

Escola Tècnica Superior d’Enginyeria
Departament d’Arquitectura d’Ordinadors

 i Sistemes Operatius

Performability issues of fault tolerance solutions for
message-passing systems: the case of RADIC

Thesis submitted by Guna Alexander Silva dos San-
tos in partial fulfillment of the requirements for the
degree of Doctor of Philosophy per the Universitat
Autònoma de Barcelona. This work was advised by
Dr. Dolores Isabel Rexachs del Rosario

Barcelona, May 2009

Performability issues of fault tolerance solutions for
message-passing systems: the case of RADIC

Thesis submitted by Guna Alexander Silva dos San-
tos in partial fulfillment of the requirements for the
degree of Doctor of Philosophy per the Universitat
Autònoma de Barcelona. This work was developed in
the Computer Architecture and Operating Systems
department of the Universitat Autònoma de Barcelona
in option A – “Computer Architecture and Parallel
Processing” of the PhD Informatics program, being
advised by Dr. Dolores Isabel Rexachs del Rosario.

Barcelona, May 2009

Thesis Advisor

Dr. Dolores Isabel Rexachs del Rosario

To my family.They give me the solid basis that al-
lows me to reach here.

And especially to my beloved angel, who made me

strong enough to support this journey.

Acknowledgments

Without doubt, the doctorate process was the greatest challenge of my life until now.

It was 1379 tough days since I started this journey. Along this period, many people helped me

in some manner, and I am so thankful to all of them, even if not mentioned here. I will try to

write my acknowledgments in the native language of each person, or in english when not.

First of all, I would to thank God and the Spirituality, They did help me and guide me

through this work, being present in the best and the worst moments.

Gostaria de agradecer aos meus pais e a minha família. Sr. Eliezer e D. Jane me de-

ram toda a base emocional e de conhecimento para poder chegar aqui. Sua dedicação durante

minha vida construiu a pessoa que sou hoje. Meus irmãos, Maria e Rafa, sempre foram a mi-

nha torcida, alegrando-se por cada vitória e confortando-me em momentos difíceis.

Creo que tuve los mejores tutores que un doctorando podría tener. Emilio Luque y

Dolores Rexachs son corresponsables por el éxito de este trabajo. Gracias Emilio por todos

tus insights y por regalarme parte de tus conocimientos. Lola, tu participación en este trabajo

ha ido mucho más allá de una tutoría, además de tu sabiduría me has regalado con cariño,

cuidados y atención que solo regalan las madres, muchas gracias.

 Ao meio deste caminho, conheci uma pessoa que veio a ser meu porto seguro durante

a parte mais difícil desde doutorado. Natasha, meu anjo, muito obrigado por estar sempre ao

meu lado, tentando animar-me, evitando que outros problemas me atrapalhassem e eu pudes-

se focar somente neste trabalho. Obrigado por estar comigo nos momentos mais difíceis que

passei aqui. Obrigado por me fazer feliz. Te amo.

Eduardo Argollo, meu grande amigo. Creio que se não fosse por ele eu não teria vin-

do para cá e não teria conseguido o que consegui. Muito obrigado por todas as dicas sobre

doutorado, ensinando-me o “caminho das pedras” que sei que você teve de descobrir sozinho.

Muito obrigado por todos os momentos agradáveis (Nenhum tchau, puéin puéin, reuniões no

kebab).

Agradeço a Angelo por suas “aulas” de RADIC e momentos de descontração. Outro

agradecimento especial para Genaro, nosso “guru” e meu companheiro de casa. Obrigado por

suas dicas em programação C, conceitos de Linux, idéias, etc. Leonardo Fialho, o mais recen-

te desta lista de “novos” amigos de doutorado, apesar do pouco tempo, gostaria de agradecer

por toda a sua colaboração no meu trabalho, sugerindo, debatendo, etc..

Hi ha unes persones a les que jo els agraeixo molt: Dani Ruiz, Jordi Valls i després

Javier Navarro, el P.T. Moltes gràcies per totes les coses i tot el suport tècnic, l’ajuda amb els

meus problemes amb el cluster, BLCR i etc.

Thanks to everyone that helped this dream came true.

Guna Alexander

Barcelona, July 2009

Resumen

¿Es adecuado un sistema rápido pero poco robusto?¿Es adecuado un sistema dispo-

nible pero lento? Estas dos cuestiones representan la importancia de prestaciones y disponibi-

lidad en clusters de computadores.

Esta tesis se enmarca en el estudio de la relación entre prestaciones y disponibilidad

cuando un cluster de computadores basado en el modelo de paso de mensajes, usa un proto-

colo de tolerancia a fallos basado en rollback-recovery con log de mensajes pesimista. Esta

relación también es conocida como performability.

Los principales factores que influyen en la performability cuando se usa la arquitectu-

ra de tolerancia a fallos RADIC son identificados y estudiados. Los factores fundamentales

son la latencia de envío de mensajes que se incrementa cuando se usa el log pesimista, que

implica una perdida de prestaciones, como también la replicación de los datos redundantes

(checkpoint y log) necesaria para el incremento de la disponibilidad en RADIC y el cambio

de la distribución de procesos por nodo causada por los fallos, que pueden causar degrada-

ción de las prestaciones así como las paradas por mantenimiento preventivo.

Para tratar estos problemas se proponen alternativas de diseño basadas en análisis de

la performability. La pérdida de prestaciones causada por el log y la replicación ha sido miti-

gada usando la técnica de pipeline. El cambio en la distribución de procesos por nodo puede

ser evitado o restaurada usando un mecanismo flexible y transparente de redundancia dinámi-

ca que ha sido propuesto, que permite inserción dinámica de nodos spare o de repuesto.

Los resultados obtenidos demuestran que las contribuciones presentadas son capaces

de mejorar la performability de un cluster de computadores cuando se usa una solución de

tolerancia a fallos como RADIC.

Abstract

Is a fast but fragile system good? Is an available but slow system good? These two

questions demonstrate the importance of performance and availability in computer clusters.

This thesis addresses issues correlated to performance and availability when a roll-

back-recovery pessimistic message log based fault tolerance protocol is applied into a com-

puter cluster based on the message-passing model. Such a correlation is also known as per-

formability.

The root factors influencing the performability when using the RADIC (Redundant

Array of Distributed Independent Fault Tolerance Controllers) fault tolerance architecture are

raised and studied. Factors include the message delivery latency, which increases when using

pessimistic logging causing performance overhead, as also in the redundant data (logs and

checkpoints) replication needed to increase availability in RADIC and the process per node

distribution changed by faults, which may cause performance degradation and preventive

maintenance stops.

In order to face these problems some alternatives are presented based on a performa-

bility analysis. Using a pipeline approach the performance overhead of message logging and

the redundant data replication were mitigated. Changes in the process per node distribution

can be avoided or restored using the flexible and transparent mechanism for dynamic redun-

dancy proposed, or using a dynamic insertion of spare or replacement nodes.

The obtained results show that the presented contributions could improve the perfor-

mability of a computer cluster when using a fault tolerance solution such as RADIC.

Table of Contents

CHAPTER 1 INTRODUCTION ... 21
1.1. BACKGROUND ... 21
1.2. MOTIVATION ... 24
1.3. GOALS ... 29
1.4. OUTLINE OF THIS THESIS ... 32

CHAPTER 2 PERFORMABILITY AND FAULT TOLERANCE ... 35
2.1. THE PERFORMABILITY CONCEPT ... 35
2.2. EVALUATING PERFORMABILITY .. 36

2.2.1. How to measure performability in computer clusters .. 37
2.3. PERFORMABILITY RELATED FACTORS .. 41

2.3.1. Faults ... 41
2.3.2. Fault Tolerance ... 42
2.3.3. Fault Tolerance in Message-Passing Systems ... 43
2.3.4. Rollback-recovery .. 44
2.3.5. Data replication ... 58
2.3.6. Current researches .. 62

2.4. DISCUSSIONS ... 65
2.4.1. Considerations regarding fault tolerance .. 67

CHAPTER 3 PERFORMABILITY IN THE RADIC ARCHITECTURE 70
3.1. RADIC ARCHITECTURE MODEL... 70

3.1.1. Fault model .. 72
3.2. RADIC FUNCTIONAL ELEMENTS ... 73

3.2.1. Protectors .. 73
3.2.2. Observers ... 75
3.2.3. The RADIC controller for fault tolerance .. 76

3.3. RADIC OPERATION ... 78
3.3.1. Message-passing mechanism ... 78
3.3.2. State saving task .. 79
3.3.3. Failure detection task .. 84
3.3.4. Fault masking task ... 90

3.4. RADIC FUNCTIONAL PARAMETERS ... 96
3.5. RADIC FLEXIBILITY ... 97

3.5.1. Concurrent failures degrees of availability ... 97
3.5.2. Structural flexibility ... 100

3.6. THE RADIC OVERHEAD .. 102
3.7. ESTIMATING THE AVAILABILITY PROVIDED BY RADIC... 105

CHAPTER 4 ALTERNATIVES FOR IMPROVING A COMPUTER CLUSTER’S
PERFORMABILITY .. 108

4.1. FAULT-FREE ISSUES ... 109
4.2. REDUCING THE MESSAGE LOGGING OVERHEAD ... 110

4.2.1. Pipelining the logging process ... 114
4.3. PROTECTING MISSION-CRITICAL PROCESSES .. 119

4.3.1. Pipelined data replication ... 123
4.4. PERFORMANCE DEGRADATION BECAUSE OF FAULTS ... 127
4.5. IMPROVING PERFORMABILITY UNDER THE PRESENCE OF FAULTS .. 134

4.5.1. Avoiding system changes ... 136
4.5.2. Restoring the system configuration .. 143

4.6. PROVIDING A NON-STOP SERVICE .. 145

CHAPTER 5 EXPERIMENTAL EVALUATION .. 147

5.1. INTRODUCTION .. 147
5.2. EXPERIMENT ENVIRONMENT ... 149
5.3. EXPERIMENTAL RESULTS .. 155

5.3.1. Evaluating pipelined logging ... 155
5.3.2. Evaluating N-protectors data replication .. 162

CHAPTER 6 CONCLUSIONS ... 177
6.1. OPEN LINES ... 181

List of Figures

FIGURE 1-1: THROUGHPUT OF AN APPLICATION UNDER DIFFERENT FAULT TOLERANCE LEVELS. 26

FIGURE 1-2: THROUGHPUT OF AN APPLICATION IN FAULT PRESENCE .. 28

FIGURE 1-3: THROUGHPUT OF AN APPLICATION UNDER MAINTENANCE STOP .. 29

FIGURE 2-1:A MESSAGE PASSING WITH THREE PROCESSES INTERCHANGING MESSAGES. 43

FIGURE 2-2: DOMINO EFFECT .. 48

FIGURE 2-3: A TREE FOR HIERARCHICAL VOTING WITH M=3 ... 61

FIGURE 3-1: THE RADIC LAYERS IN A PARALLEL SYSTEM .. 71

FIGURE 3-2: AN EXAMPLE OF PROTECTORS (T0-T8) IN A CLUSTER WITH NINE NODES. GREEN ARROWS INDICATE

THE PREDECESSORSUCCESSOR COMMUNICATION. ... 74

FIGURE 3-3: A CLUSTER USING THE RADIC ARCHITECTURE. P0-P8 ARE APPLICATION PROCESS. O0-O8 ARE

OBSERVERS AND T0-T8 ARE PROTECTORS. OT ARROWS REPRESENT THE RELATIONSHIP BETWEEN

OBSERVERS AND PROTECTOR AND TT ARROWS THE RELATIONSHIP BETWEEN PROTECTORS. 77

FIGURE 3-4: THE MESSAGE-PASSING MECHANISM IN RADIC. ... 79

FIGURE 3-5: RELATIONSHIP BETWEEN AN OBSERVER AND ITS PROTECTOR. ... 80

FIGURE 3-6: MESSAGE DELIVERING AND MESSAGE LOG MECHANISM. ... 83

FIGURE 3-7: PROTECTOR ALGORITHMS FOR PREDECESSOR AND SUCCESSOR TASKS .. 83

FIGURE 3-8: THREE PROTECTORS (TX, TY AND TZ) AND THEIR RELATIONSHIP FOR DETECTING FAILURES.

SUCCESSORS SEND HEARTBEATS TO PREDECESSORS.. 85

FIGURE 3-9: RECOVERING TASKS IN A CLUSTER. (A) FAILURE FREE CLUSTER. (B) FAULT IN NODE N3. (C)

PROTECTORS T2 AND T4 DETECT THE FAILURE AND REESTABLISH THE CHAIN, O4 CONNECTS TO T2. (D) T2

RECOVERS P3/O3 AND O3 CONNECTS TO T1. .. 88

FIGURE 3-10: FAULT DETECTION ALGORITHMS FOR SENDER AND RECEIVER OBSERVERS 92

FIGURE 3-11: AN OBSERVER USING TWO PROTECTORS. ... 98

FIGURE 3-12: A CLUSTER USING TWO PROTECTORS’ CHAIN. .. 100

FIGURE 3-13: THE MINIMUM STRUCTURE FOR A PROTECTORS’ CHAIN. .. 102

FIGURE 3-14: CONCURRENT COMMUNICATIONS DURING A MESSAGE SENDING. .. 103

FIGURE 3-15: INFLUENCE OF MESSAGE SENDING SYNCHRONISM IN THE OVERHEAD OF MESSAGE LOGGING. 104

FIGURE 4-1: PHASES OF A RADIC RECEIVER-BASED LOGGING. .. 111

FIGURE 4-2: MESSAGE LATENCY COMPARISON USING OR NOT MESSAGE LOGGING. .. 112

FIGURE 4-3: EXECUTION TIME COMPARISON BETWEEN USING OR NOT MESSAGE LOGGING IN A 9000X9000 MATRIX

PRODUCT OVER DIFFERENT NUMBER OF NODES ... 113

FIGURE 4-4: MESSAGE PATTERN OF A MATRIX-MULTIPLICATION USING THE CANNON’S ALGORITHM BASED ON THE

SPMD PARADIGM. .. 114

FIGURE 4-5: THE PIPELINED LOG PROCESS. .. 115

FIGURE 4-6: RADIC AND THE OSI LAYERS. .. 116

FIGURE 4-7: THE ENCAPSULATION OF DATA OVER THE OSI LAYERS. .. 116

FIGURE 4-8: THREE SITUATIONS ACCORDING THE PIECE SIZE: (A) OVERSIZED, (B) UNDERSIZED AND (C) RIGHT-

SIZED ... 118

FIGURE 4-9: A MISSION-CRITICAL TASK MISSING A DEADLINE DUE THE FAULT OCCURRENCE 119

FIGURE 4-10: CALCULATED OVERHEAD OF REPLICATING THE LOGGING PROCESS OVER 2 PROTECTORS 122

FIGURE 4-11: CALCULATED OVERHEAD OF REPLICATING THE CHECKPOINTING PROCESS OVER 2 PROTECTORS .. 122

FIGURE 4-12: RADIC CONFIGURATION USING THREE PROTECTORS PER OBSERVER AND PIPELINING THE

REDUNDANT DATA REPLICATION. .. 123

FIGURE 4-13: FLOWCHARTS OF (A) PREDECESSOR’S LIST CREATION AND, (B) REDUNDANT DATA FORWARDING125

FIGURE 4-14: RADIC CONFIGURATION USING THREE PROTECTORS PER OBSERVER AFTER A CONCURRENT

CORRELATED FAULT OF 2 NODES ... 125

FIGURE 4-15: A RADIC CLUSTER CONFIGURATION AFTER THE RECOVERY OF SEQUENTIAL FAULTS IN NODES N5,

N4 AND N3. .. 129

FIGURE 4-16: RESULT CHART OF AN N-BODY SIMULATION AFTER THREE FAULTS RECOVERED IN THE SAME NODE.

 .. 130

FIGURE 4-17: EXECUTION TIMES OF A MATRIX PRODUCT PROGRAM IMPLEMENTED UNDER THE SPMD PARADIGM

USING A CANNON ALGORITHM. OCCURRENCE OF ONE FAILURE PER EXECUTION AT 25%, 50% AND 75% OF

THE EXECUTION TIME .. 132

FIGURE 4-18: A CLUSTER RUNNING TWO APPLICATIONS AND USING THE RESILIENT PROTECTION LEVEL WITH TWO

SPARE NODES (N9 AND N10). .. 136

FIGURE 4-19: HOW A PROTECTOR IN SPARE MODE ANNOUNCES ITSELF TO OTHER PROTECTORS.......................... 138

FIGURE 4-20: THE RECOVERY TASK USING SPARE NODES (WITH THE FAULT DETECTED BY THE PROTECTORS) 140

FIGURE 4-21: RECOVERING TASKS IN A CLUSTER USING SPARE NODES: A) BEFORE FAULT; B) N3 FAILS; C) THE

SPARE IS CONNECTED; D) P3 RECOVERS IN THE SPARE .. 141

FIGURE 4-22: THE NEW FAULT MASK PROCEDURE ... 142

FIGURE 4-23: HOW A SPARE IS USED TO REPLACE A FAULTY NODE.. 144

FIGURE 5-1: MESSAGE PATTERN OF A MATRIX-MULTIPLICATION USING A) M/W PARADIGM AND B) SPMD

PARADIGM. .. 152

FIGURE 5-2: THE N-BODY PARTICLE SIMULATION FLOW ... 153

FIGURE 5-3: POSSIBLE PERMUTATIONS FOR TSP USING 5 CITIES AND DIVISION LEVEL OF 2. 154

FIGURE 5-4: MESSAGE LATENCY COMPARISON BETWEEN USING OR NOT PIPELINED MESSAGE LOGGING WITH

NETPIPE ... 156

FIGURE 5-5: OVERHEAD COMPARISON BETWEEN USING OR NOT PIPELINED MESSAGE LOGGING WITH A TOKEN PASS

PROGRAM .. 157

FIGURE 5-6: PIPELINED LOGGING OVERHEAD COMPARISON BETWEEN FAST-ETHERNET AND GIGABIT-ETHERNET

NETWORKS USING A 1460 BYTES PIECE SIZE .. 159

FIGURE 5-7: PIPELINED LOGGING OVERHEAD COMPARISON BETWEEN DIFFERENT PIECE SIZES OVER A GIGABIT-

ETHERNET NETWORK .. 160

FIGURE 5-8: EXECUTION TIME COMPARISON OF A 9000X9000 MATRIX PRODUCT OVER DIFFERENT CLUSTER SIZES

BETWEEN NOT USING LOG, AND USING PIPELINED OR TRADITIONAL MESSAGE LOGGING 161

FIGURE 5-9: EXECUTION TIME COMPARISON USING THE TRAVELLING SALESMAN PROGRAM WITH 15 CITIES,

COMPARING BETWEEN NOT USING LOG, AND USING PIPELINED OR TRADITIONAL MESSAGE LOGGING 162

FIGURE 5-10: MESSAGE LATENCY COMPARISON USING NETPIPE AND APPLYING DIFFERENT NUMBER OF

PROTECTORS AND MESSAGE SIZES ... 163

FIGURE 5-11. CHECKPOINT COMPARISON USING A SPMD MATRIX PRODUCT PROGRAM USING DIFFERENT NUMBER

OF PROTECTORS AND CHECKPOINT SIZES (ACCORDING TO THE MATRIX SIZE: 3000X3000, 6000X600 AND

9000X9000). .. 165

FIGURE 5-12. EXECUTION TIME COMPARISON USING A SPMD MATRIX PRODUCT PROGRAM USING DIFFERENT

NUMBER OF PROTECTORS AND CHECKPOINT SIZES (ACCORDING TO THE MATRIX SIZE: 3000X3000, 6000X600

AND 9000X9000). .. 166

FIGURE 5-13. EXECUTION TIME COMPARISON USING THE TRAVELLING SALESMAN PROGRAM WITH 15 CITIES,

COMPARING BETWEEN WITHOUT FAULT TOLERANCE AND DIFFERENT NUMBER OF PROTECTORS USING OR NOT

PIPELINED REPLICATION .. 168

FIGURE 5-14: RESULTS OF MATRIX PRODUCT USING A MASTER-WORK STATIC DISTRIBUTED PROGRAM INJECTING

FAULTS IN DIFFERENT MOMENTS. .. 169

FIGURE 5-15: RESULTS OF MATRIX PRODUCT USING A SPMD PROGRAM BASED IN THE CANNON ALGORITHM 170

FIGURE 5-16: RESULTS OF MATRIX PRODUCT USING A MASTER-WORKER PROGRAM WITH DYNAMIC LOAD

BALANCING RUNNING IN DIFFERENT CLUSTER SIZES .. 172

FIGURE 5-17: RESULTS OF MATRIX PRODUCT USING A MASTER-WORKER PROGRAM WITH STATIC LOAD

DISTRIBUTION RUNNING IN DIFFERENT CLUSTER SIZES .. 173

FIGURE 5-18: RESULTS OF AN N-BODY PROGRAM RUNNING CONTINUOUSLY AFTER THREE FAULTS IN DIFFERENT

SITUATIONS. .. 175

List of Tables

TABLE 1-1: ARCHITECTURE SHARE OF THE FASTEST 500 SUPERCOMPUTERS. SOURCE WWW.TOP500.ORG 22

TABLE 2-1: AVAILABILITY CLASSES CLASSIFICATION (GRAY, J. AND SIEWIOREK, D. P., 1991) 39

TABLE 3-1: THE KEY FEATURES OF RADIC .. 71

TABLE 3-2: PHASES OF RADIC OPERATION PERFORMED BY PROTECTORS .. 75

TABLE 3-3: PHASES OF RADIC OPERATION PERFORMED BY OBSERVERS .. 76

TABLE 3-4: AN EXAMPLE OF RADICTABLE FOR THE CLUSTER IN FIGURE 3-3 .. 79

TABLE 3-5: THE RADICTABLE OF EACH OBSERVER IN THE CLUSTER IN FIGURE 3-3. ... 86

TABLE 3-6: RECOVERY ACTIVITIES PERFORMED BY EACH ELEMENT IMPLICATED IN A FAILURE. 89

TABLE 3-7: THE RADICTABLE OF AN OBSERVER IN THE CLUSTER IN FIGURE 3-3. ... 91

TABLE 3-8: PART OF THE ORIGINAL RADICTABLE FOR THE PROCESSES REPRESENTED IN FIGURE 3-9A. 93

TABLE 3-9: PART OF THE UPDATED RADICTABLE OF A PROCESS THAT HAS TRIED TO COMMUNICATE WITH P3

AFTER IT WAS RECOVERED AS SHOWN IN FIGURE 3-9B. ... 94

TABLE 3-10: THE RADICTABLE OF AN OBSERVER FOR A CLUSTER PROTECTED BY TWO PROTECTORS’ CHAINS SUCH

AS IN FIGURE 3-12. .. 101

TABLE 4-1: NUMERICAL LOGGING OVERHEAD COMPARISON ... 112

TABLE 4-2: DEFAULT MTU SIZES FOR DIFFERENT NETWORKS .. 117

TABLE 4-3: AN EXAMPLE OF PREDECESSOR’S LIST ... 124

TABLE 4-4: PERFORMABILITY BEHAVIOR OF AN N-BODY SIMULATION AFTER ONE, TWO AND THREE FAULTS

RECOVERED IN THE SAME NODE. .. 131

TABLE 4-5: PERFORMABILITY BEHAVIOR OF AN SPMD MATRIX PRODUCT WITH FAULTS OCCURRING IN

DIFFERENT MOMENTS. ... 133

TABLE 4-6: A SPARETABLE EXAMPLE OF EACH PROTECTOR IN THE CLUSTER OF FIGURE 4-18. 137

TABLE 5-1: FIELDS OF THE DEBUG LOG ... 150

TABLE 5-2: OVERHEAD COMPARISON BETWEEN USING BETWEEN USING OR NOT PIPELINED MESSAGE LOGGING

WITH NETPIPE .. 156

TABLE 5-3: NUMERICAL OVERHEAD COMPARISON OF MESSAGE LOGGING PIPELINED REPLICATION USING

NETPIPE ... 164

TABLE 5-4: PERFORMABILITY BEHAVIOR OF A SPMD MATRIX PRODUCT PROGRAM USING DIFFERENT NUMBER OF

PROTECTORS AND CHECKPOINT SIZES (ACCORDING TO THE MATRIX SIZE: 3000X3000, 6000X600 AND

9000X9000) USING OR NOT PIPELINED REPLICATION. .. 167

TABLE 5-5: PERFORMABILITY BEHAVIOR OF THE TRAVELLING SALESMAN PROGRAM WITH 15 CITIES, COMPARING

DIFFERENT NUMBER OF PROTECTORS USING OR NOT PIPELINED REPLICATION. THROUGHPUT IN MILLION OF

ROUTES/S ... 168

TABLE 5-6: PERFORMABILITY RESULTS OF MATRIX PRODUCT USING A MASTER-WORK STATIC DISTRIBUTED

PROGRAM INJECTING FAULTS IN DIFFERENT MOMENTS AND USING 11 NODES PLUS ONE SPARE 171

TABLE 5-7: PERFORMABILITY RESULTS OF MATRIX PRODUCT USING A SPMD PROGRAM BASED IN THE CANNON

ALGORITHM INJECTING FAULTS IN DIFFERENT MOMENTS AND USING NINE NODES PLUS ONE SPARE. 171

TABLE 5-8: PERFORMABILITY RESULTS OF MATRIX PRODUCT USING A MASTER-WORKER PROGRAM WITH

DYNAMIC LOAD BALANCING RUNNING IN DIFFERENT CLUSTER SIZES .. 174

TABLE 5-9: PERFORMABILITY RESULTS OF MATRIX PRODUCT USING A MASTER-WORKER PROGRAM WITH STATIC

LOAD DISTRIBUTION RUNNING IN DIFFERENT CLUSTER SIZES ... 174

TABLE 5-10: PERFORMABILITY BEHAVIOR OF AN N-BODY SIMULATION AFTER ONE, TWO AND THREE FAULTS

RECOVERED IN THE SAME NODE. .. 176

Chapter 1
Introduction

High availability and high performance computer clusters are two relevant subjects in

the parallel computing area. This thesis addresses issues correlated to performance and avail-

ability when a rollback-recovery pessimistic message log based fault tolerance protocol is

applied into a computer cluster based on the message-passing model. Assuming a hypothesis

that the effective performance of a high performance computer depends on its availability and

that providing high availability implies a performance overhead, the root causes of such an

overhead are studied, including the performance degradation caused by faults. This work

presents different levels and organizations for adapting the fault tolerance solution to user

requirements, allowing a reduction in the imposed performance overhead, enhancing availa-

bility and avoiding performance degradation due to faults.

1.1. Background

 Since their creation, computers have played an important and increasing role in solv-

ing complex problems. Following the computers evolution, new and more complex problems

can be solved each day. Indeed, it seems that despite the growing power of computers appli-

cations will always need more resources and large periods of execution time.

This demand for computational power has leaded to the improvement of the High Per-

formance Computing (HPC) area, generally represented by the use of parallel systems run-

ning specifically-designed applications. For this reason, the design of parallel systems has

22 Introduction

commonly been oriented to achieve the highest performance possible. As shown in TABLE

1-1 as extracted from the Top500 site (TOP500.ORG, 2008), the most usual architectural

design of current parallel systems is the computer cluster, which has been adopted by more

than 80% of the 500 fastest supercomputers in many areas of knowledge. In order for the

computing power of these machines to be effective, it is also important that these computers

suffer a minimum of interruptions, i.e., they must be available to perform useful work as

much time as possible.

TABLE 1-1: Architecture share of the fastest 500 supercomputers. Source www.top500.org

Architecture Count Share %

Constellations 2 0.4

MPP (Massively Parallel Processing) 88 17.6

Cluster 410 82.0

In order to achieve more computing power it is usual to aggregate a large number of

computing elements. The problem of this approach is that as more elements have a system,

the probability of faults grows. As the number of computing elements of the computer clus-

ters steady increases, faults are already one of the major concerns when designing parallel

systems. Taking into consideration that the system mean time between failure (SMTBF) of a

computer cluster is given by the average mean time between failures of all nodes (ܨܤܶܯ)

divided by the number of cluster’s nodes, and supposing that a failure in some node causes a

system stop (fail-stop semantic) that takes time to be repaired defined by the mean time to

repair (MTTR), the overall availability (ASystem) can be given by the Equation (1). This equa-

tion allows to deduce that as more elements have a system, so its availability decreases, This

Chapter 1 23

issue is the reason by why availability and fault tolerance have been widely studied in the

past.

Computer clusters may be considered as a class of computing systems with degrada-

ble performance (NAGARAJA, K. et al., 2005) i.e., under some circumstances during a de-

termined utilization period, the system may present different performance levels. Such per-

formance degradation is generally caused by faults occurrence, which may also affect the

system availability if they have generated an interruption.

Until now, efforts have been focused on providing high availability to computer clus-

ters (GEIST, A. and Engelmann, C., 2002), (CHAKRAVORTY, S. et al., 2006),

(NAGARAJAN, A. B. et al., 2007). The solutions resulting from these efforts are commonly

based on rollback-recovery techniques (AGBARIA, A. and Friedman, R., 1999), (DUARTE,

A. et al., 2006), (BOUTEILLER, A. et al., 2006) and they have shown their efficacy in im-

proving computer cluster availability. However they impose some kind of performance over-

head because of their related activities, such as process state saving, messages exchange log-

ging or system health monitoring. In these solutions, performance is commonly analyzed sep-

arately from the availability and it is not a concern in many cases.

It is not trivial to evaluate performance completely dissociated from availability when

analyzing an entire computing system, because the perceived system performance can be

affected by the system availability. Deriving from this assumption, according to Meyer in

“On Evaluating the Performability of Degradable Computing Systems” (MEYER, J. F.,

ௌ௬௦௧௘௠ܣ ൌ
ܨܤܶܯܵ

ܨܤܶܯܵ ൅ ܴܶܶܯ
ൌ

ܨܤܶܯ ܰ⁄

ܨܤܶܯ ܰ⁄ ൅ ܴܶܶܯ

(1)

24 Introduction

1980) performability is considered as a more real, complete and accurate measurement for

evaluating degradable systems such as computer clusters.

In “Performability evaluation: where it is and what lies ahead” (MEYER, J. F., 1995)

Meyer initially defines performability as a “term referred to a class of (probability) measures

that quantify a system’s ‘ability to perform’ in the presence of faults.” This definition takes

into consideration systems that gracefully degrade in the presence of faults such as the com-

puter clusters mentioned before. Moreover, Meyer says that “...such degradation may result

directly from fault-caused errors, may be due to additional computational demands asso-

ciated with error processing, or may be the consequence of subsequent fault-related action

such as reconfiguration and repair.” This work addresses the last two cases: evaluating the

performance overhead demanded by the RADIC fault tolerance architecture (DUARTE, A.,

2007) and the degradation caused by the repair and reconfiguration process. To evaluate per-

formability, Meyer also say that it “can be either model-based or conducted experimentally

via measurements of an actual system.” All evaluation in this work was conducted experi-

mentally via performance measurement under different availability conditions.

