997: Europe - a Common Heritage).

Hoy en día pues, a la visión funcional de los ecosistemas y el paisaje en Ecología se añade específicamente el interés por la dimensión humana, tanto en las vertientes económica como social y cultural. Sin embargo su aplicación hasta ahora se ha

28 La usual crítica de ‘esencialismo’ a la aproximación ecológica en Geografía –la cual tiene el paisaje como sujeto de estudio-, refiere en este sentido a las limitaciones de las aproximaciones holísticas, que desde una visión corológica-espacial se hace al análisis integrado del paisaje (Turner II 2003).
31 Alterra, Landscape Europe, Landscape Tomorrow, European Centre for Nature Conservation, Association of Landscape Ecology, etc. En Cataluña, el ‘Observatori del Paisatge’ es un consorcio que se incluye en la ‘Llei de protecció, gestió i ordenació del Paisatge de Catalunya’ (8/2005), creado en Noviembre de 2004. Su objetivo es el estudio y seguimiento de la evolución del paisaje y de los actores que condicionan su dinamismo.
32 El paisaje se considera entonces un concepto integrador (humanista). Cuando se le añaden el Patrimonio natural y cultural, se abordará con mayor inteligencia el territorio -donde los recursos
realizado muy puntualmente: caso de los espacios desestabilizados por la acción antrópica, o en la planificación de los usos del suelo a nivel local (corredores naturales, vías verdes, etc.). Se sigue por lo general con esquemas basados en la tradicional planificación regional, donde la conservación natural y del paisaje sólo es uno más de los intereses sociales en la balanza (además de los de la agricultura, industria y el desarrollo urbano; Owen 1999). Sin embargo las evidencias científicas sobre los sistemas naturales, y especialmente la visión holística de las dimensiones natural y humana que involucran, están suponiendo el motor de cambio para una aproximación a la gestión y planificación sostenible del territorio.

Entre el nutrido grupo de disciplinas implicadas en la conservación y la sostenibilidad, se da de por si una creciente integración en las formulaciones de las bases conceptuales para el estudio del paisaje. Entre las que han promovido con mayor énfasis este requerimiento destaca la Biología de la conservación: han sido precisamente las limitaciones de la conservación tradicional, las que han estimulado la emergencia de una nueva disciplina o ‘movimiento’ (Temple et al. 1988; Jacobson 1990; Noss & Cooperrider 1994). La Biología de la conservación es así ‘ciencia al servicio de la conservación’, si bien no es una ciencia típica, puesto que aunque está fundamentalmente relacionada con los principios de la Ecología, es interdisciplinaria y depende de la interacción entre diferentes campos.\footnote{Es considerada entonces una ‘metadisciplina’, un nivel de conocimiento que trasciende las disciplinas individuales que la componen, para aportar una visión no directamente deducible de ninguna disciplina por ella misma (Jacobson 1990). En el análisis, se considera la totalidad del territorio como requerido de gestión de sus potencialidades naturales, que favorezcan los hábitats y el conjunto característico de especies propias en un territorio, además de las amenazadas.}

Otra disciplina o ciencia sintética que se aproxima al estudio del paisaje desde una perspectiva holística es la denominada ‘Ciencia de la sostenibilidad’. Destaca su orientación a problema y la búsqueda de estrategias efectivas de integración del conocimiento científico y la gestión a nivel local y regional, con un afán por explicitar las naturales y los recursos culturales forman un todo, como se considera en el Convenio Europeo del Paisaje (Council of Europe 2000).\footnote{La Geografía, Geología, Sociología, Pedagogía, Filosofía, Economía y Ciencias políticas, así como el marco legal y regulador, se consideran igualmente fundamentales para su formulación y práctica. Ello en la misma medida que lo son la Biología de la vida salvaje, la gestión forestal, la Ecología, Zoología, Botánica, Genética y otras ciencias biológicas (Noss & Cooperrider 1994).}
actuales carencias y deficiencias de las aproximaciones para la sostenibilidad (Kates et al. 2001).

Por otra parte, a partir del análisis de la complejidad en la interacción del hombre y las sociedades con su entorno, y desde una perspectiva unificada (o de inserción plena de la Humanidad en el mundo orgánico, como proclama la Sociobiología), se suscita una caracterización de los conflictos sociales y medioambientales actuales (culturales, de uso de la energía y territoriales), que se sitúa en la perspectiva evolutiva del ser humano y los sistemas autorregulados (Margalef 1996; Capra 2002).

Igualmente, y como un hecho característico de las aproximaciones científicas holísticas, las diversas epistemologías pueden dialogar -entendiendo el método científico no de forma reduccionista, sino más como una forma de mostrar los resultados (que no de entenderlos).

En el plano aplicado de la planificación, el análisis espacial de los usos del suelo se convierte en un análisis referido a los complejos multifuncionales de tipologías de usos comunes, siendo que en cada caso se dan diversas demandas dentro de un mismo uso o complejo por parte de la sociedad (productivo, conservacionista, lúdico, etc.), que deben acomodarse (Wiggering et al 2003). Las modelizaciones de este tipo de aproximaciones holísticas y multifuncionales presentan la interrelación entre los factores económicos, sociales y medioambientales habitualmente de manera inclusiva (shell models).

Relacionada con las políticas agrarias de la UE, la conceptualización de la actividad agropecuaria y forestal es considerada igualmente uno de los aspectos cruciales en las aproximaciones multifuncionales al paisaje, como uno de los principales agentes de cambio (driving forces) y de interacción del hombre con el medio natural, a lo largo de la historia. Este tratamiento de la dimensión del paisaje rural como entorno agro-

34Igualmente, la caracterización de los individuos y sociedades desde la perspectiva de los sistemas autorregulados, aporta a la dimensión ética nuevas perspectivas. Conceptos tales como la sostenibilidad y el desarrollo sostenible aparecen así bajo una nueva luz, a partir de la cual también es posible caracterizar los desarrollos conceptuales y teóricos efectuados (Margalef 1996).

35'Positivist, nomothetic science, whatever its particular philosophical or methodological variants, is less a methodological or even an epistemological stance than a lingua franca that allows us to share our insights and opinions with those who dream different dreams and adhere to different “faiths”. In short, positivist science is more a way of showing than a way of knowing’ (Phillips 1999b, p.758).
El principio ‘agregados con enclaves’

El principio ‘agregados con enclaves’ medioambiental es una aportación que permite evidenciar la interrelación entre la dimensión natural (en la totalidad del territorio) y los factores de cambio en los usos del suelo. La relación entre agricultura y medio ambiente es igualmente específica para cada localización, en una relación sistémica compleja que además se define históricamente. Es lo que se da en llamar como los ‘sistemas locales agro-medioambientales’, donde el concepto integrador del paisaje proporciona la dimensión espacial en el que enmarcar dichas interrelaciones.36

Es hoy en día uno de los campos de la investigación favorecidos desde las instancias europeas, con la definición de nuevas políticas de subvenciones a las explotaciones agrícolas sostenibles. Su efectividad viene dada entonces por la definición de las ‘buenas prácticas’ agrícolas en el marco de los programas europeos, con las subvenciones a la agricultura (Política Agrícola Comunitaria-CAP). Debe tender además a ser una actividad sostenible y con mínimos requerimientos (Agenda 2000 / CEC 1997; CEC 2000).

La valorización económica de las cualidades del paisaje es otra de las estrategias que se proponen, para la efectiva integración holística de las aproximaciones al territorio: no en vano, la principal industria europea es el turismo, que tiene como uno de sus pilares fundamentales el paisaje y los valores naturales, además de la herencia cultural. Los valores espirituales y de contribución a la salud -o los efectos curativos sobre el individuo-, serían igualmente otros aspectos del paisaje a valorar.

Paralelamente, de cara a la formulación de aproximaciones locales y la toma de decisiones correctamente fundadas, se considera que uno de los requisitos previos es el estudio y la clasificación de las tipologías de los paisajes, a nivel continental o mundial (ECNC 1999). Ello permitirá por ejemplo establecer las prioridades de actuación en el territorio y la adopción de las estrategias adecuadas, en base también a consideraciones

36 En este sentido, se conceptualiza la agricultura multi-funcional como una actividad transformadora del medio, aunque contempla también las dimensiones favorables para la sostenibilidad en el paisaje y las demandas de los entornos urbanos circundantes, además de las funciones productivistas usuales. Con ello va más allá de la usual visión productivista, valorando las características sociales y medioambientales de la actividad (Berkowitz 1999).
de los niveles espaciales superiores (como es el caso especialmente de las zonas rurales periurbanas, o las afectadas por infraestructuras lineales de transporte).³⁷

2.1.4.- Planificación estratégica y caracterización del territorio

La escala del paisaje se considera también el marco idóneo para el análisis y la toma de decisiones estratégicas sobre el territorio, por parte de los diferentes ámbitos políticos que intervienen en la planificación (ICTD 2002). En estos casos, la designación de las unidades geográficas tiene además por objetivo identificar el carácter peculiar del territorio de estudio, a partir del cual promover políticas y desarrollos específicos.

Esta caracterización puede realizarse mediante un análisis sistemático del territorio en función de determinadas variables, o bien por una definición a priori de las unidades geográficas.³⁸ En este último caso, coincidirá en buena parte con las aproximaciones regionales tradicionales en Geografía, además de los análisis paisajísticos realizados a nivel estatal (presentados a veces como atlas³⁹).

En la consideración de la dimensión social o cultural, las escalas de estudio del paisaje y la región sitúan las actividades de los colectivos humanos en relación funcional directa con su medio, siendo además que en estos ámbitos se configura históricamente el sentimiento identitario de las comunidades humanas -como sucede en el caso de las comarcas y las regiones. Es el ámbito igualmente donde los cambios y desarrollos sobre el territorio, y en la calidad de vida diaria, se hacen palpables para sus habitantes.

El interés por el nivel de la región radica también en el hecho que la escala del paisaje habitualmente ya no abarca, hoy día, fenómenos como los de la expansión urbana de las regiones metropolitanas (regiones funcionales, de origen fundamentalmente económico). Para su análisis, será necesaria la interpretación de los diferentes paisajes que componen la región económica o funcional. Entonces el nivel ecológico de la región, como agrupación de paisajes naturales con características físicas y antrópicas en común (culturales, socio-económicas), se considera el adecuado para analizar estos fenómenos,

³⁷ Es de prever que finalmente se definirán de forma universal unas tipologías del paisaje: cabe preguntarse si en sintonía tal vez con los criterios AWO –también definidos ‘universalmente’.
³⁸ De manera general, puede decirse que la elección del procedimiento depende tanto de las acepciones y matrices atorgadas al concepto de paisaje, como de la tradición existente en la caracterización del territorio (ICTD 2002).
³⁹ Como el realizado en Francia recientemente -citado en ICTD 2002.
puesto que estará próxima a la definición de la región funcional. La integración de las dimensiones económica y sociocultural en la aproximación holística al paisaje y la región, refuerza así los vínculos estratégicos con los programas de planificación y desarrollo regional.

Igualmente, la relativa facilidad con que los estudios y análisis del paisaje pueden relacionarse con las actividades de planificación espacial a nivel municipal (planificación física, zonificación de usos del suelo) es otro de los aspectos operativos de interés de la aproximación paisajística que coincide además con la potenciación del precepto de subsidiariedad administrativa, establecido a nivel europeo. La toma de decisiones a nivel local, democratizando el proceso ‘experto’ centralizado existente hoy en día, se considera otro de los puntos positivos de esta aproximación. En este sentido, cada paisaje es específico y está configurado por unas determinadas interrelaciones sistémicas y culturales a nivel local.40

Por otra parte, la movilización que proporciona la conservación y mejora del paisaje habitual del ser humano41, es un factor con atractivo individual y colectivo, que puede facilitar el propósito de la autorregulación y el necesario constreñimiento de la actividad antrópica, tanto si se formula desde un punto de vista ético colectivo como desde el de la momentánea ‘cesión’ de libertad individual.

En especial, se considera que es prioritaria su aplicación en espacios altamente requeridos de un minucioso análisis locacional, como son los entornos metropolitanos, de cara a no alterar irremediablemente las dinámicas naturales del medio, y obtener la máxima eficiencia posible para las necesidades de sus habitantes (presupuestos de sostenibilidad). Además de abordar la complejidad de las interrelaciones de los sistemas naturales y antrópicos en la planificación estratégica, la urgencia y necesidad por tanto es el tratamiento positivo (no solo regulador) de las acciones humanas en el medio –la

40 El nivel local de toma de decisiones se considera clave para el desarrollo sostenible, al ser responsable de muchas de las influencias externas que siguiendo planes de desarrollo provocan el cambio en el paisaje –influencias dentro de las cuales los individuos y grupos localmente se establecen y actúan (James et al. 2000).
41 También como entorno fenomenológico subyacente o trama de los lugares de habitud, con influencia y somatización (aún desconocida, de forma pre-reflexiva) por parte del ser humano. El paisaje y el cuerpo humano son entonces los epicentros efectivos del ser geográfico: ‘The one widens our vista of the place-world –all the way to the horizon- while the other literally incorporates this same world and acts upon it”. –Casey 2001.
‘creación’ del paisaje-, mas cuando se definen de forma espacial sobre el territorio como en el caso del principio AWO.

2.2.- La perspectiva AWO

2.2.1.- Las claves del planteamiento holístico AWO

De cara a la aplicación, la secuencia en la planificación de los usos del suelo propuesto por R. Forman (1995a), ya da idea de cual deberá ser la prioridad en el tratamiento unificado para la ordenación del paisaje AWO: en ella se consideran primordiales las constricciones ecológicas. En primer lugar entonces, deberá determinarse la naturaleza de la disposición de los elementos del paisaje y usos, y considerar a continuación los modelos de distribución óptimos sobre el territorio, que incluyen los usos humanos existentes.\(^\text{42}\)

La dimensión física del territorio (como lugar específico donde se plasma efectivamente la integración del hombre y el medio -su entorno habitual), es vista efectivamente como el factor clave en el análisis para la sostenibilidad de las actuaciones humanas. Es precisamente en el territorio donde en gran medida tienen lugar o se manifiestan, inevitablemente, las interrelaciones entre los subsistemas antrópico y natural.\(^\text{43}\)

La unificación de los sistemas natural y antrópico que se abordará desde AWO, por tanto, conlleva dar preeminencia al mundo orgánico sobre el humano en la ordenación territorial. Los criterios de funcionalidad ecológica de los sistemas territoriales son los que cobran relevancia, por encima de las características del subsistema antrópico –el cual rige y caracteriza el territorio actualmente. Se sigue su necesaria regulación por tanto, de cara a conseguir fijar espacialmente las características propias de un medio sostenible.\(^\text{44}\)

\(^{42}\) Seguidamente, podrá ya planificarse: primero para favorecer el sistema de aguas existente y la biodiversidad. Después pueden planificarse la agricultura, recolección y la obtención de productos forestales; seguidamente la red de descargas de alcantarillados y otros residuos; y sólo finalmente la disposición de viviendas e industria, nunca en los lugares previamente considerados en las fases anteriores –estos son los usos que pueden ubicarse de forma más flexible en el territorio, por otra parte (Forman 1995a).

\(^{43}\) Debe tenerse en cuenta que el espacio es uno de los factores esenciales en el desarrollo evolutivo de las especies -además del energético y el cultural; y fuente de conflictos latentes igualmente (Margalef 1996).

\(^{44}\) De manera aplicada, se define de forma característicamente flexible y diferenciada en cada territorio, aun partiendo de las consideraciones universales sobre las funcionalidades ecológicas,
El principio ‘agregados con enclaves’

A partir de la definición aplicada del medio sostenible en el territorio –como su reverso-, deviene entonces un test de la sostenibilidad de las políticas adoptadas por las sociedades, desde cualquiera que sea la formulación teórica y conceptual que se emprendan (en caso de su omisión igualmente). Las sociedades serán caracterizables sin duda en base a los resultados espacialmente evidentes, ocasionados por las políticas y procesos desarrollados en el territorio. Como propósito, esto se conjuga de forma espacialmente explícita en el caso de la definición de la sostenibilidad como ‘medio sostenible’ (realizada también desde planteamientos éticos sobre las acciones humanas; ap. 4.3.3), considerando sus repercusiones sobre el paisaje. Este medio se postula aún sin entrar a definir los mecanismos reguladores de las actuaciones, otros que objetivar los valores mínimos necesarios en un proceso de ordenación más racional (Forman 1995a): definición de escalas temporales y espaciales extensas para los objetivos de planificación; fijarse en atributos de cambio lento y mantener la integridad ecológica de los ecosistemas; resolver las necesidades básicas del individuo; fomentar la adaptabilidad y estabilidad de los sistemas naturales en el mosaico del paisaje (Dale et al 2001).

Por el presente estudio, se considera además que los planteamientos provenientes de la visión sistémica unificada y las teorías de la complejidad, son de especial interés en la interpretación de los resultados del análisis composicional AWO del paisaje. Especialmente, cabrá referir como se trata la complejidad del paisaje heterogéneo en el que deben cumplirse en cualquier paisaje -las cuales son consideradas dinámicas, pero no contingentes. La contextualización de sus elementos internos y el propio paisaje son la clave en este aspecto (Forman 1995a).

45 En este propósito, podría considerarse tal vez como un análisis que refleja espacialmente la situación real sobre el territorio de la ‘huella ecológica’ de estas sociedades, respecto a la situación ecológica que se define universalmente óptima desde el principio AWO. Por ello se corresponde (como objetivo de estudio) con la búsqueda de los indicios espaciales que permitan caracterizar el momento en la evolución actual del territorio del paisaje, igualmente.

46 Es inevitable relacionar y establecer entonces las características espaciales de las sociedades como reveladoras de su naturaleza, ya que las definen y en base a ellas se valoran las respectivas trayectorias históricas y recientes.

47 Los procesos ecológicos y humanos de escalas temporales extensas (con más de dos siglos de duración mínima: fenómenos de nación, cultura, religión), son en este caso los que se consideran cruciales, como sucede por otra parte en las cosmogonías de diversas sociedades primitivas (Forman 1995a).

48 El tratamiento de la complejidad inherente en la definición de las variables agregadas a utilizar (útil de cara a tratar de la forma más simple posible los tipos de configuraciones) y la variabilidad existentes (la representación simplificada de los lugares del paisaje), son temas de especial interés al respecto, dentro del objetivo genérico de encontrar los modelos más eficientes y menos costosos, en el estudio de la ‘emergencia’ de los lugares complejos (Malanson 1999).
análisis AWO: de forma conceptual primero (previa a su desarrollo), y de forma aplicada después, mediante su discusión en base a los resultados de la modelización.

Esta es la posible definición AWO para el tratamiento de la complejidad del paisaje heterogéneo, a realizar fundamentalmente en base al análisis funcional de los sistemas ecológicos y los conceptos de autorregulación de la complejidad agregada (por la minimización de la entropía).

2.2.2.- Valoración de las potencialidades AWO

La aproximación AWO es considerada una aportación desde la perspectiva territorializada del paisaje que puede analizarse consistentemente, respecto a los planteamientos teóricos de la complejidad y el funcionamiento de los sistemas. A pesar de su aparente simplicidad conceptual (dentro del conjunto elaborado de modelos conceptuales de referencia donde se enmarca), la referencia a la funcionalidad de las dinámicas ecológicas del territorio del paisaje y la región (no contingentes), y el hecho de estar alejado también de posibles definiciones de categorías espacio-temporales abstractas, se consideran en este sentido la clave en la valoración positiva para su aplicabilidad.

En cualquier caso, por el presente estudio lo que se propone es explorar y evidenciar sus potencialidades de cara a la aplicación, más allá de su ‘deconstrucción’ minuciosa. La necesaria crítica del principio AWO se contempla desde una perspectiva constructiva. Es desde su claro planteamiento aplicado para la definición del medio sostenible, que se caracteriza al principio AWO como un planteamiento a la vez provocativo y útil. Especialmente de cara a la toma de decisiones sobre la ordenación de las actividades humanas en el territorio, partiendo de su formulación como un óptimo composicional universal -un planteamiento posiblemente ‘idealizado’. El motivo y oportunidad de estas aproximaciones, en buena parte, es la urgencia con que se

49 Otras que la propia formulación universal AWO, en base a las dinámicas ecológicas evidenciadas espacialmente en los paisajes.
50 Ello no excluye sin embargo exponer las limitaciones y cuestiones conceptuales no desarrolladas por el principio -mas cuando se busca su desarrollo aplicado.
51 Los planteamientos para la ‘creación del paisaje’ (como crecientemente son reivindicados en los foros de planificación y gestión: ICDT-DATAR 2002) pueden considerarse igualmente idealizados, desde este punto de vista.
necesitan herramientas aplicadas para el propósito de autorregulación humana eficiente, necesaria de cara a la consecución de la sostenibilidad (Kates et al. 2001).

Es de valorar también su aplicación en los diversos ámbitos del conocimiento y las ciencias involucradas en esta síntesis territorial, especialmente desde la referencia a la identidad ecológica en Geografía, la cual ha tenido históricamente el paisaje como elemento de análisis central. Igualmente, su discusión en relación a los planteamientos sistémicos unificados (Anexo A), puede establecer las referencias idóneas de explicación en el marco teórico de la complejidad de los sistemas ‘que contienen vida’, como son los niveles de integración ecológica del paisaje y la región -tal como los establece el autor del principio AWO. Parece adecuada por ello su caracterización como un modelo estructural del paisaje o la región, en consonancia con los planteamientos de la complejidad estructurada en dominios de escala (Bauer et al. 1999).

Desde el diálogo epistemológico que caracteriza las aproximaciones holísticas, la creación del paisaje sostenible AWO puede ser visto también como un modelo para la aplicación, en que se proponga crear los lugares referenciados en el paisaje de forma ‘que incrementan nuestra conciencia de la realidad y que incrementan su variedad y complejidad’ (Sack 2003) –a pesar de no desarrollarse desde la epistemología del realismo o la fenomenología. De todo ello se deduce el gran potencial de la aproximación AWO, como una contribución destacada al pensamiento territorial.

2.3.- Modelización de los sistemas territoriales

El análisis del principio AWO debe realizarse primordialmente desde una perspectiva científica holística, como se propone en el estudio. Los modelos a desarrollar a partir del principio normativo AWO serán sin embargo característicamente modelos de optimización espacial. Su valoración deberá realizarse tanto en el plano conceptual y en referencia a la visión ecológica que sustenta el principio, como desde los desarrollos realizados por analogía con los sistemas complejos.

En el análisis científico de los sistemas naturales, la Ecología establece unos niveles de integración funcional que se consideran los objetos de estudio de la disciplina. Su estudio como sistemas lleva pareja su modelización, realizada en base a principios
El marco conceptual

primeros o analogías físicas, provenientes de las leyes de la termodinámica. El autor del principio AWO plantea una jerarquía espacial que refiere a estos niveles, para el caso del paisaje y la región (figura 2.1).52

Figura 2.1.- Niveles de integración del paisaje y la región

2.3.2.- El análisis espacial del paisaje como conjunto de ecosistemas

El nivel de integración del ecosistema propuesto por Tansley (1946), representa un grado de complejidad y de organización biológica constituido por el nivel inmediatamente inferior de la comunidad y su medio. Es por tanto el nivel en el que se hace explícito el componente espacial de las comunidades biológicas. Para su modelización, tanto el ecosistema o los sistemas naturales extensos como el paisaje se consideran una acepción más limitada del concepto general de sistema, dado el elevado número de entidades e interrelaciones complejas en su interior.53

La definición espacial de las comunidades ecológicas o ecosistemas, realizada principalmente sobre la base de la vegetación, es la que establece usualmente la delimitación de las unidades espaciales propias de la ecología descriptiva.54 Esta

52 Se basa en los planteamientos realizados anteriormente por diversos autores (Miller 1978), cuanto a las escalas de los sistemas naturales.
53 Ello supone de hecho una limitación a su abstracción y modelización como sistemas tradicionales (Stoddart 1986).
54 Usualmente se considera que los vegetales son el elemento que mejor caracteriza los ecosistemas, y en referencia a ellos es como mejor se define una comunidad, tanto en términos
El principio ‘agregados con enclaves’

delimitación se utiliza precisamente para solventar en gran manera la problemática transposición espacial de los ecosistemas (o territorialización), desde su conceptualización como nivel de integración ecológica -presente en una gran variedad de escalas.

Por otra parte, una de las herramientas más utilizadas para la definición de las áreas naturales de cara a su conservación es la cartografía de biótopos. Se equipara a la cartografía o plasmación espacial de los ecosistemas a escala local o regional. Como tales son efectivamente consideradas en las políticas medioambientales de diferentes países y regiones desde hace años, tanto dentro como fuera del programa CORINE en el caso comunitario (catalogación de grandes espacios naturales de la Unión Europea; ITE 1988). En su especificidad para el análisis espacial aplicado del paisaje, y de cara a evitar las complejidades inherentes a las formulaciones ecosistémicas, se postula que cada biótopo o ecótopo puede ser contemplado como un elemento compositivo del paisaje (Forman 1995a).

De hecho, no existe una gran dificultad conceptual de cara a extender los modelos de ecosistemas al nivel del paisaje, con que incluir las heterogeneidades espaciales que presentan los elementos internos del mismo. Precisamente, uno de los objetivos a largo plazo de la modelización de los ecosistemas es su transposición y desarrollo a escalas superiores, de cara a relacionarlos con los modelos regionales y globales existentes científicos como vulgares (Margalef 1981). Así, la vegetación establece las unidades básicas espaciales homogéneas con las que afrontar la delimitación de los ecosistemas, y las clasificaciones agregadas de estos espacios según su naturalidad.

55 Los programas actuales de catalogación de biótopos se remontan a principios de los años 20s en EEUU, con los planes sobre conectores ecológicos en las regiones de agricultura intensiva del Mid-West (Región S-E de Wisconsin). La metodología que se utiliza para su planificación, delimitación de los espacios, etc, varía sustancialmente entre unas y otras experiencias de conservación. Las primeras experiencias de corredores biológicos se han realizado precisamente en zonas urbanizadas de EEUU (Mallarach 1993; Smith 1993).

56 Aunque su nivel de resolución es poco interesante para las escalas de los paisajes, como los que nos ocupan en el presente estudio (véase p.e. MOPU 1990a; Rodríguez 1990). Existen no obstante varios proyectos de cartografía sistemática de biótopos con una mayor resolución, implementados en otros países europeos desde hace algunas décadas, tanto a nivel estatal como regional (Deutsches Nationalkommitte / UNESCO 1990; Campillo 1994).
El marco conceptual

(atmosféricos, hidrológicos), creando así modelos comprehensivos globales de la geosfera-biosfera.

El reconocimiento de la heterogeneidad espacial como factor clave en el análisis ecológico, surge principalmente desde consideraciones sobre la sucesión natural, como la dinámica fundamental en la evolución de los ecosistemas. La sucesión es un proceso universal de desarrollo de una comunidad, por la acción de la vegetación sobre el ambiente, que conduce al establecimiento de nuevas especies. Así el paso de una visión estática de las sucesiones a una visión dinámica de éstas, supuso también la consideración del paisaje como el nivel sistémico adecuado, o marco para el análisis de las variaciones en los ecosistemas naturales.

Ello se traslada espacialmente en la determinación del espacio heterogéneo en matrices de espacios ‘homogéneos’, considerada actualmente la base de la visión espacial en Ecología. Esta heterogeneidad de las distribuciones espaciales, se concreta entonces estructuralmente en forma de mosaicos de espacios o hábitats agregados, con fronteras claras entre ellos y en condiciones termodinámicamente abiertas (Forman 1995a; ap 2.4). Los mecanismos que crean las tipologías de los mosaicos son la heterogeneidad de los substratos (desarrollos geológicos, tipos de suelo, presencia de agua, etc.), en forma de manchas de vegetación; y las alteraciones naturales (fuegos, plagas, etc.) que crean la heterogeneidad del mosaico. La actividad humana, finalmente (arado, talas, carreteras, etc.) crea las manchas, corredores, límites y la estructura de mosaico del territorio. Diferentes procesos biológicos pueden modificar o favorecer estas estructuras heterogéneas. Las matrices del paisaje heterogéneo pueden tipificarse entonces a partir de la vegetación o los usos del suelo; el paisaje heterogéneo se define pues como un mosaico, a partir de una configuración espacial que repite la tipología de las unidades internas.

De esta forma diversos procesos ecológicos como la sucesión, la biodiversidad, la búsqueda de alimentos, la interacción predador-presa, la dispersión, la biodiversidad, las dinámicas de los nutrientes y la dispersión de las alteraciones, etc., pueden definirse.

57 Se considera, en este sentido, que sólo a través de simulaciones con estos modelos comprehensivos podremos discernir el impacto de las actividades del hombre en el medio (U.S. Comité for an International Geosphere-Biosphere Program, 1986; Kates 2003).
El principio ‘agregados con enclaves’

mediante su componente espacial de forma notable.\footnote{Sin embargo, las dificultades en el análisis de estos procesos en el territorio extenso usualmente han llevado a ignorar las dinámicas espaciales, a pesar de que las investigaciones realizadas han enfatizado la relación entre la tipología espacial y muchos de los procesos ecológicos estudiados (Turner 1989). Los desarrollos en Ecología se han centrado mayoritariamente en los movimientos de los individuos y materiales, o en las alteraciones naturales producidas en los mosaicos, así como en la problemática general de la escala de análisis (Wiens 1995).} Es lo que garantiza en realidad su utilidad en la planificación del paisaje, como alternativa más simple al estudio ecológico exhaustivo de los ecosistemas que lo componen.

2.3.3.- El nivel de la región como conjunto de paisajes

Siguiendo con la conceptualización como nivel jerárquico funcional, el nivel de integración ecológico superior al del paisaje, la región, aparece como el territorio resultante de la agregación de diferentes paisajes. Supone de hecho el contexto de un paisaje, por lo que es de especial interés desde la perspectiva integrada de la planificación AWO. La región viene definida por las interacciones físicas del medio (macroclima, tipologías de suelos, comunidades o biomas) y las dimensiones humanas (política, estructura social, cultura y conciencia regional) –Forman 1995a. Está estructurada por el transporte, las comunicaciones y la cultura entorno a una gran ciudad habitualmente, pero es muy diversa ecológicamente dadas las diferentes tipologías de paisajes presentes (urbanos, rurales, forestales p.e). Es similar en su definición a la región funcional en Geografía y Economía, pero con una dimensión ecológica como interfaz.

La Biología de la Conservación, como disciplina interesada en la gestión ecológica eficiente del territorio, centra igualmente buena parte de sus intereses de estudio en estos niveles espaciales extensos de la región. Con el término ‘región’, ‘bioregión’ o ‘ecoregión’, se hace referencia a grandes colecciones de paisajes que pueden ser distinguidos de otras regiones en base al clima, fisiografía, suelos, estructuración en la composición de las especies (biogeografía), y otras variables. Como tal, la diversidad paisajística o regional es la diversidad de estructuras de los habitats y ensamblajes de las especies, a lo largo de un área extensa, y puede ser considerado un nivel mayor de la expresión de la biodiversidad (Noss & Cooperrider 1994).

Dentro de la región, los hábitats adyacentes del paisaje se afectan entre ellos de varias maneras, incluyendo efectos microclimáticos y la transferencia de nutrientes, propágulas y alteraciones a lo largo de los límites y ecotonos. Este nivel estaría...
Espacialmente definido también por las interacciones entre las grandes especies de mamíferos depredadores y su entorno territorial extenso. También se puede incluir aquí el ser humano como depredador superior, favoreciendo la integración del hombre y su medio físico y social. Dado que las actividades humanas frecuentemente cambian las estructuras del paisaje, tienen impactos en la biodiversidad que se expanden a otros niveles de organización, afectando la composición de las especies y abundancia, el flujo genético y los procesos de los ecosistemas. Estos problemas no se pueden resolver biótopo a biótopo, sino en la generalidad de los biótopos o mosaico espacial de un paisaje, como parte a su vez de la región ecológica.

En base a ello la región se considera una escala de trabajo o marco apropiado, en el que se puede identificar las localizaciones y estructuras cambiantes, y gestionar y restaurar el territorio para los propósitos conservacionistas (Noss 1983, Turner 1989). Se considera que por su mayor extensión, complementariedad de recursos y menor tasa de cambio proporciona estabilidad a los niveles inferiores, como el del paisaje. Es por tanto el nivel intermedio que se considera adecuado para conseguir la sostenibilidad en el territorio (Forman 1995a).

2.4.- Las configuraciones del paisaje

El interés por desarrollar una teoría espacial explícita de los sistemas naturales, ha motivado en buena parte el desarrollo de corriente espacial en Ecología del Paisaje. El objetivo es entender cómo la complejidad de la estructuración espacial en el territorio, afecta a la organización y los procesos ecológicos. El nivel de integración ecológica del paisaje o la región, entre el ecosistema y la biota, parte de la premisa que la composición explícita y la forma espacial de un ‘mosaico’ del paisaje (su configuración), afecta a los sistemas ecológicos de forma tal que la funcionalidad del sistema sería diferente si la composición o configuración fuesen diferentes (Forman & Godron 1986). Estos patrones se evidencian entonces por los análisis de la heterogeneidad en el conjunto del paisaje.

59 De forma similar a como se hacía desde los postulados de la corriente culturalista en Geografía, o desde las corrientes que consideraban la Geografía como la ciencia espacial que estudia la ‘Ecología Humana’ (Stoddart 1986).
Las configuraciones espaciales de ecosistemas locales característicamente asociados (que son susceptibles de constituir la mezcla repetida de tipologías a lo largo del paisaje), son según algunos autores un posible nivel intermedio entre los ecosistemas locales o usos del suelo y el paisaje. Sin embargo, habitualmente la configuración de un paisaje se equipara a los patrones espaciales de la mezcla repetida de tipologías, sin considerar un nivel funcional intermedio entre el ecosistema y el paisaje.

2.4.1.- El análisis de la heterogeneidad del paisaje

En el análisis de las configuraciones del paisaje, se pone especial énfasis en la funcionalidad y los efectos ecológicos de las tipologías espaciales de ecosistemas o usos presentes. Así, a la variación perceptible en el interior de un determinado mosaico del paisaje, se denomina habitualmente como la heterogeneidad del paisaje. La cuantificación de esta variabilidad o heterogeneidad es el objetivo y la causa del desarrollo de las técnicas de análisis espacial acaecidas los últimos decenios, especialmente en el campo de la Ecología del Paisaje y en las disciplinas implicadas en el análisis de los usos del suelo (Gustafson 1998).

Una de las principales cuestiones suscitadas inevitablemente es la delimitación del paisaje y la definición espacial de sus componentes internos. Por lo general, el ámbito del paisaje suele ser menor al de la cuenca hidrográfica, y se reconoce por la repetición espacial de una determinada configuración de los ecosistemas, normalmente clasificados según su naturalidad (forestal, rural, natural no-forestal, construido...). El paisaje se compone entonces de espacios homogéneos de diferentes tipologías -creando un entorno normalmente heterogéneo en entornos humanizados. Sin embargo, sólo desde una

60 Estas configuraciones se caracterizarían y definirían en base al decaimiento de los flujos naturales, respecto los ecosistemas o usos vecinos. En este sentido el contexto de los elementos del paisaje tiene un papel importante en la caracterización de estas unidades. Esta es sin embargo una frontera de la investigación en la heterogeneidad del paisaje aún hoy en día, y el análisis habitual no incorpora estas consideraciones en los estudios (Forman 1995a).
61 En este sentido, la consideración de las tipologías espaciales internas distingue a la Ecología del Paisaje de los estudios ecológicos tradicionales -los cuales han asumido frecuentemente que los sistemas como el paisaje son espacialmente homogéneos (Turner & Gardner 1991).
62 Especificamente, en el análisis de la heterogeneidad se consideran el desarrollo y dinámicas de la heterogeneidad espacial, las interacciones y intercambios entre paisajes heterogéneos, la influencia de la heterogeneidad espacial en los procesos bióticos y abióticos, y la gestión de la heterogeneidad espacial (Risser et al. 1984).
63 Precisamente uno de los objetivos iniciales que motivaron el nacimiento de la disciplina en Europa Central, era integrar el estudio ecológico de los sistemas naturales, rurales, urbanos, con las dinámicas los sistemas propiamente humanos o socio-económicos (Naveh & Lieberman 1984).
perspectiva geográfica (de caracterización de las peculiaridades del entorno) se han definido en la práctica unidades íntegras de paisaje o sub-regiones.64 En Ecología, el paisaje se ha delimitado frecuentemente según el fenómeno observado (poblaciones, hábitats, migraciones, etc.).65

En su origen, una elevada heterogeneidad será resultado de un elevado input de energía en el espacio, con un grado de estructuración discernible, mientras que un paisaje homogéneo resulta de una distribución con mezcla de los elementos casi aleatoria (elevada entropía), fruto de la falta de organización espacial (sin inputs adicionales de energía que lo estructuren). De forma general, la heterogeneidad (como se tratará en base AWO) se define entonces como la distribución desigual y no aleatoria de estos elementos del paisaje, en contraposición a una distribución homogénea (de entropía positiva o ‘desorden’ como distribución más probable); pero también respecto a una estructuración de los elementos que presuponga que estén espacialmente configurados de forma absoluta66.

\textbf{2.4.2.- El modelo Tesela-Corredor-Matriz}

El desarrollo de un modelo conceptual, conocido como el modelo ‘Tesela-Corredor-Matriz’ (TCM), ha contribuido de forma notable al análisis del paisaje heterogéneo, desde una perspectiva funcional y espacial en Ecología. Según el modelo, es posible identificar en cualquier paisaje estos tres tipos de espacios, que se corresponden con una clara delimitación en su funcionalidad ecológica (Forman & Godron 1986).67 Por un lado tenemos las teselas o bloques de usos del suelo claramente delimitados dentro del paisaje; de otra, elementos que actúan como corredores entre dichos bloques; finalmente

\begin{footnotesize}
\begin{enumerate}
\item Este ha sido de hecho el objetivo y la práctica usual en la caracterización de los espacios regionales, en la denominada escuela de Geografía Regional francesa (ICTD-DATAR 2002).
\item En este caso la naturaleza unitaria de los espacios internos permite desarrollar una teoría y unos modelos espacialmente explícitos, por analogía con los modelos de población dinámicos en Ecología (metapoblaciones). Esta visión basada en ‘manchas’ homogéneas de espacios en un ‘mosaico’, se presta así a una interpretación de fenómenos como la fragmentación de los hábitats -consecuencia de las actividades humanas fundamentalmente (Wiens 1995, Forman 1995a).
\item Caso frecuente causado por la intervención humana, con diseños o zonificación por bloques de usos que no se atienen a la funcionalidad de los diferentes niveles ecológicos ni a las necesidades humanas (Forman 1995a).
\item También existirían analogías de este tipo de diversificación funcional de los diversos elementos espaciales integrantes de sistemas (áreas, líneas, matriz de fondo) en campos tan diversos como el arte, urbanismo, arquitectura, medicina, etc. (Forman 1995a).
\end{enumerate}
\end{footnotesize}
la matriz o espacio de fondo, donde se ubican los anteriores elementos y que supone el uso con la mayor parte de la superficie del paisaje.

Clasificando, pues, la totalidad de los espacios como pertenecientes a una de las tres tipologías, podemos emprender el estudio de la heterogeneidad de un paisaje, desde una formulación y perspectiva funcionalmente universales -que se postula como la ‘taxonomía espacial’ del paisaje (Forman & Godron 1986; figura 2.2). Esta clasificación, realizable mediante usos del suelo, permite adentrarnos en el estudio y análisis espacial de los componentes del paisaje. Como elementos de análisis suelen citarse (Forman 1995a):

- Número y superficie de las teselas o espacios (y su efecto en los ecosistemas y la biodiversidad);
- Efecto de los límites definidos entre espacios, y las interacciones entre ecosistemas adyacentes;
- Influencia de la forma de las teselas en los flujos ecológicos;
- Funciones y características de los corredores;
- Definición de redes funcionales de espacios y la matriz de fondo;
- Tipologías de los ‘mosaicos’ espaciales del paisaje –medidas de diversidad interna, aislamiento de las teselas, etc.–;
- Transformaciones y fragmentación territorial del paisaje;
- Modelización, planificación y gestión del territorio;

Este lenguaje es propio de la corriente que lidera el análisis espacial dentro de la disciplina de la Ecología del paisaje, que en base al paradigma de mosaicos del territorio o ecomosaicos, se ha extendido entre diferentes disciplinas (la Geografía ambiental entre ellas), por su utilidad para la investigación de temas relacionados con tipologías de usos del suelo.68 Destaca por su habilidad para el análisis de la funcionalidad de las configuraciones espaciales del paisaje, sin que sea un prerrequisito el conocimiento exhaustivo de los ecosistemas que lo componen.

68 Este modelo espacial, además, es aplicable tanto desde una perspectiva funcional en ecología, como en un análisis visual de los componentes del paisaje (Calatayud 1997). Así, en la práctica, lo que variará será la definición de los elementos internos del paisaje, en función de la metodología empleada para su determinación.
Figura 2.2.- Definición gráfica del modelo tesela-correrdo-matriz y de sus escalas de aplicación

Es el ‘lenguaje espacial’ con el que se define la propuesta AWO de las configuraciones universales del paisaje, y lo hace fundamentalmente en base a la heterogeneidad espacial del mosaico.
3.- ANÁLISIS AWO DE LOS PATRONES ESPACIALES DEL PAISAJE

Como cualquier principio o modelo conceptual, el principio AWO es una simplificación de la realidad, realizada en este caso en base a la definición previa de una serie de tipologías y modelos conceptuales, establecidos como un lenguaje espacial (taxonomía espacial; ap. 2.4.2). Su definición normativa (en base a los principios conceptuales y aplicados en que se sustenta -cap 2), caracteriza cualquier análisis y aplicación -siempre característicamente en base AWO. Por ello, los prerrequisitos para la evaluación de los procesos analizados están en función de esta definición – contrariamente a las aproximaciones exploratorias. 69

No obstante, incluso en el caso de las aproximaciones exploratorias de base el análisis y la modelización de los patrones o configuraciones del paisaje conlleva, de por sí, una conceptualización previa del espacio y los fenómenos: en este sentido, la delimitación de una unidad de estudio y de sus elementos internos de análisis ya es un primer nivel de abstracción, hecho además en función de los fenómenos observados. Por el análisis del tratamiento conceptual que define AWO para a los componentes espaciales del paisaje heterogéneo, veremos igualmente las capacidades aplicadas de esta formulación. Para la valoración de la dimensión normativa AWO, deberemos centrarnos en la variabilidad ecológica de los ecosistemas en el paisaje.70

3.1.- Índices espaciales y aproximación AWO

Una de las alternativas para la caracterización y análisis de las configuraciones internas del paisaje, es realizar el análisis mediante la enumeración de los valores obtenidos por índices de la forma y estructura espacial del paisaje, una vez determinado como unidad territorial.71 Algunos de los planteamientos realizados consideran que mediante el uso de indicadores individuales que miden determinados aspectos de interés para la conservación natural -y al cumplirse ciertos objetivos medioambientales de cada

69 Implementadas mediante baterías de índices, estos planteamientos buscan inductivamente las características de forma, estructura, o relaciones entre los elementos compositivos del paisaje.
70 Esta heterogeneidad se define de forma espacial en Ecología del Paisaje: en función de la diversidad interna de tipologías de usos del suelo, cobertura, etc que están presentes en su configuración (ap. 2.3 -2.4).
71 Existen una gran variedad de índices y programas estadísticos que incorporan multitud de estos índices (eg. FRAGSTATS, McGarigal & Marks 1994). Con ellos se puede realizar posteriormente una selección de los valores de los indicadores que se consideren más relevantes.
componente individual-, ello resulta automáticamente en un estado positivo del medio ambiente en su conjunto (James et al. 2000).

Así, en las últimas décadas se han implementado una amplia variedad de índices que miden alguna característica espacial del paisaje (O'Neill et al 1988; Turner et al. 1989; Gustafson & Parker 1992; Mc Garigal & Marks 1994; etc.). Existen de forma general, sin embargo, una serie de constricciones al uso de los índices del paisaje, que deben tenerse en cuenta antes de iniciar cualquier tipo de análisis en base a estos (Hayness-Young & Chopping 1996; Gustafson 1998; Rutter et al 1995):

- La imposibilidad de diferenciar con un valor único del índice las estructuras analizadas (en los índices de forma p.e.).
- El grado de sensitividad de los índices a las tipologías espaciales cambiantes.
- La redundancia en la elección de los índices, propiciando la aparición de los ‘artefactos’ estadísticos no-espaciales, o efectos estadísticos no previstos.
- Los efectos topológicos en la definición de los límites del paisaje.
- El grado de resolución (tamaño mínimo de los espacios o grano).

De forma general, las pruebas realizadas sobre los efectos de estos factores en el resultado de los estudios del paisaje concluyen que los índices primarios que miden el área son poco problemáticos, si se han seleccionado los datos en la escala relevante en la que se da el fenómeno a analizar. Por contra, las características de forma de los elementos del paisaje son las más difícilmente cuantificables, incluyendo los índices fractales (Haines-Young & Chopping 1996).

En el caso de los índices de diversidad, se considera que éstos son sensibles tanto a la presencia de tipologías inusuales (raras), como al grado de resolución del estudio. Por ello, debe definirse cuidadosamente la naturaleza del mosaico del paisaje y la agregación de sus espacios. Los índices derivados (vecino más próximo p.e.), dependen de los parámetros predefinidos en su estudio. Dado que no existen referencias de los

72 Estos índices están referidos normalmente a tres características generales de los elementos del paisaje: área, linealidad y topología. Una posible clasificación práctica de estos índices, propuesta por Haines-Young & Chopping (1996) puede ser: por área, límites espaciales, forma, área interior de los espacios, vecino más próximo, diversidad, y contagio.
valores ecológicos adecuados a utilizar, la elección de estos parámetros es frecuentemente arbitraria, por lo que la interpretación de los resultados y la comparación de los casos es bastante difícil.

Por otra parte, la relación entre la tipología espacial y los procesos puede establecerse a partir de la proposición putativa de que existe un mecanismo ecológico que lo explique en buena parte. No parece demasiado lógico entonces iniciar una ‘pesca’ mediante variables o índices de tal relación a ciegas, sin haber relacionado antes el posible mecanismo. La aproximación por baterías de índices es simplemente una visión analítica del paisaje, considerado en función de determinadas variables ecológicas. Es por ello bastante pertinente, desde este punto de vista, la definición de un modelo conceptual previo. A diferencia de los análisis exploratorios, esta es la aproximación que se realiza principalmente en los análisis funcionales en ecología desde planteamientos sistémicos - donde sin embargo el componente espacial no suele ser explícito (ap.2.3.1).

Cabe remarcar también que estos índices implementados en programas estadísticos parten de la suposición que el paisaje se delimita según el fenómeno observado en una determinada escala, y estadísticamente no validan la selección realizada de los límites del paisaje de estudio (McGarigal & Marks 1994). Por el contrario, el tratamiento de la heterogeneidad espacial a nivel del paisaje se encuentra mediada por la relación entre la escala observada y la resolución empleada, lo cual provocará normalmente cambios que afectan el grado de heterogeneidad de los espacios agregados resultantes.73

Por su parte, en la rama del análisis espacial en Ecología del Paisaje, se plantea que la interacción entre los elementos internos del paisaje es fuente de determinadas características espaciales del paisaje, que no son fruto directo de sus elementos sino de la interacción (propiedades ‘emergentes’ de los sistemas). Para el estudio del paisaje, se postula así que la relación entre la tipología espacial y los procesos que se dan en el territorio se explica, en gran parte, por las interrelaciones entre los espacios del paisaje. Esto se formula igualmente como la constatación que el contexto de los elementos es más importante que el contenido en cualquier paisaje (Forman & Hersperger 1997). La heterogeneidad relevante en la escala del paisaje es entonces la que se delimita por el

73 Este es precisamente uno de los principales temas de análisis de la disciplina de la Ecología del Paisaje (Wiens 1995; Gustafson 1998).
contexto -así como a su vez la relación entre el grano (resolución espacial) y la extensión del paisaje, deberá definirse en base a esta heterogeneidad relevante. Por tanto, el número de variables a utilizar en el estudio de la heterogeneidad se define igualmente por esta apreciación conceptual previa, en oposición también a las usuales aproximaciones inductivas -limitadas al estudio de las unidades del paisaje.

3.2.- Características de la aplicación AWO

De forma general, el grado de resolución requerido para el análisis espacial determina y está determinado a la vez por la escala de trabajo necesaria -la cual viene condicionada por la extensión. Así, debe definirse de antemano cuidadosamente cuales son las propiedades del territorio que se pretenden analizar, y los elementos espaciales que configurarán el estudio –favoreciendo también la eficiencia en la realización del análisis. En este caso, el fenómeno espacial que se analiza es la heterogeneidad del paisaje, a partir del cual se realiza el análisis configuracional AWO.

3.2.1.- Tratamiento AWO de las características espaciales del territorio

Como principal hecho destacable de su planteamiento normativo, y frente a las aproximaciones exploratorias de base de las configuraciones del paisaje, integra ya de partida el tratamiento conceptual de la heterogeneidad y su agregación (ap.2.4.1). El principio AWO realiza entonces una aproximación al tratamiento de la heterogeneidad espacial de tipo conceptual. Es también una alternativa a la transposición de los modelos de ecosistemas al nivel espacial extenso del paisaje -realizada habitualmente en base a la teoría de los sistemas jerárquicos anidados.

A diferencia de la problemática que se plantea en las extrapolaciones de modelos matemáticos o de simulaciones desde niveles de organización inferiores (ecosistemas), en las aproximaciones conceptuales como la del principio AWO el fenómeno de la diversidad o heterogeneidad se modela de forma analítica, para extraer su significado y

74 En tal caso, se ven extrapolados según sus características a una escala funcional de nivel superior: como resultado los fenómenos ecológicos representativos que se modelan en el ecosistema se trasponen al paisaje (Urban et al 1987).
El principio ‘agregados con enclaves’

relevancia en la escala del paisaje.\footnote{Alternativamente a las aproximaciones de base inductiva, es posible definir de forma conceptual cuales son las configuraciones del paisaje que se consideran adecuadas para el mantenimiento de los fenómenos ecológicos en el territorio (King 1991).

\footnote{Los cambios en la estructura y funcionamiento de un paisaje también son dependientes de la escala, ya que un paisaje en transformación puede presentar una estructura de mosaico diferente, en varias escalas espaciales (Calatayud 1997).}

\footnote{O transeptos escalares, con bruscos cambios entre ellos, en los que es posible discernir una composición espacial de los mosaicos, más o menos constante a lo largo del transepto. En estos dominios de escala es donde es posible definir la configuración espacial de un determinado mosaico y sus propiedades (Goodall 1974, Turner et al 1991, Forman 1995a).}

En todo caso, deben abordarse cuestiones como la definición de las unidades que componen internamente el paisaje (definidas por los usos del suelo), y los límites del propio paisaje. Estos elementos son los que definirán las bases para el análisis de la heterogeneidad espacial.

Sin embargo, la heterogeneidad es también función de la escala (Wiens 1989; Allen & Hoekstra 1992), puesto que depende de la superficie en que la propiedad está muestreada y del tamaño de la unidad de mapificación o ‘grano’ (Gardner et al. 1987). Así, el número, tamaño y forma de las manchas de un mosaico territorial, dependerán de la escala a la que se tomen.\footnote{Los cambios en la estructura y funcionamiento de un paisaje también son dependientes de la escala, ya que un paisaje en transformación puede presentar una estructura de mosaico diferente, en varias escalas espaciales (Calatayud 1997).}

La formulación AWO en base a dominios de escala (ap.2.3.2),\footnote{O transeptos escalares, con bruscos cambios entre ellos, en los que es posible discernir una composición espacial de los mosaicos, más o menos constante a lo largo del transepto. En estos dominios de escala es donde es posible definir la configuración espacial de un determinado mosaico y sus propiedades (Goodall 1974, Turner et al 1991, Forman 1995a).}

parte sin embargo de la jerarquía espacial que define los diferentes niveles de escala: El del paisaje en este caso, caracterizado como una tipología de mosaico relativamente estable.

‘El paisaje, como nivel jerárquico, es un mosaico donde la mezcla de los ecosistemas locales o usos del suelo se repite de forma similar en un área de varios kilómetros. Mientras que las porciones de una región son ecológicamente disimilares, el paisaje manifiesta unaunidad ecológica en toda su extensión. Dentro de un paisaje, diferentes atributos tienden a ser iguales y se repiten a lo largo del área, incluyendo las formas geológicas del terreno, los tipos de suelo, tipos de vegetación, fauna local, regímenes de alteraciones naturales, usos del sueloy tipologías de agregación humana. Así, la repetición de las agrupaciones de elementos espaciales caracteriza el paisaje.’ (Forman 1995a)

Este paisaje integra entonces la tipología espacial, la extensión territorial (vista con fotografía aérea o desde un punto elevado del terreno), y la unidad proporcionada por la repetición de la tipología. Es definible por tanto como un modelo estructuralista de análisis espacial del territorio, dado que parte del supuesto de entificación de objetos geográficos, más que de un análisis basado en campos continuos de datos –en el sentido de Bauer et al. 1999.
3. Análisis AWO de los patrones espaciales del paisaje

Por otro lado, en el tratamiento del paisaje como sistema se da la necesidad de considerar conjuntamente los sistemas natural y humano. Entonces la modelización estadística en base a tipologías espaciales es uno de los aspectos considerados de mayor interés, por las aproximaciones integradas que se desarrollan desde la Ecología del paisaje –como la que propone AWO.

‘Parece poco probable que se puedan hacer predicciones de los efectos en la diversidad, utilizando una composición de muchos modelos espacialmente explícitos de las poblaciones. Una aproximación más prometedora sería una modelización estadística, en la que la actual diversidad en los paisajes de diferentes tipologías espaciales se cuantifiquen y se comparren, para desarrollar una interrelación general entre la diversidad de especies y la tipología de los paisajes, desde una perspectiva humana.’ (Harrison & Fahrig 1995)

El desarrollo de las tipologías del paisaje desde una perspectiva humana se realiza en este caso en base a usos del suelo agregado. La definición holística AWO refiere entonces a criterios de sostenibilidad –medio sostenible-, enmarcando las propuestas de actuaciones a realizar (ap. 4.3.3).

3.2.2.- Escala de análisis y variables utilizadas

De forma inversa a los planteamientos sobre la escala y la heterogeneidad considerados hasta ahora, la elección de la extensión y el tipo de espacios internos que determinan la resolución del estudio determinará también las variables necesarias para su análisis. Cabe valorar con ello si la definición de las tipologías AWO en base a las variables de usos y tamaño de los espacios es la adecuada, desde esta perspectiva.

En general, si bien no existen principios establecidos de forma fehaciente de las relaciones entre la escala con otros parámetros internos del paisaje, se establece que existe una relación directa entre la escala y el número de variables necesarias para el estudio de la variabilidad en la estructura del paisaje (Stoddart 1986; Meentmeyer & Box 1987; Turner et al 1989; Burel 1992). A escalas más pequeñas (mayor extensión), es necesario un menor número de variables que a escalas mayores (menores extensiones), para discriminar la estructura de los mosaicos de los espacios existentes.

La teoría ecológica del paisaje confirma también la relación inversa entre el número de variables requerido para la explicación de sistemas complejos como el paisaje (en un nivel de detalle menor, pero con unos comportamientos estructurales definidos por pocas variables -Gustafson 1998). Sucede a diferencia de los sistemas en niveles inferiores
El principio ‘agregados con enclaves’

como el ecosistema, más fácilmente modelables en sus interrelaciones (hecho apodado por autores como R.Forman como la ‘paradoja del gestor’.78 En este mismo sentido, Meentmeyer y Box (1987) establecieron igualmente una serie de hipótesis sobre la relación entre la escala y otros parámetros del paisaje:

- La dinámica observada a escalas grandes, es la causa del equilibrio observado en escalas más pequeñas.
- Si se aumenta el tamaño de un sistema aparecen nuevas propiedades \textit{(propiedades emergentes)}, y disminuyendo su tamaño desaparecen algunas interacciones y por tanto, algunas propiedades funcionales.
- Áreas con gran densidad de manchas deben ser analizadas con escalas más finas (es decir, escalas grandes) que aquéllas con densidad baja.
- La escala de la heterogeneidad estructural determina el nivel de escala de las principales relaciones funcionales. La heterogeneidad espacial potencia igualmente otros tipos de heterogeneidad.

Como opciones para la definición espacial interna del paisaje, se puede realizar la delimitación de unidades espaciales regulares o irregulares.79 De esta forma, en el caso de los espacios irregulares obtenidos por criterios funcionalmente relevantes, el análisis del paisaje deberá basarse en los elementos espaciales internos (‘manchas’), que presenten límites definidos por discontinuidades reales, con significación ecológica. Precisamente para su estudio, suele considerarse que el elemento imprescindible para la obtención de las unidades internas del paisaje son los usos del suelo y la vegetación.

78 La extensión del paisaje disminuye sensiblemente las posibilidades de actuación y gestión sobre el medio. Esta dicotomía entre las posibilidades de tratamiento, respecto las ganancias a obtener por la gestión de los niveles inferiores y superiores de los sistemas naturales, es precisamente lo que se denomina como la ‘paradoja del gestor’: a escalas menores o más detalladas es donde se puede realizar la gestión más intensa del territorio, pero es en las escalas de los sistemas superiores donde pueden conseguirse los mayores beneficios ambientales, sin tener sobre ellos una capacidad de gestión tan directa (Forman 1995a).

79 Las primeras se obtienen por la división del paisaje mediante una malla poligonal, con los retículos resultantes definidos como unidades del paisaje. Estos espacios regulares se suelen obtener como resultado de los procesos automáticos de cuadriculación del territorio, por figuras satélite o en los estudios físicos de planificación territorial. Las unidades irregulares por el contrario se obtienen por criterios que pueden ser tanto visuales como de homogeneidad de los espacios, en sus características de usos del suelo, vegetación, relieve, etc (Calatayud 1997).
Se valora por todo ello como adecuado el planteamiento de la agregación AWO en base a los usos del suelo, de cara a establecer las unidades del paisaje y sus elementos internos. En el estudio, los otros elementos y componentes estructurales susceptibles de determinar el paisaje (fisiografía, composición de los suelos, litología...) no se considerarán de forma explícita -excepto en la delimitación del paisaje en su conjunto, donde sí se tendrá en cuenta la topografía (cap. 6)

3.2.3.- Requisitos del análisis a plantear.

De inicio deben establecerse de forma clara los criterios espaciales (relacionados con la escala), que establecen los límites y requisitos para el análisis: implica tanto la extensión del estudio como las unidades espaciales discretizadas que configuran internamente este espacio. La combinación de estos dos elementos es la que determina de forma conjunta la resolución o nivel de detalle del estudio. En la discusión sobre la discretización de las entidades que definen internamente el paisaje, cabe remarcar que el fenómeno estudiado (heterogeneidad espacial en base a una tipificación de los usos del suelo agregados, según naturalidad), decanta metodológicamente el planteamiento AWO hacia el análisis de entidades vectoriales bien definidas, en lugar de campos de datos continuos –valorando entonces la variabilidad interna de los espacios.

La clara diferenciación entre las tipologías agregadas de espacios urbanos, naturales y agrícolas, es fruto de la acción antrópica en primer lugar (un factor de cambio espacialmente definible por los usos del suelo), y los espacios resultantes sin duda presentan una mayor variabilidad entre tipologías que no internamente (siendo además excluyentes entre sí, excepto tal vez entre los usos forestal y natural-no forestal). Por ello su entificación como espacios discretos aparece adecuada metodológicamente.\(^\text{80}\)

Cuanto a la extensión territorial, cabe decir en primer lugar que el reconocimiento y diferenciación de las unidades territoriales de estudio, variarán de acuerdo con la definición aplicada del concepto de paisaje (ap. 2.1). La delimitación de la extensión

\(^{80}\) Tal y como presupone en realidad el principio AWO, en base a la definición de dominios de escala (ap.2.3.1). En el estudio se pretende indagar la utilidad de la formulación del planteamiento AWO de cara a una aproximación sintética a la problemática de la planificación, aunque cabe reconocer que de forma general en el paisaje todos los procesos interactúan con la forma espacial de los objetos, y que el análisis de los procesos espacio-temporales mediante modelos interactivos, o el uso de técnicas no deterministas en geoestadística, son las herramientas metodológicas presuntamente adecuadas para realizar un análisis cualitativo de mayor profundidad (Wilson & Burrough 1999).
El principio ‘agregados con enclaves’

territorial del paisaje puede realizarse efectivamente por criterios de procesos naturales (bioregiones, cuencas hidrográficas); por criterios visuales (cuencas visuales autocontenidas) o por una combinación de criterios espaciales, basados en los procesos naturales y humanos, como se propone desde la rama del análisis espacial de la Ecología del Paisaje (usos del suelo, cobertura; Forman 1995a). Este es el caso presente, en que el paisaje se delimitará por la composición de los usos del suelo.

Por lo tanto, al analizar la heterogeneidad de estos mosaicos de tipologías más o menos estables y repetitivas en base AWO, estamos analizando las variaciones de una unidad territorial que se considera relativamente homogénea en su composición. Así, la escala de análisis necesaria para evidenciar las variaciones internas de los espacios, delimitados en función de su naturalidad agregada, se corresponderán con un nivel de definición agregado.81

3.2.4.- Principio normativo

Junto al tratamiento que se realiza de los fenómenos espaciales, la naturaleza normativa del propio principio AWO es una cuestión que afecta su definición aplicada -y la valoración de los resultados. Al igual que sucede con el resto de los principios o modelos conceptuales de optimización espacial, estos son frecuentemente modelos normativos. Por ello su crítica debe realizarse, fundamentalmente, en base a los principios o referentes conceptuales en los que se asienta.

Como una de las referencias críticas a este tipo de formulaciones, algunos autores mantienen que la complejidad de las condiciones naturales y de los sistemas culturales en los paisajes y regiones, prácticamente imposibilita la formulación de principios socio-económicos universalmente válidos sobre los usos del suelo y el desarrollo sostenible.82 Como desventaja además, el principio AWO nunca ha sido testado directamente: Se ha sugerido como una articulación de los principios de planeamiento o gestión, basados en los conocimientos de la Ecología del paisaje o la Ecología regional.

81 Ello se establece de forma coincidente con las observaciones sobre la definición necesaria de análisis, cuanto a las interrelaciones entre la escala y las propiedades sistémicas de un determinado nivel de integración ecológica (Forman 1995a).
82 Por tanto, deben definirse objetivos específicos regionalmente, que respondan a la situación mediambiental y socio-económica específica (Wiggering 2003).
Entonces y como posible crítica inicial a la pretendida formulación universal de AWO, debe considerarse el hecho que su misma formulación se realizó, en su día, en base a las necesidades existentes para la planificación y la gestión del territorio en los Estados Unidos -identificándolo de hecho como el caso general de urbanización extensiva en el paisaje.83 Por lo tanto el análisis a realizar en un ámbito de trabajo como el paisaje mediterráneo, deberá asumir también las posibles cuestiones diferenciales. Con ello se contrastará la pretendida universalidad del principio, frente a la consideración holística del paisaje como el resultado específico de un sistema complejo de interrelaciones, definido localmente en cada caso.

Cabe decir sin embargo, que tales definiciones ‘únicas’ de los territorios se dan por supuestas en un planteamiento holístico general, mientras que el principio universal AWO se sitúa principalmente en el nivel sistémico del paisaje natural: Es en base a las características de estructura, función y cambio de los sistemas naturales del paisaje, que el principio pretende orientar el posterior proceso societal de la toma de decisiones en la planificación.

Lo que establece sin duda el principio AWO es la prioridad de los sistemas naturales, de cara a la posible definición integrada de los complejos de usos multifuncionales, propios de las aproximaciones holísticas. Es posteriormente, mediante la puesta en contexto del paisaje en su marco regional y global (como se remarca desde la ‘Spatial Solution’ –ap.4.5.4), donde los objetivos de la políticas de desarrollo y la planificación establecerán unos territorios inevitablemente ‘únicos’. No se trata pues propiamente de un modelo de integración holística, aunque por el estudio se considera que aporta las claves para su integración posterior en tales modelos –como puedan ser los modelos de desarrollo sostenible en la planificación territorial estratégica, en un futuro.

Característicamente además, la formulación sistémica AWO se considera una aproximación consistente cuanto al tratamiento de la complejidad territorial (cap 2). En este sentido, los aspectos que se incorporan en la solución y el principio AWO relacionados con la planificación integrada, lo son a partir de las consideraciones previas

83 En este contexto (y a pesar de contar con una gran tradición planificadora), la falta de instrumentos reguladores y el mismo desarrollo urbanístico extensivo (suburbs), han conllevado unos procesos de alteración del medio a escala del paisaje y región, que son los que el principio AWO evidencia espacialmente y pretenden afrontar (Forman & Hersperger 1997).
sobre los conceptos de integridad ecológica y sostenibilidad (Forman 1995a). La sostenibilidad se define de forma territorial (medio sostenible) y desde una visión ética de la acción humana sobre el medio, más que por la cuantificación y valoración económica de los impactos (ap 4.3.3).84

Con su formulación no se busca por tanto un conocimiento metafísico, sino que es característicamente instrumental y aplicado. Los resultados de su aplicación concreta son susceptibles de ser útiles en otros casos, a pesar de su declarada normatividad: El referente es un modelo sistémico para ser aplicado prospectivamente sobre las sociedades y el medio, en su contexto específico –siendo susceptible al mismo tiempo de ser la estructura explicativa necesaria de estas interrelaciones, aun sin declararse como ‘verdaderas’ las relaciones observadas en los casos de estudio (dado que no se obtienen exploratoriamente). La solidez conceptual de su formulación universal es así el elemento que debe valorarse, para lo cual las observaciones y resultados que se obtengan en los análisis posteriores (como en el caso del presente estudio), serán un elemento de contrastación adicional, con que refutar las capacidades aplicadas del principio -y reformular algunos de sus criterios si es necesario.85 Su crítica como principio universal no conlleva en cualquier caso su inaplicabilidad.

3.2.5.- Definición conceptual de las tipologías AWO

Los criterios del principio AWO refieren a las características funcionales del paisaje, en base fundamentalmente a la presencia y abundancia de determinadas tipologías de espacios. La definición normativa de las tipologías de espacios AWO es por tanto un factor crucial para la aplicación. Estas tipologías pueden cuantificarse igualmente mediante estadísticos composicionales, en la mayoría de los casos.86

84 La sostenibilidad es vista como el proceso mismo en el que se consigue asimilar y mantener los aspectos del territorio que favorecen la integridad ecológica, y que garantiza a la vez las necesidades humanas (agua potable, comida, salud, vivienda, energía y cohesión cultural), en una escala temporal de diversas generaciones (Forman 1995a). Esto es lo que de hecho le convierte en un análisis conjunto de los sistemas natural y antrópico en el marco territorial del paisaje y la región, aun partiendo de una aproximación sistémica del paisaje natural.

85 Ya a partir de los resultados del análisis conceptual, se ha considerado imprescindible desarrollar algunos de sus criterios. Previsiblemente, el desarrollo de la modelización AWO explicitará tanto la solidez como también las limitaciones de su formulación teórica –especialmente las posibles necesidades de un mayor desarrollo conceptual de los criterios.

86 Las agregaciones de los usos según un gradiente de naturalidad (forestal-natural no forestal-rural-urbanizado), responden a estas consideraciones de manera efectiva, posibilitando un análisis agregado considerado de gran interés.
De inicio, podemos establecer que la definición AWO es simple y atractiva, articulando una serie de principios consolidados sobre la funcionalidad de los espacios del paisaje –los considerados de mayor utilidad e interés (ap. 1.1). Así, establece que hay que agregar los usos del suelo –con presencia de grandes espacios de vegetación natural y agrícola–, y mantener a la vez corredores y pequeños bloques de hábitat natural, dentro de las áreas desarrolladas. Igualmente deben existir enclaves de actividad natural y humana, en el último caso resuelta espacialmente a lo largo de los límites de los espacios mayores, de forma que al alejarse de los grandes espacios de su misma clase se encuentren cada vez más aislados.

En la definición funcional de la optimicidad de las distribuciones del paisaje AWO, subyace la definición de la heterogeneidad óptima en la configuración universal del paisaje. Ello se define espacialmente, tanto en tipologías de espacios según uso agregado (por su naturalidad) como por tamaño, que suponen una gradación de la naturalidad y funcionalidad de los elementos internos del paisaje. Operativamente, la mayor parte corresponde al análisis de la ocupación del territorio mediante los usos del suelo, así como la realización del análisis composicional guiado en base AWO (tipologías). Este análisis guiado se realizará en base a la optimización composicional de los espacios internos del mosaico del paisaje (con una traducción funcional), sin tener en cuenta en realidad los criterios propiamente configuracionales de interrelación topológica entre los espacios (p.e. inclusividad y vecindad).

De los criterios se desprende igualmente la necesidad de tratar esencialmente los aspectos composicionales AWO para cada tipología de espacios por separado (caracterizadas en su naturalidad, según el uso agregado existente), como una de las principales conclusiones previas para la modelización. Este aspecto se considera por el estudio una aportación al análisis que sirve de guía en la modelización, y simplifica en gran manera el tratamiento de la heterogeneidad del paisaje. A la vez clarifica cuales son

87 De cara al tratamiento de la heterogeneidad espacial AWO, y para maximizar la variación en el tamaño de los espacios (criterio 2), debe existir una agregación de los espacios del mismo uso que conlleve la formación de espacios de tipología ‘grande’ -junto a una matriz extensa. Como resultado, a nivel local la heterogeneidad será pequeña -determinado por un uso único de los espacios agregados-, aunque puntuada por los enclaves. Igualmente, la heterogeneidad de los usos del suelo a nivel del paisaje debe ser ‘grande’ también (máximo número de usos).
las relaciones entre los principales factores, en la definición de las configuraciones óptimas del paisaje.88

Esta simplicidad no oculta, sin embargo, ciertas indefiniciones y dificultades en su aplicación posterior -mediante su cuantificación para la modelización. Es el caso por ejemplo de la indeterminación de los lindes de la superficie y la distancia para clasificar los espacios entre ‘agregados’ y ‘enclaves’, en que debemos establecer experimentalmente unos valores de referencia que no obtenemos de las premisas AWO.

Por otra parte, cuestiones de indefinición de ciertas tipologías AWO -por dudas en su funcionalidad, como los espacios medianos-, o de falta de consideración de forma aplicada de criterios topológicos, hace que debamos reflexionar sobre ello de forma previa a la hora de iniciar cualquier desarrollo (cap.7). La formulación universal AWO no puede conllevar la adimensionalidad de los aspectos necesarios en la definición de las tipologías - en cualquier caso será un obstáculo a superar en los desarrollos.

3.3.- Referentes para la modelización espacial AWO

El interés por realizar el análisis composicional de los mosaicos del paisaje en función del principio AWO, radica principalmente en la cuantificación de unos pocos criterios básicos con que afrontar un análisis guiado de las configuraciones existentes respecto de las conceptualmente óptimas. Con ello evitamos la simple enumeración de los valores obtenidos por índices de la forma y estructura espacial del paisaje, y los análisis de base empírica sin una conceptualización previa de los sistemas naturales y antrópicos. Facilita potencialmente por tanto una interpretación sintética más coherente de la configuración del paisaje heterogéneo como objetivo, así como de sus déficits composicionales y potencialidades.

Igualmente, su formulación teórica debe proporcionar las referencias conceptuales necesarias para su modelización y desarrollo, en base a las cuales será considerado técnicamente relevante –esto es, demostrando sus capacidades instrumentales en el análisis. En el presente estudio, se considera que los elementos conceptuales y

88 Cabe recordar que por los análisis composicionales de la diversidad interna, se hacen patentes los aspectos relacionales de los sistemas (Gustafson 1998).
metodológicos claves de cara a la formulación de modelizaciones sintéticas en base AWO, son:

1. El tratamiento de la escala y el grano (resolución) en el nivel del paisaje, para la agregación y análisis de la heterogeneidad relevante mediante los usos del suelo;
2. El tratamiento conjunto de la diversidad espacial o heterogeneidad del mosaico del paisaje;
3. La caracterización y cuantificación de las distribuciones espaciales en el territorio, en base a:
 - Criterios de presencia y localización óptima de espacios, ecológicamente necesarios para el correcto funcionamiento del sistema natural del paisaje.
 - Criterios de homogeneidad-heterogeneidad óptima de los usos y tamaños en el mosaico del paisaje.
 - Criterios de distancias óptimas entre los espacios considerados bien ‘agregados’ o ‘enclaves’, en el mosaico del paisaje.

Por tanto, de cara a su modelización -y para el adecuado análisis del principio normativo AWO-, hay que afrontar la definición espacial de las configuraciones óptimas del paisaje. En función de estas definiciones, será igualmente posible la valoración conceptual y normativa de AWO.\(^89\)

De cara a la modelización, puede considerársela como una aproximación que entra de lleno en las modelizaciones espaciales realizadas usualmente para la planificación del territorio -su objetivo declarado es la aplicación prospectiva sobre el territorio, precisamente. Su desarrollo como modelo de optimización espacial es entonces un aspecto especialmente relevante a analizar, desde su definición normativa.

Existen además ciertas cuestiones en la formulación de los criterios AWO, que conllevan una determinada interpretación conceptual previa de los procesos y fenómenos espaciales en el territorio. Así por ejemplo, en la formulación del óptimo configuracional

\(^{89}\) Finalmente, de la interpretación que se haga de estas cuestiones, dependerá en realidad su idoneidad como desarrollo de cara a la resolución de los conflictos relativos a la integridad ecológica y la sostenibilidad en el paisaje.
El principio ‘agregados con enclaves’

del principio AWO, subyace la interpretación del grado de entropía presente en el mosaico del paisaje (ap.2.4.1).

