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Doctor en Ciències F́ısiques

Director:

Dr. Eduard Massó i Soler
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los viajes que hicimos juntos, como cuando comı́amos en la Plaza Ćıvica o saĺıamos de
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Chapter 1

Introduction

1.1 Motivation

When I was a little child, I remember that sometimes I used to stare at the blue sky asking

myself: How far could one fly up in the sky? How high could the airplanes fly? Beyond

the clouds? And sometimes, when I could not sleep in the night, I was looking at the

window asking myself: What happened with the blue sky? Why is it dark now? What

are those glims that adult people call stars? How far are they? How far is the farthest

star? Does the space has an end? And if it does, what is it beyond its end? Or is it

infinite? What is infinite? But then I was remembering that I had to finish my homework

for the next day and to solve problems like how much is it 3 apples plus 2 plums, and all

those questions were vanishing in the black night.

Years passed by, and the questions were still travelling in the outer space, and I was

more preoccupied with other things. Then, in 1995 I was invited to participate to a

kind of summer camp where I assisted to nice talks on various issues related to science

and astronomy. That summer I decided to follow the way of science, and of physics in

particular. After years dedicated to the study of physics, I can now say that I have formed

an idea of how the physical world works. Those questions I had in my childhood turned

back recently, wrapped in a box together with their answers, carried on the shoulders by

a strange giant that I had never seen before. And then my question was: Who is this

giant?

In the last five years of doing the research work contained in this doctoral Thesis, I had

the opportunity to learn a lot about what people think about the giant I mentioned above,

and I realized that although its existence is clear to everybody, still nobody contrived to

be its friend, to discover its origins, its real name and identity. What people have done is

to assign different names to its different parts of the body and to estimate its weight and
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hight. I am grateful to have the chance to do the same as most of these people, I also

tried to be the friend of the giant and to ask it why the box on its shoulders only contains

the answers to the childish questions but does not show us anything about itself.

Of course, this strange giant I am talking about represents the mysterious universe,

the hidden part of nature, which is still to be discovered by scientists or humanity in

general. This was my main motivation of doing the research contained in this Thesis, and

I hope that someday we will be able to shed some light on the dark side of our general

knowledge and to be able to answer to almost (if not) all the questions that feed our

curiosity.

1.2 Brief history of the universe

The most successful scientific theory today about the origin and evolution of the universe

is the Big Bang theory, which is one of the most ambitious intellectual constructions of

the humanity. It is based on two consolidated branches of theoretical physics, namely,

the theory of General Relativity (GR) [1] and the Standard Model of Particle Physics

(SM), and is able to make robust predictions, such as the expansion of the universe, the

existence and properties of the cosmic microwave background radiation (CMB) and the

relative primordial abundance of light elements.

These predictions have been tested by very precise experiments during the last decades,

imposing in this way the Big Bang theory as the standard cosmological model. The first

observational basis for the expansion of the universe came in 1929, when Edwin P. Hubble

[2] observed that galaxies were receding from us with velocities proportional to the distance

to us. The CMB radiation was first detected by Penzias and Wilson in 1964 [3].

According to the standard Big Bang theory, our universe emerged from a tremendous

explosion, in which both space and time were created. The early universe was extremely

hot, dense and rapidly expanding, while today the universe is cold − as suggested by the

measured CMB temperature TCMB ' 2.73 K − almost empty and it is still expanding.

Thus, one can say that the history of the universe is the history of its expansion, which

involves various important qualitative changes of its characteristics.

The physics of the early universe is described by theories of high energy physics, such

as the Grand Unified Theories (GUTs). As the universe cools, due to the expansion, phase

transitions may occur, and the theory describing the physics in each phase is different.

Because the range of energies probed in particle accelerators has a relatively low upper

limit, the theories of the highest energies have a more speculative nature. This is the case

of, e.g., Quantum Gravity, which would be the theory describing the universe in its initial
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states. In this PhD Thesis, some of the qualitative predictions of Quantum Gravity

will be applied and their possible cosmological effects will be studied. By comparing

the theoretical predictions with observations, we can constrain these effects and obtain

valuable information about how the theory that correctly describes Quantum Gravity

should look like.

Whatever is the correct theory of the highest energies, we can trace the evolution

of the universe, starting from the Planck era, corresponding to a temperature T ∼ 1019

GeV and a time t ∼ 10−43 s. At a slightly lower temperature (T ∼ 1016 GeV), the

universe would be described by GUTs, still in the field of speculations. Starting from

that moment, it is believed that the universe suffers an accelerated stage of expansion,

known as inflation, during which the universe expands exponentially and cools, such that

at the end of inflation, the universe is practically frozen and empty. Inflation is one of the

objects of study of this Thesis. After inflation, the universe is heated again (reheated),

so that one can say that the thermal history of the universe actually starts after inflation

ends, because all that happened before would have been wiped out.

After a reheating era in which a large amount of particles are produced, the universe

consists of a hot plasma of relativistic particles in thermal equilibrium, in which particles

are continuously created and destroyed. The universe cools and several processes occur.

For example, if there is a Peccei-Quinn symmetry solving the strong CP problem, this

symmetry should be broken at a temperature T ∼ 1012 GeV (t ∼ 10−30 s). It is also

believed that at those scales an asymmetry between matter and antimatter is generated,

which is indispensable for the existence of the matter contained in the universe. The

generation of this asymmetry is called baryogenesis.

At a lower energy scale (T ∼ 102 GeV, t ∼ 10−10 s), the electro-weak symmetry is

broken, and starting from that moment, the spectrum of particles in thermal equilibrium

is that of the known particles produced in terrestrial accelerators. In this symmetry

breaking, an asymmetry between matter and antimatter might also be generated, through

a process known as electro-weak baryogenesis.

Another important transition occurs at the scale of Quantum Chromodynamics (QCD),

T ∼ 102 MeV, when all the quarks − which since then were free − are confined to form

hadrons. This process is known as hadronization.

When the universe has a temperature of about T ∼ 1 MeV (t ∼ 1 s), it contains

neutrons, protons, electrons, positrons, neutrinos and photons. At that moment, fusion

nuclear reactions may start and the lightest nuclei are formed (H, He, Li, ...). The

processes of light nuclei formation occur out of equilibrium and they are known as Big

Bang (or Primordial) Nucleosynthesis (BBN). Its predictions constitute a solid pillar for
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the Big Bang theory and they can be corroborated by observations. This is the earliest

period in the history of the universe of which one has observational evidence, and it allows

us to constrain a large number of theories and relevant parameters.

During nucleosynthesis, electrons and positrons annihilate producing photons, but a

small fraction of electrons survive in the plasma. This is an important moment, since

right before neutrinos had decoupled from the thermal bath, and are not affected by the

e+e− pair annihilations, which introduce a temperature difference between the photons

and neutrinos baths.

At temperature T ∼ 3 eV (t ∼ 1011 s) the energy density in non-relativistic matter

becomes equal to that in relativistic particles, after which the universe becomes matter-

dominated. This is known as the epoch of matter-radiation equality, and is the epoch

when structure formation becomes possible.

The next important moment in the history of the universe is when the nuclei, formed

during Primordial Nucleosynthesis, combine with the existing electrons to form atoms.

This occurs at a temperature T ∼ 0.3 eV (t ∼ 1013 s) and is known as recombination.

It is the moment when the universe becomes transparent to light, because there are no

more electrons to scatter the photons, which can now travel freely. Thus, the photons

that reach us from that epoch constitute the oldest ”picture” of the universe, which can

be seen in the CMB radiation. After that, the recent history of the universe begins, and

the processes that occur are the formation of stars, galaxies, planets and so on.

At present, observations of the universe indicate the existence of two unknown forms

of energy, which dominate the energy content of the universe: dark matter and dark

energy. The nature of these components is still a mystery and it constitutes one of the

most important problems of modern cosmology. In this Thesis, I will discuss this issue,

and also the possibility of relating these recently dominating unknown components to the

early inflationary stage will be investigated.

1.3 Objectives and contents of the Thesis

The main objective of this PhD Thesis is to investigate the physical theories that go

beyond the standard model of particle physics, in the direction indicated by observations

of the universe. In particular, there is strong evidence of the existence of dark matter

and dark energy in the universe along with evidence of an early period of accelerated

expansion, known as inflation. In this Thesis, on the one hand I try to investigate some of

the above mentioned issues separately, and on the other hand I also try to relate the early

inflationary epoch with the recent dominating dark components. Thus, another objective
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of my investigation is to try to unify different models explaining different problems in a

single, consistent model, able to explain some of the most exciting problems of modern

cosmology discussed here.

Next, I will shortly describe the content of the chapters of this Thesis, emphasizing

those containing my original work.

• In chapters 2, 3, 4, 5, 6 and 7, I give an introduction to the theoretical framework

in which my original work is developed. They are supposed to synthesize and

summarize the existing work in the literature and to help making the original work

more comprehensive to the reader.

• In Chapter 8, I construct a model in which the inflaton and the quintessence

fields are components of the same complex scalar field. The model also introduces

a new global symmetry and a new auxiliary field, which contributes during the

inflationary period. The potential of the quintessence field arises from effects of

Quantum Gravity, which is supposed to explicitly break all global symmetries. I

investigate the required magnitude of this explicit breaking in order to satisfy all

the observational constraints on dark energy candidates.

• In Chapter 9, based on similar ideas as those of the model of Chapter 8, I inves-

tigate the possibility of unifying inflation with dark matter. I also make a detailed

numerical study to determine the parameters of the model in terms of the U(1)

symmetry breaking scale v.

• In Chapter 10, I present a complete particle physics model that is able to explain

inflation, dark matter and dark energy in a unified description, and it also provides

a mechanism for leptogenesis. The model introduces a new gauge group SU(2)Z

that grows strong at a scale Λ ∼ 10−3 eV. In the work of Chapter 10, I emphasize

the inflationary aspects of the whole model.

• In Chapter 11, the formalism described in Chapter 7 is used for investigating the

possibility to obtain an effective equation of state p < −ρ/3 that can mimic dark

energy, from coherent oscillations of a scalar field in a potential. The formalism is

based on the use of the action-angle variables of analytical mechanics and I argue

that it has some advantages, like the identification of adiabatic invariants.

• Finally, in Chapter 12, I present the conclusions of all the work exposed in this

Thesis.
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• In Appendix A, I calculate the angular power spectrum of curvature perturbations

in general models of inflation, making the assumption that the universe has a non-

zero (although small) curvature. I obtain that the angular power spectrum has

significant deviations on large scales, as compared to the case of a perfectly flat

universe. This subject is of importance from the point of view of constraining the

cosmological parameters of the universe, such as its geometry.

• In Appendix B, I give some technical details related to the numerical analysis

made in Chapter 9.

Note: In this Thesis, I use natural units with c = ~ = kB = 1 and the signature of the

Minkowski metric x2 = xµx
µ = gµνx

µxν = x2
0 − ~x2.



Chapter 2

Standard Big-Bang Cosmology

Cosmology has made a lot of progress during the last years and has at present a substantial

observational and experimental basis that confirm that many aspects of the standard

cosmological picture are a good approximation to reality. Still, the empirical basis has

not reached the level of precision and accuracy of the Standard Model of particle physics

(SM) and we cannot talk about a well-established theory of cosmology, in which one can

measure the parameters with high precision. With all this, one can say that cosmology is

living nowadays a golden epoch and the observational data, which become more and more

precise, keeps cosmologists optimistic about establishing a true Standard Cosmological

Theory in the near future.

In any case, all observations lead us to a rich and resolutive picture of the present

state of the universe, which gives us important clues in constructing a cosmological model

that is able to be extrapolated towards the past and also to make predictions. Based

on fairly precise cosmological observations, there is strong evidence that the universe is

isotropic to a very good approximation. This isotropy, when combined with the general

copernican belief that we are not supposed to live at the ”center” of universe, leads to the

conclusion that the universe must also be very homogeneous on cosmological scales. This

is one of the basic principles of cosmology that motivates the study of the idealized case

of a perfectly homogeneous and isotropic universe, which provide a great simplification of

the analytical treatment. Observations also suggest that our universe is not static, rather

it expands with velocities which grow with the distance, as formulated by the Hubble law

[2].
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2.1 Friedmann-Robertson-Walker metric

The dynamics of the universe can be properly described by the Einstein equations of the

theory of General Relativity, which in general are complicated nonlinear equations. As

discussed above, if we consider the idealized case of a perfect homogeneous and isotropic

universe, things become much simpler. This is the case of the so-called standard cosmol-

ogy, based upon the maximally symmetric Friedmann-Robertson-Walker (FRW) [4] line

element:

ds2 = dt2 − a2(t)γijdxidxj (2.1)

where γijdxidxj is the line element of some homogeneous isotropic 3-manifold and a(t) is

the scale factor at cosmic time t. The set x1, x2, x3 are called comoving coordinates and

an observer that has 4-velocity uα = (1, 0, 0, 0) in these coordinates is called comoving

observer.

2.1.1 Spatial metric

The three-dimensional spatial metric γij must describe a homogeneous and isotropic 3-

manifold. The most simple homogeneous and isotropic 3-manifold is the three-dimensional

Euclidean space. Its line element can be written both in terms of Cartesian and spherical

polar coordinates as:

γijdxidxj = d(x1)2 + d(x2)2 + d(x3)2 = dχ2 + χ2(dθ2 + sin2 θdφ2). (2.2)

The spherical polar comoving coordinates, (χ, φ, θ), are related to the Cartesian coordi-

nates xi by the following transformations:





x1 = χ sin θ cos φ

x2 = χ sin θ sin φ

x3 = χ cos θ.

(2.3)

We can generalize the above example of a sphere by adding a new dimension to obtain a

hypersphere of radius K−1/2, which can be viewed as a curved three-dimensional surface

embedded in a four-dimensional Euclidean space:

(x1)2 + (x2)2 + (x3)2 + (x4)2 =
1

K
(2.4)

where K is here a positive constant called spatial curvature.
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By writing similar transformations between Cartesian and spherical polar coordinates,

the spatial metric is given by:

γijdxidxj = dχ2 +
sin2(K1/2χ)

K
(dθ2 + sin2 θdφ2). (2.5)

We can analytically continue the hypersphere to negative curvature, K < 0, to obtain a

third homogeneous and isotropic 3-manifold, called hyperbolic space. Its line element is

given by the analytic continuation of equation (2.5):

γijdxidxj = dχ2 +
sinh2[(−K)1/2χ]

−K
(dθ2 + sin2 θdφ2). (2.6)

This metric is qualitatively different from the metric (2.5), in that while the metric (2.5)

describes a finite 3-manifold, the metric (2.6) describes an infinite 3-manifold. Thus, the

structure of the three spatial dimensions are used to classify the FRW universes: one has

a spatially flat universe if K = 0, a closed universe if K > 0 or an open universe if K < 0.

It is possible to unify the three types of universes in a single form of the metric:

ds2 = dt2 − a2(t)[dχ2 + f 2
K(χ)(dθ2 + sin2 θdφ2)] (2.7)

by defining the generalized sine-function:

fK(χ) =





K−1/2 sin(K1/2χ), K > 0,

χ, K = 0,

(−K)−1/2 sinh[(−K)1/2χ], K < 0

(2.8)

If we finally make the substitution r = fK(χ), we obtained the well-known form of the

FRW metric:

ds2 = dt2 − a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
. (2.9)

By a proper redefinition of the scale factor, the curvature K can take integer values 1, 0,

−1, for closed, flat and open universes, respectively. However, it is often convenient to

define the scale factor such that its present value is equal to unity, a0 = 1, and in this

case one should keep the explicit curvature K in formulae.

2.1.2 Hubble expansion and conformalities

The scale factor a(t) is a time-dependent dimensionless parameter describing the cosmo-

logical expansion. Thus, the scale factor a(t) converts comoving coordinates into physical
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quantities and the expansion is therefore just a change of scale during the evolution of

the universe. So, physical radial distances at some time t will be given by:

dphys = a(t)

∫ r

0

dr√
1−Kr2

. (2.10)

If one considers two neighboring comoving observers, the physical separation between

them will grow when a(t) is increasing and will become smaller if a(t) is decreasing. The

rate at which the comoving observers approach or recede from each other is given by:

d

dt
∆l =

ȧ(t)

a(t)
∆l = H(t)∆l (2.11)

where H(t) ≡ ȧ/a is called the Hubble parameter (or Hubble rate) and a dot means deriva-

tive with respect to time, d/dt. The value of H(t) today is called the Hubble constant, H0.

It receives this name in honor of Edwin P. Hubble, which in 1929 first observed [2] that

the velocity at which galaxies were receding from us was proportional to the distance to

us, i.e., v = H0l. This relation is analogous to equation (2.11). Since Hubble’s discovery,

astronomers have made great effort to determine the value of the Hubble constant. It has

become common to parameterize its value by defining a dimensionless parameter h

h =
H0

100km/s/Mpc
' H0

3.24× 10−18s−1
(2.12)

and is h which contains all the observational uncertainties about H0. Using the 3-year

observations data from the Wilkinson Microwave Anisotropy Probe (WMAP)[5], the best

fit for the value of h is h = 0.732+0.031
−0.032.

A useful quantity is the conformal time τ , which is defined through the following

relation:

dτ =
dt

a
=

da

ȧa
=

da

a2H
. (2.13)

If we introduce the conformal time variable into the FRW metric (2.9), we obtain

ds2 = a2(t)

[
dτ 2 − dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
(2.14)

which makes it clear why τ is called conformal: the corresponding FRW line element is

conformal to the Minkowski line element describing a static four-dimensional hypersurface.

When working with the conformal time, it is useful to define the conformal Hubble rate,

H:

H =
da/dτ

a
= ȧ = aH. (2.15)
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This helps us write the following general transformations for any function f(t):

ḟ(t) =
f ′(τ)

a(τ)
, (2.16)

f̈(t) =
f ′′(τ)

a2(τ)
−H f ′(τ)

a2(τ)
(2.17)

where a prime indicates differentiation with respect to τ .

Another concept of interest is the particle horizon, which is related to the causal con-

tact between different parts of the universe. Photons travel on the null paths characterized

by dχ = dt/a(t) and since the bang until time t they could have travelled the physical

distance

RH = a(t)

∫ t

0

dt′

a(t′)
= a(τ)

∫ τ

τ0

dτ (2.18)

where τ0 indicates the conformal time corresponding to t = 0. Equation (2.18) gives the

distance to the particle horizon and is the maximum distance between two points that

can be in causal contact. Note that in the standard cosmology a(t) ∝ tn for which one

gets that RH(t) ∼ H−1, where H−1 is called the Hubble radius, and for this reason horizon

and Hubble radius can be used interchangeably.

2.2 Kinematics of the FRW metric

Let us study how a particle propagates in a universe described by the metric (2.7). For

simplicity, we consider a particle of mass M propagating radially with respect to an

observer O, in which case the angular part of the metric is irrelevant, and the metric

becomes:

ds2 = dt2 − a2(t)dχ2. (2.19)

In this case, the metric components do not depend on χ and, as a consequence, the

corresponding covariant component of the particle’s momentum Pχ is constant. But Pχ is

not the physical momentum as measured by the comoving observer, which would rather

measure the physical momentum Pphys = |Pχ|/a. We see that the physical momentum

varies in inverse proportion to the scale factor of the universe, Pphys ∝ a−1. The energy

of the particle also varies with a(t) through the relation E =
√

P 2
phys + M2, which, for a

photon or any other massless particle, becomes E ∝ a−1.

The light emitted by a distant object can be viewed quantum mechanically as a freely-

propagating photon, or classically as a propagating plane wave. In the quantum mechani-

cal description, the wavelength of light is inversely proportional to the photon momentum,
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λ = h/p. We have seen that the momentum of a photon changes in proportion to a−1, so

that its wavelength will be proportional to a:

λ ∝ a(t) (2.20)

and as the universe expands, the wavelength of a freely-propagating photon increases.

This means that there is a redshift of the wavelength of a photon due to the fact that the

universe was smaller when the photon was emitted.

The same result can be obtained by considering the propagation of light from a distant

galaxy as a classical wave phenomenon. Suppose a wave is emitted from a source at radial

coordinate χ = χ1 at time t1, when the scale factor was a1 ≡ a(t1), and arrives at the

observer located at χ = 0 at time t0. The coordinate distance and time will be related

by: ∫ t0

t1

dt

a(t)
=

∫ χ1

0

dχ = χ1. (2.21)

The wavecrest emitted at a time t1 + δt1 will arrive at the observer at a time t0 + δt0.

One can write a similar relation to (2.21) and obtain that:

χ1 =

∫ t0

t1

dt

a(t)
=

∫ t0+δt0

t1+δt1

dt

a(t)
(2.22)

which, after a simple rearrangement of the limits of integration gives:
∫ t1+δt1

t1

dt

a(t)
=

∫ t0+δt0

t0

dt

a(t)
. (2.23)

For a sufficiently small difference δt between two consecutive wavecrests, the scale factor

a(t) can be considered constant over the integration time of (2.23), and one has:

δt1
a(t1)

=
δt0

a(t0)
. (2.24)

Since δt1 (δt0) is the time between successive crests of the emitted (detected) light, δt1

(δt0) is the wavelenght of the emitted (detected) light, so that one can write:

λ1

λ0

=
a1

a0

(2.25)

where a0 is the scale factor now.

It is traditional to define the redshift of an object, z, in terms of the detected wavelength

to the emitted wavelength:

1 + z ≡ λ0

λ1

=
a0

a1

. (2.26)

Since today astronomers observe distant galaxies to have red shifted spectra (z > 0), we

can conclude that the universe is expanding.
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2.3 Distances in cosmology

Another important concept related to observational tools in an expanding background is

associated to the definition of a distance. In particular, we wish to define the distance

from us to an object observed in the sky. For definiteness, we consider ourselves as a

comoving observer O, at the origin and at time t0, such that a0 = 1. We want to measure

the distance to another comoving observer O′, which can be a galaxy. Then, a photon

emitted by O′, when the scale factor was a = 1/(1+ z), reach us at present, when a0 = 1,

and this fixes the radial coordinate χ of the galaxy. From equation (2.19) we have that

dχ/dt = −a−1, where the minus sign comes from the fact that the photon is moving

toward lower values of χ. We get:

χ =

∫ 1

a

a−1

da/dt
da =

∫ 1

a

da

ȧa
= τ0 − τ (2.27)

where we also used the conformal time definition, equation (2.13), and τ0 is the conformal

time now, at t = t0. The physical distance between O and O′ is obtained by integrating

the line element: ∫ O′

O

dl =

∫ χ

0

a(t)dχ = a(t)χ (2.28)

which we see is time-dependent. It is often convenient to use the comoving distance, which

in the above example becomes χ and so it does not depend on time.

There are other useful measures of distance. Let us assume that there is a galaxy of

proper diameter D at comoving coordinate r = r1, which emitted light at t = t1, detected

by the observer O at t = t0 and r = 0. From the metric (2.9) it follows that the observed

angular diameter of the source, δ, is related to D by

δ =
D

a(t1)r1

. (2.29)

The angular diameter distance, dA, is defined as

dA ≡ D

δ
= a(t1)r1 =

r1

1 + z
. (2.30)

A related notion is the comoving angular diameter distance, in which the comoving diam-

eter Dc = D/a(t1) of the galaxy is used:

dAc ≡ Dc

δ
= r1. (2.31)

An alternative way of defining a distance is through the luminosity of a stellar object.

The luminosity distance dL plays a very important role in astronomy, for example in the
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Supernova observations [6, 7]. Suppose we know the absolute luminosity Ls of the source,

which we assume to emit radiation isotropically. The energy flux F measured by the

observer O is F = Ls/(4πd2
L), and by using this relation one can define the luminosity

distance as

d2
L =

Ls

4πF
. (2.32)

In order to calculate the luminosity distance, we must find the relationship between the

observed flux F and the luminosity of the source. In a static Euclidean geometry, the

observed flux today (a0 = 1) would be simply F = Ls/(4πr2
1), where r1 is the radial

coordinate of the source. However, due to the expansion, there are two effects that have

to be taken into account: first, due to the cosmological redshift, the energy of the emitted

photons is reduced by a factor of (1+z) and, second, there is a cosmological time dilation

between the emitted photons, which arrive with less frequently than were emitted, also

contributing a factor (1 + z) in reducing the observed flux. Combining the two effects

mentioned above, we have:

F =
Ls

(4πr2
1)

(1 + z)−2. (2.33)

From equations (2.32) and (2.33) we obtain:

dL = (1 + z)r1 (2.34)

which is also called the luminosity distance-redshift relation. It is used as a cosmological

test if radiation sources of known luminosity, generally called standard candles, can be

identified. At present, the most reliable standard candles are the Type Ia supernovae (SN

Ia).

2.4 Dynamics of the universe

Since now, we have been concerned with the kinematics of a universe described by the

FRW metric. Here, we would like to understand the time dependence of the scale factor,

in which the dynamics of the expanding universe is implicitly contained.

2.4.1 The Friedmann Equation

The equations of motion for the FRW space-time are known as the Friedmann equations.

To derive them, one must solve for the evolution of the scale factor using the Einstein

equations [4]:

Rµν − 1

2
Rgµν = 8πGT µν (2.35)
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where Rµν is the Ricci tensor, R is the scalar curvature, gµν is the metric tensor, Tµν is

the stress-energy tensor for all the fields present, and G is the Newtonian gravitational

constant. In order to proceed, we should make some assumptions about the stress energy

tensor T µν . There is no need for a detailed knowledge of the properties of the fundamental

fields that contribute to T µν , the only thing we must require is the consistency with the

homogeneity and isotropy of the universe, i.e., it must be diagonal, with all the spatial

components equal to one another. The simplest form of the stress-energy tensor is that of

a perfect fluid characterized by a time-dependent energy density ρ(t) and pressure p(t).

The precise form of the stress-energy is then:

T µ
ν = diag(ρ,−p,−p,−p). (2.36)

By using this form of the stress-energy tensor in the Einstein equation (2.35) and the

metric (2.9), we obtain the so-called Friedmann equations

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− K

a2
(2.37)

ä

a
= −4πG

3
(ρ + 3p). (2.38)

The first equation (2.37) relates the dynamics of the scale factor a(t) with the energy

content and the curvature of the universe, while the second equation (2.38) gives the

acceleration of the expansion. By historical reasons, one defines the deceleration parameter

q0 today (t = t0) as:

q0 ≡ −a(t0)
ä(t0)

ȧ2(t0)
= − ä0

a0H2
0

(2.39)

It is frequently useful to consider the equation of continuity T µν
;ν = 0 when solving

the Friedmann equations. It implies a relation between ρ and p,

ρ̇ + 3H(ρ + p) = 0. (2.40)

2.4.2 The critical density

The Friedmann equation (2.37) gives the expansion rate of the universe, which is charac-

terized by the Hubble parameter H = ȧ/a. It is useful to define a time dependent critical

density

ρc ≡ 3H2

8πG
(2.41)

which corresponds to a universe with exactly flat spatial sections. The value of the critical

density today is ρc,0 = 1.88h210−29g/cm3. We have seen before that the dynamics of the
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FRW metric depends on the energy content of the universe. Hence, it is also useful to

define the density parameter

Ωtotal ≡ ρ

ρc

(2.42)

where in Ω all contributions are included: matter, radiation and cosmological constant.

By replacing the definitions (2.41) and (2.42) in the Friedmann equation (2.37), the last

can be recast as:
K

H2a2
=

ρ

ρc

− 1 = Ω− 1. (2.43)

This form of the Friedmann equation allows us to relate the total energy density of the

universe with its local geometry,

Ω > 1 ⇔ K = 1 (CLOSED)

Ω = 1 ⇔ K = 0 (FLAT) (2.44)

Ω < 1 ⇔ K = −1 (OPEN).

As we said, the energy density ρ includes all types of constituents: radiation, matter,

vacuum, etc., so it can be written as the sum
∑

ρi. This allows us to define a density

parameter for each of the constituents

Ωi =
ρi

ρc

. (2.45)

From the FRW metric (2.9), it is clear that the effects of spatial curvature become relevant

for r ∼ |K|−1/2, so one normally defines a physical radius of curvature of the universe

Rcurv ≡ a(t)|K|−1/2 =
H−1

|Ω− 1|1/2
. (2.46)

By taking the ratio of the Friedmann equations (2.37) and (2.38) and using the definition

of the density parameter Ω0 at present, the decelaration parameter (2.39) becomes:

q0 =
1

2
Ω0

(
1 + 3

p

ρ

)
≡ 1

2
Ω0(1 + 3w) (2.47)

where w = p/ρ is the equation of state parameter. It is a very important parameter be-

cause, depending on its value, the universe can be decelerating (w > −1/3) or accelerating

(w < −1/3). In the standard situation, p ≥ 0 and ρ > 0, which means that the universe

is decelerating. Einstein introduced a positive cosmological constant Λ in his equations

in order to obtain a static universe, motivated by the idea to avoid the initial singularity

(Big Bang) suggested by an expanding decelerated universe. The presence of a cosmo-

logical constant into the Einstein equations implies that the universe will finally start
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to accelerate, supposing that the pressure and the energy density of other components

are diluted by the expansion and then Λ starts to dominate. The Friedmann equations

with cosmological constant would have to include the energy density ρΛ and pressure pΛ

defined as ρΛ = −pΛ ≡ Λ/(8πG). Deciding if Λ should be taken into account or not

and explaining its small value suggested by observations is one of the biggest problem of

physics [8]. In this Thesis I do not pretend to solve the cosmological constant problem,

but just to propose alternative explanations of the present acceleration of the universe. It

is also possible to obtain an accelerating universe ä > 0 if it contains some unknown exotic

component with a non-standard equation of state parameter that satisfies w < −1/3 and

now dominates over all the other components. This is the so-called dark energy of the

universe, which will be discussed in more detail in Chapter 5.

2.4.3 Single-component universe

Let us investigate the behavior of a flat universe (K = 0) dominated by a single component

with equation of state parameter w. In general, w can be a function of time, but the case

of constant w is simpler and common to the known forms of matter. For instance, we have

w = 0 for non-relativistic matter, w = 1/3 for radiation and w = −1 for a cosmological

constant (vacuum energy).

The Friedmann equation (2.37) in terms of w becomes

H2 =

(
ȧ

a

)2

∝ ρ(a) ∝ a−3(1+w) (2.48)

which for w 6= −1 gives

a(t) ∝ t2/[3(1+w)]. (2.49)

For a universe dominated by non-relativistic matter, w = 0, and we obtain that

ρ ∝ a−3; a ∝ t2/3 ∝ τ 2 (2.50)

while for a radiation dominated universe, with w = 1/3, we have:

ρ ∝ a−4; a ∝ t1/2 ∝ τ. (2.51)

This analysis does not apply to the case of a cosmological constant, with w = −1. In this

case, the scale factor grows exponentially

a(t) = a0 exp

(√
Λ

3
t

)
(2.52)

where a0 is the scale factor at t = 0. The Hubble rate is then a constant, HΛ =
√

Λ/3

and the conformal time τ ∝ − exp(−
√

Λ/3 t). The space corresponding to this case is

called de Sitter spacetime.



18 Standard Big-Bang Cosmology

2.4.4 Universe with vacuum energy and curvature

So far, we have considered various forms of energy in an exactly flat universe. In this

Thesis, we are also interested in the situation in which the universe is only approximately

flat and we consider a small curvature K. In Appendix A we work in the context of a

non-flat vacuum energy dominated universe with curvature K. The Friedmann equation

(2.37) in this context becomes

H2 = H2
Λ −

K

a2
(2.53)

where HΛ is the Hubble rate corresponding to a vacuum energy dominated flat universe.

Equation (2.53) can be solved for a(t) to obtain:

a(t) =





√
K
HΛ

cosh(HΛt), K > 0
√

−K
HΛ

sinh(HΛt), K < 0
(2.54)

or in terms of the conformal time τ :

a(τ) =




−
√

K/HΛ

sin(
√

Kτ)
, K > 0,

−
√
−K/HΛ

sinh(
√−Kτ)

, K < 0.

(2.55)

2.5 The early radiation-dominated universe

There are sufficient reasons to believe that the universe has evolved from an early hot and

dense state to the present cold and almost empty universe. The CMB radiation we observe

today is a relic picture of an earlier stage of the universe, when it was (1+z) ∼ 1100 times

smaller, and it possesses a thermal spectrum to a very good approximation. This makes

us believe that the early universe consisted of a thermal bath of particles in equilibrium.

The fundamental object for describing a hot plasma in thermal equilibrium is the phase

space distribution function, f(~p, t). In a universe described by the FRW metric, f does

not depend either on the direction of the momentum ~p, or on the position. The number

density, n, the energy density, ρ, and the pressure, p, corresponding to a gas of particles

with g internal degrees of freedom are given by [9]:

n =
g

(2π)3

∫
f(~p)d3p (2.56)

ρ =
g

(2π)3

∫
E(~p)f(~p)d3p (2.57)

p =
g

(2π)3

∫ |~p|2
3E

f(~p)d3p (2.58)
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where E2 = |~p|2 + m2. For a species in kinetic equilibrium, the phase space distribu-

tion function is given either by the familiar Fermi-Dirac (FD), or Bose-Einstein (BE)

distributions

f(|~p|) =
1

e(E−µ)/T ± 1
(2.59)

where T is the temperature of the plasma, µ is the chemical potential of the species, and

+1 corresponds to FD species and −1 to BE species.

By replacing f(|~p|) defined in (2.59) into equations (2.56)−(2.58), one can obtain the

expressions of n, ρ and p. In the relativistic non-degenerate limit T À m and T À µ, we

get simple expressions

ρ =

{
π2

30
gT 4 (BE)

7
8

π2

30
gT 4 (FD)

(2.60)

n =

{
ζ(3)
π2 gT 3 (BE)

3
4

ζ(3)
π2 gT 3 (FD)

(2.61)

p = ρ/3 (2.62)

where ζ(3) = 1.202... is the Riemann zeta function of 3.

Another interesting limit corresponds to non-relativistic particles with m À T , for

which we obtain:

n = g

(
mT

2π

)3/2

e−(m−µ)/T (2.63)

ρ = mn (2.64)

p = nT ¿ T. (2.65)

This limit corresponds to the Maxwell-Boltzmann statistics.

Comparing the two limits considered above, we notice that the energy density of a

non-relativistic species is exponentially suppressed as compared to the relativistic species.

This is why, in a universe dominated by radiation, the total density can be very well

approximated by the contribution of only the relativistic species.

It is convenient to express the total energy density and pressure of the relativistic

species in terms of the photon temperature T :

ρR =
π2

30
g∗T 4 (2.66)

pR = ρR/3 =
π2

90
g∗T 4 (2.67)

where g∗ counts the total number of effectively massless degrees of freedom and is defined

as:

g∗ =
∑

i=bosons

gi

(
Ti

T

)4

+
7

8

∑

i=fermions

gi

(
Ti

T

)4

. (2.68)
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The value of g∗ depends on the temperature T . For example, at high T ∼ 300 GeV, all

the species of the standard model will contribute and g∗ = 106.75. At low temperature

T ¿ MeV, the only relativistic species are 3 neutrino families and the photon, and

g∗ = 3.36.

With all this, we can express the Hubble rate H, the time t and the scale factor a in

terms of the photon bath temperature, in a radiation dominated universe:

H =

√
8πG

3
ρR ' 1.66g1/2

∗
T 2

MP

(2.69)

t =
1

2H
' 0.301g−1/2

∗
MP

T 2
∼

(
T

MeV

)−2

sec (2.70)

where MP = G−1/2 ' 1.22× 1019GeV is the Planck mass. Finally, recalling that w = 1/3

in a radiation dominated universe in which a(t) ∝ t1/2, see equation (2.51), we find that

a ∝ T−1. (2.71)

The entropy in a comoving volume provides a very useful fiducial quantity during the

expansion of the universe. In the conditions of local thermal equilibrium of the particles

in the thermal bath, the entropy per comoving volume remains constant

S =
a3(ρ + p)

T
= const. (2.72)

This is a consequence of the second law of thermodynamics, applied to the expanding

universe.

It is useful to define the entropy density s

s ≡ S

V
=

ρ + p

T
. (2.73)

The entropy density is dominated by the contribution of relativistic particles and can be

written as:

s =
2π2

45
g∗sT 3, (2.74)

where g∗s is defined as:

g∗s =
∑

i=bosons

gi

(
Ti

T

)3

+
7

8

∑

i=fermions

gi

(
Ti

T

)3

. (2.75)

We notice that s has the same temperature-dependence as the number density of rela-

tivistic particles. This allows us to relate the entropy density s with the photon density

nγ:

s =
π4

45ζ(3)
g∗snγ = 1.80g∗snγ. (2.76)
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Since g∗s is a function of temperature, s and nγ cannot always be used interchangeably.

Conservation of the entropy per comoving volume, S ∝ g∗sa3T 3, implies that, first,

the temperature and the scale factor are related by:

T ∝ g−1/3
∗s a−1 (2.77)

which for g∗s = const leads to the familiar T ∝ a−1 relation.

Second, it provides a way of quantifying the net baryon number per comoving volume:

B =
nB

s
' (4− 7)× 10−11. (2.78)

The baryon number of the universe tells us two things: (1) the entropy per particle in the

universe is extremely high, ∼ 1010, compared to about 10−2 in the sun, and a few, in the

core of a newly formed neutron star; (2) the asymmetry between matter and antimatter

is very small, about 10−10. This asymmetry should be explained by baryogenesis, which

is based on the idea that B, C and CP symmetries are violated in out-of-equilibrium

interactions in the early universe.

Leptogenesis is the process of generation of a net lepton number through an out-of-

equilibrium, lepton-number-violating, CP-asymmetric process. This asymmetry is then

converted to a baryon asymmetry by the sphaleron process, which occurs in standard

electroweak theory at temperatures above about 1 TeV. The model described in Chapter

10 provides a mechanism for leptogenesis by the decay of a new messenger scalar field

ϕ̃
(Z)
1 , associated to a new gauge symmetry SU(2)Z , into an SU(2)Z fermion ψ

(Z)
i and a

SM lepton. This net lepton number then generates a net baryon number through the

above mentioned mechanism.

2.6 The problems of the Big Bang cosmology

Up to here, we have seen the standard picture of how the universe evolved from very early

epochs towards the present time. It is given by the standard Big Bang theory, which is

based on the theory of General Relativity and on the Standard Model of elementary parti-

cles. Nevertheless, this standard cosmological model has some well-known problems: the

flatness or the oldness problem, the entropy problem, the horizon or large-scale smoothness

problem, and the small-scale inhomogeneity problem. They do not indicate any logical

inconsistencies of the standard cosmology, rather they seem to require very special initial

conditions for the evolution to a universe with the characteristics of our universe today.

