
Universitat Autònoma de Barcelona

Escola Tècnica Superior d’Enginyeria

Departament d’Arquitectura de Computadors i

Sistemes Operatius

Scheduling for Interactive and Parallel
Applications on Grids

Memoria presentada por Enol Fernández del Castillo para optar al grado
de Doctor por la Universidad Autónoma de Barcelona dentro del Pro-
grama de Doctorado en Informática, opción A: “Arquitectura de Com-
putadores y Procesamiento Paralelo”, bajo la dirección del Dr. Miquel
Àngel Senar Rosell y la Dra. Elisa Heymann Pignolo.

Barcelona, julio de 2008

Universitat Autònoma de Barcelona

Escola Tècnica Superior d’Enginyeria

Departament d’Arquitectura de Computadors i

Sistemes Operatius

Scheduling for Interactive and Parallel
Applications on Grids

Memoria presentada por Enol Fernández del Castillo para optar al grado
de Doctor por la Universidad Autónoma de Barcelona dentro del Pro-
grama de Doctorado en Informática, opción A: “Arquitectura de Com-
putadores y Procesamiento Paralelo”, bajo la dirección del Dr. Miquel
Àngel Senar Rosell y la Dra. Elisa Heymann Pignolo.

Barcelona, julio de 2008

vi

Abstract

Grid computing constitutes one of the most promising fields in computer systems.
The next generation of scientific applications can profit from a large-scale, multi-
organizational infrastructure that offers more computing power than one institution
alone is able to afford. Grids need high-level schedulers that can be used to manage
the resources spanning different organizations. These Grid Resource Management
Systems (GRMS) have to make scheduling decisions without actually owning the
grid resources, or having full control over the jobs that are running there. This
introduces new challenges in the scheduling process done by the GRMSs. Although
grids consist of many resources, and jobs submitted to grid may benefit from using
them in a coordinated way, most of the Grid Resource Management Systems have
focused on the execution of sequential jobs, with the grid being a large multi-site
environment where jobs run in a batch-like way.

However, in this work we concentrate on a kind of jobs that have received little at-
tention to date: interactive and parallel jobs. Interactive jobs require the possibility
of starting in the immediate future and need mechanisms to establish a communica-
tion channel with the user. Parallel applications introduce the need for co-allocation,
guaranteeing the simultaneous availability of the resources when they are accessed
by the applications. We address the challenges of executing such jobs with a new
architecture for a GRMS and an implementation of that architecture called the Cross-
Broker. Our architecture includes mechanisms to allow the co-allocation of parallel
jobs and the interaction of users with running applications. Additionally with the
introduction of a multi-programming mechanism, a fast startup of jobs even in high
occupancy scenarios is provided.

vii

viii

Agradecimientos

En primer lugar quiero expresar mi agradecimiento a Miquel Àngel Senar y Elisa
Heymann por darme la oportunidad de realizar este trabajo y su dedicación a la
dirección del mismo. A todo el Departamento de Arquitectura de Computadores y
Sistemas Operativos y en particular a todos los compañeros de doctorado y a los
integrantes del grupo de grid del departamento.

I would like to thank all the people of the CrossGrid and int.eu.grid projects. Thanks
especially to Álvaro for all the help at the beginning and to Gonçalo, Herbert, Marcin,
Marcus and Sven for the great moments I have shared with them. I would also like
to thank Rainer Keller for hosting me at HLRS and for his support during my stay
there. Thanks to Karen Miller for the English corrections.

Fuera del mundo del grid, me gustaŕıa agradecer a mi familia y amigos por haberme
apoyado desde el principio, aunque más de uno siga sin entenderlo. Gracias a Ana,
por estar en todo momento compartiendo el camino conmigo.

ix

x

Contents

List of Figures xiii

List of Tables xv

1 Overview 1

2 Introduction 5
2.1 Grids . 6

2.1.1 Grid Architecture . 7
2.1.2 Grid Middleware . 8

2.2 Grid Infrastructure Initiatives . 12
2.2.1 EGEE . 13
2.2.2 OSG . 15
2.2.3 DEISA . 15
2.2.4 CrossGrid and Interactive European Grid 16

2.3 Grid Scheduling . 20
2.3.1 Grid scheduling systems . 21

2.4 Execution of Parallel and Interactive jobs on Grids 24
2.4.1 Parallel Jobs . 25
2.4.2 Interactivity in Grid Environments 27

2.5 Contributions . 28
2.6 Conclusions . 28

3 An Architecture for Parallel and Interactive Jobs 31
3.1 The Grid Environment . 31
3.2 The Job Model . 33

3.2.1 Job Lifecycle . 35
3.2.2 Job Starters and Application Launchers 35

xi

3.2.3 Interactive Agents . 37
3.3 Job Description Language . 38

3.3.1 Extended JDL . 40
3.4 CrossBroker Grid Scheduler . 46

3.4.1 A mechanism for multi-programming 47
3.5 Conclusions . 50

4 CrossBroker Design and Implementation 53
4.1 Scheduling Agent . 54

4.1.1 User Access Module . 55
4.1.2 Scheduler . 57
4.1.3 Glidein Monitor . 58

4.2 Resource Searcher . 60
4.2.1 Resource Cache . 61
4.2.2 Matchmaking . 63

4.3 Job Execution . 65
4.3.1 Application Launcher . 65
4.3.2 Job Starter . 69
4.3.3 Interactive Agents . 72

4.4 Example Applications . 76
4.5 Conclusions . 81

5 CrossBroker Experimental Evaluation 83
5.1 CrossBroker Overhead . 83

5.1.1 Job Preprocessing . 84
5.1.2 Selection of Resources . 86
5.1.3 Remote Job Submission . 87
5.1.4 Job Start up and Execution . 88
5.1.5 Overall Overhead . 92

5.2 The CrossBroker on a real testbed . 92
5.2.1 The int.eu.grid testbed . 93
5.2.2 CrossBroker Usage . 94

5.3 Evaluation of the CrossBroker Mechanisms 96
5.3.1 Workload Modelling . 96
5.3.2 Simulation of grid environments 98
5.3.3 Co-allocation and Parallel Jobs 99
5.3.4 Glidein and Interactive Jobs . 105

5.4 Conclusions . 110

6 Conclusions and Future Research 113
6.1 Open Lines of Research . 115

Bibliography 117

xii

List of Figures

2.1 Layered grid architecture. 7
2.2 Hierarchical MDS structure . 10
2.3 Globus components interaction. 10
2.4 UNICORE architecture. 12
2.5 The gLite core and local services. 14
2.6 The CrossGrid Testbed sites . 18
2.7 The i2g infrastructure map. 19
2.8 Pacx Communication Structure . 26

3.1 Grid environment architecture . 32
3.2 Parallel job types . 33
3.3 Job Lifecycle. 35
3.4 Job Starters and Application Launchers 37
3.5 Interactive Shadow and Interactive Agent 37
3.6 Interactive Job Execution . 38
3.7 JDL job description. 39
3.8 Parallel JDL job description. 41
3.9 SubJobs specification in JDL. 42
3.10 Interactive JDL job description. 43
3.11 Example DAG. 44
3.12 JDL Dag description. 45
3.13 CrossBroker Architecture . 47
3.14 Multi-programmed execution of jobs. 48
3.15 Multi-programmed execution of inter-cluster jobs. 50

4.1 CrossBroker Architecture . 54
4.2 Structure of the Scheduling Agent . 55
4.3 Use of GCB with glide-in . 61

xiii

4.4 Structure of the Resource Searcher. 61
4.5 Job Execution Components. 66
4.6 MPICH-G2 execution on multiple sites 68
4.7 PACX-MPI execution on multiple sites 69
4.8 Interactive Agents in CrossBroker . 74
4.9 Condor Bypass Interactive Agent . 75
4.10 Plasma visualization application running on the Migrating Desktop . . 77
4.11 JDL file for the plasma visualization application 78
4.12 JDL file for the ANN application . 79
4.13 Results of matchmaking . 80

5.1 Average Overhead for Job Preprocessing 85
5.2 Average Selection Overhead . 87
5.3 Average Remote Job Submission Overhead. 88
5.4 Average Glidein Start up Overhead . 89
5.5 Average Execution Time of eIMRT . 91
5.6 Runtime of eIMRT on virtual slots with different priority 91
5.7 Jobs submitted to the int.eu.grid infrastructure. 95
5.8 Jobs sizes in the int.eu.grid infrastructure. 95
5.9 Job arrival pattern in the workload . 100
5.10 System Utilization for Worst Fit Policy 101
5.11 System Utilization for Best Fit Policy 102
5.12 System Utilization for First Fit Policy 103
5.13 Impact on the run time of co-allocated jobs 104
5.14 Cyclic job arrival pattern in the workloads 105
5.15 Distribution of runtimes . 106
5.16 Average count of virtual slots. 109

xiv

List of Tables

3.1 Job structural and functional types . 34

4.1 Errors Detected by the AL . 70
4.2 Job Starter environment variables. 71
4.3 MPI-Start environment variables. 73

5.1 Production sites properties . 93
5.2 Development sites properties . 93
5.3 Number of jobs processed by CrossBroker 96
5.4 Results for low-load Workload . 107
5.5 Results for high-load Workload . 108
5.6 Metrics for interactive jobs. 109
5.7 Impact of Glidein on batch jobs. 110

xv

xvi

CHAPTER1
Overview

Grid computing constitutes one of the most promising fields in computer systems.
The ability to use a large-scale, multi-organizational infrastructure opens new possi-
bilities for the next generation of scientific applications that require more computing
power than one institution alone is able to afford. A grid computing paradigm
unites geographically-distributed and heterogeneous computing, storage, and net-
work resources and provides unified, secure, and pervasive access to their combined
capabilities.

Over the last years, several of these grid initiatives have created a computing in-
frastructure that provides ubiquitous and inexpensive access to a large amount of
computational resources. Along with the hardware growth, the software for orches-
trating the collaborative access to those resources has become more sophisticated
and robust. This middleware hides the underlying physical infrastructure from the
users, thus providing a unified and coherent vision of the grid environment, while
maintaining site autonomy.

Resource management is an important subject for grids. It can be defined as the
process of identifying requirements, matching resources to applications, allocating
those resources, and scheduling and monitoring grid resources over time in order

1

2

to run grid applications as efficiently as possible. Grids consist of many resources,
and jobs submitted to a grid may benefit from using them in a coordinated way.
However, most of the Grid Resource Management Systems (GRMS) have focused on
the execution of sequential jobs, the grid being a large multi-site environment where
jobs run in a batch-like way.

There are other kinds of applications that have received little attention to date:
interactive and parallel jobs. On the one hand, interactive applications allow the
users to steer their application and to control them while running. These applications
require the possibility of starting in the immediate future, while taking into account
scenarios in which most computing resources might be running batch jobs. The
grid scheduler should offer such services in an environment where it does not have
complete control over the resources.

On the other hand, parallel applications can efficiently use many processors, taking
advantage of the multiple resources in a grid system. Support for such applications
introduces the need for co-allocation, i.e. the simultaneous or coordinated access of
single applications of multiple types in multiple locations, managed by different au-
tonomous resource management systems where reservation mechanisms may not be
available. Moreover, even with the existence of the middleware layer that provides
unified vision of the environment, the grid scheduler must deal with the different ways
of starting and running applications, taking into account the Local Resource Man-
ager System (LRMS) available at each resource and the different parallel application
implementations.

In order to overcome these new challenges, in this work we present a novel archi-
tecture for the execution of interactive and parallel jobs in grid environments. This
architecture includes the specification and definition of such jobs in a modular way,
hence it allows the orthogonal combination of an interactive steering mechanism and
parallel library implementations. We have also included a multi-programming mech-
anism that leverages the lack of control over the resources enabling the fast start
up of jobs even in high occupancy scenarios and the co-allocation of applications
without reservation support.

We have created an implementation of the proposed architecture called CrossBroker.
CrossBroker, when users submit their application, makes the appropriate decisions
and actions to run jobs on the remote resources without additional intervention. The
system has been used as the main Grid Resource Management System in production
environments in the European CrossGrid and the Interactive European Grid projects.
CrossGrid evolved from 2002 to 2005 with the aim of extending the use of interactive
and parallel applications in grids. Within the Interactive European Grid project that
went from 2006 to 2008, the CrossBroker has been further refined and tested in a
real environment.

The remainder of this thesis is organized as follows: Chapter 2 presents a general

1. Overview 3

introduction to grid environments and grid scheduling. Some grid initiatives are
outlined and a review of the relevant related work in the topic is given. Chapter 3
proposes a novel architecture to support parallel and interactive jobs in these envi-
ronments. The CrossBroker implementation details are given in Chapter 4, followed
by the experimental validation in Chapter 5. Finally, conclusions and suggestions
for future research are given in Chapter 6.

4

CHAPTER2
Introduction

The next generation of scientific applications will require more computing power and
storage than one single institution alone is able to afford. Grid environments consti-
tute one of the most promising computing infrastructures for such applications. With
the promise of high computational power at low cost, grid computing has become
increasingly widespread around the world. The grid computing paradigm enables the
sharing, selection, and aggregation of services of heterogeneous resources distributed
across multiple administrative domains and provides unified, secure, and pervasive
access to their combined capabilities. Grid computing, therefore, leads to the cre-
ation of virtual organizations by allowing geographically-distributed communities to
pool resources in order to achieve common objectives.

Grids are becoming almost commonplace today, with many projects using them for
production runs. The initial challenges of grid computing — how to run a job, how
to transfer large files, how to manage multiple user accounts on different systems —
have been resolved to the first order, such that users and researchers can now address
the issues that will allow more efficient use of the resources.

In Section 2.1 we introduce most important grid concepts. Following this, Section 2.2
presents some of the latest grid projects and initiatives. In Section 2.3, we present

5

6 2.1. Grids

the challenges of grid scheduling and review related work in the area. In Section 2.4
we give an overview of the current status of the execution of parallel and interactive
jobs on grids. Finally, we will review the main contributions of this thesis in Section
2.5.

2.1 Grids

Inspired by the electrical power grid’s pervasiveness, ease of use, and reliability, in
the mid-1990s the term “grid computing” [1] was proposed for an analogous infras-
tructure of wide-area parallel and distributed computing. A grid enables the sharing,
selection, and aggregation of a wide variety of geographically distributed resources
including supercomputers, storage systems, data sources, and specialized devices
owned by different organizations for solving large-scale resource intensive problems
in science, engineering, and commerce. Generally, for a system to be considered as
a grid, it must meet the following criteria [2]:

1. A grid coordinates resources that are not subject to centralized control and at
the same time addresses the issues of security, policy, payment, membership,
and so forth that arise in these settings.

2. A grid must use standard, open, general-purpose protocols and interfaces.
These protocols address fundamental issues such as authentication, authoriza-
tion, resource discovery, and resource access.

3. A grid delivers nontrivial quality service, i.e. it is able to meet complex user
demands (e.g. response time, throughput, availability, security, etc.).

The development of the grid infrastructure has become the focus of a large community
of researchers. The grid systems need to solve several challenges originating from
inherent features of the grid:

• Multiple administrative domains and autonomy. Grid resources are geograph-
ically distributed across multiple administrative domains and owned by differ-
ent organizations. The autonomy of resource owners needs to be honored along
with their local resource management and usage policies.

• Heterogeneity. A grid involves a multiplicity of resources that are heterogeneous
in nature and will encompass a vast range of technologies.

• Scalability. A grid might grow from a few integrated resources to millions.
This raises the problem of potential performance degradation as the size of
the grid increases. Consequently, applications that require a large number of

2. Introduction 7

geographically located resources must be designed to be latency and bandwidth
tolerant.

• Dynamicity or adaptability. In a grid, resource failure is the rule rather than
the exception. In fact, with so many resources in a grid, the probability of some
resource failing is high. Resource managers or applications must tailor their
behavior dynamically to use the available resources and services efficiently and
effectively.

The grid goes further than simply sharing resources and data. A grid enables new
scientific collaboration methods, termed e-Science [3], that tackle large scale scientific
problems. e-Science enables massively distributed computation, the sharing of huge
data sets almost immediately, and cooperative scientific work to gather new results.

2.1.1 Grid Architecture

Typically, grid architectures are arranged into layers [4] [5], where each layer builds
on the services offered by the lower layer, in addition to interacting and co-operating
with components at the same level.

Figure 2.1 shows the architecture stack of a grid proposed in [4]. It consists of five
layers: fabric, connectivity, resource, collective, and application.

Figure 2.1: Layered grid architecture.

Fabric layer. The fabric layer defines the interface to local resources, which may
be shared. These resources include computational resources, data storage, net-
works, catalogs, software modules, and other system resources.

8 2.1. Grids

Connectivity layer. The connectivity layer defines the basic communication and
authentication protocols required for grid-specific networking-service transac-
tions.

Resource layer. This layer uses the communication and security protocols (defined
by the connectivity layer) to control secure negotiation, initiation, monitor-
ing, accounting, and payment for the sharing of functions among individual
resources. The resource layer calls the fabric layer functions to access and
control local resources. This layer only handles individual resources, ignoring
global states and atomic actions across the resource collection pool, which are
the responsibility of the collective layer.

Collective layer. While the resource layer manages an individual resource, the col-
lective layer is responsible for all global resource management and interaction
with collections of resources. This protocol layer implements a wide variety of
sharing behaviors using a small number of resource-layer and connectivity-layer
protocols.

Application layer. The application layer enables the use of resources in a grid
environment through various collaboration and resource access protocols.

2.1.2 Grid Middleware

Grid middleware provides the services needed to support a common set of applica-
tions in a grid environment [6]. It hides the underlying infrastructure details and
offers transparent access to the distributed resources, allowing collaborative efforts
between organizations.

The middleware sits between the fabric and application layers of the grid architecture,
keeping them loosely-coupled with a set of interfaces and protocols. In the bottom
of the middleware is the myriad of underlying resources upon which the services are
built (local operating systems, networks, file systems, etc.), and the top is where the
applications are located.

Standard protocols of grid middleware, which define the content and sequence of
message exchanges used to request remote operations, have emerged as an impor-
tant and essential means of achieving the interoperability upon which grid systems
depend. In the late 1990s, grid researchers came together at the Grid Forum, which
later became the Open Grid Forum (OGF) [7]. The OGF has been instrumental in
the development of the Open Grid Services Architecture (OGSA) [8].

The most commonly used grid middleware are the Globus Toolkit [9] and UNICORE
[10]. Latest versions of both embrace the services framework based on the Web
Service Resource Framework (WSRF) [11] for the implementation of the OGSA.

2. Introduction 9

The Globus Toolkit

The Globus Toolkit [12] has emerged as a de-facto standard in grid middleware.
Initially developed by Ian Foster and Carl Kesselman as a result of I-WAY project
[13], Globus now enjoys a large research and development effort. The toolkit has
undergone four major revisions, with version 2.4 widely accepted as most stable, and
is extensively deployed in the academic community.

Globus is a metacomputing infrastructure toolkit providing basic capabilities and
interfaces in areas such as communication, information, resource location, resource
scheduling, authentication, and data access. The main components of Globus are:
Globus Security Infrastructure (GSI) [14], Globus Resource Allocation Manager
(GRAM) [15] and Monitoring & Discovery Service (MDS) [16] [17] .

The Globus Security Infrastructure (GSI) is based on public key concepts (PKI) and
X.509 [18] certificates. Each Globus-enabled network host, service, or user has a cer-
tificate which is used in authenticating that entity’s identity and authorizing access
to a resource. All messages communicated between Globus-enabled nodes or com-
ponents are also secured using Transport Layer Security (TLS) with corresponding
certificates. GSI supports delegation of credentials [19] for computations that involve
multiple resources and/or sites, thus allowing a single sign-on to use grid resources.

Globus Resource Allocation Manager (GRAM) can be seen as a common interface
among all the nodes of a grid. Application requirements, expressed with Resource
Specification Language (RSL) [15], are mapped onto local schedulers requests, pro-
viding a unique resource identifier contact string which can be used at a later time
to query the progress of the job and collect the job’s output. GRAM interfaces a
wide number of local schedulers, from the simple UNIX fork to Local Resource Man-
agement Systems (LRMS) such as Portable Batch System (PBS) [20], Load Sharing
Facility (LSF) [21], Condor [22], and Sun Grid Engine (SGE) [23], through a modu-
lar architecture. Once the job is submitted, GRAM captures its standard and error
outputs, and provides monitoring facilities for proper/improper termination.

The dynamic nature of grid environments forces toolkit components, programming
tools, and applications to adapt their behavior in response to changes in system
structure and state. Monitoring & Discovery Service (MDS) is designed to support
this type of adaptation by providing an information-rich environment in which infor-
mation about system components is always available. MDS is based on Lightweight
Directory Access Protocol (LDAP) [24] components within a hierarchical model.
Individual information providers report single metric measurements to a tree of dis-
tributed information service servers (called Grid Index Info Server and Grid Resource
Info Server). MDS is a central point of contact for locating resources, obtaining their
usage statistics and discovering the services that they are able to provide. The infor-
mation service servers are organized in a hierarchical structure as shown in Figure 2.2.

10 2.1. Grids

Each Grid Resource Info Server (GRIS) is registered with one Grid Index Info Server
(GIIS), that can in turn be registered with another GIIS. The top GIIS contains
information about all the lower levels.

Figure 2.2: Hierarchical MDS structure

Figure 2.3 shows the interaction of the Globus components: the Globus client locates
resources using MDS, querying GIIS and GRIS information repositories. With this
information, the client contacts the gatekeeper using GSI security services. The gate-
keeper implements the GRAM interface and interprets the RSL in the job manager
that will finally submit the job to the local resources.

Figure 2.3: Globus components interaction.

2. Introduction 11

Unicore

UNICORE (UNiform Interface to COmputing REsources) is a grid computing tech-
nology that provides seamless, secure, and intuitive access to distributed grid re-
sources such as supercomputers or cluster systems and to the information stored
in databases. UNICORE was primarily developed by two projects funded by the
German ministry for education and research. In various European-funded projects
UNICORE has evolved to a full-grown and well-tested grid middleware system over
the years. Currently, it is used in daily production at several supercomputer centers
world-wide.

Figure 2.4 illustrates the architecture of the UNICORE 6 grid middleware and its
Web Services-based interfaces that conform to OGSA concepts. Authenticated end-
user requests from different Web Services-based clients pass the UNICORE Gateway
and initiate the operations of services deployed within the UNICORE Service Con-
tainer.

The UNICORE Atomic Services (UAS) are the main interfaces that allow for the
exploitation of the core functionality by Web Services-based clients. This core func-
tionality includes job submission and control, file and data transfer, as well as storage
management. The UAS consists of several web services. First and foremost, the Tar-
get System Service (TSS) models a physical computational grid resource such as a
supercomputer. The TSS exposes various pieces of information, for example details
about the total numbers of CPUs, memory, etc. and preinstalled applications on the
grid enabled resource. Through the TSS, grid jobs described in the Job Submission
Description Language (JSDL) are submitted to one UNICORE site. The jobs are
controlled by the Job Management Service (JMS). To support data staging for JSDL
jobs, the Storage Management Service (SMS) is used to access storage within grid
infrastructures.

The function of the Network Job Supervisor (XNJS) as the execution back end is
to control and manage the state and persistency of jobs. Hence, one of the major
tasks of the XNJS is to parse JSDL documents and form the rather abstract job
descriptions into site specific commands. Authorization is accomplished by using the
enhanced UNICORE User Data Base (UUDB) in conjunction with extensible policy
validations. Then, all commands are forwarded to the UNICORE Target System
Interface (TSI) which is directly connected to the already existing batch sub-system
(e.g. LoadLeveler, Torque, or LSF) running on the supercomputer.

Many European and international research projects base their grid software imple-
mentations on UNICORE. Examples are EUROGRID [25], VIOLA [26], and the
Japanese NaReGI project [27]. These projects extended or are extending the set of
core UNICORE functions, including new features specific to their research or project
focus. The goals of such projects are not limited to the computer science community.

12 2.2. Grid Infrastructure Initiatives

Figure 2.4: UNICORE architecture.

Though both UNICORE 6 and the latest Globus Toolkit v4.2 use the same basic
technologies, they have very different security models, basic services and interfaces,
and are thus not directly interoperable.

2.2 Grid Infrastructure Initiatives

There are several grid projects going on in the world. Among them, some concentrate
on the development of software tools and middleware (as Globus and UNICORE re-
viewed above), while others are focused on the development of new infrastructure
so that scientists can make use of these facilities for their research. Many of these
initiatives are motivated by large-scale scientific projects that will involve the pro-
duction and analysis of data at an unprecedented scale. In this section we review
some of the most relevant of such projects.

2. Introduction 13

2.2.1 EGEE

Enabling Grids for E-sciencE (EGEE) is the largest multi-disciplinary grid infrastruc-
ture in the world, bringing together more than 120 organizations to provide scientific
computing resources to the European and global research community. EGEE com-
prises 250 sites in 48 countries with more than 68,000 CPUs available to some 8,000
users, 24 hours a day, 7 days a week.

Originally, EGEE used middleware based on work from its predecessor, the Euro-
pean DataGrid (EDG) project [28], and later developed into the LCG middleware
stack, which was used on the EGEE infrastructure early in the project. In parallel,
EGEE has developed and re-engineered most of this middleware stack into a new
middleware solution, gLite, now being deployed. The gLite stack combines low level
core middleware, with a range of higher level services. gLite integrates components
from current middleware projects, such as Condor and the Globus Toolkit, as well
as components developed for the LCG project.

The gLite grid services are organized as “node-types” that ensure easy installation
and configuration on the chosen platforms (currently only Scientific Linux versions
3 and 4.) Figure 2.5 shows the shows the basic building blocks of gLite. Each site in
the gLite testbed includes the following computational and data storage resources:

• A Computing Element (CE) [29] machine providing the interface between the
grid and the local processing farm. It acts as a generic interface to the cluster: a
Local Resource Management System (LRMS) (sometimes called batch system),
and the cluster itself, a collection of Worker Nodes (WNs), the nodes where
the jobs are run.