Por el estudio, se considera que la aplicación práctica de los criterios que se postula el principio de optimización AWO,\(^{90}\) refiere en realidad a tres tipologías de modelos espaciales, desde los cuales abordar las configuraciones óptimas AWO del mosaico del paisaje:

1. Cuantificación de la variabilidad y modelos de maximización de la entropía;
2. Modelos de optimización espacial;
3. Modelos de interacción espacial.\(^{91}\)

3.3.1.- La modelización de la heterogeneidad en el paisaje

Las necesidades de la planificación para la conservación, van ligadas de inicio a la determinación de la heterogeneidad de los componentes espaciales de un territorio (Pielou 1977; ap.2.4). La cuantificación de la heterogeneidad espacial en las grandes extensiones, se sustenta de hecho en el progresivo conocimiento de las funcionalidades ecológicas de los espacios del paisaje (Hunter 1990). Esta es igualmente la base del principio AWO, por el cual se formulan las directrices para la planificación estratégica.

Se asume por tanto que la cuantificación de la heterogeneidad espacial da pie al análisis de la funcionalidad ecológica del paisaje (Forman & Godron 1986; Haynes-Young & Chopping 1996; Gustafson 1998). El análisis de la composición de los elementos espaciales (número de categorías, proporciones, diversidad) y la configuración espacial de éstos (tamaño, forma, densidad, conectividad, dimensión fractal, etc.), son los instrumentos para la determinación de la heterogeneidad presente. Se considera además que la interacción entre los elementos internos del paisaje es fuente de determinadas características espaciales del paisaje, las cuales no son fruto directo de sus elementos

\(^{90}\) Incluido el análisis de la variabilidad ecológica, habitual en la Ecología del paisaje

\(^{91}\) Este último tipo de modelos aparece en relación a una hipotética definición (no explicitada por el principio AWO) de la atracción entre los espacios de mismo uso del mosaico, pero que por el estudio no se considera pertinente para el desarrollo (cap.9). Sí será el caso en los otros dos tipos de modelos genéricos.
sino de la interacción.92 Las medidas de diversidad y dominancia se encuentran en tal ámbito en el contexto de la Ecología del Paisaje, puesto que describen tanto propiedades estructurales del mismo como otras características funcionales subyacentes.

No obstante y como factor a tener en cuenta, por sí mismos los índices de tipología espacial pocas veces son concluyentes. Igualmente el análisis estará en función de la naturaleza de las unidades consideradas (usos del suelo, cobertura, vegetación, etc.). En definitiva, se considera que la cuantificación de la diversidad es especialmente útil para la comparación entre diferentes casos, o bien entre situaciones temporales cambiantes en un mismo espacio (Gustafson 1998).93

Por su parte, la medida de la diversidad ecológica aparece originariamente ligada a la Ecología de las comunidades, que se sumarizó con la apreciación de la ley de Raunkiaker. La expresión de la diversidad por tanto está vinculada al criterio establecido en la delimitación de las clases. En definitiva, el índice está configurado tanto por el número de clases como por el número de individuos en cada clase, siguiendo las modelizaciones para la maximización de la entropía.

La definición de los índices de diversidad combina por tanto los dos componentes de ésta: la riqueza (número de clases) y la equitatividad (la distribución de casos entre las clases). Existen diferentes medidas de la diversidad, clasificadas habitualmente en función de su complejidad. El índice de Simpson es otra de las medidas simples de la diversidad que sí tiene en cuenta tanto la abundancia relativa como la riqueza (Simpson 1949). Este índice se calcula determinando para cada clase la proporción de individuos, superficie, o cualquier otra característica, con la que se contribuya al total de la población o muestra. Así, el valor de este índice depende de la riqueza en clases y la equitatividad.

92 Esta concepción funcional del paisaje como sistema, confiere a la cuantificación de sus elementos internos una especial relevancia, cuanto que en la cuantificación a nivel del paisaje aparecen los fenómenos de interacción entre los espacios (Forman & Godron 1986, Turner 1989).

93 Los índices de diversidad que se utilizan para el análisis composicional del paisaje, derivan en buena parte de las formulaciones de los modelos de maximización de la entropía, como en el caso de su formulación por la teoría de la información. Estos modelos estadísticos se utilizan para identificar la tipología espacial más probable en un sistema, sujeto a restricciones. Se basan en el concepto de entropía, una medida de incertidumbre en una distribución de probabilidades.
El principio ‘agregados con enclaves’

con que los individuos están distribuidos. La equiprobabilidad adopta un valor comprendido entre 0 y 1.94

En su aplicación, la heterogeneidad de una comunidad -como medida de diversidad-, será alta cuando resulte difícil predecir a qué especie pertenecerá un individuo elegido al azar, y baja cuando la probabilidad de acertar sea alta (= ley de Raunkiaer). Presenta también la ventaja de que es independiente del tamaño de la muestra, lo que permite generalizar más fácilmente, siendo además sus valores mejores cuanto mayor sea el tamaño de la muestra.95

La dominancia es el complemento de la equitatividad. Se trata de la normalización del índice de diversidad por la diversidad máxima (H_{max}), que corresponde al logaritmo del número de clases. Los valores oscilan entre 0 (indica que las clases son equiprobables) y 1 (indicando que existe una sola clase):

$$D = \frac{\left(H_{max} + \sum p_i \ln(p_i) \right)}{H_{max}}$$

3.3.2.- Interpretación de la diversidad en base AWO

Las medidas de la diversidad son uno de los posibles tipos de índices para medir la heterogeneidad del paisaje. Este tipo de índices analizarán entonces la abundancia relativa de los elementos del paisaje, según el número de tipologías AWO. Los mecanismos estructurales subyacentes que se reflejan en un índice de diversidad aplicado al paisaje, genéricamente se pueden interpretar de forma más o menos clara: A grandes rasgos, si hay una limitación del número de individuos total (número de espacios), la diversidad puede aumentar cuando aumenta su diversificación genética (aumento del número de clases de espacios presentes). Si sucede, por el contrario, que el

94 Este índice procede del campo de la Teoría de la comunicación, a partir de los conceptos de maximización de la entropía (Shannon y Weaver 1949). Se basa en el hecho de que no todos los signos, las letras por ejemplo, tienen la misma probabilidad de aparecer en un mensaje. La diversidad expresa, por tanto, la capacidad de un canal como portador de información. Aplicado al paisaje, éste se convierte en el mensaje, donde aplicar una medida de información.

95 En el terreno de la Ecología, el rango de los resultados observados del índice de Shannon muestra valores entre 0 y 5. En la práctica, otorga la mayor diversidad a los ecosistemas con mayor número de clases y mayor equiprobabilidad. Por contra, una comunidad que contenga dos especies igualmente frecuentes, tendrá una diversidad de 1.
número de clases de espacios está limitado y aumenta el número total de espacios, la diversidad disminuirá.

A nivel teórico, podemos establecer una serie de constataciones en lo que respecta a la diversidad en el marco del paisaje y sus componentes espaciales (Calatayud 1997):

- La diversidad es una expresión de la estructura del paisaje que resulta de las formas de interacción entre elementos.
- Existe una correlación negativa entre la diversidad y la manifestación de dominancia: Sólo se puede hablar de tipos dominantes en un territorio de diversidad baja.
- La diversidad es necesaria para el mantenimiento de una estructura compleja -aunque una diversidad excesiva resulta incompatible con el mantenimiento de una organización dinámica.
- La diversidad proporciona una estima de la capacidad máxima que tiene un ecosistema (paisaje), para permitir diversos tipos de conexiones internas o de interacciones entre unos y otros tipos.

En general, se establece también que la diversidad ecológica se relaciona con las características del paisaje de determinada forma (tabla 3.1):

<table>
<thead>
<tr>
<th>Características del paisaje</th>
<th>Positiva</th>
<th>Negativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversidad de hábitat</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alteraciones o perturbaciones del paisaje</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heterogeneidad del paisaje</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aislamiento</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Fuente: Forman & Godron (1986).

Cabe remarcar sin embargo que la diversidad ecológica es la diversidad interna de las comunidades (nº de especies e individuos), mientras que la diversidad del paisaje o heterogeneidad espacial es reflejo de la diversidad de los espacios internos del paisaje.

Como aspectos específicos en la definición de la heterogeneidad espacial AWO, habrá que analizar primero si se adapta a la conceptualización de la diversidad espacial, como indicador simple de las configuraciones del paisaje. Por otra parte, en las posibles medidas de la heterogeneidad espacial del paisaje, siempre habrá que tener también
El principio ‘agregados con enclaves’

presentes los efectos de la territorialización de los sistemas naturales, con la escala y la resolución implícitas en las funcionalidades ecológicas.

Como crítica metodológica de las aproximaciones a la heterogeneidad del paisaje mediante los índices de diversidad, debe remarcarse en primer lugar que el concepto de ‘heterogeneidad’ que incorporan estos índices se deriva de los modelos de maximización de la entropía. Están por tanto definidos conceptualmente a partir del macroestado con el máximo valor de entropía\(^96\) -la tipología general más ‘probable’ del grupo de estudio a falta de datos-, como caso óptimo en base al cual se realiza la cuantificación.

La ‘heterogeneidad’ del índice de Simpson medirá entonces la diversidad en función de la distribución más probable de casos (máxima entropía): será más elevada cuantas más clases y mayor número de casos se den en todas ellas. Esta conceptualización de la ‘heterogeneidad’, que es útil para el tratamiento de la diversidad de las comunidades\(^97\), se considera posiblemente inadecuada, al trasladarla a los elementos del paisaje.

Conceptualmente (y a diferencia de la heterogeneidad las comunidades), la heterogeneidad natural óptima en el paisaje siempre implica un macroestado alejado del máximo valor de entropía, ya que los inputs energéticos configuran el territorio de forma heterogénea\(^98\). Es al contrario de como se postula la heterogeneidad por los índices de diversidad, con la equiprobabilidad de clases como distribución más probable.

Así y como resultado de estas divergencias, en la práctica el indicador de la heterogeneidad de las configuraciones espaciales puede ser incluso opuesto a las caracterizaciones de la diversidad natural, al incorporar los usos artificiales en su determinación.\(^99\) Por ello puede considerarse que por sí solos los índices de diversidad (como medidas universales), no son los adecuados para el análisis en base AWO. Es

\(^96\) Resuelta mediante optimización no-lineal (iteración).

\(^97\) Aunque sin embargo no todas las especies son igual de importantes; la máxima diversidad se da en situaciones climax, pero también con reductos de espacios marginales y especies generalistas.

\(^98\) Incluso en las situaciones más ‘homogéneas’ o de ‘climax’.

\(^99\) Frecuentemente, un elevado índice de heterogeneidad resultará de una mayor urbanización del territorio. La menor ‘heterogeneidad’ del paisaje es entonces casi sinónimo de mayor naturalidad - aunque no es tan directamente relacionable en sus causas como la diversidad natural, y se requiere un análisis composicional más detallado (cap 8).
Existe una modelización específica de la heterogeneidad AWO para el paisaje heterogéneo.\footnote{De forma especial, según los inputs adicionales recibidos del subsistema antrópico: conceptualmente, para la integración de la heterogeneidad y la entropía en los sistemas territoriales, es posible considerar que los inputs energéticos y materiales procedentes del subsistema antrópico se superponen a la heterogeneidad natural del paisaje. El estado o tipología general más probable en la medida de la entropía del sistema, dependerá entonces de factores principalmente humanos, que configuran la heterogeneidad a nivel regional o local.}

Por el estudio, se considera no obstante que el propio principio AWO aporta ya las claves para ello: por un lado, la diversidad en el tamaño de los espacios (grano) es explícitamente uno de los aspectos del análisis de la heterogeneidad del paisaje (tal como se define según el principio AWO). Así el análisis de la heterogeneidad del paisaje implica el análisis del tamaño de los espacios, además de su diversidad de hábitats o usos.\footnote{El concepto de ‘grano’ del mosaico se refiere entonces como una de las características del tamaño medio de los espacios: un paisaje de grano ‘pequeño’ presenta un característico tamaño reducido de los espacios que lo componen, a la inversa que los de grano grande.}

En base a estas consideraciones, la modelización espacial integrada de la heterogeneidad AWO no puede tener como referente una situación de máxima diversidad en sus tipologías. La necesidad de considerar las tipologías de espacios según tamaño (junto con las constricciones asociadas), hace que no podamos considerar la máxima entropía como la distribución óptima más probable de un sistema territorial, a diferencia de las distribuciones de especies y poblaciones en la comunidad.

Por ello se considera que la formulación normativa del principio conceptual AWO ya es útil por sí misma, de cara a proporcionar las pautas con que definir el óptimo composicional y la heterogeneidad óptima de los paisajes, altamente afectados por la acción antrópica. Los indicativos de la cantidad de superficie existente por usos naturales y tamaño y el número de tipologías AWO, contribuirán entonces en la definición de la medida sintética de la diversidad.

Como tal será considerado el principal indicador a tener en cuenta en la caracterización de la heterogeneidad del paisaje, por encima de otros posibles indicadores de la heterogeneidad espacial. Este se considera entonces por el estudio el referente adecuado de la heterogeneidad, en base al cual modelar de forma sintética la
El principio ‘agregados con enclaves’

diversidad AWO en la composición del paisaje -como caso universal, o para los paisajes altamente afectados por la acción antrópica cuando menos.

Debe recordarse que al igual que los modelos conceptuales de optimización espacial, el principio AWO está relacionado con las teorías normativas de la estructura espacial. A diferencia de las teorías positivas, las teorías normativas no se ajustan por las referencias a los hechos, sino que dado que son teorías de las situaciones ideales, deben ajustarse por la dilucidación de los sistemas de valores utilizados (Lipsey 1966). Por ello no es lícito probablemente intentar una validación empírica de los mismos, dado que son explícitamente normativos (caso de los trabajos clásicos de la teoría de la localización).

3.3.3.- Modelos de optimización

Para la aplicación práctica del principio AWO y dado su planteamiento explícito para la planificación, por el presente estudio se propone entonces su desarrollo en base a los modelos de optimización (cap 10). En los modelos de optimización, se busca usualmente la función objetiva (cantidad de un factor/es a ser maximizada o minimizada), y las constricciones determinantes para el modelo. El modelo de optimización propuesto se enmarcará por ello dentro esta tipología de modelizaciones espaciales usual en Geografía -partiendo sin embargo desde una conceptualización de los sistemas naturales de la Ecología del Paisaje.

Como modelo de optimización espacial, el modelo AWO busca de hecho definir la solución óptima a una situación espacial problemática. De inicio, pues, la búsqueda se encuentra predeterminada por los criterios de la modelización: no se recurre a una búsqueda empírica de las variables y valores de los índices para caracterizar el problema, puesto que de antemano se realiza una consideración de la situación óptima, a la que las configuraciones existentes se contrapondrán.

3.3.4.- Modelos de interacción espacial

Por la formulación de uno de los criterios del principio AWO, se deduce implícitamente la posible existencia de interrelaciones gravitacionales entre tipos de
espacios por tamaño y usos, a considerar en su desarrollo como modelo.102 Concretamente, por la consideración de la necesaria proximidad entre espacios agregados y enclaves de un mismo uso (criterio n° 5; ap 1.1), parece abogarse por la existencia de tales interrelaciones.

Debemos cuestionarnos, de entrada, la utilidad de plantear tal interrelación espacial en base AWO: no existe ni es justificable en la realidad una estricta dependencia funcional de unos espacios (pequeños) respecto a los otros (grandes), sean o no del mismo tipo, como puede suceder en analogías entre elementos que se atraen por fuerzas similares a las de la gravedad -por las que tendría sentido plantearse este tipo de análisis, buscando la existencia de leyes primarias en la distribución de los espacios. En realidad se trata de espacios con una distribución que es la resultante de los procesos bióticos y abióticos, además de los históricos, que se han sucedido en el territorio. Estos procesos, principalmente la agencia humana, se suceden sin necesidad de interrelación espacial entre los espacios de un mismo tipo, ni es observable hoy en día ningún indicio que evidencie la continuidad temporal de los procesos históricos iniciales.

Lo único que percibimos claramente en el paisaje es la evidencia del proceso de actuación antrópica en el territorio, perforando, fragmentando y alterando los espacios naturales preexistentes, sin existencia de una zonificación que no sea la lógica de las actividades humanas transformadoras del territorio, la cual no responde solamente (cada vez menos) a criterios de proximidad entre espacios103.

Tampoco se plantea en realidad por parte de AWO dicha dependencia funcional, aunque se establece su oportunidad como criterio de planificación de nuevas actuaciones, de cara a mantener por lo menos las capacidades ecológicas del territorio –tratando de evitar fundamentalmente la perforación y fragmentación de la matriz de fondo, y la agregación de espacios urbanizados.

102 Los modelos de gravedad se utilizan para el análisis de diferentes flujos (migraciones, conversaciones telefónicas, movimientos de pasajeros o turistas, flujos de comodidades y servicios, etc). Su aplicación a las jerarquías de nodos de una red (en base a su tamaño p.e.), se utiliza en Geografía para evaluar la interacción entre los nodos. Por otra parte, el análisis matemático de estas formas ha demostrado estrechos vínculos con los modelos de intervención de oportunidades y con el problema del transporte -a pesar de la problemática de su uso (Johnston et al 1986).

103 Por el análisis de las distancias entre tipologías de espacios, se evidenciará la existencia o no de este hecho precisamente en la ocupación del territorio.
El principio ‘agregados con enclaves’

Cabe considerar por tanto si este no es un planteamiento posiblemente carente de fundamento conceptual (a parte de ser una modelización sumamente compleja)104, que el principio AWO tampoco pretende considerar, mas que como una opción de planificación óptima, en los casos del paisaje altamente afectado por la acción antrópica. Su consideración puede ser entonces la de una variable especialmente a valorar en la regulación del sistema territorial, de cara a la sostenibilidad -sin tener que ser formulada innecesariamente como un modelo gravitatorio.

En el plano normativo, esta posible formulación del principio AWO es de manera destacada una de las principales cuestiones poco claras, o vacíos conceptuales según el estudio. No se explicitan umbrales de las distancias, ni tamaños de espacios a considerar en las respectivas tipologías (formulación adimensional en la práctica). En todo caso, y de cara al desarrollo sintético en base AWO, cabe plantearse si esta proximidad no se encuentra igualmente mediada por otras variables composicionales.

104 Usualmente se reformula el modelo de Newton, adaptándolo empíricamente por calibración, y ajustando los resultados de la realidad. El alejamiento del modelo original para las aplicaciones en la práctica es tal, que se requiere una nueva racionalización teórica. Algunas de las propuestas utilizadas entonces son las de ‘probabilidad máxima’, de ‘maximización de la utilidad’ o de ‘maximización de la entropía’, siendo esta última la más aceptada (Wilson 1974).
4.- PLANIFICACIÓN INTEGRADA EN BASE AWO

De manera acorde con los objetivos del estudio, se considera la dimensión de la planificación como campo propio del análisis holístico. Por ello debe situarse AWO entre la gran diversidad posible de enfoques susceptibles de fundamentar el ‘proceso racional de toma de decisiones’ que es la planificación.¹⁰⁵

La planificación integrada es una de las formulaciones o herramientas para el afrontar la complejidad de este proceso. Por su parte, la definición AWO, como potencial modelo de optimización espacial para la planificación integrada del paisaje, entra de lleno en la valoración de la sostenibilidad de los sistemas territoriales.

4.1.- La planificación integrada y los ámbitos territoriales

En la planificación integrada, se sintetizan precisamente las interrelaciones reales que afectan a los sistemas naturales y humanos desde perspectivas cercanas a las teorías de la complejidad, en base a la definición de los objetivos y procesos existentes (normativas y cuestiones de funcionalidad y diseño ecológico; prioridades económicas, políticas y sociales; etc.).¹⁰⁶ Estos sistemas coinciden habitualmente en el marco regional o el del paisaje.

A diferencia de la planificación espacial concebida como una política de redistribución y planificación centralizada de las grandes infraestructuras, el concepto de planificación espacial y desarrollo sostenible supone fomentar las dinámicas endógenas de desarrollo local.¹⁰⁷ Se considera entonces que es en el nivel territorial básico más cercano al ciudadano en el que se dan las mejores oportunidades de desarrollo, y una gestión democrática optimizada.

¹⁰⁵ Lo cual ha conllevado usualmente una cierta confusión a la hora de distinguir los procesos y los objetivos de la planificación (Gómez Orea 1978).
¹⁰⁶ El propio proceso de planificación integrada se enmarca dentro de un proceso continuo de reelaboración de la planificación, a partir de las necesidades y resultados de la gestión, considerándose así un proceso consensuado y adaptativo, adecuado para la toma de decisiones complejas, y en base necesariamente a criterios de sostenibilidad (Wiggering et al 2003).
¹⁰⁷ La planificación espacial hoy día tiende a considerarse, por tanto, una compleja y sutil mezcla de aproximaciones ascendentes y descendentes entre los niveles administrativos existentes: europeo, estatal, regional y local (ICTD 2002).
Desde una perspectiva meramente económica también, la necesidad de fomentar un nuevo tipo de sistema empresarial -basado en los sistemas locales productivos como modelo de desarrollo-, motiva especialmente la aproximación integrada al denominado ‘capital territorial’ de una región, siendo por ello la unidad territorial que se adecua funcionalmente a la actividad antrópica -además de la natural (ap. 2.3.3).

4.2.- La urbanización como factor de cambio y problema medioambiental

La totalidad de la actividad humana que es relevante para los sistemas naturales en su conjunto, se define como la antroposfera (Zonneveld 1989). Esta actividad se puede dividir en sus dimensiones tangible / intangible (presiones o impactos // factores de cambio -‘driving forces’).

En la actualidad, la urbanización se considera un factor de cambio planetario con un componente intangible (los fundamentos económicos mismos del desarrollo urbano expansivo o metropolinización), que tiene por resultado unos impactos y presiones tangibles en el territorio (Wiggering et al. 2003). Así mismo, los cambios en las políticas de usos del suelo por la globalización económica, están influyendo en el desarrollo de la planificación y la ordenación territorial.

4.2.1.- La urbanización extensiva

En las sociedades más industrializadas, el crecimiento de las actividades humanas se ha correspondido con una urbanización extensiva del territorio, utilizando el recurso del suelo como un valor de cambio más, sometido a las leyes del mercado. Ello ha ido ligado

108 La competitividad de los territorios depende entonces de los factores locales principalmente: la cohesión social, nivel de educación, formación vocacional, colaboraciones entre el sector público-privado, relaciones entre universidad y empresa, el entorno cultural, la calidad de los servicios públicos, la calidad del medio rural, la provisión de servicios de ocio, la calidad de los parques industriales, la implicación de los políticos, etc. Ello añadido a la existencia de los factores habituales como recursos naturales, un medio ambiente atractivo y las dotaciones en infraestructuras, son lo que se denomina ‘economías externas’, consideradas hoy en día los requisitos fundamentales en medio de la creciente competencia entre territorios, que se ha visto acelerada con el fenómeno de la globalización económica (ICTD 2002).

109 La región se considera igualmente como el nivel eficiente para invertir en nuevas tecnologías, como se requiere desde el Directorado General de Política Regional de la UE a las regiones, para implementar estrategias de innovación regionales. Algunas regiones han decidido incluso preparar estrategias de innovación regional propias, por lo que los ‘clusters’ empresariales no son ya la única herramienta para el desarrollo regional (ICTD 2002).
Planificación integrada en base AWO a la adopción o no de limitaciones a la urbanización del territorio, mediante regulaciones de las administraciones.110 El problema de la urbanización creciente del territorio se ha convertido por sí solo, pues, en uno de los principales problemas relacionados con la conservación medioambiental en las sociedades desarrolladas111 -con ritmos de crecimiento de la urbanización cercanos al 12% anual, en países como EEUU.112 Igualmente, en los países menos industrializados, las concentraciones urbanas y las migraciones del campo a la ciudad se han convertido en consecuencia y causa de la crisis medioambiental que vive el planeta.

Desde la perspectiva del impacto ambiental de los estilos de vida, la consideración de la ‘huella ecológica’ de las sociedades o países (el impacto espacial relativo de las actividades humanas), refiere entonces a la desigual distribución de riqueza, especialmente a nivel mundial.113 Además, aunque la urbanización es un agente importante en el cambio de usos del suelo, los desarrollos de baja densidad pueden tener incluso efectos nocivos mayores sobre los sistemas naturales. En este contexto, los impactos de las políticas existentes (caso de la CAP) sobre el medio y las condiciones naturales son muy significativas (Schanze 2003).

Por otra parte, buena parte de las aproximaciones al análisis espacial que se han extendido dentro de disciplinas como la Ecología o la Biología de la conservación (ap.2.1), pretenden evidenciar y definir la magnitud real de los problemas medioambientales que

110 En cualquier caso, el modelo de crecimiento urbano ha acabado por romper las diferencias formales entre ciudad y campo (ruptura formal y jurídica iniciada con la revolución francesa), y las transformaciones económicas y tecnológicas han acabado por integrar física y funcionalmente los dos espacios. Las actividades económicas y las formas de vida urbanas han acabado por dominar la totalidad del territorio, creando una ciudad ‘sconfinatta’ o sin límites aparentes (Longo, 1992). Pero que por carecer de ellos es precisamente carente del antiguo significado dado a la ciudad tradicional (Bookchin 1974, Nel-lo 1999).

111 Es de rigor considerar que ya no existen áreas sin influencia humana en Europa: se da habitualmente tanto una expansión horizontal (usos del suelo) como vertical (intensidad). Como resultado, el territorio rural europeo ha tomado funciones adicionales en relación con las demandas realizadas desde la Ecología y las propias demandas de las sociedades, especialmente por las áreas urbanas (Wiggering et al.2003).

112 En EEUU, la proporción de población considerada ‘metropolitana’ se incrementó del 66% al 80% entre 1960 y 1990. Sin embargo, los barrios residenciales periféricos de baja densidad (‘suburbs’) crecieron más que las áreas centrales: el 71.1% frente al 15.2% (Platt 1996). Además en la huída de la población de las áreas centrales a las periferias, el desarrollo entorno la linde exterior urbana-rural consume más suelo proporcionalmente, provocando así un desarrollo extensivo en áreas cada vez más alejadas de los núcleos urbanos. Por todo ello, en EEUU el total de territorio de uso urbano creció en la década de 1982-1992 de 21M ha. a 26M ha.

113 Así por ejemplo, América del Norte utiliza casi el equivalente a doce unidades de superficie por individuo, mientras que Asia y África sólo usan dos (Boada & Saurí 2002).
hasta ahora han sido analizados localmente. Estas necesidades son las que ha ayudado a vertebrar en muchos casos la aproximación pluridisciplinar, que de forma coincidente se considera necesaria para la definición del problema de este cambio global y su diagnóstico, desde diversos ámbitos. Este cambio es visto entonces como un proceso multidimensional lleno de incertidumbres, cuya causalidad humana es cada vez más incuestionable y para la comprensión del cual se necesita un marco de análisis nuevo (Boada & Saurí 2002).

4.2.2.- El análisis y gestión de los cambios territoriales

La tendencia por parte de los ecólogos ha sido la de evitar los sistemas dominados por el hombre, y centrarse en cambio en los mencionados impactos extractivos y de polución. Usualmente los efectos acumulativos de los cambios de usos debidos a los asentamientos humanos (distintos de las actividades de extracción y polución), no se han abordado hasta muy recientemente. De manera especial, los efectos de los desarrollos residenciales y la extensión de las infraestructuras son evidentes ya hoy en día; pero se prevé que serán en el futuro próximo una fuente de cambios medioambientales mayor incluso que los provocados por la extracción y polución -por sus efectos acumulativos sobre los sistemas naturales.

114 Igualmente el llamamiento realizado a la prevención de una crisis biológica a escala planetaria, que desde hace décadas se perfila desde diferentes ámbitos científicos (J. Lovelock & L. Margulis 1974; R. Noss 1983; etc.), ha coadyuvado de hecho esta aproximación integrada de los medios físico y humano, que se plasma en la aproximación paisajística y regional.

115 La acumulación local de impactos, y la aparición de efectos no-lineales en los procesos sobre los ecosistemas (lagunas temporales en la aparición de efectos respecto las causas que los desatan, lindares de criticalidad autoorganizada en los sistemas naturales y sociales, etc.), igualmente ejemplifican la necesidad de analizar estos efectos en base a los planteamientos de las teorías de la complejidad (Portugali 1997; Philips 1999a).

116 Tradicionalmente, el estudio de los impactos humanos sobre el medio se ha centrado en los efectos de la extracción de materiales (agricultura, silvicultura, infraestructuras energéticas) y la adición de materiales de origen humano al medio ambiente (contaminación del aire y agua, adición de carbono a la atmósfera (Haeuber & Hobbs 2001).

117 Es el caso por ejemplo de las diversas afectaciones sobre un curso fluvial: deforestación de la vegetación de ribera, mas aportación de sedimentos, nutrientes y contaminantes desde los sistemas humanos, mas sobrepesca. Estos impactos alteran reiteradamente el curso, con efectos aditivos o sinérgicos, en un ámbito mucho más extenso del entorno puntual donde se producen las diversas afectaciones (Haeuber & Hobbs 2001).

118 En términos de modelización de los sistemas naturales, ello equivale a un cambio en el potencial natural de las áreas particulares, a causa del feedback provocado por las acciones humanas mediante un cambio sostenido y gradual, representable en los modelos de estado-respuesta (Schanze 2003).
4. Planificación integrada en base AWO

Desde un punto de vista espacial, pueden destacarse cuatro categorías de cambios observados recientemente en los usos del suelo en Europa (Wiggering et al. 2003):

- Disminución de la importancia de la producción agrícola y forestal, y cambio de las políticas de usos del suelo por la globalización económica -a escala nacional y europea (FAO 2000:21th FAO Regional Conference for Europe).
- Establecimiento de objetivos ecológicos a conseguir en los territorios, relacionados con los usos del suelo y la planificación.
- Medidas relacionadas con el cambio climático y las crecientes probabilidades de eventos climáticos extremos, que requieren de adaptaciones para la modificación de las combinaciones de usos del suelo y sus tipologías.
- El cambio en la percepción de los usos del suelo por la sociedad, provocando modificaciones en las políticas de subsidios (CAP p.e.).

Así, los aspectos medioambientales, de salud y éticos relacionados con la producción y los procesos agrícolas y forestales, se valoran cada vez más por parte de la sociedad. En consecuencia también, las políticas territoriales de desarrollo europeas hoy en día se basan cada vez más en un nuevo paradigma: Como objetivo, se diseñan para permitir a todos los territorios desarrollar endógenamente sus capacidades y puntos fuertes, e indicarles su potencial –limitando efectos perniciosos inducidos. La nueva misión para los gobiernos entonces es trabajar conjuntamente con los territorios y ayudarles a desarrollar su ‘capital territorial’. Ello implica diferentes tareas para los gobiernos: políticas de desarrollo local, mejora de la gobernancia y de la protección medioambiental.\(^{119}\)

4.3- La conservación natural y el desarrollo sostenible

4.3.1.- Formulaciones de la sostenibilidad

El concepto de sostenibilidad fue introducido a principios de la década de los 80s por Lester Brown (fundador del World Watch Institute), al definir una sociedad sostenible como aquella que fuera capaz de ‘satisfacer sus necesidades sin comprometer las

\(^{119}\) En este sentido, la protección medioambiental supone considerar las preocupaciones del largo plazo en las políticas económicas y sociales, de cara a conseguir un desarrollo sostenible (ICTD 2002). Es necesario integrar para ello las preocupaciones económicas, sociales y medioambientales.
El principio ‘agregados con enclaves’

oportunidades de las generaciones venideras’.120 Varios años después, el Informe Brundtland realizaba una definición similar que se ha aceptado de forma institucionalizada. El desarrollo sostenible se ha definido como:

‘...la situación de estabilidad tanto en los sistemas físico como social, que se consigue acomodando las necesidades del presente sin comprometer las de las futuras generaciones’. (Informe Bruntland, World Commision on Environment and Development 1987).

Cabe distinguir sin embargo entre dos conceptos relacionados con el ‘desarrollo sostenible’121, a los que suele referirse la conservación de los recursos, y que permiten avanzar en la dirección de la regulación de las actividades humanas en el medio natural:

- ‘Uso sostenible’ es el término oficial adoptado por la IUCN (1980), definido como la tasa de utilización de un recurso cuando iguala su tasa de renovación.
- La ‘sostenibilidad’, sin embargo, es un concepto que trata sobre las estructuras y disposiciones necesarias para que se dé realmente el uso sostenible de los recursos.122

Como uno de los factores (además de la nula voluntad política) que motivan el actual impás en la toma de decisiones, debe reconocerse que aunque las definiciones de sostenibilidad y desarrollo sostenible constituyen exhortaciones morales importantes, no es menos cierto que estos conceptos no han sido aún suficientemente concretados para su aplicación directa. No explicitan de hecho los aspectos necesarios para construir una sociedad sostenible (Capra 2002); y la propia definición de lo que es o supone una sociedad sostenible es de mayor dificultad técnica de lo que parece.123

120 Citado en Ehrlich & Ehrlich 2004.
121 Para algunos teóricos de la Ecología sin embargo, el propio concepto de desarrollo sostenible no es más que un oxímoron o una incongruencia, por el hecho de aunar términos contradictorios. Las propuestas realizadas en base a este concepto no dejarán de caer en la misma falacia por tanto (Forman 1995a, Margalef 1996).
122 Esta última es por tanto una noción reformista, crítica y hasta contrapuesta frecuentemente a las estructuras institucionales y económicas existentes (O’Riordan 1989).
123 Puede contemplarse simplemente como la sociedad que no destruye las bases que conforman los sistemas ecológicos y sus recursos, o como la que tiene elevados niveles de resiliencia (Gunderson & Holling 2001).
4. Planificación integrada en base AWO

4.3.2.- Conceptos aplicados de la sostenibilidad

En las últimas décadas, la necesidad de un recuento comprehensivo de los valores de los recursos naturales,124 ha sido el motivo del desarrollo de la denominada Economía ecológica-ambiental, frente al mantenimiento de una tasa de crecimiento económico saludable -que ha sido el objetivo tradicional en la Economía neoclásica.125

Existen también, por otra parte, visiones que critican las aproximaciones exclusivamente economicistas sobre el medio, principalmente por no considerar que los problemas medioambientales estén generados, en su mayor parte, por la acción humana.126 Otros científicos sociales tienden a centrarse en temas más cualitativos,127 como el acceso igual a los recursos y la calidad de vida.128

Otra visión ética de la sostenibilidad es la que remarca la naturaleza sistémica de sus principios. Lo que es ‘sostenido’ así en una comunidad no es su crecimiento económico ni su desarrollo, sino toda una trama de la vida, de la que depende nuestra supervivencia a largo plazo.129 Su aplicación sin embargo implica un cambio social y cultural que es de grandes dimensiones, respecto a las prácticas actuales de las sociedades modernas.130

124 Recuento basado en el papel de estos recursos, cuanto al mantenimiento de los sistemas que soportan la vida a escala local, regional y global (O’Riordan 1989).
125 Tres variantes de este objetivo son el mantenimiento de la producción neta, la búsqueda de la máxima producción, y el incremento continuado de la producción (O’Riordan 1989).
126 Por ello se reivindica una ética de las intervenciones humanas en el medio (Leopold 1949, ‘Land ethic’).
127 La modelización y el análisis de las desigualdades sociales, económicas, políticas, etc. constituye entonces la base para el análisis económico de los fenómenos de la acción humana, contra la sostenibilidad de los sistemas naturales en el medio. El análisis de los riesgos naturales y la gestión de los recursos así como el desarrollo, son entonces principalmente los campos donde se desarrolla esta visión (Cleveland et al.2001).
128 Igualmente, desde una perspectiva ética parecida se argumenta que más que pensar en las generaciones futuras como actores económicos, con unas preferencias ponderables (las cuales no podemos prediceterminar ahora si somos realistas), debemos pensar en términos de sus derechos inalienables a cualquier tipo de bienes ecológicos y servicios, que aseguren que dispondrán de una condiciones viables de producción y consumo con las que trabajar (Cleveland et al. 2001).
129 Entre sus principios, además del funcionamiento en redes de los sistemas se destaca el principio del equilibrio dinámico: todo ecosistema es una red flexible en fluctuación perpetua, y su flexibilidad es consecuencia de múltiples bucles de retroalimentación, que mantienen al sistema en un estado de equilibrio dinámico. Así, ninguna variable es maximizada en exclusiva en el sistema, sino que todas fluctúan en torno a sus valores óptimos (Capra 2002).
130 La integración del hombre en los sistemas naturales acerca esta propuesta al ‘ecologismo profundo’, como teoría ecológica social (‘Deep Ecology’ -O’Riordan 1989).
4.3.3.- El ‘medio sostenible’

Una aproximación territorializada de estas perspectivas éticas sistémicas es la propuesta para el tratamiento explícito de la dimensión espacial y temporal de la sostenibilidad (Forman 1995a). Constituye la definición de un ‘medio sostenible’, y probablemente subyace como idea en la formulación AWO:

‘Un medio sostenible es un área en la cual la integridad ecológica y las necesidades humanas básicas, se mantienen de forma concurrente a lo largo de generaciones’.

Es una propuesta con la que es posible centrarse en los resultados de las políticas de sostenibilidad sobre el territorio. La integridad ecológica es entonces la combinación de niveles casi-naturales de productividad vegetal, biodiversidad, agua y características del suelo.131 La sostenibilidad es la condición misma donde todo esto se consigue o mantiene. De cara a integrar las alteraciones naturales y humanas a una escala temporal extensa, se considera que la adaptabilidad del sistema es la clave para conseguirlo, en analogía a los sistemas ecológicos (espacialmente heterogéneos, en el caso de los sistemas extensos).132

Es precisamente desde esta perspectiva espacial de la sostenibilidad o medio sostenible, desde la que cabe revisar el principio AWO y la ‘Solución espacial’: Es una visión ecológicamente funcional y socialmente ética de los impactos de las actividades humanas en el territorio. Estos impactos son por definición deducibles y cuantificables de forma espacial, a partir de las configuraciones del mosaico del paisaje.133

131 Para su cuantificación, es posible una aproximación desde los intereses de la planificación: Las necesidades humanas básicas son agua potable, comida, salud, vivienda, energía y cohesión cultural. La escala temporal de las generaciones humanas es de un siglo a un milenio. ‘Area’ es un paisaje, región, continente o planeta, o sea un mosaico donde vive gente, se extraen los recursos, etc. (Forman 1995a).
132 Así, una especie, persona e industria sólo sobrevive si se adapta o ajusta a las condiciones cambiantes. Igualmente, la integración de los valores colectivos, la integridad ecológica y las necesidades humanas básicas, significa que fenómenos económicos o socio-políticos como la pobreza no son sostenibles (Forman 1995a).
133 Así los conceptos de integridad ecológica y sostenibilidad subyacen claramente en la definición del mosaico considerado como conceptualmente óptimo. Como tal, el alejamiento de este óptimo configuracional por los mosaicos realmente existentes, puede ser motivo de interrogación y estudio, con unos resultados de aplicación directa en la planificación sostenible y las políticas medioambientales, de cara a su corrección.
4. Planificación integrada en base AWO

4.4.- La sostenibilidad en la ordenación del territorio y el planeamiento urbano

El objetivo final de los planteamientos holísticos para la sostenibilidad (como una dimensión del estudio en sí misma), es su aplicación en el ámbito de la ordenación del territorio y el planeamiento, así como la gestión de los usos. Las políticas de ordenación y las estrategias de planificación, mediante la toma de decisiones sobre el desarrollo territorial, son definitivamente un ámbito con especial influencia en la planificación sostenible del territorio.

4.4.1.- Estrategias y niveles de aplicación de las políticas integradas

Dentro de la gran variedad de casos existente cuanto a legislación, regulación, sensibilidad medioambiental y tradición planificadora, la tendencia a la integración de políticas territoriales y sectoriales para que contemplan una convergencia hacia los criterios de sostenibilidad, es uno de los objetivos explícitos de la Unión Europea.

A nivel pan-europeo, y como una de las políticas para la preservación del medio natural, desde los organismos medioambientales de la Unión se ha impulsado en la década de los 90s la propuesta de diseño de una Red Europea de espacios protegidos. El Quinto Programa comunitario sobre medio ambiente (1995-2000) ya incidió directamente sobre las estrategias de desarrollo de la Comunidad: Los temas medioambientales no se tratan 'como problemas, sino como síntomas de una mala gestión'. Se introdujo por primera vez el concepto de responsabilidad compartida, y se propuso la aplicación del principio de subsidiariedad en el campo del medio ambiente, según el cual la toma de decisiones debe realizarse en el nivel más cercano posible al ciudadano. Esta jerarquía coincide en buena parte en los niveles espaciales de actuación con las formulaciones territoriales de las teorías ecológicas, que se aplican a la conservación:

134 La medición del éxito en la integración de los criterios sostenibles (planeados como el desarrollo deseado) en cada sector, se realiza desde hace pocos años con una batería de indicadores, basados en el concepto de eco-eficiencia. De este modo, estos criterios se han extendido a la valoración tanto de los sectores de actividad como de las políticas comunitarias (EEA 2001a).
135 La firma de la Convención Europea del Paisaje supone igualmente una voluntad para el tratamiento homogéneo a nivel europeo, cuanto a la visión integrada del territorio (Council of Europe 2000).
El principio ‘agregados con enclaves’

- **Nivel local**: para los temas con repercusiones de ámbito geográfico restringido. Donde se gestionará la mayoría de las actuaciones puntuales en temas de medio ambiente.

Es el ámbito por excelencia de la planificación física, pero con capacidades reguladoras limitadas. Su papel como administración más próxima al ciudadano la sitúa en el centro de los estudios y las aplicaciones sobre el paisaje como sistema integrado.

- **Nivel regional**: para los asuntos relacionados con el desarrollo de las regiones. La región se ha consolidado como un ámbito de gestión intermedio necesario en Europa, tanto para la conservación como la planificación estratégica del territorio.

Así, los programas regionales financiados y controlados por la UE reciben creciente importancia, de cara a establecer una planificación estratégica de mayor eficacia.\(^{136}\)

- **Nivel nacional o supra-nacional**: para decidir sobre planes de desarrollo económico a escala nacional, o sobre problemáticas de alcance universal. Es el nivel donde prioritariamente debería incidirse con un menor coste comparativo, y donde se pueden obtener los logros ecológicamente más relevantes.

Estas problemáticas globales son dificilmente abordables hoy en día por la imposibilidad de una gestión eficiente a escala planetaria, si bien sus logros aportaran los mayores beneficios al medio ambiente (similar a la formulación de la ‘paradoja del gestor’, -ap.3.2.2; Forman 1995a).\(^{137}\)

Cuanto a la realización de estudios y proyectos, los estudios de impacto ambiental (microdiagnóstico territorial) y los estudios estratégicos (macrodiagnósticos) de las políticas de planificación territorial, pueden ser realizados por el municipio, pero requieren sin embargo la cooperación de los diferentes ayuntamientos implicados, y el control de las

\(^{136}\) Se considera que en este nivel común se pueden adecuar las aproximaciones de los entes locales municipales, que han adolecido de una excesiva fragmentación (Roberts 1997).

\(^{137}\) Igualmente la importancia de las cumbres y convenciones internacionales sobre desarrollo sostenible, radica en este claro beneficio común para el conjunto de sistemas naturales a escala planetaria, a conseguir en el largo plazo (Kasperson & Kasperson 2001; Kates 2001).
administraciones de los ámbitos territoriales superiores.138 Así, en último término la ordenación territorial referirá al ámbito de actuación del paisaje-región, con las aportaciones de los proyectos desde las administraciones subsidiarias, y mediante su control por parte de las administraciones superiores.

El \textit{macrodiagnóstico territorial}, precisamente, es el gran tema pendiente de la planificación física. Mediante el desarrollo del principio AWO, en el presente estudio se considera que este tiene el potencial para participar en la definición de las herramientas para la parametrización y cuantificación del macrodiagnóstico territorial, en los ámbitos del paisaje y la región.

\textbf{4.4.2.- La integración física de las dimensiones humana y natural en el paisaje}

La sostenibilidad es vista como una cuestión ética a incluir en la valoración económica de las actividades humanas sobre el medio, por lo que va más allá de la simple cuantificación de los recursos. En su formulación aplicada, la planificación física para la ordenación del territorio extenso se estructura jerárquicamente, siguiendo el sistema utilizado en la planificación urbanística. Así, en la práctica se organiza la ordenación territorial en unidades de trabajo cada vez más amplias partiendo de una zona local, para luego pasar a escalas de mayor extensión: la comarca o metrópoli, la región, etc.

Se siguen entonces unos criterios territoriales, que usualmente no coincidirán con los criterios naturales de delimitación del paisaje como sistema ecológico, pero sí posiblemente con el de la región funcional (agrupación de paisajes adyacentes, de parecidas características climatológicas, geomorfológicas, culturales, económicas, etc.), considerada igualmente un nivel de integración o sistema ecológico (ap. 2.3.3).

En el ámbito de la planificación del paisaje, el autor del principio AWO indica entonces las dimensiones cruciales para la incorporación de criterios sostenibles en el planteamiento y la gestión, en el día a día (Forman 1995a):

1. Considerar una dimensión temporal de generaciones humanas;

138 \textit{La incorporación de los criterios de ecoeficiencia a las valoraciones de las políticas territoriales y sectoriales de las administraciones, asegura en teoría el seguimiento y control de las actividades, con criterios de ‘sostenibilidad’ (European Environment Agency 2001a).}
2. Realizar un balance igual de las dimensiones ecológica y humana;
3. Centrarse en los atributos de cambio lento;
4. Fijarse en los índices relativamente objetivos;
5. Utilizar la configuración espacial óptima (principio AWO y ‘Spatial Solution’).

El análisis de las interacciones entre el componente natural y el componente artificial (el hombre), son pues el tema central de la ordenación territorial y la planificación física integrada. En el nivel del paisaje, se considera que como norma debe buscarse la estabilidad del mosaico. Debe tenerse en cuenta sin embargo que tanto las alteraciones cíclicas como las impredecibles son hechos habituales en los sistemas naturales.

El ámbito físico del paisaje suele coincidir por lo menos parcialmente con las estructuras administrativas sub-regionales o comarcales, que en casos como el de las comarcas de Cataluña se ve reforzado por los estrechos vínculos históricos del poblamiento (unidades territoriales estructuradas entorno un núcleo de mercado).

En este caso, debemos tener en cuenta especialmente la importancia de los cambios de escala que históricamente se reflejan en las unidades territoriales. Los fenómenos asociados a la actividad antrópica han evolucionado históricamente, definiendo pautas y tipologías de asentamientos en unidades territoriales características. El paso de la funcionalidad de las comarcas rurales tradicionales a las grandes regiones metropolitanas, puede interpretarse así en clave de expansión funcional (y ruptura) de las antiguas demarcaciones, presuntamente con una característica evolución y una determinada configuración interna de los usos.

\[139\] A escala local, habría que favorecer igualmente ciertos ‘ensamblajes’ de los elementos espaciales en el territorio, como son la incorporación de corredores amplios, los puntos de paso de fauna, los límites curvilíneos o las redes con redundancias, entre otros.

\[140\] La teoría jerárquica y cibernética se puede utilizar entonces para estudiar las regulaciones dentro de los paisajess como sistemas (Haber 1990). En el largo plazo, el territorio y los humanos representan un sistema de feedback en un medio sostenible.

\[141\] Estas alteraciones estimulan precisamente las diversas adaptaciones ecológicas y humanas, que proporcionan las interacciones estabilizadoras entre los elementos del mosaico del paisaje. La planificación para un medio sostenible debe esperar tales alteraciones, y construir una adaptabilidad adecuada (Forman 1995a).

\[142\] El mercado semanal de las capitales comarcales, usualmente en las zonas más pobladas de los valles, delimitaba áreas de influencia máxima de 1/2 día de viaje a pie (ida y vuelta), coincidiendo con las características orográficas del terreno (cuencas, líneas de cumbre), desde tiempos antiguos (Solé i Sabarís 1982).
4.5.-Metodologías para la gestión y planificación

El análisis de los sistemas naturales y su modelización de cara a abordar la problemática de la planificación y la gestión territorial, se han visto posibilitados desde mediados del siglo XX por el desarrollo aplicado de la Ecología de sistemas -con el mismo concepto de ecosistema.

Por su parte, la resolución del conflicto creado al usar métodos analíticos para lograr fines sintéticos, como sucede en el caso del análisis de la relación hombre/ medio en la planificación (se buscan significados y no leyes; su objetivo es más la utilidad que la teoría), se resuelve mediante la integración de las visiones holistas y sistémicas para el tratamiento de la complejidad.

4.5.1.- Naturaleza de las aplicaciones metodológicas

Las aproximaciones realizadas para la ordenación integral del territorio desde instancias estatales en Europa realizan frecuentemente una síntesis propia, resultado de una metodología muchas veces desarrollada ad hoc. Coinciden frecuentemente en su voluntad de caracterización sistémica de las unidades de paisaje -en base a criterios que integren las dimensiones natural, social y económica-, aunque el nivel de conocimiento previo sobre los factores y la valoración posterior de los resultados (que cuantifican o caracterizan los aspectos funcionales, estructurales y de cambio del paisaje para cada categoría), pueden ser incluso divergentes.

Para la caracterización de las diferentes aproximaciones existentes, es útil seguir la división entre los dos niveles usuales de integración ecológica en la modelización de los sistemas naturales, y que definen sus respectivos ámbitos territoriales: el del ecosistema y el del paisaje. Por un lado, las aproximaciones para la conservación de los espacios-ecosistemas considerados de interés (reservas, corredores naturales, vías verdes); y las

143 Se formulan como esquemas conceptuales, con que abordar el análisis de las totalidades (Carrizosa 1982).
144 La formulación de una metodología coherente que pueda servir de referencia para la comparación entre los diferentes estudios nacionales -de cara a la convergencia entre las aproximaciones al estudio integrado del paisaje-, es precisamente el objetivo que se marcan las instituciones paneuropeas (ECNC 1999: 'European Workshop on Landscape Assessment as a Policy Tool').
aproximaciones globales para la gestión conjunta del territorio en grandes extensiones (paisaje-región).

Como otra dimensión de análisis, se da igualmente una graduación variable de los casos cuanto a la integración de los sistemas naturales con los sistemas antrópicos (agrícolas y urbanos). En este sentido, la integración de los sistemas naturales y antrópicos en el nivel del ecosistema se considera útil para garantizar la universalidad de una aplicación metodológica, con que desarrollar el análisis de cualquier territorio. En los niveles superiores del paisaje y la región, esta integración se conceptualiza y modela en algunos casos mediante sistemas jerárquicos (diferentes niveles de información que se agregan a los sistemas). Ello de cara a asegurar la transferibilidad de las técnicas a otros territorios, con ecosistemas y problemáticas parecidas.\footnote{Por ejemplo los ecosistemas de alta montaña, dentro del programa MAB-6 UNESCO (Deutsches Nationalkommittee/ UNESCO 1990).}

Esta integración de los sistemas natural y humano en el nivel del paisaje, se realiza de forma específica en los análisis de las interacciones entre las redes naturales y de origen antrópico. Es el caso del análisis para la definición de una malla conjunta de los espacios comunes (nodos), realizada en base a la superposición de las redes hidrológica y urbana -si bien son tratadas de forma más puntual y menos comprehensiva.\footnote{Estas aproximaciones consideran las mallas superpuestas de espacios como herramientas para la ordenación global del territorio, especialmente en las zonas de mayor presión antrópica sobre el medio (Van Buuren 1994).}

Una tercera variable o dimensión en la clasificación de las metodologías es el grado de conocimiento exhaustivo de la funcionalidad ecológica de los ecosistemas (inventarios-formulaciones sintéticas). Aquí se puede dar desde un conocimiento\marginpar{\textit{casi-exhaustivo}} de los biótopos en el territorio extenso (cartografía de biótopos), formulaciones basadas en la transposición de datos para las zonas no conocidas de territorios extensos (gap\marginpar{\textit{analysis}}), pasando por la transposición y extrapolación de los fenómenos ecológicos de escalas menores (ecosistemas) a escalas extensas (paisaje-región), hasta llegar a \footnote{El caso óptimo para el análisis ecológico en la planificación, es posiblemente el de la existencia previa de una la cartografía extensa de biótopos en el territorio, en una resolución adecuada (ap. 2.3). Disponer de tal cartografía es una situación poco frecuente sin embargo, por sus elevados costes y unos resultados que se obtienen fundamentalmente a medio o largo plazo.Posteriormente, este se integra como base en análisis globales del territorio, que incluyen también las dimensiones socio-económicas (caso del programa MAB-6 UNESCO p.e.).}
metodologías de síntesis de la teoría ecológica para establecer los criterios ecológicamente correctos.¹⁴⁸

Por otra parte, existen también aproximaciones sistémicas que se plantean como un marco o inventario de las capacidades del territorio regional, donde se integran el conjunto de actividades implicadas en el proceso de la planificación continua del mismo. Así, de forma paralela a los esquemas de actuación locales y como herramienta de soporte para planificación estratégica, el denominado ‘proceso de estudios ecológicos integrados’ (IEAs), se ha desarrollado precisamente para proporcionar una descripción comprensiva de la estructura, procesos y funciones de los ecosistemas, que se requieren para sintetizar los conocimientos de los sistemas ecológico y humano, a una escala regional y de los paisajes extensos.¹⁴⁹

Las limitaciones existentes al análisis del paisaje son comunes a todas las aproximaciones, sin embargo. De inicio, de cara a la planificación y gestión del territorio se hace evidente la necesidad de un mayor desarrollo de las técnicas y capacidades analíticas utilizadas, para llegar a las escalas temporales y espaciales necesarias para el análisis funcional de los ecosistemas (y de ámbitos aún más extensos, como el del paisaje).

La urgencia para preservar el remanente de medio natural frente a una acción antópica creciente, es precisamente otro de los motivos del desarrollo de teorías y modelos conceptuales para la planificación y gestión, que requieren de unas directrices explícitas y simplificadas. Ello se plantea muy especialmente para solventar la inexistencia de estudios científicos en detalle. Aparecen entonces consideraciones desde visiones holísticas del paisaje, como la importancia de definir estrategias complementarias a la conservación de especies clave.¹⁵⁰

¹⁴⁹ Las IEAs incorporan la evaluación de las implicaciones de las actividades humanas, incluyendo la recreación de los escenarios para la gestión del territorio. Se usan generalmente para describir los límites biofísicos, biológicos y socioeconómicos de los ecosistemas, las interacciones entre sus diversos componentes y la incertidumbre en el conocimiento, dentro del contexto de un grupo específico de factores (Treweek 1999, Bourgeon et al 2001).
¹⁵⁰ Un ejemplo de ello es la definición y gestión de un retículo formado por los espacios marginales del paisaje, que asume las funcionalidades ecológicas necesarias alteradas. En este caso, se
El principio ‘agregados con enclaves’

La ‘Solución Espacial’ en que se enmarca el principio AWO (Forman & Hersperger 1997), plantea precisamente que existen determinadas configuraciones universales de los usos del suelo, que respetan las condiciones ecológicas del territorio y permiten la conservación de la mayor parte de los procesos naturales en el paisaje. Estas configuraciones son previsibles y universales, por lo que su reconocimiento y aplicación a la planificación y gestión se considera, por el presente estudio, una opción especialmente válida ante la falta de información detallada de las funcionalidades ecológicas en el territorio.

4.5.2.- El análisis ecológico espacial como estrategia de planificación

Las conceptualizaciones jerárquicas y horizontales de los sistemas natural y humano en el territorio, se plantean hoy día habitualmente desde las bases analíticas y conceptuales que aporta la Ecología del Paisaje. Se considera también que las conceptualizaciones y principios espaciales elaborados por esta disciplina aportan las premisas que pueden orientar en la planificación y gestión de los usos del suelo, como estrategia adecuada para hacer frente a temas como los impactos acumulativos en los sistemas naturales (Haeuber & Hobbs 2001).

Igualmente en virtud de la crisis conservacionista existente, se atorga mayor validez si cabe a las aproximaciones del análisis espacial en Ecología del Paisaje.151 Coincidentemente, desde el terreno de los análisis multifuncionales y la modelización holística que involucra a la planificación integrada (ap.4.2), se reclama un conocimiento adecuado de las interrelaciones de diversos usos del suelo y las funciones del paisaje, de cara a desarrollar herramientas para el análisis de impactos. Lo que se busca de manera acorde es abordar y definir la sostenibilidad de un territorio, mediante estrategias de usos del suelo.152

151 Su explicitación espacial y su normatividad, de hecho, contribuyen en gran manera a suplir la falta de información precisa, especialmente en la toma de decisiones para la planificación, cuando deben realizarse interpretaciones de los elementos del paisaje y su funcionalidad en base a juicios de valor (económico, ecológico, ético –Forman 1995a).

152 Se considera que ello puede abrir además nuevas oportunidades para llegar a soluciones eficientes, en términos de modificación de los usos del suelo o ajuste de las tipologías, que
Sin embargo los métodos para la determinación espacial de dichas estrategias, relacionados con el área de las tipologías de usos en el paisaje, se considera que están aún en su inicio. Existen principios y modelos genéricos que se postulan como referentes para el desarrollo aplicado, pero no hay ciertamente un grueso de estudios experimentales en base a estas soluciones genéricas, que permita abordar el análisis detallado y la cuantificación necesaria en un ámbito territorial (Schanze 2003).

4.5.3.- El diseño territorial de los ecomosaicos del paisaje

El soporte conceptual de las aproximaciones basadas en los cambios y usos del suelo considerados hasta ahora, procede en buena medida de los principios y evidencias espacialmente explícitas, formuladas desde el paradigma de los mosaicos del paisaje o ‘ecomosaicos’. Desde este paradigma, se remarca sin embargo que no existe otro objetivo que no sea el análisis para la comprensión, mediante el uso de la Ecología del Paisaje y la Región en todas las decisiones sobre los usos que atañen al territorio. Característicamente, no hace distinción entre principios genéricos y aplicados, y se sirve de ambos para evidenciar las implicaciones de la visión sistémica del paisaje y la región en el estudio del territorio y las afectaciones humanas sobre los usos del suelo, en cualquier actividad de planificación, conservación o gestión (Forman 1995a).

Como una de las metodologías apropiadas, se reivindica la planificación integrada del paisaje y la región en un proceso abierto y de síntesis, realizado por un panel de expertos. La existencia de un lenguaje interdisciplinario común espacialmente explícito (taxonomía espacial) que se define por el modelo ‘tesela-corredor-matriz’ (ap.2.4.2), obliga a centrarse en la distribución espacial de los fenómenos multi-dimensionales en los sistemas del paisaje y la región. Incluye igualmente un componente ético de referencia para la planificación, por encima de regulaciones consideradas inapropiadas.

Desde esta perspectiva, se destaca que no es la falta de planificación de las actuaciones lo que produce las características estructuras espaciales altamente resulten en situaciones de ganancias mutuas en el caso de demandas aparentemente conflictivas (optimización multi-funcional). Esta es una de las características destacadas del enfoque ‘inteligente’ posibilitado por los principios de la Ecología del Paisaje (Forman 1995a).

153 El presente estudio constituye pues uno de tales análisis, de hecho.

154 Formuladas previamente a la explosión del saber ecológico de las últimas décadas (‘ética del territorio’; ap.4.3 –Forman 1995a).
ineficientes ecológica y económicamente en el territorio (fragmentación, aumento de entropía, dependencia energética, polución, etc.), sino su implementación en una escala inadecuada. Igualmente, se destaca que dada la urgencia de conservación de la biodiversidad a escala mundial -y las tendencias de crecimiento de la población y tasas de urbanización acelerada-, no debe esperarse a las certezas científicas absolutas para adoptar nuevas políticas o ‘standard’ de planificación.

Existe una serie de consideraciones que cualquier plan estratégico debería tener siempre en cuenta, de cara a incorporar la sostenibilidad en el planeamiento y la gestión: el planificar para objetivos concurrentes (intereses económicos y naturales), tener en cuenta los factores culturales (cohesión comunitaria existente), planificar en la escala de generaciones humanas, contextualizar las áreas de trabajo en la escala extensa del paisaje y la región, y atorlar mayor importancia a las relaciones entre espacios por encima de las propiedades inherentes de un área. (Forman 1995a).

Para ello se considera igualmente imprescindible evidenciar las posturas existentes en las negociaciones que conducen al proceso final de la toma de decisiones entre los políticos, corporaciones o grupos de presión, colectivos afectados y planificadores -considerando igualmente los diversos escenarios posibles (Forman 1995a). Ello conlleva en buena parte de los casos contemplar el diseño territorial no desde la zonificación, sino desde planteamientos de multifuncionalidad y evolución dinámica del espacio –como sucede con las propias dinámicas ecológicas del territorio.

4.5.4.- La ‘Spatial solution’

El principio AWO se enmarca dentro de la modelización conceptual amplia para la planificación propuesta por su autor, la denominada ‘Spatial solution’. Se presenta como la conceptualización teórica o como la coalescencia de las diversas evidencias, surgidas del análisis espacial, en el campo de investigación de la Ecología del Paisaje (Forman & Collinge 1996, 1997).

Por el presente estudio, se considera que la aproximación espacial de la ‘Spatial Solution’, aun sin plantearse llegar a ser una aproximación holística multi-sectorial, aporta

155 La escala correcta de planificación es así la del paisaje o región, tal y como resume el motto: ‘Think globally, plan regionally and then act locally’ (Forman 1995a).
de forma pionera las bases adecuadas, para la definición óptima de las tipologías de usos en el paisaje -en que se basan los criterios AWO. 156

En el campo del análisis espacial, los estudios tienden a remarcar la importancia del análisis de las distribuciones o configuraciones espaciales de los elementos del paisaje, para la consideración de la función ecológica del territorio (cap.3). Mediante la síntesis de estas evidencias sobre las configuraciones del paisaje, la Spatial Solution aporta los criterios ecológicamente fundados que satisfacen la correcta planificación y gestión del territorio, tanto para la conservación como para el desarrollo sostenible de las actividades humanas (concepto de ‘medio sostenible’; ap 4.3.3).

Esta solución se basa precisamente en el supuesto observado de que existen configuraciones universales de los usos del suelo, que respetan las condiciones ecológicas del territorio y permiten la conservación de la mayor parte de los procesos naturales en el paisaje. De forma implícita, es posible igualmente definir las características óptimas del subsistema antrópico espacialmente, por pasiva o como reverso de los requisitos espaciales establecidos previamente, dadas las configuraciones funcionalmente necesarias (no contingentes) de los espacios y usos en el paisaje.

En la solución espacial y el principio AWO, se establecen pues algunos de los principales vínculos entre las distribuciones espaciales y la funcionalidad ecológica de un territorio de forma simple, mediante variables de fácil representación espacial, básicamente desde una tipificación de los espacios por su grado de naturalidad (usos del suelo) y su tamaño.

El tratamiento de la heterogeneidad espacial del mosaico del paisaje (que tiene su origen en fenómenos tanto naturales como culturales), se considera clave para este propósito -con implicaciones en la definición de la entropía de los sistemas territoriales (ap. 2.3). A partir de ella, es posible definir explícitamente las configuraciones espaciales óptimas. Se trata, pues, de una metodología en sí misma para la ordenación del territorio

156 Aunque formuladas como directrices para la toma de decisiones en el proceso de la planificación integrada, por el presente estudio se considera que son susceptibles de desarrollos que permitan su aplicación directa, como herramientas cuantitativas en los procesos de toma de decisiones -sin depender así casi exclusivamente de las capacidades sintéticas de los paneles de expertos en la planificación.
basada en tipologías de usos del suelo, que se aplica siguiendo los criterios de sostenibilidad ecológica y conservación natural. Puede considerarse igualmente un principio normativo, ya que su pretensión es establecer los conceptos espaciales relevantes, que deben tenerse en cuenta a la hora de la planificación.

Figura 4.1.-Tres categorías de la solución espacial

La coalescencia de evidencias ecológicas sobre la configuración espacial del paisaje, se plasma en la Spatial Solution principalmente en base a tres factores (fig. 4.1):

- Tipologías de espacios indispensables, que deben existir necesariamente en el paisaje, y para los cuales no existe alternativa posible con que proporcionar los mismos beneficios ecológicos.

- Principio de ordenación óptima de los usos del suelo: ‘Aggregated with Outliers’ (AWO).

- Localizaciones estratégicas para la conservación.
Así, por un lado tenemos unas tipologías de espacios y unas localizaciones estratégicas que resultan básicos en su protección, de cara a la conservación. Entre las localizaciones estratégicas, cabe destacar las localizaciones que actúan como fuentes o colectores de diferentes fenómenos ecológicos; los centros de flujos o movimientos (rutas migratorias, intersecciones de una red, etc.), o los hábitats especialmente sensibles.

Cuantos a la configuración en el paisaje de las tipologías de espacios indispensables, se establecen cuatro elementos clave:

1. La necesaria existencia de unos pocos espacios de vegetación natural de gran superficie. Estas tienen una función ecológicamente imprescindible para la protección de la riqueza de las especies en el paisaje, sobretodo para las de su interior -altamente especializadas en tales hábitats, y muy afectadas por la fragmentación y pérdida de superficie de estos espacios. Suelen ser además necesarias para las especies con necesidades de hábitats extensos, como los grandes depredadores.

Se calcula que son necesarias de dos a cinco teselas (espacios internos del paisaje) de este tipo, aunque esto no se conoce con exactitud.157

2. Los corredores de vegetación en los cursos hídricos. Estos proporcionan una amplia gama de beneficios ecológicos, tales como el control de la erosión de los laterales, la reducción de los nutrientes minerales y otros elementos en el cauce, la producción básica para la cadena alimenticia acuática -y la formación de sus hábitats (vegetación caída); o la protección para los movimientos de la fauna que discurre a lo largo de los sistemas dendríticos.

3. La existencia de conectividades entre las grandes teselas de vegetación natural. Los espacios que actúan como corredores entre estos grandes espacios, son necesarios para el movimiento de la fauna. Ello permite la recolonización que sigue a las extinciones locales, y disminuye el riesgo en caso de una alteración severa en una de las grandes teselas de vegetación natural, o de un proceso de

157 Se considera que si en las grandes teselas se encuentra un porcentaje muy elevado de las especies existentes en el paisaje (por encima del 95%), el número de grandes espacios necesarios probablemente es de dos o tres (Forman & Collinge 1996).
depresión genética de una especie (aumenta las posibilidades de variabilidad genética).

4. Los ‘enclaves’ de vegetación natural en el paisaje. Los pequeños espacios de vegetación natural dentro de la matriz del paisaje, proporcionan los beneficios de protección de las especies raras fuera de los grandes espacios de vegetación; proporcionan igualmente lugares de paso para el movimiento de las especies en todas direcciones; reducen la erosión resultante de la existencia las grandes extensiones del uso rural en el paisaje; y proporcionan condiciones heterogéneas a lo largo y ancho del paisaje, como protección contra las posibles alteraciones.

De las implicaciones de los mencionados elementos para el buen funcionamiento ecológico del paisaje, principalmente de las tipologías de espacios requeridos, la solución espacial extrae finalmente un principio para la ordenación óptima de los elementos del paisaje (principio AWO). Para caracterizar esta aproximación al estudio integrado del paisaje, es necesario considerar sus pretensiones, capacidad de síntesis y su grado de profundización en el análisis de las diferentes dimensiones que caracterizan los estudios del paisaje como sistema.

Así, podemos determinar que esta aproximación dirige su atención a formular conceptualmente las bases que establecen el mínimo de objetivos estratégicos comunes, o referente donde deben coincidir (en el territorio) las diferentes dimensiones de análisis del paisaje. La consideración de la dimensión espacial, como el ámbito y marco común ineludible para el estudio integrado y la planificación estratégica del paisaje, hace que esta estrategia se plantee entonces como una síntesis de las características espaciales mínimas indispensables, según tipologías de usos.

Es en el espacio, no en vano, donde se reflejan finalmente las acciones resultado de la toma de decisiones, siempre visibles en los usos del suelo y sus cambios; y donde deberán referirse de forma ineludible (y es factible hacer coincidir óptimamente) las diversas aproximaciones al estudio del paisaje. De esta forma, aunque por esta aproximación se consideran sólo las certezas científicas contrastadas para propósitos

158 Es en definitiva por lo que en el presente estudio se aborda el desarrollo aplicado de este principio, para la planificación estratégica.
conservacionistas (formuladas como las configuraciones imprescindibles de espacios dentro del paisaje), por otro lado aparece implicitamente la integración espacial de la dimensión humana en relación con el medio, en la aplicación de tales tipologías de espacios y configuraciones espaciales -definidas como universales.

4.5.5.- La integración de la Spatial Solution en el planeamiento

La solución espacial en que se integra el principio AWO es en realidad la culminación de las reflexiones por parte de su autor, cuanto a las necesidades y urgencias de la planificación y gestión integrada del territorio, en base a los criterios y evidencias establecidos por la Ecología del Paisaje -concretamente de su corriente de análisis espacial. Como apoyo a esta estrategia, puede considerarse que existen tres importantes puntos de encuentro entre la Ecología del Paisaje y la planificación, que favorecen este tipo de aproximaciones:

- La escala espacial del planeamiento debe realizarse en la dimensión territorial adecuada (paisaje o región). Entonces el contexto espacial pasa a extenderse mucho más allá del área específica objeto inicial de planeamiento.
- En el planeamiento deben tenerse en cuenta las interrelaciones entre los habitantes y la naturaleza, y los procesos que se desarrollan históricamente (poblamiento, catástrofes naturales);
- El planeamiento integrado debe centrarse en los cambios de los sistemas naturales. En el desarrollo del planeamiento debe tenerse en cuenta las transformaciones menos deseadas además de la previstas, y deben ser validadas y comparadas diversas opciones de desarrollo para cada alternativa -una de las cuales es la preferible, a criterio del planificador.

La urgencia de la tarea de la planificación sostenible en el territorio, con la toma de decisiones ecológicamente eficientes por parte de los planificadores (aun cuando no hay en muchos casos estudios ecológicos de base suficiente), atorga a esta aproximación un

159 No en vano se busca precisamente el compromiso con la sostenibilidad de los sistemas antrópicos en el territorio -en su definición ética también (ap 4.3.3).
160 Es por ello que su autor remarca frecuentemente la importancia de la dimensión prospectiva de AWO, por encima de otras consideraciones.
161 En este sentido, coincide con la constatación que los esfuerzos de conservación realizados hoy día se realizan a una escala demasiado local (Noss & Cooperrider 1994; Dale et al 2001).
El principio ‘agregados con enclaves’

especial interés.162 Su formulación y aplicación es posible, sin que sea imperativo el conocimiento detallado de todos los ecosistemas y especies del paisaje.163

Los principios espaciales de la \textit{Spatial Solution} se pueden utilizar entonces para modelar de inicio la configuración óptima del paisaje desde el punto de vista ecológico, como referencia para la planificación de la sostenibilidad. Igualmente sirve para identificar las localizaciones adecuadas para determinadas actividades, teniendo siempre en cuenta implícitamente el contexto general del paisaje. En este propósito coincide con los estudios ecológicos integrados (IEAs, ap.4.5.1), si bien su grado de conocimiento exhaustivo de la función, estructura y cambio de los sistemas es mucho más modesto -aunque se formula igualmente con pretensión normativa.

De cara a su integración en los procesos de planificación estratégica, cabe valorar entonces si por el ámbito territorial y la declaración de un óptimo universal de las configuraciones del paisaje, la aplicación de esta solución y el principio AWO puede definirse como un \textit{macrodiagnóstico territorial}, útil para el análisis de ámbitos territoriales extensos como son el paisaje y la región (como objetivo declarado de estudio, ap. 5.1).

Esta estrategia cabe analizarla igualmente como un planteamiento que satisfaga los requisitos de planificación positiva (no sólo regulatoria), con que anticipar las tendencias previsibles de alteración del medio (como sucede con los factores de cambio como la metropolinización –otro objetivo derivado del estudio, ap. 5.1), tal y como se plantea en foros paneuropeos de ordenación del territorio (European Workshop-ECNC 1999). En este sentido su potencial como ‘método guiado’ de cara a la toma de decisiones para la planificación estratégica del paisaje -referida especialmente a los cambios que se producen en el tiempo y el espacio-, es de especial interés.

Esta estrategia es de hecho una propuesta normativa para la planificación del territorio que pretende la ‘creación’ del paisaje sostenible. Puede considerarse cercana

162 Cabe recordar que las evidencias que se sintetizan en esta estrategia están en relación con la estructura del paisaje, sus características y combinación de hábitats y usos del suelo, como aspectos determinantes para los procesos naturales y la biodiversidad.
163 En este sentido cabe remarcar que no se pretende eliminar los inventarios tradicionales para la conservación (censos biológicos o estudios taxonómicos), puesto que este será el nivel eficiente que aportará la mayor información, pero se establece que podrá ser ‘concurrente o posterior a la toma de decisiones’ mediante la Spatial Solution -y de hecho cabe esperar que comporten protección suplementaria (Forman & Collinge 1996).
entonces a un ejercicio de ecodiseño del paisaje antrópico, a partir de una formulación teórica universal, pero a concretar no obstante en un contexto regional. Para ello, los estudios comparativos realizados respecto el óptimo conceptual, son susceptibles de formularse en base al objetivo de planificación estratégica para la sostenibilidad. Las directrices que se establezcan partirán entonces de forma aplicada del óptimo conceptual, definiendo espacialmente los criterios de integridad ecológica y sostenibilidad del territorio, con que valorar comparativamente el estado real de los paisajes.

No existen por ahora sin embargo casos aplicados de esta estrategia en la planificación. En buena parte por las dificultades en su aplicación concreta, dado que requiere un desarrollo conceptual y metodológico previo, que posibilite el análisis y la cuantificación de los casos existentes, y de los posibles resultados de las acciones a acometer. La solución simplemente define entonces conceptualmente unos criterios de optimización funcional para la planificación física, a través de la configuración espacial de los usos del suelo.

Por el estudio se considera sin duda que esta estrategia es susceptible de aportar mayores beneficios si se modela de forma que se potencie su aplicabilidad, como una herramienta más en el proceso de síntesis de la planificación integrada -como se plantea en los objetivos del estudio. Con el desarrollo experimental que se plantea en base a la síntesis AWO, de inicio, en base a la caracterización y cuantificación en base a las tipologías de espacios, se caracterizarán las situaciones existentes en los paisajes respecto al óptimo conceptual (a cuantificar). Con ello se conseguirá una sensible mejora de las capacidades de aplicación de esta estrategia, incidiendo específicamente en la problemática de la aplicación de las soluciones espaciales (directrices) que se postulan de forma genérica, para los sistemas funcionales del paisaje y la región.

