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Abstract

Although new approaches to enable robots with advanced cognitive capabili-
ties are being developed, still few work is being devoted to a difficult problem
in which all this techniques rely: fast and robust perception methods to de-
tect semantically relevant elements in unstructured environments. Indeed,
being able to identify the robot’s location and what objects lie around con-
stitute the foundations on which almost all high-level reasoning processes
conducted by a robot will build up. In order to help reduce this gap, this
work addresses the problems of vision-based global localization and object
recognition.

The first contributions presented are a new technique to construct signa-
tures of places to be used as nodes of a topological map from constellations
of features detected in panoramic images, and a homing method to travel
between such nodes that does not rely in artificial landmarks. Both methods
were tested with several datasets showing very good results.

General object recognition in mobile robots is of primary importance
in order to enhance the representation of the environment that robots will
use for their reasoning processes. Therefore, the next contributions of the
thesis address this problem. After carefully reviewing recent Computer Vi-
sion literature on this topic, two state of the art object recognition methods
were selected: The SIFT Object Recognition method and the Vocabulary
Tree method. After evaluating both methods in challenging datasets, focus-
ing on issues relevant to mobile robotics, it was found that, although the
SIFT method was more suited for mobile robotics, both had complementary
properties.

To take advantage of this complementarity, the final contribution of this
thesis is a Reinforcement Learning method to select online which object
recognition method is best for an input image based on simple to compute
image features. This method has been validated in a challenging object
recognition experiment, even improving the performance of a human expert
in some cases.

Keywords: Mobile Robotics; Vision-based localization; Object recognition;
Visual Feature Detectors; Visual Feature Descriptors; Reinforcement Learn-
ing; Visual Homing



Resum

Tot i que apareixen noves tècniques que equipen els robots amb capacitats
cognitives avançades, encara s’ha dedicat poca feina a una qüestió essen-
cial per aquestes tècniques: mètodes ràpids i robustos per a la percepció
d’elements semànticament rellevants en entorns no estructurats. De fet, per
un robot, ser capaç d’identificar la ubicació en que es troba i quins objectes
té al voltant constitueix els fonaments sobre els quals s’aguanten la resta de
processos de raonament d’alt nivell que ha de dur a terme. Amb l’objectiu
de reduir una mica aquest problema, aquesta tesi se centra en els problemes
de localització i reconeixement d’objectes per mitjà de tècniques de visió per
computador.

La primera contribució que presentem és una nova tècnica per cons-
truir signatures de llocs a partir de caracteŕıstiques detectades en imatges
panoràmiques per a ser usades com a nodes d’un mapa topològic, i un mètode
de “homing” per viatjar entre els nodes del mapa. Ambdós mètodes han
estat provats en diversos conjunts de proves amb resultats satisfactoris.

El reconeixement d’objectes genèrics per robots mòbils és un tema d’im-
portància cabdal de cara a afegir contingut a les representacions de l’entorn
que els robots usaran en els seus processos de raonament. En conseqüència,
les següents contribucions d’aquesta tesi es dirigeixen a aquest problema.
Després de revisar detingudament literatura recent del camp de visió per
computador, han estat seleccionats dos mètodes: el mètode de reconeixe-
ment d’objectes “SIFT” i el “Vocabulary Tree”. Un cop avaluats els dos
mètodes en conjunts de dades de test dif́ıcils, centrades en els aspectes relle-
vants per als robots mòbils, es va concloure que, tot i que el mètode SIFT
era més adeqüat per aquests, ambdós mètodes tenien propietats comple-
mentàries.

Per aprofitar aquesta complementarietat, la contribució final d’aquesta
tesi és un mètode d’aprenentatge per reforç per seleccionar, durant l’aplicació
del procés de reconeixment d’objectes, quin dels dos mètodes és el més ade-
quat basant-se únicament en caracteŕıstiques de la imatge simples de cal-
cular. Aquest mètode ha estat validat en un complex conjunt de proves
de reconeixement d’objectes, fins i tot ha superat els resultats d’un expert
humà en alguns casos.
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• Vull donar el meu agraiment més profund a en Reinaldo, per l’ajuda
entusiasta i incondicional que m’ha ofert d’ençà que va venir al labo-
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Chapter 1

Introduction

If some day robots are to get closer to what science fiction depicts, they will
definitely require a rich perception and representation of the environment.
In the past, robots used sonars as instruments for this task. Navigating
with a sonar is similar to walking in a dark room trying to feel the walls and
objects with the hands. Comprehensibly the first localization algorithms
relied almost completely in the movements of the robot, just using the per-
ception of the environment to correct the errors in the odometry (Elfes, 1989,
1990; Moravec, 1988). Later, ladars provided more reliable measurements,
however, ladars are still too expensive for most applications, and the 2D
range scanners are not able to provide enough information to qualitatively
characterize places, not to mention objects. Lately, advances in computer
vision along with an improvement in digital cameras have risen an increasing
interest within the robotics field towards a vision-based autonomous robot.

However, extracting meaningful information from images has proven to
be an arduous task. Myriad problems plague visual information, like per-
spective transformations introduced when the point of view changes, occlu-
sions or motion blur, just to name a few.

Nevertheless, we humans, as vision-based autonomous navigating agents,
get around these problems and manage to recognize places and objects. Nu-
merous studies have been dedicated to understand how animals construct
their mental maps of the environment and how they use them to navigate.
A notable example is the work of Tolman (1948) where the author intro-
duces the idea of a cognitive map based on ethological experiments with
rodents. According to this study, rats construct mental representations of
places based on the spatial relation of environment’s features.

This theory gained strength when O’Keefe and Dostrovsky (1971) iden-
tified place cells in rodent brains. This kind of cells are neurons, mainly
located in the hippocampus, that fire when the rat is located in certain
places. These neurons are activated primarily by visual cues, but also by
movements because they show activity even in the dark.
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When published, this study had little impact on the robot navigation
research community, still in its first stages. However, time has passed and
the field of robot navigation has seen enormous progress. Since then, many
interesting robot navigation models taking inspiration from Tolman’s the-
ory have been proposed, such as the TOUR model by Kuipers (1978), that
is designed as a psychological model of human common-sense knowledge of
large-scale space; the RPLAN by Kortenkamp (1993), a model of human
cognitive mapping adapted to robotics, and evaluated in an indoor scenario
combining inputs from vision and sonar sensors; or the schematic maps by
Freksa et al (2000) that, based on the idea of cognitive maps, distinguished
between different levels of abstraction for map representation and their ap-
plications: representations closer to the geometric reality of the world are
useful for local navigation and obstacle avoidance. On the other hand, more
abstract or schematic representations can help in global localization and
path-planning tasks.

In the beginning, these type of approaches materialized in the form of
topological localization systems such as the ones described by Filliat and
Meyer (2003), that make an extensive survey of internal representations of
spatial layout for mobile robots with a focus on localization, or the more
recent topological approach by Tapus and Siegwart (2006), that propose
to use a signature which they call fingerprint to represent a room. This
signature is constituted by a circular string that encodes the distribution of
color blobs and sharp edges –extracted from omnidirectional images and a
pair of 2D laser range scanners pointing in opposite directions respectively.

Recently, more ambitious approaches in the cognitive sense have been
undertaken, as the one by Vasudevan et al (2007), that proposed a hierarchi-
cal probabilistic concept-oriented representation of space, constructed from
objects detected in the environment and their spatial relationships. Such
representation allows to endow the robot with a reasoning capacity that
transcends the question ”where am I?”, typically pursued by the previous
localization systems, by giving it the ability to infer the purpose or category
of the room through the semantically meaningful elements or objects that
can be detected.

However, if this type of approaches are to succeed, they will undoubtedly
require much more advanced perception capacities than the ones typically
found in a robot nowadays. Along the way to this ambitious goals in robotics
research, this thesis contains the contributions described in the following
section.

1.1 Contributions

The main contribution of the first part of this thesis is a signature to
characterize places similar in spirit to the method proposed by Tapus and
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Siegwart (2006) in that it uses an omnidirectional vision sensor to perceive
the environment. However, instead of relying also in range information
provided by laser range scanners, the place model proposed here is purely
vision based. In this approach, a place is characterized as a constellation
of combinations of different types of visual feature regions extracted from a
panoramic image that can be used as a node of a topological map graph.

These types of features are designed to be resistant to viewpoint and
illumination changes and, in consequence, the proposed signature is also
resistant to some extent to these problems. Furthermore, as the signature
is composed from many individual features, it can tolerate some degree of
dynamic changes in the environment while still being capable of recognizing
the place. In order to test the proposed method, we have performed local-
ization tests in various sequences of panoramas taken in different rooms of
various buildings.

Since analyzing the whole map can become a time consuming task, we
propose and evaluate a fast re-ranking method based in the bag of features
approach to speed-up this step. Finally, we show that the presented signa-
ture is notably resistant even in the case of using a conventional perspective
camera to perform localization.

In order to allow the robot to move between the nodes of the topologi-
cal map, the second contribution of this first part is a biologically inspired
inexpensive visual homing method based on the Average Landmark Vector
(ALV). This homing method is able to determine the direction home by com-
paring the distributions of landmarks corresponding to the home with the
current omnidirectional images, but without having to explicitly put them
in correspondence. Typically, artificial landmarks have been used in experi-
ments with the ALV. However, the method presented in this work combines
the ALV with the feature regions employed earlier for global localization,
thus complementing the localization method. First, a theoretical study is
performed to evaluate the applicability of the proposed method in the do-
main of the local features and, next, it is evaluated in real world experiments
showing promising results.

Even though the localization method proposed in the first part of this the-
sis is able to reliably model and recognize places, still few semantic knowl-
edge about the world is available to the robot to reason with. As mentioned
earlier, Vasudevan et al (2007) proposed a powerful space representation
constructed from semantically rich elements of the environment. However,
in order for this model to be applicable, a fast and robust object recognition
or classification method is indispensable.

Indeed, not only localization would benefit from having a robust, gener-
alistic and easily trainable object recognition system. Also other fields such
as robot manipulation, human robot interaction and, in general, any disci-

3



pline that addresses a practical use of robotics in a not highly structured
environment would benefit from such a method. On the other side, com-
puter vision is obtaining impressive results with recent object recognition
and classification methods, but we are aware of little effort on porting it
to the robotics domain. Therefore, a lightweight object perception method
which allows robots to interact with the environment in a human cognitive
level is still lacking.

In order to help reduce a bit this gap, in the second part of the thesis
the main contribution is the evaluation of two successful state of the art
object recognition methods – the SIFT object recognition method from Lowe
(2004), and the Nister and Stewenius (2006) Vocabulary Tree – on a realistic
mobile robotics scenario, that includes many of the typical problems that
will be encountered when roboticists try to use these methods on practical
matters. Both methods have several properties that make them attractive
for the problem of mobile robotics: the SIFT object recognition method
detects object hypothesis location up to an affine transformation and has
a low ratio of false positives; the Vocabulary Tree is a bag of features type
method that was designed with the objective of being fast and scalable.
Furthermore, it is suitable for types of objects that may confuse the SIFT
method because of few texture or repetitive patterns. Additionally, and
more importantly, several modifications and improvements of the original
methods are proposed in this thesis in order to adapt them to the domain
of mobile robotics.

The selected algorithms are evaluated under different perspectives, as
for example:

• Detection: Does the method have the ability to easily and accurately
detect where in the image is located the detected object? In most
situations, large portions of the image are occupied by background
texture that introduce unwanted information which may confuse the
object recognition method.

• Classification: A highly desirable capability for an object detection
method is to be able to generalize and recognize previously unseen
instances of a particular class, is this achievable by the method?

• Occlusions: Usually a clear shot of the object to recognize will not be
available to the robot. An object recognition method must be able to
deal with only partial information of the object.

• Image quality: Since we are interested in mobile robots, motion blur
needs to be taken into account.

• Scale: Does the method recognize the objects over a wide range of
scales?
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• Texture: Objects with a rich texture are typically easier to recognize
than those only defined by its shape and color. However, both types
of objects are equally important and we want to evaluate the behavior
of each method in front of them.

• Repetitive patterns: Some objects, such as a chessboard, present repet-
itive patterns which cause problems in methods that have a data as-
sociation stage.

• Training set resolution: Large images generate more features at differ-
ent scales that are undoubtedly useful for object recognition. However,
if training images have a resolution much higher than test images de-
scriptor distributions may become too different.

• Input features: Most modern object recognition methods work with
local features instead of raw image pixels. There are two reasons for
this: in the first place, concentrating on the informative parts of the
image the size of the redundant input data is significantly reduced and,
on the second place, the method is insensitive to small pixel intensity
variations due to noise in the pixels, as well as small changes in point
of view, scale or illumination. We evaluate several state of the art
visual feature detectors.

• Run-Time: One of the most important limitations of the scenario we
are considering is the computation time. We want to measure the
frame-rate at which comparable implementations of each method can
work.

From the obtained results, conclusions on the methods viability for the mo-
bile robots domain are extracted and some ways to improve them are sug-
gested. The final aim of this work is to develop or adapt an object recogni-
tion method that is suitable to be incorporated in a mobile robot and used
in common indoor environments.

However, as it was found that none of the evaluated object recognition
methods completely fulfilled the requirements of a robotics application, we
proposed, as a last contribution, a Reinforcement Learning based approach
to select on-line which object recognition schema should be used in a given
image. The Reinforcement Learning approach is based on low level features
computed directly from the image pixels, such as mean gray-level value or
image entropy. It was evaluated in a challenging dataset and found to have
very good performance. Another possible use of this method –although
not directly addressed on this work because of time constrains– could be
speeding up the Nister and Stewenius Vocabulary Tree by quickly discarding
irrelevant areas of an image.
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1.2 Robot

All experimentation carried on through this thesis have been done with the
help of a real robot. Figure

1.3 Publications

From the work carried on while pursuing this thesis, several publications
have been derived:

• A. Ramisa, A. Tapus, R. Lopez de Mantaras, R. Toledo; ”Mobile
Robot Localization using Panoramic Vision and Combination of Local
Feature Region Detectors”, In Proceedings of the 2008 IEEE Interna-
tional Conference on Robotics and Automation, Pasadena, California,
May 19-23, 2008, pp. 538-543.

• R. Bianchi, A. Ramisa, R. Lopez de Mantaras; ”Learning to select
Object Recognition Methods for Autonomous Mobile Robots”, In Pro-
ceedings of the 18th European Conference on Artificial Intelligence,
Patras, Greece, July 21-25, 2008, pp. 927-928.

• R. Bianchi, A. Ramisa, R. Lopez de Mantaras; ”Automatic Selection
of Object Recognition Methods using Reinforcement Learning”, In Re-
cent Advances in Machine Learning (dedicated to the memory of Prof.
Ryszard S. Michalski). Springer Studies in Computational Inteligence.
To appear.
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• A. Ramisa, S. Vasudevan, D. Scharamuzza, R. Lopez de Mantaras,
R. Siegwart; ”A Tale of Two Object Recognition Methods for Mo-
bile Robots”, In Proceedings of the 6th International Conference on
Computer Vision Systems, Lecture Notes in Computer Science 5008,
Santorini, Greece, May 12-15, 2008, pp. 353-362.

• A. Ribes, A. Ramisa, R. Toledo, R. Lopez de Mantaras; ”Object-based
Place Recognition for Mobile Robots Using Panoramas”, In Proceed-
ings of the 11th International Conference of the ACIA, Frontiers in
Artificial Intelligence and Applications, Vol. 184. IOS Press, Sant
Marti d’Empuries, Girona, October 22-24, 2008, pp. 388-397.

• A. Ramisa, R. Lopez de Mantaras, D. Aldavert, R. Toledo; ”Compar-
ing Combinations of Feature Regions for Panoramic VSLAM”, In Pro-
ceedings of the 4th International Conference on Informatics in Control,
Automation and Robotics, Angers, France, May 2007.

• M. Vinyals , A. Ramisa, R. Toledo; ”An Evaluation of an Object
Recognition Schema Using Multiple Region Detectors”, In Proceed-
ings of the 10th International Conference of the ACIA. Frontiers in
Artificial Intelligence and Applications, Vol. 163. IOS Press, Sant
Julia de Lria, Andorra, October 2007, pp. 213-222.

• A. Goldhoorn, A. Ramisa, R. Lopez de Mantaras, R. Toledo; ”Using
the Average Landmark Vector Method for Robot Homing”, In Pro-
ceedings of the 10th International Conference of the ACIA. Frontiers
in Artificial Intelligence and Applications, Vol. 163. IOS Press, Sant
Julia de Lria, Andorra, October 2007, pp. 331-338.

• D. Aldavert, A. Ramisa, R. Toledo; ”Wide Baseline Stereo Match-
ing Using Voting Schemas”, In 1st CVC Research and Development
Workshop, October 2006.

• A. Ramisa, D. Aldavert, R. Toledo; ”A Panorama Based Localization
System”, In 1st CVC Research and Development Workshop, October
2006.

Besides, three more papers have been submitted for publication:

• A. Ramisa, A. Tapus, D. Aldavert, R. Toledo, R. Lopez de Mantaras;
”Robust Vision-Based Localization using Combinations of Local Fea-
ture Regions Detectors”.

• A. Goldhorn, A. Ramisa, D. Aldavert, R. Toledo, R. Lopez de Man-
taras; ”Combining Invariant Features and the ALV Homing Method
for Autonomous Robot Navigation based on Panoramas”.
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• D. Aldavert, A. Ramisa, R. Toledo, R. Lopez de Mantaras; ”Visual
Registration Method for a Low Cost Robot”.

1.4 Outline of the Thesis

This thesis contains eight chapters that can be grouped in two parts of closely
related content: chapters three and four describe an approach to visual-
based indoor global localization without any semantic capability, while chap-
ters five to seven address the issue of object recognition, the main difficulty
if a semantically enhanced approach is to be attempted. Chapters two and
eight present the related work and preliminaries, and the conclusions and
future work respectively. Next is a brief outline of the thesis starting at
chapter two.

Chapter 2: Related Work and Preliminaries

In this chapter, we review literature related to both of the robot lo-
calization and object recognition fields. Approaches to global local-
ization with similarities to the one proposed are discussed, and inter-
esting methods for object recognition that have some characteristics
relevant for robotic applications are presented. Finally, some prelim-
inaries on the type of visual features employed through all this work
are reviewed.

Chapter 3: Global Localization Method

In this chapter our proposed topological indoor localization system is
presented and evaluated in a dataset of panorama sequences from vari-
ous buildings. Additionally, a re-ranking of the map nodes to speed up
the search of the current location is proposed. Also experiments with
conventional perspective images instead of panoramas are performed.

Chapter 4: Appearance-Based Homing with the Average Land-
mark Vector

In order to travel between the topological map nodes proposed in the
previous chapter, here we experiment with the ALV homing method
using image features as the ones employed for localization. Simula-
tion experiments, as well as real-world ones, are done to verify the
robustness of the method.

Chapter 5: SIFT Object Recognition Method

In this chapter the SIFT object recognition method, as well as the
proposed modifications, are described and evaluated. First we review

8



the effects of varying the different parameters of the algorithm and,
next, the most successful configurations are further evaluated on the
whole test data.

Chapter 6: Vocabulary Tree Method

Similarly to the previous chapter, here different choices of parame-
ters for the Vocabulary Tree method, and the proposed adaptations
to detect objects in unsegmented images, are compared. The best
performing combination is again evaluated on the whole test data.

Chapter 7: Object Recognition Method Selection with Reinforce-
ment Learning

In our experiments, we found that both methods have advantages and
drawbacks and therefore, in this chapter, we propose a Reinforcement
Learning approach for selecting the best performing method for a given
input image.

Chapter 8: Conclusions and Future Work

Finally, in this chapter, the conclusions of the thesis and future re-
search directions are presented.
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Chapter 2

Related Work and
Preliminaries

Since the beginning of the 90’s one of the best solutions to the robot naviga-
tion problem has been Simultaneous Localization And Mapping (or simply
SLAM) techniques. These techniques consist of a statistical framework to
simultaneously resolve the problems of localization and map building com-
bining the information from the odometry and the sensors of the robot.
SLAM was proposed in a series of seminal papers by Smith and Cheeseman
(1986) and Smith et al (1990).

Traditionally there are two main approaches to SLAM: metrical and
topological. In short, metrical SLAM builds a geometric map of the envi-
ronmentis and recovers the exact position of the robot, while topological
SLAM methods build qualitative maps which contain the connectivity be-
tween fuzzy-defined places and are particularly useful in path-planning tasks.
Between this two main approaches, there is a range of hybrid approaches
that combine some characteristics of both paradigms to compensate for the
defects of each single approach (Tomatis et al, 2002). Next we give a brief
explanation of both paradigms, with their advantages and limitations, and
some examples.