• An User Interface (UI) machine enabling users to access the testbed. This
machine provides Command Line Interface (CLI) tools to perform some basic
grid operations.

• A Storage Element (SE) [30] provides uniform access to data storage resources.
The Storage Element may control simple disk servers, large disk arrays, or
tape-based mass storage systems. Storage Elements can support different data
access protocols and interfaces.

• A Monitoring Box (MonBox) collects local data for monitoring and accounting
purposes.

Additionally, a set of core node-types provide global collective services:

• Workload Management System (WMS): accepts user jobs, assigns them to the
most appropriate resource, records their status, and retrieves their output.

14 2.2. Grid Infrastructure Initiatives

• Information Index (II): the root entry point for an MDS [17] information tree
that contains the resource information published by the CE and SE systems.
This information is essential for the operation of the whole grid, as resources are
discovered due to the II. The published information is also used for monitoring
and accounting purposes. Much of the data collected by the II conforms to the
GLUE Schema [31], which defines a common conceptual data model to be used
for grid resource monitoring and discovery.

• Virtual Organization Membership Service (VOMS) Server: a repository of au-
thorization information used by the testbed systems to manage information
about the roles and privileges of users within Virtual Organizations.

• LCG File Catalogue (LFC) [32]: a service that stores information about the
location of physical files in the grid. The WMS uses the LFC in order to make
scheduling decisions based on the location of the files required by the jobs. It
can be used also directly by the user through the UI and the CLI tools.

• RGMA Server [33]: currently used for accounting and both system- and user-
level monitoring. It also holds the same GLUE schema information as the II,
although it is not currently used to locate resources for job submission.

Figure 2.5: The gLite core and local services.

The basic objective of the EGEE project, and also of the preceding EDG project, is to
support the distributed processing of very large data volumes, like the experimental
data that will be recorded at the Large Hadron Collider at CERN [34]. This pro-
cessing, and the execution of corresponding simulations, are executed in batch mode.
Therefore the gLite middleware stack is oriented to this kind of batch execution of
jobs.

2. Introduction 15

2.2.2 OSG

The Open Science Grid (OSG) [35] consortium provides an open grid infrastructure
for science in the US. OSG combines resources at many US labs and universities and
provides access to shared resources for the benefit of scientific applications.

The OSG architecture is Virtual Organization (VO) based. Most services are in-
stantiated within the context of a VO. The OSG baseline services and reference
implementation can support operations within and shared across multiple VOs.

Within OSG, a Site is a set of processing resources, storage resources and services
co-located and centrally administered. Sites provide interfaces allowing remotely
submitted jobs to be accepted, queued, and executed locally. The priority and poli-
cies of execution are controlled both by the VO and the site itself. VO policies are
defined by “roles” given to the user through the VOMS service. Site policies and
priorities are defined by mapping the user and the user’s roles to specific accounts
used to submit the job to the batch queue. OSG supports the Condor-G job submis-
sion client [36], which interfaces to either the pre-web service or web services GRAM
Globus interface at the execution site. Job managers at the backend of the GRAM
gatekeeper support job execution by local Condor, LSF, PBS, or SGE batch systems.

Storage Elements are physical sites where data is stored and accessed. Examples are
physical file systems, disk caches, and hierarchical mass storage systems. Storage
Elements manage storage and enforce authorization policies over who is allowed to
create, delete, and access physical files. They enforce local as well as VO policies for
the use of storage resources. They guarantee that physical names for data objects
are valid and unique on the storage device(s), and they provide data access.

The OSG capabilities and schedule for development are driven by US participants
in experiments at the Large Hadron Collider, currently being built at CERN. As in
the case of EGEE, it is oriented towards the batch processing of very large amounts
of data.

2.2.3 DEISA

The Distributed European Infrastructure for Supercomputing Applications (DEISA)
[37] research infrastructure is constituted of a number of leading national supercom-
puters in Europe, interconnected with a high bandwidth point to point network
provided by GEANT [38] and the National Research Networks (NRENs). High
bandwidth network connectivity is required to guarantee the high performance of
the distributed services, and to avoid performance bottlenecks.

The DEISA consortium follows a hierarchical strategic approach for the deployment

16 2.2. Grid Infrastructure Initiatives

and the evolution of the infrastructure. It is structured as a layer on top of the
national supercomputing services, and it coexists with them. This infrastructure
addresses the computational challenges that require the coordinated action of the
different national supercomputing environments and services for both efficiency and
performance, taking into account a few very basic strategic requirements:

• the necessity of the fast deployment of a persistent, production quality super-
computing infrastructure with continental scope

• the coexistence of the European infrastructure with national services, which
requires reliability and non-disruptive behavior

• user transparency (users should not be aware of complex grid technologies) and
applications transparency (minimal intrusion on applications, which, being part
of the corporate wealth of research organizations, should not be strongly tied
to an IT infrastructure)

The DEISA Grid incorporates several different processors and operating systems
(IBM Linux on PowerPC, IBM AIX on Power4-5, SGI Linux on Itanium, and NEC
vector systems). DEISA has deployed middleware based on UNICORE that enables
the transparent access to distributed resources, high performance data sharing at a
continental scale, and transparent job migration across similar platforms. The next
planned actions are the deployment of a co-scheduling service (synchronizing remote
supercomputers) and high performance data transfer services across sites.

2.2.4 CrossGrid and Interactive European Grid

The projects described above do not address a specific important point in the e-
Science needs of researchers: to generate the final results of many studies, they need
to perform complex interactive analysis and simulations that may include visualiza-
tion, parameters tuning, etc. Both CrossGrid [39] and Interactive European Grid
(int.eu.grid) [40] projects aim at enabling such interactive analysis in grid environ-
ments.

CrossGrid

The primary objective of the CrossGrid Project (2002-2005) was twofold: to further
extend the grid environment to interactive applications, and to extend the effort
to 11 European countries. The applications were characterised by the interaction
of a person with a processing loop. They required a response from the computer
system to an action by the person under a variety of different time scales; from real

2. Introduction 17

time through intermediate to long term, they were simultaneously compute- as well
as data-intensive. Examples of these applications are: interactive simulation and
visualization for surgical procedures, flooding crisis team decision support systems,
distributed data analysis in high-energy physics, and air pollution combined with
weather forecasting.

The CrossGrid project addressed user-friendly grid environments. Portal access to
the grid infrastructure and user applications, independent of the user location is very
important to be practical. As a major result in this area, the Migrating Desktop [41]
was developed. The Migrating Desktop is an advanced, user-friendly environment
that serves as a uniform grid working environment independent of specific grid in-
frastructure. It uses a Java-based GUI designed specifically for mobile users, and it
is platform independent. It is a complex environment that integrates many tools and
allows work with many grids both transparently and simultaneously.

The CrossBroker, was developed as a significant extension to the resource broker
originally developed by the European DataGrid Project [42]. The CrossBroker was
used in production services of the CrossGrid after being validated by several project
partners. This initial release included support for the execution of parallel applica-
tions using MPI [43], running either inside a cluster (using MPICHP4 [44])or across
different sites (using MPICH-G2 [45]). It also included interactivity services that
allowed the execution of remote applications as if they were local.

The CrossGrid international distributed testbed [46] [47] shared resources across six-
teen European sites, which ranged from relatively small computing facilities in uni-
versities to large computing centers, offering an ideal mixture to test the possibilities
of the grid framework. National research networks and the high-performance Euro-
pean network, Geant [38], assured the inter-connectivity between all sites. Figure 2.6
shows a map with the different testbed sites. The CrossGrid testbed included a total
of approximately 200 CPUs and a distributed storage capacity above 4 Terabytes.

Interactive European Grid

The aim of the Interactive European Grid (i2g) project [48] is to deploy a production
quality e-infrastructure, interoperable with existing environments using gLite, while
providing advanced support for scientific applications. Of particular interest are in-
teractivity, parallel execution, and graphical visualization. The project has exploited
and consolidated the main CrossGrid achievements, such as the CrossBroker and
the Migrating Desktop, to provide intra-cluster support and intercluster support for
parallel applications, visualization and handling of video streams to support graph-
ical applications, coupled with a mechanism to support on the fly response to user
interaction.

18 2.2. Grid Infrastructure Initiatives

Figure 2.6: The CrossGrid Testbed sites

As in the CrossGrid project, a set of applications that benefit from the deployment of
an infrastructure such as that of i2g was identified. This set of representative applica-
tions belong to five research areas: high energy physics, nuclear fusion, astrophysics,
environmental science, and medical applications. All of them require graphical dis-
play and visualization to some extent, and all make heavy use of MPI. Apart from
the existing middleware developed previously, new software has been created in order
provide the required services for applications.

Two significant new developments in i2g are mpi-start [49] and i2glogin [50]. Mpi-
start is a software layer that hides all the heterogeneity inherent to grid hardware and
software set up (file system, MPI implementation, etc.), and it allows for flexible and
transparent use of MPI parallel applications. The consortium has chosen to adopt
OpenMPI [51] as its parallel library implementation, because its modular approach
makes it well suited for heterogeneous environments like the grid. However, mpi-start
can also handle MPICH, as is the case with EGEE, which has quickly adopted this
solution for application clusters with a demand for parallel support.

Support for interactivity and visualization is achieved using the i2glogin middleware
together with the Grid Video (GVid) codec [52]. The i2glogin middleware allows
fully interactive connections to the grid, with functionality comparable to that of
ssh, but without the overhead of a server side running on top of every grid node.
The Grid Video, or Gvid, codec encodes the visualization within a video stream,

2. Introduction 19

saving bandwidth, and sends the output to any grid resource, for example to EGEE
UIs. It supports mouse, keyboard and GUI events, which are transported over the
network by i2glogin.

The i2g infrastructure [53] includes two independent testbeds: production and devel-
opment. The production testbed is composed of clusters at nine different sites (see
Figure 2.7), and it intends to provide users with the quality of service they demand.
Each cluster deploys different CPU architectures (Xeons, Opterons, Pentium Ds)
and uses their preferred Local Resource Management System for job management
control. This distributed production infrastructure represents more than 700 CPU
cores and 16 TB of storage.

Figure 2.7: The i2g infrastructure map.

The development testbed aims at providing a realistic, yet flexible environment. It
includes four clusters and is used to support the testing and integration of the mid-
dleware, as well as to allow early access to the new middleware functionality expected
to become available in production. The int.eu.grid infrastructure architecture relies
on the same basic building blocks as EGEE. The i2g collaboration has enhanced
preexisting EGEE services and deployed some additional ones.

20 2.3. Grid Scheduling

2.3 Grid Scheduling

As grids become almost commonplace today, with many projects using them for pro-
duction runs, grid scheduler (or broker) services are needed to free the users from the
cumbersome work of job handling. In traditional computing systems, resource man-
agement is a well-studied problem. Resource managers such as batch schedulers and
workflow engines exist for many computing environments. These resource manage-
ment systems are designed to operate under the assumption that they have complete
control over a resource and can thus implement the mechanisms and policies needed
for effective use of that resource in isolation. Unfortunately, this assumption does not
apply to the grid. A grid scheduler must make selection decisions involving resources
over multiple administrative domains, in an environment where it has no control
over the local resources, where the resources are distributed, and where information
about the systems is often limited or dated.

Grid scheduling is defined as the process of making scheduling decisions involving
resources contained within multiple administrative domains. This process can in-
clude searching multiple administrative domains in order to use a single machine, or
scheduling a single job to use multiple resources at either a single site or multiple
sites. From a grid point of view, a job is anything that needs a resource. Schedul-
ing, in such an environment, requires a different approach than is presently used in
distributed systems. This approach is complex due to various factors, specifically:

Multiple layers of schedulers. Grid resource management involves many players
and possibly several different layers of schedulers. At the highest level are grid-
level schedulers that may have a more general view of the resources but are
“far away” from the resources where the application will eventually run. At
the lowest level is a local resource management system that manages a specific
resource or a set of resources. Other layers may be between these, for example
one to handle a set of resources specific to a project. At every level additional
people and software must be considered.

Site autonomy. Computing resources are geographically distributed under differ-
ent ownerships, each having its own access policy, and cost. Every resource
owner will have a unique way of managing and scheduling resources, and the
grid schedulers must ensure that they do not conflict with resource owner’s poli-
cies. The grid scheduler does not have ownership or control over the resources,
making the scheduling process harder. Site autonomy and the possibility of
failure during allocation introduces a need for specialized mechanisms for al-
locating resources, initiating computation on those resources, and monitoring
and managing those computations.

Shared resources and variance. The resources are not dedicated to the grid sche-
duler. In most cases, the resources are shared among many users and projects.

2. Introduction 21

Such sharing results in a high degree of variance and unpredictability in the
capacity of the resources available for use. The heterogeneous nature of the
resources involved also plays a role in varied capacity.

Conflicting performance goals. Grid resources are used to improve the perfor-
mance of an application. Often, however, resource owners and users have differ-
ent performance goals: from optimizing the performance of a single application
for a specified cost goal, to getting the best system throughput or minimizing
response time. In addition, most resources have local policies that must be
taken into account. Indeed, the policy issue has gained increasing attention.
How much of the scheduling process should be done by the system, and how
much by the user? What are the rules for each?

Most systems described in the literature follow a similar pattern of execution when
scheduling a job on a grid. There are typically three main phases as described in
[54]:

1. Resource discovery. In this first stage of scheduling, a list of potential resources
is generated. This phase filters the resources, by taking into account the if the
user is authorized to use them and basic job requirements (such as operating
system, architecture, RAM).

2. Information gathering and selection. The dynamic information about the dis-
covered resources is gathered in order to select which resource or resources will
be used for the execution of the application.

3. Job execution. The last stage includes submission of the job to the selected
resource or resources, file staging, monitoring the execution of the application,
and cleanup once it has finished.

2.3.1 Grid scheduling systems

Most of the existing grid scheduling systems are focused on the execution of sequential
jobs. Here we summarize some of the ones that have appeared in recent years.
Although some of them allow the execution of parallel or interactive jobs, none of
them consider those jobs as a single entity.

Globus

The Globus Toolkit [12] does not provide the functionality of a Grid Resource Man-
agement System, however it is used in many cases for the “manual” scheduling of

22 2.3. Grid Scheduling

jobs. The user performs the scheduler functions: the discovery and selection of
sites, submission of jobs to the remote resources, monitoring the execution, and the
gathering of the output files.

Globus also includes a mechanism for co-allocation called Dynamically Updated Re-
source Online Co-allocator (DUROC) [55]. DUROC provides basic co-allocation
methods implemented as a set of libraries to be linked with applications and submis-
sion tools, and it does not provide resource brokering or fault tolerance. DUROC is
used as a building block for grid-enabled MPI implementations such as MPICH-G2
[45].

Condor-G

Condor [22] is a high throughput computing environment that allows users to take ad-
vantage of both dedicated and non-dedicated computers. Unlike many other schedul-
ing systems, the use of non-dedicated computers adds complexity to Condor: jobs
may be preempted before they have fully completed and the inevitable heterogeneity
of the resources available.

Condor-G [36] provides a front-end to a computational grid. It can manage jobs
destined to run at distributed sites from a local Condor queue. It provides job
monitoring, logging, notification, policy enforcement, fault tolerance, and credential
management. Condor-G allows users to specify a single grid site as a destination
for jobs. However, when users have a variety of sites to choose from and there is
no other resource broker to make the decision, Condor-G can use matchmaking to
decide which grid site a job should run on, if the grid sites are advertised in Condor
via an external process. Currently, Condor-G is able to interact with different grid
middleware, including Globus and UNICORE.

NIMROD/G and Gridbus

Nimrod/G [56] is resource broker for managing and steering task farming applications
such as parameter studies on computational grids. It uses an economy-driven model
for resource management, and it is used in a framework called Grid Architecture
for Computational Economy (GRACE) [57]. Nimrod/G has a hierarchical machine
organization and uses a computational market model for resource management. It
uses the services of other systems such as Globus and Legion [58] for resource dis-
covery and dissemination. State estimation is performed through heuristics using
historical pricing information. The scheduler tries to assign the “cheapest” resource
of those available to run each job, by taking into account the job QoS requirements,
like deadline and budget.

2. Introduction 23

GridBus [59] is a resource broker developed from Nimrod/G, specializing in jobs that
handle large amounts of data. It offers the services of locating data sources as well
as access to those sources while the jobs are running.

Nimrod/G and GridBus automatically process the execution of jobs within a grid
environment. However, they are focused on parameter sweep applications and data-
intensive applications.

AppLeS

The AppLeS [60] project primarily focuses on developing scheduling agents for in-
dividual applications on production computational grids. AppLeS agents use appli-
cation and system information to select a viable set of resources. Applications have
embedded AppLeS agents that accomplish resource scheduling on the grid.

The AppLeS framework contains templates that can be applied to applications which
are structurally similar and have the same computational model. The templates allow
the reuse of the application-specific schedulers within the AppLeS agents. Templates
have been developed for parametric and master/slave applications, where each task
is an independent, sequential job. No parallel job execution is supported.

The AppLeS scheduler maps jobs to resources, and the problem of allocating those
resources is given to a meta-scheduler.

GrADS

The Grid Application Development Software Project (GrADS) [61] provides both
programming tools and an execution environment to ease program development for
the grid. It replaces the the discrete, user controlled stages of preparing and executing
a grid application with an end-to-end software-controlled process. The project seeks
to provide tools that enable the user to focus only on high-level application design,
without sacrificing application performance.

The GrADS architecture incorporates user problem solving environments, Grid com-
pilers, schedulers, performance contracts, performance monitors, and reschedulers
into a seamless tool for application development. As in the case of the AppLeS
system, scheduling occurs at the application level.

24 2.4. Execution of Parallel and Interactive jobs on Grids

GridWay

GridWay [62][63] is a meta-scheduler which allows the execution of jobs in diverse
grid environments. It performs the resource discovery and selection, job submission,
job monitoring and termination, and it has a modular architecture that enables the
usage of different grid architectures with a single access point.

gLite WMS

The gLite WMS (Workload Management System) [64] is the evolution of the LCG-
RB [65] that was developed within the European DataGrid project [28]. It does grid
resource management, specializing in the execution of large batch applications. It
takes into account the data requirements of applications. Jobs are considered on a
FCFS basis, and the possibility of managing DAGs with Condor DAGMan exists.
The gLite WMS has a monolithic architecture that does not allow the execution of
parallel jobs. Condor-G is used as a front-end to the remote sites.

KOALA

KOALA [66][67] is a co-allocating scheduler that permits the execution of parallel
jobs within a multicluster architecture. Developed to manage the resources of the
DAS-2 [68] testbed in the Netherlands, it performs a system level scheduling given its
knowledge of the entire system. KOALA includes two policies for the co-allocation of
parallel applications: a Close-to-files policy where the location of input files is taken
into account, and a Worst Fit policy. Both policies only consider free resources.

KOALA’s mechanisms and policies are mostly oriented towards a homogeneous en-
vironment such as the DAS-2.

2.4 Execution of Parallel and Interactive jobs on Grids

In the previous section we outlined some of the recent grid resource management
systems. Most of them do not consider the execution of parallel and interactive
jobs, although users would greatly benefit from this capability. In this section we
present the current efforts for executing such jobs on grids, and we review the main
challenges.

2. Introduction 25

2.4.1 Parallel Jobs

Grid environments open the possibility of running parallel applications which can
efficiently use many processors, taking advantage of the different resources composing
a grid. In order to achieve this, a Grid Resource Management System (GRMS) must
be able to co-allocate the resources of different administrative domains.

Using resources from different sites creates a highly heterogeneous environment. Both
the computing and network resources are heterogeneous. The wide-area communi-
cation has a clear impact on the efficiency of the parallel applications.

On the one hand this impact has been studied in recent research of applications
designed without considering the use of low latency links between processes. Ernem-
mann et al. [69] used simulation to compare the performance of co-allocated parallel
applications to applications executed within the same cluster. They conclude that
the usage of multiple sites can improve the results ,as long as the increase in execu-
tion time due to communication overhead is limited to a 25%. The simulations in
[70] conclude that co-allocation is beneficial, as long as the number and sizes of job
components, as well as the slowdown of application due to the wide-area links are
limited.

On the other hand, the development of applications designed to consider wide-area
links obtain good results when executing in such environments. In [71], general
communication reduction and latency hiding techniques are explored for applications
originally intended for a single cluster. The use of hierarchical approaches with
master/worker has also been demonstrated to scale and efficiently uses the resources
[72] when executed on several clusters.

Message Passing Interface (MPI) [73] is a widely used standard library for parallel
application communication. Many implementations of MPI exist, and most of them
are designed for clusters and supercomputers. Open MPI [51] and MPICH [44] are
widely adopted by the high performance computing community and are two of the
most important today.

Open MPI is a recent, open source MPI-2 implementation centered around compo-
nent concepts. It is developed by a consortium of research, academic, and industry
partners using prior research from the LAM/MPI [74], LA-MPI [75] and FT-MPI
[76] projects. Its component architecture enables the run-time composition of inde-
pendent software add-ons, supporting a heterogeneity of networks, job schedulers,
and operating systems.

MPICH is a freely available, portable implementation of MPI developed at Argonne
National Laboratory. It is a complete implementation of the MPI-1 standard, and
it includes most of MPI-2. Its main goal is to provide an MPI implementation
that efficiently supports different computation and communication platforms while

26 2.4. Execution of Parallel and Interactive jobs on Grids

maintaining portability.

The heterogeneity of grid environments is also considered by other MPI implemen-
tations, such as MPICH-G2 [45], PACX-MPI [77], GridMPI [78], and MagPIe [79].

MPICH-G2 is the most prominent of the grid computing implementations. It is a
complete implementation of the MPI standard using the MPICH implementation as
its basis. MPICH-G2 hides heterogeneity by using the Globus Toolkit services for
such purposes as authentication, authorization, executable staging, process creation,
process monitoring, process control, communication, and remote file access. The
CrossBroker manages the submission of MPICH-G2 applications by handling the
executable staging, process creation, monitoring, and control of applications. The
use of MPICH-G2 is limited to sites where the Globus middleware is installed. The
major limitation of MPICH-G2 is the need for public IP addresses on the machines
involved in the computation.

PACX-MPI was developed in order to allow one MPI application to be run on vary-
ing hardware architectures. The software adds two additional MPI processes for
each cluster that do not execute the user’s application code: process 0, in charge of
incoming communication, and process 1 in charge of the outgoing communication.
The communication pattern of a broadcast in PACX-MPI is shown in Figure 2.8. In
the Figure, two sites, A and B, are executing a PACX-MPI application with 8 user
processes that are numbered globally (grey box numbers). Two additional processes
are added at each site to handle communication. The white boxes show the local
MPI process number for each of the sites. When the processor number 3 (global
rank) performs a broadcast, it sends data to the local processes, including the local
process number 1. This process in turn sends the data to the remote site. Data
arrives at local process 0 in site B and will be distributed within that site. The
communication between the clusters is done over TCP connections.

Figure 2.8: Pacx Communication Structure

2. Introduction 27

PACX-MPI does not have external dependencies and simply requires recompiling the
MPI code with the corresponding wrappers, thus allowing the use of highly efficient
MPI implementations in each of the clusters and handling the interconnectivity with
only one entry point. These characteristics make PACX-MPI well suited for grid
sites where the machines use private IP addresses. PACX-MPI includes a mediator
process, called startup-server, that handles the initial connection required among the
various clusters that comprise and execute the application.

2.4.2 Interactivity in Grid Environments

The execution of interactive applications within grid environments has received little
attention to date. However, users would like to see the intermediate results of their
applications in minutes rather than in hours, even if they have to process a significant
data volume or apply complex algorithms. The experience of several projects prove
that researchers can benefit from access to powerful resources in an interactive mode
at the final stage of their analysis in a wide range of applications [80][81][82][83].

There are currently several mechanisms (such as SSH [84] or VNC [85]) that can be
used to create interactive sessions between remote machines. Unfortunately, these
mechanisms are not generally suitable for grid environments due to performance
and/or administrative limitations. The use of VNC, for instance, introduces a sub-
stantial overhead, which results in a slow and sometimes unreliable graphical display
when used in a wide area network. The standard distribution of SSH is not grid-
enabled, and it does not support grid-related authentication. Even the use of an
additional package [86], which adds support for the Globus Grid Security Infrastruc-
ture (GSI), does not solve this problem, because users do not have personal accounts
on the remote machines where their jobs may run. Typically, computing nodes are
managed through a local batch system, but such machines do not have accounts that
are available to external users.

The possibility of running a user’s application in the near future has been explored
in [87], where the creation of a special Globus jobmanager with interactive response
is proposed. This approach is limited as all sites must adopt the solution, and
in the case of high occupancy of resources it cannot provide appropriate services.
The CrossBroker provides interactive response without special requirements on the
remote sites.

The execution of interactive applications in grid environments is treated in [88], where
the use of virtual machines is proposed in order to run applications. The problem of
allocation of the virtual machines is not considered.

In [89], an architecture for the execution of interactive applications is presented. The
architecture is focused on the creation of interactive sessions at the remote resources,

28 2.5. Contributions

and the resource scheduling is not considered.

2.5 Contributions

The execution of parallel and interactive applications in a grid environment arises
from a set of challenges that have not been addressed completely before. Most of
the Grid Resource Management Systems are devoted to the execution of serial batch
applications or single-site parallel applications. The scheduling of interactive jobs is
not addressed by current systems. In this work we propose a comprehensive solution
that deals with both interactive and parallel jobs. The main contributions of this
work are the following:

1. The definition of an architecture for the specification and execution of par-
allel and interactive jobs. This architecture deals with the heterogeneity of
resources, applications, parallel library implementations, and an interactive
mechanism by using different modules: Application Launchers, Job Starters
and Interactive Agents. The combination of these modules allows the execu-
tion of a wide range of applications within grid environments.

2. A job definition language that allows the specification of jobs conforming to
the proposed architecture. The language is an extension of the semi-structured
JDL language from the European Data Grid project.

3. A mechanism for multiprogramming in grid environments. This mechanism
allows the fast start of interactive jobs, even under conditions of high occupancy
on the resources, and the co-allocation of parallel jobs without the need for
reservation mechanisms on the resources.