4.6.- Las políticas territoriales de planificación

La formulación de políticas de planificación y ordenación urbana orientadas a la sostenibilidad de las sociedades en el medio, son un instrumento crucial dentro del conjunto de prácticas y principios que caracterizan una sociedad ecológicamente

164 Mediane modelos de optimización como el desarrollado en base al principio AWO por el presente estudio, cap.7-9.
El principio ‘agregados con enclaves’

cornocida. Dependen en gran manera de las prácticas sociales y políticas existentes, y de su desarrollo (en una variedad de escalas) desde las diversas instituciones del estado.165

La tradición de la Geografía política como una de las subdisciplinas de la Geografía humana, por su parte (relacionada igualmente con la teoría política de las ciencias sociales),166 es susceptible de conferir a los análisis políticos la perspectiva de análisis aplicado al territorio: es necesario entonces explorar las implicaciones de gran alcance de las actuales reconfiguraciones en las escalas actuales de los espacios del estado, en temas como la ciudadanía, gobernancia local, autonomía política, género y soberanía. En la Geografía política, las formulaciones teóricas de la organización territorial de los sistemas político-económicos a nivel mundial,167 así como la prospección de los escenarios alternativos para un ‘futuro orden mundial’ (Lellouche 1992), se suman en la recuperación de la fascinación por la geopolítica y las estrategias globales, o la nueva problemática del estado local (Peet 1989).

El reconocimiento que la vulnerabilidad de ecosistemas y sociedades tiene raíces tanto biofísicas como político-económicas, es una aproximación que se realiza desde el estudio de riesgos y del cambio global igualmente, con claras implicaciones políticas (Kasperson & Kasperson 2001). Estos planteamientos, que recuperan la visión política de la organización del territorio, se postulan igualmente como una sublimación168 de las perspectivas orgánicas de inicios del s.XX.169

165 Caracterizado como un ‘artefacto histórico’ específico, hoy en día sumido en una profunda reestructuración (Brenner et al. 2003), contra la visión del estado y su espacio como una unidad territorial natural e inevitable. Cabe destacar que el del estado español es precisamente uno de los casos más analizados en la literatura (Peet 1989).

166 Es de remarcar la importancia de la Geografía política en la conformación como disciplina académica en el s.XIX, anterior a las subdivisiones económica y social de la Geografía Humana. Posteriormente pasaría a ser la menos activa de las tres (con el ‘false start’ de la geopolítica por medio), aunque actualmente retomaría su necesario auge según algunos autores —el que requieren las aproximaciones geográficas a las transformaciones geopolíticas de las sociedades actuales (Johnston et al 1986; Peet 1989; Brenner et al. 2003; Swyngedouw 2004).

167 Realizadas desde tesis como la teoría del estado, las teorías de la dependencia, o la visión sistémica del marco organizativo capitalista mundial —general world systems de I.Wallerstein (1979).

168 Desde posturas alejadas de la ‘física social’, los planteamientos de una humanidad plenamente inserta en el mundo orgánico marcan que es de especial relevancia la consideración de los aspectos de la regulación interna de la especie, tanto en sus derivaciones biológicas como socioeconómicas (Margalef 1996).

169 Se plantea entonces que las cuestiones como el significado atorgado al valor de cambio (dinero) —el cual se mueve por otra parte cada vez más en los ciclos de especulación, como otro dominante...
Esta nueva revisión se formularía a través de conceptos como el de la ‘gobernancia interactiva’ como herramienta inicial para este cambio sociopolítico, en una sociedad compleja pero también más reflexiva (con mayor participación de experiencias diversas y una mayor democracia procedimental y deliberativa -Ascher 2004). Esta nueva complejidad se ve favorecida también por los desarrollos tecnológicos y socioculturales de una sociedad ‘hipermoderna’ (Portugali 1997). Para ello deberán tenerse en cuenta las características auto-organizativas y la diferenciación inherente de las sociedades e individuos –desde su planteamiento como sistemas autopoíéticos, en definitiva, como una aportación desde las conclusiones de los estudios de la complejidad. La cuestión planteada entonces por la creciente complejidad de las sociedades ‘hipertexto’ actuales, la necesidad de una gobernancia metropolitana o regional, o el desarrollo de una mayor reflexividad sobre sus actuaciones, son todas ellas tendencias reforzadoras del municipalismo o regionalismo, a pesar de las tendencias globalizantes existentes.

4.6.1.- El principio AWO y la definición de políticas territoriales

Desde esta perspectiva, los modelos conceptuales aplicados a la organización del territorio (como en el caso AWO), son igualmente un elemento de gran interés, de cara a la formulación de estrategias aplicadas y las políticas territoriales a desarrollar –o las políticas socioeconómicas, por extensión. La definición de una estrategia local o regional para la consecución de los presupuestos de la sostenibilidad en el ámbito del paisaje y la región, concuerda con los planteamientos de autoorganización de las sociedades y las políticas a emprender desde una perspectiva no jerárquica (o estatal), sino diferenciada funcional y territorialmente.

Es posible plantear que la definición del paisaje y la región como sistemas autorregulados concuerda con la idea de una gobernancia política autónoma, dentro de

universal-, son en realidad una convención socializada del poder, comparable posiblemente al instinto territorial animal. Es el resultado de un consenso colectivo específico, que regula los comportamientos y las poblaciones actualmente, de forma universal. Pero sin embargo, actualmente en su definición económico-biológica como convención de cambio, es en realidad un mecanismo que contribuye mucho más a la desigualdad que a la regulación de los flujos naturales, en un mundo considerablemente humanizado (Margalef 1996).

170 Con vínculos en múltiples campos o dimensiones; Ascher 2004.
171 Que aborde con mayor racionalidad las cuestiones complejas de su funcionamiento diario (y facilite la participación democrática y los consensos parciales).
172 Las cuales resultan a su vez y cada vez más en una ocupación urbana extensiva, que trasciende la escala local.
El principio ‘agregados con enclaves’

las respectivas sociedades: Entendido el paisaje como el ‘lugar’ donde se debe actuar políticamente, y donde es posible conseguir el pleno desarrollo de políticas ecológicas y sociales sostenibles. Es el marco de aplicación de los postulados éticos de la sostenibilidad, en especial a partir de conceptos como el de ‘medio sostenible’ en que se sustenta AWO. Las propuestas de un medio sostenible espacialmente definido siguiendo criterios de integración plena de los subsistemas humano y natural, pueden ser de hecho las estrategias de definición y aplicación espacial de estas políticas. Ello refuerza igualmente la contribución al pensamiento territorial de la propuesta AWO.

Este puede ser igualmente el caso a contemplar de forma óptima para la formulación sintética y espacialmente explícita de una política territorial, en que enmarcar eficazmente los postulados del principio AWO. Se considera igualmente la planificación integrada como el proceso adecuado, con que resolver la cuestión crucial de la complejidad procedural y conceptual de estas aproximaciones.

4.6.2.- El proyecto de planificación estratégica de la RMB

Es de reseñar que el propio autor del principio AWO ha realizado un estudio de planificación estratégica desde la perspectiva ecológica del paisaje y la región, para la Región Metropolitana de Barcelona (Forman 2004). Ello supone cuando menos un salto cualitativo importante en el tratamiento de sus paisajes, en un territorio de muy elevada afectación antrópica.

Para la optimización del sistema territorial de la Región de Barcelona se destacan así nueve grandes temas:

173 Dada la grave situación existente -la cual lleva a considerar las políticas hasta ahora consideradas ‘idealistas’ como imprescindibles (Ehrlich & Ehrlich 2004)-, el posible idealismo de tales propuestas deja de ser entonces motivo adicional de prevención -mas cuando se formulan desde bases ecológicas sólidas, como en el caso de AWO.
174 También la misma filosofía a aplicar (de manera flexible) para la planificación del paisaje, como en el caso visto de la RMB (ap.4.5.3; Forman 2004).
175 Debido a ello precisamente, es también de interés entrar en este tipo de planteamientos estratégicos entorno los sistemas autorregulados, de cara a su implementación en un escenario de sostenibilidad (tal como se propone tras la discusión del principio AWO -apéndice A).
176 Por encargo de la agencia municipal Barcelona Regional.
177 En este sentido, se considera por su autor que la aproximación al mosaico territorial de la región y sus paisajes proporciona una ganancia enorme en los sistemas naturales, así como de los usos humanos (a años luz de las tendencias en las regiones urbanas actuales).
La definición de un sistema de grandes áreas protegidas a lo largo de la región (*Emerald network*).

Protección de un grupo de los recursos agrícolas más importantes y altamente diversos de la región (y sus vínculos esenciales con los sistemas naturales).

Protección de un grupo de valles fluviales naturales de alta calidad, diseminados por la región.

Definición de las cuencas hídricas: la Tordera como una cuenca con alta calidad natural y de los sistemas humanos -funcionando como un polo de atracción para visitantes y turismo natural.

Una gran mejora del río Llobregat y su delta -el valle fluvial más importante de la región-, a planificar como un sistema natural con gran aportación de agua limpias, usos humanos diversos y una gran riqueza natural.

La apertura de Barcelona y sus alrededores al río con un parque a lo largo de la llanura aluvial del Baix Llobregat, con ramificaciones a los municipios adyacentes.

Definición de áreas especiales para favorecer o minimizar el crecimiento: Un conjunto de localizaciones que son especialmente apropiadas o inapropiadas para el futuro crecimiento urbano, para mantener o reforzar los sistemas naturales de la región.

Estructuras mejoradas para pequeñas localizaciones clave, presentes repetidamente a lo largo de la región: Un grupo de configuraciones espaciales potencialmente favorables para relacionar naturaleza y hombre, cerca de torrentes, cursos fluviales, autopistas y límites urbanos -espacios marginales inicialmente.

Tipologías que proporcionan la flexibilidad y estabilidad futuras: un grupo de atributos de usos del suelo que ayudan a la región a resistir los grandes cambios previsibles (y las mayores sorpresas) a lo largo del tiempo.

Es en definitiva una aproximación pionera, que rompe definitivamente con la tradicional disociación en el estudio de los espacios afectados por la acción antrópica en el paisaje, en este caso desde una perspectiva regional para la sostenibilidad. Además de los beneficios medioambientales, en dicho estudio se remarcan de forma genérica los beneficios económicos para la sociedad.

Sin embargo, se destaca que existen problemas fuera del alcance de dicho proyecto que esperan solución (Forman 2004):

- La definición de los límites específicos de las áreas y franjas, y las rutas específicas de varios conectores.
- La dimensión cuantitativa mínima de las características espaciales para la región.
- Localizaciones específicas y diseños de pasos de fauna en las autopistas.

178 *En conclusión, el autor asegura que tales inversiones en sistemas naturales pagan ‘dividendos’* (Forman 2004)

179 *Incluyen mantener a largo plazo diversos paisajes agrícolas productivos en los mejores suelos; concentrar más que dispersar el crecimiento para reducir los costes de infraestructuras y servicios; invertir en áreas clave para la protección de la naturaleza y el turismo natural, como un recurso alternativo a los resortes costeros; repensar el diseño de las áreas inundables para reducir los costes de las inundaciones; y centrarse en unas pocas fuentes de contaminación, mas la creación de humedales con aguas de lluvia, que incremente la provisión de las costosas aguas limpias* (Forman 2004).
El principio ‘agregados con enclaves’

- Reducciones del nitrógeno, fósforo, y químicos orgánicos que entran y polucionan los ríos y reservas; y diseños en las zonas con minas de sal para reducir cloruros. En todos casos, a niveles ecológicos aceptables.
- Localizaciones, tipos y totales de inputs y output clave en la región que afectan las tipologías de usos del suelo.
- Degradación medioambiental asociada con el sistema del río Besos y con la ciudad de Barcelona.

Tal y como se menciona, uno de los principales déficit o aspectos no solucionados es el de la cuantificación de las tipologías de espacios, de cara a la modelización. Precisamente el desarrollo y modelización de una solución espacial para los paisajes analizados (del entorno metropolitano de Barcelona igualmente), es uno de los aspectos fundamentales que motiva el presente estudio, como se plantea en sus objetivos (ap.5.2).
5.- **METODOLOGÍA PARA LA APLICACIÓN DEL ÓPTIMO COMPOSICIONAL AWO**

5.1.- **Hipótesis del estudio**

Por el presente estudio, se plantea cuales son las distribuciones óptimas de los elementos del paisaje para los casos analizados, siguiendo el análisis composicional AWO. La utilidad de las definiciones aplicadas realizadas en base a estas características composicionales idóneas, se plantea entonces como la hipótesis a validar por el estudio.\(^{180}\)

Así en el paisaje humanizado, el óptimo composicional que mantenga las mayores funcionalidades ecológicas -y las necesidades humanas a largo plazo por tanto-, estará conformado acorde a los criterios AWO. Será entonces un paisaje con unas determinadas proporciones de usos agregados (naturales, agrícolas y urbanos), y con unas determinadas relaciones según el tamaño de sus espacios (agregados, enclaves).

Es desde una aproximación experimental que se deberán hallar estas determinadas proporciones de usos y tamaños. La formulación entonces de la hipótesis de estudio es esta: La relación óptima entre los espacios del paisaje vendrá dada por la maximización de la variabilidad, tanto de los usos como del tamaño de los espacios.

De forma simple, el paisaje óptimo será entonces el que esté definido composicionalmente por:

1. **La maximización de la varianza en la distribución por tamaño de los espacios.**
2. **La maximización de la diversidad de los usos en el paisaje.**\(^{181}\)

\(^{180}\) En realidad son las características de una distribución universal, ya que la formulación se realiza de forma normativa.

\(^{181}\) Es de remarcar que esta hipótesis recoge en su formulación el carácter corrector –para el cual AWO se postula- de la expansión antrópica y la entropía positiva en el territorio, la cual se genera por falta de planificación o por una planificación incorrecta.
5.2.- Definición del análisis a realizar

En base a la hipótesis de trabajo y establecido el tipo de análisis a realizar, seguirá su aplicación. La definición de las escalas, variables y elementos del paisaje –la definición de la heterogeneidad en base AWO y su tratamiento agregado–, son aspectos principales a considerar en la definición del análisis. El análisis aplicado supone en primer lugar delimitar estos paisajes o unidades –ya descritas en monografías regionales (Solé i Sabarís 1982)–, y caracterizar y cuantificar eficazmente los espacios que los componen, en base a sus características de usos del suelo y superficie. Los paisajes seleccionados corresponden a las llanuras agrícolas de cinco comarcas de la provincia de Barcelona (Alt Penedès, Bages, Osona, Vallès Occidental y Oriental) y dos de Tarragona (Baix Penedès, Conca de Barberà). Esta última es la menos afectada por el proceso de metropolinización, y sirve también de testimonio para la comparación entre las configuraciones espaciales que se modelan.

Como objetivo último, por la comparación entre la realidad de las ‘fotografías’ de los cinco paisajes respecto el grado de optimicidad que se establece desde el principio AWO, se espera que pueda proporcionar la información necesaria con que explicitar los déficits composicionales y configuracionales existentes en cada caso, y dilucidar en base a ello las actuaciones necesarias.

En este sentido y como un objetivo derivado del desarrollo AWO, se valora otra utilidad: Por el análisis propuesto y mediante la comparación de la estructura de los paisajes analizados, será posible realizar la caracterización o diagnóstico del momento en el que se encuentra el proceso evolutivo del territorio -marcado como está en este caso por el fenómeno de la metropolinización como driving force (‘factor de cambio’). A partir de la categorización en la naturalidad de los usos del suelo, no debería ser entonces difícil constatar y caracterizar espacialmente el proceso existente de metropolinización.182 Cabe valorar entonces potencialmente el desarrollo AWO como una aportación al macrodiagnóstico territorial de los ámbitos analizados –su contribución principal al pensamiento territorial.

182 Ello sucede partiendo de un origen similar para los paisajes –un pasado predominantemente rural–, a pesar de las peculiaridades físicas e históricas de cada comarca. Se espera que mediante el análisis se perfilarán así las dinámicas subyacentes que articulan el proceso (‘huellas’ sobre el territorio), observadas y diferenciadas espacialmente.
5. Metodología para la aplicación del óptimo composicional

Todo ello de cara a contrastar la hipótesis, valorando las posibilidades inherentes de la formulación AWO para la cuantificación sintética y la modelización integrada de las configuraciones del paisaje heterogéneo. En este sentido, implica ir más allá de su formulación como simples directrices para la planificación. Igualmente, supone realizar un profundo test de su coherencia lógica como formulación deductiva, que le lleva a ser postulado como principio normativo universal. Debe valorarse también si es eficaz instrumentalmente para la manipulación del mundo exterior (por tanto técnicamente relevante para la planificación).183

El interés por desarrollar el principio AWO, en definitiva, se debe a su potencial aportación como herramienta para la cuantificación de las situaciones existentes en el paisaje respecto al óptimo teórico predefinido (de forma guiada por tanto), con el objetivo de iniciar el proceso de la planificación integrada.184 Ello sin ser imprescindible un conocimiento exhaustivo de los ecosistemas que componen el paisaje. Se espera que con la mejora de las capacidades de aplicación AWO en la planificación (su desarrollo sintético), se evitarán interpretaciones incorrectas y la falta de visión estratégica –la cual acaba afectando en muchos casos a las funcionalidades naturales del territorio.185

A partir de su desarrollo, será posible incidir en la hipótesis del estudio y el objetivo de valorar el principio mismo. Ello cuanto a las capacidades aplicadas AWO para el análisis y la planificación integrada de los paisajes metropolitanos, en base a los casos analizados y a la propia definición espacial de la metropolinización como factor de cambio.

5.2.- Metodología aplicada

Los objetivos de trabajo de la investigación se dirigen pues al análisis AWO y sus capacidades para la modelización aplicada, desde el estudio de las distribuciones espaciales existentes en los paisajes (tablas 5.1 a 5.9). Ello pasa por la definición de las

183 De cara al desarrollo y modelización a realizar, son el análisis de las distribuciones espaciales en Geografía, junto con los desarrollos espaciales recientes de la disciplina de la Ecología del Paisaje, los que pueden conformar y contrastar el análisis composicional necesario en base AWO - previo a su desarrollo sintético.

184 Será igualmente factible la definición de los diversos escenarios posibles, de forma cuantificada.

185 Es una posibilidad que puede resultar incluso de la aplicación de AWO como simples directrices independientes en la planificación -lo que remarca más si cabe la oportunidad de las aproximaciones para su modelización y desarrollo sintético.
El principio ‘agregados con enclaves’

características espaciales funcionalmente óptimas de estos paisajes, que facilite después la caracterización de las situaciones y el tratamiento adecuado de sus problemáticas.

Tabla 5.1- Objetivos generales y metodología

<table>
<thead>
<tr>
<th>OBJETIVOS GENERALES</th>
<th>METODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Articular un análisis aplicado de la heterogeneidad espacial a partir de un modelo conceptual</td>
<td>Modelización del principio conceptual ‘Aggregated with Outliers’ (AWO)</td>
</tr>
<tr>
<td>2. Parametrización del principio AWO</td>
<td>Análisis de las posibilidades de parametrización y modelización. Aplicación del análisis composicional en base AWO</td>
</tr>
<tr>
<td>3. Propuesta para la definición y aplicación práctica</td>
<td>Desarrollo como modelo sintético para la planificación</td>
</tr>
<tr>
<td>4. Análisis aplicado de las distribuciones espaciales en la Región Metropolitana de Barcelona</td>
<td>Aplicación: Cuantificación, comparación de las configuraciones</td>
</tr>
<tr>
<td>5. Valoración del principio AWO por parte de la investigación</td>
<td>Discusión de sus requerimientos y capacidades</td>
</tr>
</tbody>
</table>

5.2.1.- Análisis de la heterogeneidad espacial AWO en el ámbito del paisaje

El primer objetivo básico de la investigación (tabla 5.2), es presentar las principales aportaciones conceptuales AWO sobre el análisis espacial de las configuraciones internas del mosaico del paisaje, especialmente desde la disciplina de la Ecología del Paisaje. Esta aproximación se contrasta desde la perspectiva del estudio holístico del territorio (dimensiones analítica, normativa y de la planificación –Schanze 2003).

Tabla 5.2.- Primer objetivo general

<table>
<thead>
<tr>
<th>OBJETIVOS GENERALES</th>
<th>METODO</th>
<th>OBJETIVOS ESPECIFICOS</th>
<th>METODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Articular un análisis aplicado en base a la heterogeneidad espacial AWO</td>
<td>Modelización del principio conceptual AWO</td>
<td>1.1. Discriminación de las variables e índices que priman en la composición y estructura espaciales AWO</td>
<td>Descripción de las variables primeras y los efectos de la escala. Análisis de los criterios AWO</td>
</tr>
</tbody>
</table>

Se considerará entonces la agregación de las variables y los efectos de la escala, en la definición del paisaje y sus componentes -las bases en el estudio de la heterogeneidad de las configuraciones que caracterizan AWO. En base a ello se procederá también a la definición de los espacios internos, y la propia delimitación de los paisajes (cap.6).
5.2.2.- Posibilidades de parametrización

Para el segundo objetivo general de parametrización y modelización espacial del principio AWO, se definen los requisitos necesarios para la cuantificación del paisaje, así como para dilucidar el grado de aplicabilidad del modelo (tabla 5.3).

Por el análisis de los criterios que se establecen como requisitos para la configuración óptima del mosaico, en primer lugar se pretende explicitar adecuadamente -en forma de modelo conceptual- cuales son las variables implicadas, de cara al desarrollo del modelo de optimización, con que articular el análisis aplicado AWO de la heterogeneidad espacial del paisaje.

<table>
<thead>
<tr>
<th>OBJETIVOS GENERALES</th>
<th>METODO</th>
<th>OBJETIVOS ESPECIFICOS</th>
<th>METODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Parametrización del principio AWO</td>
<td>Análisis del principio conceptual y de sus posibilidades de parametrización. Aplicación del análisis composicional en base AWO</td>
<td>2.1 Definir los requisitos para la cuantificación de la estructura del paisaje</td>
<td>Definición tipologías de espacios AWO. Aplicación: Agregación por uso y por tamaño</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2 Establecer aplicabilidad sintética del modelo</td>
<td>Análisis composicional en base AWO</td>
</tr>
</tbody>
</table>

La metodología a aplicar para la parametrización de los paisajes estará basada en el análisis composicional en base AWO -definido por las tipologías de espacios según uso y tamaño que establece. Dentro del análisis y la modelización AWO, se plantea igualmente la modelización sintética de los siete criterios, de cara a potenciar su aplicabilidad.

De esta manera, se realiza un ‘cluster analysis’ o análisis de pertenencia a subgrupos, en base al tamaño de los espacios del paisaje. Con ello se busca obtener las tipologías AWO de agrupaciones por tamaño de los espacios -las cuales según el principio conceptual tienen una correspondencia con la funcionalidad ecológica del territorio.

En base a las tipologías obtenidas, se consideran las características resultantes del análisis AWO de la heterogeneidad de las configuraciones espaciales, mediante el análisis composicional de los paisajes. En este sentido, se indaga la naturaleza interna de las tipologías por el análisis descriptivo (en base a las variables de tamaño y uso de los
espaços -‘breakdown’), y se lleva a cabo el análisis de diversidad interna de las dos clasificaciones (antes-después de la agregación).

El análisis de la densidad de los espacios y su diversidad según tipologías AWO, son los siguientes procesos. Igualmente, se realiza un análisis de las distancias mínimas medias entre los espacios internos del paisaje, buscando los posibles factores composicionales que estén relacionados -contrastados por el análisis composicional previo.

5.2.3.- Análisis aplicado. Modelo del óptimo composicional

Se indagará ahora en los factores y componentes que composicionalmente se han destacado como esenciales, en busca de las claves para la modelización sintética de AWO. Se busca con ello definir de la mejor forma posible el modelo de optimización aplicado finalmente en base AWO (tabla 5.4).

<table>
<thead>
<tr>
<th>OBJETIVOS GENERALES</th>
<th>METODO</th>
<th>OBJETIVOS ESPECÍFICOS</th>
<th>METODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Propuesta para la definición y aplicación práctica</td>
<td>Desarrollo como modelo sintético para la planificación</td>
<td>Formulación criterios del modelo de AWO como modelo de optimización</td>
<td>Desarrollo modelo de optimización de la varianza y la diversidad</td>
</tr>
</tbody>
</table>

El modelo se reformulará entonces como metodología para el análisis de la diferenciación entre las configuraciones espaciales existentes y las óptimas, según el principio AWO. Para ello se considera que debe basarse esencialmente en las variables de la varianza del grano del paisaje y la diversidad, determinadas como clave.

5.2.4.- Propuesta de aplicación del modelo

Mediante el desarrollo del modelo conceptual, se pretende cuantificar entonces las configuraciones del paisaje, de forma acorde al supuesto teórico de un óptimo universal definido composicionalmente (hipótesis de trabajo). A partir de ello se contrastará la hipótesis de estudio. Se realiza con tal motivo una propuesta o ensayo de definición y aplicación, que sirva para referir las actividades de ordenación del territorio a las necesidades funcionales de sus sistemas naturales.
5. Metodología para la aplicación del óptimo composicional

Tabla 5.5.- Cuarto objetivo general

<table>
<thead>
<tr>
<th>OBJETIVOS GENERALES</th>
<th>METODO</th>
<th>OBJETIVOS ESPECIFICOS</th>
<th>METODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Análisis aplicado de las distribuciones espaciales en la Región Metropolitana de Barcelona</td>
<td>Aplicación del óptimo composicional</td>
<td>4.1 Propuesta de utilización aplicada del modelo</td>
<td>Parametrización de los déficits y potencialidades de los paisajes</td>
</tr>
<tr>
<td></td>
<td>Ensayo de aplicación prospectiva</td>
<td>4.2 Ejemplificar las posibilidades para la interpretación del territorio</td>
<td>Definición secuencia y aplicación</td>
</tr>
</tbody>
</table>

Igualmente, se indagará y valorará su utilidad como instrumento para la caracterización del momento evolutivo del territorio, de cara a la planificación estratégica integrada (tabla 5.5).

5.2.5.- Valoración del principio, su modelización y desarrollo

Finalmente, una vez ejemplificadas las posibilidades del método desarrollado para la interpretación de las configuraciones del territorio, se plantea la utilidad de su integración en la planificación física (tabla 5.6). Con ello se formulan también cuestiones sobre la validez del principio AWO y el desarrollo del óptimo composicional para su discusión.

Tabla 5.6.- Quinto objetivo general

<table>
<thead>
<tr>
<th>OBJETIVOS GENERALES</th>
<th>METODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Valoración general del principio AWO por parte de la investigación</td>
<td>Discusión de sus requerimientos y capacidades</td>
</tr>
</tbody>
</table>
6.- DEFINICIÓN DE LOS ÁMBITOS DE ESTUDIO

6.1.- Delimitación de los espacios del paisaje

Para la delimitación de los paisajes en el presente trabajo, se parte de su mención y reconocimiento como ámbitos ya descritos en los diferentes estudios monográficos y regionales. Se considera en este sentido que la correspondencia física de los paisajes analizados con el medio humanizado de las llanuras sedimentarias de las respectivas comarcas (con una personalidad geográfica bien definida en todos los casos), los establece inevitablemente como los ámbitos históricos de referencia territorial, ya de partida. Aparecen así explícitamente mencionados, en monografías regionales y obras descriptivas geográficas, como tales unidades territoriales (Solé i Sabarís 1982; VVAA 2003): Plana del Penedès, del Vallès, Pla de Bages, Pla de la Conca de Barberà y Plana de Vic.

Esta mención coincide por otra parte (pero no sorpresivamente) con la definición aplicada del mosaico del paisaje que se utiliza para realizar la definición de los territorios de cada caso de estudio. Su definición como configuraciones resultantes de la combinación de procesos naturales y humanos, plasmados espacialmente mediante factores repetitivos, es probablemente coincidente con la apreciación y diferenciación visual realizada en los estudios monográficos de antaño, también basada en factores como son los usos del suelo y sus agregaciones espaciales, además de visuales: son paisajes fácilmente delimitables respecto de su entorno, caracterizados como rurales respecto a los paisajes colindantes -usualmente forestales.

187 Es por tanto una definición de los paisajes previa a su descripción de los elementos internos, en contraposición a las posibles definiciones del paisaje en base a una exploración empírica preliminar.

188 En el estudio, esta repetición de las tipologías de usos del suelo en una extensión de varios kilómetros, es de hecho el factor definitorio para la delimitación del paisaje, como se establece por la rama espacial de la disciplina ecológica. Así, aunque comúnmente en Ecología se define el ámbito territorial en función del fenómeno analizado (hábitats extensos de poblaciones, desplazamientos de especies, etc.), en la rama espacial de la ecología del paisaje es posible definir el paisaje de forma universal, mediante la diferenciación y repetición de las tipologías de espacios (ap.2.3; Forman 1995a).

189 Este tipo de paisaje agrupa un conjunto de unidades, todas ellas en territorio catalán, que tienen en común el constituir espacios deprimidos, de relleno sedimentario terciario y cuaternario.
6. Definición de los ámbitos de estudio

La delimitación precisa se ha realizado así siguiendo estos criterios aplicados, principalmente mediante los usos del suelo y la topografía –ambos en clara relación. Por otra parte, el análisis de la variabilidad interna de los paisajes se beneficia además (está estrechamente relacionada) con la caracterización de los nuevos usos y los cambios recientes sufridos por los paisajes -antáño definidos por los estudios monográficos eminentemente como paisajes de llanuras rurales, y ahora colindantes a la gran urbe. Ello se considera igualmente útil para la caracterización de estos ámbitos metropolitanos hoy en día.

6.1.1.- Límites de los paisajes

Para la delimitación de los paisajes, inicialmente se han tomando como primera referencia las subcuencas hidrográficas, como contexto próximo de los cinco paisajes de interés. A su vez, las líneas divisorias de aguas configuran en buena parte las comarcas del Bages, Conca de Barberà, los dos Penedès y Vallès, y la comarca del Osona.

Por su parte, los límites estrictos de las llanuras respecto a las zonas montañosas colindantes, definidos por los usos del suelo (agrícola principalmente), tienden a seguir normalmente la topografía: de manera aplicada se puede establecer que esta división se corresponde frecuentemente con las curvas de nivel de los 300-400 m., si bien en algunos casos se sitúa entorno los 500-600m. -caso del Bages y Osona, las comarcas de mayor altitud media.

Los paisajes delimitados aparecen característicamente como llanuras rurales, en correspondencia con su historia de antigua ocupación humana y actividad agraria tradicional -hasta hace relativamente poco. En consecuencia, presentan unos usos del suelo predominantemente rurales, con agrupaciones de bosque residual y presencia de unos asentamientos humanos tanto antiguos como especialmente recientes. Dado que esta matriz rural está siendo transformada por el fenómeno de la urbanización y metropolinización, esta tipología rural antigua está perdiendo importancia en dichos paisajes.

modelado por la red fluvial y rodeados de altas sierras o de elevaciones mas modestas, lo que les otorga el carácter de cuencas visuales en general bien acotadas y definidas, y, en determinados casos, coincidencia también con comarcas históricas (VVAA 2003).
El principio ‘agregados con enclaves’

A pesar de ello, aún es claramente discernible el gran espacio agrícola (continuo, pero crecientemente perforado e incluso fragmentado), como el tejido o conglomerado de fondo del mosaico del paisaje (*backcloth*), donde se asientan el resto de usos. Esta tipología repetitiva del mosaico en los cinco casos, comparativamente se encuentra en diferente grado de desarrollo, desde el caso claramente metropolitano de la Plana del Vallès, hasta el caso más rural de la Conca de Barberà (el ‘paisaje testigo’ de referencia).¹⁹⁰

Generalmente, esta antigua matriz rural se encuentra rodeada en su perímetro por los paisajes de bosque de las respectivas comarcas. Estos paisajes forestales de media montaña, a su vez dividen sucesivas matrices rurales: es el caso de la sierra de St.Llorenç del Munt entre las llanuras del Bages y el Vallès; de la sierra del Montseny entre la Plana de Vic y el Vallès; o de las sierras entre la Conca de Barberà y el Penedès. De manera general, estos paisajes rurales también se encuentran visualmente autocontenidos hacia el sur siguiendo la dirección de las cuencas de drenaje -a causa de los estrechamientos de los cauces hidrográficos, al llegar a las sierras prelitorales y litorales (con paisajes de bosque o en transición). Es el caso del progresivo encajonamiento del río Llobregat, cuando configura el límite sur del Pla de Bages (desde que atraviesa las estribaciones de Montserrat por un lado y las de la sierra de St.Llorenç del Munt i Serra de l’Obac por el otro).¹⁹¹

6.1.2.- Delimitación de los elementos del paisaje

Para la delimitación de los elementos internos del paisaje, se ha utilizado el mapa en formato digital de los usos del suelo de Catalunya del año 1992, distribuido en papel a escala 1:250000 (Institut Cartogràfic de Catalunya). El formato original de los datos de usos del suelo (17 tipos diferentes de usos) es de celdas (*píxeles*) de 30x30 m., obtenidos por los sensores TM del satélite Landsat-5 y su posterior tratamiento como figuras de

¹⁹⁰ Esto es de hecho lo que se observa ya a primera vista en las fotografías aéreas y los mapas en formato digital, como el utilizado en el estudio -de los usos y coberturas del suelo de Catalunya, 1992.
¹⁹¹ Algo similar sucede en los otros cuatro paisajes, en grado algo menor: los Cingles de Bertí y el Montseny en el caso de la Plana de Vic; las Muntanyes de Prades en la Conca de Barberà; el encajonamiento del río Foix en el macizo del Garraf -junto a la estrecha franja litoral con urbanización costera y el propio mar-, en el caso de la de la Plana del Penedès; o las estribaciones que perpendicularmente delimitan la cuenca del río Llobregat, respecto de la Plana del Vallès (las estribaciones antecedentes en la ribera opuesta igualmente cierran al Norte el Penedès respecto el Baix Llobregat).
6. Definición de los ámbitos de estudio

Datos. Estos píxeles (unidades mínimas de mapificación), posteriormente sufren una reclasificación para la corrección de posibles errores, y finalmente resulta un tamaño mínimo de 3 píxeles de lado (90x90 m.). Así, se establece para el estudio una unidad mínima de mapificación de 8100 m² -tamaño algo menor de 1 ha. (10.000 m²).

Este tamaño de la unidad mínima de mapificación se considera aceptable para el estudio, dada la considerable extensión de las unidades territoriales a analizar, y el menor grado de detalle necesario para su estudio. De hecho, una vez realizada la comprobación de la adecuación de los datos obtenidos por satélite con las ortofotos de las respectivas zonas, se comprueba cómo las unidades mínimas de mapificación son incluso menores que las que se pueden obtener visualmente (1x1mm) de la fotografía aérea (realizadas a escala 1:100.000).

A los mapas raster obtenidos, se les aplica una transformación vectorial automática (mediante Arc/info en plataforma SUN), con una generalización de 21,21 m., para evitar el efecto de escalera de los píxeles de un mismo uso, y la eliminación de los píxeles de menos de 8100m² que aparecen por este proceso. Con ello se obtienen finalmente los espacios que se consideraron los elementos internos del paisaje con los que realizar el análisis.

6.1.3.- Conceptualización de los espacios resultantes

Aunque en las disciplinas ecológicas y biológicas no se establezcan las unidades de estudio exclusivamente en base a usos del suelo, sino a otras definiciones posibles (cobertura, gradientes de diversidad, percepción visual, etc. -las cuales pueden ser conceptualizadas como espacios no homogéneos), su uso en el presente estudio es el equivalente al del espacio interno del paisaje de características homogéneas en su

192 Se realiza primeramente una segmentación radiométrica (clasificación), una asignación de las clases espectrales a los usos de estudio (etiquetado) y un análisis y evaluación de los resultados (Viñas & Baulies 1992).

193 Se realiza un tratamiento en bloques de 3 píxeles para asegurar primero la eliminación de los valores erróneos de un pixel (por vecindad de los otros 8 pixels), y posteriormente la pertenencia del bloque a un determinado uso, en promedio.

194 Se constata también, mediante esta comparación visual previa, que existe una práctica coincidencia entre los datos de usos del suelo obtenidos por la reclasificación de los datos provenientes de figuras de satélite para estas cuencas sedimentarias, y los de las figuras obtenidas por fotografía aérea –cabe remarcar aquí que aunque existen productos digitales más elaborados (mapa de coberturas y suelos de Cataluña p.e.), no son a escala 1:100.000.
El principio ‘agregados con enclaves’

composición, en base al análisis espacial AWO de la heterogeneidad por los usos del suelo que se realiza.

Esta es la conceptualización teórica de los elementos internos del paisaje que se realiza también habitualmente desde la Ecología del paisaje -la cual se plasma de forma aplicada en los espacios configurados por las tipologías de los usos del suelo. Así, de forma general, su denominación (como ‘manchas’, ‘teselas’, ‘elementos espaciales’, ‘espacios’ o ‘polígonos’, etc) a lo largo del estudio, equivale de hecho a su tratamiento siempre como entidades espaciales de usos del suelo homogéneas, en los planos conceptual (manchas, teselas, elementos internos, unidades espaciales) o aplicado (polígonos, espacios).195

Su definición topológica como espacios interrelacionados de una misma clase tampoco está exenta de interpretaciones (ap. 7.3). Por ello, en el estudio se opta por utilizar de forma usual el término ‘espacio del paisaje’, el término más general para definir el espacio homogéneo resultante de la clasificación por usos del suelo.196 En definitiva, en el presente estudio estos espacios están siempre definidos por un solo uso agregado del suelo, resultado de la agrupación de las subclases de usos. Estos espacios estarán igualmente clasificados y caracterizados en función de su tamaño.

195 Esta variedad existente de denominaciones en la literatura del análisis espacial, de hecho se debe a la diferente significación de algunos de los términos, que provienen o se utilizan en otros campos (caso de las ‘teselas’ en teledetección p.e.), o que se asimilan con los elementos espaciales resultantes de la modelización conceptual (ecológica) del paisaje, en determinados tipos de análisis (‘mancha’, ‘elemento interno’, ‘unidad espacial’, o la misma ‘tesela’ p.e.).

196 En las referencias a las teorías espaciales de la ecología del paisaje y otras disciplinas que se hacen en el estudio, se mantiene sin embargo la terminología propia establecida para la definición de los espacios (modelo TSM p.e. - ap.2.4.2).
6.2.-Descripción geográfica de los paisajes seleccionados

Los cinco paisajes de estudio están inmersos dentro de sus respectivas comarcas administrativas (figura 6.1), excepto en los casos de las dos grandes llanuras prelitorales, que se encuentran divididas: caso de la Plana del Vallès, entre las comarcas del Vallès Occidental y Oriental; y de la Plana del Penedès, entre las comarcas de l’Alt Penedès y Baix Penedès (esta última de la provincia de Tarragona).

Por otra parte, estos paisajes de cuencas sedimentarias, caracterizadas como lugares de paso históricamente, hoy en día concentran la mayor parte de la artificialización de sus respectivas comarcas. Así, a los tradicionales núcleos urbanos, se les suman los nuevos núcleos de crecimiento urbano e industrial. En ellos previsiblemente se detecta la nueva característica de la urbanización difusa del territorio, en un entorno también cada vez más afectado por las infraestructuras viarias (un uso con una ocupación extensa del territorio, pocas veces tenida en cuenta).

A ello debe sumarse el aumento de los cultivos intensivos de regadío y la fragmentación general de los antiguos espacios naturales y agrícolas, para acabar configurando, en la mayoría de los casos, unos paisajes característicamente metropolitanos.
El principio ‘agregados con enclaves’

Así, en estos paisajes de llanuras rurales históricamente pobladas, será posible apreciar el diverso grado de afectación del medio en términos espaciales, simplemente por el análisis composicional de los usos. Como refiere la hipótesis de estudio, el fenómeno expansivo de la metropolinización igualmente será visible entonces, por su característico rastro espacial en el ámbito del paisaje –deberá ser detectable cuando menos en base a las tipologías AWO.

6.2.1.- Geomorfología

Podemos dividir los cinco paisajes en dos grupos, en base a los procesos de formación de su actual estructura geomorfológica:

- Los tres paisajes de las cuencas marginales sub-mediterráneas (Pla de la Conca de Barberà, Pla de Bages, Plana de Vic), pertenecientes originalmente a la gran plataforma sedimentaria de la Depresión Central catalana. Deben su formación a la acción erosiva de los ríos que, por regresión de sus cabeceras, consiguieron perforar pasos a través de la Serralada Prelitoral y se adentraron en la depresión, vaciando las cuencas actuales. En el caso del Pla de Bages, su formación responde a la acción erosiva del Llobregat, río con su origen en el Pre-Pirineo y que discurre de N a S.

- Los dos paisajes enclavados entre las actuales Serralada Litoral y Prelitoral (Plana del Vallès al N, Plana del Penedès al S), resultantes del hundimiento y basculación del antiguo macizo herciniano litoral, y la posterior sedimentación de las fosas resultantes.

Las cuencas marginales sub-mediterráneas, entre el gran altiplano interior de la Depresión Central y las montañas del sistema Mediterráneo, son pequeñas cuencas de erosión con una gran personalidad geográfica (Solé i Sabarís 1982). Son por un lado la Conca de Barberà, formada por la cuenca inicial del Francolí, y la Plana de Vic, excavada por el Congost y por el Ter.

Gracias a la presencia de los materiales margosos del Terciario que llenan la depresión, estos ríos han podido expandir rápidamente su cuenca de recepción, en forma de amplias vaguadas, rodeadas por las graderías y cuestas que forman las vertientes de la plataforma central. Separando estas pequeñas cuencas de erosión, se intercalan
relieves más duros, representados generalmente por las masas de pudingas, que rodean la Depresión Central en buena parte de su perímetro.

Por consiguiente, el emplazamiento de estas cuencas viene condicionado por dos hechos esenciales: la existencia de materiales blandos y el accidente tectónico que ha orientado la erosión de la red hidrográfica mediterránea. Es el caso de la falla de la Riba en el Francolí, (Pla de la Conca de B.), o la flexión falla que limita por el Oeste el macizo del Montseny y ha orientado el curso meridional del Congost; o las hoces del Ter, en la Plana de Vic.197 En el caso de la vaguada de la Plana de Bages, su morfología responde a la excavación directa de las margas eocénicas por el río Llobregat, en su curso medio.

Por su parte, la fracturación y hundimiento del antiguo macizo herciniano del litoral provocó la aparición de la Depresión Prelitoral, así como buena parte de los accidentes transversales en las dos sierras resultantes; la Depresión Prelitoral divide así el Sistema montañoso Mediterráneo en dos sierras paralelas. La última fase alpina (del mioceno), es la causante de las dos grandes fallas paralelas de cerca de 200 Km. de largo que rodean la Depresión Prelitoral. Los materiales antiguos de la fosa resultante fueron cubiertos por depósitos más modernos, configurando las actuales llanuras del Vallès y Penedès. En general, la falla septentrional ha actuado más intensamente que la meridional, por lo que el conjunto de las capas está basculado hacia el N, tanto en el Penedès como en el Vallès. Esta sedimentación ha sido de diferente origen, pues al N es de origen fluvial o mixto (Vallès), mientras que al S es de origen totalmente marino (Penedès).

Uno de los efectos que la fracturación del antiguo macizo potenció indirectamente, fue la regresión de las cabeceras de los pequeños ríos litorales, hacia la Depresión Central. Con ello se iniciaron los procesos de vaciado de los materiales blandos, formando las actuales cuencas marginales de la Depresión Central.

6.2.2.- Evolución histórica

La ubicación y las características de los diferentes aspectos de su medio, explican en buena parte las diferencias históricas en la respectiva evolución de los paisajes

\footnote{\textit{En este último caso, sin embargo, la vaguada de la Plana de Vic es obra de los pequeños afluentes de Ter (principalmente el Meder) que ha abierto, gracias a la existencia de una gran base de margas, una amplia depresión entre las Guilleríes en el Este y las pendientes del rellano de Collsupina en el lado Oeste.}}
humanizados. En común, las llanuras agrícolas seleccionadas en el presente estudio (todas ellas de elevada fertilidad en un entorno mediterráneo), tienen haber concentrado a lo largo de la historia la población y la economía en un ámbito al menos comarcal.

Sin embargo se han dado diferentes pautas de asentamiento, en forma de población dispersa o creando núcleos urbanos municipales; pero en todos los casos formando un centro de mercado comarcal como núcleo urbano consolidado. Estas capitales de las llanuras agrícolas han aglutinado la población más allá del entorno llano, forjando una personalidad comarcal que desde tiempos medievales está relacionada con el mercado y las distancias de un día a pie. Los núcleos de Manresa (Pla de Bages), Montblanc (Pla de la Conca de Barberà), Vilafranca (Plana del Penedès) y Vic (Plana de Vic) ejercen aun hoy esta función de núcleo comarcal. En el caso de la extensa Plana del Vallès, en parte por motivos históricos y resultado también del mismo proceso evolutivo de industrialización anterior a su metropolinización, las ciudades de Granollers, Sabadell y Terrassa han ejercido esta función casi hasta nuestros días, en sus respectivas áreas de influencia (en el Este, Centro y Oeste de la planicie respectivamente).

Especially en la Plana del Vallès, desde hace unas décadas el proceso de metropolinización está erosionando esta capitalidad y personalidad comarcal. Ello es visto periódicamente de manera preocupante desde las ciudades medias, tanto si se considera el fenómeno de la metropolinización expansiva en su vertiente de pérdida de peso territorial por parte de las capitales tradicionales (demográfica y políticamente), como desde la perspectiva sociocultural -por la sustitución de las tradiciones culturales locales. Es un fenómeno que se evidencia espacialmente de forma clara en la expansión de los nuevos corredores y ejes económicos y residenciales -los espacios más característicos del rápido crecimiento metropolitano actual, siempre fuera de las ciudades medias.

Por otra parte, el reequilibrio territorial de Cataluña es un tema recurrente en la planificación estratégica de las infraestructuras, ya adoptado desde principios de siglo XX con los características planteamientos matriciales de la red de transportes en el territorio, tanto por carretera como por ferrocarril (entorno el denominado ‘Vuit ferroviari’, ya antes

198 A partir de la conquista iniciada por Guifré el Pilós en el s. IX (Solé i Sabarís 1982), en el caso del paisaje más septentrional de la Plana de Vic.
199 Esta isocrona coincide de hecho fácilmente con las delimitaciones físicas de las subcuencas hidrográficas existentes.
de la II República). Esta preocupación de hecho está fundada (o reformulada) históricamente en base a la tipología preexistente de asentamiento de la población y ocupación del territorio. Cataluña ha sido en este sentido un territorio con una elevada densidad de asentamientos rurales y urbanos, fruto de una estructura agraria y manufacturera que ha sostenido unos niveles históricamente elevados de población, distribuida de forma bastante homogénea.\footnote{Este es un hecho contrastado tanto por los censos como por los relatos de los viajeros ilustrados, ya con anterioridad a la industrialización del s. XIX (Vilar 1986).} El concepto de 'Catalunya ciutat', en este sentido, era una denominación que vino a reflejar a principios de s.XX dicha situación, como base para una estrategia de desarrollo futuro. Hoy día instrumentaliza del mismo modo la preocupación por el mantenimiento y potenciación de la estructura de asentamientos urbanos y rurales existente, con una red adecuada de infraestructuras que fomente el reequilibrio territorial.\footnote{Precisamente con el término de 'Catalunya Ciutat', se denomina a uno de los escenarios de la planificación estratégica de las infraestructuras de transporte en Catalunya, proyectado hasta el 2010 (Uliet et al. 2001 -MCRIT).}

Como aspectos que contribuyen a la presión urbanística sobre el territorio, cabe circunscribir Cataluña en su entorno. Su situación estratégica en el Arco Mediterráneo europeo, una de las zonas de Europa de mayor crecimiento en las últimas décadas (pero sin una política global comunitaria para este territorio), los flujos de migraciones desde el Sur del mediterráneo, o la gran importancia de las actividades turísticas son hechos destacados de esta región. No en vano, más de la mitad de su costa está urbanizada, siendo la cuenca mediterránea el principal destino turístico del mundo (30% del turismo global).\footnote{Citado en la Agenda 21 de Catalunya (VVAA 1997).}

6.2.3.- La Región Metropolitana de Barcelona

Como primera referencia territorial antrópica donde se enmarcan los paisajes de estudio (menos el Pla de la Conca de Barberà), este territorio o región funcional agrupa cerca de 4,5 millones de personas y suponía cerca del 70% de la población de Cataluña en el año 2001, aunque ocupa aproximadamente el 10% (3000 km2) del territorio catalán. Es la sexta región metropolitana europea en cuanto a población absoluta después de Londres, París, Randstatdt, Ruhr y Madrid, pero es la segunda más pequeña según superficie y la tercera según densidad (1318 hab. /km2). Produce el 14% del PIB del
El principio ‘agregados con enclaves’

estado español, y concentra el 21% de la ocupación industrial. Característicamente, la economía de la región de Barcelona está netamente orientada a la exportación.203

La Región Metropolitana de Barcelona (RMB) también presenta algunas especificidades características como sistema urbano. Así, es una región metropolitana policéntrica, con diversos nodos urbanos maduros de mediana dimensión (2ª corona metropolitana). Tanto Barcelona204 como la red de ciudades medias, son buenos ejemplos de la tipología de ‘ciudad compacta’ por excelencia, frente a los actuales desarrollos residenciales e industriales en los ejes metropolitanos, y los crecimientos urbanos en forma de ‘ciudad difusa’205.

En su conjunto pues, la RMB se caracteriza respecto de otras metrópolis por su carácter polinucleado y complejo, con una gran diversidad en sus medidas y tipos de ciudades -las cuales tienen vocaciones y características únicas, frecuentemente. Así, a pesar de la creciente tendencia descentralizadora hacia los ejes y corredores metropolitanos, las tradicionales capitales comarcales o ciudades maduras intermedias de Granollers, Mollet, Sabadell, Terrassa (Plana del Vallès), Vilafranca del Penedès (Plana del Penedès), Martorell, Mataró o Vilanova i la Geltrú, configuran las principales polaridades en la segunda corona metropolitana. Estos núcleos y algunos otros de menor dimensión conforman una malla urbana con peso específico propio (1.6 millones de habitantes en el año 2002), que define un contrapeso considerado necesario a la aglomeración urbana de la 1ª corona metropolitana -Área Metropolitana de Barcelona (AMB); figura 6.2.

203 Las exportaciones de Barcelona provincia han supuesto en 1999 el 22,3% del total del estado, superando conjuntamente a las de Madrid, Valencia y Zaragoza (Trullén 2001).
204 Son 1.6 millones de habitantes en 100km² aproximadamente (16000 hab/Km²).
205 En referencia a los modelos de crecimiento urbano poco densos, en entornos principalmente periurbanos (Indovina 1998; Soja 2000). Aunque tal vez no se corresponde ni con el espacio rural urbanizado ni a la urbanización difusa, sino que es una morfología urbana dispersa con implicaciones funcionales -donde se desarrollan procesos que van mucho más allá de los límites de la ciudad tradicional (Albet 1998).
6. Definición de los ámbitos de estudio

Figura 6.2.- Coronas Área Metropolitana de Barcelona y Región Metropolitana de Barcelona

Desde las administraciones y como reconocimiento de esta especificidad de metrópoli polinuclear, se plantea la necesidad de planificar los elementos comunes que estructuran este conjunto de ciudades como una metrópoli. Esta es de hecho la prioridad en la planificación estratégica de la Región, además de la potenciación del núcleo de Barcelona.

Se ha progresado así mismo en las últimas décadas hacia una elevada concentración de la denominada ‘economía del conocimiento’, siendo considerada una economía dinámica y uno de los más rápidos desarrollos de empresas Internet en Europa. Ha dado lugar a la declaración de objetivos de Barcelona como una ‘ciudad del conocimiento’, o incluso de una ciudad educativa, configurada ésta por el conjunto de una

206 Considerado como un factor favorable de cara a la adopción de estrategias de sostenibilidad y de redistribución territorial desde las instituciones europeas (Consell Asessor per al desenvolupament sostenible 2002).

207 No en vano, se considera que los factores territoriales de competitividad, que caracterizan precisamente el ‘modelo económico de Barcelona’ (las externalidades territoriales), han fortalecido las economías de red entre los diferentes nodos metropolitanos especializados (Trullen 2001).

208 Un número especial de la revista Newsweek en el año 2000 sobre el desarrollo de la nueva economía en Europa, señaló 14 grandes áreas de innovación (todas ellas grandes áreas metropolitanas) que se están convirtiendo en los centros motores de la nueva economía, con Barcelona en el noveno lugar (citado en Castells 2000).
sociedad local a través de una serie de interacciones, como las actividades culturales, las relaciones con los medios de comunicación, o los elementos de animación ciudadana.209

En las décadas recientes estas ciudades medias se han visto especialmente involucradas en la red metropolitana, y sus centros han visto aumentar la presencia de actividades de alta densidad de conocimiento.210 Todo ello se ha manifestado de hecho en una gran expansión del área de influencia de la RMB en este período reciente, aun primando los patrones de expansión en sus límites e intersticios como ‘ciudad difusa’, sin embargo. En la explicación de esta expansión metropolitana y como factores tangibles casi universales, teóricamente el crecimiento espectacular de la ocupación del suelo en la RMB está relacionado con la descentralización y el aumento de la interacción espacial. No en balde, el crecimiento de la superficie urbanizada en la Región Metropolitana de Barcelona es muy superior al de la población, puesto que en 10 años se ha doblado el porcentaje de superficie de suelo urbano (del 2,66% en 1987 al 4.46% el 1997), mientras que la población sólo ha aumentado un 5%.

Los estudios históricos de los patrones de localización de actividades industriales y urbanas resultantes de los ciclos económicos, ayudan a explicitar el peso de las ciudades y los fenómenos como la expansión urbana o metropolinización. Según los estudios que aplican modelizaciones de estos procesos en el caso de Barcelona (Vidal 1991), se observa una evolución diferenciada históricamente, coincidente con los planteamientos del modelo de crecimiento urbano de Myrdal: un primer proceso de establecimiento de la ciudad industrial de alcance suprarregional, con un efecto de ‘backwash’ o arrastre de población y recursos de las zonas rurales; y un proceso posterior de saturación y difusión (que actualmente empieza a ser noticable), desde la década de los 80 (Sau 1995).

209 Será el conjunto del sistema de relaciones sociales locales que produce el sistema de información interactiva, el cual desarrolla la capacidad educativa en un sentido amplio -y no simplemente de adquisición de conocimientos (Castells 2000).

210 Esta ciudad del conocimiento es igualmente una red, con nodos destacados en ciudades medias como Mataró, Sabadell y Terrassa en la RMB (Trullén 2001). Estas son localidades históricamente con un destacable crecimiento endógeno, con economías de localización y configuradas en forma de tradicionales distritos industriales especializados.
Sin embargo, si bien hubo un período (1979/1984 aprox.) de crisis en el que se vieron favorecidas localizaciones excéntricas a la gran urbe (caso de las comarca leridanas del Segrià y la Noguera, o del Baix Penedès dentro del ámbito del presente estudio), posteriormente a la crisis se ha dado una concentración en la inversiones registradas en nuevas industrias y ampliaciones, las cuales fueron a parar en un 40% al Vallès Occidental (Belil 1991). Esta etapa post-crisis se caracterizaría por tanto por una situación ventajosa de la localización ‘urbana’, especialmente por las transacciones entre empresas (subcontratación), que llevaría a la concentración de la actividad y su difusión en ‘mancha de aceite’.

Otra característica funcional importante de estos sistemas urbanos, como es la movilidad de la población, establece también que el crecimiento de la población se ha dado en las comarcas litorales y prelitorales, que tienen como eje la autopista. En el caso de las ciudades de Manresa (Bages) y Vic (Osona), éstas son áreas cercanas a la concentración barcelonesa, con creciente inversión industrial. Algunas capitales de comarcas más alejadas pero con autopista, entre las que se encuentra el caso de Montblanc (Conca de Barberà), presentan también un crecimiento en su población, cuando sin embargo en los municipios rurales de estas comarcas se da una pérdida continuada de la misma.

La descentralización producida actualmente tiene dos grandes componentes: la descentralización de la población desde los municipios centrales y metropolitanos más poblados hacia los corredores y ejes viarios (suburbanización); y la descentralización de la ocupación industrial hacia los ejes de la segunda corona metropolitana. Los procesos de suburbanización se dan en especial en las partes metropolitanas más exteriores (franja rural-urbana). En este sentido, la isocrona de los 45 minutos se considera el ámbito de referencia: estas zonas representan entre un 25-40% de desplazamientos en el área de Barcelona (Serra 1991). Sin embargo, se evidencia la existencia de una zona intermedia de ‘sombra’ urbana, donde la movilidad obligada con Barcelona baja al 15 o 25%, por los contrapesos de ciudades medianas como Granollers, Sabadell, Terrassa (Vallès Occidental y Oriental) o Vilanova i la Geltrú. El caso del Alt Penedès sería el de la comarca menos metropolinizada hoy día, en el entorno más próximo de Barcelona.
En cuanto a las dimensiones de los centros productivos, la economía de la metrópoli de Barcelona se caracteriza de hecho por disponer de una muy baja dimensión media de los establecimientos productivos, que se detecta para el conjunto de la RMB (excepto el polo de Martorell SEAT-VW y las zonas más cercanas al municipio de Barcelona, que disponen de una dimensión media ligeramente más alta que la propia Barcelona -Trullén 2001). También los corredores en los que se inscriben los polos de Sabadell, Terrassa i Granollers disponen de una dimensión mediana superior a la existente a sus ciudades centrales (Boix et al.2000).

En consecuencia, el proceso de descentralización desde Barcelona, Sabadell, Terrassa y Granollers a los ejes metropolitanos ha comportado la disminución de la dimensión media de los establecimientos en las ciudades centrales o polos. Igualmente, la tendencia al crecimiento de la ocupación es más intensa en el resto de la RMB que en el municipio de Barcelona: El resto de la RMB igualó a finales de 1999 el volumen de ocupación del municipio de Barcelona.

Así, el incremento de la interacción espacial respondería tanto a la mejora en la oferta de transportes y comunicaciones, como al desarrollo de un nuevo modelo de producción, de crecimiento segmentado y flexible -Boix et al. (2000). Algunas proyecciones de estudios de movilidad intermunicipal, pronostican incluso que los territorios de Barcelona, el Camp de Tarragona y Lleida constituirán próximamente (si no lo han hecho ya) un mismo espacio metropolitano, que llegará hasta los límites de Aragón –y estando muy cerca de integrar el área metropolitana de Girona (Boix et al 2000). El concepto de ‘Catalunya Ciutat’ en la planificación estratégica aplica pues de forma especial hoy en día.211

6.2.4.- Estrategias territoriales propuestas

Como principal problemática medioambiental de estos ámbitos metropolitanos o periurbanos, se considera pues que las dinámicas de crecimiento urbano comprometen la funcionalidad ecológica, social y económica de los territorios que las sufren. Usualmente, las tesis del desarrollo sostenible manifiestan, en primer lugar, la necesidad de valorizar los espacios libres de las regiones metropolitanas. Además, de manera reiterada se propone planificar corredores territoriales que conecten espacios libres, naturales y

\[211\] Como destacan igualmente los foros de planificación de MCRIT (Ullet et al. 2001) [http://www.mcrit.com/Forum_Infraestructures/forum_2010_Mcrit/].
Definición de los ámbitos de estudio

rurales, tanto para definir límites a la expansión urbana como para garantizar la funcionalidad medioambiental de la región. En este sentido, el ritmo acelerado de los procesos de urbanización y la proliferación de infraestructuras está fragmentando el territorio metropolitano a nivel mundial, consumiendo el suelo libre y propiciando la multiplicación de espacios vacíos no estructurados.

Desde las instituciones metropolitanas de medio ambiente de Barcelona se han iniciado programas de conservación conjunta de los espacios naturales periurbanos, colindantes a la conurbación del Área Metropolitana de Barcelona (Parc Metropolità de Collserola, Parc de la Serralada Litoral, Espai rural de Gallecs, Xarxa d’espais naturals de la Diputació de Barcelona212). Cabe recordar que estos espacios son todos ellos colindantes también al paisaje de la Plana del Vallès (o se hallan insertados en él, como en el caso del espacio de Gallecs).

Precisamente este programa pionero ha sido el núcleo para la constitución de la red europea de espacios naturales (Federación Europea de Espacios Naturales y Rurales, Metropolitanos y Periurbanos -FEDENATUR), compuesta por ciudades con espacios naturales de las mismas características periurbanas.213 Por otra parte, la participación de algunas comarcas de estudio en los programas europeos que actualmente tienen lugar (‘PRODER’ de Osona; ‘Leader Plus’ de Conca de Barberà), suponen la realización de diagnósticos de los territorios y sus sistemas humanos y naturales. De igual manera, dentro del Pacte per l’Ocupació del Vallès Occidental (que se inscribe dentro de la Estrategia Europea para la Ocupación),214 destaca en el ámbito del medio ambiente el programa ‘Vallès Natural’.215

En el ámbito conjunto de la conurbación de Barcelona, el Pacto industrial de la RMB (dentro del \textit{Pla Estratègic Barcelona 2000}), realiza también el diagnóstico de la zona de

212 Por su parte la mayoría de los espacios naturales de la Diputación de Barcelona configuran lo que desde esta administración se define como un ‘anillo verde’, que rodea y circunscribe la Región Metropolitana de Barcelona.

213 Actualmente es una entidad colaboradora dentro del Proyecto ‘Métropole Nature’, en el Programa Interreg III de la Unión Europea.

214 Estos pactos territoriales se promueven en el ámbito local o regional, en ciudades o zonas rurales en que la problemática del desempleo sea el objetivo de las políticas estructurales de la Unión Europea.

215 Entre sus objetivos cuenta con la creación de ocupación en el ámbito de las actividades de ocio en el medio natural, la ampliación de la adecuación y dinamización del itinerario de caminos y senderos; y potenciar la oferta de ocio en el medio natural de la comarca.
El principio ‘agregados con enclaves’

influencia metropolitana y define sus características ocupacionales y de movilidad. Existen igualmente proyectos metropolitanos en diferentes ámbitos: espacios públicos, equipamientos, urbanismo e infraestructuras. Por otro lado, los Planes estratégicos para la Sociedad de la Información, son igualmente herramientas que de forma común tienen por objetivo el fomentar la formación, el desarrollo de las nuevas tecnologías y el desarrollo local, así como las infraestructuras necesarias para el despliegue de redes ciudadanas (Pla per a la Societat de la Informació a Terrassa p.e.). Su fomento se considera también uno de los objetivos de la Estrategia Europea para un Desarrollo Sostenible (Consejo Europeo, Documento de Göteborg –CEC 2001).

El sector de Tecnologías de la Información y la Comunicación (TICs), se considera explícitamente un factor de cambio de las sociedades, como se establece en los documentos oficiales en el caso del ‘Pacte Industrial’ y la ‘Ciutat Digital’ (CIREM-Institut Català de la Tecnologia 2000; ICT 2000; Trullen 2001). Por ello, el análisis de sus características locacionales y su inclusión en la planificación, tanto en los ámbitos locales como regionales, es de especial interés en los entornos metropolitanos. Así, como parte de la estrategia territorial de la RMB y Cataluña, se considera que este sector puede facilitar la definición de una ‘Ciudad del conocimiento’, que se integre en el proceso de definición de una estructura metropolitana polinucleada (con existencia de centros industriales urbanos), a la vez que coexisten unas altas capacidades tecnológicas y de sostenibilidad medioambiental.

Para contrarrestar los desarrollos de la expansión urbana en la RMB, se propone pues la estrategia de extender la red de ciudades que interactúan con la red metropolitana existente, que permita ganar economías de aglomeración sin hacer crecer las dimensiones de las ciudades y corredores existentes (Trullén 2001). Respondiendo a una

216 En este sentido Barcelona Regional, una agencia dedicada a dar soporte técnico a las infraestructuras y al desarrollo urbanístico en el ámbito de la RMB (en zonas de influencia de la metrópoli más alejadas incluso), es otro instrumento y agente para la planificación estratégica medioambiental (realización del Plan de Mejora Energética de Barcelona 2002 p.e.).

217 Sin embargo, la característica locacional como sector para las TICs (además de los entornos urbanos con mezcla de usos -areas multifuncionales), es fundamentalmente su proximidad a los centros de poder. Esta dependencia locacional penaliza las ubicaciones sin dichos argumentos -caso de la RMB.
estrategia de potenciación de un crecimiento en forma de ‘ciudad densa’ y de una metrópoli polinucleada, el transporte público se considera un factor clave.\footnote{No en vano se recibe una inversión que es la de mayor volumen en Europa. Por su parte la integración tarifaria, la aprobación de un Plan Director de Infraestructuras de transporte público, la ampliación de la red de grandes arterias viarias, pretenden convertir este sistema de ciudades en un modelo metropolitano denso, en oposición a un modelo difuso y mucho menos sostenible (Puig 2002).}

En otro ámbito como el conservacionista, la ‘custodia’ del espacio natural y rural existente en el paisaje,\footnote{Se define como el conjunto de estrategias diversas (educación, gestión, mediación, desarrollo comunitario), con que se pretende favorecer y hacer posible la responsabilidad individual y colectiva sobre el medio natural. Se aplica en la conservación y el uso adecuado (sostenible) del espacio terrestre, fluvial y marino, así como de sus recursos naturales, por parte de los propietarios y usuarios de este territorio (Declaració de Montesquiu 11/2000 –VVAA 2000).} aparece también actualmente como un posible agente en la definición de políticas medioambientales de la región.\footnote{Es una estrategia dirigida principalmente a la propiedad privada (Declaració de Montesquiu 11/2000), y como tal es un conjunto de estrategias que se viene implementando en diferentes países desde hace años (especialmente en EEUU). Define como tal posiblemente el ámbito y las formulaciones adecuadas para la consideración de la conservación natural en la totalidad del territorio, dentro de los proyectos de sostenibilidad.} La constitución de la Oficina Técnica de la Red de Custodia del Territorio en Vic (Universitat de Vic), puede ser un hecho relevante para avanzar en las estrategias voluntarias de conservación del medio, las cuales se plantean como una colaboración en la ordenación global de los paisajes como los del presente estudio.\footnote{Esta es una estrategia por tanto que se considera complementaria a la definición de los espacios naturales protegidos, especialmente adecuada para la ordenación global del territorio en espacios altamente humanizados.}

6.2.5.- Indicadores económicos y calidad de vida

Los indicadores que pueden ayudar a caracterizar la situación socio-económica de los paisajes extensos del estudio, se obtienen en la práctica a nivel comarcal. Como hemos visto, los paisajes de origen rural del análisis se refieren a las cuencas o planicies de las comarcas naturales, definidas generalmente por los límites de aguas y la topografía. Los paisajes que constituyen el resto de la comarca son en la práctica forestales de media montaña o mixtos, con un peso relativo mucho menor en la estructura económica y de poblamiento de la comarca. Por ello, con los datos a nivel comarcal se cuantifican en buena medida las características socioeconómicas de los paisajes del presente estudio.
En la estadística de la renta familiar bruta disponible por habitante, la evolución observada (1986-1996) es de un crecimiento generalizado para las siete comarcas que componen los cinco paisajes (tabla 6.1). Se observa así cómo en conjunto estas comarcas progresan y están el 1996 muy próximos al umbral del índice de referencia -100 para el total de Cataluña, a excepción tal vez del Vallès Occidental (94.5), la comarca más poblada. Osona ya estaba por encima en 1986, y se le añade en 1996 el Baix Penedès, como comarca con mayor índice de renta familiar bruta per cápita.

Tabla 6.1.- Renta bruta familiar disponible 1986-1996

<table>
<thead>
<tr>
<th>Comarca</th>
<th>1986 RFBD por habitante</th>
<th>Índice Cat =100</th>
<th>1996 RFBD por habitante</th>
<th>Índice Cat=100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt Penedès</td>
<td>644,5</td>
<td>98,5</td>
<td>1549,1</td>
<td>99,0</td>
</tr>
<tr>
<td>Bages</td>
<td>627,2</td>
<td>95,9</td>
<td>1520,8</td>
<td>97,2</td>
</tr>
<tr>
<td>Baix Penedès</td>
<td>623,2</td>
<td>95,2</td>
<td>1612,5</td>
<td>103,0</td>
</tr>
<tr>
<td>Conca de Barberà</td>
<td>571,6</td>
<td>87,4</td>
<td>1560,4</td>
<td>99,7</td>
</tr>
<tr>
<td>Osona</td>
<td>674,9</td>
<td>103,2</td>
<td>1681,3</td>
<td>107,4</td>
</tr>
<tr>
<td>Vallès Occidental</td>
<td>565,7</td>
<td>86,5</td>
<td>1478,8</td>
<td>94,5</td>
</tr>
<tr>
<td>Vallès Oriental</td>
<td>603,7</td>
<td>92,3</td>
<td>1555,6</td>
<td>99,4</td>
</tr>
</tbody>
</table>

Fuente: Encuesta RMB (IEMB 1995).

En su conjunto, las comarcas metropolitanas de mayor población se encuentran en términos relativos entre las de mayor crecimiento demográfico de Cataluña (entre el 7 y el 15%), si se exceptúa el caso del Bages. Así la evolución de la población presenta en la década de los 90s un crecimiento neto para todos estos paisajes (tabla 6.2). Destaca el elevadísimo crecimiento de la comarca del Baix Penedès (40.3%) entre los años 1991-1999; pero por contraste, los bajos índices de crecimiento del Bages y la Conca de Barberà suponen un claro estancamiento poblacional (0.6 y 1.9 %), siendo la comarca de la Conca de Barberà una comarca escasamente poblada (pasa de 18.001 a 18.335 hab. en este período).
6. Definición de los ámbitos de estudio

Tabla 6.2.- Población de derecho 1991-1999

<table>
<thead>
<tr>
<th>Comarca</th>
<th>Población 1991</th>
<th>Población 1999</th>
<th>Crecimiento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt Penedès</td>
<td>69.863</td>
<td>76.018</td>
<td>8,8</td>
</tr>
<tr>
<td>Bages</td>
<td>152.177</td>
<td>153.123</td>
<td>0,6</td>
</tr>
<tr>
<td>Baix Penedès</td>
<td>38.080</td>
<td>53.436</td>
<td>40,3</td>
</tr>
<tr>
<td>Conca de Barberà</td>
<td>18.001</td>
<td>18.335</td>
<td>1,9</td>
</tr>
<tr>
<td>Osona</td>
<td>117.442</td>
<td>125.511</td>
<td>6,9</td>
</tr>
<tr>
<td>Vallès Occidental</td>
<td>649.699</td>
<td>705.288</td>
<td>8,6</td>
</tr>
<tr>
<td>Vallès Oriental</td>
<td>262.513</td>
<td>302.170</td>
<td>15,1</td>
</tr>
</tbody>
</table>

Fuente: Encuesta RMB (IEMB 1995).

Sociológicamente, cuanto a la percepción y valoración de los efectos de la proximidad de la gran ciudad sobre la respectiva comarca metropolitana (incluido el Barcelonès), demuestra posiblemente una mejor opinión de las aportaciones que realiza la gran urbe barcelonesa al conjunto de la metrópoli, respecto los posibles inconvenientes (tabla 6.3).

Tabla 6.3.- Valoración de los efectos de la proximidad de Barcelona

<table>
<thead>
<tr>
<th>Baix Llobregat</th>
<th>Barcelonès</th>
<th>Maresme</th>
<th>Vallès Occidental</th>
<th>Vallès Oriental</th>
<th>Alt Penedès/ Garraf</th>
</tr>
</thead>
<tbody>
<tr>
<td>64,3</td>
<td>67,6</td>
<td>74</td>
<td>65,1</td>
<td>74,5</td>
<td>70,1</td>
</tr>
<tr>
<td>6,8</td>
<td>6,7</td>
<td>7,5</td>
<td>9,6</td>
<td>3,2</td>
<td>5,1</td>
</tr>
<tr>
<td>11,4</td>
<td>9,1</td>
<td>6,1</td>
<td>9</td>
<td>6,8</td>
<td>7,9</td>
</tr>
<tr>
<td>17,5</td>
<td>16,5</td>
<td>12,4</td>
<td>16,3</td>
<td>15,4</td>
<td>16,9</td>
</tr>
</tbody>
</table>

Fuente: Encuesta RMB (IEMB 1995).

Sin embargo, destaca por elevado (10%) el valor negativo ‘perjudica’ en el caso del Vallès Occidental, especialmente si se compara con el otro Vallès, precisamente en el caso opuesto (3%). Ello cabe interpretarlo, ya en primer lugar, como una clara división en la funcionalidad metropolitana entre las dos comarcas que integran el paisaje de la Plana del Vallès: En el Vallès Oriental parece existir tal vez una menor estructuración y conciencia que favorezca su competitividad territorial de forma endógena -siendo de hecho uno de los paisajes de mayor afectación por la ‘urbanización difusa’ del territorio, eminentemente rural hasta hace poco (hecho constatable en las tipologías de usos urbanizados).

En el caso del Vallès Occidental, es evidencia tal vez de que en esta comarca aún perdura una reticencia a la gran capital metropolitana. Esta es percibida posiblemente como un factor que afecta en algunos casos a su ‘competitividad’ territorial, la cual posiblemente es de naturaleza más ‘ambiciosa’ que en el resto de comarcas.
El principio ‘agregados con enclaves’

metropolitanas. Esta es posiblemente una de las referencias noticiales de la dimensión plurinodal en red del entorno metropolitano de Barcelona, constatable a partir de la percepción colectiva. Puede ser igualmente el reflejo que a pesar de las posibles ventajas de esta configuración metropolitana, no se elimina sin embargo la prevención respecto la real expansión de la gran urbe sobre los territorios próximos.

