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Bellaterra, June 2008



Director: Dr. Ernest Valveny Llobet
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Vull donar també les gràcies a la meva famı́lia. Als meus pares (Pere i Montse) i
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i



ii AGRAÏMENTS
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Resum

Donat un conjunt d’objectes, el concepte genèric de mediana està definit com l’objecte
amb la suma de distàncies a tot el conjunt, més petita. Sovint, aquest concepte és
usat per a obtenir el representant del conjunt.

En el reconeixement estructural de patrons, els grafs han estat usats normalment
per a representar objectes complexos. En el domini dels grafs, el concepte de mediana
és conegut com median graph. Potencialment, té les mateixes aplicacions que el
concepte de mediana per poder ser usat com a representant d’un conjunt de grafs.

Tot i la seva simple definició i les potencials aplicacions, s’ha demostrat que el seu
càlcul és una tasca extremadament complexa. Tots els algorismes existents només han
estat capaços de treballar amb conjunts petits de grafs, i per tant, la seva aplicació
ha estat limitada en molts casos a usar dades sintètiques sense significat real. Aix́ı,
tot i el seu potencial, ha restat com un concepte eminentment teòric.

L’objectiu principal d’aquesta tesi doctoral és el d’investigar a fons la teoria
i l’algoŕısmica relacionada amb el concepte de median graph, amb l’objectiu final
d’extendre la seva aplicabilitat i lliurar tot el seu potencial al món de les aplicacions
reals. Per això, presentem nous resultats teòrics i també nous algorismes per al seu
càlcul. Des d’un punt de vista teòric aquesta tesi fa dues aportacions fonamentals.
Per una banda, s’introdueix el nou concepte d’spectral median graph. Per altra banda
es mostra que certes de les propietats teòriques del median graph poden ser millorades
sota determinades condicions. Més enllà de les aportacioncs teòriques, proposem cinc
noves alternatives per al seu càlcul. La primera d’elles és una conseqüència directa
del concepte d’spectral median graph. Després, basats en les millores de les propi-
etats teòriques, presentem dues alternatives més per a la seva obtenció. Finalment,
s’introdueix una nova tècnica per al càlcul del median basat en el mapeig de grafs en
espais de vectors, i es proposen dos nous algorismes més.

L’avaluació experimental dels mètodes proposats utilitzant una base de dades
semi-artificial (śımbols gràfics) i dues amb dades reals (mol·lècules i pàgines web),
mostra que aquests mètodes són molt més eficients que els existents. A més, per
primera vegada, hem demostrat que el median graph pot ser un bon representant d’un
conjunt d’objectes utilitzant grans quantitats de dades. Hem dut a terme experiments
de classificació i clustering que validen aquesta hipòtesi i permeten preveure una
pròspera aplicació del median graph a un bon nombre d’algorismes d’aprenentatge.

iii



iv RESUM



Abstract

Given a set of objects, the generic concept of median is defined as the object with
the smallest sum of distances to all the objects in the set. It has been often used as
a good alternative to obtain a representative of the set.

In structural pattern recognition, graphs are normally used to represent structured
objects. In the graph domain, the concept analogous to the median is known as the
median graph. By extension, it has the same potential applications as the generic
median in order to be used as the representative of a set of graphs.

Despite its simple definition and potential applications, its computation has been
shown as an extremely complex task. All the existing algorithms can only deal with
small sets of graphs, and its application has been constrained in most cases to the use
of synthetic data with no real meaning. Thus, it has mainly remained in the box of
the theoretical concepts.

The main objective of this work is to further investigate both the theory and the
algorithmic underlying the concept of the median graph with the final objective to
extend its applicability and bring all its potential to the world of real applications.
To this end, new theory and new algorithms for its computation are reported. From
a theoretical point of view, this thesis makes two main contributions. On one hand,
the new concept of spectral median graph. On the other hand, we show that some
of the existing theoretical properties of the median graph can be improved under
some specific conditions. In addition to these theoretical contributions, we propose
five new ways to compute the median graph. One of them is a direct consequence
of the spectral median graph concept. In addition, we provide two new algorithms
based on the new theoretical properties. Finally, we present a novel technique for the
median graph computation based on graph embedding into vector spaces. With this
technique two more new algorithms are presented.

The experimental evaluation of the proposed methods on one semi-artificial and
two real-world datasets, representing graphical symbols, molecules and webpages,
shows that these methods are much more efficient than the existing ones. In addition,
we have been able to proof for the first time that the median graph can be a good
representative of a class in large datasets. We have performed some classification and
clustering experiments that validate this hypothesis and permit to foresee a successful
application of the median graph to a variety of machine learning algorithms.
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Chapter 1

Introduction

1.1 Motivation

One of the basic objectives in pattern recognition is to develop systems for the analysis
or classification of objects [35, 40]. In principle, these objects or patterns can be of any
kind. For instance they can include images taken from a digital camera, electronic
signals captured with a transducer or words provided to an OCR to name a few.
A first issue to be addressed in any pattern recognition system is how to represent
these objects. Feature vectors are one of the most common and widely used data
representations. That is, for each object, a set of relevant properties, or features,
are computed and arranged in a vector form. Then, a classifier can be trained to
recognize the unknown objects. The main advantage of this representation is that a
large number of algorithms for pattern analysis and classification become immediately
available [35]. This is mainly due to the fact that vectors are simple structures with
good mathematical properties that can be readily manipulated algebraically.

However, some disadvantages arise from the simple structure of feature vectors.
Regardless of the complexity of the object, feature vectors have always the same length
and structure (a simple list of pre-determined components). Then, for the represen-
tation of complex objects where the relations between their parts become important
for their analysis or classification, graphs appear as an appealing alternative. One
of the main advantages of graphs over feature vectors is that graphs can explicitly
model the relations between the different parts of the object, whereas feature vectors
are only able to describe the object as an aggregation of numerical properties. In
addition, graphs permit to associate any kind of label (not only numbers) to both
edges and nodes, improving in this way the spectrum of properties of the object that
can be represented. Furthermore, the dimensionality of graphs, that is, the number of
nodes and edges, can be different for every object even for objects of the same class.
Thus, the more complex an object is, the larger the number of nodes and edges can
be. Recently, an extensive work comparing the representational power of the feature
vectors and graphs under the context of web content mining has been presented in
[89]. Experimental results consistently show an improvement in the accuracy of the
graph-based approaches over the comparable vector-based methods. In addition, in
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some cases the experiments also showed an improvement in execution time over the
vector model.

Actually, graphs have been used to solve computer vision problems for decades in
many applications. Some examples include recognition of graphical symbols [62, 63],
character recognition [65, 86], shape analysis [22, 80], 3D-object recognition [96, 117]
and video and image database indexing [97].

However, in spite of the strong mathematical foundation underlying graphs and
their high power of representation, working with graphs is harder and more challenging
than working with feature vectors.

On the one hand, the computational complexity of the algorithms related to graphs
is usually high. For instance, the simple task of comparing two graphs, which is com-
monly referred as graph matching, becomes exponential in the size of graphs, specially
in the case of optimal algorithms. For some applications, this may be unacceptable
or even intractable when the size of the graphs becomes large. Conversely, approxi-
mate algorithms have only polynomial time complexity, but do not guarantee to find
the optimal solution. A number of similarity measures on graphs and related com-
putational procedures have been proposed in this context [11, 13, 72, 87, 109]. An
extensive survey about graph matching in pattern recognition can be found in [26].

On the other hand, some basic operations that are used in many pattern recog-
nition methods and that might appear quite simple in the vector domain, such as
the sum or the mean, turn very difficult or even impossible in the graph domain.
Therefore, graphs are typically used in the context of nearest-neighbor classification
where we only need the definition of a similarity measure between two graphs. That
is, an unknown input pattern is compared (matched) with a number of prototypes
stored in the database. The unknown input is then assigned to the same class as the
most similar prototype.

To overcome this limitation, some attempts to fusion both domains, i.e. vector
and graph domains, have been presented in the literature [79, 83]. The basic idea
underlying these methods is to try to take advantage of the best of each domain.
That is, the high representational power of graphs and the simplicity of the vectors.
The aim is to extend the existing machine learning algorithms, typically applied to
feature vectors, to the graph domain.

In some of these machine learning algorithms a representative of a set is often
needed. For instance, in the classical k -means clustering algorithm, a representative
of each cluster is computed and used at the next iteration to reorganize the clusters.
In classification tasks, a representative of a class could be useful to reduce the number
of comparisons needed to assign the unknown input pattern to its closest class. While
the computation of a representative of a set is a relatively simple task in the vector
domain (it can be computed by means of the mean or the median vector), it is not
clear how to obtain a representative of a set of graphs.

In the literature we can distinguish two different methodologies for that, depending
on whether they keep probabilistic information in the structure that represents the
cluster of graphs or not.

In the first type of methods, the models belonging to the class, which are usually
called Random Graphs (RG), are described, in the most general case, through a joint
probability space of random variables ranging over graph vertices and arcs. They
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are the union of the graphs in the cluster, according to a synthesis process, together
with its associated probability distribution. In this manner, a structural pattern
can be explicitly represented in the form of a graph and an ensemble of instances
of the pattern can be considered as a set of outcomes of the RG. Two important
probabilistic methods are First-Order Random Graphs (FORGs) [116] and Function-
Described Graphs (FDGs) [95, 96]. Another similar approach has been presented by
Sengupta et al. in [91] and can be regarded as similar to the FORG approach. Finally,
Second-Order Random Graphs (SORGs) which can be seen as a generalization of both
of them have been introduced in [94].

Four different non-probabilistic methods exist. The self-organizing map (SOM) is
a useful method to cluster sets of objects. It consists of a layer of units (neurons),
that adapt themselves to a population of input patterns. SOM was first presented by
Kohonen with the limitation that patterns had to be represented in terms of feature
vectors only. Afterwards, the same authors presented an extension of this method
to strings [48] and then Günter and Bunke proposed in [43] a generalization of the
clustering method applied to graphs. Then, Seong et al. [92], developed a hierarchical
model that summarizes and organizes the input instances incrementally and is built
up with a succession of graphs. In the approach of Cordella et al. [29], the set of
graphs is represented by the maximally general prototype that can be seen as the
union of the graphs. Finally, Jiang et al. [53], introduced the concepts of set and
generalized median graph to define the representative of a set of graphs.

Unlike the above outlined methods, most of them defined using heuristic proce-
dures, the concept of median graph is sustained by a strong theoretical basis. This is
the main reason of selecting the median graph as the topic of study in this work. In
the next section we introduce the definition and the main properties of the median
graph.

1.2 Median Graph

Given a set of graphs, the median graph has been defined as the graph which has the
smallest sum of distances (SOD) to all the graphs in the set [53]. This simple definition
hides a powerful concept to describe the representative of a set of graphs. The unique
restriction imposed by such definition is that a similarity measure between graphs
needs to be defined. In fact, the definition of median graph has a an analogous
definition in the concept of the median vector, or in the more general case in the
concept of median of a set of objects, which is known as one of the most important
ways to obtain a representative of a set. This simple but powerful definition makes
the concept of median graph very attractive.

In addition, this strong theoretical definition implicitly carries the possibility of
defining some interesting theoretical properties. As a matter of fact, two properties
concerning the size and the limits of the SOD of the median graph were already
introduced in the initial work on median graphs. Such theoretical properties are useful
to better understand the underlying concept and can be crucial to make practical
advances.

In addition median graph has strong potential applications. For instance, it could
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be used in graph clustering to represent the center of each cluster. Furthermore, it is
also of interest in the context of object prototype learning. In this case the objective
is to infer a representative model out of a collection of noisy samples of the same
object. Finally, the representatives obtained with the median graph could also be
used in classification tasks. Even in a more general scheme, the median graph may
be potentially used in any application where a representative of a set of graphs is
needed.

However, the computation of the median graph is exponential both in the number
of input graphs (that makes the search space for the median graph computation
very large) and their size (due to the complexity of computing the distance between
two graphs). A number of algorithms have been reported in the past to compute
the median graph. The only exact algorithm proposed up to now is based on an
A∗ algorithm using a data structure called multimatch [76]. As the computational
cost of this algorithm is very high, a set of approximate algorithms have also been
presented in the past based on different approaches such as genetic search [53, 76]
and a greedy-based algorithm [46].

Up to now the median graph has been successfully applied to obtain prototypes
of graphical symbols [51], to obtain median words for OCR tasks [53] and to perform
content-based image clustering [46]. Nevertheless, all these applications have been
performed either with synthetic data, or with very small graphs, sometimes repre-
sented only with nodes. Thus, despite its potential application the use of the median
graph has been constrained to very limited scenarios and few real applicability.

1.3 Aims and Objectives of this Thesis

Main Objective of this Work

The main objective of this work is to further investigate both the theory and the
algorithmic underlying the concept of the median graph in order to extend its appli-
cability to real problems.

To this end, the problem will be tackled from different points of view and this
main objective can be detailed into the following points:

1. New Theoretical Properties about the Median Graph

The first issue to be addressed is the study of the underlying theory related to the
median graph. With this study we aim to derive new theoretical properties about the
median graph. The main objectives are basically twofold and they can be summarized
as follows:

• Median Graph Understanding: An exhaustive knowledge about the median
graph in terms of its underlying theory is crucial to exploit all the possibilities
that this concept offers. With these new theoretical properties we will be able
to better understand the behavior of the median graph and consequently we
will be able to use all of its potential in posterior stages.
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• Algorithm Enhancement: The second objective is to take advantage of these
new properties to enhance the algorithmic part. That is, either the new prop-
erties will be directly applied to the existing algorithms or they will serve to
investigate new and unknown techniques for the median graph computation.

2. New Algorithms for the Median Graph Computation

The second main objective of this work is to present new and more efficient algorithms
for the median graph computation. To this end the first task is to implement all the
previous existing algorithms in order to better understand from a practical point
of view how the median graph can be obtained. This bird view of the theory and
the algorithmic related to the median graph will serve to present new exact and
approximate algorithms:

• Exact Algorithms: Despite their inherent complexity, we think that the de-
velopment of exact algorithms is still an important task for two basic reasons.
The former is that exact strategies for the median graph computation may help
to better understand the way in which the median can be obtained. The latter is
that although exact algorithms have limited applicability they can still be used
as a baseline for the results provided by the approximate algorithms. They can
also be helpful to derive good approximate algorithms in posterior stages.

• Approximate Algorithms: The second objective is to propose new approx-
imate algorithms for the median graph computation, faster and more accurate
than the existing ones and applicable to a wide spectrum of problems.

With these new algorithms the aim is to give the median graph the opportunity
to leave the box of the theoretical concepts and to become a practical concept useful
in machine learning and pattern recognition applications.

3. Extend the Applicability of the Median Graph to Real Data

As it has been noted in Section 1.2, the median graph has limited applicability. The
last objective of this thesis is to be able to apply the concept of median graph to
real problems. For real problems we understand widely used algorithms in machine
learning (such as k -means clustering or kNN classification algorithms) using real data,
that is, unconstrained graphs in terms of size and attribute nature.

• Graph-based Classification: In many classification algorithms it is often
desirable to obtain a representative of a set in order to represent a class of
objects using a collection of noisy samples of the same class. Therefore, we aim
to obtain either exact or good approximate median graphs as the representative
of a given class and then use these representatives in classification tasks. The
objective is to use real data in the experiments in order to apply the median
graph to real-world applications.

• Graph-based Clustering: The second objective is to be able to use the me-
dian graph as a cluster representative in a graph-based k -means clustering al-
gorithm using real data. This point is a bit more challenging than the previous
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one in the sense that the cluster center (the median) is computed using elements
of different classes (as opposed to classification where the median is obtained
using elements of the same class). This fact means that the algorithms must be
able to obtain the median not only of a set of similar graphs but also of a set
with some outliers. It must therefore be robust to this kind of variability.

1.4 Organization

The rest of this thesis is organized in seven chapters and one appendix.

• In Chapter 2 we will introduce the basic concepts and the notation that we will
use in the rest of this work. First, we start by defining the basic concepts of
graph and subgraph, which are the atomic entities that we will need to develop
the rest of the work. Then an introduction to graph matching is presented. We
divide this part into two subparts: the exact graph matching and the error-
tolerant or inexact graph matching. In the exact graph matching we emphasize
the concepts of the maximum common subgraph and the minimum common
supergraph. These two concepts will be specially important in Chapter 5 and
in some part of Chapter 6. We also give some similarity measures based on
these concepts that will be crucial in those chapters. Finally we provide a brief
introduction on error-tolerant graph matching. Into this introduction we give
a special relevance to the weighted graph isomorphism problem, that will be
the basis for Chapter 4. The chapter finishes describing one of the most used
techniques in error-tolerant graph matching: the graph edit distance. This
concept will be very important in Chapter 6.

• Chapter 3 is devoted to explain in detail the concept of median graph. Firstly
we give a formal introduction of this concept, and we present the theoretical
properties developed up to now. After that, we provide an extensive overview
about its computation. We first describe the intrinsic computational complex-
ity underlying the median graph. After that, we provide an explanation of all
the existing exact and approximate methods to compute the median graph,
emphasizing their computational complexity and their applications. The chap-
ter concludes with a discussion about the potential applications of the median
graph, and also pointing out the limitations of the existing methods.

• In Chapter 4 we provide the first new algorithm for the median graph compu-
tation. This algorithm is based on the spectral graph theory and is only able to
work with weighted graphs. The chapter starts with a brief overview of what
the spectral graph theory is and how it can be used to perform graph matching
tasks. After that, we propose the new concepts of set and generalized spectral
median graph and we provide an incremental algorithm for its computation.
The chapter ends with a comparison of the algorithm with one of the previous
existing methods for the median graph computation.

• Chapter 5 is devoted to the study of the median graph under a particular cost
function. Firstly, we provide two enhancements on the existing theoretical prop-
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erties that will help to reduce the search space for the median graph computa-
tion. After that, we will show that under this particular cost function and using
the new theoretical properties, the search space can be drastically reduced. In
a practical way, we will propose two different strategies to explore the reduced
search space. First, we will provide a new and more efficient exact algorithm for
the median graph computation. Some preliminary experiments will show that
this new method clearly outperforms the traditional exact algorithm and, in
some cases, even the previous approximate algorithm based on genetic search,
in terms of computation time. After that, and taking again advantage of the
new theoretical results, we will present a new approximate algorithm based on
genetic search. The experiments show that this method is able to compute the
median graph with small sets of graphs but with large sizes. In both algorithms
we have performed experiments on real data.

• In Chapter 6 a novel technique for the median graph computation based on
graph embedding in vector spaces will be presented. The main idea will be to
translate each graph into a vector in a n-dimensional space and then, to compute
the median of the set in this vector space instead of doing that directly in the
graph domain. The median graph is then recovered from this median vector.
Using this technique we will present one exact and one approximate algorithm.
We will see that the exact computation of the median graph will be extended
to limited real data experiments, where never before an exact algorithm could
be applied. With the approximate algorithm we will be able to compute the
median graph using real data and with a large number of graphs and without
any restriction on the type of graphs or the cost function.

• Chapter 7 is devoted to give an extensive experimental framework to evaluate
the proposed methods. This chapter contains the major practical contribution of
this work: the extension of the median graph to two important machine learn-
ing algorithms such as the k -nearest-neighbor classification and the k -means
clustering algorithm using both synthetic and real data. The chapter is di-
vided into two different parts. In the first part, the classification problem is
addressed. The experiments are performed using all the proposed methods and
they are compared with the classic graph-based kNN classifier. Depending on
the method, the experiments are performed either on synthetic or real data.
In the second part we propose for the first time the application of the median
graph to the well-known k -means clustering algorithm using real data, where
traditionally the set median has been used as a representative of each cluster.
We perform several experiments on both synthetic and real massive data using
the approximate method presented in Chapter 6. The results show that the
obtained medians are able, in general, to provide better results than the set
median.

• Finally in Chapter 8 we give some concluding remarks about this work, and
we provide some possible future lines and strategies to continue investigating
on median graphs. From a theoretical point of view, we point out possible new
theoretical properties of the median graph more powerful than the existing ones.
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We also propose possible options to improve some of the proposed algorithms.
Finally, the option of using the median graph in more complex graph-based
algorithms is introduced.

• Along this work different databases have been used to perform the experiments.
All these datasets are explained in Appendix A. For every database we explain
the kind of data it contains, the graph-based representation of this data and
some characteristics about the database such as the number of elements, their
size, etc. In addition, if any distortion has been introduced in the original
elements, it is also explained.



Chapter 2

Graph Matching

Graphs are a powerful tool for object representation. In the introductory chapter, we
have pointed out their advantages over feature vectors when objects are structured
and their parts and the relations between them become important. This chapter is
devoted to the formal definition of the concept of graph and some related concepts,
with special emphasis to graph matching. Graph matching is the specific process of
evaluating the structural similarity of two graphs. It can be split into two categories,
namely exact and error-tolerant graph matching. In exact graph matching, the basic
objective is to decide whether two graphs or parts of them are identical in terms of
their structure and labels. Conversely, error-tolerant graph matching aims to give a
measure of the similarity between two graphs.

The outline of this chapter is as follows. Firstly, in Section 2.1, the basic definitions
of graph and subgraph are formally introduced. After that, in Section 2.2, the concept
of exact graph matching and their classical paradigms, such as graph isomorphism
and subgraph isomorphism are presented. We have also included in this section the
definitions of maximum common subgraph and minimum common supergraph of two
graphs. These two concepts can be seen as the bridge between the exact and the
error-tolerant graph matching, and they will become an important part of this work
in Chapter 5. Finally, in Section 2.3, a brief introduction to error-tolerant graph
matching is given, and the different algorithms and techniques are explained, but we
make special emphasis, in Section 2.3.1, on the graph edit distance. The graph edit
distance has been shown as one of the most flexible and powerful techniques for the
computation of graph similarity. This concept will become crucial in Chapter 6. For
this reason we have given it a special treatment in this chapter.

2.1 Graph and Subgraph

There are different ways to define a graph depending mainly on how the labels of nodes
and edges are defined. The definition of graph given below is sufficiently general to
include the most important classes of graphs.

Definition 2.1 (Graph) Given L, a finite alphabet of labels for nodes and edges, a

9
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graph g is defined by the four-tuple g = (V,E, µ, ν) where,

• V is a finite set of nodes

• E ⊆ V × V is the set of edges

• µ is the node labeling function (µ : V −→ L)

• ν is the edge labeling function (ν : E −→ L)

The number of nodes of a graph g is denoted by |g|.

The set V of nodes can be seen as the set of node identifiers. Edges are defined as
pairs of nodes (u, v) where u, v ∈ V . Usually, edges are defined in a directed way in
the sense that u ∈ V is the source node and v ∈ V is the target node. An edge may
connect a node u ∈ V with itself. Nevertheless, in pattern recognition such kind of
edges are often ignored. A graph is called undirected if for each edge (u, v) ∈ E there
is an edge (v, u) ∈ E such that ν(u, v) = ν(v, u). That is, if for each edge starting
at u and ending at v there is always an edge starting at v and ending at u with the
same label.

Without loss of generalization this definition can be seen as the definition of labeled
graph. Notice that there is not any restriction about the nature of the labels of nodes
and edges. That is, the label alphabet is not constrained at all. In most cases,
L is defined as a vector space (i.e. L = Rn) or simply as a set of discrete labels
(i.e. L = {α, β, γ, · · · }). The set of labels L can also include the null label (often
represented as ε). If all the nodes and edges are labeled with the same null label, the
graph is considered as unlabeled. A weighted graph is a special type of labeled graph
in which each node is labeled with the null label and each edge (u, v) is labeled with
a real number or weight wuv, usually belonging, but not restricted, to the interval
[0, 1]. An unweighted graph, can be seen as a particular instance of a weighted graph
where wuv = 1 ∀(u, v) ∈ E.

In the more general case, vertices and edges may contain more complex informa-
tion. That is, they can contain information of different nature at the same time. For
instance, a complex attribute for a node representing a region of an image could be
composed of the histogram of the region, a description of the shape of the region
and symbolic information relating this region with its adjacent regions. In this case
graphs are called attributed graphs or simply AG. Notice that labeled, weighted and
unweighted graphs are particular instances of attributed graphs, where the attributes
are simple labels or numbers.

In this thesis, if the contrary is not specified, we will assume that graphs are fully
connected, i.e., E = V × V . Consequently, the set of edges is implicitly given. Such
assumption is only for notational convenience, and it does not impose any restriction
in the generality of the results. In the case where no real edge exists between two
given nodes, we will label this edge with the special null label ε.

Definition 2.2 (Subgraph) Let g1 = (V1, E1, µ1, ν1), and g2 = (V2, E2, µ2, ν2) be
two graphs. The graph g1 is a subgraph of g2, denoted by g1 ⊆ g2 if,

• V1 ⊆ V2
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• E1 = E2 ∩ (V1 × V1)

• µ1(u) = µ2(u) for all u ∈ V1

• ν1(e) = ν2(e) for all e ∈ E1

From Definition 2.2 it follows that, given a graph g = (V,E, µ, ν), a subset V ′ ⊆ V
of its vertices uniquely defines a subgraph, called the subgraph induced by V ′. That
is, an induced subgraph of g can be obtained by removing some of its nodes (V −V ′)
and all their adjacent edges. However, if the second condition of the Definition 2.2 is
replaced by E1 ⊆ E2 then the resulting subgraph is called non-induced. In this case,
a non-induced subgraph of g is obtained by removing some of its nodes (V − V ′) and
all their adjacent edges plus some additional edges. An example of a graph g, and an
induced and a non-induced subgraph of g is given in the Figure 2.1. Of course, given
a graph g, an induced subgraph of g is also a non-induced subgraph of g.

(a) (b) (c)

Figure 2.1: Original model graph g (a), an induced subgraph of g (b) and a non-
induced subgraph of g (c).

2.2 Exact Graph Matching

The operation of comparing two graphs is commonly referred as graph matching.
The aim of exact graph matching is to determine whether two graphs, or parts of two
graphs, are identical in terms of their structure and labels. The equality of two graphs
can be tested by means of a bijective function, called graph isomorphism, defined as
follows:

Definition 2.3 (Graph Isomorphism) Let g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2,
µ2, ν2) be two graphs. A graph isomorphism between g1 and g2 is a bijective mapping
f : V1 −→ V2 such that,

• µ1(u) = µ2(f(u)) for all nodes u ∈ V1

• for each edge e1 = (u, v) ∈ E1, there exists an edge e2 = (f(u), f(v)) ∈ E2 such
that ν1(e1) = ν2(e2)

• for each edge e2 = (u, v) ∈ E2, there exists an edge e1 = (f−1(u), f−1(v)) ∈ E1

such that ν1(e1) = ν2(e2)
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It is clear from this definition that isomorphic graphs are identical in terms of
structure and labels. To check whether two graphs are isomorphic or not, we have to
find a function mapping every node of the first graph to a node of the second graph
in such a way that the edge structure of both nodes is preserved and the labels for the
nodes and the edges are consistent. The graph isomorphism is an equivalence relation
on graphs, since satisfies the conditions of reflexivity, symmetry and transitivity.

Related to graph isomorphism, the concept of subgraph isomorphism permits to
check whether a part (subgraph) of one graph is identical to another graph. A sub-
graph isomorphism exists between two given graphs g1 and g2 if there is a graph
isomorphism between the smaller graph and a subgraph of the larger graph. In other
words, if the smaller graph is contained in the larger graph. Formally speaking,
subgraph isomorphism is defined as follows:

Definition 2.4 (Subgraph Isomorphism) Let g1 = (V1, E1, µ1, ν1) and g2 =
(V2, E2, µ2, ν2) be two graphs. An injective function f : V1 −→ V2 is called a sub-
graph isomorphism from g1 to g2 if there exists a subgraph g ⊆ g2, such that f is a
graph isomorphism between g1 and g.

Most of the algorithms for graph isomorphism and subgraph isomorphism are based
on some form of tree search with backtracking. The main idea is to iteratively ex-
pand a partial match (initially empty) by adding new pairs of nodes satisfying the
constraints imposed by the matching method with respect to the previously matched
pairs of nodes. These methods usually apply some heuristic conditions to prune un-
fruitful search paths as early as possible. Eventually, either the algorithm finds a com-
plete match or reaches a point where the partial match cannot be further expanded
because of the matching constraints. In this last case, the algorithm backtracks until
it finds a partial match for which another alternative expansion is possible. The algo-
rithm halts when all the possible mappings that satisfy the constraints have already
been visited.