Let us explain these shortcomings in some more detail.



22 Standard Big-Bang Cosmology

2.6.1 The flatness problem

Assuming that Einstein equations are valid up to times as early as the Planck era, when

the temperature of the universe is TP ∼ MP ∼ 1019GeV, let us calculate the curvature of

the universe at that epoch. From equation (2.43) we see that if the universe is perfectly

flat then Ω = 1 at all times. Of course, there is a priori no reason for our universe to

be perfectly flat. On the other hand, if there is even a small curvature term, the time

dependence of (Ω− 1) should be taken into account. During a radiation-dominated (RD)

period, one has that H2 ∝ ρR ∝ a−4, and during matter domination (MD), H2 ∝ ρM ∝
a−3, so that:

Ω− 1 ∝




1
a2a−4 = a2, RD

1
a2a−3 = a, MD.

(2.79)

In both cases (Ω − 1) decreases going backwards in time. Observations of the present

universe indicate that (Ω − 1) is of order unity or less, which means that at the Planck

epoch it had to be:

|Ω− 1|T=TP
≈ |Ω− 1|T=T0

a2
P

a2
eq

aeq

a0

≈ T 2
eq

T 2
P

T0

Teq

≈ O(10−60) (2.80)

where we used the values Teq ∼ 10−9 GeV and T0 ∼ 10−13 GeV, and the subscripts ”eq”

and ”0” stand for the epoch of matter-radiation equality and today, respectively. Equation

(2.80) indicates that at the Planck epoch, the universe should be unnaturally flat, without

a special reason for that. Even if we go back simply to the epoch of nucleosynthesis,

TN ∼ 1 MeV, we have:

|Ω− 1|T=TN
≈ |Ω− 1|T=T0

a2
N

a2
eq

aeq

a0

≈ T 2
eq

T 2
N

T0

Teq

≈ O(10−16) (2.81)

which does not alleviate much the initial condition for the curvature of the universe. For

this reason, the flatness problem is also dubbed the ”fine-tuning problem”.

2.6.2 The entropy problem

The hypothesis of adiabatic expansion of the universe is connected with the flatness

problem. To see this, recall the Friedmann equation (2.69) during a radiation-dominated

period:

H2 ∼ ρR

M2
P

∼ T 4

M2
P

(2.82)

which applied to equation (2.43) gives:

Ω− 1 ∼ KM2
P

a2T 4
∼ KM2

P

S2/3T 2
, (2.83)
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where the relation S ∝ a3T 3 has been used. Under the hypothesis of adiabaticity, S is

constant over the evolution of the universe and therefore

|Ω− 1|t=tP ∼
M2

P

T 2
P

1

S
2/3
U

=
1

S
2/3
U

≈ O(10−60). (2.84)

where SU ∼ O(1090) is the value of the universe entropy today. This means that (Ω− 1)

was so close to zero at early epochs because the total entropy of our universe is incredibly

large. Thus, the flatness problem is connected to the fact that the entropy in a comoving

volume is conserved. It is possible, therefore, that the problem could be solved if the

cosmic expansion was non-adiabatic for some finite time interval during the early history

of the universe.

2.6.3 The horizon problem

According to the standard cosmology, photons decoupled from the rest of the components

at a temperature of the order of 0.3 eV, when the universe was already dominated by non-

relativistic matter. This corresponds to the so-called last-scattering surface (LS), which

corresponds to a redshift of about 1100 and the universe was about 300 000 years old.

These photons free-stream and reach us basically untouched, with a thermal spectrum

consistent with that of a black body at temperature 2.73 K.

At the time of last-scattering, the length scale corresponding to our present Hubble

radius RH(t0) was:

λH(tLS) = RH(t0)
aLS

a0

= RH(t0)
T0

TLS

. (2.85)

On the other hand, the Hubble rate has decreased as H2 ∝ ρM ∝ T 3, so that at last-

scattering, the Hubble length was:

H−1
LS = RH(t0)

(
T0

TLS

)3/2

. (2.86)

By comparing the volumes corresponding to the scales calculated in (2.85) and (2.86) we

obtain that

λ3
H(TLS)

H−3
LS

=

(
T0

TLS

)−3/2

≈ 106 (2.87)

which means that there were ∼ 106 causally disconnected regions within the volume that

now corresponds to our horizon. It is very hard to believe that regions that have the same

temperature today had never been in thermal contact before.
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2.6.4 The low-scale inhomogeneity problem

We have seen that, at large scales, the universe seems to be very homogeneous and,

without a reasonable explanation, this fact seems to be a rather astonishing coincidence,

that 106 disconnected regions have the same temperature. Fluctuations in the temperature

are related to the density inhomogeneity, which means that the universe should be very

homogeneous at large scales. If so, one wonders what was the seed for the creation of the

structure we observe today: stars (δρ/ρ ∼ 1030), galaxies (δρ/ρ ∼ 105), cluster of galaxies

(δρ/ρ ∼ 10− 103), superclusters (δρ/ρ ∼ 1) and so on. The standard cosmology provides

a general framework for understanding this picture. Once the universe becomes matter

dominated, primeval density inhomogeneities (δρ/ρ ∼ 10−5) are amplified by gravity and

grow into the structure we see today [10]. However, the standard Big Bang theory does

not provide a theoretical explanation of the origin of the primeval fluctuations, which are

only considered as an input.



Chapter 3

Inflationary cosmology

The horizon and the flatness problems of the standard big bang cosmology are so serious

that the theory seems to require some basic modifications of the hypothesis made so far.

The most elegant solution is to suppose that the universe has gone through a non-adiabatic

period and also through a period of accelerated expansion, during which physical scales

λ evolved much faster than the horizon scale H−1. This period of positive acceleration,

ä > 0, of the primeval universe is called inflation.

The inflationary hypothesis is attractive because it holds out the possibility of calculat-

ing cosmological quantities, given the Lagrangian describing the fundamental interactions.

In the context of the Standard Model, it is not possible to incorporate inflation, but this

should not be regarded as a serious problem because the Standard Model itself requires

modifications at higher energy scales, for reasons that have nothing to do with cosmology.

In this chapter, I describe the concept of inflation and how it is related to the present

state of the observable universe. I also give a survey of the main inflationary models

proposed until now.

3.1 Solving the shortcomings of the standard Big Bang

3.1.1 Inflation and the horizon problem

As commented above, during inflation the universe is accelerating, i.e. ä > 0. From the

second Friedmann equation (2.38) we see that this is equivalent to p < −ρ/3, which is not

satisfied either by radiation, or by matter. This means that we have to introduce another

kind of substance able to satisfy the previous condition. In order to satisfy the requirement

for having inflation, one usually assumes the extreme condition p = −ρ, which simplifies

the analysis. Such a period of expansion of the universe is called de Sitter stage. In this
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case, from equation (2.37) we see that the energy density ρ is constant. Then, neglecting

the curvature term (K = 0) in equation (2.40), we learn that H is also constant during

the de Sitter phase. As a consequence, the universe is expanding exponentially,

a(t) = aie
H(t−ti) (3.1)

where a subscript ”i” means the value at the initial time when inflation starts. Because

the scale factor grows exponentially in time, the physical scales, which are proportional

to a, will also grow exponentially, while the horizon scale H−1 remains constant. What

this means is that if inflation lasts long enough, all the physical scales we observe today,

which are supposed to have been outside the horizon in the past, can re-enter the horizon

during the inflationary stage. This can explain the homogeneity of CMB.

Let us see how much inflation is needed to solve the horizon problem. It is useful to

define the number of e-foldings of inflation, N , as a measure of the growth of the universe:

N = ln
af

ai

(3.2)

where the subscripts ”i” and ”f” denote initial and final values, respectively. In a de Sitter

phase of expansion, the scale factor a(t) is given in (3.1) and the number of e-foldings

becomes:

N(t) = H(tf − ti) (3.3)

In order to solve the horizon problem, it is necessary that the largest scale we observe

today, the present horizon H−1
0 , was reduced during inflation to a value λH0(ti), smaller

or equal to the value of horizon length H−1
I during inflation:

λH0(ti) = H−1
0

(
af

a0

)(
ai

af

)
= H−1

0

(
T0

Tf

)
e−N ≤ H−1

I (3.4)

where Tf is the temperature at the end of inflation. The above relation gives a lower limit

for N , which is usually around 70.

3.1.2 Inflation and the flatness problem

As we saw in 2.6.1, the flatness problem of the standard Big Bang cosmology consists

in the fact that, according to equation (2.80), the curvature of the early universe should

be fine-tuned to |Ω − 1| ∼ 10−60 in order to reproduce a value |Ω0 − 1| of order unity

today. Inflation solves this problem in an elegant manner. Suppose that before inflation,

|Ω− 1|t=ti is of order unity; then, after inflation we have:

|Ω− 1|t=tf =
|K|

a2
f H

2
f

=
|K|

a2
i H

2
i

a2
i H

2
i

a2
f H

2
f

' |Ω− 1|t=ti

(
ai

af

)2

' e−2N (3.5)
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where we supposed that the Hubble rate H is approximately constant during inflation.

Thus, if N is sufficiently large, say N ≈ 70, it results that |Ω − 1|t=tf can be of the

required order of magnitude. In this way, the fine-tuning problem is solved or, at least,

much ameliorated, by explaining a tiny number 10−60 with a number N of order 70.

If N is larger, then |Ω − 1|t=tf is smaller, which means that a generic prediction of

inflation is that Ω0 = 1 today, with a great precision. Nevertheless, we should specify

that inflation does not change the global geometric properties of the space-time, meaning

that if the universe was open/closed before inflation, it will always remain open/closed

after it.

In Appendix A of this PhD Thesis we will investigate the modifications that a remanent

curvature term may introduce to the otherwise standard perfectly flat universe scenario.

3.1.3 Inflation and the entropy problem

The entropy and the flatness problems have a common origin, which resides in the fact

that the entropy in a comoving volume is conserved, and the universe seems to contain a

large amount of entropy, SU ∼ 1090 [9]. If the cosmic expansion was non-adiabatic during

a finite period in the early history of the universe, the entropy could have changed by an

amount:

Sf = Z3Si (3.6)

from an epoch before inflation to some other epoch after inflation, where Z is a numerical

factor. Assuming that the total entropy before inflation was of order unity, and that after

the end of inflation the universe expands adiabatically, we have:

SU = Sf ∼ (afTf)
3 ∼ (aiTi)

3

(
afTf

aiTi

)3

∼ Si

(
af

ai

)3 (
Tf

Ti

)3

∼ e3N

(
Tf

Ti

)3

∼ 1090 (3.7)

which, up to the logarithmic factor ln(Ti/Tf), gives N ∼ 70. I should specify that the

large amount of entropy is not produced during inflation, but during the non-adiabatic

phase transition after inflation (reheating), discussed in Section 3.3.

3.1.4 Other consequences of inflation

Initially, inflation was proposed as a solution to the flatness and horizon problems of

the standard Big Bang cosmology, as well as that of the magnetic monopoles. Soon

after, physicists realized that the inflationary scenario had other remarkable consequences.
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For example, it can dilute any previous unwanted relics, like topological defects, which

may form during the early universe phase transitions, see Section 6.2. But the most

important feature of inflation is the fact that it provides a viable mechanism of generation

of cosmological fluctuations [11]-[14], which are the seeds for the structure formation in

our universe. These seeds are produced during inflation and are attributed to quantum

fluctuations of the inflaton field. More details about this mechanism will be given in

Section 3.5.

3.2 Basic picture of inflation

3.2.1 Historical review

The possibility of having an accelerated expansion of the universe has been contemplated

by many authors, before any model of inflation was given. A comprehensive review of

these pre-inflationary scenarios can be found in reference [15]. The first model of inflation

as a physical model was proposed in 1981 by Alan Guth [16] as an elegant solution to the

shortcomings of the standard Big Bang cosmological model. In his model, he supposes

that some scalar field ψ is trapped in a local minimum at the origin of the potential.

Inflation is produced by the energy of the false vacuum and ends when ψ tunnels through

the barrier in the potential and evolves towards the true vacuum. This first inflationary

model is called ”old inflation”, and later, it was noted that it was not a viable model of

inflation because bubbles of the new phase could never coalesce.

A first viable model came in 1982. Linde [17], and Albrecht and Steinhardt [18],

considered a model in which the inflaton was slowly rolling down a flat potential. In this

”new inflation” model, the potential has a maximum at the origin. Inflation takes place

near the maximum and ends when the inflaton starts to oscillate around the minimum.

In new inflation, both the form of the potential and its possible GUT origin were given.

After a period of complicated model-building, Linde proposed [19] in 1983 a new

scenario, in which the inflaton is rolling towards the origin and has field values bigger

than the Planck mass MP. The potential was chosen to be of a simple form, say φ2 or φ4.

The values of φ were supposed to be a chaotically varying function of position and for

this reason, this model is usually called ”chaotic inflation”. A few years later, the chaotic

model became the favored one, although it seemed difficult to find any connection with

particle physics.

Around 1990, inflationary model-building resurrected, when La and Steinhardt [20]

proposed an improved model of ”old” inflation. Their purpose was to provide a mechanism
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for making the bubbles coalesce at the end of inflation. This mechanism was obtained

by adding a slowly-rolling inflaton field φ, in the context of an extension of Einstein’s

General Relativity, the Brans-Dicke theory. For this reason, this model received the name

of ”extended inflation”. It was ruled out immediately, in 1992, by the COBE detection

[21] of CMB anisotropy, which indicated no sign of bubbles formed at the end of inflation.

In fact, extended inflation can be re-formulated as an Einstein gravity theory. This is

why, in 1991, Linde [22] and Adams and Freese [23] proposed a crucial change in the idea

behind extended inflation, but working with Einstein gravity. Their idea was to couple

the trapped field ψ to the slowly-rolling inflaton field φ, making tunnelling completely

impossible until the end of inflation. At the end of inflation, tunnelling takes place, the

bubbles can coalesce very quickly and leave no imprint on the CMB.

Soon after, still in 1991, Linde [24] removed the idea of bubble formation at the end

of inflation, by proposing a second-order phase transition at the end of inflation, instead

of a first-order one as in the original model. This final paradigm is known as ”hybrid

inflation”. We will discuss the hybrid inflation mechanism later on, in Section 3.4.

Nowadays, there are plenty of inflationary scenarios, related to SUSY theory, brane

world, string theory, etc [25]-[33]. A survey of most of the present inflationary models is

given in Section 3.4.

3.2.2 The inflaton field

In the previous section, we have seen that the shortcomings of the standard Big Bang

cosmology can be solved by inflation, i.e., a period of accelerated expansion of the early

universe. The most simple model of inflation consists of a single scalar field φ, called

inflaton, which dominates the energy of the universe during inflation. We have also seen

that, in order to produce acceleration (ä > 0), its pressure should be negative and satisfy

p < −ρ/3.

The action of the inflaton field is:

S =

∫
d4x

√−gLφ =

∫
d4x

√−g

[
1

2
∂µφ∂µφ− V (φ)

]
(3.8)

where
√−g = a3 for the FRW metric and V (φ) is the inflaton potential. The equation of

motion of φ can be obtained from the Euler-Lagrange equations and is given by:

φ̈ + 3Hφ̇− ∇2φ

a2
+ V ′(φ) = 0 (3.9)

where a prime denotes d/dφ and an overdot means d/dt. The term 3Hφ̇ acts like a friction

term and is a consequence of the expansion of the universe.
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The energy density and pressure of the inflaton field can be calculated from the energy-

momentum tensor Tµν = ∂µφ∂νφ− gµνLφ,

ρφ = T00 =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
, (3.10)

pφ = Tii =
1

2
φ̇2 − V (φ)− (∇φ)2

6a2
(3.11)

(no sum over i). We can split the inflaton field as

φ(x) = φ0(t) + δφ(x, t), (3.12)

where φ0(t) is the ”classical” (homogeneous) field and δφ(x, t) represents the quantum

fluctuations around φ0(t).

Let us study first the evolution of the classical field φ0, which is much larger than the

fluctuations. The fate of the fluctuations will be investigated later, in Section 3.5.

The energy density and the pressure of the classical field become:

ρφ =
1

2
φ̇2 + V (φ) (3.13)

pφ =
1

2
φ̇2 − V (φ) (3.14)

in which I have dropped the subscript ”0” for simplicity. If the potential energy dominates

over the kinetic term, V (φ) À φ̇2, we obtain:

pφ ' −ρφ (3.15)

which is exactly what is needed to produce inflation.

3.2.3 The slow-roll parameters

We have seen that inflation requires that the energy density of the inflaton field be dom-

inated by its potential, which means that the inflaton field should be slowly rolling down

its potential. This is equivalent to say that V should be sufficiently flat and that the term

φ̈ is also small, φ̈ ¿ V ′.

The Friedmann equation (2.37) becomes:

H2 ' 8πG

3
V (φ) (3.16)

when the potential energy of the inflaton field dominates the energy density of the universe.

In this case, the equation of motion (3.9) is:

3Hφ̇ ' −V ′(φ). (3.17)
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In order to quantify the slow-roll conditions φ̇2 ¿ V (φ) and φ̈ ¿ V ′, it is useful to define

the slow-roll parameters, ε and η, given by:

ε = − Ḣ

H2
=

3φ̇2

2V
=

1

16πG

(
V ′

V

)2

(3.18)

η =
V ′′

3H2
=

3φ̈

V ′ +
3φ̇2

2V
=

1

8πG

V ′′

V
(3.19)

and a combination of these:

δ = η − ε =
3φ̈

V ′ = − φ̈

Hφ̇
. (3.20)

From the above definitions and the second Friedmann equation (2.38), we have:

ä

a
= Ḣ + H2 = (1− ε)H2, (3.21)

which indicates that inflation can only occur if ε < 1. Thus, during inflation, the slow-roll

parameters should be much less than unity: ε, |η| ¿ 1. Inflation ends when one of these

parameters becomes greater than 1: max(ε, |η|) > 1.

3.2.4 The epoch of horizon exit

Without inflation, the Hubble radius H−1 is a growing function of the scale factor,

H−1 ∝ a2 during radiation-domination and H−1 ∝ a3/2 during matter-domination, while

a physical scale λphys also grows due to the expansion, but only as λphys ∝ a. What this

means is that in the standard cosmology, the horizon always grows faster than the physi-

cal scales, so that scales that were larger than the horizon in the past, may ultimately be

smaller than the horizon. One says that a scale enters the horizon at the moment when

it has the same size as the horizon.

The situation is different if there is a period of inflation, see Figure 3.1. The Hubble

radius H−1 is approximately constant during inflation, while the physical scales grow

exponentially as λphys ∝ a(t) ∝ exp(Ht). This means that during inflation, scales that

were smaller than the Hubble radius in the past become larger than this and one says that

they exit the horizon. As suggested by the homogeneity problem, our present observable

universe should have been inside the Hubble volume during inflation, and at some moment

it exits the horizon. After the end of inflation, the Hubble radius starts growing faster

than the observable scales, which will finally re-enter the horizon. The largest cosmological

scales are re-entering the horizon at present. Regardless of the fact that the scales exit
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log a
end

inflation

Figure 3.1: The evolution of the horizon and of a generic physical scale λ during and after

inflation (from reference [34]).

or enter the horizon, one usually refers to these epochs as horizon crossing. At horizon

crossing, one has:

k = a∗H∗ (3.22)

where k is the wave number corresponding to some comoving scale λ, and a star indicates

the corresponding value at horizon crossing.

An important parameter is the number of e-foldings of inflation N∗ that occur between

a given scale k exits the horizon and the end of inflation. In order to give an expression

for N∗, we should specify the main eras the universe goes through. After the scale k

exits the horizon during inflation, the first important moment is the end of inflation,

denoted by a subscript ”end”. After the end of inflation, the energy density stored in the

inflaton field is converted into particles in a process called ”reheating”. We assume that

during reheating, the universe is matter dominated. The end of this era will be denoted
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by a subscript ”reh”. After reheating, the produced particles thermalize and a new era

starts, dominated by radiation. It lasts until the energy density in non-relativistic matter

becomes equal to that in relativistic particles. The matter-radiation equality will receive

the subscript ”eq”. Finally, after equality the universe becomes dominated by matter

until the present epoch, which is denoted by the subscript ”0”. Here we have neglected

the short period of recent dark energy domination, for simplicity.

By recalling that the radiation energy density ρR is proportional to a−4, that the

energy density of the matter ρM is proportional to a−3, and that the total energy density

is proportional to H2, we can write:

k

a0H0

=
a∗H∗
a0H0

=

(
a∗

aend

)(
aend

areh

)(
areh

aeq

)(
aeq

a0

)
H∗
H0

= e−N∗

(
ρreh

ρend

)1/3 (
ρeq

ρreh

)1/4 (
ρ0

ρeq

)1/3 (
ρ∗
ρ0

)1/2

. (3.23)

From the above equation, one can obtain [35, 36] an expression for N∗:

N∗ = 61− ln h− ln
k

a0H0

+ ln
V

1/4
∗

1016GeV
+ ln

V
1/4
∗

V
1/4
end

− 1

3
ln

V
1/4
end

ρ
1/4
reh

(3.24)

where h ∼ 0.7 was defined in (2.12) and parameterizes the Hubble constant H0. Thus,

given a form for the potential V (φ) and an estimation of the temperature after reheating,

one can calculate the number of e-foldings of inflation occurring after the scale k exits the

horizon. The above relation also allows one to find the value of the inflaton field φ∗ when

a given scale k crosses the horizon. From the definition of N , equation (3.2), combined

with equations (3.16) and (3.17), one has:

N∗ =
8π

M2
P

∫ φ∗

φend

V (φ)

V ′(φ)
dφ (3.25)

which combined with (3.24) gives φ∗(k). In general, V
1/4
∗ ' V

1/4
end ≤ 1016 GeV and ρreh <

Vend, so that there is an upper limit for the number of e-foldings N0 corresponding to the

largest observable scales, k = a0H0, which is N0 ∼ 60. For low-scale inflation, and a very

low reheating temperature, this number is considerably reduced, being around 30 for the

lowest energy scale V 1/4 ∼ 1000 GeV.

3.3 Reheating after inflation

After inflation was introduced to solve the problems of the standard cosmology discussed

in Section 2.6, another problem arose, related to explaining the high temperatures required



34 Inflationary cosmology

in the standard hot Big Bang picture. Due to the enormous expansion caused by inflation,

the universe is left at effectively zero temperature. Thus, a successful theory of inflation

must also give a reheating mechanism, by which the universe is reheated to a sufficiently

high temperature, Trh > 1000 GeV, where Trh is called the reheating temperature.

3.3.1 Standard reheating

The first theory of reheating [37]-[41] was based on the concept of single-body decays, and

the inflaton field was considered as a collection of scalar particles, each particle having its

finite probability of decaying. By coupling the inflaton φ to other scalar χ or fermion ψ

fields, the inflaton can decay to these particles, which later thermalize.

Let us suppose that there are contributions to the Lagrangian of the form νσφχ2 and

hφψψ resulting from inflaton couplings to scalars χ and fermions ψ, with dimensionless

couplings ν and h, and σ has dimensions of mass. If the inflaton mass mφ is much larger

than those of χ and ψ, the corresponding decay rates are [37],[42]-[44]:

Γφ→χχ =
ν2σ2

8πmφ

, (3.26)

Γφ→ψψ =
h2mφ

8π
. (3.27)

Thermal equilibrium cannot be reached if Γ < H because of the rapid expansion. An

upper limit for the reheating temperature Trh can be obtained by equating Γtot = Γφ→χχ+

Γφ→ψψ and the Hubble rate H = (8πρ/3M2
P)1/2, where ρ = g∗π2T 4/30 is the energy density

of relativistic matter, see equation (2.66):

Trh ' 0.2

(
100

g∗

)1/4 √
ΓtotMP. (3.28)

There is an upper bound on the inflaton mass coming from observations of the CMB

anisotropies, mφ ∼ 10−6MP, which puts an upper limit to the reheating temperature

Trh < 1016 GeV, which is below the GUT scale. This means that the GUT symmetries

are not restored and the monopole problem is not affected. Inflation can solve [45] the

gravitino problem [46] of supergravity models, but one can show that in such models, in

general, the reheating temperature has an upper bound, Trh < 109 GeV [40],[47]-[51].

3.3.2 The theory of preheating

After inflation, the inflaton field starts oscillating around the minimum of its effective

potential and produces particles. In the ”old” reheating theory, the oscillating inflaton
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field was regarded as a collection of particles that decayed to other particles. The usual

approach to reheating is through perturbation theory, but there are effects beyond the

perturbation theory related to the stage of parametric resonance, also called preheating.

Preheating [52] is the stage of parametric resonance of non-perturbative nature and

occurs far away from thermal equilibrium. The energy transfer from the inflaton field

to other bosonic fields and particles during preheating is extremely efficient. In this

Thesis, reheating/preheating after inflation is not investigated, but I recommend the

reader interested in details to consult the work of reference [53]. Here, I briefly sketch the

main ideas behind the theory of preheating.

Let us consider a simple model with a massive inflaton field φ coupled to another scalar

field χ with the interaction term gφ2χ2, with g a dimensionless coupling. In the stage of

parametric resonance, χ particles are produced by the decay of the inflaton field. If the

occupation number of χ particles, nk > 1, then the probability of decay becomes greatly

enhanced due to effects related to Bose statistics (stimulated production), which may lead

to explosive particle production. The main difference with respect to the perturbation

theory is the fact that in the case of preheating, the amount of produced particles depends

on the number of particles produced earlier. Thus, the elementary theory of reheating

and preheating due to parametric resonance are two different ways of describing the decay

of a scalar field.

There are different regimes in which parametric resonance may occur, depending on

the amplitude of inflaton oscillations. For large amplitude, one has a broad resonance

and it can be shown that in this regime reheating becomes extremely efficient. For small

oscillation amplitude, one has a narrow resonance, which can be interpreted as a resonance

with decay of two φ particles with mass m to two χ particles with momenta k ∼ m. For

each oscillation of the field φ(t) the growing modes of the field χ oscillate one time and

the number of produced particles grows exponentially.

Stochastic resonance is the process of particle creation similar to parametric resonance

in that, on average, the number of produced particles grows exponentially, but at some

moments their number may decrease. This is due to the expansion of the universe that

acts like a friction term and modifies the amplitude of the oscillations of the inflaton

field, which make explosive particle production a rather stochastic process. Stochastic

resonance only occurs during the first part of the process, when the amplitude of the

oscillations are very large and the resonance is very broad. Gradually the amplitude of

the field φ decreases and, finally, the expansion of the universe can be neglected and we

can use the standard methods of investigation in Minkowski space.

Parametric resonance ends when the back reaction of the created particles becomes
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important and cannot be neglected. There are two important effects of the created par-

ticles: (i) back reactions of χ particles may increase the effective mass of the inflaton,

m, which can make the resonance narrow and eventually shut it down; (ii) production of

φ particles, which occurs due to interaction of χ particles with the oscillating field φ(t).

This process is usually called rescattering. During rescattering, the effective mass of the

field χ may change and it is possible that χ particles become so heavy that they can no

longer be produced.

In the final stage of inflaton oscillations, parametric resonance terminates and reheat-

ing can be described by the elementary perturbative theory of reheating.

3.4 A survey of inflationary models

There is a large number of inflationary models at present. Some of them are based on

possible extensions of the Standard Model of elementary particles, or are simply charac-

terized by the form of inflaton potential. The first models of inflation only contained one

scalar field whose potential energy started to dominate the energy density of the universe

at a given moment, thus causing inflation. For most cases, the scale factor grows exponen-

tially during inflation, a(t) ∝ exp(Ht), but there are models where this is not true, i.e., in

power-low inflation [54]-[56] it grows as a(t) ∝ tp, where p À 1. There are models which

are based on modifications of the Einstein’s General Relativity, as in the original extended

inflation model [20, 57], but after a conformal modification of the metric it can be reduced

to power-law inflation in Einstein’s General Relativity [58]. Other interesting scenarios

are warm inflation [59, 60], in which there is particle production during inflation and one

does not require a reheating period after inflation, inflation in theories with more than

four space-time dimensions [61]-[66], etc. Apart from one-field inflation models, there are

models in which the inflaton field interacts with another auxiliary field [67], or one can

have inflation resulting from the existence of a large number of fields [68].

Even restricting ourselves only to simple single-field models, we are still left with

plenty of models [69], which might have some common features or differ substantially.

Thus, it might be convenient to give general classification schemes [34, 70]. Models can

be classified by various criteria: by the way inflation starts, by the various regimes that

are possible during inflation or by the way it ends. With these criteria in mind, we can

divide models in three general types: large-field models, in which the inflaton field can

have values of the order of the Planck mass or larger, small-field models, in which the

values of the inflaton field are smaller than MP and generally the inflaton starts very close

to the origin of the potential, and hybrid models, which include models with more than
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one relevant field during inflation.

Let us briefly describe the three types mentioned above and insist on the models that

are relevant for the work developed in this Thesis.

3.4.1 Large-field models

In models of large-field type, the inflaton field is displaced from the minimum of the po-

tential by an amount of order the Planck mass MP or even larger. The most representative

models of this type are the chaotic scenarios [19], in which one assumes that the universe

emerged from a quantum gravitational state characterized by an energy density compa-

rable with the Planck density, M4
P. The inflaton can take any value before inflation, and

if in some region it is larger than MP, the friction term 3Hφ̇ is large and in that region

inflation may occur. The generic types of potential in chaotic models are the polynomial

form V (φ) = Λ4(φ/v)n and the exponential form V (φ) = Λ4 exp(φ/v). Such models are

characterized by V ′′(φ) > 0 and −ε < δ < ε. In general, large-field models give a very

large total number of e-foldings of inflation, so that our observable universe is only a very

small part of the entire universe that suffered inflation.

3.4.2 Small-field models

If the inflaton field is smaller than the Planck mass, the corresponding model is of small-

field type. Usually, the inflaton field starts at an unstable region of the potential, near the

origin, and rolls down the potential towards a stable minimum. Representative examples

of this type of models are new inflation [17, 18], in which the inflaton evolves after a

spontaneous symmetry breaking of the potential, and natural inflation [71], where the

inflaton is a pseudo Nambu-Goldstone boson. The generic potential in small-field models

has the form V (φ) = Λ4[1− (φ/v)n] and they are characterized by V ′′(φ) < 0 and δ < −ε.

In Chapter 10 of this Thesis, I have used a particular small-field type of potential, the

Coleman-Weinberg potential [72]. This is why, in what follows I will give more details

about this kind of potential.

Coleman-Weinberg potential. The first model of new inflation type was based

upon an SU(5) GUT and had a potential of the Coleman-Weinberg (CW) type for the

scalar Higgs field responsible for the spontaneous breaking of SU(5) to SU(3)×SU(2)×
U(1) [17, 18]. The zero-temperature one-loop CW potential can be written in terms of

the magnitude of the Higgs field in the SU(3)× SU(2)× U(1) direction as:

V (φ) =
Av4

2
+ Aφ4

(
ln

φ2

v2
− 1

2

)
(3.29)
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where A = 25α2
GUT/16 ' 10−3, αGUT ' 1/45 and v is the vacuum expectation value (vev)

of φ. Note that the potential contains no mass term, so it is expected to be very flat near

the origin. For φ ¿ v it becomes:

V (φ) ' 1

2
Av4 − 1

4
λφ4 (3.30)

where λ ' 4A ln(φ2/v2). Inflation in this model occurs for φ−values very close to zero,

so that V (φ) ' Av4/2 and from the first Friedmann equation (2.37) we have that the

Hubble rate is given by:

H2 ' 4π

3

Av4

M2
P

. (3.31)

Temperature effects have been neglected here, but a more detailed treatment on finite

temperature effects and spontaneous symmetry breaking will be given later, in Chapter

6.

Inflation ends when the slow-roll parameters become of order unity. The number of

e-foldings of inflation as a function of the inflaton field is given by equation (8.18):

N(φ) =
8π

M2
P

∫ φend

φ

V (φ)

−V ′(φ)
dφ =

π

2

v4

M2
Pφ2

∣∣∣ln φ2

v2

∣∣∣
. (3.32)

In the above equation I used the approximation φ ¿ φend ' 3H2/λ, where φend is the

value of the inflaton field at the end of inflation.

In this Thesis, I use a CW-type of potential for inflation in a unified model of dark

matter and dark energy, in Chapter 10. In that model, the coefficient A is estimated

by taking into account one-loop contributions of new gauge ”messenger” fields ϕ
(Z)
i and

fermions ψ
(Z)
i , charged under a new gauge symmetry SU(2)Z , and also from inflaton self

interactions.

3.4.3 Hybrid models

The models of hybrid type are based on the idea that, during inflation, the energy density

of the universe is not dominated by the inflaton, but by the vacuum energy of a second

field. Inflation ends because of the instability of this field. The generic inflaton potential

in hybrid inflation has the form V (φ) = Λ4[1 + (φ/v)n], and V ′′(φ) > 0 and 0 < ε < δ.

The hybrid inflation scenario [24, 67, 73] normally appears in supersymmetry and

supergravity models. In this Thesis, I use a hybrid type of potential inspired from super-

gravity [74, 75], but here I prefer not to enter into the details of this type of theories. The

interested reader may also consult reference [25].
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The original idea of hybrid inflation belongs to A. Linde [24]. In the simplest realization

of the model, he coupled the inflaton field φ to an auxiliary field χ, with a potential of

the form:

V (φ, χ) =
1

4
λ(M2 − χ2)2 +

1

2
m2φ2 +

1

2
λ′φ2χ2 (3.33)

where m is the mass of the inflaton, M is a mass scale, and λ and λ′ are coupling constants.

Inflation occurs due to the large vacuum energy Λ4 = λM4/4, and the inflaton slowly rolls

down the potential towards the origin, while the field χ is fixed at a stable false minimum.

Inflation ends when the inflaton reaches the critical value φc = M
√

λ/λ′, where the field

χ is destabilized and a phase transition with symmetry breaking occurs when χ ”falls”

into the true minimum of the potential.

Inverted hybrid inflation. Another interesting possibility is to reverse the sign of

some of the terms appearing in the hybrid inflation potential. A simple example of such

a potential is of the form [75]:

V (φ, χ) = V0 − 1

2
m2

φφ
2 +

1

2
m2

χχ2 − λφ2χ2 + . . . (3.34)

The dots represent terms in the potential that are irrelevant during inflation, but they

are needed to ensure that the potential is bounded from below. In this case, the inflaton

is rolling away from the origin, while the field χ is fixed at the stable false minimum

χ = 0. As in the standard hybrid case, inflation ends when the auxiliary field χ becomes

unstable, for φ = φc = mχ/
√

λ. At that point, one requires that the fields evolve very

quickly and oscillate around the absolute minimum of the potential. This rapid way in

which inflation ends has inspired physicists to refer to it as the ”waterfall mechanism”.

In Figure 3.2 I illustrate an example of a potential used in inverted hybrid inflation

models. Initially, the inflaton field φ is located at the origin point A, which is stable in

the χ−direction, but unstable in the φ−direction. The inflaton φ may start to roll-down

along the line characterized by χ = 0, until it reaches point B. There, the curvature of the

potential in the χ−direction changes sign and the field χ becomes unstable. The point

B corresponds to the critical value of the inflaton field, φc = mχ/
√

λ. If the curvature

in the χ−direction changes rapidly from positive values for φ < φc to negative values for

φ > φc, the evolution of the field χ may be much more rapid than that of φ. Then, the

field χ may ”fall” towards the absolute minimum located at the point C and reach it in

a period of time comparable to the Hubble time, after which it starts rapid oscillations

around the minimum. Thus, after the inflaton reaches the critical point B, no significant

number of e-foldings of inflation is produced and inflation has a sudden end.

In this Thesis, I use a potential of inverted hybrid type, in order to describe a unified

model of inflation and dark energy, in Chapter 8, and a unified model of inflation and
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Figure 3.2: Schematic illustration of the potential of inverted hybrid inflation models.

The inflaton field φ slowly-rolls between points A and B, after which the auxiliary field χ

becomes unstable and it quickly ”falls” towards the absolute minimum C.

dark matter, in Chapter 9. The potential I use in both models is inspired from SUSY,

but I use a slightly modified form in order to bound it from below and to allow for a

spontaneous breaking of the potential symmetry.

3.5 Quantum fluctuations during inflation

3.5.1 Fluctuations in pure de Sitter expansion

Let us consider a generic massless scalar field φ(x, t) during a de Sitter phase of inflation.

We assume that the field can be written as the sum of a homogeneous part and a small

quantum fluctuation, φ(x, t) = φ0(t) + δφ(x, t). We will start first by studying the scalar

perturbations produced during inflation, and discuss tensor perturbations later, in 3.5.7.

The fluctuation δφ(x, t) can be expanded in Fourier modes as:

δφ(x, t) =

∫
d3k

(2π)3/2
eikxδφk(t). (3.35)

The equation of motion for δφk(t) can be obtained from the equation of motion (3.9) for
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φ, and is given by:

δφ̈k + 3Hδφ̇k +
k2

a2
δφk = 0. (3.36)

Note that for small scales k À aH the friction term 3Hδφ̇k can be neglected and the

solution is that of an harmonic oscillator. For superhorizon scales k ¿ aH, the last term

in equation (3.36) is negligible and in this case the solution δφk is approximately constant.

It is convenient to study the evolution of the fluctuations by performing the following

redefinition:

δσk ≡ aδφk (3.37)

and work with conformal time dτ = dt/a defined in equation (2.13). With these changes,

equation (3.36) becomes:

δσ′′k +

(
k2 − a′′

a

)
δσk = 0, (3.38)

where a prime denotes derivative with respect to conformal time.

For a pure de Sitter expansion, a(t) ∝ eHt and a(τ) = −1/(Hτ), from which it results

that a′′/a = 2/τ 2, and the solution to equation (3.38) is of the form:

δσk(τ) = C(k)e−ikτ

(
1− i

kτ

)
. (3.39)

The constant C(k) can be obtained from the canonical commutation relations satisfied

by δσk:

δσ∗kδσ
′
k − δσkδσ

∗′
k = −i (3.40)

and one obtains C(k) = 1/
√

2k. With this, the solution δσk becomes:

δσk(τ) =
e−ikτ

√
2k

(
1− i

kτ

)
. (3.41)

Note that in the low-scale limit k À aH, which is equivalent to −kτ À 1, the solution

δσk(τ) is just a plane wave δσk(τ) = (1/
√

2k)e−ikτ .