4. An implementation of the architecture and the multiprogramming mechanism
in the CrossBroker GRMS. The implementation leverages existing efforts in
the area by taking advantage of already available components. The CrossBro-
ker has been used as grid scheduler in European grid initiatives as already
presented.

5. An experimental study where we measure the benefits of the proposed mecha-
nisms in grid environments. We also measure the overhead introduced by the
different components of the system.

2.6 Conclusions

In this chapter we have introduced the required background material to read the
remainder of this work. Grid computing is an important platform for the next gen-

2. Introduction 29

eration of scientific applications, where new challenges arise due to the distributed
and heterogeneous nature of the environment. The middleware is an essential part of
the architecture on this computing platform, with Globus being the current de-facto
standard middleware. We have also presented the two grid initiatives in which this
work was developed. Grid Scheduling Systems free the user from the task of job
handling. Traditional resource management systems operate under the assumption
that they have control over the resources, however this does not apply to grid envi-
ronments. We have outlined some of the recent work in grid scheduling and we have
reviewed the different approaches for running parallel and interactive jobs in grids.

30 2.6. Conclusions

CHAPTER3
An Architecture for Parallel and Interactive Jobs

In this chapter we propose an architecture for managing interactive and parallel jobs
in a grid environment. In the first section, the relevant components for the execution
of jobs within the grid environment are described. In Section 3.2, we present a model
for both the jobs and the components for their execution within grids. A language
that allows the specification of such jobs is presented in Section 3.3. Finally, in
Section 3.4, the architecture for a Grid Resource Management System (GRMS) that
schedules these parallel and interactive jobs is described.

3.1 The Grid Environment

Our system model is related to several projects that share similar basic middleware
such as EGEE, OSG, or int.eu.grid. The system (or testbed) for those projects was
outlined in Section 2.2. Here we describe the components relevant to job management
in such environment. It should be noted that the system architecture is generic
enough to be extended to other kinds of testbeds based on different middleware.
Figure 3.1 diagrams the architecture of the environment.

31

32 3.1. The Grid Environment

Figure 3.1: Grid environment architecture

Every site (or resource1) has an entry point or Computing Element (CE) where a
Globus Gatekeeper [15] is installed. The Gatekeeper sits between the local compute
farm and the external users. Jobs are submitted from a Grid Scheduler to the
Globus Resource Allocation Manager (GRAM) service. The GRAM service in turn
submits the jobs to a Local Resource Management System (LRMS) such as PBS,
Condor, or SGE. The LRMS manages a set of Worker Nodes (WN) where the jobs
are actually executed. The gatekeeper also has a Globus Monitoring & Discovery
Service (MDS) information system that publishes information about local resources
and user authorization to a central information repository called the Information
Index (II). The information published in the Information Index follows the Glue
Schema [31] specification. The Glue Schema is proposed by the Open Grid Forum
(OGF) [7] as the standard representation model for resources in grid environments. It
includes both static attributes (such as number of CPUs, system architecture, LRMS,
and available software) and dynamic attributes (such as system load, number of jobs
running or waiting, number of free CPUs, and estimated response times).

Storage resources at each site are handled by a Storage Element (SE). SEs are ac-
cessed via standard protocols such as gridFTP [90] or RFIO [91]. Files stored within
the SEs are accessed using unique grid identifiers called a GUID (Grid Unique IDen-
tifier) or via human readable aliases called Logical File Names (LFN). Translation

1Throughout this work, we use the terms “site” and “resource” interchangeably

3. An Architecture for Parallel and Interactive Jobs 33

from a GUID or LFC to a physical location is performed using a central Replica
Location Service (RLS).

The job submissions are made from a User Interface that connects to a grid scheduler.
This grid scheduler performs all the actions needed in order to execute a job without
any further user intervention.

3.2 The Job Model

There are two job classifications in our model: structural and functional. The first
classification is determined by the structure of the application such as the number
of CPUs it uses and/or how these CPUs are spread across the grid. This structure
is not malleable, and it cannot change during the job’s runtime. The functional
classification is determined by the way the job interacts with the user during its
runtime.

Jobs may be classified according their structure under the following types:

Normal. Executed on a single resource and requests a single CPU.

Parallel. Uses more than one CPU at the same time. Parallel jobs consits of one
or more job components, each of them executed in a set of CPUs.

Workflow. Consists of a set of inter-dependent jobs, where information or tasks are
passed from one job to another for action, according to a set of rules. The jobs
that comprise a workflow can be parallel or normal depending on the CPUs
needed by each of them.

Parallel jobs can be further classified. The different cases are shown in Figure 3.2
and discussed below:

Figure 3.2: Parallel job types

34 3.2. The Job Model

1. Intra-cluster: these parallel jobs have a single component that is executed on
a single cluster. All CPUs requested for the job must be allocated within the
same resource.

2. Inter-cluster: these jobs consist of one or more components that can be executed
over different clusters simultaneously. Depending on the component flexibility,
we can differentiate between Flexible or Non-Flexible jobs:

• Flexible job: the job only specifies the total number of processors it re-
quires. It is left to the scheduler to split up the job if necessary and to
decide on the number of components and the number of processors for
each component.

• Non-Flexible job: the job specifies the number of components and the
number of CPUs for each component. This job classification is useful for
applications that require specific resources.

Jobs have one of two functional classifications:

Batch. jobs that are set up so that they can be run to completion without hu-
man interaction, and so that all input data is preselected through scripts or
command-line arguments.

Interactive. jobs that require the interaction of the user during execution. This
interaction includes the steering of results while the job is running or the mod-
ification of the application parameters and on-line behavior.

Both structural and functional classifications are combined in order to define one
job completely. Table 3.1 depicts the possible combinations. The only job type that
does not allow interactivity is workflow.

Normal Parallel Workflow
Batch X X X
Interactive X X

Table 3.1: Job structural and functional types

In order to support all combinations in our architecture, Job Starters and Application
Launchers handle the structural requirements of the jobs, while Interactive Agents
manage the functional requirements. They are described in detail in the following
sections.

3. An Architecture for Parallel and Interactive Jobs 35

3.2.1 Job Lifecycle

The lifecycle of a job is defined by a finite state machine shown in Figure 3.3. The
possible states are:

Submitted The job has been submitted to the scheduler.

Waiting The job has been received by a grid resource scheduler but does not have
resources assigned.

Ready The job has a list of execution resources and is submitted to the selected
resources.

Scheduled The Computing Element (or set of Computing Elements) has received
the job. The job is now in the LRMS queues.

Running The job is running at the remote sites.

Done Job has finished.

Cleared The user has received all of the job’s output files.

Aborted The job has been aborted due to an error during its execution or submis-
sion phases.

Canceled The user has canceled the job.

Figure 3.3: Job Lifecycle.

3.2.2 Job Starters and Application Launchers

Different types of applications have different characteristics that must be taken into
account when executing them on grid environments. The change rate of grid tech-
nology and the differences between systems makes it impossible to have a universal

36 3.2. The Job Model

way to start every job. Therefore, we introduce in our architecture the concept of
Job Starters (JS) and Application Launchers (AL), which hide the heterogeneity of
the grid and the applications and provides an easy extension mechanism for new
applications and systems, with minimal impact on the already existing framework.
A Job Starter and Application Launcher pair exists for every type of job supported
by the system.

Job Starters are responsible for initiating the applications at the Worker Node level.
They handle the details of dealing with the LRMS, as well as the application details
such as parallel communication library initialization or application invocation. Appli-
cation Launchers manage the grid level start up of applications utilizing a global view
of the job at the level of the grid scheduler. They assure that all the components of
a parallel job are submitted properly to the remote sites, handle any synchronization
procedures needed for the job, and monitor the application’s execution. Wide-area
communication between job components is also set up by the Application Launcher.
It supports these application types by knowing how to link the different components
among them using the communication libraries provided by the applications.

Figure 3.4 shows the relationship between the Application Launcher, the Job Starters,
and the user applications. In the Figure only one site is shown, but in the execution
of one job there will be the same number of sites as job components. The Application
Launcher submits the Job Starters to the all the Computing Elements of the Sites
involved in the execution of the application, as illustrated by arrow (1) in Figure
3.4 for one CE. The CEs will in turn allocate the local nodes, start the Job Starter,
shown in the Figure by arrow (2). This Job Starter deals with the specific LRMS
and application properties, and initiates one job component as illustrated by arrow
(3). This job component contacts the Application Launcher as illustrated by arrow
(4) in the Figure, in order to perform the synchronization and set up steps needed
to execute the entire application properly.

Application Launchers also deal with failures that may appear during job execution.
Both application errors and resource errors are handled. For some application types,
failures of components can be tolerated to some degree. Some failed components can
even be restarted on different sites without affecting the execution of the job. On
the other hand, for some application types such as parallel applications, the failure
of a single component can cause other components, or even the whole application,
to fail.

Additionally, application level scheduling may be implemented at the level of the
Application Launcher, mapping the application components to the resources, while
taking into account both resources and application characteristics.

3. An Architecture for Parallel and Interactive Jobs 37

Figure 3.4: Job Starters and Application Launchers

3.2.3 Interactive Agents

Although grid applications are executed on remote sites, the input/output of such
applications might be controlled locally, that is, from the submitting machine. This
way, users can interact with their applications while they execute remotely. In our
architecture we propose a split execution system, where an interactive session is
created between two software components: an agent and a shadow, as shown in Figure
3.5. The agent traps the input and output of an application, and forwards them to
a shadow process on another machine via the network. Under this arrangement, a
program can run on any networked machine and still execute as if it were running
on the same machine as the shadow.

Figure 3.5: Interactive Shadow and Interactive Agent

No restrictions are imposed on the interactive agent or shadow communication sche-
ma, but their implementation must take into account the system environment where

38 3.3. Job Description Language

they will be executed. At most sites, inbound network connections are forbidden
and outbound connections are allowed, but only within a limited range of ports. The
Job Starter is in charge of invoking the interactive agent at the moment required
by the application, and the interactive agent, in turn, is in charge of starting the
application. Figure 3.6 shows the interaction schema between Application Launchers,
Job Starters, and Interactive Agents. The user starts the Interactive Shadow in his
local machine and submits the job to a grid scheduler, illustrated by arrow (1) in
the Figure. Then the scheduler selects the sites for the execution and starts the
specific Application Launcher to submit the subjobs to each site. This is illustrated
by arrow (2) in Figure 3.6. In this example, two sites will be used, one with processes
from 0 to K and the other with processes from K+1 to N. The Job Starter will start
the job components in each site and will run the Interactive Agent at the first site
(the number of Console Agents depend on the application model and the JobStarter
must be aware of such details). Once this synchronization phase has finished, the
application can run and the Interactive Shadow and Interactive Agent will initiate
communication between them. This is illustrated by arrow (3) in the figure.

Figure 3.6: Interactive Job Execution

3.3 Job Description Language

Users describe their applications using the Job Description Language (JDL) [92]. The
JDL is a Condor ClassAd [93] based language, where a set of attributes define the
application to be executed. Originally developed in the European DataGrid project
[28], we have extended the format to allow the expression of the specific features of
our architecture for interactive and parallel jobs.

A ClassAd is a semi-structured data model, where a finite number of distinct at-

3. An Architecture for Parallel and Interactive Jobs 39

Type = "Job";
JobType = "Normal";
Executable = "my_app";
Arguments = "-n 356 -p 4";
StdOutput = "std.out";
StdError = "std.err";
InputSandBox = {"my_app"};
OutputSandBox = {"std.out", "std.err"};
Requirements = other.GlueHostBenchmarkSI00 >= 1000;
Rank = other.GlueHostFreeCPUs;
InputData = {"test-input.txt"};
ReplicaCatalog = pcrc.cern.ch;

Figure 3.7: JDL job description.

tribute names are mapped to expressions. The lack of a specific schema allows the
use of this language in heterogeneous environments such as grids. Moreover, the
possibility of arbitrarily nesting descriptions leads to a natural language for express-
ing resources and job aggregates or co-allocation requests. The ClassAd language
folds the query language into the data model, and therefore job requirements may
be expressed as attributes of the job.

The JDL is a ClassAd based language with a predefined set of attributes that express
the requirements of a job to be executed in a grid environment. Figure 3.7 depicts
an example of a simple job using the JDL.

A complete description of the JDL can be found in [92]. Here are description of
relevant ones for normal jobs:

• Type. This a string representing the type of the request described by the JDL.
The possible values are Job for normal and parallel jobs and DAG for workflows.

• JobType. String representing the type of the job described by the JDL. The
possible values are Normal and Parallel, and the default value is Normal. In
the original JDL specification, this attribute included information about the
job implementation or functional characteristics of the job, such as interactivity
or checkpointing.

• Executable. This is the name of the user executable. It can be an executable
pre-installed at the Worker Nodes or transferred from the submitting machine
if it is included in the InputSandbox of the job.

• Arguments. A string that contains all of the job command line arguments.

40 3.3. Job Description Language

• StdInput, StdOutput, and StdError are the names and paths of the files
that the application will use as standard input, output and error respectively.
Wildcards are not allowed. The value specified for StdError can be the same
as the one for StdOutput.

• InputSandBox. This is a string or a list of strings identifying the set of files
on the user’s local disk needed by the job for running, and hence needed to
be transferred to the Worker Node. The InputSandbox file list cannot contain
two or more files having the same name (even if on different paths), as when
transferred on the WN they would overwrite each other.

• OutputSandBox. This list of strings identifies the list of files generated by
the job on the WN, which need to be retrieved and copied back to the user’s
machine.

• Requirements. This attribute represents the job requirements for resources. It
is a boolean expression that uses C-like operators. The requirements expression
can utilize attributes that describe the resource prefixed with other.. All these
attributes should conform to the Glue Schema [31] that describe the Computing
Elements, since that format is used in the information repositories of the system
as stated in 3.1. This expression is evaluated during the scheduling of the
job. In the example depicted in Figure 3.7, the job requirement with the
other.GlueHostBenchmarkSI00 >= 1000 expression requires resources which
have a SpecInt 2000 benchmark of 1000 or larger.

• Rank. This is a floating-point expression that states user preferences on the
resources available to run the jobs. A higher numeric value equals a better
rank. As with Requirements, the Rank expression can utilize attributes that
describe the resources using the Glue Schema. In Figure 3.7 the job prefers
resources with more free CPUs using the other.GlueHostFreeCPUs expression.

• InputData. A list of files that the job will use during its execution. These are
logical file names that are stored in the grid storage systems and can be located
using replica location tools. The scheduler should try to minimize the transfer
time of these files by allocating sites near the physical location of the files. In
the example of Fig. 3.7, the application will use a file called test-input.txt.

• ReplicaCatalog. This attribute lets the job specify a particular catalog when
searching for the file replicas listed in the InputData attribute. In the example
of Figure 3.7, pcrc.cern.ch will be used as catalog.

3.3.1 Extended JDL

The definition of parallel and interactive jobs considered in the JobType attribute
of the original JDL lacked flexibility and did not allow the specification of our job

3. An Architecture for Parallel and Interactive Jobs 41

model correctly. Therefore we have introduced a set of extensions that enable the
model’s complete specification of jobs. These extensions can be classified into three
types:

1. Specification of parallel jobs,

2. specification of interactive jobs, and,

3. specification of workflows.

Parallel jobs

Parallel jobs need additional attributes. In Figure 3.8 a parallel job description
is shown. The NodeNumber attribute allows users to specify the number of nodes
on which their application will run. The SubJobType specifies the type of parallel
application used.

Type = "Job";
JobType = "Parallel";
NodeNumber = 23;
SubJobType = "pacx-mpi";
Executable = "my_app";
Arguments = "-n 356 -p 4";
StdOutput = "std.out";
StdError = "std.err";
InputSandBox = {"my_app"};
OutputSandBox = {"std.out", "std.err"};
Requirements = other.GlueHostBenchmarkSI00 >= 1000;
Rank = other.GlueHostFreeCPUs;

Figure 3.8: Parallel JDL job description.

The SubJobType attribute allows the automatic selection of a Job Starter and Ap-
plication Launcher for the job. The possible values of this attribute depend on the
final implementation of the Grid Resource Management System, and the types of
parallel jobs it supports. Currently, the allowed values for this attribute are:

1. openmpi. Defines an application linked with Open MPI;

2. mpich. An application linked with the MPICH library (ch p4 device);

3. pacx-mpi. An application that can run over multiple sites with PACX-MPI;

42 3.3. Job Description Language

4. mpich-g2. An inter-cluster application using the MPICH-G2 library;

5. plain. Intended for advanced users, the plain type allows the execution of
an application that does not use any of the other MPI implementations. The
scheduler will select an Application Launcher suitable for intra-cluster applica-
tions, or the user may specify a particular implementation with the ApplicationLauncher
attribute. Additionally, the user can specify the Job Starter using the two ad-
ditional attributes: JobStarter and JobStarterArguments.

Parallel inter-cluster applications are treated as flexible applications by default. If
the user wants to specify a non-flexible parallel application, the Subjobs attribute
in the JDL can be used as illustrated in Figure 3.9. This attribute contains a list of
ClassAds, which contains at least the NodeNumber attribute specifying the number
of nodes for the job component. Optionally, Requirements and Rank expressions
can be included in the component description. The Figure shows an example of an
inter-cluster application requiring 10 CPUs, 5 of them in a cluster with machines
that offer OpenGL support, and 5 of them in a cluster where machines have more
than 1 GByte of RAM, preferring sites with lower estimated response time.

SubJobs = {
[

NodeNumber = 5;
Requirements = Member("OpenGL",

other.GlueHostApplicationRunTimeEnvironment);
]
[

NodeNumber = 5;
Requirements = other.GlueHostMainMemoryRAMSize >= 1024;
Rank =- other.GlueCEStateEstimatedResponseTime;

]
}

Figure 3.9: SubJobs specification in JDL.

Interactive jobs

Independent of the type of application (parallel or sequential), users may require in-
teraction with the job during its execution. The input and output of the application is
redirected using an Interactive Agent. A boolean Interactive attribute in the JDL
declares the job as interactive when necessary. The scheduler uses this information
in order to use priority scheduling for such jobs. Additionally, the user must specify

3. An Architecture for Parallel and Interactive Jobs 43

the agent with the InteractiveAgent and InteractiveAgentArguments attributes.
The first attribute specifies the type of agent that the job will use, while the second
one defines any additional information needed for the execution of the job, such as
the location of the user’s machine. Figure 3.10 shows an example of a 5 CPU Open
MPI interactive job that uses glogin [94] as its Interactive Agent. glogin is a tool
that allows the creation of interactive shells at remote sites using Globus services. It
has been adapted for use in our architecture as an interactive agent. The arguments
for this agent are the machine and port where the Interactive Shadow is listening for
communication with the agent; in this case the IP address is 158.109.65.150 and the
port is 24353. The Interactive Agent is included in the InputSandbox, but it could
also preinstalled be at the remote machine.

Type = "Job";
JobType = "Parallel";
NodeNumber = 5;
SubJobType = "openmpi";
Executable = "interactive_mpi";
Arguments = "-n 356 -p 4";
InteractiveAgent = "glogin";
InteractiveAgentArguments = "-r 158.109.65.150 -p 24353";
InputSandBox = {"interactive_mpi", "glogin"};
Rank = other.GlueHostFreeCPUs;

Figure 3.10: Interactive JDL job description.

Workflows

There are many complex applications that consist of inter-dependent jobs that coop-
erate to solve a particular problem. The completion of a particular job is needed in
order to start the execution of jobs that depend on it. This kind of application work-
flow may be represented in the form of a DAG – a directed acyclic graph. A DAG is
a graph with one-way edges that may not contain cycles. It can be used to represent
a set of programs where the input, output, or execution of one or more programs is
dependent on one or more other programs. The programs are nodes (vertices) in the
graph, and the edges (arcs) identify the dependencies of these programs. Figure 3.11
presents an example DAG that consists of 4 nodes on 3 levels. The execution of the
indicated DAG consists of three successive steps:

1. Execution of the node NodeA at the first level.

2. Parallel execution of two nodes (NodeB1, NodeB2) at the second level. The

44 3.3. Job Description Language

execution can start if and only if the execution of NodeA (on which these nodes
depend) is successful.

3. Execution of the last node (NodeC) from the third level. The execution can
start if and only if the execution of all nodes at level two (on which this node
depends) is successful.

Figure 3.11: Example DAG.

The description of a workflow has two elements: the specification of dependencies
between computations (node dependencies) and the specification of each computation
(node description). An example JDL file for this workflow is specified in Figure 3.12.

In general, each dependency is specified as a pair of elements positioned between
braces, signifying that the second element depends on the first. The first element,
as well as the second, may be formed by a set of elements written in brackets. This
indicates a dependence of many-to-one, one-to-many or many-to-many elements.
Therefore, more than one specification exists for this example DAG:

• {{NodeA,NodeB1}, {NodeA,NodeB2},
{NodeB1,NodeC}, {NodeB2,NodeC}}

• {{NodeA,NodeB1}, {NodeA,NodeB2}, {{NodeB1,NodeB2},NodeC}}

• {{NodeA, {NodeB1,NodeB2}}, {{NodeB1,NodeB2},NodeC}}

The attribute Nodes contains the list of nodes that form the DAG. Each node rep-
resents a job to be executed and contains node-specific attributes, as well as the job
specification. The attributes for a node’s description are:

• node retry count – specifies how many times a node execution may be retried
in the case of failure. This attribute is optional. If this particular node fails,
it will be automatically retried as many times as the value specified in this
attribute. If undeclared, this attribute will be set to the default value.

3. An Architecture for Parallel and Interactive Jobs 45

/* DAG that consists of 4 nodes */
Type = "DAG";
Nodes = [

Dependencies={ {NodeA,{NodeB1,NodeB2}},
{{NodeB1,NodeB2},NodeC} };

NodeA = [
description = [

Executable = "jobA.sh";
StdOutput = "std.out";
StdError = "std.err";
InputSandbox = {"jobA.sh"};
OutputSandbox ={"std.out", "std.err"};

];
];
NodeB1 = [

node_retry_count = 3;
app_exit_code = { 10, 11 };
file = "jobB1.jdl";

];
NodeB2 = [

file = "jobB2.jdl";
];
NodeC = [

file = "jobC.jdl";
];

];

Figure 3.12: JDL Dag description.

46 3.4. CrossBroker Grid Scheduler

• app exit code – specifies the possible exit codes for a job. If a node fails
because of application failure (e.g. segmentation fault, division by 0, a file al-
ready registered in a Storage Element), then the entire job should be aborted.
However, when a node fails because given resources fail (e.g. a machine fail-
ure, LRMS queue problems), this node should be retried automatically. By
default, in both cases, the node will be retried node retry count times. The
attribute app exit code provides the ability to set the job exit code and ter-
minate job execution in case of failure. If the job execution returns one of
the specified values, the node will not be retried. Otherwise, the job will be
retried automatically in accordance with node retry count. This attribute is
optional.

• description/file – A specification of the job. A job can be normal or parallel.
There are two ways to specify a job: via an attribute called description, where
a job is specified directly by this attribute in the JDL, or via an attribute called
file, where a job is specified in the indicated JDL file. Interactivity is not
allowed in workflows.

3.4 CrossBroker Grid Scheduler

The grid scheduler service in our architecture is called CrossBroker. When users sub-
mit their applications, our scheduling services are responsible for optimizing schedul-
ing and node allocation decisions on a user basis. Specifically, it carries out three
main functions:

1. Select the “best” resources for a submitted application to use. This selection
takes into account the application requirements, as well as ranking criteria used
to sort the available resources.

2. Perform a reliable submission of the application to the selected resources.
This involves the proper co-allocation of resources when the application is dis-
tributed among multiple sites.

3. Monitor the application’s execution and report on job termination. Once the
job is finished, do the necessary clean-up steps at the remote site.

Figure 3.13 presents the main components that constitute our resource management
services and the relationship with the system architecture presented in Section 3.1.
A user submits a job to a Scheduling Agent (SA) through a User Interface. The job is
specified by a ClassAd using the Job Description Language (JDL) already described.

3. An Architecture for Parallel and Interactive Jobs 47

Figure 3.13: CrossBroker Architecture

Once the job has reached the SA, the Resource Searcher (RS) is asked for resources
to run the application. The main duty of the RS is to perform the matchmaking
between job needs and available resources. Using the job description as input, the
RS returns as output a list of possible resources which meet the job requirements.
Information about the resources is gathered from the II services, while information
about file locations is gathered from the RLS services.

The SA then selects the best resource (or group of resources) from the list returned by
the RS. The computing resources (or group of resources) are passed to the Application
Launcher, which is responsible for the actual submission of the job. Due to the
dynamic nature of the Grid, the job submission may fail on that particular site.
Therefore, the Scheduling Agent will try other sites from the returned list until job
submission succeeds. The Application Launcher is also in charge of the reliable co-
allocation of parallel applications on the Grid. Job Starters handle the execution
of the job at the resource level and Interactive Agents provide channels for I/O
forwarding from the remote machines to the user and vice versa.

3.4.1 A mechanism for multi-programming

Ideally, interactive applications should always run soon after submission. However,
there may be situations where not all of the remote resources involved in an execution
are available, causing the ready resources to stay idle until all the subjobs start. We
have introduced a time-sharing mechanism that enables both interactive and batch
jobs to share a single machine, in such a way that the interactive application starts

48 3.4. CrossBroker Grid Scheduler

its execution as soon as it is submitted (unless all resources in the Grid are busy
executing other interactive applications) and proper co-allocation is ensured.

This time-sharing scheme is based on the transparent submission of job agents for jobs
submitted by the user. The agent gains control of remote machines independently of
the local-site job manager. Each machine acquired by our agent is configured as two
virtual slots, in order to create a separate group of dedicated resources for two types
of application: batch and interactive. It is worth noting that our concept of slots
is lightweight and does not correspond to the classic view of virtual machines that
presents the image of multiple operating system configurations (completely isolated
from each other) sharing a single machine. In our case, the machine only runs one
OS, but we split the machine into two separate execution slots. Each slot contains
the executable and files required by the corresponding job. From a logical point of
view, batch jobs will run on one virtual slot and interactive jobs will run on the
other. However, our agent guarantees that interactive jobs will be executed at a
higher priority than batch jobs. When the interactive job is finished, the original
priority of the batch job is restored and after completion of the batch job, the agent
leaves the machine.