One of the most important algorithms based on this approach is described in [107].
It addresses both the graph and subgraph isomorphism problems. To early prune
unfruitful paths the author proposes a refinement procedure that drops pairs of nodes
that are inconsistent with the partial match being explored. Then, the branches of
this partial match leading to these incompatible matches are not expanded. A similar
strategy is used in [90]. In addition, they include a preprocessing step that creates an
initial partition of the nodes of the graph based on a distance matrix to reduce the
search space. A more recent approach are the VF [28] and the VF2 [64] algorithms.
In this work, the authors define a heuristic based on the analysis of the nodes adjacent
to the nodes of the partial mapping. This procedure is fast to compute and lead in
many cases to improve the approach of [107].

Probably, the most important approach that is not based on tree search is de-
scribed in [71]. It addresses the problem of graph isomorphism and is based on the
group theory. First of all, they construct the automorphism group of each input
graph. After that, a canonical labelling is derived and the isomorphism is checked by
simply verifying the equality of the canonical forms.

It is still an open question whether the graph isomorphism problem belongs to the
NP class or not. Polynomial algorithms have been developed for special kind of graphs
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such as bounded valence graphs [66] (i.e. graphs where the maximum number of edges
adjacent to a node is bounded by a constant); planar graphs [47] (i.e. graphs that can
be drawn in a plane without graph edges crossing) and trees [80] (i.e. graphs with no
cycles). But no polynomial algorithms are known for the general case. Conversely,
the subgraph isomorphism problem is proven to be NP-complete.

Matching graphs by means of graph and subgraph isomorphism is limited in the
sense that an exact correspondence must exist between two graphs or between a
graph and a part of another graph. But, let us consider the situation of the Figure
2.2(a). It is clear that the two graphs are similar, since most of their nodes and edges
are identical. But it is also clear that none of them is related to the other one by
(sub)graph isomorphism. Therefore, under the (sub)graph isomorphism paradigm,
they will be considered as different graphs.

Then, in order to overcome the drawbacks of the (sub)graph isomorphism and to
establish a measure of partial similarity between any two graphs, the concept of the
largest common part of two graphs is introduced.

Definition 2.5 (Maximum Common Subgraph (mcs)) Let g1 = (V1, E1, µ1, ν1)
and g2 = (V2, E2, µ2, ν2) be two graphs. A graph g is called a common subgraph (cs)
of g1 and g2 if there exists a subgraph isomorphism from g to g1 and from g to g2.
A common subgraph of g1 and g2 is called maximum common subgraph (mcs) if there
exists no other common subgraph of g1 and g2 with more nodes than g.

The notion of the maximum common subgraph of two graphs can be seen as the
intersection between them. Intuitively, it is the largest part of them that is identical
in terms of structure and labels. It is clear that the more similar two graphs are the
larger their maximum common subgraph is.

The mcs computation has been widely investigated. There are two major ap-
proaches in the literature. In [59, 70, 110] a backtracking search is used. A different
strategy is proposed in [5, 37]. They cast the mcs problem by reducing it to the
problem of finding the maximum clique (i.e. a completely connected subgraph) of a
suitably constructed association graph [9]. A comparison of some of these methods
on large databases of graphs is given in [14, 27].

It is well known that the mcs and the maximum clique problems are NP-complete.
Therefore, some approximate algorithms have been developed. A survey of these ap-
proximate approaches and the study of their computational complexity is given in
[49]. Nevertheless, in [57] it is shown that when graphs have unique node labels, the
computation of the mcs can be done in polynomial time. This important result has
been exploited in [89] to perform data mining on Web pages based on their content.
Other applications of the mcs include comparison of molecular structures [81, 105]
and matching of 3-D graph structures [104].

Dual to the definition of the maximum common subgraph (interpreted as the
intersection) there is the concept of the minimum common supergraph.

Definition 2.6 (Minimum Common Supergraph (MCS)) Let g1 = (V1, E1,
µ1, ν1) and g2 = (V2, E2, µ2, ν2) be two graphs. A graph g is called a common super-
graph (CS) of g1 and g2 if there exists a subgraph isomorphism from g1 to g and from
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g2 to g. A common supergraph of g1 and g2 is called minimum common supergraph
(MCS) if there exists no other common supergraph of g1 and g2 with less nodes than
g.

The minimum common supergraph of two graphs can be seen as the graph with
the minimum required structure so that both graphs are contained in it as subgraphs.
In [17], it is demonstrated that the computation of the minimum common supergraph
can be reduced to the computation of the maximum common subgraph. This result
has not only relevant theoretical implications, but also practical implications. From
this result it can be deduced that any algorithm for the mcs computation, such as all
the algorithms described before, can also be used to compute the MCS.

An example of the maximum common subgraph and the minimum common su-
pergraph of the two graphs of Figure 2.2(a) is given in the Figure 2.2(b) and 2.2(c)
respectively.

(a) (b)

(c)

Figure 2.2: Two graphs g1 and g2 (a), a possible mcs(g1, g2) (b) and a possible
MCS(g1, g2) (c).

Notice that, in general, neither mcs(g1, g2) nor MCS(g1, g2) are uniquely defined
for two given graphs g1 and g2.

2.2.1 Graph Similarity Measures Based on the mcs and the
MCS

The concepts of maximum common subgraph and minimum common supergraph pre-
sented before, can be used to measure the similarity of two graphs. The basic idea is
the intuitive thought that the larger the common part of two graphs, the higher their
similarity. In the following, several distance measures between graphs based on the



2.2. Exact Graph Matching 15

concepts of the mcs and the MCS will be presented.

For instance, in [10] the distance metric between two graphs is defined in the
following way:

d1(g1, g2) = |g1|+ |g2| − 2|mcs(g1, g2)| (2.1)

It is clear in this definition that, if two graphs are similar, they will have a
mcs(g1, g2) similar to both of them. Then the term |mcs(g1, g2)| will be close to
|g1| and |g2| and therefore the distance close to 0. Conversely if the graphs are dis-
similar, the term |mcs(g1, g2)| will tend to 0 and the distance will be large.

Another distance based on the mcs [20] is:

d2(g1, g2) = 1− |mcs(g1, g2)|
max(|g1|, |g2|)

(2.2)

In this case, if the two graphs are very similar, then their maximum common
subgraph will obviously be almost as large as one of the two graphs. Then, the value
of the fraction will therefore tend to 1 and the distance will be close to 0. For two
dissimilar graphs, their maximum common subgraph will be small, and the ratio will
then be close to 0 and the distance close to 1. Clearly, the distance metric d2 is
bounded between 0 and 1, and the more similar two graphs the lower d2.

A similar distance is defined in [109], but the union graph is used as normalization
factor instead of the size of the largest graph,

d3(g1, g2) = 1− |mcs(g1, g2)|
|g1|+ |g2| − |mcs(g1, g2)|

(2.3)

By ”graph union” we mean that the denominator represents the size of the union
graph in the set theory point of view. The behavior of such distance is similar to that
of d2. The use of the graph union is motivated by the fact that changes in the size of
the smallest graph that keep the mcs(g1, g2) constant are not taken into account in
d2 whereas this distance d3 does take this variations into account. This measure was
also demonstrated to be a metric and gives a distance in the interval [0, 1].

Another approach based on the difference between the minimum common super-
graph and the maximum common subgraph is given in [39]. In this approach, the
distance is given by,

d4(g1, g2) = |MCS(g1, g2)| − |mcs(g1, g2)| (2.4)

The basic idea is that for similar graphs, the sizes of the maximum common sub-
graph and the minimum common supergraph will be similar and the resulting distance
will also be small. On the other hand, if the graphs are dissimilar, the two terms will
be significantly different, resulting in larger distance values. It is important to notice
that d4 is also a metric.



16 GRAPH MATCHING

All these similarity measures admit a certain amount of error-tolerance. That is,
with the use of these similarity measures, two graphs do not need to be directly related
in terms of (sub)graph isomorphism to be successfully matched. Nevertheless, it is still
imperative for these graphs to share isomorphic parts to be considered similar. This
means that the two graphs must be identical to a large extent in terms of structure
and labels to produce small similarity measures. In practice, node and edge labels
which are used to describe the properties of the underlying object (represented by the
graph), are usually of continuous nature. In this situation, at least two problems come
at hand. First, it is not sufficient to evaluate whether two labels are identical or not,
but also to evaluate their similarity. In addition, using all the distances given so far,
two labels will be considered different regardless of the difference between them. This
may lead to consider two graphs with similar, but not identical labels, completely
dissimilar even if they have identical structure. It is therefore clear the need of a
more sophisticated method to measure the dissimilarity between graphs which takes
into account such limitations. This leads to define the inexact or error-tolerant graph
matching.

2.3 Error-Tolerant Graph Matching

The methods for exact graph matching outlined above have an strong definition and
are sustained by a solid mathematical foundation. Nevertheless, their stringent condi-
tions make them applicable only to a very small range of real world problems. In the
real world, when objects are encoded using graph-based representations some degree
of distortion may be introduced due to multiple reasons. For instance, some form of
noise in the acquisition process, non-deterministic elements in some of the processing
steps, etc. Hence, graph representations of the same object may differ somewhat, and
then two identical objects may not have an exact match when transformed into their
graph-based representations. Therefore, it is necessary to introduce some degree of
error tolerance into the matching process, so that it can, at a certain extent, take into
account these structural differences between the models. For this reason, a number
of error-tolerant or inexact graph matching methods have been proposed. They deal
with a more general graph matching problem than the (sub)graph isomorphism or
the mcs and MCS problems.

The key idea of error-tolerant graph matching is to measure the similarity between
two given graphs instead of simply giving the answer of whether they are identical or
not. Usually, in these algorithms the matching between two different nodes that do
not preserve the edge compatibility is not forbidden. But a penalty cost is introduced
to measure the difference. The task of the algorithm is to find the mapping that min-
imizes the matching cost. For instance, an error-tolerant graph matching algorithm
is expected to discover not only that the graphs in the Figure 2.2(a) share some parts
of their structure but also that they are rather similar despite the difference in their
structure.

As in the case of exact graph matching, techniques based on tree search can also
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be used for inexact graph matching. Differently from exact graph matching where
only identical nodes are matched, in this case, the search is usually handled by the
partial matching cost obtained so far and an heuristic function to estimate the cost
of matching the remaining nodes. This heuristic information can be used to prune
unfruitful paths in a depth-first search approach or to determine the order in which
the search tree has to be traversed in an A* algorithm. For instance, the use of an
A* strategy is proposed in [36] to obtain an optimal algorithm to compute the graph
distance. In [6, 7, 8] an A*-based approach is used to tackle the matching between
two graphs as a bipartite matching problem. A different approach is used in [93],
where they present an inexact graph matching method that also exploits some form
of contextual information, defining a distance between Function Described Graphs
(FDG). Finally, a parallel branch and bound algorithm has been presented in [2] to
compute a graph distance between two graphs with the same number of nodes.

Another class of approaches for inexact graph matching are those based on ge-
netic algorithms [3, 30, 100, 103, 111]. The main advantage of genetic algorithms
is that they are able to cope with huge search spaces. In genetic algorithms, the
possible solutions are encoded as chromosomes. These chromosomes are generated
randomly following some operators inspired in the evolution theory, such as mutation
and crossover. To determine how good a solution (chromosome) is, a fitness function
is defined. The search space is explored with the combination of the fitness function
and the randomness of the biologically inspired operators. But the algorithm tends
to favor the well-performing candidates. The two main drawbacks of the genetic al-
gorithms are that they are non-deterministic algorithms and that the final output is
really dependent on the initialization phase. On the other hand, they are able to
cope with difficult optimization problems and they have been widely used to solve
NP-complete problems [54]. For instance, in [100] the matching between two given
graphs is encoded in a vector form as a set of node-to-node correspondences. Then
an underlying distortion model (similar to the idea of cost function presented in the
next section) is used to evaluate the quality of the match, by simply accumulating
individual costs.

Spectral methods [21, 69, 84, 99, 108, 114, 118] have also been used for inexact
graph matching. The basic idea of these methods is to represent graphs by the
eigendecomposition of their adjacency or Laplacian matrix. Among the pioneering
works of the spectral graph theory applied to graph matching problems there is [108].
This work proposes an algorithm for the Weighted Graph Isomorphism Problem,
where the objective is to match a subset of nodes of the first graph with a subset of
nodes of the second graph, usually by means of a matching matrix M. One of the major
limitations of this approach is that the graphs must have the same number of nodes.
A more recent paper [118], proposes a solution to the same problem by combining the
use of eigenvalues and eigenvectors with continuous optimization techniques. In [23]
some spectral features are used to cluster sets of nodes that are likely to be matched
in the optimal correspondence. This method does not suffer from the limitation that
all the graphs must have the same number of nodes, like in [108]. Another approach
combining the clustering and the spectral graph theory has been presented in [58].
In this approach the nodes are embedded into a so-called graph eigenspace using the
eigenvectors of the adjacency matrix. Then a clustering algorithm is used to find
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nodes of the two graphs that are to be put in correspondence. A work that is partly
related to spectral techniques has been proposed in [98, 99]. Here, the authors assign a
Topological Signature Vector or TSV to each non-terminal node of a Directed Acyclic
Graph (DAG). The TSV associated to a node is based on the sum of the eigenvalues
of its descendant DAGs. It can be seen as a signature to represent the shape and can
be used both for indexing graphs in a database and for graph matching.

A radically different approach is to cast the inexact graph matching problem as a
nonlinear optimization problem. The first family of methods based on this approach
is relaxation labelling [24, 113]. The main idea is to formulate the graph matching
problem as a labeling problem. That is, each node of one of the graphs is to be assigned
to one label out of all the possible labels. This label determines the corresponding
node of the other graph. To model the compatibility of the node labeling, a Gaussian
probability distribution is used. Then, the labelling is iteratively refined until a
sufficiently accurate labelling is found. In another approach described in [68], the
nodes of the input graph are seen as the observed data while the nodes of the model
graph act as hidden random variables. The iterative matching process is handled by
the Expectation-Maximization algorithm [33]. Finally, in another classical approach
[41], the problem of Weighted Graph Matching is tackled using a technique called
graduated non-convexity that permits to avoid poor local optima.

In the last paragraphs we have described some of the most relevant algorithms for
error-tolerant graph matching. Besides these algorithms, there exists a lot of other
approaches related to the inexact graph matching problem. An excellent review of
algorithms for both exact and error-tolerant graph matching can be found in [26].

However, one of the most widely used methods for error-tolerant graph matching
is the graph edit distance. For this reason, we devote the next section to explain in
detail this concept.

2.3.1 Graph Edit Distance

The basic idea behind the graph edit distance is to define a dissimilarity measure
between two graphs by the minimum amount of distortion required to transform
one graph into the other [13, 38, 87, 106]. To this end, a number of distortion or
edit operations e, consisting of the insertion, deletion and substitution of both nodes
and edges must be defined. Then, for every pair of graphs (g1 and g2), there exists
a sequence of edit operations, or edit path p(g1, g2) = (e1, . . . , ek) (where each ei

denotes an edit operation) that transforms one graph into the other. In Figure 2.3 an
example of an edit path between two given graphs g1 and g2 is given. In this example,
the edit path consists of one edge deletion, one node substitution, one node insertion
and two edge insertions.

In general, several edit paths may exist between two given graphs. This set of
edit paths is denoted by ℘(g1, g2). To quantitatively evaluate which is the best edit
path, edit cost functions are introduced. The basic idea is to assign a penalty cost
c to each edit operation according to the amount of distortion that it introduces in
the transformation. The edit distance between two graphs g1 and g2, denoted by
d(g1, g2), is defined by the minimum cost edit path that transforms one graph into
the other. Formally speaking, the graph edit distance is defined by,
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Definition 2.7 (Graph Edit Distance) Given two graphs g1 = (V1, E1, µ1, ν1),
and g2 = (V2, E2, µ2, ν2), the graph edit distance between g1 and g2 is defined by:

d(g1, g2) = min
(e1,...,ek)∈℘(g1,g2)

k∑
i=1

c(ei) (2.5)

where ℘(g1, g2) denotes the set of edit paths that transforms g1 into g2 and c(e)
denotes the cost of an edit operation e.

g1 g2

Figure 2.3: A possible edit path between two graphs g1 and g2.

Optimal and approximate algorithms for the graph edit distance computation
have been presented so far. Optimal algorithms are usually based on combinatorial
search procedures that explore all the possible mappings of nodes and edges of one
graph to the nodes and edges of the second graph [13, 87]. The major drawback of
such approach is its computational complexity, which is exponential in the number
of nodes of the involved graphs. Consequently, its application is restricted to graphs
of rather small size in practice. Then, a number of suboptimal methods have been
proposed to make the graph edit distance less computationally demanding. Some
of these methods are based on local instead of global or optimal optimization [77].
A linear programming method to compute the graph edit distance with unlabeled
edges is presented in [56]. Such a method can be used to obtain lower and upper edit
distance bounds in polynomial time. In [78] they propose simple variants of the stan-
dard method [13] to derive two suboptimal algorithms, that make the computation
substantially faster. Finally, in [82], a new efficient algorithm is presented based on a
fast suboptimal bipartite optimization procedure.

2.4 Discussion

In this chapter we have introduced the basic terminology and concepts that will
be used later in this work. Firstly, we have introduced the concepts of graph and
subgraph. Then, the notion of graph matching has been presented, discussing both
exact and inexact versions. Regarding exact graph matching, graph isomorphism and
subgraph isomorphism have been defined, as well as the key concepts of maximum
common subgraph and minimum common supergraph and related distance measures.
In the context of inexact graph matching a brief review of different techniques has
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been presented, and we have focused on the graph edit distance, one of the most
popular strategies for the graph similarity computation.

In this thesis, we will use several of these concepts and techniques. The basic
concepts of graph, subgraph, mcs, MCS and graph matching will be used throughout
all this work. In addition, the Umeyama’s spectral-based method [108] for the WGMP
problem will become a basic pillar for our work later in Chapter 4. The distance d2

and the related concepts of mcs and MCS will form the basis of Chapter 5. Finally,
graph edit distance will be extensively used in Chapter 6 to develop the last part of
this work. To this end we will basically use the methods introduced in [82] and [78].



Chapter 3

Median Graph

In Chapter 1 we have briefly introduced the concept of median graph as one of the
possible alternatives to obtain a representative of a set of graphs. This chapter is
devoted to present in detail the concept of median graph, its theoretical properties,
the existing algorithms for its computation and the applications where median graphs
have been used up to now. This extensive introduction to the median graph will serve
as the basis for all the work developed in this thesis.

The chapter is structured in four sections. In Section 3.1, the concept of median
graph is formally introduced. We will see that there are two different definitions of the
median graph: the set median and the generalized median. After that, we will focus
on the generalized median graph. In Section 3.2 we will review some basic theoretical
properties of the median graph. Then, in Section 3.3, the existing algorithms for the
computation of the median graph will be reviewed, pointing out for each of them their
main properties and applications. The chapter concludes with a brief review of the
strengths and weaknesses of the median graph and reinforcing the objectives of this
thesis.

3.1 Median Graph

Given a set of graphs, the concept of median graph has been presented as a useful
tool to obtain a representative of the set. The formal definition of the median graph
is given in the following.

Definition 3.1 (Set and Generalized Median Graph) Let U be the set of all
graphs that can be constructed using labels from L. Given S = {g1, g2, ..., gn} ⊆ U ,
the set median graph ĝ and the generalized median graph ḡ of S are defined by:

ĝ = arg min
g∈S

∑
gi∈S

d(g, gi) (3.1)

and
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ḡ = arg min
g∈U

∑
gi∈S

d(g, gi) (3.2)

respectively.

The basic idea behind the concept of median graph is the minimization of the
sum of distances (SOD) to all the graphs in the set S. Nevertheless, note that we can
distinguish between the set median graph and the generalized median graph. There
is a subtle but really important difference between these definitions: the search space
where the median is searched for. While the set median graph is just one graph of the
sample set S, the generalized median graph can be any graph of the whole universe
U of all the possible graphs that can be constructed using the set of labels L. Thus,
ḡ is not usually a member of S. This difference makes the computational complexity
of both medians drastically different. While the number of pairwise distance com-
putations to find the set median is intuitively upper-bounded by 1

2n(n − 1), for the
generalized median graph, this number becomes exponential with respect to the sum
of nodes of the graphs in S. We will go back to the computational complexity of both
types of median graph in Section 3.3.

In spite of its lower computational cost, the set median graph is usually not the
best representative of a set of graphs, as we will show later in the next chapters. How-
ever, it is often a good starting point towards the search of the generalized median
graph. On the other hand, the generalized median graph is a more general concept
than the set median graph, and it is usually a better representative of a set of graphs.
In fact, from a generic point of view, the notion of median is accepted as one of the
choices to obtain a representative of a set. Thus, in this context, it is clear that
the generalized median graph should be a better representative than the set median
graph. Consequently, much more effort has been spent to the computation of the
generalized median graph than to the computation of the set median graph. Usually,
the generalized median graph is considered as the unique option when looking for
a prototype of a set of graphs. Notice that, in general, more than one generalized
median graph can be found in U for a given set S. However, this last condition is
usually not a drawback in practice, since any of such graphs may be used as the
representative of a given set. Unless explicitly specified, for the rest of this thesis the
concept of generalized median graph will be simply referred as median graph.

It is clear then, that the computation of the median graph is a challenging task. A
number of algorithms have been developed up to now for its computation. In Section
3.3 all of these existing algorithms will be explained. But, beyond the algorithmic
solutions, there are two interesting theoretical properties related to the median graph
that may help us in its computation. Such theoretical properties are introduced in
the next section.

3.2 Theoretical Properties of the Median Graph

In spite of its solid definition, there is few work about theoretical properties about
the median graph. Two important theoretical properties have been presented [53].
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Such properties define the bounds on the size and the SOD of the median graph. As
they will form the basis of some parts of this work in forthcoming chapters, we briefly
include them here for the sake of completeness.

3.2.1 Bounds on the Size of the Median Graph

Given a set of graphs S = {g1, g2, ..., gn} and ḡ the median graph of S, it is shown
in [53] that the minimum and maximum number of nodes of ḡ must be within the
following limits,

0 ≤ |ḡ| ≤
n∑

i=1

|gi| (3.3)

That is, it states that the size of the median graph has to be greater or equal than
0 and less or equal than the sum of nodes of all the graphs in S. The proof of this
property can be found in [53].

3.2.2 Bounds on the SOD of the Median Graph

The bounds on the SOD of the median graph are slightly more difficult to derive. For
the upper bound, it is assumed in [53] that the empty graph ge and the union graph
gu are meaningful candidates for the median graph. Then, the upper limit on the
SOD of the median graph is:

SOD(ḡ) ≤ min{SOD(ge), SOD(gu)} (3.4)

In the same paper it is noted that this upper bound is very coarse and may thus
not be of any practical use. However, they derive a more useful lower bound if the
graph distance d(g1, g2) fulfils the properties of a metric. For the lower bound, it is
assumed that the generalized median graph ḡ of n input graphs (n even) is subject
to:

SOD(ḡ) = [d(ḡ, g1) + d(ḡ, g2) + · · ·+ d(ḡ, gn)] (3.5)
≥ d(g1, g2) + d(g3, g4) + · · ·+ d(gn−1, gn)

Obviously, such a relationship remains true for any partition of S into n
2 pairs.

(gl1, gl2), (gl3, gl4), · · · , (gln−1, gln) where {gl1, gl2, · · · , gln} ∈ S

Totally, there exists n!

2
n
2 ( n

2 )!
different partitions, and the lower bound for the SOD

is:

SOD(ḡ) ≥ max{d(gl1, gl2) + d(gl3, gl4) + · · ·+ d(gln−1, gn) (3.6)
/((gl1, gl2), (gl3, gl4) · · · (gln−1, gln))
is a partition of S}
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A similar reasoning can be done when n is odd. In this case there exists n!

2
n−1

2 ( n−1
2 )!

different partitions of S-{ak} where ak ∈ S. In this case, the lower bound for the
SOD is:

SOD(ḡ) ≥ max{d(gl1, gl2) + d(gl3, gl4) + · · ·+ d(gln−2, gn−1) (3.7)
/((gl1, gl2), (gl3, gl4) · · · (gln−2, gln−1))
is a partition of S − {ak}, ak ∈ S}

For more details about such theoretical properties, the reader is again referred to
[53].

3.3 Median Graph Computation

3.3.1 Computational Complexity

As it has been shown in the definitions of the set and the generalized median graph,
a distance between a candidate median g and every graph gi ∈ S must be computed
to find the solution. Since the computation of the graph edit distance is a well-known
problem which is NP-complete in terms of complexity, the computation of both types
of median graphs can only be done in exponential time. Conceptually, the computa-
tion of the set median graph of n input graphs involves the calculation of 1

2n(n− 1)
pairwise graph distances. Much more complex is the problem of determining the
generalized median graph. In this case, the computation is exponential both in the
number of graphs in S and their size (even in the special case of strings, the time
required is exponential in the number of input strings [32]). This exponential depen-
dency on the number of input graphs comes from the fact that for the generalized
median graph, the search space is composed of the graphs comprising all the possible
combinations among the different labels in the graphs in S. Note that in the set me-
dian graph computation only few states of this huge search space (those corresponding
to the graphs in S) have to be taken into account.

3.3.2 Algorithms for the Set Median Graph Computation

The set median graph computation is a relatively simple task. Conceptually, given a
set of graphs S, to find the set median graph it is necessary to compute the SOD of
each graph in the set, which involves the calculation of 1

2n(n− 1) pairwise graph dis-
tances, and choose the graph with minimum SOD. Nevertheless, such naive approach
still needs for a large number of distance computations, and due to the high cost of
the graph distance computation, it is often desired to obtain the set median in a more
efficient way. In [55] the Fast Search Median Algorithm (FSMA) is presented. They
assume a lower bound function b for the SOD is defined. The FSMA partitions the
set S in to the sets U (Used), A (Alive) and E (Eliminated). The set A is used to
keep track of those patterns whose sums have not been calculated and are candidates
for being a median (initially A=P). Patterns in this set are selected using a g-guided
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strategy which chooses a pattern having minimum b first. Once a pattern s is se-
lected, then b(s) is computed and it is transferred to A to U . If b(s) is smaller than
those SOD previously computed, both the current median and its associated SOD are
updated. Then, b is computed for all alive patterns and those whose lower bounds
are not smaller than the current SOD are transferred from A to E. That is, they will
no further be considered as candidates. The process ends when A = φ. With this
strategy we can avoid the full evaluation of some possible candidates.

3.3.3 Algorithms for the Generalized Median Graph Compu-
tation

In this section we will briefly explain the existing algorithms for the generalized me-
dian graph computation. They include one exact and two approximate algorithms.
The exact algorithm is called Multimatch [76], and was first presented by Münger
and Bunke in 1995. Nevertheless, this approach suffers from a high computational
complexity, and its application is very limited as we will see later in this chapter. As
a consequence, the use of suboptimal methods is the unique feasible option to extend
the use of the median graph to more realistic sets of graphs. In this case we will only
obtain approximate solutions for the generalized median graph but in a more reason-
able time. These two approximate algorithms include a genetic based strategy [53, 76]
introduced by Jiang, Bunke and Münger and one greedy-based algorithm presented
by Hlaoui and Wang [46]. Both solutions generally apply some kind of heuristics in
order to reduce both the cost of the graph distance computation and the size of the
search space. In the following, these three initial approaches will be explained and
some of their characteristics will be pointed out.

Multimatch Algorithm

This optimal algorithm, introduced in [76], is based on a combinatorial search ex-
ploiting the fact that the size of the candidate median must be in between 0 and the
sum of nodes of all the graphs in the set S,

∑
|gi| (see Equation 3.3 or [53]). For a

particular size n between these limits, all the possible graphs with n nodes can be
enumerated. This is the set of candidate graphs for the generalized median graph ḡ
with size n. Then, for each candidate g, all the possible mappings of its nodes to the
nodes of all the graphs gi can be systematically enumerated, too. Thus, for a fixed
n, the graph g with the smallest SOD to all the graphs in S can be found. Then,
the median is the graph with the best SOD over all the possible sizes between 0 and∑
|gi|.
To perform this search the algorithm implements an A∗-based search procedure

handled by a structure called Multimatch. In such a structure, a simultaneous trans-
formation (edit operations) from a candidate median graph to all the graphs in the
set is encoded. In the following, an example will be given in order to clarify how this
structure works.

Suppose a set S which is composed of 2 graphs g1 and g2 with 3 and 2 nodes
respectively (see Figure 3.1). In this case, the size of the median must be in between 0
and 5. The following multimatch structure encodes a possible mapping of a candidate
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Figure 3.1: Two graphs, g1 and g2.

median graph of size 2 to these graphs.