Metrical SLAM techniques build maps that reflect the real geometric
properties of the environment and are the more frequent SLAM methods.
The earliest approach to SLAM used occupancy grid maps, first proposed by
Elfes (1990, 1989) and Moravec (1988) in the late 80s, a short time before
the introduction of SLAM by Smith, Self and Cheeseman. The map repre-
sentations divide the environment in a high-resolution grid, in which each
cell contains the probability of being occupied by obstacles or not. These
methods allow the use of raw sensor data without any feature extraction
process, but they require a lot of memory. The original motivation for this
kind of maps is that the predominant sensor at the time of its development
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was the sonar, a short-range and mostly imprecise detector.
The main advantages of metric SLAM are that it is simple to reuse a

map in different robots, its construction is straightforward (grid maps consist
only of occupied/free cells, and in feature-based maps features are located at
their estimated position) and that the map is close to a CAD model (Thrun,
1998). In addition, metric SLAM methods facilitate tasks such as local
navigation and obstacle avoidance. However, the most important drawbacks
of metric SLAM methods is that they are very space-consuming, no efficient
path-planning strategies can be carried on metric maps, a very precise and
reliable sensor is required and, in spite of the robustness introduced, there
is still a significant dependence on the odometry of the robot.

Kalman filters are the base of the classical SLAM method. The maps in
this approach are usually represented by the Cartesian coordinates of sets
of features, which can be shapes or distinctive objects in the environment.
Using these features and the estimated position and orientation of the robot
arranged in a state vector, posteriors are computed with the Kalman filter,
along with uncertainties in the landmarks and the robot positions.

The basic assumption taken in Kalman filter mapping is that the motion
and perception models are linear with added Gaussian noise. To overcome
the non-linearities inherent in the real world, Taylor expansions are used.
This modified approach is known as extended Kalman filters. The principal
advantage of SLAM based on Kalman filters is that a full posterior proba-
bilities map is estimated in real-time, and its most important drawback is
the Gaussian noise assumption, which implies that it can not handle the
correspondence problem (Thrun, 2002).

An extension of the Kalman filters paradigm is the algorithm by Lu
and Milios (1997) which combines a first phase where a posterior map is
computed using Kalman filters with an iterative maximum likelihood data
association step. The main advantage of this modification over the original
method is that it can cope with the correspondence problem as long as
the posterior map computed in the first step is accurate enough. Its main
drawback is the iterative nature of the method, which makes it not suitable
for real-time.

Another extension of this paradigm which obtained very good results
uses a Rao-Blackwellized particle filter to maintain various Kalman filters
with different hypothesis of the robot position. This way the correspondence
problem can be solved by keeping the most feasible hypothesis (Doucet et al,
2000; Thrun, 2002)

Expectation Maximization algorithms for robot localization are based on
the work in maximum likelihood by Dempster et al (1977). This SLAM
technique performs hill climbing in all the possible maps to find the most
coherent one. It consists of two iterative steps: the E-step where the robot
position is estimated based on the best available map, and the M-step, which
estimates a maximum likelihood map based on the locations computed at
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the E-step. The principal advantage of this method is that it solves the
correspondence problem by repeatedly re-localizing the map relative to the
present map at the E-step. With the multiple hypotheses tested, different
correspondences are tried and the most ones likely are used. The main
drawback of the algorithm is that it is iterative, so it can not be used in
real-time and is not incremental. Examples of Expectation Maximization
SLAM methods include Burgard et al (1999) and Thrun et al (1998).

The sensors used in most of the metric SLAM algorithms are tradition-
ally sonars and 2D laser range scanners because they directly retrieve depth
information. Therefore the inclusion of a new landmark in its estimated
3D position on the map is straightforward. In recent years several methods
capable of performing metric SLAM with purely visual information have
started to appear. However, in images the landmark depth information
is not directly accessible, so landmark map location must be obtained by
reconstruction from two or more views (Hartley and Zisserman, 2004).

One way to classify these visual SLAM methods is by the type of im-
age acquisition hardware used. The MonoSLAM method by Davison et al
(2007) is the first successful approach to SLAM using a single perspective
camera. A map is constructed recovering the position of salient features –
computed with the detector of Shi and Tomasi (1994) – using structure from
motion. Another approach is to use two or more cameras and obtain the
depth of the detected features by means of stereopsis. This approach is the
one taken by Se et al (2001), where the 3D position of SIFT (Scale Invarian
Feature Transform) features (Lowe, 2004) is estimated with the help of a
Tryclops trinocular camera system. Finally, an approach that has attracted
much attention recently consists in using an omnidirectional camera. With
a wider field of view, more features can be detected and matched to the
map, resulting in a more robust estimation of the robot position (Murillo
et al, 2007). Furthermore, having omnidirectional vision means that po-
tentially every frame acquired with the vision system will have sufficient
features for localization. In opposition, perspective cameras can easily be
pointed towards an area without enough texture (e.g. a white wall) making
localization impossible.

Topological SLAM ignores the geometry of the environment and repre-
sents it by a set of descriptions of significant places. The map is usually
represented as a graph, where the nodes are the places and the accessibility
information between them are the edges. Topological localization methods
do not attempt to find the precise position of the robot (a (x, y) coordinate
to some reference frame), but to qualitatively know where in the map is the
robot. Although different strategies can be used, the most common way
for topological localization systems to characterize places is constructing a
descriptor based in features of the environment (Filliat and Meyer, 2003).
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The most important advantages of topological navigation are the follow-
ing: it does not require a metric sensor, the qualitative representation of
the space can be easily used in high-level tasks (for example path-planning),
an objective representation of the environment is not necessary, it requires
less memory than a metric map and in general has a lower complexity level.
The drawbacks are that most pure topological maps do not suffice for local
navigation and that the decision of when and how to update the nodes of
the map and when to add new ones is not always clear. In addition, if the
localization method does not use odometry at all, then the perceptual alias-
ing problem gets worse as no movement information is available to help in
the disambiguation of places, such as when closing a loop.

The concept of space representation of topological localization has a
strong relation to the way animals construct their mental maps of the envi-
ronment. As mentioned in Chapter

O’Keefe and Dostrovsky (1971) identified the place cells in rodent brains.
Place cells are neurons located mainly in the hippocampus that are acti-
vated when the rat is in a certain place. The cause of activity of this neu-
rons is primarily sensorial information –in particular visual features– but
also movement information is used, as they continue activating in the dark.
This evidence poses a stimulating example of a successful topological nav-
igation system. In contrast, Thrun (2002) states that the main difference
between metric and topological SLAM approaches is the resolution of the
map: in metric SLAM it is fine-grained and in topological SLAM it is coarser.
In fact, until recently, most of the topological SLAM algorithms were hy-
brid approaches where nodes are given by partitioning the free space under
some criteria, but no significant qualitative differences between the nodes
are present (Tomatis et al, 2002; Choset and Nagatani, 2001; Nieto et al,
2004). This lack of pure topological methods is because SLAM algorithms
were originally designed for sonars, and later for 2D laser range-finders. This
kind of sensors give a very accurate estimation of depth, but provide none
or very few information about the appearance of the environment and, thus,
most of the time it is not possible to discriminate one place from another,
so no pure topological approaches were possible using that type of sensors.

The situation began to change with the introduction of digital cameras
as sensors for SLAM methods. Cameras offer a much richer source of infor-
mation about the environment’s appearance that can be used to characterize
places in a distinctive way. An illustrative example of such type of topolog-
ical SLAM method is Tapus and Siegwart (2006). This method describes
places using fingerprints. Fingerprints are circular ordered lists of features
extracted from the readings of an omnidirectional camera and two 2D laser
range-finders. The extracted features are: color patches and vertical edges
from the omnidirectional images and corners from the laser range-finders.
In addition, the features are enriched with orientation information and long
empty spaces are also taken into account. The list of features is then rep-
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resented as a string, where each character encodes a distinct feature. The
match between fingerprints is done using a modified string matching algo-
rithm to cope with the uncertainty introduced by occlusions or changes in
the point of view.

Finally, the simultaneous topological localization and mapping process
is performed by a partially observable Markov decision process, that again
copes with uncertainty to find in which place of the map the robot is and
know when to add new information (Tapus and Siegwart, 2006). This ap-
proach has been tested in indoor as well as in outdoor environments, with
very good results in both. In addition, loop-closing tests were performed,
with successful results.

2.1 Localization

SLAM is composed of two main activities: Localization and Mapping. Lo-
calization takes care of deciding where in the map is the robot located and
Mapping is about when and how the map must be updated. Although both
are important problems, in this work we have addressed primarily the for-
mer.

As stated by Thrun et al (2000) three different localization problems are
distinguished in the literature:

1. Position Tracking. This type of localization consists in correcting small
odometry errors as the robot moves with the help of perceptual in-
formation. The uncertainty in the robot localization is usually local
in this type of problem, making unimodal state estimators such as
Kalman Filters a good option. A similar concept is visual odometry,
where the movement of the robot is estimated from visual information
(Scaramuzza and Siegwart, 2008).

2. Global Localization. In this type of problem the initial position of the
robot is not known, and it can’t be used to constrain the area of the
map where the robot can be located. Consequently the method must
be able to robustly distinguish between the different possible positions.

3. Robot Kidnapping (Engelson, 1994). This problem consists of sud-
denly teleporting a well-localized robot to a random position of the
map without letting the robot know. This type of problem simulates
a gross localization error and evaluates the ability of the method to
recover from it.

In Chapter
Murillo et al (2007) propose a hierarchical method for localization us-

ing omnidirectional images. This method uses vertical lines (radial in the
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omnidirectional image) characterized using color descriptors. The hierarchi-
cal nature of the method can deal with large databases by applying three
filters of increasing complexity (from linear to quadratic in the number of
features) to reject unlikely images. When at least five correct line matches
have been computed between the query image and two related images from
the dataset, metric localization can be performed using the 1D radial trifocal
tensor and a robust model fitting method such as RANSAC. The method
has been evaluated in two image datasets both for topological and metric
localization with very good results.

Cummins and Newman (2007) propose an appearance-only SLAM sys-
tem that learns generative models of places to compute the probability that
two visually similar images were generated in the same location. The ap-
proach is based on the bag of visual features type of method proposed by
Sivic and Zisserman (2003). Another example is the approach proposed also
by Cummins and Newman (2008), that uses a probabilistic bail-out condi-
tion based on concentration inequalities. They have applied the bail-out test
to the appearance-only SLAM system and extensively tested their method
in outdoor environments.

Furthermore, the work presented by Angeli et al (2008) describes a new
approach for global localization and loop detection based on the bag of words
method.

Booij et al (2007) build first an appearance graph from a set of train-
ing omnidirectional images recorded during exploration. The Differences
of Gaussians (DoG) feature detector and the SIFT descriptor are used to
find matches between images in the same manner as described in (Lowe,
2004), and the essential matrix relating every two images is computed with
the 4-point algorithm (with planar motion assumption) and RANSAC. The
similarity measure between each pair of nodes of the map is the ratio be-
tween the inliers according to the essential matrix and the lowest number of
features found in the two images. Appearance based navigation is performed
by first localizing the robot in the map with a newly acquired image and
then using Dijkstra’s algorithm to find a path to the destination. Several
navigation runs are successfully completed in an indoor environment even
with occlusions caused by people walking close to the robot.

Valgren and Lilienthal (2008) evaluate an approach focusing on visual
outdoor localization over seasons using spherical images taken with a high
resolution omnidirectional camera. Then, Upright Speeded Up Robust Fea-
tures (U-SURF) (Bay et al, 2008), that are not invariant to rotation, are
used to find matches between the images and the 4-point algorithm is used to
compute the essential matrix. In a previous experiment, the authors found
that the performance using these feature regions was similar to the DoG re-
gions described with SIFT (Lowe, 2004) but much more efficient to compute.
In order to reduce the unaffordable computational cost of comparing a novel
view with every single image stored in the memory of the robot, incremental
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spectral clustering is used to group together images from a room, or area,
that share a similar appearance and find a group representative. Then the
matching has a first phase where the novel image is compared to the cluster
representatives and, if there is no clear winner, the query image is compared
to all images belonging to the putative clusters.

2.2 Towards Semantic SLAM

With the aforementioned techniques impressive achievements have been ob-
tained. However, these purely navigational approaches are not useful for
the high-level reasoning we expect from robots that have to assist us in our
everyday life. For example inferring the type of room the robot is in, or
where should it start looking for a milk bottle are tasks that can be only
accomplished with a more semantically rich representation of space.

To address this problem, a straightforward solution could be enhance
an existing metric map with detected objects and other semantic informa-
tion. The work of Galindo et al (2005) takes this approach and represents
space as a occupancy grid from which a hierarchical topological map is con-
structed to ease path-planning and reasoning tasks. Semantic concepts are
represented in a parallel hierarchy inferred from the objects detected and
anchored to nodes of the hierarchical spatial map. Alternatively, Vasudevan
(2008) proposed a more integrated approach where the higher-level features
with semantic content are the building blocks from which a hierarchical prob-
abilistic concept oriented representation of space is created and grown. This
approach brings together the two previously described SLAM types (as in
an hybrid approach) and incorporates a new semantic layer on top of them.
This semantic layer is built from high-level features with semantic content
detected in the environment, such as objects or doors instead of corners and
lines. The detected objects are inserted in metric object graph maps that
constitute the lower level of the space representation. These object graph
maps can be used in a similar way as a conventional feature-based metric
map. However, its true power is that they can be generalized in a hierarchi-
cal way to high-level concepts that represent particular categories of rooms
or areas. Several approaches of increasing complexity for the generalization
of place categories are presented. The tests included data acquired from
19 living and working environments. Furthermore, experiments on a real
plataform with real sensor data where also conducted using a version of the
SIFT Object Recognition method presented by Lowe (2004).

2.3 Visual Object Recognition

As can be seen in the recently published literature, currently there is a big
push towards semantics and higher level cognitive capabilities in robotics
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research. One central requirement towards these capabilities is being able
to identify higher level features like objects, doors etc. in perceptual data.
These high-level features can be perceived using a variety of sensing devices.

Using pure range data for object recognition seems attractive. However
2D laser range scanners, the most typically used sensor for robot mapping
and navigation, provides an amount of information that is definitely not
sufficient to identify objects, furthermore it is restricted to a single plane.
3D lidars provide a richer source of information. However, its price and
working conditions make them still difficult to use in mobile robots.

Recently, a novel type of range cameras that uses infrared light time-of-
flight has appeared in the market. These cameras are a convenient way to
acquire a 3D image in an indoor scenario. Furthermore, they are compact
(in the order of a few centimeters per side) and have a good frame-rate.
However this technology is still at early stages, and current models of this
type of cameras can only obtain images with a resolution of less than two
hundred pixels per side of scenes with a maximum depth of five meters. In
spite of the novelty of this technology, research for object recognition with
these devices is already being conducted (Gächter et al, 2008).

To date, the most common approaches to object recognition are done
using conventional visible spectrum camera images. The major drawback of
this type of sensors is that depth is not directly accessible and, if required,
it must be estimated using stereopsis, structure from motion or a similar
technique. However cameras have a wealth of other advantages, such as
much more resolution or an affordable price. Although impressive results
are obtained by modern object recognition and classification methods, still a
lightweight object perception method which allows them to interact with the
environment in a human cognitive level is lacking. Furthermore, the system
should be able to learn new objects in an easy, and preferably automatic,
way.

Recently methods have been proposed that are quite successful in par-
ticular instances of the general object classification problem, such as de-
tecting frontal faces or cars (Viola and Jones, 2001) , or in datasets that
concentrate on a particular issue (e.g. classification in the scale-normalized
Caltech-101 dataset). However in more challenging datasets, like the detec-
tion competition of the Pascal VOC 2007, the methods presented achieved
a lower average precision1. This low performance is not surprising, since
object recognition in real scenes is one of the most challenging problems
in computer vision (Pinto et al, 2008). The visual appearance of objects
can change enormously due to viewpoint variation, occlusions, illumination
changes or sensor noise. Furthermore, objects are not presented alone to
the vision system, but they are immersed in an environment with other ele-
ments, which clutter the scene and make recognition more complicated. In a

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
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mobile robotics scenario a new challenge is added to the list: computational
complexity. In a dynamic world, information about the objects in the scene
can become obsolete even before it is ready to be used if the recognition
algorithm is not fast enough.

Next we review some of the most relevant state-of-the-art object detec-
tion and classification methods. Also, we discuss which sources of informa-
tion can be exploited in the mobile robotics domain in order to have a fast
and robust object recognition method, and which of the existing techniques
could be applied in such domain.

For clarity, in the following we will refer to classification as the task
of assigning previously unseen object instances to given general class label
(is this a mug?), recognition as the task of identifying a particular object
instance (is this my mug?) and detection as (roughly) deciding which area
of the image is occupied by our object of interest (where is the mug?).

Recently, significant work has been done in visual object classification,
with many methods making analogies to document retrieval literature. Vi-
sual vocabularies (see Section

Sivic and Zisserman (2003) use k-means to cluster local feature descrip-
tors into a vocabulary of visual words and the TF-IDF (Term Frequency -
Inverse Document Frequency) scheme to prioritize distinctive visual words.
Local features are detected in an image with an affine-invariant adaptation
of Harris corner detector (Mikolajczyk and Schmid, 2002) and the MSER de-
tector (Matas et al, 2004) and a histogram is built from visual-word counts.
Experiments are done in scene matching - where query descriptor vectors
are compared to the ones in database - and object retrieval throughout a
movie, where a user-specified query region is used to re-rank the results us-
ing spatial consistency, accomplished by matching the region visual-words to
the retrieved frames. However, creating and using large linear visual vocab-
ularies (millions of visual words) can become an intractable problem. Nister
and Stewenius (2006) use the same TF-IDF scoring scheme but this time the
vocabulary is constructed using a hierarchical k-means. This allows an effi-
cient lookup of visual words in logarithmic time, enabling the use of larger
vocabularies. The results show how well the system scales to large databases
of images in terms of search speed, and the larger vocabulary describes much
better the images so, in contrast with (Sivic and Zisserman, 2003), geomet-
ric information is not really needed to obtain good performance. New query
vocabulary trees are compared to the training set contents using k-Nearest
Neighbors, therefore the training set is organized in an inverted files struc-
ture to speed-up the comparison. Jegou et al (2007) highlight that although
the inverted files structure speeds up the search, it is still linear in the num-
ber of training images, and propose to organize the database images in a
two-level structure. The first level consists in an inverted files structure of
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Figure 2.1: Hyperfeature stack. The base level is constructed from de-
scriptors calculated in a dense grid over the image. Subsequent levels are
generated from local histograms of codebook memberships from the previous
level. This image has been taken from (Agarwal and Triggs, 2008).

medoids (the most central element of a cluster used as its representative)
computed with the k-medoids algorithm (Kaufman and Rousseeuw, 1990)
over the visual vocabulary vectors. The second level contains an inverted file
for the vectors assigned to each of the k medoids. This two level structure
allows to search only the inverted files for the medoids closer to a query vec-
tor. Another contribution of the work of Jegou et al (2007) is a contextual
dissimilarity measure to iteratively modify the neighborhood structure to
reduce the impact of too-often-selected images.

This concept of bag of words approach has been maturing in recent years,
with works such as the one by Zhang et al (2007), where multiple approaches
(e.g. different alternatives to construct the image signature, various distance
measures, etc.) as well as a wide range of parameters are rigorously tested
in multiple object and texture datasets. The classifier used in this work is
a SVM, using both the Earth Distance Measure and the χ2 distance.

Nowak et al (2006) evaluate different parameter settings for a bag of
features approach and propose to use descriptors computed randomly in
a dense grid over the image rather than only at positions returned by an
invariant feature detector. Even though performance is lower when using
few descriptors (feature detectors find more informative image regions) when
the number of sampled regions is high enough, their brute force approach
can improve the results of feature detectors.

A somewhat related approach is the one by Agarwal and Triggs (2008).
They propose a novel representation, which call hyperfeature (see Figure

Serre et al (2007) propose a feedforward approach for object classifica-
tion, deeply inspired in psychological and biological research, that mimics

20



the primate visual pathway. It has been designed following evidence col-
lected in numerous studies done with monkeys. The model consists of four
layers of computational units, alternating simple cells (called computational
units) layers with complex cells. In short:

• S1: The first layer computes the response of the image pixels to a bank
of Gabor filters at different orientations and scales.

• C1: The second layer performs a local MAX operation at each position
of a grid defined over the results of the first layer.

• S2: The third layer compares the results of the previous layer with
a vocabulary of approximately 1000 patches in C1 format on local
neighborhoods, acting as Gaussian RBFs.

• C2: Finally, the last layer takes the maximum over all S2 associated
with each patch, resulting on a vector of the same size of the vocabu-
lary. This vector is then used in a conventional classifier such as SVM
or boosting.

The proposed approach is tested on a handful of datasets and for differ-
ent tasks such as classification, presence/absence detection in unsegmented
images or detection with sliding windows. Furthermore, the proposed fea-
ture detector is shown to outperform several other detectors/descriptors –
such as DoG/SIFT (Lowe, 2004) – and object classification methods like
the Implicit Shape Model from Leibe et al (2004). One of the interesting
points of this approach is its biological plausibility, another is the fact that
being a feedforward model it is easily parallelizable, and therefore with the
appropriate hardware can possibly be used in real-time scenarios. However,
in its current state the approach stands only for the primary visual cor-
tex –the what in the what/where ventral/dorsal visual pathways dichotomy
(Zeki, 2001)–, and the rest of the visual system of the brain is emulated by
a simple linear classifier. Adding the top-down capabilities and feedback
connections of the rest of the visual system constitutes an extremely inter-
esting, yet challenging, line of research that aims to yield a vision system
similar to biological ones. In (Serre et al, 2006) the system is shown to be
comparable to human performance in rapid animal-non animal categoriza-
tion task. In this task humans are asked to decide if an animal is present in
a picture exposed from 30 to 60 ms. This short exposition gives time only
to the primary visual cortex to process the information.