Figure 3.14 illustrates the possible scenarios that CrossBroker deals with for intra-
cluster applications:

Figure 3.14: Multi-programmed execution of jobs.

1. Sequential Batch Job Submission. This submission triggers the execution of an
agent if there is either an available machine or space in the queues managed
by the local scheduler. Once started, the agent will create two virtual slots on
the Worker Node/s: one for batch jobs (batch-slot) and another for interactive
jobs (interactive-slot). The batch job will start its execution on the virtual
slot devoted to batch applications (batch-slot). This situation is illustrated by
arrow (1) in Figure 3.14. Special care has to be taken if the agent is killed (by

3. An Architecture for Parallel and Interactive Jobs 49

the local scheduler, by failure of the machine it is running on, etc.). In this
case, new agents will be submitted when possible.

2. Interactive Application Submission (exclusive access mode): The CrossBroker
tries to allocate a free machine. If there are CPUs available that meet the job
requirements, the job will be submitted to it without any agent, illustrated by
arrow (4) in Figure 3.14.

3. Interactive Application Submission (shared access mode): CrossBroker first
searches for machines with agents, using the available interactive virtual slots
(interactive-slot). The job will be sent to one of the virtual slots, which im-
mediately meets the job requirements, causing the batch job executing on the
other virtual slot to lower its priority so as to benefit the interactive job. This
is illustrated by arrow (4) in Figure 3.14. If no free interactive agents are
found, CrossBroker searches for an idle machine and submits the agent and the
application in a similar way to the case of a batch job.

If there are no idle machines or there is no space in the local scheduler’s queues, batch
applications are queued within the CrossBroker waiting for a machine to become idle.
This situation is illustrated by arrow (2) in Figure 3.14. However, if there are not
enough machines (with or without agents) to execute an interactive application, its
submission will fail. An interactive application will never preempt another already-
running interactive application. Although not shown in Figure 3.14, it is possible
to have a combination of machines with and without agents for executing a parallel
interactive application.

The agent-based mechanism improves resource availability for interactive jobs such
that they will even be able to run under conditions of high Grid-resource occupancy.
This has little impact on batch jobs that undergo some execution delay when sharing
their CPU with interactive jobs. However, given the nature of batch jobs, this delay
is not particularly problematic.

Parallel inter-cluster applications may also benefit from this multi-programming en-
vironment. Since the reservation of machines is not supported by most LRMSs, the
grid scheduler submits the different job components to the CE queues and waits until
all of them have nodes allocated in order to allow the application to run. During the
time elapsed from the allocation of the first job component until the allocation of the
last one, the machines are idle. By submitting our agent instead of the real applica-
tion, the CrossBroker can take advantage of the machines that would be otherwise
idle by back filling until the whole application has machines allocated.

Figure 3.15 depicts the execution of a parallel inter-cluster application with this
mechanism. Once the resources that will be used for the execution have been selected,
instead of the job components, an agent is submitted to the LRMS queue on each

50 3.5. Conclusions

site as illustrated by arrow (1). The Application Launcher waits until all the job
components have an allocated machine in order to let the job run. The LRMS at
each site starts the agent as shown by arrow (2) in the Figure. Once started, the
agent creates two virtual slots on the Worker Node/s: one for batch jobs (batch-
slot) and another for the inter-cluster job (intercluster-slot). The job component is
started on the intercluster-slot and waits until the Application Launcher allows it to
run. While the inter-cluster application is waiting for all the job components to be
ready, the CrossBroker gains batch-slots and may start batch applications. Arrow
(3) illustrates this situation. When all the job components contact the Application
Launcher, the user application starts its execution and the batch jobs on the batch-
slots can be suspended, cancelled, or run with lower priority, depending on the policy
implemented by the CrossBroker scheduler.

Figure 3.15: Multi-programmed execution of inter-cluster jobs.

3.5 Conclusions

A new architecture for running and managing parallel and interactive jobs in grid
environments has been presented in this chapter. The execution environment for
this architecture was presented. The model for jobs was presented next. This model
defines three kinds of applications: serial, parallel, and workflow. A set of ele-
ments allow the actual execution of such applications on the grid. The Application
Launchers manage the grid level start up of applications and the Job Starters
are responsible for starting the applications at the resource level. The Interactive
Agents support the interaction of the application with the user on-line. The com-
bination of these elements allow the execution of applications using different parallel
library implementations and different interactive channel forwarding mechanisms.

We have presented a job description language that allows the expression of the de-
tails of the job model proposed. It includes specific attributes for the definition of

3. An Architecture for Parallel and Interactive Jobs 51

parallel jobs and workflows, as well as the specification of interactivity features. The
architecture of a Grid Resource Management System with specific mechanisms for
interactive and parallel jobs was presented. The details of design and implementation
of this system will be given in the next chapter.

52 3.5. Conclusions

CHAPTER4
CrossBroker Design and Implementation

In this Chapter we describe the design and implementation of the CrossBroker. This
implementation follows the architecture presented in Section 3.4. Figure 4.1 shows
the main components of the CrossBroker:

Scheduling Agent. The entry point to the CrossBroker, in charge of making the
scheduling decisions.

Resource Searcher. Discovers resources and matches user requirements with avail-
able resources.

Job Execution Components. The Application Launcher, Job Starter, and Inter-
active Agent manage the actual execution of the jobs on the remote resources.

In the implementation of the CrossBroker, we have tried to take advantage of the
currently available development in the area. Each of the modules is described in detail
in the following sections. Additionally, we present some examples of real applications
that make use of the CrossBroker.

53

54 4.1. Scheduling Agent

Figure 4.1: CrossBroker Architecture

4.1 Scheduling Agent

The Scheduling Agent (SA) is the entry point to the CrossBroker. It receives user
jobs and decides where to run those jobs following one scheduling policy. In order
to obtain a list of available resources, it uses the Resource Searcher. The contents of
this list depend on the type of job, the job’s requirements, and the current status of
the resources.

Figure 4.2 shows the internal design of the Scheduling Agent. The User Access Mod-
ule pre-processes the job and provides support for external tools that handle complex
jobs such as workflows or parameter sweep applications. Once a batch job has been
pre-processed, it enters a queue of pending requests. Interactive jobs go directly to
the Scheduler module. This module applies the scheduling policies and selects the
resource or set of resources for the job. In order to obtain a list of available resources
it uses the Resource Searcher. The CrossBroker multiprogramming mechanism is
managed by the Glidein Monitor.

The Scheduling Agent uses a persistent storage system called Logging and Bookkeep-
ing (L&B) [95]. This service, taken from gLite, keeps information about the job life
cycle and the different events that have occurred during the scheduling phase.

4. CrossBroker Design and Implementation 55

Figure 4.2: Structure of the Scheduling Agent

4.1.1 User Access Module

The User Access Module is the entry point to the CrossBroker. Its main tasks are:

• To establish and handle communication between the user and the CrossBroker,

• To receive user commands, checking each for its integrity and correctness,

• To invoke the appropriate modules in order to process the user request, and,

• To send back the responses to commands sent by the user.

Every user request is handled independently using threads. Moreover, all connec-
tions use Globus security mechanisms by using the proxy files associated with every
request. Each user can only act upon his own jobs.

Submission Helpers

The User Access Module includes a Submission Helper interface. This interface
allows the use of external tools for job submission. A Submission Helper can be
registered for each job type and pre-processes the job. Currently, in CrossBroker we
have included support for workflows using a Submission Helper for Condor DAGMan
[96]. DAGMan can be treated as an iterator on a workflow, whose main purpose is
to navigate through the graph (node by node), determine which nodes have their
dependencies satisfied, and follow the execution of corresponding jobs.

The Workflow Submission Helper parses workflow jobs and creates an appropriate
DAG description following the DAGMan syntax. A DAGMan process is started for

56 4.1. Scheduling Agent

each workflow submitted. Hence if there is more than one DAG to execute, a separate
DAGMan process is initiated for each workflow. Each node of the DAG managed
by DAGMan is a job that will be handled by the Scheduler module. A set of steps
operated on each node in the workflow:

1. Initial phase – preparing all necessary information for the node execution. The
job is enqueued in the Scheduling Agent queue and there is a search for a
suitable resource on which to run the job. If no resources are found, the node
is marked as failed, which implies the end of the node’s execution. A failed
node can be automatically retried according to the node retry count value in
the JDL.

2. Job execution on the remote site by using the appropriate Application Laun-
cher.

3. Final phase – checking the job’s return code. If the job executed successfully,
it is marked as Done. Otherwise, the return value is compared to the attribute
app exit code. If the return value is one of the values specified by the user,
the job is not retried. In any other case the job is marked as failed and is
retried according to the node retry count value.

The Workflow Submission Helper also supports the function of submitting a failed
workflow and executing only those nodes that have not yet been successfully executed.
This workflow is automatically produced by the system when one or more nodes in
the workflow has resulted in failure, making the application execution impossible to
finish. If any node in the workflow fails, the remainder of the DAG is continued until
no more forward progress can be made, due to the workflow’s dependencies. At this
point, a file called a Rescue DAG is produced, which is given back to the user. Such
a DAG is the same as the original JDL file, but is annotated with an indication of
successfully completed nodes using the status = done attribute in the description
file. If the Rescue DAG is resubmitted using this Rescue DAG input file, the nodes
marked as completed will not be reexecuted.

User Commands

The User Access Module accepts a set of predefined commands described below:

• job-submit : submission of jobs. The job description is parsed and placed in the
Scheduler queue. This process generates a unique identifier for the job, which
can be later used to check the job status, cancel the job, or obtain the job’s
output.

4. CrossBroker Design and Implementation 57

• job-cancel : cancels a job or workflow.

• job-list-match: obtains a list of available resources that meet a job require-
ments. The Resource Searcher is contacted directly.

• job-get-output : receives the output files of an already completed job. These
files must be specified in the OutputSandbox attribute of the JDL.

• job-get-status: checks the status of a previously submitted job. It uses the job
identifier to query the current status or history of a job. The status for all jobs
is kept in the Logging & Bookkeeping service.

4.1.2 Scheduler

The Scheduler receives the job requests and assigns a resource or set of resources for
the job’s execution. It uses the Resource Searcher module to fetch a list of available
resources and sorts the list according to the user’s preferences (specified by the Rank
attribute in the JDL) and the Scheduler’s own policies. These policies can be changed
by using plugins to the scheduler. The policy plugins receives a list of resources and
returns an ordered list of resources. The job will be executed on the first resource of
the list. In case of failure, the subsequent list element will be tried.

In the current implementation, the policy takes into account the type of the job in
order to make a decision:

Intra-Cluster and Normal jobs. Sites closer to the files requested by the job are
selected first, hence access time to those files is minimized. Moreover, the queue
lengths at the sites are checked in order to avoid overloading the sites. A Best
Fit policy — the site with smallest difference between the number of CPUs
requested and the number of CPUs available at the resource is selected first —
is used in order to sort the list of available resources.

Inter-Cluster jobs. Besides checking the queue status, inter-cluster jobs are placed
by trying to minimize the number of different sites used. The applied policy is:

• Sets with the smaller number of unique CEs are selected first. By using
this policy, fewer sites are used, and hence high latency links are avoided
for application execution.

• If there is more than one set with the same number of CEs, the more
highly ranked set will be selected first.

Interactive jobs should be executed as soon as possible in order to minimize the re-
sponse time. Hence, such jobs are never sent to sites without free resources currently

58 4.1. Scheduling Agent

available to run the job. The resources selected must have as many free CPUs as re-
quested by the job. If there are no sites with sufficient CPUs, the multi-programming
mechanism is used and the interactive job is submitted to an interactive virtual slot
(or a set of them). In any other cases the job is aborted immediately, so the user
can decide wether to resubmit or wait.

4.1.3 Glidein Monitor

Once the Scheduler has selected the resource (or set of resources) on which to run
the job, the Glidein Monitor enables as necessary the use of the multi-programming
environment. This multi-programming scheme takes advantage of the Condor Glide-
In mechanism, and is based on the transparent submission of job agents for jobs
submitted by the user.

Whenever a user job activates the multi-programming environment, two jobs are
passed to the Application Launcher:

1. A special “Glidein” job that will run on the remote resource selected by the
Scheduler module. This job downloads Condor daemons onto the Worker Node
and executes them with the appropriate configuration for appearing as a re-
source within a Condor Pool in the CrossBroker.

2. The user’s job, that is submitted to the local Condor Pool, so it can make use
of the resources created by the Glidein job.

The remote resource joins the pool as two Condor slots (slot1 and slot2 in Condor
terminology), which are then available for running jobs sent from the CrossBroker.
Once this environment is ready to accept jobs, it will appear in the list of Condor
resources and will execute jobs taking into account the following considerations:

• Batch jobs can only be run in slot1.

• Interactive (or parallel inter-cluster) jobs can only be run on slot2.

• The job that originated the execution of the Glidein has precedence over any
other jobs.

• Only jobs sent by users of the same VO as the originating job can be run.

• Batch jobs’ priority can be changed during execution.

• When no jobs run on the resources for a configurable period of time, the Glidein
exits, freeing the resources.

4. CrossBroker Design and Implementation 59

The Glidein is activated in two cases: batch sequential jobs and batch inter-cluster
parallel jobs, i.e. batch (sequential or parallel inter-cluster) jobs will be submitted
along with an agent in charge of creating the virtual slots. Interactive jobs have
response time constraints, so introducing the extra overhead of the Glidein is not
viable. Parallel jobs should never be preempted on a per process basis, or time-outs
in communication nay cause the application to be killed. For this reason, parallel
batch intra-cluster jobs do not activate the Glidein mechanism. In the case of inter-
cluster jobs, as explained in Section 3.4.1, the different job components run within
the inter-cluster slot (with maximum priority) and create batch slots that can be used
for low priority jobs while the Application Launcher waits for all the components to
be ready for execution.

Security and the Glidein mechanism

As the Glidein mechanism does not use any special privileges on the Worker Nodes,
every process is run from a local user account without administrative permissions.
This allows the Glidein to be easily deployed on the sites, but it is also a potential
security risk. Both the Condor daemons and the user jobs on the virtual slots run
within the same user account. Hence, a malicious program could kill the job executing
on the other virtual slot or even kill the Condor daemons. Additionally, this malicious
program may access to the files owned by the other job.

The use of full featured virtual machines does not have this security problems. The
virtual machine completely isolates the running environment, by running a separate
operating system image. However, special priviledges are needed in most of the
virtual machines technologies rendering the solution unusable in grid environments
where the jobs are run as unpriviledged users.

Ideally, the operating system should provide mechanisms for ‘jailing’ the processes.
However, most systems implement a user based security that is not enough for our
purposes, because both the jobs and Condor daemons are run within the same user
account. We propose the use of Identity Boxing techniques [97]. They provide a se-
cure system-call interposition agent; this agent provides fine-grained control over the
operations allowed to the applications run in the environment without special priv-
ileges. An identity box is a well-defined execution space in which all processes and
resources are associated with an external identity that need not have any relationship
to the set of local accounts. A single Unix account may be used to securely manage
several identity boxes simultaneously, thus eliminating the need for services to run
as root merely to change identities. An available identity boxing implementation
based on Parrot [98] intercepts and modifies system calls through the ptrace debug-
ging interface. This provides secure identity boxing at the user-level on arbitrary
unmodified programs.

60 4.2. Resource Searcher

In our system we use Identity Boxing to control all file system accesses, we restrict file
access for user application to a specific directory. We control processes creation by
forcing those processes to be under the control of the identity box. We also control
the kill system call by only permitting the sending of signals to processes within
the application process tree. In this manner we avoid malicious software kill Condor
processes or other applications running on the virtual slots. The use of this technique
has a non-negligible, but not-unreasonable overhead [97]. Scientific applications are
slowed down by only 0.7 - 6.5 percent. An interactive application such as make slows
by 35 percent, because it makes extensive use of small metadata operations such as
stat.

Multiprogramming on sites without an inbound connection

Our multiprogramming mechanism relies heavily on Condor features and daemons in
order to create the virtual slots on the remote resources and to start the jobs on such
resources. Due to Condor’s pattern of network communication, the multiprogram-
ming schema proposed requires a direct inbound connection from the CrossBroker
to the Worker Nodes. This is a potential security risk, and most sites follow a “deny
all inbound connections; permit some outbound connection” policy within their fire-
walls. Moreover, Worker Nodes usually have private IP addresses, which render
impossible any kind of connection from outside the site.

A new firewall/NAT traversal technique known as Generic Connection Brokering
(GCB) [99] has been introduced in Condor. It consists of daemon processes and a
communication library that is already linked to the Condor binaries. GCB enables
connections into networks behind a firewall/NAT by reversing the direction of the
connections. The daemon processes should be installed on a machine accessible from
both the Worker Nodes and the CrossBroker. The Computing Element has such
capabilities. We have created a special package that includes GCB and configuration
tools that can be installed on the CE of each site, allowing the multiprogramming
mechanism to work without firewall modifications. Figure 4.3 depicts the connection
pattern with the GCB mechanism enabled. The red arrow shows the typical commu-
nication pattern of Condor, while the black arrows identify the pattern when GCB
is enabled.

4.2 Resource Searcher

The main duty of the Resource Searcher (RS) is to perform matchmaking between job
needs and available resources. Figure 4.4 shows the internal design of the Resource
Searcher. The Matchmaker module receives a job description as input, and outputs a
list of possible resources on which to execute the job. Available resources are stored

4. CrossBroker Design and Implementation 61

Figure 4.3: Use of GCB with glide-in

in a Resource Cache. The Resource Cache is updated at regular intervals by a set
of updater modules. Currently, there are updater implementations for fetching data
from R-GMA [33], BDII [100], or a Condor Collector [22] with information about the
available Glideins. The information gathered from the different sources is merged to
produce a list of resources without duplicates in ClassAd format.

Figure 4.4: Structure of the Resource Searcher.

4.2.1 Resource Cache

The available information about the resources is a key point in grid environments.
Outdated information may cause making improper scheduling decisions and conse-
quent job failures, while too many updates may overload the system, rendering it
unusable. In the CrossBroker we use a Resource Cache for information about avail-
able resources and it is updated at regular time intervals. These intervals are short
enough to maintain up to date information, while maintaining a light system load.

Each resource in the cache is described as a ClassAd, identified with a unique
name. The different attributes that compose the resource information follow the Glue
Schema [31] (see Section 3.1.) The information stored includes both static attributes

62 4.2. Resource Searcher

(such as number of CPUs, system architecture, LRMS, and available software) and
dynamic attributes (such as system load, number of jobs running or waiting, number
of free CPUs, and estimated response times).

The Resource Cache has a mechanism to assure exclusive temporal access to re-
sources. Resource selection may occur concurrently for several jobs that arrive si-
multaneously. This exclusive access mechanism guarantees that one resource is only
matched and allocated to one job for a specific time interval. This mechanism elimi-
nates the lack of the most current information about the status of grid resources and
it also helps to avoid situations where the same available resources are assigned to
more than one resource petition, thus creating a deadlock for MPI jobs.

The information from the available information repositories is fetched by the up-
daters. These modules fetch the information, adapt it to the ClassAd format, and
merge the latest information with the existing information in the Resource Cache.
They are triggered asynchronously, every two minutes by default. We have found em-
pirically that this value is adequate to keep updated information about the resources
without introducing incorrect scheduling decisions. The CrossBroker provides an
API for developing such updaters. Currently there are three updaters implemented
with that API:

MDS updater. This is the main source of information in the CrossBroker, it does
a two-level query. First, it gathers information from the central Information
Index which contains information about the resources available. Then it gathers
information about each resource listed in the Information Index by directly
connecting to the resource. Although this process can be time costly given the
number of resources available, it occurs independent of the scheduling process.
This updater uses LDAP for fetching resource information.

RGMA updater. This updater fetches resource information from an RGMA ser-
ver. It is not used in the current implementation, since the resource information
can be fetched from the MDS.

Condor Collector updater. Information about Glideins in the local Condor Pool
of the CrossBroker is fetched with this updater. It uses the condor status
command to query the Condor Collector daemon. Since all the information
gathered by this updater is available locally, it can be invoked directly by the
Scheduling Agent in order to obtain the most recent information about the
available Glideins for interactive jobs.

Although the information described by Glue Schema is quite complete, it is not yet
fully implemented in the available information systems. This is problematic for of
parallel jobs, where site limitations can make jobs fail without apparent reason. As
a temporal solution, the CrossBroker can use the RuntimeEnvironment attribute

4. CrossBroker Design and Implementation 63

of the Glue Schema to specify site characteristics and limitations. Originally the
attribute allowed the specification of the installed software available at the resources.
It appears once for each piece of software, with no format or length constraints. We
decided to include here all the attributes needed for parallel jobs at the int.eu.grid
project level, in addition to any other information that the site administrator may
like to include about software. The CrossBroker looks in the attribute for specific
tags that identify MPI implementations at the site. The tags are configurable at the
CrossBroker level. Additionally, some sites have restrictions on concurrent use of the
number of nodes that can be used for a given job. This restriction is not properly
reflected in the current Glue Schema implementation used in the CE, thus creating
incorrect matchmaking for MPI jobs. In order to avoid this situation, we use special
tags with the following pattern:

PolicyMaxSlotsPerJobs <QueueName>=<MaxNumber>

where <QueueName> is the name of the queue with restrictions and <MaxNumber> is
maximum number of nodes that can be used simultaneously by an application. If this
tag is not defined for a queue, the CrossBroker assumes that the queue can execute
jobs using the maximum number of CPUs available at the site. Again, the format of
this tag is configurable at the CrossBroker level.

Separate from previously detailed sources of information, there is a specific updater
that can locate replica of files in the grid environment. This updater is triggered by
the Scheduling Agent when a job requires a file. The updater receives a list of files
and queries the RLS [101] using Web Services to return a list of remote sites that
have the files available. That information is used by the scheduling process in the
selection of sites.

4.2.2 Matchmaking

The matchmaking process carried out by the Resource Searcher is implemented with
the Condor ClassAd library. With this library, jobs and resources are expressed as
ClassAds; two ClassAd match if each the attributes evaluates to true in the context
of the other ClassAd. Because the ClassAd language and the ClassAd matchmaker
were designed for selecting a single machine on which to run a job, we have added
several extensions, applied when a job requires multiple resources (i.e. multiple CEs
in our environment terminology).

Prior to the matchmaking process, the matchmaker adds requirements to the job
description some requirements to ensure the selection of appropriate resources for
the job. These requirements include:

Security Requirements. The users have permission to execute on a restricted set

64 4.2. Resource Searcher

of resources. With the inclusion of the user credentials in the job, it is possible
to discern between allowed and forbidden sites.

Software Requirements. Some jobs need specific software installed at the remote
sites. This is especially important for parallel jobs, where a specific MPI imple-
mentation must be installed for proper job execution. The matchmaker module
ensures that the sites have the correct libraries available at run time.

CPU Requirements. Intra-cluster parallel jobs need more that one CPU for its
execution at one site. For this case, the matchmaker ensures that the sites
to have at least the number of CPUs requested. Inter-cluster jobs use the
set-matching algorithm described below.

During matchmaking, each of the resources available in the Resource Cache is com-
pared to the job requirements. If they match, then the resource is put into a list of
matching resources and the rank of the resource for the given job is calculated. Once
all the resources have been checked, the list is returned to the Scheduling Agent that
will select one for job submission.

Set-matching

Inter-cluster parallel applications use a specific matchmaking algorithm that is able
to match a single job to a set of resources. This algorithm is called set-matching.

In the set-matching algorithm, a successful match occurs when a ClassAd set (a group
of CE’s ClassAds) satisfies all constraints as set by a ClassAd (the Job). First, the
job is places constraints on the collective properties of an entire group of CEs ClassAd
(e.g., the total number of free CPUs must be greater or equal than the minimum
number of CPUs required by the job). Second, other attributes of the job ClassAd
are used to place constraints on the individual properties of each CE ClassAd (e.g.,
the OS version of each CE must be Linux 2.4). The selection of resources is carried
out in accordance with the following steps:

1. Obtain a list of single CEs that fulfill all job requirements, when referring only
to required individual characteristics. Currently, these are the requirements
specified in the requirements attribute of the file describing the job using
the JDL, as well as the ones added by the matchmaker module. This step
constitutes a pre-selection phase that generates a subset of the total resources
suitable for executing the job request in terms of several characteristics such
as processor architecture, OS, etc.

2. Fulfill collective requirement for groups of CEs from the subset of resources
determined in step 1. For example, an attempt is made to fulfill the total

4. CrossBroker Design and Implementation 65

number of CPUs required by a job by aggregating individual CEs. In the
case of the number of CPUs required by the job, for instance, the Resource
Searcher aggregates CEs to guarantee that the total number of free CPUs in
the groups of CEs is larger than or equal to the total number of requested
CPUs, as described in the JDL file.

Our search procedure is not exhaustive, as it does not compute the power set of all
CEs. In particular, this means that our search algorithm does not consider solutions
in which one subset of the CEs has already been included in a previous group.
Consider the example of a list of resources composed by (CE1, CE2, CE3, CE4),
where the following sets meet the collective requirements: {CE2}, {CE1, CE3}, and
{CE1, CE4}. The set-matching algorithm would not consider the {CE1, CE3, CE4},
since {CE1, CE3} is already a valid solution. Additionally, a maximum number of
elements per set can be defined in the algorithm, imposing an upper limit on the
number of sets to be evaluated.

4.3 Job Execution

The actual execution of job on the remote sites is handled by the Application
Launcher, Job Starter and Interactive Agents modules. For every job an Application
Launcher submits a Job Starter to the remote resource. This Job Starter will in turn
download the job files and start the application and Interactive Agent if needed. Fig-
ure 4.5 shows the interaction among the job execution components. The Scheduling
Agent selects the resource or list of resources that will be used for the execution of
the job. With this list, the Application Launcher uses Condor-G as its interface to
the Computing Element and submits the Job Starter and Interactive Agent needed
to run the job. The user’s application is executed under this environment, contacting
the Application Launcher for synchronization and final configuration steps.