Going back to δφk variable, we see that in the large-scale limit −kτ ¿ 1 we have:

|δφk| = |δσk|
a

' 1

a|τ |
1√
2k3

' H√
2k3

(3.42)

which shows that, indeed, on superhorizon scales the fluctuations remain constant.

The main conclusion is that the fluctuations of a massless scalar field produced during

pure de Sitter inflation behave as plane waves at scales smaller than the horizon, while

after horizon exit they become constant and can be regarded as classical.
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In the case of a massive field φ, with mass mφ, one can show that the analogous of

(3.42) is [76]:

|δφk| ' H√
2k3

(
k

aH

)ηφ

, (3.43)

where ηφ = m2
φ/(3H

2) is defined in analogy with the slow roll parameters η and ε.

3.5.2 The power spectrum

Another useful quantity that characterizes the properties of the perturbations is the power

spectrum. For a generic perturbation δφk(t), the power spectrum Pδφ(k) is defined by:

〈0|δφ∗k1
δφk2|0〉 ≡ δ3(k1 − k2)

2π2

k3
Pδφ(k), (3.44)

where |0〉 is the vacuum quantum state of the system.

By using (3.44), the variance of the perturbations δφ(x, t) is:

〈0|δφ2(x, t)|0〉 =

∫
d3k

(2π)3
|δφk|2 =

∫
dk

k

k3

2π2
|δφk|2 =

∫
dk

k
Pδφ(k). (3.45)

Thus, the power spectrum of the fluctuations of φ can be written as:

Pδφ(k) =
k3

2π2
|δφk|2. (3.46)

3.5.3 Fluctuations in a quasi de Sitter stage

During inflation, the Hubble rate is, in general, not exactly constant, but changes with

time as Ḣ = −εH2. In this case, the scale factor is given by:

a(τ) = − 1

Hτ

1

1− ε
. (3.47)

Let us study the perturbations of a massive scalar field φ during a quasi de Sitter phase.

For the fluctuations δφk on superhorizon scales we obtain a similar result to equation

(3.43) for pure de Sitter expansion,

|δφk| ' H√
2k3

(
k

aH

)ηφ−ε

(3.48)

with the difference that now the fluctuation also depends on the parameter ε.

By replacing equation (3.48) in (3.46) one obtains [76]:

Pδφ(k) =

(
H

2π

)2 (
k

aH

)nδφ−1

(3.49)
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where one defines the spectral index nδφ of the fluctuations as:

nδφ − 1 =
d lnPδφ

d ln k
= 2ηφ − 2ε. (3.50)

We conclude that the power spectrum of fluctuations produced during a quasi de Sitter

phase of expansion is almost flat, nδφ ∼ 1, because both ηφ and ε are small during inflation.

3.5.4 Consequences of inflaton fluctuations

In the previous subsections we have studied the perturbations of a generic scalar field φ,

which was not necessary the inflaton, during an inflationary stage of expansion. Let us

assume now that φ is the inflaton field, and see the consequences it has. Because the

inflaton field dominates the energy density of the universe during inflation, one expects

that its fluctuations produce certain changes in the ideal homogeneous and isotropic

background. Indeed, the theory of structure formation is based on the assumption that

the seeds for the inhomogeneities present in the universe are provided by inflaton field

fluctuations, and it is nowadays the most popular and successful theory for explaining the

observed structure of the universe [10].

The general philosophy is that the perturbations in the inflaton field induce perturba-

tions in the stress energy-momentum tensor, which in turn induces perturbations of the

metric. On the other hand, a perturbation of the metric induces a back-reaction on the

evolution of the inflaton perturbations. This means that the perturbations of the inflaton

field and those of the metric are tightly coupled to each other:

δφ ⇔ δgµν . (3.51)

Thus, perturbations of the metric involve perturbations of the Einstein tensor Gµν =

Rµν − 1
2
gµνR. In this way one can obtain the perturbed Einstein equation and also the

perturbed Klein-Gordon equation for the inflaton field.

Because the theory of General Relativity is a gauge theory, one has to choose a gauge

in order to compute the perturbations. This can be done in two ways: (i) the first is to

define gauge-invariant quantities, which have physical meaning, but then the computation

may be more complicated; (ii) the second is to choose a given gauge and perform the

calculations in that gauge, which is technically simpler, but has the drawback of including

possible gauge artifacts, which are not physical.

Let us give here a few examples of gauge-invariant quantities, related to different

coordinate transformations on constant time hypersurfaces (slicing).
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• the comoving curvature perturbation, defined as:

R = ψ +Hδφ

φ′
= ψ + H

δφ

φ̇
(3.52)

where ψ is the gauge-dependent curvature perturbation on a generic slicing and δφ

is the inflaton perturbation in that gauge. The curvature perturbation ψ is related

to the intrinsic spatial curvature on hypersurphaces of constant conformal time τ ,

and for a flat universe gives (3)R = 4
a2∇2ψ. This means that R represents the

gravitational potential on comoving hypersurfaces where δφ = 0.

• the curvature perturbation on slices of uniform density, defined as:

ζ = ψ +Hδρ

ρ′
= ψ + H

δρ

ρ̇
(3.53)

which is related to the gauge-dependent curvature perturbation ψ on a generic slicing

and to the inflaton energy density perturbation δρ in that gauge. This means that

ζ represents the gravitational potential on slices of uniform energy density where

δρ = 0. One can show that, on superhorizon scales, the curvature perturbation

on slices of uniform density is equal to the comoving curvature perturbation, i.e.,

ζ ' R.

• the perturbation in spatially flat gauge, defined as:

Q = δφ +
φ′

Hψ = δφ +
φ̇

H
ψ =

φ̇

H
R (3.54)

which is related to the inflaton perturbation δφ on a generic slicing and to the

curvature perturbation ψ in that gauge. The meaning of Q is that it represents the

inflaton potential on spatially flat slices where δψ = 0.

3.5.5 Adiabatic and isocurvature perturbations

Before proceeding with the study of the fluctuations produced during inflation, let us

discuss shortly the two possible types of primeval fluctuations.

• adiabatic or curvature perturbations, which are fluctuations in the total energy den-

sity δρ. They can be characterized in a gauge-invariant manner as fluctuations in

the local value of the curvature. For adiabatic perturbations, one can write:

δρ

ρ̇
=

δp

ṗ
(3.55)

which implies that p = p(ρ).
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• isocurvature or isothermal perturbations, which leave the total energy density and

the intrinsic curvature unperturbed, but there are relative fluctuations between the

different components of the system. For isocurvature perturbations, one has:

δρ

ρ̇
6= δp

ṗ
(3.56)

which means that isocurvature perturbations may be interpreted as fluctuations in

the form of the local equation of state. In order to have isocurvature perturbations,

it is necessary to have more than one component. For a set of fluids with energy den-

sities ρi, isocurvature perturbations are conventionally defined by gauge-invariant

quantities

Sij = 3H

(
δρi

ρ̇i

− δρj

ρ̇j

)
. (3.57)

This means that if the inflaton field is the only field during inflation, the cosmological

perturbations generated during inflation are of adiabatic type. On the other hand, if

during inflation there is a massless axion-like field along with the inflaton field, isocur-

vature perturbations are expected to be generated. Isocurvature perturbations produced

during inflation are highly constrained by recent observations of the CMB and large-scale

structure (LSS) of the universe [77].

3.5.6 The power spectrum of comoving curvature perturbation

Our next task is to compute the curvature perturbation generated during inflation on

superhorizon scales. We have seen that during inflation, quantum fluctuations of the

inflaton field are generated and their wavelengths are stretched on large scales by the rapid

expansion of the universe, while their amplitude becomes constant on superhorizon scales.

This allows us to use either the comoving curvature perturbation R or the curvature on

uniform energy density hypersurfaces ζ to describe curvature fluctuations on superhorizon

scales.

Let us calculate the power spectrum of comoving curvature perturbation

Rk ' H
δφk

φ̇
(3.58)

where δφk is the fluctuation of the inflaton field on superhorizon scales.

The corresponding power spectrum is given by:

PR =
k3

2π2

H2

φ̇2
|δφk|2 =

2k3

πεM2
P

|δφk|2. (3.59)
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The time evolution of δφk can be evaluated by using the perturbed Klein-Gordon equation

in the conformal Newtonian (or longitudinal) gauge, on superhorizon scales [76]:

δφ̈k + 3Hδφ̇k + (V ′′ + 6εH2)δφk = 0 (3.60)

which gives:

|δφk| ' H√
2k3

(
k

aH

) 3
2
−ν

(3.61)

where ν = (9
4
+ 9ε− 3η)1/2 and ε and η are the slow-roll parameters defined in (3.18) and

(3.19), respectively.

By replacing equation (3.61) in (3.59) we finally obtain [76]:

PR(k) =
4π

εM2
P

(
H

2π

)2 (
k

aH

)ns−1

≡ A2
R

(
k

aH

)ns−1

(3.62)

where ns is the spectral index of the comoving curvature perturbations defined as:

ns − 1 =
d lnPR
d ln k

= 2η − 6ε. (3.63)

We conclude that the spectrum of curvature perturbations is almost scale-invariant with

ns ∼ 1.

3.5.7 Gravitational waves

Apart from scalar perturbations produced during inflation, there can also exist tensor

perturbations, which describe the propagation of free gravitational waves [78]. A gravi-

tational wave may be viewed as a ripple of spacetime in the FRW metric (2.9), which in

the linear tensor perturbation theory may be written as:

gµν = a2(τ)
[
dτ 2 − (δij + hij)dxidxj

]
(3.64)

where |hij| ¿ 1.

The gauge-invariant tensor amplitude

vk =
ahk

2
√

8πG
, (3.65)

where hk is the amplitude of the gravitational waves, satisfies the following equation:

v′′k +

(
k2 − a′′

a

)
vk = 0. (3.66)
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In the slow-roll approximation and on superhorizon scales, the solution to equation (3.66)

is given by:

|vk| = aH√
2k3

(
k

aH

) 3
2
−νT

(3.67)

where νT ' 3
2

+ ε.

This corresponds to a tensor-power spectrum of the form:

PT (k) ' 64π

M2
P

(
H

2π

)2 (
k

aH

)nT

≡ A2
T

(
k

aH

)nT

(3.68)

where nT is the spectral index of tensor perturbations, defined by:

nT =
d lnPT

d ln k
= 3− 2νT = −2ε. (3.69)

This means that the tensor perturbations are almost scale-invariant, and the amplitude

of the tensor modes only depends on the Hubble rate H during inflation.

An important observational quantity is the tensor to scalar ratio, which is defined as:

r ≡ A2
T

A2
R

' 16ε. (3.70)

Since ε ¿ 1 during inflation, the amplitude of tensor perturbations is very much sup-

pressed relative to that of scalar perturbations.

From equations (3.69) and (3.70) we obtain the consistency relation:

r = −8nT. (3.71)

3.6 Evolution of perturbations after inflation

So far in this chapter we have seen how perturbations are produced and how they evolve

during inflation. A perhaps even more important question is the mechanism by which

these perturbations evolve into the structure we observe today: stars, galaxies, clusters

of galaxies, superclusters, voids, etc.

The theory of structure formation is a well-developed theory [10], in which one needs to

know the initial conditions at the time structure formation began. The initial data should

include knowledge about the composition of the universe, the amount of non-relativistic

matter, and the spectrum and type of primeval density perturbations.
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3.6.1 Angular power spectrum of CMB fluctuations

The observed CMB is a snapshot of the universe at the moment of the last-scattering,

when the universe became neutral and CMB photons decoupled from the early hot plasma

and could propagate towards us. The first precision data were taken by the COBE

satellite [21], followed by MAXIMA [79], BOOMERANG [80], DASI [81] and WMAP

[82]. They detected temperature fluctuations in the CMB at the level ∆T/T ∼ 10−5.

These fluctuations in the temperature are connected to fluctuations in the density at the

epoch of recombination, which are of similar amplitude, ∆T/T ≈ ∆ρ/ρ.

There are several physical processes responsible for the origin of the temperature fluc-

tuations, which can contribute either to the large-angular scales, θ À 1◦, or to the small-

angular θ ¿ 1◦ anisotropy. The processes acting on small-angular scales are microphysical

processes and will be shortly analyzed at the end of this section.

The temperature fluctuations on large-angular scales arise due to the Sachs-Wolfe ef-

fect [83]. They probe superhorizon scales at decoupling and provide the ”virgin” spectrum

of primeval fluctuations, because causality precludes microphysical processes from affect-

ing the fluctuations on angular scales larger than about 1◦. It consists in the fact that

photons may gain or lose energy in the presence of gravitational potential wells produced

by density fluctuations. The mathematical form of the Sachs-Wolfe effect is given by:

δT

T
=

1

5
R(x̂LS) (3.72)

where x̂LS is the coordinate of the observed photon on the last-scattering surface, and R
is the comoving curvature perturbation defined in equation (3.52).

The temperature anisotropy is commonly expanded in spherical harmonics

δT

T
(x0, n̂) =

∞∑

l=2

l∑

m=−l

almYlm(n̂) (3.73)

where x0 is our space-time position at present and n̂ is the direction of observation.

The angular power spectrum is defined by:

Cl = 〈|alm|2〉 =
1

2l + 1

l∑

m=−l

|alm|2. (3.74)

Due to homogeneity and isotropy, the Cl’s do not depend on our spatial position x0, nor

on m.

The angular power spectrum is related to the power spectrum of curvature perturba-

tions, PR. One can show that [76]:

Cl =
4π

25

∫ ∞

0

dk

k
PR(k)j2

l (k(τ0 − τLS)) (3.75)
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where jl is the spherical Bessel function of order l, τ0 and τLS are conformal times of the

observer and of the last scattering surface, respectively, and PR(k) is the curvature power

spectrum defined in equation (3.59). The above equation (3.75) is valid for 2 ≤ l ¿
(τ0− τLS)/τLS ∼ 100. The values of δφk entering in PR(k) are obtained from the equation

of motion for δφk, equation (3.36).

In Appendix A of this PhD Thesis, I calculate the angular power spectrum of fluctua-

tions produced in a universe with a small curvature and compare it to the standard case of

a perfectly flat universe. The curvature will affect the solution δφk and, as a consequence,

the resulting angular power spectrum will be modified on large scales, with respect to the

flat case.

3.6.2 The linear growth of structure

The fluctuations in the inflaton field produced during inflation are stretched to scales larger

than the horizon and after they exit the horizon their amplitude remains approximately

constant. An interesting question is to study how these fluctuations evolve after they

reenter the horizon and also to investigate the effects they may have on the universe.

As curvature perturbations enter the causal horizon, they create density fluctuations

δρk via gravitational attractions of the potential wells. It is useful to define the density

contrast δk by:

δk =
δρk

ρ̄
(3.76)

where ρ̄ is the background average energy density.

Before investigating the fate of the density contrast after a perturbation enters the

horizon, firstly we have to analyze how it behaves on superhorizon scales. It can be

shown [10] that the superhorizon scales are unstable and the density contrast grows as:

δk ∝




a2, RD

a, MD
(3.77)

After the perturbation enters the horizon, a Newtonian treatment of the evolution of

perturbations suffices and it may be obtained from the linear perturbation equation:

δ̈k + 2Hδ̇k +

(
c2
s

k2

a2
− 4πGρ̄

)
δk = 0 (3.78)

where c2
s = ṗ/ρ̇ defines the sound speed cs of the perturbed component. If the mode

enters the horizon during RD, baryons and photons are strongly coupled and the density

contrast cannot grow due to the large pressure of the photon bath and it only oscillates.
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If the mode enters the horizon during MD, the growth of the density contrast becomes

possible, depending upon whether c2
sk

2/a2 is larger, or smaller than 4πGρ̄ in equation

(3.78). This means that there is a scale characterized by kJ =
√

4πGρ̄/cs, where kJ is the

Jeans wavenumber, which separates the gravitationally stable and unstable modes. The

short-wavelength modes k À kJ are stable and correspond to oscillations, while for k ¿ kJ

they are unstable and structure formation is possible. Thus, the epoch of matter-radiation

equality sets an important scale for structure growth

kEQ = H−1(aEQ) ' 0.08hMpc−1. (3.79)

We expect perturbations with k À kEQ to be suppressed with respect to those having

k ¿ kEQ, by a factor (aENT/aEQ)2 = (kEQ/k)2, where aENT denotes the scale factor at the

moment when the perturbations corresponding to scale k enter the horizon.

By defining a transfer function T (k) by the relation Rfinal = T (k)Rinitial, we obtain

that:

T (k) =





1 k ¿ kEQ

(
kEQ

k

)2

, k À kEQ

(3.80)

which will suppress the matter power spectrum at scales k À kEQ. This prediction is

confirmed by the observed shape of the CMB power spectrum.

After the universe becomes MD, the primordial power spectrum of density pertur-

bations is reprocessed by gravitational instabilities and structure formation is possible.

Solving equation (3.78) in the MD epoch, we obtain that the growing mode δ+
k evolves

as:

δ+
k ∝ t2/3 ∝ a ∝ (1 + z)−1. (3.81)

It can be shown that in a baryonic dominated universe, the baryon density contrast today

would be:

δB(t = t0) < 0.1 (3.82)

which is far too small to account for the large inhomogeneities observed in the universe.

This means that in a pure baryonic universe, galaxies cannot form. The theory of structure

formation requires the presence of non-baryonic non-relativistic weakly interacting matter.

This type of matter is generically called dark matter and will be studied in the next

chapter.
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Dark matter

4.1 Evidence for dark matter

There are many astrophysical and cosmological arguments in favor of the existence of

dark matter in the universe, which is weakly interacting with normal matter and with

photons. The adjective ”dark” comes from the fact that it cannot absorb, nor emit any

kind of electromagnetic radiation, including the visible spectrum.

The evidence of the existence of dark matter rely on observations of the dynamics of

galaxies and clusters of galaxies and of some effects produced by their huge mass. One

can infer the total mass of galaxies and clusters and then compare it to the observed

luminous mass, and if they differ substantially, this means that some of the total mass in

the universe is dark.

By measuring the radiation emitted by the baryonic matter in the visible, infrared

and X-ray ranges, one can deduce the contribution of luminous matter to the universe

density [84]:

0.002 ≤ Ωlumh ≤ 0.006 (4.1)

from which we can establish the conservative upper limit Ωlum < 0.01.

In this section, I describe a few methods that are used to estimate the total amount

of mass in a galaxy or cluster. First, I will present the limits on the baryonic density, and

if it results to be larger than the luminous density, this means that some baryons should

be dark. Second, I will present the constraints on the total matter density, ΩM, which

will be compared with the baryonic one, ΩB. If ΩB ¿ ΩM, it is a clear evidence of the

existence of non-baryonic dark matter in the galactic halos.



52 Dark matter

4.1.1 Baryonic density

BBN limit. The overall baryonic content of the universe can be constrained by the BBN

model, which predicts the abundances of the light elements such as deuterium (D), 3He,
4He and 7Li. Within the standard Big Bang picture, their abundances only depend on

one unknown cosmological parameter, the baryon number fraction relative to the present

density of CMB photons, η ≡ nB/nγ, which is usually parameterized as η10 ≡ η/10−10.

In terms of η10, the baryon density is given by:

ΩBh2 = 3.65× 10−3η10 (4.2)

and η10 is inferred from observations of the primordial light elements abundances, and

has values in the range [85]:

3.4 ≤ η10 ≤ 6.9. (4.3)

The allowed range for η10 implies a range for ΩBh2:

0.012 ≤ ΩBh2 ≤ 0.024. (4.4)

CMB limit. Another way to determine the matter content of the universe is by

observations of the CMB, which contains a lot of information that can be used to constrain

several key parameters. In the context of the ”concordance” ΛCDM model, one can

determine, among other parameters, the total matter density, ΩMh2, the baryon density

ΩBh2 and the total density Ω, which is related to the curvature of the universe.

The most recent data come from 3-year WMAP observations and give for the baryon

density the following value [5]:

ΩBh2 = 0.02229± 0.00073 (4.5)

with h = 0.732+0.031
−0.032.

In conclusion, the data indicates that the baryon density ΩB is larger than the luminous

matter density Ωlum, which implies the existence of a baryonic dark matter component.

4.1.2 Matter density

Galactic rotational curves. Spiral galaxies are bound systems, gravitationally stable,

whose matter content comprises stars and interstellar gas. The most part of the observed

matter is concentrated in a relatively thin disk, where stars and gas spin around the

galactic center, in quasi circular orbits. Our own galaxy is an example of a spiral galaxy.

Let us suppose that in a galaxy of mass M , concentrated in its center of masses, the

rotational velocity at a distance R from the center is v. The stability condition requires
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that the centripetal acceleration is equal to the acceleration produced by gravitational

forces,
v2

R
=

GM

R2
(4.6)

from which we obtain the velocity v as a function of the radius R:

v =

√
GM

R
. (4.7)

Thus, observing the rotation of galaxies we expect a behavior v ∝ 1/
√

R. The rotational

velocity v is measured [86] by observing 21 cm emission lines in HI regions (neutral

hydrogen) beyond the point where most of the light in the galaxies ceases.

Figure 4.1: Rotation curve of the spiral galaxy NGC 6503 as established from radio

observations of hydrogen gas in the disk. The dashed line shows the rotation curve

expected for the visible component, the dot-dashed line is for the dark matter halo alone

and the dotted line is for the gas (from reference [87]).

The measurements do not confirm expectations, instead they indicate that after a

radius of about 5 kpc, the velocity becomes almost constant, see Figure 4.1. Supposing

that the bulk of the mass is associated with light, the estimated velocity using equation

(4.7) predicts a value which is three times smaller than measured, for the points situated

at the extremity of the galaxy, at about 50 kpc from the center. This fact indicates that

the gravitational field calculated only with luminous matter is a factor of 10 less than

required to explicate observations.
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One possible explanation to this problem is to suppose that gravity is modified at large

scales. Another explanation is to consider galactic magnetic fields, in regions extending

up to tens of kiloparsecs, where the interstellar gas density is low and the dynamics of

the gas might be modified by these fields [88]. Nevertheless, the last argument would not

affect the velocity of the stars.

The explanations mentioned above do not seem to be very appealing. Instead, it seems

more attractive to suppose the existence of a large amount of dark matter in the visible

halo of galaxies and even outside, which creates the gravitational field responsible for the

observed rotational curves of galaxies.

In order to obtain a constant rotational velocity, as required by observations, the radial

mass distribution M(R) should be proportional to R,

v =

√
GM(R)

R
∝

√
GR

R
= const (4.8)

in which case the radial distribution of the density is:

ρ(R) ∝ R−2. (4.9)

There is also evidence for dark matter in elliptical galaxies.

Large-scale motion of galaxies. The largest bound systems in the universe are the

clusters of galaxies, whose typical radius are between 1−5 Mpc and have masses between

2− 9× 1014M¯, being M¯ the mass of our sun.

For any self-gravitating system like galaxies and clusters of galaxies, one can apply

the virial theorem, which says that the mean kinetic energy 〈Ekin〉 is equal to minus half

the mean potential energy 〈Egrav〉, due to the gravitational attraction between the objects

that form the system:

〈Ekin〉 = −1

2
〈Egrav〉. (4.10)

In this way, one can estimate [89] the dynamical mass of a cluster of galaxies characterized

by a mean radius R and squared velocity 〈v2〉:

M ' R〈v2〉
0.4G

. (4.11)

By measuring the velocity 〈v2〉 observing the Doppler shift of the spectral lines of the

constituent galaxies and estimating the size of the cluster, one can infer the approximate

total mass of the cluster, M . Applying this technique to a set of cluster and assuming

that the resulting mass density is representative for the entire universe, one obtains that

the matter density of the universe is given by [90]:

ΩM = 0.24± 0.05± 0.09 (4.12)
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where the first error is statistical and the second one is systematical.

Gravitational lensing. From the study of the dynamics of stellar objects, one

deduces the existence of a large amount of dark matter in galaxies and clusters. Because

of this huge concentration of mass, other interesting effects may appear. One of them is

a consequence of the theory of General Relativity and consists in the deviation of light

when it propagates in the gravitational field of very massive objects. This effect is similar

to that of an optical lens, with the lens replaced by a galaxy or a cluster of galaxies,

and is known as gravitational lensing. In Figure 4.2 is represented, schematically, the

gravitational lensing effect. When the source, the deflecting mass MD and the observer

are situated on the same line, i.e., r = 0, the observer sees the image of a ring, called the

Einstein ring, which has a radius rE given by [91]:

r2
E = 4GMDd (4.13)

where d = d1d2/(d1 + d2), and d1 and d2 are defined in Figure 4.2.

Figure 4.2: Geometry of the light deflection by a point-like mass which gives two images

of a source viewed by an observer (from reference [92]).

In practice, the gravitational lensing effect has been observed starting from middle

80’s, by using high-resolution telescopes. The observed images appear as arcs of a circle,

which form around clusters of galaxies. The spectral analysis shows that the cluster and

the image are very far away from each other, which can be interpreted as follows: the

arc is the image of a distant galaxy, situated on the same line of sight as the cluster that

produces a magnified and distorted image of the galaxy by the gravitational lensing effect.

Thus, the arc is somehow a part of the corresponding Einstein ring.
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Starting from a systematic analysis of the cluster’s mass distribution, one can infer

the gravitational field responsible for the distortion. The analysis suggests a total mass

of the cluster much larger than the visible matter, which comes to confirm the need for

dark matter in clusters. The required amount of dark matter is in concordance with

the results coming from studying the dynamics of galaxies and clusters. The numerical

estimations from gravitational lensing usually give slightly higher values as compared

to other methods, ΩM = 0.2 − 0.3 for scales less than 6h−1 Mpc, and ΩM = 0.4 for

superclusters with sizes of order of 20 Mpc.

If the resolution of the telescope used for observations is not good enough to measure

the angular distance α in Figure 4.2, the resulting images forming the ring cannot be

distinguished from each other and they appear as superposed. As a result, the observer

perceives an enhancement of the source brightness. This effect is known as gravitational

microlensing, and it has been used to detect dark objects with masses MD ∼ M¯, at the

Milky Way scale.

X-ray galaxy clusters. The galaxy clusters are a powerful X-ray source, explained

by the large fraction of baryons in the form of hot gas. One calculates the baryon fraction

of clusters, fBh3/2 = 0.03− 0.08, which means that for h = 0.72 one obtains

ΩB/ΩM ' 0.13. (4.14)

CMB. As mentioned in the previous subsection, recent observations of the CMB allow

for accurate determination of several cosmological parameters. The value inferred from

the recent WMAP observations for the total mass density is given by:

ΩMh2 = 0.1277+0.0080
−0.0079. (4.15)

In conclusion, the total matter density ΩM inferred by the methods presented in this

subsection is clearly larger than the baryonic density ΩB, which is a clear evidence for

the presence of a non-baryonic dark matter component, with a relative density of about

ΩDM ' 0.2.

4.1.3 Structure formation with dark matter

In the previous chapter we have seen that if the universe only contained baryonic matter,

structure formation would occur too slowly and galaxies would not have enough time to

form. I will show here that dark matter can solve this problem, and that galaxies can

form in the presence of a significant dark matter component in the universe.

Let us assume now that, during structure formation, the universe is dominated by dark

matter, which only interacts with baryons through a gravitational coupling. Then, we
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can write down two coupled wave equations for the fluctuations in the two components:





δ̈B + 2Hδ̇B − 4πGρ̄BδB = 4πGρ̄DMδDM

δ̈DM + 2Hδ̇DM − 4πGρ̄DMδDM = 4πGρ̄BδB

(4.16)

In the approximation ΩB ¿ ΩDM ' 1, the second equation (4.16) above reduces to

equation (3.78) with cs = 0. Its growing mode solution in a matter dominated universe

was given at the end of the previous chapter, in equation (3.81). Applying it to dark

matter, we have:

δDM(a) = αa (4.17)

where α is a constant. Inserting this solution in the first equation (4.16) for the baryonic

component and using the same approximation ρ̄B ¿ ρ̄DM, one finally obtains:

δB(a) = α(a− adec) = δDM(a)
(
1− adec

a

)
(4.18)

where adec is the scale factor at decoupling.

From the solution (4.18) one can see the qualitative behavior of the baryonic fluctu-

ations: for a = adec, one has δB → 0, while for a À adec one obtains δB ' δDM. This

means that soon after decoupling baryons can fall into the potential wells created by dark

matter, such that baryonic perturbations ”catch up” with dark matter perturbations.

We have seen that baryonic perturbations cannot grow until the decoupling epoch

and they alone would not have enough time to produce the observed structure of the

universe, while with a dark matter component, structure formation becomes possible.

The precise values of the baryon and dark matter densities are obtained from the higher

order multipoles of the CMB power spectrum and from astrophysical constraints.

4.2 Candidates for dark matter

4.2.1 Baryons

Accepting the dark matter hypothesis, the first choice for a candidate should be something

we know to exist, namely, baryons. The matter in the galactic halos appears to contribute

at the level of Ω ∼ 0.05, consistent with the BBN predictions for baryons. Thus, we know

that some of the baryons should be dark, since only a part Ωlum ≤ 0.01 of the galaxy is

luminous. Also, baryonic dark matter cannot be the whole story if ΩM > 0.1, as seems to

be the case. Thus, the identity of the dark matter in galactic halos remains an important

question needing to be resolved.
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We should specify that dark baryons cannot form normal stars, because they would

then be luminous. Neither can they be in the form of a hot gas, since this emits light,

nor in the form of cold gas, since this absorbs radiation, which is immediately emitted in

infrared. Finally, neither can they appear as relics of stars that have finished their fuel,

because these should originate from an older population of stars, which in practice are

not observed in the galactic halos.

Sites for halo baryons that have been discussed include frozen, cold or hot Hydrogen,

remnants of massive stars such as white dwarfs [93, 94], which do not have enough mass to

become supernovae. Other more plausible candidates are planets of Jupiter type or brown

dwarfs, which are stars with masses less than 0.08M¯. These objects are known as Massive

Compact Halo Objects (MACHOs). Their pressure is not high enough as to be able to

support Hydrogen combustion, and they only radiate the gravitational energy that is lost

during their slow contraction, but this energy is very difficult to detect. Nevertheless, if

a MACHO passes exactly in front of a distant star, it acts like a gravitational lens and

can be detected by the microlensing effect [95]. It is precisely by this method that quite

a few MACHOs have already been detected [96, 97].

Another type of candidates are black holes, which are not luminous and, if they are

big enough, they can be long-lived. Black holes resulting from the collapse of stars with

masses slightly larger than 8M¯ cannot be dark matter, because during their formation

process a considerable amount of unobserved metals would have been produced [98]. If

the mass of the collapsing star is larger than 200M¯, it would produce background light

that would be detectable today in infrared. Since no such radiation has been detected,

we conclude that black holes in these mass ranges cannot be dark matter.

Finally, very massive black holes, with masses larger than 105M¯, are not affected

by the previous constraints [99], but the possibility of having a dynamical evidence of

their existence is not clear enough, and one can only put upper limits on the density of

these very massive black holes. The final conclusion is that baryonic dark matter cannot

account for all the required amount of dark matter of the universe [100, 101].

4.2.2 Neutrinos

In the previous section we have seen that baryons can only account for a small part of

the total amount of dark matter of the universe. It is natural then to keep searching for

new candidates to the dark matter, other than baryons.

Since neutrinos seem to have a tiny mass and are long-lived particles, they are can-

didates to be non-baryonic hot dark matter [102]. Nevertheless, they cannot be the
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dominant form of dark matter, because in that case galaxies would form very late, at

z < 1, which is ruled out by observations of galaxies and quasars at redshifts z ≥ 6.

If neutrinos decouple while they are still relativistic, i.e. mν ≤ 1 MeV, their energy

density can be expressed at late times as ρν = mνYνnγ, where Yν = nν/nγ is the number

density of neutrinos, relative to the photon density. In an adiabatically expanding uni-

verse, one has Yν = 3/11. This result is obtained by taking into account that photons

and neutrinos have different statistics, and also the e+e− annihilation, which occurs after

neutrino decoupling, and heats the photon bath relative to the neutrinos. Their final relic

density is given by:

Ωνh
2 '

∑
i mνi

94eV
. (4.19)

The sum of neutrinos masses can be constrained by various experiments. The recent

WMAP data [5] combined with other astronomical data put a stringent upper limit,∑
i mνi

< 0.66 eV (95% CL), while experiments at Super-Kamiokande [103] put limits

on the mass differences between distinct neutrinos families, ∆m2
νi
∼ 3 − 19 × 10−5 eV2.

Then, from equation (4.19) we obtain an upper bound on the neutrino fraction density,

Ων < 0.01, which confirms that neutrinos cannot be the dominant dark matter component.

Massive neutrinos are allowed from the cosmological point of view only if their mass

is larger than a few GeV, but then they are ruled out by experiments at LEP, which

put a lower limit on the neutrino mass, mν > 45 GeV. It can be shown [104, 105] that

this lower limit on the heavy neutrino mass leads to an upper limit on its abundance,

Ωνh
2 < 0.001. Dirac neutrinos constituting all of dark matter are excluded for masses in

the range 10 GeV− 4.7 TeV by laboratory constraints [106]-[108], and only for masses in

the range 200− 400 TeV [109] would they be the dominant dark matter component, with

Ωνh
2 ∼ O(1).

4.2.3 WIMPs

The weakly interacting massive particles (WIMPs) are non-baryonic relic stable particles

with masses between 10 GeV and a few TeV, and low cross-sections. Their relic density can

be calculated [104, 110] by using the laws of thermodynamics in the expanding universe,

for WIMPs that were in equilibrium with the plasma of SM particles:

Ωχh2 ≈ 3× 10−27cm3s−1

〈σv〉 . (4.20)

Here σ is the cross-section corresponding to WIMP pair annihilation to SM particles, v

is the relative velocity between two WIMPs in the center of mass system, and 〈...〉 means

thermal average.
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The best motivated WIMP candidate is the lightest supersymmetric particle (LSP)

of supersymmetric (SUSY) models [110, 111]. In the minimal supersymmetric standard

model (MSSM), if R-parity is unbroken, there is at least one SUSY particle, which must

be stable. To be a dark matter candidate, the long lived particle should be electrically

neutral and colorless. The sneutrino [112, 113] is one possibility, but it has been excluded

as a dark matter candidate by direct [106] and indirect searches [114]. Another candidate

is the gravitino, which is probably the most difficult to exclude.

The most popular candidate is the lightest neutralino [110, 115], which can have the

adequate relic density for a large region in the relevant parameter space.

4.2.4 Pseudo Goldstone bosons

As will be seen in Chapter 6, the Goldstone theorem tells us that the breaking of a global

symmetry implies the existence of a massless particle, called the Goldstone boson. If for

some reason the global symmetry is also slightly explicitly broken, the Goldstone boson

acquires a small mass, which converts it into a pseudo-Goldstone boson (PGB).

Apart from the known global symmetries, there might exist many other global sym-

metries in nature, which are not manifest due to the fact that they are broken. If we

discovered a general mechanism of explicit breaking of all global symmetries, we would

end up by having a large number of PGBs, which, under certain conditions, could play

the role of non-baryonic dark matter.

In the work of reference [116], we introduce a new global U(1) symmetry and assume

that it is explicitly broken by Quantum Gravity effects, apart from the usual spontaneous

symmetry breaking. The resulting PGB is a dark matter candidate in the conditions that

the explicit symmetry breaking is exponentially small.

In Chapter 9 of this Thesis, I extend the model investigated in [116] to incorporate

inflation, in such a way that a single complex scalar field ψ can be responsible for both

the inflationary period and the non-baryonic dark matter of the universe.

4.2.5 Axions

The axion [117, 118] is a PGB associated to the spontaneous breaking of the global U(1)PQ

Peccei-Quinn symmetry, which was postulated to solve the strong CP problem [119, 120].

The energy scale fa of the spontaneous breaking of U(1)PQ is a free parameter, but from

astrophysical [121]-[126] and cosmological [127]-[129] considerations, it is constrained to

be in the range 1010 < fa < 1012 GeV. Apart from the spontaneous breaking, the Peccei-

Quinn symmetry is also explicitly broken by non-perturbative QCD effects, which occur
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at a much lower scale, ΛQCD ∼ 200 MeV. Because of the explicit beaking, the axion

receives a small mass, which is expected to be ma ∼ mπfπ/fa, where mπ is the pion mass

and fπ the pion decay constant.

Axions can be produced both thermally and non-thermally. Non-thermal production

may occur through coherent oscillations of the axion field a in its effective potential

V (a) ∼ m2
aa

2. For this reason, although its mass ma can be very small, the axions

produced in this way are non-relativistic and they contribute to cold dark matter. The

axion relic density is [130]:

Ωah
2 = Ca

(
fa

1012GeV

)1.175

θ2
i (4.21)

where Ca is a constant in the range between 0.5 and 10, and θi ∼ O(1) is the initial

oscillation angle. Axions can account for the most part of the dark matter for values of

fa ∼ 1011 GeV, which corresponds to an axion mass ma ∼ 0.1 meV. Another non-thermal

axion production mechanism is through decays of axion cosmic strings [131], which appear

in the process of spontaneous symmetry breaking of the Peccei-Quinn symmetry. The relic

density Ωa contributed by string decays depends on the scale fa and can be larger than

(4.21), for large fa values. In order for the axion to be dark matter, the density of string-

decay produced axions should be subdominant, which implies lower values for fa and

larger values for ma.

Thermal axion production occurs in a certain range of values of the temperature, for

which there is thermal contact between the axion and the cosmic plasma. It is important

to remark the fact that if there is a period of thermalization after a period of non-thermal

axion production, the calculated axion relic density at present is considerably reduced,

and this fact might affect the role of the axion as dark matter [132].

Axions may also be emitted in stars and supernovae, via axion-electron coupling or

nucleon-nucleon bremsstrahlung [126]. Axion emission from red giants imply fa ≥ 1010

GeV [121] and the supernova limit requires fa ≥ 2×1011 GeV [122]-[124] for a naive quark

model coupling of the axion to nucleons. On the other hand, the cosmological density

limit Ωa < 0.3 in (4.21) requires fa ≤ 1012 GeV [127]-[129], which only leaves a narrow

window open for the axion as a viable dark matter candidate.

4.3 Final remarks on dark matter

Let us summarize the discussion on dark matter and highlight its main characteristics. In

Figure 4.3 are shown the contributions of different types of matter existing in the universe:
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luminous matter Ωlum, baryons ΩB, matter in the galactic halo Ωhalo and matter detected

from cluster dynamics ΩM.