1.2. Motivation

Is a fast but fragile system good? Is an available but slow system good? These two

questions demonstrate the importance of performance and availability in the current systems,

specifically the computer clusters. Due to their correlation, i.e., the former commonly affects

the latter and vice-versa, they compound an indivisible binomial for some kind of applica-

tions.

Generally, applications designed for parallel systems demand all available computing

power and may not accept performance degradation. For example, in systems running under

Chapter 1 25

time constraints, it is as critical to finish the application correctly as to accomplish it before a

deadline (a situation that may invalidate the results of the execution). Below are typical ex-

amples of applications areas commonly executed in computer clusters.

 Mission-critical applications. These applications are crucial for the success of an

enterprise. A failure in the application execution may result in a loss of money, se-

rious operational disorder or other unrecoverable damage. These kinds of applica-

tions need to be executed in as little time as possible and without failures.

 Fluid-flow simulation. This consists to simulate the interaction of large three di-

mensional cells assemblage, e.g., weather and climate modeling, In weather pre-

diction, for example, it is desirable to start the simulation as late as possible, in or-

der to acquire the most recent data from sensors,. However, if the computation fi-

nishes after the expected time, the result data may be useless.

 Natural behavior simulation. A notoriously complex area, that makes computers

simulate the real world and its interactions. Good examples are the forest fire si-

mulation and individuals’ behavior simulation. In the forest fire simulation when

applied to fire contention, a delayed result can render the information useless once

the fire line has reached the simulated position.

 Medicine research. Studies such as protein folding require massive computing

power in order to predict the structure of the protein from a known sequence of the

protein, being applied in many disease treatments. In this case, as in many others,

any delay increases the cost, because the use of parallel machines is generally very

expensive.

26 Introduction

 Astronomy. Simulation of N bodies under the influence of physical forces, usually

gravity. It is normally used in cosmology to study the process of galaxy cluster

formation. As the number of bodies increases, the simulation is more complex and

takes large periods of execution.

For these applications, correctly finishes and the time spent on executions become

major issues when planning to perform tasks using parallel computer-based solutions. There-

fore, it is reasonable to say that those applications are dependent on the system’s performabil-

ity.

Performability makes possible to analyze the effects of providing different protection

levels in the performance of applications running on computer clusters. i.e., to analyze the

overhead caused by a fault tolerance solution. Figure 1-1 contains a chart depicting the

throughput of an application when different levels of protection provided by a fault tolerance

Figure 1-1: Throughput of an application under different fault tolerance levels.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

T
h
ro
u
g
h
p
u
t

Time

Throughput of an application under
different fault tolerance levels

No FT

FT'

FT''

Chapter 1 27

solution is applied, namely “without fault tolerance” (NoFT), “fault tolerance A” (FT’) and

“fault tolerance B” (FT’’), where AvailabilityFT’’ > AvailabilityFT’ > AvailabilityNoFT. The

chart illustrates the typical behavior of applications under a fault tolerance solution, when it

causes a performance overhead (ThroughputFT’’ < ThroughputFT’ < ThroughputNoFT) because

of its activities, e.g., taking checkpoints or logging events. In order to increase the availability

provided by a fault tolerance solution, it is usually necessary to aggregate more activities to

the solution, e.g., replication of the redundant data (checkpoints and logs), or shorter check-

point interval. However, these additional activities may affect the system performance even

more.

When faults are taken into consideration, and these faults degrade the system’s per-

formance, performability metrics can be applied to evaluate a system under faults presence.

Figure 1-2 depicts a chart exemplifying the throughput of an application when single or con-

current faults occur against different degrees of availability (including no fault tolerance).

This fault tolerance solution is characterized by keeping the system working but with the per-

formance degraded. In this context, time constrained applications may not produce the ex-

pected results before their deadlines. In some cases, the degradation may reach unacceptable

levels, leading to the need to perform a safe-stop and restart the entire system. Furthermore,

the kind of fault uncovered by the availability degree may occur, interrupting the system, i.e.,

a correlated fault when the availability degree only protects the system from single faults.

Preventive maintenance is a common approach to try fault avoidance. Preventive mainten-

ance replaces components at the end of their lifetime, or fault-imminent components detected

by sensors or based on historical information. The major issue in this approach is the need to

stop an application running in the node containing the component to be replaced (or the own

node in many cases). As illustrated in Figure 1-3, even in fault tolerant systems, this activity

28 Introduction

usually demands a complete stop of a part of the computer system and the applications run-

ning on it, directly affecting the system’s availability and consequently its performability.

All three factors - fault tolerance overhead, performance degradation, and mainten-

ance stops - are issues that can affect the system’s performability, and mean applications may

not produce the planned results, i.e. at the expected time. These concerns justify the study of

such factors and the research of solutions that may mitigate their effects on computer cluster

systems.

Nagaraja et al. (NAGARAJA, K. et al., 2005) proposed a model that allow to quantify

this metric when a fault load is injected in different layers of a three-tier computer cluster. In

this work, the authors argue that unavailability periods are more relevant than availability

periods for comparative performability analysis because two different availability values may

be quite similar (perhaps differing by just a fractional order of magnitude, e.g. 99.9% and

Figure 1-2: Throughput of an application in fault presence

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Th
ro
u
gh
p
u
t

Time

Throughput of an application in
fault presence

No FT

FT'

FT''

Concurrent Fault

Single Faults

Chapter 1 29

99.99%), while the equivalent unavailability values differ by an order of magnitude.

1.3. Goals

Based on the fault tolerance RADIC (Redundant Array of Distributed Independent

Fault Tolerance Controllers) architecture (DUARTE, A., 2007), factors influencing the com-

puter cluster’s performability, such as message log latency, performance degradation because

of node losses or availability under concurrent correlated faults are studied and solutions are

presented in order to improve performability in fault-free and post-recovery situations (after

the occurrence of one or more faults).

In fault-free situations, the root causes of the performance overhead are identified and

studied. Checkpointing activity is a common cause of the performance overhead in rollback-

recovery solutions (OLINER, A.J. et al., 2005) and have been widely studied by the scientific

community, resulting in some improvements (ELNOZAHY, E. N. and Plank, J. S., 2004),

Figure 1-3: Throughput of an application under maintenance stop

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Th
ro
u
gh
p
u
t

Time

Throughput of an application under
maintenance stop

No FT

FT'

FT''
Maintenance Interval

30 Introduction

(GAO, W. et al., 2005), (DALY, J. T., 2006), (AGARWAL, S. et al., 2004). Another known

cause raised in this study is the increase of the message delivery latency caused by the pessi-

mistic logging approach, which demands storing a copy of each message in a repository be-

fore continuing program execution. In case of using a higher degree of availability, the data

replication of logs and checkpoints also has a strong influence on the performance overhead

of the fault tolerance. Facing these factors, it is presented a solution reducing the overhead

caused by log-based fault tolerance solutions such as RADIC and a method of imposing a

low overhead when increasing the availability provided by RADIC, which directly improves

the system’s performability.

In post-recovery situations, the performance degradation effects of one or more faults

in the system configuration after the RADIC recovery process is analyzed. The presented

solution avoids configuration changes caused by the recovery process after a fault occur-

rence, which avoids performance degradation, and is able to restore a changed configuration,

which re-establishes a process per node distribution, a factor that may influence the cluster’s

performability. Moreover, the mechanism also allows ‘stopless’ preventive maintenance to be

performed and is completely integrated into the RADIC fault distributed controller. This

works transparently and is configurable in order to adapt to the application and system re-

quirements.

The solutions for failure-free situations improve a RADIC-enabled system’s perfor-

mability in two ways: a) by reducing the message delivery latency (in many systems, the

message delivery latency is crucial to achieve a desired performance) and; b) by decreasing

the system unavailability through low-overhead storing of n-replicas of the redundant data

over several repositories (SANTOS, G. et al., 2009).

Chapter 1 31

In contrast, after the recovery task, when the application process per node distribution

may change, (affecting the system performance and consequently its performability), a dy-

namic redundancy (KOREN, I. and Krishna, C. M., 2007) was incorporated with functionali-

ty that enables RADIC, via spare nodes, to protect the system configuration from the changes

that a recovery task may generate (SANTOS, G. et al., 2006), (SANTOS, G. et al., 2008).

When the original recovery process of RADIC changes a system configuration, it is

proposed that a mechanism allows the re-establishment of the original process distribution.

Such a mechanism permits the insertion of a replacement node during the program execution.

This inserted node will take the recovered process, and restore the original process distribu-

tion.

Furthermore, a solution allowing maintenance tasks to be performed without needing

to stop the entire application is also presented (SANTOS, G. et al., 2008). This solution in-

serts new or updated nodes during the program execution and uses a fault injector to schedule

a fault in the node to be replaced just after the next checkpoint. This reduces recovery time by

avoiding log processing during the recovery, and will forces the application processes in ex-

ecution on this node to be migrated to the new node.

The major premise of these solutions is to keep RADIC features such as transparency,

decentralization, flexibility and scalability as far as possible. Moreover, the solutions must

also: a) impose a negligible overhead in relation to RADIC during failure-free executions. b)

provide a quick recovery process when avoiding system configuration changes.

Several experiments were performed with the techniques presented in this work in or-

der to validate their functionality and evaluate their employment in different scenarios.

32 Introduction

In this work, the performability of computer clusters using a fault tolerance solution is

quantitatively evaluated using the model referred in the previous section. This model takes

into consideration the performance measurement of the system S under some situation versus

the unavailability of this system in the same situation as represented by Equation (2).

The pipelined log and the process state n-replication were evaluated by a set of expe-

riments involving a simple token pass application, which measured the message delivery la-

tency and a matrix product program measuring the execution time. In each experiment, the

overhead generated by these solutions were compared with a regular RADIC configuration

and without fault tolerance.

The dynamic redundancy solution was evaluated by comparing the effects of recovery

with and without available spare nodes. These experiments observed two measures: overall

execution time, and throughput of an application. Different approaches for a matrix product

algorithm were applied by using a static distributed Master/Worker and a SPMD approach

implementing a Cannon algorithm and an N-Body particle simulation using a pipeline para-

digm was executed.

1.4. Outline of this thesis

This thesis contains six chapters organized as follows. Chapter 2 presents state of the

art research regarding performability and fault tolerance, and highlights the fault tolerance

factors that may influence system’s performability and how to measure them. Chapter 3 de-

scribes the RADIC fault tolerance architecture, the basis of this work’s evaluation, and ex-

plains how it operates and how it affects the performability of a system. Chapter 4 details the

ௌ௬௦௧௘௠ݕݐ݈ܾ݅݅ܽ݉݋݂ݎ݁ܲ ൌ ௣௪ݐݑ݌ݑݎ݄ܶ_݃ݒܣ ൈ min ൬1,
݈݅ܽݒܷܽ݊_ݐ݁݃ݎܽܶ

݈݅ܽݒܷܽ݊_݃ݒܣ
൰

௨௪

 (2)

Chapter 1 33

issues regarding fault-free performance overhead and performance degradation because of

faults, and proposes solutions to improve the performability in each case. The experimental

validation and evaluation of proposed solutions is presented in Chapter 5. Finally, Chapter 6

presents the thesis conclusion, summarizing its contributions and stating possible future

works.

Chapter 2
Performability and Fault Tolerance

As explained in Chapter 1, this work focuses on the performability analysis of mes-

sage-passing systems when a fault tolerance solution is applied. In order to clarify and im-

prove the knowledge regarding this topic, this chapter discusses the state of the art of perfor-

mability and fault tolerance, and highlights its importance, how to measure it and the factors

that may influence this class of metrics in a fault tolerant computer cluster.

2.1. The Performability concept

The performance of computer systems has been subject of several studies for a long

time (SABETTA, A. and Koziolek, H., 2008), resulting in many forms of evaluation based on

techniques that take into consideration factors such as computing power, memory amount,

communication structure, and workload. These techniques can be classified in three different

groups: analytical modeling, simulation and measurement (KOZIOLEK, H., 2008). However,

these studies often assume that a computer`s configuration is always available and remains

unchanged during the entire evaluation, which often is untrue because of the probability of

faults that can change the initial configuration.

On the other hand, availability has also been target of research, many works have pre-

sented different approaches for evaluating system availability (SONG, H. et al., 2006), (SUN,

H. et al., 2003), (PIEDAD, F. and Hawkins, M., 2001), (GRAY, J. and Siewiorek, D. P.,

1991). Others have presented solutions for increasing the system availability (BOUTEILLER,

A. et al., 2006), (SKJELLUM, Y. S., 2004), (FAGG, G. E. and Dongarra, J. J., 2000),

(AGBARIA, A. and Friedman, R., 1999), (RAO, S. et al., 1999). Generally, the availability

36 Performability and Fault Tolerance

evaluation focuses on the probability of a fault occurrence and its recovery time, and rarely

takes into consideration performance issues, such as the overhead caused by the additional

computational resources applied to tolerate faults, time to react to a fault, or the performance

degradation caused by the changes in the computer’s configuration because of the faults.

The need to evaluate performance considering the system availability (or dependabili-

ty in a broad sense) led to the definition of a new class of metrics that took the system per-

formance when faults occur. into consideration This issue was the focus of Meyer’s work

(MEYER, J. F., 1980), which presented the definition of performability as a measure able to

allow a unified evaluation of performance and reliability. Later (MEYER, J.F., 1992), Meyer

published a performability retrospective presenting a more generic performability definition

as a class of metrics that allows a unified evaluation of a system’s performance and dependa-

bility. Dependability is a term covering many system attributes such as reliability, availabili-

ty, safety or security (EUSGELD, I. and Freiling, F., 2008). For the purpose of this work,

availability is the dependability attribute taken into consideration to improve performability.

Therefore, performability allows the evaluation of a computer cluster in a more realis-

tic, complete and accurate way, since it takes into consideration factors such as faults and

performance degradation. In this work, performability is also used to evaluate the impact of

having to tolerate such faults, widening the appliance of the performability concept.

2.2. Evaluating performability

Reasonable questions regarding the performability are how is it possible to measure

it? And which metrics must be used to evaluate its system? Today`s literature (EUSGELD, I.

et al., 2008), (MEYER, J. F., 1995) presents a number of performability metrics and models

that may be used to analytically evaluate the behavior of computer systems under the pres-

Chapter 2 37

ence of faults, and which can be applied to predict system performance. On the other side,

performability may be evaluated in a more pragmatic way, being realized experimentally via

indirect measurements of a system (MEYER, J. F., 1995), such as in the analysis presented

by Nagaraja (NAGARAJA, K. et al., 2005). This work focuses in the latter case, and experi-

mentally measures system performance indexes (such as throughput, execution time, and

overhead) under different levels of fault tolerance (independent faults, concurrent correlated

faults, dynamic redundancy, and preventive maintenance). The metrics and how to obtain the

performability components are detailed below.

2.2.1. How to measure performability in computer clusters

Performability can be initially evaluated by measuring availability and performance

separately and then, applying a model to join these two metrics. Concepts regarding availabil-

ity and performance evaluation are presented below and later, the model chosen to evaluate

performability along this work will be demonstrated

Availability

 Availability is one of the major requirements when using parallel computers. Any us-

er of the applications exemplified in Chapter 1 expects to have the system available during

the entire execution of its work. There are different classifications of availability (LIE, C. H.

et al., 1977):

1. Instantaneous (or Point) Availability. The probability that a system will be

available at the random instant T.

2. Average Up-Time Availability (or Mean Availability). The fraction of a speci-

fied time interval that the system is available.

38 Performability and Fault Tolerance

3. Steady State Availability. Instantaneous availability when the time approaches

infinity. It is the lower base in the “bath-tube” curve abstraction.

4. Inherent Availability. Steady state availability, but considering the recovering

downtime

5. Achieved Availability. Similar to the previous one, but also includes the main-

tenance downtimes.

6. Operational Availability. The ratio between uptime and total time after a pe-

riod of time.

This work will use inherent availability, since it considers recovering activity. The

Equation (3) represents mathematically inherent availability. According to this equation, in-

herent availability is given by the relationship between Mean Time Between Failures

(MTBF) and Mean Time to Recover (MTTR) as follows.

The MTBF is derived from the failure rate (ߣሻ as can be seen in Equation (4) and may

be related to a single component or an entire system. For a system, it is also called the System

Mean Time Between Failures (SMTBF) and is calculated according to Equation (5), which

allows to deduce that a system with many components will be more susceptible to faults. In

cases of systems with different component’ MTBF, the average value is used.

The MTTR is the average time spent returning the system to an operational state, and

is dependent on the system’s management structure. If the system is unmanaged the MTTR

MTTRMTBF

MTBF
A


 (3)

ܨܤܶܯ ൌ
1
ߣ

 (4)

ܨܤܶܯܵ ൌ
ܨܤܶܯ

ܰ
 (5)

Chapter 2 39

can reaches its highest values, i.e., the reparation of a single node can take more than one

week. In well-managed systems (with ready spare components and a support staff), this value

may decrease to a few hours. In high-availability systems (using automatic and transparent

fault tolerance), this value reaches as little as a few minutes.

 Usually, availability is classified according to the percentage of time in an operation-

al state. Such a percentage is also known as “the nines classification”. TABLE 2-1 summariz-

es the current system classification according to availability class.

 From Equation (3) it is possible to deduce that there are two ways of increasing the

availability of a system: either by increasing the reliability of its components or by decreasing

the time for repair. To increase the components reliability generally means using highly ex-

pensive equipment, which sometimes becomes unfeasible to implement. Therefore, fault to-

lerance plays its role by reducing the MTTR. Indeed, the only way to reach a theoretical

100% availability is by the MTTR equaling zero, since a component with infinite MTBF is

currently unfeasible.

TABLE 2-1: Availability classes classification (GRAY, J. and Siewiorek, D. P., 1991)

System Type Unavailability
(minutes/year)

Availability
(percent)

Availability
Class

Unmanaged 50,000 90 1

Managed 5,000 99 2

Well-managed 500 99.9 3

Fault-tolerant 50 99.99 4

High-availability 5 99.999 5

Very-high-availability .5 99.9999 6

Ultra-availability .05 99.99999 7

40 Performability and Fault Tolerance

Performance

There are three different techniques for evaluating the performance of a system

(KOZIOLEK, H., 2008): analytical modeling, simulation and measurement.

In the analytical modeling approach, performance models are constructed using sto-

chastic Petri Nets, queuing networks or some other stochastic process. Measured or estimated

values are used as input parameters, and the expected performance is calculated. The main

advantage of this method is being able to predict quickly the system performance at low cost.

However, this approach may offer results with low precision and some models can be com-

plex when trying to represent the real world.

Simulation also uses models to predict the performance of a system. Such models

represent each activity of the system affecting performance. The accuracy of simulation is

better than the analytical approach, but requires greater effort. Usually, simulation software is

used to implement the model. The main advantage is ease of changing system characteristics

and evaluating the resultant performance.

Measurement is the approach used in this work, since it provides better accuracy and

the necessary real implementation is accessible. The metric used for the measurement de-

pends of the system’s characteristics. Some examples are throughput as presented in

(NAGARAJA, K. et al., 2005), task completion time (HAVERKORT, B. R. et al., 2001) or

response time (SABETTA, A. and Koziolek, H., 2008). The major concern when using dif-

ferent metrics for performance is the meaning of the measured values i.e., for throughput

measures, higher values are better while for task completion time, lower values are better. A

possible workaround is to know how many tasks were executed during an application, and to

divide such a value by the time the application took to accomplish its work. This results in

Chapter 2 41

some kind of throughput. In this work, this workaround is applied whenever a comparison

between different kinds of metrics is necessary.

2.3. Performability related factors

Several factors may influence the performability of a system. In this thesis, the evalu-

ation is restricted to faults and fault tolerance. The theoretical concepts regarding these fac-

tors are explained and discussed below.

2.3.1. Faults

One of the most relevant factors influencing system performability is fault occurrence,

so it is necessary to define what fault means. Generally, the terms fault, error and failure are

mentioned interchangeably. By definition, failure is the undesirable behavior of a system (the

system does not produce the expected results, for example a software abnormal ending). An

error is the generating event which leads to a failure, unless it applies corrective actions (for

example a programming error leads to an abnormal ending except when then the error is

caught and treated). Finally, a fault is a system defect with the potential to generate errors.

Thus, a fault may cause an error, which may cause a failure.

A fault’s effects can be analyzed from different points of view. In a computing system

formed by interdependent components, the occurrence of a fault in any of its components

leads to an error and consequently to an entire system failure. These kinds of systems are also

called fail-stop systems. On the other side if the components of a computing system are inde-

pendent, a fault occurrence in one component will cause a failure of this component exclu-

sively and the system will remain operational with the possibility of some performance de-

gradation. The former kinds of systems may be turned into the latter if the faulty component

can be replaced and a fault tolerance scheme applied.

42 Performability and Fault Tolerance

In cases of independent components or when fault tolerance is applied, the system

may present different levels of performance according to the fault distribution and the fault

tolerance scheme adopted. In cases of interdependent components the system presents a bi-

nary behavior: it is up when no faults occur or is completely down when a fault occurs. In the

first case, performability may be affected by performance degradation or availability reduc-

tion, i.e., if a system can tolerate just one fault, after this fault the system is unprotected and

turns into a fail-stop system. In the last case is impracticable to evaluate performability, how-

ever, this case is useful for comparison purposes

.

2.3.2. Fault Tolerance

Fault tolerance can be defined as the ability to avoid failures despite the existence of

errors generated by a fault. Fault tolerance has two basic goals: to increase the overall relia-

bility of a system (despite individual faults of its components) and increase system availabili-

ty (JALOTE, P., 1994, p.30) .

The fault tolerance may influence system performability in two ways. The first way is

by increasing availability. When fault tolerance is applied in a fail-stop system, despite faults

occurring, the perceived availability will be greater than before. The resultant availability will

depend on the chosen approach for the fault tolerance. If it is using a n-redundancy of hard-

ware, the availability will depend on how many redundant devices there are, or if data redun-

dancy it is chosen, availability will depend on how the failed component is recovered and the

state saving frequency. A study of fault tolerance in message-passing systems, which is the

kind of systems considered in this work, follows.

Chapter 2 43

2.3.3. Fault Tolerance in Message­Passing Systems

Message-passing is a common technique used in parallel computers to provide com-

munication between concurrent processes. This technique makes the following assumptions:

 The processes only have access to their own local memory;

 All communication between the processes comprises sent and received messages; and

 The data interchange requires cooperative actions in each process, meaning that a sent

message needs a corresponding receive in the other process.

With these simple assumptions, message-passing is widely used for parallel compu-

ting because it fits well in cluster of workstations or supercomputers interconnected by a net-

work. Figure 2-1 exemplifies the functioning of a simple message-passing system with three

processes (P0, P1 and P2) sending and receiving messages (diagonal arrows labeled from m1

to m5) through the timeline (horizontal arrows). Such a system receives an input from outside,

and starts processing this input using a message-passing mechanism and provide a result to

outside.

time

Figure 2-1:A message passing with three processes interchanging messages.

P0

P1

P2

Input
Result

m1

m2

m3

m4 m5

Message passing system

Outside

44 Performability and Fault Tolerance

Parallel computers using message passing are more susceptible to the effects of a fail-

ure. In these architectures, a fault may occur in a node or communication network. If the fault

occurs in the network, the behavior of the system depends on the implementation provides of

mechanisms such as timeout and whether or not the fault is transient. When a node fails, the

processing assigned to it will be lost and may incur an inaccurate, useless or incorrect result

from the parallel application.

There are many techniques developed for increasing overall reliability and providing

high availability for message-passing distributed systems including data or hardware replica-

tion protocols, self-stabilizing protocols and rollback-recovery protocols (KOREN, I. and

Krishna, C. M., 2007). Rollback-recovery is widely studied and commonly used to provide

fault tolerance for message-passing systems, while data replication usually improves fault

tolerance at the system level.

2.3.4. Rollback­recovery

Rollback-recovery is a protocol or technique for providing fault tolerance based on re-

turning the program execution to a point just before the fault occurrence, and in some ways,

retrying the computation. According to Shooman (SHOOMAN, M. L., 2002) there are four

basic types of rollback-recovery techniques:

Reboot/restart – This is the simplest recovery technique, but the weakest too. This

approach restarts the system or the application from the beginning. It is acceptable when the

time spent on computation is still small and the time needed to restart the system or applica-

tion is satisfactory. When the restart procedure is automatic, this technique is generally re-

ferred to as recovery.

Chapter 2 45

Journaling – This periodically stores all inputs to the system. In the case of a fault, the

processing may be repeated automatically. This technique is a usual feature in most word

processors and some operating systems.

Retry – This technique is more complex and supposes that the fault is transient and in

a subsequent moment, the system can operate normally. It performs the action repeatedly for

a maximum number of attempts or until a correct result is achieved. Disk controllers are a

good example of retry.

Checkpoint – This technique is an improvement on the reboot technique. In this ap-

proach, the system state is saved periodically, so the application or the system only needs to

return to the most recent checkpoint before the fault.

The checkpoint approach becomes more suitable for parallel systems because of the

characteristics of the applications running in these systems, which usually execute over a long

period. Performing checkpoint is a more difficult task in distributed systems compared with

centralized ones (KALAISELVI, S. and Rajaraman, V., 2000) because distributed systems

are compounded by a set of independent processors with individual lines of execution. Fur-

thermore, there is no global synchronized clock between them to allow starting a checkpoint

at same time, and save the global state of the parallel application.

2.3.4.1. Basic concepts

Before continuing, important concepts involving the rollback-recovery in distributed

systems should be introduced. These concepts will be useful for understanding the influence

of fault tolerance on the system’s performability and how the proposed solutions work.

46 Performability and Fault Tolerance

Checkpoint

Checkpoints, also known as recovery points, are considered the state saving part of a

process. In this procedure, all information needed to re-spawn the process is stored in a stable

storage. This information is compounded by variable and register values, control points and

thread states, etc. In cases of failure, the fault tolerant system uses this saved state to recover

the process. In single machines, the checkpoint process is not a complex issue, but when ap-

plied in a distributed context it is not quite as simple. As the processes communicate with one

another, each checkpoint must reflect all relevant communication exchanged.

Stable storage

The use of checkpoints to perform rollback-recovery generally requires that a system

state must be available after the failure. In order to provide this feature the fault tolerance

techniques suppose the existence of a stable storage, which survives any failures in the sys-

tem. Although a stable storage is usually confused with physical disk storage, it is just an

abstract concept (ELNOZAHY, E. N. et al., 2002) and can be implemented in different ways:

 It may be a disk array using RAID, which tolerates certain number of non-transient

failures;

 If using a distributed system, a stable storage can be performed by the memory of a

neighbor node; or

 If it only needs to tolerate transient faults, a stable storage can be implemented using a

disk in the local machine.

Consistent system state

Chapter 2 47

The major goal of a rollback-recovery protocol is to return the system to working op-

eration. Rollback-recovery is simple to implement in a single process application, but be-

comes a hard task in a computer cluster, with many processes executing in parallel. In paral-

lel applications using message-passing, the state of the system comprises the state of each

process running in different nodes and communicating between them. Therefore, taking a

checkpoint of a process individually may not represent a snapshot of the overall system.

Hence, a consistent system state can be defined as one in which each process state re-

flects all interdependences with the other processes. In other words, if a process accuses a

message receipt, the sender process must be accused of the message sending too. During a

failure-free execution, any global state taken is a consistent system state.

Domino effect

The domino effect (KOREN, I. and Krishna, C. M., 2007) may occur when the

processes of a distributed application take their checkpoints in an uncoordinated manner.

When a failed process rolls back to its most recent checkpoint, its state may not reflect the

communication with other processes, forcing these processes to roll back to checkpoint be-

fore this communication. This situation may continue to happen until reach the initial of the

execution. This event is exemplified by the situation depicted in Figure 2-2, which shows an

execution in which processes take their checkpoints (represented by blue circles) without

coordinating with each other.

48 Performability and Fault Tolerance

It is considered that processes start with an initial checkpoint. Suppose that process P0

fails and rolls back to checkpoint A. The rollback of P0 invalidates the sending of message

m6, and so P1 must roll back to checkpoint B in order to “invalidate” the receipt of message

m6. Thus, the invalidation of message m6 propagates the rollback of process P0 to the process

P1, which in turn invalidates message m5 and forces P2 to roll back as well. Because of the

rollback of process P2, process P3 must also rollback to invalidate the reception of message

m4. These cascaded rollbacks can continue and may eventually lead to a domino effect, which

forces the system to roll-back to the beginning of the computation, despite all saved check-

points.

The amount of rollback depends on the message pattern and the relation between the

checkpoint placements and message events. Typically, the system restarts from the last re-

covery line. However, depending on the interaction between the message pattern and the

checkpoint pattern, the only bound for the system rollback is the initial state, causing the loss

of all the work done by all processes. The dashed line in Figure 2-2 represents the recovery

line of the system in case of a failure in P0.

In-transit messages

Figure 2-2: Domino effect

Chapter 2 49

A message in the state of the sender but not yet in the state of the receiver is an exam-

ple of an in-transit message. A message that appears in the receiver state but not in the sender

state is an orphan message. The in-transit message is generally not a problem. If the model

presumes a reliable communication channel, this one guarantees the delivery of all messages.

However, in systems that do not provide a reliable communication, the rollback-recovery

relies on the application been executed providing the mechanisms in order to guarantee mes-

sage delivery.

Logging protocols

Log-based rollback-recovery is a strategy used to avoid the domino effect caused by

uncoordinated checkpoints. Logging protocols are a set of protocols which take message logs

as well as checkpoints. Such protocols are based on the piecewise deterministic (PWD) as-

sumption (STROM, R. and Yemini, S., 1985). Under this assumption, the rollback-recovery

protocol can identify all the nondeterministic events executed by each process. For each non-

deterministic event, the protocol logs a determinant containing all necessary information to

replay the event during recovery. If the PWD assumption holds, a log-based rollback-

recovery protocol can recover a failed process and replay the determinants as if they had oc-

curred before the failure.

The log-based protocols require only that the failed processes roll back. During the

recovery, the messages that were lost because of the failure are “resent” to the recovered

process in the correct order using the message logs. Therefore, log-based rollback-recovery

protocols force the execution of the system to be identical to the one that occurred before the

failure. The system always recovers to a state consistent with the input and output interac-

tions that occurred up until the fault.

50 Performability and Fault Tolerance

2.3.4.2. Checkpoint­based protocols

The goal of rollback-recovery protocols based on checkpoint is to restore the system

to the most recent consistent global state, in other words, the most recent recovery line. Since

such protocols do not rely on the PWD assumption, they do not care about nondeterministic

events, i.e., they do not need to detect, log or replay nondeterministic events. Therefore,

checkpoint-based protocols are simpler to implement and less restrictive than message-log

methods.