4.3.1 Application Launcher

Each kind of job has a specialized Application Launcher associated with it. In the cur-
rent CrossBroker implementation, the various Application Launchers use Condor-G
[36] job management mechanisms for submission of jobs on remote resources. Condor-
G gives a consistent interface for submitting jobs to grid resources using Globus
resource access and security protocols (GRAM and GSI respectively.); Condor-G
also guarantees fault tolerance and exactly once execution semantics thanks to a
persistent (crash proof) queue of jobs, used as a persistent database storing informa-
tion concerning active jobs with a two-phase commit protocol for job management
operations. Condor-G interoperates with other systems supporting, besides Globus

66 4.3. Job Execution

Figure 4.5: Job Execution Components.

version 2, other Globus versions, Unicore, NorduGrid, and submission to other batch
systems as PBS and LSF. All those systems are potentially supported by the Cross-
Broker by using Condor-G as an interface to the grid. Currently, there are two kinds
of Application Launcher in the CrossBroker:

Single-site AL. This Application Launcher handles all the jobs that are executed
on only one site. The Application Launcher receives the job description along
with the resource from the Scheduling Agent and submits the application to
the remote site using Condor-G. A single AL process manages all the single-site
jobs. In case of failures, the AL can recover the system status by using the per-
sistent queue of Condor-G. Intra-cluster parallel jobs also use this Application
Launcher.

Inter-cluster ALs. Inter-cluster applications have dedicated Application Launchers
that manage the job details for start up and synchronization. They receive a
list of resources along with the job description. Application using the MPICH-
G2 implementation of the MPI standard are submitted using the MPICH-G2
Application Launcher, while the PACX-MPI AL manages the PACX-MPI ap-
plications. The inter-cluster ALs use Condor-G as the single site AL. Moreover,
in order to provide extra reliability, these ALs themselves are submitted to the
local Condor-G queue. Hence, in case of an AL crash, Condor-G will resubmit
the AL and the AL may continue the execution of the job.

In order to support new parallel application implementations, the CrossBroker pro-
vides a C++ API to define the details of the protocol that depend on the different
applications and communication libraries. The API allows the definition of:

• Submission method. The submission method defines how to start the subjobs

4. CrossBroker Design and Implementation 67

on the remote resources, and the Application Launcher provides a Condor-G
submission method, ready to use.

• Synchronization method. Each MPI implementation uses different synchro-
nization methods for the start up of application. MPICH-G2 uses Globus com-
munication services and barriers, while PACX-MPI provides startup-server for
this purpose. The Application Launcher API allows the developer to define the
synchronization procedure according to the application implementation.

• Monitoring method. Once the application is up and running, it must be mon-
itored to check that it finishes its execution properly. This monitoring also
includes error handling, for when problems arise during the execution. A
Condor-G monitoring method is also provided.

MPICH-G2 Application Launcher. Once the Scheduler Agent (SA) detects
that an MPICH-G2 application is submitted, an MPICH-G2 Application Launcher
(MPICHG2-AL) is submitted to the local Condor-G queue in the Crossbroker. Fig-
ure 4.6 depicts how the execution over multiple sites is performed. In this example
scenario, N subjobs constitute an MPICH-G2 application. These subjobs will be exe-
cuted on different sites. For the sake of simplicity, Figure 4.6 only shows 2 sites. This
MPICHG2-AL coallocates the different subjobs belonging to the parallel application,
following a two-step commit protocol:

• In the first step, all the subjobs are submitted through Condor-G. The type
(A) arrows show the submission of subjobs to the remote sites. Condor-G uses
a GASS server to stage the Job Starter to the remote worker nodes which will
handle the download of executable files and to bring the output files back to
the submitting machine. This is shown by the type (B) arrows.

• A second step guarantees that all the subjobs have a machine to be executed
on, and that the subjobs have executed the MPI Init call. This MPICH-G2 call
invokes DUROC [55], and synchronization is achieved by a barrier released by
the MPICHG2-AL. After synchronization, the subjobs will be allowed to run.
Once the subjobs are executing on the worker node machines, the MPICHG2-
AL monitors their execution and writes an application global log file, providing
complete information about the subjobs’ execution. This monitoring is repre-
sented by the type (C) arrows in Figure 4.6, and constitutes the key point for
providing reliable execution of the applications and robustness.

PACX-MPI Application Launcher. PACX-MPI jobs have a PACX-MPI Appli-
cation Launcher (PACX-AL) that works the same way the MPICHG2-AL does, but
using the PACX startup-server [77] instead of the DUROC API. The PACX-AL forks

68 4.3. Job Execution

Figure 4.6: MPICH-G2 execution on multiple sites

a startup-server process that waits until the jobs have executed the MPI Init call.
The exit code of this process will determine if the start up was or was not successful.
Figure 4.7 depicts the execution of a PACX-MPI job over two different sites. First,
the PACX startup server is forked on the CrossBroker machine. The information
about this server is passed along with the subjobs and submitted using Condor-G to
the remote sites as shown by the type (A) arrows. Similar to the MPICHG2-AL, the
GASS server is used to stage the Job Starter to the remote worker. This is shown by
the type (B) arrows. When the subjobs contact the startup-server (type (C) arrow
in the Figure), this process ends and the exit code is checked by the PACX-AL. If
no errors are detected, the job is monitored until the end of its execution.

Plain applications. If the user application does not fit any of the job types pro-
vided by the CrossBroker, the plain subtype may be used. The CrossBroker may
use a specific AL that handles the submission of those jobs as specified by the JDL
attribute ApplicationLauncher. This Application Launcher must be available at
the CrossBroker, and it must be signed by a trusted authority, certifying that it
conforms with the expected behavior for an Application Launcher. If not specified,
the job is treated as a single site job and the corresponding AL is used.

Either if the application ends correctly or if there is a problem in the execution of
the application, the AL records this in a log file, The log file will be checked by
the Scheduling Agent, which will take the correct action, in accordance with that
information. This provides a reliable once-only execution of the application without

4. CrossBroker Design and Implementation 69

Figure 4.7: PACX-MPI execution on multiple sites

user intervention. The events logged by the Application Launcher are classified:

• Scheduled event: the application is submitted and is waiting for the start of all
the subjobs.

• Running event: the synchronization protocol has finished correctly and the
application is running.

• Done event: the application has ended its execution correctly.

• Error event: once an error has appeared, the AL logs the type of error and the
remote site at which the error originated.

The problems detected can occur at different moments, and can be either temporary
or permanent problems. Table 4.1 lists the problems that can appear during the
execution of an application and the corresponding corrective action taken by the
CrossBroker.

4.3.2 Job Starter

The Job Starter is the module responsible for starting the user application on remote
resources. The CrossBroker submits a Job Starter instead of the user application for
execution on the grid, and this fetches all the needed files and creates the appropriate
job environment for execution. The basic Job Starter in the CrossBroker is written as

70 4.3. Job Execution

Detected situation Action taken
One of the subjobs did not execute
due to a resource down error.

Mark resource as down, repeat the
matchmaking process.

One of the subjobs did not execute
due to a Globus error.

Mark the resource as temporarily
not working, repeat the matchmak-
ing process.

One of the subjobs finished before the
application started.

Retry execution with the same re-
sources, if situation repeats, it could
be a firewall issue, so repeat the
matchmaking process.

The AL crashes. Submit another AL instance. If the
job has already passed the synchro-
nization phase, the new AL instance
will monitor it. In any other case,
the job will be resubmitted to begin
again.

Abnormal termination of job during
execution

If no resource errors are found, the
job is aborted and the user is notified.

Table 4.1: Errors Detected by the AL

a shell script, hence it can run on almost any system without major modifications.
Moreover, this allows easy modification when incorporating new features into the
system. All job-dependent variables are set as environment variables that the Job
Starter can use. Table 4.2 lists the most important variables. These variables define
the job environment, the different files that will be downloaded to the Worker Node
(and from where to fetch them), the application name, its arguments, and the input,
output and error files that it will use. Additionally, they define the interactive agent
and the arguments that it will use. There is also a set of variables that specify the
number of nodes and the index of the job component of the application.

Most sequential applications run without problems using the basic Job Starter pro-
vided. However, parallel applications have specific start-up mechanisms that can not
be handled by the CrossBroker without introducing too many low level details about
the applications and the Local Resource Management Systems. Moreover, these im-
plementation details change more often that not, making it difficult to keep pace
with them at the broker level. For these reasons, the CrossBroker uses external Job
Starters for parallel applications.

The user can provide his own Job Starter by using the JDL attributes JobStarter
and JobStarterArguments. This Job Starter is invoked at the Worker Node once
the input files of the application are downloaded. In addition, the user can let the
CrossBroker automatically handle the start up of MPI jobs using MPI-Start as a
Job Starter, without worrying about any details. MPI-Start was developed in the
int.eu.grid project framework as a Job Starter that the CrossBroker can use for

4. CrossBroker Design and Implementation 71

Variable Meaning
jobid Unique job identifier.
environment Comma separated list of user defined environ-

ment variables.
input file List of input files needed by the application.
input base url Base URL location for the input files.
job User’s executable.
arguments Arguments for the user application.
standard input File used as standard input for the application.
standard output File used as standard output for the applica-

tion.
standard error File used as standard error for the application.
interactive 1 if the job is interactive, 0 otherwise.
interactive agent Executable used as Interactive Agent.
interactive agent args Arguments passed to the Interactive Agent.
nodes Number of nodes the application will use at the

current site.
subjob index If part of a inter-cluster application, index of

the current subjob.

Table 4.2: Job Starter environment variables.

starting applications. It is able to start Open MPI [51], MPICH-P4 [44], PACX-
MPI [77], and MPICH-G2 [45] on clusters using PBS [20] and SGE [23] resource
management systems.

MPI-Start

The MPI Forum [73] gives recommendations on the mechanism for running MPI
applications in the MPI-2 specification [43]: mpirun should be a portable and stan-
dardized script, while mpiexec is implementation specific. However, the different
MPI vendors already were using mpirun in a non-portable and non-standardized
way. In some implementations both mpiexec and mpirun are identical, while other
implementations do not support one of them. Another problem is the distribution
of the binaries and input files to all the nodes involved in a single execution: some
clusters have a shared file system, while others need a mechanism to copy files from
the head node to the rest of the nodes.

MPI-Start is a set of scripts that allow the execution of MPI programs on clusters.
The main advantage of MPI-Start is the ability to detect and use site-specific config-
uration features – such as the batch scheduler and the file system at the site. Also,
on site MPI implementations on a site are supported. MPI-Start has core function-
ality which is always executed and uses the available framework at different stages

72 4.3. Job Execution

of execution. MPI-Start in its current version has three different frameworks:

• Scheduler framework. Every plugin for this framework provides support for
different Local Resource Management Systems (LRMS). They must detect the
availability of a given scheduler and generate a list of machines that will be
used for executing the application. The supported LRMSs are SGE, PBS and
LSF.

• MPI framework. This plugins set the special parameters that are used to start
the MPI implementation. It is not automatically detected, hence the Cross-
Broker must explicitly specify which MPI flavour will be used to execute the
application. There are plugins implemented for Open MPI, MPICH (including
MPICH-G2), MPICH2, LAM-MPI and PACX-MPI.

• File distribution framework. The plugins for this framework handle file dis-
tribution among the machines involved in an execution. Different methods
are supported, including shared file system use, passwordless scp, and an MPI
implementation for copying files.

All of those frameworks use well-defined interfaces, which allow the various plugins
to be loaded and used for each framework. The interface between the CrossBroker
and MPI-Start is a set of environment variables listed in Table 4.3. When an MPI
job is submitted and no Job Starter is specified, the CrossBroker invokes MPI-start
setting the variables to the appropriate values for the job. These variables specify
the application binary that will be executed, its arguments, and the interactive agent
that will be used for I/O forwarding. They also define the MPI characteristics such
as the MPI implementation, and in the case of inter-cluster execution, the index
of the subjob, the node used as relay, and the machine where the startup-server is
running.

Additionally, the user can modify the behavior of MPI-Start using the Environment
attribute of the JDL, specifying the I2G MPI PRE RUN HOOK and I2G MPI POST RUN HOOK
variables. Any other I2G MPI * variables defined by the user will be overridden by
the CrossBroker in order to avoid misuse.

Although MPI-Start may be installed on the resources, when a MPI application is
submitted, the CrossBroker checks at runtime if it is available locally. If not installed,
it is downloaded automatically to the Worker Node.

4.3.3 Interactive Agents

The jobs submitted to the CrossBroker can use the interactivity mechanisms to inter-
act with the application on-line. These mechanisms follow the architecture proposed

4. CrossBroker Design and Implementation 73

Variable Meaning
I2G MPI APPLICATION The application binary to execute.
I2G MPI APPLICATION ARGS The command line parameters for the applica-

tion.
I2G MPI TYPE The name of the MPI implementation to use.
I2G MPI PRECOMMAND The Interactive Agent for interactive I/O for-

warding.
I2G MPI FLAVOUR Specifies which “sub-mpi” to use. In the case

of a PACX-MPI job, this variable specifies the
local MPI implementation to use.

I2G MPI JOB NUMBER If a MPI job runs across multiple clusters
this variable specifies which sub-job should be
started on this cluster. The values are 0, 1,
2,. . . In the case of an MPI job that runs only
inside the local cluster this variable is always 0.

I2G MPI STARTUP INFO This variable provides additional information for
the MPI program. In the case of PACX-MPI,
this variable specifies the connection informa-
tion to the startup server.

I2G MPI RELAY This variable specifies an FQDN of a host that
can be used as relay/proxy host. In the case of
PACX-MPI on this host the additional 2 proxy
processes will be started. It’s required that this
host has out-bound connectivity and is access-
able via ssh.

Table 4.3: MPI-Start environment variables.

74 4.3. Job Execution

in Section 3.2.3: a split execution system where an Interactive Agent is in charge of
sending the output and receiving input from the Worker Node to a Job Shadow on
the user machine.

The Job Starter, using the interactive agent environment variable, starts the
Interactive Agent once all the needed files are downloaded, and an appropriate envi-
ronment is created for job execution. The Interactive Agent will, in turn, start the
application and redirect its input and output. Currently the CrossBroker includes
two Interactive Agents: one based on Condor Bypass [102], and the other based on
glogin [94].

Figure 4.8 shows the general execution pattern for both agents. When an interactive
job is submitted, the User Interface Command automatically starts an Interactive
Shadow specifying a free available port for communication with the Agent. This port
and the selected agent will be declared in the JDL with the InteractiveAgent and
InteractiveAgentArguments without user intervention. The CrossBroker receives
this job description and selects a resource for job execution. Once the job has Worker
Nodes allocated for the execution, the Job Starter creates the Interactive Agent,
which in turn starts the user application. Then, communication can be established
between the Agent and Shadow and the application I/O will be forwarded from the
User Interface to the Worker Node.

Figure 4.8: Interactive Agents in CrossBroker

Condor Bypass Agent

The Condor Bypass Agent obtains mostly-continuous I/O from remote programs
running on an unreliable network. It is a split execution system composed of two

4. CrossBroker Design and Implementation 75

software components: an agent (Console Agent – CA) and a shadow (Job Shadow –
JS). In CrossBroker the CA acts as an Interactive Agent and the JS as the Interactive
Shadow described in Section 3.2.3.

In our case, the CA runs on a Worker Node, and it consists of a shared library that
intercepts read and write operations for stdin, stdout, and stderr of the running job.
When possible, the CA sends the output back to the JS (via RPC) as illustrated
by Figure 4.9. If sending the output fails, the CA will instead write its output to
the local disk. Regardless of why the I/O operation failed, the CA keeps the process
running. At regular intervals, it tries the network connection again. If the connection
succeeds, it transfers any buffered data to the JS, and then resume normal operation.
The CA retries failed operations at regular intervals for a certain number of times,
after which it gives up and kills the process. The number of retries and the number
of seconds to pass between each retry are configurable.

Figure 4.9: Condor Bypass Interactive Agent. Left: Normal Operation. Right:
Operation in the case of network failure.

The start of the JS is handled automatically by the command line tools provided with
the CrossBroker. First, JS is started to listen on the first free available port within
the range of open ports for Globus communications. This port and the IP address of
the user machine is sent to the CrossBroker in the InteractiveAgentArguments of
the JDL which will be used later by the CA in the WN. It is worth noting that buffers
have been included for both the submitting and executing machines to provide users
with a genuine feeling of interactivity for text oriented applications. The output
buffer associated with the JS process located on the submitting machine is flushed
to the screen in 3 cases:

• When the output buffer on the submitting machine is full.

• When a timeout occurs. This situation corresponds to the case when users are
requested to input data.

• When an “end of line” is encountered.

The input provided by users on the submitting machine is forwarded to the input
buffers associated with each CA on the executing machines. The forwarding is pro-
duced when the “enter” key is hit. This flushing is intended to provide a readable

76 4.4. Example Applications

output for users, and a “natural” appearance. However, it is only useful for text-
oriented applications.

i2glogin

i2glogin is a tool to enable interactive communication between a grid job and the user
interface. It is a spinoff of the original glogin tool [94], and most of the features are
available in both versions. The fundamental difference between the two tools is given
by the job submission mechanism used. While glogin submits itself automatically to
the grid, i2glogin must be submitted explicitly using the grid middleware.

For building an interactive tunnel, two instances of i2glogin are needed, one local
instance at the user interface and a remote one on the grid. The local instance
allocates a TCP-port and waits for the remote instance to establish the connection.
Locally, i2glogin is started by user command line tools, while the i2glogin’s grid
instance is submitted by using the JDL file options. When started, the local i2glogin
prints its connection parameter to standard output. This parameter is used by the
command line tools in the JDL file, because the parameter must be used by the
remote i2glogin.

The i2glogin tool not only provides remote forwarding of the input and output files
of an application, it is able to offer different interactive services, such as pseudo
terminals, TCP forwarding (including remote X11 displays), and grid-enabled vir-
tual private networks (VPN). Moreover, as in the case of the Bypass Agent, all the
communication is encrypted by Globus GSI tools.

The port forwarding and tunneling features of i2glogin allows the use of higher level
tools such as GVid [52] on top of i2glogin. GVid is a grid-based video service which
can be used to transmit the output of visualization processes running on the grid, to
the user’s desktop machine. Therefore the visualization can be executed as a remote
grid job while the user is observing and interacting with the visualization from the
local desktop machine. GVid captures the output of an arbitrary visualization based
on OpenGL, X11, or VTK, and transmits it to the remote user as a video stream.

4.4 Example Applications

The CrossGrid and int.eu.grid projects identified a set of applications that benefit
from the deployment of an infrastructure like the one proposed in each of the projects.
These applications are characterized by making use of MPI for communication be-
tween processes and/or the necessities of interactive steering or visualization.

4. CrossBroker Design and Implementation 77

Plasma Simulation

The flagship application of int.eu.grid is a simulation and visualization of the behavior
of plasma in nuclear fusion devices [103]. In this application the plasma is analyzed
as a many-body system, composed of electrons and ions, orbiting inside the fusion
device cavities. This approach has become feasible only in the past two years, because
researchers can profit of large scale clusters at their own centers, and distributed
computing infrastructures like the grid. Furthermore, the visualization of the plasma
particles inside fusion devices is an interesting tool because the nature of the plasma
makes it very difficult to obtain direct experimental measurements of real fusion
devices.

Figure 4.10 shows the application running inside the Migrating Desktop. The ap-
plication is a Master/Worker MPI application with intensive communication, that
generates an OpenGL visualization transmitted to the user desktop with Gvid [52]
and glogin.

Figure 4.10: Plasma visualization application running on the Migrating Desktop

The JDL description of this application is given in Figure 4.11. It is an Open MPI
parallel application that executed on 4 CPUs. The executable is linked with the
GVid tool and receives two arguments that are used by this tool to generate the video
output. The interactive agent used in this case is i2glogin, and its arguments specify
the client machine and port (158.109.65.149, port 12345). The application uses a file
for input data that contains the plasma device geometry and the initial characteristics
of the plasma simulated. This input file and the executable are transferred to the
Worker Node by the CrossBroker. The environment variable POSIXLY CORRECT is
needed for the proper functioning of Gvid.

78 4.4. Example Applications

JobType = "Parallel";
SubJobType = "openmpi";
NodeNumber = 4;

Executable = "run_fusion";
Arguments = "-vid -client";

Interactive = True;
InteractiveAgent = "i2glogin";
InteractiveAgentArguments = "-r -p 12345:158.109.65.149 -c ";

StdOutput = "std.out";
StdError = "std.err";
OutputSandbox = {"std.out","std.err"};
InputSandbox = {"input.data", "run_fusion"};

Environment = {"POSIXLY_CORRECT=1"};

Figure 4.11: JDL file for the plasma visualization application

Neural Network Training

The CrossBroker allows the execution of MPI applications using the nodes of dif-
ferent clusters. Applications that make heavy use of collective operations and are
quite sensitive to high latency links are not suitable for this kind of environment.
However, there are many applications that exhibit a computation/communication
ratio which makes them attractive to an execution distributed over multiple sites.
Many embarrassingly parallel applications fit in this kind of application.

ANN is a Master-Worker application developed in the CrossGrid Project to measure
the impact of execution using multiple sites. This application performs the iterative
process of training a neural network that analyses data from the LEP (Large Electron
Positron Collider) at CERN in order to attempt to find the Higgs Boson [104]. The
master node assigns a list of files with input data to each of the workers, and the
training is repeated until the obtained error reaches a certain bound. The needed
files are downloaded from each of the workers using the replica management tools.
An example JDL file for executing this application on 10 nodes is shown in Figure
4.12.

The Executable attribute defines the binary to be executed, while the Arguments
attribute contains the name of the file that lists the location of the training files
that will be used during execution. This file and the application executables are
included in the InputSandbox and will be staged on the Worker Nodes by the Job
Starter. The StdOutput and StdError attributes specify the files to which the
standard output and error will be redirected. The OutputSandbox includes those

4. CrossBroker Design and Implementation 79

JobType = "Parallel";
SubJobType = "mpich-g2";
NodeNumber = 10;

Executable = "ann";
Arguments = "train_set.xml";

StdOutput = "std.out";
StdError = "std.err";
OutputSandbox = {"std.out","std.err"};
InputSandbox = {"train_set.xml", "ann"};

Rank = other.GlueHostBenchmarkSI00;

Figure 4.12: JDL file for the ANN application

files, which will be transferred back from the temporary working directory on the
execute machine to the submit machine. CEs are sorted according to with the Rank
expression (GlueHostBenchmarkSI00 refers to Average SpecInt 2000 benchmark, as
an indication of the computational power). It must be noted that the Glue Schema
is utilized within the Rank attribute, since it is also used for the resource description.
Figure 4.13 shows the output of the ‘job-list-match’ command. It returns a list of
resources or groups of resources upon which the parallel job can be executed. Such
a list is composed of:

• Groups of elements that contain only one CE, so the job could be submitted
to just one CE or cluster. This is the most desirable situation. For example,
the CE ce001.grid.ucy.ac.cy:2119 has all 10 free CPUs and a global rank (based
on the SI00 of that CE) of 650. This resource will be the first selected by the
Scheduling Agent.

• After single CEs, groups of CEs that fulfill the requirements are formed. In
this case, we find 2 groups with 2 CEs suitable for executing our job. The
best one, according to the rank is the group formed by cagnode45.cs.tcd.ie and
ce100.fzk.de. The computed rank of 440 is not the average of the ranks of
the components ((400 + 460)/2 = 430), but the weighted rank calculated by
considering the number of free CPUs of each component.

• As can be seen, there are no possible groups of 3 CEs that contain the required
number of CPUs not taken into account in the previous groups (with 1 or 2
CEs). However, we find 1 group with 4 CEs.

80 4.4. Example Applications

GROUPS OF CE IDs LIST

The following groups of CE(s) matching
your job requirements have been found:

Groups with 1 CEs *TotalCPUs* *FreeCPUs*

[Rank=650]
ce001.grid.ucy.ac.cy:2119 10 10

[Rank=630]
cluster.ui.sav.sk:2119 16 16

[Rank=400]
zeus24.cyf-kr.edu.pl:2119 58 57

Groups with 2 CEs *TotalCPUs* *FreeCPUs*

[Rank=440 TotalCPUs=12 FreeCPUs=12]
cagnode45.cs.tcd.ie:2119 4 4
ce100.fzk.de:2119 8 8

[Rank=498 TotalCPUs=10 FreeCPUs=10]
ce01.lip.pt:2119 2 2
ce100.fzk.de:2119 8 8

Groups with 4 CEs *TotalCPUs* *FreeCPUs*

[Rank=435.6 TotalCPUs=10 FreeCPUs=10]
cagnode45.cs.tcd.ie:2119 4 4
ce01.lip.pt:2119 2 2
cg01.ific.uv.es:2119 2 2
cgnode00.di.uoa.gr:2119 2 2

Figure 4.13: Results of matchmaking

4. CrossBroker Design and Implementation 81

4.5 Conclusions

The CrossBroker is an implementation of a Grid Resource Management System for
interactive and parallel jobs following the architecture proposed in the previous Chap-
ter. In this Chapter, we described each of the modules that compose the scheduler:

• The Scheduling Agent is in charge of receiving the users jobs and makes the
appropriate scheduling decisions to execute those jobs on the resources. It
includes a multi-programming mechanism based on Condor that allows the
execution of interactive applications as soon as they are submitted.

• The Resource Searcher discovers the resources available in the grid environment
and does the matching between the jobs requirements and the resources. It
keeps the resource information in a cache that gets updated asynchronously
using a variety of methods.

• The Application Launcher, Job Starters and Interactive Agent are in charge
of the actual execution of the application at the resources. The Application
Launcher uses Condor-G as a front-end to the Grid. Mpi-Start is used as a
Job Starter for parallel applications. We provide a Condor Bypass Interactive
Agent, however other agents, such as glogin, have been adapted to be used
with our system.