Figure 4.3: The observed cosmic matter components as functions of the Hubble constant.

The graphic shows the luminous matter component, the galactic halo component, which

is the horizontal band crossing the baryonic component from BBN, and the dynamical

mass component from LSS analysis (from reference [133]).

As can be seen in Figure 4.3, there are three problems related to dark matter:

• the first problem is related to explaining 90% of the baryons. There are considerable

discrepancies between ΩB deduced from BBN and CMB and direct observations of

luminous stars, galaxies and interstellar gas, which implies that great part of the

baryons should be dark. This is the baryonic dark matter problem;

• the second problem consists in explaining the nature of 90% of matter, in general.

From measurements of ΩM and ΩB, one can see that the nature of almost all the

matter contained in the universe is unknown. This is the non-baryonic dark matter

problem and is the standard dark matter problem;

• finally, according to recent WMAP [5] observations of the CMB, the universe is

spatially flat, i.e., Ωtotal ' 1. If we take into account all observations indicating that

ΩM < 0.3, we see that about 70% of the energy density of the universe does not

consists of matter, and should be another form of unknown dark energy. This is the

dark energy problem, which will be treated in the next chapter.



Chapter 5

Dark energy

5.1 Observational evidence for dark energy

We have seen in the previous chapter that baryonic matter only represents a small fraction

of the total matter contained of the universe, suggesting the existence of non-baryonic cold

dark matter. However, observations also indicate that the universe is approximately flat,

i.e. Ω ∼ 1, while the fraction of the total matter is clearly less than one, ΩM ∼ 0.3. The

difference between the total energy density and the matter energy density is attributed to

an unknown form of energy, called dark energy. The presence of a dark energy component

has the effect of accelerating the expansion of the universe, so that any observational

evidence for accelerated expansion confirms the dark energy hypothesis.

5.1.1 Supernovae of type Ia

The first evidence for the accelerated expansion of the universe was provided by SN

Ia observations [6, 7] and is related to the luminosity distance to these objects. The

luminosity distance was defined in equation (2.32) of Section 2.3, in terms of the absolute

luminosity of the source Ls and the observed flux F . A useful equation in cosmology

is the luminosity distance-redshift relation, equation (2.34), which relates the luminosity

distance dL with the cosmological redshift z. This equation can be written in the form:

dL = a0fK(χs)(1 + z) (5.1)

where fK(χ) is the generalized sine-function defined in equation (2.8), χs is the radial

coordinate of the source and a0 is the present value of the scale factor.

In a flat FRW background, fK(χ) = χ, and the light travelling along the χ direction

satisfies the geodesic equation ds2 = dt2 − a2(t)dχ2 = 0. Then, one can obtain the
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following expression for dL:

dL = a0χs(1 + z) = a0(1 + z)

∫ t0

t1

dt

a(t)
= (1 + z)

∫ z

0

dz′

H(z′)
(5.2)

where we have also used the fact that ż = −a0ȧ/a2 = −a0H/a. If we assume that the

universe contains all possible components, namely, non-relativistic and relativistic parti-

cles, cosmological constant (or vacuum energy with w = −1), and neglect the curvature

term, from the Friedmann equation (2.37) we obtain:

H2 = H2
0

∑
i

Ωi,0(1 + z)3(1+wi) (5.3)

where each component is characterized by its density parameter, Ωi,0, at present time,

and also by an equation of state parameter wi. By replacing equation (5.3) in (5.2), we

obtain a useful form of the luminosity distance-redshift relation, in a flat geometry:

dL =
1 + z

H0

∫ z

0

dz′√∑
i Ωi,0(1 + z′)3(1+wi)

. (5.4)

Thus, by measuring the luminosity distance of high redshift supernovae, one can infer

the contribution of each component to the total energy density of the universe. The

luminosity distance is obtained by measuring the apparent magnitude m of a source with

an absolute magnitude M , via the relation [134, 135]

m−M = 5 log10

(
dL

Mpc

)
+ 25 (5.5)

where dL has the general form (5.4).

The SN Ia occur when, by accreting matter from a companion, a white dwarf star

exceed the Chandrasekhar mass limit and explode, emitting in this way a huge amount

of energy. Their observed light curves (the luminosity as a function of time) have similar

features, irrespective of their position in the universe, which suggests that the absolute

magnitude M is independent of the redshift z. For this reason, the SN Ia can be treated

as an ideal standard candle.

Figure 5.1 illustrates the observational values of the luminosity distance dL versus the

redshift z for a set of SN Ia data, together with three theoretical curves corresponding to

three different combinations of the matter and cosmological constant densities, ΩM and

ΩΛ, respectively. The best fit for a flat universe, based on different SN Ia observations

[137], corresponds to the values ΩM ∼ 0.3 for matter, and ΩΛ ∼ 0.7 for cosmological

constant.
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Figure 5.1: The luminosity distance H0dL versus the redshift z for a flat cosmological

model. Three curves show the theoretical values of H0dL for (i) ΩM = 0, ΩΛ = 1, (ii)

ΩM = 0.31, ΩΛ = 0.69 and (iii) ΩM = 1, ΩΛ = 0 (from reference [136]).

It is interesting to estimate the ”coasting point”, corresponding to the epoch of

deceleration-acceleration transition. The corresponding redshift zc is obtained by im-

posing the condition that the deceleration parameter q defined in equation (2.39) is zero

at the coasting point. For the two component flat cosmology, q(z) can be obtained by

using equation (5.3), and the condition for acceleration becomes:

z < zc ≡
(

2ΩΛ,0

ΩM,0

)1/3

− 1 (5.6)

which for ΩM = 0.3 and ΩΛ = 0.7 gives zc = 0.67.

Apart from SN Ia, there are other possible candles in the universe, such as the FRIIb

radio galaxies [138, 139]. From the corresponding redshift-angular size data it is possible

to constrain cosmological parameters in a dark energy scalar field model. In [140], a

model-independent approach has been developed using a set of 20 radio galaxies out to

a redshift z ∼ 1.8. The derived constraints are consistent with − and generally weaker
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than − the SN Ia results.

Another suggested standard candle is the use of Gamma Ray Bursts (GRB) [141],

which can test the expansion up to very high redshifts, z > 5, opening the possibility to

probe the evidence for a dynamical equation of state for dark energy. Although the use of

GRB is unlikely to be competitive with future supernovae missions like SNAP, they will

be a very significant complement to the SN Ia data sets.

5.1.2 The age of the universe

The oldest stars have been observed in globular clusters in the Milky Way [142] and in

the globular cluster M4 [143], and have ages around 11 or 12 Gyr. This means that the

age of the universe (t0) needs to be larger than these values: t0 > 11 − 12 Gyr. If we

calculate the age of the universe, which depends on its composition and geometry, the

result should necessary satisfy the above age condition.

The age of the universe can be estimated by using the Friedmann equation (2.37),

written in the form of equation (5.3):

H2 = H2
0

[
ΩM,0(1 + z)3 + ΩΛ,0 −K0(1 + z)2

]
(5.7)

in which we have neglected the radiation contribution ΩR,0 and included the curvature

term, where K0 ≡ K/(a2
0H

2
0 ). With this, the age of the universe is given by:

t0 =

∫ t0

0

dt =

∫ ∞

0

dz

H(1 + z)
=

∫ ∞

1

dx

H0x (ΩM,0x3 + ΩΛ,0 −K0x2)1/2
, (5.8)

where we introduced x(z) ≡ 1 + z for simplicity.

Let us first evaluate the age of the universe in the absence of the cosmological constant

(ΩΛ,0 = 0). For a flat universe (K0 = 0 and ΩM,0 = 1), we obtain:

t0 =
2

3H0

. (5.9)

If we take into account the constraints obtained from observations of the Hubble Space

Telescope Key Project [144]

12.2 < H−1
0 < 15.3 Gyr (5.10)

it results that in a flat universe without cosmological constant, the age of the universe

should be in the range t0 ∼ 8 − 10 Gyr, which is in conflict with the stellar age bound

t0 > 11− 12 Gyr.

Instead of a flat universe, we may consider an open universe with ΩM,0 < 1. In this

case, the age of the universe is larger, which is understandable as it takes longer for
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gravitational interactions to slow down the expansion rate to its present value. However,

in order to obtain an age consistent with observations, the matter density parameter

ΩM,0 is constraint to be close to zero, meaning that the curvature term should dominate.

The observations of the CMB [5] rule out this possibility and indicate that the universe

is approximately flat, i.e., |K0| = |ΩM,0 − 1| ¿ 1. We conclude that a universe without

cosmological constant cannot live long enough as to be consistent with the oldest observed

stellar objects.

An elegant solution to this problem is to take into account the cosmological constant,

i.e., ΩΛ,0 6= 0. In this case, assuming a flat universe (K0 = 0), the age of the universe is

given by:

t0 =

∫ ∞

0

dx

H0x
√

ΩM,0x3 + ΩΛ,0

=
2

3H0

√
ΩΛ,0

ln

(
1 +

√
ΩΛ,0√

ΩM,0

)
. (5.11)

For ΩM,0 = 0.3 and ΩΛ,0 = 0.7, one has t0 = 0.964H−1
0 ∼ 13 Gyr, which satisfies the

constraint coming from the oldest stellar population.

5.1.3 Constraints from CMB and LSS

There is strong evidence for dark energy in independent observations related to the CMB

[5] and LSS [145, 146]. The CMB power spectrum encodes large amounts of information

about the cosmological parameters. From the position of the first acoustic peak, at

around l ∼ 200, one can estimate the values of ΩBh2 and ΩMh2 [147], but there is a

large degeneracy between the curvature K0 and ΩM due to the fact that h alone cannot

be constrained [148, 149]. The baryon density ΩB is most sensitive to the ratio of the

amplitudes of the first two acoustic peaks, and one obtains an upper limit ΩB < 0.05

regardless of the amount of dark matter [147]. The degeneracy between K0 and ΩM

can be broken by using a prior for h. Independent measurements of the parameter h

are possible from galaxy surveys [150] and SN Ia observations [6, 7], which suggest that

h ' 0.72. With this, one can conclude that the universe is approximately flat, |1−Ω0| ¿ 1,

and that it should contain both dark matter and dark energy, with fractional densities of

about ΩM ' 0.3 and ΩΛ ' 0.7, respectively.

A nice resume of all the discussion above, whose goal was to constrain the cosmological

parameters using SN Ia, CMB and LSS data, is illustrated in Figure 5.2, from which we

can clearly conclude that a flat universe without a dark energy component is ruled out.

It should be mentioned that here we worked in the context of the ΛCDM model,

which gives the best fit to observations. The model is based on the assumption that the

equation of state of dark energy is constant, with w = −1, and that the dark matter
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Figure 5.2: The ΩM − ΩΛ confidence regions constrained from the observations of SN Ia,

CMB and galaxy clusters. We also show the expected confidence region from a SNAP

satellite for a flat universe with ΩM = 0.28 (from reference [151]).

component is cold. Other possibilities exist, in which the equation of state of dark energy

can be dynamical, and dark energy can be explained by scalar fields. If we were able to

distinguish between cosmological constant and dynamical dark energy from observations,

we could say more about the origin of dark energy.

The observations of WMAP and SN Ia are consistent with a non-varying dark energy

contributed by a cosmological constant, but this situation could be improved by future

precise observations of SN Ia and of the Integrated Sachs-Wolfe (ISW) effect [83] on the

CMB power spectrum [152].
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5.2 Possible explanations of dark energy

We have seen [5]-[7], [85, 145, 146] that the combined observations of the SN Ia, CMB,

LSS and BBN indicate that the universe is spatially flat and that it only contains a

small part of baryonic matter, the resting part being in the form of two mysterious types

of substance, a non-relativistic non-baryonic cold dark matter and a homogeneous fluid

with negative pressure (or a pure cosmological constant), generically called dark energy.

In the previous chapter we have seen some details about dark matter and a list of possible

candidates that may contribute to it. Let us focus now on the possible origin and nature

of dark energy and present a few common approaches for solving this problem [153].

5.2.1 Cosmological constant

A first simple and maybe natural solution to the dark energy problem would be the

cosmological constant Λ, first introduced by Einstein in 1917 in order to obtain a static

universe. Let us write the Einstein equation (2.35) with the explicit inclusion of the

cosmological constant term:

Rµν − 1

2
Rgµν = 8πGT µν + Λgµν . (5.12)

The Friedmann equations are:

H2 =
8πG

3
ρ̃− K

a2
(5.13)

ä

a
= −4πG

3
(ρ̃ + 3p̃) (5.14)

where in the modified energy density ρ̃ and pressure p̃ we distinguish between the cosmo-

logical constant contribution and the others:

ρ̃ = ρ +
Λ

8πG
, p̃ = p− Λ

8πG
. (5.15)

In the Einstein model of a static universe, the cosmological constant should be positive,

and the universe is closed (K > 0) with a radius a =
√

K/Λ.

When Hubble discovered in 1929 the expansion of the universe [2], the static universe

model was abandoned along with the cosmological constant. However, the issue of the

cosmological constant returned in the 1990’s, after the discovery of the acceleration of the

universe, although there had been some previous discussion because of the age problem

[154].

Although the cosmological constant is a simple and elegant solution to the dark energy

problem, it suffers from severe problems if it originates from a vacuum energy density.
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The expected value of the vacuum energy density evaluated by the sum of zero-point

energies of quantum fields depends on the cut-off scale up to which quantum field theory

is valid. If we set the cut-off at the Planck scale MP = 1.22 × 1019 GeV, the estimated

vacuum energy density is ρvac ∼ 1074 GeV4. The problem arises when we compare this

value to observations, which indicate that Λ should be of order the Hubble constant H0,

so that ρΛ ∼ H2
0M

2
P/8π ∼ 10−47GeV4, which is about 121 orders of magnitude smaller

than the theoretical estimation. Even if we lower the cut-off scale to energy scales that

are probed at accelerators, like the electroweak scale of about 100 GeV, the problem is

far from being solved because we obtain ρvac ∼ 106GeV4, still much larger than ρΛ. This

is the so-called fine-tuning problem of the cosmological constant [8].

An interesting solution to this problem is provided by SUSY, in which every bosonic

degree of freedom contributing to the zero point energy is cancelled by its corresponding

fermionic counter part, such that the net contribution to vacuum energy vanishes and Λ

becomes zero. However, SUSY is not exact today and it should be broken around 103

GeV, in which case the fine-tuning problem of the cosmological constant still remains

unsolved.

Other recently proposed scenarios are realized in string theory [155] or supergravity,

by constructing de-Sitter vacua in which one has an effective cosmological constant, and

one can arrange to have a value compatible with the observed Λ [156, 157]. In fact, the

number of such de-Sitter vacua can be very large [158], up to order 10100, and for this

reason it receives the name of string landscape. In this PhD Thesis we do not consider

such theories.

Whatever be the nature of the cosmological constant, because we know that today we

have ΩM ∼ 0.3 and ΩΛ ∼ 0.7, we are faced with another problem, called the coincidence

problem, which consists in explaining why do we leave in a special period of transition

from dark matter domination to dark energy domination, both having the same order of

magnitude now.

An alternative explanation for the above problems is given by the anthropic principle

[8, 159], according to which intelligent life in our universe can only appear if the funda-

mental constants of nature have specific values. This principle has generated much debate

in the cosmology community, but the recent ideas about the existence of a vast landscape

of de-Sitter vacua in string theory makes the anthropic principle an interesting approach.

We summarize the discussion on the cosmological constant by saying that although

it is a simple and reasonable solution to the dark energy problem, it suffers from the

fine-tuning and coincidence problems that need to be explained.
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5.2.2 Scalar-field models

Another possibility, which has received great attention, is that of scalar fields as possible

candidates to the dark energy of the universe. Scalar fields naturally arise in particle

physics models and there is a wide variety of scalar-field dark energy models that have

been proposed, such as: quintessence, K-essence, phantoms, tachyons, ghost condensates,

just to mention a few of them.

Quintessence. Let us give here a brief description of quintessence and discuss it

in more detail later, in Section 5.3. Quintessence means that there is a scalar field φ

minimally coupled to gravity, which has a non-zero potential energy responsible for the

present acceleration of the universe. It is similar to the inflaton case, with the difference

that quintessence has started dominating recently. Thus, the action of the quintessence

field and the expressions for the equation of motion, energy momentum tensor, energy

density and pressure are the same as for the inflaton. Another difference with respect to

the inflaton is that in the Friedmann equations we must keep the contributions of other

constituents of the universe, i.e., we cannot neglect the contribution of dark matter.

In order to have accelerated expansion, the quintessence potential is required to be

flat enough, so that one can also define here slow-roll parameters, such as ε = −Ḣ/H2,

where H depends now on both dark matter and dark energy.

The equation of state parameter for the quintessence field φ is defined as:

wφ =
pφ

ρφ

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
(5.16)

where ρφ and pφ are the energy density and pressure of the field φ, respectively. We note

that wφ is not constant, as in the cosmological constant case (wΛ = −1), but can depend

on the scale factor a. In the limit φ̇2 ¿ V (φ), we obtain wφ ' −1, which can mimic a

cosmological constant.

In the original quintessence models [160]-[162], the potential of φ is of a power-law

type

V (φ) =
M4+α

φα
, (5.17)

where α is a positive number and M is a constant mass scale. By matching the φ energy

density with the present critical density, one can obtain an expression for the mass scale

M

M = (ρφ,0M
α
P )

1
4+α (5.18)

where ρφ,0 ∼ V (φ0) is the energy density of φ at present, and φ0 is required to be of the

order of the Planck mass (φ0 ∼ MP). In this case, the severe fine-tuning problem of the
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cosmological constant can be alleviated if we choose, for example, α = 2, which implies

M = 1 GeV [163], compatible with some particle physics scale.

An interesting form of potential is the exponential potential

V (φ) = V0 exp

(
−

√
16π

p

φ

MP

)
, (5.19)

where V0 is a constant and p > 1. This potential causes a power-law expansion a(t) ∝ tp

and possesses cosmological scaling solutions [164, 165], in which the field energy density

ρφ is proportional to the background fluid energy density, ρM. More details about scaling

solutions will be given later, in Section 5.3 .

K-essence. The K-essence models are based on modifications of the kinetic term in

the Lagrangian density of a scalar field, in order to produce acceleration. The first model

of this type, called K-inflation [166], was proposed for inflation, and was later applied to

dark energy [167].

In K-essence, the most general scalar-field action is a function of the scalar field φ and

X ≡ −(1/2)(∇φ)2, and is given by:

S =

∫
d4x

√−g p(φ,X) (5.20)

where the Lagrangian density corresponds to a pressure density. Usually, in K-essence

models, the Lagrangian density is of the form [167]-[169]:

p(φ,X) = f(φ)g(X) (5.21)

which has its motivations in string theory.

A typical example of a K-essence Lagrangian density is [167]:

p(φ, X) = f(φ)(−X + X2), (5.22)

in which case the equation of state of the field φ is:

wφ =
p

ρ
=

1−X

1− 3X
(5.23)

and gives acceleration for 1/2 < X < 2/3. For a constant X, we notice that wφ is also

constant, and one can deduce the form of f(φ) from the continuity equation (2.40):

f(φ) ∝ (φ− φ0)
−α, α =

2(1 + wφ)

1 + wM

(5.24)

where wM is the equation of state parameter of the background fluid.
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Tachyon field. Rolling tachyon condensates, in a class of string theories, may have

interesting cosmological consequences, especially as a dark energy candidates, since one

can show that the equation of state parameter of a rolling tachyon smoothly interpolates

between −1 and 0 [170].

An example of an effective tachyonic Lagrangian is the following [171]:

L = −V (φ)
√

1− ∂aφ∂aφ (5.25)

where V (φ) is the tachyon potential.

In a flat FRW background, the energy density ρ and the pressure density p are given

by:

ρ =
V (φ)√
1− φ̇2

; p = −V (φ)

√
1− φ̇2 (5.26)

for which the equation of state parameter is:

wφ =
p

ρ
= φ̇2 − 1. (5.27)

Irrespective of the steepness of the potential, the equation of state parameter varies be-

tween 0 and −1, and accelerated expansion occurs for φ̇2 < 2/3. The tachyon energy

density is obtained from the continuity equation (2.40) and behaves as ρ ∝ a−m, with

0 < m < 3.

As in the case of quintessence, for a special form of the tachyonic potential, one can

have power-law expansion, a ∝ tp. In this case, the required form of the potential is [171]:

V (φ) =
p

4πG

(
1− 2

3p

)1/2

φ−2. (5.28)

Phantom (ghost) field. Phantom scalar field models for dark energy have been

suggested by recent observational data that might indicate that the equation of state

parameter could cross the w = −1 barrier and be less than −1 [172]. The proposed

models are realized in the context of braneworlds or Brans-Dicke scalar-tensor gravity

[173, 174], but the simplest example of a phantom dark energy is provided by a scalar

field with a negative kinetic energy [175].

The action of a phantom field minimally coupled to gravity is given by:

S =

∫
d4x

√−g

[
−1

2
∂µφ∂µφ− V (φ)

]
(5.29)

where the kinetic term has opposite sign as compared to the action of an ordinary scalar

field.
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The equation of state parameter in this case is:

wφ =
p

ρ
=

φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
(5.30)

and for φ̇2/2 < V (φ), we obtain wφ < −1. Because the w = −1 barrier can be crossed by

phantom fields, it received the name of the phantom divide.

In the case of a phantom scalar field dominating the energy density of the universe,

there is a Big Rip future singularity and thus the universe has a finite lifetime. This

singularity may be avoided if, e.g., the potential V (φ) has a maximum. In this case, the

phantom field will execute damped oscillations about the maximum of the potential and,

after a certain period of time, it settles at the top of the potential to mimic the de-Sitter

like behavior.

From the viewpoint of quantum mechanics, phantom fields are generally plagued by

severe ultra-violet quantum instabilities [176], which poses an interesting challenge for

theoreticians.

Chaplygin gas. The Chaplygin gas [177] is a fluid with a non-canonical equation of

state

p = −A

ρ
, (5.31)

where A is a positive constant. From the continuity equation (2.40), we can deduce the

energy density of the fluid:

ρ =

√
A +

B

a6
(5.32)

where B is a constant. The nice feature of this type of fluid is that it provides an interesting

possibility for the unification of dark energy and dark matter, because we notice that in the

early time limit a ¿ (B/A)1/6 the Chaplygin gas energy density behaves as pressureless

dust, ρ ∼ √
Ba−3, while in the late time limit a À (B/A)1/6 it acts as a cosmological

constant, ρ ∼ −p ∼ √
A.

One can derive a corresponding potential for the Chaplygin gas by treating it as an

ordinary scalar field φ. One obtains:

V (φ) =

√
A

2

(
cosh

√
3κφ +

1

cosh
√

3κφ

)
(5.33)

where κ ≡ √
8πG. Hence, a minimally coupled field with this potential is equivalent to

the Chaplygin gas model.

However, this model has serious problems [178] when confronted with observations of

the CMB anisotropy. The situation can be alleviated in the generalized Chaplygin gas

model [179], in which p = −A/ρα, with 0 < α < 1. In order to satisfy observational
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constraints, the allowed range of values for the parameter α is relatively small, i.e., 0 ≤
α < 0.2 [178].

5.2.3 Modified gravity and other alternatives

So far, we have presented a few examples of models proposed to explain dark energy,

based on new exotic contributions to the energy momentum tensor in the Einstein equa-

tion. However, there is still another possibility for having late time acceleration, i.e., to

modify the geometry of spacetime itself and introduce higher curvature corrections to the

Einstein-Hilbert action.

There are many proposed scenarios in the literature. In f(R) gravities [180, 181], one

supposes that the action is of the form:

S =

∫
d4x

√−gf(R), (5.34)

where f(R) is an arbitrary function of the Ricci scalar R. In order to explain dark energy,

the modifications introduced should only affect gravity on cosmological scales, while they

should still be compatible with the newtonian limit. The original model (which adds a

term δf(R) ∝ 1/R) is not compatible with solar system experiments [182] and possesses

instabilities [183], but there are forms of f(R) that can pass all tests and be viable

candidates for the dark energy.

The Gauss-Bonnet gravity [184] is inspired from string/M-theories and consists of an

unusual coupling of a scalar field φ to the Gauss-Bonnet invariant, G = R2 − 4RµνR
µν +

RµνρσR
µνρσ, which becomes important in the current low-curvature universe. An inter-

esting feature of this theory is that it can mimic a phantom equation of state (w < −1),

without necessity of dealing with the problematic phantom field, and it may prevent the

Big Rip singularity.

Other interesting examples belong to the class of modified Gauss-Bonnet gravity [185],

and consists of introducing general functions f(G) or f(G,R) in the Einstein Hilbert

action.

There are also theories with large extra dimensions, inspired by string theory, in which

our four dimensional spacetime ”lives” on a brane embedded in a higher dimensional bulk

spacetime, and gravity is the only interaction that can propagate into the anti de Sitter

bulk. The Randall-Sundrum [33] and the Dvali-Gabadadze-Porrati [186] models are two

different examples of this type of theories.

A totally different possibility explored recently is based on the idea that the observed

acceleration is due to the effect of the back reaction of either super or sub-horizon cosmo-

logical perturbations [187, 188], and there is no need to modify gravity, nor to introduce
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any cosmological constant or some exotic negative-pressure fluid. This is an appealing

idea, but it has raised a considerable amount of criticism that seems to demonstrate that

this possibility is not plausible [189, 190].

5.3 The details of quintessence

In the previous section, we have seen a few ways of how to address the dark energy

problem, i.e., by considering (i) a non-zero cosmological constant, (ii) scalar fields and

(iii) modifications of gravity on large scales.

In this Thesis, we are interested in the study of scalar fields as candidates to the dark

energy of the universe. In any viable model of dark energy, one requires that the energy

density of the scalar field remains subdominant during all the history of the universe,

emerging only at late times as the dominant component. However, the fact that the dark

matter and dark energy densities are comparable today suggests that, in the past, they

were many orders of magnitude different. This raises a fine-tuning problem for the initial

dark energy density.

An interesting possibility is to consider a dark energy scalar field in the presence of

a background fluid, because the system can have fixed points or it can enter a scaling

regime, which may solve the initial conditions problem.

5.3.1 Fixed points and scaling regime

Let us study an important class of dynamical systems, the autonomous systems [164]. We

consider the coupled system of two first-order differential equations, for two variables x(t)

and y(t)

ẋ = f(x, y, t), ẏ = g(x, y, t) (5.35)

which is said to be autonomous if the functions f and g do not contain explicit time-

dependent terms, i.e., ẋ = f(x, y) and ẏ = g(x, y). We can then define a fixed (or critical)

point (xc, yc) of the autonomous system as a point that satisfies the condition:

(f, g)
∣∣
(xc,yc) = 0 . (5.36)

A critical point (xc, yc) is an attractor if it satisfies the condition:

(x(t), y(t)) −→ (xc, yc) for t →∞. (5.37)

One is interested in the study of the stability of fixed points, in order to ascertain if

the system approaches one of the critical points. This can be done by considering small
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perturbations δx and δy around the critical point (xc, yc). From equations (5.35), one can

find a first-order differential equation

d

dN

(
δx

δy

)
= M

(
δx

δy

)
(5.38)

where N = ln a is the number of e-foldings. The general solution for the evolution of

linear perturbations can be written as:

δx = C1 eµ1N + C2 eµ2N (5.39)

δy = C3 eµ1N + C4 eµ2N (5.40)

where C1, C2, C3, C4 are integration constants and µ1, µ2 are the eigenvalues of the matrix

M appearing in equation (5.38). They satisfy the following equation:

µ2 − Tµ + D = 0 (5.41)

where T is the trace of M and D is its determinant. The discriminant ∆ ≡ T 2 − 4D

appears in the solutions to the eigenvalues µ1 and µ2:

µ1,2 =
T ±√∆

2
. (5.42)

The stability around the fixed points depends on the nature of the eigenvalues, and one

generally uses the following classification [164, 191]:

(i) Stable node, if µ1 < 0 and µ2 < 0;

(ii) Unstable node, if µ1 > 0 and µ2 > 0;

(iii) Saddle point, if µ1 < 0 and µ2 > 0, or µ1 > 0 and µ2 < 0;

(iv) Stable spiral, if ∆ < 0 and T < 0.

In the cases (i) and (iv) the fixed point is an attractor.

Let us suppose that we have a system composed of a scalar field and a background

barotropic fluid1, with equation of state pM = wMρM, in the expanding universe. If the

cosmological solutions are such that the energy density ρφ of the scalar field mimics that

of the fluid ρM, they are called scaling solutions [164], and are of particular importance

in the cosmology of dark energy.

1A barotropic fluid is a fluid whose pressure and density are related by an equation of state that does
not depend on temperature, i.e., ρ = ρ(p) or p = p(ρ).



78 Dark energy

Scaling solutions are characterized by the relation:

ρφ/ρM = C, (5.43)

where C is a constant. As long as the scaling solution is an attractor, the field will sooner

or later enter the scaling regime, and in the radiation or matter dominating eras the field

energy density should be subdominant. Ultimately, the system needs to exit from the

scaling regime (5.43) in order to produce an accelerated expansion.

It is also possible to have a direct coupling Q between the scalar field φ and the

barotropic fluid [192]. One can show that the presence of an interaction between φ and

the background fluid might lead to accelerated expansion, although without interactions

this is not possible.

We should also mention that exponential potentials V (φ) ∼ exp(λφ) correspond to

scaling solutions, thus being of interest for cosmology [165].

Let us study the existence of fixed points and scaling regime for a system that consists

of a scalar field φ in the presence of a barotropic background fluid, without interactions

between them. From the Lagrangian of the scalar field φ

L =
1

2
φ̇2 − V (φ) (5.44)

one obtains the following equations:

H2 =
κ2

3

[
1

2
φ̇2 + V (φ) + ρM

]
(5.45)

Ḣ = −κ2

2

[
φ̇2 + (1 + wM)ρM

]
(5.46)

φ̈ + 3Hφ̇ +
dV

dφ
= 0. (5.47)

In order to study the existence of fixed points, it is useful to introduce the following

dimensionless new variables:

x ≡ κφ̇√
6H

, y ≡ κ
√

V√
3H

, λ ≡ − V ′

κV
, Γ ≡ V V ′′

V ′2 (5.48)

where a prime means differentiation with respect to φ.

In terms of these new variables, the equation of state parameter wφ and the fraction

of the energy density Ωφ of the field φ become [164, 193]:

wφ ≡ pφ

ρφ

=
x2 − y2

x2 + y2
(5.49)

Ωφ ≡ κ2ρφ

3H2
= x2 + y2 (5.50)
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and the total effective equation of state is defined by:

weff ≡ pφ + pM

ρφ + ρM

= wM + (1− wM)x2 − (1 + wM)y2 (5.51)

where wM = pM/ρM is the equation of state parameter of the barotropic fluid. The fixed

points can be obtained by imposing the following conditions:

dx

dN
= 0 and

dy

dN
= 0. (5.52)

For instance, let us consider an exponential potential [164, 193]

V (φ) = V0e
−λκφ (5.53)

which corresponds to a constant λ defined in (5.48). The exponential potential (5.53)

possesses two attractor solutions, depending on the values of λ and γM ≡ 1 + wM:

(i) λ2 > 3γM, for which the scalar field mimics the evolution of the barotropic fluid and

one has γφ ≡ 1 + wφ = γM and Ωφ = 3γM/λ2;

(ii) λ2 < 3γM, in which case the late time attractor is the scalar field dominated solution,

with Ωφ = 1 and γφ = λ2/3.

5.3.2 Constraints from nucleosynthesis

Any model of dark energy is constrained by the requirement that dark energy should not

affect primordial nucleosynthesis, which puts an upper bound on the number of extra

degrees of freedom, such as a light scalar field. The presence of a scalar field during the

nucleosynthesis epoch, at a temperature around 1 MeV, has the effect of changing the

expansion rate of the universe thus affecting the abundance of light elements.

Taking a conservative bound on the number of additional relativistic degrees of free-

dom, ∆Neff ' 1.5 [194], we obtain the following bound on the energy density of the scalar

field [195, 196]:

Ωφ(T ∼ 1MeV) < 0.2. (5.54)

Let us consider the two attractor solutions found in the previous subsection for the ex-

ponential potential. The first scaling solution (i) corresponds to the case in which the

field energy density mimics that of the background, which at the epoch of nucleosynthesis

consists of radiation (γ = 4/3). The constraint (5.54) gives:

Ωφ =
4

λ2
< 0.2 (5.55)
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from which we obtain λ2 > 20. In this case, the equation of state is equal to that of

the background and accelerated expansion is not possible. Late-time acceleration may

be obtained if the system exits from the scaling solution (i) and changes to the second

scaling solution (ii) near to the present.

5.3.3 Exit from a scaling regime

In the previous subsection, we have seen that in order to have a late-time accelerated

expansion, the system composed of the scalar field φ and a background fluid needs a

transition from one scaling solution to the other. There are some models in which this is

possible, and we will consider here a few examples.

A first example is the double exponential potential [165, 197]:

V (φ) = V0(e
−λκφ + e−µκφ), (5.56)

where λ and µ are some positive constants, with λ > µ. By requiring that λ satisfies

the condition (5.55), we ensure that the energy density of the scalar field mimics the

background energy density and is subdominant during the radiation dominated era. The

system exits the scaling regime and approaches the scalar-field dominated solution (ii),

with Ωφ = 1, when µ2 < 3, and gives accelerated expansion at late times if µ2 < 2. The

advantage of this model is that, for a wide range of initial conditions, the solutions first

enter the scaling regime, which is followed by a late-time accelerated expansion, once the

potential becomes shallow.

A second example is the model suggested by Sahni and Wang [198], which use the

following potential:

V (φ) = V0 [cosh(λκφ)− 1]n (5.57)

which for |λφ| À 1 and φ < 0 has the exponential form V (φ) ∝ e−nλκφ, while for |λφ| ¿ 1

it becomes V (φ) ∝ φ2n. This means that, initially, the energy density of the field mimics

that of the background fluid, and its density parameter is Ωφ = 3γ/n2λ2. When the field

approaches the minimum of the potential, at φ = 0, it exits from the scaling regime and

starts oscillating about the minimum. The average equation of state during oscillations

is:

〈wφ〉 =
n− 1

n + 1
. (5.58)

Accelerated expansion is obtained if n is sufficiently small, n < 1/2, and it can be shown

that the present-day values Ωφ ' 0.7 and ΩM ' 0.3 can be obtained for a wide range of

initial conditions. An interesting feature of the model is that for n = 1 the field behaves
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as non-relativistic matter giving rise to a new form of cold dark matter, which the authors

called frustrated dark matter.

Our last example is the model of Albrecht and Skordis [199], which can be derived

from string theory. The potential they use is a combination of exponential and power-law

terms:

V (φ) = V0e
−λκφ

[
A + (κφ−B)2

]
. (5.59)

The potential has a local minimum that can have today’s value of the critical energy

density. At early times the exponential term dominates and the energy density of φ

tracks the background radiation or matter. At late times, the field can get trapped in the

local minimum leading to wφ ' −1.

5.3.4 Dark energy from PGB

There are plenty of proposed dark energy models that at the phenomenological level

are able to give a correct description and interpretation of observational data. A more

delicate issue is that of relating models with particle physics in a natural way. Interesting

approaches to addressing the origin of dark energy in particle physics are related to

string/M-theory [200].

In this Thesis, however, I will not discuss this kind of approaches. I will focus on the

possibility that the dark energy field is associated to a pseudo Goldstone boson (PGB)

arising in models with spontaneously symmetry breaking (SSB) of global symmetries. In

models of this type, the required flatness of the quintessence potential is justified and

protected by the underlying symmetry.

A first PGB model is the axion dark energy model, introduced by Frieman et al. [201].

The axion potential is:

V (φ) = Λ [1 + cos(φ/f)] . (5.60)

When the field φ is near the maximum of the potential and its mass is much smaller than

the expansion rate, i.e., |m2| ¿ H2, the field is frozen and acts like quintessence, until

its mass becomes comparable to the Hubble rate and φ starts to roll down the potential.

This model requires that the scale f should be of the order of the Planck mass MP.

A more recent axion dark energy model has been developed by Kim and Nilles [202],

as well as by Hall and collaborators [203, 204]. In reference [202], the authors propose a

dark energy candidate, called ”quintaxion”, which is a linear combination of two axions.

One of them solves the strong CP-problem and is a cold dark matter candidate, while

the other, the quintaxion, has a decay constant as expected from string theory (fq ∼ 1018

GeV) and is responsible for the observed vacuum energy. The flatness of the potential
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is due to the small masses of the quarks of some hidden sector of the model, which are

protected by the existence of a global symmetry associated to the PGB.

Another way to protect the small mass scale of the quintessence field is through a

seesaw mechanism [203, 204], which allows for two natural scales to play a vital role in

determining all the other fundamental scales.

In reference [205], Caroll investigated the possibility that the couplings of the quint-

essence field to matter are suppressed by the presence of an approximate global symmetry,

like in the case of long range forces. Although it is well constrained, a coupling between

the field φ to the pseudoscalar FµνF̃
µν of electromagnetism could lead to the detection of

a cosmological scalar field.

In Chapter 10, I propose a model in which the axion-like field resulting from the SSB

of a global U(1) symmetry mimics quintessence. The field is trapped at a local non-zero

minimum of the U(1)−symmetric potential.

5.3.5 Quintessential inflation

The first model of quintessential inflation, proposed by Peebles and Vilenkin [206], intro-

duces a scalar field φ with a potential such that it is able to explain both inflation and

dark energy in a unified way, without the need of introducing a new weakly interacting

field. During inflation, the potential has the form:

V (φ) = λ(φ4 + M4), φ < 0 (5.61)

as in chaotic inflation, while at late-times, its form changes to:

V (φ) =
λM4

1 + (φ/M)α
, φ ≥ 0. (5.62)

This model has the advantage of explaining inflation and dark energy by using the same

field φ, but has the drawback of requiring fine-tuning of the initial conditions, because

there are no tracker solutions.

The authors of [207] proposed a model of quintessential inflation by introducing a

renormalizable complex scalar field potential, invariant under a global U(1)PQ symmetry,

which is explicitly broken by small instanton effects at a lower energy scale. The resulting

”axion” is then responsible for dark energy, while the real part of the scalar field produces

inflation. This model combines the original idea of Natural Inflation [71, 208] with the

idea of using a PGB for the quintessence field [201, 209].