222 No en vano, históricamente en esta comarca se ha dado el mayor crecimiento endógeno fuera de la ciudad de Barcelona, y en la década de los ‘80s ha concentrado caracteristicamente el mayor porcentaje de nueva localización industrial en Cataluña (Albet 1994).

223 De hecho, es interesante plantearse si este recelo históricamente ‘localista’ o comarcal, puede ser visto incluso como uno de los factores que ha ayudado a vertebrar una estructura metropolitana en red en la región —o si por el contrario ha existido desunión, frente a la expansión de la gran urbe.
6.3.- La Plana de Vic en la comarca del Osona

6.3.1.- Morfología

La Plana de Vic se alarga de N a S de la cuenca, formando un canal de 30 Km. de largo por 10Km. de ancho (figura 6.4). Con los territorios altos circundantes del Moianès, Cabrerés y Guilleríes, configura la actual comarca del Osona. Recorrida por el Ter en el sector Norte y por la cabecera del Congost en el sector Sur, los dos cursos forman el eje de la comarca, al cual van a parar los torrentes y pequeños afluentes de la cuenca erosiva. Esta llanura se extiende entre los 400 y 600 m de altitud aproximadamente.

6.3.2.- Clima

El clima puede describirse como subcontinental y relativamente húmedo, con inversión térmica frecuente en invierno. Una primavera retardada y una cierta cantidad de lluvia primaveral y estival (resultado de la inestabilidad en la convección, por el choque con las montañas y elevaciones circundantes), se añaden a unas lluvias regulares en otoño, y en menor cuantía en invierno.

6.3.3.- Vegetación

En la Plana de Vic, quedan tan solo unos pocos testimonios de los bosques originales, a causa de la extensión de los cultivos sobre la casi totalidad de su superficie. Existen algunos reductos tan sólo en los cerros testimonio y en las hondonadas, que se han salvado (hasta ahora) de su destrucción generalizada. En ellos predomina el roble pubescente o ‘martinenc’, pero en las solanas es normal que la vegetación sea plenamente mediterránea (coscojos, carrascas), así como en las umbrías cuando el bosque natural se ha perdido (Riba et al. 1980). En los límites de la Plana cerca de las estribaciones de la sierra del Montseny (en los municipios de Balenyà, Hostalets de Balenyà), existen pequeños espacios de bosque diferenciados según el tipo de vegetación dominante, pero que juntos configuran un espacio forestal mayor, diverso en su composición (caducifolias, encinares, pinares).

Dada la inversión térmica existente, la vegetación se encuentra en gradientes invertidos (figura 6.3), ya que la Plana pertenece al dominio de los robleales submediterráneos, mientras que una gran parte de las elevaciones que lo envuelven dentro de la comarca presentan testimonios más o menos importantes de encinares de montaña, y otras asociaciones vegetales mediterráneas.
En las riberas abundan las plantaciones de chopos o álamos negros, sin existencia prácticamente de bosques naturales de ribera. Una buena proporción de los cerros no cultivados está cubierta actualmente por pastos secos. Ello representa un riesgo importante, puesto que muchas veces estos pastos no llegan a proteger el suelo contra la erosión, muy activa sobre las margas eocénicas de los cerros, por otro lado.

Figura 6.3.- Distribución de la vegetación natural en la Plana de Vic

Fuente: Riba et al (1980). Leyenda:
1. Robledal con boj (Buxo-Quercetum pubescentis), sometido a inversión térmica
2. Prados de ‘pelagot’ con hierbas anuales (Brachypodio-Stipetum pennatae)
3. Bosque de ribera (alisos, etc.)
4. Juncáceas (Plantaginí-Aphyllanthetum)
5. Encinar (Quercetum ilicis libunidosum lantanae)
6. Carrascal mediterráneo (Quercetum cocciferae)

6.3.4.- Condiciones agrícolas

Gracias a la estructura del subsuelo y su consistencia, es un terreno de buenas condiciones agrícolas a pesar de los rigores climáticos propios de las zonas de interior, que limitan las posibilidades de determinados cultivos. Con todo, dispone de la proximidad de los máximos pluviométricos de la Catalunya húmeda, cerca ya del Pre-Pirineo. La agricultura es de secano, pero la distribución de las lluvias permite muchos cultivos que
en otras comarcas más secas son de regadío. Históricamente, se produjo un cambio de cultivos con la llegada de la industrialización y el ferrocarril. Con ello llegó la competencia al trigo localmente producido, pero se potenciaron el maíz, las patatas, la ganadería y los productos forestales, que encontraron nuevos mercados en el exterior. Hoy día se da prácticamente un monocultivo de cereales de secano, en la mayor parte de su extensión (casi un 75% del total de la superficie, tabla 6.4). Igualmente, son prácticamente inexistentes la viña y los frutales, resultado de las duras condiciones climáticas de inversión térmica en invierno.

La organización social agrícola es fundamentalmente de explotación unifamiliar, aunque frecuentemente el propietario posee diversas masías, que pueden ser vecinas y señalan una subdivisión fundaria, adecuada a las dimensiones precisas para el trabajo agrícola.224 Con la mecanización, los campos se han hecho aún más extensos.

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>N° espacios</th>
<th>Area (m²)</th>
<th>% al Paisaje</th>
<th>Area Media (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducifolias</td>
<td>146</td>
<td>3,701.700</td>
<td>1</td>
<td>25,354</td>
</tr>
<tr>
<td>Esclerófilas</td>
<td>78</td>
<td>2,987.100</td>
<td>1</td>
<td>38,296</td>
</tr>
<tr>
<td>Aciculifolias</td>
<td>170</td>
<td>10,669.500</td>
<td>4</td>
<td>62,762</td>
</tr>
<tr>
<td>Viña</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cultivos herbáceos de regadío</td>
<td>2</td>
<td>109.800</td>
<td>0</td>
<td>54,900</td>
</tr>
<tr>
<td>Cultivos herbáceos de secano</td>
<td>167</td>
<td>189,957.596</td>
<td>74</td>
<td>1,137,471</td>
</tr>
<tr>
<td>Frutales de secano</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Frutales de regadío</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Núcleos urbanos</td>
<td>98</td>
<td>13,561.200</td>
<td>5</td>
<td>138,380</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>9</td>
<td>938.700</td>
<td>0</td>
<td>104,300</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>31</td>
<td>3,359.700</td>
<td>1</td>
<td>108,377</td>
</tr>
<tr>
<td>Zonas indust. y comerciales</td>
<td>195</td>
<td>5,974.200</td>
<td>2</td>
<td>30,637</td>
</tr>
<tr>
<td>Zonas quemadas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vegetación escasa</td>
<td>468</td>
<td>14,937.300</td>
<td>6</td>
<td>31,917</td>
</tr>
<tr>
<td>Matorrales y prados</td>
<td>259</td>
<td>10,350.900</td>
<td>4</td>
<td>39,965</td>
</tr>
<tr>
<td>Arenales y playas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agua</td>
<td>33</td>
<td>1,380.600</td>
<td>1</td>
<td>41,836</td>
</tr>
<tr>
<td>Total</td>
<td>1,656</td>
<td>257,928.304</td>
<td>100</td>
<td>155,754</td>
</tr>
</tbody>
</table>

224 **Generalmente el propietario no la cultiva, sino que la da a un aparcero o arrendatario, que va a partes o pagan arrendamiento.**
6.3.5.- Características socioeconómicas y estrategias medioambientales

El aprovechamiento del Ter como fuerza motriz durante la primera industrialización (s.XIX), ha determinado actualmente el desarrollo de una industria agrícola transformadora, complementada por los recursos de la ganadería y la industria. Esto ha sido estimulado por las buenas comunicaciones, y por ser tradicionalmente lugar de paso obligado entre la costa y el Pirineo. Estas condiciones explican igualmente la importancia de sus pueblos, la elevada densidad de población históricamente y el crecimiento de Vic. Actualmente la comarca cuenta con una población de aproximadamente 130.000 habitantes, 60.000 de los cuales se concentran en las poblaciones de Vic, Manlleu y Torelló, los núcleos urbanos predominantes y de mayor crecimiento poblacional. Sin embargo la empresa predominante hoy en día es de pequeña dimensión, en contra de las tradicionales industrias intensivas en mano de obra de antaño.
En las zonas rurales, las explotaciones agrícolas con la masía central originan un tipo de poblamiento disperso que se encuentra diseminado por toda la Plana, tanto alrededor de los núcleos urbanos como en los pueblos de núcleo reducido. Esta elevada densidad de población rural aislada es una de las características de la Plana de Vic, a causa del tipo de agricultura y de la distribución social de la tierra -donde perdura una organización muy antigua.

La definición del Plan estratégico de la comarca del Osona, o la inclusión de la comarca en los programas europeos PRODER (con la creación de la Associació per al desenvolupament de la comarca d’Osona, que agrupa a 28 municipios de ésta), ha establecido igualmente el diagnóstico y los déficit en la comarca y sus posibles soluciones. Precisamente, entre las amenazas se remarca el desequilibrio del desarrollo actual de la comarca en su necesario carácter integral, endógeno y sostenible. Relacionado con ello se observa que el número de habitantes aumenta poco a poco, pero el consumo del territorio para utilidades urbanas (infraestructuras, equipamientos, polígonos industriales y zonas residenciales) aumenta de manera casi exponencial, lo que pone en peligro el actual equilibrio rural-urbano.

Especialmente importante será evitar la desaparición de la vegetación de ribera en su totalidad en este paisaje –una apreciación suscitada repetitivamente. De cara a su protección o definición de estrategias de conservación, estos espacios probablemente se pueden considerar espacios singulares, o localizaciones estratégicas para la conservación. La protección de los 5 metros aledaños como policía de aguas, y la Llei de protecció d'Aigües (Dep. de Medi Ambient), en el marco de la Directiva de Aguas europea, así como las propias directivas europeas de protección de comunidades vegetales de ribera (como la verneda o alisos - *Alnus glutinosa*), deben ser objetivo de consideración a la hora de proteger adecuadamente e incrementar en lo posible dichos espacios.

Otro problema medioambiental en la comarca es la baja calidad de las aguas subterráneas, básicamente por problemas de contaminación por nitratos, relacionados con el exceso de purines. De hecho, la gran cantidad de cabezas de porcino en la comarca y su concentración, implica una contaminación atmosférica importante por malos olores. Ello perjudica a otros sectores, especialmente el incipiente sector turístico. Precisamente, la percepción de estas y otras disfuncionalidades en el territorio han
El principio ‘agregados con enclaves’

originado una notable respuesta en la comarca, como recoge la propia Declaración de Montesquiu (Osona). Se propugna aquí una estrategia para la custodia del territorio público y privado, para la conservación de los recursos y valores naturales, culturales y paisajísticos del mismo (ap. 6.2).

Como otros aspectos de valorización endógena, cabe citar que la Plana ha sido históricamente un lugar de paso y comunicación entre el Pirineo y la costa, y por ello presenta testimonios arqueológicos (prerromanos) y un patrimonio cultural de importancia. La ciudad de Vic es un atractivo turístico y cultural en este sentido, con capacidad para promover así mismo los atractivos culturales del resto de la comarca.

Su carácter eminentemente rural, con explotaciones familiares dispersas en la campiña, también es otro atractivo turístico de este paisaje húmedo, con un potencial simbólico y educacional para residentes y visitantes metropolitanos, que ya valoran los productos agrícolas de la zona (lácteos, embutidos y carnes con denominación propia, patatas, etc.) y la calidad del paisaje. El turismo rural así mismo es ya una actividad presente en diversos municipios, que debe planificarse. Una estrategia para la creación de una red de espacios naturales interconectados en el entorno rural privilegiado de la Plana (pensados también para integrar el uso recreativo), es susceptible de potenciar igualmente este turismo respetuoso con el medio.

225 Con sede en la Universitat de Vic, la oficina técnica para creación de la Red de Custodia del Territorio en que colaboran el Departament de Medi Ambient de la Generalitat y la Fundació Territori i Paisatge (Caixa de Catalunya), promueve de forma pionera esta estrategia, en el ámbito conjunto del territorio catalán.
6.4.- El Pla de la Conca de Barberà

6.4.1.- Morfología

La Conca de Barberà forma parte de la gran Depresión Central catalana, la cual, en el lado oriental, aparece rellenada en su mayor parte por materiales relativamente blandos del Oligoceno (figura 6.5). El río Francolí y su afluente Anguera, han excavado así una gran cuenca de forma parabólica, separada del Camp de Tarragona por la Serralada Prelitoral. El fondo de la cubeta está a 250 m. de altitud (Montblanc), y las montañas que rodean la Conca se encuentran a 1200 m., por el lado de la Muntanyes de Prades (y a 950 m. en el lado opuesto). Existe así una cubeta con un desnivel mínimo de 600 m. respecto a los montes circundantes, en su parte meridional.

La comarca la conforman tres subunidades: la ‘Conca estricta’, Baixa Segarra y Muntanyes de Prades (Solé i Sabarís 1982). La denominada Conca estricta o Pla de la Conca de Barberà (la fosa comarcal propiamente dicha), es el paisaje de estudio que se encuentra encajonado entre la Serralada prelitoral y la parte más alta de la gradería excavada por los ríos Francolí y Anguera, dentro de la Depresión Central. Esta gradería está formada por hileras de cerros (de 869 m de altitud en los Comalats), que son las espaldas erosionadas de las graderías de margas (con recubrimiento terciario más duro) de la antigua plataforma de la Depresión Central.

Figura 6.5.- Localización del Pla de la Conca de Barberà

Fuente: elaboración propia, a partir de ICC 1993 (SIMA-Dep. Medi Ambient i Habitatge).
Por la banda opuesta, la Serralada Prelitoral delimita la comarca (Sierras de Miramar y del Cogulló de Cabra, de 700-800 m de altitud y 18km. lineales) hasta el estrecho fluvial que la separa de los extensos macizos de las Muntanyes de Prades al SW. Al NE está delimitada por las altitudes de la subcomarca del Gaià (1201-946 m).

6.4.2.- Clima

El clima de la Conca es de transición entre el mediterráneo y la región continental. La función de pantalla climática de la Serralada Prelitoral se ve rota en las brechas realizadas por el río Francolí, la riera de Cabra y el río Gaià, los cuales, junto con la reducida altitud de los collados, dejan entrar influencias del clima mediterráneo. Por el lado opuesto, esta comarca recibe fuertes influencias del clima continental. La comarca es partícipe por tanto de las dos corrientes climáticas generales, a las que deben añadirse las influencias locales, derivadas principalmente de la presencia de las Muntanyes de Prades así como de la condición de fosa completamente cerrada que ofrece la morfología comarcal.

La media de lluvias anuales en el fondo de la Conca es de 550 mm. El mínimo de lluvias se da en verano y en invierno, mientras que el máximo es en otoño, seguido de la primavera. Cada una de estas estaciones suele ofrecer el doble de precipitaciones que el verano. La mediana anual de humedad relativa es del 70%, oscilando entre el 62% de Julio y Agosto y el 82% de Noviembre y Diciembre.

6.4.3.- Vegetación

La Conca de Barberà se encuentra dentro de la zona del encinar típico, con interferencias del carrascal característico de l’Urgell -la comarca natural vecina a poniente. Se localiza así en el dominio del encinar litoral, ya en el límite del carrascal (por el Oeste) y del robleal de quejigo (al Norte). Por su topografía, se dan promontorios en medio de los cultivos con matorrales y pinares de pino carrasco, en altitud de pino negral (pinassa). El encinar y el roble han sido utilizados para carboneo, por lo que sólo quedan espacios muy residuales de estos bosques, hasta el punto que no existía en el año 1992 ningún espacio forestal en la plana mayor de 30 ha. (Tabla 6.5). El pino carrasco predomina en las laderas no cultivadas, muchas de los cuales con matojos esclarecidos de coscoja. El crecimiento espontáneo de la vegetación es muy lento, debido a la sequía estival.
6. Definición de los ámbitos de estudio

Tabla 6.5- Usos del suelo 1992 del Pla de la Conca de Barberà

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Nº espacios</th>
<th>Área (m²)</th>
<th>%Paisaje</th>
<th>Área Media (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducifolias</td>
<td>15</td>
<td>203.400</td>
<td>0</td>
<td>13.560</td>
</tr>
<tr>
<td>Esclerófilas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aciculifolias</td>
<td>163</td>
<td>5.823.000</td>
<td>3</td>
<td>35.724</td>
</tr>
<tr>
<td>Viña</td>
<td>380</td>
<td>87.407.100</td>
<td>43</td>
<td>230.019</td>
</tr>
<tr>
<td>Cultivos herbáceos de regadío</td>
<td>11</td>
<td>220.500</td>
<td>0</td>
<td>20.045</td>
</tr>
<tr>
<td>Cultivos herbáceos de secano</td>
<td>610</td>
<td>60.287.400</td>
<td>29</td>
<td>98.832</td>
</tr>
<tr>
<td>Frutales de secano</td>
<td>597</td>
<td>26.901.000</td>
<td>13</td>
<td>45.060</td>
</tr>
<tr>
<td>Frutales de regadío</td>
<td>8</td>
<td>684.000</td>
<td>0</td>
<td>85.500</td>
</tr>
<tr>
<td>Núcleos urbanos</td>
<td>44</td>
<td>3.324.600</td>
<td>2</td>
<td>75.559</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>4</td>
<td>3.004.200</td>
<td>1</td>
<td>751.050</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>12</td>
<td>154.800</td>
<td>0</td>
<td>12.900</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>29</td>
<td>1.301.400</td>
<td>1</td>
<td>44.876</td>
</tr>
<tr>
<td>Zonas quemadas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vegetación escasa</td>
<td>76</td>
<td>987.300</td>
<td>0</td>
<td>12.991</td>
</tr>
<tr>
<td>Matorrales y prados</td>
<td>392</td>
<td>14.874.300</td>
<td>7</td>
<td>37.945</td>
</tr>
<tr>
<td>Arenales y playas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agua</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>2.341</td>
<td>205.172.992</td>
<td>100</td>
<td>87.643</td>
</tr>
</tbody>
</table>

6.4.4.- Condiciones agrícolas

El suelo de la comarca es rico en carbonato cálcico, aunque en las laderas de la Muntanyes de Prades topa con procesos de descalcificación y con la roca silílica sin carbonatos. Los cultivos son totalmente predominantes en la extensión de la Plana (viña, cereales y frutales de secano en menor medida -tabla 6.5), dejando sólo cabida a pequeños espacios reductuales con vegetación natural o natural no-forestal. La urbanización es tradicional, en forma de pequeños pueblos de un solo núcleo.

6.4.5.- Características socioeconómicas y estrategias medioambientales

Esta comarca, fundamentalmente agrícola en su estructura socioeconómica (vitícola en el Pla o Conca estricta, y cerealista en los altiplanos), presenta sin embargo una creciente proporción de actividad industrial. Está relacionada tradicionalmente con la extracción de áridos y la fabricación de materiales para la industria de la construcción. La elaboración de vinos y cavas de la DO. Conca de Barberà es hoy día igualmente una floreciente actividad económica en la comarca, aunque recientemente se ha producido una disminución del número de explotaciones.

Montblanc, como núcleo comarcal, es también un pequeño centro industrial con una localización favorable a pie de autopista, en el vértice entre el campo de Tarragona y las
industrias petroquímicas, las comarcas vecinas más industriales de Barcelona y las comarcas agrícolas de la Segarra hacia la Plana de Lleida. La transformación de los productos agrícolas es la base de su economía, aunque crece la implantación de grandes industrias químicas o relacionadas con actividades metalúrgicas. La excesiva centralización de las infraestructuras de comunicaciones en la capital comarcal marca, sin embargo, un déficit de accesibilidad para el resto de la comarca.

Como aspectos del tejido industrial se destaca su importancia comarcal (sobretodo en relación al bajo volumen de población), gracias principalmente a la localización estratégica de la comarca. Otros aspectos favorables de esta localización son también la llegada del gas natural y la llegada del agua del Ebro, así como las mejoras en el suministro eléctrico. Como puntos negativos se destacan una población estructuralmente envejecida y con problemas de recambio generacional, de incidencia especialmente grave en el sector agrario.226

La distribución irregular de las zonas industriales suficientemente equipadas, junto con una inversión industrial muy localizada (que acentúa los desequilibrios internos), así como la ubicación exterior de los centros de decisión de las grandes empresas, determina una estructura empresarial incompleta y dependiente en situaciones de crisis -según las conclusiones del organismo autónomo. Por su parte, la importante actividad constructiva y extractiva presenta una evolución irregular, dentro de una evolución sostenida.

Como uno de los objetivos de diversificación, destacan la consolidación de los canales de promoción, comercialización y distribución del vino, así como vincular a ellos la promoción de los otros productos agroalimentarios y artesanales de calidad. El Programa Leader Plus destaca igualmente las posibilidades de desarrollo de un turismo de calidad, gracias al importante atractivo de la comarca para el turismo cultural y natural: Además de la existencia de un rico patrimonio que marca la especificidad necesaria para un turismo de elevada calidad en la comarca, su situación respecto a los principales emisores turísticos refuerza este gran potencial.

226 La inclusión de la comarca en el proyecto europeo Leader Plus (gestionado por el Organisme autònom de desenvolupament rural de la Conca de Barberà), supone la elaboración del correspondiente diagnóstico territorial y la formulación de unas potencialidades en las actividades tradicionales de la comarca.
En este sentido, el monasterio de Poblet sigue siendo hoy día la principal atracción turística y cultural de la comarca, junto con la villa parcialmente amurallada de Montblanc. Otra de las principales atracciones es la denominada ‘Ruta del Cister’, devenida una marca turística relativamente consolidada. Destaca también la ‘Ruta dels Cellers de la Conca de Barberà’: El paisaje esencialmente vitícola de la Conca estricta posee diversas bodegas de estilo modernista (cooperativas municipales de finales del s.XIX y principios del s.XX, que son obra buena parte de ellas del arquitecto Cèsar Martinell).

Además y de forma especial, entre las ofertas de turismo en la comarca destaca también una importante potencialidad para fomentar estrategias de desarrollo turístico sostenible, especialmente en el área cercana a los espacios naturales protegidos de las Muntanyes de Prades y el Montsant. Puede realizarse de forma complementaria a la promoción cultural a lo largo y ancho del paisaje, sin duda.

Finalmente, y como sucede con las tradicionales fiestas de St.Jordi, se da la existencia en la comarca de una valiosa oferta de actos culturales singulares. El patrimonio cultural y natural existente constituye pues la considerable base sobre la que promocionar la comarca. Junto a la potenciación de una producción vitícola de calidad, tiene el potencial para generar un crecimiento endógeno -igualmente dirigido a objetivos de sostenibilidad-, con que afrontar los procesos de metropolinización.

227 Panteón de la Casa Real catalana, que ha supuesto históricamente un factor económico importante desde la Reconquista y ha configurado los asentamientos humanos en la zona a lo largo del proceso
228 Donde además de las ermitas de St.Josep y St.Joan, el museo comarcal y las murallas de la ciudad, conforman uno de los patrimonios medievales más importantes de Catalunya.
229 Molí de Poca, ‘Grans muralles’ Vimbodí s.XVI, etc.
230 Es el caso de las de Barberà de la Conca (la primera bodega modernista de España, del año 1894), Pira, Rocafort de Queralt y Montblanc. De Pere Domènech i Roura es igualmente la ‘Catredal del vi’ de l’Espluga de Francolí (1913), del mismo estilo.
231 Como otras atracciones culturales de la comarca, en la zona de Vimbodí (además de Poblet) se encuentran la ermita dels Torrents, el castillo de Riudabella y la fortaleza de Milmanda (s. IX), esta última sobre castro romano y en el camino de Santiago. En Barberà de la Conca, se encuentran asimismo los restos del castillo de los Templarios (s.XII-XIII), con el núcleo antiguo del castillo en Prenafeta (s.X), y la ermita románica de Sta. Anna. En Solivella se encuentra el molino triguero altomedieval de Caixes o del Senyor. Por su parte, en Sarral se encuentra el Museo del Alabastro, otra de las actividades económicas típicas. En l’Espluga de Francolí se encuentran los museos del vino, de la vida rural y de la Cova de la Font Major. La iglesia de St. Miquel (s.XII), la ermita de la Santíssima Trinitat o la zona balnearia de Les Masies son otros atractivos culturales y de ocio.
232 Tradicionalmente se sitúa la existencia del dragón de la leyenda en la villa de Montblanc.
6.5.- La Plana del Penedès

6.5.1.- Morfología

La fosa del Penedès forma un rectángulo alargado de NE a SO, de 30 Km. de largo por 15 a 20 Km. de ancho (figura 6.6). Estas tierras bajas intercaladas con pequeños cerros (con un desnivel de 50 a 100 m) ofrecen un paisaje de características muy diferentes a los paisajes forestales de montaña media y mixtos de cultivos de secano que le rodean (especialmente por el NE y el SO).

Los sedimentos que rellenaron la fosa pertenecen al Mioceno. Las fallas que limitan la fosa entre la Serralada de Marina y la Serralada Prelitoral provocan que tenga una estructura asimétrica, con sus capas ofreciendo una pendiente bastante pronunciada hacia el N. La inclinación general de la Plana es en sentido contrario, y el relieve baja gradualmente de NE a SO desde los 300 m hasta el nivel del mar, fruto de la red hidrográfica. El río Foix excava un curso propio a través de las rocas calcáreas del macizo del Garraf, entre cañones y hoyas encajonadas.

Figura 6.6.- Localización de la Plana del Penedès

Fuente: elaboración propia, a partir de ICC 1993 (SIMA-Dep. Medi Ambient i Habitatge).
6.5.2.- Clima

La influencia marina afecta a toda la comarca, dando como resultado unos inviernos templados, lluvias moderadas de primavera y otoño, y principalmente un verano relativamente seco y caluroso. El relieve y la distancia al mar matizan ligeramente el clima de las diferentes partes de la comarca, siendo los contrastes térmicos más acentuados y las lluvias algo más escasas en la depresión. Es un clima luminoso (2548 horas de insolación media), con unas precipitaciones de 514 l/m2 de media. Las neblinas en otoño y primavera son frecuentes, y facilitan las invasiones de mildeu u otros hongos parásitos de las viñas (es un monocultivo en la práctica).

6.5.3.- Vegetación

La vegetación de la comarca es de tipo mediterráneo, xerófila y prácticamente toda calcícola. Sin embargo, se puede distinguir la zona donde perdura el encinar litoral con durillo (*Quercetum ilicis galloprovinciale*), que ocupa una gran extensión desde las montañas del Garraf hasta la Serralada Prelitoral. En la depresión, este tipo de bosque casi ha desaparecido por completo y solo se conservan algunos pequeños espacios residuales (2 espacios en 1992, con menos de 2 ha. conjuntamente -tabla 6.6). El árbol que más abunda es el pino carrasco (*Pinus halepensis*), con matorrales de romero y...
brezo (*Erico-Thymelaetum tinctoriae*), y queda alguna alameda (*Vinco-Populetum albae*) en los pequeños cauces del llano.

6.5.4.- Condiciones agrícolas

Los cultivos ocupan casi en su totalidad los terrenos blandos de la depresión, con muy pocos espacios forestales. Como en el resto de paisajes metropolitanos (Plana del Vallès), los suelos rurales se ven sin embargo amenazados por la rápida extensión de los usos urbanizados. El cultivo tradicional de la vid, que proporciona especial personalidad a esta comarca, ocupaba en 1992 el 57% del suelo total de la Plana (tabla 6.6), seguido a mucha distancia por los frutales de secano (12%).

Las tierras dentro de la cubeta del Penedès son tierras profundas, ni muy arenosas ni muy arcillosas, con buena permeabilidad y retención para el agua de lluvia. Como sucede en el caso de los suelos tradicionalmente vitícolas, se trata de un suelo pobre en materia orgánica, calcáreo y poco fértil. La densidad de las viñas es de una media de 2300-3000 viñas por ha., llegando en algunos casos a ser de hasta 5000 viñas/ha. (Clases Chardonay-Pinot Noir).

En general predominan las explotaciones pequeñas y medianas, con una diversidad de microclimas, en función de la proximidad al litoral del Baix Penedès y de la altitud. La comarca se encuentra a salvo de los vientos fríos, pero está abierta al *Mestral* y los vientos de Poniente, y en el verano predominan los vientos procedentes del mar (‘*marinades*’).

6.5.5.- Características socioeconómicas y estrategias medioambientales

La Plana del Penedès es por excelencia el ‘País del Cava’, y la elaboración de este producto y el de los vinos de la denominación de origen Penedès, cuenta con un peso muy destacado en el conjunto de su economía. Esta actividad es fuente igualmente de buena parte del turismo gastronómico y cultural de la comarca.

Recientemente (07/2002), esta especificidad del paisaje vitícola se ha visto reconocida con la firma por parte de las instituciones locales y regionales del denominado ‘Codi vitícola’ del paisaje de la vid del Penedès, por el que se formaliza un plan de gestión y protección del paisaje de la vid del Alt Penedès. Ello conlleva establecer un plan de usos del suelo de la comarca mediante un Plan director, incidiendo en el programa de
renovación cualitativa de los espacios industriales en consonancia (para determinar las ubicaciones, los precios del suelo industrial, etc.).

No obstante, cada vez es más importante el peso de las actividades industriales en el conjunto de las dos comarcas: asentadas principalmente en las capitales de Vilafranca (a lo largo del nodo ‘del papel y el cartón’ -o eje diagonal de la comarca) y El Vendrell, y en el eje St.Sadurní-Olèrdola (con sector terciario y servicios principalmente). Pero también existen industrias localizadas de forma dispersa, principalmente en el N de la comarca: esta localización industrial desconcentrada, cerca de pequeños núcleos de población rural inicialmente, es fruto de las políticas de localización industrial de mediados y finales de los 70’s y principios de los 80’s.

Este efecto deslocalizador influyó posiblemente en la emergencia de gran cantidad de urbanizaciones dispersas por la comarca (tabla 6.6), de segunda residencia en un inicio pero que han originado asentamientos de primera residencia, con infraestructuras y servicios permanentes hoy en día -al igual que en las comarcas vecinas del Baix Llobregat y Anoia. En el caso de la Plana del Penedès, es de resaltar que estas urbanizaciones superaban el año 1992 la cantidad de superficie ocupada por los núcleos urbanos tradicionales (con más de 11 km², más del 3% del total de la superficie del paisaje). Es igualmente importante el consumo de espacio de las zonas industriales y las infraestructuras viales, en proporciones parecidas (2% del total).

Por tanto y como se remarca desde el II Pla estratègic de l’Alt Penedès, la especificidad del paisaje vitícola se ve en entredicho por la existencia de una fuerte presión sobre el territorio, debido en buena parte a la situación de la comarca: estratégicamente localizada en la periferia de la Región Metropolitana de Barcelona, y con unos precios del suelo muy por debajo de los de la 1ª corona metropolitana (o hasta los de la 2ª corona –Vallès Oriental p.e.).

233 Igualmente desde estas comarcas se reclama un Plan Director de Infraestructuras, y la formalización del Plan Territorial de la Región metropolitana de Barcelona, en la que se incluye l’Alt Penedès.
234 Se trata de hecho de una deslocalización de industrias preexistentes, o también de nueva creación, como reacción ante la crisis industrial de dichos periodos (ap. 6.2).
Este paisaje está igualmente muy cerca de una de las regiones que más ha crecido durante los últimos años (Camp de Tarragona), y muy cerca del aeropuerto internacional del Prat, también a pocos Km. del puerto de Barcelona -el de mayor volumen de tránsito del Mediterráneo Occidental. Además, se inscribe dentro del área que experimentará una gran transformación con el Tren de Alta Velocidad. Esta preocupación se plasma en la propuesta de definición de los futuros usos de la comarca, para hacer compatibles la realidad histórica del paisaje socio-económico con las necesidades de desarrollo urbano y económico. Requiere todo ello de la planificación de su área de influencia, con el Plan Territorial de la Región Metropolitana de Barcelona como referente.

El fomento de las potencialidades turísticas, dado el patrimonio importante existente, es igualmente una de las prioridades. Como tal el paisaje vitícola humanizado del Penedès se remonta a tiempos prerromanos, con la Vía Augusta como eje de la expansión en el comercio del vino de una amplia zona, ya durante tiempos romanos y medievales. Por ello existen multitud de atractivos culturales como son los de la zona de Olèrdola, con el castillo y recinto amurallado, las ruinas de la ciudad antigua y la iglesia de St.Miquel (s.X), además de restos arqueológicos de un poblado neolítico -que atestiguan igualmente un pasado como marca y frontera en esta tierra de paso. Por su parte, la capital comarcal de l’Alt Penedès, Vilafranca, es una villa de tradición castellera, otro de los atractivos culturales de temporada de la comarca. Existe igualmente un número considerable de lugares de interés cultural a lo largo y ancho del territorio, con que sustentar políticas turísticas de calidad respetuosas con el medio.

Como contrapesos a los ejes industriales y económicos existentes, desde el II Pla estratègic de l’Alt Penedès se reclama un nuevo eje de actividades en el denominado Nodo Oeste o ‘de actividades terciarias’, relacionadas con el turismo rural y natural. La marca de figura ‘Calidad Penedès’ para los productos de la zona es otra propuesta en este sentido.

A partir de entonces, es cuando deberán generarse el Plan General de Infraestructuras de la comarca, el Plan de Usos del Suelo del Penedès (Plan director, con instancias superiores implicadas).

Desde el Pont del Diable sobre el río Llobregat al Norte, hasta el Arc de Berà hacia Tarragona (Tarraco imperial) en el Sur.

En este sentido encontramos también el Castell de Subirats (s.X), y su fortificación anterior. El castillo de S.Marti Sarroca (s.X), la iglesia de Sta. María (del s.XII y de interés histórico-artístico nacional) son otros exponentes, así como el antiguo Priorato benedictino de St. Sebastià dels Gorgs, (del cual se conserva la iglesia y parte del claustro, con un campanario del primer románico). Otra zona de especial atractivo cultural y natural del Baix Penedès es la localidad de Castellet, con un castillo en los alrededores del Pantano de Foix, un espacio natural no protegido pero de gran valor por sus humedales.
La potenciación de la máxima calidad vitícola y del patrimonio cultural histórico debería ser la base para perseguir su crecimiento endógeno. Deberá permitir revalorizar el patrimonio del paisaje en su conjunto, y hacer frente al proceso de metropolitanización.
6.6.- El Pla de Bages

6.6.1.- Morfología

Esta depresión es resultado de la cuenca de erosión formada por el Llobregat en su curso medio, en el extremo Oriental de la Depresión Central catalana (figura 6.7). Está situada en una localización marginal respecto a la gran unidad natural del interior (Depresión Central), pero en una posición equidistante de las tierras pirenaicas, de las llanuras interiores de Lleida y de la franja costera.

La excavación fluvial ha creado los diversos valles y cuencas de erosión del río, entre las cuales destaca netamente el Pla de Bages como la más amplia y desarrollada (Solé i Sabarés 1982).239 Esta cuenca ha sido excavada por el Llobregat en sus sectores central y oriental, y por el Cardener en la parte occidental y meridional. Lo han hecho sobre las margas y gres rojizos del Eoceno superior, correspondientes ya a unos sedimentos de origen continental. Antes de llegar a la Serralada Prelitoral, el Llobregat atraviesa una serie de materiales blandos, formados sobretodo por horizontes de margas. En este paquete sedimentario, aparecen también algunas capas de materiales duros (conglomerados, gres, calcáreas). Las margas, en ocasiones, son más o menos salíferas, y a veces los niveles son de sales sódicas y potáicas exclusivamente. La erosión se da sobretodo en diversas fracturas laterales, especialmente en el lado de levante.

El resultado ha sido una cuenca amplia, de forma alargada hacia el NE, de unos 125 km2 de extensión y fondo casi llano. En el fondo del Pla de Bages aparecen los materiales coluviales al pie de las vertientes, y los aluviones fluviales están presentes a lo largo de los ríos formando terrazas erosionadas, originalmente de una altitud relativa acusada (de 80 y 120 m). Su delimitación respecto los territorios altos circundantes es de tan sólo de un centenar de metros de altitud de diferencia, pero contrasta claramente con los altiplanos circundantes, bien recortados: al N, aparece la sierra que corresponde al eje de un anticlinal (que el Llobregat atraviesa por el congosto de Sallent); por otras partes aparecen las vertientes periféricas de la cuenca, afectados en algunas ocasiones por accidentes tectónicos.

239 En el presente estudio, este ámbito incluye las pequeñas cuencas menores del Llobregat medio, como la de St. Vicenç de Castellet y Vacarisses al sur, y la de Sta. Maria de Merola al norte. Los pequeños valles de la riera de Guardiola y d’Oló acaban de configurar el territorio de estudio.
Como espacios naturales protegidos (PEIN) en el entorno de la comarca, están Castelltallat (Plan especial no tramitado) y la Muntanya de Sal –en Cardona. Montserrat i St.Llorenç del Munt son los espacios naturales protegidos que limitan la comarca por el Sur.

Figura 6.7.- Localización del Pla de Bages

Fuente: elaboración propia, a partir de ICC 1993 (SIMA-Dep. Medi Ambient i Habitatge).

6.6.2.- Clima

La forma cóncava del relieve tiene trascendencia en el clima. La situación respecto a la Serralada Prelitoral da una cierta continentalidad al clima, que en el fondo el Pla es aún más acusada. La pluviosidad es más bien escasa (500-600 Mm.), con un máximo otoñal y primaveral. Se puede observar sin embargo la influencia prepirinaca con lluvias de verano relativamente importantes (25% o más de la pluviosidad anual), acentuándose a medida que se va hacia el N. Las temperaturas –de unos 14º de media anual- presentan una notable amplitud: llega a 20º en el centro de la Plana.
La tendencia a la continentalidad y el relativo aislamiento de la atmósfera situada sobre el Pla se hace evidente en invierno, cuando bajo condiciones de un área anticiclóncal se produce la inversión térmica. Ello resulta en nieblas y temperaturas más bajas en el fondo del valle que en las vertientes y los relieves periféricos.

6.6.3.- Vegetación

La formación más importante sería el encinar de carrasca, de tendencia continental, adaptada a unas condiciones poco lluviosas, y con una cierta amplitud térmica (Quercus ilex, ssp. ballota). En la realidad, está casi desaparecido en los fondos de valles cultivados, y carrascas, matorrales (Rosmarino-Ericion) y pinares de pino carrasco predominan actualmente en las zonas residuales no cultivadas. Estos pinares son casi un mono-uso forestal, dado su peso y la poca importancia de los otros tipos de vegetación forestal (9% del total del paisaje, frente 1% de las caducifolias, y en una relación 14 a 1 en su superficie -tabla 6.7).

6.6.4.- Condiciones agrícolas

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>N° espacios</th>
<th>Área (m²)</th>
<th>% en el Paisaje</th>
<th>Área Media (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducifolias</td>
<td>45</td>
<td>927.900</td>
<td>1</td>
<td>20.620</td>
</tr>
<tr>
<td>Esclerófilas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aciculifolias</td>
<td>185</td>
<td>14.268.600</td>
<td>9</td>
<td>77.128</td>
</tr>
<tr>
<td>Viña</td>
<td>24</td>
<td>590.400</td>
<td>0</td>
<td>24.600</td>
</tr>
<tr>
<td>Cultivos herbáceos de regadío</td>
<td>133</td>
<td>11.742.300</td>
<td>7</td>
<td>88.288</td>
</tr>
<tr>
<td>Cultivos herbáceos de secano</td>
<td>203</td>
<td>79.969.500</td>
<td>51</td>
<td>393.938</td>
</tr>
<tr>
<td>Frutales de secano</td>
<td>41</td>
<td>1.443.600</td>
<td>1</td>
<td>35.210</td>
</tr>
<tr>
<td>Frutales de regadío</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Núcleos urbanos</td>
<td>70</td>
<td>7.565.400</td>
<td>5</td>
<td>108.077</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>3</td>
<td>2.555.100</td>
<td>2</td>
<td>851.700</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>55</td>
<td>4.649.400</td>
<td>3</td>
<td>84.535</td>
</tr>
<tr>
<td>Zonas indust. y comerciales</td>
<td>97</td>
<td>4.716.000</td>
<td>3</td>
<td>48.619</td>
</tr>
<tr>
<td>Zonas quemadas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vegetación escasa</td>
<td>175</td>
<td>6.434.100</td>
<td>4</td>
<td>36.766</td>
</tr>
<tr>
<td>Matorrales y prados</td>
<td>373</td>
<td>21.732.300</td>
<td>14</td>
<td>58.264</td>
</tr>
<tr>
<td>Arenales y playas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agua</td>
<td>174</td>
<td>905.400</td>
<td>1</td>
<td>5.203</td>
</tr>
<tr>
<td>Total</td>
<td>1.578</td>
<td>157.500.000</td>
<td>100</td>
<td>99.810</td>
</tr>
</tbody>
</table>

La actividad agrícola está en función de la orografía, y se localiza próxima al Llobregat y sus afluentes. Al fondo de los valles, sobre la terraza más baja -donde se localizaron usualmente las colonias textiles y las fábricas que utilizaban energía
hidráulica-, se localizan estrechas fajas de regadío. Al alejarse, los fondos de las cuencas muestran un aprovechamiento agrícola casi continuo, con campos de secano principalmente (con una media de 40ha. por espacio -tabla 6.7), y a veces arbolados con frutales de secano.

Los municipios se pueden diferenciar también por sus cultivos, algunos con viñas configurando la Denominación de Origen, y la gran mayoría siendo de núcleos cerealistas, principalmente.

6.6.5.- Características socio-económicas y estrategias medioambientales

La situación central del Pla de Bages (entre el Pirineo y la costa, y entre la Depressió Central y Barcelona), ha contribuido a ser una de las principales zonas de paso y relación entre los territorios centrales de Catalunya, desde tiempos antiguos. A su favor también ha jugado históricamente factores como la situación de la comarca entre tierras de características muy diferenciadas: litorales, prepirenaicos y del interior. También lo han sido otros factores, como la confluencia de los valles fluviales, la pronta industrialización textil, la explotación potásica o la red de comunicaciones actual -con una rápida relación con Barcelona.

El papel preponderante representado por los corredores fluviales y las cuencas ha sido el eje de la estructura comarcal, así como de su industrialización antigua -con colonias textiles a lo largo del Llobregat, surgidas durante el s. XIX principalmente. La población de la comarca históricamente se ha diferenciado entre la zona de la Plana (asentamientos concentrados, que dan lugar a núcleos municipales) y la periferia, con masías o masos (asentamientos dispersos).

El núcleo urbano de Manresa como capital comercial articula la comarca. Hoy día se encuentra más diversificada económicamente que hace unas décadas, aunque las poblaciones del fondo de los valles crecen en población mientras las de la periferia padecen una cierta despoblación (desde los años 50s). Así mismo, determinados sectores fluviales se han convertido en centros de población industrial, como colonias fabriles y
El principio ‘agregados con enclaves’

fábricas aisladas. Los antiguos núcleos se han desarrollado a lo largo de las carreteras y los ferrocarriles (Sallent, Súria, Cardona).240

Por otra parte y como contrapartida, en el Pla de Bages se produce una característica ocupación urbana de baja densities (o difusa), debido en buena parte a la falta de coordinación supramunicipal en la planificación urbanística. En este sentido, en la comarca del Bages existen más de 100 polígonos industriales que son proyectos de ámbito municipal, sin coordinación comarcal o supramunicipal hoy en día.241

Como ejemplo más significativo a nivel local de esta ocupación urbana de baja densidad en el Pla (pero con una elevada ocupación del suelo), sólo en el municipio de S. Fruitós de Bages existen 13 polígonos o zonas industriales, con una superficie ocupada de 224.7 ha. La población de este municipio casi se ha cuadruplicado, pasando de 1674 hab. en 1940 a 5307 hab. el 1997. Ello en un municipio con posición central en la Plana, atravesado por las infraestructuras de comunicaciones, en una comarca que posiblemente está convirtiéndose en un eje de localización de grandes actividades logísticas no productivas del entorno metropolitano de Barcelona.

La situación estratégica de la comarca, además, ha favorecido recientemente el asentamiento en los laterales del Eix del Llobregat de grandes áreas comerciales y de almacenaje, mas la construcción de pisos y viviendas unifamiliares de una característica baja densidad constructiva (figura 6.8).

240 En consonancia con la estrategia de reequilibrio y expansión de la red plurinodal metropolitana mediante núcleos urbanos consolidados, el Pla Territorial General de Catalunya (PTGC Ley 1/1995 16 Marzo) considera el sistema urbano de Manresa-Súria-St.Vicenç de Castellet, (así como las polaridades de Sallent, Artés y Balsareny) como de reequilibrio territorial de nivel 2, o de ‘sistema de expansión y articulación del sistema Central’ del ámbito metropolitano. Este tipo de sistema, se caracteriza por su potencial intermedio de reequilibrio territorial global. También por estar basado en un sistema urbano de peso intermedio, que centraliza ámbitos territoriales amplios.
241 Algunos además son colindantes a espacios naturales de alto valor, como el PEIN de la Corbatera (uno de los espacios húmedos más importantes de la Catalunya Central), y sucede algo similar con los polígonos del Pla de Cabrianes, o del Pla de Manyanes (Sallent)
Entre los esfuerzos en la dirección de corregir estas deficiencias de planificación, cabe mencionar la redacción el plan director urbanístico del Pla de Bages (que establece las directrices y medidas específicas a aplicar en este ámbito territorial), en el marco de los trabajos del Plan Territorial de les Comarques Centrals (Secretaria per a la Planificació - Departament de Política Territorial i obres Publikues). Por otra parte, como uno de los objetivos de la Agenda 21 del Bages, se reclama la realización de un estudio para la creación de un parque agrícola o rural al Pla de Bages, con el desarrollo de un Plan Comarcal de protección del Medio Natural y del paisaje. Con ello se pretende ‘esponjar’ el Pla de Bages, de forma que permita regular el crecimiento urbanístico difuso en una zona vital para la estructura ecológica de la comarca. El objetivo declarado es el de considerar la totalidad de los espacios existentes en el paisaje, de cara a articular correctamente las propuestas de sostenibilidad de este ámbito territorial.

Otros de los objetivos que se establecen en la Agenda 21 del Bages son los de controlar los niveles de cloruros en los ríos y la urbanización en los márgenes fluviales,

242 Igualmente se considera necesario el hecho de ‘dejar de ser comarca de paso’, y superar la falta de coordinación supramunicipal en la planificación urbanística existente (Agenda 21 Bages; VVAA 1997).
con la recuperación paisajística y ecológica de ámbitos de interés turístico (Llobregat, Cardener, Riera d’Oló, Riu d’Or). Una de las propuestas para favorecer un turismo rural y natural en el Pla es la creación del itinerario de la Sèquia de Manresa, que atraviesa el Pla de Bages desde Navàs pasando por Sallent hasta llegar a Manresa. El itinerario cuenta con diez puntos de observación (‘bosques-isla’) para mostrar los sistemas hidrográficos, el relieve del Pla de Bages y las actividades tradicionales que allí se desarrollan.243

En este sentido, el propio turismo cultural puede ser otro factor que complemente la posible definición de redes de corredores fluviales entre los espacios fluviales periurbanos existentes, mediante la adecuación del entorno periférico de la ciudad (rutas turísticas, definición de espacios recreacionales en el entorno fluvial y potenciación del patrimonio paisajístico rural).244

En relación con la definición de estos corredores naturales fluviales, cabe considerar también el patrimonio histórico y cultural existente que son las antiguas colonias textiles, dispuestas a lo largo del río Llobregat. Estos elementos pueden integrarse de forma respetuosa con las funciones ecológicas que se atorga a dichos corredores, así como el resto de actividades recreacionales que se puedan considerar (pesca, navegación fluvial de recreo y visitas culturales por el río, etc.). El fomento de un turismo respetuoso con el valioso entorno fluvial, sería entonces otro de los valores a considerar en la regeneración de estos corredores, valorando sus beneficios ecológicos tanto como los costes ecológicos de su degradada situación actual.

243 El itinerario y los puntos de observación se integran así en la propuesta del Parque Patrimonial de la Sèquia, que a su vez se enmarca en un estudio más amplio sobre medio natural y desarrollo urbano en el Pla (Fundació Caixa de Manresa). Todo ello supone definir un parque lineal de 26 Km, integrandose además el patrimonio cultural formado por acueductos y ‘masos’.244 Precisamente uno de los resultados de ser espacio de paso ha sido históricamente el rico patrimonio cultural de la comarca, con una abundancia de castillos y monasterios (St. Benet de Bages, St. Cugat del Racó), especialmente relevante en el caso de Manresa: la Seu gótica, los conventos de St.Domènec y las iglesias románicas existentes son un aliciente cultural de la ciudad, así como su casco antiguo.
6.7.- La Plana del Vallès

6.7.1.- Morfología

Este paisaje tradicionalmente agrícola hasta hace poco, es una extensa llanura ligeramente ondulada dentro de la Depresión Prelitoral, separada de la del Penedès por las excavaciones de la cuenca del Llobregat (figura 6.9). Esta planicie forma parte de la comarca natural junto con las elevaciones que la circundan, y cuyas líneas de cumbre son a menudo la divisoria respecto las comarcas vecinas -además del Llobregat.

Figura 6.9.- Localización de la Plana del Vallès

La Plana es una depresión terciaria del Mioceno, delimitada por las fallas que la separan de las montañas circundantes. Los ríos actuales se extienden a la salida de los valles montañosos, en los cuales han profundizando sucesivamente el lecho fluvial formando terrazas -que a medida que se acercan al mar pierden su altura relativa. En los valles, la erosión fluvial ha atacado los materiales blandos del Mioceno, hasta dejar unas vertientes suaves y redondeadas, y unas lomas interfluviales alargadas, paralelas a los ríos principales (Solé i Sabarís 1982).
Históricamente, ha sido el lugar de paso de las migraciones e invasiones a lo largo de la franja costera catalana. Administrativamente, la comarca se encuentra dividida entre el Vallès Occidental y Oriental.

En el lado oriental de la Plana predomina aún la agricultura, con mayores facilidades por ser más lluviosa y favorable a los regadíos. Una colonización más densa desde antiguo, ha favorecido también el mantenimiento de la estructura rural y del predominio agrícola durante el siglo XX, mientras que la parte occidental, con menores facilidades agrícolas, se especializó ya de antiguo en la industria, con los dos principales focos textiles de Sabadell y Terrassa. Aun así, la parte occidental ha sido históricamente una fértil llanura dedicada al cultivo agrícola de secano principalmente, si bien predominaron más los cultivos arbóreos al pie de las montañas.

6.7.2.- Clima

El fondo de la Plana tiene un clima similar en toda su extensión, con una lluvia anual entorno los 600 mm, y unas temperaturas frías en invierno y bastante cálidas en verano. En invierno la humedad es superior al 80%, y en verano, aunque las temperaturas llegan a ser elevadas (35º en algunos casos), quedan templadas por la brisa marina.

La lluvia está repartida de forma regular todo el año, aunque las irregularidades entre diferentes años pueden ser considerables. Las riadas que se producen son uno de los fenómenos característicos resultantes: Son cursos de características mediterráneas (casi todos afluentes del Besòs), con un caudal poco constante e intermitente, produciéndose periódicamente grandes riadas de efectos devastadores (como las de 1897, 1943, 1944 y 1962).

6.7.3.- Vegetación

Se da la asociación típica mediterránea de *Quercetum ilicis*, con el pino carrasco (*P. halepensis*) como árboles dominantes, seguido del pino piñonero (*P. pinea*) en los suelos degradados y arenosos, y robles (*Quercus humilis*) en las depresiones. Están mezclados con la encina en las zonas más altas y frescas. El paisaje de hecho presenta una gran heterogeneidad, como sucede con los usos del suelo (tabla 6.8). Existen campos de cultivo que motean el bosque de la periferia montañosa, del interior de los valles o en los rellanos existentes en los flancos de la montaña. Y inversamente, en medio de la Plana se
conservan zonas de bosque, a veces extensas. Este bosque de la Plana es casi siempre de pino blanco o piñonero, mezclado con alguna encina y roble, con el sotobosque característico.

En el fondo de los torrentes y ríos se encuentran algunos árboles de ribera: alisos \((Alnus glutinosa)\), álamos blancos \((Populus alba)\), olmos \((Ulmus minor)\), chopos \((Populus nigra)\) -casi siempre plantados estos últimos. En los fondos de torrentes y valles más húmedos, las olmedas son la comunidad forestal más extendida, si bien cerca de las comunidades helofíticas (sobretodo cañizares) existen el salguero negro \((Salix cinerea subsp. oleifola)\) y los alisos. En realidad, todas estas comunidades se encuentran fuertemente entremezcladas y configuran un paisaje visual uniforme (Bros et al 1982). La extensión de las comunidades de bosque húmedo es muy residual, y tan sólo cerca del límite septentrional de la Plana existe una comunidad importante, en el margen del río Tordera. Pese a ello, los pocos espacios lineales de vegetación de ribera húmeda presentes, se distribuyen frecuentemente configurando ejes entre los espacios acuáticos.

Tabla 6.8.- Usos del suelo 1992 de la Plana del Vallès

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Nº Espacios</th>
<th>Área (m²)</th>
<th>% Paisaje</th>
<th>Área Media (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducifolias</td>
<td>50</td>
<td>726.300</td>
<td>0</td>
<td>14.526</td>
</tr>
<tr>
<td>Esclerófilas</td>
<td>296</td>
<td>19.876.500</td>
<td>3</td>
<td>67.150</td>
</tr>
<tr>
<td>Aciculífonias</td>
<td>845</td>
<td>128.258.100</td>
<td>19</td>
<td>151.785</td>
</tr>
<tr>
<td>Viña</td>
<td>52</td>
<td>1.054.800</td>
<td>0</td>
<td>20.285</td>
</tr>
<tr>
<td>Cultivos herbáceos de regadío</td>
<td>581</td>
<td>30.787.200</td>
<td>5</td>
<td>52.990</td>
</tr>
<tr>
<td>Cultivos herbáceos de secano</td>
<td>934</td>
<td>224.402.400</td>
<td>34</td>
<td>240.260</td>
</tr>
<tr>
<td>Frutales de secano</td>
<td>278</td>
<td>6.325.200</td>
<td>1</td>
<td>22.753</td>
</tr>
<tr>
<td>Frutales de regadío</td>
<td>43</td>
<td>618.300</td>
<td>0</td>
<td>14.379</td>
</tr>
<tr>
<td>Núcleos urbanos</td>
<td>151</td>
<td>45.463.500</td>
<td>7</td>
<td>301.083</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>35</td>
<td>18.390.600</td>
<td>3</td>
<td>525.446</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>311</td>
<td>49.911.300</td>
<td>8</td>
<td>160.486</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>498</td>
<td>46.567.800</td>
<td>7</td>
<td>93.510</td>
</tr>
<tr>
<td>Zonas quemadas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vegetación escasa</td>
<td>693</td>
<td>26.973.000</td>
<td>4</td>
<td>38.922</td>
</tr>
<tr>
<td>Matorrales y prados</td>
<td>1.158</td>
<td>62.610.300</td>
<td>9</td>
<td>54.068</td>
</tr>
<tr>
<td>Arenales y playas</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agua</td>
<td>72</td>
<td>131.400</td>
<td>0</td>
<td>1.825</td>
</tr>
<tr>
<td>Total</td>
<td>5.997</td>
<td>662.096.704</td>
<td>100</td>
<td>110.405</td>
</tr>
</tbody>
</table>

Se constata igualmente por diversos estudios que los torrentes urbanos ejercen la función de corredores de la fauna (Aran 1996). Este hecho, aunque viene forzado de entrada por la elevada urbanización del territorio, es también una función propia (a
El principio ‘agregados con enclaves’

proteger) de las configuraciones de los espacios hídricos en los sistemas naturales, ya que estos se consideran como zonas de especial importancia para las conexiones biológicas (Bennet 1990; Diego et al. 1994). La identificación entre la red hidrográfica y las zonas de paso se debe pues a la constatación del papel trascendental de los cursos de agua y el micro-sistema acuático, para muchas especies (acuáticas y terrestres) de la zona, que presentan una gran dependencia de estos medios por motivos tróficos (Jordà 1985). Allí es donde se da una mayor variedad de especies y una riqueza faunística considerable.

6.7.4.- Condiciones agrícolas

A pesar de la uniformidad comarcal de la depresión, la Plana no tiene siempre las mismas características:

- En la parte septentrional predominan las tierras de secano, con los valles encajados de las rieras y torrentes descendentes del Montseny.

- Desde Granollers hasta Sabadell en cambio, los amplios valles aluviales dan una apariencia y una ondulación propias a la Plana central, con muchos centros de población y una agricultura con abundantes franjas de regadío.

- En la parte meridional de la Plana, hasta las tierras de Ustrell y Castellbisbal, cerca del Llobregat, los torrentes han desecado las lomas, que tienen pocas reservas de agua, dando a este sector más occidental un relieve más roto y menos fértil, adecuado al cultivo arbustivo y arbóreo, y con menos núcleos de población.

La distribución de la propiedad agraria no se encuentra tan repartida en el sector occidental como en el sector oriental, en el entorno de Granollers. En la parte occidental de la Plana, la agricultura ha sido aún más abandonada que en el sector oriental. La viña, que era antes extensa, ha sufrido una regresión sin que se haya sustituido por otros cultivos. La importancia de la industria en las poblaciones del sector, ha absorbido una parte del terreno agrícola. La ganadería no es tan importante igualmente en el sector occidental, y en el suelo más rocoso o menos profundo abundan más los cultivos arbóreos. Los huertos familiares cerca de los grandes núcleos de población se suman a la estructura heterogénea de la agricultura cerca de las poblaciones industriales, como el abandono de cultivos (Solé i Sabarís 1982).
6.7.5.- Características socio-económicas y estrategias medioambientales

La industria textil ha sido históricamente el factor económico fundamental en la creación de las dos grandes poblaciones de Sabadell y Terrassa. Hoy en día sin embargo, la diversificación con la industria metalúrgica y química convierten a la comarca en una de las más variadas económicamente, siendo en el período de post-crisis de los años ochenta una zona de localización preferente de las inversiones industriales (ap. 6.2).

A nivel comarcal, el marzo del año 1997 el Vallès Occidental define su Pacto por la Ocupación ‘en favor del crecimiento, la competitividad, la ocupación, la cohesión social y la sostenibilidad del territorio’. Con ello, desde el mundo local y por medio de programas de promoción económica y ocupación, se pretende también reforzar la construcción territorial del Vallès Occidental.

Actualmente, las cifras que se barajan para el dimensionamiento de las infraestructuras están orientadas a dar respuesta a una demanda de cerca de medio millón de viajes/día en la movilidad entre el Vallès i el Barcelonés. Ello conlleva una política clara de asentamientos industriales y de servicios, y una política de ordenación logística de la misma envergadura, que permita un servicio eficiente.

El actual proceso de metropolinización de este paisaje se evidencia tanto por el enorme peso de la tipología urbanizada, como especialmente por el importante peso de la urbanización poco densa, en forma de urbanizaciones o zonas industriales (tabla 6.8; figura 6.10). Por otro lado, el impacto de movilidad sobre la huella ecológica es muy alto y creciente. Para el caso de ciudades residenciales dispersas del Vallès como St.Cugat o Matadepera, esta huella es de las más elevadas de Catalunya (Boix et al 2000). Este hecho, junto con las grandes infraestructuras viales existentes (rodeando el conglomerado urbano de Barcelona), motiva la creación de un gran espacio urbanizado interconectado (el mayor espacio del paisaje de hecho –ap. 8.5).
El factor metropolitano se está potenciando actualmente de forma especial con la planificación del agregado urbano denominado ‘Vallès Ciutat’245, de poco menos de un millón de habitantes, con unas perspectivas de crecimiento muy superiores a la media estatal.246 Actualmente de hecho, es posible argumentar que se está configurando un espacio metropolitano jerárquico (dependiente de la gran ciudad), que rompe con la tradicional predominancia y estructura en red de las ciudades medianas de la Plana (Sabadell, Terrassa, Granollers). Esta ha sido definida siempre como la característica plurinuclearidad de la Región Metropolitana de Barcelona (ap. 6.2).

Por otro lado, la abundante colección de planes estratégicos de ámbito local en las dos comarcas vallesanas (Mollet, Granollers, Castellar, Matadepera, Terrassa, Sabadell,245 Término utilizado por los agentes económicos y culturales (Parc Tecnològic del Vallès, Universitat Autònoma de Barcelona, etc.) que integran el denominado ‘Club de la B-30’ -en referencia al lateral de la autopista A-8, que ejerce las funciones de corredor metropolitano.
246 Así en 2003 ha sido aprobado por la Comisión de Urbanismo de Barcelona el Plan Parcial del Centre Direccional de Cerdanyola del Vallès -ya contemplado en el Plan General Metropolitano de 1975-, con un total de 339 ha. Está ubicado por un lado entre la Universitat Autònoma de Barcelona y el Parc Tecnològic del Vallès, y del otro entre el núcleo de Cerdanyola y el término municipal de Sant Cugat. Según la planificación, se garantiza la pervivencia del corredor biológico que conecta el Parque de Colcerola con Sant Llorenç de Munt, y se destina el suelo básicamente a actividades industriales limpias y una parte a residencial.
Viladecavalls, Rubí), así como los planes para la sociedad de la información (Terrassa, Rubí, St.Cugat), son posiblemente un indicativo de la toma de consciencia cuanto a la necesidad de afrontar los retos que se derivan de su proceso de metropolinización (y también de la percepción de los riesgos del fenómeno de la metropolinización posiblemente).

En oposición a esto, los movimientos naturalistas y ecologistas promueven desde hace años (con la complicidad de entidades cívicas y locales en muchos casos), la necesaria preservación y mejora del entorno natural aún existente en el paisaje. De hecho, con las previsiones del suelo urbanizable programado, se propugna que una propuesta de creación de ‘ciudad compacta’ frente a la ciudad dispersa que domina en la actual expansión urbana, debería considerar en su propio interés la preservación de los espacios verdes que quedan en la Plana, integrándolos en el proyecto colectivo ciudadano (Forum Terrassenc 1996). Esto evitaría su desaparición y el mal funcionamiento ecológico del territorio (y de los sistemas artificiales en consecuencia, que con el riesgo potencial de las riadas se incrementa notablemente). La preservación de los espacios naturales que define el sistema hidrológico en toda su cuenca se presenta entonces como la forma de asegurarlo.247

El rico patrimonio histórico cultural de este paisaje (con restos de poblamiento prehistórico, ibero, romano y visigótico), debe ser una de las bases para la identificación como espacio con personalidad propia, que incremente sus capacidades contra la homogeneización urbana metropolitana.248 Ello en un paisaje ya altamente afectado en su configuración interna por la metropolinización.

En este sentido, existen propuestas concretas para la creación de vías verdes en la Plana del Vallès entre St. Llorenç y Collserola, con un trazado próximo en su paso a los terrenos de la mancomunidad Sabadell-Terrassa y la Serra de Galliners, al lado de la autopista A-18 hasta atravesar la B-30 a la altura de Bellaterra (entre Cerdanyola y St. Cugat), con los corredores del mismo nombre (Forum Terrassenc 1996).

El denominado ‘Camí dels Monjos’, ruta medieval entre los monasterios de St. Cugat y St. Llorenç del Munt, es igualmente ejemplo de un itinerario cultural que atraviesa la Plana de Este a Oeste, y que por su conservación adecuada permitiría diseñar corredores y pasos en zonas perirubanas marginales y fragmentadas -así como potenciar estrategias urbanas de identidad cultural.

247
248
6.8.- Usos del suelo y ocupación del territorio en los cinco paisajes

Una indicación de la relevancia de los usos del suelo (como se defiende desde la Biología de la conservación), es la relación directa entre el tamaño de los espacios naturales y la presencia de hábitats adecuados para la mayoría de las especies faunísticas en un territorio. Ello lleva a considerar igualmente el análisis de la ocupación por los usos del suelo en el paisaje como la principal herramienta en el reconocimiento de las capacidades y diagnóstico de un territorio, mediante el análisis de sus sistemas natural y antrópico.249

La variabilidad ecológica se considera de hecho el factor clave para la determinación de las potencialidades de conservación de un territorio. Partiendo de la constatación que existe una relación entre la tipología ecológica espacial de un paisaje y su funcionalidad y los procesos ecológicos inherentes, en el análisis de las configuraciones del paisaje la variabilidad ecológica viene representada por la heterogeneidad espacial del mosaico (ap.3.5). Esta heterogeneidad se define espacialmente como la diversidad interna de tipologías de usos del suelo, en relación con su funcionalidad ecológica.

Las variables de composición se consideran los descriptivos básicos de la configuración del paisaje (Gustafson 1998). Para el análisis composicional de los espacios del paisaje según tamaño y usos, el tamaño medio o ‘grano’ y la diversidad interna de las tipologías de espacios, serán así las variables de composición consideradas especialmente relevantes.

6.8.1.- Análisis de la diversidad de usos en los cinco paisajes

Se han generalizado desde hace unas décadas algunas clasificaciones de las tipologías de elementos espaciales en función de los usos, como la del sistema LULC (Land Use and Land Cover, Anderson et al 1976), considerado como el estándar de clasificación territorial por las agencias gubernamentales de EEUU. Esta clasificación teórica se ha definido en la misma línea específicamente para el caso de los paisajes mediterráneos (tabla 6.1).

249 La existencia de grandes espacios naturales es también un requisito para la definición de redes de espacios interconectados, que consideren las metapoblaciones de las especies (Noss & Cooperrider 1994; Hanski & Simberloff 1997).
Las tipologías de espacios agregados y las configuraciones del paisaje que se obtienen, son de referencia a las actividades antrópicas principalmente, aunque definen también los espacios naturales que constituyen los hábitats de especies vegetales y faunísticas, de estas zonas altamente humanizadas.

Tabla 6.9.- Clasificación de las unidades del paisaje mediterráneo

1. AREA URBANIZADA	1.1 Urbanización densa
	1.2 Urbanización con espacios vacíos
	1.3 Urbanización con espacios verdes
	1.4 Núcleos rurales
2. TERRENO CULTIVADO	2.1 Secano herbáceo
	2.2 Viñedo
	2.3 Secano arbóreo
	2.4 Clases mixtas
	2.5 Cultivos regados
3. AREAS FORESTALES	3.1 Bosques de hoja caduca
	3.2 Bosques de hoja perenne
	3.2.1 Encinar
	3.2.2 Pinar
	3.3 Bosque alternante con pinar
4. MATORRAL, PRADERAS Y PASTIZALES	4.1 Prados permanentes de montaña
	4.2 Prados alternantes con pinar
	4.3 Matorral
	4.4 Matorral alternante con arbolado
	4.5 Matorral, pastizal y/o cultivos alternantes con arbolado (dehesa)
5. SUPERFICIE IMPRODUCTIVA	5.1 Roquedo desnudo
	5.2 Playas y superficies arenosas
	5.3 Canteras y minería
6. AGUA	6.1 Lagos naturales
	6.2 Lagos naturales
	6.3 Embalses
	6.4 Canales de riego

Los índices de diversidad interna del paisaje según usos del suelo nos proporcionan la información general que se requiere de cada paisaje, cuanto a diversidad o dominancia de determinados tipos de usos de los espacios del paisaje. Con ello, es posible una primera caracterización de la diversidad de usos del suelo en cada subgrupo de espacios, así como su comparación (Tabla 6.9).

Si calculamos los índices de diversidad de los espacios, podemos hacerlo tanto por el porcentaje (100) o proporción \(p_i \) (1) de superficie respectiva de cada uso, o bien por el número (igualmente el porcentaje o proporción) de espacios presentes en cada subgrupo.\(^{250}\)

\(^{250}\) La normalización de estos valores por la equiprobabilidad es la dominancia. Se trata de la normalización del índice de diversidad por la diversidad máxima (\(H_{\text{max}} \)), que corresponde al logaritmo del número de clases:

\[
D_0 = \frac{(H_{\text{max}} + \sum_{i=1}^{n} p_i \cdot \ln(p_i))}{H_{\text{max}}} \quad H = -\sum_{i} p_i \ln p_i
\]
Para el estudio se considera la mayor aportación de información del índice basado en la superficie relativa de cada subgrupo. Ello es así por la naturaleza agregada del análisis, si bien se calculan igualmente los índices de diversidad por número de espacios, como otro descriptivo de la diversidad del paisaje.
Como resultado, los índices de diversidad obtenidos son un descriptivo sobre la composición interna del paisaje. Estos índices nos ayudarán a corroborar la descripción realizada de los territorios de estudio (tabla 6.10), pero especialmente serán la base con que comparar los resultados obtenidos por la diversidad en base a las agrupaciones AWO -cap 8.

De los valores obtenidos, destaca el paisaje de la Plana del Vallès con el valor más elevado (2). Por el contrario, la Plana de Vic ofrece el valor más bajo de la diversidad (1,1). En ambos casos, los valores del índice parecen relacionados con la mayor presencia de las tipologías de usos urbanizados en el Vallès, además de la ausencia de las clases de usos de regadío, frutales y viña en la Plana de Vic. El resto de paisajes se encuentra en una situación intermedia, con la Plana de Bages a la cabeza (1,71).

En la interpretación de la diversidad obtenida, debe tenerse en cuenta que en realidad esta es un reflejo de la heterogeneidad de los usos del suelo en el paisaje. Es decir, constata la presencia en determinadas proporciones óptimas (cerca de la equiprobabilidad) de los usos del suelo en el paisaje. Entonces la diversidad natural aparecerá reflejada al eliminar los usos artificiales del territorio -aunque en la interpretación de la naturalidad puede tenerse en cuenta, sin embargo, la inclusión de determinados usos agrícolas. Característicamente, en el caso de la Plana de Vic, la ausencia de viña y frutales (por las condiciones climáticas adversas), determina un bajo índice en cualquier caso.251

Para la interpretación de la heterogeneidad del paisaje en relación con el resto de usos, se requiere una formulación que tenga en cuenta por tanto la diversa significación de los usos del suelo. Debe realizarse, en conclusión, una consideración previa sobre su naturalidad y las implicaciones de su uso, de cara a la modelización –tal como hace la definición AWO sobre la heterogeneidad del paisaje. Desde un punto de vista aplicado, es destacable su posible interés para el análisis simplificado de los usos del suelo y la ocupación del territorio –y especialmente necesario para la planificación.

251 Ello es así cuando hay sin embargo presencia de vegetación forestal diversa, en grado superior a paisajes como los del Pla de la Conca de Barberà y del Penedès.
7.- DEFINICIÓN APLICADA DEL PRINCIPIO AWO

7.1.- Los criterios y su aplicabilidad

Los criterios que establece el principio AWO y la Spatial Solution se definen simplemente como criterios de optimización funcional para la planificación física (o directrices genéricas), principalmente a través de la configuración espacial de los usos del suelo. No existen especificaciones ni aplicaciones que cuantifiquen los porcentajes de usos óptimos de cada tipología ni sus umbrales, a pesar de su clara definición espacial. No obstante y una vez analizado el principio, por el presente estudio se considera que este aspecto (cuantificación y modelado en base AWO) es el que aportará los mayores beneficios de cara a la prospección –el fin que persigue de forma declarada su autor. Con ello podrá integrarse de manera técnicamente relevante en el proceso sintético de la planificación integrada.

El objetivo ahora es el de avanzar en la definición de los requisitos para la modelización, con los que analizar globalmente el paisaje y su grado de optimicidad. Se emprende pues el análisis y la modelización del principio, de cara a formular una propuesta de aplicabilidad basada en el análisis de los paisajes de estudio. Se pretende con ello también realizar una valoración del principio conceptual, a partir de las cuestiones surgidas en su desarrollo teórico y aplicado. La formulación de los siete criterios evaluativos del paisaje y su posible cuantificación es el instrumento de partida para este propósito, con la descripción de las variables a utilizar.

<table>
<thead>
<tr>
<th>Tabla 7.1.- Criterios AWO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Necesaria existencia de Grandes espacios naturales (tipologías ‘forestal’ y ‘natural no forestal’)</td>
</tr>
<tr>
<td>2. Máxima varianza en el tamaño del grano de los espacios</td>
</tr>
<tr>
<td>3. Existencia de más de un gran espacio natural/ agrícola</td>
</tr>
<tr>
<td>4. Presencia adecuada de espacios de pequeñas dimensiones (enclaves)</td>
</tr>
<tr>
<td>5. Localización de los enclaves a lo largo de los límites de los grandes espacios</td>
</tr>
<tr>
<td>6. Existencia de enclaves de vegetación natural en todo el paisaje</td>
</tr>
<tr>
<td>7. Necesaria existencia de corredores entre grandes espacios</td>
</tr>
</tbody>
</table>

7.1.1.-Formulación

Partimos de una primera tabla básica para el análisis cualitativo de los criterios, por la valoración de la presencia o ausencia de los aspectos que se mencionan (Tabla 7.1).
Esta tabla ofrece ya una primera descripción intuitiva de la distribución interna y funcionalidad de los elementos para cada paisaje, con que realizar su posterior modelización. Procedemos ahora a explicitar cada uno de los criterios referidos en el principio (expuestos de forma introductoria en el apartado 1.4), para conocer su significado y la valoración que se realiza de ellos (de cara a su modelización):

1.- **Existencia de grandes espacios de vegetación natural**

Este criterio básico del modelo postula la necesidad, para el buen funcionamiento ecológico del paisaje, de la existencia de espacios naturales de suficiente entidad como para albergar las especies con necesidades extensas de territorio. Estas son las especies más amenazadas por la desaparición de los ecosistemas naturales preexistentes, en territorios con índices elevados de acción antrópica.

Los espacios forestales son los principales integrantes de los grandes espacios de vegetación natural en el estudio, a los que hay que añadir los grandes espacios de vegetación natural no-forestal (en transición). En los paisajes mediterráneos estos últimos se corresponden muchas veces con nuevas (o antiguas) grandes superficies quemadas – o agrícolas abandonadas, de menores dimensiones (Pino et al 2000).