We have also shown examples of real applications that use the CrossBroker features
for executing parallel code and interact with the user online.

82 4.5. Conclusions

CHAPTER5
CrossBroker Experimental Evaluation

In this Chapter, we report on the different experiments performed in order to show
the benefits of the CrossBroker mechanisms and the overhead introduced by our
middleware on a real testbed.

In Section 5.1 we study the overhead introduced by the CrossBroker and the software
stack used in the execution of jobs. This metric is especially important for interactive
jobs, where response time should be as short as possible. Section 5.2 presents the
usage statistics of the CrossBroker on the int.eu.grid testbed. This study serves as
the basis for the creation of the workloads used in the next section, where simulation
is used to present the benefits of the proposed mechanisms.

5.1 CrossBroker Overhead

Overhead is a metric that reports delays between the submission and the execution
of jobs. This metric is especially important for interactive jobs, where response time
should be as short as possible.

In the submission process we have identified the following steps that can cause delays:

83

84 5.1. CrossBroker Overhead

1. Job Preprocessing. This is the starting point for every job: the user from the
User Interface submits a job described in a JDL file to a CrossBroker.

2. Selection of Resources. In this step, the CrossBroker selects the best resource
available to run the job. Some jobs may wait in the scheduler’s queue before
processing.

3. Remote Job Submission. Once the best resource is selected, the job is submitted
to the remote resource using the corresponding Application Launcher.

4. Job Start up and Execution. At the remote resource, the Job Starter prepares
the environment for the job, stages all the needed files and starts the job.

In the following Sections we will evaluate the overhead introduced by each of the
steps described above.

5.1.1 Job Preprocessing

The submission of jobs is handled by the User Access Module of the Scheduling
Agent. The overhead introduced by this step of the job submission process is due
to the authentication and authorization process of GSI, the CrossBroker validation
of the user request, and the file staging from the User Interface to the CrossBroker.
File transfer is done using gridFTP [90], a standard file transfer protocol and server
for grids. All the jobs stage at least the user proxy that will be used later for authen-
tication at the remote sites. If the job includes any other files in the InputSandbox,
those will be also staged. Each file is sent independently, therefore the time increases
with the file sizes and the number of files. The CrossBroker includes a configuration
parameter that limits the size of the Input Sandbox for every job. By default, this
parameter is set to 1MByte. Jobs that may need bigger files should use another
transfer mechanism from the Worker Nodes during job execution, such as the Data
Management Tools from EGEE [105].

The time spent in this phase is determined by the expression

T = Tauth +
n∑

i=0

(lat+
sizei
bw

)

where Tauth is the time spent authenticating and validating the user request, lat is
the network latency, bw is the network bandwith, sizei is the size of file i (size0 is
the size of the user proxy that is always transfered), and n is the number of files in
the input sandbox.

In our experiments we have a CrossBroker installed at UAB, and we used two User
Interfaces: one installed also at UAB, on the same network as the CrossBroker, and

5. CrossBroker Experimental Evaluation 85

a User Interface located in Germany, on the int.eu.grid FZK testbed. Four types of
job descriptions were submitted in sets of 100 jobs to measure overhead:

1. Job without input files.

2. Job with one input file of 64KBytes.

3. Job with one input file of 1MByte.

4. Job with four input files, of 256KBytes each.

Figure 5.1 shows the average time in seconds spent for each kind of submission from
the User Interface. The “No files” case illustrates the overhead of the authentication
and authorization process, the transmission of the user proxy, and the CrossBroker
validation of the request. This is the minimum possible overhead for the job pre-
processing step. The local network connection causes an overhead of 2.92 s, and
the FZK connection takes 7.89 s. By analysing the obtained results and using the
expression proposed above, we have found that Tauth is always less than 4 times the
network latency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

No files 64KB 1MB 1MB (4 files)

T
im

e
(s

)

UAB
FZK

Figure 5.1: Average Overhead for Job Preprocessing

The difference between the “No files” case and the submissions with files are caused
by the gridFTP transmission of files between the UI and the CrossBroker. Since
each file is transmitted independently and the size of the files is limited to 1MByte,
the overhead depends mostly on the latency of gridFTP. Therefore, as the number of
files to be transmitted increases, the overhead of user submission will increase. The
“64KBytes” and “1MByte” cases have similar overhead, while the case with four files
has the largest overhead.

86 5.1. CrossBroker Overhead

5.1.2 Selection of Resources

The Selection of Resources in the CrossBroker uses the Resource Cache of the Re-
source Searcher. This allows the fast selection of resources, since there is no need
to query the individual resources every time a new job is submitted. Although the
use of such a Resource Cache may produce errors in the scheduling decisions due to
outdated information, this can also occur without a Resource Cache. The informa-
tion provided by the resources is not always up to date and depends on the updating
mechanisms used in each site. For example in the int.eu.grid project, the information
is updated at the sites every four minutes. The Resource Cache alleviates the lack
of perfectly up to date information from the sites with the most recent information
from jobs submitted by the CrossBroker (selected CPUs are not considered free until
the job is returned).

The matchmaking algorithm for intra-cluster jobs has linear complexity; each of the
sites in the list is checked once. However, the inter-cluster algorithm must construct
the possible sets of machines that may execute the job. The maximum number of
sets to be evaluated is 2n − 1, with n being the number of resources. This is a worst
case scenario since the algorithm discards the solutions in which a subset is already
included in a previously matched group and a limit to the maximum number of CEs
per set exists.

Our experiment asked for 100 CPUs without any special requirements on the re-
sources. We used two different testbeds: the int.eu.grid (i2g) testbed where 10 sites
are available in the Resource Cache, and the EGEE testbed, where 363 resources are
available. Figure 5.2 shows the average selection time for submission when the selec-
tion used both intra-cluster and inter-cluster allocation on each of the two testbeds.

The matchmaking in int.eu.grid takes less than 0.1 s for intra-cluster selection, while
for inter-cluster jobs the elapsed time is 0.52s. The EGEE test, suffers from the need
to to check a large number of resources. The time elapsed increases to 0.25 seconds
for intra-cluster case and 2.8 seconds for inter-cluster case.

When the Resource Cache is not enabled, there is a query to every site is performed in
order to check its attributes and match with the job. This query suffers from timeouts
and connection errors and further delays the matchmaking phase. We measured the
querying process for the int.eu.grid and EGEE testbeds, discarding all cases with
time-outs or errors. In the case of the int.eu.grid testbed, the average time needed
for query all the sites is 0.75 seconds (with a standard deviation of 0.01). However
for the EGEE testbed, it takes 89.4 seconds on average (with a standard deviation
of 2.1) to fetch the information from all the resources. These times should be added
to the selection times already shown in the figure.

5. CrossBroker Experimental Evaluation 87

 0

 0.5

 1

 1.5

 2

 2.5

 3

Intra-cluster Inter-cluster

T
im

e
(s

)

i2g
EGEE

Figure 5.2: Average Selection Overhead

5.1.3 Remote Job Submission

Once resources have been selected by the Scheduling Agent, the Application Launcher
invokes Condor-G for submission to the remote resources. In this step, Condor-G
contacts the remote Globus GRAM job manager that will in turn submit the job
to the local resource management system. This local resource management system
will finally select the Worker Nodes and start the application. The overhead intro-
duced by this step depends on the different overheads introduced by the middleware
involved. Since the Job Starter is submitted instead of the final user job, the file stag-
ing in this step is the same for every job. When using the Glidein mechanism, Globus
and the Local Resource Management System are bypassed, starting directly the job
in the resource. The only overhead is due to the Condor job starting mechanism.

Figure 5.3 shows the average time in seconds spent during submission to the remote
resources using different sites. The CrossBroker machine is installed at UAB, while
the remote sites are at UAB, FZK (Karlsruhe, Germany), LIP (Lisbon, Portugal),
and BIFI (Zaragoza, Spain). Submission occurred when the Local Resource Man-
agement System queues were empty, hence the jobs did not wait in the queue. The
submission time for jobs using Glidein for the same sites is also shown.

The overhead in remote job submission using Globus is given by the following ex-
pression:

T = Tglobus + Tjobmanager + Tqueue

where Tglobus is the time spent in contacting the remote resource and cimpleting the

88 5.1. CrossBroker Overhead

 0

 50

 100

 150

 200

 250

UAB FZK BIFI LIP

T
im

e
(s

)

Glidein
Globus

Figure 5.3: Average Remote Job Submission Overhead.

request for a new job submission. This time is dependent on the network connection
between the sites and the CrossBroker. We have found in our experiments that
Tglobus reaches the maximum of 28 times the network latency. Tjobmanager is the time
spent by the jobmanager preparing and submitting the job to the Local Resource
Management System (LRMS). UAB, FZK, and BIFI use Torque as their LRMS,
while LIP uses SGE. The jobmanager for SGE is developed at LIP and is optimized
for the site, explaining the lower overhead. In our test, this time is an average 180 s
for the Torque jobmanager, and 150 s for SGE. The last term of the expression,
Tqueue, is the time spent in the queue before execution. In our experiments this time
is negligible since the queues are empty at the time of submission.

In the case of the submission to Glidein, there is no jobmanager that deals with the
creation of the job and there is no queue for starting the jobs. Therefore, the overhead
is given by the time spent by Condor to start the job at the remote site. Again, this
time depends on the network connection, hence FZK and LIP have a higher overhead
due to slower network connections. Experimentally, the time needed for creating the
job at the remote site is less than 15 times the network latency. Submission via the
Glidein is less than 30 seconds for the sites, which is fast enough to provide a good
interactive experience.

5.1.4 Job Start up and Execution

Job Start up is the time elapsed from the start of the Job Starter on the remote
Worker Nodes to the user application start. Two cases can be considered here:

5. CrossBroker Experimental Evaluation 89

batch jobs that set up the Glidein mechanism and run in one of the virtual slots,
and jobs that run directly on the resources assigned.

The creation of the multiprogramming environment includes the download of the
needed Condor binaries, the configuration of the Condor environment to execute the
jobs, and finally the start of the virtual slots. Figure 5.4 shows the time elapsed
from the allocation of the machine by the Local Resource Management System to
the execution of the batch job on the virtual slot. As before, the times for UAB,
FZK, LIP and BIFI sites are depicted. Two files are downloaded to the Worker
Nodes: a bundle of condor binaries in a single compressed tar archive (5.4 MBytes)
and configuration file that is customized at the Worker Node (5 KBytes). Once the
files are downloaded, the configuration time is negligible and not shown in the figure.
The major overhead contribution is the time needed for Condor to start and contact
the CrossBroker and the final execution of the job. This time is less than 44 times
the network latency. The total overhead is under 90 seconds even for the farthest
site, which is acceptable for batch jobs that are expected to run for hours.

 0

 20

 40

 60

 80

 100

UAB FZK BIFI LIP

T
im

e
(s

)

Download
VM set up

Figure 5.4: Average Glidein Start up Overhead

Once the job has a machine allocated for execution, the Job Starter prepares the
environment for running the application. The major contribution to the overhead in
this step is the download of input files. As discussed previously in Section 5.1.1, the
download times depend in the size and number of files transferred and the network
connection between the CrossBroker and the Worker Node.

Applications running on a virtual slot created by Glidein have an extra overhead due
to the Condor daemons running in the Worker Nodes and the job running in the other

90 5.1. CrossBroker Overhead

virtual slot. The overhead due to the execution of the application on the virtual slot
depends greatly on the type of application and its priority adjustment. We measured
the impact of the multiprogramming environment using one of the applications of the
int.eu.grid project. This application, called eIMRT (enhanced Intensity Modulated
Radiation Therapy,) performs numerical calculations in order to determine the best
set of radiation beam trajectories, their intensity, and their shape configurations in
order to offer the best treatment to the patient. It is a CPU-intensive application
that simulates the various possibilities for the radiation beams. It has an initial I/O
phase to read large input data files with the patient information. The application
was executed with a WN under the following scenarios:

• Bare machine, without any Glidein mechanism running.

• Application running in the batch virtual slot, without any application running
on the interactive virtual slot and vice versa.

• Running on one virtual slot, while sharing the machine with another application
on the other virtual slot. A study of the priorities of both slots was performed
in this case.

Figure 5.5 compares the average execution time for these scenarios, were the appli-
cation is running without sharing the machine. Each scenarios was was executed 100
times. In our experiments we have that the Condor overhead is negligible: applica-
tions running with or without the Condor daemons have no differences in run time
if there is no other application running on the other virtual slot.

In the last scenario, the type of application executed (I/O or CPU-intensive appli-
cations) concurrently determines the overhead. We used a synthetic CPU-intensive
application with a 98% CPU executed together with the eIMRT. Figure 5.6 depicts
the influence of this synthetic application on the run time of the eIMRT application.
The average run time in seconds of the eIMRT is plotted against its priority. The
priority ranges from 19, the minimum, to 0, the maximum. These are user settable
scheduling priorities in the operating system. Five different cases are shown, identi-
fied using the priority of the synthetic application (0, 5, 10, 15, and 19). The black
dashed line depicts the average run time of the application when running without
sharing the CPU. The run time for eIMRT priority 19 with synthetic application
priority 0 has not been plotted for figure clarity: in this case the run time is 12582.14
seconds.

As can be seen in the figure, once priority reaches a certain level, the gains in run
time are not significant: assigning a higher priority to the job does not greatly affect
the run time. This priority level depends on the applications sharing the physical
machine. In our current configuration, the batch virtual slot is assigned a priority
of 10, while the interactive job is 0. This is the way we ensure a low overhead

5. CrossBroker Experimental Evaluation 91

 0

 100

 200

 300

 400

 500

Bare Machine Batch Slot Int. Slot

T
im

e
(s

)

Figure 5.5: Average Execution Time of eIMRT in the Glidein environment without
sharing the CPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5 10 15 20

T
im

e
(s

)

eIMRT priority

0
5

10
15
19

Figure 5.6: Runtime of eIMRT on virtual slots with different priority

92 5.2. The CrossBroker on a real testbed

for interactive priority: in our experiments with the synthetic application priority
10 and eIMRT with priority 0, the increase in run time is less than 30%. If the
eIMRT application executes with priority 10 and shares the CPU with a high priority
application (red line in the plot), the run time is increased by 210%. Note that we are
considering a worst case scenario, since applications (specially interactive) are usually
not that demanding of the CPU. Moreover, interactive applications are usually short,
so the batch application usually does not share the CPU during its entire execution.

5.1.5 Overall Overhead

As seen in previous sections, the overhead of the applications submitted to the Cross-
Broker greatly depends on the overhead introduced by the different middleware com-
ponents used at each step: gridFTP for the transmission of files, Condor and Globus
GRAM for the submission to the sites, and the LRMS for the final resource allo-
cation. The CrossBroker introduces mechanisms to completely avoid the overhead
produced by GRAM and LRMS for interactive jobs using Glidein mechanisms.

An interactive application without input files (e.g. a shell session on a grid resource)
submitted from a UI with a slow network connection to the CrossBroker, on a testbed
where there are more than 300 different sites that gets submitted to a site with a
slow network connection such as FZK, the application can start in less than 40 s if
there is a virtual slot available. In the case of needing to pass through Globus and
the LRMS at the remote site, the submission time will increase to 240 s. Using input
files increases the time needed for starting the applications.

Batch applications have larger overheads: they always go through Globus and they
may start the Glidein mechanism. However, the impact is low for applications that
run for a long time. In a worst case scenario, for an application submitted to a site
selected from more than 300 sites with 1MByte of input files, the total waiting time
would be around 380 s if the site queues are empty.

5.2 The CrossBroker on a real testbed

The CrossBroker has been used in the CrossGrid and int.eu.grid projects as the main
Grid Resource Manager for submission of parallel and interactive application on the
respective projects’ testbeds.

All the software, including the CrossBroker, used in both projects had to pass a Test
& Validation (T&V) phase where an independent project team would test and assure
that all the features described by the software developers were working properly, and
that it interacted nicely with the rest of the software. The CrossBroker passed several

5. CrossBroker Experimental Evaluation 93

Prod Site Country Cores Arch Storage LRMS
BIFI Spain 22 Xeon 0.1 TB Torque
CESGA Spain 20 Xeon 4.8 TB Torque
CYFRONET Poland 20 Xeon 1.0 TB Torque
ICM Poland 32 Opteron 1.3 TB Torque
IFCA Spain 314 Xeon 1.1 TB Torque
IISAS Slovakia 32 Core Duo 0.5 TB Torque
LIP Portugal 57 Opteron 1.6 TB SGE
PSNC Poland 107 Itanium/Xeon 4.4 TB Torque
FZK Germany 100 Opteron 1.8 TB Torque

Table 5.1: Production sites properties

Dev Site Country Cores Arch Storage LRMS
FZK Germany 4 Xeon 3.4 GB Torque
TCD Ireland 26 PIII 3 TB Torque
UAB Spain 20 PIV 380 GB Torque
GUP Austria 10 Xeon/AMD 500 GB Torque

Table 5.2: Development sites properties

of these T&V tests, the most recent one in January of 2008.

5.2.1 The int.eu.grid testbed

The int.eu.grid infrastructure is split into two independent grid computing services
called production and development. The production service is composed of nine clus-
ters and provides a reliable environment to run end-users’ applications. Each cluster
deploys different CPU architectures (Xeon, Opteron, Pentium D, and Itanium), and
uses their preferred Local Resource Management System (LRMS) for job manage-
ment control.

The development infrastructure is intended to provide a realistic, yet flexible envi-
ronment for development activities. It is composed of four clusters, and is used to
support the testing and integration of the middleware. For higher flexibility and
to maximize the available resources, development sites makes heavy use of virtual
machines.

Tables 5.1 and 5.2 provide a brief summary of the sites’ most important features,
namely their capacity, cluster architecture, and LRMS.

The production infrastructure has a total of 700 CPU cores and 16 Tbytes of

94 5.2. The CrossBroker on a real testbed

storage, while the development infrastructure has 60 CPUs and less than 4 Tbytes of
storage. For both infrastructures there is a set of core services that provide resource
management (the CrossBroker), information repositories for resources and files (one
MDS top-BDII and an LFC replica catalog), monitoring services (an RGMA server),
and authentication services (VOMS and MyProxy servers). Core services for the
production testbed are located at LIP (Portugal) and replicated at IFCA (Spain).
In the case of the development testbed, they are located at FZK (Germany).

5.2.2 CrossBroker Usage

There is no global accounting for all the jobs submitted to the testbed during the
lifetime of the project: most of the accounting tools were developed during the
project, hence only the last months of int.eu.grid provide data about the CrossBroker
usage.

In Figure 5.7 the number of jobs submitted to the production testbed from March
2007 to June 2008 is depicted. The jobs are classified according their type: normal,
parallel intra-cluster jobs using Open MPI or MPICH, and parallel inter-cluster jobs
using PACX-MPI. The periods of maximum activity match with the project reviews
and meetings (November 2007 and March 2008). A total of 442513 jobs were sub-
mitted during this period. Normal jobs are predominant (a 65%), especially at the
beginning, where users were not yet familiar with the parallel job features and the
testing was done primarily on the development testbed. Intra-cluster jobs represent
24% of the total number of jobs, while inter-cluster jobs represent 11%. Although
not shown in the Figure, interactive jobs account for 5% of the total number of jobs
submitted.

Figure 5.8 shows the percentage of parallel jobs for different job sizes. Jobs with 2,
3, and 4 CPUs account for 98% of the submitted parallel jobs. For larger job sizes,
the most frequent ones are jobs with 8 and 10 at 0.36% and 0.38% respectively of
the total number of parallel jobs submitted.

Table 5.3 reports the relevant job states as seen from the production CrossBrokers
for the same dates, as well as the number of jobs going through each of those states.
During the time period considered in this analysis, 442513 jobs have been success-
fully registered, meaning that they were successfully authenticated and authorized.
Only 1.5% were not accepted by the CrossBroker due to bad use of submission pro-
tocols, syntax errors, or to problems with the input sandbox file transfers. After job
acceptance, the requirements for each job are matched against the available infras-
tructure resources, resulting in a list of possible CEs on which to run the job. The
highest number of job submission failures occurs during this step (28.3%). Analyzing
these failures, it can be concluded that most of them are caused by incoherent user
specified requirements, such as requesting features that do not exist, or asking for

5. CrossBroker Experimental Evaluation 95

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

m
ar/07

apr/07

m
ay/07

jun/07

jul/07
aug/07

sep/07

oct/07

nov/07

dec/07

jan/08

feb/08

m
ar/08

apr/08

m
ay/08

jun/08

N
um

be
r

of
 jo

bs

Date

Intra-cluster Inter-cluster Normal

Figure 5.7: Jobs submitted to the int.eu.grid infrastructure.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

2 3 4 > 5

P
er

ce
nt

ag
e

of
 jo

bs

Job size

Figure 5.8: Jobs sizes in the int.eu.grid infrastructure.

96 5.3. Evaluation of the CrossBroker Mechanisms

resource quantities not available at a given time. Another source of failure are the
interactive requirements. Interactive jobs that do not receive resources for executing
immediately (with or without Glidein) fail to pass to the next scheduling step.

Job States Total Jobs Fraction (%)
Submitted 442513 100.0
Accepted 435875 98.5
Matched 310644 70.2
Run 303564 68.6
Completed 296484 67
Cleared 261968 59.2

Table 5.3: Number of jobs processed by CrossBroker

From the total number of jobs submitted to the remote sites (310644 jobs), 97.7%
start execution properly and 95.4% end successfully. On the one hand, failures to
start are due to problems at the site level. A wrongly configured site can reject jobs
or start them incorrectly (i.e. not using the requested number of CPUs). On the
other hand, for a job to end successfully, the user application must end correctly and
there may be no errors in file staging at the end of execution. Finally, a Cleared
job status stands for jobs where the output sandbox files have been retrieved by the
user, an action which is clearly dependent on the user side.

The total CPU consumption of all the jobs submitted during that period is around
56% of the total CPU power. In Section 5.3, an evaluation of the CrossBroker
scheduling mechanisms and strategies is performed using simulations.

5.3 Evaluation of the CrossBroker Mechanisms

In this section we evaluate the proposed CrossBroker mechanisms using simulation.
First, we study the modelling of a realistic workload for a grid environment such as
the int.eu.grid testbed. Then Section 5.3.2 reviews some of the simulators available
for grid scheduling, followed by giving the results of the simulation of the execution
of parallel and interactive jobs with the CrossBroker.

5.3.1 Workload Modelling

One of the most important factors that contribute to the performance of large-scale
systems are the queueing effects due to the random nature of the demand. This is
dependent on the nature of the system’s workload. The Parallel Workload Archive

5. CrossBroker Experimental Evaluation 97

(PWA)[106] collects parallel supercomputer traces from real systems. It is the current
de-facto standard source of workload traces and it has been used extensively in
research on parallel schedulers and grids. However, there exist significant differences
between the parallel supercomputer workloads and the typical workloads of real grid
environments.

The Grid Workload Archive (GWA) [107] is an ongoing effort for collecting realistic
workloads that can be used in research. Created in 2006, the GWA currently contains
traces of nine well-known grid environments, with a total content of more than 2000
users submitting more than 7 million jobs over a period of 13 operational years, and
with working environments spanning more than 130 sites comprising 10000 resources.

There are two important characteristics of the traces collected by the GWA:

1. The percentage of single processor jobs is much higher in GWA than in the
PWA. There exist 70% – 100% single processor jobs in GWA. Even an infras-
tructure such as int.eu.grid, which is designed for execution of parallel jobs has
around 65% of single processor jobs, as shown in Section 5.2.2.

2. The grid single processor jobs typically represent instances of batch submission.
A batch submission is a set of jobs ordered by the time at which they arrive
at the system, where each of the jobs is submitted at most ∆ seconds after
the first job (∆ = 120s is considered the most significant). The run time of
jobs belonging to the same batch submission is large, however the user submits
these jobs with a single run time estimate, severely affecting scheduling policies
that rely on user estimates (backfilling).

The GWA traces cannot be used unmodified on systems different from the one orig-
inating the trace, since the size of the systems is different and the job submission
depends on the original circumstance. Moreover, modifying the real traces by scaling
or duplicating their jobs may lead to input that does not actually represent a realistic
trace, thus affecting scheduling results [108].

In order to address these issues, we employ a model-based trace generation for our
experiments. We use the Lublin model [109], which is extensively used by the resource
management research community. This is a model for rigid jobs, i.e. jobs whose size
is fixed upon arrival to the system. The model includes an arrival pattern with a
daily cycle, and a distinction between interactive and batch jobs. The run times
of jobs in the model are correlated with the number of nodes of each job. The job
parallelism is modelled on two classes: single-processor jobs, and parallel jobs. In our
case, the probability of single-processor jobs, p, is fixed to reflect the values found in
int.eu.grid, p = 0.65. The remainder of the jobs (the parallel ones) have a maximum
of 128 nodes, and the average is 4 nodes.

98 5.3. Evaluation of the CrossBroker Mechanisms

5.3.2 Simulation of grid environments

In a grid environment, it is hard or even impossible to perform scheduler performance
evaluation in a repeatable and controlled manner due to their large dimensions and
dynamic nature. To overcome this limitation, a simulation tool can be useful in
evaluating the behavior of the CrossBroker. Simulation has been used extensively
for modelling and evaluation in real world systems. Several projects have developed
tools to study the design and operation of grid environments. The most notable ones
are: Bricks [110], Simgrid [111], and GridSim [112].

• Bricks, developed at the Tokyo Institute of Technology, is designed to investi-
gate scheduling issues. It provides a centralized scheduling methodology and
allows the use of external tools for network modelling. The computational
resources of the given global computing system are parameterized by perfor-
mance, load, and their variance over time. This restricted model of the re-
sources does not make it suitable for simulating our system.

• SimGrid was developed initially at the University of California at San Diego. It
is an event driven simulator written in C. It supports the modelling of resources
that are time-shared using a reference resource. The performance of any of the
resources is specified with respect to this reference resource, used as a ratio to
scale submitted jobs. It has been used in several studies to evaluate scheduling
policies, but due to its design, it is difficult to simulate resources with their
own policies without extending the toolkit substantially.