Uncoordinated checkpointing

In this method, each process has total autonomy for making its own checkpoints.

Therefore, each process chooses to take a checkpoint when it is most convenient (for in-

stance, when the process’s state is small) and does not care about the checkpoints of the other

processes. Zambonelli (ZAMBONELLI, F., 1998) evaluates several uncoordinated check-

point strategies.

The uncoordinated strategy simplifies the checkpoint mechanism of the rollback-

recovery protocol because it provides independence for each process and manages its check-

point without negotiation with the other processes. However, such independence of each

process comes at a cost:

 There is the possibility of a domino effect and all its consequences;

 A process can take a useless checkpoint since it cannot guarantee by itself that a

checkpoint is part of a consistent global state. These checkpoints will overhead the

system but will not contribute to advance the recovery line;

Chapter 2 51

 It is necessary a garbage collection algorithm to free the space used by checkpoints

that are useless; and.

 It is necessary a global coordination to compute the recovery line, which can be very

expensive in applications with frequent output commit.

Coordinated checkpointing

In this approach, the processes must synchronize their checkpoint in order to create a

consistent global state. A faulty process always restarts from its most recent checkpoint, so

the recovery is simplified and domino effect avoided. Furthermore, as each process only

needs to maintain one checkpoint in a stable storage, there is no need for a garbage collection

scheme and the storage overhead is reduced.

The main disadvantage is the high latency involved when operating with large sys-

tems. Therefore, the coordinated checkpoint protocol is barely applicable to large systems.

Although straightforward, this scheme can yield a large overhead. An alternative ap-

proach is to use a non-blocking checkpoint scheme such as the proposals by (CHANDY, K.

M. and Lamport, L., 1985) and (ELNOZAHY, E. N. and Zwaenepoel, W., 1992). However,

non-blocking schemes must prevent the processes from receiving application messages that

make the checkpoint inconsistent.

The scalability of coordinated checkpointing is weak because all processes must par-

ticipate in every checkpoint (MALONEY, A. and Goscinski, A., 2009) and transmit their

checkpoints to a stable storage that generally is centralized, an activity which may cause a

communication bottleneck.

52 Performability and Fault Tolerance

Communication-induced checkpointing (CIC)

The communication-induced checkpointing protocols do not require checkpoints to be

coordinated and avoid the domino effect. There are two kinds of checkpoints for each

process: local checkpoints that occur independently and forced checkpoints that must occur to

guarantee the eventual progress of the recovery line. The CIC protocols take forced check-

points to prevent the creation of useless checkpoints, that is, checkpoints that will never be

part of a consistent global state (and will never contribute to the recovery of the system from

failures) although they do consume resources and cause performance overhead.

As opposed to coordinated checkpointing, CIC protocols exchange no special coordi-

nation messages to determine when forced checkpoints should occur. Instead, they piggyback

protocol-specific information on each application message. The receiver then uses this infor-

mation to decide if it should take a forced checkpoint. The algorithm to decide about forced

checkpoints relies on the notions of Z-path and Z-cycle (ALVISI, L. et al., 1999) For CIC

protocols, one can prove that a checkpoint is useless if it is part of a Z-cycle.

Two types of CIC protocols exist: indexed-based coordination protocols and model-

based checkpointing protocols. It has been shown that both are fundamentally equivalent,

(HELARY, J. M. et al., 1997) although offer some differences in practice (ALVISI, L. et al.,

1999).

2.3.4.3. Log­based protocols

These protocols require only the failed process to roll back. During normal computa-

tion, the processes log the messages into a stable storage. If a process fails, it will recover

Chapter 2 53

from a previous state and the system will lose the consistency because there may be missed or

orphan messages related to the recovered process (ELNOZAHY, E.N. and Zwaenepoel, W.,

1994). During the process’s recovery, the logged messages will be properly recovered from

the message log, meaning the process can resume normal operation and the system will return

to a consistent state (JALOTE, P., 1994).

Log-based protocols consider a message-passing based application to be a sequence

of deterministic state intervals, each starting with the execution of a nondeterministic event

(JALOTE, P., 1994). Each nondeterministic event relates to a unique determinant. In mes-

sage-passing systems, the typical nondeterministic event that occurs to a process is the receipt

of a message from another process (message logging protocol is the other name for these pro-

tocols.) Sending a message, however, is a deterministic event. For example, in Figure 2-1, the

execution of process P3 is a sequence of three deterministic intervals. The first one is the

process’ creation and the other two start with the receipt of messages m2 and m4. The initial

state of the process P3 is the unique determinant for sending m1.

During fault-free operation, each process logs the determinants of all the received

messages into a stable storage. Additionally, each process takes checkpoints to reduce the

extent of rollback during recovery. After a failure occurs, the failed processes recover by us-

ing the checkpoints and logged determinants to replay the corresponding nondeterministic

events precisely as they occurred during the pre-failure execution. The recovery procedure

reconstructs the pre-failure execution of a failed process up to the first received message that

have a no logged determinant because the execution within each deterministic interval de-

pends only on the sequence of received messages that preceded the interval’s beginning.

54 Performability and Fault Tolerance

Log-based protocols guarantee that upon recovery of all failed processes the system

contains no orphan processes. A process is orphan when it does not fail and its state depends

on the execution of a nondeterministic event whose determinant cannot be recovered from a

stable storage or from the volatile memory of a surviving process (ELNOZAHY, E. N. et al.,

2002). There are three classes of log-based protocols: pessimistic, optimistic and causal.

Pessimistic log-based protocols

These protocols assume a pessimistic behavior, supposing that a failure may occur af-

ter any nondeterministic event in the computation. In their most simple form, pessimistic pro-

tocols log the determinant of each received message before the message influences the com-

putation. Pessimistic protocols implement a property often referred to as synchronous log-

ging, i.e., if an event has not been logged on stable storage, then no process can depend on it

(ELNOZAHY, E. N. et al., 2002). Such a condition ensures that orphan processes never exist

in systems using pessimistic log-based protocols.

Processes also take periodic uncoordinated checkpoints in order to limit the amount of

work that the faulty process has to repeat during recovery. If a failure occurs, the process res-

tarts from its most recent checkpoint. During the recovery procedure, the process uses the

logged determinants to recreate the pre-failure execution, without needing any synchroniza-

tion between processes. The checkpointing interval influences directly in the overhead im-

posed by fault tolerance, creating a dilemma: if checkpoints are taken in short periods, it

causes greater overhead during a failure-free execution, but the recovery process will be less

expensive. Furthermore, the checkpointing interval may also be limited by the message log

Chapter 2 55

storage size, i.e, if there are many messages and the log size is reaching its storage limit, a

checkpoint must be taken in order to perform a garbage collection.

Synchronous logging enables the observable state of each process to be always reco-

verable. This property has to four advantages to balance the high computational overhead

penalty (ELNOZAHY, E. N. et al., 2002):

 Recovery is simple because the effects of a failure only influences the processes that

fail;

 Garbage collection is simple because the process can discard older checkpoints and

determinants of received messages that are before the most recent checkpoint;

 Upon a failure, the failed process restarts from its most recent checkpoint which limits

the extent of lost computation; and

 There is no need for a special protocol to send messages to outside world.

Due to the synchronism, the log mechanism may enlarge the message latency per-

ceived by the sender process because it has to wait until the stable storage confirms the mes-

sage log writing in order to consider that the message was delivered. Such an enlargement

may be relevant if the application is communication bounded. In order to reduce the overhead

caused by synchronous logging, the fault tolerance system may apply a Sender Based Mes-

sage Logging model that stores the log in the volatile memory of the message sender, suppos-

ing it is a reliable device. In this case, the recovery process is more complex and needs to

involve each machine that has communicated with the failed process.

Optimistic log-based protocols

56 Performability and Fault Tolerance

In contrast, optimistic log-based protocols suppose that faults occur rarely, which re-

laxes the event log, but it allows the orphan processes appearing caused by failures in order to

reduce the fault-free performance overhead. However, the possibility of appearing orphans

processes makes recovery process, garbage collection and output commit more complex

(JALOTE, P., 1994). In optimistic protocols as in pessimistic protocols, every process takes

checkpoints and logs message asynchronously (ALVISI, L. and Marzullo, K., 1998). Fur-

thermore, a volatile log maintains each determinant while the application’s processes contin-

ue their execution. There is no concern if the log is in the stable storage or the volatile memo-

ry. The protocol assumes that logging to the stable storage will complete before a failure oc-

curs (hence its optimism).

If a process fails, the determinants in its volatile log will be lost, and the state intervals

started by the nondeterministic events corresponding to these determinants are unrecoverable.

Furthermore, if the failed process sent a message during any of the state intervals that too

cannot be recovered. The receiver of the message becomes an orphan process and must roll

back to undo the effects of receiving the message. To perform these rollbacks correctly, op-

timistic logging protocols track causal dependencies during failure-free execution

(MALONEY, A. and Goscinski, A., 2009), (JALOTE, P., 1994). Upon a failure, the depen-

dency information is used to calculate and recover the latest global state of the pre-failure

execution in which no process is in an orphan. Since there is now a dependency between

processes, optimistic protocols need to keep multiple checkpoints which can complicate the

garbage collection policy.

The recovery mechanism in optimistic protocols can be either synchronous or asyn-

chronous (ELNOZAHY, E. N. et al., 2002). Each one is explained bellow.

Chapter 2 57

 Synchronous recovery

During failure free operation, each process updates a state interval index when a new

state interval begins. The indexes serve to track the dependency between processes using two

distinct strategies: direct or transitive. In synchronous recovery, all processes use this depen-

dency information and the logged information to calculate the maximum recovery line. Then,

each process uses the calculated recovery line to decide if it must roll back.

In direct tracking strategy, each outgoing message contains the state interval index

of the sender (piggybacked in the message) to allow the receiver to record the dependency

directly caused by the message. At recovery time, each process assemblies its dependencies

to obtain the complete dependency information.

In transitive tracking, each process maintains a size-N vector V, where V[i] is the

current state interval index of the process Pi itself, and V[j], j ≠ i, records the highest index of

any state interval of a process Pj on which Pi depends. Transitive dependency tracking gener-

ally incurs a higher failure-free overhead because of piggybacking and maintaining the de-

pendency vectors, but allows faster output commit and recovery.

Asynchronous recovery

In this scheme, a recovery process broadcasts a rollback announcement to start a new

incarnation. Every process that receives a rollback announcement checks if it has become an

orphan because of the announcement and then, if necessary, it rolls back and broadcasts its

own rollback announcement.

Asynchronous recovery can produce a situation called exponential rollbacks. Expo-

nential rollbacks occur when a process rolls back an exponential number of times because of

58 Performability and Fault Tolerance

a single failure. The asynchronous protocol eliminates exponential rollbacks by either distin-

guishing failure announcements from rollback announcements or piggybacking the original

rollback announcement from the failed process on every subsequent rollback announcement

that it broadcasts.

Causal log-based protocols

These protocols avoid the creation of orphan processes by ensuring that the determi-

nant of each received message, which causally precedes a process’s state, is either in a stable

storage or available locally to that process (MALONEY, A. and Goscinski, A., 2009). Such

protocols dispense synchronous logging, which is the main disadvantage of pessimistic pro-

tocols, while maintaining their benefits (isolation of failed processes, rollback extent limita-

tion and no apparition of orphan processes). However, causal protocols have a complex re-

covery scheme.

In order to track causality, each process piggybacks the unstable determinants in its

volatile log on the messages it sends to other processes. On receiving a message, a process

first adds any piggybacked determinant to its volatile determinant log and then delivers the

message to the application.

2.3.5. Data replication

Data replication, applied in computer clusters, consists in to keep identical copies of

relevant data on two or more nodes (KOREN, I. and Krishna, C. M., 2007). Despite the im-

provement of fault tolerance, such a technique introduces new problems: consistency and

replica management (JALOTE, P., 1994). Consistency means that all copies on the nodes

must have the same data, and for that to occur, a data replication scheme must implement a

consistency control algorithm, which in turn implements a replica control method to ensure

Chapter 2 59

that the operations performed in the data will be performed on multiple copies of such a data.

The major concern about in the consistency control algorithm is failure. Two kinds of failure

must be taken into consideration: node failures and communication failures. Node failures

avoid the access to the data, while network link failures generate network partitioning. For

the purpose of this work only node failures are taken into consideration.

There are two approaches for masking node failures,: optimistic and pessimistic. Op-

timistic approaches are suited to network link failures. In these cases the replica control me-

thod assumes that the operations performed in different partitions will not conflict. If incon-

sistency arises, the replica control method will try to resolve it using strategies such as ver-

sion vectors or logging the writing and reading operations. Pessimistic approaches avoid oc-

currence of inconsistency by controlling access to data. Hence it will be applied in both

aforementioned failures cases. Common pessimistic approaches are active replication, voting

and primary site.

Active replication

In the active replication approach, all replicas are available for reading and writing

operations from any source, therefore the replica control method must ensure that copies are

always synchronized. A common method for providing such synchronization is atomic

broadcast, i.e., all operations must be performed in all copies before the system can continue

the processing. Such broadcast usually needs a scheme for order and an agreement that may

lead to undesirable overhead. Furthermore, as different requests may be performed on differ-

ent replicas, the concurrent request must be controlled in order to avoid inconsistencies. Typ-

ically, a two-phase locking protocol is used. When a request for an operation is made on a

60 Performability and Fault Tolerance

replica, it first performs a lock operation, avoiding the reception of a new request, and when

the operation finishes the replica is unlocked.

Voting

Voting is a technique that allows writing operations do not have to be performed in all

replicas at once, rather, a majority group of replicas is elected to perform the writing opera-

tion. In each writing operation, a timestamp or a version number is added. During the read

operations there is no need for all replicas to be up-to-date. Analogously, a majority group of

replicas is chosen for the read operation and a request for votes is sent. The replicas then re-

ply with the data and the timestamp or version number, and the requester uses the data from

the replica with the highest version number or latest timestamp. Since read and write groups

intersect, it ensures that at least one replica is up-to-date.

If the number of replicas is too large, reading and writing operations may take a long

time to be performed. One solution for this situation is a variation of the original scheme

based on a hierarchical voting organization. In such an approach, a set of nodes is organized

as an m-level tree. As seen in Figure 2-3, the copies are stored at the leaves of the tree, and

virtual nodes are added at higher levels until they reach the top level (level 0 or root). The

organization is made in such a way that each node on the same level has the same number of

children. During the reading and writing operations, a recursive algorithm assembles a major-

ity group with the leaves of the tree. The voting for the latest information is made on each

level, and only depends on the leaves associated with the nodes on that level.

Chapter 2 61

 Primary site approach

In the primary site approach, also known as the primary-backup approach, there is on-

ly one active node and k+1 nodes designated as backups. All writing and reading operations

are made to the primary node and this node forwards the request to the backup nodes and

waits an acknowledgment. Hence, the nodes are organized in a logical linear organization.

This arrangement is important to ensure the processing order: first the primary, then each

backup.

If a failure occurs in the primary site, one of the backup nodes is elected as primary,

in a simple approach, the next node on the logical linear organization will be chosen as the

primary. If a failure occurs during replication, when the primary site is waiting for the ac-

knowledgement, action is necessary in order to keep the consistency between the replicas.

One simple action is the rollback of the last operation in the backup nodes. If one of the

backups fails during a replication, it never returns an acknowledgment leading the primary to

wait indefinitely. A timeout feature must be implemented, to remove such a node from the

replication set.

Figure 2-3: A tree for hierarchical voting with m=3

Root

Virtual1

Replica1 Replica2 Replica3

Virtual2

Replica4 Replica5 Replica6

Virtual3

Replica7 Replica8 Replica9

62 Performability and Fault Tolerance

2.3.6. Current researches

Fault tolerance becomes a major issue in the high performance computing area.

Hence, many works has been developed in order to provide fault tolerance for parallel sys-

tems by taking into consideration factors that may influence the performability such as per-

formance overhead. Some of the current research in this area is detailed below.

Chtepen et al in (CHTEPEN, M. et al., 2009) propose an adaptive solution combining

data replication and checkpointing in order to improve the resource utilization efficiency in

fault tolerant distributed systems. This solution dynamically switches between performing

checkpointing and data replication according to some parameters such as available CPUs,

system load or number of active replicas. Although this solution is designed to provide effi-

cient resource utilization, it can also reduce the overhead of fault tolerance adapting it in

function of the resources stability.

FT-Pro (LI, Y. and Lan, Z., 2006) is a fault tolerance solution that combines roll-

back-recovery and failure prediction to take action at each decision point. Using this ap-

proach, the solution aims to retain the system performance, avoiding excessive checkpoints,

and consequently improves the system’s performability. Three different preventive actions

are currently supported: process migration, coordinated checkpoint using central checkpoint

storages and no action. Each preventive action is selected dynamically in an adaptive way

intending to reduce the overhead of fault tolerance. FT-Pro works an initially determined and

static number of spare nodes.

The solution proposed in (IZOSIMOV, V. et al., 2006) uses a combination of check-

pointing and active replication for distributed embedded systems. Such systems have similar

characteristics to the computer clusters, such as the use of message-passing for communica-

Chapter 2 63

tion between nodes. In that work, the authors target critical applications, providing fault to-

lerance and increasing availability without increasing the resource utilization. Differently of

solutions presented in this work, this technique lower the overhead by reducing the number of

checkpoints in some process and replicating it in an available node. The solution performs

well when there are inter-process dependencies that causes some idle processing time, which

may be used in active replication.

Intelligent Checkpoint Engine (ICE) proposes a reliability-aware checkpointing strat-

egy to obtain a performability improvement by performing fewer checkpoints (LIU, Y. et al.,

2005) . The main idea behind ICE is to determine a checkpoint interval sensitive to the sys-

tem’s failure rate, and place a checkpoint as close as possible to the next failure. This means

there will be fewer checkpoints, which reduces the performance overhead caused by this ac-

tivity. ICE is implemented over the HA-OSCAR architecture. The kernel of ICE is an optimal

checkpoint function that takes into consideration a failure rate calculated with failure infor-

mation received from HA-OSCAR cluster management. Such a function then makes a deci-

sion based on a stochastic reliability model defining a checkpoint interval.

 The Score-D checkpoint mechanism is a fault tolerance solution used in the Score

Cluster System Software that implements a distributed coordinated checkpoint system

(KONDO, M. et al., 2003). In Score-D’s checkpointing algorithm, each node parallelly stores

its checkpoint data into the local disk. In addition, it saves redundant data in a neighbor node

to ensure the reliability for non-transient failures. This redundancy is achieved through parity

generation. In the recovery task, the system uses the parity data distributed over the nodes to

reconstitute the checkpoint image and restart the process in a spare node allocated statically at

the program start. A server is in charge of sending a heartbeat to each node in order to detect

64 Performability and Fault Tolerance

failures. The initial solution has a clear bottleneck caused by disk writing, so Gao (GAO, W.

et al., 2005) proposed an optimization using a hierarchical storage approach combined with

diskless checkpointing for transient failures tolerance. According to their results, such opti-

mization has improved the checkpointing performability.

MPICH-V2, an improvement on MPICH-V1, implements the sender-based pessimis-

tic log (the computing node now keeps the message-log) and aims to reduce the performance

overhead (BOUTEILLER, Aurélien et al., 2003). It is well suited for homogeneous network

large-scale computing. Unlike its predecessor, it requires fewer stable components to provide

a good performance in a cluster. MPICH-V2 replaced the channel memories concept by event

loggers to ensure the correct replay of messages during recovery. It is formed by additional

components: dispatcher, checkpoint servers, and computing/communicating nodes. The dis-

patcher is responsible for launching the entire runtime environment, and performs a fault de-

tection task by monitoring the runtime execution. The architecture assumes neither central

control nor global snapshots. The fault tolerance is based on an uncoordinated checkpoint

protocol that uses centralized checkpoint servers to store communication context and compu-

tations independently.

MPICH-VCL is designed for extra low latency dependent applications

(BOUTEILLER, Aurélien et al., 2003). It uses a coordinated checkpoint scheme based on the

Chandy-Lamport algorithm (CHANDY, K. M. and Lamport, L., 1985) to eliminate over-

heads during fault-free execution. However, it requires restarting all nodes (even non-crashed

ones) in the case of a single fault. Consequently, it is less fault resilient than message logging

protocols, and is only suited for medium scale clusters.

Chapter 2 65

LAM/MPI a component architecture called System Services Interface (SSI) that al-

lows to checkpoint an MPI application using a coordinated checkpoint approach (SQUYRES,

J. M. and Lumsdaine, A., 2003) (BURNS, G. et al., 1994). This feature is not automatic, and

needs a back-end checkpoint system. In cases of failure, all applications nodes stop and a

restart command is needed. LAM/MPI demands a faulty node replacement. This procedure is

neither automatic, nor transparent.

MPICH-V1, the first implementation of MPICH-V, has a good application in large

scale computing using heterogeneous networks (BOSILCA, G. et al., 2002). Its fault tolerant

protocol uses uncoordinated checkpoint and remote pessimistic message logging. MPICH-V1

is well suited for desktop grids and global computing as it can support a very high rate of

faults. As this solution requires a central stable storage, it requires a large bandwidth that be-

comes the major drawback for this implementation.

2.4. Discussions

This thesis addresses the evaluation of performability using fault tolerance in two sit-

uations: fault-free and under the presence of faults. Fault-free analysis is unusual since per-

formability is commonly associated to the presence of faults. However if one considers that

the use of a fault tolerance solution is due to the probability of faults occurring, the perfor-

mance overhead caused by this solution must be considered in order to evaluate the system’s

performability.

In the literature there are many approaches for evaluating performability, some of

them are analytical-based models, Haverkort et al in (HAVERKORT, B. R. et al., 2001)

presents a variety of analytical performability models as follows:

66 Performability and Fault Tolerance

The steady-state performability (SSP) is given by ܵܵܲ ൌ ∑ ௌא௜௜ݎ௜ߨ , while the transient

or point performability (TP) is given by ܶܲሺݐሻ ൌ ∑ ௌא௜௜ݎሻݐ௜ሺ݌ . If the model considers state

absorption, the mean reward to absorption (MRTA) is given by ܣܴܶܯ ൌ ׬ ௑ሺ௦ሻݎ
ஶ

଴ and the ݏ݀

cumulative performability is defined as ܲሺݐሻ ൌ ׬ ௑ሺ௧ሻݎ
௧

଴ For all these models, i is a . ݏ݀

state א ܵ ሺset of possible statesሻ, ߨ௜ is the steady‐state probability of residing in state i,

with piሺtሻ the probability of residing in i at time t. X is a continuous‐time Markov chain

and ݎ௑ሺ௧ሻ is a Markov reward process.

On the other side, there are pragmatic ways to evaluate performability, usually based

on measurements. Kondo et al in (KONDO, M. et al., 2003) define a performability model to

evaluate their checkpointing technique as ܲ݁ݕݐ݈ܾ݅݅ܽ݉ݎ݋݂ݎ ൌ ஼௉_௜௧௩௟

஼௉_௜௧௩௟ା஼௉_௧௜௠௘
ൈ ெ்஻ி

ெ்஻ிାெ்்ோᇱ

where ݈ݒݐ݅_ܲܥ is the checkpointing interval and ݁݉݅ݐ_ܲܥ is the time spent to take a check-

point. Soares and Pereira in (SOARES, L. and Pereira, J., 2005) use simulation to evaluate

middleware performability. They measure the number of committed transactions within a

fixed delay and use this as a performability metric. Nagaraja et al in (NAGARAJA, K. et al.,

2005) propose the performability model (Equation (6)) adopted in this thesis. This model

assumes that unavailability rather than availability periods are most relevant for comparative

performability analysis. This assumption is reasonable because two different availability val-

ues may be similar, differing by just a fractional order of magnitude (e.g. 99.9% and 99.99%)

while the equivalent unavailability values differ by an order of magnitude. pw and uw are

performance and unavailability weights used to adjust the model facing the application and

user needs. Therefore, for some applications, such as mission-critical, the unavailability

weight may be defined higher than to normal applications, emphasizing the involved risk

Chapter 2 67

factor of these applications. In this work, pw and uw are adjusted according to each scenario

and Target_Unavail has the value 0.001% (as desirable as a high-availability system).

2.4.1. Considerations regarding fault tolerance

Each one of the checkpoint-based protocols may influence system’s performability

differently. The uncoordinated approach may impose lower overhead in failure-free execu-

tions, because there are no coordination costs and consequently no scalability issues. Howev-

er in the presence of faults, the recovery process may lead to a re-execution of the entire ap-

plication, resulting in larger recovery times and consequently reducing the perceived system

availability.

The coordinated approach penalizes fault-free performance because the coordination

process’ duration increases proportionally with the number of application processes. Howev-

er in the presence of failures, the recovery process is simpler, reducing the recovering dura-

tion to the time needed to roll back to the last checkpoint, i.e., the elapsed time since the last

checkpoint until the failure moment. Such behavior reduces the unavailability period in com-

parison to uncoordinated approach.

The communication-induced protocol is more complex to evaluate, because the num-

ber of taken checkpoints is unpredictable due to the forced checkpoints, dependent on the

application’s communication behavior. Since the recovery line may be discovered during the

running, the recovery duration is similar to the coordinated approach.

The way a specific protocol implements the no-orphan message condition affects the

protocol’s failure-free performance overhead, the latency of output commit, and the simplici-

ௌ௬௦௧௘௠ݕݐ݈ܾ݅݅ܽ݉݋݂ݎ݁ܲ ൌ ௣௪ݐݑ݌ݑݎ݄ܶ_݃ݒܣ ൈ min ൬1,
݈݅ܽݒܷܽ݊_ݐ݁݃ݎܽܶ

݈݅ܽݒܷܽ݊
൰

௨௪

 (6)

68 Performability and Fault Tolerance

ty of recovery and garbage collection schemes, as well as its potential for rolling back correct

processes. All of these factors influence directly the system performability because of the

performance overhead, which can be considered a kind of degradation, or the recovery dura-

tion, that implies possible unavailable time.

Pessimistic logging has some advantages under the presence of faults. As a failed

process may recover independently of the other, the fault effects are contained and the indi-

vidual recovery process may influence the system’s unavailable time one way or another de-

pending on how coupled the application is. Nevertheless this recovery time is limited by the

elapsed time since the last checkpoint in the worse case, i.e., due tothe process’ interdepen-

dencies the entire system must wait for the recovery of one process. The main drawback of

this solution is the performance overhead in applications with high amounts of communica-

tion, because of the increased message delivery latency.

 In contrast to the pessimistic option, optimistic logging reduces the performance

overhead in fault-free executions by avoiding synchronously logging every determinant event

in a stable storage. However it may have some performance overhead if it uses dependency

tracking algorithms during the execution. As always, there is a tradeoff regarding the recov-

ery process. In this case, it is penalized by the need to gather the events that may be distri-

buted over several places, calculate the dependency between the processes or by the possible

exponential rollbacks. Such a complex recovery may lead to large periods of unavailability.

Causal logging is complex to evaluate from a performability perspective. The perfor-

mance overhead in fault-free execution is dependent on the amount of piggybacked informa-

tion in each message, and this information, in turn depends on the communication pattern and

amount between processes. During recovery, causal logging acts similarly to the optimistic

Chapter 2 69

logging protocol. Therefore it may imply in larger recovery time, and resulting unavailable

time, than the pessimistic logging.

The data replication techniques may be used in conjunction with rollback-recovery

protocols to improve system’s performability by increasing system’s availability. For exam-

ple, the use of the primary site approach in storing checkpoints and logs decrease the proba-

bility of losing redundant data due failures in the storage device. The major concern in this

case is the performance overhead of performing the replication over the backup nodes. In-

deed, some contributions of this work rely on this approach to improve the system availabili-

ty taking into consideration the performance issues. The voting approach is less suitable with

few backup nodes, i.e., if using two or three backup nodes, the performance and behavior of

this approach is similar to the active replication. However, the active replication may incur in

higher overhead due synchronization constraints and the need for a two-phase lock in all op-

erations.

Chapter 3
Performability in the RADIC Architec­
ture

This chapter discusses the characteristics and behavior of the architecture chosen as

basis for this work and how they influence in the system performability. In his work, Duarte

(DUARTE, A., 2007) introduces a new fault tolerance architecture called RADIC, an

acronym for Redundant Array of Independent Fault Tolerance Controllers. Evaluating the

performance and availability of a fault tolerance system is complex and challenging. Indeed,

different measures of performability are more suitable for different kind of applications while

different characteristics of a system may have more or less significance. In this work, evalua-

tion is made not only from outside, but inside too, analyzing the RADIC factors that define

and influence system’s performability and their influence. Later, this analysis will be the ba-

sis of a proposal on alternative designs to improve the performability.

3.1. RADIC architecture model

 RADIC establishes an architecture model that defines the interaction of the fault-

tolerant architecture and the parallel computer’s structure. Figure 3-1 depicts how the RADIC

architecture interacts with the structure of the parallel computer (in the lower level) and the

parallel application’s structure (in the higher level). RADIC implements two levels between

the message-passing level and the computer structure. The lower level implements the fault

tolerance mechanism and the higher level implements the fault masking and message deliver-

ing mechanism.

Chapter 3 71

 The core of the RADIC architecture is a fully distributed controller for fault tolerance

that automatically handles faults in the cluster structure. Such a controller shares the parallel

computers resources. The controller is also capable to handle its structure in order to survive

to failures. The RADIC architecture is characterized by four key features as showed in TA-

BLE 3-1. Some of these features directly or indirectly influence performability. The transpa-

rency reduces the possibility of fine tuning the application, which allows an optimized use of

fault tolerance, e.g., taking checkpoints only when necessary. Decentralization reduces the

storage overhead caused by central storage and distributes the redundant data saving activity

among the nodes, but does suffer difficulties taking global decisions to improve performabili-

ty such as load balancing or checkpointing protocol. Flexibility allows the adjustment of val-

ues or configuration to help improve performability.

TABLE 3-1: The key features of RADIC

Feature How it is achieved

Transparency
− No change in the application code

− No administrator intervention is required to manage the failure

Decentralization
− No central or fully dedicated resource is required. All nodes may be simultaneously

used for computation and protection

Scalability − The RADIC operation is unaffected by the number of nodes in the parallel computer

Flexibility
− Fault tolerance parameters may be adjusted according to application requirements

− The fault-tolerant architecture may change for better adaptation to the parallel com-
puter structure and the fault pattern

Figure 3-1: The RADIC layers in a parallel system

Parallel Computer Structure (Fault-probable)

RADIC Fault tolerance functions
Message logging, checkpointing, fault detection and recovery

RADIC Fault masking functions
Message delivering

Message-passing Standard

Parallel Application

72 Performability in the RADIC Architecture

3.1.1. Fault model

There are several reasons why a computer cluster may fail (TREASTER, M., 2005).