2.- **Varianza en el tamaño del grano**

Por esta premisa se establece la necesidad de contar con la máxima variación en el tamaño de ‘grano’ del paisaje. Ello implica favorecer la variación en el tamaño de sus espacios integrantes, como son el gran espacio de la matriz de fondo y los espacios de menores dimensiones (enclaves): así, se deduce que la diferencia entre estos dos extremos debe ser idealmente máxima, para que sea considerada como un factor positivo en relación a los procesos ecológicos del paisaje.

Con ello se obtienen las ventajas funcionales que el modelo atribuye tanto a los grandes espacios como a los de menor tamaño (puntos 1 y 4). Como reverso, la maximización de la varianza estadísticamente implica la menor presencia de espacios de tipo ‘mediano’ -los cuales son los casos que aportan menor dispersión a la varianza. La varianza (como medida de la dispersión cuadrática respecto a la media de una población), o su raíz cuadrada, la desviación estándar, son así los descriptivos a considerar.
3.- Más de un gran bloque de vegetación natural o agricultura

La existencia del mayor número posible de grandes espacios de vegetación natural y de superficie agrícola se considera como otra de las premisas básicas del modelo. La existencia de diversos grandes espacios agrícolas, es pues deseable de forma óptima en el paisaje. Las ventajas de estos espacios radican en que con ellos se asegura la variabilidad genética de las especies y se minimizan los posibles efectos de las catástrofes naturales, o los impactos humanos sobre las poblaciones.

No se menciona sin embargo la conveniencia de este misma tipología para los usos urbanizados, aunque debe mencionarse que este modelo se ideó en su momento para afrontar la compleja situación de los paisajes periurbanos de EEUU (los denominados ‘suburbs’)-por lo que se da por supuesta su existencia en realidad. 252

4.- Existencia de enclaves

Los enclaves o espacios de menor dimensión, insertados completamente dentro de espacios mayores (como mínimo dentro de la matriz del paisaje), se consideran funcionalmente necesarios de cara a aumentar la diversidad genética de las especies, así como para proporcionar espacios diferenciados de actividad humana en el paisaje. Su posible utilidad como conectores para desplazamientos de fauna (stepping stones) es el principal beneficio ecológico.

Cabe destacar la propuesta de permitir pequeños espacios urbanizados fuera de los grandes espacios urbanos (pero cercanos a sus límites), como fórmula de aproximación a la diversidad de los sistemas. Así, la presencia de estos pequeños espacios tanto naturales como antrópicos, asegura la heterogeneidad necesaria dentro del paisaje, sin crear aleatoriedad espacial ni homogeneidad.

5.- Localización de los enclaves a lo largo de los límites de los grandes espacios

En su distribución, los enclaves deberían organizarse siguiendo el óptimo conceptual, en el cual el modelo favorece la proximidad de los enclaves respecto a los límites de los grandes espacios. Esto es así de forma genérica (entre cualquier tipo de enclave y de gran espacio), como especialmente de forma ‘gravitacional’ en el caso de los espacios del mismo uso: los enclaves deben concentrarse principalmente en las

252 R.Forman, comunicación personal (Barcelona, Mayo 2001).
proximidades de los grandes espacios de su mismo tipo, y disminuir su densidad a medida que se alejan de ellos (siempre en proximidad a los límites de cualesquiera de los grandes espacios). Con ello, se pretende garantizar la óptima distribución de los espacios y recursos en el paisaje, evitando la fragmentación y la perforación excesiva del núcleo de los grandes espacios naturales y rurales.

6.- Existencia de enclaves de vegetación natural

Se remarca en este punto el hecho que los enclaves de vegetación natural, distribuidos a lo largo y ancho del paisaje, aseguran la posibilidad de desplazamientos ocasionales de fauna -sin suplir en su funcionalidad a los grandes espacios. Se considera que son complementarios a estos últimos, y sientan además la base para la delimitación de corredores entre grandes espacios. Por su análisis podemos establecer, igualmente, el grado de fragmentación existente (proceso) en que se encuentra el territorio natural. Cabe destacar sin embargo que la posibilidad del análisis de este criterio de distribución, depende a la postre del simple grado de existencia de esta tipología en el paisaje natural. La visualización de la distribución de esta tipología sobre el mapa es entonces la herramienta complementaria más directa.

7.- Existencia de corredores entre grandes espacios

Con ello se garantizan los flujos ecológicos en el paisaje. Existen dos características teóricas generales, favorables para la definición de corredores de vegetación natural en el paisaje: la eficiencia en los desplazamientos y la protección del espacio de la matriz (Forman 1995a). Como negativa, por otro lado, se encuentra el de ser en algunos casos una barrera entre dos espacios colindantes, especialmente en los casos de corredores de origen humano (infraestructuras viarias p.e.).

Los atributos estructuralmente sobresalientes de los corredores son la anchura y la conectividad. Sin embargo, es de destacar que los propios límites entre dos espacios diversos, tienen idéntica función como conductos para el desplazamiento de la fauna a lo largo del paisaje (Forman 1995a).
El principio ‘agregados con enclaves’

Tabla 7.2.- Calificación simple de los criterios del modelo en los cinco paisajes

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Grandes espacios naturales (FOR/NNF)</th>
<th>Varianza tamaño del grano</th>
<th>1 o + gran espacio natural/agrícola</th>
<th>Existencia enclaves</th>
<th>Enclaves próximos a grandes espacios</th>
<th>Enclaves de vegetación natural</th>
<th>Corredores entre grandes espacios</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. Bages</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>-</td>
</tr>
<tr>
<td>P. Conca B</td>
<td>NO</td>
<td>SÍ</td>
<td>SÍ (AGR)</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>-</td>
</tr>
<tr>
<td>P. Penedès</td>
<td>NO</td>
<td>SÍ</td>
<td>SÍ (AGR)</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>-</td>
</tr>
<tr>
<td>P. Vallès</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>-</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>SÍ</td>
<td>-</td>
</tr>
</tbody>
</table>

En una primera delimitación se han dividido los siete criterios iniciales según si son o no de fácil medida o apreciación para el posterior análisis. En el último grupo, de difícil modelización o valoración, se encuentran estrictamente los dos criterios mencionados de la proximidad de los enclaves a los grandes espacios, y el de la existencia de corredores entre grandes espacios (criterios 5 y 7 –tabla 7.2). El resto de criterios se consideran de cuantificación más simple, modelables mediante índices de composición.253

7.1.2.- Cuantificación y problemática de la proximidad entre espacios

De entrada, la modelización de una propuesta de este tipo (interrelaciones gravitacionales entre tipos de espacios por tamaño y usos) sería sumamente compleja y posiblemente carente de fundamento conceptual (ap. 3.2.3). Por tanto, la opción del presente estudio descarta este tipo de modelización.254 Este criterio a pesar de todo, aparece como una de las claves en la formulación inicial, por lo que es susceptible de aportar evidencias sobre las configuraciones de ocupación del territorio, más allá de su formulación como modelo de interacción espacial. Como tal, merece especial consideración por parte del análisis realizado en este estudio, y por ello se ha profundizado en su análisis, llegando a una propuesta más simple que la modelización gravitacional (ap.9.4).

253 En el caso del criterio de presencia de enclaves de vegetación natural ‘a lo largo del paisaje’ (criterio nº 6), se considera que esta premisa de distribución está en primer lugar correlacionada con su mera existencia –composicionalmente definido. Su distribución será de especial relevancia sólo en el caso de necesidad de definición experta de los corredores naturales (la cual pretende contemplar el criterio nº7).

254 Cabe remarcar de todos modos el valor de este criterio -basado en la eficiencia ecológica y funcional de la proximidad de los espacios de un mismo uso, y la proximidad a los límites de los grandes espacios - especialmente para el caso de la planificación, en la localización de las nuevas actividades humanas en el territorio -siguiendo la mejor lógica medioambiental posible.
En este sentido -y después de las diversas tentativas experimentales-, se considera que la cuantificación en base a las distancias medias entre los enclaves y los grandes espacios es un indicador válido de este criterio distribucional –el cual referirá también la optimicidad de la configuración interna del paisaje. Así, de manera general se establece que a menor distancia media entre estos dos tipos de espacios, es mayor el grado de optimicidad en la configuración del paisaje. Esta media la podemos obtener de forma conjunta o desagregada, para los cuatro tipos de usos del suelo.

En esta modelización, se aplica igualmente la apreciación que hace el autor cuanto a que los pequeños espacios de tipo forestal no deben seguir este tipo de localización, siendo simplemente la más amplia posible sobre el territorio -fomentando así la presencia de espacios de vegetación natural a lo largo y ancho del paisaje, dentro de cualquier gran espacio y tipo de uso. Esta salvedad se corresponde precisamente con la definición del criterio nº 7 del modelo, básico para la formulación de corredores entre grandes espacios naturales. Se considera también de especial importancia valorar los efectos composicionales, susceptibles de tener influencia sobre la variable de la distancia media (ap.9.5)

7.1.3.- Problemática de la definición de corredores naturales

En los paisajes del presente estudio (históricamente rurales), la urbanización ha supuesto en muchos casos la pérdida de su carácter tradicional, para convertirse en un ejemplo de los efectos de la industrialización y la urbanización primero, y del fenómeno suburbano y la metropolinización después (cap.6). Entre los resultados indeseados de este proceso, se encuentra de forma especial la pérdida de las capacidades y función ecológica de los sistemas naturales. Como ejemplos destacados están la disminución, fragmentación y el aislamiento de los hábitats naturales. La necesidad de interconectar las poblaciones aisladas, definiendo interconexiones naturales entre los espacios naturales (cuando sea ecológicamente oportuno), se considera hoy día una de las prioridades en el terreno de la conservación (teoría de las metapoblaciones; Hanski & Simberloff 1997).

La problemática para el análisis de este criterio radica en el hecho de su necesaria modelización y análisis experto, sin que exista realmente un tratamiento geográfico

sencillo mediante estadísticos espaciales -para su aplicación mediante modelos de cartografía digital, por ejemplo.\(^{256}\)

7.1.4.- La alternativa de los enclaves forestales

Existe una referencia indirecta para la determinación de las posibilidades de establecimiento de corredores entre grandes espacios forestales, como sería el grado de presencia de enclaves forestales en el paisaje (y la propia existencia de los agregados forestales previamente), además del estudio de campo y la modelización (por superposición de los sistemas hídrico y viario p.e.). La existencia de estos espacios por ello puede ser tomado también como indicativo del grado de naturalidad del resto del paisaje no natural (entre los grandes espacios naturales), y es considerado por tanto un factor (o índice) a valorar para este criterio.

Así, con este índice de presencia se valoran indirectamente las posibilidades de conexiones naturales (criterio Nº7), habida cuenta también que, por lo general, la matriz rural de estos paisajes mediterráneos está compuesta de usos agrícolas no intensivos (ap.6.2) -lo cual es indicativo por sí solo de un mayor grado de ‘naturaleza’ del paisaje. Este hecho espacial es por tanto considerado importante de cara a favorecer los desplazamientos de la fauna (Forman 1995a).

Esta adaptación del criterio se corresponde igualmente a una visión amplia del espacio interno del mosaico del paisaje -siendo la matriz el espacio donde se ubican mayoritariamente los enclaves. Es coincidente, de hecho, con los postulados provenientes de la Biología de la conservación, cuanto a la necesidad de considerar la totalidad de los espacios del paisaje para la preservación de sus valores naturales (Noss & Cooperrider 1994; Pino & Rodà 1999). La naturaleza de esta matriz caracteriza en gran manera el paisaje mismo, y como tal es uno de los elementos espaciales básicos que el principio analiza -como debería hacer cualquier modelo espacial de ordenación del territorio, de hecho. Inevitablemente, la superficie relativa de este espacio ‘de fondo’ respecto los grandes espacios naturales, modifica de igual manera la proporción existente de pequeños espacios forestales-naturales en el paisaje: por su fragmentación, a menor peso relativo de la matriz se dará mayor peso de los enclaves, sobretodo de los grandes

\(^{256}\) No obstante existen propuestas de base simplificada para su determinación mediante SIGs (Aran 1997 p.e.).
Definición aplicada del principio AWO

Espacios -aunque en el proceso tal vez aparecerán diversas configuraciones resultantes (Forman 1995a).

Con la consideración de este criterio sustitutivo, también se recoge una de las características destacadas de estos paisajes mediterráneos, cuanto a la existencia de remanentes de espacios naturales residuales en los cauces de los cursos hídricos. De fuerte estacionalidad y complicada orografía, están situados muchas veces en entornos recientemente urbanizados, actuando realmente como espacios de conexión entre los grandes espacios forestales del paisaje. En una escala inferior, se conectan igualmente con paisajes forestales vecinos, como sucede en el caso de la Plana del Vallès.

En definitiva, por el estudio se considera que el criterio del número de enclaves de vegetación natural sirve de hecho como referencia indirecta, en primer lugar para su distribución ‘a lo largo y ancho del paisaje’, y después cuanto a las posibilidades reales de conexión entre grandes espacios naturales –en caso de existencia de grandes espacios naturales, con necesidades de interconexión. Como constricciones deben considerarse la existencia de barreras espaciales, especialmente en la proximidad de grandes extensiones urbanizadas o entornos metropolitanos -los cuales suponen una barrera continua, al estar conectados por grandes infraestructuras viarias.

La complejidad de la modelización a realizar, así como de la obtención de los indicadores necesarios, hace necesaria la búsqueda de este tipo de referencias expertas. Se deja de lado por ello la valoración del criterio mismo (como una de las variables a modelizar por el principio), y se le supedita al criterio composicional de la presencia de los enclaves forestales en el paisaje y su cuantificación.

257 La idoneidad de los espacios de vegetación natural situados en los cursos hídricos se destaca por parte de muchos autores como base del sistema de corredores (Lewis 1964, McHarg 1969, Bennet 1990).

258 Esto es especialmente cierto en este caso (y el resto de paisajes mediterráneos estudiados por extensión, dada la recurrente orografía) como demuestra el seguimiento realizado de los movimientos de la fauna (jabalí p.e. -Sus scrofa), entre los grandes espacios forestales colindantes que circundan la Plana (Bros et al. 1982, Jordà 1985, Rossell 1988, Diego et al. 1994).
7.2.- Consideraciones para la modelización

A partir del análisis configuracional en base AWO, es posible plantear la modelización de los requerimientos funcionalmente óptimos que todo paisaje debe presentar, como sistema natural y humano sostenible. Su consideración de las distribuciones óptimas de los sistemas naturales y antrópicos en el paisaje, permite de hecho su definición como un modelo de optimización espacial -un instrumento usual en el análisis locacional para la planificación. Previamente sin embargo y de cara a su aplicabilidad, se requiere la consideración de determinados aspectos relacionados con la dimensión espacial de las tipologías de espacios AWO, no suficientemente tratados o resueltos por el principio –cap. 3.

7.2.1 - Conceptualización del tamaño de los espacios y formulación ‘adimensional’

Como era de esperar, el paisaje óptimo AWO no se define en base a un espacio teórico isotrópico, esto es un espacio abstracto idealizado con supuestos de comportamiento homogéneo –lo que facilitaría sin embargo las aproximaciones de base cuantitativa.259 Pero en su formulación tampoco nos específica cuales son las dimensiones y umbrales de las tipologías espaciales, que sí se definen conceptualmente. Es en base a su consideración normativa para la planificación (estableciendo un óptimo de las configuraciones del paisaje de forma ideal), que se han vislumbrado en el estudio las mayores reticencias y críticas a su formulación (ap.3.3.4). Además, ello conlleva y suscita fundamentalmente un problema de aplicación práctica: si bien se formula como un principio normativo de validez universal, por su falta de referencia a los aspectos de cuantificación de las tipologías y umbrales parece relegar a un segundo plano (o no resuelve) la consiguiente problemática ‘adimensionalidad’ de los espacios definidos -y por consiguiente el tratamiento práctico de la heterogeneidad espacial.260

Al igual que no define umbrales en el número o las superficies para las tipologías de espacios (excepto los grandes espacios naturales, también de forma flexible), tampoco tiene en cuenta la extensión del mismo. El paisaje viene definido por la repetición

259 La propia formulación AWO en base a la ‘naturalidad’ o funcionalidad de los usos del paisaje lo imposibilita, seguramente.
260 Una vez establecidos los criterios generales funcionalmente óptimos, la definición universal AWO se plantea en realidad desde la mayor de las flexibilidades operativas posible, cuarto a las configuraciones de espacios del paisaje a definir. Aun reconociendo su voluntad aplicada (pretensión eminentemente de prognosis de los paisajes), ahí radica posiblemente la mayor dificultad, de cara a su modelización.
característica de un patrón de configuración espacial (ap.3.3), que puede obedecer o no a factores naturales limitantes y de definición física del mismo (extensión).

En el caso de los paisajes de estudio y facilitando la solución aplicada de esta problemática, se ha incidido en la característica compartimentación física de los mismos (rodeados de unos paisajes característicos de media montaña muchas veces –ap.6.1), correspondiéndose con las llanuras de uso agrícola históricamente configuradas, en evolución hacia paisajes metropolitanos. En base a ello, es aplicable en la práctica la delimitación del paisaje: se obtiene de forma específica para los casos a analizar, sin tener en cuenta la falta de definición universal de los umbrales de las tipologías de espacios (esto es, se antepone su aplicación para la planificación, tal como persigue el principio). De esta forma, se soslaya la indefinición inherente (adimensionalidad) de las tipologías de espacios, a la vez que se contempla el paisaje como unidad de estudio en la escala adecuada: como nivel de integración ecológica. Es en base a esta definición física y concreta de los paisajes analizados que se hace posible el análisis de la heterogeneidad de las configuraciones del paisaje (y la interrelación con su funcionalidad), también desde formulaciones próximas al análisis de su diversidad o nivel de entropía.

La diferente extensión de los paisajes existentes, hará que puedan considerarse igualmente los resultados de la aplicación como una valoración de las posibles diferencias en la definición adimensional de las tipologías de espacios. Es de esperar, entonces, que los paisajes de mayor extensión muestren unos umbrales de valores característicamente más elevados. Igualmente, los paisajes de menor extensión deberían seguir linealmente una tendencia hacia unos umbrales característicamente más bajos. Tal vez entonces lo que sería sorpresivo es descubrir la existencia de unos umbrales de valores que se mantuvieran en un mismo entorno en todos los casos, lo que podría conferir mayor fuerza a una aproximación universal a la configuración de estos paisajes. Pero cabe remarcar

261 Teniendo en cuenta la naturaleza antrópica de esta dinámica de cambio ‘monocultural’, cabría esperar una repetición bastante universal, con patrones casi predefinidos. Por el lado opuesto, estaría su visión como un efecto claramente dependiente de factores socioculturales propios, como se ha remarcado tradicionalmente desde la Geografía.

262 Aunque desde una visión ‘estructuralista’ del problema de la selección de la escala, para el tratamiento de los fenómenos espaciales en Geografía.

263 Con ello aparecería (de forma tangencial) la posible existencia una ‘criticalidad organizada’ en la distribución de los espacios del paisaje.
El principio ‘agregados con enclaves’

en cualquier caso, que ello no afectará ni resolverá su característica formulación adimensional inicial.

7.2.2.- Definiciones topológicas

Para el análisis y tratamiento espacial de los elementos del paisaje en base AWO, es necesario abordar igualmente la definición ‘topológica’ con que se enfrenta la complejidad espacial existente de las realidades territoriales. Así vemos que el concepto de outliers (enclaves) nos refiere a ‘pequeños espacios fuera de su ámbito principal’, en una acepción que no es la acepción topológica del término.264

En base a las coberturas de datos tratadas en el estudio, en la práctica no es infrecuente encontrar inserciones de espacios ‘grandes’ dentro de espacios mayores. Es el caso de la presencia de grandes espacios dentro o fuera de la matriz de fondo del paisaje (usos forestal, urbanizado o natural no forestal sobre espacio rural; natural no forestal sobre espacio forestal; etc.), e incluso espacio natural dentro de espacios urbanizados que predominan como un fondo parcial.265 También es usual encontrar multiplicidad de situaciones en las que los espacios menores contienen a su vez enclaves, así como agrupaciones compactas de pequeños espacios de diferentes usos en determinados puntos del paisaje, que forman entidades espaciales mixtas diferenciadas o ‘multiusos’, claramente reconocibles (caso de las urbanizaciones dispersas, con elevado consumo de suelo).266

Manteniendo la nomenclatura original, en el estudio se ha equiparado enclave a ‘espacio pequeño’. Por tanto, se han considerado estos enclaves no estrictamente en términos topológicos, sino como sinónimo de los espacios pequeños de un determinado uso. De la diferenciación por tamaños sí se sigue la interpretación topológica posterior, coincidente con el concepto espacial de ‘espacio fuera del ámbito principal’ (outliers). El análisis de la complejidad real se aborda así en base principalmente respecto a los espacios de un mismo uso, pero en tipologías de diferente tamaño (grande-pequeño).

264 En tal caso se trataría de espacios que, independientemente de su tamaño, están insertados dentro de cualquier otro espacio mayor.
265 Este último caso se da especialmente cuando existe una importante red de infraestructuras viarias y núcleos urbanos interconectados, el cual circunscribe los espacios naturales existentes (como en el caso de la P. del Vallès).
266 Este es un factor espacial que determina, de hecho, una situación de predominio de los usos urbanos sobre el paisaje mayor de lo que proporcionan las estadísticas de suelo urbanizado.
El análisis guiado de los usos y espacios según el principio, diverge entonces de los análisis conjuntos de espacios y usos del paisaje realizados por criterios topológicos estrictos (o ‘enclaves topológicos’), en función de los espacios y usos que los contienen. Se considera, precisamente, que mediante esta formulación se evita una de las mayores complejidades en el análisis empírico aplicado del territorio. En este sentido, se la considera una interpretación adecuada y conveniente para la identificación y tratamiento de los espacios menores del paisaje, que facilita el análisis a realizar desde el campo del planeamiento físico. De esta manera, se simplifica de forma notable el análisis y la interpretación de la complejidad territorial existente -ya que supone un nivel inicial de abstracción o interpretación de los datos. Ello evita considerar en la práctica las inclusiones de los espacios y usos respecto el uso que los contenga (un nivel paralelo y más básico de análisis e interpretación topológica –‘inclusividad’).

A estos espacios pequeños o enclaves no topológicos, debe dárselos sin embargo un tratamiento topológico adecuado dentro de los Sistemas de Información Geográfica, puesto que para su análisis deben considerarse aspectos tales como su superficie relativa y las distancias a los límites de los grandes espacios (los cuales son comunes a dos grandes espacios -el de referencia, de igual uso, y el de inserción del enclave). Coincidiendo con la aproximación AWO (fig.1.1), en el presente estudio se establece que los enclaves pueden ser considerados como elementos puntuales, pero manteniendo sus superficies como atributo -aunque se plantea la necesidad de exceptuar tal vez el caso significativo de los enclaves de tamaño mediano. Es necesario por tanto establecer también de entrada los umbrales en el tamaño, que diferencie los espacios pequeños de los grandes y de los espacios medianos. Se remarca más si cabe entonces que la simplificación conceptual que propone el principio debe desarrollarse convenientemente, de forma que devenga una herramienta analítica espacialmente manejable en su aplicación como modelo espacial.

7.2.3.- Diferenciación entre los espacios

Entre los desarrollos y refinamientos necesarios para la aplicación del principio, están los referidos a la definición de las tipologías de espacios según tamaño. Como su

267 Un hecho evidenciado ya por las primeras pruebas realizadas en la fase inicial del estudio, que incluyeron análisis georreferenciado (vectorial) de los espacios por usos, y especialmente un análisis de los enclaves resultantes.
nombre indica, el principio parte de la diferenciación básica entre los dos tipos de espacios internos del paisaje (‘agregados-enclaves’). Esta diferenciación es también de rango, puesto que se da preeminencia a la existencia de los grandes espacios agregados, especialmente de los espacios de uso natural (en realidad como tendencia de aglomeración de los espacios internos del paisaje, cualquiera que sea su uso). Por otro lado, se defiende a la vez la utilidad de contar con espacios pequeños de los mismos usos, insertados en espacios de diferente uso (‘enclaves’).\(^{268}\)

Como uno de los resultados lógicos que conllevan tales premisas, ello implica inevitablemente la necesidad de mantener el mínimo número posible de espacios de tamaño ‘mediano’ en el paisaje, favoreciendo un mayor número de grandes y pequeños espacios. Coincidentemente, por el principio se remarca también la importancia de que se dé la máxima varianza en el tamaño del grano de los espacios; esto es, que se maximice la diferencia entre las tipologías por tamaño de los elementos internos del paisaje (criterio nº2).

Sin embargo y a pesar de la lógica de tal suposición, cabe decir que este punto no se explicita claramente por el principio, sino que simplemente se manifiesta que ‘se desconocen las ventajas’ de dicha tipología de espacios medianos (Forman 1995a). No obstante y dada la formulación conceptual de la cual el principio realiza una síntesis (con la explicitación de la función, estructura y cambio de las configuraciones del paisaje), esta afirmación (‘desconocimiento’ de las ventajas y utilidad funcional de esta tipología de espacios) cabe interpretarla en clave de afirmación por pasiva de su disfuncionalidad. La importancia de esta apreciación conceptual respecto los espacios medianos, es de hecho valorado como uno de los elementos centrales a considerar y explicitar a lo largo del estudio. Este es precisamente uno de los interrogantes que pueden condicionar la interpretación de los resultados del análisis composicional.\(^{269}\)

Estas son por tanto las formulaciones que subyacen a la hora de definir los umbrales de tamaño de los espacios, que no se explicitan claramente por el principio según el

\(^{268}\) Por otra parte, la diferenciación entre espacios grandes-pequeños aparece fomentada por el análisis de las curvas de distribución de los espacios –ap.8.1.

\(^{269}\) Como el autor del principio ya intuye –comunicación personal, mayo 2000. Precisamente el análisis composicional –al hacer el recuento y cruzar usos x tamaños de los espacios-, hará más evidente la disfuncionalidad de esta tipología (cap.8).
Definición aplicada del principio AWO

Estudio. Sin embargo los términos aplicados en que se realiza su formulación (diferenciación) son una parte esencial en la modelización, necesarios para dilucidar las implicaciones y desarrollos en el análisis composicional de los elementos del paisaje. Algo semejante sucede con la conceptualización y diferenciación funcional de otras tipologías de espacios según uso y tamaño, cuando se consideran de forma conjunta.

7.2.4.- Desarrollos conceptuales para la aplicación del modelo

Por el presente estudio se considera que dada su simplicidad, cualquier desarrollo en base AWO deberá basarse inevitablemente tanto en la interpretación de los criterios como en las implicaciones de sus presupuestos (algunas no formuladas explícitamente, pero deducibles lógicamente). Esto último supone ir más allá de la formulación inicial, y es necesario para afrontar el tratamiento de la totalidad de los espacios del sistema del paisaje. Para ello, deberá valorarse el impacto de los diversos criterios sobre el conjunto de las tipologías de espacios. Se trata pues de discernir (heuristicamente a veces) las implicaciones de la cuantificación de las tipologías AWO en cada caso -en base al área de espacios y usos conceptualizados como óptimos.

En base a la deducción lógica de las implicaciones de cada uno de los criterios formulados, es factible realizar entonces una visión por defecto del resto de tipologías (su impresión ‘en negativo’). Esta formulación implícita de los criterios del principio en base composicional, en realidad refiere igualmente a sus directrices o las apreciaciones realizadas en la conceptualización: su análisis deviene en definitiva una prueba de la consistencia lógica de su formulación. En este sentido, la formulación de sólo cuatro tipologías de espacios según uso y tamaño facilita esta aproximación conjunta, realizable en la mayoría de los casos por simple inferencia y diferenciación. Esta se considera por otro lado la clave que indica el potencial del principio para el propósito de modelización espacial del conjunto del territorio, aún partiendo inicialmente de los análisis del sistema natural del paisaje.

Como criterios espaciales implícitos en los postulados AWO (no formulados) destacan dos:

- Por un lado, se concluye fácilmente la necesidad de proponer un uso rural no intensivo en el territorio (o lo más extensivo posible), que favorezca la

270 En referencia también a la correcta funcionalidad de los sistemas naturales.
El principio ‘agregados con enclaves’

configuración óptima –distribución conjunta de los espacios naturales y urbanos en el paisaje. Se facilita de esta forma igualmente la existencia de conexiones naturales, tal y como se propone desde estrategias como la interconexión de biótopos.

• Por otro lado, se establece que será necesaria la existencia de grandes espacios de vegetación natural interconectados (siempre que tenga sentido ecológicamente), con abundancia paralelamente de pequeños espacios naturales, dispersos en el territorio. En parte como su reverso, implícitamente debe considerarse como un hecho positivo el que se den unos usos urbanos lo más concentrados posibles, evitando la fragmentación de los grandes espacios naturales. Para ello, además, los pequeños enclaves urbanos deberán estar cercanos a los límites entre los usos naturales o rurales y los urbanos –tal y como se postula por el criterio de las distancias óptimas entre agregados y enclaves (criterio nº5, tabla 7.1).

Estas cuestiones de planteamiento suscitadas por el estudio (cuanto a aplicabilidad y métodos), subyacen pues en la formulación de los criterios. Aunque se formula con clara vocación para la ordenación del territorio, cabe destacar que el desarrollo necesario para su aplicabilidad se enfrenta a las cuestiones esenciales del análisis de la heterogeneidad del paisaje (las que caracterizan su composición). En base a estos preceptos para el análisis aplicado, rigen pues los requerimientos para la modelización de la heterogeneidad del paisaje (la contrastación de tales requerimientos es en realidad la base para el análisis de las configuraciones AWO).
8.- **MODELIZACIÓN DE LAS TIPOLÓGIAS AWO**

A partir del estudio de los criterios del principio, se ha evidenciado su utilidad para la cuantificación de la heterogeneidad espacial de los paisajes (cap. 3). Se ha considerado igualmente la validez conceptual y la información aportada para la cuantificación de cada uno de los criterios del principio, principalmente en base a los factores composicionales que los definen (cap.7).

Específicamente, la heterogeneidad AWO refiere a la cuantificación del grado de entropía existente en el paisaje –e indirectamente al grado de sostenibilidad de los sistemas natural y humano (ap.4.3). La definición de las tipologías AWO deberá referir también las tendencias observadas en las curvas de las distribuciones de espacios en el paisaje. El objetivo en este punto es pues abordar su modelización aplicada, en base a criterios de composición y heterogeneidad del paisaje.

Operativamente, el análisis de los paisajes se emprende ahora por un lado para permitir la necesaria definición de las tipologías por uso y tamaño que requiere el principio. Por otro lado, para contrastar composicionalmente (desde el punto de vista del análisis geográfico sobretodo) la información aportada, tras la declaración de las tipologías de espacios resultantes (cap.9).

8.1.- **Variables y descriptivos de referencia**

El análisis funcional de los espacios internos del paisaje se realizará en base a las tipologías de los usos del suelo y el tamaño de los espacios. Las variables de composición utilizadas son el recuento del número de espacios de cada clase y su superficie relativa, como base para el análisis de la heterogeneidad del paisaje.

8.1.1.- Usos del suelo y tamaño de los espacios

De cara a la modelización espacial de los valores de composición del paisaje, inicialmente es necesario realizar la agrupación de los usos del suelo en clases similares, en función de la naturalidad de los usos. Esta agregación de hecho tiene valor interpretativo por sí misma, puesto que las agrupaciones espaciales resultantes ofrecen un amplio campo para el análisis espacial y la interpretación de sus distribuciones, con implicaciones en la funcionalidad ecológica del territorio. Igualmente, el análisis de los usos que componen cada una de las tipologías antes y después de la agregación, se
El principio ‘agregados con enclaves’

considera que puede aportar información relevante acerca de los espacios agregados resultantes, ya que explicará aspectos diferenciales de su composición.

Después de la agregación por usos, se considera la agregación de los espacios en función de su tamaño. Ello tanto para caracterizar de forma efectiva la diversidad espacial existente, como para averiguar si existen las tipologías funcionalmente diferenciadas por el tamaño de los espacios, como propone explícitamente el principio AWO (división entre agregados-enclaves) o se sugiere en otros casos (espacios medianos).

8.1.2.-Gráficas de distribución de superficies

Figura 8.1.- Nº de espacios y superficie acumulada

Fuente: Elaboración propia

La característica distribución de los espacios del paisaje, de apariencia exponencial, se visualiza mucho mejor cuando se convierte la variable superficie a escala logarítmica (figura 8.1). Igualmente se convierte en una distribución con tendencia

271 Para determinar la distribución subyacente de una serie, es común considerar el ajuste de la distribución existente respecto una teórica (por la comparación de las frecuencias observadas en los datos p.e.). Vemos que en el caso del tamaño de los espacios en los paisajes de estudio, el tipo de tendencia o regresión que ajusta de la mejor forma todas las distribuciones observadas es la exponencial (figura 8.10).
logarítmica, al graficar el número de espacios y la superficie que estos aportan al total de la superficie acumulada (figura 8.2).

Figura 8.2.- Nº de espacios (log) y superficie acumulada

![Figura 8.2.- Nº de espacios (log) y superficie acumulada](image)

Fuente: Elaboración propia

Al considerar los gráficos de superficie acumulada por paisaje, se aprecia un elevado ajuste con una tendencia logarítmica. Es así en todos los casos (elevado coeficiente R^2), aunque por el gran número de observaciones cabe preguntarse en concreto por la validez de los ajustes respecto de algunas posibles tipologías de espacios. Especialmente cabe considerar los casos con mayor peso en la definición de la varianza (mayor tamaño), cuyo ajuste a las rectas es clave en la caracterización de la tendencia.
Las gráficas evidencian así una gran concentración en todos los casos de la superficie en unos pocos espacios, y un gran número de espacios que aportan poca superficie al total. Esta observación se visualiza mejor en las gráficas semi-logarítmicas (figura 8.2), dado que los primeros diez espacios contienen en la mayoría de los casos el grueso del total acumulado de superficie del paisaje. Se evidencia también en el gráfico de la superficie aportada por los espacios al total de la superficie acumulada (figura 8.3).

8.1.3.- Distribuciones de los paisajes y optimización

Por las apreciaciones de las gráficas, parece evidenciarse pues la coincidencia a grandes rasgos entre lógica considerada óptima del principio conceptual y las situaciones existentes: coexisten en los paisajes unos pocos grandes espacios, junto a una multitud de pequeños espacios. De forma general también, por la apreciación de las diferentes gráficas vemos que se dan situaciones claramente diferenciadas entre los casos –tal vez incluso respecto la tendencia que puede caracterizar mejor la distribución existente, en algún caso (P. del Vallès). Lo cual nos indica ya la existencia de unas diferencias
composicionales entre los paisajes de estudio, por simple comparación visual de las distribuciones.

Como se ha comprobado por las gráficas semi-logarítmicas, la importancia de las primeras observaciones ordenadas según tamaño (aproximadamente las 10 primeras) y su aportación a la superficie total del paisaje, se nos aparece como un hecho común remarcable de las distribuciones. Al analizar específicamente estos primeros casos, observamos que siguen una tendencia potencial en su distribución (figura 8.4).

Figura 8.4.- Ajuste potencial de los diez primeros espacios del paisaje -valores de la ecuación y coeficiente de regresión

Es interesante plantear (por su relación con la hipótesis del presente estudio) si esta tendencia observada puede o no considerarse como una regularidad adimensional; esto es, estar presente en su configuración de forma independiente de la extensión del paisaje. Esta observación empírica sobre las características comunes de las distribuciones de los mayores espacios en el paisaje (independientemente de su extensión, reflejada simplemente como un desplazamiento en la magnitud de \(y - superficie acumulada \) en la figura 8.1), permite así especular cuanto a si es indicativa o no de la existencia de ‘críticalidad organizada’ en las configuraciones de espacios en el paisaje –como suscitan
El principio ‘agregados con enclaves’

habitualmente las relaciones log-lineares de magnitud y frecuencia en el paisaje (Phillips 1999a). Esta observación coincide precisamente de forma remarcable con la tendencia en la distribución que sigue el caso teórico óptimo de la ley rango-tamaño (fig.8.5).

Figura 8.5.- Ejemplo del ajuste a la tendencia potencial para una distribución rango-tamaño ideal

![Diagrama](image)

Fuente: Elaboración propia (valor de la ciudad mayor=36).

La suposición que esta posible *criticalidad organizada* (entorno la relación potencial en la distribución del tamaño de los espacios mayores en el paisaje) coincide con la necesaria configuración ecológica (funcionalmente) y socialmente adecuada del paisaje, podría abrir nuevas perspectivas sobre las características composicionalmente óptimas del paisaje.

272 Será equiparable a la existencia de una regularidad composicional interna, sin tener en cuenta factores de extensión o escala. Por ello esta suposición puede verse coincidente con las formulaciones teóricas en el estudio de la complejidad –tal como se plantea en Portugali 1997, p.e.

273 Una observación empírica realizada en Geografía, sobre las distribuciones según tamaño de determinados fenómenos naturales y antrópicos (caso de la ordenación en un rango por tamaño de las ciudades de un estado p.e.). Aún sin una formulación teórica que la sustente efectivamente, parece ajustarse también a otros casos establecidos desde estudios de la complejidad, en ámbitos como la geografía física (Portugali 1997, Phillips 1999a).

274 Sería posible definir entonces el principio AWO respecto de dicha tendencia, así como de la tendencia logarítmica de la superficie acumulada de los espacios del paisaje -estableciendo en realidad las diferencias de las distribuciones normativas teóricamente óptimas, respecto las observadas-, y considerar la coincidencia de la situación óptima que expresa composicionalmente
No obstante, en base a la reflexión sobre los objetivos del estudio y las características básicas del análisis hasta ahora descritas (y dado el amplio espectro de desarrollos potenciales a que se puede abrir la investigación, en un campo poco conocido como es el de las configuraciones óptimas del paisaje),275 debe remarcarse que es su formulación como principio normativo para la planificación, lo que define al principio AWO como una aproximación única a la complejidad del paisaje heterogéneo. El principio, de esta forma, ya es un principio conceptual desde el que abordar la complejidad inherente de las configuraciones del paisaje (figura 8.6): principalmente desde un punto de vista del mantenimiento de sus funcionalidades ecológicas, pero también de la definición de un medio sostenible (ap. 4.3.3).276

En definitiva, aunque a lo largo del estudio se planteen diversas vías alternativas de análisis de la complejidad estructurada del paisaje, lo que aquí incumbe es la caracterización del principio normativo. Esto se considera precisamente como una característica primordial del desarrollo a acometer: lo que se analiza aquí es su validez como herramienta conceptual para la aplicación, a partir de la cual indagar de forma efectiva sobre las configuraciones óptimas del paisaje. Es por ello que la modelización a realizar girará siempre entorno a esta cuestión, dejando a un lado posibles desarrollos de base exploratoria.277

En todo caso, será posible valorar si coincide o no con la supuesta característica adimensional de las distribuciones por tamaño de los espacios mayores del paisaje – como se puede deducir de su formulación, de forma similar a una observación empírica rango-tamaño. Por el contrario, el análisis de las tipologías de espacios puede

\textit{AWO con las distribuciones potenciales de espacios totales en el paisaje -en unos casos (paisajes) más que en otros.}

275 Y el tratamiento inherente que se realiza de la complejidad territorial.

276 Siempre lo hace en base a las evidencias espaciales observadas por el autor, recogidas en la Ecología del paisaje. Aquí radica precisamente el mayor interés en su desarrollo aplicado, y es como tal que se acomete (en su perspectiva eminentemente declarada para la aplicación) en el presente estudio.

277 En cualquier caso, el desarrollo prescrito en el estudio no supone en absoluto descartar conceptualmente desarrollos estadísticos y de modelización alternativos (de mayor profundidad analítica posiblemente).
considerarse, en este sentido, la forma de profundizar en las características adimensionales de las configuraciones del paisaje.\(^{278}\)

Figura 8.6.- Dos aproximaciones al análisis de las configuraciones óptimas del paisaje

Por las distribuciones por tamaño observadas en las gráficas cabe concluir, igualmente, que la observación empírica sobre la tendencia potencial de los grandes espacios del paisaje es por sí sola demasiado inespecífica en su formulación, y difícilmente comparable en la significación de sus índices.\(^{279}\) En cualquier caso se requerirá de desarrollos mucho más específicos para poder caracterizar efectivamente tal supuesto, de la forma en que ha sido anteriormente planteado.

\(^{278}\) Además, es de notar que la formulación de las características funcionalmente óptimas de cualquier paisaje (de forma universal), justifica en cierta medida su práctica desvinculación de las dimensiones concretas del paisaje como ‘contenedor’ (extensión, escala de medición), aunque ello devenga el principal problema para su aplicación como se ha remarcado -ap 7.2

\(^{279}\) Tal vez sea factible mediante matrices con estadísticos de comparación de dos poblaciones.
Por tanto, lejos de intentar demostrar una posible observación empírica en la distribución por tamaño de las configuraciones del paisaje como ‘ley’, la tendencia logarítmica en la superficie acumulada de los espacios del paisaje es simplemente considerada el referente composicional básico de las configuraciones realmente existentes en el paisaje, en base al cual contrastar los resultados del desarrollo efectuado. La propia descomposición en tipologías AWO según uso y tamaño de los espacios (su clasificación), se realizará en el presente estudio desde esta perspectiva, guiando de hecho los desarrollos efectuados.

8.2.- Agregación de los usos

De inicio y para el análisis de la heterogeneidad del paisaje, la agregación de los espacios en base a cuatro grandes tipologías de usos del suelo es el tratamiento básico requerido, con objeto de simplificar el análisis y adecuarlo a los postulados AWO. Esta agregación inicial se relaciona funcionalmente con la definición del grado de ‘naturalidad’ de los espacios, creando las cuatro tipologías:

- el agregado natural por excelencia (usos propiamente forestales),
- el agregado natural no-forestal (matorrales, praderas y pastizales),
- el agregado agrícola (equiparable al espacio ‘rural’),
- el espacio urbanizado (urbano, industrial, infraestructuras, urbanizaciones).

Esta caracterización en cuatro grandes tipos será imprescindible para definir y tratar de forma eficiente los elementos del paisaje, y se corresponde a grandes trazos con otras agregaciones realizadas desde el campo de la Ecología del Paisaje o el análisis de los usos del suelo (ap. 6.8). Cuanto a la agregación de la clase natural-no forestal (NNF) se propone aquí en razón de su funcionalidad ecológica: se trata de la tipología espacial resultante, principalmente, del abandono de los campos agrícolas en transición, revirtiendo usualmente en futuros espacios naturales forestales -como sucede igualmente con las zonas forestales quemadas. Como otro componente característico de esta

280 Por otra parte, cabe recordar que AWO no requiere de demostración en base a desarrollos aplicados, y menos en base a desarrollos paralelos -sin una fundamentación teórica clara además, en este caso.
281 Así, al adentrarnos en el análisis de los espacios que componen cada clase y realizar el estudio comparativo de las tipologías de espacios existentes entre los paisajes (como formulación AWO), podremos realizar la caracterización de cada caso y desarrollar los posibles modelos espaciales óptimos, coincidentes en su referente con la tendencia logarítmica acumulada en el tamaño de los espacios, por ejemplo.
El principio ‘agregados con enclaves’

tipología, los pequeños espacios naturales marginales de las zonas urbanas a menudo son suelo de reserva para nuevos desarrollos urbanísticos (incluidos sin embargo dentro de la categoría ‘vegetación escasa’, aunque sean claramente identificables como solares urbanizables). Los espacios mayores de esta tipología próximos a zonas urbanizadas se reconocen, sin embargo, como espacios rurales abandonados o zonas quemadas. En conjunto, este uso puede considerarse como en transición, aunque la diferencia en su tamaño y la proximidad a las zonas urbanas marcará su evolución.

Cuando comparamos las gráficas del total de espacios y el valor acumulado de su superficie después de la agregación (fig.8.7) con las inicialmente obtenidas (figura 8.1), vemos que se producen algunas ligeras variaciones:

Figura 8.7.- N° de espacios y superficies acumuladas tras agregación por tipologías AWO

![Gráfica](image)

Fuente: Elaboración propia.

A la reducción en el número total de espacios (y un valor de R^2 ligeramente menor respecto la tendencia logarítmica), se corresponde una divergencia ligeramente mayor respecto la tendencia esperada, cuanto a la aportación de los grandes espacios al total de superficie acumulada (figura 8.7). Ello es así especialmente en el caso de la Plana del
Vallès, donde la progresiva acumulación en superficie se da desde valores de los espacios mayores relativamente alejados de la tendencia esperada. En todos los paisajes, es de destacar igualmente el punto de convergencia con la tendencia esperada en el entorno de las 100 ha., cuando se grafican respecto la tendencia exponencial (figura 8.10).282

Figura 8.8.- Nº de espacios (log) y superficie acumulada tras agregación por tipologías AWO

Fuente: Elaboración propia

282 Esta se considera como una posible referencia empírica, respecto el umbral teórico establecido en ámbitos como el conservacionista (Mallarach 1993; Diego et al 1994).
El principio ‘agregados con enclaves’

Figura 8.9.- Superficie de los espacios y acumulada tras agregación por tipologías AWO

Fuente: Elaboración propia

Figura 8.10.- Superficie espacios (log) y superficie acumulada tras agregación por tipologías AWO

Fuente: Elaboración propia

De forma general y observando el grado de concentración que resulta de la agregación (tablas 8.1-8.2), vemos primeramente que los resultados son muy dispares
según cada paisaje. Además, la concentración es selectiva para cada agregado: se observa, por ejemplo, que el agregado rural es el que efectúa la mayor agregación de los espacios, en todos los paisajes (a excepción de la Plana de Vic).

Tabla 8.1.- Superficies relativas de los usos agregados por paisaje

<table>
<thead>
<tr>
<th>Superficie Rural (%)</th>
<th>Superficie Forestal (%)</th>
<th>Superficie Urbanizada (%)</th>
<th>Sup. Natural no forestal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>59.7</td>
<td>10</td>
<td>12.4</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>85.5</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>73.9</td>
<td>2</td>
<td>10.5</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>39.8</td>
<td>22.5</td>
<td>24.2</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>73.7</td>
<td>6.7</td>
<td>9.2</td>
</tr>
</tbody>
</table>

8.2.1.- Composición interna del agregado rural

Si analizamos la composición interna de los usos agregados, podemos extraer muchas de las características de los espacios resultantes, así como de los mismos procesos subyacentes en la agregación por naturalidad de los espacios. Tenemos por ejemplo que para el agregado rural (tabla 8.2), los valores resultantes de la agregación son:

Tabla 8.2.- Resultados de la agregación de los espacios rurales por paisaje

<table>
<thead>
<tr>
<th>Nº espacios antes de la agrupación</th>
<th>Nº espacios después de la agrupación</th>
<th>Disminución (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>602</td>
<td>357</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>1909</td>
<td>344</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>2290</td>
<td>877</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>2396</td>
<td>1312</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>632</td>
<td>630</td>
</tr>
</tbody>
</table>

Existe pues una gradación en los resultados, que es debida en realidad a la diversidad de cultivos existentes en cada paisaje. El caso de la muy baja agregación de la Plana de Vic se explica por el peso del monocultivo de cereales de secano, configurando un único gran espacio rural ya antes de la agregación, mientras que en el resto de los paisajes existe una diversidad de cultivos mayor (tabla 8.4).

Tabla 8.3.- Composición interna de los usos rurales del Pla de la Conca de Barberà

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viña</td>
<td>42.6</td>
</tr>
<tr>
<td>Cultivos herbáceos de regadío</td>
<td>0.1</td>
</tr>
<tr>
<td>Cultivos herbáceos de secano</td>
<td>29.4</td>
</tr>
<tr>
<td>Frutales de secano</td>
<td>13.1</td>
</tr>
<tr>
<td>Frutales de Regadío</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>85.5</td>
</tr>
</tbody>
</table>
En el caso opuesto, la Conca de Barberà presenta una diversidad superior de cultivos que el resto de paisajes, en la composición interna del agregado rural (tabla 8.3).

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viña</td>
<td>-</td>
</tr>
<tr>
<td>Cultivos herbáceos de regadío</td>
<td>0,0</td>
</tr>
<tr>
<td>Cultivos herbáceos de secano</td>
<td>73,6</td>
</tr>
<tr>
<td>Frutales de secano</td>
<td>-</td>
</tr>
<tr>
<td>Frutales de Regadío</td>
<td>-</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>73,7</td>
</tr>
</tbody>
</table>

8.2.2.- **Composición interna de la clase forestal.**

En el caso del agregado forestal, la agregación de los espacios se produce efectivamente en la Plana del Vallès y la Plana de Vic (32% y 44% respectivamente; tabla 8.5). Se trata de los dos paisajes con mayor presencia de usos forestales, por número de espacios y superficie respectivamente (tablas 8.5 y 8.6). En cambio cuanto a superficie relativa, el porcentaje que supone en la Plana del Bages representa el 10% del total, por encima del 6,7% de la Plana de Vic (tablas 8.6 y 8.8). Sin embargo, el grado de agregación es mucho menor: 4,7%, frente al 44% (tabla 8.5). El número de espacios forestales existentes en cada paisaje es sólo en parte el motivo: 255 frente a 413.

<table>
<thead>
<tr>
<th>Nº espacios antes de la agregación</th>
<th>Nº espacios después de la agregación</th>
<th>Disminución nº de espacios (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>255</td>
<td>243</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>179</td>
<td>178</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>258</td>
<td>239</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>1398</td>
<td>950</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>413</td>
<td>228</td>
</tr>
</tbody>
</table>

El análisis visual del mapa de los espacios forestales del paisaje del Pla de Bages nos aporta las pistas necesarias (figura 8.11). De inicio, y dada la poca extensión de los agregados forestales, se puede suponer que la misma distribución de los espacios en el paisaje es la responsable de esta eventualidad. En la figura se aprecia como la distribución de los espacios forestales en el Pla de Bages se encuentra, además de dispersa por el perímetro de la matriz rural, fragmentada de forma importante.
Figura 8.11.- Distribución de los usos forestales en la Plana del Bages.
Fuente: Elaboración propia
El principio ‘agregados con enclaves’

Esto sucede así en los espacios de mayores dimensiones del N de la planicie, fundamentalmente pinares, sin otro espacio de uso forestal colindante. De existir esta vecindad con espacios forestales, se trata de especies caducifolias.

En el caso de la Plana de Vic (tabla 8.6 – figura 8.12), en cambio, se observa que, además de la dispersión de los espacios forestales en la periferia de la Plana, la mezcla espacial de los usos que componen el bosque favorece la aparición de los agregados naturales de mayores dimensiones (como el que se observa en el E. de la Plana). Este espacio agregado está formado por una mixtura de diversos espacios forestales, de pequeñas dimensiones principalmente. Se observa cómo los caducifolios y las esclerófilas están muy entremezclados, también con los pinares. Todo ello crea un único gran espacio forestal en el E., de por sí muy diverso en su composición y características espaciales.

Tabla 8.6.- Composición interna de los usos forestales de la Plana de Vic

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducifolias</td>
<td>1,4</td>
</tr>
<tr>
<td>esclerófilas</td>
<td>1,2</td>
</tr>
<tr>
<td>Aciculifolias</td>
<td>4,1</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>6,7</td>
</tr>
</tbody>
</table>

Igualmente es el caso de la Plana del Vallès (tabla 8.7 – figura 8.13), la distribución forestal mixta es la que coadyuva en el gran espacio del agregado forestal de mayor tamaño, en el N de la Plana (por encima de las 4000 ha.)
Figura 8.12.- Distribución de los espacios forestales en la Plana de Vic
Fuente: Elaboración propia
La composición de este gran agregado forestal, con la diversidad de usos que lo configura (como en el caso de la Plana de Vic), se considera así un factor importante para la conservación de los espacios naturales de estos paisajes.

La baja agregación en el Pla de Bages por tanto es resultado también de la poca diversidad de los usos forestales -algo parecido a lo que sucedía con la agrupación del espacio rural. Así, la práctica ausencia de esclerófilas conforma una masa forestal compuesta principalmente de aciculifolias (y de caducifolias en una mucha menor proporción: 9,1% y 0,7% respectivamente –tabla 8.8). Este hecho también se da en los otros dos casos de la Plana del Penedès y Pla de la Conca.
Tabla 8.8.- Composición interna de los usos forestales del Pla de Bages

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caducifolias</td>
<td>0.6</td>
</tr>
<tr>
<td>esclerófilas</td>
<td>-</td>
</tr>
<tr>
<td>Aciculifolias</td>
<td>9.1</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Esta distribución espacial interna de los usos forestales es también un factor relevante para la conservación. A la valoración del grado de naturalidad del grupo de las esclerófilas (como la vegetación natural de los paisajes), se suma otro factor importante en los paisajes mediterráneos, como es su mayor resistencia al fuego.\(^{283}\)

8.2.3.- Composición del agregado urbanizado.

Cuantos al agregado urbanizado (tabla 8.9), se constata que el índice de agregación es muy similar en todos los casos (como media del 30%), con la Plana del Vallès destacada por arriba (37,1%) y el Pla de la Conca en sentido contrario (24,7%).

Tabla 8.9.- Resultados de la agregación de los espacios urbanizados por paisaje

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Nº espacios antes de la agrupación</th>
<th>Nº espacios después de la agrupación</th>
<th>Disminución (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>237</td>
<td>159</td>
<td>32.91</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>93</td>
<td>70</td>
<td>24.73</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>437</td>
<td>308</td>
<td>29.52</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>1185</td>
<td>745</td>
<td>37.13</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>356</td>
<td>250</td>
<td>29.77</td>
</tr>
</tbody>
</table>

Esto puede ser coincidente con la naturaleza de la estructuración interna del espacio urbanizado, que por lo demás es general en el territorio: la agregación espacial de estos espacios (industria, infraestructuras y urbanizaciones colindantes a los núcleos urbanos), daría cuenta de ello, con unos niveles que se mantienen similares en todas partes del territorio de la región. Es por tanto una agregación que no presenta diversidad compositiva según los casos, a diferencia de los usos forestales y agrícolas. En todo caso, es posible establecer que el grado de urbanización es el que da cuenta de las diferencias en la tasa, como parecen sugerir los datos. Si ordenamos de menor a mayor

\(^{283}\) Precisamente es en los espacios forestales y naturales no-forestales que resultan del progresivo abandono de cultivos (espacios donde tiene habitualmente lugar la sucesión secundaria, llevando al predominio de las coníferas), donde se gesta en buena parte esta falta de diversidad de los grandes espacios forestales -el cual deviene un factor de riesgo característico para el conjunto del paisaje.
El principio ‘agregados con enclaves’

Este índice de agregación y el porcentaje de los usos urbanizados de cada paisaje (tabla 8.10), ya intuimos la correlación existente (0,95%). Esta clasificación de los paisajes sobre la base de su urbanización relativa, se considera así una de las herramientas para la caracterización de las configuraciones del paisaje.

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Índice agregación del urbanizado (%)</th>
<th>Superficie del agregado (m²)</th>
<th>Sup. del agregado en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de la Conca de B.</td>
<td>24.7</td>
<td>7.787.000</td>
<td>4</td>
</tr>
<tr>
<td>Plana del Penedès.</td>
<td>29.5</td>
<td>34.440.300</td>
<td>11</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>29.7</td>
<td>23.833.800</td>
<td>9</td>
</tr>
<tr>
<td>Pla de Bages</td>
<td>32.9</td>
<td>19.485.900</td>
<td>12</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>37.1</td>
<td>160.333.200</td>
<td>24</td>
</tr>
</tbody>
</table>

Podemos analizar también, como en el caso de la agregación forestal y rural, cuáles son los usos que resultan principalmente afectados, y como se formaliza espacialmente la agregación (tablas 8.11 a 8.15). De manera general, a parte de la mencionada diferencia en el grado de urbanización de los paisajes destaca en primer lugar la elevada superficie media que caracteriza el uso ‘infraestructuras viarias’.284 Es de remarcar además su influencia en la configuración del territorio, ayudando a formar finalmente unos pocos espacios urbanizados continuos de gran superficie total (como agente coadyuvante de los usos urbanos). Este es sin duda el caso de la Plana del Vallès: la gran importancia del uso ‘infraestructuras viarias’ en su papel conector de los usos urbanizados, configura de hecho el mayor espacio de todo el paisaje -convirtiéndose así en la tipología con mayor peso. La magnitud de este agregado urbanizado entonces es como mínimo comparable al de la tipología rural.285

Otro fenómeno destacable se desprende del hecho que el uso ‘urbanizaciones’ y el de ‘industria y servicios’, tienen un gran peso en los paisajes más urbanizados (todos menos en el del Pla la Conca de Barberà, de hecho).286 En el caso del Vallès (con una superficie ocupada total más extensa), la superficie industrial y comercial es también mayor que la del uso urbano. La Plana del Penedès presenta incluso un porcentaje de

284 Es resultado sólo en parte del proceso de corrección cartográfica sobre los datos digitales realmente obtenidos para las grandes infraestructuras –aplicado con el criterio de hacer más visible su impacto real (servidumbres, márgenes inutilizados, taludes, etc.).
285 Que sin embargo sigue siendo considerado la matriz del paisaje, por su mayor extensión total.
286 La Plana del Vallès y la del Penedès, tienen una proporción de estos usos que hasta rebasa la del uso propiamente urbano. Es igualmente destacable el hecho que la superficie de las urbanizaciones también supera ya claramente el uso urbano tradicional.
uso urbano relativamente más bajo respecto al total de suelo urbanizado que la del Vallès. Este hecho está explicado sólo en parte por la menor extensión del paisaje -y es un caso donde se constataría la importancia de la urbanización difusa en el territorio (tablas 8.11-8.12).

Tabla 8.11.- Composición interna de los usos urbanizados de la Plana del Vallès

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleos urbanos</td>
<td>6,9</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>2,8</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>7,5</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>7,0</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>24,2</td>
</tr>
</tbody>
</table>

Tabla 8.12.- Composición interna de los usos urbanizados de la Plana del Penedès

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleos urbanos</td>
<td>2,7</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>2,0</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>3,4</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>2,4</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>10,5</td>
</tr>
</tbody>
</table>

El caso de la Plana de Vic era el año 1992 el de menor impacto de la ocupación espacial cuanto a infraestructuras viarias. Representa tan sólo el 0,4% del paisaje (tabla 8.13), si bien hoy día es de esperar una proporción similar a la del resto de paisajes (con la construcción del ‘eix transversal’, ampliaciones de carreteras, etc.). Junto con el Pla de Bages (tabla 8.14), la plana de Vic se caracterizaría comparativamente como un paisaje con un grado de urbanización intermedia.

Tabla 8.13.- Composición interna de los usos urbanizados de la Plana de Vic

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleos urbanos</td>
<td>5,3</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>0,4</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>1,3</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>2,3</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>9,2</td>
</tr>
</tbody>
</table>
El principio ‘agregados con enclaves’

Tabla 8.14.- Composición interna de los usos urbanizados del Pla de Bages

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleos urbanos</td>
<td>4,8</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>1,6</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>3,0</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>3,0</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>12,4</td>
</tr>
</tbody>
</table>

Teniendo en cuenta la baja intensidad de construcción vertical que suelen suponer estos dos tipos de usos (mas el de las infraestructuras viarias), podemos concluir también que el agregado urbanizado es un agregado con un uso extensivo del territorio en las zonas metropolitanas -no como en el caso del uso tradicional densificado, que caracterizaba antaño el espacio urbano mediterráneo. El Pla de la Conca de Barberà refleja así el caso menos ‘metropolitano’ –donde los espacios ocupados por urbanizaciones e industrias son bastante más escasos (tabla 8.15).

Tabla 8.15.- Composición interna de los usos urbanizados del Pla de la Conca de Barberà

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relativa en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Núcleos urbanos</td>
<td>1,6</td>
</tr>
<tr>
<td>Infraestructuras viales</td>
<td>1,5</td>
</tr>
<tr>
<td>Urbanizaciones</td>
<td>0,1</td>
</tr>
<tr>
<td>Zonas industriales y comerciales</td>
<td>0,6</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>3,8</td>
</tr>
</tbody>
</table>

8.2.4.- Composición de la clase natural no forestal.

Del agregado natural no-forestal (NNF -vegetación escasa, matorrales y prados, zonas quemadas), en principio destaca el importante peso que este agregado tiene sobre el total del paisaje cuanto a número de espacios, en los cinco casos (tablas 8.16 y 8.17). Se observa la clara relación existente entre el número de espacios de estos usos y el grado de agregación resultante en la clase (a mayor nº de espacios mayor agregación).

Tabla 8.16.- Resultados de la agregación de los espacios naturales no forestales por paisaje

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Nº espacios antes de la agrupación</th>
<th>Nº espacios después de la agrupación</th>
<th>Disminución (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>632</td>
<td>514</td>
<td>18.67</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>476</td>
<td>429</td>
<td>9.87</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>1618</td>
<td>1285</td>
<td>20.58</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>2145</td>
<td>1585</td>
<td>26.1</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>753</td>
<td>664</td>
<td>11.82</td>
</tr>
</tbody>
</table>
A pesar del gran número de espacios de estos usos, su importancia cuanto a superficie relativa es mucho menor: los valores van del 18% de Pla de Bages al 7,7% de Pla de la Conca. Se trata, por tanto, de un agregado compuesto de gran número de espacios de pequeñas dimensiones, dispersos en el paisaje de forma bastante uniforme (apéndice C).

Por otro lado, un hecho que debe remarcarse de la composición interna de los espacios agregados de esta tipología, es que en ella prácticamente no aparece el uso ‘superficie quemada’, excepto en una pequeña área en el paisaje de la Plana del Penedès (incendio de Subirats 15-7-89). No obstante, la regeneración de las superficies quemadas comprendidas en la tipología es un elemento a considerar en la extensión y marginalidad de la localización de este tipo de espacios, en estos paisajes mediterráneos altamente humanizados. Precisamente la influencia del abandono de cultivos es un factor destacado, que interviene en la creciente intensidad de los incendios forestales.287 Por su parte, los paisajes forestales que rodean a los paisajes de las llanuras estudiadas son de hecho los que mayor daño sufren por los efectos del fuego (son usualmente extensos bosques de pinares).

Se caracterizaría así como un agregado funcionalmente marginal también en su distribución espacial, en buena parte vinculado al abandono rural —como sucede en los paisajes colindantes. Este hecho espacial (mayor abandono y menor ruralidad / presencia de la tipología NNF) se caracterizaría entonces para los diferentes paisajes de forma inversa a la presencia del agregado (tabla 8.17). El Pla de la Conca de B. aparece en los primeros puestos de esta relación de ruralidad (7,7%), seguida de la Plana de Vic (9,8%). A cierta distancia aparecen las Planas del Vallès y del Penedès con igual valor (13.6%), y encabezaría el hipotético ranking de espacios relacionados con el abandono rural el Pla de Bages (17.8%).

287 También se contempla en los estudios desde instancias gubernamentales o parlamentarias (caso de los informes del Senado o del Ministerio de Medio Ambiente), vease Madariaga 2001 p.e. (p.67-73).
El principio ‘agregados con enclaves’

Tabla 8.17.- Total del agregado natural no forestal en los paisajes

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Superficie en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de la Conca de Barberà</td>
<td>7,7</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>9,8</td>
</tr>
<tr>
<td>P. del Vallès</td>
<td>13,6</td>
</tr>
<tr>
<td>P. del Penedès</td>
<td>13,6</td>
</tr>
<tr>
<td>P. de Bages</td>
<td>17,8</td>
</tr>
</tbody>
</table>

El motivo de esta elevada presencia de la tipología en los valores del Pla de Bages (tablas 8.17 y 8.18) puede tener origen en los factores físicos de los espacios, o ser debidos a factores socio-económicos específicos de la comarca.288 En este caso, es interesante la comparación con el mapa del agregado forestal (figura 8.11 – apéndice C): se comprueba como la distribución de los espacios del agregado natural no-forestal de la Plana del Bages, en buena parte se puede explicar de forma diferenciada en dos ámbitos espaciales:

- Al N, la distribución de este agregado se mezcla en gran medida con el agregado forestal, posiblemente tanto por abandono de las zonas de mayor dificultad para el cultivo como por pequeños incendios (aunque de declararse incendios serían de mayores dimensiones, probablemente).

- Al Sur, donde el bosque es escaso, es precisamente donde se dan los espacios de mayor extensión del agregado natural no forestal (con un promedio de 8,6 ha. por espacio para todo el paisaje -el más elevado de todos). Cabe suponer que los motivos de esta distribución se deben antiguas superficies quemadas resultantes de los incendios sucedidos unos pocos años antes -en las estribaciones de espacios naturales protegidos-, pero tal vez también a la influencia de factores de tipo socio-económico (abandono de cultivos).

Tabla 8.18.- Composición interna de los usos urbanizados del Pla de Bages

<table>
<thead>
<tr>
<th>Clasificación usos</th>
<th>Superficie relat. en el paisaje (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonas quemadas</td>
<td>-</td>
</tr>
<tr>
<td>Vegetación escasa</td>
<td>4,1</td>
</tr>
<tr>
<td>Matorrales y prados</td>
<td>13,8</td>
</tr>
<tr>
<td>Total Agregado</td>
<td>17,9</td>
</tr>
</tbody>
</table>

288 Dado que se trata de planicies de similares características físicas, cabe suponer que existen factores socio-económicos que influyen en el proceso.
Para explicar el menor peso relativo del uso natural no forestal y el mayor peso del uso forestal en el caso de la Plana del Vallès, debe tenerse en cuenta también el hecho que una de las consecuencias de la mayor urbanización del territorio es la disminución del área afectada por los incendios -aunque aumente realmente el número de casos. Aun así, en este paisaje precisamente se da la existencia también de un gran espacio natural no-forestal (en ‘transición’) al sur de la Plana (cercanías de Castellbisbal).

En definitiva, el antiguo abandono rural en los paisajes metropolitanos probablemente ha dado paso a espacios naturales no forestales, que por la presión urbanizadora podrían no revertir ya a forestales, a menos que sean declarados espacios naturales de interés (por ser colindantes a espacios protegidos, conectores naturales, etc.). No es sencillo pues identificar el abandono rural con la tipología natural no-forestal sin contar con series temporales; aunque de manera indirecta (a través de la menor ruralidad y la superficie antiguamente quemada) se infiere tal vez que la mayor importancia relativa de esta tipología (caso del P. de Bages p.e.) coincide con la consideración de que los antiguos paisajes rurales (actualmente en rápida transición a metropolitanos) están siendo los más afectados por el proceso.

8.2.5.- Valoración de la agregación

Con la agregación resultante, los paisajes aparecen caracterizados por las clases de sus espacios predominantes y su grado de naturalidad, lo que hace que estas tipologías sean de especial interés para el análisis sistémico del paisaje. Se considera útil realizar sin embargo el análisis previo de la composición interna de los agregados, ya que en ellos inciden factores composicionales y espaciales -a tener en cuenta también para posteriores análisis. El grado de agregación resultante está así relacionado con los factores de distribución composicional y espacial de los diferentes usos, como en el caso de la diversidad rural y forestal. Es por ello de especial interés tener presente antes la composición y diversidad internas, para analizar la configuración de los espacios agregados resultantes.

En el caso de la agregación de los usos urbanos y a pesar del menor diferencial, este tipo de análisis nos evidencia el gran peso de los usos urbanizados ‘dispersos’.

289 Un espacio por lo demás reiteradamente quemado a lo largo de los últimos decenios. Este gran espacio ‘en transición’ parece tener más posibilidades que sea a un uso urbano que a forestal, como muestra el crecimiento de las urbanizaciones colindantes (ap. 6.7).
Igualmente el peso y la importancia de las infraestructuras viarias, como agentes de agregación de los usos artificiales en el paisaje (otro factor espacial). Se ha señalado también la relación de las agregaciones resultantes y su posible diversa funcionalidad, en una misma tipología natural no forestal (siendo siempre espacios en transición). El análisis por tamaños que se realiza a partir de ahora deberá acotar la base para el análisis de estas cuestiones.

8.3.- Clasificación según tamaño de las tipologías

A continuación y para la modelización de los espacios según tamaño, se realizará en primer lugar su clasificación de forma experimental, aplicada a las series de datos para cada paisaje. Se busca con ello definir de forma operativa los umbrales de referencia para las tipologías de espacios según tamaño, tal y como se postulan por el principio AWO. Mediante el posterior cruce con las tipologías de los usos, se analizará y caracterizará la posible funcionalidad de las tipologías resultantes. El referente es siempre el planteamiento conceptual AWO, al que se vincula cualquier desarrollo metodológico. Lo que se pretende en definitiva es trazar a grandes rasgos cual puede ser una alternativa simple, directa y consistente para la modelización. Este análisis y modelización se supedita, pues, a los criterios sobre la funcionalidad ecológica de los espacios y la heterogeneidad del paisaje expuestos, buscando desarrollar de forma coherente un modelo espacial para la planificación. Es la referencia básica con que interpretar igualmente los resultados de cualquier análisis experimental.

8.3.1.-Tratamiento de la categorización AWO

El objetivo práctico ahora es la definición de los grupos y umbrales, especialmente entre los espacios considerados como ‘agregados’ y los considerados como ‘enclaves’.

290 El análisis experimental de las configuraciones óptimas del paisaje es aun hoy una aproximación novedosa. En este sentido, el desarrollo metodológico actual pretende evaluar y proponer determinadas alternativas de forma general, a partir de las cuales sean factibles los desarrollos en base AWO.

291 Refiriendo la existencia de algunas alternativas con un mayor nivel de profundidad analítica, no obstante. Dichas aproximaciones pueden ser por ellas mismas fuente de posibles desarrollos estadísticos y modelizaciones, alternativas a la seleccionada. Son igualmente susceptibles de contribuir por sí mismas, en grado diverso, a la explicación de determinadas características posiblemente no consideradas de forma central para la aplicación del principio (tal y como se ha suscitado ya en el terreno conceptual –ap 8.1.2).

292 De forma heurística si es necesario, pero con el referente de las definiciones espaciales en Ecología del paisaje y otras disciplinas (Forman & Godron 1986; Forman 1995a; Forman & Collinge 1996).
Del análisis se espera diferenciar los cuatro grupos de espacios según tamaño: matriz de fondo, grandes espacios, espacios medianos y espacios pequeños (o enclaves) –ap.7.2.

Para realizar este análisis, se considera adecuado además partir del conjunto de los espacios existentes en el paisaje (totalidad de los espacios), sin distinguir inicialmente por usos. Con este análisis se quiere comprobar, en definitiva, si las tipologías de espacios según tamaño presentan evidencias de una funcionalidad propia que coincidirá o no con la de las tipologías según usos, como se desprende de los preceptos AWO.293

8.3.2.- Posibles planteamientos de base exploratoria

Entre las diversas opciones a considerar, en una fase inicial podría plantearse una aproximación exploratoria ‘pura’, en el sentido de no considerar de antemano ningún número de clases predeterminado.294 Desde este supuesto, a partir de las clases obtenidas exploratoriamente sería posible contrastarlas con las tipologías AWO esperadas, considerando el principio como un posible esquema universal (y adimensional) a validar: Esto es, la correspondencia inicial o no en cada caso de estudio con las cuatro agrupaciones por tamaño identificadas conceptualmente. Sería entonces también la valoración comparativa de los cortes y grupos resultantes, que se espera aparezcan coincidentemente de forma natural por aglomeración de las observaciones.295

De forma implícita incluso, se estaría valorando tanto los grupos obtenidos como especialmente sus umbrales supuestamente universales, contra la idea contraria de que las tipologías o clases vengan definidos en base a la extensión y escala de estudio (formulable como hipótesis nula). Esto es, demostrar que la influencia de la extensión del paisaje sobre la configuración de los espacios del mismo se ve alterada espacialmente con la definición de unas tipologías de espacios y umbrales que serán universales, en este tipo de paisajes altamente afectados por la acción antrópica.296

293 En primer lugar por la propia conceptualización de la división genérica entre agregados y enclaves, según tamaño.
294 Se buscaría discernir de forma empírica la validez de la división conceptual entre espacios agregados y enclaves, desde la 'asociación natural' existente en el seno de las series de datos.
295 Este supuesto confirmaría igualmente la utilidad aplicada de las tipologías AWO, aunque no la validez del propio principio normativo –a realizar desde su crítica conceptual.
296 De ser confirmada la hipótesis alternativa, sería posible igualmente plantear la existencia de un efecto de ‘criticalidad organizada’ en la configuración del paisaje, como puede sugerir la simple existencia de una distribución log-lineal de magnitud y frecuencia, o de rango-tamaño (Phillips 1999a) -tal como se ha planteado ya inicialmente (ap.8.1). Esquemáticamente, en base a la
El principio ‘agregados con enclaves’

Es de remarcar en todo caso que este sería un desarrollo experimental independiente o paralelo al que se pretende realizar aquí -esto es, ir más allá de desarrollar simplemente la aplicabilidad del principio normativo. El objetivo aquí es la valoración de la clasificación AWO, y las aproximaciones de base empírica como la expuesta no forman parte integrante de los objetivos del estudio. Por otro lado y en base a la tendencia reconocida en las series, no es de esperar tampoco que las aportaciones exploratorias ‘puras’ -realizadas en base al uso de diferentes algoritmos-, cambien sustancialmente la visión de la heterogeneidad existente respecto la obtenida por una secuencia simple de dicotomización.297

En el contraste y valoración de las respectivas hipótesis que podrían suscitarse desde una perspectiva puramente exploratoria, cabe considerar igualmente las características inherentes a estos métodos: no cabe realizar test de significación de los mismos, en tanto que los resultados son considerados por sí mismos significativos de entrada (en base a los procedimientos de búsqueda que realizan).298

8.3.3.- Planteamiento adoptado

El objetivo ahora simplemente es establecer, a partir de su valoración comparativa, umbrales de corte que puedan ser considerados homogéneos para los cinco casos -cuanto a la posible definición de grupos de observaciones. Es un supuesto teórico general, sin utilizar otras variables predictivas de la variable categórica en la definición de las clases que las tipologías AWO. Tampoco se recurre al análisis georreferenciado de las observaciones y su posible asociación espacial, mediante indicadores o modelos de auto-correlación o asociación espacial (I Moran, C Geary, G statistics entre otros -Cliff & Ord

confrontación y comparación de los resultados obtenidos y los esperados universalmente según la definición AWO, se rechazaría la hipótesis nula, según la cual no existe una posible definición (una tipología universal) de las agrupaciones de espacios en el paisaje, que no se vea alterada composicionalmente por las diferencias en la extensión del mismo.