• GridSim is a Java simulator based in the SimJava library. It is designed for
simulating heterogeneous resources with several users, applications, and local
schedulers. It provides network topology simulation [113], the use of workload
traces, and the detailed simulation of parallel applications [114]. The source
code is freely available and has a detailed documentation.

We used GridSim for simulating our system. We introduced changes necessary in
order to model the multiprogramming environment created by the Glideins on the
remote resources and implemented a CrossBroker scheduler that performs the same
actions as the real implementation. Using the GridSim tools, we simulated the
production int.eu.grid testbed with the characteristics shown in Table 5.1: 9 sites
with a total of 686 CPUs.

In the simulation we considered the following parameters:

1. FCFS scheduling policy at the cluster level. All of the sites in the
int.eu.grid testbed use FCFS in their LRMS. Moreover, policies that rely on
runtime estimates are difficult to implement on grids.

5. CrossBroker Experimental Evaluation 99

2. No background load. We assume that all load on the system originates
from the submission of jobs to the CrossBroker. In the case of the int.eu.grid
project, all the load is generated by the CrossBroker.

3. Simplified network. We simplified the interconnection network that is avail-
able in the int.eu.grid testbed and considered a single router per country, con-
nected to all the sites in that country. All those routers connect point to point.

5.3.3 Co-allocation and Parallel Jobs

Parallel jobs executed in grid resources may use many processors and take advantage
of using different resources available in a grid. The co-allocation mechanisms of the
CrossBroker allow the execution of such applications automatically, harnessing the
infrastructure potential in an efficient way. In this section we evaluate the benefits
of using the CrossBroker for executing parallel jobs on grids.

In order to evaluate the co-allocation features, we used the GridSim simulator with
extensions for simulation of parallel applications. These extensions allow the defini-
tion of jobs composed of tasks. Each one of the tasks is assigned to a CPU and can
communicate with the others, taking into account the underlying network. For our
simulation we have specified two kinds of parallel jobs:

1. CPU-bound jobs modelled as Master/Worker applications, where the Master
distributes a set of tasks to the Workers and gathers all the results once the
computation has finished. The size of the tasks depends on the run time of the
job as defined by the workload model, and the communication depends on the
number of nodes used by the application.

2. Communication-bound jobs modelled as SPMD applications. In this case, com-
munications occurs between adjacent neighbouring tasks every computing it-
eration. The number of iterations depends on the length of the job, while the
communication is fixed for each iteration (4096 Bytes).

A workload of one day is generated with the Lublin model and without interactive
jobs. Figure 5.9 shows the job submitted per hour in intervals of 15 minutes for the
generated workload. The Lublin model creates cyclic arrival patterns that repeat
for each day. The results are similar for workloads that elapse over longer periods
of time. This workload generates a high load during the day, with the submission
of more than 70 jobs in one hour. CPU-bound and communication-bound jobs are
distributed with equal probability within the workload.

We have simulated the same workload considering three different scenarios. Sce-
nario A simulates a situation without co-allocation. Therefore, jobs must wait until

100 5.3. Evaluation of the CrossBroker Mechanisms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 4 8 12 16 20 24

jo
bs

 s
ub

m
itt

ed
 p

er
 h

ou
r

time of day

Figure 5.9: Job arrival pattern in the workload.

there are enough free CPUs within one resource. Scenarios B and C simulate co-
allocation. Co-allocation allows jobs to be executed if there are enough free CPUs on
one resource, or if there is a set of resources with sufficient CPUs to execute the job.
Scenario B co-allocates jobs without considering the characteristics of CPU-bound
or communication-bound. Scenario C co-allocates only CPU-bound jobs.

In order to evaluate the influence of the selection of nodes for execution of parallel
jobs, three different selection policies were implemented in the CrossBroker simula-
tion:

Worst Fit (WF). The Worst Fit allocation policy selects the site with the largest
number of free CPUs to execute a job.

Best Fit (BF). In this case, the site with smallest difference between the CPUs
requested and the number of CPUs available at the resource is selected.

First Fit (FF). The First Fit policy selects the first site considered with sufficient
CPUs to execute the job.

Inter-cluster execution is only used when there are insufficient resources at a single
site for the execution of the job. The CrossBroker always tries to minimize the effect
of the high latency network links between sites for inter-cluster jobs by selecting the
set with smaller number of resources. In order to select the best set from the ones
with smaller cardinality, a Best Fit policy is used, creating the largest job components
possible.

Figure 5.10 shows the system utilization during the execution of the workload for the
Worst Fit policy. The value 1 implies that all the CPUs in the system are being
used for execution of jobs, and 0 implies that all the CPUs are free. Scenario A is

5. CrossBroker Experimental Evaluation 101

shown in red, scenario B in green and Scenario C in blue. The bottom figure shows
the evolution of the average system utilization during the simulation. In the top
figure it can be seen that scenario A (without co-allocation) is not able to efficiently
use the resources. When a large job is to be executed and there are not enough
resources, the rest of jobs are held in the queue. Once enough CPUs have been freed
for the first job, the following jobs also enter the system until another large job holds
the queue, producing the peaks of system load seen in the figure. In scenario B,
where the CrossBroker uses co-allocation whenever there are not enough machines
on one single site to execute the first job in the queue, the utilization of the resources
reaches 100% most of the time. Scenario C sees an intermediate result, with some
Communication-bound jobs holding the queue.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

S
ys

te
m

 U
til

iz
at

io
n

Time (s)

Scenario A
Scenario B
Scenario C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 S
ys

te
m

 U
til

iz
at

io
n

Time (s)

Scenario A
Scenario B
Scenario C

Figure 5.10: Top: Worst Fit allocation policy system utilization. Bottom: Average
system utilization for Worst Fit allocation policy

102 5.3. Evaluation of the CrossBroker Mechanisms

Figure 5.11 shows the system utilization versus time for the Best Fit policy of the
three simulated scenarios. Although the Best Fit policy produces more fragmentation
at smaller sites (i.e. the free CPUs usually are not sufficient for the execution of larger
jobs), it tends to use the smaller sites, leaving space for the larger jobs on the bigger
sites. Therefore, the big jobs do not hold the queue as frequently as the Worst Fit
policy. Regardless of the better system utilization for all scenarios, co-allocation
scenarios outperform non-coallocation by making use of the spare CPUs available at
the sites where there are not enough CPUs for running the jobs in the queue.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

S
ys

te
m

 U
til

iz
at

io
n

Time (s)

Scenario A
Scenario B
Scenario C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 S
ys

te
m

 U
til

iz
at

io
n

Time (s)

Scenario A
Scenario B
Scenario C

Figure 5.11: Top: Best Fit allocation policy system utilization. Bottom: Average
system utilization for Best Fit allocation policy

The behavior of the First Fit allocation policy is shown in Figure 5.12 — the top
plot shows the system utilization and the bottom plot shows the average system
utilization. This policy does not consider the global state of the resources, and only

5. CrossBroker Experimental Evaluation 103

considers the first resource available for running a job. Therefore it schedules jobs
faster than the other policies. Although it schedules jobs without taking into account
the status of all resources, it produces better results than the Worst Fit policy and
gets better system utilization in all scenarios.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

S
ys

te
m

 U
til

iz
at

io
n

Time (s)

Scenario A
Scenario B
Scenario C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50000 100000 150000 200000 250000

A
ve

ra
ge

 S
ys

te
m

 U
til

iz
at

io
n

Time (s)

Scenario A
Scenario B
Scenario C

Figure 5.12: Top: First Fit allocation policy system utilization. Bottom: Average
system utilization for First Fit allocation policy

Co-allocation improves system utilization, especially when the job type is not taken
into account. However, the jobs that are executed using several resources may suffer
the impact of low latency links during run time, especially communication-bound
jobs. In order to measure the impact of the network on a co-allocated job, we
repeated the simulation with homogeneous resources and measured the difference in
run time for every job with and without co-allocation using the Worst Fit policy
(where co-allocation is used more frequently). Figure 5.13 shows the probability

104 5.3. Evaluation of the CrossBroker Mechanisms

density function of differences on the run time for the co-allocated jobs. The x-axis
shows the percentage of jobs suffering the impact, and the y-axis shows the impact
as a function of the expression rnc−rc

rnc
, where rnc is the run time of the job when

co-allocation is not used, and rc is the run time of the job when co-allocation is
used. CPU-bound jobs are shown in red, and communication-bound jobs are shown
in green.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

pd
f

job impact

CPU-bound
Comm.-bound

Figure 5.13: Impact on the run time of co-allocated jobs

For a great percentage of CPU-bound jobs, the inter-cluster execution has a negligible
impact on their run time (less than a 0.01% difference in run time). Moreover, most
(more than 85% of the jobs) increase their execution time by less than 10%. The
remainder of jobs suffer a higher impact due to having very short execution times.
Note that the CPU-bound jobs are ideal for co-allocation. The impact is greater
on communication-bound jobs, especially for short jobs, where communication tasks
account for most of the run time. As seen in Figure 5.13, most jobs have between
20% and 80% longer execution times, although very small jobs can reach as high as
700%. Although scenario C does not get the best utilization of the resources, only
CPU-bound jobs are co-allocated, and therefore all the jobs have similar run times
to scenario A, where no co-allocation is used. We recommend that communication-
bound jobs not to be submitted as inter-cluster jobs.

As seen in Section 4.1.2, the CrossBroker implements a Best Fit policy in its sched-
uler, which gets good results for the three scenarios in the simulation.

5. CrossBroker Experimental Evaluation 105

5.3.4 Glidein and Interactive Jobs

The Glidein mechanism enables the fast start-up of interactive applications, even
under conditions of high occupancy of the resources. In this section, we present the
results of the simulation of this mechanism, and its benefits for interactive jobs. We
simulated two different scenarios; the first one with a low load workload, in order to
measure the overhead imposed on batch jobs, and the second one with a high load
workload in order to show the benefits for interactive jobs.

The theoretical load level of a system is given by the following expression:

load =
∑

(ri · ni)
P ·max (ai)

where ri is the run time of job i, ni is number of nodes in job i, ai is the arrival
time (measured from the beginning of the simulation) of job i, and P the number of
nodes in the system.

By modifying the parameters of the Lublin model that characterize the inter-arrival
time between consecutive jobs during peak hours, we are able to generate specific
workloads, for a system of known size. We have 686 CPUs. Using this approach, we
generate synthetic job streams, each lasting one week, for high (load = 0.9) and low
(load = 0.2) load. Figure 5.14 shows the job submitted per hour in intervals of 15
minutes for each of these workloads. The arrival pattern is cyclic, thus only a period
of 24 hours is shown in the figure. Interactive jobs comprise around 5% of the total
jobs in the workload, in concordance with the real workload of the int.eu.grid project
(see Section 5.2.2).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20 24

jo
bs

 s
ub

m
itt

ed
 p

er
 h

ou
r

time of day

 0

 5

 10

 15

 20

 25

 30

 0 4 8 12 16 20 24

jo
bs

 s
ub

m
itt

ed
 p

er
 h

ou
r

time of day

Figure 5.14: Cyclic job arrival pattern in the workloads. Left: High Load. Right:
Low Load.

The actual run time of jobs is modeled by a hyper-Gamma distribution with two
stages. For parallel jobs, the parameter that represents the probability of selecting

106 5.3. Evaluation of the CrossBroker Mechanisms

the first hyper-Gamma stage over the second depends linearly on the number of
nodes. With these parameters, the average job run time is approximately 30 minutes
for interactive jobs and four hours for batch jobs. Figure 5.15 shows the probability
density function for the log10 of the run times (in seconds) for batch and interactive
jobs.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 2 4 6 8 10 12

pd
f

log10 runtime

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12
pd

f
log10 runtime

Figure 5.15: Distribution of runtimes in the workloads. Left:Interactive jobs. Right:
Batch jobs

In order to evaluate the benefits of Glidein and CrossBroker policies for interactive
jobs we simulated the following policies:

FCFS. The CrossBroker employs a First Come First Serve policy for batch jobs,
while interactive jobs have better priority and are submitted to sites with
enough free CPUs to execute the job.

Glidein + FCFS. As in the previous case, batch jobs are scheduled using a First
Come First Serve policy. However interactive jobs use free CPUs or virtual
slots already available at the sites. Only serial batch jobs create new virtual
slots, therefore the creation of virtual slots overhead only applies to them.

Glidein + BF. Although Backfilling is not feasible due to the inaccuracy of user
estimates, we simulated a policy where if some nodes are empty and the first
job in the queue is not suitable, the queue is examined for other jobs. Since the
scheduler does not have job execution times or user estimates, we restrict the
number of allocated CPUs for subsequent jobs to the number of CPUs that this
first job needs. For example, if the first job in the queue is waiting for 32 CPUs,
and the queue contains three jobs needing 16, 10, and 20 CPUs respectively;
the jobs needing 16 and 10 can be executed if there are free CPUs available,
since 26 is smaller than 32.

5. CrossBroker Experimental Evaluation 107

Results for low-load Workload

The low-load workload let us know the overhead of Glidein and how it affects running
jobs. Since the workload is low enough to have free CPUs whenever an interactive job
arrives at the system, the Glideins will not be used for interactive jobs. However, the
serial batch jobs create virtual slots, allowing us to measure the overhead introduced
by the system. Table 5.4 shows the most significant metrics for each of the policies:

• Makespan: total execution time (in seconds) of the entire workload. It corre-
sponds to the time when the last job of the workload ends.

• Average SlowDown (ASD): the slowdown is defined as the response time divided
by the job size. It gives a measure of system performance, by comparing the
execution time of one job with its size. We would like small jobs to have small
response times and large jobs to have large response times.

• Average Wait Time (AWT) of batch jobs (in seconds): the wait time is defined
as the time elapsed from the job submission until the start of its execution. It
measures how long the job has been waiting in the queue. Only the wait time of
serial batch jobs is considered here, since they activate the Glidein mechanism.

• Failed: percentage of failed jobs. Interactive jobs without resources at the time
of submission are cancelled and considered failed.

• Average Load of the System: The average load measures the utilization of the
system. A load of 1 means all the CPUs in all the resources are being used; 0
means no resources are being used.

Policy Makespan (s) ASD AWT (s) batch Failed Avg. Load
FCFS 624112 1.39 248.53 0% 16.1%
Glidein + FCFS 660722 1.81 342.48 0% 15.9%
Glidein + BF 652246 1.76 327.54 0% 15.9%

Table 5.4: Results for low-load Workload

The difference in the Makespan between FCFS and the other two policies is mostly
due to the overhead introduced by the creation of Glideins. This difference is around
5%. This overhead is also reflected in the Slowdown (defined as the response time
divided by the run time) and Wait Time. The Average Wait Time of the FCFS
policy is in accordance with the time needed for submission of jobs when going via
Globus and the LRMS in the sites (see Section 5.1.) The difference in wait times
is approximately 90 seconds with the other policies, which is the time needed to
start the virtual slot mechanisms on the resources. The results for the Glidein + BF
policy are slightly better than the results for Glidein + FCFS, because more jobs

108 5.3. Evaluation of the CrossBroker Mechanisms

can enter the system. The load level for each of the policies behaves similarly. There
are no significant changes in the actual execution time, all the jobs are exclusively
executed without sharing the machine with other jobs. No jobs are cancelled because
there are sufficient free resources to run all the jobs.

We conclude from these results that the Glidein mechanism does not introduce a
significant overhead in the system.

Results for high-load Workload

When the resources are saturated (i.e. all CPUs are being used), it is more difficult
to find free CPUs for interactive jobs. Therefore, interactive jobs have a greater
chance of being cancelled. Table 5.5 shows the same metrics as Table 5.4 for each of
the policies: makespan (in seconds), average slowdown, average wait time for serial
batch jobs (in seconds), percentage of interactive jobs failed, and the average load of
the system.

Policy Makespan (s) ASD AWT (s) batch Failed Avg. Load
FCFS 881509 17.78 3185.32 14.6% 40.5%
Glidein + FCFS 911828 18.75 3376.30 0% 43.7%
Glidein + BF 899773 18.74 3365.49 0% 44.1%

Table 5.5: Results for high-load Workload

The FCFS policy without the multiprogramming mechanism fails to serve all the
interactive jobs in the workload. 14.6% of them are cancelled due to a lack of free
resources available at the time. Makespan is lower in this case, because there are
fewer jobs executed and jobs are executed in an exclusive manner. The policies with
Glidein achieve a larger makespan (3.4% bigger in the Glidein + FCFS policy and
2.1% in the Glidein + BF policy), but are able to handle all the interactive jobs in
the workload. Glidein + BF obtains better average wait times and makespan due to
the policy of starting jobs that are not at the head of the queue. The limit imposed
for the number of CPUs allocated when the first job is not able to start ensures that
there will not be starvation, and that wait times for those jobs will not be much
higher.

Moreover, higher interactive loads could be supported with these policies due to
the availability of free virtual slots on the resources. Figure 5.16 shows the average
number of virtual slots created and used during a day of simulation for Glidein +
FCFS. The entire simulation spans approximately 11 days. Half of the virtual slots
are always used but there is space for more jobs even in moments of higher load.
Virtual slots are only maintained on resources with a job running.

5. CrossBroker Experimental Evaluation 109

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 4 8 12 16 20 24

nu
m

be
r

of
 v

irt
ua

l s
lo

ts

time of day

used slots
available slots

Figure 5.16: Average number of virtual slots created and used.

The average slowdowns and wait times maintain similar values for the three policies.
No free CPUs always produces long wait times in queues for batch jobs. As explained
in the previous section, the Glidein policies introduce extra overhead due to the
creation of virtual slots, increasing the slowdown and wait times. Table 5.6 shows
the average wait times, the minimum and maximum wait times, and the average
slowdown for interactive jobs for the three policies.

Policy AWT (s) min WT (s) max WT (s) ASD
FCFS 233.4 229.6 251.2 1.13
Glidein + FCFS 163.2 43.4 249.0 1.11
Glidein + BF 148.4 44.1 250.3 1.10

Table 5.6: Metrics for interactive jobs.

In the FCFS policy, interactive jobs pass through the LRMS at the resources, re-
sulting in Average Wait Time of 233.4 s, with small variation in the minimum and
maximum wait times. For the policies with Glidein, some interactive jobs start faster
due to the mechanism, and therefore the AWT decreases to 163.2 s (Glidein+FCFS
policy) and 148.4 s (Glidein+BF policy). When there are free resources, the jobs do
not use the Glidein mechanism, resulting in maximum wait times similar to the ones
for the FCFS policy. However, if the mechanism is used, the wait time is greatly re-
duced, because the job is started directly on available virtual slots using the Condor
mechanisms instead of going through the Globus middleware and LRMS queues. As
seen in the Table, the minimum wait time is below 45 s for both Glidein policies.

110 5.4. Conclusions

Although the Glidein mechanism allows fast execution of interactive jobs, the batch
jobs that caused initial allocation of the machine have longer execution times, because
they share the CPU and have lower priority. Table 5.7 shows the impact on run time
for batch jobs. The impact is measured as the result of rmodel−rreal

rmodel
, where rmodel is

the run time of the job as specified by the model, and rreal is the run time of the job
on the simulated system. The table shows the average impact for batch jobs that run
without being preempted by an interactive job, and for the ones that were executed
sharing the CPU.

Policy Non Preempted jobs σ Preempted jobs σ

FCFS 0.01 0.002 – –
Glidein + FCFS 0.01 0.002 0.13 0.07
Glidein + BF 0.01 0.003 0.14 0.09

Table 5.7: Impact of Glidein on batch jobs.

The 1% impact on run time for the non preempted jobs is mainly due to the time
elapsed from the actual end of the job to the detection of the job completion at
the LRMS. All the policies behave similarly here, since when only one slot is used,
Glidein does not significantly affect to the execution of the batch job as seen in
Section 5.1.4. For preempted jobs, the overhead is below 15%. This impact is lower
than that measured in Section 5.1.4 for low priority virtual slots, because interactive
jobs are usually short and do not preempt the batch job for long periods of time.

This experiment has shown how the Glidein mechanism can be used to start all the
interactive jobs in the workload, even for the case of high occupancy on the resources,
and obtaining low waiting times.

5.4 Conclusions

In this Chapter we have presented an experimental evaluation of the CrossBroker
implementation. We have shown the overhead introduced by our system. Interactive
jobs can be started almost immediately with the use of the Glidein mechanism, while
batch jobs are not greatly impacted by our mechanism.

We presented the use of the CrossBroker on a real testbed, where a real workload is
outlined. There is a high success rate when scheduling jobs in this environment.

In order to evaluate the benefits for interactive and parallel jobs, we simulated the
int.eu.grid testbed and the CrossBroker using the GridSim simulator. The workload
for the simulation was generated according the Lublin model, which is largely used
by the resource management research community for taking into account the char-

5. CrossBroker Experimental Evaluation 111

acteristics of grids workloads and the real workload of int.eu.grid. We found that
co-scheduling permits a higher utilization of the resources. When taking into account
the types of jobs, the impact on their run time is minimal. We have also shown that
the Glidein mechanism allows the execution of more interactive jobs, even under high
occupancy of the resources, without introducing major overhead for the remainder
of the jobs.

112 5.4. Conclusions

CHAPTER6
Conclusions and Future Research

In this work we have studied the problem of executing parallel and interactive jobs
in grid environments. In this Chapter we review the main conclusions and present
the new lines of research opened by this work.

Grid computing provides a large-scale, multi-organizational infrastructure where the
next generation of scientific applications will run. To date, the focus in grid resource
management has been on offering services for serial batch jobs. However, researchers
can benefit from access to powerful resources in an interactive mode for the final
stage of their analysis in a wide range of applications. This introduces the necessity
of providing a channel of communication between the applications and the users,
and it requires the possibility of job start immediate future, also taking into account
situations in which most computing resources may be running batch jobs. Moreover,
grid environments provide the possibility to run parallel applications that can effi-
ciently use many processors, and take advantage of using sets of resources. In order to
execute such applications, co-allocation of resources within different administrative
domains is needed.

We proposed a new architecture that addresses the challenges of executing both
interactive and parallel jobs in a grid environment. This architecture defines a job

113

114

model and a set of execution components to provide transparent and reliable services
for the applications:

• The Application Launchers manage the grid level start up of applications and
provide the co-allocation services needed for parallel applications.

• Job Starters are responsible for invoking the applications at the resource level,
handling all the low level details of the resources, and the parallel application
implementation

• The Interactive Agents support the on-line interaction of the application with
the user in a grid environment.

Those components can be combined to support the execution of applications using a
variety of parallel library implementations and the use of different interactive channel
forwarding mechanisms. We also presented a job definition language to allow the
specification of the jobs conforming to the proposed architecture by extending the
JDL language.

The execution of parallel and interactive jobs in a grid environment requires ad-
ditional mechanisms to provide fast start up and co-allocation under different ad-
ministrative domains. We introduced a time-sharing mechanism that enables both
interactive and batch jobs to share a single machine, in such a way that the interac-
tive application starts its execution as soon as it is submitted. This mechanism can
be also used to co-allocate the different components of a job on several resources,
without having idle resources.

The proposed architecture has been implemented in the CrossBroker, a Grid Resource
Management System that has been used in the production services of the CrossGrid
and int.eu.grid European Projects. The implementation leverages existing efforts in
the area by taking advantage of already available components. We have described the
design and implementation of the system. This resource manager gives transparent
support for execution of parallel applications that use Open MPI, MPICH, PACX-
MPI and MPICH-G2 libraries for communication. It ensures the co-allocation of the
jobs that need the libraries. It abstracts the low-level details and heterogeneity of
grid environments from the user from. The CrossBroker also includes services for
interactive agents with the support of the time-sharing mechanism and the Interactive
Agents framework.

We performed an experimental evaluation of our system. We measured the overhead
introduced by the CrossBroker and the execution environment used. The overhead
introduced by our system are tolerable for the execution of interactive jobs, while it
does not greatly impact batch jobs. We shown the statistics for jobs executed in the
int.eu.grid project and shown two example applications that use the features of our

6. Conclusions and Future Research 115

system. Additionally, by using simulation, we have shown the benefits of using the
CrossBroker for interactive and parallel applications: interactive applications can be
executed even under the high occupancy of resources and parallel applications can be
executed using more resources, while avoiding fragmentation by using co-allocation.

The main contributions of this work can be found in the following publications:

CAI 2008a E. Fernández, A. Cencerrado, E. Heymann, M. A. Senar, CrossBro-
ker: A Grid Metascheduler for Interactive and Parallel Jobs, Computing and
Informatics, vol. 27, pp. 187–197, 2008.

CAI 2008b K. Dichev, S. Stork, R. Keller, E. Fernández, MPI Support on the Grid,
Computing and Informatics, vol. 27, pp. 213–222, 2008

RedIris 2007 E. Fernández, A. Morajko, A. Fernández, M. A. Senar, E. Heymann,
CrossBroker: gestión de aplicaciones paralelas e interactivas en entornos Grid.
Bolet́ın de la red nacional de I+D, RedIRIS, pp. 35–39, 2007

Cluster 2006 E. Fernández, E. Heymann, M. A. Senar, Resource Management for
Interactive Jobs in a Grid Environment. Proceedings of the 2006 IEEE Inter-
national Conference on Cluster Computing, pp: 1–10, 2006.

EuroPar 2006 E. Fernández, E. Heymann, M.A. Senar, Supporting Efficient Exe-
cution of MPI Applications Across Multiple Sites. Proceedings of the Euro-Par
2006 Parallel Processing, LNCS Series, vol. 4128, pp. 383–392, Springer, 2006.

EGC 2005 A. Morajko, E. Fernández, A. Fernández, E. Heymann, M. A. Senar,
Workflow Management in the CrossGrid Project. Proceedings of the Advances
in Grid Computing - European Grid Conference 2005, LNCS Series, vol. 3470,
pp. 424–433, Springer 2005.

AxG 2004 E. Heymann, M. A. Senar, E. Fernández, A. Fernández, J. Salt, The
EU-CrossGrid Approach for Grid Application Scheduling. Proceedings of the
Second European AcrossGrids Conference, AxGrids 2004, LNCS Series, vol.
3165, pp. 42–50, Springer 2004.