Therefore, a fault tolerance solution must define the scope of the faults it can handle. Such a

definition is made in a higher level of abstraction called fault model (JALOTE, P., 1994). The

fault model directly affects how availability is perceived and measured, because it excludes

some kind of failures and the considered performability is also dependent on it. The RADIC

assumed fault model, which defines the faults being considered is described below.

RADIC assumes that the message-passing system follows a fail-stop model. In this

model, any node can fail at any time, resulting in a crash or halting the processes running on

it. Such a model is commonly assumed in fault tolerance techniques (TREASTER, M., 2005)

and allows for failures to be accurately detected (BIRMAN, K.P., 2005) through a timeout

procedure. In RADIC, this is represented by the heartbeat/watchdog mechanism presented in

section 0. The configuration of this procedure may affect the fault detection time and, conse-

quently, the time to recovery and system availability. Therefore, RADIC detects a node has

failed by the absence of an expected communication (the heartbeat or crash of an ongoing

message transmission).

RADIC is technically designed to tolerate only permanent faults. However a RADIC

implementation may also deal with transient network faults by retrying the communication a

determined number of times.

RADIC may tolerate an undetermined number of faults until the cluster reaches the

minimal configuration required (explained in section 3.5.2). In order to tolerate concurrent

correlated faults, e.g., a node and its neighbor at same time, RADIC demands extra copies of

redundant data.

Chapter 3 73

RADIC relies on the underlying transport stack, and assumes that all communications

are delivered correctly. Catastrophic faults, such as complete power supply failures, switches

or link failures and fire are not covered by the RADIC fault model. Similarly, RADIC does

not cover application internal faults (flawed software) or byzantine faults (data corruption,

malicious behavior, or incorrect protocols).

3.2. RADIC functional elements

The structure of the RADIC architecture uses a group of processes that collaborate to

create a distributed controller for fault tolerance. There are two classes of processes: protec-

tors and observers. Every node of the parallel computer has a dedicated protector and there is

a dedicated observer attached to every parallel application’s process.

3.2.1. Protectors

There is a protector process in each node of the parallel computer. Each protector

communicates with two protectors assumed as neighbors: a predecessor and a successor.

Therefore, all protectors establish a distributed protection system throughout the nodes of the

parallel computer. Figure 3-2, depicts a simple cluster built using nine nodes (N0-N8) and a

possible connection of the respective protectors of each node (T0-T8). The arrows indicate the

predecessorsuccessor relationship.

The relationship between neighbor protectors exists because of the fault detection

procedure. There is a heartbeat/watchdog mechanism between neighbor protectors. The pro-

tected node has to send a periodic life-sign called heartbeat to the protector running a watch-

dog. If this life-sign fails to arrive at the Watchdog within a certain period, the watchdog as-

sumes a node failure and moves the controlled system into a fail-treatment state. By defini-

tion, the protector with the watchdog is the predecessor and the protector who sending the

74 Performability in the RADIC Architecture

heartbeat is the successor. Thus, the protector running in the successor node protects the pre-

decessor node.

The arrows in Figure 3-2 indicate the orientation of the heartbeat signals from the

successor to the predecessor. Actually, each protector has a double identity because it acts

simultaneously as a successor for a neighbor and as a predecessor for the other neighbor. For

example, in Figure 3-2, the protector T7 is the predecessor of the protector T8 and the succes-

sor of the protector T6. A protector only communicates with their immediate neighbors. In the

same figure, the protector T5 communicates only with T4 and T6. It never communicates with

T3, unless T4 fails and T3 becomes its new immediate neighbor.

Figure 3-2: An example of Protectors (T0-T8) in a cluster with nine nodes. Green arrows indicate the predeces-
sorsuccessor communication.

Chapter 3 75

Each protector executes the following tasks related to the operation of the rollback-

recovery protocol:

 It stores checkpoints and message-logs from the application processes those are run-

ning in other node;

 It monitors its neighbors in order to detect node failures via a heartbeat/watchdog

scheme;

 It reestablishes the monitoring mechanism with the following neighbor after a failure

in one of its current neighbors, i.e., it reestablishes the protection chain; and

 It implements the recovery mechanism.

Those tasks are related to different phases of the RADIC operation, as described in

TABLE 3-2

3.2.2. Observers

Observers are RADIC processes attached to each application process. From the RAD-

IC operational point-of-view, an observer and its application process compose an inseparable

pair.

The group of observers implements the message-passing mechanism for the parallel

application. Furthermore, each observer executes the following tasks related to fault toler-

ance:

 It takes checkpoints and event logs of its application process and sends them to a pro-

tector running in another node;

TABLE 3-2: Phases of RADIC operation performed by protectors

Phase Functionalities
Protection To store checkpoints and event log

Detection To perform the heartbeat/watchdog scheme

Recovery To re-spawn processes

Reconfiguration To re-establish the heartbeat/watchdog scheme

76 Performability in the RADIC Architecture

 It detects communication failures when communicating with other processes or with

its protector;

 In the recovering phase, it manages the messages from the message log of its applica-

tion process and establishes a new protector; and

 It maintains a mapping table, called a radictable, indicating the location of all applica-

tion processes and their respective protectors and updates this table in order to mask

faults.

Similar to the protectors, those tasks are related to different phases of the RADIC op-

eration, as described in TABLE 3-3

3.2.3. The RADIC controller for fault tolerance

The collaboration between protectors and observers allows the execution of the tasks

of the RADIC controller. Figure 3-3 depicts the same cluster as Figure 3-2 with all the ele-

ments of RADIC, as well as their relationships. The arrows represent the communication be-

tween the fault-tolerance elements. Communications between the application processes does

not appear because they relate to the application behavior.

Each observer has an arrow connecting it to a protector running in other node, to

which it sends checkpoints and message logs of its application process. This protector is the

predecessor of the local protector. Therefore, by asking to the local protector who is the pre-

decessor protector, an observer can always know who its protector is. Each protector main-

TABLE 3-3: Phases of RADIC operation performed by observers

Phase Functionalities

Protection To find a protector
To take and send checkpoints
To log and send events
To mask a fault by searching for the faulty process location

Detection To detect communication failures

Recovery To process event logs

Reconfiguration To update the radictable

Chapter 3 77

tains a list of the observers it is protecting, and the observers running locally on its node. This

list is called the observers’ list.

The RADIC controller uses the receiver-based pessimistic log rollback-recovery pro-

tocol to handle the faults and satisfy the scalability requirement. As explained in the previous

chapter, this protocol is the only one in which the recovery mechanism does not demand syn-

chronization between the in-recovering process and the processes unaffected by the fault.

Figure 3-3: A cluster using the RADIC architecture. P0-P8 are application process. O0-O8 are observers and T0-T8 are
protectors. OT arrows represent the relationship between observers and protector and TT arrows the relationship

between protectors.

78 Performability in the RADIC Architecture

Such a feature avoids the scalability suffers with the operation of the fault tolerance mechan-

ism.

Besides the fault tolerance activities, observers are responsible for managing the mes-

sage-passing mechanism. This activity rests on a mapping table containing all information

required to correctly deliver a message between two processes. Protectors do not participate

directly in the message-passing mechanism; they only store the message log.

3.3. RADIC operation

As shown, the RADIC distributed controller concurrently executes a set of activities

related to the fault tolerance. Besides these fault tolerance activities, the controller also im-

plements the message-passing mechanism for the application processes. How these mechan-

ism and tasks contribute to the RADIC operation is explained below.

3.3.1. Message­passing mechanism

In the RADIC message-passing mechanism, an application process sends a message

through its observer. The observer takes care of delivering the message through the commu-

nication channel. Similarly, all messages coming to an application process must first pass

through its observer. The observer then delivers the message to the application process. Fig-

ure 3-4 clarifies this process.

To obtain the address of a destination process, an observer uses its routing table (the

radictable). This identifies the destination process inside the application level by the identify-

ing the destination process inside the communication level TABLE 3-4 represents a typical

radictable.

Chapter 3 79

3.3.2. State saving task

In this task, protectors and observers collaborate to save snapshots of the parallel ap-

plication’s state. This task is responsible for the majority of network and storage resources

consumption by the fault tolerance mechanism, as well as the performance overhead in fault-

free executions.

The system must supply storage space for the checkpoints and message logs required

by the rollback-recovery protocol. Furthermore, the checkpoint procedure may introduce a

time delay in the computation because a process may suspend its operation while the check-

point occurs.

Application
process

Observer

Messages to/from
other processes

Communication
channel

Figure 3-4: The message-passing mechanism in RADIC.

TABLE 3-4: An example of radictable for the cluster in Figure 3-3

Process identification Address

0 Node 0

1 Node 1

2 Node 2

3 Node 3

.

.
.
.

80 Performability in the RADIC Architecture

Additionally, message logging interferes in the message delivery latency, because un-

der the pessimistic logging approach, a process only considers a message delivered after the

message is stored in the message log. Furthermore, as more data (from the message logs) are

transiting on the network, consuming more network bandwidth, the occurrence of packet col-

lision on the physical medium is more likely, resulting in larger transmission times.

3.3.2.1. Checkpoints

Each observer takes checkpoints of its application process, as well as of itself, and

sends them to the protector located in its predecessor node. Figure 3-5 depicts a simplified

scheme to clarify the relationship between an observer and its protector.

According to an implementation, checkpointing may be an atomic procedure and a

process becomes unavailable to communicate while a checkpoint procedure is in progress.

This behavior demands that the fault detection mechanism differentiates a communication

failure caused by a real failure from one caused by a checkpoint procedure. This differentia-

tion is explained in section 3.3.3.

Protectors operate like a distributed reliable storage. Reliability is achieved by the

checkpoints and message logs of a process being stored in a different node. Therefore, if a

Figure 3-5: Relationship between an observer and its protector.

Chapter 3 81

process fails, all information required to recover it is in a survivor node.

Thanks to the uncoordinated checkpoint mechanism of the pessimistic message-

logging rollback-recovery protocol used by RADIC, each observer may establish an individ-

ual checkpoint policy for its application process. Such a policy may be time-driven or event-

driven. The RADIC architecture allows the implementation of any combination of these two

policies.

The time-driven policy is typical in fault tolerance implementations based on roll-

back-recovery. In this policy, each observer has a checkpoint interval that determines the

times when the observer takes a checkpoint.

The event-driven policy defines a trigger that each observer uses to start the check-

pointing procedure. A typical event-driven policy occurs when two or more observers coor-

dinate their checkpoints. Such a policy is useful when two processes have to exchange many

messages. In this case, coordinating checkpoints is a good way to reduce checkpoint intrusion

over the message exchanging because the strong interaction between the processes,.

Other approach is to provide an adaptive system, using both the time-driven and

event-driven policies. For example, the time-driven policy is the default, however, if the sto-

rage space for logs is exhausted, this event may trigger the checkpointing procedure to per-

form the garbage collection.

When an observer takes a checkpoint of its process, this checkpoint represents all

computational work undertaken by the process until that moment. The observer sends this

computational work to the protector. As the process continues its work, the state saved in the

protector becomes obsolete. To make possible the reconstruction of the process’ state in case

82 Performability in the RADIC Architecture

of failure, the observer also logs in to its protector all messages its process has received since

its last checkpoint. Therefore, the protector always has all information required to recover a

process in case of a failure. The information is, though, always older than the current process’

state.

3.3.2.2. Message logs

Each observer must log all messages received by its application process because the

pessimistic log-based rollback-recovery protocol. As explained in the previous chapter, using

message logs together with checkpointing improves the fault tolerance mechanism by avoid-

ing the domino effect and reducing the amount of checkpoints the system must maintain.

The message logging mechanism in RADIC is very simple: the observer resends all

received messages to its protector, which saves them in a stable storage. The log procedure

must be completed before the sender process consider the message as delivered. Figure 3-6

depicts the message’s delivery and log mechanism.

The log mechanism enlarges the message latency perceived by the sender process, be-

cause it has to wait until the protector concludes the message log procedure to consider the

message delivered.

Chapter 3 83

3.3.2.3. Garbage collection: fault tolerance and resources

The pessimistic message log protocol does not require any synchronization between

processes. Each observer is free to take checkpoints of its process without considering what is

happening with other parallel application processes.

This feature greatly simplifies the construction of the garbage collector by the protec-

tors. With each checkpoint representing the current state of a process, whenever a new

checkpoint comes from an observer, the protector can discard all prior checkpoints and mes-

sage logs related to that process. Therefore, after a protector receives a new checkpoint from

a process, it automatically eliminates its older checkpoint.

Figure 3-6: Message delivering and message log mechanism.

Figure 3-7: Protector algorithms for predecessor and successor tasks

84 Performability in the RADIC Architecture

3.3.3. Failure detection task

Failure detection is an activity performed simultaneously by protectors and observers.

Each one performs specific activities in this task, according to its role in the fault tolerance

scheme.

3.3.3.1. How protectors detect failures

The failure detection procedure contains two tasks: a passive and an active monitoring

task. Because of this, each protector has two parts: it is, simultaneously, predecessor of one

protector and successor of other.

There is a heartbeat/watchdog mechanism between two neighbors. The predecessor is

the watchdog element and the successor the heartbeat element. Figure 3-7 represents the op-

erational flow of each protector element.

A successor regularly sends heartbeats to a predecessor. The heartbeat/watchdog

cycle determines how quickly a protector will detect a failure in its neighbor, i.e., the re-

sponse time of the failure detection scheme. Short cycles reduce the response time, improving

the system’s MTTR, but also increase the interference over the communication channel. Fig-

ure 3-8 depicts three protectors and the heartbeat/watchdog mechanism between them. This

picture shows the predecessors running the watchdog routine and waiting for a heartbeat sent

by its neighbor.

A node failure generates events in both the node’s predecessor and successor. If a

successor detects and diagnoses that its predecessor has failed, it immediately searches for a

new predecessor. The search algorithm is simple. Each protector knows the address of its

predecessor and the addresses of the predecessor of its predecessor. Therefore, when a prede-

cessor fails, the protector knows exactly who its new predecessor will be.

Chapter 3 85

A predecessor, in turn, waits for a new successor after to detect a failure in its current

successor. Furthermore, the predecessor also starts the recovering procedure, in order to re-

cover the faulty processes that were running in the successor node.

3.3.3.2. How the observers detect failures

Each observer relates to two classes of remote elements: its protector and the other

application processes. An observer detects failures either when communication with other

application processes fails or when the communication with its protector fails. However, con-

sidering an observer only communicates with its protector when performs a checkpoint or

message-log, an additional mechanism must exist to guarantee an observer will quickly

perceive that its protector has failed.

RADIC provides such a mechanism by using a warning message between the observ-

er and local protector (the protector running in the same node of the observer). Whenever a

protector detects a fail in its predecessor, it sends a warning message to all observers in its

nodes because it knows that the failed predecessor is the protector that the local observers are

using to save checkpoints and message logs.

When an observer receives such a message, it immediately establishes a new protector

and takes a checkpoint.

Figure 3-8: Three protectors (TX, TY and TZ) and their relationship for detecting failures. Successors send heartbeats
to predecessors.

Heartbeat

Sucessor

Heartbeat Heart… ..beat

Sucessor Sucessor

Antecessor Antecessor Antecessor
W H W H WH

TX TY TZ

86 Performability in the RADIC Architecture

3.3.3.3. How the observers confirm a failure

There are two situations which create a communication failure between application

processes, but do not indicate a node failure. The first failure situation occurs when an ob-

server takes a checkpoint of its application process. The second occurs when a process fails

and restarts in a different node.

This section explains how observers tackle the first problem. How the observer tackle

the second situation will be explained in the description of the Fault Masking Phase.

A process becomes unavailable to communicate inside the checkpoint procedure.

Such behavior could mean that a sender process interprets the communication failure caused

by the checkpoint procedure as a failure in the destination.

In order to avoid this fake failure detection, before a sender observer assumes a communica-

tion failure with a destination process, the sender observer contacts the destination’s protector

and asks about the destination’s status. To allow that each observer knows the location of the

protector of the other process, the radictable now includes the address of the destination’s

protector, as shown in TABLE 3-5.

TABLE 3-5, shows that the protector in Node 8 protects the processes in Node 0, the

TABLE 3-5: The radictable of each observer in the cluster in Figure 3-3.

Process identification Address
Protector

(predecessor address)

0 Node 0 Node 8

1 Node 1 Node 0

2 Node 2 Node 1

3 Node 3 Node 2

.

.
.
.

.

.

Chapter 3 87

protector in Node 0 protects processes in Node 1 and so forth.

Using its radictable, any sender observer may locate the destination’s protector. Since

the destination’s protector is aware of the checkpoint procedure of the destination process, it

informs the sender observer of the destination’s status. Therefore, the sender observers can

discover if the communication failure is a consequence of a checkpoint procedure.

The radictable and the search algorithm

Whenever an observer needs to contact another observer (in order to send a message)

or an observer’s protector (in order to confirm the status of a destination), this observer looks

for the address of the component (observer or protector) in its radictable. However, after a

failure occurs, the radictable of an observer becomes outdated because the address of the

recovered process and their respective protectors has changed.

 To overcome this problem, each observer uses a search algorithm to calculate the ad-

dress of failed component. This algorithm relies on the determinism of the protection scheme.

Each observer knows that the protector of a failed component is the predecessor of this com-

ponent. Since a predecessor is always the previous element in the radictable, whenever the

observer needs to find an observer or its protector it simply looks at the previous line in its

radictable, and finds the address of the respective node. The observer repeats this procedure

until it finds the process or protector it is looking for.

3.3.3.4. Recovery task

As previously explained, in normal operation protectors monitor computer’s nodes

and observers take checkpoints and message logs of the distributed application processes.

Together, protectors and observers function as a distributed controller for fault tolerance.

88 Performability in the RADIC Architecture

When protectors and observers detect a failure, both actuate to reestablish the consis-

tent state of the distributed parallel application and to reestablish the structure of the RADIC

controller.

3.3.3.5. Reestablishing the RADIC structure after failures

The protectors and observers implicated in the failure will take simultaneous atomic

(a)

(b)

N0

T0

N1

T1

N2

T2

N3

T3

N4 N5

T5

N6

T6

N7

T7

N8

T8

O0

P0

O1

P1

O2

P2

O3

P3

O4

P4

O5

P5

O6

P6

O7

P7

O8

P8

T4

(c)

(d)

Figure 3-9: Recovering tasks in a cluster. (a) Failure free cluster. (b) Fault in node N3. (c) Protectors T2 and T4 detect
the failure and reestablish the chain, O4 connects to T2. (d) T2 recovers P3/O3 and O3 connects to T1.

Chapter 3 89

actions to reestablish the integrity of the RADIC controller’s structure. TABLE 3-6 enlists the

atomic activities of each element.

 When the recovery task is finished, the RADIC controller’s structure is reestablished

and henceforth is ready to manage new failures. Figure 3-9 presents the configuration of a

cluster from a normal situation until the recovery task has finished.

3.3.3.1. Recovering failed application processes

The protector that is the predecessor of the failed node recovers the failed application

processes in the same node in which the protector is running. Immediately after the recovery,

each observer connects to a new protector. This new protector is the predecessor of the node

in which the observer recovers. The recovered observer receives the information about its

new protector from the protector in its local node. Indeed, the protector of any observer is

always the predecessor of the node in which the observer is running.

3.3.3.2. Recovery side­effect

After recovering, the recovered process runs in the same node as its former protector.

This means the computational load increases in such a node, because it now contains its orig-

inal application processes plus the recovered processes. Therefore, the original load balancing

TABLE 3-6: Recovery activities performed by each element implicated in a failure.

Protectors Observers
Successor:

1) Fetches a new predecessor

2) Reestablishes the heartbeat mechanism

3) Commands the local observers to checkpoint

Survivors:

1) Establish a new protector

2) Take a checkpoint

Predecessor :

1) Waits for a new successor

2) Reestablishes the watchdog mechanism

3) Recovers the failed processes

Recovered:

1) Establish a new protector

2) Copy current checkpoint and message log to the
new protector

3) Replays message from the message-log

90 Performability in the RADIC Architecture

of the system changes.

Performance degradation

The aforementioned system configuration change may lead to a graceful performance

degradation according to the running application’s characteristics. This occurs because two or

more process share the computing power of a node. Moreover, after recovering, the memory

usage in the node hosting the recovered process raises leading to disk swap in some cases.

Such an occurrence is one of the major issues relating to performability decreases in such

systems.

RADIC makes possible the implementation of several strategies to overcome the load

balance problem after process recovery. One possible strategy is to implement a heuristic for

load balance that could search for a node with lesser computational load. Therefore, instead

of recovering the faulty process in its own node, a protector could send the checkpoint and

log of the faulty processes to be recovered by a protector in a node with less computational

load. Such a strategy will clearly increase the system’s MTTR because of the searching for

and transferring redundant data, affecting its availability. Despite the performance benefits

obtained in remaining execution may justifying such efforts, there is no guarantee that a node

with less computational load will be quickly found. In a situation where all nodes have the

same load, this procedure can take much time.

3.3.4. Fault masking task

Fault masking is an observers’ attribution. Observers ensure the processes continue to

correctly communicate through the message-passing mechanism, i.e., the observers create a

virtual machine in which failures do not affect the message-passing mechanism.

Chapter 3 91

To perform this task each observer manages all messages sent and received by its

process. An observer maintains, in its private radictable, the address of all logical processes

or the parallel application associated with their respective protectors. Using the information

in its radictable, each observer uses the search algorithm (see section 0) to locate the recov-

ered processes.

Similarly, each observer records a logical clock to classify all messages delivered be-

tween the processes. Using the logical clock, an observer easily manages messages sent by

recovered processes.

TABLE 3-7 represents a typical radictable including the logical clocks. It shows that

the observer owning this particular table has received three messages from the Process 0 and

has sent two messages to this process. Similarly, the process has received one message and

sent one message to Process 3.

3.3.4.1. Locating recovered processes

When a node fails, the neighboring predecessor of the faulty node - which executes

the watchdog procedure and stores checkpoints and message-logs of the processes in the faul-

ty node – detects the fail and starts the recovery procedure. Therefore, the faulty processes

now restart their execution in the node of the predecessor, resuming from their last check-

point.

TABLE 3-7: The radictable of an observer in the cluster in Figure 3-3.

Process identification Address
Protector

(predecessor address)
Logical clock for sent

messages
Logical clock for

received messages
0 Node 0 Node 8 2 3

1 Node 1 Node 0 0 0

2 Node 2 Node 1 0 0

3 Node 3 Node 2 1 1
… … … … …

92 Performability in the RADIC Architecture

Two situations creating fake fault detection were described in the Fault Detection

Phase section. The first situation occurs when an observer takes a checkpoint of its applica-

tion process, making this process unavailable to communicate. The solution for this problem

was described in the Fault Detection Phase. However, the description of the second situation

and its solution follows below.

After a node failure, all future communications to the processes in this node will fail.

Therefore, whenever an observer tries to send a message to a process in a faulty node, this

observer will detect a communication failure and start the algorithm to discover the new des-

tination location.

 Figure 3-10 describes the algorithms used by an observer acting as sender or receiver.

An observer uses the search algorithm only if the communication fails when it is sending a

message to another process. If the failure occurs while the process is receiving a message, the

Figure 3-10: Fault detection algorithms for sender and receiver observers

Chapter 3 93

observer simply aborts the communication because it knows that the faulty sender will restart

the communication after it has recovered.

To clarify the behavior of a recovered process, Figure 3-9d represents the final confi-

guration after a failure in one of these nodes. The process P3 that was originally in the faulty

node N3 is now running in the node N2. Therefore, all other processes have to discover the

new location of P3.

The new protector of P3 is T1, because P3 currently runs in the same node as its origi-

nal protector T2. If an observer tries to communicate with the faulty process P3, it will obtain

a communication error and ask protector T2 about the status of P3. In this case, T2 informs

that it is not responsible for P3 (because T1 is now its current protector).

To identify the current protector of P3, the sender observer uses its radictable to fol-

low the protector chain. The sender observer knows that if T2 is no longer protecting P3, then

the probable protector of P3 is the predecessor of T2 in the protector chain (because a faulty

process normally recover in the predecessor neighbor node).

Therefore, the sender observer reads its radictable and works out the identity of the

protector of the predecessor of protector T2. In the previous example, the predecessor of pro-

tector T2 is T1. In the radictable the order of the protectors in the chain follows the same or-

der as the table index. Therefore, the predecessor of a node is always the node in the previous

line of the table, as shown in TABLE 3-8.

TABLE 3-8: Part of the original radictable for the processes represented in Figure 3-9a.

Process identification Address
Protector

(predecessor address)
1 Node 1 Node 0
2 Node 2 Node 1
3 Node 3 Node 2
4 Node 4 Node 3

94 Performability in the RADIC Architecture

 Now that the sender observer knows who the probable protector of the receiver

process P3 is, it makes contact and asks about the status of P3. If the protector confirms the

location of P3, the sender observer updates its radictable and restarts the communication

process. Otherwise, the sender observer continues to follow the protection chain, asking each

following predecessor about P3 until it finds where the process P3 is.

 In the previous example, the updated radictable of a process who tries to communi-

cate with the recovered process P3 has the information presented in TABLE 3-9. In this table,

line three of the radictable (represented by bold font) represents the update location of

process P3 together with its new protector. As RADIC is completely distributed, other

processes such as P4 for example, remain unaware of the fault. When they try to communi-

cate with the recovered process, they will search and discover the P3 location, and updates

their radictable as needed. No information has to be broadcasted to all processes.

This process is based on the determinism of RADIC when recovering, which guaran-

tees that the recovered process will be in a node known by its protector. This heuristic will be

changed when dynamic redundancy will be incorporated, because the spare node use may

generate an indeterminism when locating a failed process, once such process may recovers in

any spare node available.

TABLE 3-9: Part of the updated radictable of a process that has tried to communicate with
P3 after it was recovered as shown in Figure 3-9b.

Process identification Address
Protector

(predecessor address)

1 Node 1 Node 0

2 Node 2 Node 1

3 Node 2 Node 1

4 Node 4 Node 3

Chapter 3 95

3.3.4.2. Managing messages of recovered processes

An application process recovers from its earlier checkpoint and resumes its execution

from that point. If the process has received messages since its earlier checkpoint, those mes-

sages are in its current message log. The process’s observer uses this message log to deliver

the messages required by the recovered process.

If the recovered process resends messages during the recovery process, the destination

observers discard these repeated messages. Such a mechanism is simple to implement by us-

ing a logical clock as mentioned before. Each sender includes a logical time mark that identi-

fies the message’s sequence for the receiver. The receiver compares the time mark of the re-

ceived message against the current time mark of the sender. If the received message is older

than the current time mark from the specific sender, the receiver simply discards the message.

Observers discard repeated messages received from recovered processes. However, a

recovered process starts in a different node to before the failure. Therefore, it is necessary to

make the observers capable of discovering the recovered processes’ locations.

An observer starts the mechanism used to discover a process’s location whenever a

communication between two processes fails. Each observer involved in the communication

uses the mechanism according to its role in the communication. If the observer is a receiver,

it simply waits for the sender recovering.

On the other hand, if the observer is a sender it will have to search for the failed re-

ceiver in another node. The searching procedure starts by asking the protector of the failed

receiver its status. When the protector answers that the failed receiver is ready, the sender

updates the location of the failed process and restarts communication.

96 Performability in the RADIC Architecture

3.4. RADIC functional parameters

The RADIC controller initially establishes two time parameters: the checkpoint inter-

val and the watchdog/heartbeat cycle.

Choosing the optimal checkpoint interval is a difficult task. The interaction between

the application and the checkpoints determines the enlargement of the application execution

time. Using the interaction between the observers and parallel application processes, the

RADIC controller allows the implementation of any checkpoint interval policy. Each observ-

er can calculate the optimal checkpoint interval by using a heuristic based on local or distri-

buted information. Furthermore, the observer may adjust the checkpoint interval during

process execution. There is a history of studies proposing strategies for choosing checkpoint

interval (DALY, J. T., 2006), (NAM, H. et al., 1997) , (YOUNG, J. W., 1974). In this work,

the checkpoint interval is determined only for studying its impact in the performance over-

head.

The watchdog/heartbeat cycle, associated with the message latency, defines the sensi-

tivity of the failure detection mechanism. When this cycle is short, the neighbors of the failed

node will rapidly detect the failure and the recovery procedure will quickly start, reducing the

system’s MTTR. However, a very short cycle may be inconvenient because it increases the

number of control messages and, consequently, the network overhead. Furthermore, short

cycles also increase the system’s sensibility regarding network latency.

Setting the RADIC parameters to achieve the best performance of the fault tolerance

scheme is strongly dependent on the application’s behavior. The application’s computation-

to-communication pattern plays a significant role in the interference of the fault-tolerant ar-

Chapter 3 97

chitecture on the parallel application’s run time. For example, the amount and size of the

messages directly define the interference from message-log protocols.

3.5. RADIC flexibility

The impact of each parameter on the overall performance of the distributed parallel

application strongly depends of the details of the specific RADIC implementation and the

architecture of the parallel computer. Factors such as network latency, network topology and

storage bandwidth are extremely relevant when evaluating the way the fault-tolerant architec-

ture affects the application and the system performability.

The freedom to adjust fault tolerance parameters for each application process indivi-

dually is one functional feature that contributes to the flexibility of the RADIC architecture.

Additionally, two features play an important role for the flexibility of RADIC: the ability to

define degrees of availability and the structural flexibility.

3.5.1. Concurrent failures degrees of availability

In RADIC, a recovery procedure is complete after the recovered process establishes a

new protector, i.e., only after the recovered process has a new protector capable of recovering

it. In other words, the recovery procedure is finished when the following steps have been

completed:

1. The predecessor protector detects the node failure;

2. It confirms (diagnostically) the failure with the faulty node successor;

3. It re-establishes the heartbeat/watchdog;

4. It re-spawns the process using the stored checkpoint;

98 Performability in the RADIC Architecture

5. The recovered observer establishes a new protector by communicating with

the local protector;

6. The recovered observer processes the log conjunctly with the application: and

7. Finally, the observer takes a checkpoint in the new protector in to store the

state after log processing.

RADIC optimistically assumes that the protector recovering a failed process will nev-

er fail before recovery completion, i.e., using a simple configuration the RADIC controller

supports several simultaneous non-correlated faults. Nevertheless, the RADIC architecture

allows the construction of an N-protector scheme to manage such a situation.

In such a scheme, each observer transmits the process’s checkpoints and message logs

to N different protectors. In Figure 3-11, an observer is using two protectors, sending the

checkpoint and log (LX&CX’) to a protector and a copy of them (LX&CX’’) to another protec-

tor. If the protector running on node NY fails while it is recovering a failed application

process, the protector running on node NZ would assume the recovering procedure.

In other example, in the cluster of Figure 3-9, if node N2 fails before the recovery of

P3, the system will collapse. To solve this situation using an N-protector scheme, each ob-

Figure 3-11: An observer using two protectors.