297 En cualquier caso, la interpretación experta de las anomalías o particularidades esperadas será la clave, y no el algoritmo empleado (definido heurísticamente, por otra parte –Anderberg 1973).

298 En este sentido, el objetivo del criterio de aglomeración y el algoritmo empleado en cualquier cluster analysis, es precisamente la obtención de un conjunto de agrupaciones que estén bien diferenciadas entre ellas –que sean significativas de por sí. Y no se trata de muestras sino de poblaciones completas (totalidad de los espacios de un paisaje), con lo que no cabe contemplar tests de su significación –si acaso su comparación con otra población existente o ideal, como ya plantea el estudio.
1973; Hubert et al. 1981; Davis 1986; Getis & Ord 1992); o de asociación espacial local (LISA; Anselin 1995).

De inicio, el problema de la clasificación AWO puede contemplarse desde la perspectiva de la transformación de una variable numérica de intervalo a una variable ordenada (con los subgrupos por tamaño de los espacios).\(^{299}\) Por el presente estudio, se opta sin embargo por el análisis de clusters (‘aglomeraciones’) de forma dicotomizada, en tanto que no se busca la predicción y asignación de nuevos casos dentro de una clasificación (objetivo habitual de las técnicas divisivas discriminantes), como la comparación de los resultados de la agrupación para los cinco casos de estudio (poblaciones enteras): esto es, buscar el método más simple por el que afole comparativamente una posible estructura natural de las series de datos, verificando en concreto la presunta división homogénea entre ‘agregados’ y ‘enclaves’ del principio.

Ello con una peculiaridad a tener en cuenta en las distribuciones: la varianza se da en mayor medida en la cabecera de la distribución (entre los valores de los ‘grandes’ espacios), e irá disminuyendo progresivamente. Es así un proceso secuenciado de cortes con resultados bastante previsibles, en base a la tendencia inherente de las series.\(^{300}\) Por tanto la interpretación de los resultados obtenidos de manera secuenciada con cada corte, es en realidad una tarea imprescindible en el análisis a desarrollar. En especial, la definición del valor o momento de la transición entre las clases definidas por una varianza elevada según tamaño (grandes espacios), respecto el grueso de observaciones caracterizadas por una varianza interna mucho menor (enclaves), es una de las cuestiones de mayor interés en el análisis.

El análisis de clusters aquí es simplemente una técnica de apoyo externo en la tipificación de las clases –una de las posibles utilizaciones donde se encabe el análisis de

\(^{299}\) Para ello, partiremos de una sola variable de intervalo (tamaño de los espacios agregados), que debe ser convertida a una clasificación ordenada o de escala ordinal –conteniendo cuando menos las clases ‘agregado’ y ‘enclave’. También puede plantearse como una división monotónica mediante la definición de una variable predictiva ordinal dicotomizada (agregados-enclaves), que define los subgrupos de la variable categórica.

\(^{300}\) Con una gran diferencia inicial (varianza) de los valores, ordenados según tamaño, disminuyendo de forma acelerada como se aprecia ya en las gráficas (ap.8.1). Por este hecho también, apenas existirán diferencias relevantes en las clases obtenidas, tanto si se hace de forma dicotomizada (con cortes binarios sucesivos), como declarando de inicio más de dos clases a obtener –tal como se ha comprobado tentativamente de forma previa.
El principio ‘agregados con enclaves’

clusters (Anderberg 1973). Este es precisamente un factor que decanta favorablemente la elección metodológica, añadido su consideración como metodología aglomerativa y para el análisis de las poblaciones existentes al completo (espacios en el paisaje), sin conocerse de entrada las clases existentes -tan sólo su tendencia general como distribución, con una variable ordenada (tipología AWO) definida conceptualmente como predictiva.301

La comparación de los resultados obtenidos para las cinco ‘poblaciones’ de los espacios en los paisajes, es considerada igualmente fundamental en la definición del desarrollo posterior a seguir, como herramienta básica de contrastación. En base a ello también es posible el estudio de la complejidad de las configuraciones del paisaje, aun sin tener en cuenta la totalidad de factores que inciden en la configuración del territorio -por la simple descripción en base a tipologías funcionales AWO de espacios en el paisaje, de forma normativa.302

Para este procedimiento comparativo, deberán tenerse en cuenta especialmente las curvas de las distribuciones de los espacios en el paisaje, las cuales ya dan cuenta en buena parte de las características reflejadas en las agrupaciones resultantes (facilitando en gran manera el proceso).303

8.3.4.- Interpretación de la clasificación AWO a realizar

Como alternativa adoptada, la elección del cluster análisis definiendo dos clases (realizando la dicotomización sucesiva de la serie de datos), proporciona de forma simple una aproximación acorde a la conceptualización y cumple por ello con la pretensión de la aplicación a desarrollar. Por otra parte, no hay que olvidar que lo que se pretende en el presente estudio es contrastar la hipótesis inicial que establece la funcionalidad de las tipologías existentes de los espacios según tamaño en las configuraciones del paisaje; en

301 Aunque es cierto sin embargo que el supuesto de análisis es equiparable en la práctica a la división monotética de la variable categórica (tamaño de los espacios).
302 Esto es posible dada la relación que se postula por el principio entre la funcionalidad ecológica de los espacios, y su característica definición espacial como tipología en base a su uso-tamaño.
303 Por su parte, dentro del análisis de clusters el análisis heurístico se contempla también como un recurso habitual –y que lo caracteriza en la práctica: ‘The foremost difficulty is that cluster análisis is not a term for a single integrated technique with well defined rules of utilization; rather it is an umbrella term for a loose collection of heuristic procedures and diverse elements of applied statistics’. (Anderberg 1973, p.10).
8.Modelización de las tipologías AWO

primer lugar (y destacadamente) de las dos tipologías básicas en el análisis: los necesarios espacios ‘grandes’ (aggregated) y ‘pequeños’ (outliers).304

Por ello, se considera que el análisis a desarrollar ahora debe realizarse sin otra pretensión que la de profundizar descriptivamente en la composición característica de las configuraciones resultantes, respecto de las tipologías AWO de espacios del paisaje. Es a este nivel de sofisticación ‘bajo’ del análisis de clusters, al que es posible referir como mínimo entonces la interpretación de los resultados obtenidos (Anderberg 1973): las agrupaciones serán vistas simplemente como estadísticas sumarias descriptivas (como la varianza o la media) de las tipologías AWO contempladas, más que como una proposición que concierne a la organización de los datos.

En la interpretación se considera de interés relativo también su posible relación con observaciones empíricas comunes en el análisis geográfico, cuanto a las características y regularidades observadas de algunos fenómenos espaciales -específicamente la ley rango-tamaño.305

8.4.- Metodología cluster utilizada

Existe gran diversidad de métodos para definir los clusters o aglomeraciones, mediante algoritmos de clasificación. La cuestión general a resolver es cómo organizar los datos observados en estructuras con significado, desarrollando taxonomías. De forma exploratoria, por la computación iterativa mediante árboles jerárquicos de las distancias entre los diferentes casos, se amalgaman los sucesivos grupos de casos, hasta obtener las clases con mayores diferencias. Estas aparecen como diferentes ramas del árbol jerárquico, y como resultado se pueden reconocer e interpretar estas clases.

Ello requiere sin embargo de la definición de unas reglas de amalgamiento o interrelación previas para la unión de los casos, que pueden ser diversas (‘vecino más

304 A partir de ello, es posible valor su coincidencia o no con los valores teóricos establecidos previamente por la Ecología del Paisaje y la Biología de la Conservación, cuanto a los umbrales entre las tipologías de los espacios diferenciados por su funcionalidad. Lo que se pretende es averiguar entonces cual es la definición específica de corte entre las tipologías de la ‘matriz de fondo’ y los grandes espacios, respecto los espacios pequeños y medianos -entorno a las 100 ha. teóricamente (cap.5).
305 Para tal propósito, se considera su posible utilidad en base a la valoración relativa de la tipología del ‘espacio mayor del paisaje’ (su peso en cada caso; ap. 9.2).
El principio ‘agregados con enclaves’

próximo’, ‘vecino más lejano’), a adoptar según las series de datos con que se trabaja. Así un método muy eficiente en la estricta evaluación y clasificación creará usualmente muchos grupos, en series largas de datos. Por el contrario un método más simple creará cadenas largas como clusters. 306 En este sentido, con unas series de datos tan extensas como las del tamaño de los espacios de los 5 paisajes (más de 2000 casos en la Plana del Vallès), el análisis a realizar no busca la máxima eficiencia en la determinación de las diferencias entre casos (con múltiples clusters probablemente como resultado), sino determinar operativamente los umbrales de corte entre tipologías AWO.

Dado que en el presente estudio se ha optado por utilizar el método de K-medianas para la definición de los grupos, deben destacarse al respecto determinados aspectos metodológicos y sus implicaciones: En primer lugar, el análisis se realiza estableciendo un corte de ruptura de la distribución de antemano; esto es no sin determinar automáticamente el número de clases a partir de los registros, sino que se ha especificado únicamente en dos el número de grupos que se quiere obtener (un solo corte por tanto). Se ha procedido en definitiva a determinar qué registros componen los respectivos clusters.

Computacionalmente, el análisis por k-medianas es el reverso de un análisis de varianza: el programa empieza con K clases aleatorias, y entonces mueve los objetos entre estos clusters, con el objetivo de minimizar la variabilidad dentro de las clases y maximizar la variabilidad entre clusters (Statistica 2003). 307 El análisis por K-medianas basado en la distancia entre los casos a los centros de las agrupaciones iniciales (2 en el

306 El procedimiento del método jerárquico de Ward realiza por ejemplo una aproximación de un análisis de varianza para evaluar las distancias entre los clusters; en general este método se considera muy eficiente, aunque tiende a crear clusters de pequeño tamaño (Statistica 2003).

307 El algoritmo de MacQueen utilizado aquí para clasificar m casos en K clases, sigue los siguientes pasos (Anderberg 1973):
Coge los primeros K casos en la serie de datos como clases de un miembro cada uno.
Asigna cada uno de los restantes m - k casos a la clase con el centroide más cercano. Después de cada asignación, recálcula el centroide de la clase modificada.
Después que todos los casos han sido asignados en el paso 2, coge los centroides de las clases existentes como puntos de referencia, y hace una pasada más en la serie, asignando cada caso al punto de referencia más cercano.
caso presente), permite en su computación la sustitución de los centros temporales, después de las iteraciones de los registros.

En el resultado de la aplicación de dicho método, se considera especialmente satisfactoria la discriminación resultante, teniendo en cuenta ciertas las características de los valores con que se trabaja:

1. Se trata de una sola serie de datos (los espacios según superficie en el paisaje), que no se cruza con variables para obtener los clusters;
2. La variación de los valores para las series sigue igualmente la del ajuste de la distribución a la tendencia teórica, por lo que es bastante continua.

8.5.- Resultados del análisis de aglomeraciones

Como resultados previsibles, en la primera pasada del método de ‘Cluster analysis’ se esperaba obtener la diferenciación del espacio mayor del paisaje (que puede equipararse al núcleo extenso de la matriz), respecto el resto de los espacios -de forma coincidente con las conceptualizaciones de los principios teóricos del análisis espacial en Ecología del Paisaje.

En la segunda pasada, y una vez excluido el registro correspondiente a este primer gran espacio, se espera obtener los espacios considerados de tamaño 'grande' en el paisaje. Repitiendo el proceso, se obtienen de forma esperada los espacios considerados 'medianos' y el resto de los espacios -los considerados como 'pequeños'.

8.5.1.- Interpretación de los cortes

Por el primer corte se ha evidenciado el destacado peso del primer gran espacio del paisaje (con un solo espacio en la clase, en 4 de los 5 de casos –tabla 8.3.1). Es de remarcar que este es por definición el corte que establece las clases más diferenciadas (mayor varianza) de los espacios del paisaje: el primer corte es el que se realiza entorno la diferencia mayor existente en la serie.

308 Si se especifican dos conglomerados a obtener, el resultado es la determinación de dos grupos de casos que son próximos al centro de los dos conglomerados (que ‘gravitan’ entorno a cada centro).
El principio ‘agregados con enclaves’

Tabla 8.19.- Espacios en la categoría ‘matriz’

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Pla de Bages</th>
<th>Pla de la Conca</th>
<th>Plana Penedès</th>
<th>Plana del Vallès</th>
<th>Plana de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1r CONGLOM</td>
<td>Área (ha.)</td>
<td>6.719</td>
<td>13.780</td>
<td>14.321</td>
<td>9.006</td>
</tr>
<tr>
<td>‘Matriz’</td>
<td>Área (ha.)</td>
<td>7.639</td>
<td>5.253</td>
<td>4.461</td>
<td></td>
</tr>
</tbody>
</table>

En la práctica, la interpretación de esta primera clase es casi directa como la matriz de fondo del paisaje (ap.8.5), aun con el caso en apariencia excepcional de la P. del Vallès (4 espacios en la clase). Por el contrario, la linde entre los espacios grandes y pequeños-medianos (en teoría sobre las 100ha.), que por el estudio se espera aparezca definido tras el segundo corte del cluster análisis, se obtiene aparentemente sólo en el caso del Pla de Bages (tabla 8.20). En el resto de los casos, esta linde aproximada aparece tras nuevos cortes (1 o 2) en las series.309

Es de suponer, sin embargo, que la necesidad de realizar más de un corte en las series buscando el umbral básico entre espacios grandes y pequeños, viene dada por la distribución por tamaño de los espacios grandes existentes –la cabecera de las series. Es reflejo de la variación interna y respecto al espacio mayor, resultado de la particular distribución existente.310

Tabla 8.20.- Umbrales inferiores de corte de la tipología Grandes espacios

<table>
<thead>
<tr>
<th>Pla de Bages</th>
<th>Pla de la Conca</th>
<th>Plana Penedès</th>
<th>Plana Valles</th>
<th>Plana de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área (ha.)</td>
<td>Área (ha.)</td>
<td>Área (ha.)</td>
<td>Área (ha.)</td>
<td>Área (ha.)</td>
</tr>
<tr>
<td>Grandes espacios</td>
<td>119</td>
<td>1.750</td>
<td>2.619</td>
<td>888</td>
</tr>
<tr>
<td></td>
<td>414</td>
<td>512</td>
<td>209</td>
<td>102</td>
</tr>
</tbody>
</table>

Esta variabilidad en la parte alta de las series (los grandes espacios agregados), se interpreta entonces como resultado de la naturaleza de las propias distribuciones de las series: los paisajes que presentan un mayor primer espacio matriz (y por tanto una menor fragmentación y menos espacios grandes), presentan por consiguiente un número de casos menor y unos valores más discontinuos (mayores saltos entre sus valores) en la

309 Cabe remarcar en cualquier caso que cuando se efectúan uno o dos nuevos cortes, siempre se obtienen valores por encima de las 100 ha.
310 Atribuible a la fragmentación progresiva del espacio ‘matriz’ inicial por lo demás.
Modelización de las tipologías AWO

cabecera de las distribuciones de las series, como se observaba ya en las gráficas de las distribuciones (ap. 8.1).

En buena parte pues, se considera que es por este factor (tamaño característico de la primera clase por un lado, y grandes espacios resultantes por otro) por lo que el segundo corte no se ha evidenciado con tanta claridad y de igual manera para los cinco paisajes (buscando el linde entre grandes espacios y los espacios pequeños-medianos). Así, si centramos el análisis en estos primeros grandes espacios de los paisajes, y destacando comparativamente las discontinuidades en los valores para esta tipología (mediante la apreciación de las gráficas de las series en escala logarítmica por ejemplo; fig. 8.1-8.5), se observa cómo las diferencias respecto la tendencia esperada (logarítmica) de los valores de la distribución, siguen en realidad un comportamiento bastante lineal: como es de suponer, a un valor elevado del mayor espacio de la matriz corresponde efectivamente un menor peso del resto de espacios (especialmente los de tipología ‘grande’), y viceversa: a un menor primer gran espacio corresponde un mayor peso del resto de espacios.

Por ello se considera que, conceptualmente, la diferenciación entre los espacios grandes y pequeños debe establecerse en un punto de corte que es en realidad respecto al tramo más continuo de la serie de datos. En este sentido es interesante observar que en las distribuciones de la superficie acumulada de los espacios en el paisaje, se da una coincidencia de las curvas hacia el valor conceptualmente esperado, precisamente en el entorno las 100ha. (gráfica 8.4). Igualmente, estos valores (entorno las 100ha.) coinciden con los propuestos en la delimitación de grandes espacios naturales, en estudios realizados tanto en Cataluña (Diego et al. 1994) como previamente en el resto de Europa y en Estados Unidos (Mallarach 1993, Smith 1993, Campillo 1992).311

Este linde entre grandes y pequeños espacios es el que aparece claramente por el cluster análisis al efectuar el segundo corte para los casos de la Plana de Vic y del Vallès (próximo en este último caso a las 200ha.). En los casos del Pla de la Conca y Penedès

311 Las 100 ha. se consideran por lo demás un límite significativo de tamaño urbano (y especialmente de la propiedad agrícola). Aunque debe remarcarse también que los espacios aquí analizados son aglomeraciones para el análisis de la heterogeneidad espacial del paisaje, desde un punto de vista de la funcionalidad de los sistemas naturales -por lo que su interpretación no es directamente relacionable con otras tipificaciones.
no es hasta la siguiente conglomeración donde aparece el linde aproximado de las 100 ha., ya que estos dos paisajes muestran tres subgrupos diferenciados de espacios grandes, con unos pocos casos cada uno (tabla 8.20).312

El resultado obtenido mediante cluster análisis -utilizado como técnica de apoyo externo en la delimitación de los umbrales-, se considera en todo caso ajustado, dados los pocos cortes de diferencia requeridos entre el primer y último paisaje (2) hasta llegar a la zona de mayor continuidad de las series de datos -y con unos resultados de corte siempre por encima de las 100 ha.313

Finalmente, con el tercer linde de corte entre las clases de espacios medianos y pequeños,314 se ha obtenido el valor de las 15 ha. como aproximación conjunta para los cinco paisajes.315

Tabla 8.21.- Umbrales de corte entre espacios medianos-pequeños

<table>
<thead>
<tr>
<th></th>
<th>Pla de Bages</th>
<th>Pla de la Conca</th>
<th>Plana del Penedès</th>
<th>Plana del Vallès</th>
<th>Plana de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espacios Medianos</td>
<td>27,5</td>
<td>17,6</td>
<td>30,2</td>
<td>14,0</td>
<td>12,2</td>
</tr>
</tbody>
</table>

Como elemento decisivo en la definición de este umbral, se han considerado específicamente en primera instancia los valores que toma el paisaje considerado 'no metropolitano' (Pla de la Conca de Barberà –Tabla 8.21), susceptibles por tanto de ser los más cercanos a la situación de funcionalidad ecológica más natural u óptima en los

312 Observando las gráficas de distribución de espacios por tamaño así como las tipologías de usos, puede relacionarse esta diferencia como resultado de su característica configuración espacial y funcionalidad: indica la poca importancia de los espacios mayores y la importancia del gran espacio rural agregado. Es igualmente resultado de que en estos dos paisajes el uso forestal tenga en conjunto un peso muy escaso, cuanto más al ser inexistentes en la práctica los grandes espacios de este tipo –características todas ellas relacionables con paisajes agrícolas eminentemente vitícolas (ap. 6.6).

313 Es de destacar también en este sentido que, al realizar el siguiente corte, se da por el contrario de nuevo una situación similar en los cinco paisajes (con un resultado entorno las 15-30 ha.).

314 Un corte con valor añadido conceptualmente, de cara a contrastar las disquisiciones cuanto a la funcionalidad ecológica de los espacios medianos -dado que implicitamente se les considera una tipología 'ineficiente' (ap.7.2).

315 En este caso, es cierto sin embargo que no se tiene conocimiento de estudios o teorías que avalen un determinado punto de corte entre ambas tipologías. En la práctica, existen definiciones de espacios protegidos menores en algunos países que presentan el linde de las 8-10 ha., como criterio aproximado (p.e. descripciones de casos en Mallarach 1993; Campillo 1992).
paisajes mediterráneos -cuando menos en una situación antecedente a los procesos de urbanización del territorio, como los que supone la metropolinización.

Teniendo en cuenta igualmente los valores cercanos a las 15 ha. que se dan en el caso de la Plana de Vic y la Plana del Vallés (13-14 ha.), se cree oportuno pues establecer para el estudio este límite inferior de las 15 ha., para la definición de la tipología AWO de los espacios medianos del paisaje. En definitiva, la aproximación guiada en base a las implicaciones teóricas del principio (aun emprendida de forma heurística para su definición operativa), es la que da sentido experimentalmente a la elección de este umbral de corte.

8.5.2.- Valoración de los umbrales obtenidos por tipologías

En conclusión, del estudio se obtienen cuatro clases o tipologías de espacios, aunque el corte básico fundamental es el que refiere a la determinación de los espacios grandes respecto los pequeños (‘agregados’ respecto ‘enclaves’ no topológicos). Es un corte que además de conceptualmente definible en base a los requisitos de superficie de los espacios para la conservación, ya se observa paralelamente en referencia a las distribuciones existentes por tamaño de los espacios del paisaje, tal y como se visualiza respecto las tendencias logarítmicas acumuladas. Por ello este corte se considera como básico en la formulación para la modelización del principio AWO, por encima de las otras posibles clasificaciones del resto de espacios.

Este sucesivo refinamiento ‘guiado’ de los cortes según tamaño entre grandes y pequeños espacios en los paisajes está claramente en función de las distribuciones de las series. Los paisajes con distribuciones más continuas muestran antes en los cortes la diferenciación entre estas tipologías, mientras que los que tienen distribuciones discontinuas en su cabecera presentan una mayor distancia entre casos (y más clusters.

316 En el caso de la Plana del Penedès (el más distante), cabe decir que el corte en la serie general (todos los espacios) aparece alrededor de las 30 ha., y en las 27 ha. en el caso del Pla de Bages. Es de destacar sin embargo, que cuando se realiza el mismo corte en las series por tamaños según usos, el umbral de las 15 ha. aparece de forma clara en estos dos paisajes igualmente (como indican las agrupaciones conjuntas de las dos variables –apéndice B, breakdown).

317 Debe tenerse en cuenta por otra parte que el grueso del número de espacios, cualquiera que sea el punto de corte adoptado, se concentrará en el siguiente tramo, el de los ‘espacios pequeños’ (menos de 15 ha.). Las variaciones en el número de espacios que se den en el subgrupo de espacios medianos por la cola de la distribución (los espacios medianos de menores dimensiones), no afectaran en gran manera a la superficie relativa del mismo subgrupo.
El principio ‘agregados con enclaves’

por tanto). También manifiesta la importancia de considerar conjuntamente las tipologías de espacios según tamaño y uso conjuntamente. En este sentido el método y la interpretación paralela de los resultados a partir del análisis conceptualmente guiado (teniendo en cuenta las evidencias y hechos espaciales conocidos, para llegar a la formulación teórica de las clases), se consideran adecuados para un análisis de este tipo –de base normativa.

La supervisión mediante el cluster analysis se considera igualmente adecuada como método de apoyo para la delimitación de los umbrales por tamaños, mediante K-medianas (con un único corte en cada pasada, valorando e interpretando los resultados). Con ello se evitan los extensos análisis exploratorios de las series, sin mayores justificaciones prácticas o conceptuales.

Es de gran importancia remarcar el hecho que se ha realizado el análisis de clusters únicamente por el criterio del tamaño de los espacios: con ello queda patente así la existencia de umbrales de tipologías de espacios funcionales según tamaño, de forma independiente de su uso. En este sentido, por el análisis se ha pretendido plantear la existencia de unas determinadas tipologías diferenciadas de espacios según tamaño en el paisaje, como se plantea implícitamente desde el principio AWO (y la corriente espacial de la Ecología del Paisaje). Ello será de especial interés específicamente para corroborar la funcionalidad de la tipología de espacios mediano.

Es con posterioridad que se pretende ver la relación entre las dos variables (tamaño y uso), definiendo y caracterizando las tipologías AWO en función también de ambas. Es de esperar que con el cruce de información entre las dos variables y el establecimiento de sus respectivas tipologías (breakdown), así como los análisis de diversidad y densidad de los espacios, aporte mayores indicios sobre la funcionalidad de los espacios.

318 Con ello se demostraría así una posible relación de la funcionalidad de algunos espacios simplemente según su tamaño, en relación con un posible uso.
9. ANÁLISIS COMPOSICIONAL SEGÚN TIPOLOGÍAS AWO

Es posible realizar ahora el análisis composicional requerido en base a las tipologías AWO (cap. 8), mostrando las capacidades de este tipo de análisis agregado del paisaje (hipótesis de estudio). Se considera valioso igualmente para plantear los desarrollos sintéticos en base AWO, que sirvan de herramientas para la planificación.

En el presente análisis se contrastará el tratamiento en las dos dimensiones del análisis de las distribuciones espaciales, discernibles en la configuración espacial del paisaje en un momento determinado: la extensión y la densidad. Supone el análisis comparativo en base AWO de las variaciones entre los casos respecto las tendencias generales (observadas en las curvas de las distribuciones por tamaño), que definen la característica heterogeneidad del paisaje según el principio. Es también la base desde la que afrontar posteriores desarrollos sintéticos, como herramientas y modelos integrados para la planificación. Se busca dilucidar los principales factores a considerar, y eliminar los posibles aspectos redundantes de los criterios del principio que no aporten especial valor añadido a la modelización. Con ello se supervisará igualmente la definición del modelo.

Operativamente, el análisis composicional se abordará por el análisis de la extensión, densidad y diversidad de los espacios agregados según usos y tamaños. Estos descriptivos (superficies relativas, diversidad, densidad) en realidad suponen un segundo nivel de análisis, dado que la agregación de los usos y la conglomeración de los espacios por el tamaño (cluster analysis), realizan una primera interpretación de la composición del paisaje (cap.8). Igualmente, se busca analizar los posibles factores composicionales relacionados con uno de los criterios configuracionales del principio de ‘difícil cuantificación’ (ap. 7.1), como es el de las distancias óptimas entre los espacios internos del paisaje –tabla 9.1.

319 Para este análisis, se parte de la definición aceptada comúnmente, cuanto a las dimensiones necesarias para el análisis de las distribuciones espaciales y sus relaciones: extensión, densidad y sucesión (Ackerman 1976).
320 El análisis de la diversidad interna se considera como el principal indicador composicional del paisaje heterogéneo (coincidentemente con las consideraciones del análisis espacial en Ecología del Paisaje), y como tal se aborda en el estudio.
Tabla 9.1.- Resumen de criterios y procedimientos para el análisis composicional

<table>
<thead>
<tr>
<th>Análisis a realizar:</th>
<th>1-Extensión</th>
<th>2-Densidad</th>
<th>3-Diversidad</th>
<th>4-Distancias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterios AWO involucrados</td>
<td>1,3,4,6</td>
<td>1,3,4,6</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Descriptivos a utilizar</td>
<td></td>
<td>Densidades relativas</td>
<td></td>
<td>Diversidad por usos</td>
</tr>
<tr>
<td></td>
<td>Superficies relativas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relación área GE/nº espacios</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Con todo ello se procederá a la valoración de la modelización, y su posible desarrollo sintético como herramienta de análisis de la heterogeneidad espacial del paisaje. Se anticipan así sus capacidades en el tratamiento de los fenómenos territoriales complejos de estos paisajes (objetivos del estudio).

9.1.- Análisis por usos y tamaños

Se procede ahora al análisis conjunto de las dos variables, según los valores cruzados por tamaño y uso de los espacios con las respectivas subclases (tablas cruzadas o breakdown): Al cruzar estas dos variables categóricas obtenemos unos nuevos descriptivos por subclases. Con ello se cuantifican los valores que toman los criterios de la presencia de grandes espacios naturales (criterio 1), la existencia de más de un espacio natural-agrícola (criterio nº3) y la adecuada presencia de espacios de pequeñas dimensiones (criterio nº4). La densidad relativa de espacios forestales de pequeñas dimensiones por su parte (criterio nº6), cabe recordar es clave para la posibilidad de definición de corredores naturales –conlleva una apreciación experta, cuando menos un análisis visual detallado.

Se considera también el interés de estas tablas cruzadas para la comparación en la composición de las tipologías de espacios según tamaño y uso, antes y después de la agregación: Con ello se observan las pautas de la agregación, que se producen de forma diferenciada para cada paisaje. Este se configura por tanto como el nivel previo del análisis composicional en base AWO.

Como una apreciación general antes de la agregación obtenida por las tablas cruzadas, se observa que se produce efectivamente el aumento esperado del peso de los

321 Estas estadísticas se ofrecen en el apéndice B del estudio, y proporcionan los datos de base para el análisis.
grandes espacios y la matriz de fondo del paisaje, y por otro lado una disminución de los espacios pequeños y medianos. Sin embargo, podemos diferenciar en este caso entre los paisajes donde la agregación supone un aumento del peso de los espacios medianos respecto los pequeños (Pla de Bages, Penedès), de los que presentan una clara disminución de esta tipología con la agregación (Pla de la Conca de Barberà). Ello parece relacionado igualmente con el mayor peso de los usos urbanizado y natural no forestal (NNF, uso de transición) con la agregación –a relacionar supuestamente con una determinada fase del proceso de metropolinización.322

9.1.1.- La matriz del paisaje y su interpretación por los resultados

Si analizamos los resultados del primer cluster, observamos que la primera distinción dentro del conjunto de espacios de cada paisaje se realiza entre el mayor espacio o matriz del paisaje y el resto. Esta matriz de uso rural es así el espacio más claramente diferenciado de los paisajes -aun exceptuando aparentemente el caso de la P. del Vallès. La superficie de este gran espacio de fondo se encuentra a mucha distancia del siguiente espacio, que también es rural en todos los casos (tabla 9.2).323

<table>
<thead>
<tr>
<th>Pla de Bages</th>
<th>Pla de la Conca</th>
<th>Plana</th>
<th>Penedès</th>
<th>Plana Valles</th>
<th>Plana de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área (ha.)</td>
<td>Tipo</td>
<td>Área (ha.)</td>
<td>Tipo</td>
<td>Área (ha.)</td>
<td>Tipo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.639</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.461</td>
<td>Forest.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En el caso de la Plana del Vallès, esta distinción de la matriz no es tan clara, sin embargo. Además de no existir este enorme salto entre la matriz y el resto de los espacios rurales, se da el hecho de que los cuatro grandes espacios que aparecen en la primera categoría ‘matriz’ son de usos diferentes, y además el primero es de la tipología ‘urbanizado’. En su interpretación, este hecho remarcable debe analizarse desde un punto de vista espacial: si bien los espacios resultantes son de mucho peso y aparece un gran primer espacio de tipo urbanizado de forma destacada en el ranking, los dos espacios

322 En el caso de la Plana del Vallès, se produce sin embargo una reducción constante en el número de espacios y su peso en las tres tipologías según tamaño mencionadas, resultado en parte del particular peso de la categoría matriz (con cuatro espacios de diferentes usos, que agregan buena parte del suelo en el paisaje).
323 Esto es coincidente con los resultados esperados desde la teoría de la Ecología del Paisaje, cuanto a la preeminencia de la matriz de fondo en el paisaje.
El principio ‘agregados con enclaves’

siguientes son espacios rurales colindantes, fragmentados precisamente por este gran agregado urbanizado (concretamente por el tramo de la autopista A-7, en el Vallès Oriental -figura 9.1).

Figura 9.1.- Tipologías de espacios agregados de la Plana del Vallès

Fuente: elaboración propia.

 Esto, sumado al hecho que el uso rural es igualmente el mayor en superficie total en el paisaje de la plana del Vallès, es lo que motiva que este agregado rural (formado por estos dos espacios) deba ser considerado en realidad como la matriz del paisaje. A pesar de todo, debe incidirse en su especificidad: los 4 grandes espacios resultantes del primer conglomerado ya nos hablan a las claras del carácter urbano de este paisaje fragmentado -aunque de base rural en el Vallès Oriental, hasta hace relativamente poco (ap. 6.7).
Igualmente es el único de los cinco paisajes con una presencia muy considerable del agregado forestal, aunque debe recordarse que se trata del paisaje de mayor extensión. De cara a las estrategias de conservación, este hecho diferencial sin embargo debe ser un recordatorio cuanto a la especial configuración del paisaje vallesano, en el que la especificidad forestal tiene mucha importancia (juntamente con el uso urbanizado).

9.1.2.- Resultados para los Grandes Espacios

En esta tipología es de destacar el peso del uso rural en general: en todos los casos, está liderada por un espacio de este uso -exceptuando la P.del Vallès, por los resultados de la tipología ‘matriz’.

<table>
<thead>
<tr>
<th>Pla de Bages</th>
<th>Pla de la Conca</th>
<th>Plana Penedès</th>
<th>Plana Valles</th>
<th>Plana de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área (ha.)</td>
<td>Tipo</td>
<td>Área (ha.)</td>
<td>Tipo</td>
<td>Área (ha.)</td>
</tr>
<tr>
<td>985 Rural</td>
<td>1876 Rural</td>
<td>4.007 Rural</td>
<td>3.406 Rural</td>
<td>449 Rural</td>
</tr>
<tr>
<td>521 Urban.</td>
<td>1750 Rural</td>
<td>2.619 Rural</td>
<td>2.826 Rural</td>
<td>435 Urban.</td>
</tr>
<tr>
<td>470 Rural</td>
<td>414 Urban.</td>
<td>976 Urban.</td>
<td>2.762 Rural</td>
<td>389 Forest.</td>
</tr>
<tr>
<td>365 Rural</td>
<td>144 N.No-f</td>
<td>638 Rural</td>
<td>890 N.No-f</td>
<td>270 Urban.</td>
</tr>
<tr>
<td>272 N.No-f</td>
<td>512 Rural</td>
<td>512 Rural</td>
<td>864 Forest</td>
<td>188 Urban.</td>
</tr>
<tr>
<td>199 N.No-f</td>
<td>324 Rural</td>
<td>638 Urban.</td>
<td>754 Forest</td>
<td>165 N.no-f</td>
</tr>
<tr>
<td>190 N.No-f</td>
<td>323 Urban.</td>
<td>632 Forest</td>
<td>159 N.no-f</td>
<td>144 Forest.</td>
</tr>
<tr>
<td>178 Urban.</td>
<td>248 Urban.</td>
<td>584 Rural</td>
<td>584 Rural</td>
<td>123 Forest.</td>
</tr>
<tr>
<td>132 Urban.</td>
<td>244 N.No-f</td>
<td>571 Forest</td>
<td>571 Forest</td>
<td>106 Rural.</td>
</tr>
<tr>
<td>127 Forest.</td>
<td>198 N.No-f</td>
<td>491 N.No-f</td>
<td>491 N.No-f</td>
<td>103 Urban.</td>
</tr>
</tbody>
</table>

Sin embargo, no se da esta frecuencia tan importante del uso rural en el caso de la Plana de Vic, donde la mayor parte de los espacios de esta tipología son urbanizados (excepto precisamente el espacio forestal mayor del paisaje). Este hecho es explicable por el enorme peso del único gran espacio que configura la matriz rural, y que da cuenta de la casi ausencia de grandes espacios rurales (el primero con 448 ha.), a mucha distancia del espacio de la matriz. Ello repercute igualmente en la poca variación en el tamaño del resto de espacios de la distribución.
El principio ‘agregados con enclaves’

Este predominio del uso urbano hace que sea el uso destacado de los espacios de mayor tamaño, seguido de los espacios NNF y forestales. Este hecho nos confirma las causas de la particular distribución de las superficies en el paisaje de la Plana de Vic: la enorme concentración y poca fragmentación de la matriz de fondo rural.

En el caso de la Plana del Penedès, esta categoría sí contiene mayoritariamente espacios de tipo rural, a bastante distancia del resto de espacios, y sin ningún espacio forestal en la tipología -como sucede también con el Pla de la Conca de Barberà (tabla 9.3). En el caso del Pla de Bages aparece también el primer agregado forestal en la lista, si bien aparece un número mayor de grandes espacios del agregado NNF (vegetación escasa, matorrales y prados), así como un gran agregado urbanizado (el núcleo urbanizado de Manresa). La excepción en el caso de la Plana del Vallès viene dada por el gran agregado urbanizado, que se convierte en el mayor espacio del paisaje (y porque consecuentemente sólo existen 2 espacios urbanizados más de tamaño grande). En cambio, el resto de usos agregados tiene gran presencia, incluido el uso rural. Como posible interpretación, esto nos indica precisamente el grado de fragmentación de los espacios del paisaje por causa antrópica. Ello se reflejaría igualmente en una distribución con un mayor número y superficie relativa de espacios considerados de tamaño medio.

9.1.3.- Resultados de la tipología de los espacios medianos

Ya por la apreciación del total de superficie y nº relativo de los espacios medianos, cabe plantear si, como parece, existe una evidente gradación que permite ordenarlos desde la Plana del Vallès a la de la Conca de Barberà (tabla 9.4). 324

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Nº espacios</th>
<th>Superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>0,1</td>
<td>0,17</td>
</tr>
<tr>
<td>Pla de la Conca</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>0,07</td>
<td>0,12</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>0,12</td>
<td>0,24</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>0,07</td>
<td>0,08</td>
</tr>
</tbody>
</table>

324 La importancia de esta tipología parece estar en relación directa con la naturaleza metropolitana del paisaje, de esta manera.
Si observamos los resultados obtenidos según usos (tabla 9.5), en todos los paisajes es de destacar la presencia del uso NNF, que en su gradación inversa va desde el 22% del Vallès hasta el 60% del total en el caso del Pla de la Conca. Ello hace que pueda plantearse la existencia de una posible correlación inversa entre la presencia relativa de los espacios medianos y el uso NNF -tal vez en relación con la metropolinización del paisaje.

En el caso de la P.de la Conca de B. destacan también los bajos valores de los espacios forestales -como en el de la Plana del Penedès-, aunque en los tres paisajes restantes los espacios forestales medianos están alrededor del 25% del total. Igualmente sucede con el uso urbanizado, con valores constantes en los cinco paisajes -entorno el 25%, siendo los más extremos el P.de la Conca y la P.del Vallès (17-30%). El caso de la Plana del Vallès es tal vez el más equilibrado en la distribución de la superficie de los espacios, a caballo entre los usos naturales y la presencia de espacios urbanizados (con equiprobabilidad de los usos).

Por su parte, la concentración del uso rural casi en un único espacio en la Plana de Vic, explica posiblemente la importante caracterización de los espacios medios como urbanizados o marginales en este paisaje (NNF), sin la misma importancia de los espacios rurales. Este hecho se da también en el otro paisaje con elevada proporción del espacio ‘matriz’, el Pla de la Conca de Barberà (tabla 9.5). Por tratarse del paisaje menos urbanizado, establece también la identificación entre esta tipología de espacios medios y el uso NNF, en este caso.

Tabla 9.5.- Distribución de la superficie en los usos agregados de los espacios medianos

<table>
<thead>
<tr>
<th></th>
<th>P. de Bages Superficie %</th>
<th>P. de la Conca Superficie %</th>
<th>P. del Penedès Superficie %</th>
<th>P. del Vallès Superficie %</th>
<th>P. de Vic Superficie %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestal</td>
<td>0,22</td>
<td>0,12</td>
<td>0,03</td>
<td>0,25</td>
<td>0,27</td>
</tr>
<tr>
<td>Rural</td>
<td>0,19</td>
<td>0,11</td>
<td>0,22</td>
<td>0,26</td>
<td>0,11</td>
</tr>
<tr>
<td>Urbaniz.</td>
<td>0,24</td>
<td>0,17</td>
<td>0,3</td>
<td>0,28</td>
<td>0,26</td>
</tr>
<tr>
<td>Nat.No Forestal</td>
<td>0,35</td>
<td>0,6</td>
<td>0,45</td>
<td>0,22</td>
<td>0,37</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

9.1.4.- Resultados para los espacios pequeños

Si analizamos por último el subgrupo restante de los espacios pequeños, estaremos caracterizando los espacios que funcionalmente son propiamente los

325 Valor de referencia para la equiprobabilidad con 4 casos, en un índice de diversidad.
El principio ‘agregados con enclaves’

‘enclaves’ del principio conceptual. Estos constituyen el grueso del número de espacios total en el paisaje (sobre el 90%), aunque representan una superficie escasa (entorno al 11%; tabla 9.6). Su composición es bastante constante para todos los usos agregados, como se observa en el caso del paisaje más humanizado, la Plana del Vallès. Por contra, en los paisajes más rurales (el resto) se observa el hecho contrario: la tendencia a la menor diversidad interna de este conglomerado, en comparación con la tipología de espacios medianos (tabla 9.7). Es de destacar entonces el gran peso del uso NNF en esta tipología.

Este peso se reduce precisamente en el caso del paisaje más urbanizado, el de la Plana del Vallès: ello concuerda posiblemente con ser el paisaje con mayor presión urbanizadora sobre estos espacios marginales: son espacios en transición, susceptibles de ser urbanizables o ‘en reserva’.

Tabla 9.6.- Número relativo de espacios pequeños y superficie en el paisaje (proporción)

<table>
<thead>
<tr>
<th>Nº espacios</th>
<th>Superficie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>0,88</td>
</tr>
<tr>
<td>Pla de la Conca</td>
<td>0,95</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>0,92</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>0,86</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>0,91</td>
</tr>
</tbody>
</table>

Tabla 9.7.- Distribución de la superficie en los usos agregados de los espacios pequeños (proporción)

<table>
<thead>
<tr>
<th>CLASE</th>
<th>P. de Bages</th>
<th>P. de la Conca</th>
<th>P. del Penedès</th>
<th>P. del Vallès</th>
<th>P. de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Superficie %</td>
<td>Superficie %</td>
<td>Superficie %</td>
<td>Superficie %</td>
<td>Superficie %</td>
</tr>
<tr>
<td>Forestal</td>
<td>0,26</td>
<td>0,3</td>
<td>0,14</td>
<td>0,25</td>
<td>0,19</td>
</tr>
<tr>
<td>Rural</td>
<td>0,16</td>
<td>0,03</td>
<td>0,06</td>
<td>0,24</td>
<td>0,1</td>
</tr>
<tr>
<td>Urbanizado</td>
<td>0,17</td>
<td>0,08</td>
<td>0,18</td>
<td>0,2</td>
<td>0,18</td>
</tr>
<tr>
<td>Nat.no-forestal</td>
<td>0,42</td>
<td>0,59</td>
<td>0,62</td>
<td>0,31</td>
<td>0,53</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Si comparamos las tablas de superficie relativa y usos de las tipologías de espacios pequeños y medianos, observamos por un lado la oportunidad de realizar la diferenciación entre ambas tipologías por tamaño, así como algunas de las pautas características que marcan la evolución de los espacios de los respectivos paisajes.

En primer lugar, vemos que la diferenciación entre ambas tipologías por tamaño es mucho más marcada en los paisajes más afectados por la metropolinización: el peso
relativo de los espacios medianos en la P. del Vallès es un hecho muy destacado en este sentido. Por otra parte, las tipologías de usos también cambian: el mayoritario uso NNF - en teoría el originario en ambas tipologías por tamaño, a partir del caso del P.de la Conca de B., se convierte en una mayor presencia de uso urbanizado en todos los paisajes, llegando a ser el uso más destacado en el caso de la P. del Vallès.

Cabe concluir por tanto que se da una clara tendencia hacia el mayor peso de los espacios medianos y hacia la equiprobabilidad (aumento de la diversidad interna) de los usos, a medida que se evidencia la afectación antrópica y la fragmentación espacial del mosaico del paisaje.

9.1.5.- Valoración del análisis por tamaños y usos

Por los resultados obtenidos, se han confirmado o profundizado algunas de las apreciaciones conceptuales y aplicadas, cuanto a las tipologías espaciales definidas desde la Ecología del Paisaje y el principio AWO. Este es el caso de la importancia del gran espacio de la matriz de fondo, por ejemplo, o de la definición de los espacios de ‘funcionalidad dudosa’ como los de tamaño medio. En este punto se considera oportuna la discusión sobre los resultados obtenidos en el estudio, y la conceptualización de estas dos tipologías de espacios desde esta nueva luz.

- La matriz del paisaje

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th><code>Matriz</code> (ha.)</th>
<th>Total uso Rural (ha.)</th>
<th><code>Matriz</code> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>6,719</td>
<td>9,375</td>
<td>71.67</td>
</tr>
<tr>
<td>P. de Conca de Barberà</td>
<td>13,780</td>
<td>17,550</td>
<td>78.52</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>14,421</td>
<td>24,094</td>
<td>60.04</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>12,892</td>
<td>26,319</td>
<td>48.98</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>17,924</td>
<td>19,006</td>
<td>94.31</td>
</tr>
</tbody>
</table>

Por los resultados del presente estudio se considera que existe en la práctica una correspondencia directa entre el uso agregado predominante (rural) y el espacio que por tamaño puede considerarse la ‘matriz’ del paisaje: en algún caso supera incluso el 90% de superficie del total del uso rural (caso de la Plana de Vic; tabla 9.8):
El principio ‘agregados con enclaves’

En el resto de casos, observamos que el primer gran espacio está siempre por encima del 60% -exceptuando la Plana del Vallès (entorno al 50% del total sin embargo). El primer gran espacio del paisaje es en ellos de tipo rural, a gran distancia cuanto a superficie del resto de espacios de tamaño ‘grande’ -considerados propiamente los espacios ‘agregados’ del paisaje (aggregated), de más de 100 ha.

A parte de los motivos conceptuales y la valoración empírica del peso del primer gran espacio, se observa también otro hecho espacial relevante, que motiva la identificación del primer gran espacio con el espacio de la matriz: Los grandes espacios rurales deslindados del mayor espacio rural (‘matriz del paisaje’), se encuentran separados de dicho espacio en buena medida como resultado de la topografía del terreno.326

- Los espacios medianos

La categoría de los espacios de tamaño mediano constituye según el estudio otro de los indicadores claros de la idoneidad del paisaje (o de su disfuncionalidad de hecho). Así, su cuantificación es potencialmente uno de los índices simples que referirá la adecuación de los paisajes al óptimo. Coincidiendo con esta suposición, se constata que la mayor presencia de este tipo de espacios parece estar en relación directa con la artificialización del territorio. Este hecho viene reflejado también (además de la composición en sus usos –ap. 9.1.3), por la disminución de los valores de superficie relativa de la matriz rural, que en el caso del Vallès llega a situarse por debajo de los valores de los espacios medianos (fig.9.2).

326 De hecho, los usos no rurales que se dan entre los espacios agrícolas (matriz rural), pueden tener incluso mayor entidad (superficie) que los propios grandes espacios del uso rural. Es habitual por ejemplo que en estos paisajes los cultivos moteen las grandes zonas forestales y viceversa, como sucede por ejemplo en el caso del Vallès.
Figura 9.2.- Valores de las tipologías de espacios por tamaños (porcentaje de superficies)

![Gráfica de los valores de las tipologías de espacios por tamaños.](image)

Fuente: elaboración propia.

Por la gráfica, se aprecia claramente la relación entre el mayor número de espacios grandes y medianos y la disminución del gran espacio de la matriz, a la vez que se mantiene casi constante el peso de los espacios pequeños en los cinco paisajes. Evidencia pues la relación entre la disminución de la matriz y el incremento de los espacios grandes y medianos, por su fragmentación -definiendo tal vez las etapas del mismo proceso, como parece por la ordenación de los casos.

En este sentido destacaría el caso del Pla de Bages, con un peso relativo de los espacios medianos relativamente mayor que el resto de paisajes; más destacable aún si cabe por presentar un menor peso de los grandes espacios, comparativamente. Como suposición entonces, el proceso de fragmentación de la matriz sigue una secuencia de degradación lógica, en un estudio de los cambios temporales en el paisaje. Puede plantearse entonces cómo se desarrolla este proceso: esto es, si se da el aumento del número de espacios grandes primero, y de los medianos después; o si este proceso es simultáneo en el tiempo. En su defecto, por la composición de las tipologías de espacios existentes en el paisaje (superficies relativas, densidad, diversidad), se pueden

327 Ello se podría realizar a través del análisis de correlaciones entre pares de variables, por ejemplo; obtendríamos así evidencia de cómo se desarrolla el proceso de fragmentación de la matriz, y su interrelación con el resto de características espaciales configuradas por los procesos de artificialización del paisaje -las cuales se pueden igualmente conceptualizar de forma óptima de manera espacial (Forman & Collinge 1997).
El principio ‘agregados con enclaves’

aportar ya las huellas de este tipo de procesos en los sistemas territoriales, para un momento determinado del paisaje.

9.2.- Análisis espacial de la densidad interna en la composición del paisaje.

Podemos profundizar ahora en el análisis de los descriptivos básicos del área y número de espacios, desde el análisis de las densidades en la ocupación del territorio –uno de los descriptivos básicos para las distribuciones espaciales en Geografía, junto a la diversidad interna. Aplica específicamente a los criterios de presencia y número existente de espacios en las tipologías declaradas, como son la existencia de grandes espacios naturales (criterio AWO nº1), la existencia de más de un espacio natural-agrícola (criterio nº3) y la adecuada presencia de espacios de pequeñas dimensiones (criterio nº4). Igualmente se refiere la densidad relativa de espacios forestales de pequeñas dimensiones (criterio nº6), factor básico para la definición experta de corredores naturales. La densidad relativa de las tipologías de espacios en el paisaje, por superficies y uso, son las variables a utilizar.

Se pretende igualmente valorar el potencial de este descriptivo para la modelización de la heterogeneidad del paisaje, para todas las tipologías en conjunto. Se quieren contrastar de esta manera los resultados de los procesos de agregación y análisis de conglomerados (ap. 8.2-8.3), y entrar en el tratamiento de la heterogeneidad espacial -analizando la varianza del grano del paisaje. En este sentido, la varianza del grano (criterio AWO nº2) se considera un indicativo que facilita la modelización conjunta: está relacionada con la composición (número y densidad) de los espacios de cada tipología (un hecho que aparece reflejado ya en el cómputo general de las densidades por tipologías), y es complementaria de la diversidad interna.

Con esta aproximación se espera que se clarificarán cuestiones funcionales relacionadas con las tipologías de espacios según tamaño -como es el caso de los espacios medianos-, o las características composicionales resultado de la fragmentación de los grandes espacios en territorios metropolitanos. Este ámbito de análisis servirá para plantear también, de forma especial, la definición e interrelaciones composicionales del criterio de las distancias óptimas entre espacios agregados y enclaves.
9.2.1.- Premisas conceptuales

En el análisis del paisaje, las variables del área y el número de espacios nos aparecen como los descriptivos básicos de las composiciones espaciales existentes, posibilitando el análisis de su densidad y diversidad interna. La cuantificación del área de cada uso agregado es el descriptivo básico de su composición. Igualmente, el número resultante de cada tipología de espacios según tamaño, nos da pie a la caracterización de las configuraciones espaciales existentes (la medida de su ‘grano’).

Con este análisis se profundiza por tanto en lo que se conoce como el grano del paisaje (la dimensión media o ‘grano’ de sus elementos), uno de los indicativos básicos de sus dimensiones y funcionalidades en el análisis de la heterogeneidad del paisaje (Gustafson 1998; ap. 3.4). Coincidentemente, la maximización en la variación del grano es un factor clave para la modelización de la heterogeneidad espacial del paisaje, según el segundo criterio del principio. El presente análisis se propone entonces para el tratamiento de la variación del grano de las tipologías AWO, en una aproximación que se quiere más detallada que la simple formulación de un índice de varianza. Con este objetivo, estas densidades relativas de las tipologías por tamaño se analizarán también en función de las tipologías de usos.

Para ello, se considera paralelamente la definición de determinados índices sintéticos en base AWO. Es el caso de los índices de densidad de los espacios (por tamaño y uso) en el paisaje, y la valoración de su utilidad para complementar la visión ofrecida por los estadísticos de diversidad -con que definir adecuadamente la heterogeneidad espacial.

9.2.2.- Área y número de espacios.

Las gráficas de distribución interna de la variable ‘uso del suelo’ según tamaño, son un indicativo visual con que profundizar en el análisis de las distribuciones existentes en cada paisaje. Por la simple apreciación de las gráficas, se evidencian algunos aspectos que caracterizan el paisaje en conjunto -reflejados en parte ya en las curvas de las distribuciones del total de espacios; ap.8.1. Son la base (la distribución característica) contra la que contrastar la definición de las tipologías de espacios.
Así, si graficamos para cada uno de los 4 agregados de usos del suelo la superficie ordenada de menor a mayor (y) del conjunto de los espacios (x), obtenemos una representación de la distribución del área según tamaño de los espacios para un determinado uso agregado. Esta representación básica nos refiere ya visualmente la tendencia a la concentración o dispersión, caracterizando cada tipología. Con ello, realizamos un primer análisis comparativo de los paisajes sobre la base de esta tendencia. También podemos discernir cuáles son algunos de los aspectos más relevantes que nos interesa cuantificar.

Con la representación de los valores de las gráficas en escala logarítmica (log-log), se visualizan con más facilidad las similitudes y diferencias entre los diferentes casos, especialmente cuanto a la relación existente entre los valores de la superficie de los espacios y su número -observable en la curva o pendiente de la gráfica. Así, por la pendiente de esta distribución apreciamos visualmente cual es la tendencia que sigue el paisaje (fig. 9.3), cuanto a la importancia de determinados espacios y tipologías:

- Una curva con marcada pendiente indicará una gran importancia de los espacios grandes y posiblemente un número total menor de espacios; mientras que una curva plana indicará una importancia menor de los grandes espacios, y probablemente un mayor número total de espacios.
- Pendientes cóncavas o convexas indicarán igualmente una importancia mayor o menor de los espacios medianos.

Figura 9.3.- Tipologías de pendientes

![Tipologías de pendientes](image_url)

Fuente: elaboración propia

328 Esta curva se puede definir visualmente como la tendencia a la concentración de la superficie de un paisaje (o uso agregado), en función del número total de espacios.
Los valores que tomen los subgrupos de espacios en el paisaje, queda reflejado pues en las gráficas.

Figura 9.4.- Agregado natural no-forestal

![Figura 9.4.- Agregado natural no-forestal](image1)

Fuente: elaboración propia.

Figura 9.5.- Agregado forestal

![Figura 9.5.- Agregado forestal](image2)

Fuente: elaboración propia.
El principio ‘agregados con enclaves’

Figura 9.6.- Agregado rural

Figura 9.7.- Agregado urbanizado

Fuente: elaboración propia.

Así, de la gráfica del área de los espacios podemos establecer las diferencias entre el conjunto de los paisajes:
1. Respecto a la superficie del primer gran espacio (eje y);
2. Respecto a su superficie total (área debajo de la curva, integral de la función);
3. Respecto al número total de espacios (eje x).

Tabla 9.9.- Superficie y número de espacios agregados de los paisajes

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Superficie (ha.)</th>
<th>Nº de espacios</th>
<th>Área del espacio mayor (ha.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>15.750</td>
<td>722</td>
<td>6.731</td>
</tr>
<tr>
<td>P. de la Conca</td>
<td>20.517</td>
<td>576</td>
<td>13.801</td>
</tr>
<tr>
<td>P. del Penedès</td>
<td>32.821</td>
<td>1380</td>
<td>14.351</td>
</tr>
<tr>
<td>P. del Valles</td>
<td>66.209</td>
<td>2571</td>
<td>9.167</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>25.792</td>
<td>931</td>
<td>18.001</td>
</tr>
</tbody>
</table>

De esta forma y previamente a la interpretación detallada de los casos se vislumbran ya las tendencias existentes. El listado de los valores que toman estas variables es el punto de partida en el análisis del grano de las distribuciones (tabla 9.9). A modo de resumen (tablas 9.10-11), podemos ver cuales son las principales características apreciables por las variables de superficies y densidades sobre el total de los espacios del paisaje.

Tabla 9.10.-Porcentajes superficies por usos y tamaños

<table>
<thead>
<tr>
<th>P. de Bages</th>
<th>Forestal</th>
<th>Rural</th>
<th>Urbanizado</th>
<th>Natural no Forestal</th>
<th>Total Tamaños</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esp. Pequeños</td>
<td>3,5</td>
<td>2,0</td>
<td>2,2</td>
<td>5,4</td>
<td>13,2</td>
</tr>
<tr>
<td>Esp. Medianos</td>
<td>3,7</td>
<td>3,2</td>
<td>4,2</td>
<td>6,0</td>
<td>17,1</td>
</tr>
<tr>
<td>Grandes espacios</td>
<td>2,5</td>
<td>11,7</td>
<td>6,1</td>
<td>6,4</td>
<td>26,7</td>
</tr>
<tr>
<td>Matriz</td>
<td>0,0</td>
<td>43,1</td>
<td>0,0</td>
<td>0,0</td>
<td>43,1</td>
</tr>
<tr>
<td>Total usos</td>
<td>9,7</td>
<td>60,0</td>
<td>12,4</td>
<td>17,9</td>
<td>100,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. de la Conca de Barberá</th>
<th>Forestal</th>
<th>Rural</th>
<th>Urbanizado</th>
<th>Natural no Forestal</th>
<th>Total Tamaños</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esp. Pequeños</td>
<td>2,6</td>
<td>0,2</td>
<td>0,7</td>
<td>5,2</td>
<td>8,7</td>
</tr>
<tr>
<td>Esp. Medianos</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Grandes espacios</td>
<td>0,0</td>
<td>18,2</td>
<td>2,6</td>
<td>0,7</td>
<td>21,6</td>
</tr>
<tr>
<td>Matriz</td>
<td>0,0</td>
<td>69,3</td>
<td>0,0</td>
<td>0,0</td>
<td>69,3</td>
</tr>
<tr>
<td>Total usos</td>
<td>2,7</td>
<td>87,9</td>
<td>3,4</td>
<td>6,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>
A partir de las tablas, nos adentramos en el análisis de la densidad de las tipologías AWO, refiriéndolo a las consideraciones sobre las tendencias generales observadas en las gráficas. Posteriormente, se profundizará en el análisis conjunto de la densidad y superficie de las tipologías por paisaje.

9.2.3.- Relación entre el espacio mayor/ Número de espacios

La necesidad de contemplar la relación entre el área del espacio mayor y el número de espacios para un determinado uso, surge por sí sola de la observación de las magnitudes de las variables graficadas y su distribución: el nº total de espacios, la
superficie del primer gran espacio, y la distribución de la superficie graficada a lo largo de la pendiente de la gráfica (gráficas 8.1-8.4). Concierne específicamente a la varianza existente en las series (criterio AWO nº2), dado que está en relación directa con su valor (a mayor primer gran espacio mayor varianza en la serie -en relación también con el nº total de espacios). En la práctica también, el número de grandes espacios existentes según uso y su peso (criterios AWO nº1 y 3), así como su relación directa con la tipología matriz (por fragmentación de la misma), se analizan aquí desde una nueva perspectiva.

- Uso Forestal

Para analizar los resultados en el caso del uso forestal, debemos tener en cuenta que el primer gran espacio de este tipo es por definición el principal espacio natural que existe en cada paisaje. Así, en el caso de tener poca superficie, ello nos dará ya una primera pista cuanto a la caracterización del paisaje: destacará por su escasa ‘naturalidad’ y potenciales para la definición de estrategias de conservación.

De la gráfica (fig. 9.5), nos llama antes que nada la atención la baja superficie de este uso en los casos del Pla de la Conca de Barberà y Penedès. En concreto, destaca la baja superficie del espacio mayor y siguientes (pendiente de la curva muy plana), a gran distancia del resto de paisajes (26 y 33 ha. respectivamente, frente las 389 de Vic o las 4.460 del Valles). En el caso de la Plana del Penedès, el uso forestal está repartido entre un elevado número de espacios (236, en una relación favorable de 7 a 1 para el nº de espacios respecto el área del espacio mayor). Dada además la pequeña área existente del uso, todo ello evidencia el bajo peso relativo y el escaso grado de dispersión en la distribución de los valores de los espacios forestales. Sucede algo similar en el caso del Pla de la Conca, aunque este presenta un peso del uso sobre el total del paisaje.

329 Cabe recordar también que el caso del primer gran espacio que se obtiene de la tipología rural se identifica casi directamente con la matriz del paisaje –ap.8.5.

330 Esta relación se considera de interés también para valorar la existencia de posibles regularidades según el rango y el tamaño de las tipologías descritas, desde formulaciones de la ‘criticalidad organizada’ en las distribuciones complejas de espacios en el paisaje –o alternativamente, explicativa de su no existencia (ap.8.1.1.3).

331 Igualmente, a menor superficie del uso natural y de su espacio mayor (con mayor fragmentación), más dificultad en la planificación para la conservación, en estos paisajes altamente afectados por la actividad humana sobre el medio natural.
El principio ‘agregados con enclaves’

comparativamente mayor (2.9% frente al 2%) y un número total de espacios menor (tabla 9.12).332

Tabla 9.12.- Ratio entre la superficie del espacio forestal mayor (ha.) y el número de espacios

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Superficie relativa (%)</th>
<th>Superficie Mayor del Espacio (ha.)</th>
<th>Nº total espacios</th>
<th>Ratio área EM / Nº total esp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>9.6</td>
<td>256</td>
<td>219</td>
<td>1 a 1</td>
</tr>
<tr>
<td>P. de Conca</td>
<td>2.9</td>
<td>26</td>
<td>178</td>
<td>1 a 7</td>
</tr>
<tr>
<td>P. del Penedès</td>
<td>2.0</td>
<td>33</td>
<td>236</td>
<td>1 a 7</td>
</tr>
<tr>
<td>P. del Valles</td>
<td>22.4</td>
<td>4460</td>
<td>744</td>
<td>6 a 1</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>6.7</td>
<td>389</td>
<td>210</td>
<td>1.8 a 1</td>
</tr>
</tbody>
</table>

Otro aspecto destacable por las tablas del uso forestal es la existencia de la gran masa boscosa del Vallès, acompañada de un elevado número total de espacios. A pesar de esto último, la Plana del Vallès se encuentra en una situación favorable entre el área del espacio mayor y el número total de espacios forestales (relación 6 a 1 aprox.), así como el área media sin el espacio mayor (13 ha. / espacio), muy por encima del resto de paisajes -con una área media en conjunto muy elevada (20 ha / espacio). Esto nos confirma que este paisaje tiene unas características muy específicas, de mayor naturalidad preexistente cuanto a la configuración de los usos del suelo, diferentes del resto de los paisajes comparados.333

En la gradación inversa entre el área del espacio mayor del agregado forestal y el número total de espacios, los casos del Pla de Bages y la Plana de Vic son intermedios: la Plana de Vic está en relación 1.8 a 1 (389 ha. del esp. mayor por 210 espacios), y el Pla de Bages está 1 a 1 (256 ha del esp. mayor y 219 espacios). Estos dos, si no consideramos el caso del Vallès, son los casos que presentan mejor relación entre área y número de espacios. Esto se refleja en la gráfica por la pendiente pronunciada de las curvas, similar aproximadamente al de la Plana del Valles. Por este hecho, podemos pensar que los espacios forestales en estos dos paisajes se encuentran en situación

332 Otro indicador del poco peso del uso forestal en el caso de la Plana del Penedès es el área media de los espacios (2.8 ha.), la más baja de los cinco paisajes (‘demasiados’ espacios, y mucha fragmentación posiblemente). Ello supone además que la superficie forestal es relativamente menor en el contexto del paisaje, con un uso configurado por una multitud de espacios de poca entidad, muy fragmentados.

333 Esta mayor concentración de los espacios forestales es tal vez explicable por factores antrópicos específicos (como el menor cultivo de la vid, reforestación de pendientes por abandono agrícola potenciado por el aumento de la urbanización), que llevaron a una fragmentación inicial del bosque extenso que ocupaba la mayor parte de la Plana, además de los propiamente orográficos.
Aceptar en el contexto del paisaje, aunque sin llegar a la importancia del uso que tiene en el caso de la Plana del Valles -porcentajes de la superficie del agregado respecto el total del paisaje: 9.6 y 6.7%, respectivamente.

- Uso rural

En el caso del uso rural, y teniendo en cuenta que este es el uso del primer gran espacio que identificamos con la matriz de fondo del paisaje, es de esperar que represente una elevada proporción del total del área del paisaje. De las tablas, destaca en primer lugar la gran extensión del espacio mayor en el caso de la Plana de Vic (94.3% del total de la superficie del uso). Se puede considerar paradigmático de la concentración del uso rural en el paisaje, dado también el bajo número de espacios de este uso (relación 106 a 1, tabla 9.13). Esto nos indica probablemente un muy bajo nivel de fragmentación del uso rural -y del paisaje por tanto-, en 1992. Si miramos el peso relativo de este gran espacio rural (la matriz) sobre el resto de los espacios del mismo uso, apreciamos claramente que el caso del Pla de la Conca supone la mejor relación: 328 a 1 (13780 ha. el espacio mayor y 42 esp.; 417 ha. de área media).334

En el caso del Pla de la Conca de Barberà, sin embargo, por la curva de la gráfica vemos que existe un gran salto entre los 3 primeros espacios rurales y el resto de espacios (fig. 8.2). Si visualizamos en el mapa estos tres agregados, comprobamos que se trata de la fragmentación del antiguo gran espacio rural existente (matriz)335. El resto de espacios del Pla de la Conca los podemos considerar de tamaño pequeño, dada la gran pendiente de la curva, en una relación posiblemente óptima según el principio -mejor incluso que en el caso de la Plana de Vic, como se aprecia en las gráficas (imag.8.2).

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Superficie relativa (%)</th>
<th>Superficie del Espacio Mayor (ha.)</th>
<th>Nº total espacios</th>
<th>Ratio área E Mayor / Nº total esp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>59.5</td>
<td>6.719</td>
<td>157</td>
<td>43 a 1</td>
</tr>
<tr>
<td>P. de Conca</td>
<td>85.5</td>
<td>13.780</td>
<td>42</td>
<td>328 a 1</td>
</tr>
<tr>
<td>P. del Penedès</td>
<td>73.4</td>
<td>14.320</td>
<td>178</td>
<td>80 a 1</td>
</tr>
<tr>
<td>P. del Valles</td>
<td>39.7</td>
<td>7.640</td>
<td>805</td>
<td>9 a 1</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>73.6</td>
<td>17.924</td>
<td>168</td>
<td>106 a 1</td>
</tr>
</tbody>
</table>

334 El área media sin el espacio mayor es de 88.8 ha., contrariamente al caso de la Plana de Vic, donde el promedio es el más bajo: 5.4 ha. tan solo, para 168 espacios.

335 Hay que recordar que por el procedimiento propuesto, sólo en caso de aparecer alguno de los tres espacios rurales menores en la tipología ‘matriz’ (en base al análisis de clusters), debería ser considerado parte integrante de esta tipología –como sucede en el caso de la P.del Vallès; ap. 8.5.
El caso opuesto sería el de la Plana del Vallès, donde el uso rural no se encuentra concentrado, sino al contrario: aunque el total de la superficie del agregado rural en términos absolutos es mayor (26.319 ha.), el espacio mayor del agregado rural no es de inicio el espacio mayor de todo el paisaje (este lugar corresponde al primer agregado de uso urbanizado). En el ranking de los espacios mayores por paisaje (ap. 8.5), los espacios del uso rural de la Plana del Valles ocupan la segunda y tercera posición (7.640 y 5.253 ha.), seguidos por el gran espacio del uso forestal (4.460 ha.). Además están por debajo del 10% del área total del paisaje, a diferencia del resto 336.

Este hecho constatable en la Plana del Valles, nos refuerza en la visión de la fragmentación del uso rural existente. No es de extrañar, pues, el gran número de espacios rurales como resultado (la otra cara de la moneda): la relación entre el área del espacio mayor y el número de espacios rurales es en este caso de 9 a 1 tan solo (7640 ha. y 805 espacios).

En esta gradación de la concentración y fragmentación negativa del uso rural, encontramos el Pla de Bages en la situación seguidamente menos concentrada (ratio de 43 a 1). 337 En este caso sin embargo, la proporción de pequeños espacios es considerablemente mayor que en el caso de la Conca de Barberà -siendo como es una relación similar a la del Vallès. La Plana del Penedès (ratio 80 a 1, con 14320 ha y 178 espacios) es el caso intermedio de la gradación de los valores de la concentración y dispersión, similar a la Plana de Vic. Tiene una estructura definida por un número relativamente menor de espacios pequeños, con un promedio elevado de área (53.9 ha.). Esto nos indica una buena dispersión de la medida del agregado rural en la Plana del Penedès, con relativamente pocos espacios medios. Dada además la importante superficie relativa del agregado, se puede resaltar la elevada concentración de este uso.

- Uso urbanizado
 Destaca a primera vista la importancia de este uso en la Plana del Valles (tabla 9.14): además de tener inicialmente el mayor espacio agregado cuando lo comparamos con cualquier otro paisaje metropolitano, observamos que representa más de cinco veces la extensión que tiene su espacio homólogo de la Plana del Penedès. El mayor número de

336 Estos cuatro grandes espacios mencionados son los que nos aparecen definidos como grandes espacios, según la clasificación realizada por las áreas (cluster análisis, ap. 8.5).
337 El Pla de Bages, juntamente con el Vallès, tiene un primer gran espacio del paisaje por debajo de las 10.000 ha., pero el Bages, con 157 espacios de uso rural, presenta un espacio mayor en situación óptima (71.7% del total de la superficie del agregado).
espacios de la Plana del Vallès, no obstante, no responde a una relación desfavorable con el espacio mayor: es de 16 a 1, indicando una concentración espacial del uso (56%). Sin embargo, debemos tener en cuenta la morfología de este espacio mayor en este paisaje: es resultado de la compartimentación del territorio por las infraestructuras viarias.

Tabla 9.14.- Ratio entre la superficie del espacio urbanizado mayor (ha.) y el número de espacios

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Superficie relativa agreg. (%)</th>
<th>Superficie del Espacio Mayor (ha.)</th>
<th>Nº total espacios</th>
<th>Ratio área EM / Nº total espacios</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>12.3</td>
<td>521</td>
<td>148</td>
<td>3,5 a 1</td>
</tr>
<tr>
<td>P. de la Conca B.</td>
<td>3.7</td>
<td>414</td>
<td>67</td>
<td>6 a 1</td>
</tr>
<tr>
<td>P. del Penedès</td>
<td>10.5</td>
<td>976</td>
<td>280</td>
<td>3 a 1</td>
</tr>
<tr>
<td>P. del Valles</td>
<td>24.2</td>
<td>9.006</td>
<td>556</td>
<td>16 a 1</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>9.2</td>
<td>235</td>
<td>228</td>
<td>1 a 1</td>
</tr>
</tbody>
</table>

La Plana del Penedès y el Pla del Bages por contra se encuentran en una situación marcadamente distinta respecto al área del gran espacio urbano y el número total de espacios. El caso del Pla de la Conca de Barberà es sintomático del grado de concentración urbana en pocas áreas (67), con un ratio del área del espacio mayor de 6 a 1, y una área media -sin el espacio mayor- de 4.4 ha. por espacio, la más baja. Podemos por todo ello caracterizar el paisaje del Pla de la Conca de Barberà como el más rural, también desde el punto de vista de la concentración urbana.

Es interesante destacar el mantenimiento de la relación entre el área urbanizada y el número de espacios en el caso de los cinco paisajes. Viendo las curvas de la gráfica (fig. 8.3), se constata de hecho el mantenimiento de una tendencia similar en todos los paisajes, en función del número de espacios -medida del paisaje. Esto parece sugerir la correspondencia en la variación entre las dos variables, reflejada en el área media: es similar en el caso de todos los paisajes, incluyendo la media sin el espacio mayor. El caso más alejado sería el de la Plana de Vic, donde la relación casi se revierte en favor de la variable número total de espacios: a pesar de tener un espacio mayor con 235 ha., el número total de espacios del uso urbanizado es de 228 (frente a los 148 del Bages). Nos indica una dispersión mayor del uso urbano, frente a la concentración del resto de paisajes -el hecho más usual. Este se considera precisamente un buen indicativo de la pauta poblacional de la Plana de Vic, con un alto índice de asentamientos históricamente dispersos (ap.6.3).

338 Aquí es de remarcar el caso del Pla de la Conca, a la cola de este paquete urbanizado, también con una relación similar.
El principio ‘agregados con enclaves’

- Uso Natural no Forestal

Finalmente, en el caso del agregado de usos naturales no forestales como son la vegetación escasa y los matorrales y prados, observamos primeramente el gran número de espacios y el área total que supone esta categoría, en todos los paisajes (tabla 9.15). Es destacable el valor del Pla del Bages, con un porcentaje de superficie sobre el total del paisaje del 18%. En cambio, cuanto al tamaño de los espacios este uso se encuentra muy poco disperso, y bastante concentrado en los valores bajos: con un espacio mayor que no excede del 10% del total del área del uso en todos los casos, si exceptuamos la Plana del Valles (21.1%).

La relación del área del espacio mayor respecto el número total de espacios igualmente refleja este hecho: es favorable en el número de espacios siempre, menos en el caso del Valles -el cual sin embargo es casi de 1 a 1. Esto nos indica un uso muy poco concentrado del tamaño de los espacios, y por tanto una fragmentación y posible dispersión locacional del uso (como se comprueba por los mapas –Anexo C). Las áreas medias de los espacios son igualmente bajos, dado el elevado número de espacios existentes.

Por la gráfica (fig. 8.4), tampoco observamos ninguna pauta que no sea la ordenación de las curvas según el número de espacios final de cada paisaje, con las pendientes casi paralelas. A partir de las evidencias, podemos caracterizar este uso diciendo que ocupa una posición marginal en el paisaje, confirmando las apreciaciones iniciales –ap.8.2.