The work of Opelt et al (2006a) proposes combining multiple feature
types in a single model making use of boosting to form each classifier. This
enables each category to choose the best features, regardless of type, that
describes it. Local features used are both discontinuity and homogeneity re-
gions. The former are appearance features detected and described with var-
ious methods that capture local intensity changes and the later are regions
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extracted with wavelets or segmentation that contain repetitive textures or
stable intensity distributions respectively. Results show that different fea-
ture types perform much better in some classes than others, so combining
them in a single model greatly improves classification results.

Although good results have been obtained using bag of words type meth-
ods, when a signifficant ammount of clutter is present in the image or detec-
tion and pose estimation is necessary, information on the relative position
between object features is essential. This is usually a requirement when
dealing with real world images, and several methods have been developed
in order to take advantage of this positional information.

Fergus et al (2003) present a generative model to learn object classes as
a flexible constellation of parts. The parts are found using the local scale
invariant feature detector proposed by Kadir et al (2004), that concentrates
on high entropy regions of the image. The different parameters of the objects
(appearance, shape, relative scale and occlusions and statistics of the feature
finder) are learn jointly in a Bayesian framework. One of the main drawbacks
of this approach is the complexity of this combined estimated step which
restricts the method to use only approximately 10 parts per object.

Leibe et al (2004) present the Implicit Shape Model (ISM), a method that
combines detection and segmentation in a probabilistic framework. First a
codebook is built using agglomerative clustering over a set of 25x25 pixel
patches computed around Harris corner points. For every resulting cluster
center, the Normalized Grey-scale Correlation distance is computed to all
the training patches and, for those that are over a certain threshold, the
relative object center position is stored. For detection, a 2D Generalized
Hough Transform (with continuous space to avoid discretization) is used to
cluster probabilistic votes for object centers. Finally, the image is segmented
assigning to each pixel the most probable object class with respect to the
matched patches that include it. A Minimal Description Length procedure is
used to reject overlapping hypotheses based on segmentation results. Tests
have been done with the UIUC car database and with the individual frames
of a walking cows video database, reporting very good performance. How-
ever, results show that the method is able only to deal with very small scale
changes (10% to 15%). To avoid this, authors suggest using scale-invariant
interest point detectors or rescaled versions of the codebook.

Opelt et al (2006b) present the Boundary-Fragment Model (BFM). This
strategy is similar to the one of Leibe et al (2004), but instead of local
patches, it uses boundary fragments. A codebook of fragments for detecting
a particular class is built by first computing Canny edges of the training
images and finding edge segments that match well in a validation set (and
bad in the negative examples set) using an optimization procedure. Next
the candidate edge segments are clustered using agglomerative clustering
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on medoids to reduce redundancy, storing also the centroid of the object.
Groups of two or three segments that estimate well the centroid of the object
are used as weak detectors in a boosting framework. A strong detector is
trained selecting weak detectors with good centroid prediction capabilities in
positive images and that do not fire in negative images. For detection, weak
detectors are matched to image Canny edges, with each one voting for one
or various centroid positions in a 2D Hough voting space. Votes are accu-
mulated on a circular window around candidate points, taking those above
a threshold as object instances. Finally approximate segmentation can be
obtained backprojecting the segments that voted for a centroid back into the
image. In order to make the method robust to scale and in-plane rotation,
different scaled and rotated of the codebook are used simultaneously.

The authors extended this method for multi-class object detection (Opelt
et al, 2006c) using a shared codebook. The method can be trained both
jointly or incrementally. Yu et al (2007) propose a shape-based method
for object detection. The method builds on the ISM and uses k-Adjacent
Segments (Ferrari et al, 2008) with k=3, called Three Adjacent Segments
(TAS) as shape-based feature detector. A codebook of TAS is generated
by first building a fully connected graph of all the TAS in the training set
with distance in the edges between every pair of TAS and then applying
Normalized Graph Cuts to obtain the cluster centers. Similarly to the ISM
model, probabilistic votes are casted in a 2D Hough Transform, and Parzen
Windows are used to find the most plausible object centers. Finally Gradient
Vector Flow is used to find an approximate segmentation of the objects. The
proposed method is interesting and has a similar performance to BFM in
the cows and motorbikes datasets used by Opelt et al (2006b) although
using simpler features, specially in the case of few training images and small
codebooks (∼ 200 features).

Lowe (1999, 2004) proposes a single-view object recognition method
along with the well known SIFT features. First SIFT features of the train-
ing images are compared using Euclidean distance to the set of descriptors
from the test image using a K-D tree and the Best Bin First algorithm to
speed up the matching process. Matches in which the distance ratio between
the first and second nearest neighbors is greater than 0.8 are rejected. This
eliminates 90% of the false matches while discarding less than 5% of the
correct matches. Matches remaining after this pruning stage are clustered
using its geometrical information in a 4D Generalized Hough Transforma-
tion with broad bin sizes, which gives the initial set of object hypotheses.
To avoid the problem of boundary effects in bin assignment, each keypoint
match votes for the 2 closest bins in each dimension. Although imprecise,
this step generates a number of initial coherent hypotheses and removes a
notable portion of the outliers that could potentially confuse more precise
but also more sensitive methods. Bins of the Hough Transform containing
three or more matches constitute an object location hypothesis. Finally a
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least-squares method is used to estimate the affine transformation of the
detected object.

The SIFT object recognition method has been also extended to handle
3D objects. Lowe (2001) proposes to create a model from a set of training
images taken at different points of the view sphere to gain robustness to
viewpoint changes. The model is constructed in an unsupervised manner by
clustering together similar training images and establishing links between
different views of the same feature. When voting in the Hough Transform
for a test image, matches to different adjacent images of the training set
are propagated using these links to ensure that at least one model view
accumulates votes for all the matching features. Brown and Lowe (2005)
use a view-centered approach to find relations between an unordered set
of 2D views of an object and, next, all views are combined in an object-
centered model. Gordon and Lowe (2006) go one step further and use a 3D
object model in an augmented reality task. First, a 3D model of the object
is built in an offline stage from a collection of views. Feature points are
extracted and matches between each related pair of views are established
using camera geometry information to filter false correspondences. Next,
matched SIFT features are added to a 3D object-centered model. During
the online stage, the pose of the object is estimated by first performing a
2D to 3D feature matching between the query image and the 3D object
model, and then using RANSAC and the Levenberg-Marquardt algorithm
(Levenberg, 1944) to determine the transformation and filter the outliers.

Bag of features type object classification methods that make no use of
geometric information can still be used for detection by taking a sliding win-
dow approach. Fulkerson et al (2008) propose several ideas in this direction:
to accelerate the evaluation of the windows they use integral images defined
over the feature dictionary space. This would still not be sufficient to achieve
frame-rate speed in classification if a large dictionary is used, which has re-
peatedly been shown to improve the performance in recent work (Nister and
Stewenius, 2006; Philbin et al, 2007). In order to improve the ratio between
dictionary size and classification accuracy, agglomerative information bot-
tleneck (AIB) is used: First large dictionaries are created with hierarchical
k-means and next AIB is used to build an agglomerative tree from the leaf
nodes creating a coarse-to-fine-to-coarse architecture. This reduces the dic-
tionary size and overcomes the problem of excessively large dictionaries while
retaining the performance. The method is tested in the Graz-02 dataset
achieving results comparable to those of Marszalek and Schmid (2007) and
with an execution time of around 2 seconds. Lampert et al (2008) propose,
as a much faster alternative to sliding windows, a branch and bound scheme
to rapidly explore the space of all possible bounding boxes for the object of
interest in the image. The bounding box parameter space is defined by inter-
vals of rectangles of interest coordinates. Namely, [T,B,L,R] (top, bottom,
left and right respectively) defines a rectangle interval with T = [tmax, tlow],
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etc. Consequently, the parameter space is defined as a tuple of such inter-
vals. The key element that makes it possible to use branch and bound in this
schema is the definition of a quality bound (i.e. maximum score that can be
obtained for a given bounding box parameter interval). Using this quality
bound, search can be prioritized to sets of parameter intervals that attain
the best maximum score. Lampert et al. apply the proposed approach to
optimize localization with a simple bag of features approach, with spatial
pyramid kernels and even with multi-image search.

Context has been argued to provide very relevant information in computer
vision. In Opelt et al (2006a), weak classifiers are selected with a boosting
method to form the final classifiers; it was found in the experimental results
that a high percentage of weak classifiers with higher weights selected local
features corresponding to background. This can be interpreted as that con-
text in some classes is more discriminative than foreground parts, although
it greatly depends on the training set used. Also, context can be introduced
in an ontology-based manner between objects as it is done in Rabinovich
et al (2007), where object co-occurrence probability is computed by extract-
ing related terms to each class from Google Sets or directly computing it
from the ground truth. The system first segments query images into re-
gions, which are in turn classified in a bag of features fashion and results
obtained are re-ranked based in object co-occurrences. In Torralba et al
(2003) context is provided using global features. These are computed from
local features extracted with a collection of steerable filters applied over the
image, then taking the average magnitude of the responses over a coarse spa-
tial grid in order to obtain a global descriptor of 384 dimensions, which is
finally projected to its 80 principal components. Knowing that video frames
captured in the same place have a strong correlation, the authors use a Hid-
den Markov Model to compute the probabilities of being in a specific place
given global features from some frames ago. Place recognition results are
also proven to provide a strong prior for object detection.

We are aware of few works that consider the case of general object recog-
nition in the domain of mobile robots. In Ekvall et al (2006) the authors
integrate object recognition and SLAM. The proposed object recognition
method works with few training images, and consists of two stages: Hy-
potheses generation and verification. Active vision is used to focus on inter-
esting parts of the image. The first stage uses Receptive Field Coocurrence
Histograms (RFCH) and, in the verification stage, an area of interest that
contains a maximal number of hypotheses is zoomed in using the optical
zoom of the camera. Again RFCH are used to verify each hypothesis and
finally SIFT features are extracted and matched to the model image. No
further geometrical constraints are aplied to discard outliers and, if an object
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dependent number of SIFT features are matched, the object is considered
detected. Background substraction is used during the training stage to pre-
cisely segment the objects. In Murphy-Chutorian et al (2005) the authors
present a system that learns and recognizes objects in a semi-autonomous
fashion. Their system acquires learning samples of new objects by analyzing
a video sequence of a teacher showing an object in a variety of poses and
scales. Then it automatically segments and builds an internal representa-
tion with a shared vocabulary of visual features. The vocabulary is made
using k-means over features based on Gabor-jets and hue-saturation values
extracted at Harris corner points. Each visual word stores the relative po-
sition of the objects where it appears. Recognition is done by accumulating
votes on a Hough Transform in a similar way as in the work of Leibe et al
(2004). In the experiments, the system runs at about 1-2Hz, recognizing ob-
jects from a 100 object database with 78% of mean accuracy Additionally,
the database included difficult objects, like untextured, flexible and very
similar objects (wires, cans, water bottles). Pose and scale invariance is
obtained by superimposing multiple learning samples, so it is only invariant
in the range that the object was learned. Wersing et al (2008) propose a
biologically motivated object recognition that runs at 1-2Hz in a 2.4 GHz
QuadCore Intel processor. Furthermore, an online learning framework is
proposed that uses stereo depth map segmentation to determine interest
regions corresponding to the object to train in frames of a video sequence
and collects sufficiently dissimilar exemplars for training in a short time
memory. These cropped images are used to train View-Tuned Units (VTU)
linear discriminating units that respond on a receptive field of shape features
and coarse color input. VTUs are trained at three different resolutions to
attain good activation levels at the whole size range at which the object may
appear in future images. A complete map of VTUs for all objects and scales
is then defined covering the whole input image. From this map of responses
a model can be created to determine object positions and scale. The model
is trained from the responses of the VTUs map over the training images for
which the ROI of the object is known thanks to the depth cues. A linear
model is learn that finds the most likely position and size for the object by
gradient descent starting at the global maximum of the VTUs map. The
method is evaluated both in synthetic imagery and in real online learning
experiments. It is also compared to other methods in the UIUC cars (side
view) database. It was found to perform slightly worse (approx. 3%) when
compared to the methods of Leibe et al (2004) and Mutch and Lowe (2006).
However it has to be taken into account that the Wersing et al approach use
a codebook of 50 shape features instead of up to 1000 features as in Mutch
and Lowe and Leibe et al. methods, making online learning and detection
possible. The system has been demonstrated running in real time in an
Honda Asimo robot.
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Figure 2.2: Schema of the Differences of Gaussians computation. At the left
the initial image is incrementally convolved with Gaussians. The adjacent
image scales are subtracted to produce the Differences of Gaussians, which
are shown at the right. This figure has been taken from (Lowe, 2004).

2.4 Local Features

As we have seen in the previous section, the majority of recent successful
object recognition algorithms make use of interest regions to select relevant
and informative features of the objects to learn. In this section we will
explain the most relevant feature detectors and descriptors.

Extracting and describing these features is a computationally demanding
task, that can be prohibitive for applications that must run close to real-
time. Fortunately, work is being devoted to achieve faster methods and to
develop implementations of the algorithms ready to run in special hardware.
For example in Heymann et al (2007), the authors designed a version of the
SIFT feature detector and descriptor (Lowe, 2004) that can run at twenty
640x480 frames per second on a GPU unit. Even a FPGA that can be
used to detect affine-covariant features at camera frame-rate (Cabani and
MacLean, 2006) is being developed. These and further advances in these
techniques will enable these features to be used in real-time applications.

2.4.1 Detectors

The Differences of Gaussians (DoG), proposed by Lowe (2004) together
with the SIFT descriptor, is a similarity-invariant feature detector. In order
to obtain scale invariance, points are detected at multiple scales in a scale-
space constructed convolving the image with Gaussian kernels of different
scale.

Then, features are found at the extrema of Difference of Gaussians func-
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tion convolved with the image, D(x, y, σ), computed by subtracting two
nearby scales of the scale-space separated by a constant multiplicative fac-
tor k (see Figure

D(x, y, σ) = (G(x, y, kσ)−G(x, y, kσ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)

The Difference of Gaussians is known to provide a good approximation
of the Laplacian of the Gaussian:

LoG(x, σ) = σ2∇2G

that has been shown to detect stable image features (Mikolajczyk, 2002).
Candidate points are then adjusted to sub-pixel and sub-scale resolution by
fitting a 3D quadratic funtion to determine the interpolated location of the
maximum. Further computations for each feature are done at the Gaussian
smoothed image with the closest scale, to ensure scale-invariance. Unstable
extrema (i.e. with low contrast) and edge responses are rejected in order to
increase robustness of the detected features to small amounts of noise. Next,
canonical orientation of the detected feature is determined by clustering in
a 36-bin histogram the orientation of the gradient of sample points within a
region around the feature point.

The Harris Affine, proposed by Mikolajczyk and Schmid (2004) is a scale
and affine covariant version of the corner detector proposed by Harris and
Stephens (1988). A short explanation of the original algorithm follows.

The Harris Corner Detector is an improvement of the interest point de-
tector by Moravec (1980) and locates the corners in the image. A corner
can be described in terms of image intensities as a region where the inten-
sity gradient changes fast in two nearly-orthogonal directions. The second
moment matrix or auto-correlation matrix describes the distribution of the
gradient in a local neighborhood. The two eigenvalues of this matrix (α
and β in the equations) represent the magnitude of the two principal signal
changes.

M =

[
I2
x IxIy

IyIx I2
y

]
(2.1)

Where Ix and Iy are the first derivatives of the image in the x and y directions
averaged with a Gaussian window to prevent a noisy output. Depending on
the eigenvalues of the matrix three situations may arise: both eigenvalues
are low, which means that we are in a region of constant intensity (a flat
region); one of the eigenvalues is high and the other low, this corresponds
to an edge and, finally, when both eigenvalues are high we have a corner.
The eigenvalue decomposition is, however, time-consuming. A faster way to
compute the relation between the eigenvalues uses Tr(M) and Det(M):

Tr(M) = α+ β (2.2)
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Figure 2.3: Example of the response of the Harris Affine. a) Original image.
b) Response of the Harris corner detector (darker means higher response).
c) Detected Harris-Affine regions.

Det(M) = αβ (2.3)

The corner response can then be formulated as:

R = Det(M)− kTr(M)2 (2.4)

where k is a constant parameter which tunes the response of the function
usually put to 0.04. Figure

The scale invariance Harris Laplace detector is obtained using the multi-
scale approach proposed by Lindeberg and G̊arding (1997). In this approach
the Harris points are selected at their characteristic scales with the Lapla-
cian of the Gaussian. The characteristic scale of a feature is the scale at
which it is best represented. To select corners at their characteristic scales,
first a scale-space representation of the Harris corner detector output must
be constructed. That is why the second moment matrix is adapted to scale
changes, to make it independent of the image resolution:

M = µ(x, σI , σD) =

[
µ11 µ12

µ21 µ22

]
= σ2

Dg(σI)∗
[

I2
x(x, σD) IxIy(x, σD)

IyIx(x, σD) I2
y (x, σD)

]
(2.5)

The local image derivatives are calculated with Gaussian kernels of scale
σD (differentiation scale). The derivatives are then averaged by smoothing
with a Gaussian of scale σI (integration scale). The scale at which corners
are detected is determined by σD and, as in the Harris corner detector, the
objective of the integration is reducing the sensitivity to noise. The scale-
space is built with the Harris function for pre-selected scales σn = ξnσ0

where ξ is a scale factor between successive levels, set to 1.4 by Lindeberg and
G̊arding (1997) and Lowe (1999) and to 1.2 in the computationally efficient
version of the Harris Laplace algorithm (Mikolajczyk and Schmid, 2004).
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Figure 2.4: The response to the Laplacian of the Gaussian across scales for
the feature detected in the images attains a maximum at its characteristic
scale. This image has been taken from (Mikolajczyk et al, 2005)

Then the matrix µ(x, σI , σD) is computed picking σI = σn and σD = sσn
where s is a constant factor set to 0.7. Finally corners are detected at every
scale by extracting the local maxima. Once the scale-space is constructed,
the characteristic scale of each detected corner is automatically selected
using the Laplacian-of-Gaussian:

|LoG(x, σn)| = σ2
n|Ixx(x, σn) + Iyy(x, σn)| (2.6)

The Laplacian-of-Gaussian detects blob-like structures in the output of the
Harris detector, when the size of the blob (produced by a corner) and the
size of the LoG kernel over scales are equal, a maximum is attained. The
characteristic scale is relatively independent of image resolution, it is related
to the scale of the structure and not the resolution at which the structure
is represented. The points where the LoG attains no extremum or the LoG
response is below a threshold are rejected. Finally, Harris-Affine Detector
aims to obtain the same set of pixels for every occurrence of a local struc-
ture. With this in mind, a procedure to undo the deformations introduced
by changes in the point of view is needed. The solution proposed by Miko-
lajczyk and Schmid (2004) is based on estimating the affine shape of the
local structure. Harris-Laplace automatically selects the scale of a feature,
but can only deal with similarity transformations. However, when the scale
changes in orthogonal directions are different (for example in a 3D rotation,
when the object is slanted), it fails. At this point the shape of the region de-
tector changes from a circle to an ellipse, to account for the different scaling
in orthogonal directions. This effect can be appreciated in figure

A really brief outline of the iterative algorithm is presented next. It
must be taken only as a way to intuitively understand the behavior of the
method, not as exact instructions for its implementation.

1. The initial points are selected using the scale-adapted Harris corner
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detector. These points are not detected in an affine invariant way, but
its scale and location serve as initial values for further search.

2. At each iteration of the detection process, the integration scale of a
corner is selected at the maximums of the normalized Laplacian of the
Gaussian across scales.

3. The differentiation scale is selected at the maximum of normalized
isotropy using the value of the integration scale σI and the relation
between the eigenvalues of the second moment matrix. Different values
of the differentiation scale σD are generated using σD = sσI for values
of s in the range [0.5, .., 0.75]. The value of s that produces the isotropy
measure Q = λmin(µ)

λmax(µ) closer to 1 is selected.

4. Once the scales are selected, the spatial localization of an interest point
is refined in the affine-transformed domain and a displacement vec-
tor between the original point and the precise localization is back-
projected to the original image domain. This vector is then used to
correct the spatial localization of the point.

5. The shape adaptation matrix is estimated with the second moment
matrix computed in the preceding steps. The transformations are
computed as µ(k) = µ

−1
2 (x(k), σ

(k)
I , σD)(k) for step k of the iterative

process. This transformation is then concatenated with the previous
transformations using:

U = Πk(µ
−1
2 )(k)U (0) (2.7)

The second moment matrix is determined by the values of σI and σD
at each step, which are automatically selected at each iteration. Thus,
the resulting µ matrix is independent of the initial values of scale and
resolution of the image.