NX

Observer

Appli‐
cation
Process

NY

Pro‐
tecto
r

Checkpoint
& Log

Application
Messages

NZ

Pro‐
tecto
r

Checkpoint
& Log

LX&CX’ LX&CX’’

’ ’’

Chapter 3 99

server should store the checkpoints and message-logs of its process in two or more protectors.

In Figure 3-9, using two protectors would mean that O3 should store the checkpoints and

message-logs of P3 in T2 and T1. Therefore, T1 will recover P3 in case of a failure in T2 while

it is recovering process P3. During the recovery process, some election policy must be applied

to decide the protector who will recover the failed process.

The number of correlated concurrent faults the system must support defines the num-

ber of protectors needed by each process. Using such a configuration yields two main costs.

The first is the replication of the fault tolerance information in the protectors, which reduces

the total storage capacity of the cluster. The second is the data redundancy overhead, namely

checkpoint storing and the message transmission latency. The latter suffers a significant in-

crease because in the pessimistic message-log protocol, each observer must now log any re-

ceived message (and each checkpoint) into N protectors, where N is the number of elements

that can concurrently fail even if correlated.

The checkpointing overhead may be avoided by applying a round-robin scheme over

the protectors. However this approach cannot be used to log messages since a protector re-

sponsible for initiating the recovery must have all data needed to perform the process. This

would make the recovery process complex and time consuming. Moreover, such an approach

also demands coordination during recovery order to determine the most recent checkpoint

replica among the protectors.

Such a feature plays a major role in the system’s performability by increasing the de-

gree of availability but generating additional performance overhead.

100 Performability in the RADIC Architecture

3.5.2. Structural flexibility

Another important feature of the RADIC architecture is the possibility of assuming

different protection schemes. Such ability allows the implementation of different fault toler-

ance structures throughout the nodes, in addition to the classical single protectors’ chain.

One example of the structural flexibility of RADIC is the possibility of clustering a

protectors’ chain. In this case, the system would have several independent chains of protec-

tors. Therefore, each individual chain function as an individual RADIC controller and the

traffic of fault tolerance information is restricted to the elements of each chain. Figure 3-12

depicts an example of using two protectors’ chains in a sample cluster.

Figure 3-12: A cluster using two protectors’ chain.

Chapter 3 101

 To implement this feature one column must be added to the radictable. This column

indicates the protector’s chain. An observer uses this additional information to search the

protector of a faulty node inside each protectors' chain. The bold column in TABLE 3-10

exemplifies the chain information in a typical radictable.

To manage at least one fault in the system, the RADIC architecture requires that the

minimum amount of protectors in a chain is three. This constraint occurs because each pro-

tector of the RADIC controller for fault tolerance requires two neighbors, a predecessor and a

successor (see section 3.2.1) Therefore, at least three nodes must compose a protectors’

chain. Figure 3-13 depicts such a minimal structure, where each protector has a predecessor

(to which it sends the heartbeats) and a successor (from which it receives heartbeats.).

MaxFaults = Number_of_Protectors - 2 (7)

TABLE 3-10: The radictable of an observer for a cluster protected by two protectors’ chains such as in Figure 3-12.

Process
identification

Address
Protector

(predecessor address)
Chain

Logical clock for
sent messages

Logical clock for
received messag-

es

0 Node 0 Node 3 0 2 3

1 Node 1 Node 0 0 0 0

2 Node 2 Node 1 0 0 0

3 Node 3 Node 2 0 1 1

4 Node 4 Node 8 1 2 3

5 Node 5 Node 4 1 0 0

6 Node 6 Node 5 1 0 0

7 Node 7 Node 6 1 1 1

8 Node 8 Node 7 1 0 0

102 Performability in the RADIC Architecture

 If a fault takes out a node of the chain, and a chain with two nodes is not capable of

handling any fault, the minimum number of protectors in a chain defines the maximum num-

ber of faults such a chain can handle. Equation (7) expresses this relationship. The maximum

number of faults that a protector chain can handle is equal to the number of protectors in the

chain minus two (the number of neighbors of a protector).

3.6. The RADIC overhead

Many fault tolerance solutions rely on a centralized stable storage to ensure the sur-

vival of redundant data. This requirement can create a bottleneck when saving the state of the

overall application (BOUTEILLER, A. et al., 2006), (ELNOZAHY, E. N. and Plank, J. S.,

2004), (SANCHO, J. C. et al., 2004) For instance, an application with hundreds of processes,

each one with several megabytes or even gigabytes of state size, which stores its checkpoints

and logs all interchanged messages in a single point, will require massive bandwidths in net-

work and disk access.

Figure 3-13: The minimum structure for a protectors’ chain.

Chapter 3 103

RADIC is different from common fault tolerance solutions because it implements a

distributed stable storage over the protectors. Such a feature avoids the occurrence of bottle-

necks when saving checkpoints and logs, despite demanding storage in each node. However,

RADIC may generate some disturbances on the application’s communication, and this can

increase overheads. These disturbances are caused by concurrent communications during the

message transmission as depicted in Figure 3-14 where the dotted arrows numbered from 1 to

6 represent communications that may occur while the message is sending and logging (or a

checkpoint is being taken). For instance, the protector of receiver node (N1) may be receiving

a checkpoint (dotted arrow #4) at same time that process P2 is sending a message.

These concurrent communications and their side-effects are dependent on factors such

as the application's communication pattern, network topology and protectors’ assignments.

If an application has a synchronized communication pattern (i.e., processes communi-

cate almost at the same time), the probability of concurrent communication is greater. To

better understand the influence of such a phenomenon in system’s performability because of

the performance overhead, evaluation experiments were conducted using synthetic programs

generating synchronized and unsynchronized communication. The synthetic programs are

based on a SPMD matrix product modified to force or avoid message sending synchronism.

Figure 3-14: Concurrent communications during a message sending.

104 Performability in the RADIC Architecture

Figure 3-15 charts the result of these executions using a 4500×4500 matrix, generat-

ing 18MB messages. The chart shows the message sending durations of the process P0. It is

possible to see the strong variation and time overhead when the communications are com-

pletely synchronized. However, if there is no synchronism in the communications, the over-

head is low and stable.

This evaluation confirms the dependence between the RADIC overhead and the

communication pattern of an application. Furthermore, as previously described, other factors

may influence in this overhead, such as the network topology and routing techniques used in

the computer cluster. If they provide alternate paths to message traffic, probability of these

concurrent communications could be mitigated. In some cases, the protector-observer as-

signment may also reduce this probability by assigning to an observer the protector running

in the most communicated node and avoiding disturbing the logging activity of other

processes. This subject is still undiscovered and may be the target of future studies.

Figure 3-15: Influence of message sending synchronism in the overhead of message logging.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

D
u
ra
ti
o
n
 (s
)

Message #

Without FT

Unsynchronized

Synchronized

Comparison between Synchronized and Asynchronized communications
mm 4500 SPMD Msg Size= 18MB Process P0

Chapter 3 105

3.7. Estimating the availability provided by RADIC

To estimate the availability of a system is a task quite complex. The direct approach

to achieve this number is using the operational availability, i.e., to measure how much time

the system was operational during some period of time and to calculate such ratio. Such an

approach has the inconvenient of only be possible after past the time, which may be useless

in many cases.

As faults follow no specific model, one reasonable estimation technique, taking into

consideration the fault model assumed by RADIC (see section 3.1.1) is inherent availability.

This approach is based on probabilistic factors such as average time between failures

(MTBF) or average time for recovery (MTTR).

It is clear that the availability provided by RADIC depends on the cluster structure

where RADIC is applied, i.e., according to the MTBF of such a cluster since a single fault

will cause an interruption. Moreover, such availability also depends of RADIC parameters

such as checkpoint and heartbeat interval and the running application characteristics, which

leads to the MTTR.

The MTTR remains complex to determine in an uncoordinated pessimistic log-based

solution. In contrast to coordinated approaches, it does not obligate all process to roll back to

the last checkpoint. Only the faulty process must to be roll backed, which means that the ap-

plication can continue executing while the process recovers, except if it is a tightly coupled

application, i.e., another process waiting for a message from the faulty node. In this case, the

entire application (if there are correlated dependencies) may have to wait some time until the

process finishes its recovery. Therefore in the best case (loosely coupled applications) the

106 Performability in the RADIC Architecture

time to recover would be near zero and in the worst case (tightly coupled applications) the

time to recover would be near to the checkpointing interval value.

In cases of coordinated checkpointing, as faults are equally likely within the check-

pointing interval and the entire system rollbacks to the last checkpoint, it is reasonable to as-

sume that the MTTR is equal to one half of the checkpointing interval. In RADIC’s case, as

an uncoordinated approach with a pessimistic logging solution, the MTTR would be equal to

that assumed for coordinated protocols at most (in case of tightly coupled applications), but

be smaller in many cases considering the entire universe of loosely coupled applications. This

work assumed the MTTR was one half of the checkpoint interval (the worst case).

An example of estimating the availability provided by RADIC follows. A cluster

without a fault tolerance solution is composed of 100 nodes, each one with a MTBF of 8,760

hours (one year). The SMTBF is 87.6 hours (see Equation (5)). Considering the MTTR is two

hours i.e., support staff replaces the faulty node in two hours, the inherent availability of this

system calculated using Equation (1) would be 97.76786% (87.6/(87.6+2)), not considering

the time spent by the application re-executing until it reaches the state immediately before the

fault.

 When using RADIC, the MTTR of the system reduces according to the checkpoint

and heartbeat interval chosen (because of automatic recovery). To simplify it was considered

only the checkpoint interval, supposing that a fault is immediately detected and the reconfigu-

ration takes an unnoticeable amount of time. A checkpoint interval of two minutes (0.034

hours) means that, according to the exposed before, the MTTR is 1 minute (0.0167 hours). In

this case, the system availability would rise to 99.9808% (87.6/(87.6+0.0167)). To maintain

this availability value in the face of concurrent correlated faults, RADIC must be configured

Chapter 3 107

to use as many protectors per observer as needed, resulting in a performance overhead in-

crease.

As mentioned before, for the purpose of this work the unavailability metric was pre-

ferred. Therefore, the estimated unavailability value using RADIC would be 0.01902% and

2.23214% without RADIC. While RADIC provides an increase of 2.21% in system availabil-

ity, unavailability was reduced by many orders of magnitude, reflecting better the importance

of using a fault tolerance solution.

Chapter 4
Alternatives for Improving a Com­
puter Cluster’s Performability

The previous chapter explained about how RADIC can protect an application from

faults, and provides high availability. It presented operational details about saving state, de-

tecting faults and recovering a process. It also showed that RADIC, as any fault tolerant solu-

tion imposes a performance overhead in fault-free executions because of its fault tolerance

activities. Furthermore it may degrade performance after faults occur because of the recovery

process changing the original system configuration. These issues directly affect the system’s

performability, since the system performance may be compromised in order to provide some

degree of availability.

Time overhead and resources consumption (such as storage space) usually limit the

availability provided by rollback-recovery solutions such as RADIC. An approach to increas-

ing availability is to make several replicas of checkpoints and logs. However this will lead to

an increase in the fault tolerance overhead. Such an overhead may be an important concern in

cases of mission-critical applications.

In fault cases, such a system degrades performance, i.e., the system remains opera-

tional but with some loss of performance caused by changes on the processes per node distri-

bution. In this situation, it might be relevant the system re-configuration, restoring the origi-

nal process distribution and recovering the original performance.

Furthermore, it was incorporated the functionality of fault-probable nodes replace-

ment (because of factors such as the MTBF) before the fault occurrence. This approach goes

Chapter 4 109

beyond fault tolerance, allowing preventive maintenance actions. It is possible to replace each

node of a cluster without stopping an application running. Such a feature is relevant for long

or continuous running applications and can be used in conjunction with fault prediction strat-

egies. These strategies can improve performability by fault avoidance.

This chapter discusses how these issues affects system’s performability and evaluates

the root causes of the performance overhead and degradation. It also presents solutions for

improving system’s performability in the presence or not of faults by reducing the message

logging overhead. As explained before, an important factor regarding such an overhead is the

sequential approach of the message logging (it receives the message, then it logs it). Facing

this issue, a parallelization of such a process, based on the pipelining technique is proposed.

The rest of this chapter is organized as follows: Fault-free issues are discussed and al-

ternatives for reducing message logging overheads and increasing availability with low over-

heads are presented. Performance degradation caused by faults is then presented with alterna-

tives for avoiding system changes and system restoration. The chapter concludes by discuss-

ing how to provide preventive maintenance without stops.

4.1. Fault­free issues

Any fault tolerance solution leads to a cost, such as financial (special or redundant

devices are expensive), extra storage space, or time overhead. These costs are usually related

to the degree of availability offered by these solutions, i.e., in hardware redundancy as many

redundant devices are necessary as many faults must be tolerated. In rollback-recovery based

fault tolerance solutions, the costs are usually associated with storage space and, mainly, with

time or performance overhead. The following sections explain the proposed solutions for

110 Alternatives for Improving a Computer Cluster’s Performability

improving performability in fault-free situations by reducing the performance overhead, and

increasing availability without imposing large overheads.

This work considers the fault tolerance overhead as performance degradation, so it is

possible to be evaluated under the performability concept. This approach is reasonable if it is

taken into consideration that a fault tolerance solution is only necessary because of the like-

lihood of faults, meaning the overhead caused by such a solution is related to faults.

4.2. Reducing the message logging overhead

As explained before, RADIC, as a log-based fault tolerance solution has two major

sources of overhead: checkpointing and logging. The checkpointing overhead and possible

solutions have already been the subject of various research proposals including diskless

checkpointing (PLANK, J. S. et al., 1998), incremental checkpointing (SANCHO, J. C. et al.,

2004), (AGARWAL, S. et al., 2004), checkpoint size reduction by compiler assisted selection

of variables (RODRÍGUEZ, G., 2008), and models for optimum checkpoint interval

(PLANK, J. S. and Thomason, M. G., 2001), (DALY, J. T., 2006). This work focuses on the

overhead caused by message logging.

As presented in (BOSILCA, G. et al., 2002) and (RAO, S. et al., 2000), the main

cause of the pessimistic log overhead is the store-and-forward approach of regular implemen-

tations, where the logging process starts only after receiving the complete message, as de-

picted in Figure 4-1. In the first phase the destination observer receives the entire message

and, in the second phase, the destination observer logs the entire message in its protector.

Chapter 4 111

A simple mathematical model (NI, L. M. and McKinley, P. K., 1993) commonly ap-

plied in analyzing network routing techniques can approximately predict how this approach

will perform. Suppose the message size is M, the bandwidth of the network is B, and the

number of hops is n (fixed value of 2). The latency values are given by Equation (8). In prac-

tice, other factors may influence this equation according to implementation issues and net-

work protocols.

It is possible to evaluate the overhead caused by regular logging by comparing the

values presented in Figure 4-2. These values result from executing the NetPIPE (SNELL, Q.

O. et al., 1996) network performance evaluator over a Gigabit Ethernet network. The TABLE

4-1 shows the numerical overheads of values presented in the previous chart. Overhead s

reach a maximum of 89.7%, these value are slightly lower than the value obtained from the

previous equation because of the aforementioned reasons1.

1 . This difference is because the RADIC prototype implementation, which uses a receiver message

buffer that always accepts messages, which allows sending and receiving messages to be overlapped

Figure 4-1: Phases of a RADIC receiver-based logging.

Latencyௌ௧௢௥௘&ி௢௪௔௥ௗ ൌ ൬
ܯ
ܤ

൰ ൈ ݊

(8)

N5

T5

P5

O5

N4

T4

P4

O4

N3

T3

P3

O3

… …

Message

Logging Phase (step 2) Messaging Phase (step 1)

112 Alternatives for Improving a Computer Cluster’s Performability

 Applications with a large number or size of communications may be severely af-

fected by the effects of message logging, especially if they have no load balancing. Indeed

some authors suggest this factor is the major drawback of log-based fault tolerance solutions

(ELNOZAHY, E.N. and Zwaenepoel, W., 1994), (ALVISI, L. and Marzullo, K., 1998),

(HUANG, Y. and Wang, Y., 1995). Figure 4-3 compares the execution times of a 9000×9000

matrix product SPMD program when performing or not message logging running with differ-

ent number of nodes. In these executions checkpointing was not performed in order to solely

evaluate the message logging overhead2. The increase in overheads according to the number

of nodes is because of the inter-process dependencies. With four nodes, each process only

2 In practice, message logging is performed conjunctly with checkpointing to bound recovery time and

storage space.

TABLE 4-1: Numerical logging overhead comparison

 512 B 1 KiB 8 KiB 16 KiB 32 KiB 64 KiB 256 KiB 512 KiB 1MiB 8MiB 16MiB

Overhead 83.4% 85.0% 80.5% 72.9% 71.0% 72.3% 81.4% 84.1% 86.3% 89.3% 89.7%

Figure 4-2: Message latency comparison using or not message logging.

1

10

100

1000

10000

100000

1000000

M
e
ss
ag
e
 D
e
li
ve
ry
 L
at
e
n
cy
 (μ
s)

Message Size

Regular Logging Comparison
Using NetPipe

No Log

Regular Log

Chapter 4 113

depends on two other processes in order to advance each iteration. However, with nine nodes,

each process depends directly on four other processes and indirectly on another four

processes (Figure 4-4), causing a delay as one process is propagated to the others. Further-

more, the overhead is also dependent on network characteristics. In this case, a Gigabit

Ethernet network interconnected by one network switch was used.

Such an overhead depends on application characteristics such as communication pat-

terns, process interdependencies, message sizes and the underlying network. In this case, the

program is based on the Cannon’s algorithm, generating few inter-process point-to-point

communications of a large size (an entire matrix block in each communication) and strong

dependency (each computation depends on the results of two other processes’ computation).

Figure 4-3: Execution time comparison between using or not message logging in a 9000x9000 matrix product over

different number of nodes

4.15%

9.52%

10.24%

10.60%

1

10

100

1000

10000

4 Nodes 9 Nodes 16 Nodes 25 Nodes

Nodes

Message Logging Overhead
Execution times of a 9000x9000 matrix product using a SPMD program

W/o FT

Only Logging

Ex
e
cu
ti
o
n
 T
im

e
(i
n
 m

in
u
te
s)

114 Alternatives for Improving a Computer Cluster’s Performability

As seen, message logging affects a system’s performance and, consequently, its per-

formability. In order to improve system performability the following solution allows a de-

crease in the message logging overhead without compromising the availability provided by

the fault tolerance solution. The next section presents the details of this solution.

4.2.1. Pipelining the logging process

In order to improve the logging process, two factors have been taken advantage of: a

wide range of actual networks provides full duplex communications (it can send and receive

data at same time) and communication buffers at lower network layers exist (for instance

TCP or network interface card (NIC) buffers). Therefore, using a technique similar to the

wormhole (NI, L. M. and McKinley, P. K., 1993), generally used in network systems like

routers or switches, the observer’s message-passing mechanism and state-saving tasks were

modified to establish a pipeline of the logging process by slicing the sending message into

small pieces. The receiver observer then logs these packets as they arrive, before completing

the message as depicted in Figure 4-5.

By using a full duplex transmission, the observer can simultaneously receive pieces

and log them into its protector. Theoretically, such a communication should not affect mes-

sage transmission because of the full-duplex network feature. However, in practice, it de-

Figure 4-4: Message pattern of a matrix-multiplication using the Cannon’s algorithm based on the SPMD paradigm.

P P P

P P P

P P P

Chapter 4 115

pends on factors such as network protocol or topology, i.e. in TCP protocol, the receiver

sends small acknowledgement packets to control the transmission.

When using reliable network protocols that ensure delivery, time spent processing the

pipeline at each piece may be mitigated by underlying communication buffers. While the

pipeline algorithm is processing one piece, more pieces may be received at lower network

layers. In the same way, when the pipeline algorithm sends a piece, it only needs to queue it

in the sending buffer without needing to wait for the send completion.

Supposing the same network mathematical models used in the section 4.2, using the

Equation (9) in this case, usually applied for wormhole routing techniques, where P is the

piece size, a pipeline transmission should introduce minimal overheads into the message de-

livery. Again, implementation issues may affect the expected values.

Piece size influence

Despite factors influencing the pipelined logging performance, such as the node’s

computing power, an important consideration is the piece size chosen to slice the message.

An inappropriate piece size may generate considerable overhead in the pipeline process.

Figure 4-5: The pipelined log process.

Latencyௐ௢௥௠௛௢௟௘ ൌ ൬
ܯ
ܤ

൰ ൅ ൬
ܲ
ܤ

൰ ൈ ݊

(9)

N5

T5

P5

O5

N4

T4

P4
O4

N3

T3

P3

O3

……

Message

116 Alternatives for Improving a Computer Cluster’s Performability

 Referring to the Open System Interconnection (OSI) reference model created by the

International Organization for Standardization (ISO) that defines a layer-based standard for

network protocols, RADIC, as an architecture for message passing, was designed to work

over the three upper layers (application, presentation and session) as depicted in Figure 4-6.

The lower layer (transport) is responsible for, among other operations, dividing the data from

the upper layer into smaller units called TPDUs (Transport Protocol Data Unit). As the data

passes by lower layers, the TPDUs are encapsulated into packets at the network layer, and the

packets are encapsulated into frames at the data-link layer as depicted in Figure 4-7.

Figure 4-6: RADIC and the OSI layers.

Figure 4-7: The encapsulation of data over the OSI layers.

Application

Presentation

Session

Transport

Network

Data link

Physical

Chapter 4 117

The frame payload at the network layer limits the TPDU payload and each network

has a maximum transmission unit (MTU) limiting the frame size. Therefore, in order to avoid

costs due to unnecessary extra information, the piece size used in pipelined logging must be

defined according to the MTU of the underlying network (see TABLE 4-2). Indeed, it must

fit into a TPDU payload (Equation (10)). Figure 4-8 presents three situations that may occur

according to the piece size chosen:

 The piece is oversized, so it will be fragmented and another frame is used to transmit

the exceeding data, clearly causing added costs because of the extra headers;

 In the case of an undersized piece, there will be unused space in each frame transmit-

ted, as each frame carries all headers. This case will also generate additional over-

head; or

 The desired situation, the piece plus the headers fits the payload of the MTU.

TABLE 4-2: Default MTU sizes for different networks

Network Default MTU (bytes)

PPP 296

X.25 576

IEEE 802.3 1,492

Ethernet 1,500

FDDI 4,352

4Mb Token Ring 4,464

Ethernet Jumbo Frames 1500-9,000

16Mb Token Ring 17,914

Hyperchannel 65,535

ܦܲܶ pܷayload ൌ MTU ‐ ‐ி௥௔௠௘ ு௘௔ௗ௘௥݁ݖ݅ܵ ௉௔௖௞௘௧݁ݖ݅ܵ ு௘௔ௗ௘௥‐ ௉஽௎்݁ݖ݅ܵ ு௘௔ௗ௘௥
 (10)

118 Alternatives for Improving a Computer Cluster’s Performability

In order to keep the RADIC transparent, the pipelined logging implementation must

be able to discover the underlying network MTU and adjust the piece size according with this

payload.

Faults during the logging process

Any fault tolerant solution must take into consideration that faults can occur at any

moment, including when performing the fault tolerance activities. Therefore, it is possible for

a fault to occur during the pipelined logging process. If such a fault in the message sender or

receiver occurs, the original RADIC recovery process is applied to bring the system back to a

consistent state as described in previous chapter, and discard the ongoing log. However, if the

fault occurs in the node running the protector receiving the pipelined log, the procedure is

slightly different from the original one. In this case, the observer continues to receive the

message and buffers it while a new protector is designed according the original RADIC re-

covery process. After the protector is established, the observer sends the entire buffered mes-

Figure 4-8: Three situations according the piece size: (a) Oversized, (b) Undersized and (c) Right-sized

Chapter 4 119

sage pieces at once. If the message is still incomplete, the observer continues using the pipe-

lined logging.

4.3. Protecting mission­critical processes

 One application requiring total or degraded controlled fault tolerance is the mission-

critical application. Mission-critical applications are ruled by time constraints (deadlines).

They must perform a defined task before this deadline otherwise the task result is useless and

must be discarded, representing a waste of time and computational resources. These missed

deadlines are commonly caused by faults during the task execution time, as seen in Figure

4-9. The fault occurrence leads to a task restart and total re-execution, and consequently the

deadline is missed. Risk is an important role for these applications. In this context risk is con-

sidered a function of the fault probability and the damage caused by such a fault. In mission-

critical applications, the damage of a fault may be catastrophic such as a missed deadline.

Therefore the use of a fault tolerance solution is indispensable.

A fault tolerance solution can certainly increase system availability to a certain level.

However, this level is generally limited by factors such as resources, time overhead and cost.

Figure 4-9: A mission-critical task missing a deadline due the fault occurrence

Deadline

Task Execution

Task starting

Task Execution Task Re-execution

Fault

time

Met

Missed

120 Alternatives for Improving a Computer Cluster’s Performability

For instance, in the hardware redundancy approach, the availability level is derived from the

number of redundant devices in use. That means as many concurrent faults must be tolerated,

many redundant devices are needed. The factor limiting the availability in this case is the cost

of replication. As explained before, the availability provided by rollback-recovery-based so-

lution such as RADIC is limited by time overhead or by resources consumption (e.g., storage

space).

In order to increase the availability provided by a rollback-recovery-based fault toler-

ance solution, common non-excluding approaches are to reduce the checkpoint interval or

make several replicas of the checkpoints and logs (also called redundant data). Both ap-

proaches imply an increase of the fault tolerance overhead. The first decreases unavailability

periods during the recovery process, which is especially significant in the coordinated check-

point approach, because in this protocol, all processes must rollback to the last checkpoint, as

opposed to uncoordinated protocols where only the faulty process must rollback. The second

approach tolerates concurrent correlated faults, a situation when two or more faults occur

concurrently and affects both the application’s computing node and the redundant data repo-

sitory.

The concurrent correlated faults are theoretically less probable, however, some studies

(LIANG, Y. et al., 2005), (SAHOO, R. K. et al., 2003) have demonstrated that in real sys-

tems, faults are temporally and spatially correlated, which may increase the concurrent fault

probability. Furthermore, depending how and where the stable storage is implemented, it may

also increase the likelihood of these faults correlating to each other. The risk existent in this

situation may be unacceptable for mission-critical applications.

Chapter 4 121

In order to deal with these concurrent faults, the RADIC architecture is configured to

use more than one protector. The number of correlated concurrent faults the system must

support defines the number of protectors needed by each process. Using such a configuration

yields two main costs. The first is the replication of the fault tolerance information in the pro-

tectors, which reduces the total storage capacity of the cluster. The second is the data redun-

dancy overhead, namely checkpoint transmission and storing and the message transmission

latency (because of the log replication). As deduced by Equation (11) the latter suffers a sig-

nificant increase because in the pessimistic message-log protocol, each observer now must

log any received message (and each checkpoint) into N protectors, where N is the number of

elements that can concurrently fail even if correlated. The checkpointing overhead could be

avoided applying a round-robin scheme over the protectors. However, that procedure makes

the recovery process more complex and time consuming. Moreover, it also demands coordi-

nation during the recovery in order to determine the most recent checkpoint replica among

the protectors. However this approach cannot be used for message logging since a protector

responsible for initiate the recovery must have all data needed to perform the process.

The charts in Figure 4-10 and Figure 4-11 show the calculated overhead of message

logging over two protectors3 using different message sizes, and the calculated overhead of

checkpointing over two protectors4. Such an overhead may be significantly high and its em-

ployment for mission-critical applications inappropriate because of their time constraints.

 Therefore, the main challenge to improving the system performability by providing a

3 The logging overhead was calculated by multiplying the overhead with only one protector by two.
4 The checkpointing overhead was calculated by multiplying by two the time spent checkpointing over

tbe protector.

௧ܶ௢௧௔௟ ൌ ݔܰ ௗܶ௔௧௔ (11)

122 Alternatives for Improving a Computer Cluster’s Performability

higher degree of availability to mission-critical applications is to increase system availability

without imposing a large overhead. The solution for accomplishing this objective now fol-

lows.

Figure 4-10: Calculated overhead of replicating the logging process over 2 protectors

Figure 4-11: Calculated overhead of replicating the checkpointing process over 2 protectors

1

10

100

1000

10000

100000

1000000
M
e
ss
ag
e
 D
e
li
ve
ry
 L
at
e
n
cy
 (μ
s)

Message Size

Replicated Logging Overhead
Using NetPipe

No Log

Regular Log

Regular Log x 2 Protectors (calculated)

0.125

0.250

0.500

1.000

2.000

4.000

3000x3000 6000x6000 9000x9000

C
h
e
ck
p
o
in
t D

u
ra
ti
o
n
 (
in
 s
ec
o
n
d
s)

Matrix Sizes

Comparison of Checkpoint Duration Using Different Number of Protectors
Running SPMD Based Matrix Product in 9 Nodes. Checkpoint each 120s

1 Protector

Calculated 2 Protectors

Chapter 4 123

4.3.1. Pipelined data replication

The primary site approach for data replication is a technique used to increase system

availability and consists to replicate the data over N nodes, with one of these nodes designat-

ed the primary and the others designated backups. All data saving requests sent to the primary

are forwarded to the backups. In RADIC, this approach means replicating redundant data

through various protectors as explained in section 4.3. To overcome these issues, the data

redundancy replication strategy of RADIC was modified. The process was parallelized by

extending the pipeline approach presented in the section 4.2.1 for dealing with all redundant

data over N protectors as shown in Figure 4-12 (the detection scheme is intentionally not de-

picted because it remains unchanged). In this approach the observer O4 divides the data to be

sent (checkpoint or message log) into small pieces and sends them to the first protector (T3).

Each protector then receives the first piece, and stores it in a local buffer (the dark grey disk

drawings labeled L4&C4).It will forward all received pieces of this communication to the next

protector, which stores each piece in its local buffer (the light grey disk drawings). The entire

process finalizes when all involved protectors confirm the receiving of all pieces. Ideally, the

total time to perform this operation is given by Equation (12). The penalization of performing

replication is independent of the redundant data size. The following topics detail this solution.

Figure 4-12: RADIC configuration using three protectors per observer and pipelining the redundant data replication.

௧ܶ௢௧௔௟ ൌ ௗܶ௔௧௔ ൅ ݔܰ ௣ܶ௜௘௖௘ (12)

N5

T5

P5
O5

N4

T4

P4

O4

N3

T3

P3

O3

N2

T2

P2
O2

N1

T1

P1
O1

N0

T0

P0
O0

L0&C4L5&C4L2&C4
L4 &C4L4 &C4L4 &C4
L4 &C4L4 &C4L4 &C4

124 Alternatives for Improving a Computer Cluster’s Performability

Changes in the protectors’ operations

The protectors are the RADIC component most affected in this solution because of

the need to deal with the pipelining process. In the original RADIC protocol, each protector

only needs to store information on its two neighbors, the predecessor and the successor. But

to implement the pipelining process, the protectors must now to store information regarding

N predecessor protectors, where N is the number of replicas. For example in Figure 4-12 T4

must now store information regarding T1, T2 and T3. To accomplish that it creates a new

structure called a predecessor’s list (TABLE 4-3), which replaces the information on only one

predecessor. This list is created at the start (Figure 4-13a). To keep this list updated, the pro-

tectors perform a message forwarding procedure to spread the changes in the list every time a

fault occurs. This message is forwarded as many times as the number of replicas.