[(1 7→ (2, 1)), (2 7→ (1, ε)), (ε 7→ (3, 2))]

Such a multimatch means that node 1 of the candidate median g is substituted
by node 2 of g1 and node 1 of g2. Similarly, the node 2 of g is substituted by node 1
of g1, and deleted in g2. Finally, we have an insertion of nodes 3 and 2 in g1 and g2
respectively. All these operations are graphically represented in Figure 3.2.

1

2

3

1

2

1

2

gg1 g2

Figure 3.2: Graphic example of the Multimatch structure.

Such encoding clearly defines a transformation between nodes of the candidate
median to the graphs in the set. The operations over the edges are implicitly given
by such structure. The labels for each node/edge involved in a mapping are selected
from the set of labels in such a way that the SOD of the encoded candidate median
to all the graphs is minimized.

The algorithm starts by creating a list with all the multimatch structures encoding
the possible mappings between the candidate median graphs with only one node and
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all the graphs in the set. Then, the candidate median graph with the lowest cost
is selected and expanded with one more node. This expansion generates a new set
of multimatch structures taking into account all the remaining possibilities given the
initial mapping. This new set is added to the initial list of multimatch structures and
once again, the candidate with the lowest cost is taken from the list and expanded.
This process is iteratively repeated until there are no more candidate medians in the
list.

Unfortunately, this approach suffers from a high complexity. For a given set of
graphs S = {g1, g2, . . . , gk} where gi = (Vi, Ei, µi, νi), the complexity of this algorithm
in the worst case is O(kNLn

2
maxn

nmax
p ). Where k is the number of graphs in the set

S, NL is the size of the set of labels for the nodes and edges, nmax = max{|gi|}
(i = 1 . . . k) and np =

∏k
i=1{|gi|}. For this reason, this approach is unfeasible even

for a small number of small graphs. The results presented in [19] show that for a set
of two graphs with six nodes each, the time needed to compute the median graph
grows up to 104 seconds (all the experiments were run on an IBM Thinnode Power 2
computer). Due to this large complexity, this method could only be applied to small
graphs generated randomly. For a detailed explanation of this method, the reader is
referred to [76] (in German).

Genetic-based Algorithm

A genetic algorithm has been used in [19, 52, 53, 76] to obtain approximate solutions
for the median graph. In this approach, the chromosomes represent possible mappings
from a candidate median to all the input graphs in a similar way to the multimatch
approach. The fitness function of each chromosome is the SOD of the mapping codified
by the chromosome.

Each chromosome is an array of integers representing the node assignment of the
candidate graph g to every graph gi in S. The length of the chromosome is equal to
the sum of nodes of all input graphs. Each node of a graph gi in the input set, has
assigned a fixed position in the chromosome. The value in this position specifies the
node of the candidate median assigned to that node (number 0 denotes a deletion).

Figure 3.3 shows an example of a possible codification. Suppose the set is the same
as in the Figure 3.1. In this case we have two graphs with 3 and 2 nodes respectively.
Thus, the chromosome has 5 positions. The first three positions correspond to the
first graph while the two last positions correspond to the second graph. In this case,
the candidate median g implicitly codified by the chromosome has a size of 2. When
transforming g1 into g, the first node of g1 is substituted by the second node of g,
while the third node of g1 is substituted by the first node of g. The second node of
g1 is deleted. A similar reasoning can be done for the mapping between g2 and g.

The candidate median g codified by a chromosome is partially complete because it
only specifies the way in which the nodes of g are mapped to all the input graphs. The
labeling for the nodes and edges is still missing. However, this missing information
can be completed in low-polynomial time in such a way that the term SOD(g) is
minimized. The labeling for the nodes is carried out as follows. The cost of all the
possible labels of the node is evaluated in terms of the edit operations. For each node
the label with the lower cost is selected. The labeling for the edges can be done in a
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Figure 3.3: Chromosome representation of a possible candidate median g (a), a
graphical representation of the mapping the chromosome codifies (b).

similar way. After this completion process, a chromosome fully specifies a candidate
median together with its SOD.

The population of chromosomes evolves applying the classical genetic operators,
until the maximum number of iterations is reached or until the population becomes
homogeneous enough in terms of the variance of the SOD.

Applications of this algorithm include the computation of the median graph with
randomly generated graphs [53], median words computation for OCR application [53],
synthesis of character samples [51] and synthesis of graphical symbols [52]. Never-
theless, the sets used in these examples only include a small number of graphs with
a small number of nodes each. These graphs were usually created synthetically and
contain a small number of different labels in the nodes and the edges. It is important
to notice that in some cases the graph-based representations were composed only of
nodes, without any edge between them.

A complete description of this algorithm can be found in [53, 76].

Greedy-based Algorithm

In [45, 46], a greedy-based algorithm has been presented for the computation of the
approximate median graph. The key idea of that algorithm is based on the observation
that the edit distance between two graphs can be split into two parts: a node-to-node
distance and an edge-to-edge distance (i.e. d(g1, g2) = dn(g1, g2) + de(g1, g2)). Then,
the term SOD is also decomposed into these 2 parts, which correspond to the SOD
due to the nodes (SODn) and the SOD due to the edges (SODe).

SOD(g) =
∑

d(g, gi) =
∑

dn(g, gi) +
∑

de(g, gi) = SODn(g) + SODe(g) (3.8)

The search for the best configuration of nodes and edges is divided into two parts.
First, the algorithm iteratively searches for the subset of nodes most likely to be part
of the final solution (minimizing the term SODn), and then searches for the best
subset of edges connecting the selected nodes (minimizing the term SODe).
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Despite this initial heuristic, the algorithm still suffers from a large complexity
because the size of the median graph is still unknown. For this reason, before the
search step, the algorithm performs a preparation step in order to reduce the search
space. This preparation step includes the determination of the size of the median
graph and the reduction of the set of possible nodes used in the search step. The
cardinality M of the median graph is determined using the following formula (based
on some hypothesis on the edit operations which are partially validated through some
experiments):

M =
1
n

n∑
i=1

|gi| (3.9)

To reduce the number of nodes used in the search step, the k -means algorithm
is applied to cluster the labels of the nodes (with k = 2M). Thus, in the search
procedure only k nodes will be included, the closest to the k centers of the clusters.

In order to validate the usefulness of the proposed method, they first compare this
method with the genetic-based approach explained before with randomly generated
graphs. Then, they use the same kind of data to cluster similar graphs. Finally they
apply the new algorithm to content-based image retrieval using a synthetic database.
It is important to mention again that all of these experiments were done with synthetic
data and graphs of a relatively small size (5-10 nodes per graph) and with a low
number of labels. For more details about this method, the reader is referred to
[45, 46].

3.4 Discussion

In this chapter we have presented a detailed introduction to the median graph concept.
Its close definition to the generic concept of median gives the median graph the
potential to be a good representative of a set of graphs. Therefore, the median graph
could play an important role in any graph-based algorithm for machine learning where
a representative is needed.

Despite its potential applications, the computation of the median graph has been
shown to be a highly complex task. The existing algorithms are very limited in
its application and are sometimes restricted to synthetic data with relatively small
graphs. From a theoretical point of view, the properties mentioned in Section 3.2 can
be used to bound the search space of the median, either by limiting the size of the
candidate medians or by discarding some of these candidate medians based on the
bounds on the SOD, for instance. Nevertheless, as mentioned in [53], these bounds
are sometimes too coarse and are not very useful and they do not allow to reduce the
complexity of the median graph computation in any of the existing algorithms.

For this reason, this thesis addresses the problem of the median graph computa-
tion. Along the next chapters we will propose new theoretical properties and new
algorithms to optimize its computation with the main objective of giving the median
graph the opportunity to leave the box of theoretical concepts and be applied to real
problems.
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Chapter 4

Spectral Median Graph

Let us recall from Chapter 2 that a weighted graph is a graph where the labels
of edges are numerical values (or weights). These weights can be integers or real
numbers, usually representing distances, costs or an affinity level between the nodes.
Weighted graphs are useful in many applications. For example, let us think of a graph
representing possible routes between cities, where the weight might be the distance
along a given route, the time to get from one city to another or the cost of taking
some action while traversing an edge. Another example could be the representation
of graphical symbols. In this case nodes could represent either terminal or junction
points in the symbol and edges the distance between two points in the symbol, for
instance. Under these contexts, the median graph may represent the mean cost of
an operation in the city example or the mean shape of the symbol. With this kind
of potential applications at hand, it its therefore clear the usefulness of the median
graph under the context of weighted graphs.

In this chapter, we will propose the first new strategy for the median graph com-
putation, tackling the problem only under the particular class of weighted graphs. To
this end, we will use the well-known discipline of spectral graph theory, that is the
decomposition in eigenvalues and eigenvectors of the adjacency or Laplacian matrix
of a graph. With the use of the spectral graph theory and the Umeyama’s method
for solving the Weighted Graph Isomorphism problem, we present in this chapter the
novel concept of Spectral Median Graph, as well as an algorithm to compute it. With
this new concept we aim to obtain good approximations of the median graph.

The chapter is organized as follows. In the next section, a brief introduction to the
spectral graph theory and its applications to the graph matching problem is presented.
We will specially emphasize in this section the Umeyama’s method, one of the most
well-known methods to solve the Weighed Graph Isomorphism problem under the
optic of the spectral graph theory. Then, in Section 4.2, we introduce the novel
concept of Spectral Median Graph, giving the definition of both set and generalized
spectral median graph. We also provide an incremental algorithm to compute the
generalized spectral median graph. After that, in Section 4.2.2 we present some
experiments in order to evaluate the quality of the obtained median, and we compare
the results with the genetic approach presented in [53]. Finally, the chapter concludes

31
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with a brief discussion on the new theory and the results.

4.1 Graph Matching using Spectral Techniques

The foundations of spectral graph theory were laid in the fifties and sixties as a result
of the work of a considerable number of mathematicians. Most of this early work
was concerned with the relation between spectral and structural properties of graphs
[31]. Such relations were obtained from the analysis of the spectra of specific matrices
defined from the graph, including the adjacency matrix and the Laplacian matrix,
among others. Over the last fifty years, a large number of results have been obtained
describing the spectra of these specific matrices, and extracting information about
the graph from this spectrum. These properties include, for instance, the number of
nodes of the graph, the connectivity between them, the maximum degree on a regular
graph, some geometric properties of the graph and others. More recently, generalized
Laplacians, a whole family of matrices associated with a given graph, have been
studied. In addition, impressive results characterizing some graph properties such as
planarity, in terms of eigenvalues of generalized Laplacians, have been obtained [25].

Beyond these initial works and in a more practical sense, spectral graph theory has
also been applied to solve the graph matching problem. With the use of spectral graph
theory, approximate solutions for graph matching have been reported in polynomial
time. In this work, we take advantage of such techniques to address the median graph
computation using weighted graphs.

4.1.1 Matrices of Graphs

Basically, spectral graph theory makes use of two matrices, namely the adjacency
matrix and the Laplacian matrix of a graph. Initial works in the field of spectral
graph theory focused their attention on the adjacency matrix [31], but recently the
Laplacian matrix has received an increasing interest [25, 75, 101]. In this section
we will first briefly review how we can obtain these matrices from a weighted graph.
Then, we will introduce the way in that these matrices can be spectrally decomposed
to obtain the spectrum of a graph (list of eigenvalues) and the eigenvectors associated
to this spectrum, that will permit to analyze some of its structural properties.

Let g = (V,E, µ, ν) be a weighted graph. Its adjacency matrix denoted by Ag,
with elements ai,j is defined as:

ai,j =
{
wij if (i, j) ∈ E
0 otherwise

That is, the matrix (whose order is equal to the number of nodes in the graph)
contains at each position (i, j) the weight of the edge linking the nodes i and j.

The Laplacian matrix of g denoted by Lg and whose elements are denoted by li,j
is given by:
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li,j =

 −wij if (i, j) ∈ E
di(v) if i = j
0 otherwise

where di(v) denotes the degree of a vertex vi
1.

Notice that for undirected graphs, the adjacency and the Laplacian matrices are
symmetric. Figures 4.1 and 4.2 show an example of a weighted and an unweighted
graph, gw and gu and their corresponding adjacency and Laplacian matrices respec-
tively. In these figures, the numbers inside the nodes simply enumerate the nodes.
They do not have the meaning of weights.
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gw

Agw =





0 1 1 2 2
1 0 3 5 5
1 3 0 4 3
2 5 4 0 4
2 5 3 4 0





Lgw =





6 −1 −1 −2 −2
−1 14 −3 −5 −5
−1 −3 11 −4 −3
−2 −5 −4 15 −4
−2 −5 −3 −4 14





Figure 4.1: Example of a weighted graph and its corresponding adjacency and
Laplacian matrices.

In the Spectral Graph Theory, such matrices are spectrally decomposed in order to
obtain their eigenvalues (spectra of the graph) and their corresponding eigenvectors.
For the sake of completeness, we will briefly recall such procedure in the next section2.

4.1.2 Spectral Decomposition of Matrices

In the mathematical discipline of linear algebra [61], spectral decomposition (also called
eigendecomposition) is the factorization of a matrix into a canonical form, whereby
the matrix is represented in terms of its eigenvalues and eigenvectors.

Spectral Decomposition

Given an adjacency matrix A of order n, we can calculate the eigenvalues λ =
(λ1, λ2, . . . , λn) by solving the equation,

1The degree of a vertex in weighted and unweighted graphs is defined as the sum of the weights
of edges at v, i.e. di(v) =

P
j wij .

2For the rest of the work we assume that we only work with adjacency matrices of graphs.
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Agu =





0 1 1 1 0
1 0 1 0 1
1 1 0 0 1
1 0 0 0 1
0 1 1 1 0





Lgu =





3 −1 −1 −1 0
−1 3 −1 0 −1
−1 −1 3 0 −1
−1 0 0 2 −1
0 −1 −1 −1 3





gu

Figure 4.2: Example of an unweighted graph and its corresponding adjacency and
Laplacian matrices.

p(λ) = det(A− λI) = |A− λI| = 0 (4.1)

which is known as the characteristic polynomial. The roots of p(λ) correspond to the
eigenvalues. Normally, the order of the eigenvalues is fixed according to the decreasing
magnitude of their values, i.e. λ1 ≥ λ2 ≥ . . . ≥ λn.

After that, we must solve, for every eigenvalue λi (with i = 1 . . . n), the system of
equations,

(A− λiI)−→u i = 0 (4.2)

to find the eigenvector −→ui associated to λi. After that, we can construct the modal
matrix (also called eigenvector matrix) by placing all the eigenvectors as columns of
the matrix in the following way,

U = (−→u1|−→u2| . . . |−→un) (4.3)

We emphasize that if the initial matrix A is not symmetric, the elements of the
modal matrix are complex numbers whereas if the initial matrix is symmetric, they
are real numbers. The original matrix A can be recovered from its eigenvectors and
eigenvalues by computing the following expression,

A = U · diag(λ) ·UT (4.4)

where diag(λ) is a diagonal matrix with the eigenvalues at the main diagonal.

In practice, eigenvalues of large matrices are not computed using the characteristic
polynomial. Computing the polynomial becomes intrinsically expensive, and exact
(symbolic) roots of a high-degree polynomial can be difficult to compute and express:
the Abel-Ruffini theorem [61] implies that the roots of high-degree (5 and above)
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polynomials cannot in general be expressed by simply using n-th roots. Effective
numerical algorithms for approximating roots of polynomials exist, but small errors
in the eigenvalues can lead to large errors in the eigenvectors. Therefore, general
algorithms to find eigenvectors and eigenvalues are iterative. The easiest method is
the power method: a random vector −→v is chosen and a sequence of unit vectors is
computed as

A−→v
‖A−→v ‖

,
A2−→v
‖A2−→v ‖

,
A3−→v
‖A3−→v ‖

, ... (4.5)

This sequence will almost always converge to an eigenvector corresponding to the
eigenvalue of greatest magnitude. This algorithm is simple, but not very useful by
itself. However, it is the basis of some popular methods such as the QR factorization
algorithm [42].

Once the eigenvalues are computed, the eigenvectors −→u i can be calculated by
solving the Equation 4.2 using Gaussian elimination or any other method for solving
matrix equations.

4.1.3 Graph Matching using the Spectral Graph Theory

Although spectral techniques can be used to derive some interesting properties of
graphs as we have seen at the beginning of this section, from a practical point of
view, they have been used in graph-based applications such as graph matching and
shape description.

Graph matching techniques using spectral methods are based on the observation
that eigenvalues and eigenvectors of the adjacency matrix are invariant to node per-
mutations. In this sense, if two graphs are isomorphic, their adjacency matrices will
have the same eigenvalues and eigenvectors. Since the eigendecomposition of a matrix
is a well-known method that can be solved in polynomial time [42], it can be used
to reduce the complexity of graph matching algorithms. Unfortunately, the reverse
conversion is not true, i.e. having equal eigenvalues and eigenvectors does not guar-
antee that the two original graphs are isomorphic. In addition, this method suffers
from the limitation that it is not able to exploit complex node or edge attributes such
as feature vectors, probability density functions, etc. It can only take advantage of
simple labels such as real numbers.

Among the pioneering works related to graph matching using spectral techniques
we can find the paper of Umeyama [108], in which the Weighted Graph Isomorphism
Problem (WGIP) is addressed. This method can only be applied to graphs with the
same number of nodes, and it is only suitable to compare graphs which are nearly iso-
morphic. It has the advantage that it can be applied to both directed and undirected
graphs and has a O(n3) computational complexity, where n is the size of the graphs.
Since we will use this method in our work, it will be explained in detail in the next
section. A more recent paper by Xu and King [118] proposes a different solution for
the Weighted Graph Isomorphism Problem combining eigenvalues and eigenvectors
with continuous optimization techniques. Although this technique provides slightly
better results than the Umeyama’s method, it is a bit more difficult to implement.
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For this reason we have chosen the first method.
Also related to weighted graphs, in 2001, Carcassoni and Hancock [23] proposed a

method based on spectral techniques to define clusters of nodes that are likely to be
matched together in the optimal correspondence. Such method does not suffer from
the limitation that the graphs must have the same number of nodes. Another idea
that combines spectral approaches with clustering has been presented in [58]. In this
work, the authors create a vector space called graph eigenspace using the eigenvectors
of the adjacency matrices, and the nodes are projected onto points in this space.
Then, a clustering algorithm is used to find nodes of the two graphs that are to be
put into correspondence.

A work that is partly related to spectral techniques has been proposed in 2001
[98, 99]. Here, the authors assign a Topological Signature Vector or TSV to each non-
terminal node of a Directed Acyclic Graph (DAG). The TSV associated to a node
is based on the sum of the eigenvalues of its descendant DAGs. These TSV can be
seen as signatures to represent shapes and are used later for both indexing graphs in
a database and graph matching.

4.1.4 Weighted Graph Isomorphism by means of Spectral Tech-
niques

One of the most well-known methods to perform inexact graph matching using spec-
tral techniques was presented by S. Umeyama in 1988 [108]. This method is applied to
the Weighted Graph Isomorphism Problem, which is a special case of error-correcting
graph matching. We will adopt such approach in the rest of this chapter to compute
an approximate solution to the distance between two graphs.

Umeyama’s Method

The method proposed by Umeyama optimizes an objective function (the mapping
between the nodes of both graphs) under the assumption that the graphs are isomor-
phic. Moreover, this method also obtains good approximate solutions if the graphs
are nearly isomorphic. To this end, the author reformulates the objective function in
terms of matrices using a permutation matrix. The domain of this objective function
is extended to the set of orthogonal matrices (the permutation matrix is a kind of
orthogonal matrix) to be able to use the eigendecomposition to solve the problem.

Given two graphs g1 and g2, Umeyama’s method works as follows. The first
step is to compute the eigendecomposition of their adjacency matrices Ag1 and Ag2

respectively, as explained before. Thus, we obtain the spectrum of each graph λg1 and
λg2 (ordered list of eigenvalues in decreasing order) and their modal matrices Ug1 and
Ug2 (matrix representation of corresponding eigenvectors). Then, the absolute value
of the modal matrices is computed, giving Ug1 and Ug2 . The product Ug2 ·U

T

g1
gives

a matrix that can be interpreted as the similarity matrix between the eigenvectors
of the graphs. That is, the value of the column i and row j in this matrix is the
dot product (projection) of the i-th and j-th eigenvectors of g1 and g2 respectively.
Finally, this matrix is processed using some assignment algorithm (in this case the
Hungarian Method [60]) to obtain the permutation matrix P, which represents the
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Figure 4.3: Example of two weighted undirected graphs.

correspondence between the nodes of g1 and the nodes of g2, i.e.

Pi,j =
{

1 if f(v1
i ) = v2

j

0 otherwise

where v1
i and v2

j with i, j = 1 . . . n are the nodes of g1 and g2 respectively. Using P
we are able to compute the distance d(g1, g2) between g1 and g2 as:

d(g1, g2) = d(P ) = ‖PAg1P
T −Ag2‖2 (4.6)

where ‖ · ‖ is the Euclidean matrix norm (‖A‖ = (
∑n

i=1

∑n
j=1 |aij |2)1/2).

Example

In this example we will use the graphs of Figure 4.3. As it can be seen in the figure,
both graphs have the same number of nodes (5), and the same edge structure. Basi-
cally, there are two differences between them, which are: a) g2 has been rotated 90◦

counterclockwise with respect to g1 and b) some labels of g2 differ in their values from
the labels of the corresponding edges of g1. Even so, it is easy to see that the first
node in g1 corresponds to the third node in g2, the second node in g1 corresponds
to the first node in g2, the third node in g1 corresponds to the fourth node in g2,
the fourth node in g1 corresponds to the second node in g2 and the fifth node in g1
corresponds to the fifth node in g2.

If we apply the Umeyama’s method in order to find the correspondence between
the nodes of g1 and the nodes of g2, the first step is to calculate the adjacency matrices
Ag1 and Ag2 , which are:
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Ag1 =


0 2 1 2 3
2 0 4 3 7
1 4 0 5 2
2 3 6 0 6
3 7 2 6 0


and

Ag2 =


0 3 1 4 8
3 0 2 5 6
1 2 0 1 4
4 5 1 0 2
8 6 4 2 0


for g1 and g2 respectively. After that, if we compute the eigendecomposition of each
adjacency matrix given above, we will obtain:

λg1 = (14.79,−0.346,−1.974,−3.656,−8.816)

and

Ug1 =


0.268 −0.720 −0.604 −0.204 −0.041
0.496 −0.064 0.499 −0.494 −0.505
0.390 0.597 −0.408 −0.452 0.344
0.487 0.250 −0.269 0.648 −0.453
0.539 −0.239 0.380 0.297 0.646


for the first graph, and

λg2 = (14.79,−0.346,−1.974,−3.656,−8.816)

and

Ug2 =


−0.499 −0.076 0.578 −0.337 0.543
−0.473 −0.199 −0.374 0.683 0.359
−0.264 0− 742 −0.489 −0.328 −0177
−0.374 −0.575 −0.429 −0.512 −0.285
−0.562 0.269 0.317 0.220 −0.679


for the second graph.

Now we are able to compute the product Ug1 ·U
T

g2
which, in this case, will be:

Ug2 ·U
T

g1
=


0.6308 0.6516 0.9761 0.8916 0.6103
0.9838 0.9542 0.6766 0.8353 0.9077
0.8174 0.8900 0.9567 0.9959 0.8442
0.8847 0.9881 0.7411 0.9045 0.8788
0.9603 0.8813 0.7200 0.8405 0.9938


Finally, if we apply the Hungarian Method to this matrix, we obtain the permu-

tation matrix:
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P =


0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
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Figure 4.4: Node correspondence given by Umeyama’s method.

Matrix P indicates the mapping of the nodes of g1 to the nodes of g2. In our case
f(1) = 3, f(2) = 1, f(3) = 4, f(4) = 2 and f(5) = 5, which is the correspondence
described at the beginning of this section. The result of such a correspondence can
be seen in the Figure 4.4. Here, for clarity, the lines representing the original edges
of both graphs have been picked, while the red continuous lines represent the relation
(matching) between the nodes of g1 and the nodes of g2.

Finally, we are able to compute the distance (cost) between g1 and g2 by computing
Equation 4.6,

d(g1, g2) = d(P ) = ‖PAg1P
T −Ag2‖2 = 6

This method has the main advantage that good approximate solutions for the
weighted graph matching problem can be found in polynomial time (O(n3), where n
is the number of nodes in the graphs), if graphs are nearly isomorphic. However, it has
two important restrictions. Firstly, this method can only be applied to graphs with
the same number of nodes. As a consequence only the graph isomorphism problem
can be addressed with this technique. In addition, it can only be applied to graphs
with one numerical attribute in the nodes and edges. Consequently the possibility
of associating more than one numerical value at the nodes and/or edges (a feature
vector for instance) can not be directly exploited. These limitations must be taken
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into account when this method is applied to the graph matching problem, since it can
restrict the spectrum of the applications where it can be used. For further details on
the Umeyama’s method, see [108].

4.2 Spectral Median Graph

In this section, we will present the main contribution of this chapter, the set and
the generalized spectral median graph (also called set and generalized spectral me-
dian eigenmode respectively). Combining the concepts of the generalized and the set
median graph explained in Chapter 3, together with the spectral graph theory and,
in particular, with the Umeyama’s method to find a sub-optimal labeling between
two weighted graphs, we define these two novel concepts using the modal matrices
of graphs. In addition, we present an incremental algorithm in order to compute the
median graph in linear time with respect to the number of graphs in the set. With
the use of spectral graph matching the complexity of the matching process is reduced
to polynomial time O(n3). Thus, we are able to compute good approximate solutions
of the generalized median graph in a reasonable time.

Definition 4.1 (Set and Generalized Median Eigenmode) Let K be the set of
all modal matrices of order p. Given a set of modal matrices L = {U1,U2, . . . ,Un},
we define the set median eigenmode Û and the generalized median eigenmode U of L
as:

Û = arg

(
max
U∈L

∑
Ui∈L

Γ(U,Ui)

)
(4.7)

and

Ū = arg

(
max
U∈K

∑
Ui∈L

Γ(U,Ui)

)
(4.8)

where the function Γ(A,B) is defined in the following way:

Γ(A,B) =
p∑

i=1

−→a i ·
−→
b i (4.9)

Here A = (−→a 1,
−→a 2, · · · ,−→a p) and B = (

−→
b 1,
−→
b 2, · · · ,

−→
b p) are two matrices and −→a i

and
−→
b i denote the vectors formed by each column of these matrices. The term −→a ·

−→
b

denotes the inner product between two vectors.
That is, the function Γ(A,B) is the sum of the inner products between the cor-

responding vectors in the matrices. In this way, the more similar the matrices A
and B the larger Γ. Since similar graphs will have similar modal matrices, then, the
more similar two graphs the larger Γ. In other words, maximizing the term Γ should
lead to minimize the distance between two graphs. Note that to be able to maximize
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this term, the first thing to be done is to put in correspondence (i.e. to align) the
eigenvectors of each modal matrix in L with the candidate spectral median graph. As
we have seen in the previous section, this can be done using the Umeyama’s method.

Conceptually, finding the set median eigenmode is a relative simple task. That
is, using the Umeyama’s method we can put in correspondence all the graphs in the
set, either in the graph domain or in the spectral domain. Then, once all the graphs
are aligned, the modal matrix that maximizes the projection (i.e. Γ) to all the modal
matrices in L is the set median eigenmode.

Conversely, finding the generalized median eigenmode is a more complex task.
In this case we are in a continuous domain (i.e. the values of the eigenvalues and
eigenvectors belong to R and Rn respectively). Thus, the optimal modal matrix has
to be found in this domain. In other words, we are looking for a real matrix U which
maximizes the term

∑
Γ(U,Ui) for all the matrices Ui in L. This is a more difficult

problem, and to solve it we propose an approximate incremental algorithm.

4.2.1 Synthesis of the Generalized Median Eigenmode

Two different methods of synthesizing a median from a set of elements are used in the
literature [95], namely, the incremental method and the hierarchical method. There-
fore, two sub-optimal methods to synthesize Ū could be defined. In the former, Ū
is iteratively updated according to the input graphs, which are sequentially consid-
ered. The advantage of this method is that if a new graph is added to the learning
set, the new median can be re-computed considering only this new graph. The main
drawback of this incremental approach is that different median eigenmodes can be
synthesized from a set of unlabeled graphs depending on the order of presentation of
the graphs. To infer a unique Ū , a hierarchical method must be used, which consists
of successively merging pairs of graphs with minimal distance. The drawback here is
that the full ensemble of graphs is needed to generate the median eigenmode.