6. The convergence criterion can be based either on the U or the µ ma-
trix. If it is set to µ, the algorithm stops when the relation between the
eigenvalues is close enough to 1. In practice a small error of εC = 0.05
is allowed:

1− λmin(µ)
λmax(µ)

< εC (2.8)

The second stopping criterion consists in decomposing U = RTDR and
compare the consecutive U-transformations. If consecutive R and D
transformations are similar enough, the iterative algorithm is stopped.
Both termination criteria produce the same final results. In case of
divergence a stopping criterion must be also set. If the eigenvalue ratio
λmax(µ)
λmin(µ) > εC for εC = 6, the point should be rejected as it leads to
unstable elongated structures.
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7. If termination criteria is not satisfied, go to step 2.

When the parameters of the ellipse are calculated, the affine covariant region
is extracted and remapped to a circle. This circle is the normalized view
from where the local descriptors will be computed.

The Hessian Affine covariant region detector (Mikolajczyk et al, 2005)
works in the same way as the Harris Affine but, in this case, the feature
regions detected are blobs and ridges instead of corners. The rest of the al-
gorithm is the same as the Harris Affine: a scale-space selection to detect the
characteristic scale of each point using the Laplacian of the Gaussian, and
an elliptical affine region estimation using the relation between the eigen-
values of the second moment matrix. The difference between the Hessian

Figure 2.5: Some regions detected by the Hessian Affine covariant region
detector.

Affine and the Harris Affine comes from the selected initial points. In this
case the Hessian matrix is used:

H = H(x, σI , σD) =

[
µ11 µ12

µ[21] µ22

]
= σ2

Dg(σI)∗
[
Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) I[yy](x, σD)

]
(2.9)

The second derivatives of the image give a strong response on blobs and
ridges. The local maximums of the determinant of this matrix correspond
to a blob-like structure. In addition, a function based on the determinant
of the Hessian matrix penalizes very long structures for which the second
derivative in a particular direction is very small. This type of structures are
commonly unstable and difficult to locate precisely.
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MSER or the Maximally Stable Extremal Region detector proposed by
Matas et al (2002) detects connected components at all the possible thresh-
olding levels of an image. The concept of extremal region defines a set of
pixels with a value either higher or lower than all the neighboring pixels,
which can be seen as a local maximum or minimum (an extremum) of the
surface defined by pixel intensities. Finally, maximally stable refers to ex-
tremal regions where the intensity values of the pixels of the region is several
levels higher (or lower) compared to the neighbors. This type of local fea-
tures has some desirable properties:

• Affine changes in illumination preserve the regions since they only
depend on the ordering of the pixels and not on the intensity values.

• Geometric changes that can be locally approximated by an affine trans-
formation, an homography or even a continuous non-linear warping
will preserve the topology. This means that pixels from a single con-
nected component will also be in a connected component in the trans-
formed image.

• The maximally stable requisite ensures that noise or acquisition prob-
lems will not alter the regions significantly.

• Since no smoothing is involved in the process, both very fine and very
large structures are selected.

• An efficient, near linear complexity, detection algorithm exists for this
type of local feature. The complexity for detecting all the regions in
an image is O(n log log n) where n is the number of pixels in the
image.

The structure of the proposed algorithm is the following: First, all the pixels
are sorted by its intensity value. Next, all pixels are marked in the image
(either in increasing or decreasing order) and the union-find algorithm is
used to maintain the growing and merging between the connected compo-
nents as in the watershed algorithm. During the enumeration process, the
area of each connected component as a function of the intensity is stored.
Then, the maximally stable extremal regions are found by looking at the
parts of these functions where no changes in the area of a connected com-
ponent occur during a long range of intensity thresholds. This procedure
is done twice, one for positive MSER regions (increasing order) and one for
negative MSER regions (decreasing order).

Once each MSER region is detected, a measurement region is defined
around it. These region can be of arbitrary size as long as it is constructed
in an affine-invariant way. The purpose of this measurement regions is to
define the area that will be used to construct the descriptors for the MSER
regions. The size of the measurement region is a tradeoff between the risk
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Figure 2.6: An image binarized at different threshold levels: a) 51 b) 77 and
c) 102. The MSER regions are those that do not change (no pixel of its
boundaries switches color) during several successive threshold levels.

of crossing a deep discontinuity or a non-planar region and distinctiveness.
Smaller measurement regions are more likely to be planar, but in the same
way they are much less likely to be unique or, at least, discriminative enough.
To work out this problem, Matas et al (2002) propose the use of various
measurement regions at different scales for every MSER region: The region
itself, and the convex hull scaled 1.5, 2 and 3 times. The MSER regions are
normalized to a circle using the second order moments of the ellipse that
encloses the region.

The Speeded Up Robust Features (SURF) detector (Bay et al, 2008)
is a hessian-based feature detector that, thanks to several optimizations like
using an integral image to compute feature locations, can run at fast rates.
Even though SURF includes both a detector and a descriptor, here we have
only used the detector part, and evaluation of the SURF descriptor in our
experiments is left as future work.

This detector finds similar regions to the Hessian Laplace, as is also based
in the Hessian matrix. However, in the SURF approach, second derivatives
of the Gaussian used to compute the Hessian matrix are replaced by box
filters equal to Haar features (Haar features can be seen in Figure

The approximated determinant of the Hessian matrix, computed with
the box filters replacing the Gaussian second derivatives, is used to compute
the response to blob-like structures at multiple scales. This structures will
be later detected as the local maxima after a 3 × 3 × 3 neighborhood non-
maxima suppression.
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Figure 2.7: Some regions detected by the MSER affine covariant region
detector.

Figure 2.8: Haar features.

2.4.2 Descriptors

Local features are of little use if they can not be compared and matched
with regions from other images. The vast majority of applications that
employ local features such as wide baseline matching, object recognition,
image retrieval, recognition of object categories or robot localization involve
a matching step where features of two or more different images must be
compared and put in correspondence. This step implicitly involves the use
of a local descriptor. The objective of these descriptors is to provide a
compact and distinctive representation of the local feature to simplify the
matching stage and, at the same time, induce robustness to the remaining
variations in the measurement regions. These variations can be illumination
changes, noise and changes in the measurement region introduced by deep
discontinuities or non-flat surfaces.

Abundant types of local descriptors are present in the literature with
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different degrees of complexity and robustness to error in the measurement
region. The simplest possible descriptor is the region pixels alone, but this
descriptor is very sensitive to noise and illumination changes. Other de-
scriptors make use of histograms, image derivatives or information from the
frequential domain to increase the robustness.

Recently, Mikolajczyk and Schmid (2005) published a performance eval-
uation of various local descriptors. In this review more than ten different
descriptors are compared for affine transformations, rotation, scale changes,
jpeg compression, illumination changes and blur. The conclusions of this
analysis observe an advantage in performance of the Scale Invariant Fea-
ture Transform (SIFT) introduced by Lowe (2004) and its variant Gradient
Location Orientation Histogram (GLOH) (Mikolajczyk and Schmid, 2005)
and, at a certain distance, PCA-SIFT (Ke and Sukthankar, 2004). Follows a
description of the SIFT algorithm. After the local feature detection, a set of
pixels from the image (the measurement region) is extracted and normalized
to a common representation. Then, from this normalized image patch, the
descriptor is computed.

The SIFT descriptor is based on a model proposed by Edelman et al
(1997) where biological vision is imitated. Complex neurons in the primary
visual cortex are activated by a gradient in a particular orientation if it
appears within a small range of positions in the retina. The hypothesis
presented by Edelamn et al is that this complex neurons function is to
allow object recognition under small 3D rotations, which would introduce
small displacements in the gradients position. Experiments performed using
a computational model inspired by these ideas show an improvement in
performance of more than 55% over direct correlation of the gradients.

Although based on the idea proposed by Edelman et al, the SIFT de-
scriptor has a different computational model. In the algorithm proposed by
Lowe, the image patch is divided into 16 sub-regions and an histogram of
the orientations of the gradient is computed for every sub-region. A gradient
can move within a sub-region and still produce the same descriptor, in this
way the shift in position allowed by the complex neurons is emulated. The
orientations are quantized by the magnitude of the gradient to lower the
contribution of instable orientations from sample points in flat zones of the
image. The histograms have eight bins, each of 45 degrees. In order to avoid
sudden changes in the descriptor with small changes in the image position,
and to give more importance to gradients on the center of the measurement
region, a Gaussian weighting function with sigma one half the width of the
measurement region is used to weigh the sample points. The reason to give
more relevance to the central gradients is because these points are less likely
to suffer registration errors introduced by non-planar surfaces and depth
discontinuities. A trilinear interpolation is used to distribute gradient sam-
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Figure 2.9: The SIFT algorithm divides the local patch in sub-regions with
image gradients and histogram construction.

ples across adjacent bins of a histogram, to avoid boundary effects in the
gradient orientation. In this way, a small change in the orientation will not
change the descriptor abruptly.

Once all the histograms are constructed, the values of all bins are ar-
ranged as a vector. Sixteen histograms of eight bins each yield a vector
of 128 dimensions. This vector is the descriptor used to identify every lo-
cal feature. To achieve illumination invariance, the vector is normalized to
unit length, this normalization will make the descriptor invariant to affine
changes in the intensity of the measurement region. However, non-affine
illumination changes such as camera saturation or different reflectance from
3D surfaces with different orientations can cause changes in the magnitude
of some gradients, but it will rarely affect the orientation of the gradient. To
reduce the influence of these variations, each value of the normalized feature
vector is thresholded to 0.2. The value of 0.2 was determined experimentally
using images containing 3D objects under different illumination conditions.

Gradient Location Orientation Histogram (GLOH) proposed by Miko-
lajczyk and Schmid (2005) is an extension of the SIFT descriptor. The algo-
rithm to compute the descriptor is the same except for the distribution of the
sub-regions. Here a log-polar location grid is used, with three sub-regions in
radial direction, each divided into 8 sub-regions in angular direction except
the central sub-region. This results in 17 sub-regions. Instead of 8 orienta-
tion bins for each histogram, 16 bins are used. The resulting feature vector
has 272 values, which are reduced to 128 with PCA.
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Chapter 3

Global Localization Method

In this chapter we propose a topological vision-based localization approach
for a mobile robot evolving in dynamic indoor environments. Robot visual
localization and place recognition are not easy tasks, and this is mainly due
to the perceptive ambiguity of acquired data and the sensibility to noise and
illumination variations of real world environments. We propose to approach
this problem by using a combination of affine covariant detectors so as to
extract a robust spatial signature of the environment.

The global localization system proposed is similar in spirit to the one
proposed by Tapus et al (2004); Tapus and Siegwart (2006). In their work a
fingerprint is defined as a generic descriptor of a room. This descriptor is a
circular string, composed by a character coding each occurrence of a deter-
mined feature. They propose color blobs and vertical lines, extracted from
an omnidirectional image, and edges, extracted from a laser range-scanner
reading, as features. The advantage of our method is that we only use an om-
nidirectional vision sensor, and therefore the cost of expensive sensors (two
laser range-scanners) is eliminated. In addition, the information extracted
from the images to characterize the rooms can be used by other high-level
processes such as object recognition, thus reducing the computational load
of the robot.

The proposed representation to characterize a place is a constellation of
feature regions extracted from a panoramic image of the room. The local
nature of this representation makes it robust against partial changes in the
image due to occlusions, change in point of view or dynamic changes in the
environment. We decided to use combinations of the following three feature
region detectors: MSER (Maximally Stable Extremal Regions) (Matas et al,
2002), Harris-Affine (Lindeberg, 1998), and Hessian-Affine (Mikolajczyk and
Schmid, 2004), that have been explained in Section

When a new signature is acquired, it is compared to the stored panora-
mas from the a priori map. The panorama with the highest number of
matches is selected. To improve the results and discard false matches, the

41



essential matrix is computed and used to filter the outliers. Finally, the
panorama with the highest number of inliers is selected as the best match.

In our approach images are acquired using a rotating conventional per-
spective camera. When a set of images covering 360 degrees is acquired,
they are projected to cylindrical coordinates and the feature regions are
extracted and described. The descriptors constellation is next constructed
automatically. Hence, by using feature regions to construct the signature
of a location, our approach is much more robust to occlusions and partial
changes in the image than the approaches using global descriptors. This
robustness is obtained because many individual regions are used for every
signature of a location and, thus, if some of them disappear the constellation
can still be recognized.

Nevertheless, combining different region detectors increases the compu-
tational time and memory requirements. For this reason we show that a
re-ranking mechanism based on a global appearance-based similarity mea-
sure can be used to prioritize the most similar map nodes. This approach
is compatible with techniques such as the incremental spectral clustering,
proposed by Valgren and Lilienthal (2008) to reduce the number of stored
panoramas and construct a topological map from the raw visual data.

This framework gives us an interesting solution to the perceptual aliasing
problem (one of the main difficulties when dealing with qualitative naviga-
tion and localization). Our approach is validated in real world experiments
and is compared to other vision-based localization methods.

3.1 Panoramic Image Acquisition

Instead of using an omnidirectional camera, the panoramas have been con-
structed by stitching together multiple views taken from a Sony DFW-VL500
camera mounted on a Directed Perception PTU-46-70 pan-tilt unit. The
camera and pan-tilt unit can be seen in Figure

In order to build a panorama using a rotating camera, it had to be
taken into consideration that the image sequence employed must have a fixed
optical center. Translations of the optical center would introduce motion
parallax, making the image sequence inconsistent. However, if the objects
in the scene are sufficiently far from the camera, small translations can be
tolerated. The steps to stitch all the images in a panorama are the following:

1. The first step consists of projecting all the images of the sequence to a
cylindrical surface. The points are mapped using the transformation
from Cartesian to cylindrical coordinates:

θ = tan−1(
x

f
), v =

y√
x2 + f2

(3.1)
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where x and y are the position of the pixel, f is the focal distance
measured in pixels and θ and v are respectively the angular position
and the height of the point in the cylinder. The cylinder radius is the
focal length of the camera used to acquire the images, as in this way
the aspect ratio of the image is optimized (Shum and Szeliski, 1997).
Taking this into account, the size of the panoramas acquired by our
system have a size of 5058x500 pixels.

2. Once all the images have been projected to cylindrical coordinates, the
rotation between each pair of images must be estimated. In principle,
only panning angles need to be recovered but, in practice, to correct
vertical misalignment and camera twist, small vertical translations are
allowed. Therefore, a displacement vector ∆t = (tx, ty) is estimated
for every pair of input images. The implemented method to compute
∆t distinguishes between three situations:

i If sufficient feature points are found in the shared part of the
images, ∆t is computed by means of matches between pairs of
feature points. To find the translation with most support among
matches, and to exclude false matches and outliers, RANSAC is
used.

ii In those cases where there is not enough texture in the images
to extract sufficient feature points, ∆t is computed looking for
a peak in the normalized correlation between the edges detected
by the Canny edge detector (Canny, 1986) of the two images.
This method has the advantage over other correlation-based ap-
proaches of being independent of the illumination conditions and
the vignetting effect (intensity decreases towards the edge of the
image). In addition, as all the image is used, even with small
amounts of texture a reliable translation can be estimated. How-
ever, this technique is computationally more expensive than fea-
ture matching and is not invariant to rotations or other deforma-
tions in the image.

iii If no texture exists at all and the above procedure fails, the only
remaining solution is to compute the expected translation if the
angular displacement ϕ (in radians) between the images is known:
tx = fϕ and ty = 0

3. Due to automatic camera gain, vignetting or radial distortion, an in-
tensity jump may appear between two images as can be seen in Figure

The procedure to compare two panoramas is relatively straightfor-
ward. First, matches are established as nearest neighbors between the
feature descriptors of both panoramas using the Euclidean distance as
similarity measure. Potentially false matches are rejected comparing
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the distance of the first and the second nearest neighbor in the same
way as proposed by Lowe (2004). Additionally, reciprocal matching
is used to filter even more false matches: if feature fa from the first
panorama matches feature fb of the second panorama, but feature fb
does not match feature fa, the match is discarded.

Next, the epipolar constraint between the panoramas is enforced by
computing the essential matrix. The most straightforward way to
automatically compute the essential matrix is using the normalized
8-point algorithm (Hartley and Zisserman, 2004). However, assuming
that the robot will only move through flat surfaces, it is possible to
use a simplified version where only 4 correspondences are necessary.

E =

 0 e12 0
e21 0 e23

0 e32 0

 (3.2)

Therefore, with a set of at least four correspondences of points of the
form

p = [x, y, z] = [sin(2πx̃), ỹ, cos(2πx̃)] (3.3)

where x̃ and ỹ are the normalized point coordinates in the planar
panorama image, the following equations can be written:

 y′1x1 x′1y1 z′1y1 y′1z1
...

...
...

...
y′nxn x′nyn z′nyn y′nzn



e12

e21

e23

e32

 = 0 (3.4)

where (xi, yi, zi) and (x′i, y
′
i, z
′
i) is the ith pair of corresponding points.

As outliers may still be present among the matches, RANSAC is used
to automatically compute the essential matrix with most support. Fi-
nally, the set of inlier feature matches that agree with the epipolar
constraint is used as the evidence of the relation between the two
panoramas.

Given the high dimensionality of the feature descriptors, matching is
expensive in terms of computational cost even for a small set of nodes.
An alternative to exhaustive matching is to use a global similarity mea-
sure to re-rank the map nodes and estimate the essential matrix only
for the k top map nodes or, applying an any-time algorithm approach,
until a node with a certain ratio of inliers is met. The global similarity
measure should be fast to compute and exploit the differences be-
tween the map nodes to improve the re-ranking. We have applied the
Vocabulary Tree proposed in Nister and Stewenius (2006) for object
categorization to re-rank the map nodes for a new query image as it
fulfilled both requirements. In short, this method constructs a visual
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vocabulary tree of feature descriptors applying hierarchical k -means
on a training dataset. Next, images are described as a normalized his-
togram of visual word counts. To give more emphasis to discriminative
visual words, they are weighted using a Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) approach. This method is also used for
object recognition in this work, and therefore is explained in greater
detail in Chapter

Although the presented method has a very good performance in our
experiments, it is time-consuming to acquire a panorama rotating a
pan-tilt unit every time a localization has to be performed. Instead, we
evaluated the decrease in performance using uniquely a normal planar
perspective image of 45◦ field of view to localize the robot.

The simplest way to decide the corresponding node is by the maxi-
mum number of matches after computing the essential matrix (Ramisa,
2006; Ramisa et al, 2008a; Valgren and Lilienthal, 2008). An alterna-
tive we tried was to use the ratio between the number of matches
and the lowest number of keypoints of the two images (Booij et al,
2007). Experimentally, we did not find much difference between both
approaches in our dataset and therefore we have retained the first one.

3.2 Experimental Design

The objective of the present chapter is twofold: On the one hand, we
want to validate the proposed method for indoor global localization
and, on the other hand, we target to experimentally determine if using
different region detectors simultaneously improves significantly the lo-
calization results. Although successive images acquired by the robot
while moving in the room could be used to incrementally refine the
localization, in our experiments, we wanted to evaluate if combining
different region detectors improves the robustness to viewpoint change
for the presented global localization method and, therefore, we have
only considered the worst case scenario, where only one image per
room is available to localize the robot.

3.2.1 Dataset description

The test-bed data used in this work consists of 17 sequences of panora-
mas from rooms in various buildings1. Each sequence consists of sev-
eral panoramas acquired every 20 cm following a straight line prede-
fined path. This type of sequences are useful to check the maximum

1The data-set can be downloaded from http://www.iiia.csic.es/~aramisa.
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distance at which a correct localization can be performed. The se-
quences have been acquired in uncontrolled environments. In order to
make the data set as general as possible, rooms with a wide range of
characteristics have been selected (e.g., some sequences correspond to
long and narrow corridors, while others have been taken in big hall-
ways, large laboratories with repetitive patterns and others in smaller
rooms such as individual offices). Panoramic images of the environ-
ment are shown in Figure

Table

Standard deviation is also provided in order to assess the stability of
combinations along the different sequences. Not much difference is
observed among the descriptors GLOH and SIFT, which performed
similarly in all cases. Looking at the feature detectors individually,
the best results have been obtained by Harris Affine, while Hessian
Affine and MSER had a similar performance. Overall, the combina-

8 points 4 points 4 points and
Combination algorithm algorithm recipr. match

acl std acl std acl std
HA+S 74% 23% 69% 23% 82% 22%
HA+G 70% 21% 73% 24% 81% 21%
HE+S 58% 24% 73% 26% 75% 25%
HE+G 63% 26% 65% 27% 74% 26%
M+S 62% 28% 78% 18% 76% 23%
M+G 61% 29% 69% 23% 74% 26%

HA+HE+S 64% 15% 78% 19% 86% 14%
HA+HE+G 67% 14% 79% 21% 87% 16%
M+HE+S 56% 23% 75% 23% 87% 15%
M+HE+G 60% 23% 78% 18% 88% 14%
M+HA+S 65% 21% 79% 19% 86% 14%
M+HA+G 70% 25% 79% 19% 88% 11%

M+HA+HE+S 62% 16% 82% 19% 89% 11%
M+HA+HE+G 64% 20% 82% 19% 90% 11%

Table 3.1: Average percentage of correctly localized panoramas (acl) across
all sequences and standard deviation (std). For convenience we have labeled
M: MSER, HA: Harris-Affine, HE: Hessian-Affine, S: SIFT, G: GLOH.

tions of detectors outperformed the individual detectors. The best
performance in the localization test has been achieved by the com-
bination of the three detectors, which classified correctly 90% of the
panoramas. This performance is mainly due to their good complemen-
tarity. Furthermore, in Figure
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Some particularly difficult sequences have been cvc01, iiia04, iiia06
and iiia09. Table

In terms of computational complexity, the most expensive step of the
approach is clearly the bidirectional descriptor matching as can be
seen in Table

When used for object classification, this type of approach requires at
least tens of training images in order to correctly determine the class
of a novel object instance. However, we only used the map nodes to
train both the vocabulary tree and the classifier. This gives only one
training instance for each class. Despite so limited training data, the
approach achieved the notable overall result of re-ranking the correct
node in the first position for 62% of the query panoramas, and among
the top five nodes 85% of times as can be seen in Figure

As expected, the percentage of times the correct map node is re-ranked
at the top position decreases as distance to the query panorama in-
creases (see Figure

3.2.2 Localization with 45◦ FOV images

Constructing a panoramic image with a rotating camera on a pan-
tilt unit is a time-consuming step that requires the robot to stay in a
fixed position during the acquisition. In order to assess the decrease in
performance that would cause using just a single conventional image to
localize the robot we have done the following experiment: For every
test panorama, a random area that spans 45◦ and has at least 100
features is extracted and matched to the map nodes. This procedure
is repeated for every test panorama. After a 10 repetitions experiment
with all test panoramas, the average number of correct localizations
was 73% using Harris Affine combined with MSER and the GLOH
descriptor. This result is good considering how limited the field of view
is. In addition to the time saved in image acquisition, the matching
time is reduced almost one order of magnitude on average.
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Chapter 4

Appearance-Based
Homing with the Average
Landmark Vector

In order to navigate from one to the next node of the ones proposed
in Chapter

To complement the global localization method proposed in this work,
we have investigated a biologically inspired homing method, the Av-
erage Landmark Vector (ALV), that can be used to travel between
the nodes of the map graph. Lambrinos et al (1998, 2000) suggest
the Average Landmark Vector as a way to model the navigation tech-
niques of bees. This model assumes that the animal stores an average
landmark vector instead of a snapshot image, as previous models by
Carwright and Collet (1983) suggested. The advantages of this model
are its simplicity, that only the orientation and the ALV at the home
location have to be stored instead of a whole image. A third advantage
is that no matching of the landmarks has to be done.