During the state saving activities, namely checkpointing and logging, when a protec-

tor starts to receive pieces of redundant data, information containing the number of replicas

of this data to be stored is piggybacked on the first piece. If the number is greater than zero,

the protector updates this data decreasing by one and starts to forward each received piece for

its predecessor, storing a copy in a local buffer. Figure 4-13b clarifies this procedure.

TABLE 4-3: An example of predecessor’s list

Predecessor identification Address

0 Node 2

1 Node 1

2 Node 0

.

.
.
.

Chapter 4 125

 Each protector must also manage the redundant data replicas by knowing which

stored replica belongs to which observer/application process. Hence, the original observer’s

list explained in the previous chapter is modified to include a field marking when an observer

(a) (b)

Figure 4-13: Flowcharts of (a) Predecessor’s list creation and, (b) Redundant data forwarding

Figure 4-14: RADIC configuration using three protectors per observer after a concurrent correlated fault of 2 nodes

Receive 1st piece

#Replicas>0 YN

 New #Replicas =
#Replicas - 1

Store piece

It is the last
piece?

Receive next
piece

Y
Forward piece

Store piece

It is the last
piece?

Receive next
piece

Send Received
Confirmation

Send Received
Confirmation

Wait Received
Confirmation

Y

N

N

L0&C4L4 &C4L0&C4L4 &C4

N0

L0&C4L4 &C4L0&C4L4 &C4 L0&C4L4 &C4

N2N1 N5

T5

P5
O5

N4

T4

P4
O4

N3

T3

P3

O3

T2

P2

O2

T1

P1

O1

T0

P0
O0

L0&C4L4 &C4L5 &C5L5&C5L5&C5

126 Alternatives for Improving a Computer Cluster’s Performability

is just a replica. This change is useful at recovery time to decide which process to recover.

Moreover, additional changes were made in the recovery activity. Figure 4-14 depicts

a RADIC configuration after the occurrence of concurrent correlated faults on nodes N3 and

N4. In this situation, the protector T2 has detected a fault in node N3 and waits for a connec-

tion from other protector. Protector T5 has a list with the predecessor protectors which have a

replica of the redundant data, so it tries to connect with each one in sequence, until it reaches

protector T2. O5 then establishes T2 as its protector. Using the observer’s list, protector T2

decides which processes it must recover according to information received from T5 regarding

which nodes failed, i.e., as T5 tried to connect each predecessor protector, it tells T2 which

nodes failed. T2 must then apply a recovery policy to balance the process distribution over the

nodes used in the recovery.

In Figure 4-14 a simple policy was used to recover to the last protector’s node. In this

situation, the remaining protectors store the redundant data of almost all processes (depicted

as light and dark grey disks), which demands high storage space. The study of a more effi-

cient policy, taking into consideration the node workload or available storage must be ad-

dressed in future works.

Finally, an important issue about the design of this solution was a fault occurrence in

a node involved in the replication process. In this case, two scenarios can occur:

 The faulty node runs the first involved protector (the primary site); or

 The faulty node runs one of the protectors storing a replica.

In the former, RADIC acts according to its original protocol by finding a new protec-

tor and performing the recovery process. In the latter, the successor protector running in the

Chapter 4 127

faulty node’s successor continues to receive the data pieces and stores them in its buffer

while the recovery is performed. After the recovery process has established a new predeces-

sor protector, the successor then restarts the pipeline sending all data stored in its buffer.

Changes in the observers’ operations

The observers are less affected by this approach than the protectors. The observers are

now in charge of slicing the redundant data to be sent in similar way to that discussed in sec-

tion 4.2.1. The observers may also decide how many replicas of the redundant data will be

stored by piggybacking the desired number on the first piece. This feature allows greater flex-

ibility when configuring RADIC, and permits different protection degrees for each applica-

tion or even for each process. In a master-worker program, for example, it is possible to de-

fine more replicas to master than worker, or in a cluster with some fault probable nodes (be-

cause of their MTBF or something else) the number of replicas of the processes running on

these nodes may be greater than the others.

4.4. Performance degradation because of faults

The RADIC architecture explained in the previous chapter is an example of a fault to-

lerant solution that uses only the active cluster’s nodes to recover failed processes. As seen,

the recovery process changes the system configuration, leaving the system with an unplanned

process per node distribution.

Despite the high availability provided by RADIC, the aforementioned system confi-

guration change left the system with one node less and leads to the presence of processes

sharing a computing node. In this node, both processes will suffer a slowdown in their execu-

tions and a growth in memory usage that may lead to a disk swap. Moreover, these processes

128 Alternatives for Improving a Computer Cluster’s Performability

access the same protector, and will compete to send the redundancy data. Supposing that a

previous process distribution aiming to achieve a certain performance level according with

the cluster characteristics was made, this condition becomes undesirable, especially if the

application is unable to adapt itself to workload changes along the nodes.

Long running programs are highly susceptible to faults according to the system

MTBF, meaning the likelihood of a fault constantly increases over time. In consequence, the

probability of node losses and overloaded nodes gradually increases, which may lead to an

impracticable situation. Figure 4-15 depicts a RADIC configuration with nine processes run-

ning in a cluster after the recovery of sequential faults in nodes N5, N4 and N3, which means

that the faults always occurred in an overloaded node. This figure demonstrates that in the

node N2 each process has a maximum of 25% of the available node’s computing power. This

can be a typical situation in clusters composed of thousands of nodes or running long pro-

grams.

Figure 4-15 also depicts other problem caused by successive recovered faults: All the

processes running in the node N2 are storing their checkpoints and logs in the same neighbor

(N1). Checkpoints are usually large in common scientific programs, and logs occur frequently

in some kinds of applications, meaning this may cause an undesirable situation such as:

 The communication channel becomes a bottleneck due because of the intensive traffic

between the nodes;

 A queuing of requests for checkpoint and log transmission in this protector may occur

as each process is sending its checkpoint and log to the same protector; or

Chapter 4 129

 The physical memory in node N2 is being consumed N + 1 times more, where N is the

number of unplanned processes running in the node divided by the number of original

processes of the node. This fact may lead to the use of virtual memory on disk, which

has a slower speed.

All these situations may slow down every process in the node and degrade system

performance (Figure 4-16). This chart shows the results of execution of an N-body particle

simulation program based on the example presented by Gropp et al (GROPP, W. et al., 1999,

p.177), running in a 10-node circular pipeline, and observed during 50 minutes, taking

checkpoints each 120 s . The two lines represent the throughput (in simulation steps) of the

application: The first (with squares) represents a failure-free execution of the program, and

the second (with circles) the execution with fault injection.

Figure 4-15: A RADIC cluster configuration after the recovery of sequential faults in nodes N5, N4 and N3.

130 Alternatives for Improving a Computer Cluster’s Performability

After each fault the performance, in this case the throughput measured in simulation

steps per minute, degrades gracefully. The throughput starts at approximately 29 steps/m,

and after each fault performance approximately decreases to a half, a third and a quarter se-

quentially, reflecting the two, three and four processes sharing the same node. Immediately

after each fault a quick performance penalty because of the recovery process is visible.

This behavior is typically the subject of a performability study. In the aforementioned

situation, RADIC could keep the application working, providing a constant degree of unavai-

lability despite suffering performance degradation. Assuming the same method for estimating

unavailability presented in section 3.7 (in this case the system MTBF refers initially to 10

nodes) a value of 0.00190% is found for the unavailability using RADIC and a value of

0.22779% when there is no fault tolerance solution. This value increases as faults oc-

cur because there are fewer nodes, increasing the system MTBF and consequently system

Figure 4-16: Result chart of an N-Body simulation after three faults recovered in the same node.

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Th
ro
u
gh
p
u
t

(S
im
u
la
ti
o
n
 S
te
p
s
p
e
r
m
in
u
te
)

Elapsed Time (In Minutes)

N‐Body Simulation of 2000 particles
in a 10 nodes pipeline ‐ 3 faults recovering in the same node ‐ ckpt each 120s

SameNode

FaultFree

NoFT

Chapter 4 131

availability. The results in TABLE 4-4 are obtained by applying Equation (13): This equation

is the same Equation (6) with pw=1 and uw=0.2, which means that in this application the

unavailability has an weight of 20% of the performance’s weight (in mission-critical applica-

tions such a value may be equal, for example). Performability is strongly penalized by the

unavailability when there is no fault tolerance, emphasizing the damage of a fault. Further-

more, it confirms performability decreases as faults occurs. After two faults, performability

achieves values lower than without fault tolerance, suggesting a safe-stop of the application

in order to re-establish the original process per node distribution (in case of available nodes).

 Another evaluation takes into consideration task completion time. In this case, an im-

portant factor is the fault moment. Depending on the moment when the fault occurs, the dis-

arrangement caused by the recovery process may affect the applicability of the obtained re-

sults. For example in a weather prediction program, that deals with many variables and has a

well-defined deadline to produce its results, a large delay caused by performance degradation

leads to the application producing obsolete results.

TABLE 4-4: Performability behavior of an N-body simulation after one, two and three faults recovered in the same
node.

Without fault

tolerance
Fault-free

After one
fault

After two
faults

After three
faults

Throughput
(simulation
steps/min)

29.96 28.65 14.51 9.43 7.22

Unavailability 0.22779% 0.00190% 0.00171% 0.00152% 0.00133%

Performability 10.11761 25.19222 13.02734 8.66778 6.81544

ௌ௬௦௧௘௠ݕݐ݈ܾ݅݅ܽ݉݋݂ݎ݁ܲ

ൌ ݐݑ݌ݑݎ݄ܶ_݃ݒܣ ൈ min ൬1,
0.001%

݈݅ܽݒܷܽ݊_݃ݒܣ
൰

଴.ଶ

 (13)

132 Alternatives for Improving a Computer Cluster’s Performability

An aggravation of this condition may occur in tightly coupled parallel systems where

communication between processes is interdependent. If processes experience a slowdown in

their execution they start to postpone their responses to other processes. These processes will

then be held while they wait for a message from the slow nodes, propagating the slowdown

by the entire cluster. Figure 4-17 shows the execution times of a SPMD implementation of a

matrix multiplication using the Cannon’s algorithm.

Each execution was performed using nine nodes of a cluster and one fault was in-

jected at different moments (25%, 50% and 75% of the execution time). The tallest bars indi-

cate more execution time. Therefore, having only one node sharing processes can cause con-

siderable delays, even when the fault occurs close to the end of processing.

Figure 4-17: Execution times of a matrix product program implemented under the SPMD paradigm using a Cannon
algorithm. Occurrence of one failure per execution at 25%, 50% and 75% of the execution time

427.73 427.73 427.73434.57 434.57 434.57

72.61%

49.37%

27.05%

0

100

200

300

400

500

600

700

800

25% 50% 75%

Ex
ec
u
ti
o
n
 T
im

e
(s
)

Fault moment

1500x1500 Matrix product using 9 nodes ‐ SPMD cannon algorithm‐ 1 fault
40 loops ‐ckpt each 120s

Without FT

Without failures

Failures without spare

Chapter 4 133

The results5 in TABLE 4-5 were obtained by repeating the same performability anal-

ysis performed with the N-body program. These values show a clear dependency on the fault

moment in the performability, reflecting the elapsed time where a node shared its computing

power. They also prove that there is one moment in the execution when before a fault occurs

the measured performability will suggest the need to re-establish the distribution process per

node.

The factors exposed and the results showed until now, demonstrate that the system

configuration change caused by a recovery process using active nodes may produce unwanted

system performability decrease because of performance degradation. This performance de-

gradation may make impracticable the use of some applications that have time constrictions

or demand all computing power possible such as mission-critical applications. Therefore, it is

desirable that the fault tolerance solution avoids this phenomenon and more than ensuring the

application completion, also protects the system configuration from the possible changes in

order to assure the performability under the presence of faults.

5 As discussed in the section 2.2, in order to achieve comparable performance values, 2250000 (a ma-

trix of 1500x1500 elements) tasks were considered and divided by the elapsed time to perform the product in
each situation presented in Figure 4-16. This resulted in the application throughput measured in ele-
ments/second. The unavailability values take into consideration the fraction of time when the application ex-
ecuted with one node less.

TABLE 4-5: Performability behavior of an SPMD matrix product with faults occurring in different moments.

Without fault

tolerance
Fault-free Fault at 25% Fault at 50% Fault at 75%

Throughput
(elements/s)

5260.33 5175.98 2998.66 3465.91 4075.20

Unavailability 0.20506% 0.00171% 0.00157% 0.00162% 0.00166%

Performability 1814.001 4648.113 2740.116 3148.227 3680.271

134 Alternatives for Improving a Computer Cluster’s Performability

The previous examples are real cases using the RADIC architecture that confirm the

behavior of throughput degradation presented in the introduction. Performability analysis

provides a better understanding about the influence of fault tolerance solutions, and the re-

sulting values can be used to determine when an application may or may not to take an action

to restore its initial configuration.

Despite tolerating some kinds of faults correctly, preventive maintenance tasks in

RADIC may lead to a system stop in order to replace the fault-probable nodes. These tasks

may involve replacing many nodes at once. Therefore, rather than tolerating faults, avoiding

preventive maintenance stops will improve performability. A mechanism allowing a hot swap

of the fault-probable machines without needing to stop the running applications is, therefore,

desirable. In a future, the integration with a fault prediction mechanism will allow fault

avoidance.

4.5. Improving performability under the presence of

faults

Section 4.4 explained the side effects of the recovery process in some fault tolerant

solutions. This section discusses one solution for protecting the system from such side ef-

fects, i.e., the system configuration changes that a recovery may cause.

Under the performability concept, the RADIC architecture was modified to, beyond

ensuring the correct finish of the applications, protect the system from performance degrada-

tion caused by fault recovery, preserve the planned process distribution (system configura-

tion) and conciliate performance and availability.

Chapter 4 135

For that, a new protection level in RADIC was designed (SANTOS, G. et al., 2008).

Called resilient protection level, it provides a flexible dynamic redundancy feature protecting

the system configuration from the possible changes imposed by a recovery process and the

consequent loss of performability. The dynamic redundancy is based on presence of spare

components ready to assume the work of failed ones. If these spares are active, but not work-

ing, they are called hot spares.

This new protection level introduces a fully transparent management of hot spare

nodes in the RADIC architecture. The major challenge in the resilient protection level is to

keep all the RADIC features and provide a mechanism for using and managing spare nodes in

a fully distributed system. At this level, RADIC allows the restoration of the system configu-

ration as the avoidance of active node losses by:

 Starting the application execution with a pre-allocated number of spare nodes (the

spare nodes are used as faults occur until they reach zero); or

 Inserting new spares to replace the consumed ones. During the application execution

spare nodes are consumed as needed, hence, this approach re-establishes the planned

number of spares in the system. This approach is also useful for replacing failed nodes

when there are no spares in the configuration.

Such a mechanism improves the RADIC performability without affecting its four ma-

jor characteristics: transparency, decentralization, flexibility and scalability. Each one of

these approaches is explained in detail below.

136 Alternatives for Improving a Computer Cluster’s Performability

4.5.1. Avoiding system changes

In this approach, the resilient protection level provides a mechanism that avoids the

system configuration change mentioned in section 4.4 by providing a set of spare nodes to

assume failed processes, instead of recovering in working nodes. A resilient protection level

configuration can have any spare nodes as desired. Each spare node runs a protector process

in a spare mode.

Such an approach aims to control the performance degradation generated by the origi-

nal RADIC recovery process (henceforth called the basic protection level) once node loss is

Figure 4-18: A cluster running two applications and using the resilient protection level with two spare nodes (N9 and
N10).

Chapter 4 137

avoided by replacing it with a spare node. The original flexibility is preserved by allowing as

many spares as desired. This does not affect the scalability feature since the spares do not

participate in fault tolerance activities except, of course, the recovery task. RADIC transpa-

rency is retained by a management scheme needing no administrator intervention and keeps

all information regarding spares fully decentralized.

TABLE 4-6: A sparetable example of each protector in the cluster of Figure 4-18.

Spare identification Address Observers

9 Node 9 0

10 Node 10 0

… … …

In this protection level, a spare protector does not perform the regular tasks described

in section 3.2.1.It simply stays in a listening state waiting for a request. Figure 4-18 depicts a

resilient level configuration using two spare nodes (N9 and N10). In this figure the spare node

protectors are denoted in grey. These protectors do not participate in the detection scheme,

avoiding a failure detection overhead caused by a workless node. Spares are available for any

application running on the cluster, (in this case there are two applications) and each active

protector carries the spare presence information, represented by a small grey triangle.

Each active protector maintains the information about the spares presence. This in-

formation is stored in a structure called a sparetable. TABLE 4-6 shows the sparetable struc-

ture. In the first column is the spare identification according to the same protector’s identifi-

cation. The second field is the physical address of the spare node. The third column indicates

the number of observers (processes) running on this spare. This field is useful for indicating if

the spare is still in an idle state, i.e., the number of observers is equal to zero.

138 Alternatives for Improving a Computer Cluster’s Performability

4.5.1.1. How active protectors detect spare nodes

To keep RADIC as a fully distributed system, the spare nodes must spread their exis-

tence for all active nodes of the cluster. To achieve this, the protector, when starting in the

spare mode, announces itself to the other protectors through a reliable broadcast based on the

message forwarding technique (JALOTE, P., 1994, p.142).This technique was chosen be-

cause it does not affect the original RADIC scalability.

When running in spare mode, the protector searches an active protector running in the

cluster and starts a communication protocol with him requesting its addition in its sparetable.

The active protector receiving this request, searches whether the new spare data is already in

its sparetable. If it is not, this protector adds the new spare data and forwards this request to

its neighbors, passing the new spare information in sequence. Each protector performs the

Figure 4-19: How a protector in spare mode announces itself to other protectors

Chapter 4 139

same task until it receives an existing spare node data, which finishes the message forwarding

process. Figure 4-19 clarifies this announcement procedure.

The procedure occurs before the application starts, while RADIC is mounting its ra-

dictable and just after the protectors started. Therefore, it is a latency caused by the initializa-

tion process, and is not considered overhead in the execution time. At the end of the spare

nodes announcement, all the protectors have a spare list containing the data of all spares

available. It is not critical for such a procedure to be performed atomically; it can be per-

formed in parallel with the RADIC operation. If a fault occurs, RADIC recovers with its orig-

inal protocol. When the announcement procedure reaches the recovered process, it will mi-

grate to the new spare node inserted.

4.5.1.1. Recovering using spare nodes

In the resilient protection level, the original RADIC recovery task described in sec-

tion 3.3.3.4 was modified to contemplate spare node use. Currently, when a protector detects

a fault, it first searches for spare data in its sparetable. If there are idle spares, i.e., the number

of observers reported in the sparetable remains equals to zero, it starts a spare use protocol.

In this protocol, the active protector communicates with the protector running in the spare

asking for its state, i.e. how many observers are running on its node. At this point, two situa-

tions may happen:

 If the spare answers that it already has processes running on its node, the protector

then updates its sparetable, it searches for other spares and restarts the procedure. If

the protector finds no idle spare, it executes the regular RADIC recovery task; or

 If the protector confirms the idle situation, it sends a request for its use.

140 Alternatives for Improving a Computer Cluster’s Performability

From the request moment, the spare will not accept any requests from other protec-

tors. After receiving the request confirmation, the protector commands the spare to join the

protectors’ fault detection scheme. This step consists of four phases:

 The protector (TX) tells its predecessor (TA) to wait for a connection from the spare

(TS) in order to be its new successor;

 Simultaneously, TX commands TS to connect to TA and define it as its own predeces-

sor;

 TX instructs TS to wait a connection from its future successor (TX itself); and

 Finally, TX connects to TS, defining it as its predecessor.

Figure 4-20: The recovery task using spare nodes (with the fault detected by the protectors)

Chapter 4 141

After finishing this step, the protector sends the failed process checkpoint and log to

the spare, commanding it to start recovery of the failed process using the regular RADIC re-

covery process. Figure 4-20 clarifies this entire process. Figure 4-21 depicts the system con-

figuration in four stages of the recovery task: a) Fault-free execution with the presence of

spare nodes; b) a fault occurs in the node N3; c) the protector T2 starts the recovery by activat-

ing the spare N9; and d) process recovered in the spare node

(a) (b)

(c) (d)

Figure 4-21: Recovering tasks in a cluster using spare nodes: a) before fault; b) N3 fails; c) the spare
is connected; d) P3 recovers in the spare

N3 N4

T4

N5

T5

O3

P3

O4

P4

N6

T6

N7

T7

N8

T8

N0

T0

N1

T1

N2

O0

P0

O1

P1

O2

P2

O0

P0

T3

T2

O1

P1

O2

P2

O3

P3

N10

T10

N9

T9

N3 N4

T4

N5

T5

O3

P3

O4

P4

N6

T6

N7

T7

N8

T8

N0

T0

N1

T1

N2

O0

P0

O1

P1

O2

P2

O0

P0

T3

T2

O1

P1

O2

P2

O3

P3

N10

T10

N9

T9

142 Alternatives for Improving a Computer Cluster’s Performability

4.5.1.2. Changes in the fault­masking task

The original RADIC fault-masking task is based on a heuristic to determine where a

faulty process will be running after the recovery. This heuristic was efficient in RADIC’s

basic protection level, because its recovery process is quite deterministic, i.e. the failed

process always recovers in its protector’s node. The resilient protection level inserts a small

indeterminism in locating a failed process because it may have been recovered in any spare of

the configuration.

To solve this indeterminism, a small change was implemented in RADIC’s fault-

masking task. This change consists of searching the sparetable for the faulty process after the

observer failed to find the recovered process asking its original protector. However, as de-

scribed earlier, only the protectors, not the observers, maintain the sparetable structure.

Figure 4-22: The new fault mask procedure

Chapter 4 143

Hence, the communication between observers and the protector running in its node (the local

protector) had to be increased. To execute the new fault-masking protocol, the observer asks

the local protector for the sparetable and uses the information in this table to seek the recov-

ered process in the spares. After the observer has found the recovered process, it updates its

radictable with the new location, and does not need to perform this procedure again. Figure

4-22 contains the flowchart of this new procedure.

4.5.2. Restoring the system configuration

As explained in the previous item, the resilient protection level can maintain system

performability by avoiding the system configuration change through the incorporation of

transparent management of spares nodes. Such management allows it to request and use these

spares without administrator intervention. Moreover, there is no centralized information

about the existence of the spares, keeping faithful to the architecture's main principle of de-

centralization. The flexibility of this dynamic redundancy mechanism is its ability to start an

application with a determined number of spares, or to include them dynamically during the

application execution. This mechanism is explained below.

Long-term execution applications, such as 24 × 7 systems usually uses a fault tolerant

solution based on redundancy to avoid degrading the system and retains its performability. If

it is using dynamic redundancy provided by spare components, the system can retain the per-

formance during a certain period. However, considering that the number of spares is fixed,

they are going to request at each fault until it reaches zero. From this moment, the system

starts to suffer some degradation after fault recoveries.

In the resilient protection level, such a happening can be avoided by restoring the ini-

tial system configuration. The procedure inserts new nodes to replace the used spare nodes.

144 Alternatives for Improving a Computer Cluster’s Performability

Despite being performed at the start of an application, it may be executed at any moment dur-

ing the program execution, without needing to stop the application. Using this procedure,

failed nodes can return to the configuration as new spares after being repaired.

The same procedure can be used to replace faulty nodes. The announcement task was

extended to permit it to request the spare at the announcement moment if some node of the

configuration had already been overloaded, i.e. it has more processes executing than original-

ly planned (according to the initial configuration parameters). This measure transfers the ex-

tra processes to the inserted node. If there are no overloaded nodes, this new node remains a

new spare in the configuration.

Figure 4-23 shows the flow of this approach. Election policy may be applied to

Figure 4-23: How a spare is used to replace a faulty node

Chapter 4 145

choose what node will migrate their extra processes to the new node, i.e. the first node found

or the most overloaded. After initiating the use of the new node, the protector updates the

spare data informing that this spare is already in use and continues the spare spreading proce-

dure. Thus all remaining protectors will already know about the existence of this node and

which processes are running on it.

This approach has a limitation, which occurs if all original nodes have already been

replaced. In this situation, the new spare does not how to discover a node of the application

and needs extra information to be provided at the start of the procedure.

4.6. Providing a non­stop service

As discussed earlier, fault tolerance is a usual technique for avoiding interruptions

during a program execution. Common approaches are hardware redundancy and data redun-

dancy (generally checkpoint/restart). To reduce the probability of interruptions, the latter

needs to provide transparent and automatic fault management. Another common technique is

preventive maintenance, which usually consists of taking proactive action by periodically

replacing fault-imminent or fault-probable components.

Unfortunately, hardware redundancy is expensive and inefficient in HPC, because of

the need for as many redundant devices as the number of expected faults. Data redundancy,

in turn, is relatively cheap. However, it may experience interruptions if the number of re-

placement nodes is exhausted or, in cases of using the same active resources, performance

degradation reaches unacceptable levels. Preventive maintenance, despite avoiding fault oc-

currences, usually means interruptions when replacing components. However, some applica-

tions do not expect maintenance downtimes, meaning in the existence of a mechanism that

allows these replacements without needing to stop the execution of such applications

146 Alternatives for Improving a Computer Cluster’s Performability

The dynamic redundancy scheme present in the resilient protection level (explained in

section 4.5) provides a scheme enabling the architecture to perform a scheduled hot replace-

ment (without stopping the application execution) of a cluster node (SANTOS, G. et al.,

2008). As such a level inserts the spare node after the application starts without requiring any

stop in the program execution, all that is needed is to turn off the node to be replaced and

their processes will automatically be migrated by recovering in the recently inserted node. As

RADIC uses uncoordinated checkpointing, the entire application does not need to be stopped

to perform these activities. However, highly coupled applications may present some slow-

down during this process.

Such a mechanism is simple, and may be improved by implementing an automation

feature that commands the machine to be replaced to automatically turn off, or take a check-

point directly into the newly added node just before suicide. Other improvements may be

including a fault prediction algorithm that chooses which of the machines to be replaced.

Chapter 5
Experimental Evaluation

5.1. Introduction

In the previous chapters, this thesis presented a study of performability issues in fault

tolerance solutions, having RADIC as a study case. The goal is the providing of alternatives

for improving the performability of computer clusters.

In Chapter 3, the RADIC architecture was analyzed and the factors influencing sys-

tem performability were raised. These factors can be classified according two situations: with

or without presence of faults, as listed below:

 Fault-free factors:

o The overhead caused by fault tolerance activities (checkpointing and

logging). In this case, the message logging overhead was identified as

a major concerning, while the checkpointing overhead already was tar-

get of many researches;

o The availability increasing, that allows the tolerance of concurrent cor-

related faults. This is a desirable feature for critical-mission applica-

tions and in RADIC it means to have many protectors per observer,

leading to larger overheads; and

 Factors in the presence of faults:

o After a fault the recovery process changes the system configuration

leaving the system with a node less and processes sharing the compu-

ting capacity of a node in an unplanned manner. This may cause per-

148 Experimental Evaluation

formance degradation and consequently affecting the system perfor-

mability.

o Preventive maintenance usually leads to an unavailable period of the

node to be replaced, which leads to stopping the entire application run-

ning on this node.

 Chapter 4 presented alternatives for improving performability addressing the raised

issues with the solutions below:

 Reducing the message logging overhead by parallelizing this activity using the

pipelining technique.

 Increasing the availability by applying the primary site approach for replicat-

ing the redundant data over the protectors and using the pipelining to obtain

low overhead.

 Incorporating the resilient protection level based on dynamic redundancy. This

protection level allows the insertion of spare or replacement nodes in any mo-

ment of the application execution. Such a solution transparently manages the

request and use of spare nodes in a fully distributed way.

 The resilient protection level allows to perform preventive maintenance with-

out need to stop the entire application by using a fault injection system. The

fault is injected in the node to be replaced immediately after a checkpoint, and

then the process running on it will migrate to a previous inserted spare node.

This Chapter presents a set of experiments that evaluate the effectiveness of the pre-

sented solutions. Different applications and benchmarks was used in various scenarios,

representing the major parallel paradigms, evaluating in situations considered relevant and

Chapter 5 149

comprising requirements such as scalability, flexibility, intensive computation or communi-

cation.

5.2. Experiment environment

Physical structure

To proceed with an experimental evaluation, two different clusters was used, named

Cluster A and Cluster B as described below.

The Cluster A is formed by twelve computers with the following configuration:

1.9GHz Athlon-XP2600+ with 768 MB RAM and 40GB local disk. All nodes run Linux

Kernel 2.6.17 and gcc v4.0.2 compiler. An Ethernet 100-baseTX switch interconnects all

nodes. The network protocol is TCP/IP v4.

The Cluster B is formed by 32 computers with the following configuration: 2.8 G Hz

Pentium 4HT, with 1GB of RAM and 80GB local disk. All nodes are run Linux Fedora Core

4 with kernel 2.6.11-1 and they are interconnected via a Gigabit Ethernet switch.

Prototype

All executions were performed using the RADICMPI prototype (DUARTE, A. et al.,

2006). Currently, RADICMPI incorporates only basic MPI (SNIR, M. et al., 1998) functions,

which includes MPI blocking and non-blocking peer-to-peer communications. RADICMPI

also provides two important tools to perform experiments with fault tolerance: a fault injec-

tion mechanism and a debug log.

The generation of faults can be deterministic or probabilistic. In deterministic testing,

the tester selects the fault patterns from the domain of possible faults. In probabilistic testing,

150 Experimental Evaluation

the tester selects the fault patterns according to the probabilistic distribution of the fault pat-

terns in the domain of possible faults.

The fault injection mechanism implemented in RADICMPI serves for testing and de-

bugging. The operation of the mechanism was deterministic, i.e., the mechanism was pro-

grammed to force all fault situations required to test the system functionality.

The mechanism is implemented at software level. This allows a rigorous control of

the fault injection and makes easy the construction and operation of the fault injection me-

chanism. In practice, the fault injection code is part of the code of RADICMPI.