We adopted the incremental approach to compute the generalized median eigen-
mode. Given a set of graphs S = {g1, g1, . . . , gn}, which are supposed to belong to
the same class, we do not, in general, have any way of synthesizing the generalized
median eigenmode Ū that represents the ensemble unless we can first establish a com-
mon labeling of their vertices. We would like to choose the common labeling so as
to minimize the dissimilarity between the given graphs and so to maximize the cor-
relation between the eigenmodes L = {U1, U2, . . . , Un}, extracted from the adjacency
matrices. To this end, we first maximize the correlation between the modal matrices
of the first two graphs in the set using the Umeyama’s method [108]. This will give us
a permutation matrix P . This permutation matrix is then used to put in correspon-
dence the eigenmodes of the corresponding modal matrices. Then, an intermediate
median graph that maximizes the term Γ with these two modal matrices is obtained
by taking the mean of their eigenvectors. This maximization is done under two as-
sumptions. First of all, we suppose our graphs are nearly isomorphic (this assumption
is already made by the Umeyama’s method). Since the graphs are nearly isomorphic,
their corresponding eigenvectors (once aligned) will be close to each other. Then,
for each pair of aligned eigenvectors, their mean is supposed to be the eigenmode
in between them which maximizes their dot product. After these steps, the modal
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matrix of this intermediate median graph is used to maximize the correlation to the
next graph in the set using the same steps finding a new intermediate median graph.
The process is repeated iteratively until the last graph in the set is processed, giving
the final median graph.

This process is shown in Algorithm 1, and it is composed of three main proce-
dures:

1. Eigen Decomposition: Obtains the eigendecomposition of the adjacency matrix
Agk

of the graph gk that is considered at the current iteration of the algorithm.

2. Matching: Finds a sub-optimal labeling between the current graph gk and the
intermediate candidate median graph ḡ using the Umeyama’s method.

3. Median Graph3: The nodes of the current graph gk are reordered according
with the node correspondence fk found in the previous step. Then, the median
graph ḡ is updated by computing the mean of the intermediate median ḡ and
the reordered version of the current graph gk.

Algorithm 1 Generalized Spectral Median Graph Algorithm
Require: A set of graphs S = {g1, g2, . . . , gn}
Ensure: The generalized median eigenmode of S

1: {Ū , λ̄} := Eigen Decomposition(g1) //ḡ is composed only of g1
2: for k := 2 to n do
3: {Uk, λk} := Eigen Decomposition(gk) //ḡ is composed only of g1
4: let fk : gk → ḡ be the labeling found by Matching(Uk, Ū)
5: ḡ := Median Graph(ḡ, gk, fk)
6: {Ū , λ̄} := Eigen Decomposition(ḡ)
7: end for

Example

An example of the generalized spectral median graph computation is given in Figure
4.5. In this example the set S of input graphs is composed of g1, g2 and g3, i.e.
S = {g1, g2, g3}, where each one is a slightly distorted and rotated version of the
other ones. To compute the generalized spectral median graph the algorithm takes g1
and g2 and compute an intermediate spectral graph g1,2 by means of their respective
eigendecompositions, U1 and U2. This step includes:

1. Put the nodes of both graphs in correspondence (by extension their modal
matrices are also put in correspondence).

2. Compute the mean of their modal matrices (which leads to obtain approximately
the mean of the labels of the nodes).

3We have to mention that the Median Graph function is not transitive. For this reason, the
procedure has to keep the information of a graph that is the addition of all the graphs used to
compute the median.
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Figure 4.5: Example of the synthesis of the generalized spectral median graph.
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Then, this intermediate spectral median graph g1,2 (which is the representation
of the intermediate median eigenmode U1,2) is combined with g3 by means of their
eigendecompositions U1,2 and U3 to obtain g(1,2),3 = gmedian (U(1,2),3 = Umedian)
which is the spectral median graph of g1, g2 and g3.

We must notice the strengths and weaknesses of such algorithm. On one hand the
use of an incremental method to compute the median graph, allows us to synthesize an
approximation of the generalized-spectral graph with linear complexity with respect
to the number of graphs. In addition, the Umeyama’s method used in the matching
process is able to find an approximate node correspondence between two graphs with
O(n3) time complexity where n is the number of nodes of each graph. Unfortunately,
the use of Umeyama’s method imposes two limitations: a) the number of nodes of the
graphs must be equal, and b) only one numerical attribute in the nodes and edges
can be used (this is a common limitation to all spectral methods).

4.2.2 Experimental Results

In order to measure the quality of the medians we obtain with this method we con-
ducted the following experiment using the GREC-1 database explained in Section
A.2.1. Recall that in this database graphs represent graphical symbols. Graphs are
distorted by moving every node within a radius r. Then, in the set of labels will most
probably be as many labels as nodes in the set S. That is, we will rarely find a repeated
label in the set L. This fact introduces a difficulty in the synthesis process, since the
number of labels in L can be large. In addition, recall from the GREC-1 database
that the nodes are labeled with a (x, y) attribute. Since the Umeyama’s method can
only deal with one dimensional attributes, each graph g is split into two graphs, gx

and gy, one containing the x value and the other containing the y value. Then the
distance between two graphs g1 and g2, d(g1, g2) is computed taking the mean of the
x and y parts. That is, dx = d(g1x

, g2x
), dy = d(g1y

, g2y
) and d(g1, g2) = dx+dy

2 .
The experiment consisted in computing the median graph using different number

of graphs for each class and then assessing the quality of the approximation by ana-
lyzing its SOD. Since the number of graphs used in this experiment is too large to use
any exact method to obtain the median graph, the results are compared with those
obtained using the respective set median graph. In addition, we have performed the
same operations using the genetic approach presented in [53], since it is the unique
algorithm able to deal with relatively large sets of graphs. The results are shown in
Figures 4.6 and 4.7 for the genetic algorithm and the spectral approach, respectively.
For simplicity, in these figures we will refer to the genetic algorithm, the set median
and the spectral median graph as GA, SM and SMG respectively.

It is important to note that while the spectral method could be applied to all the
32 classes existing in the GREC-1 database, the genetic algorithm was applied only
using 4 classes in the database. The reason is that of the size of graphs. Within the
32 classes there are graphs with a number of nodes ranging from 4 to 28. For the
genetic approach only those classes having graphs with 4 and 5 nodes could be used.
The results in the figures are the mean values obtained over all these classes (4 for
the genetic algorithm and 32 for the spectral median graph approach).
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Figure 4.6: SOD comparison using the genetic approach of [53].

Results show that, in general, both methods are able to obtain good representa-
tives (in terms of SOD) of the corresponding sets, specially for a small number of
graphs in the set. In this sense, for small sets (up to 5 graphs/set), the GA approach
obtains graphs with slightly better SODs than the set median graph. But its response
becomes worse rapidly as the number of graphs in S increases. This can be explained
by the fact that in these cases the search space also increases rapidly and it is more
difficult to find a good representative with the genetic approach. On the other hand,
the SM approach always obtains median graphs with SODs slightly worse than the set
median graph, but the tendency is to remain very close to the set median regardless
of the number of graphs used to compute the median. This suggests that our method
is able to obtain good approximations even with a large number of graphs in the set.

Although the spectral median graph approach is not able to obtain better rep-
resentatives than the set median graph, the method is able to work with large sets
of graphs with reasonable sizes. The results shown in Figure 4.7 (SM approach) are
computed with sets containing from 5 to 50 graphs with sizes from 4 to 28 nodes per
graph, while the GA approach (Figure 4.6) could only be applied to sets up to 10
graphs and with sizes from 4 to 5 nodes per graph. This suggests that our method is
potentially applicable to real problems. In Chapter 7 we will conduct a classification
experiment using this approach and with a large amount of data.

4.3 Discussion

In this chapter we have studied the median graph using a concise class of graphs,
the weighted graphs. Spectral techniques have been shown as a promising approach
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Figure 4.7: SOD comparison using the generalized median graph approach.

to solve graph matching problems with weighted graphs. For this reason, we have
used this approach to compute the median of a set of weighted graphs. The main
contributions of this chapter can be summarized as follows:

• Section 4.2: We have presented the novel theoretical concepts of set and
generalized spectral median graph combining the spectral graph theory and the
definition of the median graph. With these definitions, we have proposed a new
way to obtain the median of a set of weighted graphs.

• Section 4.2.1: In order to obtain approximate medians according to these new
definitions, we have provided an incremental algorithm to obtain good approx-
imations of the generalized median graph. This algorithm has linear complexity
with respect to the number of graphs used to compute the median.

• Section 4.2.2: We have conducted some preliminary experiments to measure
the quality of the medians obtained with the GREC-1 database composed of
32 different classes. The results have been compared with those obtained with
the genetic approach presented in [53]. Overall results show that although the
genetic approach performs slightly better with very small sets, our method is
able to keep a better approximation of the median graph as the size of graphs
becomes large, even in big sets of graphs. This suggests that our method can
be potentially exploited in real applications with large amounts of data.

Thus, with the use of the novel concept of the spectral median graph we can obtain
good approximate solutions of the median graph in polynomial time complexity. Al-
though this method can deal with a large number of graphs it suffers from two main
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limitations. The first limitation is that the method can only be used with weighted
graphs. Thus, complex attributes on nodes and edges, that are often crucial in pat-
tern recognition applications, can not be exploited. The second major limitation is
that the method can only work with graphs with the same number of nodes.

Although these limitations may seem too restrictive and therefore, make the con-
cept of spectral median graph practically unusable in real situations, there exist im-
portant industrial processes where weighted graphs with the same size could appear.
For instance, printed electronic circuits often include the so-called fiducial points, used
to determine their position in a conveyor belt. The number of these fiducial points in
an electronic circuit is fixed. So each electronic circuit can be represented as a graph
where the fiducial points are nodes and the attributes of the nodes are the position in
the conveyor belt. Thus, this kind of processes make the use of the weighted graphs
and the Spectral Median Graph approach not very far from real world applications.
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Chapter 5

Median Graph under a Particular
Cost Function

In the definition of median graph given in Chapter 3, a distance d(g, gi) between a
candidate median g and every graph gi in the set S must be computed. Nevertheless,
the definition of median graph is sufficiently general to avoid any assumption about
this distance. That is, it potentially allows the use of any of the techniques explained
in Chapter 2 to measure the similarity between two graphs. One possible choice is the
graph edit distance. In the graph edit distance, the costs of the edit operations must
be explicitly set through a cost function. In this chapter we will deeply study the
concept of median graph under a particular cost function. Although this condition
might seem quite restrictive, we will show later in this chapter that this cost function
has important both theoretical and practical implications that permit to reduce the
computation time of the median graph. Also this cost function has other important
implications in other graph matching problems [10]. In this sense, the study of the
median graph under this cost function is fully justified.

The chapter is organized as follows. In Section 5.1 we will introduce the particular
cost function that will be used throughout the whole chapter. Then, in Section 5.2,
we will introduce new theoretical properties about the median graph. In particular we
will define new bounds on the size and the SOD of the median graph more accurate
than those presented in Chapter 3. After that, in Section 5.3, we will show that
using these new bounds and some implications derived from this cost function, the
search space where the median is searched can be drastically reduced. This reduced
search space can therefore be used to derive new algorithms for the median graph
computation. This is precisely what we will present in Sections 5.4 and 5.5. In
these sections, we will explain two different strategies to explore the new reduced
search space. First, in Section 5.4 we will propose a new and more efficient exact
algorithm to compute the median graph. This new algorithm will allow us to extend
the applicability of the median graph (in a limited way) to real problems where never
before the exact median computation could be applied. In addition, in Section 5.5
we will introduce a new approximate algorithm based on genetic search, giving quite
good approximate solutions for the median graph in a reasonable time. With this

49
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new algorithm we will be able to compute the median graph using real data.

5.1 A Particular Cost Function

The particular cost function that will be used throughout this chapter was firstly
introduced in [10]. In this cost function, deletions and insertions of nodes have always
a cost of 1, deletions and insertions of edges have always a cost of 0, and node and
edge substitutions take the values of 0 or ∞ depending on whether the substitution
is identical or not, respectively. Table 5.1 summarizes this cost function.

Table 5.1: Detail of the cost function

Operations on nodes Cost
Node deletion cnd(u) 1
Node insertion cni(u) 1

Node substitution cns(u, v) 0 if identical; ∞ otherwise

Operations on edges Cost
Edge deletion ced(e) 0
Edge insertion cei(e) 0

Edge substitution ces(e1, e2) 0 if identical; ∞ otherwise

Despite the simplicity of this cost function, it has important implications in differ-
ent graph matching problems. The first important result about this cost function was
presented in [10]. It states that, under such cost function, the edit distance d(g1, g2)
between two given graphs g1 and g2 is related to their maximum common subgraph
mcs(g1, g2) as expressed in Equation 2.1. To make this chapter self-contained, that
equation is repeated here.

d(g1, g2) = |g1|+ |g2| − 2 |mcs(g1, g2)| (5.1)

This result demonstrates the intuitive idea that the more two graphs have in com-
mon, the lower their distance. Beyond the theoretical implications of this result there
are also important practical implications. For instance, an immediate consequence of
this result is that any algorithm that computes the graph edit distance may be used
for maximum common subgraph computation if it is run under this cost function.

More recently, the same cost function has been used in [18], to establish the relation
between the maximum common subgraph and the mean of two graphs. Concretely,
it is shown that, under this cost function, the maximum common subgraph of two
graphs is also the mean, that is the graph that minimizes the sum of distances to
these two graphs.

Finally, in [17] it is shown the relation between the maximum common subgraph
and the minimum common supergraph of two graphs. In that work, it is demon-
strated that under an extensive family of cost functions, including this particular cost
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function, the computation of the minimum common supergraph can be done from the
computation of the maximum common subgraph.

It is therefore clear that this cost function has important potential applications
in different graph matching problems. In the subsequent sections we will explore its
application to the theory and computation of the median graph.

5.2 New Theoretical Properties on the Median Graph

Let us recall that the theoretical properties introduced in Chapter 3, can be used to
bound the search space of the median, either by limiting the size of the candidate
median or by discarding some of these candidate medians according to the bounds of
the SOD. Nevertheless, as mentioned in [53], these bounds are sometimes too coarse
and may not be very useful to reduce the complexity of the median graph computation.

In the following, two improvements of these theoretical properties will be pre-
sented. The first one shows that the bounds on the size of the median graph can be
reduced drastically. The new bounds are related to the Maximum Common Subgraph
and the Minimum Common Supergraph of a set of graphs, defined in Section 5.2.1.
The second contribution is related to the upper bound of the SOD of the median
graph. In this case we will also reduce this bound relating it to the Maximum Com-
mon Subgraph of a set of graphs. Beyond the theoretical result, we will show later
in the next section that these new bounds have important implications on the search
space.

5.2.1 Maximum Common Subgraph and Minimum Common
Supergraph of a Set of Graphs

The following definitions are the respective generalizations of the concepts of Maxi-
mum Common Subgraph and Minimum Common Supergraph presented in Chapter 2,
but extended to a set of graphs S, instead of simply two graphs.

Definition 5.1 (Maximum Common Subgraph of a Set of Graphs) Let S =
{g1, g2, ..., gn} be a set of graphs. A graph gm(S) (also denoted by mcs(S)) is called a
maximum common subgraph of S if gm(S) is a common subgraph of {g1, g2, · · · , gn}
and there is no other common subgraph of {g1, g2, · · · , gn} with more nodes than
gm(S).

Definition 5.2 (Minimum Common Supergraph of a Set of Graphs) Let
S = {g1, g2, ..., gn} be a set of graphs. A graph gM (S) (also denoted by MCS(S)) is
called a minimum common supergraph of S if {g1, g2, · · · , gn} are subgraphs of gM (S)
and there is no other common supergraph of {g1, g2, · · · , gn} with less nodes than
gM (S).

In general, for a given set S, more than one gm(S) and gM (S) may exist. The
computation of these graphs is a challenging problem, which usually suffers from a
large complexity. For their computation, we have used a similar approach as that
introduced in [15].
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5.2.2 New Bounds on the Size of the Median Graph

This first result relates the size of the median graph to the Maximum Common Sub-
graph and the Minimum Common Supergraph of a set of graphs. In the bounds for
the size of the median graph presented in Chapter 3 the lower bound was set to 0,
while the upper bound was set to

∑
|gi|. In the following we will proof that the lower

bound can be substituted by |gm(S)| (which is always greater or equal than 0) and the
upper bound can be substituted by |gM (S)| (which is always less or equal than

∑
|gi|).

Theorem 1: Let S = {g1, g2, ..., gn} be a set of graphs and ḡ a possible median
graph of S. Under the cost function and the distance measure given in Section 5.1,
the number of nodes of ḡ falls between the following limits,

|gm(S)| ≤ |ḡ| ≤ |gM (S)| (5.2)

Proof: To demonstrate the first part of the Equation 5.2 (i.e. |gm(S)| ≤ |ḡ|), let
us suppose the contrary, that is |ḡ| < |gm(S)| and let us analyze the relation between
SOD(ḡ) and SOD(gm(S)). If we compute the term SOD(gm(S)), we will arrive to
the next expression:

SOD(gm(S)) =
n∑

i=1

d(gi, gm(S)) =
n∑

i=1

|gi|+ |gm(S)| − 2|gm(S)| =
n∑

i=1

|gi| − n|gm(S)|

(5.3)
Notice that gm(S) is the maximum common subgraph of S and, then, it is a sub-

graph of any graph gi in S. Therefore, if we compute d(gi, gm(S)) using Equation 5.1
the term |mcs(g1, g2)| is exactly |gm(S)|.

For the computation of SOD(ḡ) we will follow a similar reasoning. Assuming that
|ḡ| < |gm(S)|, we can determine the minimum value for SOD(ḡ):

SOD(ḡ) =
n∑

i=1

d(gi, ḡ) ≥
n∑

i=1

|gi|+ |ḡ| − 2|ḡ| =
n∑

i=1

|gi| − n|ḡ| (5.4)

Notice that, in this case, if |ḡ| < |gm(S)| then |ḡ| < |gi|. Consequently the maxi-
mum value for |mcs(g1, g2)| in (5.1) will be precisely |ḡ| and the minimum value for
SOD(ḡ) will be obtained when |ḡ| = |mcs(g1, g2)| as expressed in Equation 5.4.

At this point, using Equations 5.3 and 5.4 and assuming that |ḡ| < |gm(S)| we
arrive to the following conclusion:

SOD(ḡ) ≥
n∑

i=1

|gi| − n|ḡ| >
n∑

i=1

|gi| − n|gm(S)| = SOD(gm(S)) (5.5)

But this is a contradiction because, by definition of the median, SOD(ḡ) must be
minimum. Thus |ḡ| must be greater or equal than |gm(S)|.
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Let us now proof the second part of Equation (5.2) (i.e. |ḡ| ≤ |gM (S)|). Again,
let us suppose the contrary, that is |ḡ| > |gM (S)|. In this case the term SOD(gM (S))
will take this value:

SOD(gM (S)) =
n∑

i=1

|gi|+ |gM (S)| − 2|gi| = n|gM (S)| −
n∑

i=1

|gi| (5.6)

Again, Equation 5.6 holds because if gM (S) is the minimum common supergraph
of S, the maximum common subgraph between gi and g will be precisely gi. Conse-
quently the term |mcs(g1, g2)| in (Equation 5.1) is exactly |gi|.

Now, let us compute the minimum value of SOD(ḡ). If |ḡ| > |gM (S)| then every
graph gi can have at most |gi| nodes in common with ḡ and then the maximum value
for |gm| in Expression 5.1 is |gi|. Then:

SOD(ḡ) ≥
n∑

i=1

|gi|+ |ḡ| − 2|ḡi| = n|ḡ| −
n∑

i=1

|gi| (5.7)

Then, from Equations 5.6 and 5.7, and assuming that |ḡ| > |gM (S)| we obtain:

SOD(ḡ) ≥ n|ḡ| −
n∑

i=1

|gi| > n|gM (S)| −
n∑

i=1

|gi| = SOD(gM (S)) (5.8)

Again, this is a contradiction and, thus |ḡ| must be less or equal than |gM (S)|.�

5.2.3 Reducing the Upper Bound of the SOD of the Median
Graph

The next result relates the upper bound of the SOD of the median graph to the Maxi-
mum Common Subgraph of a set of graphs. In the bounds for the SOD of the median
graph given in Chapter 3 the upper bound was set to min{SOD(ḡe), SOD(ḡu)}. In
the following we will show that this limit can be substituted by SOD(gm(S)) (which
is always less or equal than min{SOD(ḡe), SOD(ḡu)}.

Theorem 2: Let S = {g1, g2, ..., gn} be a set of graphs and ḡ a possible median
graph of S. Given the cost function and the distance measure presented in section
5.1, the upper bound for the term SOD(ḡ) is:

SOD (ḡ) ≤ SOD(gm(S)) ≤ min {SOD (ḡe) , SOD (ḡu)} (5.9)

Proof: First, we start by computing the term min {SOD (ḡe) , SOD (ḡu)}:

SOD (ḡe) =
n∑

i=1

d(gi, ḡe) =
n∑

i=1

|gi|+ |ḡe| − 2|ḡe| =
n∑

i=1

|gi|

Notice that, in this expression ḡe is the empty graph. Then, the mcs between
any graph gi and ḡe in expression 5.1 is ḡe, and |ḡe| = 0. A similar reasoning can
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be done for SOD (ḡu). In this case, the mcs between any graph gi and ḡu is gi, and
|ḡu| =

∑n
i=1 |gi|. Therefore,

SOD (ḡu) =
n∑

i=1

d(gi, ḡu) =
n∑

i=1

|gi|+ |ḡu| − 2|gi| = (n− 1)
n∑

i=1

|gi|

Thus, for n ≥ 2

min {SOD (ḡe) , SOD (ḡu)} = min

{
n∑

i=1

|gi|, (n− 1)
n∑

i=1

|gi|

}
=

n∑
i=1

|gi| (5.10)

Now we derive an expression for the term SOD(gm(S)). If gm(S) is the maxi-
mum common subgraph of S, then any gi will have precisely gm(S) as the maximum
common subgraph between itself and gm(S). Therefore,

SOD(gm(S)) =
n∑

i=1

d(gi, gm(S)) =
n∑

i=1

|gi|+ |gm(S)| − 2|gm(S)| =
n∑

i=1

|gi| − n|gm(S)|

(5.11)
Thus, from Expressions 5.10 and 5.11 we can easily see that SOD(gm(S)) ≤

min{SOD(ḡe), SOD(ḡu)}. In addition, by the definition of median graph, the in-
equality SOD(ḡ) ≤ SOD(gm(S)) must be satisfied. Consequently, Equation 5.9
holds.�

5.3 New Search Space

The new theoretical bounds on the size of the median graph introduced in the previous
section establish that the candidate medians must have a size greater or equal than
|gm(S)| and less or equal than |gM (S)|. Thus, the search space for the median graph
will be composed of graphs in between these sizes. In addition, as we will show in the
next section, the nature of the cost function presented in Section 5.1 will imply that
not all the graphs within these limits will need to be taken into account as candidate
medians. The new bounds together with this implication of the cost function will
serve us to present the new search space later in Section 5.3.2.

5.3.1 Influence of the Cost Function on the Search Space

As we have seen in Section 5.1, this particular cost function has both theoretical
and practical important implications. But, beyond these results, in [17] another
important consequence of this cost function has been introduced. It states that,
under this cost function, there always exists an optimal edit path between two given
graphs that never implies neither non-identical node substitutions nor non-identical
edge substitutions. That is, in the best path to transform g1 into g2 there are always
only node and edge identical substitutions, deletions and insertions. This can be
understood by the fact that a non-identical substitution (which implies an infinity
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cost) can be always simulated by a deletion followed by an insertion (which has a
finite cost). Consequently these non-identical operations will never be applied.

This result can be seen in the next example. Suppose the graphs g1 and g2 of
Figure 5.1(a) and 5.1(b) are given. Recall that in the definition of graph given in
Section 2.1, it is assumed that graphs are fully connected. That is, there is always
an edge linking any two nodes of the graph. If an edge does not exist between two
nodes it is modeled using the ”null” label, and it is depicted using dashed lines in
the figure. In this situation, one could suppose that the cheapest way to convert g1
into g2 is by deleting the edge linking the white and black nodes in g1. Thus, in fact,
deleting this edge is equivalent to substitute it by an edge with the ”null” label. But
this operation is not allowed because it would imply a non-identical edge substitution.
Then, a possible alternative sequence of edit operations (see Figure 5.1(d)) consists
of deleting the white node from g1 (including the deletion of its adjacent edges) and
inserting the same node in g2 together with their incident edges. This sequence of
edit operations on g1 and g2, has a cost equal to 2, one node deletion and one node
insertion (notice that edge deletions and insertions have a zero cost). The same result
will be obtained applying Equation 5.1. For instance, in Figure 5.1(c) we can see a
possible mcs between g1 and g2. We can easily verify that applying this equation we
obtain the same distance value as applying the edit operations.

g1

(a)

g2

(b)

mcs(g1, g2)

(c)

(d)

Figure 5.1: Two graphs g1 (a) and g2 (b), a possible mcs(g1, g2) (c) and a possible
edit path between g1 and g2 (d).

5.3.2 The New Search Space

Let us now introduce the new search space. From the upper bound of the size of
the median graph derived in Section 5.2, we will suppose that the largest candidate
median is precisely gM (S). We will assume that for a given set of graphs any of
the possible gM (S) are equivalent. From this first candidate median and, with the
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implications of the cost function explained in Section 5.3.1, where only node and edge
deletions, insertions and identical substitutions are allowed, we can say that only the
induced subgraphs of gM (S) are valid candidate medians. In fact, it is easy to see that
any induced subgraph of gM (S) will imply only node deletions and insertions along
the graphs in S. On the contrary, a non-induced subgraph of gM (S) will imply not
only node deletions and insertions but also a non-identical edge substitution at some
point, since there will be at least one graph in S that will need this operation. This
non-identical operation will imply an extra node insertion and deletion (as we have
seen in the example of Section 5.3.1) with respect to an induced subgraph of gM (S)
with the same set of nodes. In other words, if we generate a non-induced subgraph
of gM (S) as a possible candidate median, it will generate at some point, a sequence
of edit operations with a cost larger than those generated by the induced subgraph
of gM (S) with the same nodes.

Let us further analyze this search space. This new search space can be seen as
a rhombus (see Figure 5.2). At the top of the rhombus (level 0) there is gM (S) =
MCS(S). Let p be |gM (S)|. Immediately below, at level 1, there are all the possible
induced subgraphs of gM (S) with size p-1. Concretely there are Cp

p−1 = p graphs
(level 1). At the next level, all of the induced subgraphs of gM (S) with p-2 nodes are
generated (Cp

p−2 graphs). As new levels are generated, the number of combinations
will increase until the central row of the rhombus is reached. At this point we have
the maximum number of combinations (Cp

p/2 for p even and Cp
(p+1)/2 for p odd).

From this point to the bottom, the number of combinations decreases until the last
row (level p) is reached. At the last level, there is only one combination (Cp

0 = 1),
corresponding to the empty graph ge.

In this search space, the total number of possible candidate medians can be easily
computed. For a given i, with 0 ≤ i ≤ p, the number of possible candidate median
graphs with size i, is Cp

i = p!
i!(p−i)! . That is, all the possible combinations of i nodes

from a number of p nodes. As the search space is composed of all the induced
subgraphs of gM (S) between the sizes 0 and p, the total number of possible different
candidates corresponds to the sum

∑n
i=1 C

p
i , which is exactly 2p.

Let us now integrate in this result the lower bound on the size of the median
graph. Thus, in the search space illustrated in the Figure 5.2, we can drop the part
corresponding to all the graphs with size lower than |gm(S)|. These graphs would
correspond to the white part of the rhombus in Figure 5.3, that shows the final search
space.

Thus, the grey part in Figure 5.3 is the part of the rhombus search space that
is still necessary to explore in the search of the median graph. The total number of
possible candidate medians is defined by,

p∑
i=|gm(S)|

Cp
i (5.12)

which is always less or equal than 2p.

Now, the question is how to explore this new search space. The rest of this
chapter is devoted to present two different strategies for that. The first strategy is
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∅ = ge

Rhombus Search Space

Level Size of graphs

p

0

1

p-1

0

p

p-1

1

Induced subgraphs of size p

Induced subgraphs of size p-1

Induced subgraphs of size 1

Induced subgraphs of size 0

= MCS(S)

Figure 5.2: Detail of the rhombus search space.
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Rhombus Search Space

Induced subgraphs of

with size

Part explored by
the algorithm

(inside the new bounds)

Part not explored by
the algorithm

(outside the new bounds)

|gM (S)|

|gm(S)|

|gm(S)|

0

gM (S)

Figure 5.3: Reduction in the search space due to the new bounds.
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an exhaustive search that will lead to present a new exact algorithm. The second
approach is carried out by a new genetic algorithm for the approximate median graph
computation.