In robot homing research artificial landmarks are often used. This is a
strong limitation as it requires setting up the environment beforehand.
Instead, in this work the goal is to create a simple homing method that
can be used without having to rely on artificial landmarks. For this
we propose the combination of the ALV homing technique with visual
invariant feature detectors, like the ones described by (Mikolajczyk
et al, 2005), in panoramic images.

Experiments with the ALV homing method were first done in simula-
tion (Goldhoorn et al, 2007a,b) and because the results were promis-
ing, experiments were also done with real robots (Goldhoorn, 2008) in
an office environment. Additionally, experiments with artificial land-
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marks were also done for comparison purposes.

4.1 Average Landmark Vector (ALV)

In this section we describe the biologically inspired homing technique
Average Landmark Vector by Lambrinos et al (1998, 2000). The ALV
is defined as the average of the landmark (or feature) position vectors:

ALV(F,−→x ) =
1
n

n∑
i=0

−→
fi (4.1)

Where F = {−→f1 ,
−→
f2 , . . . ,

−→
fn} is the collection of features that define the

signature taken at the current position −→x and fi are the coordinates
of the ith landmark position vector. In this equation F contains the
global feature positions to explain and proof the homing technique.
This is the robot centred version, but it is made world centred by
subtracting the current position −→x to easily proof that the homing
technique works :

ALV(F,−→x ) =
1
n

i=n∑
i=0

−→
fi −−→x (4.2)

To differentiate between the world coordinate system and the (self
centred) coordinate system of the robot, the home vector is defined as
follows:

homing(F,−→x ,−→d ) = ALV(F,−→x )−ALV(F,−→d ) (4.3)

Where −→x is the current location of the robot and −→d the destination.
When the ALV functions are substituted by Equation

One important prerequisite of the ALV is that it is necessary to have
the panoramic images aligned to an external compass reference before
computing the homing direction. The Sahara ant Cataglyphis, for
example, uses the polarization patterns of the blue sky to obtain the
compass direction (Wehner, 1994).

ALV homing does not work when the ALV at the current location
and at the goal location are the same (after correction for orientation
differences), because this results in a zero vector. An exceptional the-
oretical case in which this could happen is when the ALV point, the
current location and the goal location are aligned, in practice however
this is very unlikely. To let the robot move anyway in such situations
a random vector could be used to move the robot a small distance,
and then continue the homing procedure.
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In this work we propose to use the ALV method with natural feature
points automatically extracted form images acquired with the mobile
robot camera, without the need of artificial landmarks in the environ-
ment.

The feature points evaluated are the Differences of Gaussians from
Lowe (2004) and the Maximally Stable Extremal Regions from Matas
et al (2002). Only the x and z coordinates of the feature points are
used to compute the ALV because of the flat world assumption. These
local feature points possess qualities which make them interesting for
the ALV. In the first place they are fast to compute (and even faster
hardware-based approaches are being built), the second is that many
higher-level processes are based on information from these interest-
ing regions. Examples could be global localization (Ramisa et al,
2008a; Valgren and Lilienthal, 2008) or object recognition (Lowe, 2004;
Csurka et al, 2004). Therefore there is no overhead in reusing them for
the ALV. As a way to solve the constant orientation prerequisite, in
our work all test panoramic images have been acquired with the robot
facing a constant direction as is common practice in similar works
(Möller et al, 2001; Hafner and Moller, 2001). In order to apply the
ALV method in a navigation experiment a magnetic compass, or an-
other system to acquire the global orientation, is required to align the
panoramas.

4.2 Related Work

To the best of our knowledge no other work has addressed the combi-
nation of the ALV homing method with invariant feature points such
as the MSER or the DoG.

So far, in most works that studied the ALV homing method, artifi-
cial landmarks have been used. For example Lambrinos et al (2000)
used as landmarks four black vertical cylinders, and in (Möller, 2000)
experiments were done inside of a white box with several wide black
vertical stripes on the walls. Möller et al (2001) did extensive exper-
iments in a desert type outdoor scenario with four black cylinders as
landmarks. In this same work an experiment was attempted in an in-
door scenario. Natural landmarks were found by vertically averaging
a certain area of the image and finding edges (i.e. intensity jumps) in
the unidimensional graylevel profile.

Hafner and Moller (2001) investigated if a Multi-Layer Perceptron with
backpropagation and a Perceptron with Delta Rule were able to learn a
homing strategy both in simulation and in real world experiments. For
the real-world experiments panoramic images acquired by the robot
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camera were reduced to a single line by vertically averaging (similarly
to what Möller et al (2001) did), thus the input of the neural networks
is a unidimensional image. Both neural networks successfully learned
a homing strategy with the same characteristics as ALV.

Usher et al (2003) used a version of ALV augmented with depth in-
formation to guide a car-like vehicle in an outdoor experiment. Land-
marks were salient color blobs and the depth information was acquired
directly from the distance of the landmark to the center of the om-
nidirectional image (no unwrapping is performed) using a flat-world
assumption. The authors performed real-world experiments using red
traffic cones (witch hat model) as landmarks.

Vardy (2005) did an extensive study for a variety of biologically plau-
sible visual homing methods in his PhD thesis, both for local and as-
sociative methods, in a real office environment. Among the methods
evaluated in his work, there is the one proposed in Hafner and Moller
(2001), referred to as Center of Mass ALV. In the experiments it per-
formed similarly to other local homing methods, although it was found
that an extra learning phase was necessary to determine which area of
the panoramic image should be used to generate the unidimensional
image in certain environments.

4.3 Experiments Performed and Results Ob-
tained

4.3.1 Simulation

To evaluate how well the ALV homing method works with our type
of visual features, a series of simulation experiments were performed
first. Here we report the most important findings of these experiments.
A more detailed explanation and discussion of the simulation experi-
ments can be found in (Goldhoorn et al, 2007b; Goldhoorn, 2008).

The experiments were done in a simulated environment (see Figure

Adding Gaussian noise to the positions of the feature points with a
standard deviation of 0.001 m or less resulted in a 90% successful runs.
However a standard deviation of 0.05 m or more resulted in only 5%
or less of successful runs.

Occlusions were simulated by removing randomly chosen feature points
before every projection. Removing 50% of the feature points resulted
in a mean success rate of 85%. The method was also robust to adding
randomly placed feature points, which can be thought of as reappear-
ing previously occluded objects.
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Having more reliable feature points present in the world increases the
performance of the robot (higher success rate, less iterations and a
smaller difference with the ideal distance). For the simulation the
range for the number of feature points is between 500 and 1000 for a
success rate of 100%. Although having only 20 feature points in the
world still resulted in 50% to 80% successful runs. However it has
to be taken into account that these runs were without any noise and
without any other disturbances.

Because no depth is used, the ALV method implies an equal distance
assumption of the landmarks. Franz et al (1998) also mentions the
isotropic feature distribution, which can explain why results in a world
with only one wall were worse than in the other configurations. The
robot used more iterations when more feature points were removed,
but this was expected since the ALV every time has a different error.

From these experiments can be concluded that using the ALV for visual
homing with visual feature points is a robust method. Therefore the
next step was to try this method on a real robot.

4.3.2 IIIA Panoramas Database

This section first explains the experimental setup, then the results are
presented and discussed.

Experimental Setup

In these experiments several panorama were acquired at a grid of
known points in the rooms. The orientation of the robot was kept
constant for each panorama so no alignment step is necessary between
the panoramas.

The experiments were done in three rooms of different sizes: the robot
laboratory , the square room and the corridor. A scaled map of the
rooms can be seen in Figures

The locations where the panoramas were created are marked as circles
with its identifying number and a line starting at the center of the
circle and pointing to the direction of the estimated home vector. The
home location is shown as a red circle without line and is also indicated
in the figure captions. The biggest objects in the rooms, such as desks,
are also shown in the maps to give a rough idea of the environment.
Finally, the squares in Figure

Like in the simulation, only the direction of a feature is known and
not its distance, therefore the home vector will not contain distance
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information either. The home angle calculated by the homing method
is compared to the ground truth home angle which is calculated by
geometry.

θdiff(hh, hc) = min (|hc − hh|; 360− |hc − hh|) (4.4)

All angles are in degrees and counter-clockwise; hc is the correct hom-
ing direction calculated by using the positions (geometry), and hh is
computed by the homing method. To find out how well the method
works for each room and each type of feature, all the panorama posi-
tions per data set are used. For each data set (the square room, the
robot laboratory and the corridor) all the locations where a panorama
was created are used to calculate the home vector to each of the other
locations. From the error calculated with Equation

The landmarks contain a bar code from which an ID number can be
extracted. Since the size of the bars is known, the distance to the
landmark can be calculated. In order to make the artificial landmark
approach comparable to the feature based one, neither the landmark
number (for matching) nor the distance information was used in our
experiments.

Results

When calculating the home vector between two points, for example
a and b, the home vector from a to b will obviously always point in
opposite direction of the home vector from b to a. This means that
these are dependent values and therefore only one of them was used in
the analysis. Next we discuss the results for the three different areas.

Robotics laboratory: Most panoramas, 38 in total, were acquired
in the robotics laboratory, a room of 10.5 m × 11.2 m. Only the half
of the room is really used for this experiment because the other part
is filled with working places and the robot soccer field as can be seen
in Figure

The home vectors have an error equal to or lower than 90◦ in 89.3%
of the cases when the DoG detector was used, 92.6% for the MSER
detector and 99.6% when the landmarks were used. An error of 10◦ or
less was obtained in 22.6% of the cases for the DoG detector, 32.7%
for the MSER detector and 64.3% for landmarks. Table

Square room: The square room is 4.0 m × 3.4 m big. Figure
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DoG MSER Landmarks
Mean error 35.60◦ 27.84◦ 14.88◦

Median error 22.85◦ 16.03◦ 10.17◦

Standard deviation 36.67◦ 35.51◦ 14.86◦

Score 0.8022 0.8454 0.9173
Best home 117 117 110
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Figure 4.1: Homing to panorama 137 in the square room (a) using DoG
points and (b) MSER points. All measures are in cm.

DoG MSER
Mean error 13.78◦ 9.65◦

Median error 12.00◦ 12.03◦

Standard deviation 11.31◦ 7.84◦

Score 0.9234 0.9464
Best home 138 138

Table 4.2: The error of the homing method using the panoramas which were
made in the square room.
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Corridor: Although the simulation showed that the ALV homing
method works better in square rooms, we wanted to find out what the
impact of a very long and very narrow room in a real environment
would have on the method. A corridor was chosen for that reason as
last experiment room. The part of the corridor in which the robot
moved is 2.2 m wide and about 22.5 m long. In Figure

In Figure

From the results at the different rooms, it can be seen that the ALV
homing method worked better in both the square room and the robotics
laboratory than in the corridor. This difference might be explained by
the previously found conclusion, in the simulated experiment (Section

Corridor results: The panoramas acquired in the corridor (Figure

In Table

Upper and lower part: In an attempt to improve the results, the
view of the image was limited to only the lower half of the panorama.
This part contains objects which are closer to the robot and therefore
decrease the size of the visible world, for this reason a room may look
more square.

In the robotics laboratory using only the lower half of the panorama
resulted in a lower error than using all feature points of the panorama
(p < 0.001 with the t-test and the rank sum test for both DoG and
MSER). For the other rooms there was no significant difference in
performance. Also here the best results were when the MSER detector
was used (p < 0.005 for the robotics laboratory and corridor) except
for the square room where DoG was the best detector (p < 0.001, rank
sum test).

Also the use of only the upper half part of the panorama was tested,
but these results were significantly worse than using the whole panorama
for the robotics laboratory (p < 0.001, t-test and rank sum test). There
was again no significant difference in the square room and corridor.

Depth: When only the position of the feature points on the panorama
are used then only the direction of the home vector can be found.
However, when the distance to the feature points is available, a more
precise estimation of the distance to home can be calculated.
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4.3.3 Vardy’s Panorama Database

As an additional test, we used the image database of Vardy (2005)1

which he discussed and used to test several homing techniques in his
thesis.

Vardy’s image database consists of panoramic images acquired over a
grid of equally separated points from the hall and the robotics labora-
tory of Bielefeld University. He created six data sets of the laboratory
and two of the hall, all under slightly different conditions, such as the
amount of light and added objects. In the robotic laboratory the data
set consisted of a 10 × 17 image grid with 30 cm separation between
each image (horizontally and vertically); in the hall 10 × 21 images in
a grid were created per data set with 50 cm separation between im-
ages. In contrast to the IIIA database, Vardy’s database was acquired
with an ImagingSource DFK 4303 camera pointing towards an hyper-
bolic mirror. This system directly acquires omnidirectional images,
and therefore spares the panorama creation step. However it suffers
from a much lower resolution. Figure

The vector of a feature has its origin in the image centre (shown as
the red dot in Figure

Table

Results

As can be seen from the Table

It can be seen that a wider vertical view angle gives better results.
When MSER feature points were used, a view angle of 15◦ (above
and below the horizon) worked significantly better than a lower angle
(p < 0.001, t-test and rank sum test). For all data sets except for
doorlit and hall1 the best view angle was 20◦. This is also the case
when DoG feature points were used, except for the data sets day,
hall2 and screen. In the data set day the difference was not significant
enough; using a view angle of 5◦ had the best results in the sets hall2
(p < 0.001, rank sum test) and screen (p < 0.05, rank sum test) when
DoG feature points were used.

It is also clear from Table

Looking at the difference in performance using DoG and MSER fea-
ture points it can be concluded that the use of MSER feature points
significantly outperforms the use of DoG feature points. The artificial

1Vardy’s Panoramic Image Database is available at
http://www.ti.uni-bielefeld.de/html/research/avardy/index.html.
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landmarks in the robotics laboratory were used to find out how well
the method worked in comparison with invariant feature points. The
results with the artificial landmarks were significantly better than us-
ing invariant feature points, the error was about 7◦ less than using
MSER feature points (with only the lower half of the panorama).

Normally one should expect the homing method to work worse when
the distance between the current location and the home is lower, but
this relation could not be found. This might be because the room is
too small or because objects occlude a big part of the field. Further
work would be needed to find out if there is any relation between the
distance and error.

An attempt to improve the results was done by trying to make the
rooms, such as the corridor, more square by only using the lower half
of the panorama, because then the closer objects are more prominent.
This however had no significant improvement in the corridor, and
neither in the square room. Only in the robotics laboratory there was
a significant lower error (p < 0.001).

The images of Vardy (2005) data sets were also used to test the ALV
homing method. Although the different panorama acquisition system,
in practice the performance of these sets was not much worse than
the results of the IIIA ones. From these images also SIFT and MSER
feature points were extracted and used to calculate the ALV. It was
found that using almost the whole image (20◦ above and below the
horizon) resulted in the best performance.

The scores (with 1 being best and 0 begin worst) of the IIIA data
sets varied from 0.67 to 0.96, whereas the results of Vardy’s data sets
varied from 0.30 to 0.85 (see Table

Finally some comparison to other work can be made, however in most
works other error measurements are used such as the distance at which
it stops from home. In this work however no such experiments have
been done yet. Hafner (2001) also did experiments in an office envi-
ronment in a grid. After off-line learning the average error was smaller
than 90◦ in 92% of the cases and smaller than 45◦ in more than 69%.
This is comparable to the results in the robotics laboratory for the
DoG feature points, and our results for using MSER feature points
were even better. The experiments by Franz et al (1998) were done in
a 118 cm × 110 cm environment but the catchment area was relatively
smaller than the catchment area of the IIIA data sets. Their algorithm
performed robustly up to an average distance of 15 cm. They also men-
tion experiments done in an office environment in which the algorithm
performed robustly until about 2 m.
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# dataset type detector mean median std.dev. score bh n
1 square

room
upper
half

MSER 6,83 4,10 5,33 0,9621 138 3

2 square
room

not fil-
tered

MSER 9,65 12,03 7,84 0,9464 138 3

3 square
room

not fil-
tered

DoG 13,78 12,00 11,31 0,9234 138 3

4 robot
lab

not fil-
tered

Land-
marks

14,88 10,16 14,86 0,9173 110 38

5 square
room

lower
half

DoG 14,94 14,52 10,75 0,9170 138 3

6 square
room

lower
half

MSER 20,62 25,27 8,49 0,8855 138 3

7 square
room

upper
half

DoG 20,91 18,96 6,64 0,8838 138 3

8 robot
lab

lower
half

MSER 21,96 11,09 30,05 0,8780 117 38

9 day 20 MSER 26,18 18,73 27,62 0,8545 17 170
10 robot

lab
lower
half

DoG 26,90 13,05 34,74 0,8506 117 38

11 robot
lab

not fil-
tered

MSER 27,84 16,03 35,51 0,8454 117 38

12 screen 20 MSER 28,64 18,42 31,04 0,8409 95 170
13 doorlit 15 MSER 30,69 19,35 33,38 0,8295 15 170
14 arboreal 20 MSER 34,89 23,39 35,49 0,8061 50 170
15 doorlit 20 MSER 35,41 21,27 38,52 0,8033 50 170
16 robot

lab
not fil-
tered

DoG 35,60 22,85 38,67 0,8022 117 38

17 arboreal 15 MSER 37,83 25,31 37,20 0,7898 17 170
18 day 15 MSER 39,78 29,30 36,49 0,7790 17 170
19 hall1 15 MSER 42,61 31,55 38,32 0,7633 159 200
20 original 20 MSER 43,18 32,23 38,49 0,7601 50 170
21 screen 15 MSER 45,71 33,75 40,43 0,7461 0 170
22 hall1 10 MSER 45,81 35,12 39,05 0,7455 41 200
23 twilight 20 MSER 46,21 34,90 39,72 0,7433 50 170
24 doorlit 10 MSER 48,45 33,95 43,90 0,7308 14 170
25 corridor lower

half
MSER 48,83 39,02 41,63 0,7287 203 6

26 arboreal 10 MSER 49,97 35,14 44,80 0,7224 153 170
27 robot

lab
upper
half

MSER 50,62 39,33 42,47 0,7188 117 38

28 winlit 20 MSER 52,39 39,58 44,07 0,7089 50 170
29 corridor not fil-

tered
MSER 52,66 35,71 44,89 0,7074 200 6

30 robot
lab

upper
half

DoG 56,14 45,77 43,84 0,6881 117 38

31 corridor not fil-
tered

DoG 56,26 44,58 43,64 0,6874 203 6

32 corridor lower
half

DoG 56,45 49,69 42,39 0,6864 203 6

33 corridor upper
half

DoG 57,08 38,19 45,65 0,6829 203 6

34 twilight 15 MSER 57,63 44,59 46,70 0,6798 153 170
35 hall1 20 MSER 58,49 48,71 44,53 0,6751 99 200
36 original 15 MSER 58,53 45,11 47,56 0,6748 17 170