The so-called ”spintessence” models [210, 211] also use a complex scalar field, allowing

for a unified description of both dark matter and dark energy. The complex scalar field φ is
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spinning in a U(1)−symmetric potential and has internal angular momentum. Depending

on the nature of the spin and on the form of the potential, the field may act like an evolving

dark energy component or like a self-interacting, fuzzy cold dark matter [211].

Other possibilities, like that of having PGB in higher dimensional theories [212] or

quintessential inflation [213] in braneworld scenarios [33], have been investigated in the

literature.

In this Thesis, I use the idea of quintessential inflation in Chapter 10 to obtain an

ambitious model for the unification of inflation, dark matter and dark energy. Also,

in Chapter 8, I propose that a scalar field ψ is responsible for both inflation and dark

energy, in a model which possesses a global U(1) symmetry, which is explicitly broken by

Quantum Gravity effects.

5.4 Dark energy from scalar field oscillations

Let us consider now the evolution of the energy associated with coherent oscillations of

a scalar field φ in a potential V (φ), in a homogeneous and isotropic universe [214]. The

equation of motion for φ is given by the continuity equation:

ρ̇ = −3H(ρ + p) = −3Hφ̇2. (5.63)

We ignore particle creation and couplings of the scalar field φ to other fields. Thus, the

energy density of the scalar field φ decreases due to the expansion of the universe, which

has the effect of decreasing the kinetic term φ̇2/2.

We assume that φ oscillates about a minimum of V (φ), at φ = 0, with a frequency

ω ∼ φ̇/φ much larger than the expansion rate H. Then, the energy density ρ will be a

slowly varying function of time, while (ρ + p) = φ̇2 varies rapidly, compared to a time

scale characterized by H−1.

We can write φ̇2 as the sum of a slowly varying part and a periodic one,

φ̇2 = ρ + p = γρ + γpρ (5.64)

where γ is the average of φ̇2/ρ over an oscillation, and γp is the periodic part. In the limit

ω À H, one obtains [214]:

ρ ∝ a−3γ (5.65)

and if the energy density of φ dominates the total energy density of the universe, one also

has:

a(t) ∝ t2/3γ. (5.66)
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One can obtain γ by averaging φ̇2/ρ over one cycle, and supposing that ρ = V (φmax) =

Vmax is constant in one cycle:

γ = 2

∫ φmax

0
(1− V/Vmax)

1/2dφ∫ φmax

0
(1− V/Vmax)−1/2dφ

(5.67)

where φmax is the amplitude of the oscillations and we have also assumed that V (φ) =

V (−φ). Because the average of the periodic part γp over one cycle is negligible, it results

that (γ − 1)ρ is the pressure averaged over one cycle.

The evolution of the energy density depends on the form of the potential V (φ). For a

general simple polynomial,

V (φ) = λφn (5.68)

one obtains γ = 2n/(n + 2) and [214]

ρ = ρ0

(
a

a0

)−6n/(n+2)

(5.69)

where ρ0 and a0 are the values of the energy density and scale factor at a time t0. For

n = 2, the energy density of the scalar field behaves like non-relativistic matter with

γ = 1, 〈p〉 = 0 and ρ ∝ a−3, whereas for n = 4 it behaves like relativistic matter with

γ = 4/3, 〈p〉 = ρ/3 and ρ ∝ a−4.

In case the potential V (φ) is sufficiently flat, it can dominate over the kinetic term

and the field φ may have an equation of state such that it may drive the acceleration of

the universe, i.e., w = γ − 1 < −1/3. However, in general γ can have a slight variation in

time, and then it may not always be possible to find an analytical solution for ρ.

If, in addition, V (φ) depends explicitly on time, the equation for ρ becomes:

ρ̇ = −3Hφ̇2 +
∂V

∂t
. (5.70)

An interesting particular case is that of potentials of the form V (φ, t) = f(t)v(φ), for

which equation (5.70) can be integrated to give:

ρ = ρ0

(
a

a0

)−3γ (
f

f0

)1−γ/2

. (5.71)

This result can be applied, for instance, to the invisible axion, which has a time-dependent

potential that factorizes, V (φ, t) = 1
2
m2

a(t)φ
2, and for which one obtains γ = 1 and

ρa3/ma ∝ constant.

In Chapter 7 of this Thesis, we will see a different way to obtain the above results,

by using the action-angle formalism of analytical mechanics, and we will find that our

formalism has some advantages. In Chapter 11, I apply this alternative formalism to

obtain the evolution of the energy density associated to oscillations of a scalar field in a

potential, and argue that it may be contributing to the dark energy of the universe.



Chapter 6

Symmetry breaking and phase

transitions

6.1 Spontaneous breaking of global symmetries

One of the crucial aspects of quantum field theories are the symmetries of the Lagrangian

that describes the system. Starting from these symmetries, one can construct the theory

and describe the interactions between the particles that form the system. When these

symmetries are exact, they give rise to conservation laws, such as, for instance, the electric

charge conservation law. Also, when we gauge certain symmetries we get the Standard

Model of particle physics.

Nevertheless, apart from the well-known symmetries of the SM, nature might have

further symmetries, which are not observed today and whose corresponding conservation

laws might be hidden. This is due to the fact that the vacuum state describing the

system may not respect the symmetries of the Lagrangian. The vacuum of the system

is the state of minimum energy, i.e., the state that minimizes the potential. There is no

reason for this state to satisfy the same symmetries of the potential and, in this case, the

symmetries shall not be perceptible. A very simple example is that of a parity symmetric

potential, whose minima are displaced from the symmetry axis. In this case, the potential

is invariant under the change of the field sign, while the configuration of the field located

in one of the minima is not.

When the fundamental state (vacuum) of the system does not respect some of the

symmetries of the Lagrangian, one says that the symmetry is spontaneously broken. The

mechanism of spontaneous symmetry breaking (SSB) is a very important concept and

often takes place in nature.
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During the evolution of the universe, there are symmetries that were exact in the past

and that later became spontaneously broken. This is because the shape of the potential

may vary with the temperature. As we will see in this chapter, the fact that a plasma with

a certain temperature is formed affects the shape of the potential. So, by changing the

temperature, the shape of the potential changes, which means that the vacuum may also

change. In this way, the symmetries respected by the vacuum at a higher temperature

may not be respected at a lower temperature when they become spontaneously broken.

Today, the universe is very cold, T ∼ 3K, but within the Big Bang theory there is

strong evidence that the early universe consisted of a very high energy plasma. Then, as it

was expanding, its temperature decreased proportionally to the scale factor, T ∝ a−1, and

many of the symmetries that were exact at high temperature became broken. Symmetry

breaking is related to phase transitions, which may have different effects, such as the

production of new particles or topological defects. These effects can be the clue of hidden

symmetries and they may help us to understand phenomena like inflation, baryogenesis,

quark-hadron phase transition, etc.

For all these reasons, the study of SSB together with its effects is fundamental for

understanding the evolution of the universe.

6.1.1 The Goldstone theorem

The Goldstone theorem [215, 216] states that when a global continuous symmetry is spon-

taneously broken, there appears a massless particle in the spectrum, a so-called Goldstone

boson. There are many proofs of this theorem in the literature [217], so that we will not

give here a rigorous demonstration of it. Instead, in order to understand this mechanism,

we will give the well-known example of the linear sigma model.

The Lagrangian of the linear sigma model contains a set of N real scalar fields φi(x):

L =
1

2
(∂µφ

i)2 +
1

2
µ2(φi)2 − λ

4

[
(φi)2

]2
(6.1)

where there is a sum over i in every factor (φi)2. The Lagrangian (6.1) is invariant under

the following symmetry:

φi −→ Rij
Nφj (6.2)

for any orthogonal N × N matrix RN . The transformation group (6.2) is the group of

rotations in N dimensions, i.e. the orthogonal N−dimensional group, O(N).

The classical field configuration that represents the fundamental state, φi
0, is that

which minimizes the potential

V (φi) = −1

2
µ2(φi)2 +

λ

4

[
(φi)2

]2
(6.3)
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and occurs for any value φi
0 satisfying:

(φi
0)

2 =
µ2

λ
. (6.4)

This condition only fixes the length of the vector φi
0, while its direction is arbitrary.

Without losing generality, one can suppose that the vector φi
0 points in the N−direction,

φi
0 = (0, 0, . . . , 0, v) (6.5)

where v ≡ µ/
√

λ. For N = 2, the potential (6.3) has the typical ”Mexican hat” shape,

where the minimum can be at any point on a circle of radio v. In Figure 6.1 is illustrated

the potential in this particular case, which helps us have a better understanding of the

process of spontaneous breaking.

φ

φ

V

2

1

Figure 6.1: The potential (6.3) of the linear sigma model, for the case N = 2.

It is convenient to redefine the field φi(x), by introducing new fields πk(x) and σ(x)

as follows:

φi(x) =
(
πk(x), v + σ(x)

)
k = 1, . . . , N − 1. (6.6)

Introducing the change of variables (6.6) in (6.1), one finds the form of the Lagrangian

after the SSB:

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 − 1

2
(2µ2)σ2 −

√
λµσ3

−
√

λµ(πk)2σ − λ

4
σ4 − λ

2
(πk)2σ2 − λ

4

[
(πk)2

]2
. (6.7)
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We can see that the new Lagrangian (6.7) contains a massive field σ and a set of N − 1

massless fields πk. The original O(N) symmetry becomes hidden, but the symmetry

subgroup O(N − 1) is still explicit, and transforms the fields πk as:

πk −→ Rkj
N−1π

j. (6.8)

The massive field σ describes oscillations of the field φi in radial direction, in which the

second derivative of the potential is different from zero. The massless fields πk describe

angular oscillations of the field φi, along the potential valley. This valley is an (N −
1)−dimensional surface, where all N − 1 directions are flat and equivalent, which is a

manifestation of the O(N − 1) symmetry.

In the example given here, the number of initial continuous symmetries was N(N −
1)/2, corresponding to the different orthogonal axes, around which one can make an

O(N)−rotation, in N dimensions. After the spontaneous breaking one is left with the

subgroup O(N − 1), which contains (N − 1)(N − 2)/2 continuous symmetries. Thus, the

difference N − 1 will be the number of broken symmetries, which is exactly the number

of massless particles that appear in the theory. This agrees with the predictions of the

Goldstone theorem.

There are many examples of spontaneously broken symmetries in nature, which give

rise to Goldstone bosons. The process of SSB is fundamental in many models that go

beyond the SM. One example is the family symmetry, which is related to the number

and properties of the SM families. The breaking of this symmetry is responsible for the

familions [218]. Another example is the symmetry associated to the leptonic number,

whose breaking would produce majorons [219, 220].

6.1.2 Explicit breaking and the pseudo Goldstone boson

The Lagrangian (6.1) of the linear sigma model is invariant under O(N) transformations.

If, for any reason, we add a term to the Lagrangian that explicitly breaks the O(N)

symmetry, the treatment made in the previous subsection has to be modified. For a

sufficiently small explicit breaking, the framework used for the SSB is still valid. In order

to have a better understanding of the explicit breaking effects, we will continue working

with the previous example, the linear sigma model.

Let us assume that we add a small explicit symmetry breaking term to the Lagrangian

(6.1). In the presence of this term, the direction in which the minimum φi
0 will point is

not arbitrary anymore. After the spontaneous breaking, some of the N − 1 directions

corresponding to oscillations of the massless πk fields − which in the case without explicit
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breaking were exactly flat − acquire a non-zero second derivative of the potential. This

means that these directions acquire a small inclination, which is equivalent to the fields

πk acquiring a small mass. In the simple example when N = 2, illustrated in Figure 6.1,

the effect of the explicit breaking is to slightly incline the ”Mexican hat”, which breaks

the degeneracy between the infinite minima located on the circle of radio v, and we are

left with only one absolute minimum.

Thus, in the presence of a small explicit symmetry breaking, the resulting massless

Goldstone bosons acquire a small mass and become pseudo Goldstone bosons (PGBs).

There are many examples of PGBs in nature, such as the pion or the hypothetical axion.

6.1.3 Quantum gravity effects

In this subsection, we will argue that quantum gravity effects may provide a mechanism of

explicit breaking of global symmetries, and that these effects are expected to be very small.

There are reasons to expect that non-perturbative quantum gravity effects break global

symmetries: global charges can be absorbed by black holes which may evaporate, ”virtual

black holes” may form and evaporate in the presence of a global charge, wormholes may

take a global charge away from our universe to some other one, etc.

There has been a lot of interest in studying global symmetries at high energies [221]-

[224]. In [222], the loss of quantum coherence in a model of gravity coupled to axions

is investigated. The loss of coherence opens the possibility that currents associated with

global symmetries are not exactly conserved, while those associated with local symmetries

are still exactly conserved. Coleman [223] argued that incoherence is not observed in a

many-universe system in an equilibrium state, and he pointed out that if wormholes

exist they can explain the vanishing of the cosmological constant. The authors of [224]

pointed that even if incoherence is not observed in the presence of wormholes, other

interesting consequences may emerge, such as the appearance of operators that violate

global symmetries, of arbitrary dimensions, induced by baby universe interactions. In this

context, the authors of [225] argue that if global symmetries are broken by virtual black

holes or topology changing effects, they have to be exponentially suppressed.

In [116], we investigated the cosmological implications of quantum gravity effects, in

a model with a global U(1) symmetry. The model introduces a new complex scalar field

Ψ = φ exp(θ/f) charged under the global U(1) symmetry, which is spontaneous broken

at a scale f .

The potential of the field Ψ contains a U(1)−symmetric term

Vsym(Ψ) =
1

4
λ[|Ψ|2 − f 2]2 (6.9)
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where λ is a coupling constant, and an explicit symmetry breaking term describing quan-

tum gravity effects:

Vnon−sym(Ψ) = −g
1

Mn−3
P

|Ψ|n (
Ψe−iδ + Ψ?eiδ

)
(6.10)

where g is an effective coupling that characterizes the strength of the quantum gravity

effects, δ is an arbitrary phase and n is an integer number, n > 3. The resulting PGB

has a mass given by mθ =
√

2g (f/MP)(n−1)/2MP, and for a sufficiently small value of

the explicit breaking, g ∼ 10−30, it is a dark matter candidate. In this Thesis, based on

this model, in Chapter 8 I propose a model in which the real part of Ψ is responsible

for inflation, while the imaginary part is a quintessence field. In Chapter 9, I propose a

similar model in which the real part of Ψ is the inflaton and the resulting PGB is a dark

matter candidate.

6.2 Finite temperature effects

The usual methods applied in quantum field theory are adequate for describing processes

in vacuum, like those given in particle accelerators. Nevertheless, in the early universe,

there are totally different conditions, because the universe consists of an extremely hot

and dense plasma. In these conditions, one must find other methods, at half distance

between thermodynamics and quantum field theories, which allow one make realistic

computations in the conditions in which the environment is characterized by a thermal

bath. These methods are developed in the finite temperature field theory. Much work

has been done in this field and there are excellent references in the literature, where one

can find all the details about it [226]-[228]. Here, we only pretend to highlight the basics

of this theory and the main concepts that will be used later in the work of chapters 8, 10

and 9. We are only interested in the aspects related to scalar fields.

6.2.1 The effective potential

All the information about the effects of finite temperature can be included in the effective

potential, V β
eff . This may be written as the sum of the tree-level (classical) potential, V0,

and a term describing quantum and temperature effects, V β:

V β
eff(φc) = V0(φc) + V β(φc) (6.11)

where φc ≡ φ̄(x) is the constant field value in a translationally invariant theory.
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There are two different formalisms for calculating the term V β, which give the same

results, at least at first order. One of them is the imaginary time formalism, usually

applied in equilibrium situations, and the other is the real time formalism, which can be

used in investigating out-of-equilibrium systems.

Let us focus on the imaginary time formalism and consider the finite temperature

effective potential at one-loop. It is given by [228]:

V β
1 (φc) =

∫
d3p

(2π)3

[
ω

2
+

1

β
ln

(
1− e−βω

)]
(6.12)

where β ≡ 1/T and ω is defined as:

ω2 = |~p|2 + m2(φc). (6.13)

In the above relation, the shifted mass m2(φc) is given by the curvature of the potential

V0:

m2(φc) ≡ d2V0(φc)

dφ2
c

. (6.14)

The first part of the integral (6.12) takes into account quantum corrections in the vacuum,

thus given the effective potential at zero temperature, V1|T=0 [72]. The second part of

(6.12) includes temperature effects and can be written as:

1

β

∫
d3p

(2π)3
ln

(
1− e−βω

)
=

1

2π2β4
JB[m2(φc)β

2] (6.15)

where JB is the thermal bosonic function defined as:

JB(m2β2) =

∫ ∞

0

dxx2 ln
[
1− e−

√
x2+β2m2

]
. (6.16)

In this way, the one-loop effective potential is composed by the following parts:

V β
eff(φc) = V0(φc) + V1(φc)|T=0 +

1

2π2β4
JB[m2(φc)β

2]. (6.17)

At high temperatures, one can make some approximations and obtain a useful expression

for the last term V β
1 in the effective potential (6.17) [228]:

1

2π2β4
JB[m2β2] ' 1

24

m2

β2
− 1

12π

m3

β
− 1

64π2
m4 ln

m2β2

ab

+O(m6β2) (6.18)

where ab is a constant (ln ab = 5.4076).
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6.2.2 Phase transitions

One of the most relevant consequences of the finite temperature effects is the influence

they have on phase transitions. The main point here is that at high temperature, the

expectation value of the field, 〈φ〉, which minimizes the potential, does not correspond

to the minimum of the zero-temperature potential, V0(φ), but to the minimum of the

effective potential V β
eff(φ), given in (6.17).

If the minimum of the potential V0(φ) occurs at a symmetry breaking value 〈φ〉 =

v 6= 0, as for instance in the case of the potential (6.3) of the linear sigma model, at

sufficiently high temperature the term V β
1 can be important and it can change the shape

of the potential in such a way that the absolute minimum occurs at 〈φ(T )〉 = 0. This

means that at high temperature, the O(N) symmetry of the potential (6.3) is respected

by the fundamental state. Generally, this phenomenon is known as symmetry restoration

at high temperature and was discovered by Kirzhnits in the context of the electroweak

theory [229]. Thus, when the temperature becomes less than a certain critical value, Tc,

a phase transition may occur from 〈φ(T )〉 = 0 to 〈φ〉 = v.

Symmetry restoration and phase transitions are very important in the context of

cosmology. In the standard Big Bang cosmology, the universe is initially at very high

temperatures, and one expects that the symmetries are not broken, due to temperature

effects. This means that the symmetric phase 〈φ(T )〉 = 0 can be the stable absolute

minimum. Then, when the temperature reaches the critical value Tc, the minimum at

φ = 0 becomes metastable and the phase transition may proceed.

There are two types of phase transitions: first order and second order, and we will

shortly describe them here.

Second-order phase transitions. This kind of phase transitions occurs, for exam-

ple, in models of new inflation type [17, 18]. For a better understanding of this kind of

phase transitions, we will give an example of a potential that leads to a second order

phase transition:

V (φ, T ) = g(T 2 − T 2
0 )φ2 +

λ

4
φ4 (6.19)

where g and λ are some constants and T0 is some temperature.

At zero temperature (T = 0), the potential has negative mass-squared term, m2 =

−2gT 2
0 , and the absolute minimum of the potential corresponds to φ(0) = ±

√
2g/λ T0.

At finite temperature T , the curvature V ′′(φ, T ) = ∂2V/∂φ2 of the potential depends on

T ,

V ′′(φ, T ) = 3λφ2 + 2g(T 2 − T 2
0 ) (6.20)

and the position of the minimum will also be T−dependent. At T > T0, the curvature of
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V

Figure 6.2: The shape of the potential (6.19) at different temperatures. The corresponding

phase transition is of second order.

the potential is positive at any point, V ′′(φ, T ) > 0, and the minimum of the potential is

located at the origin φ = 0. At T = T0, the potential becomes V (φ, T0) = λφ4/4 and the

origin φ = 0 is still a minimum. When T < T0, the curvature of the potential at φ = 0

becomes negative, V ′′(0, T ) < 0, and the origin becomes a maximum. Simultaneously,

two minima appear at a φ 6= 0:

φ(T ) = ±
√

2g(T 2
0 − T 2)

λ
. (6.21)

This is an example of a second order phase transition, in which there is no barrier between

the symmetric and the broken phases, and the symmetric phase φ = 0 changes from a

minimum to a maximum, when the temperature reaches the critical value Tc = T0 (see

Figure 6.2).

In chapters 8 and 9, I present two models which unify inflation with dark energy and

dark matter, respectively, in which the effective potential suffers a second order phase

transition before the beginning of inflation.

First-order phase transitions. In case there is a barrier between the symmetric
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and broken phases, the phase transition is said to be of first order, and in this case at the

origin there is still a local minimum. A typical potential, which gives rise to a first-order

phase transition is similar to (6.19), with an additional cubic term [230]:

V (φ, T ) = g(T 2 − T 2
0 )φ2 − hTφ3 +

λ

4
φ4 (6.22)

where, as before, g, h, λ and T0 are constants. The behavior of the potential (6.22) is

somehow different than (6.19). At high temperature, the potential only has one minimum

at the origin φ = 0. At some lower temperature, T1, a local minimum at φ(T ) 6= 0 appears

as an inflection point. At still lower temperatures, T < T1, the new minimum becomes

deeper and a barrier appears, between this minimum and the symmetric one at φ = 0.

At the critical temperature Tc, the two minima become degenerate, and between them

there is a local maximum at φM = hTc/λ. At T < Tc the minimum at φ = 0 becomes

metastable and the other minimum at φ(T ) 6= 0 becomes the global one. In this example,

the barrier disappears at a temperature T = T0, and there are models in which T0 can be

equal to zero. Thus, a first-order phase transition may occur through tunneling from the

false to the true minimum, in the temperature range Tc > T > T0 (see Figure 6.3).

The model presented in Chapter 10 contains a new complex scalar field φ, whose real

and imaginary components are responsible for inflation and dark energy, respectively. In

that model, the effective potential of the field φ suffers a first order phase transition before

slow-roll inflation is produced.

6.2.3 Thermal tunneling

Thermal tunneling at finite temperature is the transition from the false to the true vacuum

state, which implies the formation of bubbles of the true vacuum phase in the sea of the

symmetric phase.

Let us consider the previous example of the potential given in (6.22). The tunneling

probability per unit time per unit volume is given by [231]:

Γ

V ∼ A(T )e−S3/T (6.23)

where the prefactor A(T ) is roughly of order T 4, and S3 is the three-dimensional Euclidean

action, defined as:

S3 =

∫
d3x

[
1

2
(∇φ)2 + V (φ, T )

]
. (6.24)

Let us consider a bubble of the true vacuum, with spherical symmetry, and radius R.
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Figure 6.3: The shape of the potential (6.22) at different temperatures. At high tem-

peratures, the potential only has one minimum at φ = 0, while at temperatures in the

range T0 < T < Tc it has two minima separated by a barrier. This is a characteristic of

first-order phase transitions.
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Then, the Euclidean action becomes [230]:

S3 = 4π

∫ R

0

r2dr

[
1

2

(
dφ

dr

)2

+ V (φ(r), T )

]
(6.25)

where r2 = ~x2. There are two contributions to the action (6.25): a surface term FS coming

from the first term in (6.25), and a volume term FV, coming from the second term. They

scale like:

S3 ∼ 2πR2

(
δφ

δR

)2

δR + 4πR3〈V 〉 (6.26)

where δR is the thickness of the bubble wall, δφ is the value of the field at the minimum

and 〈V 〉 is the average of the potential inside the bubble.

When the hight of the barrier is large compared to the depth of the potential at the

minimum, the solution of the minimal action corresponds to a very small bubble wall

δR/R ¿ 1, which means that we have a thin wall bubble.

When the temperature drops towards T0, the hight of the barrier is small and the

minimal action corresponds to a configuration where δR/R ∼ O(1). In this case, we have

a thick wall bubble.

In order for the bubble nucleation to be possible, the rate of bubble production should

be larger than the expansion rate of the universe, otherwise the state will be trapped in

the supercooled false vacuum.

In Chapter 10, I will present a model in which the dark energy field is trapped in a

false vacuum, and has a very small probability of tunneling to the true vacuum.

6.2.4 Topological defects

In the process of SSB, there are other possible effects, like the production of topological

defects [232], which are high concentrations of energy resulting from a nontrivial vacuum

topology.

For instance, in the case of the potential illustrated in Figure 6.2, with a Z2 symmetry

φ → −φ, the vacuum expectation value of the field φ can be 〈φ〉 = +v, as well as 〈φ〉 = −v.

Thus, if there is no reason that the field can only take one of the two values, there are

regions in which 〈φ〉 takes one value and regions where 〈φ〉 takes the other value, and in

between these distinct regions the field must change continuously. This means that there

must exist regions where φ = 0, i.e., of false vacuum, in which a large amount of energy

is concentrated. These regions, called domain walls, are two-dimensional, have a certain

thickness, and appear every time a discrete symmetry is broken.
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Other examples of topological defects are the cosmic strings, the magnetic monopoles

and the textures. Cosmic strings may appear, for instance, in the case of a complex field

ψ = φeiθ, where the vacuum expectation value of the modulus φ is fixed, 〈φ〉 = v, but the

phase is arbitrary. Then, in the SSB process, there will appear one-dimensional regions

in space where φ = 0, which concentrate a large amount of energy. The cosmic strings

must be infinite in extension or closed.

The magnetic monopoles are the zero-dimension analogous of cosmic strings and do-

main walls, and appear in the breaking of spherical symmetries. Cosmic textures are more

complicated objects of higher dimensions.

Although topological defects may not probably be produced in terrestrial accelerators,

their existence is predicted by the theories of phase transitions in the early universe [233].

Their production mechanism was first investigated by Kibble [234] and predicts that

they are topologically stable. This fact may have important consequences, because their

detection would be a probe of phase transitions in the early universe. Also, if there are

too many domain walls or monopoles produced in the early universe, they may distort

the CMB or may perturb the formation of structure, or their density may overclose the

universe. Any cosmological model should then take into account all these problems related

to the overproduction of topological defects.

An elegant solution to the topological defects problem is provided by the inflation

hypothesis, described in Chapter 3, whose effect is to dilute them away.





Chapter 7

Action-angle formalism

7.1 Introduction

In this chapter, I will present a different method that can be used to obtain the same

results of Section 5.4, referring to the law of variation of the energy density of a scalar

field φ with respect to the scale factor a, and of a with respect to the time t, in the

case that the coherent field oscillations dominate the energy density of the universe. This

alternative method is based on an analytical mechanics formulation, by using the theory

of canonical systems and action-angle variables, due to the similarities that exist between

the field oscillations and the systems that are characterized by periodic motions [235].

Of special importance in many branches of physics are the systems in which motion

is periodic. We are very often interested not so much in the details of the orbit as in

the frequencies of the motion. A very elegant and powerful method of handling such

systems is provided by a variation of the Hamilton-Jacobi procedure. In this technique

the integration constants αi appearing directly in the solution of the Hamilton-Jacobi

equation are not themselves chosen to be the new momenta. Instead we use suitably

defined constants Ji, which form a set of n independent functions of the αi’s, and which

are known as the action variables. Here we will apply the general theory to our particular

case, in which we only have one degree of freedom, α1 = ρ, the total energy density.

As discussed in Section 5.4, the scalar field φ has a general potential energy function,

V (φ), which has an important role in the evolution of φ in the expanding universe. The

equation that describes the evolution of φ is the equation of motion:

φ̈ + 3Hφ̇ + V ′(φ) = 0. (7.1)

Let us recall the definitions of the energy density of φ, ρ = 1
2
φ̇2 + V (φ) = T + V and of

the pressure p = 1
2
φ̇2 − V (φ) = T − V , where T denotes the kinetic energy term and V
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is the potential one. One can distinguish between two cases: the first one is to consider

a static universe, with H = 0, and the second one is that of an expanding universe, with

an expansion rate H 6= 0.

7.2 The static universe case H = 0

Let us consider first the simple case of scalar field oscillations in a static universe with

H = 0. This is the analogue of the one-dimensional oscillator with no friction term. In

this case the energy of the system is conserved, i.e., it does not depend on time t, and it

is equal to the Hamilton function H(φ, Π):

H(φ, Π) =
1

2
Π2 + V (φ) = ρ (7.2)

with the momentum variable Π = φ̇. Solving for the momentum Π, we have that:

Π = Π(φ, ρ), (7.3)

which can be looked on as the equation of the orbit traced by the system point in the two-

dimensional phase space, when the Hamiltonian has the constant value ρ. The meaning of

the term ”periodic motion” is determined by the characteristics of the phase space orbit.

Two types of periodic motions may be distinguished:

1. In the first type the orbit is closed and the system point retraces its steps periodically.

Both φ and Π are then periodic functions of time with the same frequency. Periodic

motions of this nature will be found when the initial position lies between two zeros

of the kinetic energy. It is often designated by the astronomical name libration,

although to a physicist it is more likely to call to mind the common oscillatory

systems, such as the one-dimensional harmonic oscillator.

2. In the second type of periodic motions the orbit in phase space is such that Π is

some periodic function of φ. The most familiar example is that of a rigid body

constrained to rotate about a given axis, with φ as the rotation angle. Increasing

φ by 2π then produces no essential change in the state of the system. The position

coordinate in this type of periodicity is invariably an angle of rotation, and the

motion will be referred to simply as rotation.

Our case enters in the first type of periodic motions; the system will have a periodic

oscillatory motion, and the oscillations will have constant amplitude because the total

energy is conserved.
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It is convenient to make use of the action variable to further describe the system:

J =

∮
Π dφ = −

∮
φ dΠ (7.4)

where the integration is made over a complete period of oscillation. From (7.3) and (7.4)

one obtains that J is a function of ρ alone, or inverting, one can write the energy in terms

of the new variable:

ρ = ρ(J). (7.5)

The action variable J is chosen as the new momentum in the integration of the Hamilton-

Jacobi equation. Because the Hamiltonian H(φ, Π) does not depend on time, one can

write the time-independent Hamilton-Jacobi equation as:

H(φ,
∂W

∂φ
) = ρ (7.6)

where W (φ, J) is the Hamilton’s characteristic function. W (φ, J) is a generating function

and defines a canonical transformation from old to new canonical coordinates, (φ, Π) →
(α, J), where α is the variable canonical conjugate to J and is called angle variable. Thus,

we can write the canonical transformations in terms of the new variables:

J = −∂W

∂α
, α =

∂W

∂J
. (7.7)

Since W does not explicitly depend on time, the new hamiltonian H̄ coincides with the

old one, and we have that H̄(α, J) = H(φ, Π) = ρ. The energy ρ is only a function of J ,

which amounts to say that α is cyclic and J is constant,

J̇ = −∂H̄
∂α

= 0. (7.8)

The other Hamilton equation is:

α̇ =
∂H̄(J)

∂J
≡ ν, (7.9)

where ν is a constant function only of J . We can integrate (7.9) to obtain:

α(t) = νt + α(0). (7.10)

Let us see the physical interpretation of the new defined variable ν. Consider the change

in α as φ goes through a complete cycle of oscillation, as given by:

∆α =

∮
∂α

∂φ
dφ. (7.11)
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By using the second canonical equation (7.7) for α, the above equation becomes:

∆α =

∮
∂2W

∂φ∂J
dφ. (7.12)

Because J is a constant, the derivative with respect to J can be taken outside the integral

sign:

∆α =
d

dJ

∮
∂W

∂φ
dφ =

d

dJ

∮
Π dφ = 1, (7.13)

where use has been made of the definition of J , equation (7.4), and of the equation

Π = ∂W/∂φ.

Equation (7.13) states that α changes by 1 as φ goes through a complete period. But

from equation (7.10) it follows that if τ is the period of a complete cycle of φ, then

∆α = 1 = ντ. (7.14)

Hence, the constant ν can be identified with the reciprocal of the period,

ν =
1

τ
(7.15)

and is therefore the usual frequency associated with the periodic motion of φ.

The use of action-angle variables thus, provides a powerful technique for obtaining the

frequency of periodic motion without the need to find a complete solution to the motion of

the system. If it is known a priori that the motion of a system with one degree of freedom

is periodic, according to the definitions given above, the frequency can be found once H̄
is determined as a function of J . The derivative of H̄ with respect to J , by equation

(7.9), then directly gives the frequency ν of the motion. We should also remark that J

has dimensions of an angular momentum, and of course the coordinate conjugate to an

angular momentum is an angle.

7.3 The expanding universe case H 6= 0

The more realistic case for describing the scalar field evolution corresponds to an ex-

panding universe. In this case, equation (7.1) describes a one-dimensional oscillator with

time-dependent friction that depends on the velocity φ̇. Nevertheless, in the present

discussion we will assume that H is small and it also has a small relative change with

time:

H ¿ ω ; Ḣ/H ¿ ω. (7.16)
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This ensures that the motion is almost periodic, and it makes sense averaging over one

cycle. Thus, we can still use the definition in equation (7.4) for J ,

J =

∮
Π dφ. (7.17)

With H 6= 0, the total energy is not conserved but decreases with time, because the term

that contains H acts like a dissipative force. Nevertheless, due to the smallness of H,

one may assume that over a cycle the loss in the total energy is small so that ρ can be

considered constant. We still define ρ as in the case H = 0,

ρ = T + V =
1

2
φ̇2 + V (φ). (7.18)

Thus, the equation of motion (7.1) can be written in the following form:

1

ρ

dρ

dt
= −3H

φ̇2

ρ
(7.19)

which gives the relative change of ρ with time.

We can average φ̇2 over one cycle,

〈φ̇2〉 =
1

τ

∫ τ

0

dt φ̇2 (7.20)

where τ is the period of a complete oscillation. In doing this, we see that the right hand

side of equation (7.19) strongly depends on the shape of the potential.

We will now show that the relative change of J does not depend on the potential V .

In order to do this, we have to make use of the virial theorem, which states that the time

average of the total kinetic energy is equal to minus half the time average of the total

potential energy. One can write this theorem in the form:

〈φ̇2〉 = 〈φ∂V

∂φ
〉. (7.21)

We can now proceed to calculate the time average

〈φ∂V

∂φ
〉 =

1

τ

∫ τ

0

dt φ
∂V

∂φ

= −1

τ

∫ τ

0

dt φ Π̇ (7.22)

= −1

τ

∮
φ dΠ =

1

τ
J (7.23)

where we have used the canonical equation for Π̇ and the definition (7.4).
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Thus, replacing 1/τ = ν and using the definition (7.9) for ν, we obtain that the virial

theorem reads:

〈φ̇2〉 =
dρ

dJ
J (7.24)

which can be introduced in equation (7.19) to obtain the relative change in J

1

J

dJ

dt
= −3H (7.25)

which demonstrates our previous statement that the relative change of J is V -independent.

Solving this equation for J , and recalling that H = ȧ/a, we obtain that in the expanding

universe

J ∼ a−3. (7.26)

We would like to find a quantity that is conserved by the expansion. The solution comes

immediately, since we know that s ∼ nγ ∼ a−3, where s is the entropy density and nγ is

the photon density of the universe. We conclude that

d

dt

(
J

s

)
= 0 (7.27)

and so J/s is conserved by the expansion.

The formalism described above can be used to derive the effective equation of state

parameter w of a scalar field φ,

w =
p

ρ
=
〈T 〉 − 〈V 〉

ρ
=

2〈T 〉
ρ

− 1 (7.28)

or, using equation (7.24), we get:

w =
J

ρ

dρ

dJ
− 1. (7.29)

This equation allows us to calculate w without entering into details of motion. Once we

have a general potential V for a scalar field, we calculate the energy density ρ of this

field, define J as in equation (7.4), which is only a function of ρ, and then obtain w from

equation (7.29).

We can also use the parameter γ, defined in equation (5.64) of Section 5.4, as being

the average over one cycle of φ̇2/ρ. In terms of the new variable J , this can be expressed

as:

γ =
J

ρ

1

dJ/dρ
= w + 1. (7.30)

If w results to be constant for an arbitrary potential V , then equation (7.25) can be

integrated to give:

1

J

dJ

dρ

dρ

dt
=

1

γρ

dρ

dt
= −3H =⇒ ρ = ρ0(a/a0)

−3γ (7.31)
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which is the same result obtained in (5.65). Again, considering that ρ dominates the total

energy density of the universe, in the limit of zero spatial curvature of the universe, from

the Friedmann equation (2.37) we obtain the same result as in (5.66), a ∝ t2/3γ, with γ

given by (7.30).

7.4 Discussions

I have presented in this chapter an alternative language that can be applied to derive the

same results obtained in Section 5.4, for a scalar field oscillating in a potential. I would

like now to highlight one of the advantages of this new language, which has to do with a

possible extension of the problem under consideration.

Let us suppose that for the physical system, which our methods are applied to, the

Hamilton function depends explicitly on a parameter λ. This parameter can be either

internal − and characterizes the properties of the system − or external, and in this case

it characterizes the external field in which the system is found. We also suppose that

for constant λ, the problem of motion of the system is solved by using the action-angle

variables. In the following discussion we focus on the simple case H = 0. The question

is: what would happen if λ was not constant, but it had a slow variation with time? In

this case, the system is not conservative anymore and the total energy is not conserved.

What about the action variable J? Would it still be conserved?

To answer this question, we have to enter into details and introduce another concept

of analytical mechanics. If λ varies slowly with time,

λ̇τ ¿ λ, (7.32)

where τ is the time interval in which λ varies by ∆λ, then the action variable J remains,

practically, constant. A quantity that remains constant for a slow change of the parameter

λ is called adiabatic invariant, and it is said that λ changes adiabatically.

The concept of adiabatic invariant is useful in many areas of physics and has been

applied in the Bohr-Sommerfeld-Wilson quantization rules and in plasma physics, in the

study of thermonuclear processes, charged particles accelerators, etc.

Let us demonstrate that J remains constant when λ changes adiabatically. Considering

the parameter λ, equation (7.2) becomes:

H(φ, Π, λ) = ρ (7.33)

and from here we can write:

Π = Π(φ, ρ, λ). (7.34)
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Introducing equation (7.34) into the definition of J , equation (7.4), it results that J will

be a function of time through the time-dependence of λ. In order to see whether J varies

with time, one has to calculate its derivative with respect to time

dJ

dt
=

∮ (
∂Π

∂ρ

∂ρ

∂t
+

∂Π

∂λ
λ̇

)
dφ (7.35)

and then evaluate the average of dJ/dt over a complete period of motion, τ .