5.4 New Exact Algorithm

In this section we will present a new exact algorithm for the median graph compu-
tation. This new algorithm will take advantage of all the results obtained previously
to carry out an exhaustive search, but only on the reduced search space (grey zone
in Figure 5.3). Nevertheless, despite the important reduction of the search space,
its exhaustive exploration may still suffer from a large complexity. Thus, it would
be still desirable to discard as many combinations to explore as possible. To this
end, in Section 5.4.1, we will present an heuristic prediction function that will permit
to avoid the evaluation of some states in the new search space. The new algorithm
will be described in Section 5.4.2. Finally, we provide an experimental result both
on synthetic and real data where the improvements in the performance of this new
algorithm with respect to the Multimatch algorithm will be shown.

5.4.1 Prediction of the SOD

In this section we will explain how we can reduce even more the number of evaluations
in the search space. We will show that, from a given candidate median in the search
space, we can introduce a prediction of the cost associated to the candidate medians
generated at the next level of the search space. Thus, evaluating this prediction func-
tion we will be able to decide whether it is worth to take into account the candidate
medians at the next level.

Let us start by defining f∗ as the evaluation function of a candidate median, ḡ∗.
This function is just the sum of distances of the candidate median to all the graphs
gi in the set S. Then, taking the definition of the graph distance (Equation 5.1), we
can express f∗(ḡ∗), in the following way:

f∗(ḡ∗) = SOD (ḡ∗) =
n∑

i=1

d(gi, ḡ
∗) =

n∑
i=1

(|gi|+ |ḡ∗| − 2|mcs(gi, ḡ
∗)|)

= n|ḡ∗|+
n∑

i=1

|gi| − 2
n∑

i=1

|mcs(gi, ḡ
∗)| (5.13)

The complexity of this expression depends on the cost of computing the mcs,
which, in the general case, is exponential in the size of the involved graphs. It is
therefore desirable to avoid as many evaluations of this function as possible. To this
end, we can try to infer the value of this function as we traverse the search space,
without having to compute the mcs between the candidate median and all the graphs.
Let us take two candidate median graphs, ḡ1 and ḡ2. As we will traversing the search
space by generating all the induced subgraphs of gM (S), let us suppose too that ḡ2 is
an induced subgraph of ḡ1. Now, let us try to find some relation between f∗(ḡ1) and
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f∗(ḡ2). Let us denote by h∗(ḡ1, ḡ2) the function that computes the difference between
both evaluation functions,

h∗(ḡ1, ḡ2) = f∗(ḡ2)− f∗(ḡ1) =

= n (|ḡ2| − |ḡ1|)− 2
n∑

i=1

|mcs(gi, ḡ2)|+ 2
n∑

i=1

|mcs(gi, ḡ1)| (5.14)

We will call h∗(ḡ1, ḡ2) the prediction function as we can express the evaluation
function of any graph ḡ2 in the search space in terms of the evaluation function of a
graph ḡ1 and the prediction h∗(ḡ1, ḡ2).

Now, let us analyze this prediction function. If we are traversing the search space
from graph ḡ1 to graph ḡ2 and we have already evaluated f∗(ḡ1), we know the value of
all the terms in h∗(ḡ1, ḡ2) except for |mcs(gi, ḡ2)|. However, we can infer an upper limit
for this term and therefore, we can define an estimation of the prediction function,
h(ḡ1, ḡ2).

Let us observe that the mcs between two graphs will never have more nodes than
any of them. In addition, if we are traversing the search space from ḡ1 to ḡ2, then
ḡ2 will be a subgraph of ḡ1 and |mcs(gi, ḡ2)| ≤ |mcs(gi, ḡ1)|. Therefore, the following
condition holds:

|mcs(gi, ḡ2)| ≤ min (|gi|, |ḡ2|, |mcs(gi, ḡ1)|) (5.15)

Then, combining Equations 5.14 and 5.15 we can obtain the following estimation
of the prediction function:

h∗(ḡ1, ḡ2) ≥ h(ḡ1, ḡ2) =

= n (|ḡ2| − |ḡ1|)− 2
n∑

i=1

min (|gi|, |ḡ2|, |mcs(gi, ḡ1)|) + 2
n∑

i=1

|mcs(gi, ḡ1)|

(5.16)

Finally, as we know the value of all the terms involved in this equation, h(ḡ1, ḡ2)
can be used to obtain an estimation of the evaluation function of node ḡ2, f(ḡ2):

f(ḡ2) = f∗(ḡ1) + h(ḡ1, ḡ2) (5.17)

Using this estimation and the upper bound for the SOD derived in Section 5.2, we
can reduce the computation of the median graph by reducing the number of candidate
graphs whose evaluation function needs to be explicitly computed. Given a candidate
median graph, ḡ∗, we can compute this estimation for all their induced subgraphs. All
graphs ḡj whose estimation f(ḡj) is either greater than the actual evaluation function
of the current median graph ḡ∗, f∗(ḡ∗), or greater than the term SOD(gm(S)) (the
new upper limit derived in Section 5.2) can be automatically discarded and do not
have to be evaluated.

One difficulty to apply this strategy is that, given a graph in the search space, we
cannot guarantee that the prediction function is either positive or negative for all its
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induced subgraphs. Therefore, we cannot discard all its remaining induced subgraphs
in the search space. We can only discard nodes at the next level of the rhombus. This
strategy will be used in the algorithm presented in the next section.

5.4.2 The New Exact Algorithm

Keeping in mind all the reductions of the search space proposed so far including those
that are consequence of the heuristic function explained in the previous section, we are
able to present a new and more efficient exact algorithm to compute the generalized
median graph. For the sake of completeness the algorithm is described as Algorithm
2.

Algorithm 2 Exact-median Algorithm
Require: A set of graphs S = {g1, g2, . . . , gn}
Ensure: A list L of true median graphs

1: gM (S) = Compute MCS(S)
2: gm(S) = Compute mcs(S)
3: ComputeSOD(gM (S), S)
4: ComputeSOD(gm(S), S)
5: Let min{SOD(gm(S)), SOD(gM (S))} be the minimum SOD
6: if SOD(gm(S) ≤ SOD(gM (S) then
7: Insert pair (gm(S), SOD(gm(S))) in L
8: else
9: Insert pair (gM (S), SOD(gM (S))) in L

10: end if
11: Expand(gM (S))
12: for size = |gM (S)| − 1 to |gm(S)| do
13: while RemainInducedSubGraph(size) do
14: g = GetNextInducedSubgraph()
15: Expand(g)
16: if IsValid(g) then
17: ComputeSOD(g, S)
18: if SOD(g) is less than the minimum SOD then
19: Let SOD(g) be the minimum SOD
20: Delete L
21: Insert pair (g, SOD(g)) in L
22: else
23: if SOD(g) is equal to the minimum SOD then
24: Insert pair (g, SOD(g)) in L
25: end if
26: end if
27: end if
28: end while
29: end for
30: Return L
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The algorithm receives a set S of graphs as input and returns a list of valid
median graphs. The first task is to compute both the gm(S) and gM (S). Then, the
algorithm computes the terms SOD(gM (S)) and SOD(gm(S)). This is accomplished
by the function ComputeSOD, where the first parameter is a graph and the second
parameter is a set of graphs. The distance between two graphs d(g1, g2) is computed
using the Equation 5.1. The graph (along gM (S) and gm(S)) with minimum SOD is
inserted in the candidate median list, and its SOD is set as the minimum SOD. After
that, all the possible induced subgraphs of gM (S) are generated using the function
Expand, and they are marked as valid or not by using both the heuristic function
explained in the previous section and the upper bound for the SOD derived in Section
5.2. In order to avoid the generation of repeated combinations of nodes we keep a hash
table at each level of the search space that permits to know if a given combination
has already been generated. Then, all these graphs are visited using the functions
RemainInducedSubGraph and GetNextInducedSubGraph. If the graph is valid,
then its SOD is computed and compared with the current best SOD. Otherwise, the
term SOD is not computed and the next graph in the level is processed in the same
way. Anyway, even if the graph is not valid, all its induced subgraphs are generated
and marked as valid or not valid. The process is repeated until the level corresponding
to the graphs with size equal to |gm(S)| is reached.

5.4.3 Experimental Setup

In this section we will provide the results of an experimental evaluation of this algo-
rithm in order to validate whether we can improve the existing algorithms. We have
separated such experimental setup in two different parts. Firstly, we will compare our
new algorithm with the Multimatch algorithm. Since the Multimatch algorithm has
a very limited applicability, this comparison will be done using the synthetic Letter-1
database described in Section A.1.1. In a second set of experiments we will compare
it against the genetic algorithm presented in [53] using the Molecule dataset described
in Section A.31.

Scenario 1. Application to Synthetic Data

In this section, the Multimatch algorithm and our new exact algorithm for the median
graph computation will be compared. For simplicity they will be referred as MM and
ER respectively. The experiments consisted of the computation of several generalized
median graphs using different number of graphs. For each median, the elapsed time
and the number of SOD computations needed to compute it were recorded. In these
experiments, the Letter-1 graph dataset (see Section A.1.1 for a detailed explanation
of this database) will be used. We defined 24 sets of graphs. For each of the 6
classes of the database, we formed 4 different sets composed of 2, 3, 4 and 5 graphs,
respectively. Table 5.2 shows, for each letter (first column), the number of nodes of
the graph (in brackets) and, for each of the 4 sets, the total sum of nodes of the set.

Notice that, because of computation time, not all the possible combinations could

1All these experiments were run on an Apple iMac computer equipped with an Intel Core 2 Duo
processor and 2Gb of main memory.
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Table 5.2: Sum of nodes in the set S function of the class and the number of nodes
in S.

N◦graphs in S
Letters (Nodes/graph) 2 3 4 5

L,V (3) 6 • 9 • 12 • 15
N,T (4) 8 • 12 • 16 20
K,M (5) 10 • 15 20 25

• Combinations used in the Multimatch algorithm

be used to compute the generalized median graph using the Multimatch algorithm.
The combinations where the Multimatch algorithm could be applied are marked with
the symbol • in Table 5.2. In contrast, our new exact algorithm could be applied to
all the possible combinations.

Experiment 1. Computation Time and Number of SOD Computations

The results of the computation time and the number of SOD computations required
to calculate the median graph as a function of the total number of nodes in S are
shown in Figures 5.4(a) and 5.4(b) respectively. Note that the results are the mean
values obtained for all the sets S with the same number of nodes.

The first important conclusion is that, due to the combinatorial explosion of the
Multimatch algorithm it could be only applied to sets of graphs whose sum of nodes
is up to 12. Beyond this limit, the time required for this algorithm is unfeasible.
This result is consistent with the results presented in [53]. In contrast, our new exact
algorithm could be applied obtaining reasonable computation times to sets having up
to 25 nodes. In addition, the computation time required by our algorithm is quite
lower than the time required by the Multimatch algorithm, even for small sum of
nodes in S. Such difference in time is more evident when the sum of nodes in S
becomes larger. All these facts can be appreciated in the results showed in Figure
5.4(a).

A similar behavior can be deduced from the number of SOD computations needed
for the two algorithms (see Figure 5.4(b)). Again, a significant difference between the
number of SOD computations required by our algorithm can be seen in the results.
This reduction of the number of SOD computations can be associated to both the
reduction of the search space and the heuristic function we presented in Sections 5.3.2
and 5.4.1 respectively.

Experiment 2. Reduction in Computation Time and Number of SOD
Computations

In order to be able to quantify the gain achieved by our algorithm with respect
to the Multimatch algorithm, we present in Table 5.3 the time and number of SOD
computations required by both algorithms to compute the generalized median graphs.
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Figure 5.4: Computation time (a) and number of SOD computations (b) as a
function of the total number of nodes of the graphs in S.
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The results for the computation time are shown in columns 2 and 3. The next
column (labelled as %Reduction) represents the reduction of time (in percentage) of
our algorithm taking the value of the Multimatch algorithm as reference. The same
reasoning respect the number of SOD computations can be done for the rest of the
table.

Table 5.3: Percentage of time and SOD computations required for the new exact
algorithms with respect to the Multimatch algorithm.

Time (sec) SOD computations∑
|gi| MM ER %Reduction MM ER %Reduction
6 0.51 0.103 79.81 1,794 16 99.11
8 12.25 0.181 98.53 2,943 32 98.92
9 25.40 0.184 99.28 14,092 40 99.72
10 9712 0.283 99.98 33,961 72 99.79
12 46,794.85 0.352 99.99 157,176 76 99.95

A significant reduction in the time needed for the median graph computation is
achieved by our new algorithm with respect to the Multimatch algorithm, as shown
in Table 5.3. This reduction increases as the sum of nodes in the set also increases.
Notice that the mean of the time percentage needed for our algorithm with respect
to the Multimatch algorithm is about 4.5% (or a 95.5% of reduction). A similar
reasoning can be done for the number of SOD computations. In this case the mean
percentage of the required SOD computations is about 0.5% (99.5% of reduction).

Scenario 2. Application to Real Data

In the previous section, it has been shown that the computation of the median graph
by means of our new algorithm is not restricted to a small number of graphs with a
small number of nodes as in the case of the Multimatch algorithm. In this section we
will go a step further and we will extend the exact computation of the median graph
to real data. In particular we will use our algorithm to obtain prototypes of certain
molecules, using the molecule database described in Section A.3. As the Multimatch
algorithm cannot be applied here due to the size and the number of graphs, we will
compare the results with those obtained by the genetic algorithm presented in [53]
(referred as GA in the experiments).

Two different classes (Active and Inactive compounds) conform the database. For
each class we have 50 different instances or molecules. The experiments consisted
in generating, for each class, 40 sets with a different number of graphs. The graphs
in each set had different sizes and were chosen randomly from the original set of 50
instances. In this case, for each set, the time required and the SOD of the median
graph obtained by each algorithm were recorded. It is important to notice that the
sum of nodes in the sets ranged from 4 to 23 nodes. The results are shown in the
next sections.
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Experiment 1. Computation Time and Number of SOD Computations

The computation time required for both active and inactive compounds is shown in
Figures 5.5(a) and 5.5(b) respectively. In both charts, the x-axis represents the size
of the minimum common supergraph of the set, independently of the sum of nodes in
the set.

First of all it is important to notice that for minimum common supergraphs of
sizes up to 10-11, the time required by our algorithm is lower than the time required
by the genetic algorithm. Such difference is specially relevant for small sizes of the
minimum common supergraph (up to 8), and also for the case of inactive molecules,
where the time required by our exact algorithm is two orders of magnitudes less than
the genetic algorithm. It is important to mention that, for sizes of the minimum
common supergraph up to 11 nodes, we can find sets whose sum of nodes was up to
20 nodes. This conclusion suggests that for sets of graphs that share large structures
(and consequently the minimum common supergraph tends to the mean size of the
graphs in the set), our algorithm may outperform the GA algorithm.

As our algorithm is an optimal one, the computation time for larger sizes of the
minimum common supergraph increases rapidly. Nevertheless, the computation time
in these cases does not make the application of our algorithm completely unfeasible
(the sum of nodes of the sets with minimum common supergraph of 14 nodes were 23
nodes).

Experiment 2. SOD Comparison

The definition of the median graph implies the computation of the sum of distances
of the candidate median to all the graphs in the set. In this sense, a measure of how
good the median graph is, can be obtained by computing the term SOD. A measure of
the SOD for the medians computed with both algorithms is shown in Figures 5.6(a)
and 5.6(b), for the active and inactive compounds respectively. Again, the x-axis
represents the size of the minimum common supergraph of the set, independently of
the sum of nodes in the set.

As expected, the SOD for the genetic algorithm is always greater than or equal
to the SOD achieved by the exact algorithm. This behavior is more clear in the case
of inactive compounds, where for sizes of the minimum common supergraph greater
than 9, the difference increases significantly (Figure 5.6(b)). The difference is less
evident in the case of active compounds.

Such difference in the SOD suggests that the medians obtained by the genetic
algorithm, although they are quite accurate, tend to diverge as the size of the mini-
mum common supergraph increases (the graphs in the set are more dissimilar). This
may lead to obtain median graphs that do not represent accurately the set of graphs.
In contrast, the exact algorithm always finds an optimal median graph. Thus it al-
ways finds the best representative in the set (following the criteria established in the
definition of the median graph).

Combining the results of Figures 5.5 and 5.6 we can observe that there is a trade-
off between the computation time of the algorithms and the accuracy in the SOD.
That is, from a certain point on, the GA algorithm outperforms the ER approach
in computation time. Nevertheless, Figure 5.6 shows that the GA approach diverges
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Figure 5.5: Computation time for Active (a) and Inactive (b) compounds as a
function of the size of MCS(S).
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Figure 5.6: SOD of computed median for Active (a) and Inactive (b) compounds
as a function of the size of MCS(S).
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from the exact solution when the size of the gM (S) increases. Thus, there exists
a trade-off between these two factors. Depending on the application, it could be
desirable to spend a bit more of time but obtaining more accurate solutions or on the
contrary, to obtain approximate solutions with a fast response. Thus, although still
limited, the exact algorithm may be useful in some scenarios.

5.5 New Genetic Algorithm

In the last section, we have presented an algorithm to explore the search space in an
exhaustive way. The results have shown that this approach outperforms the previous
existing exact algorithm in terms of time and number of SOD computations needed to
find the true median. Nevertheless, the size of the search space may still be too large
to perform an exhaustive search on it. In this section, we propose a genetic approach
to explore the search space. In this way, the search space is not explored exhaustively
but in a pseudo-random way. Although the genetic approaches are not deterministic
we will show we are able to still obtain good approximations of the median graph on
relatively large sets of graphs with a reasonable time.

5.5.1 Basics on Genetic Search

Genetic search techniques are general-purpose optimization methods inspired in the
theory of the biological evolution. They have been successfully applied to difficult
search tasks, optimization problems, machine learning, etc. It has also been shown
that they are good candidates to give good approximate solutions to general NP-
complete problems [54]. They have been applied to solve graph matching problems
[3, 30, 111] and to compute approximate solutions for the generalized median graph
[53].

The basics of genetic algorithms are as follows. A possible solution of the problem
is encoded using chromosomes. Each chromosome has a cost. Such a cost is computed
by means of a fitness function. Given an initial population of chromosomes, genetic
algorithms use genetic operators to alter chromosomes in the population, generating
a new population. The genetic operators are typically the crossover and mutation. In
the former, a pair of chromosomes of the current population are randomly chosen and
some of their positions are interchanged. The latter takes only one chromosome an
alter some of its positions randomly. The algorithm tends to favor the most promising
chromosomes (in terms of the fitness function). Thus, these promising chromosomes
will have higher probabilities to be in the next generation. The process is iteratively
repeated until one or more stop conditions are satisfied. For more information about
genetic algorithms the reader is referred to [73].

5.5.2 Our Approach

Chromosome Representation

The results presented in Section 5.2 have shown that the candidate medians are the
induced subgraphs of gM (S) with sizes between |gM (S)| and |gm(S)|. Then, the
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chromosome representation should be able to encode one of these induced subgraphs
of gM (S). Thus, we have chosen the size of the chromosome equal to the size of the
gM (S). Each position in the chromosome is associated to one node of gM (S), and
may store either a value of ”1” or a value of ”0” depending on whether that node
appears or not in the candidate median. By the definition of induced subgraph given
in Section 2.1, a subset of nodes of a given graph uniquely defines a subgraph. In
order to clarify such representation an example is given in Figure 5.7.
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Figure 5.7: A supposed gM (S) (a), an induced subgraph g of gM (S) (b) and the
chromosome representing g (c).

Assume that gM (S) is the graph shown in Figure 5.7(a). As we can see, a number
is assigned to each node of gM (S). A possible induced subgraph of gM (S) is shown
in Figure 5.7(b), which is composed only of the nodes 1, 3, 4, 5 and 7. Then, the
chromosome representation of such an induced subgraph is shown in the figure 5.7(c).
In such chromosome the total number of positions is equal to the number of nodes of
gM (S). Notice that the chromosome has only set to ”1” the positions of the nodes
which are also in the induced subgraph.

Fitness Function

The fitness function of each chromosome corresponds to the SOD of the induced sub-
graph of gM (S) encoded by the chromosome. That is, if the chromosome c represents
a graph g, then its fitness function f(c) is:

f(c) = SOD(g, S) =
n∑

i=1

d(g, gi) =
n∑

i=1

(|g| − |gi| − 2|mcs(g, gi|) (5.18)

Clearly, the lower its fitness function is, the better the chromosome is. The compu-
tational complexity of this fitness function is related to the computational complexity
of the maximum common subgraph of two graphs, which is NP-complete in the gen-
eral case. Nevertheless, such computational complexity becomes polynomial under
some special classes of graphs.
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Genetic Operators

We apply the classical operators of the genetic algorithms adapted to this particular
case in order to include the new bounds presented in Section 5.2. In our algorithm,
the roulette wheel sampling implementing fitness-proportionate selection is chosen
to create the descendants (also called offspring). Conceptually, it is equivalent to
give a slice of a circular roulette wheel to each chromosome, proportional in area
to the fitness of the chromosome. The crossover operator simply interchanges an
arbitrary position of two chromosomes (selected with a uniform probability) to form
two offsprings. Mutation is accomplished by changing randomly a number in the
array with a mutation probability. After the genetic operators have been applied and
a new population is created, every chromosome is checked in order to validate whether
it fulfils the bounds of the size and the upper bound of the SOD given in Section 5.2
(that is, if the number of ones in the chromosome is in between |gm(S)| and |gM (S)|,
and if its SOD is less than SOD(gm(S))). If the generated chromosome does not
hold these conditions, it is randomly altered until it fulfils them. This procedure
has two effects. On the one hand it reduces the search space from all the possible
induced subgraphs of gM (S) to only the induced subgraphs that fulfil the conditions
given in Section 5.2. On the other hand, as the search space is reduced and the non-
admissible candidate medians will never appear in the population, the convergence
of the algorithm is expected to be faster compared to the same algorithm without
taking into account the new limits.

Population Initialization

The length of the initial population is set according to a predefined value K, deter-
mined empirically. Then, the first n chromosomes (with K ≥ n) are set with the
n graphs in S. It assures that the initial population includes the set median graph,
which is a potential generalized median graph. The remaining K-n chromosomes are
generated randomly but all of them fulfil the new bounds given in Section 5.2.

Parameters of the Genetic Algorithm

Table 5.4 shows the basic configuration parameters for the genetic algorithm.

Table 5.4: Configuration parameters for the genetic algorithm.

Parameter Value
Mutation probability 0.1
Crossover probability 0.9
Initial population size (K) 20
Maximum number of iterations 400
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Termination Condition

The evolution of the population continues until one of the two following conditions is
fulfilled. The first criterion is that the maximum number of generations (which is set
according to a predefined constant at the beginning of the algorithm) is reached. The
second stop condition is related to the best SOD in the population. If a chromosome
in the population has a SOD less than the SOD of the set median graph, then the
algorithm finishes too.

5.5.3 Experimental Setup

In this section we provide the results of an experimental evaluation of the proposed
algorithm. To this end, the dataset composed of graph-based representations of web-
pages explained in Section A.4 is used. Such graphs have a large number of nodes
(around 200) but they are a particular class of graphs with unique node labels. Such
kind of graphs allow the computation of the maximum common subgraph of two
graphs in polynomial time [57]. This condition makes the computation of the edit
distance based on the maximum common subgraph (and for extension, the compu-
tation of the median graph) applicable to large graphs. Due to the large size of the
graphs, all other methods for the median graph computation are not applicable. In
this sense, in the next experiments we will give only some measures about the quality
of the median graph with respect to the set median graph.

As shown in Table A.9 , the class with the smallest number of graphs is the class
T, with 60 graphs. For this reason, in the next experiments we will use this number
of graphs for each class. The 60 graphs of each class are chosen randomly except for
the class T obviously.

The experiments consisted in the computation of the median graph using different
number of graphs (from 3 to 7) using the genetic approach presented before. Since
this approach is non-deterministic, the experiments were repeated 10 times and the
best values where taken. Then we compared the SOD of the medians obtained using
this method with the SOD of the set median. For simplicity they will be referred to
as AG (for the genetic algorithm) and SM (for the set median).

Experiment 1. Median Evaluation

Tables 5.5 and 5.6 show some interesting results of the median graph computation. In
both tables, the first row represents the sum of nodes of the graphs used to compute
the median, the second row depicts the number of iterations needed to achieve a
graph with a SOD better than the set median graph and the third row shows the
computation time. While in the first table the results are grouped by class, in the
second table the results are shown as a function of the number of graphs used to
compute the median. In both cases, the results are the mean values over each class
or over each number of graphs respectively.

The results show that the number of populations needed to find out a median
better than the set median graph is very low (less than 100 in all cases). It means
that the genetic algorithm always finds a graph with a SOD better than the SOD of
the set median graph. Of course it does not imply that the algorithm finds the true
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Table 5.5: Statistics for median graph grouped by class.

Class
B E H P S T∑

|gi| 1,021.2 777 845 940.4 806.2 566.2
# iterations 66.40 8.40 2.40 11.80 32.20 3.20
Computation time (sec) 4,636 274.1 65.057 179.6 1,428.748 75.8

Table 5.6: Statistics for median graph grouped by the number of graphs used to
compute the median.

Number of graphs in S
3 4 5 6 7∑

|gi| 467.1 701.1 813.3 1,041.1 1,107.1
# iterations 1.5 58.50 2.83 21.6 19.1
Computation time (sec) 13.8 3,362.4 82.3 1,278.2 2,159.6

median, but it finds a median better than the set median.
It is also important to remark that we have been able to apply the median com-

putation to real problems, as it is demonstrated with the results of the first and third
rows. As we can see in both tables, the sum of nodes of the graphs ranged from 400 to
1,000, while the computation times ranged from 13 to 4,600 seconds. Such numbers
show the application of the median graph computation to real data with reasonable
computation times. It is important to notice that previously existing methods could
not be applied in this case due to their high computational requirements.

Experiment 2. SOD Comparison

The results shown above are suitable to quantitatively evaluate the algorithm. That
is, they give an idea of the power of the new algorithm in terms of computation
time, number of iterations needed to compute the median and the size of the set S.
Nevertheless, it is also of interest to qualitatively evaluate the medians obtained by
the algorithm. One choice could be to compare the SOD with the SOD of the median
graph obtained with other methods. However, in this case, due to the size and the
number of graphs it is not possible to perform such an experiment, since the existing
methods cannot deal with such large sets. Another approach is to compare the SOD
of the approximate median with the SOD of the set median. In this way, we can
evaluate whether the median is better than the set median and consequently it is
potentially a good median.

Figures 5.8 and 5.9 show the results of this comparison as a function of the classes
in the dataset, and the number of graphs in the set S respectively.

The results of Figure 5.8 show that we obtain medians with a SOD lower than
the set median SOD for all the classes. It suggests the method is able to obtain good
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Figure 5.8: SOD comparison for the Set Median (SM) and the Approximate Genetic
(AG) algorithm, function for the different classes.

approximations of the median graph regardless of the class.
Figure 5.9 shows that we obtain a better SOD with our method than with the set

median. What is important in this result is the tendency in the difference between
the set median SOD and the SOD of the approximate median. This difference in-
creases as the number of graphs in S increases. This tendency suggests that the more
information of the class the method has (more elements in S), better representations
is able to obtain.

With these results we can conclude that we obtain good approximations of the
median graph with this new genetic approach.

5.6 Discussion

In this chapter we have studied the median graph under a particular cost function.
The main contributions of this chapter can be summarized as follows:

• Section 5.2: The main contribution from a theoretical point of view is that we
have shown that using this particular cost function and the distance measure
based on the maximum common subgraph, the original bounds for the median
graph related to its size and its sum of distances can be reduced. Such reductions
can be used either to obtain a better knowledge of the median graph or can be
used to present more efficient and accurate algorithms. This is precisely, the
contribution of the next section.

• Section 5.3: As a first point and from a theoretical point of view, we have
shown that using this particular cost function, the distance measure based on
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the maximum common subgraph and the new theoretical properties introduced
in Section 5.2, the size of the search space for the median can be drastically
reduced.

• Section 5.4: Based on the new theoretical results, a new exact algorithm
for the computation of the generalized median graph has been presented. In
addition to that, an heuristic strategy has also been introduced in order to
avoid the evaluation of some states in the search space. We have compared this
new exact algorithm to the previous existing exact algorithm using synthetic
data. The results show that our algorithm clearly outperforms the previous
existing algorithm, in terms of the computation time and the number of SOD
computations needed to obtain the final solution. Encouraged by these results,
we have applied our algorithm to the computation of median graphs using real
data, and we have compared the results with those obtained by an approximate
algorithm based on the genetic search. The results show that, although the
application of the exact algorithm is limited, it can be used in real problems.