Continued
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# dataset type detector mean median std.dev. score bh n
37 chairs 20 MSER 58,92 45,23 47,55 0,6726 84 170
38 corridor upper

half
MSER 59,15 42,56 46,02 0,6714 199 6

39 hall2 20 MSER 59,51 49,20 43,09 0,6694 18 200
40 hall2 15 MSER 61,00 50,90 45,30 0,6611 18 200
41 day 10 MSER 62,50 51,30 47,17 0,6528 17 170
42 hall1 5 MSER 62,69 53,82 44,78 0,6517 39 200
43 screen 10 MSER 63,43 54,30 45,02 0,6476 153 170
44 screen 5 MSER 66,71 52,61 50,03 0,6294 102 170
45 hall2 5 MSER 68,57 57,22 49,19 0,6190 19 200
46 original 10 MSER 72,09 62,67 50,85 0,5995 14 170
47 winlit 15 MSER 72,39 63,58 50,84 0,5978 50 170
48 day 5 MSER 72,67 62,94 50,31 0,5963 169 170
49 hall2 10 MSER 72,72 62,01 50,68 0,5960 19 200
50 twilight 10 MSER 73,55 65,58 51,23 0,5914 18 170
51 hall1 20 DoG 77,16 71,90 45,43 0,5713 0 200
52 winlit 10 MSER 78,69 72,12 51,96 0,5628 16 170
53 chairs 15 MSER 79,61 72,79 51,91 0,5577 16 170
54 doorlit 5 DoG 80,15 75,59 52,15 0,5547 169 170
55 doorlit 20 DoG 83,07 80,38 49,17 0,5385 151 170
56 doorlit 10 DoG 83,79 81,13 50,27 0,5345 169 170
57 chairs 10 MSER 84,42 82,22 50,74 0,5310 14 170
58 doorlit 15 DoG 84,44 81,34 49,75 0,5309 152 170
59 chairs 20 DoG 86,15 82,29 49,48 0,5214 3 170
60 screen 5 DoG 86,87 85,63 51,82 0,5174 135 170
61 screen 15 DoG 88,42 85,67 51,75 0,5088 135 170
62 screen 10 DoG 88,76 88,36 52,02 0,5069 135 170
63 screen 20 DoG 89,25 86,89 51,88 0,5041 3 170
64 hall1 15 DoG 89,27 85,64 45,78 0,5041 0 200
65 chairs 15 DoG 90,33 87,09 51,16 0,4981 4 170
66 arboreal 20 DoG 90,33 88,88 50,27 0,4981 4 170
67 original 20 DoG 91,36 88,78 49,70 0,4924 3 170
68 twilight 20 DoG 91,66 89,34 49,59 0,4908 5 170
69 day 10 DoG 92,99 94,81 51,31 0,4834 152 170
70 day 15 DoG 93,00 94,20 50,95 0,4833 135 170
71 day 20 DoG 93,05 93,13 50,42 0,4830 135 170
72 day 5 DoG 93,10 94,15 51,72 0,4828 152 170
73 chairs 10 DoG 93,46 92,24 51,88 0,4808 4 170
74 chairs 5 DoG 93,51 92,00 50,99 0,4805 5 170
75 arboreal 15 DoG 95,20 95,05 51,65 0,4711 4 170
76 twilight 15 DoG 96,44 96,35 50,29 0,4642 5 170
77 winlit 5 MSER 97,11 103,58 54,36 0,4605 136 170
78 original 15 DoG 97,93 97,66 49,81 0,4559 4 170
79 winlit 20 DoG 98,86 99,65 44,11 0,4508 0 170
80 arboreal 10 DoG 99,07 101,86 51,64 0,4496 135 170
81 arboreal 5 DoG 100,55 104,77 51,59 0,4414 135 170
82 twilight 10 DoG 101,25 102,97 50,17 0,4375 6 170
83 hall1 10 DoG 101,86 99,59 44,55 0,4341 40 200
84 original 10 DoG 101,98 105,32 50,19 0,4335 4 170
85 twilight 5 DoG 102,16 105,37 49,95 0,4324 6 170
86 doorlit 5 MSER 102,79 110,41 51,90 0,4290 14 170
87 winlit 5 DoG 103,01 109,13 46,78 0,4277 134 170
88 original 5 DoG 103,19 108,47 50,36 0,4267 50 170
89 winlit 15 DoG 103,28 105,54 45,33 0,4262 34 170
90 winlit 10 DoG 104,93 109,14 46,08 0,4171 135 170

Continued
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# dataset type detector mean median std.dev. score bh n
91 hall1 5 DoG 108,85 109,20 46,09 0,3953 80 200
92 arboreal 5 MSER 112,73 122,76 48,51 0,3737 14 170
93 chairs 5 MSER 116,47 126,06 46,16 0,3529 14 170
94 hall2 5 DoG 116,47 130,14 49,96 0,3529 198 200
95 original 5 MSER 118,50 128,27 44,93 0,3416 153 170
96 hall2 20 DoG 122,09 132,21 44,38 0,3217 20 200
97 twilight 5 MSER 122,21 133,26 44,17 0,3211 136 170
98 hall2 10 DoG 124,42 137,90 45,31 0,3088 199 200
99 hall2 15 DoG 125,99 137,57 43,33 0,3000 61 200
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Chapter 5

SIFT Object Recognition
Method

Lowe’s SIFT object recognition approach is a view-centered object
detection and recognition system with some interesting characteristics
for mobile robots, most significant of which is the ability to detect
and recognize objects at the same time in an unsegmented image.
Another interesting feature is the Best-Bin-First algorithm used for
approximated fast matching, which reduces the search time by two
orders of magnitude for a database of 100,000 keypoints for a 5% loss
in the number of correct matches (Lowe, 2004).

The first stage of the approach consists on matching individually the
SIFT descriptors of the features detected in a test image to the ones
stored in the object database using the Euclidean distance. False
matches are rejected if the distance of the first nearest neighbor is
not distinctive enough when compared with that of the second. In
Figure

This approach has been modified in several ways in our experiments.
The breakdown point (i.e. ratio of outliers in the input data were the
model fitting method fails) for the least squares method is at 0% of
outliers, which is a rather unfeasible restriction since we have found it
is normal to still have some false matches in a given hypothesis after
the Hough Transform. To alleviate this, instead of the least squares,
we have used the Iteratively Reweighted Least Squares (IRLS). Fur-
thermore we have added the RANdom SAmple Consensus (RANSAC),
another well-known model fitting algorithm that iteratively tests the
support of models estimated using minimal subsets of points randomly
sampled from the input data. Finally, we have manually defined a set
of heuristic rules on the parameters of the estimated affine transfor-
mation to reject those clearly beyond plausibility. Namely:
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• Hypotheses for repeated objects with too close centers.

• Hypotheses that have a ratio between the x and y scales below a
threshold.

Figure

5.1 IIIA30 Database

In order to evaluate the methods in a realistic mobile robots setting,
we have created the IIIA30 database1, that consists of three sequences
of different length acquired by our mobile robot while navigating in a
laboratory type environment. Image size is 640x480 pixels. The envi-
ronment has not been modified in any way and the object instances in
the test images are affected by lightning changes, blur caused by the
motion of the robot, occlusion and large scale and viewpoint changes.
We have considered a total of 30 categories (29 objects and back-
ground) that appear in the sequences. The objects have been selected
to cover a wide range of characteristics: some are textured and flat,
like the posters, while others are textureless and only defined by its
shape. Figure

Although the f-measure is not the most standard error measure in
object recognition, we have used it here since it allows to assign a clear
score to each parameter combination in a principled way. Nevertheless,
as not all situations tolerate both error types equally, we also discuss
precision and recall individually where possible. Detailed results are
additionally provided online for the interested reader2.

Nonetheless, speed is probably the most relevant performance measure
in our setting, and therefore we search for the parameter combinations
that perform as close as possible to real-time while retaining a good
precision and recall.

To consider an object as a true positive, the bounding boxes of the
ground truth and the detected instance must have a ratio of overlap
equal or greater than 50% according to the following equation:

BBgt ∩BBdetected
BBgt ∪BBdetected

≥ 0.5 (5.1)

where BBgt and BBdetected stand for the ground truth and detected
object bounding box respectively. For objects marked as occluded
only the visible part will be annotated in the ground truth, while the

1http://www.iiia.csic.es/~aramisa/iiia30.html
2http://www.iiia.csic.es/~aramisa/iiia30.html
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SIFT object recognition method will still try to adjust the detection
bounding box for the whole object based in the visible part. For the
case of occluded objects, we have therefore modified the above formula
in the following way:

BBgt ∩BBdetected
BBgt

≥ 0.5 (5.2)

As can be seen in the previous equation, it is only required that the
detected object bounding box overlaps 50% of the ground truth bound-
ing box. What follows is a detailed discussion of the results obtained
for every parameter dimension.

Feature Detectors and Descriptor: A handful of feature detec-
tors have been proposed in the literature that find different structures
in images. These feature detectors vary in number of detected regions
and robustness to image variations and, a priori, it is difficult to chose
one or a combination of various among the available options. We have
evaluated seven feature detectors: Harris Affine, Hessian Affine, Har-
ris Laplace, Hessian Laplace, MSER3, SURF4 and DoG5. We have
used the Oxford SIFT implementation6 to compute the descriptor of
feature regions detected with the first six feature detectors, while the
descriptors for the DoG regions have been computed with Lowe’s orig-
inal implementation of SIFT that comes with the DoG detector. It is
important to understand that both implementations give significantly
different results as can be appreciated in Figure

As can be seen in Figure

Training Image Size: The original SIFT object recognition is de-
signed to be a one shot object recognition method, which makes the
choice of the training image an important decision. In our experiments
we have considered both: images extracted from a sequence acquired
with the robot cameras –to enhance the similarity between the train-
ing and the test data– and good quality images of the objects acquired
with a conventional digital camera to maximize the number of detected
regions. Training images selected from a different sequence acquired
with the robot did not have a competitive result, so they were dis-
carded. For the good quality images, we have considered four different
image sizes: 320x240, 640x480, 800x600 and 1024x768 pixels.

3http://www.robots.ox.ac.uk/ vgg/research/affine/detectors.html
4http://www.vision.ee.ethz.ch/~surf/
5http://www.cs.ubc.ca/~lowe/keypoints/
6http://www.robots.ox.ac.uk/~vgg/research/affine/descriptors.html

77

http://www.vision.ee.ethz.ch/~surf/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.robots.ox.ac.uk/~vgg/research/affine/descriptors.html


Harlap
Heslap

Hesaff
DoG

SURF
Haraff

MSER

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Recall
Precision

(a)

0

500

1000

1500

2000

2500

dog
hesaff
haraff
heslap
harlap
surf
mser

A
ve

ra
ge

 N
um

be
r 

of
 F

ea
tu

re
 R

eg
io

ns
 p

er
 Im

ag
e

(b)

Figure 5.1: (a) Precision and recall depending on feature type (640x480
pixels training images). (b) Average detected feature regions per image in
testing data.

Figure

As no clear advantage was observed in using larger training images,
we fixed the 640× 480 size for the remaining experiments. This image
size is a good compromise between speed and results and, as can be
seen in Figure

Matching Method: Various approximate nearest neighbors alter-
natives have been proposed in the literature (Lowe, 2004; Muja and
Lowe, 2009; Lepetit et al, 2004) in order to accelerate the matching
process between feature descriptors. As mentioned before, in the orig-
inal article of the SIFT object recognition algorithm a K-D tree was
used with the Best-Bin-First algorithm. Later Muja and Lowe (2009)
proposed an improved approach, coined FLANN, which we compare
with exact nearest neighbor matching. As can be seen in Figure

Hough Transform: As in Lowe’s SIFT object recognition method
each match votes for 16 bins in the Hough Transform, multiple neigh-
boring bins can easily be activated for the same object, leading to
false or shadow hypotheses that consume processing time in succes-
sive stages to end up being finally rejected or, even worse, generating
false positives. To alleviate this we evaluated the effect of introduc-
ing a non-maxima suppression (NMS) step to the Hough Transform.
Table
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Figure 5.2: (a) F-Measure depending on the training image size. (b) Time
per image depending on training image size with exact nearest neighbor
matching.

Hypotheses Verification and Refinement: After the clustering
of the found matches in the Hough Transform bins, the candidate
object hypotheses are subject to a pose estimation up to an affine
transformation with an iterative least squares method. This step also
reduces the number of false positives by discarding those whose sup-
port falls below the minimum number of matches specified (three by
default). We evaluated the impact of introducing other robust model
fitting and filtering methods to discard a higher number of false pos-
itives. Specifically we used, in addition to the Iterative Reweighted
Least Squares (IRLS), the RANdom SAmple Consensus (RANSAC)
and a set of manually defined heuristics on the detected object bound-
ing box to eliminate repetitions and hypotheses which described un-
realistic transformations. As can be seen in Figure

5.1.1 Discussion and Selected Configurations

In this section the results of sequence 1 of the IIIA30 dataset (IIIA30-1)
with the different parameter combinations considered are evaluated.
Taking into account all combinations, the best recall obtained has
been 0.45 with the Hessian Laplace detector and the less restrictive
settings possible. However this configuration suffered from a really low
precision, just 0.03.

The best precision score has been 0.94, and has been obtained also
with the Hessian Laplace detector, with a restrictive distance ratio to
accept matches: 0.5. The recall of this combination was 0.14. The
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Figure 5.3: (a) F-Measure depending on the hypotheses filtering methods
and (b) time spent in the filtering stage per image. i stands for IRLS, r for
RANSAC and h for heuristics.
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Config 1 0.8 SURF 5 NMS No Yes Yes No

Config 2 0.8 SURF 3 NMS Yes Yes Yes Yes

Config 3 0.8 DoG 10 NMS No Yes Yes No

Config 4 0.8 DoG 10 NMS Yes Yes Yes Yes

Config 5 0.8 DoG 5 NMS Yes Yes Yes Yes

Config 6 0.8 HesLap 10 NMS Yes Yes Yes Yes

Table 5.1: Detailed configuration parameters for the six chosen configura-
tions in increasing time order.

same precision value but with lower recall has been obtained with the
SURF and Hessian Affine detectors.

Looking at the combinations that had a best balance between recall
and precision (best f-measure), the top performing combinations ob-
tained 0.4 and 0.39 also with the Hessian Laplace detector (0.29 recall
and 0.63 precision). However, even though approximate nearest neigh-
bors is used, each image takes around 2 seconds to be processed.

Another way to analyze the results consists in prioritizing the time
and select the fastest ones. Those combinations that improved the f-
measure with respect to faster combinations for those below 1 second
for image have been selected as interesting. Table
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Method Time (sec) Recall Precision F-Measure

Config 1 0.3689 0.15 0.51 0.23

Config 2 0.4206 0.14 0.87 0.24

Config 3 0.5240 0.17 0.47 0.25

Config 4 0.5471 0.17 0.9 0.28

Config 5 0.5987 0.19 0.87 0.31

Config 6 2.0335 0.28 0.64 0.39

Table 5.2: Detailed results for the chosen configurations in increasing time
order.

5.2 Evaluation of Selected Configurations

This section presents the results obtained applying the parameter com-
binations previously selected to all the sequences in the dataset.

In general all possible combintions of parameters performed better in
well textured and flat objects, like the books or posters. For example
the Hartley book or the calendar had an average recall across the six
configurations (see Table

Regarding the image quality parameters (see Table

As predicted in Section

Finally, we have evaluated the exactitude in the detection of the ob-
jects by the ratio of overlap between the ground truth bounding box
and the detected object instance as calculated in Equation

In order to put into context the results obtained with the selected
configurations, we have also evaluated the four configurations that
obtained the overall best recall and the four that obtained the overall
best precision. As can be seen in Table

5.3 Discussion

Experiments show that, using the SIFT object recognition approach
with the proposed modifications, it is possible to precisely detect, con-
sidering all image degradations, around 60% of well-textured object in-
stances with a precision close to 0.9 in our challenging dataset. Even
detectors known to sacrifice repeatability (probability of finding the
same feature region in slightly different viewing conditions) for speed
such as the SURF obtain reasonable results. Performance degrades for
objects with repetitive textures or no texture at all. Regarding image
disturbances, the approach resisted well occlusions, since the SIFT ob-
ject recognition method is able to estimate a reliable transformation
as long as the visible part of the object contains enough texture (and
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Object Config 1 Config 2 Config 3 Config 4 Config 5 Config 6
Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre

Grey bat-
tery

0 0 0 0 0 0 0 0 0 0 0 0

Red bat-
tery

0 0 0 0 0.02 0.05 0 0 0 0 0 0

Bicicle 0.54 0.52 0.52 1.00 0.33 0.52 0.36 0.89 0.38 0.90 0.33 0.62
Ponce
book

0.67 0.75 0.69 0.93 0.79 0.87 0.78 0.94 0.83 0.91 0.72 0.84

Hartley
book

0.58 0.93 0.58 0.93 0.86 0.77 0.88 0.88 0.95 0.85 0.81 0.73

Calendar 0.44 0.65 0.35 0.86 0.56 0.66 0.56 0.79 0.56 0.79 0.79 0.71
Chair 1 0.03 0.08 0.02 0.33 0 0 0 0 0.01 1.00 0.54 1.00
Chair 2 0 0 0 0 0 0 0 0 0 0 0 0
Chair 3 0 0 0 0 0.01 0.25 0 0 0 0 0.05 0.50
Charger 0.03 0.20 0.03 0.50 0 0 0 0 0 0 0.18 0.14
Cube 1 0.11 0.05 0.18 0.50 0.11 0.08 0.07 0.40 0.18 0.50 0.32 0.28
Cube 2 0.62 0.28 0.67 0.67 0.71 0.11 0.76 0.59 0.76 0.55 0.52 0.38
Cube 3 0.53 0.22 0.31 0.50 0.50 0.25 0.59 1.00 0.66 1.00 0.66 0.45
Extingisher 0 0 0 0 0 0 0 0 0 0 0 0
Monitor 1 0 0 0 0 0.01 0.05 0.01 1.00 0.04 0.75 0.15 0.63
Monitor 2 0 0 0 0 0 0 0 0 0 0 0 0
Monitor 3 0 0 0 0 0 0 0 0 0 0 0.02 0.33
Orbit box 0 0 0 0 0 0 0 0 0 0 0 0
Dentifrice 0 0 0 0 0 0 0 0 0 0 0 0
Poster
CMPI

0.18 0.44 0.26 1.00 0.31 0.63 0.41 1.00 0.46 0.95 0.23 0.82

Phone 0 0 0 0 0 0 0 0 0 0 0 0
Poster
Mystrands

0.20 0.56 0.20 0.71 0.40 0.43 0.36 0.75 0.44 0.65 0.36 0.60

Poster
spices

0.38 0.77 0.42 0.94 0.54 0.79 0.53 0.87 0.58 0.87 0.56 0.92

Rack 0.26 0.59 0.26 1.00 0.10 0.80 0.10 1.00 0.23 1.00 0.77 0.79
Red cup 0 0 0 0 0 0 0 0 0 0 0.22 0.29
Stapler 0 0 0 0 0 0 0 0 0 0 0.03 0.33
Umbrella 0 0 0 0 0 0 0 0 0 0 0 0
Window 0.10 0.53 0.04 0.90 0.08 0.28 0.02 0.67 0.02 0.71 0.27 0.42
Wine bot-
tle

0 0 0 0 0 0 0 0 0 0 0 0

Table 5.3: Recall and precision of each object for all combinations

a minimum number of correct matches, three by default) but not so
well blur due to motion or deficient illumination.

As can be seen in Table
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Object Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

Normal 0.26 0.25 0.26 0.28 0.3 0.33
Blur 0.1 0.1 0.16 0.15 0.18 0.25
Occluded 0.16 0.14 0.14 0.12 0.14 0.34
Illumination 0 0 0.06 0.06 0.06 0.06
Blur+Occl 0.06 0.04 0.08 0.06 0.09 0.14
Occl+Illum 0.08 0.08 0.08 0.08 0.08 0.06
Blur+Illum 0 0 0 0 0 0

Table 5.4: Recall depending on image characteristics. Normal stands for
object instances with good image quality and blur for blurred images due to
motion, illumination indicates that the object instance is in a highlight or
shadow and therefore has low contrast. Finally the last three rows indicate
that the object instance suffers from two different problems at the same
time.

Best Recall Best Precision Selected Config.
mean std mean std mean std

Repetitively textured objects
Recall 0.65 0.09 0.16 0.01 0.46 0.05
Precision 0.02 0.01 0.75 0.15 0.43 0.24

Textured objects
Recall 0.70 0.03 0.28 0.03 0.53 0.10
Precision 0.05 0.02 0.96 0.02 0.79 0.09

Not textured objects
Recall 0.21 0.01 0.01 0.01 0.05 0.04
Precision 0.03 0.01 0.62 0.32 0.24 0.21

Table 5.5: Average recall and precision of the configurations that where
selected for having the best values according to these two measures in the
last section. Also average results among the six selected configurations are
shown for comparison. Standard deviation is provided to illustrate scatter
between the selected configurations. Objects are grouped in the three “level
of texture” categories in the following way: the three cubes form the repet-
itively textured category, the two books, the calendar and the three posters
form the textured category, and the rest fall into the non textured category.
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Chapter 6

Vocabulary Tree Method

The Nister and Stewenius (2006) Vocabulary Tree approach to object
classification is based on the bag of words document retrieval methods,
that represent the subject of a document by the frequency in which
certain words appear in text. This technique has been adapted to vi-
sual object classification substituting the words with local descriptors
such as SIFT computed on image features (Csurka et al, 2004; Sivic
and Zisserman, 2003).