The RADICMPI debug log mechanism serves to help in the development of the RA-

DICMPI software and to validate some procedures. The mechanism records the internal ac-

tivities in a log database stored at the local disk of each node. TABLE 5-1 describes each

field of the debug log database. The database has the same structure for protectors and ob-

servers

Benchmarks and Applications

To evaluate the message logging latency, NetPIPE (SNELL, Q. O. et al., 1996) was

used and a simple token pass program. To perform the evaluation experiments, various kinds

of parallel programs was applied: SPMD and master-worker matrix product, an N-body par-

TABLE 5-1: Fields of the debug log

Column Field name Description

1 Element ID
Indicate the rank of the element. T# elements are protectors and O#
elements are observers

2 Event id Identifies the event type

3 Event time Elapsed time in seconds since the program startup

4 Function name Name of the internal function that generate the event

5 Event Description of the event

Chapter 5 151

ticle simulation using non-blocking functions in a pipeline approach, the Travelling Salesman

Problem (TSP) program implemented in a master-worker fashion. Their descriptions are be-

low.

NetPIPE Network Performance Evaluator

NetPIPE performs several latency round-trip measurements, increasing the message

size after each set of measurements. For each message size, NetPIPE calculates how many

messages have to be sent to reach a confident result and calculates the average round-trip

time. Because of round-trip behavior, the measurement may be affected by the concurrent

communications explained in section 3.6. For this reason, the message latency was also

measured using a simple token pass program. This program sends one message each time

through the running nodes, avoiding possible concurrency.

Matrix Product

The matrix product is a common operation used as kernel for many scientific applica-

tions and is also possible to apply different parallel paradigms over it. A master-worker and a

SPMD algorithm were used, which makes easy the creation of different scenarios. Figure

5-1a shows the MW algorithm message pattern (1-to-N). The master process communicates

with all the worker processes. Each worker only communicates with the master process. The

SPMD version is based on the Cannon’s algorithm and communicates in a mesh (Figure

5-1b). Each application process communicates with their neighbors, representing a tightly

coupled application.

152 Experimental Evaluation

The MW algorithm also offered an additional control over the application behavior. It

is possible to use two strategies to balance the computation load between the workers: dy-

namic and static.

In the static strategy, the master first calculates the amount of data that each worker

must receive. Next, the master sends the data slice for each worker and waits until all workers

return the results. In this strategy, the number of messages is small but each message is large,

because the master only communicates at the beginning (sending the matrices blocks to the

workers) and at the end (receiving the answers).

In the dynamic strategy, the master slices the matrices in small blocks and sends pairs

of blocks to the workers. When a worker answers the block multiplication’s results, the mas-

ter consolidates the result in the final matrix and sends a new pair of blocks to the worker. In

this strategy is easy to control the computation-to-communication ratio by changing the block

size. Small blocks produce more communication and less computation. Conversely, large

blocks produce less communication and more computation.

(a)

 (b)

Figure 5-1: Message pattern of a matrix-multiplication using a) M/W paradigm and b) SPMD paradigm.

P P P

P P P

P P P

 M

W W W W

Chapter 5 153

N-Body Particle Simulation

The N-Body program is based on the example presented by Gropp (GROPP, W. et al.,

1999, p.117). This program performs a particle simulation, which calculates the attraction

forces between them. It is implemented under the pipeline parallel paradigm and uses non-

blocking MPI communication functions to overlap communication with computation. Figure

5-2 represents the flow of the actions performed by each process.

Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a combinatorial problem where the objec-

tive is to find the shortest path to a salesman needing to visit once and only once each city

Figure 5-2: The N-Body particle simulation flow

154 Experimental Evaluation

from a set of cities, starting from a base city and returning to this city.

The algorithm used in this work is master-worker based, where the master defines a

level L for dividing N cities in tasks that are sent to workers to calculate the permutation of N

cities in L elements. Figure 5-3 shows a diagram of permutations for 5 cities and a division

level of 2, in this case the Master calculates the permutations at level 0 and 1 and to generate

12 tasks to be sent to workers.

The TSP algorithm used in this work belongs to the class of exact search algorithms,

and applies the branch-and-bound technique (GUTIN, G. and Punnen, A. P., 2007). This al-

gorithm was chosen because of its importance, and because is computation intensive with

small communications and process state size, which may not take benefit from the pipeline

approach. The program uses the most direct solution, which tries all permutations (ordered

combinations) and see which one is the cheapest (using brute force search). The running time

for this approach lies within a polynomial factor of O(n!), the factorial of the number of ci-

ties.

Figure 5-3: Possible permutations for TSP using 5 cities and division level of 2.

M
a
st
er

W
o
rk
e
rs

Chapter 5 155

5.3. Experimental Results

The performability of presented solutions was evaluated through a series of experi-

ments under different configurations comparing with not using the solution. These experi-

ments comprise the use of aforementioned applications/benchmarks.

5.3.1. Evaluating pipelined logging

The pipelined logging was initially evaluated using the NetPIPE network performance

evaluator. The program was executed in the Cluster B using a piece size fitting in the Gigabit

Jumbo Frame MTU (9000 bytes) over 4 nodes (the communications are only between two

nodes), measuring the message delivery latency and comparing the pipelined logging versus

the traditional approach. Figure 5-4 shows the result of this execution. The vertical axis is

represented using logarithmic scale because of the high latency variation over the different

message sizes. The measured values are not continuous, they are plotted as lines for the ease

of visualization. The line with diamonds represents the latency of message delivery without

logging, which serves a comparison basis for other cases.

The latency of the pipelined log approach (line with triangles) is slightly greater than

the regular logging approach (line with squares) when the message is small. This behavior

occurs because in small messages there is no enough iterations to overcome the overhead

caused by implementation issues such as internal controls or intrinsic message-passing over-

head (extra headers and acknowledges).

156 Experimental Evaluation

To provide a more accurate analysis, TABLE 5-2 presents the comparison of the

overheads of the two approaches (pipelined x traditional logging) in relation to not use mes-

Figure 5-4: Message latency comparison between using or not pipelined message logging with NetPIPE

TABLE 5-2: Overhead comparison between using between using or
not pipelined message logging with NetPIPE

Message Size Regular Logging Pipelined Logging

512 B 83.4% 92.7%

768 B 82.8% 90.7%

1 KiB 85.0% 89.3%

16 KiB 72.9% 62.0%

64 KiB 72.3% 35.2%

128 KiB 80.5% 38.3%

256 KiB 81.4% 26.7%

512 KiB 84.1% 25.7%

1MiB 86.3% 24.4%

2MiB 87.9% 19.3%

4MiB 88.5% 20.5%

8MiB 89.3% 20.3%

16MiB 89.7% 19.8%

1

10

100

1000

10000

100000

1000000

M
e
ss
ag
e
 D
e
li
ve
ry
 L
at
e
n
cy
 (μ
s)

Message Size

Regular x Pipelined Logging Comparison
Using NetPipe

No Log

Regular Log

Pipelined Log

Chapter 5 157

sage logging. The pipelined log performance starts to get better as the size is greater than the

16 KiB approaching to the No Log latency in larges messages, meaning that the pipelining

benefits are overcoming the aforementioned overhead.

The overhead of traditional logging is below of expected, which would be around

100%. This behavior occurs because of the RADICMPI reception buffer that is always ac-

cepting messages. As NetPIPE measures the round-trip message latency, part of sending and

receiving messages are overlapped, resulting in lower round-trip latency. To evaluate the so-

lution free of this behavior, it was evaluated using a token pass program, which sends a mes-

sage to the next process in a circular fashion, thus, the overlapping is avoided because a

process must to wait the token pass by all processes.

Figure 5-5 shows the comparison of the overheads of the two approaches in relation to

Figure 5-5: Overhead comparison between using or not pipelined message logging with a token pass program

0%

20%

40%

60%

80%

100%

120%

O
ve
rh
e
ad

Message Size

Traditional X Pipelined logging Comparison
Measuring messages latency with different sizes

Pipelined Log

Traditional Log

158 Experimental Evaluation

not use message logging. In these results the overheads of traditional logging perform as ex-

pected at approximately 100% of a regular message latency, while the pipelined logging per-

forms as low as 10% in large messages, but slightly worse (about 7%) in small messages.

The following experiments about the message delivery latency will use this program because

its results are not influenced by the RADICMPI reception buffer.

Evaluating according to the network type

The performance of pipelined logging was also evaluated in the two available net-

works (Cluster A and Cluster B) using a piece size of 1460 bytes (that fits in the Fast Ether-

net MTU), such an experiment enforced the idea of an existent relation between the piece size

and the underlying network. Figure 5-6 shows the result of these executions where the blue

line with diamonds represents the latency of different message sizes in Fast-Ethernet network

and the red line represents the latency of these messages in Gigabit-Ethernet network. The

performance of Gigabit-Ethernet is getting worse as the message size increases (because of

the undersized piece). The performance of Fast-Ethernet increases according with the mes-

sage size and stabilizes at approximately 10% of overhead. Such an experiment also suggests

that the piece size can be dynamically defined according to the message size because in small

messages the Gigabit-Ethernet the chosen piece performed better (because of the inherent

latency of this network), such an idea can be addressed in a future work.

Chapter 5 159

Evaluating according to piece size

An experiment varying the piece size in a same network was conducted to confirm the

idea of influence of the piece size in pipelined logging performance. Figure 5-7 shows the

behavior of message delivery latency using three piece sizes: 1460 bytes (fits in Fast-

Ethernet), 4096 and 8192 (fits on Gigabit-Ethernet). The experiment was conducted over the

network of Cluster B (Gigabit-Ethernet), and as expected when the piece size fits in the un-

derlying network MTU, the pipeline logging performs better than with other values. Further-

more, as the message size increases, incorrect piece sizes worsen the pipeline logging per-

formance.

Figure 5-6: Pipelined logging overhead comparison between Fast-Ethernet and Gigabit-Ethernet networks using a
1460 bytes piece size

0%

20%

40%

60%

80%

100%

120%

140%

O
ve
rh
e
ad

Message Size in KB

Overhead comparison between Fast‐Ethernet and Gigabit Ethernet
Using a 1460 bytes piece size

Fast Ethernet

Gigabit Ethernet

160 Experimental Evaluation

Evaluating execution times

Until now, the effectiveness of the pipeline logging was evaluated individually, only

measuring the message delivery latency. To assess the benefits in an application, the SPMD

matrix product based on Cannon’s algorithm was executed over different number of nodes (4,

9, 16 and 25 nodes, consequently the message size varies according to the nodes count) with

a 9000×9000 matrix and using the Cluster B. In these executions, checkpointing was deacti-

vated, performing only message logging. Figure 5-8 shows the measured elapsed times of

these executions where the benefits of pipelined logging can be seen, reducing the overall

performance overhead of fault tolerance in this application from 10.60% to 2.71% in the

worst case and more than five times in the best case. Therefore, reducing the performance

overhead, the pipelined logging improves the performability of this cluster running this appli-

cation since the availability remains unaltered.

Figure 5-7: Pipelined logging overhead comparison between different piece sizes over a Gigabit-Ethernet network

0%

20%

40%

60%

80%

100%

120%

140%

O
ve
rh
e
ad

Message Size (In KB)

Overhead according to the packet size over Gigabit Ethernet

1460 bytes

8192 bytes

4096 bytes

Chapter 5 161

Additionally, experiments with the Travelling Salesman program were also per-

formed. This program is computation intensive with small messages, in the case of this expe-

riment, which uses 15 cities and branches at level 2, the message sizes were a maximum of

120 bytes. The results of executions on each scenario are very similar because the program

performs dynamic load balancing and messages are small, therefore the pipelined logging

presents no improvement. However, the major cause of the overheads is checkpointing activi-

ty. The checkpoint sizes are 64 MB approximately and as the protectors implementation per-

forms an asynchronous storage of the redundant data (they first receive all data, acknowledge

it, and after stores at the disk), the overhead of fault tolerance is as low as 0.28% in the worst

case using pipelined logging that is very near to 0.23% of using a regular approach.

Figure 5-8: Execution time comparison of a 9000x9000 matrix product over different cluster sizes between not using
log, and using pipelined or traditional message logging

4.15%

9.52%

10.24%

10.60%

0.81%

1.55%

1.86%

2.71%

1

10

100

1000

10000

4 Nodes 9 Nodes 16 Nodes 25 Nodes

Ex
ec
ut
io
n
Ti
m
e
(in

 m
in
ut
es
)

Cluster Size

Traditional x Pipelined Log
Execution times of a 9000x9000 matrix product using a SPMD program

W/o FT

Traditional

Pipelined

162 Experimental Evaluation

5.3.2. Evaluating N­protectors data replication

Similarly, replication of redundant data over N-protectors was evaluated. The mes-

sage delivery latency and the checkpointing duration were initially evaluated separately and,

in sequence, using applications.

Message logging evaluation

For the message logging evaluation it was used the NetPIPE evaluator running in the

cluster B. This experiment is very similar to the previous one presented at the pipelined log-

ging evaluation, but including additional series about the number of protectors involved in the

replication. Figure 5-10 presents the results of theses executions. The line with diamonds

represents the latency of message delivery without logging, which serves a comparison basis

for other cases. The line with circles represents the calculated latency of the regular logging

Figure 5-9: Execution time comparison using the travelling salesman program with 15 cities, comparing between not
using log, and using pipelined or traditional message logging

8 Nodes 16 Nodes 32 Nodes

W/o FT 19248.18 9547.64 4456.21

Regular 19292.14 9557.49 4461.07

Pipelined 1p 19301.41 9558.18 4462.14

0.11%

0.10%

0.23%

0.13%

0.11%

0.28%

1

10

100

1000

10000

100000

Ex
e
cu
ti
o
n
 T
im

e
 (
in
 s
e
co
n
d
s)

Cluster Size

Travelling Salesman Program Comparison
Number of Cities=15, Ckpt Interval=120s, Ckpt Size ≈ 64MB

Chapter 5 163

using two protectors. Such values were calculated applying two times the same overhead

measured with only one protector. Similarly, the latency of using 2 protectors in the pipelined

replication is greater in small messages, and it reaches values even better than the regular

logging with only one protector when the message size is greater than 64 KiB. The logging

latency values obtained with the pipelined replication using 3 protectors (line with crosses)

figure to be slightly smaller than the regular log using only one protector when the message

size overcomes 256 KiB getting better as the message size increases.

The TABLE 5-3 gives a numerical comparison of the overhead in some messages

presented in the previous chart, allowing a better comprehension of these results.

Checkpointing evaluation

 The effectiveness of the pipelined replication in the checkpointing activity was eva-

Figure 5-10: Message latency comparison using NetPipe and applying different number of protectors and message
sizes

1

10

100

1000

10000

100000

1000000

M
e
ss
ag
e
 D
e
li
ve
ry
 L
at
e
n
cy
 (μ
s)

Message Size

Regular x Pipelined Logging Comparison
Using NetPipe

No Log

Regular Log

Pipelined Log

Pipelined Log x 2 Protectors

Regular Log x 2 Protectors (calculated)

Pipelined Log x 3 Protectors

164 Experimental Evaluation

luated using the Cannon’s matrix product with different matrix sizes over 9 nodes. It meas-

ured the average duration (in seconds) of sending and storing each checkpoint using the fol-

lowing matrix sizes: 3000x3000, 6000x6000 and 9000x9000 of double float precision ele-

ments (8 bytes), generating checkpoints sizes of approximately 24MB, 96MB and 216 MB

respectively each 120s. The chart in Figure 5-11 shows the results of these executions

grouped by checkpoint sizes. In this chart the vertical axis is represented using logarithmic

scale because the values variation. The columns representing each scenario are in sequence:

− Regular checkpointing using 1 protector (R1P);

− Pipelined checkpointing using 1 protector (P1P);

− Calculated regular checkpointing using 2 protectors (R2P*);

− Pipelined checkpointing using 2 protectors (P2P);

− Pipelined checkpointing using 3 protectors (P3P);

TABLE 5-3: Numerical overhead comparison of message logging pipelined replication using NetPIPE

M. Size RL P1P P2P R2P P3P
1 KiB 85.0% 89.3% 175.4% 170.0% 257.5%
2 KiB 96.8% 95.3% 178.5% 193.6% 259.8%
4 KiB 82.1% 60.1% 126.5% 164.3% 193.2%
8 KiB 80.5% 62.8% 120.6% 161.1% 183.8%
16 KiB 72.9% 62.0% 116.5% 145.7% 171.5%
32 KiB 71.0% 42.5% 85.3% 142.1% 131.1%
64 KiB 72.3% 35.2% 68.8% 144.6% 105.4%
128 KiB 80.5% 38.3% 69.9% 161.0% 100.6%
256 KiB 81.4% 26.7% 62.5% 162.8% 85.0%
512 KiB 84.1% 25.7% 60.2% 168.2% 74.5%
1MiB 86.3% 24.4% 61.2% 172.6% 70.9%
2MiB 87.9% 19.3% 56.1% 175.7% 64.8%
4MiB 88.5% 20.5% 61.1% 177.0% 65.5%
8MiB 89.3% 20.3% 59.6% 178.7% 61.0%
16MiB 89.7% 19.8% 57.9% 259.8% 65.1%
RL – Regular Log P1P – Pipelined using 1 Protector

P2P – Pipelined using 2 Protectors R2P – Regular using 2 Protectors (calculated)

P3P – Piepelined using 3 Protectors

Chapter 5 165

Evaluating the execution times

 Similarly, it was performed a set of experiments analysing the benefits of the solution

in the execution time of set of scenarios presented in the checkpointing evaluation. In this

case, it also performed executions without fault tolerance for each matrix size (W/o FT) in

order to have a comparison basis. The computation and communication were repeated ten

times in order to achieve enough time for checkpointing.

The results of these executions are presented in the chart of Figure 5-12. Due to the

reduction of the message delivery latency and low overhead the redundant data replication,

the execution times for a same matrix size are very similar despite the number of protectors,

reaching at maximum 2.80% of overhead comparing the use of 3 protectors with using only 1

protector multiplying 9000x9000 matrixes. In the best case (3000x3000 matrixes), the pipe-

R1P ‐ Regular Storage w/1 Protector P1P – Pipelined Storage w/1 Protector R2P ‐ Regular Storage w/2 Protector (calculated)
P2P – Pipelined Replication w/2 Protectors P3P ‐ Pipelined Replication w/3 Protectors

Figure 5-11. Checkpoint comparison using a SPMD matrix product program using different number of protectors and
checkpoint sizes (according to the matrix size: 3000x3000, 6000x600 and 9000x9000).

3000x3000 6000x6000 9000x9000

R1P 0.240 0.880 1.918

P1P 0.237 0.867 1.899

R2P* 0.480 1.761 3.836

P2P 0.295 1.078 2.333

P3P 0.292 1.091 2.453

0.125

0.250

0.500

1.000

2.000

4.000

C
h
e
ck
p
o
in
t D

u
ra
ti
o
n
 (
in
 s
ec
o
n
d
s)

Matrix Sizes

Comparison of Checkpoint Duration Using Different Number of Protectors
Running SPMD Based Matrix Product in 9 Nodes. Checkpoint each 120s

166 Experimental Evaluation

lined data replication generated an overhead of only 0.68% comparing using 2 protectors with

using 1 protector and 2.58% when using 3 protectors. In the 9000x9000 matrix executions,

messages and checkpoints are larger, which leads to more network concurrency as explained

before. This happening explains the worst performance of the P1P approach in comparison to

the R1P.

It was also executed the same experiment with the Travelling Salesman program but

increasing the number of protectors up to 3 protectors, measuring the execution time. As seen

before such a program suffers low overhead of the fault tolerance solution due the small

amount of communications, and the intrinsic load balancing. Therefore the results using dif-

ferent number of protectors are very similar for each situation as can be seen in the chart de-

picted in Figure 5-18. The increase in the number of protectors has generated minimal over-

 W/o FT – Without Fault Tolerance R1P Regular Storage w/1 Protector P1P – Pipelined Storage w/1 Protector
P2P – Pipelined Replication w/2 Protectors P3P ‐ Pipelined Replication w/3 Protectors

Figure 5-12. Execution time comparison using a SPMD matrix product program using different number of protectors
and checkpoint sizes (according to the matrix size: 3000x3000, 6000x600 and 9000x9000).

3000x3000 6000x6000 9000x9000

W/o FT 634.00 5177.37 23294.51

R1P 657.05 5318.54 24260.77

P1P 653.14 5265.28 24880.35

P2P 657.18 5321.33 25323.22

P3P 669.59 5469.32 25577.00

3.64%

2.73%

4.15%

3.02%

1.70%

6.81%

3.66%

2.78%

8.71%

5.61%

5.64%

9.80%

1

10

100

1000

10000

100000

E
xe
cu
ti
o
n
 t
im

e
 (
in
 s
e
co
n
d
s)

Matrix Sizes

Comparison of Execution Time Using Different Number of Protectors
Running SPMD Based Matrix Product in 9 Nodes. Checkpoint each 120s

Chapter 5 167

head in the execution time, representing at maximum 0.344%. The difference of using 2 or 3

protectors is also unnoticeable.

These execution time experiments shows that the pipelined data replication increase

the degree of availability by having many copies of the redundant data and it imposes a low

overhead for the execution time of these applications. Therefore, the computer cluster per-

formability has been improved for these applications, which may allow the execution of mis-

sion-critical applications in RADIC despite the occurrence of concurrent correlated faults.

The performability values presented in TABLE 5-4 and TABLE 5-5 are referred to

the two previous experiments respectively. As the redundant data replication targets mission-

critical applications, which have a high risk, i.e., one interruption during the execution may

cause serious damage, the unavailability (uw) factor have the same value of the performance

(pw) factor in the performability equation (=1). As can be seen, in all cases using 2 protectors

with pipeline, the performability was increased including comparing with the pipeline.

5.3.2.1. Evaluating according to the fault moment

This experiment series evaluate the behavior of the applications according with the

moment of the fault when using or not dynamic redundancy

TABLE 5-4: Performability behavior of a SPMD matrix product program using different number of protec-
tors and checkpoint sizes (according to the matrix size: 3000x3000, 6000x600 and 9000x9000) using or

not pipelined replication.

 3000x3000 6000x6000 9000x9000

Unavailability wo/Correlated Faults 0.00171% 0.00171% 0.00171%

Unavailability w/Correlated Fault of
2 nodes

0.00178% 0.00178% 0.00178%

Throughput Regular 13697.49 6768.78 3338.72

Performability Regular 7677.03 3793.69 1871.25

Throughput P1P 13779.68 6837.25 3255.58

Performability P1P 7723.10 3832.07 1824.66

throughput P2P 13694.87 6765.23 3198.65

Performability P2P 7997.94 3950.96 1868.04

168 Experimental Evaluation

In order to perform these experiments, it was executed two approaches for the matrix

product algorithm, the master-worker static distributed and the SPMD based on the cannon

algorithm. Thus, the coupling factor was evaluated too, once the SPMD algorithms are com-

monly tightly coupled.

TABLE 5-5: Performability behavior of the travelling salesman program with 15 cities, comparing different
number of protectors using or not pipelined replication. Throughput in Million of routes/s

 8 Nodes 16 Nodes 32 Nodes

Unavailability wo/Correlated Faults 0.00152% 0.00304% 0.00609%

Unavailability w/Correlated Fault of
2 nodes

0.00159% 0.00317% 0.00634%

Throughput Regular 67.78 136.82 293.13

Performability Regular 42.74 43.14 46.21

Throughput P1P 67.75 136.81 293.06

Performability P1P 42.72 43.13 46.20

throughput P2P 67.70 136.78 292.96

Performability P2P 44.48 44.93 48.12

Figure 5-13. Execution time comparison using the travelling salesman program with 15 cities, comparing between
without fault tolerance and different number of protectors using or not pipelined replication

8 Nodes 16 Nodes 32 Nodes

W/o FT 19248.18 9547.64 4456.21

Regular 19292.14 9557.49 4461.07

Pipelined 1p 19301.41 9558.18 4462.14

Pipelined 2p 19314.36 9560.75 4463.59

Pipelined 3p 19314.67 9560.79 4463.62

0.109%

0.103%

0.228%

0.133%
0.110%

0.276%

0.165%

0.137%

0.343%

0.166%
0.138%

0.344%

1

10

100

1000

10000

100000

Ex
e
cu
ti
o
n
 T
im

e
 (
in
 s
e
co
n
d
s)

Cluster Size

Travelling Salesman Program Comparison
Number of Cities=15, Ckpt Interval=120s, Ckpt Size ≈ 64MB

Chapter 5 169

Intending to obtain more diversity, this experiment was performed executing a prod-

uct of two 1000 X 1000 matrixes of float values in the master-work approach over a cluster

with eleven nodes in the first case. In order to increase the computing time, the product op-

eration was repeated 160 times in all executions. In the second case, it was executed the can-

non algorithm with 1500 X 1500 matrixes over a nine nodes cluster. In both cases, one fault

was injected at approximately 25%, 50% and 75% of the total execution time and it was

compared with a failure-free execution and with the spare nodes usage. In this case, the com-

puting was repeated 160 times in order to enlarge the execution time.

The Figure 5-14 contains a chart showing the results with the master-worker ap-

proach. This chart shows that the overhead caused by a recovery without spare (the red mid-

dle column in each fault moment) versus using spare (the green right column in each fault

moment) with one fault occurring in different moments. The overhead not using spares shows

Figure 5-14: Results of matrix product using a master-work static distributed program injecting faults in different
moments.

353.80 353.80 353.80

73,07%

49,23%

27,58%

12,15% 12,57% 11,70%

0

100

200

300

400

500

600

700

25% 50% 75%

E
xe
cu
ti
o
n
 T
im

e
 (s
)

Fault moment

1000x1000 Matrix product using 11 nodes ‐Master/Worker static distribution
‐ 1 fault ‐ 160 loops ‐ ckpt each 120s

Fault‐free

Faults Without Spare

Faults With Spare

170 Experimental Evaluation

itself inversely proportional to the moment when the fault occurs, generating greater over-

heads (reaching 73.07% in the worst case analyzed) in premature fault case, while using

spare, the overhead keeps constantly and low despite the moment of the fault.

The Figure 5-15 shows a result chart with the SPMD program. An analogous behavior

is perceived in relation with the overhead caused by not using spare nodes. The overhead

caused by the spare nodes usage is slightly greater than the static distribution approach. This

increment is due to the high coupling level in the SPMD approach, the time spent in the re-

covery affects directly the communications with the neighbors’ processes and this delay con-

tinues propagating by the others process of the application, while the recovery in the master-

worker approach only affects the failed worker.

The performability results of the experiments above are in TABLE 5-6 and TABLE

5-7. These numbers show the correlativeness between the performability and the fault mo-

Figure 5-15: Results of matrix product using a SPMD program based in the cannon algorithm

434.57 434.57 434.57

72,61%

49,37%

27,05%

13,93% 14,19% 14,82%

0

100

200

300

400

500

600

700

800

25% 50% 75%

Ex
ec
u
ti
o
n
 T
im

e
 (
s)

Fault moment

1500x1500 Matrix product using 9 nodes ‐ SPMD cannon algorithm‐1 fault
40 loops ‐ckpt each 120s

Fault‐free

Faults Without Spare

Faults With Spare

Chapter 5 171

ment, where as soon the fault occurs as lower will be the performability. In these experiments

the unavailability is proportionally calculated according the number of nodes in each case,

i.e., with a fault at 25%, during 25% of time it was n+1 nodes running (cluster size plus spare

node) and during 75% it was only n nodes running.

5.3.2.2. Evaluating according with the number of nodes

In these experiments, the behavior of the fault recovery in different cluster sizes was

evaluated. The current experiments suggest that the RADIC improvements presented in this

work do not affect the scalability of a program.

It was run two approaches for a master-work matrix product: using a static distribu-

tion and using a dynamic distribution of matrix blocks. In both cases it was performed a

product between two 1000 X 1000 matrixes. It was executed the program with four, eight and

eleven nodes, with faults injected always at 25% of the execution time, approximately. The

TABLE 5-6: Performability results of matrix product using a master-work static distributed program injecting
faults in different moments and using 11 nodes plus one spare

 Fault-free 25% 50% 75%

Without
Spare

Unavailability 0.00209% 0.00209% 0.00209% 0.00209%

Throughput 2826.46 1633.06 1894.13 2215.37

Performability 2438.35 1408.82 1634.04 1911.17

With
Spare

Unavailability 0.00228% 0.00214% 0.00212% 0.00211%

Throughput 2826.46 2520.16 2510.67 2530.36

Performability 2396.29 2164.37 2161.04 2179.22

TABLE 5-7: Performability results of matrix product using a SPMD program based in the cannon algorithm inject-
ing faults in different moments and using nine nodes plus one spare.

 Fault-free 25% 50% 75%

Without
Spare

Unavailability 0.00171% 0.00171% 0.00171% 0.00171%

Throughput 5177.53 2999.46 3466.18 4074.87

Performability 4649.51 2693.57 3112.69 3659.30

With
Spare

Unavailability 0.00190% 0.00176% 0.00181% 0.00185%

Throughput 5177.53 4544.26 4533.91 4509.11

Performability 4552.56 4058.52 4027.74 3984.95

172 Experimental Evaluation

execution time was measured when using or not the spare nodes and comparing with a fault

free execution time.

Figure 5-16 shows the results of executions with a dynamic load balancing approach.

The load balancing can mitigate the side-effects of the RADIC regular recovery, and the

spare nodes use is almost equal than not using it, being worse in the smallest cluster because

the time spent for the spare use is greater than normal recovery, therefore the system remains

more time with one process less (in a four nodes cluster it means 25%). Indeed, the processes

in the overloaded node start to perform fewer tasks than other nodes, and their workload is

distributed among the cluster, almost not affecting the execution time. As the cost of recovery

using spare nodes may slightly greater, it should be better to use the basic protection level for

these cases.

Figure 5-16: Results of matrix product using a master-worker program with dynamic load balancing running in differ-
ent cluster sizes

631.40

271.80

196.70

2.67%

0.07%

0.07%

3.24%

0.03%

0.04%

0

100

200

300

400

500

600

700

4 nodes 8 nodes 11 nodes

E
xe
cu
ti
o
n
 T
im

e
 (s
)

Cluster Size

1000x1000 Matrix product using different number of nodes ‐M/W with
dynamic load balancing ‐ 1 fault at 25% ‐100 loops ‐ ckpt 120s

Whitout Faults

Faults Without Spare

Faults With Spare

Chapter 5 173

Figure 5-17 shows the benefits of using spare nodes using a static load distribution,

the node that hosts the recovered process suffers a strong degradation, high affecting the

overall execution time independently of the size of the cluster. By other side, using the spare

nodes approaches, the overall impact in the execution time is low and stable, also indepen-

dently of the number of nodes.

The numerical results of performability analysis for each case above are in TABLE

5-8 and TABLE 5-9. Those numbers show that in case of a dynamic load balancing, the use

of spare nodes does not result in better performability in spite of better performance values

for 8 and 11 nodes. This happens because the existence of one spare node affects the system

unavailability increasing such value. In the other hand, using a static load balancing, the spare

node use allows the improvement of the performability comparing with not using. It also

should be noted that for the four nodes case, the unavailability is below the target, therefore

the performability values are equal to performance.