Tabla 9.15.- Relación entre superficie espacio natural no forestal mayor (Ha.) y el número de espacios

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Superficie relativa (%)</th>
<th>Superficie del Espacio Mayor</th>
<th>Nº total espacios</th>
<th>Ratio área EMa. / Nº total esp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>17.9</td>
<td>341</td>
<td>431</td>
<td>1 a 1,2</td>
</tr>
<tr>
<td>P. de Conca Barberà</td>
<td>7.7</td>
<td>144</td>
<td>422</td>
<td>1 a 3</td>
</tr>
<tr>
<td>P. del Penedès</td>
<td>13.6</td>
<td>244</td>
<td>1.214</td>
<td>1 a 5</td>
</tr>
<tr>
<td>P. del Valles</td>
<td>13.5</td>
<td>1.890</td>
<td>1.292</td>
<td>1,5 a 1</td>
</tr>
<tr>
<td>P. de Víc</td>
<td>9.8</td>
<td>165</td>
<td>639</td>
<td>1 a 4</td>
</tr>
</tbody>
</table>

La dificultad de ir más allá en la interpretación de la categoría NNF hace tal vez que pueda considerarse la necesidad de replantear la agregación realizada de los usos. Podemos pensar en integrar esta categoría de forma conjunta con los usos forestales, para que nos dé la perspectiva global de las áreas supuestamente naturales en el paisaje.
Sin embargo, en la agregación propuesta de los usos queda reflejado el grado de naturalidad de los mismos, el cual puede variar en función de las características definitorias de la evolución del paisaje (grado de afectación antrópica). Como se ha visto anteriormente, este uso caracterizado como ‘de transición’ es susceptible de acabar siendo de diferente uso al natural, igualmente en función de la tipología en el tamaño de los espacios (ap.8.2). Por otra parte, esta tipología por si misma tiene reconocidos valores naturales (Pino et al. 2000). En base a todo ello, por el estudio se cree oportuno mantener la clasificación conceptual y funcional inicial, con la clase NNF diferenciada de la forestal.339

9.2.4.- Peso de los grandes espacios y criticalidad

Cuando realizamos el análisis específico por usos, el peso del primer gran espacio en el conjunto refiere igualmente a la tendencia en la varianza de los espacios del paisaje, desglosado para cada tipología. Es una apreciación del grano característico aportado por cada tipología de usos al paisaje, que se considera especialmente de interés para la descripción en base AWO del paisaje.

Vemos entonces que la tendencia potencial de la cabecera de las series cuanto a tamaño de los espacios (ap. 8.1), se debe a estar en función eminentemente del tamaño del primer gran espacio (matriz), a partir del cual (por su fragmentación) se definen en la práctica la mayoría de los grandes espacios resultantes de la misma clase de uso (y caracteriza la varianza en el grano). A ellos se unen en la práctica los nuevos espacios de naturaleza antrópica –característicamente muy interconectados entre sí-, como los principales causantes del proceso de fragmentación de la matriz.

La consideración de una criticalidad estructural entorno el tamaño de los espacios del paisaje (ap. 8.1.3), depende entonces de forma clara de la afectación antrópica. En todo caso, lo único posible es tratar de evidenciar la ‘ruptura’ con el caso de máxima variación en el grano del paisaje (fragmentación de la matriz, independientemente de la

339 De cara a la modelización para la planificación, puede caracterizarse como un factor composicional dependiente de las características funcionales del paisaje -su grado de metropolinización. Se remarca con ello la importancia de su distribución espacial concreta, igualmente. Por tanto, no deviene una tipología caracterizable de forma general como de espacios en transición a forestal, específicamente en estos paisajes metropolitanos.
El principio ‘agregados con enclaves’

extensión del paisaje), por lo que se considera que no tiene demasiado sentido plantear la existencia de tales regularidades estadísticas.

Por el estudio sin embargo, y de forma opuesta al planteamiento de una criticalidad estructural definida de forma empírica, se plantea si la declaración del óptimo conceptual no es ya el referente configuracional respecto al cual definir la oportunidad de las actuaciones antrópicas sobre el territorio del paisaje. Entonces podemos interrogarnos si la configuración óptima AWO no es una referencia definible conceptualmente como una supuesta (por deseable) ‘criticalidad organizada’ en la configuración del paisaje, a aplicar a partir de los desarrollos. La flexibilidad con que se definen los umbrales y la importancia atorgada al contexto parecen favorecer igualmente esta visión (realizada a partir de las consideraciones sobre la funcionalidad ecológica y la definición del medio sostenible que se integran en el principio).

9.2.5.- Análisis conjunta de la superficie y la densidad

En el análisis se han considerado hasta ahora las dos variables definidoras de los ejes de las gráficas: el peso del primer gran espacio o matriz y el número de espacios. Queda por analizar la distribución de la superficie en función del resto de las tipologías de espacios por tamaños, para definir las características de la composición espacial del paisaje que afectan la maximización en la varianza del ‘grano’ del paisaje. Con ello se consideran los criterios de presencia y número de espacios por tipología (criterios AWO nº1, 3 y 4) de forma conjunta, o como definen el grano del paisaje (con el consiguiente efecto sobre la varianza: criterio nº 2).

Funcionalmente, cabe recordar que la tipología de los grandes espacios se considera clave para la existencia de una correcta composición ecológica del paisaje. Esta tipología supone en términos relativos la mayor proporción de superficie -a parte de la matriz. Por el contrario, es posible cuestionar la utilidad de los espacios medianos: son resultado precisamente de la actividad antrópica, y son los causantes en buena parte de

340 Al contrario de lo que haría una aproximación a la complejidad de base empírica (sustentada en regularidades como la del rango-tamaño), se trataría en definitiva de definir esta criticalidad organizada como un esquema funcional a aplicar en la ordenación del territorio, en base a las premisas AWO. Teniendo en cuenta la naturaleza expansiva acelerada y las disfuncionalidades que ocasiona la expansión antrópica en el paisaje, cabe valorar precisamente su necesaria adaptación a los condicionamientos de funcionalidad ecológica que se dan en cualquier territorio, y que definen su sostenibilidad.
la perforación y fragmentación indeseada de los grandes espacios (con un reflejo característico en las distribuciones de las gráficas y la varianza). A partir del análisis que se acomete, se profundiza en la caracterización de ambas tipologías de espacios definidos según tamaño: grandes/medianos.

Otro factor que evidencia la importancia de la interrelación entre los espacios grandes y medianos, es la proporción constante que representa la categoría ‘pequeños espacios’ en el paisaje. Suponen en todos los casos entorno al 11% de la superficie total del paisaje (ap. 8.2). Por ello parece aun más evidente la existencia de una clara relación entre la fragmentación de los grandes espacios y la mayor presencia de espacios medianos, que cabe analizar en sus usos. Esta cuantificación según las tipologías AWO ofrece por tanto una perspectiva novedosa en el análisis funcional de la composición del paisaje (definido en base a tamaños y usos).

- Grandes espacios

Las variables de trabajo que se consideran aquí son dos: la densidad de grandes espacios y su superficie relativa. Podremos plantear a partir de estas variables cual es el grado de acercamiento de la configuración interna de los elementos de los paisajes analizados, respecto al óptimo. Podemos formularlo también como un problema de maximización de los recursos del paisaje: a mayor densidad y peso relativo de los grandes espacios, mejor configuración espacial. Obtenemos así una posible caracterización de la heterogeneidad de los paisajes, basándonos en criterios de composición de los grandes espacios (densidad y superficie relativa).

Tabla 9.16.- Densidad y superficie relativa de los grandes espacios

<table>
<thead>
<tr>
<th></th>
<th>Densidad de grandes espacios</th>
<th>Superficie relativa grandes espacios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>0.089</td>
<td>69.06</td>
</tr>
<tr>
<td>Pla de la Conca de B</td>
<td>0.029</td>
<td>88.10</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>0.037</td>
<td>75.69</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>0.044</td>
<td>65.03</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>0.054</td>
<td>80.65</td>
</tr>
</tbody>
</table>

De forma general (tabla 9.16), se puede establecer que a mayor densidad de grandes espacios, se observa una menor superficie relativa de esta tipología: el coeficiente de correlación entre la dos variables es del 0.83%, cuando se excluye el caso de la Plana del Vallès. Esta última, precisamente, presenta a la par unos bajos valores de densidad de grandes espacios y peso relativo de éstos. Se sigue posiblemente que a la
pérdida de peso de los grandes espacios (fragmentación), se da un incremento sustancialmente mayor del peso de los espacios medianos y pequeños, sin que se produzca un incremento igual de la densidad (número) de los grandes espacios.

- **Espacios medianos**

 Tabla 9.17.- Densidad y superficie relativa de los espacios medianos

<table>
<thead>
<tr>
<th>Espacios medianos</th>
<th>Densidad de espacios medianos</th>
<th>Superficie (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>0.451</td>
<td>17.1</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>0.107</td>
<td>3.2</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>0.274</td>
<td>10.6</td>
</tr>
<tr>
<td>Plana del Valles</td>
<td>0.521</td>
<td>16.2</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>0.275</td>
<td>8.5</td>
</tr>
</tbody>
</table>

En este caso, la relación entre la densidad y superficie relativa de los espacios medianos es más obvia: a mayor número de espacios se sigue una mayor superficie relativa como tipología (coeficiente de correlación: 0.969). Por paisajes, es de destacar en primer lugar su desigual presencia: los casos del Pla de Bages y la Plana del Vallès son coincidentemente los paisajes metropolitanos más afectados por la urbanización extensiva, al contrario que el Pla de la Conca de Barberà (0.1 espacios/ Km²).

Tabla 9.18.- Relación entre la superficie relativa de los espacios grandes/medianos

<table>
<thead>
<tr>
<th></th>
<th>Espacios Grandes (% superficie)</th>
<th>Espacios Medianos (% superficie)</th>
<th>Relación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>69.06</td>
<td>17.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>88.10</td>
<td>3.2</td>
<td>27.5</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>75.69</td>
<td>10.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Plana del Valles</td>
<td>65.03</td>
<td>16.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>80.65</td>
<td>8.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Este hecho se refleja igualmente en la relación entre los espacios grandes/medianos (tabla 9.18). Al adentrarnos en el análisis de los usos que componen esta tipología, en primer lugar observamos que tiene un peso mayor en los paisajes más urbanos. Esta observación composicional se evidencia igualmente en la característica curva convexa en las gráficas por paisaje (especialmente del uso urbanizado, fig. 9.7).
Tabla 9.19.- Superficie relativa de los cuatro usos en los espacios medianos

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>P. Bages</th>
<th>P. Conca B.</th>
<th>P. Penedès</th>
<th>P. Vallès</th>
<th>P. Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pi Área</td>
<td>pi Área</td>
<td>pi Área</td>
<td>pi Área</td>
<td>pi Área</td>
</tr>
<tr>
<td>Forestal</td>
<td>0,22</td>
<td>0,12</td>
<td>0,03</td>
<td>0,25</td>
<td>0,27</td>
</tr>
<tr>
<td>Rural</td>
<td>0,19</td>
<td>0,11</td>
<td>0,22</td>
<td>0,26</td>
<td>0,11</td>
</tr>
<tr>
<td>urbanizado</td>
<td>0,24</td>
<td>0,17</td>
<td>0,3</td>
<td>0,28</td>
<td>0,26</td>
</tr>
<tr>
<td>Nat. No-Forestal</td>
<td>0,35</td>
<td>0,6</td>
<td>0,45</td>
<td>0,22</td>
<td>0,37</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cabe destacar que en los paisajes rurales, los espacios que mayoritariamente conforman esta tipología son de uso natural no forestal (NNF), como se refleja en el caso del Pla de la Conca de Barberà (tabla 9.19). En este caso, el uso natural no forestal representa un 60% de los espacios medianos del paisaje: a este hecho contribuye posiblemente el carácter residual de estos espacios (no utilizados como agrícolas), en paisajes poco urbanizados y sin una presión antrópica excesiva sobre el suelo natural.341

Destaca en cambio la importante diversidad de usos para los otros cuatro paisajes (valores similares en los cuatro agregados, entorno la equiprobabilidad). Este dato inicial sobre las diferencias en el uso predominante de esta tipología de espacios, plantea igualmente la disfuncionalidad de los espacios medianos. El uso NNF predominante en las tipologías de espacios pequeños y medianos, se presenta así en unas características proporciones y densidades relativamente bajas en los paisajes más rurales, por la poca importancia de la tipología de los espacios medianos (Pla de la Conca de B).

En su interpretación, la lógica del crecimiento urbano mediante expansión desde los núcleos existentes (especialmente entorno las grandes vías de comunicación) o por nuevos asentamientos, sería así la que daría cuenta de la fragmentación de los grandes espacios naturales, rurales y en transición, además de su relativa pérdida de peso: en un inicio hay mayor número de grandes espacios por fragmentación de los espacios de mayores dimensiones, pero mucha menor superficie en total. Sería entonces un crecimiento que va cercando y troceando los grandes espacios rurales y naturales. Este puede ser el caso general incluyendo a la Plana del Vallès, donde sin embargo el propio gran espacio de fondo rural (‘matriz’), aparece ya fragmentado por las grandes vías de

341 Convirtiéndolo de hecho en el uso funcionalmente marginal (también para las actividades humanas), por tamaño (pequeño) y por uso –de transición o en abandono.
El principio ‘agregados con enclaves’

comunicación y el gran conglomerado urbano resultante (consiguientemente con un peso relativo muy menguado).342

Si tenemos en cuenta también la diferente funcionalidad ecológica que se asigna a los espacios naturales del paisaje según tamaño,343 por los usos se corrobora la impresión que los espacios medianos son una tipología disfuncional para el sistema natural del paisaje, evidenciable por las configuraciones existentes en la práctica (predominantemente de uso urbanizado o en transición -NNF). Ello hace que probablemente deba considerarse el incremento de esta tipología por tamaño (su mayor presencia a partir de unos determinados umbrales), como un elemento ecológica y territorialmente disfuncional, especialmente característico de los territorios metropolitanos.

Como otros hechos composicionales destacables (y que hacen más evidentes las conclusiones de anteriores análisis), están la casi nula presencia de espacios forestales de tamaño medio en el Penedés. Lo cual, unido a los valores inexistentes de espacios forestales o naturales no-forestales de gran tamaño, configura un paisaje claramente deficitario en este aspecto: relacionado muy negativamente con las posibilidades de definición de corredores naturales en el territorio por criterios composicionales.

9.3.-Análisis de la diversidad en las agregaciones

La diversidad interna es el descriptivo que falta por analizar de las distribuciones espaciales obtenidas en base AWO para los casos de estudio. Siguiendo con los objetivos, se parte de la tipificación de los espacios según usos y tamaño para el análisis de la diversidad composicional de las configuraciones del paisaje, que en el principio AWO vienen referidos especialmente en el criterio nº2 (varianza del grano). Refiere también a la relación entre las diversas tipologías definidas por el principio y su número (criterios 1, 3 y 4). Se busca plantear igualmente cual es el método adecuado para el

342 En este caso, el proceso se evidenciaría en primer lugar por su aumento relativo en número respecto los otros subgrupos de espacios por tipologías de tamaño, y por el incremento de la tipología del uso urbanizado dentro del mismo subgrupo. Posteriormente, se daría una menor densidad y superficie relativa de los grandes espacios, como se observa en el caso de la P.del Vallès.
343 Conceptualmente es preferible la definición de pocos grandes espacios naturales (con conexiones si es pertinente), frente a la presencia de un mayor número de espacios de tamaño intermedio.
tratamiento de la diversidad espacial existente, de cara a la modelización aplicada de la heterogeneidad del paisaje.

9.3.1.- Análisis de la diversidad por usos y tamaños

En primer lugar, en este análisis se valoran las variaciones de los índices según las actuales tipologías agregadas, respecto los índices iniciales obtenidos para los paisajes según los usos desagregados (ap. 6.8). El procedimiento para el cálculo de los índices de diversidad generales del paisaje -como medida de su heterogeneidad-, es en este caso el mismo que el descrito para los usos sin agrupar, aunque ya se han interpretado las características de estos índices en base AWO –ap.3.3.2.

El punto de partida en este análisis son los dos índices de diversidad por paisaje: el referido a la diversidad de los cuatro usos agregados (natural, agrícola, urbanizado y natural no-forestal), y el referido a la diversidad de las cuatro tipologías de tamaño de los espacios del paisaje (matriz, grandes espacios, espacios medianos, espacios pequeños). Se consideran un indicativo para la comparación entre los paisajes, que se puede obtener tanto por la superficie relativa de cada tipología como por su frecuencia (número de espacios), dentro de los subgrupos –tabla 9.20.344

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Usos (Superficies)</th>
<th>Usos (Nº Espacios)</th>
<th>Tamaño (Superficies)</th>
<th>Tamaño (Nº Espacios)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>1,1</td>
<td>1,3</td>
<td>1,28</td>
<td>0,43</td>
</tr>
<tr>
<td>P. Conca B.</td>
<td>0,57</td>
<td>0,98</td>
<td>0,9</td>
<td>0,23</td>
</tr>
<tr>
<td>P. Penedès</td>
<td>0,82</td>
<td>1,08</td>
<td>1,22</td>
<td>0,31</td>
</tr>
<tr>
<td>P. del Valles</td>
<td>1,31</td>
<td>1,36</td>
<td>1,26</td>
<td>0,48</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>0,86</td>
<td>1,19</td>
<td>0,94</td>
<td>0,34</td>
</tr>
</tbody>
</table>

-Para las 2 agregaciones: por usos y tamaños de los espacios-

Obtenidos los dos índices de diversidad generales por paisaje (uso y tamaño de los espacios), podemos considerar el interés de cruzar los dos valores en un único índice: así, como producto obtendremos la heterogeneidad relativa conjunta (por usos y por tamaños) de los espacios del paisaje (tabla 9.21).

344 El caso de obtención del índice por número de espacios sin embargo, es poco relevante. Ello es debido a la escasísima participación del subgrupo ‘matriz’ en el número total de espacios del paisaje (un único espacio frecuentemente). De ello se sigue la mayor relevancia del índice basado en el porcentaje, o proporción de superficie relativa de cada subgrupo. En todo caso, los valores de los índices obtenidos por tamaños resultan similares, respecto de los índices de la diversidad por usos.

242
Con la agregación en función de la naturalidad de los usos, en primer lugar vemos que los valores del índice de diversidad inicial (tabla 9.22) disminuyen, en relación con el menor número de usos existentes (pasan de 17 a 4). También se matiza la importancia de determinados usos desagregados, lo que en principio favorece la interpretación cuanto a la heterogeneidad y naturalidad del paisaje en su conjunto.

Tabla 9.22. Índices de diversidad natural y diversidad interna del paisaje según superficie de usos

<table>
<thead>
<tr>
<th>Div. natural con agregación</th>
<th>Div. interna</th>
<th>Div. interna con agregación</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. de Bages</td>
<td>1.08</td>
<td>1.71</td>
</tr>
<tr>
<td>P. Conca B.</td>
<td>0.80</td>
<td>1.51</td>
</tr>
<tr>
<td>Penedès</td>
<td>1.07</td>
<td>1.56</td>
</tr>
<tr>
<td>P del Valles</td>
<td>1.16</td>
<td>2.02</td>
</tr>
<tr>
<td>P. de Vic</td>
<td>1.46</td>
<td>1.11</td>
</tr>
</tbody>
</table>

-Diversidad natural: previa a agregación; Diversidad interna del paisaje: según superficie de usos antes y después de la agregación.

Así, en principio se espera que la diversidad relativa no debe variar sustancialmente, puesto que sólo desaparecen los efectos relativos a la dispersión de algunos usos respecto la equiprobabilidad, manteniéndose la heterogeneidad de los subgrupos (cuatro ahora) en las mismas proporciones agregadas. Por otra parte, la agrupación de los usos según su naturalidad simplifica el análisis de los valores obtenidos, que siguen siendo reflejo en similar medida de la heterogeneidad del paisaje. Ello permite utilizarlos para la comparación entre los casos, y discernir qué aspectos configuran un determinado valor del índice.

9.3.2.- Valoración y conceptualización de la heterogeneidad espacial

Si comparamos los valores de la diversidad con los obtenidos después de la agregación, vemos que aparecen algunas diferencias sustanciales, como es la mayor diversidad relativa de la Plana de Vic, ahora por delante de la Plana del Penedès y la
Conca de Barberà (tabla 9.22). Estas observaciones concuerdan con lo esperado, respecto a la información aportada por los usos naturales una vez agregados.

Si analizamos los motivos de la mayor diversidad interna (heterogeneidad) de los espacios de la Plana del Vallès, en primer lugar se encuentran en la mayor importancia de la tipología de los espacios urbanizados y los espacios NNF (antiguos bosques quemados; zona de Castellbisbal). Pero también se basa en la buena proporción de cultivos de secano y pinares que existen en la Plana. Este paisaje de hecho ejemplifica las bondades e inconvenientes de un análisis por índices de diversidad: existe, pues, una heterogeneidad real de los usos del suelo en este paisaje, aunque un simple índice de diversidad no los valora. Por ello, se considera necesario ponderar esta heterogeneidad por otros factores que ayuden a valorar los aspectos positivos de la naturalidad del paisaje, así como los aspectos funcionales que contribuyen potencialmente a su sostenibilidad ecológica.

Por tanto, en base a los índices de diversidad simples no tenemos una buena representación de la heterogeneidad espacial –tal y como idealmente se postula en las aproximaciones teóricas de la Ecología del paisaje (Forman 1995b). Sobre la base de los resultados obtenidos, y constatada la influencia de la artificialización del territorio en el aumento de la diversidad de las tipologías AWO, se podría considerar en general que, para los usos agregados del territorio, el óptimo composicional se alejará de los valores más elevados de un índice de diversidad ‘bruto’.

Por el mismo índice para la clasificación por tamaños, igualmente, los valores altos indicarán una composición de los subgrupos tendente a la equiprobabilidad, que coincide necesariamente con el de la presencia indeseada de la clase ‘espacios medianos’. La mayor diversidad real precisamente responde, también en este caso, a una mayor artificialización del territorio, aunque ello se dé en el paisaje con un peso mayor de los espacios naturales (caso de la Plana del Vallès).

Esta aparente paradoja (mayor diversidad natural y peor configuración espacial del paisaje por presencia de usos y espacios indeseados), debe resolverse con una aproximación más detallada que la proporcionada por los índices de diversidad o heterogeneidad. Nos reafirma precisamente en las necesarias definiciones previas de las
configuraciones composicionalmente óptimas, como el referente adecuado para valorar la heterogeneidad de un paisaje por encima de los índices de diversidad.

9.3.3.- Desarrollo del análisis composicional. Equiprobabilidad

Se pasa a considerar ahora cuales son los factores útiles para la conceptualización de la heterogeneidad espacial, que se incorporan parcialmente en los índices de diversidad. Es un análisis que parte del realizado con anterioridad sobre los componentes de dichos índices (ap. 3.3). Se propone de cara a la modelización de la heterogeneidad AWO del paisaje, que no es coincidente como se ha visto con la definición usual (como variable simple) de la misma (ap. 9.3.2).

Así, al analizar los resultados mediante el desglose de los pesos que configuran los índices de diversidad, observamos el interés que ofrece el concepto de equiprobabilidad, y su definición como el óptimo teórico de los valores de un subgrupo para los índices. De entrada, se presta con especial facilidad al posible desarrollo y la definición del óptimo conceptual de las composiciones espaciales del paisaje, y igualmente a la modelización de sus probabilidades -facilitando la comparación con las configuraciones existentes.

Operativamente entonces, de inicio podemos obtener de forma simple las proporciones óptimas para cada tipología (0’25 para 4 clases). Podemos, igualmente, realizar de forma desagregada (por subgrupo) el cálculo del índice de diversidad, por usos y tamaños.

La información que nos aporta el cruce de estos dos índices viene determinada sobre todo por los porcentajes de uso de cada categoría. Para la modelización de la heterogeneidad, se puede considerar entonces que las diferencias (positivas o negativas) respecto a la equiprobabilidad, son la base requerida para la definición aplicada y la modelización en busca del óptimo conceptual.

De este modo y basándonos en las tipologías de espacios AWO, nos aparecerá el grado de adecuación de la composición espacial del paisaje respecto al óptimo

345 De forma general, en un determinado subgrupo (‘rural’ p.e.) podemos aplicar el cálculo de su diversidad interna, en función de los cuatro subgrupos de la clasificación ajena (matriz/ grandes e./ e. medianos /e. pequeños).
346 De hecho, la obtención de la diferencia respecto a la máxima diversidad interna, se trataría de simple combinatoria. La probabilidad obtenida al multiplicar las probabilidades (piA) de las dos clasificaciones, y su alejamiento de la equiprobabilidad, puede equipararse a la diferencia entre un índice de diversidad I y el valor de J (equiprobabilidad, ap. 3.3).
conceptual preestablecido. Por los cómputos de la divergencia de cada tipología respecto a la configuración óptima de los espacios, podremos valorar la variación existente dentro de los subgrupos de espacios de interés. Así, podemos llegar a modelar unas proximidades relativas al óptimo conceptual, de forma detallada para cada tipología y paisaje (cap.10). De forma destacada entonces, este es un factor que por el estudio se considera que facilita en gran manera las aproximaciones en base AWO a la modelización de los elementos composicionales del paisaje.

9.4.- Las distancias mínimas medias entre agregados y enclaves

Una vez definidos los aspectos que afectan la composición interna de los elementos del paisaje, se considera ahora su posible relación con el criterio de las distancias entre grandes y pequeños espacios (criterio nº5 del principio AWO: necesaria proximidad de los enclaves a los grandes espacios agregados).

Como objetivo, se plantea que mediante el uso de estadísticos de proximidad simples a modelar (distancia mínima de los espacios pequeños al vecino más próximo de tipo grande), podríamos ya averiguar la variación de la distribución existente respecto el óptimo conceptual. De esta forma, seguimos con los planteamientos teóricos AWO, evitando también el uso de descriptivos muy elaborados. Estos últimos son susceptibles de cuantificar por ellos mismos la tipología espacial existente en el paisaje, pero no son aplicables de forma consistente con el principio, dada la modelización previa de los espacios según tamaño y uso por parte del modelo.

En la utilidad de la comparación de las distancias medias mínimas entre paisajes, cabe referir también la modelización del paisaje desde una perspectiva ‘de grano grueso’, o de análisis espacial a pequeña escala. Este es precisamente un enfoque de estudio del que se reivindica su utilidad para el análisis, con evidencias que fundamentan esta

347 **Esta proximidad media que se obtiene por paisaje, puede considerarse igualmente una analogía muy simple de la atracción gravitatoria de los grandes espacios.**

348 **El análisis de las distancias entre estos espacios se plantea de una forma más simple y comparada que la modelización típica de la interacción gravitacional entre los espacios, considerado de dudosa utilidad en base AWO (ap.3.3.4).**

349 **Para una visión general de los posibles descriptivos y su aplicación, así como su interpretación para la medida de la heterogeneidad -igualmente de los basados en la distribución de los elementos del paisaje (agregación, dispersión, aislamiento, etc.)-, ver p.e. Gustafson. (1998); Forman (1995a).**

Como objetivo igualmente, se buscan las interrelaciones entre las distancias y los descriptivos composicionales del paisaje analizados hasta ahora. Con ello se persigue tener en cuenta todos los criterios y factores distribucionales del principio, a la hora de realizar la mejor modelización aplicada posible del principio de forma sintética.

9.4.1.- La realización del análisis.

En el planteamiento del análisis de las distancias y de cara a la aplicación práctica de este criterio, se ha debido afrontar previamente un número de cuestiones fundamentales que implican también un desarrollo del principio –las cuales deben resolverse de forma aplicada.350

Así, operativamente en el análisis de las distancias el alejamiento del óptimo conceptual difícilmente puede cuantificarse –o hasta cualificarse–, si no existen unos umbrales de los valores que el modelo conceptual no proporciona, marcando el punto de inflexión entre los valores de la distancia que pueden ser considerados ‘ aceptables’ y los que no.351 En este caso, se ha considerado que al tratarse de un análisis puramente descriptivo de una variable configuracional como es la distancia entre los espacios, se prescinde de este tipo de valoraciones absolutas (umbrales), y se busca un análisis comparativo entre las situaciones de los cinco paisajes, según las tipologías de espacios de que se parte.

Lo que por el presente análisis se busca obtener finalmente, por tanto, son las distancias medias (proximidad) entre enclaves y grandes espacios del mismo tipo - o de cualquier tipo, posteriormente. Con ello se medirá así lo que podemos denominar como la ‘atracción’ real de los grandes espacios (que posiblemente puede variar según la clase agregada y el paisaje), sin una calificación previa de los resultados. De entrada, el análisis

350 Es de forma parecida a como ha debido hacerse en el caso del análisis composicional que anteriormente se ha realizado en el estudio: buscando en primer lugar aplicar de manera coherente los postulados AWO, en base a las definiciones sistémicas de la heterogeneidad espacial del paisaje de las que se parte.

351 En su definición el criterio destaca en primer lugar la utilidad de la variable distancia vinculada a la planificación de nuevos asentamientos (urbanos especialmente). Por ello, lo que este criterio teórico busca como objetivo es establecer una referencia general para los criterios de la planificación, sin mencionarse por tanto distancias óptimas o umbrales de la variable.
parte de la diferenciación simple entre ‘agregados’ y ‘enclaves’, que se ha definido en el entorno de las 100 ha (ap. 8.5).

Computacionalmente, obtener los datos sobre la distancia supone configurar primero el mapa de los ‘grandes espacios’. Finalmente, mediante las herramientas de los sistemas de información geográfica, se ha procedido a la búsqueda de distancias mínimas entre puntos y arcos, y se ha obtenido el listado de las distancias mínimas de cada enclave respecto el vecino más próximo, de tipología ‘grande’ o ‘matriz’. Hay que hacer referencia también al hecho -espacialmente relevante-, que el planteamiento de la definición de las distancias entre los centroides de los enclaves y los arcos de los grandes espacios desestima las distancias internas de los enclaves.

Esta falta de concreción práctica del principio en algunos aspectos clave, y especialmente el hecho de trabajar siempre con las tipologías de los usos unitariamente (una tipología conjunta a la vez), nos obliga a situarnos en el mismo nivel de la agregación de los usos. Entrar en niveles de definición mayor (para cada uno de los grandes espacios, idealmente) se considera igualmente inviable por razones operativas, pero principalmente por el propio planteamiento agregado de los usos que establece el principio conceptual -el cual no obstante se considera el adecuado para la abstracción y tratamiento de las situaciones complejas del paisaje (ap.8.2).

El análisis de las distancias mínimas se realiza aquí por tanto entre grupos de usos del suelo y dos tipos de espacios (grandes-pequeños), con un único resultado conjunto por grupo. Como resultado se espera obtener por este análisis la distancia real entre espacios grandes y pequeños, respecto la valorada como conceptualmente óptima: mejor cuanto menor sea esta distancia media, evitando la perforación y fragmentación en el

352 *Ello requiere rellenar las perforaciones resultado de la extracción de los enclaves de cada paisaje.*

353 *El autor del principio conceptual diseña los enclaves como puntos, en las representaciones gráficas del modelo (figura 1.2).*

354 *Esta es, sin embargo, una de las características que se consideran una aportación importante del principio al análisis de la heterogeneidad del paisaje, pero ello no facilita un análisis y una clasificación más pormenorizada de las situaciones (enclaves por uso diferenciado del espacio en que se insertan -topológicamente), debiendo realizarse el análisis a nivel de clases agregadas de forma conjunta.*

355 *El cálculo de las distancias mínimas debe hacerse desde los enclaves (considerados como puntos) a los límites de los grandes espacios (considerados simplemente como arcos entre grandes polígonos), sin establecer pertenencias a grandes espacios.*
centro de los grandes espacios naturales –proximidad a sus límites como el caso óptimo. La subclase ‘enclave forestal’ se considera fuera de este análisis, por ser una tipología independiente cuanto a su localización en el paisaje según el criterio nº6 del principio AWO; esto es, los enclaves forestales deben encontrarse distribuidos uniformemente por todo el paisaje y no presentar por tanto una proximidad a los límites de los grandes espacios (ap.7.1).

9.4.2.- Resultados del análisis de las distancias medias entre agregados y enclaves

En conjunto, las distancias de los enclaves a los límites de los grandes espacios presentan variaciones notables entre paisajes (fig. 9.8 y tabla 9.23). Se aprecia de entrada la existencia de diferentes distribuciones: destacan como excéntricas en el eje de la distancia los paisajes de la Conca y el Penedès, con enclaves más alejados de los grandes espacios que el resto.

Cuanto al eje del número de espacios (x), se aprecia en esencia las diferentes magnitudes de los paisajes, con la P.del Vallès y el Penedès con mayor número absoluto de espacios (enclaves), pero con tendencias de la distancia entre espacios diferentes: la P.del Penedès no sigue la tendencia sostenida de unas distancias bajas, como en el caso de la P. del Vallès.

Se aprecia por tanto que las distancias mayores se presentan en los paisajes que se corresponden con una estructura rural de secano tradicional -y sin peso importante del tipo forestal: la Conca de Barberà (881.7m.) y en menor medida la Plana del Penedès (740.1m.), se contraponen notablemente a los paisajes del Pla de Bages (380m.) y la Plana del Vallès (355.7m.). El caso de la Plana de Vic, con un grado de urbanización superior, sería el intermedio (568.6m.), próximo a los casos más óptimos.

356 Esta consideración sobre las menores distancias posibles como las más deseables, se aplica para todos los grandes espacios según uso: por definición son distancias respecto los límites entre grandes usos (más de una tipología implicada), sin tener en cuenta la inclusión topológica de los espacios –son distancias en ambas direcciones desde los mismos límites hacia los enclaves, situados sobre diferentes usos.

357 Estos últimos con unas distancias medias menores y con un mayor peso relativo de las clases de agregado natural –con un mayor número de grandes espacios por tanto.
Figura 9.8.- Distancias entre agregados y enclaves (metros)

Fuente: elaboración propia.

<table>
<thead>
<tr>
<th>Distancia Mínima Media (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages 380.0</td>
</tr>
<tr>
<td>Pla de la Conca de Barberà 881.7</td>
</tr>
<tr>
<td>Plana del Penedès 740.1</td>
</tr>
<tr>
<td>Plana del Vallès 355.7</td>
</tr>
<tr>
<td>Plana de Vic 568.6</td>
</tr>
</tbody>
</table>

Así pues, la explicación de las particularidades de cada distribución y su alejamiento respecto de una teórica situación óptima en las distancias, parece relacionado con la búsqueda de las interrelaciones entre la composición y la distribución espacial de los elementos del paisaje –proximidad, en este caso. Las densidades relativas existentes de las tipologías de espacios grandes y pequeños, son especialmente susceptibles de influenciar composicionalmente los valores de la distancia. Igualmente, es necesario realizar una lectura según usos, para observar la influencia de determinadas tipologías.

9.4.3.- Análisis por usos de las distancias medias

Si analizamos las relaciones de las distancias agregado-enclave entre los diferentes tipos de usos, podemos apreciar cuales son las tipologías de usos que siguen el criterio general de proximidad entre enclaves y grandes espacios de cualquier tipo: agrícola, urbanizada y natural no-forestal. Los resultados obtenidos (tabla 9.24) muestran unas tendencias generales como clases.
El principio ‘agregados con enclaves’

Tabla 9.24.- Distancia media entre enclaves y grandes espacios para agregados del mismo tipo

<table>
<thead>
<tr>
<th></th>
<th>P. de Bages</th>
<th>P. Conca de B.</th>
<th>P. del Penedès</th>
<th>P. del Vallès</th>
<th>P. de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>571.9 m.</td>
<td>286.4 m.</td>
<td>749.5 m.</td>
<td>1701.6 m.</td>
<td>388.0 m.</td>
</tr>
<tr>
<td>Urbanizado</td>
<td>2020.3 m.</td>
<td>2806.2 m.</td>
<td>2614.7 m.</td>
<td>1947.8 m.</td>
<td>1528.8 m.</td>
</tr>
<tr>
<td>Natural no-forestal</td>
<td>2392.2 m.</td>
<td>9353 m.</td>
<td>13020.9 m.</td>
<td>10010.9 m.</td>
<td>8721.3 m.</td>
</tr>
</tbody>
</table>

En el caso del suelo urbanizado, encontramos unas distancias medias similares entre los enclaves y los grandes espacios del mismo tipo en los cinco paisajes -alrededor de los 2km. Esta pauta regular puede ser indicativa del comportamiento de la clase en conjunto, como se aprecia por el hecho que se trata del uso más alejado de los grandes espacios de cualquier tipo (tabla 9.25).

El paisaje con mejor relación para la distancia entre enclaves y espacios grandes de uso urbanizado resulta ser el de la Plana de Vic (1528 m., ya caracterizado como un paisaje con asentamientos urbanos históricamente dispersos –ap.6.3), seguido por el de la Plana del Vallès (1947 m.), en un entorno más afectado por la metropolinización. Los paisajes tradicionalmente vitícolas de secano mediterráneo (Pla de la Conca de Barberà y Plana del Penedès) presentan los valores más alejados de las distancias urbanas, invirtiéndose la situación para la clase agregada rural. La Plana del Vallès entonces presenta las distancias más alejadas de los enclaves agrícolas a los límites de los grandes espacios rurales (1701 m.).

La tipología natural no-forestal presenta las distancias medias más elevadas desde los enclaves a los límites de los grandes espacios de su mismo tipo (más de 8km.), indicando tal vez una distribución poco concentrada, lejos de los espacios mayores de su mismo tipo (como se muestra en los mapas del anexo C). Posiblemente responde una distribución más uniforme en el conjunto del territorio, teniendo en cuenta además que es la clase con mayor presencia de pequeños espacios en todos los paisajes (ap.8.2) –por su elevado número, los malos valores de proximidad son especialmente relevantes.

Cuando analizamos las distancias de los enclaves según usos al conjunto de los espacios ‘agregados’, entonces se observa de forma destacada la relación en la distancia entre los enclaves urbanizados y los límites de grandes espacios naturales y rurales, por ejemplo (tabla 9.25). Esto es, hay constancia que los enclaves urbanizados (localizados en espacios rurales o naturales mayores) tienden a alejarse de los límites de los grandes
espacios, en contra de la situación teóricamente óptima de su distribución –necesaria proximidad a los límites de un gran espacio. Este hecho parece corresponderse a una lógica ocupacional 'no-natural', ya que los enclaves de la clase natural no-forestal presentan distancias medias sensiblemente menores en todos los casos.\(^{358}\)

<table>
<thead>
<tr>
<th>CLASE</th>
<th>P. de Bages</th>
<th>P. Conca B.</th>
<th>P. Penedès</th>
<th>P. Vallès</th>
<th>P. de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>193</td>
<td>177</td>
<td>438</td>
<td>230</td>
<td>273</td>
</tr>
<tr>
<td>Urbanizado</td>
<td>577</td>
<td>956</td>
<td>922</td>
<td>531</td>
<td>698</td>
</tr>
<tr>
<td>Natural no-forestal</td>
<td>378</td>
<td>884</td>
<td>710</td>
<td>314</td>
<td>552</td>
</tr>
</tbody>
</table>

Tabla 9.25.- Distancias medias (m.) según uso de los enclaves al total de los grandes espacios

9.4.4.- La proximidad de los espacios medianos

Dada la importancia del uso urbano en la tipología ‘espacios medianos’, se considera oportuno realizar el análisis específico de las distancias de esta tipología por tamaño (entre 15 y 100 ha.), de forma diferenciada del resto de enclaves. En la tabla 9.26, observamos así como la proximidad de los enclaves a los límites de los grandes espacios difiere según se trate de enclaves pequeños o medianos.

<table>
<thead>
<tr>
<th></th>
<th>P. Bages</th>
<th>P. Conca B.</th>
<th>P. Penedès</th>
<th>P. Vallès</th>
<th>P. de Vic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dist. Media de los espacios medianos (m)</td>
<td>578</td>
<td>663.2</td>
<td>666.1</td>
<td>430.5</td>
<td>586.4</td>
</tr>
<tr>
<td>Dist. Media sin espacios Medianos (m)</td>
<td>361</td>
<td>891.6</td>
<td>745.9</td>
<td>346.5</td>
<td>568.2</td>
</tr>
<tr>
<td>Dist. Media total enclaves (m)</td>
<td>380</td>
<td>881.7</td>
<td>740.1</td>
<td>355.7</td>
<td>568.6</td>
</tr>
<tr>
<td>Disminución relativa (% Total - Pequeños)</td>
<td>-5</td>
<td>+1</td>
<td>+0.7</td>
<td>-2.58</td>
<td>0</td>
</tr>
</tbody>
</table>

Especificamente en el caso de la Plana del Vallès, se observa que este paisaje ocupa el primer lugar (mayor proximidad, menor distancia) cuanto a la distancia entre enclaves y grandes espacios. Sin embargo, contrariamente en el caso de los enclaves medianos la distancia es superior a la que presentan los enclaves pequeños. Este dato nos permite establecer que, en este paisaje, los enclaves de tamaño mediano ocupan una posición relativa espacialmente más distante de los límites de los grandes espacios, hecho más acentuado aún en el caso del P. de Bages.

\(^{358}\) Este fenómeno locacional podría ser fruto de la búsqueda de espacios libres para la urbanización del territorio, sin depender de factores limitantes otros que la lógica interna de la localización antrópica.
Este hecho iría por tanto en contra de la atracción relativa (‘gravedad’) de los enclaves hacia los grandes espacios según sus dimensiones, como parece confirmarse por otra parte como lo habitual en caso de los paisajes mas rurales: sí parece existir una tendencia en estos paisajes a que los enclaves medianos estén más próximos a los límites de los grandes espacios de lo que lo están los enclaves pequeños -los cuales ocuparían posiciones más excéntricas. El caso de la Plana de Vic parece ser el punto de inflexión entre las dos situaciones (fig. 9.9).

Por todo ello, cabe deducir tal vez que los espacios medianos (como elementos característicos de los paisajes en proceso de metropolinización), además de ser relativamente más numerosos y de creciente tipología urbana, se encuentran además a mayor distancia de lo que sería de esperar respecto los límites de los grandes espacios -relativamente mal posicionados, según el comportamiento observado en el resto de tipologías de espacios por paisaje.

Cuantitativamente también, esta tipología es de especial interés como elemento de definición de los umbrales a partir de los cuales se está produciendo una urbanización difusa o metropolitana en el territorio: marca posiblemente el cambio de fase desde una situación aún no plenamente metropolitana. Esto puede ser atribuible al hecho de tratarse de los paisajes más dispersamente urbanizados de los cinco analizados, lo cual
redundaría en una localización más excentrica de los espacios medianos del paisaje (más alejada de los límites de los grandes espacios). Esta es la lógica composicional y locacional, pues, que debería ser modificada precisamente mediante planeamiento, siguiendo con los criterios AWO de distribución de los espacios.

9.4.5.- La correlación entre distancias y presencia de grandes espacios

No hay que descartar sin embargo la influencia de otros factores composicionales en la obtención de estos valores de las distancias entre espacios grandes y enclaves. Los grandes espacios son de hecho más numerosos y de menor extensión relativa en el caso de la P.del Vallès, al tratarse del paisaje menos rural y más extenso (menor espacio de ‘matriz’ rural, mayor fragmentación y mayor número de espacios grandes y medianos).

Es por ello que se considera necesario comprobar la posible existencia de hechos composicionales subyacentes, relacionados con la variable distancia. Así, al analizar conjuntamente la composición y la distancia, se evidencia una correlación inversa entre la distancia de los espacios (grandes-pequeños) y el número existente de grandes espacios (nº absoluto y densidad relativa): A mayor número absoluto de grandes espacios, disminuye proporcionalmente la distancia de los enclaves a los límites de los grandes espacios (tabla 9.27).

Tabla 9.27.- Distancias medias mínimas entre agregados y enclaves y variables relacionadas

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Densidad Grandes Espacios</th>
<th>Nº Grandes Espacios</th>
<th>Distancia mínima media</th>
<th>Superficie relativa Grandes Espacios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>0.089</td>
<td>13</td>
<td>380</td>
<td>69.06</td>
</tr>
<tr>
<td>Pla de la Conca de B.</td>
<td>0.029</td>
<td>5</td>
<td>881.7</td>
<td>88.10</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>0.037</td>
<td>12</td>
<td>740.1</td>
<td>75.69</td>
</tr>
<tr>
<td>Plana del Vallès</td>
<td>0.044</td>
<td>27</td>
<td>355.7</td>
<td>65.03</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>0.054</td>
<td>13</td>
<td>568.6</td>
<td>80.65</td>
</tr>
</tbody>
</table>

Se sigue de ello que los paisajes donde se da un mayor peso de la matriz rural (y un menor número de grandes espacios) son los que presentan valores de media más elevados de las distancias entre enclaves y grandes espacios, como sería de esperar. Este es por ejemplo el caso del Pla de la Conca de Barberà, donde se observa cómo

359 Ello se deduce por la dependencia de los valores de la distancia media entre enclaves y grandes espacios, respecto del número existente de grandes espacios. Es de esperar por tanto que las distancias medias entre agregados y enclaves sean función (al menos en parte) del número de grandes espacios existentes.

360 El coeficiente de correlación entre el número absoluto de grandes espacios y la distancia media es del -0.79 al analizar los cinco paisajes –considerado un valor no especialmente elevado.
El principio ‘agregados con enclaves’

apenas existen grandes espacios, y lógicamente presenta por tanto unas distancias muy elevadas –y se da además una menor densidad de enclaves (tabla 9.27). El caso la Plana de Vic es el paisaje que presenta una mejor optimización de la distancia de los espacios medianos, respecto a la densidad y superficie de grandes espacios. Por el contrario, en el caso de la Plana del Bages el mayor número relativo (densidad) de grandes espacios es posiblemente uno de los factores determinantes de las menores distancias medias.

Figura 9.10.- Relación entre la distancia mínima de los agregados y enclaves con la densidad de grandes espacios

Fuente: elaboración propia.

Sin embargo, esta correlación no se evidencia en función de la densidad relativa de los grandes espacios. De forma notoria, sólo cuando se elimina el caso de estudio de la Plana del Vallès, la correlación es entonces del –0’87 para el subgrupo de espacios medianos, y del –0’97 para el de los espacios pequeños (0’94 para el conjunto de los enclaves). La explicación de estos elevados coeficientes y la excepcionalidad del caso de la Plana del Vallès, está relacionada pues con el hecho que este presenta una baja densidad relativa de espacios grandes (tabla 9.28; fig. 9.11).
Figura 9.11.- Relación entre la composición y las distancias de los espacios en el paisaje

-El coeficiente de la distancia es la diferencia (metros) entre las distancias medias de los espacios medianos respecto las del total de los enclaves (Fig. 9.9).

Cabe formular la cuestión entonces si la dependencia de la distancia media respecto de los grandes espacios no es de forma relativa, sino que depende en realidad del número absoluto de grandes espacios. Cabe tener en cuenta además otro factor, como es el incremento proporcionalmente mayor en el número de enclaves en los paisajes metropolitanos, afectados por la fragmentación de los grandes espacios (tabla 9.28).

Tabla 9.28.-Densidad enclaves (km2)

<table>
<thead>
<tr>
<th>PAISAJE</th>
<th>Densidad Espacios Pequeños</th>
<th>Densidad Espacios Medianos</th>
<th>Densidad Enclaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pla de Bages</td>
<td>3,94</td>
<td>0,451</td>
<td>4,387</td>
</tr>
<tr>
<td>P. de la Conca de Barberà</td>
<td>2,67</td>
<td>0,107</td>
<td>2,778</td>
</tr>
<tr>
<td>Plana del Penedès</td>
<td>3,91</td>
<td>0,274</td>
<td>4,186</td>
</tr>
<tr>
<td>Plana del Valles</td>
<td>3,40</td>
<td>0,521</td>
<td>3,924</td>
</tr>
<tr>
<td>Plana de Vic</td>
<td>3,25</td>
<td>0,275</td>
<td>3,528</td>
</tr>
</tbody>
</table>

361 Parece lógico que a un incremento relativamente pequeño del número de grandes espacios, se corresponda una disminución proporcionalmente mayor de la distancia media existente entre los enclaves y los grandes espacios.
Esquemáticamente, en función de esta fragmentación de los grandes espacios se produciría por un lado un incremento acelerado del número y superficie de pequeños y medianos espacios (por encima del número de los grandes espacios), rebajando su densidad y el peso relativo -resultado simplemente de la fragmentación. Todo ello explicaría unas distancias menores respecto los límites de los grandes espacios, aun siendo relativamente menos numerosos.

Sin embargo, por las densidades totales de enclaves (tabla 9.28), vemos que no existen diferencias muy apreciables entre los casos de la P.del Vallès y la P.del Penedès: se da mayor densidad de enclaves en la del Penedès incluso -muy próxima a los valores máximos del P.de Bages. Así, aun dando por supuesta la incidencia del mayor número absoluto de grandes espacios, ello no obsta para explicar el diferencial entre las distancias de los enclaves pequeños y medianos, otra que no sea la lógica locacional de los enclaves medianos de uso urbanizado (tabla 9.25).

Cabe descartar por ello una especial incidencia de la densidad y peso relativo de los enclaves en la configuración espacial (distancias medias) de los dos paisajes (P. de Bages y P. del Vallès; precisamente donde los espacios medianos no siguen la pauta ‘gravitacional’, de proximidad a los espacios grandes). Sí parece tener relación por un lado con el mayor número absoluto de grandes espacios, y por otro con el número (densidad) de enclaves medianos existentes (de tipología urbana en buena parte). A pesar de todo pues, esta situación de las distancias medias entre ‘agregados’ y ‘enclaves’ parece corresponderse con el grado de urbanización y metropolinización del territorio (presencia de la tipología espacios medianos y urbanizados).

9.4.6.- Conclusiones sobre la distancia mínima media entre agregados y enclaves.

Por la apreciación de los resultados, cabe cuestionar que el óptimo conceptual pueda atribuirse a una menor distancia media entre enclaves y grandes espacios. Más cuando no es puesto en relación directa con los hechos composicionales del paisaje: En síntesis, el criterio de favorecer la proximidad entre agregados y enclaves que postula AWO, aparece mediado por los efectos composicionales descritos (número absoluto de grandes espacios, densidad y peso relativo de los enclaves). De manera coincidente con los resultados del análisis conceptual realizado a lo largo del estudio (ap.3.3.4), nos obliga a plantearnos la utilidad del criterio de las distancias entre espacios.
Es cierto sin embargo que por el análisis de las distancias en base AWO se evidencian aspectos de interés, relacionados con la composición y características funcionales de las tipologías de espacios que definen de forma característica el paisaje metropolitano (espacios de tamaño mediano). Este criterio del modelo posiblemente es útil para la planificación de las nuevas localizaciones en el territorio, así como para caracterizar el comportamiento en la localización de las clases de usos agrupados según la distancia. Sin embargo, globalmente el análisis de las distancias entre agregados y enclaves existentes parece no aportar información decisiva, dada la dependencia de las distancias respecto el número de grandes espacios existentes (inversamente), y de su superficie relativa (directamente).

Es por ello que, de cara a la modelización sintética, se estima preferible considerar los valores obtenidos por el primer criterio del principio conceptual: el de la existencia relativa de grandes espacios de vegetación natural, que marca en buena parte la diferencia en las distancias internas entre agregados y enclaves del paisaje (ap.7.4). Igualmente y de forma destacada, la presencia de la tipología de los espacios medianos se considera un factor composicional a valorar negativamente en la definición del óptimo a modelar. Por todo ello cabe convenir entonces que los valores que toman las variables composicionales son el referente básico para desarrollar el óptimo conceptual del principio.362

9.5.- Valoración del análisis composicional y verificación de hipótesis

El análisis composicional realizado ha mostrado las capacidades aplicadas del principio AWO (la hipótesis de trabajo). Igualmente, ha servido para contrastar su definición (formulación de tipologías por usos y tamaños), desde los principios de análisis de las distribuciones espaciales en Geografía y Ecología del paisaje –superficies, densidad, diversidad. Hemos desestimado también la elección de variables de la distancia para la aplicación. Mediante la valoración del análisis realizado, iniciamos ahora la

362 No obstante, por el presente estudio se considera que el análisis de las distancias mediante las tipologías AWO evidencia ser uno de los campos de estudio posiblemente más fructíferos, para la búsqueda de regularidades espaciales en el paisaje humanizado. El análisis realizado de hecho ha aportado algunos de los elementos básicos (factores composicionales subyacentes), en la configuración de las distancias entre los elementos del paisaje.
El principio ‘agregados con enclaves’

verificación de la hipótesis de estudio, y valoramos su potencial para aportar las claves configuracionales de los patrones y procesos que se dan en el territorio del paisaje – específicamente la metropolinización. Es necesario por tanto entrar en la valoración de este análisis, de cara a incidir en las potencialidades y limitaciones para el desarrollo del principio conceptual, y las implicaciones en su modelización y aplicación.

9.5.1.- Interpretación composicional de las distribuciones espaciales

En general, por el estudio se considera que la apreciación conjunta de las características composicionales del paisaje (a partir de la modelización según las tipologías de espacios funcionalmente definidas), es una aportación valiosa al análisis de la heterogeneidad del mosaico. Lo es especialmente de cara a la definición de los desarrollos necesarios, para su uso en procesos de planificación. Concretamente, mediante su relativización y contextualización (superficies relativas, densidades) así como con la búsqueda de las interrelaciones entre sus componentes (diversidad, proximidad), se han evidenciado de hecho las características subyacentes en las distribuciones espaciales: se relativizan las influencias del grano y la extensión territorial, de forma destacada.

Las pautas observadas composicionalmente, evidencian entonces que por sí solo un análisis exploratorio simple no puede hacer frente a la complejidad de las distribuciones espaciales en el paisaje, sin una guía conceptual que defina aspectos como la heterogeneidad funcionalmente óptima del paisaje –como hace el principio AWO. En este sentido, la relación entre la heterogeneidad espacial y la entropía es más compleja que la que se expresa mediante índices únicos de diversidad o proximidad, por ejemplo.

Otra cuestión que el estudio considera relevante es la importancia del análisis espacial de las distribuciones resultantes de las tipologías AWO. Así, vemos que la diversidad se encuentra composicional y espacialmente definida, y cuestiones como la morfología de los grandes espacios (con urbanizados linealmente muy interconectados), la dispersión locacional de tipologías (NNF, espacios pequeños y medianos), o la influencia de determinados usos en la configuración de las tipologías agregadas (diversidad rural, forestal y urbanizada) debe verse sobre el mapa. El análisis de esta

363 De ser verificada esta hipótesis, será posible igualmente plantear su desarrollo como una herramienta para el macrodiagnóstico territorial (ap.1.2).
complejidad implica un ejercicio de contextualización y/o análisis guiado, necesario en la planificación integrada.

En este sentido, se refuerza la perspectiva que es la topografía de estos paisajes mediterráneos lo que hace aun posible fomentar la conectividad entre unos espacios naturales cada vez más aislados, en entornos altamente humanizados y urbanizados. La presencia entonces de los enclaves forestales y de uso NNF, conformando una posible malla de espacios marginales (superimpuesta sobre los usos rurales o urbanos), es un factor composicional a valorar especialmente.

9.5.2.- Oportunidad de definición de las tipologías

De inicio, se han constatado ciertas deficiencias a solventar del principio, de cara a la modelización sintética en base AWO: específicamente la definición de las tipologías y sus umbrales de valores (superando su adimensionalidad –ap.7.2), así como la definición de algunos de sus criterios, de cara a la modelización del óptimo conceptual (caso de las distancias entre agregados y enclaves). Ello a pesar que se considera idóneo el análisis en base AWO para la interpretación de los factores clave, en el tratamiento integrado de la heterogeneidad del paisaje.

Característicamente, en algunos casos la definición de las tipologías AWO y la hipótesis de estudio se ven reforzadas por las apreciaciones del análisis composicional realizado. Se ha mostrado por ejemplo la oportunidad de las divisiones conceptuales por tamaño de los espacios, destacando especialmente la utilidad de las categorías ‘matriz’ y ‘espacios medianos’, como agrupaciones que presentan evidencia de una especial relevancia en el análisis composicional aplicado del paisaje metropolitano.

En este sentido, la puesta en relación de las diferentes tipologías y sus valores para las variables composicionales y de la distancia, ha destacado más si cabe la utilidad prospectiva del principio. Las particularidades propias de la clase ‘espacios medianos’, evidencian la vinculación a una lógica locacional específica de ocupación antrópica (urbanización). Esta es una apreciación composicional que corrobora (por si sola) su

364 En concreto su orografía, con presencia de torrentes y unos usos marginales asociados (ver p.e. Aran 1997).
365 Aunque la propia caracterización de alguna tipología (NNF como espacios marginales en transición, a forestal o como reserva urbanizable) depende del momento evolutivo del paisaje -el cual es definible previamente en base composicional AWO, no obstante.

260
El principio ‘agregados con enclaves’

validez para el discernimiento de las posibles ‘huellas composicionales’, en las configuraciones de los paisajes metropolitanos. Es evidencia de que las tipologías característicamente antrópicas que se superponen en el territorio del paisaje dejan un claro rastro composicional.366

La mayor superficie relativa del subgrupo de los espacios medianos, supone de por si potencialmente un impacto acumulativo en la configuración interna del paisaje - característico de una elevada afectación antrópica. Por el análisis comparativo de los casos, observamos que la fragmentación de la matriz del paisaje se traduce composicionalmente en un mayor número de espacios medianos (relativamente más numerosos y de creciente tipología urbana), los cuales se encuentran además a mayor distancia de lo que sería deseable y de esperar respecto los límites de los grandes espacios. Este se convierte por tanto en un elemento especialmente negativo, el cual acentúa la disfuncionalidad ecológica del territorio (‘perforación’ y expansión territorial lejos de los límites de los grandes espacios).367

Como otra de las valoraciones, por este análisis se remarca el hecho que el criterio del número de grandes espacios debe ser analizado de forma relativa respecto el resto de tipologías, puesto que un pequeño aumento en su número absoluto puede producir una disminución mayor de la distancia entre los enclaves y los espacios grandes.368 Por tanto, será al tomar en consideración todos estos factores cuando se caracterice correctamente (composicional y configuracionalmente) a los paisajes metropolitanos.

Es por todo ello que cabe interrogarnos entonces si la aparente tendencia inicial, por la que se postula la relación entre la densidad de grandes espacios y distancia medias de los enclaves, no está en realidad mediada por el grado de urbanización del paisaje, como parece. Esta mediación sería la responsable composicionalmente del aumento de la

366 Son por otro lado las actuaciones que por definición son de obligada planificación, aun a nivel de simple ingeniería de riesgos ambientales -por lo que es un deber evaluar los resultados de las políticas y actuaciones adoptadas.
367 Será necesario igualmente realizar estudios sobre la evolución temporal de las tipologías, para cuantificar y caracterizar el cambio acelerado de los paisajes metropolitanos, y su aplicación práctica en los procesos de planificación.
368 Estos hechos también evidencian que un mayor número absoluto de grandes espacios naturales y rurales, no es suficiente elemento para garantizar una mejor composición del paisaje, de cara a la correcta formulación de criterios conservacionistas del paisaje. La consideración de sus valores relativos es básica para contextualizar estos espacios y el paisaje en su conjunto.
entropía del paisaje como sistema, explicando la tendencia a la maximización de la diversidad interna de las clases por usos y tamaños (equiprobabilidad). Así, en el caso del Vallès, el proceso de urbanización ha resultado en un gran número de pequeños espacios (urbanos y naturales-no forestales), que en su dispersión por el territorio dan lugar a una media de la distancia más próxima a los grandes espacios (rompiendo por ello con la tendencia observada en la localización de los enclaves, para el resto de los paisajes).

En base a lo expuesto, puede caracterizarse ya el fenómeno de la metropolinización como un proceso acelerado de cambio de las tipologías de espacios en el paisaje, y de las distancias entre ellos: con el incremento relativo de espacios pequeños y medianos, se daría un aumento del consumo de territorio natural y seminatural por perforación y expansión, teniendo como consecuencia un aumento de los espacios medianos (con una mayor importancia de los usos urbanizados). Simultáneamente, ello comportaría un aumento relativo de las distancias de los espacios medianos respecto los límites de los grandes espacios.

El análisis composicional, por tanto, ha remarcado especialmente las características de las tipologías alejadas de las tendencias aparentemente generales (matriz, espacios medianos) por comparación entre los cinco paisajes, tal como se formulaba en la hipótesis de estudio. La característica disminución del gran espacio matriz y la creciente tipología de los espacios medianos, pueden considerarse entonces aportaciones antrópicas a la heterogeneidad existente, hacia una previsible tendencia de mayor entropía espacial en el paisaje. Esta sería la principal valoración en este estadio, surgida de las capacidades del análisis agregado en base AWO.

Se deduce por ello que evitar la fragmentación excesiva del gran espacio matriz del paisaje (especialmente suscitada por infraestructuras viarias), y definir las localizaciones de asentamientos urbanos dispersos de forma contextualizada, son así los dos aspectos de una planificación a nivel del paisaje que pueden aportar mayor beneficio en el tránsito a una situación metropolitana, a la vez que manteniendo los requisitos de los sistemas naturales. Ello siempre en base a la definición que subyace en el principio de un ‘medio sostenible’, como en este caso (ap.4.3.3).

369 Sin embargo, será precisamente la ruptura con este caso general lo que nos indicará potencialmente cuales son los parámetros y cómo se ven afectados el resto de variables, en los paisajes más alterados por el fenómeno de la metropolinización.
9.5.3.- Interpretación de los casos de estudio en base al análisis composicional

La relevancia de los indicadores de la densidad relativa de las tipologías de los espacios grandes, permite destacar precisamente la excepcionalidad del caso de la Plana del Vallès, e indagar comparativamente sobre las pautas de la fragmentación del paisaje en el territorio.370 Por los resultados iniciales referidos únicamente al criterio de las distancias, podríamos de hecho argumentar que la Plana del Vallès presenta unos valores de distancia media de los enclaves que, de forma óptima, resulta ser el menor de los cinco paisajes. Sin embargo, cuando se consideran criterios de densidad de los grandes espacios y peso relativo de éstos, su valoración pasa a ser la del paisaje menos óptimo de todos los analizados.

Además, al fijarnos en los valores de la distancia de los espacios medianos de este paisaje, no podemos dejar de cuestionarnos igualmente que este sea el paisaje conceptualmente óptimo: el alejamiento relativamente mayor de los enclaves de tamaño medio respecto los límites de los espacios mayores, es precisamente un hecho espacial que debe ser considerado como funcionalmente negativo para cualquier paisaje. Precisamente por el análisis composicional integrado, se resuelve así la paradoja de que el paisaje altamente urbanizado y metropolitano (Plana del Vallès) sea considerado el más óptimo, en base al análisis inicial del criterio de las distancias medias. Este análisis conjunto en base AWO (como propone la hipótesis de estudio), por el contrario, lo sitúa correctamente como el composicionalmente menos óptimo.

Esto también se refleja composicionalmente por la existencia de cuatro grandes espacios considerados ‘matriz’ en la P.del Vallès (cluster análisis, ap. 9.2), motivado de manera destacada por la existencia de un gran agregado urbanizado que divide el gran espacio rural existente. Lo es también el mayor número de espacios medianos y su diversidad -de tipo urbanizado en una proporción superior. Añadido al efecto disfuncional suscitado por el incremento relativo de las distancias mínimas de los espacios medianos respecto los grandes espacios, nos confirma pues en la idea que la urbanización

370 De forma especial, el análisis de este paisaje característicamente metropolitano ejemplifica y remarca la oportunidad del análisis composicional en base AWO, según el presente estudio.
9. Análisis composicional según tipologías AWO

(causada por el factor de cambio de la metropolinización), explica de manera destacada el aumento observado de la entropía del paisaje como sistema, y su ‘diversidad’.\(^{371}\)

Comparativamente entonces, cabe cuestionarse si el caso de la Plana de Vic, con una distancia media de los espacios pequeños superior a la esperada (y una distancia de los espacios medianos relativamente inferior), sería precisamente el caso más óptimo de los analizados. Ello es debido composicionalmente a la mayor ‘gravedad’ de la configuración de los enclaves (espacios medianos más próximos a los grandes de lo que lo están los pequeños), junto con una densidad y peso relativo de los grandes espacios superior.

9.5.4.- Implicaciones del tratamiento metodológico

En este punto, es oportuno considerar las implicaciones del tratamiento metodológico efectuado. En primer lugar, la aproximación AWO está condicionada por la definición realizada de las escalas de análisis (delimitación de los paisajes y elementos internos que lo componen): partimos del supuesto estructuralista de la existencia de unos niveles de agregación ecológica (entre los que figura el paisaje), que configuran las escalas de análisis pertinentes.\(^{372}\) Ello frente a definiciones puramente exploratorias de los fenómenos territoriales, según las diversas variables definidas.

La característica adimensionalidad de su formulación, por su parte, se ha evidenciado de entrada como el principal factor de complicación operativa, ya en la modelización básica. Ha sido necesario resolver previamente los aspectos conceptuales y de cuantificación, imprescindibles para la modelización de los criterios. No obstante, al

\(^{371}\) Este hecho parece ser un segundo indicio destacable cuantito a la excepcionalidad o tendencia del paisaje de la P.del Vallès: Ya no se caracterizaría por tanto como un paisaje en el que composicionalmente los grandes espacios son el factor espacial predominante, sino que relativamente sus valores son bajos tanto en número como en superficie, potenciando (son resultado) su visión como un paisaje donde, composicional y funcionalmente, dominan los espacios de tipo mediano.

\(^{372}\) Estos niveles se definen por la repetición característica de los patrones de usos locales o ecosistemas (niveles jerárquicos inferiores), que en el caso de AWO se identifican funcionalmente con cuatro tipologías básicas por su gradiente de naturalidad (natural, rural, forestal, urbano) y por el tamaño de los espacios (grandes-pequeños, y matriz-espacios medianos por el análisis). El análisis agregado resultante es de ‘grano grande’ (o típicamente macro-geográfico), simplificando en gran manera la interpretación de la multiplicidad de fenómenos espaciales, presentes sobre el mosaico del paisaje.
abordar en la práctica y de forma aplicada cuestiones como la entificación del paisaje (su delimitación y la de sus espacios internos por repetición de las tipologías), estas se resuelven de manera más simple: la delimitación de los paisajes en los cinco casos se ve especialmente facilitada por su compartimentación física y de los usos limítrofes.373

El análisis de la heterogeneidad del paisaje que permite realizar, está mediado también por este tratamiento metodológico. La definición conceptual de la heterogeneidad óptima, igualmente, establece las referencias del análisis: es una heterogeneidad definida entre una distribución aleatoria y una distribución homogénea -definible como una ‘inflexión’ entre ambas (ap. 3.2). Implica un concepto de regulación del sistema territorial igualmente, o la corrección de una tendencia a la entropía del sistema territorial causada antrópicamente, especialmente referida al factor de cambio espacial de la metropolinización -considerado como un fenómeno emergente.

Por el análisis, se ha evidenciado que es un proceso de cambio que se refleja conjuntamente (aunque de forma dispar) en los valores de diversas variables. Ello supone que el análisis de la heterogeneidad espacial AWO no sea siempre lineal: está afectado en diverso grado por la evolución de las diversas variables composicionales -como se refleja en el caso de la proximidad entre espacios grandes y pequeños. Los paisajes eminentemente metropolitanos, precisamente por su fragmentación, presentan entonces unos valores de optimicidad en las distancias que, sin embargo, están mediados por los efectos composicionales subyacentes. Estos efectos composicionales en la distancia, por su parte, no se corresponden siempre con el óptimo teórico de distribución de los espacios internos del paisaje. No es por tanto el óptimo configuracional que se define desde el principio conceptual, tal y como evidencia el análisis. Por ello, hace que deba replantearse la formulación de este criterio cuanto a las distancias entre tipologías de espacios, y considerarlo de forma sintética junto con el resto de criterios definidos composicionalmente –esto es, se requiere de desarrollos en base AWO.

La necesidad en todo caso de abordar todas estas cuestiones desde una definición conceptual previa adecuada, refuerza la utilidad de AWO como guía para el tratamiento

373 Reflejando también la idoneidad de las delimitaciones tradicionales de estos espacios por las monografías regionales, así como la utilidad de los criterios visuales -ap.6.1
de la heterogeneidad espacial del paisaje, frente aproximaciones puramente exploratorias. Su aplicabilidad confirmará también la hipótesis de estudio.

9.5.5.- Naturaleza de los desarrollos a efectuar en base AWO

La definición de las tipologías AWO es entonces la base para la comprensión de los procesos espaciales. El análisis de los resultados obtenidos ha mostrado la característica complejidad en las interrelaciones entre las diversas variables composicionales, aun permitiendo definir las claves en la interpretación. La declaración de las tipologías de espacios según su funcionalidad, permite también abordar un análisis estadístico comparativo de los casos que es considerado de gran interés, facilitando la comprensión de los fenómenos espaciales inherentes en las configuraciones (objetivos de estudio).

En este sentido, la consideración de los valores que comparativamente toman los diferentes paisajes muestra ciertas regularidades asociadas a su distribución por tamaño y uso. Permite evidenciar, igualmente, las alteraciones composicionales existentes en base AWO -funcionalmente por tanto- respecto de las tendencias esperadas, las cuales aparecen reflejadas ya en las curvas de distribución de los espacios (ap. 8.1). Por el estudio, se plantea que estas alteraciones son susceptibles también de modelarse en base al óptimo universal definido. Su desarrollo para la cuantificación respecto al óptimo conceptual es el siguiente nivel a abordar, una vez establecida su idoneidad como tratamiento guiado y teniendo en cuenta cuales son los criterios a potenciar en el análisis.

Sin embargo, la aproximación realizada no permite tratar la criticalidad organizada de las distribuciones de espacios en el paisaje. Por un lado, por la preeminencia dada a su aplicación para la planificación desde unas bases conceptuales establecidas (normatividad), con lo que el análisis exploratorio de las regularidades espaciales en realidad queda de lado. Por otra, por la definición realizada en el estudio de los umbrales entre tipologías de espacios (agregación por tamaño), con un bajo nivel explicativo.374

No obstante, se considera que el principio traza las bases de una definición espacial óptima, que asemeja una ‘criticalidad diseñada’ (necesaria) de las configuraciones del

374 Para la definición de los posibles umbrales de una ‘criticalidad’ organizada en las distribuciones del paisaje, se requiere posiblemente de otro tipo de análisis sobre las configuraciones del paisaje (definible como exploratorio puro, con muchos más casos, escalas y variables que despejen la incógnita planteada, en definitiva).
El principio ‘agregados con enclaves’

paisaje (de forma flexible por definición). No sería por tanto auto-organizada, pero sí reguladora de la heterogeneidad y nivel de entropía, en base a la consideración negativa de los desarrollos espaciales antrópicos, y su disfuncionalidad. En relación con la definición sintética del óptimo conceptual, podemos incluso definir composicionalmente (y de forma flexible) el referente de una ‘criticalidad’ de las distribuciones óptimas de los espacios en las configuraciones del mosaico: se afronta igualmente la problemática de la definición de la funcionalidad universal del paisaje y los casos particulares, con la complejidad de su articulación –escala de los fenómenos territoriales y las alteraciones antrópicas. Como resultado y en cualquier caso, cabe remarcar que de forma práctica se primará la estabilidad del mosaico del paisaje, tal como subyace en la formulación de la heterogeneidad AWO.

9.5.6.- Claves para el desarrollo en base AWO

A partir de estas constataciones, se abre la posibilidad de formalizar un desarrollo integrado en base AWO, que sirva para cuantificar de forma sintética las capacidades y déficits composicionales del paisaje, y sea aplicable en la planificación: más allá de la simple enumeración de los preceptos normativos del principio, así como de las contradicciones composicionales subyacentes en su cuantificación, en definitiva. Con ello se espera igualmente poder definir un novedoso macrodiagnóstico de los territorios, como herramienta de especial interés en la planificación integrada (objetivo de estudio).

Por otra parte, aunque es destacable su utilidad para la cuantificación de la heterogeneidad espacial (o nivel de entropía) de los sistemas del paisaje, no hay que olvidar que el interés y objetivo fundamental para la formulación del principio es sobretodo prospectivo, para la planificación de los paisajes afectados por la acción antrópica (Forman 1995a). Así, en el estudio se da especial importancia a su aplicabilidad, lo que implica una nueva fase en el desarrollo en la modelización hasta ahora realizada. El test real del modelo (y del principio conceptual) se dará por tanto finalmente en el proceso de planificación.

375 También en el sentido de una ‘criticalidad’, puede incluso formularse como un umbral de ruptura con la tendencia de equilibrio composicional (densidad) y configuracional (distancia media), para el conjunto de tipologías en el estudio. Con ello se podrán formular de forma espacial los posibles mecanismos de corrección (feedback negativo) a los cambios provocados antrópicamente en el paisaje –por ‘retroalimentación acelerada’, como impactos acumulativos.
Con el sucesivo refinado de los preceptos AWO a acometer mediante este desarrollo, se pretende precisamente reforzar su aplicabilidad y potencial para la planificación integrada, haciendo frente a las cuestiones evidenciadas como limitaciones o planteamientos insuficientes del principio:Debe potenciar la interpretación y diagnóstico del territorio y los procesos que se dan en él. Para ello, se recurrirá a la cuantificación del óptimo composicional, al que referir las situaciones existentes en la práctica. También y como un resultado del análisis composicional realizado en base AWO, se considera que la modelización se verá beneficiada por la ponderación de los criterios cuanto a los usos óptimos de los espacios, y por la utilización de constricciones sobre las tipologías consideradas disfuncionales (espacios medianos).

Como claves a integrar en la modelización sintética de la heterogeneidad, ya se han destacado el peso relativo de determinadas tipologías de espacios, y la consideración aplicada de la equiprobabilidad y la varianza del grano del paisaje. De cara igualmente a contrastar el desarrollo guiado, la comparación de las alteraciones respecto a las tendencias generales observadas en las distribuciones de los espacios (gráficas), aparece como un elemento de referencia especialmente válido.