Although recently many approaches have been proposed following the
bag of words model, we have selected this particular one because scal-
ability to large numbers of objects in a computationally efficient way
is addressed, which is a key feature in mobile robotics.

A hierarchical vocabulary tree is used instead of a linear dictionary, as
it allows to code a larger number of visual features and simultaneously
reduce the look-up time to logarithmic in the number of leaves. The
vocabulary tree is built using hierarchical k-means clustering, where
the parameter k defines the branch factor of the tree instead of the
final number of clusters like in other approaches. On the negative side,
using such hierarchical dictionaries causes aliasing in cluster space (see
Figure

The nodes of the vocabulary tree are weighted in accordance to its
discriminative power with the Term Frequency-Inverse Document Fre-
quency (TF-IDF) scheme to improve retrieval performance. Let ni be
the number of descriptors corresponding to the codeword i found in the
query image and mi the number of descriptors corresponding to the
same codeword for a given training image. If q and d are the histogram
signatures of the query and database images, then the histogram bins
qi and di can be defined as:

qi = niωi
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di = miωi (6.1)

where ωi is the weight assigned to node i. A measure based in entropy
is used to define the weights:

ωi = ln(
N

Ni
), (6.2)

where N is the number of images in the database, and Ni is the num-
ber of images in the database with at least one descriptor vector path
through node i. Since signatures will be normalized before compari-
son, the resulting schema is the term frequency-inverse document fre-
quency.

To compare a new query image with a database image, the following
score function is used:

s(q, d) = ‖ q

‖q‖
− d

‖d‖
‖ (6.3)

The normalization can be in any desired norm, but the L1-norm (also
known as the ”Manhattan” distance) was found to perform better both
by Nister and Stewenius (2006) and in our experiments. The class of
the object in the query image is determined as the dominant one in
the k nearest neighbors from the database.

The second speed-up proposed by Nister and Stewenius consists on
using inverted files to organize the database of training images. In an
inverted files structure each leaf node contains the ID number of the
images whose signature value for this particular leaf is not zero. To
take advantage of this representation, and assuming that the signa-
tures have been previously normalized, equation

The main drawback of the Vocabulary Tree method is that it needs
at least a rough segmentation of the object to be recognized. To over-
come this limitation two alternatives may be used: divide the input
image using a grid of fixed overlaping regions and process each region
independently, or use a segmentation algorithm to yield meaningful
regions to be recognized.

The first option has the advantage of simplicity and universality: Re-
sults do not depend on a particular method or set of segmentation
parameters, but just on the positions and shapes of the windows eval-
uated. However a square or rectangular window usually does not fit
correctly the shape of the object we want to detect and, in conse-
quence, background information is introduced. Furthermore, if we
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want to exhaustively search the image, in the order of O(n4) over-
lapping windows will have to be defined, where n is the number of
pixels of the image. This will we extremely time-consuming, and also
fusing the classification output of the different windows into meaning-
ful hypotheses is a non-trivial task. One way that could theoretically
speed-up the sliding window process is using integral images (Viola
and Jones, 2001). This strategy consists on first computing an inte-
gral image (i.e. accumulated frequencies of visual word occurrences
starting from an image corner, usually top-left) for every visual word
in the vocabulary tree visual word. Having the integral image pre-
computed for all visual words, the histogram of visual word counts for
an arbitrary sub-window can be computed with four histogram oper-
ations. Let Ii be the integral image of a query image for node i of the
vocabulary tree, then the histogram H of visual words counts for a
given sub-window W can be computed in the following way:

Hi = Ii(Wbr) + Ii(Wtl)− Ii(Wtr)− Ii(Wbl) (6.4)

for all i, where Wbr, Wtl, Wtr and Wbl are respectively the bottom
right, top left, top right and bottom left coordinates of W .

The computational complexity of determining the visual word counts
for an arbitrary sub-window is therefore O(4 · ϕ) operations, where δ
is the size of the vocabulary. Doing the same without integral images
has a complexity of O(5 · η), where η is the number of visual words
found in the test image. From this, it is clear that integral images are
an speed up as long as ϕ is significantly smaller than η.

The second alternative is using a segmentation method to divide the
image into a set of regions that must be recognized. Various options
exist for this task which can be broadly classified as intensity based
and, if stereo pairs of images are available, depth based. In this work
we have evaluated an intensity based method and a depth based one.
The intensity based method we propose, that we called floodcanny,
consists on first applying the Canny edge detector to the image, and
use the resulting edges as hard boundaries in a flood filling segmenta-
tion process. For each candidate region of an acceptable size (in our
experiments, having an area bigger than 900 pixels), a set of five sub-
windows of different size centered in the segmented area are defined
and evaluated. In general, it is intuitive to think that, the more accu-
rate the segmentation of the image passed to the classifier is, the better
will be the results of the object recognition method. More specifically,
methods that can overcome highlights, shadows or weak reflections as
the one proposed by Vazquez et al (2008) have a potential to provide
more meaningful regions for the classifier, and the combination of such
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Figure 6.1: Results of the segmentation process using the floodcanny
method. The first column shows the original images and the second col-
umn the segmented regions. Each color represents a different region, and
Canny edges are superimposed for clarity.

type of methods with appearance-based classifiers is an area of great
interest, that we are willing to address in future work.

For the present work however, we have used only our proposed flood-
canny method, which, despite of its simplicity, achieved a good seg-
mentation results as can be seen in Figure

The second segmentation alternative proposed consisted of directly
matching features between the left and right image to detect areas of
constant depth. Since the geometry of the stereo cameras is known
a priori, epipolar geometry constraints can be used together with the
scale and orientation of a given feature to reduce the set of possible
matches. To determine the possible location of the objects in the en-
vironment, a grid of 3D cells of different sizes is used. Reprojected
features cast a vote for a cell of a grid if it lies within the 3D cell coor-
dinates. Cells that have a minimum number of votes are reprojected
to the image and added as a candidate window. It seems tempting
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to directly use the matched features to construct the histogram of
feature word counts, as it would reduce the amount of background
introduced in the visual word counts histogram. However, there is no
guarantee that all features of the object have been detected in both im-
ages and matched, and the effects of missing important object features
are potentially worse than introducing a small amount of background.
Therefore we considered more adequate to accept all visual words close
to a set of valid matches.

In future work we want to address the alternative described in the pre-
vious paragraph, and also evaluate the Vocabulary Tree method with
regions generated from a dense disparity map. This latter approach
would generate coherent regions of constant depth that could be used
to select a dense set of image features without having to introduce
background elements. Furthermore, features would only have to be
computed in one image.

6.1 Databases used

In order to test and adjust the parameters of the Vocabulary Tree ob-
ject recognition method, we have used two image databases in addition
to the IIIA30, which we have divided in recognition and classification.
These databases are detailed here:

• ASL: The ASL recognition dataset consists of nine household ob-
jects from the Autonomous Systems Lab of the ETHZ (Ramisa
et al, 2008b). It consists of around 20 training images per ob-
ject from several viewpoints and 36 unsegmented test images
with several instances of the objects, some of them with illu-
mination changes or partial occlusions. The training images have
been taken with a standard digital camera at a resolution of 2
megapixels, while the test images have been acquired with a STH-
MDCS2VAR/C stereo head by Videre design at the maximum
possible resolution (1.2 megapixels). A segmented version of the
training object instances has also been used in some experiments,
and is referred as segmented ASL. Some images of the segmented
version can be seen in Figure

6.2 Parameter Tuning

With the above described datasets we have done the following
experiments in order to adjust the different parameters of the
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method. The experiments in this section that require no segmen-
tation or sliding windows were done 30-fold to ensure statistical
invariance when creating the tree or in the test/train data split.
Similarly, unless stated otherwise in the text, the DoG feature
detector and SIFT descriptor were used in all experiments, and
the vocabulary tree had branch factor of ten and a depth of four.

Data Type: We wanted to evaluate the impact of using the
data type unsigned char (uchar) instead of double to represent
the signature histograms, that is, 1 byte versus 8 bytes precision.
For this we have tested the base method (without inverted files)
with the segmented ASL and the Caltech10 datasets. As can be
seen in Table
In the case of the segmented ASL dataset, the difference is only
4.63% less in the case of L2 norm. However, in the case of Cal-
tech10 the difference increases notably, and goes from 54.35% in
the case of L1 norm to 36.43% with the L2. Even though L2

norm is slightly faster than L1, it does not compensate the drop
in performance. Consequently we will be using the L1 norm in
the remaining experiments.

Speed-up by Inverted Files: In this experiment we wanted
to asses the processing time reduction introduced by using in-
verted files. Again the same datasets as in the two previous ex-
periments will be used. In table

Training Images: We have evaluated the Vocabulary Tree ap-
proach with three types of training image sets: twenty images
taken from the testing sequences (i.e. of bad quality), the same
training set as the SIFT Object recognition (i.e. just one training
image of good quality for each category), and with twenty train-
ing images of good quality with different sizes and viewpoints.
From these three training sets, the only one that obtained ac-
ceptable results has been the last one, and therefore all further
experiments have been performed using it.

Detection with Sliding Windows: As explained above, the
most straightforward approach to detecting objects in unseg-
mented images with the Vocabulary Tree method is using sliding
windows. However it is time-consuming to evaluate every sub-
window. As a means to accelerate this we have evaluated the
integral images concept from Viola and Jones (2001). With the
objective of adjusting the size of the windows to the objects we
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Figure 6.2: Accumulated frequencies of the ground truth bounding box side
size for the objects annotated in the test sequences of the unsegmented ASL
and IIIA30 datasets.

want to detect, we have studied the distribution of sizes of objects
in the ASL and IIIA30 datasets. As can be seen in Figure

In our experiments, with the sliding windows approach we were
able to evaluate in the order of 33 windows every second on av-
erage. However, given the high number of windows that must
be evaluated, it is far from enough for real robotic applications.
As discussed earlier, the speed-up provided by integral images
depends on the relation between the number of features found in
the image and the size of the vocabulary. However, as seen in
Figure

Possible solutions to this problem have been recently proposed by
different authors: Fulkerson et al (2008) suggest using agglom-
erative information bottleneck to reduce the size of the vocab-
ulary tree and consequently speed up the sliding windows pro-
cess, Moosmann et al (2008) use extremely randomized cluster-
ing forests of K-D trees to speed up the classification of visual
words; Lampert et al (2008) disregard sliding windows and use a
branch-and-bound schema over the sub-windows parameter space
to direct the search to the most promising area of the image.

Figure

As seen in the figure, the number of false positives is overwhelm-
ing to say the least. To filter out as many false positives as
possible, in addition to rejecting windows with less than a deter-
mined minimum number of features, we have evaluated the effect
of requiring a ratio between the first and the second classes in the
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Figure 6.3: (a) Comparison of using a step of 20 pixels and a step of 10 pixels
for the windows grid and sizes in the unsegmented ASL. The detector used
is the Harris Affine in a tree with branch factor 10 and depth 4. (b) Results
of applying Intensity Segmentation (the floodcanny algorithm), Stereo Seg-
mentation and Sliding Windows to generate the sub-windows to evaluate at
the first sequence of the IIIA30 dataset. For the three experiments the DoG
detector and a tree with branch factor 10 and depth 4 have been used.

k -NN voting. Namely the following restriction had to be satisfied:

V2 < δ · V1 | δ ∈ [0, 1] (6.5)

where V1 is the score of the most voted class, and V2 that of the
second, and δ is a threshold to reject windows without a clear
winner in the k -NN voting. In Figure
In Chapter
We have also done some experiments increasing the resolution of
the grid of windows in an attempt to increase recall. Figure

Detection with Segmentation: The alternative to sliding
windows is using a segmentation technique to find only a few
reasonable areas to search for objects. We have proposed and
evaluated the floodcanny intensity based segmentation algorithm
described earlier, and a depth based segmentation approach.
We applied the floodcanny to the first sequence of the IIIA30
dataset with very good results. For each region of sufficient size,
a set of five windows of different sizes centered at the detected
region is defined. Besides increasing recall, as can be seen in
Figure
Despite the presented results, the segmentation scheme we have
applied is not optimum, as is usually works better for large and
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Recall Speed Comparisons
V. Tree 2-12 61.44 % 29.08 imas/s 24
V. Tree 4-6 61.11 % 29.05 imas/s 24
V. Tree 8-4 63.33 % 26.47 imas/s 32
V. Tree 64-2 68.89 % 11.65 imas/s 128
V. Tree 4096-1 81.11 % 0.47 imas/s 4096

Table 6.1: Results of the vocabulary tree shape for the segmented ASL
dataset.

textureless objects, that can be segmented as a big single region.
Contrarily, small and textured objects pose a problem to the
floodcanny method, as no single large enough region can be found.
Future work must include evaluating the floodcanny approach
with more window sizes and shapes for each putative region. Also
we want to evaluate the use of windows trained by the shape and
scale of objects in the training set.
Regarding the depth segmentation, Figure

Vocabulary Tree Width and Depth: Here we evaluated dif-
ferent widths and depths for the vocabulary tree. Even though
the computational cost of classifying a descriptor vector is much
lower (see theoretical study in Figure
We wanted to empirically assess the effects of aliasing in our
schema. Therefore, we created six vocabulary trees with the
same number of leaf nodes but different branch factor and depth.
Namely, the trees have branch factors: 2, 4, 8, 64, 4096 and
depths: 12, 6, 4, 2, 1 respectively. Therefore we have 212 = 46 =
84 = 642 = 40961 leaf nodes.

Recall Speed Comparisons
V. Tree 2-12 56.57 % 13.03 imas/s 24
V. Tree 4-6 54.29 % 14.33 imas/s 24
V. Tree 8-4 52.29 % 13.56 imas/s 32
V. Tree 64-2 58.14 % 5.24 imas/s 128
V. Tree 4096-1 60.29 % 0.05 imas/s 4096

Table 6.2: Results of the vocabulary tree shape for the Caltech10 dataset.

Tables
We have also evaluated how increasing the size of the vocabulary
affects classification in unsegmented images. Figure
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We also found that using large dictionaries makes it more diffi-
cult to effectively model the background, and therefore more false
positives were found with them. A possible solution for the back-
ground modeling problem could be, for example, adding samples
to the background class from sub-windows that contain no object,
either coming from ground truth data or on-line, in a supervised
way or automatically when a confusing hypothesis is finally re-
jected with high confidence (e.g. by moving the robot closer to
the object).

An early rejection method for unpromising windows as the one
proposed in Chapter

Number of Nearest Neighbors: In order to find a good k
value for the k -NN classifier, here we experimentally evaluated
the classification performance with respect to this parameter.

When applying the Vocabulary tree method to the segmented
datasets, and in accordance with Duda et al (2001), the first
nearest neighbor gave a good classification rate. This was espe-
cially true in the case of recognition with few training images,
as in the segmented ASL dataset. We have also evaluated the
effect of weighting the votes by its distance to the most voted.
This helps reduce the effect of distant wrong neighbors when k is
increased. Results of these experiments can be seen in Figure

Regarding the recognition in unsegmented images, the choice of
the first nearest neighbor yielded the best recall for the filtered
results as well, but also a very low precision. Overall, four or five
nearest neighbors had the best balance between recall and false
positives.

Feature Detectors: We have tested the seven feature detec-
tors (i.e. Harris Affine, Hessian Affine, Harris Laplace, Hessian
Laplace, MSER, SURF) using sliding windows, in the unseg-
mented ASL dataset. In Figure

Regarding computational time, differences between each detector
are due to more areas skipped because of insufficient features as,
once the integral image is constructed, it takes a constant time to
evaluate every sub-window. In fact, various authors argue that
with integral images it is more convenient to use dense features,
as recall is improved with such high numbers of features while
computational time is not affected using integral images (Fulker-
son et al, 2008; Nowak et al, 2006).
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(a) (b)

Figure 6.4: (a) Results of unweighted votes for the segmented ASL dataset.
(b) Results of votes weighted by distance for the segmented ASL dataset.

Manually segmented images from IIIA30 dataset: As a
final tuning experiment, we wanted to evaluate the achievable
performance with the IIIA30 dataset if we omit the detection
step. Therefore we taken one hundred segmented images (twenty
for object) of five objects from the sequences dataset: Ponce book,
charger, orbit box, Spices poster and stapler. Also six standard
digital camera quality training images were taken. We called it
the segmented IIIA5 dataset, and Figure

Object Recall Precision
Ponce book 50,00% 71,43%
Charger 30,00% 50,00%
Orbit box 100,00% 47,62%
Poster spices 100,00% 90,91%
Stapler 30,00% 60,00%
Average 63,99% 62,00%

Table 6.3: Recall and precision for the segmented IIIA5 dataset.

6.2.1 Discussion and Selected Configuration

Except for recall, which is better for the Vocabulary Tree method,
the SIFT object recognition has better results in all other aspects
related to robotics.
Regarding the different alternatives considered in the experiments,
the use of inverted files is the one that most clearly improves the
method without negatively affecting it in any way. The use of

101
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Figure 6.5: (a) Results of unweighted votes for Caltech 10. (b) Results of
votes weighted by distance for Caltech 10.

integral images is only sensible in the case of small dictionaries
and high number of features, otherwise it becomes more com-
putationally expensive. In addition, it must be also taken into
account the time employed in building the integral images struc-
ture. Contrarily, we found that large dictionaries improved recall.
Experiments done considering larger window spans than the one
proposed in this work did not show much improvement, but this
should be better analyzed in future work. Increasing the sam-
pling resolution to construct the integral image (i.e. the jump in
pixels from one bin of the integral image to the next) from every
20 pixels to every 10 pixels did increase the recall, but at the cost
of 25 times more false positives.

To get rid of false positives we evaluated a filtering schema to
reject windows with dubious classification results. This approach
did indeed reduce around 500 to 1500 false positives for image,
which is approximately 25% of total false positives generated at
the cost of 5% to 11% drop in recall. However, in order to be
practically usable, much more false positives should be rejected
without significantly affecting the recall.

Among the feature detectors used, best results were obtained by
the Hessian based ones, while the Harris based detectors attained
similar recall levels but at the cost of more false positives.

We have, therefore, selected for the comparison the sub-windows
generated by the floodcanny segmentation technique, given that
a sliding windows approach with a large vocabulary tree is too
computationally expensive for a robotics scenario, and the Hes-
sian Affine feature detector and a tree with branch factor nine
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Figure 6.6: Results of different numbers of nearest neighbor choices for the
unsegmented ASL dataset. (a) Recall (b) Average number of false positives
per image

and depth four. This represents a ratio of approximately 12 fea-
tures per leaf node of the tree. Although this ratio is higher than
the one found for the DoG detector in the size and shape of the
tree tuning experiment, our intuition is that the used implemen-
tation of the Hessian Affine usually finds more redundant regions
than the DoG. We did indeed test the same experiment with a
vocabulary tree of branch factor ten and depth four and perfor-
mance was slightly worse. Results of this comparison can be seen
in Figure
It would have been interesting to consider also the depth seg-
mentation, but unfortunately stereo pairs of images were only
available for one sequence of the IIIA30 dataset.
It must be noted that, although the results obtained may seem
not very good because of the high number of false positives, they
are much better than random. In the segmented ASL dataset,
each sub-window represents a 10 class classification problem, with
a 0.10 probability of randomly picking the right answer. As 8625
sub-windows are evaluated at every image, the number of ex-
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Figure 6.7: Training (up) and testing (down) images from the segmented
IIIA5 dataset.
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Figure 6.8: Comparison between a vocabulary tree with branch factor 10
and depth 4 and another with branch factor 9 and depth 4. The feature
detector is the Hessian Affine and the test sequence is the IIIA30-1.

pected correct random classifications per image is of 862.5 (in-
cluding true negatives) and, therefore, the number of expected
false positives is 7762.5. However, according to the result shown
in Figure

In addition, it has to be taken into account that Equation

6.3 Evaluation of Selected Configurations

As can be seen in Table

Objects like the computer monitors, the chairs or the umbrella
had a recall comparable to that of textured objects. As can be
seen in Table

Regarding the image quality parameters (see Table
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Objects 10nn 10nn with fil-
tering δ = 0.8

5nn 1nn 10nn with re-
laxed overlap

Rec Prec Rec Prec Rec Prec Rec Prec Rec Prec
Grey bat-
tery

0.36 0.01 0.32 0.02 0.32 0.01 0.36 0.01 0.60 0.02

Red battery 0.13 0.01 0.03 0 0.18 0.01 0.17 0.01 0.15 0.01
Bicicle 0.67 0 0.59 0 0.58 0.01 0.49 0.01 0.70 0
Ponce book 0.38 0.01 0.38 0.02 0.41 0.01 0.41 0.01 0.69 0.02
Hartley
book

0.21 0 0.21 0 0.19 0 0.21 0 0.81 0.01

Calendar 0.18 0 0.09 0 0.15 0 0.12 0 0.53 0.01
Chair 1 0.70 0.05 0.69 0.06 0.72 0.05 0.78 0.06 0.71 0.06
Chair 2 0.14 0.04 0.09 0.04 0.15 0.05 0.11 0.03 0.19 0.06
Chair 3 0.01 0.04 0 0 0.04 0.10 0.02 0.05 0.01 0.04
Charger 0.11 0 0 0 0 0 0 0 0.11 0
Cube 1 0.36 0 0.36 0 0.5 0 0.43 0.01 0.43 0
Cube 2 0.11 0 0.11 0 0.11 0 0.17 0 0.28 0.01
Cube 3 0.06 0 0.06 0 0.03 0 0.09 0 0.15 0.01
Extingisher 0 0 0 0 0 0 0 0 0 0
Monitor 1 0.13 0.01 0.12 0.02 0.10 0.01 0.15 0.02 0.22 0.02
Monitor 2 0.45 0.11 0.42 0.13 0.51 0.11 0.57 0.08 0.58 0.15
Monitor 3 0.77 0.16 0.77 0.17 0.66 0.14 0.71 0.09 0.93 0.21
Orbit box 0.14 0 0.14 0 0.14 0 0.14 0 0.71 0
Dentifrice 0 0 0 0 0 0 0.13 0 0 0
Poster
CMPI

0.26 0.02 0.23 0.02 0.26 0.03 0.26 0.02 0.26 0.02

Phone 0.06 0.01 0.06 0.01 0.03 0 0.04 0 0.06 0.01
Poster Mys-
trands

0.28 0.03 0.28 0.03 0.24 0.04 0.24 0.03 0.28 0.03

Poster
spices

0.46 0.02 0.46 0.02 0.35 0.02 0.46 0.03 0.59 0.03

Rack 0.60 0.06 0.58 0.07 0.60 0.07 0.58 0.06 0.82 0.09
Red cup 0 0 0 0 0 0 0 0 0 0
Stapler 0.18 0.02 0.18 0.02 0.13 0.02 0.24 0.01 0.21 0.02
Umbrella 0.02 0.01 0.02 0.01 0.01 0 0 0 0.02 0.01
Window 1.00 0.07 1.00 0.07 1.00 0.07 1.00 0.07 1.00 0.07
Wine bottle 0 0 0 0 0 0 0 0 0.40 0.01

6.4 Discussion

With the selected configuration we obtained an average recall of
30%. More importantly, this approach has been able to detect
objects that the SIFT could not find because of its restrictive
matching stage. However, also 60 false positives per image on
average were detected with the selected configuration, which rep-
resents a precision of 2% on average.