By taking the derivative of (7.33) with respect to time and using the canonical equa-

tions for Π and φ, one gets:
dρ

dt
=

∂H
∂t

=
∂H
∂λ

λ̇ (7.36)

which, by averaging the first and the last sides of the equality, gives:

〈dρ

dt
〉 = λ̇〈∂H

∂λ
〉 =

1

τ
λ̇

∫ τ

0

∂H
∂λ

dt. (7.37)

In the above equation, we supposed that in the period τ , λ̇ is practically constant. One

can now change from the integration with respect to time, to integration with respect to

φ, using the canonical equation φ̇ = ∂H/∂Π, and write:

〈dρ

dt
〉 = λ̇

∮
∂H
∂λ

(
∂H
∂Π

)−1
dφ∮ (

∂H
∂Π

)−1
dφ

. (7.38)

From equations (7.33) and (7.34) one can get:

∂H
∂λ

(
∂H
∂Π

)−1

= −∂Π

∂λ
(7.39)

which can be put into (7.38) to obtain:

〈dρ

dt
〉 = −λ̇

∮
∂Π
∂λ

dφ∮
∂Π
∂ρ

dφ
(7.40)

where we used the relation (∂H/∂Π)−1 = ∂Π/∂ρ.

If we take into account that in a complete cycle φ, λ̇ and 〈ρ̇〉 are constant, the last

equation can be written down as follows:

∮ (
∂Π

∂ρ
〈ρ̇〉+

∂Π

∂λ
λ̇

)
dφ = 0 (7.41)

which, compared to equation (7.35), gives:

〈dJ

dt
〉 = 0. (7.42)
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This completes the demonstration that, in the approximations considered here (H =

0, λ̇ = constant), the action variable J remains constant when λ changes adiabatically

and thus, J is an adiabatic invariant.

In Chapter 11 of this PhD Thesis I apply the formalism described in this chapter to a

scalar field φ oscillating in a potential, and I show that one can find potentials such that

the resulting oscillations may lead to a sufficiently negative equation of state parameter

as to describe dark energy.
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8.1 Introduction

In spite of the fact that the standard model of elementary particles based on the gauge

group SU(3) × SU(2) × U(1) is able to accommodate all existing empirical data, few

people believe that it is the ultimate theory. The reason is that the standard model leaves

unanswered many deep questions. In any case, evidence (or disproval) of this belief can

only be given by experiment. If we are able to discover a theory that indeed goes beyond

the standard model, it will probably contain new symmetries. The global symmetries valid

at high energies are expected to be only approximate, since Planck-scale physics breaks

them explicitly [223, 224, 236, 237]. Even if the effect is probably extremely small, it may

lead to very interesting effects. As has been discussed in [116], when a global symmetry

is spontaneously broken and we have such a small explicit breaking the corresponding

pseudo-Golstone boson (PGB) can have a role in cosmology. The focus in [116] was to

show that the PGB could be a dark matter constituent candidate.

In the present paper we will rather be concerned with the periods of acceleration in the

universe, namely with inflation in the very early universe and with dark energy dominance

in the late stages in the evolution of the universe. Recent observational evidence for these

two periods come mainly from the use of Supernovae as standard candles [6, 7], cosmic

microwave background anisotropies [80, 82], [238]-[243], galaxy counts [244]-[247] and

others [248]. Of course, the physics behind the two periods that are so distant in time may

be completely unrelated. However, an appealing possibility is that they have a common

origin. An idea for this kind of unification has been forwarded by Frieman and Rosenfeld

[207]. Their framework is an axion field model where we have a global U(1)PQ symmetry

spontaneously broken at a high scale and explicitly broken by instanton effects at the low

energy QCD scale. The real part of the field is able to inflate in the early universe while

the axion boson could be the responsible for the dark energy period. The authors of that

work [207] compare their model of quintessential inflation with other models of inflation

and/or dark energy. We would like to show here that our model of Planck-scale broken

symmetry offers an explicit scenario of a quintessential inflation.

In our model, we have a complex field Ψ that is charged under a certain global U(1)

symmetry, and in the potential we have the following U(1)-symmetric term

V1(Ψ) =
1

4
λ[|Ψ|2 − v2]2 (8.1)

where λ is a coupling and v is the energy scale of the spontaneous symmetry breaking

(SSB).

We do not need to know the details of how Planck-scale physics breaks our U(1). It
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is enough to introduce the most simple effective U(1)-breaking term

Vnon−sym(Ψ) = −g
1

Mn−3
P

|Ψ|n (
Ψe−iδ + Ψ?eiδ

)
(8.2)

(n > 3). Here, M2
P ≡ G−1

N , and the coupling g is expected to be very small [225]. The term

vanishes when MP → ∞, as it should be. Previous work on explicit breaking of global

symmetries can also be found in [249, 250], and related to Planck-scale breaking, in [251]-

[253]. Cosmological consequences of some classes of PGBs are discussed in [201],[254]-

[256].

Let us write the field as

Ψ = φ eiθ/v (8.3)

We envisage a model where φ, the real part of Ψ, is the inflaton and the PGB θ, the

imaginary part of Ψ, is a quintessence field. In the proces of SSB at temperatures T ∼ v

in the early universe, the scalar field φ develops in time, starting from φ = 0 and going

to values different from zero. A suitable model we will employ is the inverted hybrid

inflation [74, 75], where one has a new real field χ that assists φ to inflate.

The new scalar field is massive and neutral under U(1). We shall follow ref.[75] and

couple χ to Ψ with a −Ψ∗Ψχ2 term. More specifically we introduce the following contri-

bution to the potential

V2(Ψ, χ) =
1

2
m2

χχ2 +

(
Λ2 − α2|Ψ|2χ2

4Λ2

)2

(8.4)

Here α is a coupling and Λ and mχ are mass scales. The interaction between the two

fields will give the needed behavior of the real part of Ψ to give inflation. Also, we should

mention that such models of inflation are realized in supersymmetry, using a globally

supersymmetric scalar potential [75].

To summarize, our model has a complex field Ψ and a real field χ with a total potential

V (Ψ, χ) = Vsym(Ψ, χ) + Vnon−sym(Ψ) + C (8.5)

where C is a constant that sets the minimum of the effective potential at zero. The

non-symmetric part is given by (8.2), whereas the symmetric part is the sum of (8.1) and

(8.4),

Vsym(Ψ, χ) = V1(Ψ) + V2(Ψ, χ) (8.6)

8.2 The model

In this section, we will explain in detail the model introduced in Section 8.1. Our basic

idea is that the radial part φ of the complex scalar field Ψ is responsible for inflation,
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whereas the angular part θ plays the role of the present dominating dark energy of the

universe. From now on, we will replace Ψ by its expression given in (8.3). The symmetric

part of the potential is given by

Vsym(φ, χ) =
1

4
λ[φ2 − v2]2 +

1

2
m2

χχ2 +

(
Λ2 − α2φ2χ2

4Λ2

)2

(8.7)

while the symmetry-breaking term is

Vnon−sym(φ, θ) = −2 g
φn+1

Mn−3
P

cos
θ

v
(8.8)

where the following change of variables θ/v −→ θ/v + δ has been made.

8.2.1 Inflation

Let us study, firstly, the conditions to be imposed on our model to describe the inflationary

stage of expansion of the primordial Universe. In order to do this, we will only work with

the symmetric part of the effective potential,

Vsym(φ, χ) = Λ4 +
1

2

(
m2

χ − α2φ2
)
χ2 +

α4φ4χ4

16Λ4
+

1

4
λ(φ2 − v2)2, (8.9)

which dominates over the non-symmetric one at early times. Here, φ is the inflaton

field and χ is the field that plays the role of an auxiliary field, which is needed to have a

sudden end of the inflationary regime, through a ”waterfall” mechanism. This is important

because in this way we can arrange for the right number of e-folds of inflation and for

the right value of the spectral index of density perturbations produced during inflation,

when the cosmological scales left the horizon. We also note that the φ4χ4 term in Eq.(8.9)

does not play an important role during inflation, but only after it, and it sets the position

of the global minimum of Vsym(φ, χ), which will roughly be at φ ∼ v and χ ∼ M , with

M = 2Λ2

αv
.

The effective mass squared of the field χ is:

M2
χ = m2

χ − α2φ2 (8.10)

so that for φ < φc = mχ

α
, the only minimum of Vsym(φ, χ) is at χ = 0. The curvature of the

effective potential in the χ direction is positive, while in the φ direction is negative. This

will lead to rollover of φ, while χ will stay at its minimum χ = 0 until the curvature in χ

direction changes sign. That happens when φ > φc and χ becomes unstable and starts to

roll down its potential. The mechanism and the conditions to be imposed on our model

are similar to the original hybrid inflation model by Linde [67], so we will follow the same
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line of discussion. The main difference between the original model and our case consists in

the fact that here the inflaton rollover is due to its negative squared mass m2
φ = −λv2 and

it starts moving from the origin φ = 0 towards the minimum 〈φ〉 ∼ v ≤ MP , so that there

is no need to go to values for φ larger then the Planck scale. The fact that, initially, the

inflaton field is placed at the origin is justified because in the very hot primordial plasma

the symmetry of the effective potential is restored and the minimum of the potential is

at φ = 0. So we expect that, after the SSB, the radial field φ is set at the origin of

the effective potential. However, due to quantum fluctuations, the field may be displaced

from φ = 0, such that it is unstable and may roll down the potential.

As is characteristic for hybrid models of inflation [69, 73], the dominant term in (8.9)

is Λ4. This is equivalent to writing:

1

4
λv4 < Λ4. (8.11)

Another requirement is that the absolute mass squared of the inflaton be much less than

the χ-mass squared,

|m2
φ| = λv2 ¿ m2

χ, (8.12)

which fixes the initial conditions for the fields: χ is initially constrained at the stable

minimum χ = 0, and φ may slowly roll from its initial position φ ' 0.

Taking into account condition (8.11), the Hubble parameter at the time of the phase

transition is given by:

H2 =
8π

3M2
P

Vsym(φc, 0) ' 8π

3M2
P

Λ4. (8.13)

We want φ to give sufficient inflation, that is, the potential Vsym(φ, 0) must fulfill the

slow-roll conditions in φ direction, given by the two slow-roll parameters:

ε ≡ M2
P

16π

(
V ′

sym

Vsym

)2

¿ 1, (8.14)

|η| ≡
∣∣∣∣
M2

P

8π

V ′′
sym

Vsym

∣∣∣∣ ¿ 1 (8.15)

where a prime means derivative with respect to φ. The first slow-roll condition Eq.(8.14)

gives

Λ4 À λ

4
√

π
MP v3 (8.16)

and the second slow-roll condition, Eq.(8.15), gives

Λ4 À λ

8π
M2

P v2. (8.17)
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So, under these conditions, the universe undergoes a stage of inflation at values of φ < φc.

In order to calculate the number of e-folds produced during inflation, we use the following

equation [69]

N(φ) =

∫ tend

t

H(t)dt =
8π

M2
P

∫ φ

φend

Vsym

V ′
sym

dφ (8.18)

where φend ≡ φ(tend) = φc marks the end of slow-roll inflation, and prime means derivative

with respect to φ.

Let us study the behavior of the fields φ and χ just after the moment when the field

φ = φc for a period ∆t = H−1 =
√

3
8π

MP

Λ2 . The equation of motion of the inflaton field,

in the slow-roll approximation, is

3Hφ̇ +
∂Vsym(φ, 0)

∂φ
= 0. (8.19)

In the time interval ∆t = H−1, the field φ increases from φc to φc + ∆φ. If we suppose

that φc takes an intermediate value between 0 and v, we can calculate ∆φ using (8.19)

3H
∆φ

∆t
' 3

8
λv3 (8.20)

where, for definiteness, we set φc ' v/2. We finally get

∆φ ' 3

64π

λv3M3
P

Λ4
. (8.21)

The variation of M2
χ in this time interval is given by

∆M2
χ ' − 3

64π

λα2v4M2
P

Λ4
. (8.22)

The field χ will roll down towards its minimum χmin much faster than φ, if |∆M2
χ| À H2.

Taking into account Eqs.(8.13) and (8.22), this condition is equivalent to

Λ4 ¿ 1

16

√
λ

2
αv2M2

P . (8.23)

In this time interval, χ rolls down to its minimum, oscillates around it with decreasing

amplitude due to the expansion of the Universe, and finally stops at the minimum.

Once the auxiliary field χ arrives and settles down at the minimum, the inflaton field

φ can roll down towards the absolute minimum of the potential, much faster than in the

case when φ < φc, because the potential has a non-vanishing first derivative at that point

∂Vsym

∂φ
= λφ(φ2 − v2)− α2χ2

minφ (8.24)
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which we want to be large in order to assure that no significant number of e-folds is

produced during this part of the field evolution. The requirement of fast-rolling of φ is

translated into the following condition

v ≤ MP (8.25)

(this was obtained considering the equation of motion of an harmonic oscillator with small

friction term 3Hφ̇, and imposing the condition that the frequency ω2 ≥ H2).

8.2.2 Dark Energy

Let us now focus on the angular part θ of the complex scalar field Ψ, which we neglected

when discussed about inflation. We want the PGB θ to be the field responsible for the

present acceleration of the universe. For this to happen, we have to impose two conditions

on our model: (i) the field θ must be stuck at an arbitrary initial value after the SSB

of V , which we suppose is of order v, and will only start to fall towards its minimum in

the future; (ii) the energy density of the θ field, ρ0, must be comparable with the present

critical density ρc0 , if we want θ to explain all of the dark energy content of our Universe.

Conditions (i) and (ii) may be written as

mθ ≤ 3H0 (8.26)

ρθ ∼ ρc0 . (8.27)

where H0 is the Hubble constant. Taking into account the expression for the mass of θ

derived in [116], mθ =
√

2g
(

v
MP

)n−1
2

MP , condition (8.26) becomes

g

(
v

MP

)n−1

≤ 9H2
0

2M2
P

. (8.28)

The energy density of the θ field is given by the value of the non-symmetric part of the

effective potential, Vnon−sym(φ, θ), with the assumption that the present values of both

fields are of order v

ρθ ' Vnon−sym(v, v) = g

(
v

MP

)n−1

M2
P v2. (8.29)

Introducing (8.29) into (8.27) and remembering that the present critical energy density

ρc0 =
3H2

0M2
P

8π
, we have that

g

(
v

MP

)n−1

' 3H2
0

8πv2
. (8.30)
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Combining (8.28) and (8.30) we get

3H2
0

8πv2
≤ 9H2

0

2M2
P

(8.31)

which finally gives

v ≥ 1

6
MP . (8.32)

This is the restriction to be imposed on v in order for θ to be the field describing dark

energy. Notice that it is independent of n. It is also interesting to obtain the restriction

on the coupling g, which can be done if we introduce (8.32) into (8.30) giving

g ≤ 3× 6n+1

8π

H2
0

M2
P

. (8.33)

Replacing the value for H0 ∼ 10−42 GeV and taking the smallest value n = 4, we obtain

the limit

g ≤ 10−119. (8.34)

8.3 Discussions and Conclusions

In the previous section, we derived the conditions to be imposed on the parameters of

our model in order to give the right description for inflation and dark energy. Let us

give here a numerical example and show the field evolution. In all the figures, we use the

following values for the parameters: v = 0.5 × 1019 GeV, λ = 10−16, Λ = 9 × 1014 GeV,

mχ = 2.5 × 1012 and α = 10−6. The tiny value for λ is needed in order to generate the

correct amplitude of density perturbations, δρ/ρ ∼ 2×10−5 [9, 257]. In Fig.8.1 we display

the graphical representation of the symmetric part Vsym(φ, χ) of the effective potential and

in Fig.8.2 we show the numerical solution to the system of the two equations of motion

of the fields φ̃ = φ/v and χ̃ = χ/M . We have solved it for the interesting region starting

from φ = φc and χ = 0 (because during inflation we know that χ = 0 and φ slowly rolls

down the potential). We notice that when χ approaches its minimum, the slow-rolling

of φ ceases, and it rapidly evolves towards the minimum of the effective potential and

oscillates around it.

In Fig.8.3, we plot the number of e-folds N(φ) defined in Eq.(8.18), as a function of

the inflaton field. The maximum value for φ that we chose is φc, while the minimum

value is ' 0. The interesting region is the one that gives ”observable inflation”, that is

for values of φ that give N(φ) ≤ 60. This is because N(φ) ∼ 60 corresponds to the time

when cosmological scales leave the horizon during inflation. All what happened before is

outside our horizon and is totally irrelevant at the present time.
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A way to confront the predictions of our model with observational data is through

the spectral index ns of density perturbations produced during inflation [248, 258]. The

spectral index is defined in terms of the slow-roll parameters ε and η by the relation

ns = 1 + 2η − 6ε (8.35)

and experimental data indicate a value of ns = 0.96±0.02 [80, 82], [238]-[243]. We display

in Fig.8.4 the dependence of the spectral index on the inflaton field φ.

One of our numerical conclusions is that g has to have an extremely small value,

as we see in (8.34). It says that the effect of Planck-scale physics in breaking global

symmetries should be exponentially suppressed. Let us mention at this point that there

are arguments for such a strong suppression. Indeed, interest in the quantification of the

effect came from the fact that the consequence of the explicit breaking of the Peccei-Quinn

symmetry [119, 120] is that the Peccei-Quinn mechanism is no longer a solution to the

strong CP-problem [259]-[261].

In ref. [225] it was shown that in string-inspired models there could be non-perturbative

symmetry breaking effects of order exp [−π(MP /Mstring)
2]. For Mstring < 1018 GeV, we

get (8.34). Although we considered perturbative effects, that analysis shows that perhaps

the values (8.34) leading to θ being quintessence are realistic.

Finally we would like to comment on the possibility that instead of having one field

Ψ we have N fields Ψ1, Ψ2, ... ΨN . We are motivated by the recent work [68] where

N inflatons are introduced. The interesting case is when N is large, as suggested in

some scenarios discussed in [68]. When having N fields, our relations should of course

be modified. In the simple case that the parameters of the N fields are identical, to

convert the formulae in the text to the new case, we should make the following changes:

v → N1/2v, Λ → N1/4Λ, g → N−3/2g and λ → N−1λ. This would allow to change the

values of the parameters, for example with large values for N we can have smaller values

for v, and so on.

To summarize, our purpose has been to give a step forward starting from the idea of

Frieman and Rosenfeld [207] that fields in a potential may supply a unified explanation of

inflation and dark energy. Our model contains two scalar fields, one complex and one real,

and a potential that contains a non-symmetric part due to Planck-scale physics. We have

determined the conditions under which our fields can act as inflaton and as quintessence.

One of the conditions is that the explicit breaking has to be exponentially suppressed, as

suggested by quantitative studies of the breaking of global symmetries by gravitational

effects [225].
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Figure 8.1: The symmetric part of the effective potential, Vsym, as function of the two

normalized fields (φ/v, χ/M)
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Figure 8.2: Numerical solution for the system of the coupled equations of motion of the

two fields, φ̃ = φ/v and χ̃ = χ/M . Notice the logarithmic time-scale on the abscise
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Figure 8.3: The number N(φ̃) of e-folds of inflation as a function of φ̃ = φ/v
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Figure 8.4: (a) The spectral index ns during inflation, as a function of the inflaton field,

and (b) just after the time when φ = φc, as a function of the logarithm of time. In the

above figures, the dashed line is the expected value for ns within experimental errors,

delimited by the pointed lines.
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9.1 Introduction

Cosmology has made in the last few years enormous progress, especially in the accuracy

of observational data, which is taken using technologies more and more precise. While

in the past not too remote it seemed almost inconceivable, nowadays we may even talk

about ”precise cosmology”. This is why, in analogy with the Standard Model (SM)

of particle physics, many physicists are already talking about a ”standard model” of

cosmology. As suggested by recent observations of type Ia supernovas (SNIa) [137, 262],

the matter power spectrum of large scale structure (LSS) [145] and anisotropy of the

cosmic microwave background radiation (CMB) [5], the universe is presently dominated

by too types of mysterious fluids: dark energy (DE), which has negative pressure whose

consequence is to accelerate the expansion of the universe, and dark matter (DM), which

is non-relativistic non-baryonic matter, very weakly coupled to normal matter and that

only has gravitational effects on it.

The most simple explanation for DE is a cosmological constant Λ, but it raises another

problem because its expected value is many orders of magnitude larger than the value

suggested by observations. Another possible explanation is the existence of a slowly rolling

scalar field, called quintessence, which is displaced from the minimum of its potential and

started to dominate the energy density of the universe recently.

The same observations indicate that the universe is isotropic and homogeneous at large

scales and spatially flat, for which in the old cosmological picture there is no reasonable

explanation. The most successful and simple solution to the flatness and homogeneity

problems is given by inflation [16], which in its simplest version is defined as a short

period of accelerated expansion of the early universe caused by a single dominating scalar

field, the inflaton. In addition, inflation gives the most popular mechanism of generation of

cosmological fluctuations, which were the seed for the structure formation in our universe.

Although the SM based on the gauge group SU(3) × SU(2) × U(1) is a solid theo-

retical construction able to accommodate all existing empirical data, it leaves many deep

questions unanswered when trying to explain the origin and nature of the new ingredients

introduced by modern cosmology, such as, for example, the inflaton, the DE and the DM.

Thus, there are reasons to believe that the SM is not the ultimate theory and one has to

look for extensions of it. If we are able to discover a theory that indeed goes beyond the

SM, it will probably contain new symmetries, either local, or global.

A lot of effort has been done in studying global symmetries at high energies [223,

224, 236, 237], especially in trying to clarify the issue of quantum coherence loss in the

presence of wormholes. It was argued that the loss of coherence opens the possibility that
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currents associated with global symmetries are not exactly conserved. Even if incoher-

ence is not observed in the presence of wormholes, it was argued that other interesting

consequences may emerge, such as the appearance of operators that violate global sym-

metries, of arbitrary dimensions, induced by baby universe interactions. There are other

reasons to expect that quantum gravity effects break global symmetries: global charges

can be absorbed by black holes which may evaporate, ”virtual black holes” may form and

evaporate in the presence of a global charge, etc.

In this context, the authors of [225] argue that if global symmetries are broken by

virtual black holes or topology changing effects, they have to be exponentially suppressed.

In particular, in order to save the axion theory, the suppression factor should have an

extremely small value g < 10−82. This suppression can be obtained in string theory, if the

stringy mass scale is somewhat lower than the Planck-scale, Mstr ∼ 2×1018GeV. Thus we

expect to have an exponential suppression of the explicit breaking of global symmetries.

Even with such an extremely small explicit breaking, one can see that very interesting

consequences may appear. In [116] (from now on Paper 1), it was shown that, when a

global symmetry is spontaneously broken in the presence of a small explicit breaking,

the resulting pseudo-Golstone boson (PGB) can be a DM particle. In [263] (from now

on Paper 2), a similar study was made, but the purpose was to show that the resulting

PGB could be a quintessence field explaining the present acceleration of the universe.

In addition, based on the idea forwarded by Frieman and Rosenfeld [207], the model of

Paper 2 also incorporated inflation. In this way, the two periods of accelerated expansion

may have a common origin.

There is previous work related to explicit breaking of global symmetries [249, 250] and

to Planck-scale breaking [251]-[253]. Cosmological consequences of some classes of PGBs

are discussed in [201],[254]-[256].

Here, we extend the model in Paper 1 to also include inflation. The way we do it is

similar to the work in Paper 2, the difference being that here we want the resulting PGB

to be a DM particle, in contrast with Paper 2 where it was a quintessence field. Our

result is that the parameter of the explicit breaking should be exponentially suppressed,

g < 10−30, as in Paper 1, but the level of suppressions is not that high as in the case of

Paper 2, where a much smaller g ∼ 10−119 was needed in order for the PGB to explain

DE. Inflation may occur here at scales as low as V 1/4 ∼ 1010GeV.

The paper is structured as follows: in section 9.2 we make a short presentation of the

model and then focus on the main features of it: inflation and dark matter. In section

9.3 we present our numerical results and, finally, in section 9.4 we make a discussion and

give the conclusions. Technical details are given in the Appendix B.
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9.2 The model

The model is, basically, the same as in Paper 2, so we just recall it here shortly. It contains

a new complex scalar field, Ψ, charged under a certain global U(1) symmetry, interacting

with a massive real scalar field, χ, neutral under U(1). It also contains a U(1)−symmetric

potential

Vsym(Ψ, χ) =
1

4
λ(|Ψ|2 − v2)2 +

1

2
m2

χχ2 +

(
Λ2 − κ2|Ψ|2χ2

4Λ2

)2

(9.1)

where λ and κ are coupling constants, mχ and Λ are some energy scales and v is the U(1)

spontaneous symmetry breaking (SSB) scale.

The interaction term in (9.1) is of inverted hybrid type [74, 75] and can be realized

in supersymmetry using a globally supersymmetric scalar potential [75]. However, in the

present paper we are not preoccupied about the underlying theory in which this model

can be realized, instead we only study the phenomenology of the potential (9.1).

Next, we allow terms in the potential that explicitly break U(1). These terms are

supposed to come from physics at the Planck-scale, and without knowledge of the exact

theory at that scale, we introduce the most simple effective U(1)−breaking term [259]-

[261]

Vnon−sym(Ψ) = −g
1

Mn−3
P

|Ψ|n (
Ψe−iδ + Ψ?eiδ

)
(9.2)

where g is an effective coupling, MP ≡ G
−1/2
N is the Planck-mass and n is an integer

(n > 3).

Summarizing, our effective potential is

V (Ψ, χ) = Vsym(Ψ, χ) + Vnon−sym(Ψ)− C (9.3)

where C is a constant that sets the minimum of the effective potential to zero.

By writing the field Ψ as

Ψ = φ eiθ̃ (9.4)

we envisage a model in which the radial field φ is the inflaton, while the angular field θ̃ is

associated with a DM particle.

Thus, in this paper we consider the possibility of having a unified model of inflation

and DM, improving in this way the model presented in Paper 1. We also want to present

a more detailed numerical analysis of the part regarding inflation, which could also apply

to the inflationary model of Paper 2.
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9.2.1 Inflation

We first revisit the conditions that should be accomplished by our model in order to cor-

rectly describe the inflationary period of expansion of the universe. Inflation is supposed

to have occurred in the early universe, when the energies it contained were huge. Thus,

the appropriate term to deal with when describing inflation is the symmetric term Vsym,

while the non-symmetric one can be safely neglected, being many orders of magnitude

smaller than Vsym. Taking into account (9.4), we may write

Vsym(φ, χ) = Λ4 +
1

2
M2

χ(φ)χ2 +
κ4φ4χ4

16Λ4
+

1

4
λ(φ2 − v2)2 − C (9.5)

where M2
χ(φ) ≡ m2

χ − κ2φ2, and we have also included the constant C. As commented

above, φ is the inflaton field and χ is an auxiliary field that assists φ to inflate.

We assume that initially the fields φ and χ are in the vicinity of the origin of the

potential, φ = χ = 0. At that point, the first derivatives of the potential are zero in both

φ− and χ−directions, but the second derivatives have opposite signs:

∂2Vsym(φ, χ)

∂φ2

∣∣∣∣
φ,χ=0

= −λv2 < 0 (9.6)

∂2Vsym(φ, χ)

∂χ2

∣∣∣∣
φ,χ=0

= m2
χ > 0. (9.7)

This means that χ remains trapped at the false minimum in χ−direction of the poten-

tial, χ = 0, while φ becomes unstable and can roll down in the direction given by χ = 0.

If the potential in φ−direction is sufficiently flat, φ can have a slow-roll and produce

inflation. This regime lasts until the curvature in χ−direction changes sign and inflation

has a sudden end through the instability of χ, which triggers a waterfall regime and both

fields rapidly evolve towards the absolute minimum of the potential. The critical point

where inflation ends is given by the condition

M2
χ(φ) = m2

χ − κ2φ2 = 0 (9.8)

so that during inflation φ < φc = mχ

κ
. v.

The constraints related to the inflationary aspects of the model are the same of Paper

2. Let us just summarize them here.

• vacuum energy of field χ should dominate: 1
4
λv4 ¿ Λ4

• small φ−mass as compared to χ−mass: |m2
φ| = λv2 ¿ m2

χ . κ2v2

• slow-roll conditions: ε ≡ 1
16π

(
V ′
V

)2 ¿ 1, |η| ≡
∣∣ 1
8π

V ′′
V

∣∣ ¿ 1
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• rapid variation of M2
χ(φ) at the critical point: |∆M2

χ(φc)| > H2

• fast roll of φ after χ gets to its minimum: large (∂Vsym/∂φ)|χmin

These conditions have to be satisfied in order for the hybrid inflationary mechanism

to work. There are other constraints related to fairly precise observational data:

• sufficient number of e-folds of inflation N(φ) = (8π)/M2
P

∫ φ

φend
(Vsym/V ′

sym)dφ in order

to solve the flatness and the horizon problems. The required number depends on

the inflationary scale and on the reheating temperature, and is usually comprised

between 35 for low-scale inflation and 60 for GUT-scale inflation

• the amplitude of the primordial curvature power-spectrum produced by quantum

fluctuations of the inflaton field should fit the observational data [5], PR1/2 ' 4.86×
10−5

• the spectral index ns should have the right value suggested by observations of the

CMB [5], ns = 0.951+0.015
−0.019 (provided tensor-to-scalar ratio r ¿ 1).

Combining all the above constraints we obtain the following final relations that should

be satisfied by the parameters of our model: λ ¿ κ2 and v < MP. We also obtain the

dependence of some of the model parameters on the SSB scale v (for more details, see

Paper 2 and the Appendix B). These will be used in section 9.3 for a numerical study. The

range of values of the scale v will be fixed by the requirement that θ is a DM candidate.

9.2.2 Dark matter

As stated above, our idea is that θ, the PGB that appears after the SSB of U(1) in the

presence of a small explicit breaking, can play the role of a DM particle. Thus, after the

end of inflation, θ finds itself in a potential given by the term Vnon−sym

Vnon−sym(φ, θ) = −2 g
φn+1

Mn−3
P

cos θ̃ (9.9)

where (9.4) has been used in (9.2) and the change of variables θ̃ −→ θ̃ + δ has been

made. In Paper 1 it was shown that for exponentially small g the evolutions of the two

components of Ψ are completely separated, so that we expect θ−oscillations to start long

after φ has settled down at its vacuum expectation value (vev),

〈φ〉 ' M
1/3
P v2/3. (9.10)
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A detailed study of the cosmology of the θ−particle was made in Paper 1, for the

lowest possible value n = 4. We do not want to enter into details here, but just to make

use of the results of that work to obtain the values of the parameters of our model. The

only difference here is the fact that the vev of the radial field φ is different from v, so that

the constraints obtained in Paper 1 on v will apply here on 〈φ〉. This will also affect the

angular field θ̃, which is here normalized as θ̃ ≡ θ/〈φ〉.
Due to the small explicit breaking of the U(1) symmetry, θ acquires a mass which

depends on both g and 〈φ〉
m2

θ = 2g

( 〈φ〉
MP

)3

M2
P (9.11)

and this is why we should find constraints on both 〈φ〉 and g in order for θ to be a suitable

DM candidate. The constraints that should be imposed come from various astrophysical

and cosmological considerations:

• θ should be a stable particle, with lifetime τθ > t0, where t0 is the universe’s lifetime

• its present density should be comparable to the present DM density Ωθ ∼ ΩDM ∼
0.25

• it should not allow for too much energy loss and rapid cooling of stars [126]

• although stable, θ may be decaying at present, and its decay products should not

distort the diffuse photon background

In Paper 1, all these constraints have been studied in detail. Because θ is massive, it

can decay into two photons or two fermions, depending on its mass. The lifetime of θ

depends on the effective coupling to the two photons/fermions and on its mass, which

in turn depends on the two parameters 〈φ〉 and g. It was shown that for the interesting

value of 〈φ〉 and g for which θ can be DM, the resulting θ−mass has to be mθ < 20 eV,

so the only decaying channel is into two photons.

There are different mechanism by which θ particles can be produced, as explained in

Paper 1: (a) thermal production in the hot plasma, and (b) non-thermal production by

θ−field oscillations and by the decay of cosmic strings produced in the SSB. All these

may contribute to the present energy density of θ particles, which was computed in Paper

1. By requiring it to be comparable to the present DM energy density of the universe,

we obtain a curve in the space of parameters 〈φ〉 and g, illustrated in Fig.9.1 as the line

labelled ”DM”.

In Paper 1 it was argued that there are some similarities between our θ particle and

the QCD axion [117, 118]. This is why when investigating its production in stars, we can
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apply similar constraints. The strongest one comes from the fact that θ may be produced

in stars and constitute a novel energy loss channel, and these considerations put a limit

on 〈φ〉, but not on g

〈φ〉 > 3.3× 109 GeV. (9.12)

Another aspect about θ is that, although stable, a small fraction of its population

may be decaying today and the resulting photons may produce distortions of the diffuse

photon background. Thus, the calculated photon flux coming from θ−decay is constraint

to be less than the observed flux (see Paper 1 for details).

<φ>

Figure 9.1: Permitted and prohibited regions in the (〈φ〉, g)−plane, taken from Paper 1.

The interesting points are those which are near the line labelled ”DM”.

By combining astrophysical and cosmological constraints, we can obtain the interesting

values for 〈φ〉 and g for which θ is stable and its density is comparable to the DM density.

These values can be easily read from Fig.9.1, being situated along the line labelled ”DM”.

Note that there is an upper limit on g, which corresponds to a lower limit on 〈φ〉, i.e.

g < 10−30, 〈φ〉 > 1011 GeV. (9.13)

These also put a lower limit on the value of U(1) breaking scale,

v ∼
(〈φ〉3

MP

)1/2

> 107 GeV. (9.14)

Finally, according to the study made in Paper 1, for value 〈φ〉 < 7.2 × 1012 GeV, θ

particles can be produced both thermally and non-thermally, but in the region charac-

terized by 〈φ〉 > 1011 GeV, the dominant energy density corresponds to non-thermally
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produced θ particles. Moreover, for 〈φ〉 > 7.2 × 1012 GeV, only non-thermal production

is possible.

9.3 Numerical results

The constraints enumerated in subsection 9.2.1 will determine the values of some of the

model parameters. Our scope is to make a general analysis of how these parameters

depend on v. For λ we obtain an exact formula (see Appendix B)

λ = 4.4× 10−12φ2
0(v

2 − φ2
0)

2

(v2 − 3φ2
0)

3
(9.15)

where φ0 is the value of the inflaton field when the scale k = 0.002 Mpc−1 crossed the hori-

zon during inflation and its v−dependence can be obtained numerically, see the Appendix

B.

The exact formulae for the other parameters are too complicate to be shown here.

Nevertheless, things get simplified in the limit λv4 ¿ Λ4(≡ v ¿ MP), for which we

obtain

Λ ' 1.6× 10−3

[
φ2

0(v
2 − φ2

0)
2

(v2 − 3φ2
0)

2

]1/4

M
1/2
P ∼ λ1/4v1/2M

1/2
P (9.16)

and

C ' 3

4
Λ4

(
λv4/Λ4

)1/3 ¿ Λ4. (9.17)

We notice that C can be neglected, as compared to Λ4, in this limit.

The coupling κ is only constrained by the condition λ ¿ κ2, so that it can have

any arbitrary value satisfying this inequality. In our numerical study we took the value

κ = 10−2. The mass of χ, namely mχ, can have any arbitrary value satisfying mχ < κv,

but for the sake of simplicity we set it to mχ = κv/2, without loss of generality.

In Fig.9.2 we display some graphics with the v−dependence of relevant parameters of

our model. In Fig.9.2(a) we plot the numerical results for φ0(v), which are then used to

produce the other graphics. From Fig.9.2(b), one can see that λ does not vary too much

with v and its values are around 10−13 for a large range of v. We also notice that the

other parameters grow as different powers of v. For example in Fig.9.2(c), Λ, which sets

the inflationary scale, varies as v1/2 from ∼ 1010GeV, for v = 107GeV, to ∼ 1016GeV,

for v ∼ MP, i.e., from a relatively low-scale to a GUT-scale inflation. In Fig.9.2(d) are

represented in the same graphic the values of Λ4, C and λv4 to confirm that, in the limit

v ¿ MP, one can use the approximation λv4 ¿ C ¿ Λ4, while for v . MP the three

terms become of the same order and the above approximation is not valid anymore. In
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Fig.9.2(e) and (f) we give additional results, such as the number of ”observable” inflation

N and the tensor-to-scalar ratio r ≡ 16ε.

In particular, for the lowest possible value v = 107GeV, we get N ' 47 e-folds of

inflation, and a very tiny value for the tensor-to-scalar ratio, r ∼ 10−27, making the

detection of gravitational waves a practically impossible task. We specify that the spectral

index ns ' 0.95 and the amplitude of curvature perturbations, PR1/2 ' 4.86 × 10−5 for

all v.

We also notice that for v ∼ MP, we recover the inflationary scenario proposed in

Paper 2, where θ was a quintessence field. The numerical analysis presented here can also

be applied to that model, and one obtains 〈φ〉 ∼ v, N ∼ 56 e-folds of inflation and the

more interesting result r ∼ 10−3 − 10−4, which makes gravitational waves detection more

plausible in the future.

9.4 Discussions and Conclusions

In this work, we have presented a model that is able to describe inflation and dark matter

in a unified scenario, by introducing a new complex scalar field Ψ = φ exp(iθ̃) interacting

with a real scalar, χ, and a potential invariant under certain global U(1) symmetry. We

allowed for a small explicit breaking term in the effective potential that is due to Planck-

scale physics and investigated the possibility that φ is the inflaton and θ a dark matter

particle. The corresponding constraints have been enumerated in subsections 9.2.1 and

9.2.2.

In this way, we improve the model of Paper 1, where θ was a DM particle, but the

model did not include inflation. The results of Paper 1 are used here in subsection 9.2.2.

For the part regarding inflation in our model, in subsection 9.2.1 we make a similar

analysis as in Paper 2, which also improves Paper 1 by incorporating inflation, but the

difference is that there θ was a quintessence field. The numerical analysis we present in

section 9.3 extrapolates between the two scales considered in the models of Paper 1 and

Paper 2.

In the present numerical study, we used the value κ = 10−2, and we chose mχ = κv/2

for simplicity. We observe that a tiny value is needed for λ ∼ 10−13, in order to generate

the correct values of the amplitude of curvature perturbations and of the spectral index.