• Section 5.5: Using the same theoretical results, we have presented in this
section a new approximate algorithm for the median graph computation based
on genetic search. With this new algorithm we have shown that we are able to
extend the applicability of the median graph to a real application. In particular,
we have used this algorithm using a database composed of webpages extracted
from real data. A particularity of these graphs is that they have unique node
labels, which allow to compute the mcs in polynomial time with respect to the
size of graphs. Despite this condition, since the graphs in this database are
very large, and all the existing algorithms are not able to work with this king
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of graphs, we have compared the results with those of the set median graph.
Values of SOD show that we obtain better approximations of the median than
with the set median graph.



Chapter 6

Median Graph by Means of Graph
Embedding in Vector Spaces

In the introductory chapter of this thesis we have compared feature vectors and graphs
in terms of both their representational power and the easiness to implement mathe-
matical operations such as sums, means, etc., over them. We have seen that graphs
offer a better way to represent structured objects, whereas with feature vectors, a lot
of interesting mathematical operations can be easily implemented.

In this chapter we will take advantage of the strengths of both worlds to present
a new technique to compute both exact and approximate solutions for the median
graph. In this way we can keep the representational power of graphs while being able
to operate in a vector space. The basic idea underlying such technique is composed of
three main steps. The first step is to embed the graphs into a vector space, that is, each
graph becomes a point in a particular vector space. After that, once in the vector
domain, we compute the median vector of this set of vectors, which is easier than
computing the median in the graph domain. The median vector is then interpreted
as the point in the vector domain corresponding to the median graph. The last step is
going back to the graph domain, obtaining the corresponding graph from the median
vector. This graph is taken as the median graph. With this new embedding approach
we are able to compute both exact and good approximate solutions for the median
graph.

This chapter is organized as follows. In the next section we will present an overview
of the different approaches for graph embedding. This introduction will serve in
Section 6.2 to introduce the new approach for the median computation. After that,
in Section 6.3, we particularize this technique for the cost function used in Chapter
5, and we give a new method for the exact median computation. In Section 6.4, we
extend this work to potentially any cost function and we propose a new method to
obtain approximate solutions for the median graph. Experiments on these methods
show that the proposed technique outperforms the previous existing methods both in
computation time and median quality. Finally, this chapter ends with a discussion of
these methods and their potential applications.

77
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6.1 Graph Embedding

Graph embedding aims to convert graphs into another structure, such as real vectors,
and then operate in the associated space to make easier some typical graph-based
tasks, such as matching and clustering. To this end, different graph embedding pro-
cedures have been proposed in the literature so far. Some of them are based on the
spectral graph theory. Others take advantage of typical similarity measures to per-
form the embedding tasks. In the following, a brief review of some strategies for graph
embedding will be outlined.

A relatively early approach based on the adjacency matrix of a graph is proposed
in [69]. In this work, graphs are converted into a vector representation using some
spectral features extracted form the adjacency matrix of a graph. Then, these vec-
tors are embedded into eigenspaces with the use of the eigenvectors of the covariance
matrix of the vectors. This approach is then used to perform graph clustering experi-
ments. Another similar approach have been presented in [115]. This work is similar to
the previous one, but in this case they use the coefficients of some symmetric polyno-
mials constructed from the spectral features of the Laplacian matrix, to represent the
graphs into a vectorial form. Finally, in a recent approach [85], the idea is to embed
the nodes of a graph into a metric space and view the graph edge set as geodesics
between pairs of points in a Riemannian manifold. Then, the problem of matching
the nodes of a pair of graphs is viewed as the alignment of the embedded point sets.

In this thesis we will use a new class of graph embedding procedures based on the
selection of some prototypes and graph edit distance computation. This approach
was first presented in [83], and it is based on the work proposed in [79]. The basic
intuition of this work is that the description of the regularities in observations of
classes and objects is the basis to perform pattern classification. Thus, from the
selection of concrete prototypes, each point is embedded into a vector space by taking
its distance to all these prototypes. Assuming these prototypes have been chosen
appropriately, each class will form a compact zone in the vector space. An extension
to map string representations into vector spaces using a similar approach was later
proposed in [102].

In the Section 6.2.1, we will explain in detail the approach proposed in [83], since
it will form the basis to construct our method.

6.2 Median Graph via Graph Embedding in Vector
Spaces: An Overview

In this section we present an overview of the proposed embedding technique for the
median graph computation. This general embedding procedure will be applied to
both exact and approximate median graph computation, and is composed of three
main steps, assuming we have a set of n graphs S = {g1, g2, . . . , gn} for the median
graph computation.

• Graph Embedding in a Vector Space: Each graph in the set S is embedded
into an n-dimensional vector space. That is, each graph becomes a point in
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Figure 6.1: Overview of the general embedding procedure for median graph com-
putation.

an n-dimensional space. The vector representation of a graph is obtained by
computing the distance between all the graphs in the set.

• Median Vector Computation: This step consists in computing the median
vector using the points obtained in the first step. The median vector can be
obtained using different approaches. Anyway, the task of computing the median
in a vector space is easier than computing it in the graph domain.

• Going Back to the Graph Domain: The last step consists in going back
to the graph domain converting the median vector into a graph. This graph is
taken as the median graph of the set.

For clarity these three main steps of the general embedding procedure are depicted
in Figure 6.1.

Using this general approach we will present in the following sections two new
methods for both the exact and approximate median computation. We will partic-
ularize the two last steps in a different way for each method. Nevertheless the first
step is almost identical in both methods, with the unique difference in the way the
similarity between two graphs is computed. For this reason, this first step is further
explained in the following, and then, for each method we will only explain the small
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differences between them concerning the distance computation.

6.2.1 Graph Embedding in a Vector Space

As we have shown in Section 6.1, several techniques for embedding graphs into vector
spaces have been proposed. We will use the novel and very promising procedure
proposed in [83]. For the sake of completeness, we briefly describe this approach in
the following lines.

Assume we have a set of training graphs T = {g1, g2, . . . , gn} and a graph similarity
measure d(gi, gj) (i, j = 1 . . . n; gi, gj ∈ T ). Then, a set P = {p1, . . . , pm} ⊆ T of m
prototypes is selected from T (with m ≤ n). After that, the similarity between a given
graph g ∈ T and every prototype p ∈ P is computed. This leads to m dissimilarity
values, d1, . . . , dm where dk = d(g, pk). These dissimilarities can be arranged in a
vector form (d1, . . . , dm). In this way, we can transform any graph of the training
set T into an m-dimensional vector using the prototype set P . More formally this
embedding procedure can be defined as follows:

Definition 6.1 (Graph Embedding in Vector Spaces) Given a set of training
graphs T = {g1, g2, . . . , gn} and a set of prototypes P = {p1, . . . , pm} ⊆ T , the embed-
ding:

ψ : T −→ Rn (6.1)

is defined as the function:

ψ(g) −→ (d(g, p1), d(g, p2), . . . , d(g, pm)) (6.2)

where g ∈ T , and d(g, pi) is a graph dissimilarity measure.

We perform the graph embedding step according to this definition, but we let
the training set T and the prototype set P be the same, i.e, the set S for which the
median graph is to be computed. So, we compute the distance between every pair
of graphs in the set S. These distances are arranged in a distance matrix. Each
row (column) of the matrix can be seen as an n-dimensional vector. Since each row
(column) of the distance matrix is assigned to one graph, such an n-dimensional vector
is the vectorial representation of the corresponding graph. Figure 6.2 illustrates this
procedure. In this example, it is assumed that the first row in the matrix corresponds
to the distances of the blue graph in the set to all the graphs in S. This first row is
interpreted as an n-dimensional point in a vector space (this n-dimensional space is
represented here as a 3D space for obvious reasons).

At the end, each graph in S has a corresponding point (n-dimensional vector) in
the vector space. What is important to remark here is the meaning of each position
in this vector. If a vector −→v i corresponds to the graph gi ∈ S, then the coordinate
j (with j = 1 . . . n) of this vector is the distance from the graph gi to the graph gj ,
that is d(gi, gj). This fact will be used later to obtain the median graph.
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Figure 6.2: Detail of the first step (Graph embedding).

6.3 Exact Median Graph via Embedding

In this section, we will use the embedding technique presented in Section 6.1 to obtain
exact solutions for the median graph. The embedding technique is applied in this case
assuming that the same cost function introduced in Chapter 5 is used. Thus we will
work on the rhombus search space explained in the same chapter. For the sake of
completeness the rhombus search space is shown in Figure 6.3, and briefly reminded
here. At the top of the rhombus there is the minimum common supergraph of S,
MCS(S). At the bottom, there is the empty graph ge = φ. Inside the rhombus there
are all the possible induced subgraphs of MCS(S), but recall that we have only to
take into account those induced subgraphs of gM (S) with a size greater or equal than
|gm(S)| (the grey part in Figure 6.3). Then, each graph in S is located somewhere in
this search space, as it is shown by means of the dashed lines in Figure 6.3.

6.3.1 Graph Embedding in Vector Spaces

The graph embedding in a vector space is performed using the procedure explained
in Section 6.2.1. In this case the distance between graphs is computed according to
the Equation 5.1 [10].

Due to the nature of the cost function we can assume that the vector space where
the graphs are embedded follows the properties of a L1 geometry (also called taxicab
geometry). This can be explained by the fact that under this cost function, the
distance between two graphs will always be a multiple of the cost of the node insertion
(or deletion), since we only apply node insertions (or deletions) to transform one graph
into the other. The L1 geometry operates in similar terms, the distance between
two points is always conformed by discrete steps. Thus, in this geometry, the usual
Euclidean metric is replaced by the L1 metric in which the distance between two
points is the sum of the (absolute) differences of their coordinates. The fact that we
are in a L1 geometry will be crucial in the third step, when the median vector will be
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used to obtain the median graph.

6.3.2 Median Vector Computation

Once all the graphs have been embedded in the vector space, and every graph has its
corresponding point in this vector space, then the median vector of all these points is
computed. As we are in a L1 geometry the median vector can be computed by means
of the Manhattan median, defined as follows:

Definition 6.2 (Manhattan Median) Given a set X = {x1, x2, . . . , xm} of m
points with xi ∈ Rn for i = 1 . . .m, the Manhattan median is defined as

Manhattan median = arg min
y∈Rn

m∑
i=1

|xi − y| (6.3)

where |xi − y| denotes the Manhattan distance between the points xi, y ∈ Rn.

From this definition and the properties of the L1 geometry, it follows that the
Manhattan median is simply the median of each coordinate of the vector. That is, we
can compute separately, the median of each coordinate without taking into account
the other coordinates. This property makes the Manhattan median computation
really simple.

6.3.3 Back to the Graph Domain

The median vector is used to go back to the graph domain and obtain the median
graph. Note that using the embedding procedure explained before (Section 6.2.1),
every component of the vector associated to a particular graph corresponds to the
distance between this graph and another graph in the set S. The median vector
can be interpreted in a similar way, that is, every component represents the distance
between the median graph and one of the graphs in the set S (see Figure 6.4). In
this example, the median graph would have a distance of 2 to the graph g1 ∈ S, a
distance of 4 to the graph g2 ∈, and so on.

2 4 3

Graph in S

1 2 n
Median Vector

Distance of the median to each graph in 'S'

Figure 6.4: Example of a median vector and its interpretation.
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Knowing the distance from the median to one graph in S, we can draw an interval
in the search space around this graph according to the distance. Recall that in the
distance we are using only insertions and deletions of nodes will appear in the edit
path transforming one graph into another. An insertion or deletion of a node has a
cost of 1. Thus, a distance x from the median to the graph gi will imply that we
would have to take into account graphs around gi with size |gi| ± x, since at most
the distance x will add (or remove) x nodes to gi. Figure 6.5 shows an example of a
simple situation where the set S is composed of 4 graphs. For clarity, in this example
only the interval for g2 is shown.

Rhombus Search Space

Set of graphs S

2 1

Median Vector

1 3

Interval for

MCS(S)

g2

|g2| + 1

|g2|− 1

g2
g3

g4

g1

Figure 6.5: Interpretation of the median vector.

Once the intervals are set, a straightforward approach could be to search the
median graph in all these intervals, and take the graph with minimum SOD over all
of these intervals. Nevertheless, we have chosen a more efficient approach. Instead
of taking all the intervals, we choose only the smallest interval and its corresponding
graph (this corresponds to the graphs 2 or 3 in Figure 6.5). Then, the median is
chosen as the graph with minimum SOD only in this interval.

With this approach the search space for the median graph is reduced to only this
interval (grey part in Figure 6.6), and can be explored using the same approach as in
Chapter 5. This reduction will lead to obtain exact solutions for the median graph
with small computation times as we will see in the next section.
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Rhombus Search Space

2 1

Median Vector

1 3

Interval for g2g2

|g2| + 1

|g2|− 1

Figure 6.6: Explored part of the search space (grey part).
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6.3.4 Experimental Setup

In order to evaluate the proposed method, we present in this section, the same ex-
periment as in Section 5.4.3. That is, with the Letter-1 dataset described in Section
A.1.1, we have computed several medians, using different number of graphs. The
time and the number of SOD computations needed to compute the medians have
been recorded. In this case, the results are compared with those obtained in the ex-
act algorithm presented in the previous chapter. For simplicity these algorithms will
be referred to as ER (for the exact algorithm presented in Chapter 5) and EE (for
the exact embedding algorithm).

Computation Time and Number of SOD Computations

The results for both the computation time and the SOD computations required as
a function of the total number of nodes in S are shown in Figures 6.7(a) and 6.7(b)
respectively. Notice that the results are the mean values obtained for all sets S having
the same number of nodes.

First of all it is important to remark that, in both methods and in all cases we
obtained the same median graphs, which are in fact the true medians of the set S.
Nevertheless, both figures show a substantially improvement, both in the computation
time and the number of SOD computations, in the EE algorithm. The results show
that while for the ER algorithm, the computation time for sets of graphs with 25 nodes
is around 18 seconds, the EE algorithm only needs less than 3 seconds. Similar results
can be extracted from the number of SOD computations. For the ER algorithm this
number grows up to 500 SOD computations (for sets of graphs with 25 nodes), while
for the EE algorithm it is only 75 in the same case.

As a final conclusion, we can say that with the embedding approach for the median
graph computation we are able to obtain exact solutions for the median graph with
relatively big sets of graphs with a low computation time. This suggests this method
may be used to extend the exact median graph computation to real applications as
we will see later in Chapter 7.

6.4 Approximate Median Graph via Embedding

In the last section we have adapted the embedding procedure explained at the begin-
ning of this chapter to obtain exact solutions for the median graph. The potential of
this method has been shown in the experiments, since it clearly improves the exact
method presented in Chapter 5. In this section we will provide an extension of the
embedding method to potentially any kind of cost function, which makes this method
applicable to any kind of graph with any kind of information in its nodes and edges.
Differently, the new proposed method will find approximate solutions for the median
graph. Nevertheless, we will show some results on both synthetic and real data show-
ing that the method finds good approximations of the median graph. In this case,
the three main steps of the general embedding procedure are based on the graph edit
distance (first step), the Euclidean median vector computation (second step) and the
weighted mean of a pair of graphs (third step).
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Figure 6.7: Computation time (a) and number of SOD computations (b) as a
function of the total number of nodes of the graphs in S.
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6.4.1 Graph Embedding in a Vector Space

The graph embedding in a vector space is also performed using the procedure ex-
plained in Section 6.2.1. In this case the distance between graphs is the graph edit
distance [13]. The use of the graph edit distance, potentially allows the application of
this method to graphs with any kind of information in the nodes and the edges. That
is, the distance may be computed over discrete data, continuous data, symbolic data,
etc. This fact allows also to obtain continuous values of the distance. So, in this case
we are in a typical Euclidean space, and the assumption that we are in a L1 geometry
is not valid here. This condition will make the third step more complicated.

6.4.2 Median Vector Computation

Once all the graphs have been embedded in the vector space, the median vector is
computed. To this end we use the concept of Euclidean Median.

Definition 6.3 (Euclidean Median) Given a set X = {x1, x2, . . . , xm} of m points
with xi ∈ Rn for i = 1 . . .m, the Euclidean median is defined as

Euclidean median = arg min
y∈Rn

m∑
i=1

||xi − y|| (6.4)

where ||xi − y|| denotes the Euclidean distance between the points xi, y ∈ Rn.

That is, the Euclidean Median, is a point y ∈ Rn that minimizes the sum of the
Euclidean distances to all the points in X. The Euclidean Median has been chosen
as the representative in the vector domain for two reasons. The first reason is that
the median of a set of objects is one of the most promising ways to obtain the rep-
resentative of such a set. The second is that, since the median graph is defined in a
very close way to the median vector we expect the median vector to represent accu-
rately the vectorial representation of the median graph, and then, from the median
vector to obtain good median graphs. The Euclidean Median cannot be calculated in
a straightforward way. The exact location of the Euclidean Median can not be found
when the number of elements in X is greater than 5 [4]. No algorithm in polynomial
time is known, nor has the problem been shown to be NP-hard [44]. In this work
we will use the most common approximate algorithm for the computation of the Eu-
clidean Median, that is, the Weiszfeld’s algorithm [112]. It is an iterative procedure
that converges to the Euclidean Median. To this end, the algorithm first selects an
initial estimate solution y (this initial solution is often chosen randomly). Then, the
algorithm defines a set of weights that are inversely proportional to the distances from
the current estimate to the samples, and creates a new estimate that is the weighted
average of the samples according to these weights. The algorithm may finish when
a predefined number of iterations is reached, or under some other criteria, such as
that the difference between the current estimate and the previous one is less than a
established threshold.
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6.4.3 Back to the Graph Domain

The last step in order to obtain the median graph is to transform the Euclidean
median into a graph. Such a graph will be considered as an approximation of the
median graph of the set S. To this end we will use two different procedures based
on the weighted mean of a pair of graphs [16] and the edit path between two given
graphs. For the sake of completeness the definition of the weighted mean of a pair of
graphs is included here.

Definition 6.4 (Weighted Mean of a Pair of Graphs) Let g and g′ be graphs.
The weighed mean of g and g′ is a graph g′′ such that,

d(g, g′′) = a (6.5)

d(g, g′) = a+ d(g′′, g′) (6.6)

where a, with 0 ≤ a ≤ d(g, g′), is a constant.

That is, the graph g′′ is a graph in between the graphs g and g′ along the edit
path between them. Furthermore, if the distance between g and g′′ is a and the
distance between g′′ and g′ is b, then the distance between g and g′ is a + b. Figure
6.8 illustrates this idea.

g g′

g′′

a b

Figure 6.8: Example of the weighted mean of a pair of graphs

In the following we will present two different strategies to obtain the median graph
from the median vector based on the weighted mean of a pair of graphs. The first
solution will use three different points in the vector space to recover the median graph.
For this reason we have called this approach Triangulation Procedure. In the second



90 MEDIAN GRAPH VIA GRAPH EMBEDDING IN VECTOR SPACES

solution we will use only two points in the vector space to recover the median graph.
This approach will be called Linear Interpolation Procedure.

Triangulation Procedure

This procedure, illustrated in Figure 6.9(a), is based on the triangulation among three
points in the vector space as follows. Given the n-dimensional points representing
every graph in S (represented as white dots in Figure 6.9(a)), and the Euclidean
Median vector vm obtained using the Weiszfeld method (represented as a grey dot
in Figure 6.9(a)), we first select the three closest points to the Euclidean median (v1
to v3 in Figure 6.9(a)). Notice that we know the corresponding graph of each of
these points. We have indicated this fact by labelling them with the pair vj , gj with
j = 1 . . . 3, in Figure 6.9(a). Then, we compute the median vector v′m of these three
points (represented as a black dot in Figure 6.9(a)). Notice that v′m is in the plane
formed by v1, v2 and v3. With v1 to v3 and v′m at hand (Figure 6.9(b)), we arbitrarily
choose two out of these three points (without loss of generality we can assume that
we select v1 and v2) and we project the remaining point v3 onto the line joining v1
and v2. In this way, we obtain a point vi in between v1 and v2 (Figure 6.9(c)). With
this point at hand, we can compute the percentage of the distance in between v1
and v2 where vi is located (Figure 6.9(d)). As we know the corresponding graphs of
the points v1 and v2 we can obtain the graph gi corresponding to vi by applying the
weighted mean procedure explained before (Figure 6.9(e)). Once gi is known, then
we can obtain the percentage of distance in between vi and v3 where v′m is located
and obtain g′m applying again the weighted mean procedure (Figure 6.9(f)). Finally,
g′m is chosen as the approximation for the generalized median of the set S.

Linear Interpolation Procedure

In this case, once the median vector vm is computed, we propose to choose only the
two closest points to obtain the approximate median. The procedure is shown in
Figure 6.10. With the median vector vm at hand, we first choose the two closest
points (v1 and v2 in Figure 6.10(a)). Then we compute the median vector of these
two points to obtain v′m (Figure 6.10(b)). This point v′m will be used to obtain the
approximate median. To this end, we first compute the distance of each point to v′m
(Figure 6.10(c)), and then, with these distances we apply the weighted mean of a pair
of graphs to obtain g′m, the approximate median (Figure 6.10(d)).

6.4.4 Discussion on the Approximations

This approximate embedding procedure is composed of three steps: the graph embed-
ding into a vector space, the median vector computation and the return to the graph
domain. Each of these steps introduces some kind of approximation to the final solu-
tion. In the first step, in order to deal with large graphs an approximate edit distance
algorithm is normally used. Thus, each vector representing a graph includes small
errors in its coordinates with respect to the optimal distance between two graphs.
Also the median vector computation introduces a certain amount of error, since the
Weiszfeld method obtains approximations for the median vector. This factor may
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Figure 6.9: Illustration of the triangulation procedure.
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Figure 6.10: Illustration of the linear interpolation procedure.
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lead to choose three (or two) points that might not be the best points to go back to
the graph domain. In addition, small errors may be introduced when choosing v′m
instead of directly vm to perform the weighted mean of a pair of graphs. Finally, when
the weighted mean between two points is computed, the graph edit path is composed
of a set of discrete steps, each of them with its own cost. In the return to the graph
domain, the percentage of distance needed to obtain the weighted mean of a pair of
graphs may fall in between two of this edit operations. Since we can choose only one
of them, small errors may also be introduced in this step.

Although all these approximations may seem too severe to obtain good medians,
in the next experiments we will show that this method is able to obtain reasonable
good approximations for the median graph. But, at the same time, these well defined
entry points of approximation can be used to improve the medians obtained. That
is, each of these three steps can be further studied and other options for each of them
can be proposed in order to minimize the error introduced and obtain better medians,
as we will comment on the proposals for future work in Chapter 8.

6.4.5 Assessment of the Median Quality

In this section we propose an experiment to evaluate the quality of the median graphs
obtained using the two variations that we have presented (i.e. using the triangulation
and the linear interpolation procedures). It is remarkable that in this experiment we
have used three different datasets: the Webpage dataset (see Section A.4 for more
details); the Molecule dataset (see Section A.3 for more details) and the GREC-2
dataset (see Section A.2.2 for more details). But, in this case, differently from other
experiments, we have used these datasets without any restriction in the number of
graphs or in the kind of distortions and variability.

The experiment consisted in comparing the SOD of the obtained median with the
SOD of the set median graph. We do not use other approximations of the median
graph as a reference for two reasons. First, the existing methods are not able to
compute the median graph with these large graphs and datasets we are dealing with.
Secondly, as the set median graph is the graph belonging to the training set with
minimum SOD, it is a good reference to evaluate the generalized median graph quality.
To compute the distance between graphs we have used the approach introduced in
[78] for the GREC-2 dataset and the approach presented in[82] for the Molecule and
Webpage dataset.

For this experiment we have randomly chosen an increasing number of graphs from
the training set, and we have computed the median graph of each of these sets. The
different number of graphs chosen from the training set for each database is shown in
Table 6.1.

Results for the Molecule, Webpage and GREC datasets are shown in Figures
6.11, 6.12 and 6.13 respectively. In these figures, for simplicity we will refer to the
set median graph simply as SM , the approximate embedding method with linear
interpolation will be referred to as AELI and the same method using the triangulation
procedure will be denoted by AET .

First of all, it is important to notice that in the two first cases, the SOD of the
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Table 6.1: Number of Graphs in S for each database.

Class Number of Graphs in S
Molecules 10, 20, 30, ..., 100
Webpages 5, 10, 15, ..., 30

GREC 5, 10, 15, 20
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Figure 6.11: SOD evolution on the Molecule dataset
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Figure 6.12: SOD evolution on the Webpage dataset
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Figure 6.13: SOD evolution on the GREC dataset



96 MEDIAN GRAPH VIA GRAPH EMBEDDING IN VECTOR SPACES

approximate generalized median is lower than the SOD of the set median for any
number of graphs in S. Intuitively, this result could mean that the obtained median
is ”located” more accurately in the center of the class than the set median.

Differently from the two previous results, in the GREC-2 database the SOD of
the set median is slightly better than the SOD of the medians obtained using the
triangulation procedure. However, when the size of S is 20 both values are equal.
Conversely, the results for the medians obtained using the linear interpolation proce-
dure, although they are very close to the SOD of the set median, are slightly worse
in all the cases. The results obtained for this database may be explained by the fact
that the distortion introduced in the GREC-2 database is very high (see Figure A.5).
With such a strong distortion it is really difficult to keep the structural information
shared among all the elements in the class.

Nevertheless, with these results at hand, we can conclude that our method achieves,
in general, good approximations of the generalized median graph, independently of
the size of the training set. That means that the generalized median adapts well to
the increasing variability and distortion as the number of graphs in the training set
increases.

6.5 Discussion

The main conclusions of this chapter can be summarized as follows:

• Section 6.2: We have proposed a novel general technique for the median graph
computation. This new approach is based on the embedding of graphs into a
vector space. First, the graphs are turned into points of an n-dimensional vector
space using the graph edit distance paradigm. Then, the crucial point of ob-
taining the median of the set is carried out in the vector space, not in the graph
domain, which dramatically simplifies this operation. Finally we transform the
obtained median vector to a graph. This embedding approach allows us to get
the main advantages of both the vector and graph representations. That is, we
compute the more complex parts in real vector spaces but keeping the repre-
sentational power of graphs. With this new technique we have presented two
algorithms for the median graph computation, one exact and one approximate.

• Section 6.3: A new exact algorithm for the median graph computation has
been introduced based on the embedding procedure. This algorithm uses the
same cost function and the distance introduced in Chapter 5. But with the
embedding approach we have shown that the part of the search space that must
be explored to obtain the median can be reduced even more. With this new
reduction, we have presented a very fast exact algorithm for the median graph
computation. We have compared this new approach with the exact algorithm we
presented in Chapter 5. Results have shown a significant improvement on both
the computation time and the number of SOD computations needed to obtain
the median graph. With these new promising results, the use of the exact
median graph could be extended, in a limited way, to real machine learning
algorithms.
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• Section 6.4: In the last part of this chapter we have presented the most pow-
erful technique for the approximate median graph computation. This technique
is based on three main pillars, the graph edit distance, the median vector com-
putation and the weighted mean of a pair of graphs. To compute the median
graph we have analyzed two alternatives namely the triangulation procedure
and the linear interpolation procedure. In addition we have provided some ex-
periments using large amounts of real data to compute approximations of the
median graph. The results comparing the SOD with that of the set median
show that this method is able to obtain good approximations of the median
graph even under hard conditions, with no restrictions neither on the size nor
the number or the kind of graphs.

Finally we want to remark two additional properties of the general embedding ap-
proach (both the exact and the approximate) that can be interesting for its application
to machine learning algorithms.

• The method can be used to compute the median in an incremental form. That
is, imagine we have computed the median using n graphs. Then, the distance
matrix (step 1) and all the edit paths between these n graphs are already com-
puted and can easily be recorded. Imagine now another graph is included in
the set and we want to recompute the median using these n + 1 graphs. With
traditional methods we should re-start the computation of the median from the
scratch. However, with this embedding procedure, we can recover the distance
matrix and the edit paths stored previously. Then we only need to compute
the distance and the edit paths between the new graph and the initial set of n
graphs. Thus, addition of new graphs to the training set has a lower impact
than in other methods.