Jornadas 2004 E. Fernández, E., Heymann, M. A. Senar, E. Luque, A. Fernández,
Reliable Scheduling of MPI Applications. Actas de las XV Jornadas de Par-
alelismo (Proceedings of the XV Spanish Workshop on Parallel Computing),
Almeŕıa, Spain, pp. 301–306 , 2004.

6.1 Open Lines of Research

Although the proposed architecture and the CrossBroker implementation has been
tested in a production environment and offers a fully operational management of

116 6.1. Open Lines of Research

interactive and parallel jobs, open lines of research remain to be explored.

• Our CrossBroker implementation is a centralized one, where a single global
scheduler manages the jobs. While there could be more than one CrossBroker
managing the same set of resources for different users, each would act indepen-
dently from the others and conflicting scheduling decisions would frequently
arise. Moreover, having centralized services introduces a potential bottleneck
when the number of jobs and users rises. Creating a distributed global grid
scheduler would avoid bottlenecks and allow the CrossBroker to scale grace-
fully. An extensive study of the CrossBroker scheduling policies on a real
testbed should be made in order to better evaluate the scheduler.

• The high priority of interactive jobs can lead to abuse from users that take
profit from the fast start up and better priority by running batch jobs. A
global policy that takes into account all the jobs submitted to the system should
enforce a fair-share between users. Users would have a dynamic priority, which
determines how many resources they can use at a given time, considering both
the batch and interactive jobs already submitted.

• The multi-programming mechanism statically assigns the job priority without
any knowledge from the application. The fine adjustment of the priority for
each of the jobs running on virtual slots could be accomplished on-line in an
automatic way. This can be explored by future work.

• Multi-programming opens the possibility of exploring more complex scenarios,
where more than two jobs are executed concurrently on the same physical
machine. The allocation of each of the virtual slots for different kinds of jobs
or different users with different priorities needs to be investigated.

• Although users would benefit from a reservation of resources, there is little
support for this on grid resources. Since Glidein takes control of a remote
machine, future work could explore the possibility of using Glidein as a general
advance reservation mechanism.

Bibliography

[1] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2003.

[2] I. Foster. What is the grid? - a three point checklist. GRIDtoday, 1(6), July
2002.

[3] T. Hey and A. E. Trefethen. The UK e-Science core programme and the grid.
Future Generation Computer Systems, 18(8):1017–1031, 2002.

[4] I. Foster. The anatomy of the grid: Enabling scalable virtual organizations. In
Proceedings of the 7th International Euro-Par Conference, pages 1–4, London
(UK), 2001. Springer-Verlag.

[5] M. Baker, R. Buyya, and D. Laforenza. Grids and grid technologies for wide-
area distributed computing. Software: Practices and Experiences, 32(15):1437–
1466, 2002.

[6] R. Aiken and et al. Network Policy and Services: A Report of a Workshop on
Middleware. RFC 2768, IETF, 2000.

[7] Open Grid Forum (OGF). Available from World Wide Web: http://www.
ogf.org/ [cited March, 2008].

[8] I. Foster and el alter. The Open Grid Services Architecture, version 1.0. Tech-
nical report, Global Grid Forum (GGF), January 2005.

[9] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In
Network and Parallel Computing, volume 3779 of Lecture Notes in Computer
Science, pages 2–13. Springer, 2005.

117

http://www.ogf.org/
http://www.ogf.org/

118 BIBLIOGRAPHY

[10] D. W. Erwin and D. F. Snelling. UNICORE: A Grid Computing Environment.
In Proceedings of the 7th International Euro-Par Conference, volume 2150 of
Lecture Notes in Computer Science, pages 825–834. Springer, 2001.

[11] OASIS WSRF Technical Commitee. OASIS WSRF v1.2 standard. Technical
report, OASIS, April 2006.

[12] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Perfor-
mance Computing, 11(2):115–128, Summer 1997.

[13] T. A. Defanti, I. Foster, M. E. Papka, R. Stevens, and T. Kuhfuss. Overview
of the i-WAY: Wide-area visual supercomputing. The International Journal of
Supercomputer Applications and High Performance Computing, 10(2/3):123–
131, Summer/Fall 1996.

[14] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 83–92, 1998.

[15] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A resource management architecture for metacomputing systems.
Job Scheduling Strategies for Parallel Processing, 1459:62–82, 1998.

[16] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and
S. Tuecke. A directory service for configuring high-performance distributed
computations. In Proceedings of the 6th IEEE International Symposium on
High Performance Distributed Computing (HPDC-6), pages 365–375, 1997.

[17] K. Czajkowski, C. Kesselman, S. Fitzgerald, and I. Foster. Grid information
services for distributed resource sharing. In Proceedings of the 10th IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC-10),
pages 181–194, August 2001.

[18] C. Adams and S. Farrell. Internet X.509 Public Key Infrastructure Certificate
Management Protocols. RFC 2510, IETF, 1999.

[19] B. C. Neuman. Proxy-based authorization and accounting for distributed sys-
tems. In Proceedings of the International Conference on Distributed Computing
Systems, pages 283–291, 1993.

[20] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten.
Portable batch system: External reference specification. Technical report, MRJ
Technology Solutions, November 1999.

[21] S. Zhou. Lsf: Load sharing in large-scale heterogeneous distributed systems. In
Proccedings of the Workshop on Cluster Computing, Tallahassee, FL, December
1992.

BIBLIOGRAPHY 119

[22] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations.
In Proceedings of the 8th International Conference of Distributed Computing
Systems, June 1988.

[23] W. Gentzsch. Sun grid engine: towards creating a compute power grid. In
Proceedings of the first IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, pages 35–36, 2001.

[24] V. Koutsonikola and A. Vakali. Ldap: framework, practices, and trends. In-
ternet Computing, IEEE, 8(5):66–72, 2004.

[25] Eurogrid Project. Available from World Wide Web: http://www.eurogrid.
org/ [cited March, 2008].

[26] Vertically Integrated Optical Testbed for Large Applications (VIOLA). Avail-
able from World Wide Web: http://www.viola-testbed.de/ [cited March,
2008].

[27] National Research Grid Initiative (NAREGI), Japan. Available from World
Wide Web: http://www.naregi.org/index_e.html [cited March, 2008].

[28] European Data Grid (EDG) project. Available from World Wide Web: http:
//eu-.web.cern.ch/ [cited March, 2008].

[29] F. Gagliardi, B. Jones, M. Reale, and S. Burke. Performance Evaluation of
Complex Systems: Techniques and Tools, volume 2459/2002 of Lecture Notes
in Computer Science, chapter European DataGrid Project: Experiences of
Deploying a Large Scale Testbed for E-science Applications, pages 255–264.
Springer, 2002.

[30] H. Stockinger, F. Donno, E. Laure, S. Muzaffar, P. Kunszt, G. Andronico,
and P. Millar. Grid data management in action: Experience in running and
supporting data management services in the eu datagrid project. In Proceedings
of the International Computing in High Energy and Nuclear Physics (CHEP
2003), La Jolla, CA, March 2003.

[31] S. Andreozzi and el alter. GLUE Schema Specification - version 1.2. Technical
report, Open Grid Forum, 2005.

[32] J.-P. Baud, J. Casey, S. Lemaitre, and C. Nicholson. Performance analysis of a
file catalog for the LHC computing grid. In Proceedings of the 14th IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC-14),
pages 91–99, July 2005.

[33] A. Cooke and et alter. R-GMA: An Information Integration System for Grid
Monitoring. In Proceedings of the On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE, pages 462–481, 2003.

http://www.eurogrid.org/
http://www.eurogrid.org/
http://www.viola-testbed.de/
http://www.naregi.org/index_e.html
http://eu-.web.cern.ch/
http://eu-.web.cern.ch/

120 BIBLIOGRAPHY

[34] Large Hadron Collider (LHC). Available from World Wide Web: http://lhc.
web.cern.ch/lhc/ [cited March, 2008].

[35] Open Science Grid (OSG). Available from World Wide Web: http://www.
opensciencegrid.org/ [cited March, 2008].

[36] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and Steve Tuecke. Condor-G:
A computation management agent for multi-institutional grids. In Proceedings
of the 10th IEEE International Symposium on High Performance Distributed
Computing (HPDC-10), pages 7–9, 2001.

[37] Distributed European Infrastructure for Supercomputing Applications
(DEISA). Available from World Wide Web: www.deisa.org/ [cited March,
2008].

[38] Geánt network. Available from World Wide Web: http://www.geant.net
[cited March, 2008].

[39] Crossgrid EU project. Available from World Wide Web: http://www.
crossgrid.org/ [cited March, 2008].

[40] Interactive European Grid project. Available from World Wide Web: http:
//www.interactive-grid.eu/ [cited March, 2008].

[41] M. Kupczyk, R. Lichwala, N. Meyer, B. Palak, M. Plóciennik, and P. Wol-
niewicz. ”Applications on demand” as the exploitation of the Migrating Desk-
top. Future Generation Computer Systems, 21(1):37–44, 2005.

[42] C. Anglano and et alter. Integrating grid tools to build a computing resource
broker: Activities of datagrid WP1. In Proceedings of the International Con-
ference on Computing in High Energy and Nuclear Physics (CHEP 2001), De-
cember 2001.

[43] Message Passing Interface Forum. MPI: A Message Passing Interface standard,
June 1995.

[44] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
puting, 22(6):789–828, September 1996.

[45] N. T. Karonis and et alters. MPICH-G2: A grid-enabled implementation of the
message passing interface. J. Parallel Distrib. Comput., 63(5):551–563, 2003.

[46] J. Gomes and et alter. First prototype of the crossgrid testbed. In Proceedings
of the 1st European Across Grids Conference, volume 2970 of Lecture Notes in
Computer Science, pages 67–77. Springer, 2004.

http://lhc.web.cern.ch/lhc/
http://lhc.web.cern.ch/lhc/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
www.deisa.org/
http://www.geant.net
http://www.crossgrid.org/
http://www.crossgrid.org/
http://www.interactive-grid.eu/
http://www.interactive-grid.eu/

BIBLIOGRAPHY 121

[47] J. Gomes and et alter. Experience with the international testbed in the cross-
grid project. In Proceedings of the 1st European Grid Conference, volume 3470
of Lecture Notes in Computer Science, pages 98–110. Springer, 2005.

[48] J. Marco and et alter. The interactive european grid: Project objectives and
achievements. Computing and Informatics, 27(2):161–171, 2008.

[49] K. Dichev, S. Stork, R. Keller, and E. Fernández. Mpi support on the grid.
Computing and Informatics, 27(3):213–222, 2008.

[50] H. Rosmanith and J. Volkert. Interactive techniques in grid computing: A
survey. Computing and Informatics, 27:199–211, 2008.

[51] E. Gabriel and et al. Open MPI: Goals, Concept, and Design of a Next Gen-
eration MPI Implementation. In Proceedings of the 11th European PVM/MPI
Users’ Group Meeting, volume 3241 of Lecture Notes in Computer Science,
pages 97–104. Springer, 2004.

[52] M. Polak and D. Kranzlmüller. Interactive videostreaming visualization on
grids. Future Generation Computer Systems, 24(1):39–45, January 2008.

[53] J. Gomes and et alter. A grid infrastructure for parallel and interactive appli-
cations. Computing and Informatics, 27(2):173–185, 2008.

[54] J. M. Schopf. Grid resource management: state of the art and future trends,
chapter Ten actions when Grid scheduling: the user as a Grid scheduler, pages
15–23. Kluwer Academic Publishers, 2004.

[55] K. Czajkowski, I. Foster, and C. Kesselman. Resource co-allocation in com-
putational grids. In Proceedings of the 8th IEEE International Symposium on
High Performance Distributed Computing (HPDC-8), pages 219–228, 1999.

[56] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a
resource management and scheduling system in a global computational grid.
In The Fourth International Conference on High-Performance Computing in
the Asia-Pacific Region, volume 1, pages 283–289. IEEE Computer Society,
2000.

[57] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for
resource management and scheduling in grid computing. Concurrency and
Computation: Practice and Experience, 14:1507–1542, 2002.

[58] S. J. Chapin, D. Katramatos, J. F. Karpovich, and A. S. Grimshaw. The
legion resource management system. In Proceedings of the 12th Job Scheduling
Strategies for Parallel Processing (JSSPP), pages 162–178, London, UK, 1999.
Springer-Verlag.

122 BIBLIOGRAPHY

[59] S. Venugopal, R. Buyya, and L. Winton. A grid service broker for scheduling
distributed data-oriented applications on global grids. In Proceedings of the 2nd
workshop on Middleware for grid computing (MGC’04), pages 75–80, 2004.

[60] F. Berman and R. Wolski. The AppLeS project: A status report. In Proceedings
of the 8th NEC Research Symposium, Berlin, Germany, may 1997.

[61] K. Cooper and et alter. New grid scheduling and rescheduling methods in
the grads project. In 18th International Parallel and Distributed Processing
Symposium (IPDPS), pages 199–207, April 2004.

[62] E. Huedo, R. S. Montero, and I. M. Llorente. A framework for adaptive exe-
cution in grids. Software Practice & Experience, 34(7):631–651, 2004.

[63] E. Huedo, R. S. Montero, and I. M. Llorente. The GridWay framework for
adaptive scheduling and execution on grids. Scalable Computing – Practice
and Experience, 6(3):1–8, 2005.

[64] P. Andreetto and et alter. Practical approaches to grid workload and resource
management in the EGEE project. In Proceedings of the International Com-
puting in High Energy and Nuclear Physics (CHEP 2004), page 4, 2004.

[65] G. Avellino and et alter. The DataGrid Workload Management System: Chal-
lenges and results. Journal of Grid Computing, 2(4):353–367, December 2004.

[66] H.H. Mohamed and D.H.J. Epema. Experiences with the koala co-allocating
scheduler in multiclusters. In Proceedings of the 5th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid), volume 2, pages
784–791, May 2005.

[67] H.H. Mohamed and D.H.J. Epema. The design and implementation of the koala
co-allocating grid scheduler. In Proceedings of Advances in Grid Computing -
EGC 2005, pages 640–650, 2005.

[68] The distributed ASCI supercomputer (DAS). Available from World Wide Web:
http://www.cs.vu.nl/das2 [cited March, 2008].

[69] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, and A. Streit.
On advantages of grid computing for parallel job scheduling. In Proceedings of
the 2nd IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid), page 39, May 2002.

[70] A. I. D. Bucur and D. H. J. Epema. The performance of processor co-allocation
in multicluster systems. In Proceedings of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid), page 414, May 2003.

http://www.cs.vu.nl/das2

BIBLIOGRAPHY 123

[71] H. Bal, A. Plaat, M. Bakker, P. Dozy, and R. Hofman. Optimizing parallel
applications for wide-area clusters. In Proceedings of the 12th International
Parallel Processing Symposium (IPPS), pages 784–790. IEEE Computer Soci-
ety, 1998.

[72] E. Argollo, A. Gaudiani, D. Rexachs, and E. Luque. Tuning application in a
multi-cluster environment. In Proceedings of the 12th International Euro-Par
Conference, volume 4128 of Lecture Notes in Computer Science, pages 78–88.
Springer, 2006.

[73] MPI Forum. Available from World Wide Web: http://www.mpi-forum.org/
[cited March, 2008].

[74] J. M. Squyres. A component architecture for lam/mpi). In Proceedings of
the ninth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 379–387, New York, NY, USA, 2003. ACM.

[75] R. L. Graham and et alter. A network-failure-tolerant message-passing sys-
tem for terascale clusters. International Journal of Parallel Programming,
31(4):285–303, 2003.

[76] G. Fagg and J. Dongarra. Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 1908/2000 of Lecture Notes in Computer
Science, chapter FT-MPI: Fault Tolerant MPI, Supporting Dynamic Applica-
tions in a Dynamic World, pages 346–353. Springer, 2000.

[77] R. Keller, E. Gabriel, B. Krammer, M. S. Müller, and M. M. Resch. Towards
efficient execution of mpi applications on the grid: Porting and optimization
issues. Journal of Grid Computing, 1(2):133–149, 2003.

[78] M. Matsuda, T. Kudoh, Y. Kodama, R. Takano, and Y. Ishikawa. Tcp adapta-
tion for mpi on long-and-fat networks. In Proceedings of the IEEE International
Symposium on Cluster Computing, pages 1–10, 2005.

[79] T. Kielmann, H. E. Bal, J. Maassen, R. van Nieuwpoort, L. Eyraud, R. F. H.
Hofman, and K. Verstoep. Programming environments for high-performance
grid computing: the albatross project. Future Generation Computer Systems,
18(8):1113–1125, 2002.

[80] P. M. A. Sloot, A. Tirado-Ramos, A. G. Hoekstra, and M. Bubak. An in-
teractive grid for non-invasive vascular reconstruction. In Proceedings of the
4th IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid), pages 309–319. IEEE Computer Society, April 2004.

[81] L. Hluchy, V.D. Tran, O. Habala, B. Simo, E. Gatial, J. Astalos, and M. Do-
brucky. Flood forecasting in crossgrid project. In Proceedings of the 2nd Eu-
ropean Across Grids Conference, volume 3165 of Lecture Notes in Computer
Science, pages 51–60. Springer, 2004.

http://www.mpi-forum.org/

124 BIBLIOGRAPHY

[82] F. Castejón, J.M. Reynolds, F. Serrano, R. Valles, A. Tarancón, and J.L.
Velasco. Fusion plasma simulation in the interactive grid. Computing and
Informatics, 27(2):261–270, 2008.

[83] M. Hardt, Seymour K., J. Dongarra, M. Zapf, and N. V. Ruiter. Interactive
grid-access usign gridsolve and giggle. Computing and Informatics, 27(2):233–
248, 2008.

[84] T. Ylönen. Ssh: secure login connections over the internet. In SSYM’96:
Proceedings of the 6th conference on USENIX Security Symposium, Focusing
on Applications of Cryptography, pages 37–42, Berkeley, CA, USA, July 1996.
USENIX Association.

[85] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual net-
work computing. IEEE Internet Computing, 2(1):33–38, 1998.

[86] C. Philips, V. Welch, and S. Wilkinson. GSI-enabled open ssh, January 2002.
Available from World Wide Web: http://grid.ncsa.uiuc.edu/ssh/ [cited
March, 2008].

[87] H. Rosmanith, D. Kranzlmüller, and J. Volkert. An interactive job manager
for globus. In Proceedings of Computer Aided Systems Theory – EUROCAST
2007, pages 431–442, 2007.

[88] H. A. Lagar-Cavilla, N. Tolia, E. de Lara, M. Satyanarayanan, and D. R.
O’Hallaron. Interactive resource-intensive applications made easy. In Pro-
ceedings of the ACM/IFIP/USENIX 8th International Middleware Conference,
volume 4834 of Lecture Notes in Computer Science, pages 143–163. Springer,
26-30 November 2007.

[89] V. Talwar, S. Basu, and R. Kumar. Architecture and environment for enabling
interactive grids. Journal of Grid Computing, 1(3):231–251, September 2003.

[90] W. E. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link. The globus striped
gridftp framework and server. In Proceedings of the ACM/IEEE Conference
on Supercomputing High Performance Networking and Computing, CD-Rom,
page 54. IEEE Computer Society, November 2005.

[91] J-P. Baud and et alter. CASTOR status and evolution. In Proceedings of the
International Computing in High Energy and Nuclear Physics (CHEP 2003),
La Jolla, CA, March 2003.

[92] F. Pacini and A. Maraschini. Job Description Language (JDL) attributes spec-
ification. Technical Report 590869, EGEE Consortium, February 2006.

[93] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed re-
source management for high throughput computing. In Proceedings of the 7th

http://grid.ncsa.uiuc.edu/ssh/

BIBLIOGRAPHY 125

IEEE International Symposium on High Performance Distributed Computing
(HPDC-7), Chicago, IL, July 1998.

[94] H. Rosmanith and J. Volkert. glogin - interactive connectivity for the grid.
In Proceedings of Distributed and Parallel Systems: Cluster and Grid Com-
puting (DAPSYS), Austrian-Hungarian Workshop on Distributed and Parallel
Systems, pages 3–12, september 2004.

[95] L. Matyska and et alter. Job tracking on a grid - the logging and bookkeeping
and job provenance services. Technical Report 9/2007, CESNET, 2007.

[96] Condor Team. DAGMan (Directed Acyclic Graph Manager). Available from
World Wide Web: http://www.cs.wisc.edu/dagman/ [cited March, 2008].

[97] D. Thain. Identity boxing: A new technique for consistent global identity.
In Proceedings of the ACM/IEEE Supercomputing 2005 Conference on High
Performance Networking and Computing, CD-Rom, page 51. IEEE Computer
Society, November 2005.

[98] D. Thain and M. Livny. Parrot: Transparent user-level middleware for data-
intensive computing. Scalable Computing: Practice and Experience, 6(3):9–18,
2005.

[99] S. Son and M. Livny. Recovering internet symmetry in distributed computing.
In Proceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid), pages 542–549, May 2003.

[100] Berkeley Database Information Index (BDII). Available from World
Wide Web: http://www-it.desy.de/physics/projects/grid/testbed/
EDG/BDII.html [cited March, 2008].

[101] J-P. Baud, J. Casey, S. Lemaitre, C. Nicholson, D. Smith, and G. Stewart. LCG
Data Management: From EDG to EGEE. In Proceedings of the UK eScience
All Hands Meeting, Nottingham, UK, 2005.

[102] D. Thain and M. Livny. Multiple bypass: Interposition agents for distributed
computing. Journal of Cluster Computing, 5:39–47, 2001.

[103] H. Rosmanith, J. Volkert, R. Valles, F. Serrano, M. Plociennik, and M. Owsiak.
Interactive fusion simulation and visualisation on the grid. In ISPDC ’07:
Proceedings of the Sixth International Symposium on Parallel and Distributed
Computing, page 20, Washington, DC, USA, 2007. IEEE Computer Society.

[104] A. Gutiérrez and et alters. Parallelization of a neural net training program in a
grid environment. In Proceedings of the 12th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP), pages 258–265, February
2004.

http://www.cs.wisc.edu/dagman/
http://www-it.desy.de/physics/projects/grid/testbed/EDG/BDII.html
http://www-it.desy.de/physics/projects/grid/testbed/EDG/BDII.html

126 BIBLIOGRAPHY

[105] D. Scardaci and G. Scuderi. A secure storage service for the glite middleware.
In Information Assurance and Security, 2007. IAS 2007. Third International
Symposium on, pages 261–266, Aug. 2007.

[106] The Parallel Workloads Archive (PWA). Available from World Wide Web:
http://www.cs.huji.ac.il/labs/parallel/workload [cited June, 2008].

[107] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H.J.
Epema. The grid workloads archive. Future Generation Computer Systems,
24(7):672–686, July 2008.

[108] C. Ernemann, B. Song, and R. Yahyapour. Scaling of workload traces. In
Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Job
Scheduling Strategies for Parallel Processing, volume 2862, pages 166–182.
Springer Verlag, 2003. Lecture Notes in Computer Science.

[109] U. Lublin and D. G. Feitelson. The workload on parallel supercomputers: Mod-
eling the characteristics of rigid jobs. Journal Parallel & Distributed Comput-
ing, 63(11):1105–1122, November 2003.

[110] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and U. Na-
gashima. Performance evaluation model for scheduling in global computing
systems. International Journal of High Performance Computing Applications,
14(3):268–279, 2000.

[111] A. Legrand, L. Marchal, and H. Casanova. Scheduling distributed applications:
the simgrid simulation framework. In Proceedings of the 3rd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid (CCGrid), pages
138–145. IEEE Computer Society, May 2003.

[112] R. Buyya and M. M. Murshed. Gridsim: a toolkit for the modeling and simu-
lation of distributed resource management and scheduling for grid computing.
Concurrency and Computation: Practice and Experience, 14(13-15):1175–1220,
2002.

[113] A. Sulistio, G. Poduval, R. Buyya, and C.-K. Tham. On incorporating differ-
entiated levels of network service into gridsim. Future Generation Computer
Systems, 23(4):606–615, 2007.

[114] J. L. Alb́ın, J. A. Lorenzo, J. C. Cabaleiro, T. F. Pena, and F. F. Rivera.
Simulation of parallel applications in gridsim. In Proceedings of the Iberian
Grid Infrastructure Conference, pages 208–219, May 2007.

http://www.cs.huji.ac.il/labs/parallel/workload

	List of Figures
	List of Tables
	Overview
	Introduction
	Grids
	Grid Architecture
	Grid Middleware

	Grid Infrastructure Initiatives
	EGEE
	OSG
	DEISA
	CrossGrid and Interactive European Grid

	Grid Scheduling
	Grid scheduling systems

	Execution of Parallel and Interactive jobs on Grids
	Parallel Jobs
	Interactivity in Grid Environments

	Contributions
	Conclusions

	An Architecture for Parallel and Interactive Jobs
	The Grid Environment
	The Job Model
	Job Lifecycle
	Job Starters and Application Launchers
	Interactive Agents

	Job Description Language
	Extended JDL

	CrossBroker Grid Scheduler
	A mechanism for multi-programming

	Conclusions

	CrossBroker Design and Implementation
	Scheduling Agent
	User Access Module
	Scheduler
	Glidein Monitor

	Resource Searcher
	Resource Cache
	Matchmaking

	Job Execution
	Application Launcher
	Job Starter
	Interactive Agents

	Example Applications
	Conclusions

	CrossBroker Experimental Evaluation
	CrossBroker Overhead
	Job Preprocessing
	Selection of Resources
	Remote Job Submission
	Job Start up and Execution
	Overall Overhead

	The CrossBroker on a real testbed
	The int.eu.grid testbed
	CrossBroker Usage

	Evaluation of the CrossBroker Mechanisms
	Workload Modelling
	Simulation of grid environments
	Co-allocation and Parallel Jobs
	Glidein and Interactive Jobs

	Conclusions

	Conclusions and Future Research
	Open Lines of Research

	Bibliography