We have no possible theoretical explanation for justifying this small λ−value, but this

is a common problem of most of the inflationary models. Although we make a general

numerical analysis to see how the parameters depend on the SSB scale v, we are finally

interested in the value for which the angular field θ is a DM candidate, v ¿ MP.
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Figure 9.2: v−dependence of various parameters: (a)−the inflaton field value correspond-

ing to the moment when the scale k0 = 0.002 Mpc−1 left the horizon, φ0(v); (b)−the

inflaton self-coupling constant, λ(v); (c)−the scale of inflation, Λ(v); (d)−comparison

between Λ4(v), C(v) and λv4, which tend to be of the same order for v ∼ MP; (e)−the

tensor-to-scalar ratio, r(v); (f)−the number of e-folds of inflation that occur between the

largest observable scale left the horizon and the end of inflation, N(v).
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Notice that for v ¿ MP, the vev of the inflaton field φ is different from v and is

approximately given by 〈φ〉 ' v2/3M
1/3
P 6= v, while for v ∼ MP they tend to be of the

same order, 〈φ〉 ∼ O(v).

We included explicit U(1)−breaking terms in the potential and studied the possibility

that the resulting PGB, θ, could be a DM particle. We found in Eq.(9.13) that the

effective g coupling related to the explicit breaking should be exponentially suppressed,

g < 10−30. This confirms our expectations commented in the Introduction, that the effect

of Planck-scale physics in breaking global symmetries should be exponentially suppressed

[225]. With the extreme values g = 10−30 and v = 107GeV, the mass of θ is fully

determined, mθ ∼ 15 eV.

It would be interesting to investigate reheating in our model to determine the exact

reheating temperature Trh, and also to provide a specific mechanism for producing SM

particles, but this goes beyond the scope of our paper.

As a final comment, we would like to add that such a strong suppression of g may

be avoided if, for some reason, n = 7 and all smaller values prohibited. In this case, one

obtains g of O(1), but then one should find an argument why n cannot be smaller than 7.
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10.1 Introduction

The recent three-year Wilkinson Microwave Anisotropy Probe (WMAP3) results [5] have

put quite a severe constraint on inflationary models. In particular, new results on the

value of the spectral index ns = 0.95± 0.02 are sufficiently ”precise” as to rule out many

models with an exact Harrison-Zel’dovich-Peebles scale-invariant spectrum with ns = 1

and for which the tensor-to-scalar ratio r ¿ 1. Any model purported to describe the

early inflationary era will have to take into account this constraint. However, by itself, it

is not sufficient to narrow down the various candidate models of inflation. In particular,

”low-scale” inflationary models are by no means ruled out by the new data. By ”low-

scale” we refer to models in which the scale that characterizes inflation is several orders of

magnitude smaller than a typical Grand Unified Theory (GUT) scale ∼ 1015− 1016 GeV.

It is in this context that we wish to present a model of low-scale inflation which could

also describe the dark energy and dark matter [264, 265].

The model of dark energy and dark matter described in [265] involves a new gauge

group SU(2)Z which grows strong at a scale ΛZ ∼ 3 × 10−3 eV starting with the value

of the gauge coupling at ∼ 1016 GeV which is not too different from the Standard Model

(SM) couplings at a similar scale. (This is nicely seen when we embed SU(2)Z and the

SM in the unified gauge group E6 [266].) The model of [265] contains, in addition to

the usual SM content, particles which are SM singlets but SU(2)Z triplets, ψ
(Z)
(L,R),i with

i = 1, 2, particles which carry quantum numbers of both gauge groups, ϕ̃
(Z)
1,2 , which are

the so-called messenger fields with the decay of ϕ̃
(Z)
1 being the source of SM leptogenesis

[267], and a singlet complex scalar field,

φZ = (σZ + vZ) exp(iaZ/vZ) , (10.1)

whose angular part aZ is the axion-like scalar. We have defined the radial part of φZ as

the sum of a field σZ and a vacuum-expectation-value (v.e.v.) vZ . The SU(2)Z instanton-

induced potential for aZ (with two degenerate vacua) along with a soft-breaking term

whose dynamical origin is discussed in [268], is one that is proposed in [265] as a model

for dark energy. In that scenario, the present universe is assumed to be trapped in a

false vacuum of the aZ potential with an energy density ∼ Λ4
Z . The exit time to the true

vacuum was estimated in [265] and was found to be enormous, meaning that our universe

will eventually enter a late inflationary stage.

What might be interesting is the possibility that the real part of φZ , namely σZ , could

play the role of the inflaton while the imaginary part, aZ , plays the role of the ”acceleron”

as we have mentioned above. This unified description is attractive for the simple reason

that one complex field describes both phenomena: Early and Late inflation. (This scenario
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has been exploited earlier [206, 263], [269]-[271] in the context of GUT scale inflation.)

Although the structure of the potential describing the accelerating universe is determined,

in the model of [265], by instanton dynamics of the SU(2)Z gauge interactions [265], the

potential for σZ , which would describe the early inflationary universe, is arbitrary as with

scalar potentials in general. In this case, the only constraint comes from the requirement

that this potential should be of the type that gives the desired spectral index and the

right amount of inflation corresponding to the characteristic scale of the model.

We now briefly describe the model of [265]. The key ingredient of that model is the

postulate of a new, unbroken gauge group SU(2)Z which grows strong at a scale ΛZ ∼
3× 10−3 eV. The model also contains a global symmetry U(1)

(Z)
A which is spontaneously

broken by the v.e.v. of φZ , namely 〈φZ〉 = vZ , and is also explicitly broken at a scale

ΛZ ¿ vZ by the SU(2)Z gauge anomaly. Because of this, the pseudo-Nambu-Goldstone

boson (PNGB) aZ acquires a tiny mass as discussed in [265]. Its SU(2)Z instanton-induced

potential used in the false vacuum scenario for the dark energy is given by

Vtot(aZ , T ) = Λ4
Z

[
1− κ(T ) cos

aZ

vZ

]
+ κ(T )Λ4

Z

aZ

2π vZ

, (10.2)

where κ(T ) = 1 at T < ΛZ . (SU(2)Z instanton effects become important when αZ =

g2
Z/4 π ∼ 1 at ΛZ ∼ 3 × 10−3 eV .) The universe is assumed to be presently trapped in

the false vacuum at aZ = 2πvZ with an energy density ∼ (3 × 10−3 eV )4. As such, this

model mimicks the ΛCDM scenario with w(aZ) =
1
2
ȧ2

Z−V (aZ)
1
2
ȧ2

Z+V (aZ)
≈ −1, at present and for a

long time from now on, but not in the distant past [265].

What could be the form of the potential for the real part, namely σZ , of φZ? As with

any scalar field, the form of the potential is rather arbitrary, with the general constraints

being gauge invariance and renormalizability. In this paper, we would like to propose a

form of potential for σZ which is particularly suited to the discussion of the “low-scale”

inflationary scenario: a Coleman-Weinberg (CW) type of potential [72]. (The CW-type of

potential has been recently used [272] to describe a GUT-scale inflation using the WMAP3

data.) There are three types of contributions to the potential. The sources of these three

types are the following terms in the lagrangian:

a) φZ − ψ
(Z)
(L,R),i coupling

∑
i

Ki ψ̄
(Z)
L,i ψ

(Z)
R,i φZ + h.c. (10.3)

Let us recall from [265] that (10.3) is invariant under the following global U(1)
(Z)
A

symmetry transformations: ψ
(Z)
L,i → e−iα ψ

(Z)
L,i , ψ

(Z)
R,i → eiα ψ

(Z)
R,i , and φZ → e−2iα φZ .
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b) φZ − ϕ̃Z
1 mixing (we ignore the φZ − ϕ̃Z

2 coupling since it is assumed to have a mass

of the order of a typical GUT scale)

λ̃1Z(φ†Z φZ)(ϕ̃Z,†
1 ϕ̃Z

1 ) (10.4)

c) σZ self-interaction
λ

4!
σ4

Z (10.5)

Both terms, (10.4) and (10.5), arise from the general potential for all fields.

Let us look into constraints on these couplings coming from issues discussed in [265]: dark

matter and leptogenesis.

Since the coupling (10.3) will, in principle, contribute to the CW potential for σZ , it

is crucial to have an estimate on the magnitude of the Yukawa couplings Ki. In [265], an

argument was made as to why it might be possible that ψ
(Z)
i could be Cold Dark Matter

(CDM) provided

m
ψ

(Z)
i

= |Ki|vZ ≤ O(200 GeV ) , (10.6)

or

|Ki| ≤ O(200 GeV/vZ) (10.7)

Roughly speaking, in order for ΩCDM ∼ O(1), the annihilation cross sections for ψ
(Z)
i are

required to be of the order of weak cross sections. In this case, they are approximately

σannihilation ∼ α2
Z(m

ψ
(Z)
i

)/m2

ψ
(Z)
i

(α2
Z(m

ψ
(Z)
i

) is the coupling evaluated at E = m
ψ

(Z)
i

) and

have the desired magnitude when m
ψ

(Z)
i
∼ O(200 GeV ) with α2

Z(m
ψ

(Z)
i

) ∼ α2
SU(2)L

(m
ψ

(Z)
i

),

a characteristic feature of the model of [265].

A second requirement comes from a new mechanism for leptogenesis as briefly men-

tioned in [265] and described in detail in [267]. This new scenario of leptogenesis involves

the decay of a messenger scalar field, ϕ̃
(Z)
1 , into ψ

(Z)
i and a SM lepton. In order to give

the correct estimate for the net lepton number, a bound on the mass of ϕ̃
(Z)
1 was derived.

In [267], it was found that

m
ϕ̃

(Z)
1
≤ 1 TeV . (10.8)

This came about when one calculates the interference between the tree-level and one-loop

contributions to the decays

ϕ̃
(Z)
1 → ψ̄

(Z)
1,2 + l (10.9)

ϕ̃
(Z),∗
1 → ψ

(Z)
1,2 + l̄ (10.10)

where l represents a SM lepton. By requiring that the asymmetry coming from this sce-

nario to be εϕ̃1

l ∼ −10−7 in order to obtain the right amount of baryon number asymmetry
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through the electroweak sphaleron process, [267] came up with the constraint (10.8) which

could be interesting for searches of non-SM scalars at the Large Hadron Collider (LHC).

On the other hand, as discussed in [265], the mixing between ϕ̃
(Z)
1 and φZ results in an

additional term in the mass squared formula for ϕ̃
(Z)
1 , namely 2λ̃1Zv2

Z . Taking into account

the leptogenesis bound (10.8), one can write

λ̃1Z ≤ (1 TeV/vZ)2 . (10.11)

All these constraints will be used to estimate the contributions to the effective poten-

tial. The ψ
(Z)
i fermion loop contribution to the σZ CW potential is given by −|Ki|4/16π2,

and therefore will be bound by (10.7). The ϕ̃
(Z)
1 loop contribution to the potential is given

by λ̃2
1Z/16π2 and is constrained by (10.11). The third contribution c) coming from the

σZ loop is given by λ2/16π2. There are no constraints on it coming from dark matter or

leptogenesis arguments, as we have in the other cases a) and b).

Below, we will constrain both vZ and the coefficient of the CW potential (which in-

cludes contributions from various loops) using the latest WMAP3 data. Next, we use these

results to further constrain |Ki| and λ̃1Z . We will finally comment on the implications of

these constraints.

10.2 Inflation with a Coleman-Weinberg potential

Let us now see under which conditions we can obtain a viable scenario for inflation with

our model. As previously mentioned, the scalar field φZ receives various contributions to

its potential, which will have the generic CW form [72]

V0(φ
†
ZφZ) = A

(
φ†ZφZ

)2
(

log
φ†ZφZ

v2
Z

− 1

2

)
+

Av4
Z

2
. (10.12)

After making the replacement (10.1) in (10.12), we obtain the potential for the real part

σZ of φZ , which we want to be the inflaton field

V0(σZ) = A(σZ + vZ)4

[
log

(σZ + vZ)2

v2
Z

− 1

2

]
+

Av4
Z

2
. (10.13)

This expression corresponds to the zero temperature limit. If we take into consideration

finite-temperature effects, we should add a new term depending on temperature T that

will give the following effective potential to σZ

Veff(σZ) = V0(σZ) + βT 2(σZ + vZ)2 (10.14)
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where β is a numerical constant. At high temperature, the field σZ is trapped at the

U(1)
(Z)
A −symmetric minimum σZ = −vZ . As the universe cools, for a sufficiently low

temperature a new minimum appears at the U(1)
(Z)
A −symmetry breaking value σZ = 0

(〈φZ〉 = vZ). The critical temperature is the temperature at which the two minima

become degenerate and is equal to Tcr = vZ

√
A/β e−1/4. The universe cools further with

the field σZ being trapped at the false vacuum and inflation starts when the false vacuum

energy of σZ becomes dominant. Nevertheless, when the universe reaches the Hawking

temperature

TH =
H

2π
' 1

2π

√
8π

3M2
P

V0(−vZ) =

√
A v2

Z√
3π MP

(10.15)

a first-order phase transition occurs and σZ may start its slow-rolling towards the true

minimum of the potential. In (10.15), MP ' 1.22 × 1019 GeV is the Planck-mass, H is

the Hubble parameter at that epoch and we supposed that the energy density of σZ is

the dominant one. Observable inflation occurs just after the false vacuum is destabilized

and the inflaton slowly rolls down the potential. The evolution of σZ can be described

classically.

Next, let us find the values for A and vZ that are needed in order to obtain a viable

model for inflation, compatible with observational data. The main constraints come from

the combined observations of the Cosmic Microwave Background (CMB) and the Large

Scale Structure (LSS) of the universe, which indicate the range of values for the spectral

index ns, the tensor-to-scalar ratio r and, perhaps, evidence for a running in the spectral

index. We also consider the constraint on the amplitude of the curvature perturbations,

PR1/2, with the assumption that they were produced by quantum fluctuations of the

inflaton field when the present large scales of the universe left the horizon during inflation.

Finally, the number of e-folds of inflation produced between that epoch and the end of the

inflationary stage should be large enough in order to solve the horizon and the flatness

problems.

In our scenario, we have a theoretically motivated mechanism for generating a lepton

asymmetry which then translates into a baryon asymmetry compatible with observations

[265, 267]. Later on in this paper we will treat this aspect in more detail. For now, it

is sufficient to say that after inflation, the σZ field starts to oscillate and to reheat the

universe, mainly by decaying into two ψ
(Z)
i fermions of masses given by (10.6), so that

we want the inflaton to have sufficient mass as to decay into the two fermions. This is

another condition to be considered for obtaining the adequate values for the parameters

of our model.

Let us list the main constraints to be imposed on our model:
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• the spectral index

ns ' 1− 6ε + 2η (10.16)

should be in the range ns = 0.95± 0.02, where ε =
M2

P

16π

(
V ′
V

)2
and η =

M2
P

8π
V ′′
V

are the

slow-roll parameters and a prime means σZ-derivative;

• the right number of e-folds of inflation between large scale horizon crossing and the

end of inflation

N0 =

∫ σZ,0

σZ,end

V

V ′dσZ (10.17)

where σZ,0 is the value of the inflaton field at horizon crossing and σZ,end its value

at the end of inflation;

• the amplitude of the curvature perturbations generated by the inflaton, evaluated

at σZ,0

PR1/2 =

√
128π

3

V 3/2

M3
P|V ′| |σZ,0

(10.18)

should have the WMAP3 value PR1/2 ' 4.7× 10−5;

• the inflaton mass mσZ
=
√

8AvZ should be at least 400 GeV or so in order for ψ
(Z)
i ’s

to be produced by the inflaton decay.

In our analysis, the parameters are functions of the inflaton field σZ and are evaluated

when the present horizon scales left the inflationary horizon.

We have performed a complete numerical study. Imposing the requirements we have

mentioned, we are interested in the lowest possible scale for inflation in our model. The

scale is lowest for vZ ' 3 × 109 GeV. With this value, we obtain A ' 3 × 10−15 and

mσZ
' 450 GeV which, as commented above, is sufficient to produce two ψ

(Z)
i fermions of

masses O(200) GeV. We also obtain ns = 0.923 for the spectral index, not far away from

the observed range, and N ' 38 e-folds of inflation between the present large scales horizon

crossing until the end of inflation. The inflation scale is V
1/4
0 ≡ V (σZ,0)

1/4 ' 6×105 GeV.

Low-scale inflation is interesting because it might be proved more easily in particle physics

experiments.

Our model also satisfies the constraints for values of the parameters leading to higher

values than V
1/4
0 ' 6×105 GeV. In Fig. 10.1 we show the dependence of the spectral index

vs the energy scale of inflation. We see that the values of ns are within 95% confidence

level even at scales as low as 6×105 GeV, and increases with increasing inflationary scale.

The graphic displayed in Fig. 10.1 was obtained with the assumption of instant reheating

and a standard thermal history of the universe [35, 69]. In Section 10.3 we present a more
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detailed analysis on the reheating mechanism. Here we just mention that the reheating

temperature in our model is smaller than V
1/4
0 , in which case the values of ns displayed

in Fig.10.1 shift to smaller values.

From now on we will stick to the lowest possible example vZ = 3 × 109 GeV (V
1/4
0 ∼

6× 105 GeV) and examine the consequences. We should stress that the values of A does

not vary drastically when we raise V
1/4
0 and we can safely consider it constant, with the

value A ' 3× 10−15. We then study some of the consequences that arise when adopting

this value for A.

 V0
1/4

(GeV)

n
s

6 7 8 9 10 11 12 13
Log 

0.92

0.94

0.96
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1

Figure 10.1: The spectral index ns as a function of the logarithm of the scale of inflation,

log V
1/4
0 , compared with WMAP3 [5] range for ns (at 68% and 95% confidence levels)

As stated before, one can have one-loop contributions to the parameter A coming from

loops containing a) fermions ψ
(Z)
i , b) the messenger field ϕ̃

(Z)
1 , and c) the inflaton. The

fermion loop contribution, of order −|Ki|4/16π2, can be estimated for the values of the

parameters chosen in the previous numerical example. From (10.7) we get for vZ = 3×109

, GeV

|Ki| ≤ 6.7× 10−8 (10.19)

which will then translate into the following contribution to the A parameter in the CW

potential

Aψ ≈ −|Ki|4/16π2 ∼ 10−31 (10.20)

obviously being too small to be considered as contributing to it. Thus, fermion loops are

completely negligible.

Next, we want to estimate what the contribution of the messenger field ϕ̃
(Z)
1 is. The
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leptogenesis bound (10.11) for vZ = 3× 109 GeV becomes

λ̃1Z ≤ 10−13 (10.21)

which gives the following contribution to the potential

Aϕ̃ ≈ λ̃2
1Z/16π2 ∼ 8× 10−29 (10.22)

also being too small compared to the value A = 3 × 10−15. This means that the main

contribution should come from σZ self-coupling λ. The necessary value of the λ coupling

can be estimated by comparing its contribution Aσ ≈ λ2/16π2 with A

A ' Aσ ≈ λ2/16π2 ' 3× 10−15 (10.23)

from which we obtain the constraint on λ

λ ' 6.9× 10−7. (10.24)

To end the discussion regarding inflation in our model, we would like to add that in

our numerical study we obtained a small value for the running of the power spectrum,

α ≡ dns

d ln k
' −0.002. Other parameter that might be of interest is the tensor-to-scalar

ratio r, which is defined usually as

r =
PT

PR

(10.25)

where PT and PR are the power spectra for tensor and scalar perturbations, respectively.

In the slow-roll regime of inflation, r can be expressed in terms of the slow-roll parameters

and, at first order, r = 16ε, where ε has to be evaluated at horizon crossing. With the

values used in our previous numerical example, we obtain a very small tensor-to-scalar

ratio r ∼ 10−43, making the quest for gravitational wave detection from the inflationary

epoch hopeless.

It is amusing to note that the value of the σZ self-coupling λ ∼ O(10−7) that is

consistent with the data is of the same order as the constraint on the Yukawa coupling

|Ki| coming from the CDM scenario of [265].

10.3 Reheating

One of the most important questions of any inflationary scenario is the following: How

do SM particles get generated at the end of inflation? In a generic inflationary model, it

is not easy to answer this question since a generic inflaton is usually not coupled, either

directly or indirectly, to SM particles. Although our inflaton is a SM-singlet field, we will
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show that its decay and the subsequent thermalization of the decay products can generate

SM particles. In what follows, we will assume that the inflaton decays perturbatively as

with the ”old” reheating scenario and study its consequences. The interesting question

of whether or not it can decay through the parametric resonance mechanism [52, 273] of

”preheating” scenarios is beyond the scope of this paper and will be dealt with separately

elsewhere.

At the end of inflation, the inflaton will rapidly roll down its potential to the true

minimum. The reheating (or, equivalently, the damping of the inflaton oscillation) occurs

via the decay

σZ → ψ(Z) + ψ̄(Z). (10.26)

The width of the decay (10.26) is given by

Γ(σZ → 2ψ(Z)) ' 9

(
mψ

vZ

)2
mσ

8π
β (10.27)

where β = (1 − 4(mψ/mσ)2)3/2 and we remember that mσ =
√

8AvZ . To estimate the

reheating temperature caused by the process (10.26) after the end of inflation, we write

Γ(σZ → 2ψ(Z)) ∼ Hrh (10.28)

where Hrh ∼ 1.66T 2
rh/MP is the Hubble parameter at the reheating temperature Trh. By

combining Eqs. (10.27) and (10.28) we obtain the dependence of the reheating tempera-

ture Trh on vZ

Trh ' 1.3× 108
( vZ

GeV

)−1/2

. (10.29)

We see that the reheating temperature is a decreasing function of vZ . This will set an

upper bound on vZ , because Trh should be larger than twice the mass of ψ(Z) in order for

the reheating mechanism to work, i.e.

Trh > 2mψ ∼ 400 GeV (10.30)

which combined with (10.29) gives

vZ < 1011 GeV. (10.31)

This upper limit restrict us to a low-scale inflation range, 6 × 105 GeV ≤ V
1/4
0 ≤ 2 ×

107 GeV, and then great part of Fig. 10.1 will be excluded, unless some other reheating

mechanism is invoked. The spectral index values as a function of the logarithm of the

scale of inflation, in the allowed range, is shown in Fig. 10.2. Notice that the values of ns

are a bit smaller now than in the case of instant reheating, but still marginally compatible

with the WMAP3 value for ns.
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Figure 10.2: The spectral index ns as a function of the logarithm of the inflationary scale

V
1/4
0 , compared with WMAP3 [5] range for ns (at 68% and 95% confidence levels), in the

range allowed after imposing constraints coming from the reheating mechanism

Let us focus now on the mechanism by which SM particles are produced. For the sake

of clarity in the following discussion, we will denote the QCD gluons by g̃ and the SU(2)Z

”gluons” by G. The chain of reactions which finally leads to the SM particles can be seen

as follows:

ψ(Z) + ψ̄(Z) → GG → ϕ̃
(Z)
1 ϕ̃

(Z)
1 → W W, Z Z → q q̄, l l̄ , (10.32)

and

q q̄ → g̃g̃ . (10.33)

We end up with a thermal bath of SM and SU(2)Z particles. This thermalization is pos-

sible because of the simple fact that ϕ̃
(Z)
1 carries both SM and SU(2)Z quantum numbers.

Another important point concerns the various reactions rate in (10.32,10.33). The cor-

responding amplitudes are proportional to O(g2), where g stands for either the SU(2)Z

coupling or a typical SM coupling at an energy above the electroweak scale. From [265]

and [266], it can be seen that the various gauge couplings are of the same order of magni-

tude for a large range of energy, from a typical GUT scale down to the electroweak scale.

One can safely conclude that the various reaction rates are comparable in magnitudes

and the thermalization process shown above is truly effective. In principle, the messenger

field also couples to ψ(Z) and a SM lepton, as shown in [265], but this is irrelevant in the

thermalization process because the corresponding Yukawa couplings are too small.

It is remarkable to notice also that, because of the quantum numbers of the messenger
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field, the decay of ϕ̃
(Z)
1 into a SM lepton and ψ(Z) can generate a net SM lepton number

which is subsequently transmogrified into a net baryon number through the electroweak

sphaleron process as shown in [267]. In other words, the crucial presence of the messenger

field ϕ̃
(Z)
1 facilitates both the generation of SM particles through thermalization and the

subsequent leptogenesis through its decay.

10.4 Conclusions

In this paper, we show that the model presented in [265], which explains dark matter and

dark energy, also provides a mechanism for inflation in the early universe. We find that

it is conceivable to have a low-scale inflation.

The complete model contains a new gauge group SU(2)Z which grows strong at a

scale Λ ∼ 3 × 10−3 eV, with the gauge coupling at GUT scale comparable to the SM

couplings at the same scale. In addition to the SM particles, the model contains new

particles: ψ
(Z)
(L,R),i(i = 1, 2) which are SU(2)Z triplets and SM singlets; ϕ̃

(Z)
1,2 which are

the so-called messenger fields and carry charges of both SU(2)Z and SM groups; and φZ ,

which is a singlet complex scalar field. The model also contains a new global symmetry

U(1)
(Z)
A , which is spontaneously broken by the v.e.v. of the scalar field, 〈φZ〉 = vZ , and

also explicitly broken at the scale ΛZ ¿ vZ by the SU(2)Z gauge anomaly. The real part

of the complex scalar field, namely σZ , is identified with the inflaton field. We considered

a CW-type of potential for σZ and obtained the constraints on the parameters of the

model in order to have a right description of inflation. The angular part of the complex

scalar field, namely aZ , acquires a small mass due to the explicit breaking of SU(2)Z and

is trapped in a false vacuum, being responsible for the dark energy of the universe. The

new particles ψ
(Z)
(L,R),i, with masses of order 200 GeV, explain the dark matter. They are

produced at reheating, by the decay of the inflaton. For values of the SU(2)Z breaking

scale vZ ∼ 3 × 109 GeV, we obtain a low-scale model of inflation, namely a scale of

∼ 6× 105 GeV. Notice that, in order to have a realistic reheating mechanism, this “low-

scale” is also bounded from above by ∼ 2 × 107 GeV as we have discussed in the last

section. Because of this fact, our model is a bona-fide “low-scale” inflationary scenario.

It is an exciting possibility because the model might be indirectly probed at future LHC

experiments.
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11.1 Introduction

The standard model of cosmology assumes the Friedmann-Robertson-Walker metric

ds2 = −dt2 + R2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(11.1)

corresponding to an homogeneous and isotropic universe. Here k is the curvature signature

and R is the expansion factor, whose time change is given by the Friedmann equation

H2 ≡
(

Ṙ

R

)2

=
8πG

3
ρT − k

R2
. (11.2)

We have written the equation in such a way that the cosmological constant is included in

the total energy density ρT .

There are different contributions to ρT . Matter and radiation are among them. They

can be introduced as a fluid with pressure proportional to the energy density, p = wρ;

w = 0 corresponds to matter and w = 1/3 to radiation. Recent results coming from

high-redshift supernovae [6, 7], cosmic background radiation [82], [240]-[243] and galaxy

survey [244]-[247] suggest contributions with w ≈ −1. This is the so-called dark energy

that leads to the present acceleration of the universe. This acceleration may be produced

by a cosmological constant, since it has an equation of state with w = −1. However,

there might be other causes, like quintessence [160]-[162], [201, 274], cardassian expansion

[275], etc. Of course, there might be several components building up dark energy.

In this paper, we would like to discuss some aspects of the contribution to the energy

density of coherent scalar field oscillations in a potential. The physics of such oscillations

was analyzed in a pioneer work by Turner [214]. The purpose of our paper is the following.

First, in Sect.11.2, we find the analytical form of the field oscillations in a couple of

interesting cases. In Sect.11.3, we treat the general case and derive relevant physical

results using the action and angle variables of analytical mechanics [235],[276]-[278]. We

find this language very useful, particularly when an adiabatic change of the potential

is present. Another objective of our paper is to show that scalar field oscillations may

contribute to the dark energy of the universe. We do this in Sect.11.4, where we present

some instances of potentials leading to an accelerated universe.

11.2 Analytical solutions for scalar field oscillations

A classical scalar field in a potential has the Lagrangian density

L = −1

2
∂µφ ∂µφ− V (φ). (11.3)
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In the metric (11.1), and considering spatially homogeneous configurations, the equation

of motion for the field is

φ̈ + 3Hφ̇ + V ′(φ) = 0. (11.4)

Here dot means time-derivative and prime means d/dφ.

In this section we concentrate on two particular potentials, V ∼ φ2 and V ∼ φ4, where

one can find analytical solutions. While the solution for the harmonic potential is in the

literature [127]-[129], the solution we find for φ4 is new, as far as we know.

For the quadratic potential

V =
1

2
m2φ2 (11.5)

we have harmonic oscillations, φ(t) = A sin(mt + ϕ), in the case H = 0.

When H 6= 0, but in the case H ¿ m and Ḣ/H ¿ m, we expect a time dependent

amplitude and, perhaps, a different frequency. We make the following ansatz

φ̃(t) = A(t) sin(λmt + ϕ). (11.6)

We find λ = 1 and the following equation

Ȧ = −3

2
HA. (11.7)

The energy density ρ corresponding to φ̃ evolves as

ρ ∝ A2 ∝ R−3 (11.8)

where in the last proportionality we have used the solution of (11.7). This corresponds to

the behavior of non-relativistic matter in the expanding universe.

The second potential to be solved is

V =
1

2
m2φ4. (11.9)

We shall work in complete analogy with the previous example. We first find the solution

to (11.4) for H = 0, which is

φ(t) = B sn(Bmt + ϕ) (11.10)

where sn is the Jacobi elliptic function sn(Bmt + ϕ,−1) [279].

For H 6= 0 we choose an ansatz of the form

φ̃(t) = B(t)sn(B(t)λmt + ϕ). (11.11)
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The calculus here is more complicated than in the previous example, when introducing

(11.11) in (11.4). We obtain a differential equation for the evolution of the amplitude B:

d2(Bt)3

dt2
+

(
3H − 2

t

)
d(Bt)3

dt
= 0. (11.12)

This equation can be easily solved for the usual form H = c t−1, where the value of

the constant c depends on which kind of energy dominates the universe (c = 1/2 for a

radiation-dominated universe and c = 2/3 for a matter-dominated one). From (11.12) we

obtain
d(Bt)3

dt
∝ t2−3c (11.13)

that gives

B ∝ t−c. (11.14)

Since we are assuming H = ct−1, which gives R ∝ tc, we conclude that, for any value of

c,

B ∝ R−1. (11.15)

Also, we get an equation for λ, which now depends on the relative variation of B

λ =

(
1 +

Ḃ

B
t

)−1

=
1

1− c
(11.16)

where in the last equality we took into account (11.14).

The energy density in this case is given by

ρ =
1

2
(
˙̃
φ)2 +

1

2
m2(φ̃)4 =

1

2
m2B4 (11.17)

where we have used properties of the Jacobi elliptic functions [279]. Thus, taking into

account (11.15), we have

ρ ∝ B4 ∝ R−4. (11.18)

This type of R-dependence corresponds to a fluid of relativistic particles, or equivalently,

to radiation. The form of the oscillations in a φ4 potential with small friction H was also

found in [280], in the context of preheating after inflation. The method used in [280] was

to make a conformal transformation of the space-time metric and the fields, as well as

a number of re-scalings. Even if we get the same final results, we present our method

because it is somewhat simpler.

The two examples discussed here are particular cases in which it is possible to ana-

lytically solve the equation of motion that describes the oscillations of the field φ in the

expanding universe. For other potentials that can be considered, it might be impossible
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to find analytical solutions to (11.4), so the method applied before might not succeed in

obtaining the dependence of the energy density ρ on the scale factor R. For this purpose,

one needs to find another method, in which the evolution of ρ(R) can be obtained without

necessity of solving the equation of motion (11.4). This is what we develop in the next

section.

11.3 Action-angle formalism

We are concerned with the oscillations of the φ-field about some minimum of the potential,

but we shall not restrict to the case that the oscillation amplitude is small. Thus, we

are faced with a system with a periodic motion, whose details might be complicated.

Often, we are not specially interested in these details, but rather in the frequencies of the

oscillations, the contribution to the energy density, etc. A method of analytical mechanics

tailored for such a situation is provided by the use of action-angle variables.

As before, it is convenient to start with H = 0 in (11.4); we have then a conservative

system with hamiltonian density H

H(φ, Π) =
1

2
Π2 + V (φ) ≡ ρ (11.19)

with the momentum Π = φ̇ and energy density ρ. When having a periodic motion, one

introduces [235],[276]-[278] the action variable

J ≡
∮

Π dφ (11.20)

where the integration is over a complete period of oscillation. Using Π =
√

2(ρ− V ) from

(11.19), J can be written as

J = 2

∫ φmax

φmin

√
2(ρ− V )dφ (11.21)

where φmin and φmax are the return points, V (φmin) = V (φmax) = ρ. J is chosen as

the new (conserved) momentum in the integration of the Hamilton-Jacobi equation. The

generating function given by the abbreviated action

W =

∫
Πdφ (11.22)

allows to canonically transform (φ, Π) into (α, J), with the angle variable defined by

α =
∂W

∂J
. (11.23)
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Since W does not explicitly depend on time, the new hamiltonian H̄ coincides with the

old one H = ρ. The energy ρ is only a function of J , which amounts to say that α is

cyclic and J is constant

J̇ = −∂H̄
∂α

= 0. (11.24)

The other Hamilton equation is

α̇ =
∂H̄(J)

∂J
≡ ν, (11.25)

with ν = ν(J) constant. We can integrate (11.25) to obtain

α(t) = νt + α(0) (11.26)

and in a complete period, α(τ) = α(0). In this way, we identify ν in (11.25) with the

frequency of the motion:

ν =
1

τ
=

dρ

dJ
. (11.27)

Until here, we have reminded ourselves of the standard approach that uses action-angle

variables to find the frequency [235],[276]-[278].

The realistic case of the expanding universe, with H 6= 0, can be treated with the same

method, provided H and Ḣ/H are small compared to the frequency of the φ oscillations,

that is to say,

H ¿ ν ; Ḣ/H ¿ ν. (11.28)

Notice that for the usual form H = ct−1, Ḣ/H ∼ H so that the two conditions in (11.28)

are actually the same. The conditions (11.28) ensure that the motion is almost periodic,

and that it makes sense averaging over one cycle. The H-term in (11.4) represents a

time-dependent friction, so we expect energy to decrease; however, we are assuming this

friction small enough so that we can consider the energy constant in one-cycle period.

We still define J as in (11.20) and (11.21), and also the energy density ρ as in (11.19).

The decrease rate of ρ can be obtained rewriting the equation of motion (11.4),

dρ

dt
= −3Hφ̇2. (11.29)

When averaging the r.h.s. over one cycle, we can take H out of the average, 〈Hφ̇2〉 '
H〈φ̇2〉. The average of φ̇2 is related to J :

〈φ̇2〉 = 1
τ

∮
Πφ̇ dt

= 1
τ

∮
Πdφ = 1

τ
J

(11.30)
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(this is essentially the virial theorem). Thus,

〈φ̇2〉 =
dρ

dJ
J. (11.31)

With the help of (11.31), (11.29) reads

1

J

dJ

dt
= −3H. (11.32)

What is remarkable about this equation is that the change in the action variable J is

independent of the form and details of V . The equation can be readily integrated to show

that J dilutes as a volume in an expanding universe

J ∝ R−3. (11.33)

Eqs.(11.32) and (11.33) are one of our main results. To find more, we notice that the

pressure can also be averaged in one oscillation period,

p = 〈1
2
φ̇2〉 − 〈V 〉 = 〈φ̇2〉 − ρ = wρ. (11.34)

To calculate w, we first use (11.31) and get

w =
J

ρ

1

dJ/dρ
− 1 (11.35)

and, introducing (11.21), we finally obtain

w =
2

ρ

∫ φmax

φmin
(ρ− V )1/2dφ

∫ φmax

φmin
(ρ− V )−1/2dφ

− 1. (11.36)

Eq.(11.36) coincides with the corresponding expression in Ref.[214], where another for-

malism was used.

There is another useful relation that can be easily obtained using our formalism.

Whenever w is constant, we can integrate (11.35) to obtain

ρ ∝ Jw+1. (11.37)

Then, making use of (11.33), we get the well-known relation

ρ ∝ R−3(w+1). (11.38)

As an example, let us apply the method described above for the following power-law

potential

V = aφn (11.39)
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for which the action variable can be exactly calculated

J =
4
√

2π Γ
(

1
n

)

(n + 2)Γ
(

1
2

+ 1
n

)√ρ
(ρ

a

)1/n

. (11.40)

Using (11.27), we get the frequency of the motion

ν =
nΓ

(
1
2

+ 1
n

)

2
√

2π Γ
(

1
n

)√ρ
(ρ

a

)−1/n

(11.41)

and using (11.35), we get the parameter w

w =
n− 2

n + 2
. (11.42)

Let us show that these results coincide with what we obtained in Sect.11.2. For n = 2, we

get from (11.42) that w = 0, which corresponds to the equation of state for non-relativistic

matter, p = 0. Equivalently, from eq.(11.38), we obtain that

ρ ∝ R−3 (11.43)

which is the same as (11.8). Still for the harmonic potential, n = 2, taking a = 1
2
m2, we

can calculate J by making use of (11.40)

J = 2π
ρ

m
(11.44)

which is nothing else than the number density of particles of mass m, except the factor of

2π. We now see that, in this case, (11.33) is equivalent to assert that the number density

decreases as R−3 in an expanding universe.

For n = 4, (11.42) gives w = 1/3, and (11.38) gives ρ ∝ R−4 which coincides with

(11.18) and corresponds to the equation of state for relativistic matter.

As expected, we have recovered the same results of Sect.11.2 without the need to solve

the equation of motion, eq(11.4). For this reason, the action-angle formalism will allow

us to study more general cases of potentials for which there is no analytical solution to

(11.4). This is what we will do in the next section.

As another application of the action-angle variables, we discuss the issue of adiabatic

invariants. When a parameter a of the potential changes with time slowly compared with

the natural frequency of the system,

ȧ

a
¿ ν, (11.45)

we say it changes adiabatically. When there is such an explicit time change in the poten-

tial, W in (11.22) depends on time, and H̄ and ρ do not coincide any longer

H̄ = ρ +
∂W

∂t
= ρ + W,aȧ (11.46)
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where the derivative W,a ≡ ∂W/∂a is taken at constant J . Instead of (11.32), we now

have
J̇ = −3HJ − 〈∂H̄/∂α〉

= −3HJ − 〈(∂W,a/∂α)ȧ〉. (11.47)

When averaging this identity, due to (11.45), we can consider ȧ as constant during a

cycle, i.e., 〈(∂W,a/∂α)ȧ〉 ' 〈(∂W,a/∂α)〉ȧ. The average 〈∂W,a/∂α〉 vanishes, since W,a is

a periodic function of α. It follows that

J̇ = −3HJ, (11.48)

namely, eqs.(11.32) and (11.33) are still valid, although we stress that V is changing with

time. For H = 0, the system is conservative and we have J̇ = 0, i.e., J is identified with

an adiabatic invariant [235],[276]-[278].