• One of the critical points in the median computation is the need of computing
the distance between the candidate median and all the graphs in the set. In the
set median computation this number of pairwise computations is upper bounded
by n(n−1)

2 . In the median computation this quantity is usually much larger, even
in the approximate methods. But in the embedding approach we have presented,
we only need to compute the same number of pairwise distances as in the case
of the set median graph, to compute the initial distance matrix. After that,
the method, only includes a small overhead introduced by the median vector
computation. In general, the computation time is not very far away from the
time required to compute the set median.
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Chapter 7

Application of the Median Graph

In this chapter, an experimental evaluation of the proposed methods for the median
graph computation will be given. The aim is to demonstrate that beyond its theoreti-
cal properties, the median graph can be used in classic machine learning algorithms to
solve real problems. The chapter is divided into two different parts. In the first part,
the main objective is to confirm empirically that the proposed methods are applicable
to relatively difficult graph-based classification problems. In the second part of the
chapter we extend the applicability of the median graph to real clustering problems,
using the approximate embedding approach presented in Chapter 6.

The chapter is organized as follows. First in Section 7.1 we will perform a series of
classification experiments. First we will carry out three experiments using a limited
amount of data. In these experiments we will test the methods presented in Sections
4.2, 5.5 and 6.3. Then, we will extend the experiments to large amounts of data using
the approximate methods presented in Section 6.4. In all these experiments, the pro-
posed methods will be compared with the performance of the traditional graph-based
nearest neighbor classifier. After that, using again the two approximate embedding
methods we will perform some clustering experiments in Section 7.2. In this case we
will compare the results with those obtained with the set median graph. Finally, the
chapter concludes summarizing the contributions of these experiments.

7.1 Classification Experiments

In this section we will perform some classification experiments. In order to put this
experimental part in context, we will briefly review the basics of graph-based classi-
fication in the next section. Then in Section 7.1.2 we will explain the experimental
framework we will use along all the experiments. Finally, in Section 7.1.3, the results
will be presented.

7.1.1 Graph-based classification

Roughly speaking, classification is the task of assigning a class out of a set of possible
classes to an unknown input pattern. There are several approaches for this task, such
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as neural networks, Bayes classifiers, decision trees and others [35]. In the context
of graphs, nearest-neighbor classifiers are almost the unique alternative. The main
reason is that only a pattern dissimilarity measure is needed, unlike other approaches
where the underlying pattern space needs to be rich in mathematical operations.

Nearest neighbor classifiers are a supervised learning task based on a labeled train-
ing set or set of prototypes. Then, given a test set composed of all the patterns to be
classified, each pattern in this set is compared to all the elements in the training set
and labelled with the class of the most similar element.

The formal definition of a nearest-neighbor classifier can be as follows. Assume a
pattern space X , a space of class labels Y and a labeled training set of m patterns
{(xi, yi)} ⊆ X ×Y with i = 1 . . .m, is given. The 1-nearest-neighbor classifier (usually
denoted by 1NN) is defined by assigning a test pattern x ∈ X to the class of its most
similar training pattern. Thus, the 1NN classifier can be defined as,

f : X 7→ Y (7.1)

where f(x) = y is defined as,

f(x) = yj where j = arg min
i=1...m

d(x, xi) (7.2)

and d(x, xi) is a pattern similarity measure. To make the 1NN classifier less vulnerable
to the outliers, the nearest-neighbor classifier can be extended to consider not only
the most similar pattern in the training set but the k closest patterns, and we have a
kNN classifier. In a kNN classifier the test pattern is assigned to the class that occurs
most frequently among its k closest training patterns.

Algorithm 3 shows the classical kNN classification approach adapted to work
with graphs.

Algorithm 3 Graph-based kNN Algorithm
Require: A set of pre-classified (training) instances, a query q and a parameter k

defining the number of nearest neighbors to use.
Ensure: Label indicating the class of the query q

1: Find the k closest training instances to q according to a distance measure.
2: Select the class of q to be the class held by the majority of the k nearest training

instances.

As it can be appreciated in Algorithm 3 only a similarity (or distance) measure
is needed to classify the input pattern. For this reason the kNN approach is very
suitable to work with graphs.

7.1.2 Experimental Setup

In the following we will perform a series of classification experiments using the median
graph and we will compare them with the kNN approach. The dataset used in each
experiment will be split into a training set and a test set. Our reference system will
be a 1NN classifier using the whole training set as labeled patterns. Then, in each
experiment we will obtain a representative of each class in the dataset using one of
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the proposed methods for the median graph computation with some graphs of the
training set. Thus, the graphs in the test set will be compared only with the median
graph instead of the whole training set as in the 1NN approach.

In the three first experiments we will test the Exact Embedding approach explained
in Section 6.3, the Approximate Genetic algorithm presented in Section 5.5 and the
Spectral Median Graph method proposed in Section 4.2. All these experiments will
be carried out using a relatively small amount of data, due to the limitations of these
methods. The scenario will be selected according to the constraints of the method,
such as the size of graphs, the nature of the labels, etc. Nevertheless, both ap-
proximate embedding approaches presented in Section 6.4, that is, the Triangulation
Approximate Embedding and the Linear Interpolation Approximate Embedding can
be applied to any kind of graphs and scenario. Therefore we also include them in
these three experiments to have a graph-based reference system.

After that, we will extend the classification experiments using a large amount of
data. For this last experiment only the approximate embedding methods will be used,
as they are the only ones that can be applied to the datasets used. In this case we will
also include the results obtained using the set median graph as a reference system.

For simplicity, all these methods will be referred to as EE (Exact Embedding), AG
(Approximate Genetic), AS (Approximate Spectral), AET (Approximate Embedding
with Triangulation), AELI (Approximate Embedding with Linear Interpolation) and
SM (Set Median). Table 7.1 summarizes all these methods showing, for each of
them, their acronym, the section where they have been presented and the median and
method type.

Table 7.1: Summary of the tested methods and their characteristics.

Acronym Method Median Type Method Type
EE Section 6.3 Generalized Median Exact
AG Section 5.5 Generalized Median Approximate
AS Section 4.2 Generalized Median Approximate

AELI Section 6.4 Generalized Median Approximate
AET Section 6.4 Generalized Median Approximate
SM – Set Median –

At the beginning of each experiment, we also include a short table indicating the
most important parameters of the experiment such as the dataset used, the number of
elements in the training set and the test set, the methods compared and the number of
graphs used to compute the median. In the presentation of the results, it is important
to notice that due to the variability in the classification accuracy, the scales of the
charts will be adapted in each case to better show the accuracy of each method.

7.1.3 Results

In the following the results obtained in the classification experiments for each method
will be presented.
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Experiment 1. Exact Embedding

In this first experiment we will test the classification accuracy for the EE method
presented in Section 6.3. Since the method is based on a particular cost function and
the labels for nodes and edges must have a discrete nature, in this experiment we have
used the Molecule dataset described in Section A.3. We also compare this method
with both the AET and AELI methods presented in Section 6.4. It is important to
mention that the medians have been computed using different distance measures for
each kind of method. Thus, the distance used in the EE method is that of Equation
5.1, while in the AELI and AET methods we have used the graph edit distance
introduced in [82]. Table 7.2 summarizes all the parameters for this experiment.

Table 7.2: Configuration parameters for the experiment 1.

Dataset Molecules
Number of classes 2
Num. of elements in the Training Set 20 (10/class)
Num. of elements in the Test Set 80 (40/class)
Compared Methods 1NN, EE, AELI, AET
Num. of Graphs to compute the Median Graph 5 and 10

The results for the classification accuracy are shown in Figure 7.1. First, it is
important to note that the results for the 1NN classifier and the results for the EE
method are very close to each other. If fact, the accuracy achieved by the EE method
using 10 graphs to compute the median outperforms the accuracy of the 1NN classifier.
We should also mention that while the training set for the 1NN classifier is composed
of 20 elements (10 elements per class) and therefore the number of comparisons needed
in the whole experiment is 1,600 (80x20), in the case of using the median graph there
is only one representative per class, and the total number of comparisons is 160 (80x2).
Thus, using the EE method we can achieve better classification results using 10 times
less comparisons than using a classic 1NN classifier.

The second important result comes from the comparison between the EE method
and the AET and AELI methods. For these two last methods, the classification
accuracy decreases substantially with respect to the EE method. As the AET and
AELI methods are approximate whereas the EE method is exact, this result reinforces
the idea that the true median graph is the best representative of a given set. Thus,
the convenience of exact methods for the median graph computation is fully justified
with this result.

Experiment 2. Spectral Median Graph

In this experiment we will test the classification accuracy for the AS approach pre-
sented in Section 4.2. Since this method needs weighted graphs with the same number
of nodes, we will use the GREC-1 dataset described in Section A.2.1. Although this
dataset is composed of 32 different classes, we have only used 12 of these classes. All
of them have 12 nodes per graph. This is a restriction of the spectral methods used
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Figure 7.1: Classification accuracy for 1NN, EE, AELI and AET methods using
the Molecule dataset.

in the AS algorithm. We also compare this method with both the AELI and AET
methods presented in Section 6.4. In this case there is also a difference in the distance
used to compute the median graph and to perform the comparison between the test
set and the median. In the case of the AS method, the distance is computed using the
Umeyama’s method (Section 4.1.4), while the distance used in the embedding meth-
ods is computed according to the procedure proposed in [78]. Table 7.3 summarizes
all the parameters for this experiment.

Table 7.3: Configuration parameters for the experiment 2.

Dataset GREC-1
Number of classes 12
Num. of elements in the Training Set 600 (50/class)
Num. of elements in the Test Set 600 (50/class)
Compared Methods 1NN, AS, AELI, AET
Num. of Graphs to compute the Median Graph 5, 10, 15,. . ., 50

The results for this experiment are shown in Figure 7.2. First of all it is important
to note that with medians computed using 10 graphs and more, all our methods
outperform the classification accuracy with respect to the 1NN classifier. This gives
the intuitive idea that the median graph is able to capture the essential information of
each class. Again it is important to note the reduction in the number of comparisons.
For the 1NN classifier this number grows up to 360,000 (600x600) while in the rest of
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the methods the number of comparisons is only 7,200 (600x12).
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Figure 7.2: Classification accuracy for 1NN, AS, AELI and AET methods using the
GREC-1 dataset.

In this case, the approximate methods based on the embedding procedure clearly
outperform the spectral-based method. For all of them the training set and the test
set where the same, and the medians were computed using the same graphs of the
training set.

Experiment 3. Genetic Approach

In this experiment we will test the classification accuracy for the AG approach pre-
sented in Section 5.5. For this experiment we will use the Webpage dataset described
in Section A.4. We also compare this method with both the AELI and AET methods
presented in Section 6.3. The reasons to use this dataset are twofold. On one hand
the size of the graphs in this dataset is very large. It implies the search space is also
large, and the genetic algorithms are a good alternative to cope with this kind of
search spaces. On the other hand, since the graphs in this dataset have unique node
labels, the distance between two graphs can be computed in polynomial time. In this
case the distance used to compute the medians in the AG method is that of Equation
5.1, while in the AELI and AET methods we use the distance introduced in [82].
Table 7.4 summarizes all the parameters for this experiment.

The results for this experiment are shown in Figure 7.3. First of all, it is important
to note that in this case the 1NN classifier outperforms the rest of the methods in
almost all cases. Only when the median is computed using 6 graphs, the AG method
achieves slightly better results than the 1NN classifier. Although the results are not
very good, it is important to mention that the number of comparisons needed in the
1NN approach were 28,800 (240x120) while the number of comparisons needed to



7.1. Classification Experiments 105

Table 7.4: Configuration parameters for the experiment 3.

Dataset Webpages
Number of classes 6
Num. of elements in the Training Set 120 (20/class)
Num. of elements in the Test Set 240 (40/class)
Compared Methods 1NN, AG, AELI, AET
Num. of Graphs to compute the Median Graph 3, 4, 5, 6, 7

classify all the input patterns using the rest of the methods were only 1,440 (240x6).
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Figure 7.3: Classification accuracy for 1NN, AG, AELI and AET methods using
the Webpage dataset.

One possible explanation for the poor results achieved by the median-based meth-
ods could be that, since the graphs in the webpage dataset have a large number of
nodes and the number of graphs used to compute the medians is very low (due to
the limitation of the AG method), the medians are not able to capture the essential
information of the class. In this sense, it could be interesting to repeat this experi-
ment using more data in order to see if the median is able to improve these results.
That is precisely what we will do in the next section. Using the AELI and AET
approaches presented in Section 6.4 we will perform classification experiments using
a large amount of data.
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Experiment 4. Approximate Embedding

The AELI and AET methods presented in Section 6.3 are able to cope with a large
amount of data and they are not constrained in the kind of graphs and attributes of
nodes and edges. In this section we will perform some classification experiments using
the Molecule, the Webpage and the GREC-2 datasets with a large number of graphs
in both the training and the test set. In all of them, we will use the 1NN classifier
as a reference system and we will also use the set median (SM) as a graph-based
reference system. This way, we can verify whether the median graphs we obtain can
improve the results of the set median graph, which is also a potential representative
of the set. In all the experiments the medians were computed using different number
of graphs in order to generalize the results.

A. Molecule dataset

For this experiment we have used the Molecule dataset described in Section A.3.
In all the methods the distance used to compute the medians was that presented in
[82]. Table 7.5 summarizes all the parameters for this experiment.

Table 7.5: Configuration parameters for the experiment 4 using the Molecule
dataset.

Dataset Molecule
Number of classes 2
Num. of elements in the Training Set 200 (100/class)
Num. of elements in the Test Set 1,300 (200 and 1,100)
Compared Methods 1NN, SM, AELI, AET
Num. of Graphs to compute the Median Graph 10, 20,. . ., 100

Figure 7.4 shows the results for this experiment. The values are the mean values
over the two classes and the x -axis represents the number of graphs from the training
set used to compute the medians.

First of all it is important to notice that both kind of medians do not achieve
good results for small numbers of graphs in S. A possible explanation is that with
this small number of graphs (less than 30) there is not enough information in the graph
structure to be able to keep the structural information of the class. Then in this cases,
the median approach does not work well. Nevertheless, from a reasonable number of
graphs to compute the median on (from 30 on), the classification accuracy achieves
quite good levels. But at this point, it is relevant to mention that the classification
accuracy of the computed median is, in general, better than that obtained for the set
median. In addition it is remarkable the stability in the classification accuracy. This
means that even for a large number of graphs the median is able to keep the basic
information of the class. We can remark the direct correlation of these results with
those obtained in the SOD evolution (see Section 6.4.5). That is, we obtain a better
classification accuracy with the approximate median as it also achieves a better SOD
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than the set median graph.
In spite of the small loss in the classification accuracy of the median-based meth-

ods with respect to the 1NN classifier, it should be remarked the difference in the
number of comparisons. While the number of comparisons is 260,000 (1,300x200) for
the 1NN classifier, in the median-based classifiers the number of comparisons is only
2,600 (1,300x2). This reduction may play an important role in graph-based applica-
tions, where the time needed for comparing two graphs is sometimes quite high.
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Figure 7.4: Classification accuracy for 1NN, SM, AELI and AET methods using the
Molecule dataset and for different number of graphs to compute the median graph.

B. Webpages dataset

For this experiment we have used the Webpage dataset described in Section A.4.
In all the methods, the distance used to compute the medians was that introduced in
[82]. Table 7.6 summarizes all the parameters for this experiment.

Figure 7.5 shows the results for this experiment. Here, the classification accuracy is
the mean over the 6 classes. Similar conclusions to the Molecule dataset can be drawn
from these results. The classification accuracy achieved by the median approach is
very close to the 1NN classifier. The minimum difference between the 1NN classifier
and the median is only about 2% (better than in the Molecule database). Again
it is important to mention the difference in the classification accuracy between the
set median and the computed median. In this case our medians outperform the set
median in the classification accuracy for sets of graphs up to 15. This difference is
even higher than that obtained in the molecule dataset. A direct correlation between
these results and the median evolution can be seen here as well.

Although the 1NN performs better, it is important to notice again the difference
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Table 7.6: Configuration parameters for the experiment 4 using the Webpage
dataset.

Dataset Webpage
Number of classes 6
Num. of elements in the Training Set 180 (30/class)
Num. of elements in the Test Set 2,160

(112, 1359, 464, 84, 111 and 30)
Compared Methods 1NN, SM, AELI, AET
Num. of Graphs to compute the Median Graph 5, 10, 15, . . ., 30

between the number of comparisons needed for both classifiers. While the 1NN clas-
sifier needs 388,800 (2,160x180) comparisons, the use of the median graph reduces
such quantity to 12,960 (2,160x6) comparisons.
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Figure 7.5: Classification accuracy for 1NN, SM, AELI and AET methods using the
Webpage dataset and for different number of graphs to compute the median graph.

With the fact that the median achieves a classification accuracy quite close to the
1NN classifier, we can think of using the median to filter out the number of possible
classes before applying the 1NN approach. With this approach we aim to improve
the performance of the 1NN classifier and reduce the number of comparisons needed.

To this end, we propose first to measure the appearance frequency of the correct
class within a predefined number of retrieved classes. That is, for every input pattern
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we will rank all classes in a decreasing order based on the distance of the input pattern
to the median of each class. Then, we will set a depth (the predefined number of
classes) and we will see if the correct class appears in this set. In this experiment, we
have used a depth of 3 and 5 classes.

In Figures 7.6 and 7.7, we can see the percentage of the appearance frequency of the
correct class using depths of 3 and 5 respectively. Results show that in general, the
appearance frequency of the correct class using the computed median outperforms
the appearance frequency using the set median. It is important to note that even
for a number of classes equal to 3 we have in general more than 95% of frequency
appearance in both medians, higher than the classification accuracy using the 1NN.
The results with 5 classes are obviously close to 100%. The low values achieved when
the number of graphs in S is 25 can be a consequence of the randomness of the data,
and consequently it can be seen as a spurious phenomenon. As a matter of fact, for
the rest of sizes of S, the results show a high stability in the response, which reinforces
the fact this is a punctual situation.
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Figure 7.6: Appearance frequency of the correct class using 3 classes.

Finally, with these results at hand, we performed a modified classification experi-
ment, mixing the median-based methods with the classic 1NN classifier. The objective
of this experiment is to show whether it is possible to increase the classification accu-
racy of the 1NN classifier but using a lower number of comparisons. The basic idea
is as follows. First, we compare each element of the test set against the medians, and
rank the classes from the most similar to the less similar. After that, the same element
in the test set is compared against the training set but using only the elements of
the best k (3 for instance) classes according to the previous ranking instead of using
all classes as in the 1NN classical approach. The input query is assigned to the class
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Figure 7.7: Appearance frequency of the correct class using 5 classes.

of the most similar element within this reduced number of classes. It is clear in this
experiment that if k is set to 1 then the results are the same as those obtained with
the classification using simply the median, and if k = 6 then the results are the same
as in the 1NN classifier. Figure 7.8 shows the results using the median computed with
10 elements and for k ranging from 1 (the minimum number of classes) to 6 (all the
possible classes).

As we have mentioned for a number of classes equal to 1 the results for both
the set and the generalized median are the same as those obtained using simply the
median, and the results for 6 classes are the same as those of the 1NN classifier. As
we can see, the generalized median always outperform the set median in the results.
This reinforces again the hypothesis that the generalized median keeps better the
basic information of the class. But what is important to note is that even for k = 2,
the classification accuracy is better than that of the 1NN classifier. The maximum
classification accuracy is achieved for a number of classes equal to 3. This means
that we can obtain better results than the 1NN classifier computing less than half the
number of comparisons needed by the 1NN classifier (for k = 2).

C. GREC dataset

For this experiment we have used the GREC-2 dataset described in Section A.2.1.
In all the methods, the distance used to compute the median was that introduced in
[78]. Table 7.7 summarizes all the parameters for this experiment.

Figure 7.9 shows the results of classification accuracy for the GREC database. The



7.1. Classification Experiments 111

75

80

85

90

95

100

1 2 3 4 5 6

1NN SM AELI AE3

Classification Accuracy

Number of classes K

A
cc

ur
ac

y 
[%

]

Figure 7.8: Multiclass classification accuracy for the Webpage database with an
increasing number of graphs classes taken into account (number of graphs to compute
the median = 10).

Table 7.7: Configuration parameters for the experiment 4 using the GREC-2
dataset.

Dataset GREC-2
Number of classes 32
Num. of elements in the Training Set 640 (20/class)
Num. of elements in the Test Set 960 (30/class)
Compared Methods 1NN, SM, AELI, AET
Num. of Graphs to compute the Median Graph 5, 10, 15, and 20
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values are the mean values over all the classes and the x -axis represents the number
of graphs from the training set used to compute the medians.

As we can see in the figure, the 1NN classifier outperforms in all cases the classifi-
cation accuracy for both the set and the generalized median. It is important to notice
that in this case, the classification accuracy for the set median outperforms also the
results for the generalized medians. This result is consistent with the SOD compari-
son results (see Section 6.4.5), where the set median obtained also better results. It
gives the idea that there is a direct correlation between the SOD of the median and
the classification accuracy. That is, the best the SOD of the median, the best the
classification accuracy. It suggests that if we are able to obtain better approximate
medians we will be able to obtain better classification results as well.
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Figure 7.9: Classification accuracy for 1NN, SM, AELI and AET methods using the
GREC-2 dataset and for different number of graphs to compute the median graph.

Again, as in the webpage experiment, in order to improve the classification results,
a frequency appearance experiment has been done. In this case the results are shown
in Figures 7.10 and 7.11 for depths of 5 and 10 respectively. The results show that,
in contrast with the Webpage dataset, the set median represents better the classes.
Nevertheless, it is important to note that for a number of classes equal to 10 the
percentage of times the correct class appears in the selected set of classes is close to
100%.

Finally, we also performed the same modified classification experiment as in the
Webpage dataset. Results are shown in Figure 7.12, for a number of classes k ranging
from 1 to 32 and for a number of graphs in S equal to 15. In this case, the results
obtained with the medians are in the best case equal to those of the 1NN classifier.
Again the set median slightly outperforms the generalized median. But, what is
important to notice is that using about 15 classes we achieve the same classification
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Figure 7.10: Appearance frequency of the correct class using 5 elements.
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Figure 7.11: Appearance frequency of the correct class using 10 elements.
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accuracy as with the 1NN classifier but using nearly half the number of comparisons.
Thus, the use of the median is fully justified for large databases. It also suggests
that most probably if we obtain better approximations of the median we can improve
these results and achieve better results than the 1NN classifier.
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Figure 7.12: Multiclass classification accuracy for the GREC database with an
increasing number of classes taken into account (number of graphs to compute the
median = 15).

7.1.4 Discussion on Graph-based Classification

In the previous sections we have performed several classification experiments. The
first important result is that with the use of the median graph we can achieve, in
general, similar results as with the 1NN classifiers but with a reduced number of
comparisons (even in the case where a limited amount of data is used the results
obtained with the median approach outperform in some cases the 1NN classifier).
This reduction in the number of comparisons can be useful in large databases, where
the number of comparisons in the 1NN classifier may be unfeasible. In addition, in
the experiments done with a large amount of data and using the AELI and AET
methods, we have shown that a mixed solution in between the median and the 1NN
classifier is able to obtain a better classification accuracy than the 1NN classifier with
a reduced number of comparisons. These last classification results are similar to those
obtained in [83]. This makes the graph embedding in vector spaces a very promising
way to improve the classical learning algorithms using the power of representation of
graphs.
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7.2 Clustering

In addition to the classification experiments, in this section we will extend the use of
the median graph to clustering experiments. In particular, we will use the AELI and
AET methods presented in Section 6.4 to compute the centers of the clusters in a
k -means clustering algorithm. Traditionally these centers have been computed using
the set median, but in this section we will extend this computation to the generalized
median using our new approximate algorithm. First, in the next section, we will
introduce the concept of graph-based clustering and, in Section 7.2.2, we will give two
numerical measures to evaluate the quality of the clustering. After that, in section
7.2.3 we will provide the results of clustering using the Molecule, the Webpage and
the GREC datasets.

7.2.1 Graph-Based Clustering

Clustering with graphs is a well studied topic in the literature, and some different ap-
proaches have been presented up to now. The classical paradigm in those approaches
has been to treat the entire clustering problem as a graph, that is, each element to be
clustered is represented as a node and the distance between two elements is modeled
by means of a certain weight in the edge linking the nodes. Then, with this graph
at hand, the usual procedure is to create a minimum spanning tree of the graph and
then, from the remaining edges, iteratively remove those with the largest weights,
until the desired number of connected components matches the number of desired
clusters. That is, each connected component represents a cluster. The nodes of each
connected component indicate which original elements belong to each cluster [50].

Conversely, some recent approaches propose to perform clustering directly on
graph-based data. For instance in [43], the graph edit distance and the weighted
mean of a pair of graphs were used to cluster graph-based data under an extension
of self-organizing maps (SOMs). In [88], the authors investigated the clustering of
attributed graphs by means of the Function-Described Graphs (FDGs) to obtain the
representative of a cluster. Trees have also been used for clustering purposes. For
instance, in [67], the clustering of shock trees using the tree edit distance was intro-
duced. Finally, the extension of the well-known k -means algorithm for clustering to
graph based representations was introduced in [89]. In the following, this approach
will be further explained.

The Graph-Based k-means Clustering Algorithm

The k -means clustering algorithm is one of the most simple and straightforward meth-
ods for clustering data [74]. The usual way is to represent the data items as a collection
of n numeric values usually arranged into a vector form in the space Rn. Then, the eu-
clidean distance in this space and the centroid of a set of vectors are used to compute
the mean of the data in the cluster. The classical version of the k -means algorithm
is presented in the following.

Nevertheless, in [89], the graph-based version of the classic k -means clustering
algorithm is presented by introducing some changes in this algorithm: 1. replacing
the vector-based distance with any graph-based distance and 2. replacing the centroid
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Algorithm 4 Classic k -means Clustering Algorithm
Require: A set of n data items and the number of clusters k to create
Ensure: The centroids of the cluster and for each data item an integer [1, k] indicating

the cluster the item belongs to
1: Assign randomly each data item to a cluster.
2: Using this initial assignment, compute the centroid of each cluster.
3: With the computed centroids, assign each data item to be in the cluster of its

closest centroid.
4: Recompute the centroids as in Step 2.
5: Repeat Steps 3 and 4 until the centroids do not change.

with the median of a set of graphs. This median is usually the set median. The graph-
based version of the k -means algorithm is presented in the following as Algorithm
5,

Algorithm 5 Graph-based k -means Clustering Algorithm
Require: A set of n data items (represented as graphs) and the number of clusters

k to create
Ensure: The centroids of the cluster (represented by the median graphs) and for

each data item an integer [1, k] indicating the cluster the item belongs to
1: Assign randomly each data item to a cluster.
2: Using this initial assignment, compute the median graph of each cluster.
3: With the computed medians, assign each data item to be in the cluster of its

closest median using a graph-based distance.
4: Recompute the medians as in Step 2.
5: Repeat Steps 3 and 4 until the set medians do not change.

In [89], the set median graph is used to represent the center of the cluster. We
will extend the algorithm to the generalized median graph using the approximate
embedding technique introduced in Section 6.4.

7.2.2 Clustering Performance Measures

In order to evaluate the cluster performance, different measures exist. We will present
two of these measures, namely the Rand Index and the Dunn Index, that have been
also used in previous graph-based clustering experiments [89].

A. Rand Index

This index measures the matching of the obtained clusters to the ”ground truth”
clusters (i.e. the accuracy). That is, the Rand index measures how closely the clusters
created by the clustering algorithm match the ground truth, and is defined as,

RI =
A

A+D
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where A means the number of agreements and D means the number of disagreements.
After the clustering process, a pair-wise comparison between all pairs of items in the
data set is computed. If the two elements are in the same class both in the clustering
result and in the ground truth, it counts as an agreement. In the same way, if the
two elements belong to different classes both in the clustering and the ground truth it
counts as an agreement too. Otherwise, it counts as a disagreement. The Rand Index
produces measures in the interval [0, 1], with 1 meaning a perfect match between the
result of the algorithm and the ground truth.

B. Dunn Index

The Dunn Index is a measure of the compactness and separation of the clusters. It
is not an accuracy measure like the Rand Index. It is rather based on the assumption
that in a ”perfect” clustering, items in the same cluster should be similar (i.e. small
distances between them) and items in different clusters should be dissimilar (i.e. large
distances between them). It is defined as,

DI =
dmin

dmax

where dmin is the minimum distance between any two objects in different clusters and
dmax is the maximum distance between any two objects in the same cluster. Thus,
dmin measures the worst case of separation between clusters and dmax captures the
worst case of compactness among all the clusters. Higher values of the Dunn Index
indicates better clustering. Unlike the Rand Index, the Dunn Index is not bounded
in the interval [0, 1].