Sobre la base de un óptimo configuracional universal del paisaje (el cual es considerado característicamente como contrapuesto a la maximización de la entropía), se buscará ahora definir el modelo óptimo al que referir las configuraciones espaciales existentes (cap. 10), con que profundizar en el análisis sintético en base AWO. Se partirá pues de la consideración que el tratamiento dado desde el principio conceptual a la heterogeneidad espacial del mosaico, es el adecuado para el análisis del nivel de entropía del sistema territorial del paisaje y su sostenibilidad.376

376 Así, a partir del análisis realizado de la heterogeneidad espacial óptima AWO, debe ser posible desarrollar el modelo aplicado para la definición de un ‘medio sostenible’ particular. Con ello debe contrarrestarse el feedback positivo del sistema territorial del paisaje (maximización de la entropía), tal y como se observa composicionalmente (empíricamente) por la modelización inicial en base AWO de las distribuciones, densidad y diversidad de tipologías de espacios en los paisajes.
10.- DESARROLLO Y APLICACIÓN DEL MODELO DEL ÓPTIMO COMPOSICIONAL

El análisis composicional de los elementos internos del paisaje se ha evidenciado por el presente estudio como el más adecuado de cara a la modelización y aplicación AWO, para la caracterización de la heterogeneidad en los paisajes (cap.3; cap.8). Las variables composicionales son aplicadas ahora para el desarrollo de un modelo sintético de distribución espacial, definido para la ordenación del territorio.

Se pretende desarrollar así una aplicación propia, sobre la consideración de los principales elementos a cuantificar en la composición del paisaje (valorados en la hipótesis de estudio). Se busca especialmente integrar y superar las contradicciones composicionales -paradojas en la explicación-, evidenciadas cuando se realiza la simple declaración y cuantificación por separado de los criterios del modelo –cap.9. A partir de estos elementos, debe ser posible definir de forma sintética un análisis en base al óptimo conceptual preestablecido, mediante la cuantificación de las diferencias entre el óptimo y lo realmente existente.377

10.1.- Definición del modelo óptimo composicional

Por el análisis realizado hasta ahora, ya se han desarrollado las herramientas básicas que cuantifican composicionalmente el grado de optimicidad del paisaje –cap.8. Así, a partir del análisis de la agregación funcional de los espacios según usos y tamaños, se considera que la heterogeneidad AWO debe tratarse fundamentalmente a nivel de la diversidad composicional (usos del suelo), y del grano (tamaño) de los espacios.378

377 También deberá valorarse (dado que forma parte de la hipótesis de estudio, ap.5.1) si permite un diagnóstico eficaz del estado de los paisajes, y la determinación del ‘momento’ en que se encuentran en su evolución -referido a la naturalidad y mantenimiento de las potencialidades del paisaje.

378 En el primer caso, el análisis de la diversidad interna ha sido la base del análisis composicional para los criterios de abundancia de determinadas topologías de espacios (criterios 1,3,6.). Por su parte, la varianza en el tamaño del grano del paisaje (criterio 2; ap. 7.1), es importante para la configuración espacial, de cara a favorecer la heterogeneidad en el mosaico (Forman 1995a). Con ello se cubrirán así los requisitos esenciales del análisis composicional del paisaje, cuanto a la definición cuidadosa de la naturaleza del mosaico del paisaje y la agregación de sus espacios, de cara a analizar la heterogeneidad de las configuraciones espaciales (Gustafson 1998; ap.3.3).
10. Desarrollo y aplicación del modelo del óptimo composicional

Hasta ahora, se han evidenciado las posibilidades de cuantificación de los criterios del principio, si bien no se ha hecho respecto a ningún tipo de valores indicativos de la optimicidad de su situación. Para ello, se pretende establecer y cuantificar los referentes universales AWO de la optimicidad de un paisaje. 379 Se desarrollará una variante de un modelo de optimización espacial para la composición y configuración del mismo, 380 en base a sus elementos internos –la heterogeneidad ‘útil’, tal como se ha definido de manera sintética y cuantificable a la vez.

10.1.1.- Los componentes en la modelización

Las dos variables composicionales consideradas especialmente útiles –cap.9-, son en tanto sus componentes cuantifican la composición espacial del paisaje de forma complementaria: por una parte, la diversidad interna en base a las tipologías de espacios por tamaños y usos; por otra parte, la varianza en el tamaño, como una medida del ‘grano’ del paisaje.

Así, como ejemplo del comportamiento opuesto de las variables que se realiza con la maximización conjunta de los dos índices de heterogeneidad (diversidad interna de las tipologías por tamaño – varianza), vemos que a mayor diversidad interna obtenida, menor es la varianza, y viceversa (Tabla 10.1).

Tabla 10.1.- Comportamiento de los índices de varianza y desviación típica respecto a la diversidad

<table>
<thead>
<tr>
<th>Nº caso</th>
<th>pi</th>
<th>pi</th>
<th>pi</th>
<th>pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>99</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pi</th>
<th>pi</th>
<th>pi</th>
<th>pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversidad</td>
<td>0</td>
<td>0,06</td>
<td>0,69</td>
<td>1,39</td>
</tr>
<tr>
<td>Desv. típica</td>
<td>43</td>
<td>43</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Varianza</td>
<td>1875</td>
<td>1826</td>
<td>625</td>
<td>0</td>
</tr>
</tbody>
</table>

-A mayor diversidad (tendencia a la igual probabilidad de casos), menor varianza. Pi=probabilidad.

379 Estos referentes óptimos, igualmente, son susceptibles de clarificar y ayudar a ponderar los mismos criterios composicionales del principio que se cuantifican.

380 Como uno de los tipos de modelos usuales en el terreno del análisis locacional; ap.3.3.
La referencia a la equiprobabilidad -la esencia del análisis de la diversidad-, se considera también clave de cara a la modelización sintética.\(^{381}\) En base a ello se pueden calcular de antemano las probabilidades óptimas de los subgrupos de usos y tamaños de los espacios, y comparar los resultados que presentan los paisajes.

Esta optimización conjunta por tanto, corrige en su efecto la tendencia observada a la maximización de la diversidad interna en los paisajes metropolitanos (ap.9.3).\(^{382}\) La optimización conjunta de estas variaciones es la que definirá entonces la heterogeneidad óptima del paisaje, a la cual es posible incorporar por el modelo desarrollado la diversidad de los usos y las posibles restricciones.

10.2.- Desarrollo del modelo de optimización

Por el desarrollo se busca entonces de forma cuantificada la optimización conjunta de dos variaciones: la interna de las tipologías de espacios según tamaño, y la maximización de la varianza general del tamaño de los espacios -reflejadas ambas en la distribución (grano) de las series (ap. 8.1.1 - 8.5). Como objetivo, se pretende ejemplificar la aplicación de una metodología general, desde la cual es posible realizar diferentes definiciones de los elementos de interés, y sus restricciones.\(^{383}\)

Metodológicamente, en base a la oposición entre diversidad y varianza podremos identificar de inicio los óptimos de proporciones (por tamaños de los espacios primero y por usos después), en función de las diferencias respecto las probabilidades de los subgrupos -en el supuesto de maximización de la entropía (equiprobabilidad). Esto podemos calcularlo al tiempo que maximizamos determinados aspectos como el número o superficie de ciertos espacios y usos paralelamente, de forma similar a como se realiza con los modelos de optimización tradicionales.

\(^{381}\) Cuando la probabilidad se sitúa cerca del valor de la equiprobabilidad es cuando se maximiza la diversidad.

\(^{382}\) Puede entenderse como un factor contrario a la maximización de la entropía espacial de la configuración interna del paisaje como sistema. Refiere igualmente a la propia definición de la heterogeneidad espacial AWO, en oposición a las distribuciones aleatorias de los elementos del paisaje (ap 3.3).

\(^{383}\) En este sentido, el supuesto de modelización que se presenta a continuación se identifica como el más general, derivado de las consideraciones que han surgido a lo largo del presente estudio. Es posible definirlo formalmente también como un modelo de optimización espacial, aunque en el presente caso se optará por una aproximación más simple, mediante la diferenciación entre tipologías de espacios por uso y tamaño.
Computacionalmente, la definición de un modelo de optimización conllevaría:

1. La definición de la función objetivo.
2. La definición de las restricciones a aplicar al modelo.

La función objetivo se definiría en este caso como la **maximización conjunta** de la diversidad y la varianza del tamaño de los espacios, mientras que como restricción se da la minimización de los espacios medianos (que llegan a ser inexistentes de forma ideal). Esta solución óptima del modelo es igualmente susceptible de una solución gráfica (fig.10.1), donde se representan los valores de las curvas a maximizar y minimizar:

Figura 10.1.- Solución gráfica a la maximización conjunta de la diversidad y la varianza en el tamaño de los espacios

El planteamiento gráfico para la maximización de las dos variables referida a los espacios por su tamaño (diversidad/ varianza), establece entonces por sí misma la solución del problema: sólo existe una recta que maximiza ambas variables, con unas restricciones dadas. Dado el bajo número de las tipologías AWO (4+4 por tamaño y uso), la distribución óptima de los subgrupos de las dos variables es susceptible de ser deducida por diferenciación. Ello es posible si se identifican inicialmente algunos de los valores conceptualmente óptimos, para ciertas tipologías de espacios AWO.\(^{384}\) Posteriormente, por el mismo método de diferenciación y cruzando los valores obtenidos

\(^{384}\) *Por el estudio, se considera que este es el caso precisamente de la no presencia de la tipología de espacios medianos; o la maximización del tamaño ideal del gran espacio de la matriz, de uso rural.*
El principio ‘agregados con enclaves’

para el tamaño de los espacios con los subgrupos de la tipología por usos, podremos obtener las probabilidades óptimas de todos los subgrupos.

El proceso se lleva a cabo pues de una forma simple y sin recurrir a la definición formal de un modelo de optimización espacial. Para proceder a la definición del modelo más genérico posible que se pretende realizar ahora, podemos establecer que según el principio AWO deseamos obtener idealmente:

1. El mayor número de espacios forestales grandes;
2. El mayor nivel de varianza posible en el tamaño de los espacios del paisaje;
3. El mayor número relativo de pequeños espacios posible;
4. El mayor número de espacios forestales pequeños;
5. El menor número de espacios medianos.
6. La agregación de los espacios naturales, rurales y urbanizados.

Es posible igualmente incluir en el modelo otros elementos que se consideran de interés, también de cara a realizar la evaluación del óptimo configuracional. Es el caso de los propios factores establecidos como posibles disfuncionalidades: la densidad de grandes espacios o la relación entre los espacios grandes y medianos (ap. 9.2).

Por la apreciación de estas premisas y de forma aplicada, del modelo de síntesis que se realizará a partir de ahora resultará una ponderación de la diversidad del paisaje mediante el tamaño de sus espacios y por usos, en base a la aplicación sintética de los criterios AWO. Con ello es de esperar también que se solucionará la paradoja de que los paisajes altamente heterogéneos y fragmentados (por los usos urbanizados

385 Esto es considerado innecesario ahora dada la división simple en tipologías AWO, a las que debemos asignar valores relativos de optimicidad: disponemos de la base conceptual explicativa de las causalidades subyacentes (proporcionada por la teoría ecológica en la que se basa y sintetiza el principio normativo AWO), para la que se busca aplicabilidad universal. Se trata ahora de cuantificar los valores óptimos relativos a los que supuestamente refiere la definición de las tipologías del modelo normativo. Es indudable no obstante que otros desarrollos de base exploratoria serán del mayor interés, a tal respecto.

386 En este sentido, sería preferible pues un urbanismo denso que integre los usos recreacionales en la planificación urbanística, que un crecimiento desordenado de baja densidad y elevada ocupación territorial del medio -siempre que la agregación no conlleve la formación de un gran espacio matriz de tipología urbanizada. Ello se postula siguiendo los criterios de sostenibilidad de una ordenación territorial integrada y las formulaciones implícitas AWO (cap.3-4), así como por las observaciones sobre decrecimiento y fragmentación de los espacios naturales (Forman 1995a).
principalmente) sean considerados los óptimos, como sucede cuantificando los criterios de forma individualizada.\(^{387}\)

10.2.1.- Diferenciación de las tipologías por tamaños

Paso 1 - Para su aplicación práctica empezaremos, pues, por identificar las probabilidades óptimas de los tamaños (superficie relativa) de las tipologías de espacios. Sabiendo que la equiprobabilidad de 4 subgrupos se sitúa en el 0.25, y que según lo deducido deben minimizarse los espacios medianos (probabilidad = 0 en este supuesto), es posible reasignar este 0.25 perteneciente a los espacios medianos de forma similar entre los restantes subgrupos (tabla 10.2). El 0.33 resultante es considerada la probabilidad óptima, una vez eliminado el subgrupo de los espacios medianos.

Paso 2 - La necesidad de obtener también la máxima varianza de los espacios presentes en el paisaje implica dar la mayor probabilidad al tamaño del espacio mayor, identificable como la matriz de fondo. Ello debe hacerse manteniendo a la vez la máxima probabilidad del subgrupo de los grandes espacios: A tal efecto, se mantiene el 0.33 de probabilidad de los grandes espacios, mientras que reducimos por el contrario la probabilidad de los pequeños espacios.

Paso 3 - El criterio que se establece para su solución en este caso, se obtiene por el análisis de los datos de la superficie agrupada de los espacios del paisaje: vemos que el valor del porcentaje de los espacios pequeños se sitúa siempre alrededor del 11% del total, sin apenas variaciones entre los casos de los 5 paisajes (ap. 8.3.3).\(^{388}\)

Tenemos entonces, finalmente (tabla 10.2), que los valores de probabilidad óptima para los espacios del paisaje en este modelo general son:

\(^{387}\) De igual manera, los paisajes monouso (dominados por un solo uso, sin heterogeneidad espacial) serán ponderados negativamente.

\(^{388}\) Este dato refleja por tanto empíricamente cuales son los valores medios que identifican la probabilidad más ajustada a la realidad, cuanto a la presencia de los espacios pequeños en estos paisajes. Se obtiene en función de la diferenciación existente en las series entre tipologías de espacios (ap.8.3): la tipología de los espacios pequeños es precisamente la que presenta comparativamente valores de porcentaje y número total más constantes en las series —siendo especialmente notablemente (por su coincidencia) el caso del paisaje no metropolitano del P.de la Conca de B. Estos valores son pues tomados operativamente como los óptimos de manera aplicada, a falta de una mayor definición del principio.
10.2.2.- Diferenciación de las tipologías por usos

Procedemos a desglosar las probabilidades óptimas de la superficie de los espacios del paisaje, según la tipología empleada para la clasificación por usos. Sabemos, de entrada, que la clase rural debe estar representada como mínimo por el 56% de la superficie total del paisaje, como corresponde al valor obtenido por el espacio mayor de la matriz de fondo (tabla 10.2). Teniendo en cuenta que la diversidad de los espacios mayores debe ser máxima (presencia de todos los usos, tendiendo a la equiprobabilidad), podemos establecer que es deseable que los cuatro tipos de usos estén en situación equiprobable para las dos tipologías de espacios por tamaño (grandes-pequeños).

La probabilidad de los grandes espacios de tipo rural debe ser entonces igual a la del resto de tipos. Por ello, el 0.33 y el 0.11 de probabilidad de superficie que representan los espacios grandes y pequeños, debe distribuirse de forma similar entre los cuatro tipos de usos (tablas 10.3 y 10.4). La suma del porcentaje total según usos se reflejaría en el paso 3 de la tabla 10.3.\footnote{Por ejemplo, la clase 'rural': 0,56 (Matriz) +0,08 (GE) +0,025 (PE) = 0,665. Los otros tres usos se situarían entorno el 0.11.}

389
A partir de estos valores de referencia, podemos comparar finalmente los respectivos valores obtenidos por paisaje. Así, es posible definir el grado de adecuación de la distribución del paisaje, respecto al óptimo del principio conceptual. Podremos, igualmente, obtener esta adecuación en forma de índice, como suma de las diferencias de las proporciones respecto a las probabilidades del óptimo.

Tabla 10.4.- Valores óptimos de probabilidad agregada (tamaño y usos)

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Pi Tamaño</th>
<th>Pi Uso</th>
<th>Uso esp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,56</td>
<td>0,56</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
<td></td>
<td>Forestal</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,33</td>
<td>0,08</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
<td>0,08</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,08</td>
<td></td>
<td>NNF</td>
</tr>
<tr>
<td>Medianos</td>
<td>0</td>
<td>0,025</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0,025</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,025</td>
<td>0,025</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,025</td>
<td></td>
<td>NNF</td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,11</td>
<td>0,025</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,025</td>
<td>0,025</td>
<td>Urbanizado</td>
</tr>
</tbody>
</table>

Caracterizaremos entonces los paisajes por los valores de proporción real y sus diferencias respecto al óptimo, de forma pormenorizada. Podremos igualmente prescribir determinadas actuaciones en la planificación, tendentes a corregir las desviaciones cuantificadas respecto al óptimo.

10.2.3.- Implicaciones y expectativas del supuesto de modelización

Como resultado previsible, en base a esta definición composicionalmente óptima (y tal como reflejará la distribución de las gráficas por tamaño de los espacios), de un lado se tenderá a reforzar la tendencia logarítmica de las distribuciones según el tamaño acumulado de los espacios, con un mayor peso de los grandes espacios en la superficie aportada al total.

Cabe recordar que en el presente supuesto de modelización se ha suprimido la tipología 'espacios medianos', con el fin de que se evidencien claramente los déficits composicionales del paisaje y las necesarias actuaciones para la planificación estratégica (en un ejercicio de definición de la situación conceptually óptima).

390 Es de esperar que en la práctica las distribuciones de los espacios de la tipología 'medianos' sigan una tendencia similar a la logarítmica (compuestos principalmente por usos urbanizados y de
En cuanto a los usos, la prioridad que se da a la agregación de grandes espacios naturales y rurales supone igualmente una ponderación negativa de los paisajes que no los presenten. Por la propia definición de la heterogeneidad adecuada del paisaje de la que se parte, los paisajes con una elevada diversidad interna –mayor equiprobabilidad en su composición–, se ven ponderados negativamente (presentan un espacio matriz con tamaño menor del óptimo; se da mayor índice de espacios medianos). En la práctica, todo ello sucede por la definición opuesta o complementaria a la diversidad -maximización de la entropía- que realiza el desarrollo.

10.3.- Procedimiento para la aplicación del Óptimo Composicional

Operacionalmente, la propuesta de aplicación del método del óptimo composicional (OC de ahora en adelante) conllevará:

1. La cuantificación de los valores existentes de cada tipología de espacios (agregación, conglomeración).
2. La obtención de los valores óptimos y los diferenciales respecto a éstos de los valores observados.
3. la cuantificación del diferencial de los espacios medianos (su relación respecto del resto del diferencial por usos).

De esta manera, para la modelización disponemos por una parte de los valores de composición interna de los tipos de espacios y usos agregados, útiles para la cuantificación inicial de los criterios del modelo. Por otro lado, tenemos los resultados del modelo OC, los cuales sintetizan los criterios del principio de forma conjunta, y relativizan los valores de diversidad en función del principio conceptual AWO. Así, una vez establecidos los valores óptimos de referencia para las categorías de espacios por usos y tamaños, podemos pasar al análisis de las situaciones reales por paisaje.

De las tablas resultantes, obtendremos también un índice del diferencial (residuo) de cada paisaje respecto el modelo (tablas 11.6 a 11.10). Ello nos permitirá caracterizar asimismo el paisaje y sus déficits en conjunto, según los valores para cada subgroupo de transición). Seguir esta tendencia log supondría no obstante un número mucho menor de espacios medianos del que se da actualmente -como se evidencia por el caso contrapuesto del Pla de la Conca de Barberà (ap.9.4).
Desarrollo y aplicación del modelo del óptimo composicional

espacios. Finalmente, disponemos de los valores de los espacios medianos para ayudar a caracterizar el grado de optimicidad de cada distribución: si dividimos la proporción existente de espacios medianos (siempre por encima del óptimo, por definición en este supuesto de modelización) entre el total del valor diferencial por usos, obtenemos un índice que pretende valorar la representatividad de estos espacios en el paisaje.

Por la aplicación OC propuesta, y mediante la comparación de los resultados por subgrupos de tamaño y uso de cada paisaje respecto del óptimo conceptual, obtendremos entonces una interpretación novedosa de las configuraciones de los paisajes. A continuación se desarrollará de manera aplicada la secuencia propuesta, en los paisajes de estudio.

10.3.1.- Valores diferenciales del Pla de Bages

Este paisaje, según los resultados obtenidos por los diferenciales respecto el óptimo, es el que mejor se ajusta a la definición aplicada de AWO (tabla 10.5).

<table>
<thead>
<tr>
<th>Uso</th>
<th>Tamaño</th>
<th>Proporción (Pi)</th>
<th>Uso</th>
<th>Tamaño</th>
<th>Proporción (Pi)</th>
<th>Uso</th>
<th>Tamaño</th>
<th>Proporción (Pi)</th>
<th>Uso</th>
<th>Tamaño</th>
<th>Proporción (Pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>Matriz</td>
<td>0,43</td>
<td>Rural</td>
<td>Grandes</td>
<td>0,27</td>
<td>Rural</td>
<td>Pequeños</td>
<td>0,13</td>
<td>Pequeños</td>
<td>0,034</td>
<td>0,021</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,56</td>
<td></td>
<td></td>
<td>0,33</td>
<td></td>
<td></td>
<td>0,11</td>
<td>0,025</td>
<td>0,025</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,17</td>
<td>0,17</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td></td>
</tr>
</tbody>
</table>

Índice espacios medianos: 0,53

Pi: proporción (1).

Los espacios medianos no aparecen en este total, dado además que la proporción que representan de diferencial no distingue por usos (ningún uso de los espacios medianos es considerado ‘acceptable’ en este supuesto). Su proporción respecto el total del diferencial según usos (el resto de tipologías AWO) se considera entonces significativa para la interpretación.
De los valores obtenidos, cabría destacar primeramente que el mayor diferencial o residuo respecto al óptimo composicional se produce en el gran espacio de la matriz (inferior en un 13% respecto al óptimo), pero que las relaciones en el resto de subgrupos se mantienen cercanas al óptimo -exceptuando tal vez el caso general de los espacios pequeños de uso NNF. Por tanto, y como sintetiza el valor del índice diferencial por paisaje, el Pla de Bages es el paisaje con mejor relación respecto el óptimo composicional (0.38 y 0.316 para tamaño y uso respectivamente).

Por contra, cuando consideramos el peso de los espacios medianos en la configuración según usos, vemos que éste es el paisaje con peor relación respecto el óptimo conceptual: obtenemos un coeficiente de 0,53 -el peor de los cinco paisajes.

10.3.2.- Valores diferenciales del Pla de la Conca de Barberà

En este paisaje no metropolitano predominantemente vitícola, la configuración espacial es también una de las más cercanas al óptimo composicional del modelo (tabla 10.6). Aquí se da sin embargo un elevado diferencial respecto los valores óptimos de los espacios rurales grandes y de la matriz, que se suma a los elevados valores negativos de los grandes espacios naturales. Esta tendencia se invierte no obstante para los espacios pequeños, donde los usos naturales (forestal y NNF) presentan unos valores similares o por encima del óptimo.

Este paisaje, además, es el que presenta mejor relación en los espacios medianos: 0,06. Esto corrobora que el modelo OC caracteriza efectivamente este paisaje de tipología rural -la configuración opuesta por excelencia a un entorno metropolitano. Los bajos valores de los grandes espacios naturales, sin embargo, no nos permiten considerarlo como el más óptimo composicionalmente.
Tabla 10.6.- Resultados de la modelización para la Pla de la Conca

<table>
<thead>
<tr>
<th>Uso</th>
<th>Tamaño</th>
<th>Proporción</th>
<th>Tamaño optimo</th>
<th>Proporción</th>
<th>Uso optimo</th>
<th>Tamaño diferencial</th>
<th>Proporción</th>
<th>Uso diferencial</th>
<th>Proporción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>0,67</td>
<td>0,67</td>
<td>0,56</td>
<td>0,56</td>
<td>0,11</td>
<td>0,110</td>
<td>Rural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forestal</td>
<td>0,2</td>
<td>0,33</td>
<td>0,08</td>
<td>-0,13</td>
<td>-0,083</td>
<td>Forestal</td>
<td>0,086</td>
<td>Rural</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0,168</td>
<td>0,08</td>
<td>0,08</td>
<td>-0,059</td>
<td>-0,077</td>
<td>Urbanizado</td>
<td>-0,08</td>
<td>NNF</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0,024</td>
<td>0,08</td>
<td>0,08</td>
<td>-0,077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urbanizado</td>
<td>0,006</td>
<td>0,08</td>
<td>0,08</td>
<td>-0,077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0,03</td>
<td>0</td>
<td>0,03</td>
<td>-0,077</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,08</td>
<td>0,024</td>
<td>0,11</td>
<td>-0,077</td>
<td>-0,001</td>
<td>Forestal</td>
<td>-0,001</td>
<td>Rural</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0,002</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,001</td>
<td></td>
<td></td>
<td></td>
<td>Rural</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0,006</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,001</td>
<td></td>
<td></td>
<td></td>
<td>Rural</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>0,047</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,001</td>
<td></td>
<td></td>
<td></td>
<td>Rural</td>
<td></td>
</tr>
<tr>
<td>NNF</td>
<td>0,006</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,001</td>
<td></td>
<td></td>
<td></td>
<td>NNF</td>
<td></td>
</tr>
</tbody>
</table>

Índice espacios medianos: **0,06**

\[\pi_{Tot}^- = 0,16, \quad \pi_{Tot}^+ = 0,14, \quad \sum \pi_{Tot} = 0,3 \]

\(\pi \): proporción (=1)

10.3.3. - Valores diferenciales de la Plana del Penedès

Este es otro de los paisajes hasta hace poco tradicionalmente rurales del entorno de Barcelona. Se encuentra también -como en el caso anterior- próximo al mencionado óptimo composicional, si bien presenta al mismo tiempo valores diferenciales característicos de un desarrollo urbano (tabla 10.7).

Vemos así que el mayor diferencial se produce en los espacios rurales mayores, resultado de la fragmentación de la matriz. Por un lado, el mayor espacio rural del paisaje (la matriz en la práctica), está por debajo del óptimo, si bien los espacios mayores de esta clase tienen un peso muy destacado, por encima del óptimo composicional. También tienen un gran peso en el diferencial la falta de grandes espacios forestales y naturales-no forestales, hasta llegar a configurar el valor total del índice en un 0,573 por usos.

El índice relativo de los espacios medianos (0,21) es superior también al del Pla de la Conca –indicativo de la menor ruralidad del paisaje.
El principio ‘agregados con enclaves’

Tabla 10.7.- Resultados de la modelización para la Plana del Penedès

<table>
<thead>
<tr>
<th>Uso</th>
<th>Tamaño</th>
<th>Tamaño optimo</th>
<th>Uso</th>
<th>Tamaño optimo</th>
<th>T.difcial.</th>
<th>U.difcial</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,44</td>
<td>0,44</td>
<td>0,56</td>
<td>0,56</td>
<td>-0,12</td>
<td>-0,12</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,32</td>
<td>0</td>
<td>0,33</td>
<td>0,08</td>
<td>-0,01</td>
<td>-0,083</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,266</td>
<td>0,08</td>
<td>0,08</td>
<td>0,183</td>
<td></td>
<td></td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,048</td>
<td>0,08</td>
<td>0,08</td>
<td>-0,035</td>
<td></td>
<td></td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,006</td>
<td>0,08</td>
<td>0,08</td>
<td>-0,076</td>
<td></td>
<td></td>
<td>NNF</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,12</td>
<td>0</td>
<td>0,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,11</td>
<td>0,015</td>
<td>0,11</td>
<td>0,025</td>
<td>0</td>
<td>-0,010</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,007</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,018</td>
<td></td>
<td></td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,020</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,005</td>
<td></td>
<td></td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,068</td>
<td>0,025</td>
<td>0,025</td>
<td>0,043</td>
<td></td>
<td></td>
<td>NNF</td>
</tr>
<tr>
<td>Índice espacios medianos: 0,21</td>
<td></td>
<td></td>
<td>PiTot-</td>
<td>0,13</td>
<td>0,347</td>
<td>PiTot+</td>
<td>0,12</td>
</tr>
</tbody>
</table>

Pi: proporción (=1)

10.3.4.- Valores diferenciales de la Plana del Vallès

Este es el paisaje con peores resultados y que se aleja más de la configuración óptima de los cinco descritos, reflejando el proceso de fragmentación de sus espacios.

Tabla 10.8.- Resultados de la modelización para la Plana del Vallès

<table>
<thead>
<tr>
<th>Uso</th>
<th>Tamaño</th>
<th>Tamaño optimo</th>
<th>Uso</th>
<th>Tamaño optimo</th>
<th>T.difcial.</th>
<th>U.difcial</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,19</td>
<td>0,19</td>
<td>0,56</td>
<td>0,56</td>
<td>-0,37</td>
<td>-0,370</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,46</td>
<td>0,138</td>
<td>0,33</td>
<td>0,08</td>
<td>0,13</td>
<td>0,056</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,115</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
<td></td>
<td>0,033</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,156</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
<td></td>
<td>0,074</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,051</td>
<td>0,08</td>
<td>0,08</td>
<td></td>
<td></td>
<td>-0,032</td>
<td>NNF</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,24</td>
<td>0</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,11</td>
<td>0,028</td>
<td>0,11</td>
<td>0,025</td>
<td>0</td>
<td>0,003</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,026</td>
<td>0,025</td>
<td>0,025</td>
<td></td>
<td></td>
<td>0,001</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,022</td>
<td>0,025</td>
<td>0,025</td>
<td>-0,003</td>
<td></td>
<td></td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,034</td>
<td>0,025</td>
<td>0,025</td>
<td></td>
<td></td>
<td>0,009</td>
<td>NNF</td>
</tr>
<tr>
<td>Índice espacios medianos: 0,41</td>
<td></td>
<td></td>
<td>PiTot-</td>
<td>0,37</td>
<td>0,405</td>
<td>PiTot+</td>
<td>0,37</td>
</tr>
</tbody>
</table>

Pi: proporción (=1)

En este paisaje, el diferencial se concentra especialmente en el poco peso del mayor espacio de la matriz (tabla 10.8). También destaca el importante peso de los espacios colindantes de parecidas dimensiones, en la misma categoría (según el análisis realizado por agrupaciones de tamaños –ap.8.2).
espacios medianos (0,41). Todo ello confirma la adecuación de los resultados obtenidos por el modelo OC: son los que cabría esperar igualmente en el paisaje más afectado por la acción antrópica, por los procesos de fragmentación.

10.3.5.- Valores diferenciales de la Plana de Vic

Este es otro de los paisajes teóricamente próximos al óptimo del modelo. Se trata de un paisaje eminentemente rural, si bien con un componente climático más húmedo que en los otros paisajes, y con una localización de los asentamientos humanos históricamente más dispersa.

Apreciamos cómo el gran espacio rural de la matriz se encuentra muy por encima del óptimo composicional (tabla 10.9), resultando así en consecuencia unos espacios de la tipología ‘grande’ con una importancia relativa muy disminuida -a excepción de los espacios de la clase urbana. En este paisaje, los espacios medianos suponen una pequeña proporción del total de los espacios, indicando con ello también la proximidad al óptimo conceptual (0,19).

Tabla 10.9.- Resultados de la modelización para la Plana de Vic

<table>
<thead>
<tr>
<th>Uso</th>
<th>Pi</th>
<th>Pi</th>
<th>Pi</th>
<th>Pi</th>
<th>Pi</th>
<th>Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tamaño</td>
<td>Tamaño</td>
<td>Optimo</td>
<td>Optimo</td>
<td>T.difcial.</td>
<td>U.difcial</td>
</tr>
<tr>
<td>Matriz</td>
<td>0,7</td>
<td>0,7</td>
<td>0,56</td>
<td>0,56</td>
<td>0,14</td>
<td>0,14</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,12</td>
<td>0,026</td>
<td>0,33</td>
<td>0,08</td>
<td>-0,21</td>
<td>-0,056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,025</td>
<td></td>
<td>0,08</td>
<td></td>
<td>-0,057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,054</td>
<td></td>
<td>0,08</td>
<td></td>
<td>-0,029</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,013</td>
<td></td>
<td>0,08</td>
<td></td>
<td>-0,069</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,08</td>
<td>0</td>
<td>0,00</td>
<td>0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,1</td>
<td>0,019</td>
<td>0,11</td>
<td>0,025</td>
<td>-0,01</td>
<td>-0,006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,01</td>
<td></td>
<td>0,025</td>
<td></td>
<td>-0,015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,018</td>
<td></td>
<td>0,025</td>
<td></td>
<td>-0,007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,053</td>
<td></td>
<td>0,025</td>
<td></td>
<td>0,028</td>
</tr>
<tr>
<td>Índice espacios medianos: 0,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PiTot+ 0,22</td>
<td>0,239</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PiTot- 0,22</td>
<td></td>
<td></td>
<td>0,168</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΣPiTot 0,44</td>
<td></td>
<td></td>
<td>0,407</td>
<td></td>
</tr>
</tbody>
</table>

Pi: proporción (1)

10.3.6.- Valores porcentuales de las diferencias.

Pasamos ahora a plasmar las diferencias o residuos mediante porcentajes, respecto los valores óptimos para cada clase y uso de espacio. Ello con el objeto de que se haga más evidente la relación de cada grupo con el óptimo establecido por el modelo OC (tablas 10.10 a 10.14). Podemos utilizar posteriormente estos valores como referentes.
El principio ‘agregados con enclaves’ para la planificación o gestión del paisaje, valorando así cuantitativamente las posibles nuevas actuaciones propuestas en el mismo, y su efecto sobre las potencialidades o déficits existentes (establecidas para el año 1992, en este caso).

<table>
<thead>
<tr>
<th>P. de Bages</th>
<th>Pi Uso</th>
<th>Pi Usop</th>
<th>Porcentaje</th>
<th>increm%</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,43</td>
<td>0,56</td>
<td>77</td>
<td>-23</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,024</td>
<td>0,08</td>
<td>29</td>
<td>-71</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,119</td>
<td>0,08</td>
<td>144</td>
<td>44</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,062</td>
<td>0,08</td>
<td>75</td>
<td>-25</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,065</td>
<td>0,08</td>
<td>79</td>
<td>-21</td>
<td>Transición</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,17</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,034</td>
<td>0,025</td>
<td>136</td>
<td>36</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,021</td>
<td>0,025</td>
<td>84</td>
<td>-16</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,022</td>
<td>0,025</td>
<td>88</td>
<td>-12</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,055</td>
<td>0,025</td>
<td>220</td>
<td>120</td>
<td>Transición</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. de la Conca de Barberà</th>
<th>Pi Uso</th>
<th>Pi Usop</th>
<th>Porcentaje</th>
<th>increm%</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,67</td>
<td>0,56</td>
<td>120</td>
<td>20</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>Nulo</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,168</td>
<td>0,08</td>
<td>204</td>
<td>104</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,024</td>
<td>0,08</td>
<td>29</td>
<td>-71</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,006</td>
<td>0,08</td>
<td>7</td>
<td>-93</td>
<td>Transición</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,03</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,024</td>
<td>0,025</td>
<td>96</td>
<td>-4</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,002</td>
<td>0,025</td>
<td>8</td>
<td>-92</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,006</td>
<td>0,025</td>
<td>24</td>
<td>-76</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,047</td>
<td>0,025</td>
<td>188</td>
<td>88</td>
<td>Transición</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P. del Penedès</th>
<th>Pi Uso</th>
<th>Pi Usop</th>
<th>Porcentaje</th>
<th>increm%</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,44</td>
<td>0,56</td>
<td>79</td>
<td>-21</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>Nulo</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,266</td>
<td>0,08</td>
<td>322</td>
<td>222</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,048</td>
<td>0,08</td>
<td>58</td>
<td>-42</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,006</td>
<td>0,08</td>
<td>7</td>
<td>-93</td>
<td>Transición</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,12</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,015</td>
<td>0,025</td>
<td>60</td>
<td>-40</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,007</td>
<td>0,025</td>
<td>28</td>
<td>-72</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,02</td>
<td>0,025</td>
<td>80</td>
<td>-20</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,068</td>
<td>0,025</td>
<td>272</td>
<td>172</td>
<td>Transición</td>
</tr>
</tbody>
</table>
Tabla 10.13.- Diferencias porcentuales respecto el óptimo por subgrupos de la Plana del Vallès

<table>
<thead>
<tr>
<th>P. del Valles</th>
<th>Pi Uso</th>
<th>Pi Usop</th>
<th>Porcentaje</th>
<th>increm%</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,19</td>
<td>0,56</td>
<td>34</td>
<td>-66</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,138</td>
<td>0,08</td>
<td>167</td>
<td>67</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,115</td>
<td>0,08</td>
<td>139</td>
<td>39</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,156</td>
<td>0,08</td>
<td>189</td>
<td>89</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,051</td>
<td>0,08</td>
<td>62</td>
<td>-38</td>
<td>Transición</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,24</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,028</td>
<td>0,025</td>
<td>112</td>
<td>12</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,026</td>
<td>0,025</td>
<td>104</td>
<td>4</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,022</td>
<td>0,025</td>
<td>88</td>
<td>-12</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,034</td>
<td>0,025</td>
<td>136</td>
<td>36</td>
<td>Transición</td>
</tr>
</tbody>
</table>

Tabla 10.14.- Diferencias porcentuales respecto el óptimo por subgrupos de la Plana de Vic

<table>
<thead>
<tr>
<th>P. de Vic</th>
<th>Pi Uso</th>
<th>Pi Usop</th>
<th>Porcentaje</th>
<th>increm%</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td>0,7</td>
<td>0,56</td>
<td>125</td>
<td>25</td>
<td>Rural</td>
</tr>
<tr>
<td>Grandes</td>
<td>0,026</td>
<td>0,08</td>
<td>32</td>
<td>-68</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,025</td>
<td>0,08</td>
<td>30</td>
<td>-70</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,054</td>
<td>0,08</td>
<td>65</td>
<td>-35</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,013</td>
<td>0,08</td>
<td>16</td>
<td>-84</td>
<td>Transición</td>
</tr>
<tr>
<td>Medianos</td>
<td>0,08</td>
<td>0,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pequeños</td>
<td>0,019</td>
<td>0,025</td>
<td>76</td>
<td>-24</td>
<td>Forestal</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
<td>0,025</td>
<td>40</td>
<td>-60</td>
<td>Rural</td>
</tr>
<tr>
<td></td>
<td>0,018</td>
<td>0,025</td>
<td>72</td>
<td>-28</td>
<td>Urbanizado</td>
</tr>
<tr>
<td></td>
<td>0,053</td>
<td>0,026</td>
<td>212</td>
<td>112</td>
<td>Transición</td>
</tr>
</tbody>
</table>

A partir de aquí entonces, podemos cuantificar las diferencias porcentuales entre lo óptimo y lo existente, con que analizar los elementos clave de cada paisaje (efectuando el macrodiagnóstico del territorio).

10.4.- Ensayos de aplicación prescriptiva

El modelo del Óptimo Composicional -como modelo de optimización espacial de la composición del paisaje-, es entonces una herramienta que permite de forma aplicada la prescripción de ciertas soluciones para el planeamiento. Mediante la definición de los criterios de optimización, este tipo de herramientas aproximan la síntesis necesaria al análisis de la complejidad territorial, en base a los datos estadísticos composicionales considerados relevantes para la definición funcional del paisaje como sistema integrado. En este sentido, son una herramienta de apoyo para la interpretación científica de las configuraciones del paisaje.

Ello se hace desde un planteamiento conceptual guiado (normativo) para la optimización, que sintetiza y facilita en su consideración los requerimientos de
sostenibilidad de los sistemas naturales. Es un esfuerzo pues en la dirección de vincular el análisis estadístico a los planteamientos de la planificación holística integrada -la cual debe sintetizar múltiples requerimientos de cara a garantizar la sostenibilidad del territorio.

De forma general, cabe destacar de la aplicación precisamente el potencial para el diagnóstico guiado de las condiciones compositacionales requeridas en los paisajes. La modelización sintética realizada en base a estos criterios, permitirá finalmente un macrodiagnóstico fundado del paisaje (déficits y potencialidades) referida al caso o escenario óptimo, a partir del cual definir cuantitativamente las actuaciones territoriales necesarias -una aportación potencialmente de gran interés para la planificación estratégica, además del pensamiento territorial.

Operativamente, el modelo OC permite pues la caracterización de los territorios en el momento actual, de cara a diagnosticar su situación en relación con el proceso de metropolinización observado -por las diferencias en la ocupación del territorio y los usos del suelo, según las diferentes tipologías AWO. Tenemos así la posibilidad finalmente de evidenciar algunos de los complejos fenómenos espaciales que este proceso lleva implícitos, para cada caso de estudio (relación funcional y tipologías de espacios existentes). Se han establecido también unas marcas y unas directrices óptimas de ocupación en los usos agregados del suelo, que los sistemas humanos deben contemplar (aunque de forma flexible y modelable): Los usos del suelo son en este sentido a la vez la representación de la problemática existente, y la herramienta con que abordar las necesarias políticas de planificación y ordenación del territorio.

Por el supuesto de aplicación concreta del modelo OC que se ha planteado, vemos cómo se significan los hechos espacialmente relevantes, al centrar la visión de la configuración existente del paisaje en su conjunto (la configuración de la heterogeneidad del paisaje), más allá de los indicadores compositacionales. Dentro de la secuencia expositiva, por el estudio se propone ahora que la selección de los dos indicadores simples con que se confecciona el modelo OC, debe complementarse con las consideraciones sobre los espacios imprescindibles del paisaje (grandes espacios naturales; Spatial Solution -ap. 4.5.4), y el índice de la existencia de espacios de tipo

393 Vemos por ello que al, comparar los resultados obtenidos mediante las tablas de criterios AWO (ap. 7.1) y los del modelo OC (ap 11.1), difieren sustancialmente en algunos casos.
Desarrollo y aplicación del modelo del óptimo composicional

mediano - una tipología conceptualizada ya como ineficiente funcionalmente en las configuraciones del paisaje. De esta forma se caracteriza el contexto composicionalmente y las especificidades distribucionales a tener en cuenta.

Para la correcta contextualización del paisaje, se establecen igualmente los vínculos necesarios con los aspectos socio-económicos y de la planificación existente (cap 6). La secuencia propuesta, de hecho, formará parte de la secuencia de la planificación integrada del territorio, a la cual se aporta el escenario óptimo comparativo para la sostenibilidad de los sistemas natural y antrópico. Es precisamente la contextualización específica de los casos (como proponen igualmente el principio AWO y la Spatial Solution), la que explicitará las peculiaridades de cada situación y territorio. Sin embargo y de forma universal, el plano de funcionalidad ecológica no podrá ser considerado contingente en ningún caso. La regulación sobre la agencia antrópica y las actuaciones positivas de planificación serán las que efectivamente establecerán las nuevas referencias al respecto, en cualquier caso.

Esta síntesis es fruto en sí misma de la referencia universal AWO tal y como se postula. La premisa de tomar en cuenta y valorar las funcionalidades ecológicas inherentes de cualquier territorio, así como la referencia al proceso de metropolinización como un dominante que acontece homogéneamente a escala planetaria, se añaden y refuerzan esta visión universal.

Los parámetros desarrollados desde el principio AWO se consideran por ello pertinentes, también en la modelización y caracterización de este tipo de paisaje mediterráneo. Este análisis en base a las tiologías AWO aporta, en definitiva, las claves para un análisis agregado de la tipología del paisaje heterogéneo analizado, como plantea la hipótesis.

394 Incluye la consideración de los principales factores de distribución espacial que se han reseñado por el estudio: la composición y diversidad de las tipologías se encuentra espacialmente definida, como muestran cuestiones como la dispersión locacional de determinados usos, su valoración funcional (caso de los espacios NNF, o el primer gran espacio matriz), o los valores de diversidad de usos antes y después de las agregaciones. Estos son los factores que deberá plantearse especialmente por el ejercicio de contextualización.

395 Se considera que este es un ejercicio especialmente clarificador y explicativo -realizado en base a los análisis de la diversidad interna y densidad relativa de las tipologías de espacios. Los dos son análisis complementarios, y a la vez dan valor añadido a los resultados obtenidos con posterioridad, mediante el desarrollo del modelo conceptual.
10.4.1.- Aspectos contextuales: Espacios medianos y grandes espacios naturales

Cuando se extiende el análisis agregado AWO al resto de usos de los espacios del paisaje, se ponen en relación y se relativizan las diferentes tipologías de espacios y su funcionalidad. Así, mediante este procedimiento se ha obtenido una caracterización del paisaje y su naturalidad, que composicionalmente es uno de los principales elementos de contextualización del paisaje en el proceso de planificación. 396

Por el desarrollo propuesto se ha asumido la disfuncionalidad ecológica de la tipología de espacios medianos, como se ha constatado por el análisis composicional -un aspecto que el principio no llega a desarrollar en una formulación conceptualmente explícita. Tanto por su densidad relativa como por su composición, se considera un indicador de la tendencia y del grado de afectación de los paisajes por los procesos de urbanización -como comporta el fenómeno de la metropolización.

Por su parte, la consideración del tamaño de los espacios naturales como uno de los principales determinantes del paisaje, es de hecho una extensión de la usual consideración de la importancia del área de los hábitats y ecosistemas, como característica básica definitoria de su funcionalidad y capacidades. 397 En el caso de los paisajes de secano rural mediterráneo como los que se analizan, destaca precisamente la escasez relativa de espacios naturales.

Por un lado, los paisajes vitícolas por excelencia presentan valores característicamente bajos de este tipo de espacios. Ello hace plantearnos incluso la posible inadecuación de los paisajes mediterráneos de viña a los criterios definidos como espacialmente óptimos por el principio AWO. Pero en base a un análisis de la funcionalidad ecológica, por el contrario, se remarca la utilidad de la visión global del principio: aunque tradicionalmente se han soslayado o tenido por habitual esta tipología

396 Las especificidades resultantes a partir de esta comparación estadística (como resultan igualmente en el ejercicio de contextualización), hace aflorar por otra parte cuestiones como la utilidad de la tipología ‘natural no forestal’ (resuelta en cuanto se comparan las tipologías naturales entre sí y su funcionalidad en los paisajes).
397 No en vano es el factor principal que afecta las posibilidades de existencia de poblaciones de especies faunísticas viables, a las que debe ser posible garantizar sus movimientos -formando idealmente metapoblaciones.
del paisaje agrario (configuración no óptima de los monocultivos vitivinícolas de la P.del Penedès y Conca de Barberà según AWO), su problemática conocida (la de la evolución a cualquier monocultivo intensivo en realidad) hace replantearnos si tal inadecuación no es sino aparente: Es precisamente con este tipo de análisis cuando se evidencia la divergencia en estos paisajes respecto de los criterios de optimicidad y sostenibilidad del territorio -especialmente visibles en su evolución más reciente, cuando se da mayor superficie de cultivo intensivo. 398

Por otra parte, la existencia de determinado tipo de vegetación natural y seminatural (y su distribución), se demuestra como relevante para la configuración de los grandes espacios naturales de estos paisajes (como hace aparente la ausencia de las esclerófilas en la Plana del Bages; ap.8.3).

Operativamente pues y bajo el supuesto AWO, de los resultados obtenidos en los cinco paisajes se observa la necesidad de aumentar el número de grandes espacios forestales, muy escasos -o hasta inexistentes, en el caso de los paisajes eminentemente vitícolas de la P. del Penedès o del Pla de la Conca de Barberà. Sí existen en todos los casos grandes espacios naturales no forestales, considerándose por ello una cuestión prioritaria su regeneración. Se potenciará con ello en gran manera la diversidad biológica de los paisajes y del entorno natural (paisajes forestales colindantes mediterráneos y de media montaña).

En el caso de los paisajes más septentrionales y húmedos del Bages y la Plana de Vic, la existencia de los grandes espacios forestales favorece de inicio su visión como los paisajes más cercanos al óptimo. Sin embargo, el importante número de espacios de tamaño mediano hace que deba adoptarse una perspectiva en la ordenación territorial tendente a su minimización, especialmente en el caso de la Plana del Bages. 399 Del paisaje metropolitano por excelencia, el del Vallès, además de la formación de un gran

398 Esta divergencia no se justifica ni se basa pues en excepcionalidad ecológica funcional alguna. La reforestación de los márgenes de los campos de cultivo, la menor densificación por Ha. o la compartimentación mediante barreras físicas, se proponen habitualmente como soluciones contra los ataques de hongos y plagas -los cuales padecerá inevitablemente cualquier monocultivo extenso.

399 El fenómeno del abandono de las áreas cultivadas parece estar relacionado con este hecho, el cual favorece la progresiva incorporación de masa vegetal de rápido crecimiento (sucesión secundaria) a las grandes extensiones forestales colindantes, con el consiguiente peligro de incendios de grandes dimensiones –ap.8.2.
El principio ‘agregados con enclaves’

Espacio urbanizado que caracteriza y condiciona por completo el resto de espacios del paisaje, se evidencia igualmente la elevada (inadecuada) proporción de espacios de tamaño mediano, relacionados con la fragmentación del territorio natural. Ello es resultado principalmente del trazado de las infraestructuras de comunicaciones y de los nuevos procesos de urbanización.400

El paisaje de la Plana del Vallès aparece por ello como el menos óptimo según el método OC, mientras que el caso de la Plana de Vic es el de mayor optimicidad en conjunto. En este caso destaca la gran matriz rural que configura el paisaje de forma conexa, aunque consecuentemente conlleve un bajo número relativo de grandes espacios. Este es también un ejemplo del hecho que el criterio simple del nº total de grandes espacios debe ser relativizado y contextualizado. Estos factores compositacionales se antoigan de especial relevancia, para la toma de decisiones en la planificación integrada.

10.4.2.- Contextualización de la acción antrópica y su efecto en los diferenciales OC

Por otro lado, tenemos las cuestiones contextuales de los usos artificiales (que el análisis compositacional AWO ya muestra en ciertos casos), cuantificados por los diferenciales OC –con lo cual es sencillo establecer el impacto de las acciones correctoras o de las nuevas afectaciones. Su contextualización y el análisis de su composición interna, igualmente, clarificará los fenómenos de la acción antrópica reciente para la toma de decisiones. En los casos de estudio se han evidenciado factores tales como:

1. La importancia de las infraestructuras de comunicaciones y el efecto expansivo urbano que conllevan. A su entorno se configuran los grandes aglomerados urbanos metropolitanos, como es el caso destacado del Vallès, con el primer gran espacio del paisaje dentro de la tipología ‘urbanizado’.

2. El importante peso de los usos urbanizados del suelo con poca densidad edificativa, como las urbanizaciones y los polígonos industriales, respecto las áreas tradicionalmente urbanas más densas. Esto es especialmente destacable en el caso de los municipios de menor población, resultado en una urbanización metropolitana de

400 En el caso de los espacios medianos del tipo urbanizado además, su mayor alejamiento relativo de los límites de los grandes espacios, lleva a considerarlos como nuevos núcleos especialmente ‘invasores’ del espacio natural.
tipo ‘difuso’, en contraposición a la tipología urbana concentrada –la habitual en la cultura mediterránea.

3. La gran importancia de la tipología del uso natural no forestal en el global del paisaje mediterráneo, fruto tanto del incremento de los espacios residuales en zonas periurbanas como del abandono de cultivos -y la frecuencia de los pequeños incendios forestales- en los paisajes metropolitanos mediterráneos. Ello ayuda a crear espacios naturales residuales extendidos por todo el paisaje, de difícil regeneración a veces y con escaso valor percibido. Sin embargo, estos espacios pueden ser de elevado valor natural intrínseco de cara a la definición de los grandes espacios naturales -y especialmente en su interconexión-, en contraposición a un uso ligado al suelo urbanizable marginal, en las zonas metropolitanas (Pino et al 2000; Pino et al. 2004).

El entorno de los paisajes analizados que establece finalmente el contexto (rural mediterráneo, en cinco paisajes catalanes en diversas fases del proceso de metropolinización), subyace en los valores diferenciales resultantes de las agregaciones propuestas –y que por los resultados se han evidenciado notablemente eficaces para su prospección conjunta. Será pues por la apreciación de todos estos factores expuestos, la que finalmente referirá de forma contextualizada las actuaciones en la planificación integrada.
11.- CONCLUSIONES

11.1.- El principio AWO y el análisis del paisaje

La capacidad sintética de AWO como herramienta analítica espacial se ha discutido y utilizado a lo largo de esta tesis. Dos objetivos metodológicos principales (ap.5.1):

1. Las claves configuracionales de los patrones y procesos permiten discernir las potencialidades y déficit de composición del paisaje (macrodiagnóstico);
2. Estas contrastan el momento evolutivo del territorio y caracterizan el fenómeno de la metropolinización;

han evaluado también la capacidad prospectiva de AWO en cinco paisajes de Cataluña, algunos próximos o incluidos al Área Metropolitana de Barcelona. Por el presente estudio, se valora que es posible su desarrollo como una aproximación técnicamente relevante para los procesos de planificación:

1. Aproxima la síntesis necesaria al análisis de la complejidad territorial, en base a los datos estadísticos composicionales considerados relevantes para la definición funcional del paisaje como sistema integrado;
2. Permite los desarrollos guiados desde su conceptualización normativa de la configuración universal del paisaje -referidos al escenario óptimo definido cuantitativamente para cada caso, mediante las tipologías de agregación de usos y tamaños de los espacios.

Es así una herramienta de apoyo para la prospección e interpretación científica de las configuraciones del paisaje, en un esfuerzo para vincular el análisis estadístico espacial a los planteamientos de la planificación holística integrada -la cual sintetiza múltiples requerimientos.

A partir de todo ello, es posible -como propone el autor- realizar finalmente una aproximación centrada en el lugar concreto (el paisaje), que por contextualización adquirirá su valor de especificidad como lugar. Ello a pesar de los posibles condicionantes particulares que motivaron su formulación (extensos paisajes metropolitanos de EEUU, requeridos de conservación y sin apenas regulaciones administrativas para el crecimiento urbanístico), siendo útil en el estudio de las interrelaciones y las funcionalidades ecológicas subyacentes en las configuraciones espaciales de los cinco paisajes mediterráneos de estudio (llanuras del Vallès, Penedès, Bages, Vic y Conca de Barberà).
Se considera por ello que es un modelo sistémico de referencia en la planificación, a ser aplicado prospectivamente sobre las sociedades y el medio.\footnote{Es incluso susceptible de ayudar a configurar la necesaria estructura explicativa holística de las interrelaciones hombre-medio, con traducción operativa en la planificación del paisaje.}

Son precisamente su coherencia y formulación lógica las que propician su traducción a un lenguaje operacional (\textit{taxonomía espacial}), orientado a la planificación. En este sentido, la referencia al paisaje como nivel de integración ecológica es instrumental y posibilita el análisis, estableciendo una aproximación estructuralista -por su definición escalar del análisis espacial. Se trata no obstante de una conceptualización en que destaca el carácter relacional y selectivo (procesos y conexiones), entre los elementos del paisaje y los de su entorno. Y con la definición conceptual de la heterogeneidad óptima (entre una distribución aleatoria y una distribución uniforme de los elementos del paisaje, como subyace en AWO –ap.3.3), implica la regulación o corrección de una tendencia a la entropía del sistema territorial, causada antrópicamente. La definición conceptual de la heterogeneidad en base a la funcionalidad de las tipologías AWO es igualmente la que caracteriza cualquier desarrollo para la prospección.

El principio no se contempla tanto como una teoría deductiva lógica (del tipo de los modelos de Christaller o von Thünen)\footnote{Vease Johnston 1986 p.e.} con la que contrastar su grado de cumplimiento real, sino especialmente su validez normativa para la planificación –y su grado de aplicabilidad.\footnote{El principio AWO es valorable no obstante como un potencial principio nomotético: su formulación como principio lógico (un ‘óptimo universal’ de las configuraciones del paisaje), lo sitúa de hecho cercano a los modelo espaciales deductivos (no muy abundantes, pero demandados) de la Geografía como ‘ciencia espacial’–modelos con espacio isotrópico p.e.} Este planteamiento normativo de análisis también difiere de un planteamiento exploratorio mediante múltiples índices, con que realizar la valoración de las características y actuaciones necesarias en el paisaje.\footnote{En este último caso, serán no obstante aproximaciones requeridas de una interpretación normativa de sus resultados (rangos de valores, etc). Estarán igualmente en función de los objetivos inicialmente definidos (los criterios básicos y óptimos para la funcionalidad ecológica del paisaje –ap.3.1).} Mediante las aplicaciones en base AWO, se trasciende los análisis de interrelación topológica entre espacios, en tanto que sus criterios no incorporan explícitamente dichos preceptos (vecindad, inclusividad, etc.). La integración del óptimo conceptual, cuantificando ya no de forma aislada cada uno de los criterios AWO sino de forma global para la configuración del paisaje (óptimo composicional), aporta la necesaria perspectiva integradora de los principales elementos...
El principio ‘agregados con enclaves’

que fundamentan la definición de los criterios del principio (superficies forestales, grano, diversidad del paisaje), más allá de la enumeración de los valores para cada variable.

En el plano operativo y como aportaciones conceptuales del principio AWO, se destaca el tratamiento mediante agregación de los espacios por su uso y tamaño (ap.8.2-8.3). La agregación aporta una perspectiva para el análisis y la caracterización del paisaje que se considera valiosa, por el nivel de abstracción funcional y espacial que permite (de su análisis igualmente se desprenden multitud de cuestiones para la modelización). A partir de la agregación, es posible articular un análisis composicional de cara a cuantificar las posteriores actuaciones estratégicas de planificación (a considerar en los niveles regional o comarcal). La agregación a realizar en base AWO deviene entonces un referente para la planificación física en el ámbito local -de forma regulatoria, especialmente para nuevos asentamientos.

El análisis se obtiene sin un conocimiento muy detallado de los ecosistemas (tipificados como usos del suelo agregados a escala local), una simplificación que proviene en realidad de su solidez conceptual y su claridad en la formulación de los criterios espaciales a acomodar sobre el paisaje. No obstante, esta simplicidad oculta ciertas resistencias a su implementación, resueltas experimentalmente en el estudio: el principio no aporta todas las claves operacionales necesarias, de cara a la modelización de los paisajes heterogéneos -con un alto grado de complejidad estructural, espacialmente definida.

Así, previamente hay que detectar y resolver satisfactoriamente las principales resistencias a su implementación: sin entrar en aproximaciones exploratorias ‘puras’ que no se inscriben en la formulación normativa del principio, sino en base al análisis de las definiciones del mismo -y de los modelos en que se enmarca y con los que se interrelaciona. Estas cuestiones se identifican y solucionan de manera aplicada en este estudio, siguiendo y proyectando las formulaciones en base AWO (mediante su análisis y la explicitación de los factores subyacentes): De ello resultan la delimitación de los espacios y tipologías, la entificación práctica del paisaje y el desarrollo composicional.

Este proceso guiado constituye la clave de cara a abordar la dimensión prospectiva de forma aplicada (cuantificadamente), como pretende AWO. Es por ello por lo que las
11. Conclusión

Principales aportaciones de este estudio son de orden operacional (una vez realizada la caracterización y valoración del principio en toda su extensión). Esta modelización sólo puede acometerse una vez se resuelve el problema de su formulación prácticamente adimensional de las tipologías de espacios (indefinición topológica y de los umbrales).405 Igualmente, se considera que el tratamiento de la variable \textit{distancia media} entre los espacios, está en realidad en función de la composición de éstos en la configuración del paisaje (ap.9.4) -habiéndose destacado anteriormente su planteamiento erróneo como criterio, desde una perspectiva gravitacional (ap.3.3.4; 7.1.2).

Todo esto resulta en parte de su declaración como principio de aplicación universal, formulando simplemente unas directrices genéricas de cara a la planificación. Sin embargo, con su desarrollo sintético se resuelven finalmente cuestiones altamente complejas, gracias a la sólida conceptualización de partida -evitando por ejemplo análisis topológicos mucho más complejos. Ello confiere mayor interés si cabe a este tipo de aproximaciones para la planificación estratégica del territorio, un ámbito de estudio especialmente requerido del análisis interdisciplinar. Por ello se le considera una contribución útil al pensamiento territorial, con la definición espacial de criterios sostenibilistas para el macrodiagnóstico del territorio.

11.2.- Aportaciones en el estudio de paisajes mediterráneos metropolitanos

El principio AWO se formula desde una lógica deductiva, a partir de la propia experiencia y los conocimientos del autor en el terreno del análisis de las configuraciones óptimas del paisaje. De cara a su aplicación, por el presente estudio se discute si convendría ajustarlo a los factores territoriales existentes en el Mediterráneo. De inicio, el tratamiento de la complejidad del paisaje heterogéneo puede considerarse una aproximación general a la concepción del paisaje sostenible (el \textit{medio sostenible}; ap. 4.3.3) y por tanto los resultados AWO son de aplicación universal, aunque se obtengan desde una tipología general del paisaje rural mediterráneo altamente humanizado -concretamente del entorno metropolitano de Barcelona.

405La cual no afecta a su instrumentalización, pero la circunscriben a un determinado ámbito exploratorio, considerado de ‘bajo nivel’ (ap.8.3.1).
Por otra parte y como se ha pretendido ejemplificar en este estudio, el fenómeno de expansión espacial de las regiones metropolitanas escapa actualmente a la dimensión del paisaje natural. Es necesario por tanto un análisis más extenso que el ámbito del paisaje: requiere del análisis de los diferentes paisajes que componen la región -o por lo menos la contextualización de los paisajes analizados dentro de dicho ámbito. El análisis comparativo de los casos de estudio, el conocimiento de campo y la observación experta de las posibles correspondencias espaciales o funcionales entre fenómenos y tendencias aparentemente diversos (‘paradojas’), son parte entonces de una metodología de contextualización en base AWO, apuntada en este estudio para realizar esta comprensión amplia de las complejas estructuras del paisaje mediterráneo como sistema territorial.

Por el estudio se remarca de inicio que los desarrollos guiados que se requieren deben articular fundamentalmente determinados aspectos del análisis composicional, como principal factor en el análisis de la complejidad territorial. En concreto, el desarrollo propuesto (modelo del Óptimo Composicional) se caracteriza operativamente por ser la maximización conjunta de la diversidad interna de las tipologías por usos y tamaños de los espacios, lo cual limita el peso de la diversidad por usos en la valoración de la heterogeneidad del paisaje (acabando con la paradoja de la mayor diversidad y distancias óptimas de los paisajes más urbanizados, como la P.del Vallès; cap.8 y 10). Supone en la práctica una limitación de la entropía interna de las configuraciones espaciales, a la cual la propia definición de la heterogeneidad y la formulación de los criterios AWO ya se contraponen -en analogía a una definición ‘reguladora’ de la entropía en el sistema.

Remarcablemente, cuando se toman las variables composicionales por separado, es fácil caracterizar el proceso subyacente de forma errónea: sucede con la diversa interpretación del significado del uso natural no-forestal según el grado de urbanización, o la aparente mayor diversidad y mejores distancias internas de los paisajes más urbanizados. Según este estudio estos hechos reclaman una interpretación sintética, dado que el sentido del cambio se apunta como un proceso no lineal de las variables implicadas (diversidad, distancias, nº absoluto, densidad). Su discusión en base sintética AWO se obtiene precisamente en relación a los niveles de afectación y grado de entropía del sistema territorial del paisaje. Esta síntesis culmina con el modelo propuesto del Óptimo Composicional, reduciendo las variables composicionales de los siete criterios AWO a la optimización conjunta de la varianza por tamaños y la diversidad de los usos.
Por los resultados del estudio, se han remarcado entonces cuestiones como la necesaria consideración de las tipologías de los espacios medianos (densidad relativa y composición) y los grandes espacios forestales (número absoluto) de cara a la contextualización composicional del paisaje, así como la importancia en los paisajes mediterráneos de la tipología de espacios ‘natural no forestal’-espacios con un gran peso y potencial para el incremento de la heterogeneidad del paisaje y la funcionalidad ecológica del territorio. Otros factores destacados composicionalmente han sido el gran peso de las infraestructuras de comunicaciones (ya en 1992), y el gran consumo de suelo de tipologías urbanas no concentradas (urbanizaciones, industrias). Todo ello acaba por configurar el característico crecimiento metropolitano ‘difuso’ de esta región –como en la mayoría de zonas similares.

Las potencialidades añadidas para el análisis composicional del paisaje que se derivan de esta cuantificación, ayudan entonces a visualizar de manera adecuada y sencilla los profundos y acelerados impactos acumulativos que están sufriendo los paisajes de este entorno metropolitano de Barcelona. Esto es, la posibilidad de evidenciar comparativamente el rastro composicional dejado por la evolución espacial de los paisajes, caracterizando el momento actual del proceso evolutivo y su acercamiento o alejamiento del óptimo conceptual. La metropolinización como factor de cambio no externo (integrando los subsistemas natural y humano en la interpretación), aparece reflejada entonces por un característico cambio de tipologías espaciales AWO (esencialmente, disminución del gran espacio matriz y aumento de la importancia de los espacios medianos, que en el caso del Vallès es manifiesta y sigue una graduación clara según el nivel de urbanización; ap.10.4).

Como una posible excepcionalidad a la formulación universal AWO apreciable composicionalmente, destacan la baja presencia de espacios naturales forestales en paisajes de viña (Plana del Penedès y Conca de Barberà). Esta característica aparentemente secular del paisaje mediterráneo puede verse como un indicio de inadecuación de la formulación universal AWO, si bien también cabe cuestionar su bondad en la funcionalidad ecológica del territorio: El efecto negativo de estos usos agrícolas (cada vez más intensivos) es un hecho remarcado, a la vez que la importancia de la tipología de espacios ‘naturales no forestales’ (especialmente de grandes
El principio ‘agregados con enclaves’

dimensiones) puede considerarse un factor composicional que permite reequilibrar la funcionalidad ecológica de los mismos -a la cual debe tomarse especial consideración por tanto.

Por los resultados de este estudio, se considera que el principio AWO cumple en buena parte con las expectativas suscitadas por la hipótesis inicial, siendo efectivamente un instrumento con que articular el análisis y modelización de cara a la planificación sostenible de estos territorios, como establece el principio de formulación universal. Específicamente, las medidas destinadas a fomentar un crecimiento controlado del número de espacios de tamaño medio (con políticas de planificación que impliquen un diseño activo para evitar su dispersión, puesto que son de tipología urbanizada en su mayor parte), junto con la toma en consideración de la importancia de la tipología natural no forestal, serían políticas de planificación a aplicar coincidentes con la optimización espacial propuesta.

Como otra cuestión a parte que incide en el test de la formulación universal de AWO, cabe plantearse igualmente la existencia de rangos de valores en la definición de los umbrales, según tipologías de paisajes diferentes a los analizados. En cualquier caso, son los futuros estudios en otros paisajes los que podrán contrastar la supuesta la validez universal de estos lindares o la necesidad de definición de unos rangos de valores -así como las necesarias reformulaciones de los elementos de estudio.

11.3.- Aplicación y desarrollos posibles

La aplicación realizada en el estudio se sitúa así en el interfaz entre la teoría normativa y su aplicabilidad real. El procedimiento que se define para los cinco casos de estudio en el entorno metropolitano de Barcelona es susceptible de ser aplicado a otros paisajes heterogéneos con elevada presión antrópica.

Dejando de lado el interés científico en la definición de espacios, umbrales y rangos de las tipologías, es posible abordar la planificación integrada del paisaje siguiendo el mismo proceso expuesto en el estudio. La secuencia a seguir entonces será en primer lugar la definición de las tipologías de espacios agregados, según los umbrales propuestos (entorno las 100ha. como distinción básica entre espacios ‘agregados’ y
11. Conclusión

‘enclaves’ –ap.9.1), o por los obtenidos de nuevo sobre los casos particulares en otros estudios. La obtención de un modelo de configuración espacial óptima, con el que contrastar las tipologías existentes para cada paisaje, será el siguiente paso: Aquí también puede optarse por utilizar el desarrollo presentado en este estudio (cap.10), o adoptar criterios acordes a los casos o expectativas de prospección -menos restrictivas tal vez. Finalmente, el tratamiento de los valores diferenciales y su contextualización según los casos de estudio, serán la aportación a la prospección y planificación del territorio en base AWO –como se ejemplifica en el ap. 10.4.

Los resultados finalmente obtenidos, remarcan de esta forma cuales son sus déficits y potencialidades de forma cuantificada, en base a los usos del suelo existentes. No es ya un listado de directrices genéricas para abordar la gestión y planificación: es una herramienta para el análisis de la funcionalidad del territorio, que permite un macrodiagnóstico del mismo –el cual tiene como referencia el ámbito regional metropolitano en el estudio. Como resultado, los gestores del territorio pueden disponer de una herramienta técnicamente relevante, en la gestión y la planificación del mismo. Por su simplicidad y bajos requerimientos (otros que el análisis de los usos del suelo según agregaciones por tamaño y naturalidad de los usos), se le considera de fácil implementación en los sistemas de gestión existentes.

Cabe destacar que estos resultados se obtienen desde una perspectiva integrada (una visión holística) del territorio, y que utiliza de forma inteligente la frequentemente escasa información disponible, gracias a los sólidos fundamentos conceptuales característicos del principio. No obstante, la interpretación contextualizada de los resultados y el conocimiento experto de los casos son requisitos añadidos en cualquier proceso de prospección, también en base AWO.

Por su aproximación normativa, será necesario constatar en otros ámbitos la posible generalización de las relaciones entre las diversas variables composicionales observadas en el estudio. Aun así, deberá primar la efectividad en la solución para la planificación, que el desarrollo efectuado es susceptible de aportar a otros casos. Futuros estudios aplicados (experimentales, o de base exploratoria), podrán determinar la universalidad de los umbrales o rangos de agregación propuestos para los paisajes metropolitanos -en éstos y otros casos de estudio. Otro aspecto crucial del análisis deberá centrarse en la
El principio ‘agregados con enclaves’

evolución temporal de los paisajes; con ello se corroborará también la utilidad del principio normativo para la prospección. En cualquier caso, cabe destacar que el objetivo aplicado será solucionar el problema que tan certeramente el principio AWO plantea, cuanto a la necesaria definición de las configuraciones deseables de usos agregados en el paisaje heterogéneo, manteniendo las funcionalidades ecológicas del territorio.
BIBLIOGRAFÍA

BERKOWITZ, P. (1999). The potential for landscape assessment as a policy tool. European Workshop on Landscape Assessment as a policy tool. Strasbourg,
Council of Europe.

BOIX, R. and e. al. (2000). Indicadors econòmics i territorials de la Regió Metropolitana de Barcelona. Pacte industrial de la RMB, Departament d'Economia Aplicada UAB.

CASTELLS, M. (2000). Conferencia del Master 'La ciudad, políticas proyectos y gestión'.
La ciudad, políticas proyectos y gestión, Barcelona, Universitat de Barcelona.
Centre d'Iniciatives i Recerques Europees a al Mediterrània (CIREM) - ICT (2000).
Economía y trabajo en la sociedad del conocimiento. Barcelona, Fundació CIREM - Institut Català de Tecnologia.
Commission of the European Communities (CEC) (2000). Agriculture’s contribution to environmentally and culturally related non-trade concerns. International Conference on non-trade concerns in agriculture, CEC.
territorial de Catalunya. Barcelona, Generalitat de Catalunya.

Council of Europe (1995). Pan-European biological and landscape Diversity strategy -
Task Force, Council of Europe.

Londres, Hambledon Press.

DALE, V. and e. al. (2001). Ecological guidelines for land use and management. Applying

Geographische Informationsysteme und ihre Anwendung in MAB-Projekten,
Ökosystemforschung und Umweltbeobachtung. Bonn, Deutsches Nationalkomitee
UNESCO.

del Vallès. Criteris de Conservació. Sabadell, ADENC-Departament de Medi
ambient.

ECKBO, G. (1974). "Art, science, democracy and the landscape." Landscape Planning 1:
51-55.

EHRLICH, P. R. and A. H. EHRLICH (2004). One with Nineveh: politics, consumption and
the humnan future. Washington DC, Island Press.

Workshop on Landscape Assessment as a policy tool. Landscape Assessment as
a policy tool, Strasbourg, ECNC.

European Environment Agency (EEA) (2001a). Implementing the EU Sustainable
Development Strategy., EC.

Copenhagen, EEA.

movement. Amsterdam, Elsevier.

FAO (2000). 21th FAO Regional Conference for Europe. FAO.

Cambridge, USA, Cambridge University Press.

Landscape Ecology 10(3): 133-42.

ICT.

MASSEY, D. (1984). Spatial divisions of labour: social structures and the geography of
producción. London, Methuen.

 Sourcebook on the environment: A guide to the literature. H. e. al. Chicago, Univ. of Chicago Press.

MOPU (1990a). El Programa CORINE de la CEE. Madrid, MOPU.

 New York, Springer-Verlag: 356.

 MONCLÚS. Barcelona, Centre de Cultura Contemporànea de Barcelona. I: 35-57.

O'RIORDAN (1989). The challenge for environmentalism. New Models in Geography. R.

 T. PEET, N.,. London, Unwin Hyman.

of Nothamerican Wildlife and Natural Resources Conference(53): 609-612.

ULLET, A. and e. al. (2001). Estudi de les infraestructures de transport necessàries pel desenvolupament sostenible de Catalunya 2001-2010. Fòrum sobre les necessitats d'infraestructures de transport a Catalunya i el seu finançament. Barcelona, MCRIT.

VIÑAS, O. and X. BAULIES (1992). Mapa 1:250000 dels Usos i Cobertura del Sòl de
Catalunya. Barcelona, INSTITUT CARTOGRÀFIC DE CATALUNYA.
APENDICES
Pla de Bages - Tipologías agregadas 1992

Límites
Red hidrológica
Natural no forestal
Forestal
Urbanizado
Rural

6 Kilometers
Pla de Bages - Uso Rural

Límites
Red hidrológica
Rural

2 Kilometers
Pla de Bages - Uso Natural no Forestal

Límites
Red hidrológica
Natural no Forestal
Pla de la Conca de Barberà - Uso Forestal
Pla de la Llona de Barbera - Uso Urbaniizado
Pla de la Conca de Barberà - Uso Natural no Forestal
Plana del Vallès - Uso Urbanizado
Plana de Vic - Tipologías de espacios

Red hídrica
- Límites
- Natural no forestal
- Forestal
- Urbanizado
- Rural
Plana de Vic - Uso Forestal

- Forestal
- Red hídrica
- Limites
Plana de Vic - Uso Natural no forestal