An instance where we can apply these results is the invisible axion model. In this

model we have a time-dependent axion mass, m = ma(t) in (11.5). Even if ρ(t) and ma(t)

are complicated functions of time, we conclude after our study that, provided the change

is adiabatic, the combination
J

2π
=

ρ(t)

ma(t)
∝ R−3 (11.49)

behaves as the axion number density. This behavior is what is expected on general

grounds. This result was derived in [127]-[129] when calculating the relic axion density.

What we have done in the present paper is a kind of generalization of (11.49), that may

be applied when having other potentials and/or other types of adiabatic change.

11.4 Dark energy from field oscillations

In the standard model of cosmology, besides eq.(11.2), there is another equation that one

can get from Einstein equations. It can be put in the form

R̈

R
= −4πG

3
(ρ + 3p). (11.50)

For the simple equation of state p = wρ, we see that w < −1/3 leads to an accelerated

universe. We will show in this section that such values of w can be obtained from an

oscillating scalar field whose energy density dominates. An application based on this idea

in the context of inflation was developed by Damour and Mukhanov in [281] (see also

[282]).

In order to check whether a given potential may lead to acceleration, we will calculate

w using the expression (11.35), that involves an average over one cycle 1. The value of w

1In [281], a nice geometric interpretation of the condition w < −1/3 is given.
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depends on the form of the potential and on the return values φmax and φmin. In turn,

these change with time due to the friction produced by the expansion of the universe, so

that, in general, w depends on time.

A remarkable exception to this dependence on the return values is given by the power-

law potential (11.39). As shown in (11.42), w only depends on the power n. For integer n,

we do not have oscillations neither for n = 0, nor for n = 1. The potential V = aφ2 leads

to oscillations that correspond to non-relativistic matter with w = 0. The next potential

leading to oscillations is V = aφ4, that we saw it implies w = 1/3. Higher values of the

power n lead to higher values for w. No integer value of n, leading to oscillations, can

correspond to a fluid with w < −1/3 2.

In order to have smaller w values, one clearly needs a field φ that, even oscillating,

has a slow-roll for enough time. To illustrate that this is possible, we shall investigate a

few potentials. In all of them, we shall put the center of the oscillations at φ = 0. In

addition, we will work with symmetric potentials, so that −φmin = φmax ≡ φ0.

Let us start with the ”Mexican hat” potential shown in Fig.11.1,

V1(φ) = λ1(φ
2 − v2

1)
2 (11.51)

with λ1 a coupling and v1 an energy scale. We consider φ0 >
√

2v1, to have oscillations

around φ = 0. The parameter w, calculated numerically, is a function of φ0/v1 and it

is displayed in Fig.11.2. We see that when φ0 is close enough to
√

2v1, we have values

w < −1/3. However, an unsatisfactory feature is that one has to tune the return value

φ0.

A potential that does not have this fine-tuning problem is given by

V2(φ) =
v′2

4φ2

φ2 + v2
2

(11.52)

(see Fig.11.3). Here, v2 and v′2 are energy scales. The values of w are shown in Fig.11.4,

where we see that w < −1/3 for φ0 > 1.2 v2. To get the observed acceleration of the

universe, we should have v′2 ' 2 × 10−3 eV, as expected. Notice that in the past, field

oscillations give w ' −1 always. As happens in the case of a cosmological constant, the

contribution we are discussing was subdominant in the past, as soon as non-relativistic

matter enters in the stage and dominates.

One could find other potentials giving acceleration. One such example was discussed

in [281]. There, the objective was to get first slow-roll inflation and, after, oscillations

2The case of a non-integer n < 2 is considered in [283]. Power law potentials with scaling solutions
are studied in [284].



11.4 Dark energy from field oscillations 155

provoking further inflation. In contrast to [281], we work in the period of dark energy

domination and we would like to know the future of the universe. We see in Fig.11.4 that

the oscillations will end up giving w = 0, i.e., being harmonic and consequently matter

dominated.

One may think that for all potentials, when the field is close enough to the minimum,

one ends with the usual harmonic potential (11.5) that well approximates oscillations

around the minimum, so that one obtains w = 0. We would like to point out that there

is at least one exception. Consider the potential

V3(φ) = v′3
4
e−v2

3/φ2

(11.53)

with v3 and v′3 some energy scales (see Fig.11.5). An inspection to the potential shows

that for φ0 large enough, we should have w < −1/3. We have calculated w and our results

are shown in Fig.11.6. Indeed, we see that w < −1/3 for φ0 > 1.8 v3. For smaller values

of φ0, higher values of w are obtained. We notice that in the limit φ0/v3 → 0 the value

w = 0 is not obtained, but rather w = 1. This corresponds to a fluid with p = ρ. The

reason for this very particular behavior is the well-known fact that V3(φ) in (11.53) can

not be developed in a Taylor-Maclaurin series around φ = 0. Again we should check that

V3 is consistent with the observational constraints. With v′3 ' 2×10−3 eV the oscillations

fit the acceleration. Also, for early times w ' −1 so that the oscillations do not contradict

the observed evolution of the universe.

Let us finally address the requirement that dark energy should have very homogeneous

density, with spatial irregularities rearranging at an effective relativistic speed of sound

cs, given by

c2
s =

dp

dρ
(11.54)

In the main spirit of our paper, we should point out that (11.54) can be calculated

following the technique of action-angle variables. This allows to find cs without reference

to the details of the solution to the equation of motion of the field. The way we do it is

through the equation

c2
s =

d(wρ)

dρ
=

ρdw/dφ0

dρ/dφ0

+ w =
V0dw/dφ0

dV0/dφ0

+ w (11.55)

where V0 ≡ V (φ0) = ρ and w was found in (11.35) or (11.36).

As a check, we have calculated the integrals (11.55) for the potential (11.5) and ob-

tained c2
s ' 0, as expected. The implications of a scalar field with the potential (11.5) when

it dominates the energy density of the universe have been fully investigated in ref.[285].

Here we do not pretend to do such a complete study for the potentials of Sect.11.4 since
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our emphasis is in the techniques developed in Sect.11.3. Let us point out, however, that

in fact we find that for the potentials (11.51), (11.52) and (11.53), c2
s is near zero or even

negative, which indicates that collapse at small scales would happen or even would lead

to dangerous instabilities.

It is not difficult, however, to find potentials giving w ≤ −1/3 and c2
s ' 1. One

example is

V4(φ) = v′44
φ2

v2
4 + φ2

+
1

4
λφ4 (11.56)

We have verified that w from (11.36) and c2
s from (11.55) for the potential V4 in (11.56)

have the expected values for a dark energy contribution, for a suitable range for the

potential free parameters.
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Figure 11.1: ”Mexican hat” potential V1 defined in (11.51).
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Figure 11.2: w as a function of the amplitude φ0 of the oscillations in the potential V1.

The dashed line indicates w < −1/3.
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Figure 11.3: The shape of the potential V2 defined in (11.52).
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Figure 11.4: w as a function of the amplitude φ0 of the oscillations in the potential V2.

The dashed line indicates w < −1/3.
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Figure 11.5: The shape of the potential V3 defined in (11.53).
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Figure 11.6: w as a function of the amplitude φ0 of the oscillations in the potential V3.

The dashed line indicates w < −1/3.





Chapter 12

Conclusions

In this PhD Thesis, I presented a few original models proposed to solve some of the

shortcomings of the standard cosmology, as possible extensions of the Big Bang model.

In the introductory chapters I described some of the main features of the standard Big

Bang cosmological model, which is the best cosmological theory today. It is able to explain

a large number of observational data and also to describe the evolution of the universe

from its very early states. As the observations become more and more precise, the level

of our knowledge of the observable universe becomes more and more elevated. Based on

these observations, we can corroborate the theoretical predictions and, also, we are able

to indicate the points where the theory needs to be modified or extended.

Thus, today we are able to answer to many of the questions that humanity has always

made. We know that our universe originated some 13.7 Gyr ago from a tremendous

explosion known as the ”Big Bang”, and we can describe the universe back in time up to

its very early states, when it was a small fraction of a second old.

Nevertheless, our theoretical knowledge of the universe is limited, and we cannot

extrapolate the theory back to time zero, nor can we explain the recent observations that

indicate that the nature of 95% of the energy content of the universe is unknown to us.

The substance we are made of and that is so familiar to us, i.e. baryons, has always

been a subdominant component during the evolution of the universe, and today it only

represents a small fraction of the total content of the universe.

The objectives of this PhD Thesis are to find some possible extensions of the standard

cosmological theory, in two opposite directions: backward in time towards higher energies,

and forward in time towards smaller energies. In the primeval universe, about 10−30 s after

the bang, it is believed that the universe suffered a short period of accelerated expansion

known as inflation. In the recent history of the universe, there is evidence of dark matter

and dark energy, which cannot be explained by the standard theory. Although the energy



162 Conclusions

scales characteristic to inflation, dark matter and dark energy are very different, one of

the objectives of this doctoral Thesis is to give a unitary description of the physics at

these different scales. A large part of this doctoral Thesis was dedicated to construct a

few models for the unification of inflation, dark energy and/or dark matter.

Symmetries play an important role in any physical theory describing different pro-

cesses that occur in the universe. It is expected that the early universe should possess

additional symmetries, which today are not observed because they are broken. If the ad-

ditional symmetries are global, one also expects that Quantum Gravity effects break them

explicitly. In chapters 8 and 9 of this Thesis I investigated this possibility, by considering

a new simple global U(1) symmetry. The Quantum Gravity effects on this new global

symmetry are parameterized by the presence in the Lagrangian of effective operators of

dimensions higher than 4, suppressed by powers of Planck mass, which are of the form:

−g
1

Mn−3
P

|ψ|n (
ψe−iδ + ψ?eiδ

)
(12.1)

where g is an effective coupling. The models of chapters 8 and 9 introduce a new complex

scalar field ψ, invariant under the global U(1) symmetry, and a new scalar field χ neu-

tral under U(1). In both models the real part of the field ψ is responsible for inflation,

by interacting with the field χ, and the real part θ becomes a PGB due to the explicit

U(1)−breaking terms. In Chapter 8, imaginary component θ plays the role of a quint-

essence field contributing to the dark energy of the universe. I obtained that for this to

be the case, the effective coupling g, parameterizing the explicit U(1)−breaking, should

be exponentially suppressed, at the level g . 10−119.

In Chapter 9 instead, I studied the possibility that the particle associated to the field θ

could be a dark matter particle. In this case, I conclude that the explicit breaking effects

should also be exponentially suppressed, but at a less stringent level g . 10−30. The work

of Chapter 9 also contains a detailed numerical analysis for determining the parameters

of the model, which can also be applied to the work developed in Chapter 8.

In this way, the models of chapters 8 and 9 relate a primeval process like inflation with

the recent dominating dark energy and dark matter, respectively, as being components of

the same field ψ. This mechanism for producing inflation has the features of an inverted

hybrid model of inflation. After inflation, the angular field θ settles at an arbitrary value

of order the U(1) breaking scale, v, and has a non-zero potential energy due to Quantum

Gravity effects.

Apart from global symmetries, in the early universe one may have new gauge symme-

tries and fields associated to these symmetries. In the work of Chapter 10, a new gauge

group SU(2)Z is postulated, which is supposed to become strong at a scale Λ ∼ 10−3 eV,
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with the gauge coupling at GUT scale comparable to the SM couplings at the same scale.

The model introduces new particles, like fermions ψ
(Z)
(L,R),i(i = 1, 2), which are SU(2)Z

triplets and SM singlets; messenger fields φ̃
(Z)
1,2 , which carry charges of both SU(2)Z and

SM groups, and a singlet complex scalar field φZ . This scalar is invariant under a new

global symmetry U(1)
(Z)
A , which is spontaneously broken by the vev of the scalar field,

〈φZ〉 = vZ , and explicitly broken at the scale ΛZ ¿ vZ by the SU(2)Z gauge anomaly.

In this model, inflation is produced by the real part of the field φZ , while the angular

field aZ gets trapped in a false vacuum of its potential and is responsible for the dark

energy of the universe. The new fermions ψ
(Z)
(L,R),i are produced during reheating after

inflation, and for masses of order of 200 GeV they may explain dark matter. The model

also provides a mechanism for producing a lepton number asymmetry, which leads to a

baryon asymmetry through instanton effects.

Usually, a scalar field in a sufficiently flat potential may be slowly rolling down the

potential and, consequently, may cause the acceleration of the universe. This is the

case of inflation or dark energy, which occur when the inflaton or the quintessence field

dominates the energy density of the universe. However, in Chapter 11, I investigated

the possibility of having an accelerated expansion of the universe produced by a scalar

field that is oscillating in a potential, with a frequency much larger than the Hubble

expansion rate. These oscillations are described in the framework of analytical mechanics,

by using the action-angle variables, and has the advantage of inferring the frequency of

the oscillations without the need to solve the equation of motion. The effective equation

of state parameter can be obtained as a function of the potential, by using this formalism.

I gave a few instances of potentials for which the resulting equation of state associated

to field oscillations satisfied the condition for having an accelerating universe, thus being

regarded as a possible explanation of the dark energy of the universe. Another interesting

feature of the formalism is the identification of adiabatic invariants, which are quantities

that are preserved by the expansion in the condition in the condition that the system

contains an adiabatically changing parameter.
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A.1 Introduction

The curvature of the universe goes down exponentially after the start of inflation [16]. If

there is a residual curvature still present by the time the scales which are entering our

horizon at present were leaving the inflationary horizon there will be deviation from the

scale invariant perturbations due to non-zero curvature. The corrections to the power

spectrum at horizon scales are multiplicative powers of (1−K/β2), where the curvature

K = (Ω0 − 1)(a0H0)
2 and β =

√
k2 + K is the comoving canonical wavenumber. We

calculate the primordial power spectrum for the case closed and open universe at the time

of inflation. We choose the Bunch-Davies boundary condition to normalize the wave-

functions. We find that for the case of a closed universe the power spectrum of curvature

perturbations is

PR(β) =
H4

λ

2π2φ̇2

1(
1 + K

β2

)2 ,
β√
K

= 3, 4, 5 · · · (for K > 0). (A.1)

and for the case of inflation in an open universe

PR(β) =
H4

λ

2π2φ̇2

1(
1− |K|

β2

)2 (
1 + |K|

β2

) ,
β√
|K| > 1, (for K < 0). (A.2)

where β are the eigenvalues of the radial-part of the Laplacian. In the case of closed

universe β takes discrete values in units of
√

K = R−1
c (Rc being the curvature radius),

the modes corresponding to β/
√

K = 1, 2 can be eliminated by gauge transformations

[286] so there is a large-wavelength cutoff at β−1
c = Rc/3. This large wavelength cut-off

in a closed universe has been used to explain the observed low CMB anisotropy at low

multi-poles [287] and [288]. In the case of open universe only modes with β >
√
|K| cross

the inflationary horizon.

Our result for the power spectrum in the closed and open universe cases differs from

the phenomenological power spectrum [289],

PR(β) =
H4

λ

2π2φ̇2

1

1 + K
β2

(A.3)

used in the calculation of CMB anisotropies in both the closed and open cases. Our results

agrees qualitatively with (A.3) in that the power at small β is suppressed in the closed

universe inflation (A.1) and enhanced in the open universe (A.2).

According to inflation [16], the curvature of the present universe Ω0 − 1 is related to

the curvature at any time during inflation Ωi − 1 as

Ω0 − 1

Ωi − 1
=

(
aiHi

a0H0

)2

(A.4)
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If ai is the scale factor at the time during inflation when scales of the size of our present

horizon were exiting the inflationary horizon then a0H0 = aiHi and Ω0 = Ωi. If the

curvature at the beginning of inflation (Ωstart−1) = O(1) then in order to have a deviation

of say one-percent from unity in the present curvature, the number of e-foldings prior to

the ai must be small. Putting an upper bound on the present curvature (Ω0 − 1) from

observations also puts a lower bound on the number of extra e-foldings necessary in

inflation in addition to the minimum number needed to solve the horizon problem [290].

The geometry of the universe can be determined from the CMB anisotropy from

the angular size of the acoustic peak. However the constraints on the density of the

universe Ω depends upon priors like the value H0 and Ωλ. For example the combination

of WMAP, LSS and HST supernovae observations gives a constraint on the density of

the universe as (Ω − 1) = 0.06+0.02
−0.02 [291] which means that the curvature at one-σ could

be as large as K/(a0H0)
2 = 0.08. In the case of the closed universe the power spectrum

(A.1) PR ∝ (1 + K/β2)−2 at the scale of the horizon β = a0H0 is suppressed by about

16% compared to the power for the flat universe. The effect of curvature shows in the

temperature anisotropy at low-multipoles in addition to the location of the angular peaks.

In a following paper we will use our formulae for the power spectrum in closed (A.1) and

open universe inflation (A.2) to determine the best fit value of curvature K from the

WMAP data.

A.2 Scalar power spectrum

We expand the inflaton field φ(x, t) ≡ φ(t) + δφ(x, t), where the perturbations δφ around

the constant background φ(t) obey the minimally coupled KG equation

δ̈φ + 3
ȧ

a
˙δφ− 1

a2
∇2δφ = 0. (A.5)

With the separation of variables

δφ(x, t) =
∑

k

δφk(t)Q(x, k) (A.6)

the KG equation can be split as

¨δφk + 3
ȧ

a
˙δφk +

k2

a2
δφk = 0 (A.7)

∇2Q(x, k) = −k2Q(x, k) (A.8)
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where ∇2 is the Laplacian operator for the spatial part. Making the transformation

dη = dt/a and σ(η, k) = a(η)δφk(η) we get the KG equation for σ(η, k)

σ′′ + (k2 − a′′

a
)σ = 0 (A.9)

where primes denote derivatives w.r.t conformal time η.

The Friedman equations in conformal time are,

(
a′

a

)2

=
8πG

3
ρ a2 −K (A.10)

(
a′

a

)′
= −4πG

3
(ρ + 3p)a2. (A.11)

Consider the universe with cosmological constant and curvature, then ρ = ρλ and p = −ρλ

and we get using the Friedman equations,

a′′

a
=

16πG

3
ρλ a2 −K ≡ 2a2H2

λ −K (A.12)

where Hλ = (8πG
3

ρλ)
1/2 is the Hubble parameter during pure inflation. Substituting (A.12)

in the KG equation (A.9) we obtain,

σ′′ + (k2 − 2a2H2
λ + K)σ = 0. (A.13)

The curvature affects the wave equation of σ(η) in the explicit dependence K and also in

the changed dynamics of η−dependence of the scale factor a which is important in the

early stages of inflation.

The scalar field perturbation can be written as

δφ(x, η) =
∑

k

σ(η, k)

a(η)
Q(x, k) (A.14)

where σ(η) is the solution of equation (A.13) and the spatial harmonics Q(x, k) are solu-

tions of equation (A.8) [286]. One can separate the radial and angular modes of Qlm
β (r, θ, φ)

as

Qlm
β (r, θ, φ) = Φl

β(r) Y m
l (θ, φ) (A.15)

where β = (k2 + K)1/2 are the eigenvalues of the radial-part of the Laplacian with eigen-

functions given by the hyperspherical Bessel functions Φl
β(r) which are listed in [286]. In

the limit K → 0, the radial eigenfunctions Φl
β(r) → jl(k r). The main properties that are

needed for the calculation of the power spectrum are orthogonality
∫

γr2drdΩQlm
β (r, θ, φ)Q∗ l′m′

β′ (r, θ, φ) =
1

β2
δll′δmm′δββ′ (A.16)
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where γ = (1 + Kr2

4
)−3 is the determinant of the spatial metric, and completeness

∑

l,m

∫
β2dβQlm

β (r, θ, φ)Q∗ lm
β (r′, θ′, φ′) = γ−1 1

r2
δ(r − r′)δ(θ − θ′)δ(φ− φ′) (A.17)

In case of closed universe the integral over β is replaced by sum over the integers β/
√

K =

3, 4, 5.... For open and flat universes β is a real non-negative variable.

The gauge invariant perturbations are a combination of metric and inflaton pertur-

bations. The curvature perturbations are gauge invariant and at super-horizon scales are

related to the inflaton perturbations as

R(x, η) =
H

φ̇
δφ(x, η). (A.18)

Curvature perturbations generated during inflations are frozen outside the horizon till they

re-enter in the radiation or matter era. CMB anisotropies at large angles are caused by

curvature perturbations in the surface of last scattering which enter in the matter era. The

Sachs-Wolfe effect at large angles, relates the temperature perturbation in the direction

n̂ observed by the observer located at the point (x0, η0) to the curvature perturbation at

the point (xLS, ηLS) in the LSS,

δT (x0, n̂, η0)

T
=

1

5
R(xLS, ηLS) (A.19)

where xLS = n̂(ηLS − η0). Using the completeness of Qlm
β (r, θ, φ) we can expand R as a

sum-over the eigenmodes,

R(xLS, ηLS) =
∑

lm

∫
β2dβ

[
H

φ̇
δφβ(η)

]

η=η∗

Qlm
β (xLS). (A.20)

Here we have used the fact that R does not change after exiting the horizon during

inflation (at a conformal time which we shall denote by η∗) till it re-enters the horizon

close to the LS era. Using the Sachs-Wolfe relation (A.19) and the mode expansion of the

curvature perturbation (A.20) and using the orthogonality (A.16) of Qlm
β , we obtain

〈
δT (n̂1)

T

δT (n̂2)

T

〉
=

∑

l

2l + 1

4π
Pl(n̂1 · n̂2)

∫
β2dβ

1

25
|R(β, η∗)|2 |Φl

β(η0 − ηLS)|2 (A.21)

The angular spectrum Cl of temperature anisotropy defined by

〈
δT (n̂1)

T

δT (n̂2)

T

〉
=

∑

l

2l + 1

4π
Pl(n̂1 · n̂2) Cl (A.22)
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can be written in terms of the power spectrum of curvature perturbations by comparing

(A.22) with (A.21),

Cl = 4π

∫
dβ

β

1

25
|PR(β)|2 |Φl

β(η0 − ηLS)|2 (A.23)

where the power spectrum of curvature perturbations is defined as

PR(β) =
β3

2π2

[(
H

φ̇

)2

|δφβ(η)|2
]

η=η∗

. (A.24)

We shall now derive the power spectrum for the open and closed inflation universes.

A.3 Closed universe inflation

For a closed universe, K > 0, from the Friedman equation (A.10) we get

ȧ = Hλa

√
1− K

H2
λa2

(A.25)

which can be integrated to give

a(t) =

√
K

Hλ

cosh Hλt. (A.26)

We consider as initial conditions the moment when the inflaton energy density starts to

dominate over the curvature, i.e. for t = 0 we have a(0) =
√

K
Hλ

. The conformal time is

then given by

η(a) =
−1√
K

arcsin

√
K

aHλ

. (A.27)

The conformal time spans the interval η = (− π
2
√

K
, 0) as the scale factor a varies between

(
√

K
Hλ

,∞), so for K 6= 0 our initial conditions are different from the standard inflation case.

The dependence of the scale factor on the conformal time is obtained from (A.27)

a(η) = −
√

K

Hλ

1

sin
√

Kη
. (A.28)

The conformal time KG equation (A.13) for the closed-inflationary universe is of the form

σ′′(η) +
[
k2 −K

(
2cosec2

√
Kη − 1

)]
σ(η) = 0. (A.29)
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This equation can be solved exactly and the solutions are

σ(η) = c1

(
−
√

K cot
√

Kη + i
√

k2 + K
)

ei
√

k2+Kη

+ c2

(
−
√

K cot
√

Kη − i
√

k2 + K
)

e−i
√

k2+Kη. (A.30)

The normalization constants c1 and c2 are determined by imposing the Bunch-Davies

vacuum condition i.e the assumption that in the infinite past limit η → −π/(2
√

K), σ is

a plane wave which obeys the canonical commutation relation

σ∗σ′ − σ∗′σ = i (A.31)

from which we obtain

|c1| = 1√
2(k2 + K)3/4

, c2 = 0. (A.32)

Replacing these constants into (A.30) we find that in the limit η → −π/(2
√

K),

σ(η → −π/(2
√

K)) ≡ σBD =
1√
2β

eiβη (A.33)

where

β = (k2 + K)1/2. (A.34)

We will assume that the vacuum state of the universe |0〉 is the state in which there are

no σBD particles. The creation and annihilation operators are for the the BD vacuum can

be written as

σBD(x, η) =
∑

lm

∫
β2dβ

(
aβlm Qlm

β (x)
eiβη

√
2β

+ a†βlm Q∗lm
β (x)

e−iβη

√
2β

)
(A.35)

Using the commutation relation (A.31) of σBD and the orthogonality of Qlm
β (A.16) we see

that the creation and annihilation operators obey the canonical commutation relations

[aβlm, a†β′l′m′ ] =
1

β2
δ(β − β′)δll′δmm′ . (A.36)

From the foregoing discussion it is clear that β is the radial canonical momentum. The

quantum fluctuations become classical when β = aH. We shall evaluate the power spec-

trum at horizon crossing, as the modes do not change after exiting the inflation horizon

till they re-enter the horizon in the radiation or matter era.

Substituting the constants c1 and c2 in the general solution (A.30) and going back to

the δφ, we find that

〈0|δφβ(η)2|0〉 =
1

a(η)2

[
β2 + K cot2

√
Kη

2β3

]
. (A.37)
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We want to evaluate the spectrum of perturbations at horizon crossing. The horizon

crossing condition is given by

β = a∗H(a∗) = a∗

(
H2

λ −
K

a2∗

)1/2

(A.38)

from which we obtain the values of the scale factor

a∗ =
(β2 + K)1/2

Hλ

(A.39)

and of the conformal time

η∗ = − 1√
K

arctan

√
K

β
(A.40)

at horizon crossing. The corresponding value of the Hubble parameter is

H(a∗) = Hλ
β

(β2 + K)1/2
. (A.41)

The power spectrum P(β) in this case is given by

PR(β) =
H4

λ

2π2φ̇2

1(
1 + K

β2

)2 . (A.42)

A.4 Open universe inflation

Now we consider the case of an open universe with K < 0. From the Friedman equation

(A.10) we have

ȧ = Hλa

√
1 +

|K|
H2

λa2
(A.43)

where we work with the absolute value of the curvature, taking into account that |K| =

−K in this case. The above expression can be integrated to give

a(t) =

√
|K|

Hλ

sinh Hλt (A.44)

with initial condition a(t = 0) = 0. The conformal time is

η(a) =
−1√
|K|arcsinh

√
|K|

Hλa
. (A.45)

The conformal time spans the interval η = (−∞, 0) as the scale factor varies in the interval

a = (0,∞). We can solve for a(η) and obtain

a(η) = −
√
|K|

Hλ

1

sinh
√
|K|η . (A.46)
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The conformal time KG equation for the open-inflationary universe is of the form

σ′′(η) +
[
k2 − |K|

(
2 cosech2

√
|K|η + 1

)]
σ(η) = 0. (A.47)

This equation has exact solutions

σ(η) = c1

(
−

√
|K| coth

√
|K|η + i

√
k2 − |K|

)
ei
√

k2−|K| η

+ c2

(√
|K| coth

√
|K|η + i

√
k2 − |K|

)
e−i
√

k2−|K| η. (A.48)

The normalization constants c1 and c2 are chosen so that in the infinite past η → −∞
limit one gets plane waves satisfying the following relation

σ∗σ′ − σ∗′σ = i (A.49)

and obtain,

|c1| = 1√
2k(k2 − |K|)1/4

, c2 = 0. (A.50)

We then obtain for the magnitude of δφβ(η) = σ(η)/a(η) the expression,

|δφβ(η)|2 =
1

a(η)2

[
β2 + |K| coth2

√
|K|η

2(β2 + |K|) β

]
. (A.51)

where for the open universe,

β = (k2 − |K|)1/2. (A.52)

The horizon crossing condition is given by

β = a∗H(a∗) = a∗

(
H2

λ +
|K|
a2∗

)1/2

(A.53)

and we obtain for the scale factor at Hubble crossing

a∗ =
(β2 − |K|)1/2

Hλ

(A.54)

and the corresponding conformal time is given by

η∗ = − 1√
|K|arctanh

√
|K|
β

. (A.55)

The Hubble parameter at horizon crossing is

H(a∗) = Hλ
β√

β2 − |K| . (A.56)

We notice that in an open-universe stage of inflation, only the modes satisfying the con-

dition β2 > |K| will cross the Hubble radius.

With this, we obtain the following expression for the curvature power spectrum at

Hubble crossing

PR(β) =
H4

λ

2π2φ̇2

1(
1− |K|

β2

)2 (
1 + |K|

β2

) . (A.57)
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A.5 Conclusions

There are earlier calculations of power spectrum in a non-flat inflationary universe [292]-

[298]. Our results for the primordial power spectra for both the closed and open pre-

inflation universe cases differ in some details from these earlier papers because of difference

in the way we have implemented the initial conditions. Our results of the primordial power

spectrum have been derived assuming that the vacuum state in the infinite past was the

Bunch-Davies vacuum and we have evaluated the primordial power spectrum at horizon

crossing of the perturbation modes.

The power spectrum obtained by Ratra and Peebles [299] and Lyth and Stewart [292]

for the open universe case, obtained by assuming conformal boundary condition for the

initial state at η → −∞ is

PR(β) =
H4

λ

2π2φ̇2

1(
1 + |K|

β2

) . (A.58)

This is sometime written in the form

β−3PR(β) ∝ 1

β(β2 + K)
≡ 1

β(β2 + 1)
. (A.59)

Bucher, Goldhaber and Turok [297] consider an open universe with a tunneling solution

and assume that the initial states annihilate the Bunch-Davies vacuum and obtain a power

spectrum ,

PR(β) =
H4

λ

2π2φ̇2

1(
1 + |K|

β2

) coth

[
πβ√
|K|

]
. (A.60)

In our paper we also assume a Bunch-Davies vacuum but we consider the standard slow

roll inflation model, where the expansion was dominated by the curvature term prior to

inflation, and evaluate the power spectrum at the horizon exit a∗ H(a∗) = β. In our

solution for the power spectrum of the open universe case (A.2) we have a factor of

1/(1 − |K|/β2) instead of coth(πβ/
√
|K|) of (A.60). All three solutions for the power

spectrum (A.2), (A.62) and (A.60) agree in the limit of small curvature |K|/β2 → 0.

The experimental bounds on the total density of the universe from a combination of

WMAP, LSS and HST supernovae observations is Ω0 = 1.06 ± 0.02 [291]. This implies

that the curvature

K = (Ω− 1) H2
0a

2
0 = (0.06± 0.02) H2

0a
2
0 (A.61)

If one uses the Ratra-Peebles form of the power spectrum for the closed universe

PR(β) =
H4

λ

2π2φ̇2

1(
1− K

β2

) (A.62)
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we see that for perturbations of the horizon size β ' H0a0, the power spectrum is sup-

pressed by up to 8% (compared to the flat universe), on the other hand if one uses the

power spectrum (A.1) for the closed universe derived in this paper the suppression of

large scale power can be as large as 16%. We do not advocate determination of the form

of power spectrum from the data, however the choice of power spectrum used as an in-

put (in numerical programmes like CMBFAST) will affect the determination cosmological

parameters like Ω, H0, ns etc from the CMB data.

At the beginning of inflation the curvature Ω − 1 is expected to be of order one. By

the time perturbations of our horizon size exit the inflation horizon, the curvature drops

to Ω0 − 1 which is the present value. A non-zero observation of the curvature will tell

us whether the universe prior to inflation was open or closed (even though it is almost

flat now) and put constraints on the number of extra e-foldings that must have occurred

beyond the minimum number needed to solve the horizon problem. Spatial curvature

is a threshold effect which can give us information on the pre-inflation universe from

observations of the CMB anisotropy at large angles, similar to the effect of a possible

pre-inflation thermal era [300, 301].

The spatial curvature is measured in the CMB mainly from the angular size of the

acoustic horizon. From the power spectrum of the curved and open inflation cases we see

that if K > 0, power is suppressed at large angles and if K < 0 power is enhanced at

large angles. A more accurate determination of the curvature of the universe from the

observations of CMB anisotropy spectrum can be achieved by using (A.1) and (A.2) as

the primordial power spectrum generated in inflation for the closed and open universe

respectively.





Appendix B

Numerical details on the model of

inflation and dark matter

Here we give the details of how to obtain the parameters related to inflation in our model.

We base our analysis on 3 constraints, which are:

1. The number of e-folds of inflation between a given scale k crosses the horizon and

the end of inflation is given by [35, 36, 69, 302]

N ' 62− ln
k

a0H0

− ln

(
1016GeV

Vsym(φ0, 0)1/4

)
+

1

3
ln

(
Trh

Vsym(φ0, 0)1/4

)
(B.1)

where Trh is the reheating temperature and a0/k = H−1
0 ' 4000 Mpc is the biggest

observable scale. A scale of interest is k0 = 0.002 Mpc−1, for which we have reliable

observational data [5]. The number of e-folds corresponding to k0 can be expressed

in terms of the inflaton field φ0

N(φ0) =
8π

M2
P

∫ φ0

φend

Vsym

V ′
sym

dφ

=
π

M2
P

[
4(Λ4 − C)

λv2
ln

(v2 − φ2
0)φ

2
end

(v2 − φ2
end)φ

2
0

+ v2 ln
φ2

end

φ2
0

− (φ2
end − φ2

0)

]
.(B.2)

From now on we set Trh = 109GeV and φend = v/2(≡ mχ = κv/2), for simplicity.

By equating the two expressions (B.1) and (B.2) for N(φ0), we finally obtain

60 − ln
1016GeV[

Λ4 − C + 1
4
λ(v2 − φ2

0)
2
]1/4

+
1

3
ln

109GeV[
Λ4 − C + 1

4
λ(v2 − φ2

0)
2
]1/4

=
π

M2
P

[
4(Λ4 − C)

λv2
ln

v2 − φ2
0

3φ2
0

+ v2 ln
v2

4φ2
0

−
(

v2

4
− φ2

0

)]
. (B.3)
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2. The amplitude of the curvature perturbations PR1/2 has the observed value PR1/2 '
4.86× 10−5 corresponding to the scale k0 [5]. This means that

PR1/2 =

√
128π

3

∣∣∣∣
Vsym(φ0, 0)3/2

M3
PV ′

sym(φ0, 0)

∣∣∣∣

=

√
128π

3

[
Λ4 − C + 1

4
λ(v2 − φ2

0)
2
]3/2

λM3
Pφ0(v2 − φ2

0)
' 4.86× 10−5. (B.4)

3. The value of the spectral index ns ' 1 + 2η should have a value close to ns = 0.95

for the same scale k0 = 0.002 Mpc−1, where η = (M2
P/8π)(V ′′

sym/Vsym) is a slow-roll

parameter. This becomes

2η =
−λM2

P(v2 − 3φ2
0)

4π
[
Λ4 − C + 1

4
λ(v2 − φ2

0)
2
] ' −0.05. (B.5)

One can see that by combining equations (B.4) and (B.5) one obtains an expression

for λ in terms of φ0 and v

λ = 4.4× 10−12φ2
0(v

2 − φ2
0)

2

(v2 − 3φ2
0)

3
. (B.6)

Next, by replacing (B.6) into (B.5) one obtains

Λ4 − C = 4.4× 10−12φ2
0(v

2 − φ2
0)

2

(v2 − 3φ2
0)

2

[
5

π
M2

P −
(v2 − φ2

0)
2

4(v2 − 3φ2
0)

]
. (B.7)

Finally, by introducing (B.6) and (B.7) into (B.3), one obtains an equation which relates

φ0 and v. We solved it numerically for a few v−values in the interval (107 − 1019)GeV

and we obtained the corresponding values for φ0, which are shown in Fig.9.1(a). Once

we have φ0(v), we can turn back to (B.6) and (B.7) and find the values of λ and Λ4 −C,

respectively.

Still, we would like to find Λ and C, separately. This can be done by requiring that the

absolute minimum of Vsym(φ, χ) is equal to zero. The position of the absolute minimum

is given by the following conditions

∂Vsym(φ, χ)

∂φ
= −λv2φ + λφ3 − κ2φχ2 +

κ4φ3χ4

4Λ4
= 0,

∂2Vsym(φ, χ)

∂φ2
> 0 (B.8)

∂Vsym(φ, χ)

∂χ
= m2

χχ− κ2φ2χ +
κ4φ4χ3

4Λ4
= 0,

∂2Vsym(φ, χ)

∂χ2
> 0. (B.9)

Solving the above equation system, one can obtain φmin and χmin. We do not show

here the analytical solutions because they are very complicated. From the condition
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Vsym(φm, χm) = 0, one can obtain a relation between C and Λ. With this, going back to

equation (B.7), one obtains the dependence Λ(v) and subsequently C(v). The results we

obtained are shown in Fig.9.1 (c) and (d), respectively.

Things become much simpler in the limit v ¿ MP. As shown in Fig.9.1 (d), when

v ¿ MP, the following relations are satisfied

λv4 ¿ C ¿ Λ4. (B.10)

In this case, from (B.5) we obtain

Λ4 ' 5

π
λM2

P(v2 − 3φ2
0) ∼ λv2M2

P (B.11)

and the solutions of (B.8) and (B.9) become very simple

φm ' v1/3Λ2/3

λ1/6
∼ v2/3M

1/3
P , χm ' 2λ1/6Λ4/3

κv1/3
. (B.12)

With the above expressions, the approximate solution for C is also very simple

C ' 3

4
Λ4

(
λv4

Λ4

)1/3

∼ Λ4

(
v

MP

)2/3

∼ λv4

(
MP

v

)4/3

(B.13)

where we made use of (B.11). This also helps us understand why the following inequalities

λv4 ¿ C ¿ Λ4 are satisfied for v ¿ MP.

In the same limit (v ¿ MP), we get simple expressions for the v−dependence of the

number of e-folds of observable inflation, N(v) ∝ ln v, and of the tensor-to-scalar ratio,

r(v) ∝ v2/M2
P.
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