Figure 5-17: Results of matrix product using a master-worker program with static load distribution running in different
cluster sizes

707.30

324.30

227.60

74.50%

73.38%

73.07%

15.31%

14.40%

14.45%

0

200

400

600

800

1000

1200

1400

4 Nodes 8 Nodes 11 Nodes

E
xe
cu
ti
o
n
 T
im

e
 (
s)

Cluster Size

1000x1000 Matrix product in different cluster sizes‐ Static distribution ‐
1 fault at ~25% ‐ 100 loops ‐ ckpt 120s

Fault‐free

Faults without spare

Faults with spare

174 Experimental Evaluation

5.3.2.3. Non­Stop service experiments

As many of the actual parallel applications are intended to run continuously in a 24x7

scheme, it was performed an experiment intending represent the behavior of these applica-

tions. In this experiment, the N-Body particle simulation was continuously executed in a ten

nodes pipeline and three faults were injected in different moments and different machines,

measuring the throughput of the program in simulation steps per minute. Four situations were

analyzed: a) a failure-free execution, used as comparison basis; b) three faults recovered

without spare in the same node; c) three faults recovered without spare in different nodes and

d) three faults recovered with spare.

Figure 5-18 shows the result chart of this experiment. In this experiment, it is per-

TABLE 5-8: Performability results of matrix product using a master-worker program with
dynamic load balancing running in different cluster sizes

 4 Nodes 8 Nodes 11 Nodes

Unavailability wo/Spare 0.00076% 0.00152% 0.00209%

Throughput Fault-free 1583.78 3679.18 5083.88

Performability Fault-free 1583.78 3382.71 4385.81

Throughput w/Fault wo/Spare 1542.59 3653.60 5048.54

Performability w/Fault wo/Spare 1542.59 3359.20 4355.32

Unavailability w/Spare 0.00081% 0.00157% 0.00214%

Throughput w/Spare 1534.08 3668.17 5068.68

Performability w/spare 1534.08 3351.90 4353.08

TABLE 5-9: Performability results of matrix product using a master-worker program with
static load distribution running in different cluster sizes

 4 Nodes 8 Nodes 11 Nodes

Unavailability wo/Spare 0.00076% 0.00152% 0.00209%

Throughput Fault-free 1413.83 3083.56 4393.67

Performability Fault-free 1413.83 2835.09 3790.37

Throughput w/Fault wo/Spare 810.20 1778.50 2538.67

Performability w/Fault wo/Spare 810.20 1635.19 2190.08

Unavailability w/Spare 0.00081% 0.00157% 0.00214%

Throughput w/Spare 1226.11 2695.42 3838.95

Performability w/spare 1226.11 2463.02 3296.97

Chapter 5 175

ceived the influence of the application type over the post-recovery execution. When the three

faults are recovered in different nodes, the application’s throughput suffers an initial degrada-

tion, but in the subsequent faults, just changes a little. This behavior occurs because the pipe-

line arrangement: the degradation of the node containing the second recovered is masked by

the delay caused by the first recovered process node. This assumption is confirmed when all

faults processes are recovered in the same node, it is possible to perceive a degradation of the

throughput after each failure. When executing with spare nodes presence, the system backs to

the original simulation step rate after quick throughput degradation. It is also possible to see

that the penalization imposed by the recovery process using spare is greater than the regular

RADIC process, but this loss is quickly compensated by the throughput restoring in the re-

maining execution.

Figure 5-18: Results of an N-Body program running continuously after three faults in different situations.

0

5

10

15

20

25

30

35

Si
m
u
la
ti
o
n
 S
te
p
s
p
e
r
m
in
u
te

Time (in minutes)

N‐Body Simulation of 2000 particles
in a 10 nodes pipeline ‐ 3 faults occurred

SameNode

DiffNode

Spare

FaultFree

176 Experimental Evaluation

TABLE 5-10 contains the results of same performability analysis performed in Chap-

ter 4 but now including the values related with the spare node use. The values of recovering

in different nodes are not explicitly mentioned but as seen in the chart they are similar with

the values when only one fault occurs. The performability value of the spare nodes use shows

that the flexible dynamic redundancy was effective improving such a value despite the small

increase on the unavailability due the additional spare nodes. It should be noted that such

unavailability value would be greater if not using the dynamic insertion of spare nodes, i.e.

would be necessary 3 spare nodes in order to tolerate 3 faults, but in this case it was needed

only two, being one fixed and re-inserted.

TABLE 5-10: Performability behavior of an N-Body simulation after one, two and three faults recovered in the same
node.

 Fault-free After 1 Fault
After 2
Faults

After 3
Faults

With Spare
node

Throughput (simu-
lation steps/min)

28.65 14.51 9.43 7.22 26.87

Unavailability 0.00190% 0.00171% 0.00152% 0.00133% 0.00228%

Performability 25.19222 13.02734 8.66778 6.81544 22.78464

Chapter 6
Conclusions

The use of computer clusters in HPC area continues to increase. As the demand for

computing power grows, more computing nodes are aggregated. Nowadays, such a number

easily reaches more than 1000 nodes. Besides the quest for computing power, availability has

also been a major concern. As the number of nodes increases, the probability of faults in

some of these nodes rises at the same pace. In systems following a fail-stop semantic, a fault

in a node leads to a failure and, consequently, an interruption of applications using that node.

In this scenario, fault tolerance plays an important role providing high availability.

Performance and availability evaluation has been well studied in the past years. Late-

ly, the concept of performability has enabled evaluating these two metrics conjunctly, allow-

ing a global, accurate and real evaluation of the aforementioned systems.

The performability concept raises some questions when using a fault tolerant system:

How do fault tolerant activities influence system performability? What are the root causes of

overheads caused by a fault tolerant system which increases the system availability? How

does a recovery process affect system performability? How do degraded systems affect sys-

tem performability? After investigating these questions it was achieved a better understand-

ing of how fault tolerant solutions influence system performability and how it can be possible

to make improvements, even considering restrictions such as execution time or throughput

with or without faults. A fault tolerance solution tolerates a certain number of faults, but it

178 Conclusions

can degrade performance (execution time, throughput). Therefore, how much is acceptable

such a degradation?

 The RADIC architecture was used as a study case. The modus operandi of its com-

ponents was analyzed and the implications of its operation on system performability studied.

This work identified the root causes of performance overhead using different degrees

of availability such as message logging and the data replication over N-protectors, and the

root causes of performance degradation caused by the system configuration change after re-

covering from a fault using the RADIC architecture. All root causes directly influence system

performability.

Taking into consideration these results, solutions based on the RADIC fault tolerance

architecture were proposed to reduce the performance overhead in fault-free executions and

avoid or fix performance degradation in the presence of faults, resulting in an improvement

of the computer cluster’s performability.

A technique for performing receiver-based pessimistic message logging that reduces

message delivery latency was presented. This technique works by dividing the sending mes-

sage into small pieces and establishing a pipeline between the observer at the message receiv-

er and its protector, rather than performing a store-and-forward of each message such as the

traditional message log approach. Such a technique reaches an overhead reduction of 80.48%.

The influence of the piece size choice in this technique was analyzed.

The pipeline idea was used to increase the availability provided by RADIC with low

overhead, reducing the risk for mission-critical applications. Such a solution is based on per-

forming a pipelined data replication of checkpoints and message logs (redundant data) distri-

Chapter 6 179

buted over a number of protectors, according to a desired degree of availability. The pipeline

approach reduces the time required to perform the checkpoint data replication by up to 39%.

It does by parallelizing the activity and allowing the tolerance of concurrent faults in corre-

lated nodes imposing a maximum of 29.16% of overhead in comparison with not performing

the replication. The number of protectors growth with low overhead allowed the system deal

with mission-critical applications because of the better performability. This work was ac-

cepted to be presented in (SANTOS, G. et al., 2009)

On avoiding performance degradation, the design of a solution that avoids such beha-

vior named resilient protection level was proposed. The implementation of this new feature,

represented by the use of spare nodes, did not affect the RADIC characteristics of transparen-

cy, decentralization, flexibility and scalability. Hence, a transparent management of spare

nodes was designed, which was able to request and use spare nodes without need for centra-

lized information. The RADIC resilient protection level can dynamically insert new spare

nodes during the application execution.

The RADIC resilient protection level also allows the replacement of faulty nodes

transparently to the application. Therefore, if the system is degraded because of faults, it is

possible to re-incorporate the failed nodes after fixing them without stopping the application.

Such a mechanism reduces the execution time overhead in the presence of faults by five

times in high coupled and static load balanced applications. However, in dynamic load ba-

lancing applications, the performability did not improve using spare nodes since the applica-

tion redistributes the extra load over the remaining nodes.

The new features presented can be also applied to perform preventive maintenance

tasks by injecting faults into specific nodes forcing the processes running on them to migrate

180 Conclusions

to a recently inserted spare node. These abilities represent the flexibility of RADIC’s resilient

protection level, beyond keeping RADIC’s original structural flexibility.

On one side, the efficiency of the pipelining approach depends on the size of each

communication. In large communications, the latency overhead was reduced by approximate-

ly four times, while in small communications it was perceived slightly worse than in the la-

tency overhead with traditional logging. This behavior is because of the activities needed to

perform a pipeline, such as control structures, and extra headers. A simple workaround would

be to decide up front when to pipeline according to the size of communication. Furthermore,

performing the data replication over many protectors represented a low overhead in compari-

son with the traditional approach. These efforts resulted in program execution times with low

overheads despite the degree of availability chosen (number of protectors per observer), re-

sulting in an improvement of system performability.

On the other side, experiments confirmed that the side effects caused by some recov-

ery approaches depends on factors such as application characteristics, i.e. message pattern

and parallel paradigm applied (pipeline, Master-Work or SPMD) and where the process is

recovered. The fault recovery may affect the overall performance of the system, and the gen-

erated performance degradation can vary according to where the process recovers and the

parallel paradigm applied. Another perceived relation regards application coupling. Applica-

tions with high coupling levels between the computing nodes tend to suffer more intensively

with system configuration changes caused by the recovery process.

Moreover, it is possible to conclude that the use of a flexible redundancy scheme is an

effective approach to avoiding the effects of system configuration changes. The presented

solution has shown to be effective even in faults close to the application finishing. The RAD-

Chapter 6 181

IC resilient protection level also shows an overhead caused by the recovery process, but the

cost depends on factors such as fault moment, checkpointing interval, and process state size.

Experimental results have shown execution times and throughput values very near to a fail-

ure-free execution. The initial idea of the resilient protection level was presented by Santos et

al. (SANTOS, G. et al., 2006), with a complete evaluation of this solution (SANTOS, G. et

al., 2008). The use of the resilient protection level for a stopless preventive maintenance was

also presented by Santos et al. (SANTOS, G. et al., 2008)

These findings enhance the knowledge on fault tolerance issues and their influence on

system performability, such as the effects of uncoordinated checkpointing and logging in a

fully distributed fault tolerance solution, the relationship between application characteristics

and behavior and the influence of a parallel paradigm in recovered applications.

6.1. Open lines

After much work, many open lines were found during the path to here. These open

lines may represent future researches to be performed, which can expand the knowledge ob-

tained from the performability study of RADIC.

It would be interesting to assess the performability of RADIC in large clusters and

with different kind of applications. This study would provide a real knowledge about RADIC

scalability using the N-protectors data replication or the new spare nodes information spread-

ing. Due to the physical difficulties accessing these machines, a RADIC simulator would be

necessary alongside a complete message-passing implementation of RADIC as presented by

Fialho et al. (FIALHO, L. et al., 2009), and including the new contributions presented here.

182 Conclusions

The ideal number of spare nodes and its ideal allocation through the cluster remain

undiscovered subjects. Further research might investigate how it is possible to achieve better

results by allocating spare nodes according to requirements such as acceptable degradation

level according to a performability index, or memory limits of a node.

New technologies are arriving each day. A permanent task will be to study how to

adapt and use RADIC with the new trends of the high computing area. This includes ques-

tions such as how its performability behaves using multicore computers, how the characteris-

tics of this architecture can be exploited and what the influence of using many protectors per

observer in the performability of an architecture having many processes (and observers) per

node is. Other questions include whether it is possible to have spare cores instead of only

spare nodes, and if so, how this configuration influences performability.

Fault tolerance systems generally are complex systems. RADIC with its protection le-

vels and configurations is no exception. In this work the RADIC performability was eva-

luated based on measurements. Considerably more work must be undertaken to generate a

performability analytical model of RADIC including its characteristics. Such a study will be

crucial helping better understand the architecture and providing the tools to improve the

RADIC operation by tuning parameters such as checkpoint interval or protectors’ mapping in

order to achieve better performability. Furthermore, this model may be applied to foresee

performability under some parameters.

A study about possible election policies to be used during the pipelined recovery

process, during the node replacement feature or when an application must use a spare node or

not will be useful for determining the ideal behavior for these situations, considering factors

Chapter 6 183

such as load balance or time to recover. Performability indexes are useful for supporting such

decisions.

The maintenance feature of resilient level remains a rarely explored subject. Addi-

tional research might address integrating this feature with a fault prediction scheme, which

will allow RADIC to perform a proactive fault tolerance, thus, avoiding faults before they

happen and further improving cluster performability.

 Analysis of the communication buffers effects in the pipelined logging performance

deserves to be investigated further, as does the pipelined logging behavior in larger clusters

using different networks such as infiniband or myrinet, and different network topologies such

as fat-tree, meshes and torus. Experimental results suggest that using a dynamic piece size

according to the message size may produce better results, therefore, this subject must be ad-

dressed in further works.

Autonomic computing systems are a new trend. Based on the human autonomic sys-

tem, this new trend establishes a new group of systems with the abilities of self-healing, self-

configuring, self-protecting and self-optimizing. RADIC already provides the self-healing

ability, while the RADIC protection level implements the self-configuring capacity. Hence

new research might perform steps towards an autonomic fault tolerant system implementing

the self-protecting and self-optimizing features.

References
AGARWAL, S., R. GARG, M.S. GUPTA, and J. E. MOREIRA. 2004. Adaptive

incremental checkpointing for massively parallel systems. In: ICS '04: Proceedings of the

18th annual international conference. ACM, pp.277-286.

AGBARIA, A. and R. FRIEDMAN. 1999. Starfish: Fault-Tolerant Dynamic MPI

Programs on Clusters of Workstations. In: HPDC '99: Proceedings of the The Eighth IEEE

International Symposium. IEEE Computer Society, p.31.

ALVISI, L., E. ELNOZAHY, S. RAO et al. 1999. An analysis of communication

induced checkpointing. In: Proc. Digest of Papers Fault-Tolerant Computing Twenty-Ninth

Annual International Symposium on. IEEE Computer Society, pp.242-249.

ALVISI, L. and K. MARZULLO. 1998. Message logging: pessimistic, optimistic,

causal, and optimal. IEEE Transactions on Software Engineering. 24, pp.149-159.

BIRMAN, K.P. 2005. Reliable Distributed Systems: Technologies, Web Services, and

Applications. Springer.

BOSILCA, G., A. BOUTEILLER, F. CAPPELLO et al. 2002. MPICH-V: toward a

scalable fault tolerant MPI for volatile nodes. In: Proceedings of the 2002 ACM/IEEE

conference on Supercomputing. Baltimore: IEEE Computer Society, pp.29-29.

BOUTEILLER, Aurélien, Franck CAPPELLO, Thomas HERAULT et al. 2003.

MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based

Message Logging. In: SC '03: Proceedings of the 2003 ACM/IEEE conference on

Supercomputing. IEEE Computer Society, p.25.

186 References

BOUTEILLER, A., T. HERAULT, G. KRAWEZIK et al. 2006. MPICH-V Project: A

Multiprotocol Automatic Fault-Tolerant MPI. International Journal of High Performance

Computing Applications. 20, p.319.

BOUTEILLER, Aurélien, Pierre LEMARINIER, Geráude KRAWEZIK, and Franck

CAPPELLO. 2003. Coordinated checkpoint versus message log for fault tolerant MPI. In:

Cluster Computing, 2003. Proceedings. 2003 IEEE International Conference. IEEE; IEEE

Computer Society.

BURNS, G., R. DAOUD, and J. VAIGL. 1994. LAM: An Open Cluster Environment

for MPI. In: Proceedings of Supercomputing Symposium '94., pp.379-386.

CHAKRAVORTY, S., C. L. MENDES, and L. V. KALÉ. 2006. Proactive Fault

Tolerance in MPI Applications Via Task Migration. In: Proceedings of International

Conference on High Performance Computing. Springer, pp.485-496.

CHANDY, K. M. and L. LAMPORT. 1985. Distributed snapshots: determining

global states of distributed systems. ACM Trans.Comput.Syst. 3, pp.63-75.

CHTEPEN, M., F.H.A. CLAEYS, B. DHOEDT et al. 2009. Adaptive Task

Checkpointing and Replication: Toward Efficient Fault-Tolerant Grids. Parallel and

Distributed Systems, IEEE Transactions on. 20, pp.180-190.

DALY, J. T. 2006. A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Computer Systems. 22, pp.303-312.

DUARTE, A. 2007. RADIC: A Powerful Fault Tolerant Architecture. PhD thesis,

Universitat Autònoma de Barcelona.

References 187

DUARTE, A., D. REXACHS, and E. LUQUE. 2006. Increasing the cluster

availability using RADIC. In: Proceedings of 2006 IEEE International Conference on

Cluster Computing. IEEE, pp.1-8.

DUARTE, A., D. REXACHS, and E. LUQUE. 2006. An Intelligent Management of

Fault Tolerance in Cluster Using RADICMPI. In: Recent Advances in Parallel Virtual

Machine and Message Passing Interface, 13th European PVM/MPI User's Group Meeting,

Bonn, Germany, September 17-20, 2006, Proceedings. Springer Berlin / Heidelberg, pp.150-

157.

ELNOZAHY, E. N., Lorenzo ALVISI, Yi-Min WANG, and David B. JOHNSON.

2002. A survey of rollback-recovery protocols in message-passing systems. ACM Computing

Surveys. 34, pp.375-408.

ELNOZAHY, E. N. and J. S. PLANK. 2004. Checkpointing for Peta-Scale Systems:

A Look into the Future of Practical Rollback-Recovery. IEEE Trans.Dependable

Secur.Comput. 1, pp.97-108.

ELNOZAHY, E. N. and W. ZWAENEPOEL. 1992. Manetho: Transparent Roll Back-

Recovery with Low Overhead, Limited Rollback, and Fast Output Commit. IEEE

Transactions on Computers. 41, pp.526-531.

ELNOZAHY, E.N. and W. ZWAENEPOEL. 1994. On the use and implementation of

message logging. Fault-Tolerant Computing, 1994. FTCS-24. Digest of Papers., Twenty-

Fourth International Symposium on., pp.298-307.

EUSGELD, I. and F. FREILING. 2008. Introduction to Dependability Metrics. In:

Dependability Metrics, Springer Berlin / Heidelberg, pp.1-4.

188 References

EUSGELD, I., J. HAPPE, P. LIMBOURG et al. 2008. Performability. In:

Dependability Metrics, Springer Berlin / Heidelberg, pp.245-254.

FAGG, G. E. and J. J. DONGARRA. 2000. FT-MPI: Fault Tolerant MPI, Supporting

Dynamic Applications in a Dynamic World. In: Recent Advances in Parallel Virtual Machine

and Message Passing Interface, 7th European PVM/MPI Users' Group Meeting,

Balatonfüred, Hungary, September 2000, Proceedings. Balatonfüred: Springer Berlin /

Heidelberg, pp.346-353.

FIALHO, L., A. DUARTE, G. SANTOS et al. 2009. Challenges and Issues of the

Integration of RADIC into Open MPI. In: Recent Advances in Parallel Virtual Machine and

Message Passing Interface, 16th European PVM/MPI Users' Group Meeting, Esboo,

Finland, September 7-10, 2009. Proceedings. Springer Berlin / Heidelberg, pp.73-83.

GAO, W., M. CHEN, and T. NANYA. 2005. A Faster Checkpointing and Recovery

Algorithm with a Hierarchical Storage Approach. In: High-Performance Computing in Asia-

Pacific Region, 2005. Proceedings. Eighth International Conference on. IEEE, pp.398-402.

GEIST, A. and C. ENGELMANN. 2002. Development of naturally fault tolerant

algorithms for computing on 100,000 processors. [online]. [Accessed February 2008].

Available form World Wide Web: <http://www.csm.ornl.gov/~geist/Lyon2002-geist.pdf>

GRAY, J. and D. P. SIEWIOREK. 1991. High-availability computer systems.

Computer. 24, pp.39-48.

GROPP, W., E. LUSK, and A. SKJELLUM. 1999. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT Press.

References 189

GUTIN, G. and PUNNEN, A. P. (eds). 2007. The traveling salesman problem and its

variations. Springer.

HAVERKORT, B. R., R. MARIE, G. RUBINO, and K. S. TRIVEDI. 2001.

Performability Modelling : Techniques and Tools. John Wiley \& Sons, Inc.

HELARY, J. M., A. MOSTEFAOUI, R. H. B., and M. RAYNAL. 1997. Preventing

useless checkpoints in distributed computations. In: Proc. Sixteenth Symposium on Reliable

Distributed Systems. IEEE Computer Society, pp.183-190.

HUANG, Y. and Y. WANG. 1995. Why optimistic message logging has not been

used in telecommunications systems. In: Fault-Tolerant Computing, 1995. FTCS-25. Digest

of Papers., Twenty-Fifth International Symposium on. IEEE Computer Society, pp.459-463.

IZOSIMOV, V., P. POP, P. ELES, and Z. PENG. 2006. Synthesis of Fault-Tolerant

Embedded Systems with Checkpointing and Replication. In: Proceedings of the Third IEEE

International Workshop on Electronic Design, Test and Applications. IEEE Computer

Society, pp.440-447.

JALOTE, P. 1994. Fault Tolerance in Distributed Systems. P T R Prentice Hall.

KALAISELVI, S. and V. RAJARAMAN. 2000. A survey of checkpointing

algorithms for parallel and distributed computers. Sadhana. 25, pp.489-510.

KONDO, M., T. HAYASHIDA, M. IMAI et al. 2003. Evaluation of Checkpointing

Mechanism on SCore Cluster System. IEICE Transactions on Information and Systems. 86,

pp.2553-2562.

190 References

KOREN, I. and C. M. KRISHNA. 2007. Fault Tolerant Systems. Morgan Kaufmann

Publishers Inc.

KOZIOLEK, H. 2008. Introduction to Performance Metrics. In: Dependability

Metrics, Springer Berlin / Heidelberg, pp.199-203.

LIANG, Y., Y. ZHANG, A. SIVASUBRAMANIAM et al. 2005. Filtering failure

logs for a BlueGene/L prototype. In: Dependable Systems and Networks, 2005. DSN 2005.

Proceedings. International Conference on. IEEE Computer Society, pp.476-485.

LIE, C. H., C. L. HWANG, and F. A. TILLMAN. 1977. Availability of Maintained

Systems: A State-of-the-Art Survey. IIE Transactions. 9, pp.247-259.

LI, Y. and Z. LAN. 2006. Exploit failure prediction for adaptive fault-tolerance in

cluster computing. In: Sixth IEEE International Symposium on Cluster Computing and the

Grid, 2006. CCGRID 06. IEEE Computer Society, pp.531-538.

LIU, Y., C. B. LEANGSUKSUN, H. SONG, and S. L. SCOTT. 2005. Reliability-

aware Checkpoint/Restart Scheme: A Performability Trade-off. In: Cluster Computing, 2005.

IEEE International. IEEE Computer Society, pp.1-8.

MALONEY, A. and A. GOSCINSKI. 2009. A survey and review of the current state

of rollback-recovery for cluster systems. Concurrency and Computation: Practice and

Experience. 9999, p.n/a.

MALONEY, A. and A. GOSCINSKI. 2009. A survey and review of the current state

of rollback-recovery for cluster systems. Concurrency and Computation: Practice and

Experience. 9999, p.n/a.

References 191

MEYER, J. F. 1980. On Evaluating the Performability of Degradable Computing

Systems. IEEE Transactions on Computers. 29(8), pp.720-731.

MEYER, J. F. 1995. Performability evaluation: where it is and what lies ahead. In:

Computer Performance and Dependability Symposium, 1995. Proceedings., International.

IEEE Computer Society, pp.334-343.

MEYER, J.F. 1992. Performability: a retrospective and some pointers to the future.

Performance Evaluation. 14, pp.139-156.

NAGARAJA, K., G. GAMA, R. BIANCHINI et al. 2005. Quantifying the

Performability of Cluster-Based Services. Parallel and Distributed Systems, IEEE

Transactions on. 16, pp.456-467.

NAGARAJAN, A. B., F. MUELLER, C. ENGELMANN, and S. L. SCOTT. 2007.

Proactive fault tolerance for HPC with Xen virtualization. In: ICS '07: Proceedings of the

21st annual international conference. ACM, pp.23-32.

NAM, H., J. KIM, S. HONG, and S. LEE. 1997. Probabilistic checkpointing. In:

Proceedings of the 27th International Symposium on Fault-Tolerant Computing (FTCS '97).

IEEE Computer Society, pp.48-57.

NI, L. M. and P. K. MCKINLEY. 1993. A Survey of Wormhole Routing Techniques

in Direct Networks. Computer. 26, pp.62-76.

OLINER, A.J., R.K. SAHOO, J.E. MOREIRA, and M. GUPTA. 2005. Performance

implications of periodic checkpointing on large-scale cluster systems. In: Proceedings of the

192 References

19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) -

Workshop 18 - Volume 19. IEEE Computer Society, pp.8 pp.-.

PIEDAD, F. and M. HAWKINS. 2001. High Availability: Design, Techniques, and

Processes. Prentice Hall PTR.

PLANK, J. S., Kai LI, and M. A. PUENING. 1998. Diskless checkpointing. IEEE

Transactions on Parallel and Distributed Systems. 9, pp.972-986.

PLANK, J. S. and M. G. THOMASON. 2001. Processor allocation and checkpoint

interval selection in cluster computing systems. J.Parallel Distrib.Comput. 61, pp.1570-1590.

RAO, S., L. ALVISI, and H. M. VIN. 2000. The cost of recovery in message logging

protocols. IEEE Transactions on Knowledge and Data Engineering. 12, pp.160-173.

RAO, S., L. ALVISI, and H. M. VIN. 1999. Egida: an extensible toolkit for low-

overhead fault-tolerance. Austin, TX, USA: University of Texas at Austin.

RODRÍGUEZ, G. 2008. Compiler-assisted checkpointing of message-passing

applications in heterogeneous environments. PhD Thesis, A Coruña.

SABETTA, A. and H. KOZIOLEK. 2008. Measuring Performance Metrics:

Techniques and Tools. In: Dependability Metrics, Springer Berlin / Heidelberg, pp.226-232.

SAHOO, R. K., A. J. OLINER, I. RISH et al. 2003. Critical event prediction for

proactive management in large-scale computer clusters. KDD '03: Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data mining., pp.426-

435.

References 193

SANCHO, J. C., F. PETRINI, G. JOHNSON, and E. FRACHTENBERG. 2004. On

the feasibility of incremental checkpointing for scientific computing. In: 18th International

Parallel and Distributed Processing Symposium (IPDPS 2004), CD-ROM / Abstracts

Proceedings, 26-30 April. IEEE Computer Society, pp.58-.

SANTOS, G., A. DUARTE, D. REXACHS, and E. LUQUE. 2008. Increasing the

Performability of Computer Clusters Using RADIC II. In: Proc. Third International

Conference on Availability, Reliability. IEEE Computer Society, pp.653-658.

SANTOS, G., A. DUARTE, D. REXACHS, and E. LUQUE. 2008. Providing Non-

stop Service for Message-Passing Based Parallel Applications with RADIC. In: Proceedings

of the 14th international Euro-Par conference on Parallel Processing. Springer-Verlag,

pp.58-67.

SANTOS, G., A. DUARTE, D. REXACHS, and E. LUQUE. 2006. Recuperando

prestaciones en clusters tras la ocurrencia de fallos utilizando RADIC. In: Proceedings of XII

Congreso Argentino de Ciencias de la Computación (CACIC 2006). Potrero de los Funes,

Argentina.

SANTOS, G., L. FIALHO, D. REXACHS, and E. LUQUE. 2009. Increasing the

Availability Provided by RADIC with Low Overhead. In: Proceedings of 2009 IEEE

International Conference on Cluster Computing. New Orleans, USA: IEEE, p.Accepted.

SHOOMAN, M. L. 2002. Reliability of computer systems and networks. John Wiley

\& Sons, Inc.

SKJELLUM, Y. S. 2004. MPI/FT: A Model-Based Approach to Low-Overhead Fault

Tolerant Message-Passing Middleware. CLUSTER COMPUTING. 7, pp.303-315.

194 References

SNELL, Q. O., A. R. MIKLER, and J. L. GUSTAFSON. 1996. Netpipe: A network

protocol independent performace evaluator. In: In Proceedings of the IASTED International

Conference on Intelligent Information Management and Systems. ACTA Press.

SNIR, M., S. W. OTTO, D. W. WALKER et al. 1998. MPI: The Complete Reference.

MIT Press.

SOARES, L. and J. PEREIRA. 2005. Experimental performability evaluation of

middleware for large-scale distributed systems. In: 7th International Workshop on

Performability Modeling of Computer and Communication Systems., pp.1-4.

SONG, H., C. LEANGSUKSUN, R. NASSAR et al. 2006. Availability modeling and

analysis on high performance cluster computing systems. In: Proceedings of the First

International Conference on Availability, Reliability and Security. IEEE Computer Society,

pp.305 - 313.

SQUYRES, J. M. and A. LUMSDAINE. 2003. A Component Architecture for

LAM/MPI. In: roceedings of the ninth ACM SIGPLAN symposium on Principles and practice

of parallel programming. ACM, pp.379-387.

STROM, R. and S. YEMINI. 1985. Optimistic recovery in distributed systems. ACM

Trans. Comput. Syst. 3, pp.204-226.

SUN, H., J. J. HAN, and H. LEVENDEL. 2003. Availability requirement for a fault-

management server in high-availability communication systems. IEEE Transactions on

Reliability. 52, pp.238-244.

References 195

TOP500.ORG. 2008. TOP500 Supercomputing Sites. [online]. [Accessed 23 Feb

2009]. Available form World Wide Web: <http://www.top500.org>

TREASTER, M. 2005. A Survey of Fault-Tolerance and Fault-Recovery Techniques

in Parallel Systems. ACM Computing Research Repository. 501002, pp.1-11.

YOUNG, J. W. 1974. A first order approximation to the optimum checkpoint interval.

Commun. ACM. 17, pp.530-531.

ZAMBONELLI, F. 1998. On the effectiveness of distributed checkpoint algorithms

for domino-free recovery. In: Proceedings of the 7th IEEE International Symposium on High

Performance Distributed Computin. IEEE Computer Society, pp.124-131.