7.2.3 Experimental Setup

In the following we will perform a number of clustering experiments based on the
graph-based k -means approach explained before. We will use the Molecule, the Web-
page and the GREC-2 datasets. For each dataset, the experiments consisted in com-
puting the centers of the clusters using a certain number of k clusters according to
the number of classes in the dataset. The initial elements in each cluster were chosen
randomly. Table 7.8 summarizes the basic parameters (number of classes and the
number of items to be clustered) used for each dataset.

Table 7.8: Number of classes and number of elements per class for each database.

Class Num. of Classes Items/Class
Molecules 2 100
Webpages 6 30

GREC 32 20

The centers of the clusters were computed using the set median (SM) and both the
AELI and AET methods introduced in Section 6.4. In order to evaluate the obtained
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results we performed 10 repetitions of each experiment and then we computed the
Rand Index and the Dunn Index for each of them.

7.2.4 Results

The results for this experiment are summarized in Tables 7.9 and 7.10. In each table
the minimum, mean and maximum values for the Rand Index (Table 7.9) and the
Dunn Index (Table 7.10) for each dataset are shown. In both tables, the best results
are marked in bold style.

A. Rand Index

Results of the Rand Index show that in almost all cases the AELI and AET methods
obtain better results than the set median graph. More concretely, six out of the nine
best results in Table 7.9 correspond to the AET method. Since the Rand Index is
a measure of how similar to the ground truth the clusters are, these overall results
demonstrate again the idea that the median graph computed with this method is a
good representative of a given set, better than the set median graph.

Table 7.9: Minimum, average and maximum values of the Rand index for different
datasets.

Minimum
SM AELI AET

Molecule 0.5072 0.5545 0.5544
Webpages 0.6841 0.8332 0.7758

GREC 0.9410 0.9340 0.9500

Average
SM AELI AET

Molecule 0.56207 0.5952 0.6352
Webpages 0.8083 0.8773 0.8786

GREC 0.9506 0.9513 0.9537

Maximum
SM AELI AET

Molecule 0.6205 0.6860 0.7178
Webpages 0.8558 0.9133 0.9506

GREC 0.9602 0.9566 0.9587

Looking more accurately the average results of the Rand Index we can see again
a direct correlation between these results and the results obtained in the SOD com-
parison experiments performed in Section 6.4.5. In those results, the SOD of the
generalized medians of the Molecule and the Webpage datasets were clearly better
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with respect the set median graph, while the results of the GREC-2 dataset were in
some cases slightly better. A similar behavior can be extracted from the results of
Table 7.9. The Rand Index of the Molecule and the Webpage datasets are clearly
better in the AELI and AET methods than the SM approach, while the results of
the GREC-2 dataset are practically the same in all the cases. Thus, if we are able
to obtain better medians in the case of the GREC-2 database, we would probably
improve this results as well.

B. Dunn Index

Results of the Dunn Index are shown in table 7.10. Differently from the Rand Index,
which is bound in between 0 and 1, the Dunn Index is not bounded. Thus, for the
Rand Index it is relatively easy to interpret the value, because 0 means a completely
uncorrelated result with respect to the groundtruth and 1 means a perfect match
between the result and the groundtruth independently of the dataset used. Neverthe-
less, the same reasoning is not possible for the Dunn Index. That is, we cannot say
how good a result x for the Dunn Index is unless the Dunn Index for the groundtruth
is given. For this reason, we have also computed the Dunn Index for the groundtruth.

The results for each method are shown in Table 7.10. In this case the majority
of the best results correspond to the set median. In a first moment, these results
could be interpreted in the sense that the set median reflects better the ideal cluster.
Actually, they show that the set median graph obtains a better separation of the data
into compact clusters. However, the results of the Dunn Index for the groundtruth
(see Table 7.11), show very low values. That means that original datasets have low
separability and compactness. In this sense, the AELI and AET methods have more
similar results to the groundtruth than the set median. That means that they are
able to better capture the original information of the cluster.

7.3 Discussion

In this chapter we have given an experimental evaluation of the proposed methods
for the median graph computation. To this end we have performed graph-based
classification and clustering experiments. The main conclusions of this chapter can
be summarized as follows:

• Section 7.1: We have performed several classification experiments using dif-
ferent methods. The first three experiments performed using a limited amount
of data have shown that with the median approach we can outperform in some
cases the classification accuracy of the 1NN approach reducing the number of
comparisons needed in the classification. In a second part, and using the AELI
and AET methods presented in Section 6.4, we performed classification exper-
iments using a large amount of data. The results have shown that, although
the median is not able to outperform the 1NN approach, we can obtain similar
results but with a significant reduction in the number of comparisons. In ad-
dition, we have presented a slightly more complex classification scheme where
the results obtained using the median approach outperform the 1NN classifier
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Table 7.10: Minimum, average and maximum values of the Dunn index for different
datasets.

Minimum
SM AELI AET

Molecule 0.0113 0.0272 0.0272
Webpages 0.2039 0.1028 0.0769

GREC 0.0411 0.0423 0.0423

Average
SM AELI AET

Molecule 0.034 0.0288 0.0272
Webpages 0.2448 0.2027 0.1711

GREC 0.0503 0.0507 0.0498

Maximum
SM AELI AET

Molecule 0.0909 0.0431 0.0272
Webpages 0.6046 0.5784 0.2055

GREC 0.0651 0.0569 0.0618

Table 7.11: Dunn Index for the groundtruth for each dataset.

Dataset GT Dunn Index
Molecule 0.0182
Webpages 0.1835

GREC 0.0619

reducing also the number of comparisons.

• Section 7.2: Using the AELI and AET methods presented in Section 6.4, we
performed a series of clustering experiments and we have used the median graph
to obtain the representative of each cluster. Results in terms of the Rand Index
show that with the median graph we obtain clusters closer to the groundtruth
than using the set median graph. In addition, results given by the Dunn Index
show that, although the set median graph obtains higher scores, the median
graph obtains again results closer to the groundtruth.

• Finally, from these results we can give two more general conclusions. The for-
mer is that the median graph has been used to perform, for the first time,
classification and clustering under real conditions, that is, using a large amount
of real data with no constraints. From these experiments, we have shown em-
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pirically, that the concept of the median graph is really suitable to obtain the
representative of a given set.
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Chapter 8

Conclusions

This thesis has addressed the concept of the median graph. Given a set of objects,
the median is defined as the object which has the smallest sum of distances to all the
objects in the set. The median of a set of objects has been shown as a good option to
obtain a representative of the set. Already in the vector domain, the definition of the
median vector has been presented as a suitable form to capture the characteristics of
the set into a single vector. The definition of the median graph can be seen as the
analogous definition of the median but in the graph domain. That is, the median
graph can be seen as a good way to obtain a representative of a given set of graphs.

Despite its simple but powerful definition, the median graph has the lack of its
complex computation. Given a set of graphs, the median graph computation is ex-
ponential both in the number of graphs and their size. A number of algorithms have
been presented up to now, but all of them have been only applied to very small sets
of graphs with small sizes. Thus, in spite of the potential of the concept of the me-
dian graph, its applicability has been limited due to the computational complexity
underlying this concept.

The main objective of this thesis was to try to give the median graph the op-
portunity to leave the box of the only theoretical concepts and to be applied to real
problems. To this end the thesis has addressed the problem from different points of
view, theoretic and practical. This last chapter summarizes the main conclusions of
this work and poses new possible open questions to be studied in the future.

8.1 Conclusions

The basic conclusions of this work can be summarized from three points of view,
theory, algorithms and applications.

8.1.1 Theory

This thesis has addressed theoretical aspects of the median graph. From this theoret-
ical point of view we can highlight two major contributions: the improvement on the
existing theoretical properties of the median graph and the novel concept of spectral
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median graph.

• Spectral Median Graph: With the use of the spectral graph theory we
have presented the novel concept of the Spectral Median Graph. With this new
concept we are able to compute good approximations of the median graph in
polynomial time. Nevertheless, this concept is limited to operate only with
weighted graphs having the same size.

• New Theoretical Properties: We have theoretically demonstrated that the
existing bounds on the size and the SOD of the median graph can be improved
under the assumption that a particular cost function is used. The previous
bounds were too coarse to be really useful for practical purposes. With these
new bounds we have shown that the search space of the median graph can be
drastically reduced. Thus, these new bounds affect directly the computation of
the median graph and therefore they can be used to improve it.

8.1.2 Algorithms

Beyond the theoretical aspects of the median graph we have also proposed five differ-
ent algorithms and strategies for its computation. These different approaches can be
summarized as follows:

• Spectral-based Algorithm

– Using the concept of the Spectral Median Graph, we have provided an incre-
mental algorithm for its computation. With this new algorithm the com-
putation of the median graph becomes linear with respect to the number
of graphs. Preliminary results have shown that we obtain good approxi-
mations of the median graph even using a large number of graphs (up to
50).

• Algorithms Based on a Particular Cost Function

With the new theoretical properties based on a particular cost function and
the reduced search space, we have developed two different approaches for the
median graph computation.

– First, we have presented a new and more efficient exact algorithm. Pre-
liminary experiments have shown that with this approach we can extend
the exact computation of the median graph to real data, with a limited
number of graphs. The results show that it not only improves the results
of the previous exact algorithm but it can also be compared with one of
the previous approximate algorithms.

– The second approach is based on genetic search. We have shown that
with this new algorithm we can obtain good approximations of the median
graph while keeping reasonable computation times. We have also shown its
application to real data, with a limited number of graphs, but extending
this number with respect to the exact algorithm.
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• Embedding-based Algorithms

In the last part of this thesis we have proposed a new technique for the me-
dian graph computation based on graph embedding into vector spaces. In this
new technique graphs are embedded into a vector space using the graph edit dis-
tance. Then, the median is computed in this vector space instead of doing that
in the graph domain. Finally, the median graph is recovered from the median
vector. With the embedding technique we have presented two new algorithms,
one exact and one approximate.

– A new exact algorithm for the median graph computation has been intro-
duced. With the embedding approach we have shown that the part of the
search space that must be explored to obtain the median can be reduced
even more. With this new reduction, we have presented the fastest exact
algorithm for the median graph computation. With these new promising
results the exact computation of the median graph have been extended to
real machine learning algorithms.

– The approximate algorithm constitutes the more general and powerful op-
tion for the median graph computation. Experiments have shown its ap-
plication to three different databases with a large number of graphs with
large sizes. In spite of being an approximate algorithm we have shown the
algorithm is able to obtain good median graphs.

8.1.3 Applications

Finally, we have used the median graph in two real graph-based applications: classi-
fication and clustering.

• Graph-based Classification: We have tested several of our algorithms for
classification. In a first set of experiments we have used a limited amount of
data and we have tested three of our new algorithms. All of them have been
compared with the approximate embedding approach. The results have shown,
in some cases, an improvement in the classification accuracy with respect to a
classical nearest-neighbor classifier also reducing the number of comparisons. In
a second stage, we have extended the classification tasks using a large amount of
real data using the approximate embedding approach. The results have shown
that the classification accuracy is very close to that obtained by the nearest-
neighbor classifier but with a significant reduction in the number of comparisons.
Nevertheless, we have also shown a second strategy, a more sophisticated classi-
fication scheme, that improves the results of the nearest-neighbor classifier and
still keeps a lower number of comparisons.

• Graph-based Clustering: In the last part of this thesis and using the
approximate embedding approach we have used the median graph to perform
clustering tasks using the k -means approach. In particular we have used our
approach to obtain the centers of the clusters. Traditionally, these centers have
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been represented by the set median. This task is more challenging than clas-
sification since the medians are computed using elements from different classes
which, in the median computation, can be seen as a form of noise. Results
based on two standard measures (the Rand Index and the Dunn Index ) have
shown a certain improvement of the median graph over the set median graph.
This results reinforces the thesis that the generalized median graph is a better
representative than the set median graph.

8.2 Discussion

In this thesis we have made some contributions about the median graph in three
different aspects: Theory, Algorithms and Applications. In the algorithmic part,
we have presented five new algorithms, two exact and three approximate. All these
solutions should not be seen as five separated boxes without any connection between
them, but as an evolution from more limited methods (spectral approach) to more
general methods (approximate embedding).

Thus, our first algorithm (spectral-based algorithm) is limited to operate only
with weighted graphs with the same number of nodes. However, it has no constraints
concerning the size of the graphs or the number of graphs in the set. After that, we
overcame some of those limitations and we presented two new algorithms, one exact
and one approximate, able to work with graphs with different sizes and with any kind
of information both in the nodes and the edges, with the unique constraint that the
information of the labels and edges must be of discrete nature. The only restriction
was the dependency on the concept of the maximum common subgraph and the
minimum common supergraph. This condition imposed to work with a low number
of graphs and with low sizes. Nevertheless, we showed that even with these limitations
the algorithms could be applied using real data. Finally, we went one step further
and we presented a new technique based on graph embedding in vector spaces, and
we introduced two more algorithms, one exact and one approximate. With the exact
algorithm (still depending on themcs andMCS) we were able to improve the previous
results obtained with the exact algorithm, in terms of computation time. And finally,
the approximate approach was shown as the more general and powerful approach for
the median computation, applicable to a large number of graphs representing real
data.

Nevertheless, the limitations in some of the methods should not be completely
seen as a disadvantage. Conversely, this wide offer in the number of algorithms
gives the opportunity to choose the best option (algorithm) in each case. That is,
depending on the application one of these algorithms may perform better than the
others. For instance, whenever applicable, exact algorithms are supposed to obtain
always a better representative of a set of graphs.

In order to synthesize the properties and limitations of all the methods, we provide
in Table 8.1 a brief summary of each of the five methods we have presented.

It is important to remark, as a final conclusion, that the median graph has been
used for the first time in two classical machine learning algorithms using a large
number of graphs with no restrictions in their labels or size.
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Table 8.1: Number of graphs in each class.

Method: Spectral Median Graph
Summary: Approximate. Based on Spectral Graph Theory.
Restrictions: Only weighted graphs with the same number of nodes.

Method: Exhaustive Search
Summary: Exact. Based on a particular cost function.
Restrictions: Computation of gM (S) and gm(S). Small number of graphs with
small size and discrete labels.

Method: Genetic Approach
Summary: Approximate. Based on a particular cost function.
Restrictions: Computation of gM (S) and gm(S). Small number of graphs with
small size and discrete labels.

Method: Exact Embedding
Summary: Exact. Based on graph embedding into vector spaces, and on a
particular cost function.
Restrictions: Computation of gM (S) and gm(S). Small number of graphs with
small size and discrete labels.

Method: Approximate Embedding
Summary: Approximate. Based on graph embedding into vector spaces and
graph edit distance computation.
Restrictions: Not restricted neither in the number of graphs, their size nor
the label nature.

8.3 Future Work

In spite of the advances on the median graph we have introduced, we believe there are
still some open questions that can be further developed in the future. The following
list summarizes such possible lines of continuation of this work:

• In some parts of this work it is assumed the median is computed under a par-
ticular cost function. In spite of the good properties of such cost function, it
would be desirable to extend those results to other cost functions. In this sense,
in [12] a deep study of error-tolerant graph matching under an extensive family
of cost functions has been presented. A future work could be the extension of
our results to that family of cost functions in order to give them a more general
framework of application.
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• Regarding the theoretical properties we have presented, we have empirical evi-
dence that the relation between the median graph, the mcs(S) and the MCS(S)
can be extended in the following way:

gm(S) ⊆ ḡ ⊆ gM (S)

That is, the median graph would be a subgraph of gM (S) including also the
gm(S). Some preliminary experiments show that this conditions holds. This
result can be seen as an extension of the result reported in [18], that shows this
relation, but only with a set of two graphs. If confirmed, this result would make
the computation of the median graph even easier and faster than now.

• The spectral median graph has the limitations that it can only be applied to
graphs with the same number of nodes. Thus, a future research line is to extend
this work in order to be able to deal with graphs with different sizes. In this
sense, some good works related to the spectral graph theory such as [68, 23, 58]
can be a good starting point to reach this objective.

• Maybe the most promising method for the median graph computation we have
presented is the approximate embedding method. This approach is based on
three steps: the embedding of the graphs into a vector space using the graph
edit distance, the median vector computation and the conversion of the median
vector to a graph. In all of these three steps some form of distortion is intro-
duced. In order to improve the medians obtained, we can study some strategies
to improve the two last steps:

– We think that a deep research on different forms to obtain a representative
in the vector domain, the mean vector for instance, would lead to improve
the results of our method.

– Another possibility to reduce the distortion introduced in the median com-
putation is the investigation of new ways to go back to the graph domain.
We have proposed the weighted mean of a pair of graphs for that purpose,
but the research on new ways may improve the accuracy of the median.

• One of the results of this work is the empirical demonstration that the median
graph is a good choice to obtain a representative of a set of graphs. The graph-
based classification and clustering experiment reinforces this idea. In this sense,
future work on the median graph could include:

– Large-scale application of the median graph. That is, to extend the me-
dian graph computation to more sophisticated classification or clustering
schemes. Eventually, the median graph computation should be tested not
only in these frameworks but in any application where a representative of
a set of graphs is needed.

– With the extension of the median graph to a wide spectrum of applica-
tions, we can start thinking in the evaluation of the median graph as a
representative of a set of graphs. That is, since the median graph is not
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the unique option to obtain a representative of a set of graphs, a compar-
ison with other methods could be useful to place the median within this
context.
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Appendix A

Databases

Along this work, several databases have been used, namely the Letter Graph Dataset,
the GREC dataset [34], the Molecule Dataset [1] and the Webpage Dataset [89]. In
this appendix we will explain in detail all of these databases. For each one we will
explain the kind of data that composes the database, the graph-based representation
of such data and some relevant characteristics such as the number of objects in the
database, the maximum number of nodes in the graphs, etc. In addition, due to
the restrictions imposed by some of the presented methods for the median graph
computation, for some experiments we have used variations of these datasets, basically
applying different distortions to the data. These variations are also explained in this
appendix. Finally, it is important to mention that the two first databases contain
synthetic data whereas the two last databases are composed of real world data.

A.1 Letter Database

The Letter dataset was originally created at the University of Bern. It is composed
of 15 capital letters (classes) of the Roman alphabet (only those which are composed
of straight lines), which are A, E, F, H, I, K, L, M, N, T, V, W, X, Y and Z. For
each class, an original prototype was constructed in a manual fashion. An illustration
of these prototypes is shown in Figure A.1.

The letters are represented by graphs as follows. The straight lines are represented
by edges and the terminal points of the lines by the nodes. Nodes are labelled by
a two-dimensional attribute that represents the position (x,y) of the terminal point
in the plane. Edges have a one-dimensional and binary attribute that represents
the existence or non-existence of a line between two terminal points. Graph-based
representations of the prototypes are shown in Figure A.2.

A.1.1 Variation Letter-1

From the original set composed of 15 letters, we only used a subset of 6 letters
namely L, V, N, T, K and M. Then, from each original model, we manually generated
4 distorted instances. Therefore, this variation is composed of 30 elements and 6
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Figure A.1: Original prototypes for the Letter dataset.

Figure A.2: Graph-based representations of the original prototypes.

classes. Each class represents a letter and contains 5 different instances of the letter.
Table A.1 shows the original letters in the first row and the four distorted letters in
the rest of the rows. Notice that, in the distorted letters, some lines have been erased
or moved, but the number of terminal points has been kept unchanged. Note that
there are two classes (L and V) whose elements have 3 nodes each, two classes (N and
T) whose elements have four nodes each and two classes (K and M) whose elements
have 5 nodes each.

The number of graphs in this variation and the maximum and the mean number
of nodes in the graphs are shown in Table A.2.

A.2 GREC 2005 Database

The GREC database is composed of a set of graphical symbols coming from different
technical fields. It was originally created for the GREC contest.
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Table A.1: Entire Letter-1 database.

The GREC Contest

The main goal of the contest is to provide a framework for the evaluation of different
methods for symbol recognition in graphic documents. This framework is intended
to be general and flexible so that it can be used to evaluate a wide range of symbol
recognition methods. The contest is based on a pre-defined set of symbols (tables
A.3 to A.5). Using this set of symbols, different tests were generated, consisting of
several images of each symbol with increasing levels of degradation and distortion. In
the 2005 edition, several tests were available to the participants through the web site
(http://www.cs.cityu.edu.hk/grec2005/). These tests could be used as a learning set
to train the methods participating in the contest. For real contest execution, other

Table A.2: Some characteristics of Letter-1 dataset.

Property Value
Number of classes 6
Total number of elements 30 (5 elements/class)
Max. number of nodes in a graph 5
Min. number of nodes in a graph 3
Mean number of nodes 4
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tests, similar to the sample tests, containing different images were generated. As a
final result of the contest, several tables were provided, one for each kind of test,
showing the performance of the methods taking part in those tests. Performance was
measured in terms of recognition accuracy.

Description of Symbols

The symbols of the GREC database are extracted from different technical fields such
as architecture and electronics. All these symbols have common features, that can be
summarized as follows:

• They come from two different domains such as architecture and electronics

• They are composed of two types of primitives: lines and arcs

• They do not contain filled regions, text or any other type of primitive

The complete collection of 150 symbols can be seen in Tables A.3 to A.5.
These images are converted into graphs by assigning a node to each junction or

terminal point and an edge to each line. The labels for the nodes are coordinates
in a 2-dimensional space corresponding to the location of the point. An edge exists
between two given nodes if there is a line between the corresponding terminal points.
Edges are labeled with a number indicating its existence. Figure A.3 shows an example
of the graph-based representation of a symbol.

Figure A.3: Graph-based representation of a GREC symbol.

A.2.1 Variation GREC-1

In this variation we have used a subset of 32 different symbols of the original database.
All these symbols are composed only of straight lines. In order to work with a large
dataset, with arbitrarily strong distortions, we have generated 100 instances of each
symbol by moving the junction or terminal points between two lines within a pre-
defined radius r. Notice that this distortion keeps unchanged the number of nodes
within a class. That, is, all the generated instances of a certain class have the same
number of nodes. Figure A.4 shows an example of two symbols and different distorted
instances of them.
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symbol001 symbol002 symbol003 symbol004 symbol005 symbol006

symbol007 symbol008 symbol009 symbol010 symbol011 symbol012

symbol013 symbol014 symbol015 symbol016 symbol017 symbol018

symbol019 symbol020 symbol021 symbol022 symbol023 symbol024

symbol025 symbol026 symbol027 symbol028 symbol029 symbol030

symbol031 symbol032 symbol033 symbol034 symbol035 symbol036

symbol037 symbol038 symbol039 symbol040 symbol041 symbol042

symbol043 symbol044 symbol045 symbol046 symbol047 symbol048

Table A.3: GREC 2005 Database (1)
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symbol049 symbol050 symbol051 symbol052 symbol053 symbol054

symbol055 symbol056 symbol057 symbol058 symbol059 symbol060

symbol061 symbol062 symbol063 symbol064 symbol065 symbol066

symbol067 symbol068 symbol069 symbol070 symbol071 symbol072

symbol073 symbol074 symbol075 symbol076 symbol077 symbol078

symbol079 symbol080 symbol081 symbol082 symbol083 symbol084

symbol085 symbol086 symbol087 symbol088 symbol089 symbol090

symbol091 symbol092 symbol093 symbol094 symbol095 symbol096

Table A.4: GREC 2005 Database (2)
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symbol097 symbol098 symbol099 symbol100 symbol101 symbol102

symbol103 symbol104 symbol105 symbol106 symbol107 symbol108

symbol109 symbol110 symbol111 symbol112 symbol113 symbol114

symbol115 symbol116 symbol117 symbol118 symbol119 symbol120

symbol121 symbol122 symbol123 symbol124 symbol125 symbol126

symbol127 symbol128 symbol129 symbol130 symbol131 symbol132

symbol133 symbol134 symbol135 symbol136 symbol137 symbol138

symbol139 symbol140 symbol141 symbol142 symbol143 symbol144

symbol145 symbol146 symbol147 symbol148 symbol149 symbol150

Table A.5: GREC 2005 Database (3)
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(a) (b) (c) (d)

Figure A.4: Example of distorted symbols.

The number of graphs in this variation and the maximum and the mean number
of nodes in the graphs are shown in Table A.6. Note that within these classes the
number of nodes of each graph ranges from 4 to 28.

Table A.6: Some characteristics of GREC-1 dataset.

Property Value
Number of classes 32
Total number of elements 3,200 (100 elements/class)
Max. number of nodes in a graph 28
Min. number of nodes in a graph 4
Mean number of nodes 8.8

A.2.2 Variation GREC-2

In this variation we have used the same subset of 32 different symbols as in the GREC-
1 database. In order to work with a large dataset, with arbitrarily strong distortions,
we have generated 50 instances of each symbol applying different distortion operators
to the original images. Such distortion operators include moving the junction points
between two lines within a predefined radius r, splitting junction points and deleting
some lines. Notice that in this case, two elements in the same class may have different
number of nodes and edges. Figure A.5 shows an example of two symbols and different
distorted instances of them.

The number of graphs in this variation and the maximum and the mean number
of nodes in the graphs are shown in Table A.7. Note that within these classes the
number of nodes of each graph ranges from 3 to 38.

A.3 Molecule Database

The molecule database consists in graphs representing molecular compounds. These
graphs are extracted from the AIDS Antiviral Screen Database of Active Compounds
[1]. Such database consists of two different classes of molecules: active and inac-
tive, depending on whether they show activity against HIV or not respectively. The
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(a)

(b)

Figure A.5: Examples of GREC symbols with some distortions. (a) Architectural
symbol (b) Electrical symbol.

Table A.7: Some characteristics of GREC-2 dataset.

Property Value
Number of classes 32
Total number of elements 1,600 (50 elements/class)
Max. number of nodes in a graph 38
Min. number of nodes in a graph 3
Mean number of nodes 11.2

molecules are converted into graphs in a straightforward way, representing its atoms
as nodes and its covalent bonds as edges. The nodes are labelled with the number of
the corresponding chemical symbol. The edges are labelled with the valence of the
linkage. Some examples of each class are represented in Figure A.6. In order to sim-
plify the representation, in such examples, different chemical symbols are represented
using different gray tonality.

In this database there is a total number of 1,500 graphs, 300 corresponding to
active molecules and 1,200 to inactive ones. Table A.8 shows some characteristics of
this database.

Table A.8: Some characteristics of Molecule dataset.

Property Value
Number of classes 2
Total number of elements 1,500 (200+1,300)
Max. number of nodes in a graph 63
Min. number of nodes in a graph 1
Mean number of nodes 9.5
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(a) (b)

Figure A.6: Example of some active compounds (a) and some inactive compounds
(b)

A.4 Webpage Database

The last database is composed of a collection of webpages. In [89] several methods to
create graph-based representations of webpages are introduced. In our case, graphs
representing webpages are constructed as follows. First, all words appearing in the
web document are converted into nodes in the web graph, except for stop words which
contain little information. The nodes are attributed with the corresponding word and
its frequency. That is, even if a word appears more than once in the web document,
only one node with this word label is added to the graph, and the frequency of the
word is used as an additional attribute. Then, if a word wi immediately precedes
another word wj in the document, a directed edge from the node corresponding to
the word wi to the node corresponding to the word wj is added to the graph. In
order to keep the essential information of the document, only the most frequently
used words (nodes) are kept in the graph and the terms are combined to the most
frequently occurring form. Figure A.7 shows an example of a webgraph.

The dataset is composed of 2,340 documents belonging to 20 different categories
(Business, Health, Politics, Sports, Technology, Entertainment, Art, Cable, Culture,
Film, Industry, Media, Multimedia, Music, Online, People, Review, Stage, Television
and Variety). The last 14 categories are sub-categories of Entertainment. These web
documents were originally hosted at Yahoo as news pages (http://www.yahoo.com).
For simplicity, from now on, the 6 main classes will be referred as B, H, P, S, T and
E for Business, Health, Politics, Sports, Technology and Entertainment, respectively.

Note that, not all the classes have the same number of graphs. Table A.9 shows
the number of graphs in each class.

Table A.9: Number of graphs in each class.
Class

B E H P S T
Number of graphs 142 1,389 494 114 141 60
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Record

Practice

Album

RecentSurprise

ClubGig

High 
Tech

Figure A.7: Webgraph example.

Table A.10 shows some characteristics of this database.

Table A.10: Some characteristics of Webpage dataset.

Property Value
Number of classes 6
Total number of elements 2,340 (distribution shown in Table A.9)
Max. number of nodes in a graph 834
Min. number of nodes in a graph 43
Mean number of nodes 180.06
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[51] Xiaoyi Jiang, Andreas Münger, and Horst Bunke. Computing the generalized
median of a set of graphs. In Proceedings of the 2nd IAPR-TC15 Workshop on
Graph-based Representations in Pattern Recognition, pages 115–124, 1999.
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