In the light of the performed experiments, it seems clear that
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10nn 10nn-0.8 5nn 1nn 10nn-
relaxed

Repetitively textured objects
Recall 0.18 0.18 0.21 0.23 0.29
Prec 0 0 0 0 0.01

Textured objects
Recall 0.29 0.27 0.26 0.28 0.53
Prec 0.02 0.02 0.02 0.02 0.02

Not textured objects
Recall 0.29 0.26 0.27 0.29 0.39
Prec 0.03 0.03 0.03 0.03 0.04

10nn 10nn-0.8 5nn 1nn 10nn-
relaxed

Normal 0.24 0.23 0.24 0.25 0.45
Blur 0.29 0.28 0.28 0.3 0.46
Occluded 0.64 0.61 0.62 0.62 0.64
Illumination 0.06 0.06 0.06 0.11 0.11
Blur+Occl 0.43 0.41 0.43 0.46 0.43
Occl+Illum 0.11 0.11 0.08 0.08 0.11
Blur+Illum 0.14 0 0 0 0.14

Table 6.6: Recall depending on image characteristics. Normal stands for
object instances with good image quality and blur for blurred images due to
motion, illumination indicates that the object instance is in a highlight or
shadow and therefore has low contrast. Finally the last three rows indicate
that the object instance suffers from two different problems at the same
time.

the Vocabulary Tree method cannot be directly applied to a mo-
bile robotics scenario, but some strategy to drastically reduce the
number of false positives is necessary. In addition to reduce false
positives to acceptable levels, it will be necessary to accelerate a
bit the detection step in order to process images coming from the
robot cameras at an acceptable rate. Improving the segmenta-
tion strategy, or using a technique such as the one presented in
Chapter

Nevertheless, we found that the Vocabulary Tree method was
able to detect objects that were inevitably missed by the SIFT
Object Recognition method. Furthermore, as it is a hot research
topic, new and promising bag of features type approaches are
currently being proposed, such as the aforementioned Fulkerson
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et al (2008) approach, the one by Moosmann et al (2008) and
specially the one by Lampert et al (2008). Although we would
have liked to evaluate all these new strategies here as well, time
constraints make it impossible to address it now and we must
leave it for future work.
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Chapter 7

Object Recognition
Method Selection with
Reinforcement Learning

7.1 Introduction

After reviewing the two chosen object recognition methods with
their advantages and drawbacks in a mobile robotics scenario,
with the variety of conditions that they will face, one can con-
clude that choosing, a priori, which object recognition method a
robot should have, is not the best design option. In this kind of
application, the robot should be able to decide by itself which ob-
ject recognition method should be used, depending on the current
conditions of the world.
In this chapter we propose the use of Reinforcement Learning to
decide on line which method should be used to identify objects in
an image, aiming also to minimize computing time. To evaluate
this idea we implemented a system that is able to choose between
the two object recognition algorithms used in this work based on
simple attributes extracted on-line from the images, such as mean
intensity and intensity deviation. In addition, it is also capable
of deciding that an image is not suitable for analysis, and thus
discard it.

7.2 Reinforcement Learning and its appli-
cations in Computer Vision

Reinforcement Learning (Sutton and Barto, 1998) is concerned
with the problem of learning from interaction to achieve a goal,
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for example, an autonomous agent interacting with its environ-
ment via perception and action. On each interaction step the
agent senses the current state s of the environment, and chooses
an action a to perform. The action a alters the state s of the
environment, and a scalar reinforcement signal r (a reward or
penalty) is provided to the agent to indicate the desirability of
the resulting state. In this way, “The RL problem is meant to be
a straightforward framing of the problem of learning from inter-
action to achieve a goal” (Sutton and Barto, 1998).
Formally, the RL problem can be formulated as a discrete time, fi-
nite state, finite action Markov Decision Process (MDP) (Mitchell,
1997). Given:

– finite set of states s ∈ S that the agent can achieve;
– A finite set of possible actions a ∈ A that the agent can

perform;
– A state transition function T : S × A → Π(S), where Π(S)

is a probability distribution over S;
– A finite set of bounded reinforcements (payoffs) R : S×A →
<,

the task of a RL agent is to find out a stationary policy of ac-
tions π∗ : S → A that maps the current state s into an optimal
action(s) a to be performed in s, maximizing the expected long
term sum of values of the reinforcement signal, from any starting
state.
The policy π is some function that tells the agent which actions
should be chosen, and is learned through trial-and-error inter-
actions of the agent with its environment. Several algorithms
were proposed as a strategy to learn an optimal policy π∗ when
the model (T and R) is not known in advance, for example, the
Q–learning (Watkins, 1989) and the SARSA (Rummery and Ni-
ranjan, 1994) algorithms.
The Q–learning algorithm was proposed by Watkins (1989) as a
strategy to learn an optimal policy π∗ when the model (T and
R) is not known in advance. Let Q∗(s, a) be the reward received
upon performing action a in state s, plus the discounted value of
following the optimal policy thereafter:

Q∗(s, a) ≡ R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′). (7.1)

The optimal policy π∗ is π∗ ≡ arg maxaQ∗(s, a). Rewriting
Q∗(s, a) in a recursive form:

Q∗(s, a) ≡ R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′

Q∗(s′, a′). (7.2)
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Let Q̂ be the learner’s estimate of Q∗(s, a). The Q–learning algo-
rithm iteratively approximates Q∗, i.e., the Q̂ values will converge
with probability 1 to Q∗, provided the system can be modeled as a
MDP, the reward function is bounded (∃c ∈ R; (∀s, a), |R(s, a)| <
c), and actions are chosen so that every state-action pair is visited
an infinite number of times. The Q learning update rule is:

Q̂(s, a)← Q̂(s, a) + α

[
r + γmax

a′
Q̂(s′, a′)− Q̂(s, a)

]
, (7.3)

where s is the current state; a is the action performed in s; r is
the reward received; s′ is the new state; γ is the discount factor
(0 ≤ γ < 1); α = 1/(1 + visits(s, a)), where visits(s, a) is the
total number of times this state-action pair has been visited up
to, and including, the current iteration.
Several researchers have been using RL as a technique to opti-
mize active vision, image segmentation and object recognition
algorithms. The area of Computer Vision on which RL was first
applied was in Active Vision. Whitehead and Ballard (1991) pro-
posed an adaptive control architecture to integrate active sensory-
motor systems with RL based decision systems. Although the
work is theoretical and did not make use of real sensors, they
were able to describe a system that learns to focus its attention
on the relevant aspects of the domain as well as control its behav-
ior, in a simple block manipulation task. Several researchers have
been applying RL to active vision since then, for example Minut
and Mahadevan (2001) have applied RL for visual attention con-
trol, proposing a model of selective attention for visual search
tasks, such as deciding where to fixate next in order to reach the
region where an object is most likely to be found. Darrell and
Pentland (1996a,b) also address visual attention problem: they
proposed a gesture recognition system that guides an active cam-
era to foveate salient features based on a Reinforcement Learning
paradigm. An attention module selects targets to foveate based
on the goal of successful recognition, learning where to foveate to
maximally discriminate a particular gesture. Finally, in Darrell
(1998) is shown how a concise representation of active recogni-
tion behavior can be derived from hidden-state Reinforcement
Learning techniques.
Paletta and Pinz (2000) have applied RL in an active object
recognition system, to learn how to move the camera to infor-
mative viewpoints, defining the recognition process as a sequen-
tial decision problem with the objective of disambiguating initial
object hypotheses. For these authors, ”Reinforcement Learning
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provides then an efficient method to autonomously develop near-
optimal decision strategies in terms of sensorimotor mappings”
(Paletta et al, 1998). Borotschnig et al (1999) continued in the
same line of work, building a system that learns to reposition the
camera to capture additional views to improve the image classifi-
cation result obtained from a single view. More recently, Paletta
et al (2005) proposed the use of Q-learning to associate shift of
attention actions to cumulative reward with respect to object
recognition. In this way, the agent learns sequences of shifts of
attentions that lead to scan paths that are highly discriminative
with respect to object recognition.

Less work has been done on the use of RL for image segmenta-
tion and object recognition. Peng and Bhanu (1998a) used RL
to learn, from input images, to adapt the image segmentation
parameters of a specific algorithm to the changing environmental
conditions, in a closed-loop manner. In this case, the RL creates
a mapping from input images to corresponding segmentation pa-
rameters. This contrasts with great part of the current computer
vision systems whose methodology is open-loop, using image seg-
mentation followed by object recognition algorithms. Peng and
Bhanu (1998b) improve the recognition results over time by using
the output at the highest level as feedback for the learning system,
and has been used to learn the parameters of image segmenta-
tion and feature extraction and thereby recognizing 2-D objects,
systematically controlling feedback in a multilevel vision system.
The same authors presented a general approach to image seg-
mentation and object recognition that can adapt the image seg-
mentation algorithm parameters to the changing environmental
conditions, in which segmentation parameters are represented by
a team of generalized stochastic learning automata and learned
using connectionist Reinforcement Learning techniques. Results
were presented for both indoor and outdoor color images, showing
a performance improvement over time for both image segmenta-
tion and object recognition using RL (Bhanu and Peng, 2000).

Taylor (2004) also followed this line of research, applying RL
algorithms to learn parameters of an existing image segmenta-
tion algorithm. Using the Fuzzy ARTMAP artificial neural net-
work, he was able to optimize ten parameters of Wolf and Jolion
(2003) algorithm for text detection in still images. The param-
eters learned by RL were shown to be superior to the parame-
ters previously recommended. Other applications of RL to learn
parameters of image segmentation algorithms include: contrast
adaptation (Tizhoosh and Taylor, 2006), finding the appropriate

118



threshold in order to convert an image to a binary one (Yin, 2002;
Shokri and Tizhoosh, 2003, 2004, 2008; Sahba et al, 2008) and
detection of patterns in satellite images (Hossain et al, 1999).
Finally, Draper et al (1999) modeled the object recognition prob-
lem as a Markov Decision Problem, and proposed a theoreti-
cally sound method for constructing object recognition strategies
by combining Computer Vision algorithms to perform segmenta-
tion. The authors tested their method in a real system, learning
sequences of image processing operators for detecting houses in
aerial images.
In summary, Reinforcement Learning has been widely used in the
Computer Vision field in particular cases, mainly: to optimize
the performance of active vision systems; to decide where the
focus of attention should be in order to accomplish a certain task;
to learn how to move a camera to more informative viewpoints
and to optimize parameters of existing and new computer vision
algorithms, such as thresholds, contrast and internal parameters.
In these cases, the resulting systems and algorithms have been
very successful ones.
RL has also been used for constructing object segmentation and
recognition strategies by combining computer vision algorithms.
However, results in this area have not been as good as those of
RL applied to active vision or parameter optimization: it usually
has been limited to a very specific image domain, such as the one
in Draper et al (1999).
The main limitations which arise when using Reinforcement Learn-
ing are, first, that the reward value associated with a situation
is usually not directly available, and thus rewards are results of
indirect definitions. RL requires that a certain amount of knowl-
edge about the world is available in the form of a training set,
which is not the case in many vision tasks. Second, the large state
space difficults convergence of RL algorithms raises performance
issues, as the learning phase can take a long time.

7.3 Learning to Select Object Recognition
Methods

In order to decide which algorithm should be used by the learning
agent, the RL problem was defined as a 2 stage decision problem,
with 2 possible actions in each stage: In the first one, the agent
must decide if the image contains an object, and thus must be
recognized, or if the image does not contain objects, and can
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Figure 7.1: The two stage decision problem.

be discarded, saving processing time. In the second stage, the
agent must decide which object recognition algorithm should be
used: Lowe’s SIFT Object Recognition method or the Nister and
Stewenius Vocabulary Tree (VT) algorithm (see Figure

To learn how to select the object recognition method appropri-
ate for one image at one stage we propose to use Reinforcement
Learning as a classification method. In this approach the state
space is defined as a combination attributes extracted from the
images plus the possible classification of the image. For example,
for the first stage, the state can be defined as a combination of
mean image intensity and standard deviation and a value defining
if the image is a background and can be discarded or if contains
objects.

We also define a new type of action, called “update action”. Up-
date actions are not real actions happening in the world, but
actions that update the value of a state-action pair Q(s, a) at
one state using the value of a neighbor pair. For example, if the
state space is composed of image intensity and standard devia-
tion, the Q(s, a) table would be represented as two dimensional
matrix containing the possible values of intensity (0 to 255) and
standard deviation (0 to 255), and update actions are done be-
tween one state and his 4-neighbours located above, below, at left
and at right. In a 3-dimensional state space, update actions can
be made using 8-neighbours (two in each direction of the space)
and so on.

The rewards used during the learning phase are computed using
a set of training images. If, during the exploration, the learning
agent reaches a state where a training image exists and the state
corresponds to the correct classification of the image, the agent
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receives a reward. Otherwise the reward is zero. For example, in
the first stage of the decision, if we have a training image that
does not contain an object, with mean intensity value of 50 and
standard deviation of 10, a reward is given when the agent moves
to the state (mean = 50, std = 10, classification = discard). An
interesting propriety of this approach is that the rewards can be
pre-computed, creating a reinforcement table that can be used
during the learning phase.
Formally, a MDP can be defined for each stage as:

– The set of update actions a ∈ A that the agent can perform,
defined as update the Q value using the value of a neighbor.

– The finite set of states s ∈ S in this case is the n-dimensional
space of values of the attributes extracted from the images
plus its classification;

– The state transition function allows updates to be made be-
tween any pair of neighbors in the set of states.

– The reinforcements R : S ×A → < are defined using a set of
training images.

In this approach, a RL method is used as a classifier, and must
have two processing phases: the training phase, where Reinforce-
ment Learning is performed over a set of pre-classified images,
i.e., images to which we know what the best algorithm to use is,
and the execution phase, where the results from the learning are
used to decide which algorithms to apply to other images.
During the training phase, learning an optimal policy to solve
the MDP means to learn a mapping from images (or more specif-
ically image attributes) to image classes (or algorithms classes).
Although several RL algorithms can be used to do this, the RL al-
gorithm used in this implementation is the Q-learning (Watkins,
1989), because it directly approximates the optimal policy inde-
pendently of the policy being followed (it is an off-policy method),
allowing the state and the action to be executed by the agent to
be selected randomly. Using the Q-Learning, at each stage the
agent chooses a system state s. Then, it selects an update ac-
tion to be executed, computes the reward and updates the value
function.
The learning algorithm used is as follows:

Initialize Q(s,a).
Choose a start state s, randomly.
do {

Choose an action, randomly.
Execute a, observe s’, compute the reward.
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Figure 7.2: Example of how the classification works: the reinforcements used
(left) and the resulting classification table (right).

Update the Q value.
s = s’.

} until the Q values converge.

To better understand what is happening during the learning phase,
we can compare our approach to a robot moving in a two-dimensional
grid. Every time the robot finds a “goal” state and receives a re-
ward, the state-action pair where the robot was before reaching
the goal state is updated. Every time the robot moves, it itera-
tively updates the origin state-action pair. By doing this a large
number of times, the reward is spread over the Q-table, and a
robot will know what to do to reach the goal state (will have
learned the optimal policy).

In the learning phase, every time the “robot” reaches a state
where there is an image from the training set, it receives a re-
ward, and the state-action pair where the “robot” was before is
updated. Every time a new state action pair is randomly chosen,
it is iteratively updated. By doing this a large number of times,
the reward is spread over the Q-table, and every state-action pair
will contain information about what to do with an image with
those characteristics (will have learned a mapping from image to
actions).

Figure

The table of the left in figure

To show the applicability of this porposal, experiments and re-
sults obtained with this method are presented in the next section.
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Figure 7.3: Objects segmented from test images of the dataset.

7.4 Experiments and Results

Several experiments were executed using the ASL dataset. Each
experiment consists of two processing phases: the training of the
RL and the execution phase, where the training quality can be
verified. To train the RL, we used 36 test images, from which ap-
proximately 160 images containing objects were segmented (using
the floodcanny algorithm in Chapter
To evaluate the result of the learning process, the Leave-One-Out
method was used. Using this method, the RL selection module
was trained with all the test images but one, and then the image
left out (that can contain several regions of interest (ROIs) with
objects and background) is used to test the result of the learn-
ing. This test phase corresponds to the execution phase, which
can be used on the real robot during on-line exploration of the
environment, and its working diagram is presented in Figure
Six different experiments were conducted, using three different
combinations of image attributes as state space descriptors and
two different image sizes (the image original size and a 10 by 10
pixels reduced size image). The combinations of image attributes
used as state space are: mean and standard deviation of the im-
age intensity (MS); mean and standard deviation of the image
intensity plus entropy of the image (MSE); and mean and stan-
dard deviation of the image intensity plus the number of interest
points detected by the Difference of Gaussians operator (DoG).
The rewards used during the learning phase were computed using
a set of training images. Figure
During the learning phase (described in Section
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Figure 7.4: Execution Phase of the system.

Table 7.1: Correctly classified images (percentage)
Full Img Small Img Expert

MS MSE DoG MS MSE DoG

Back 91.9 100.0 98.0 92.6 100.0 98.9 100.0
Lowe 84.5 100.0 44.4 76.0 98.4 38.1 93.2

Table 7.2: Incorrect classification (percentage)
Full Img Small Img Expert

MS MSE DoG MS MSE DoG

Back 12.8 1.8 14.2 20.4 2.4 25.3 8.2
Lowe 11.6 1.9 7.9 15.8 1.9 9.9 10.8

Figure

Tables

The results show that the use of Reinforcement Learning to de-
cide which algorithm should be applied to recognize objects yields
good results, for all different combinations of image attributes
used. Furthermore, in some cases, Reinforcement Learning per-
formed better than a human expert.

These tables also show that the best combination of attributes
was mean and standard deviation of the image intensity plus
entropy of the image (MSE), which presented very good results
for original size images as well as reduced size ones. On the other
hand, the use of the number of interest points detected by the
Difference of Gaussians operator as state space did not produce
good results, failing to choose Lowe’s algorithm more than half
of the time.
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Figure 7.5: Image of the reward table built for the first experiment (Mean
and Standard deviation of image intensity space).
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Figure 7.6: Classification table learned in the first experiment.
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Reinforcement Learning algorithms were implemented in C and
experiments were executed on a Pentium 4 Computer running
Ubuntu Linux and a PowerMac G4 running Mac OS X. The Re-
inforcement Learning parameters used in the experiments were:
the learning rate α = 0.1 and the discount factor γ = 0.9. Values
in the Q table were randomly initiated.
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Chapter 8

Conclusion and Future
Work

In this thesis we have addressed the issues of robot global local-
ization and object recognition. Our contributions are described
in chapters 3 to 7 and are summarized in this chapter.
In Chapter
Regarding the validation of the global localization schema, the
results obtained show that by using the combination of different
feature detectors, a room can be reliably recognized in indoor
environments from a distance of up to 4 meters from the point
where the reference panorama was obtained. The best results
(90% correct localizations) were achieved by combining all the
three evaluated detectors.
Moreover, we have also compared the results of our proposed
affine-covariant region detectors approach with the scale-invariant
region detectors methodology proposed in Lowe (2004), widely
used in robot navigation, and we have shown that the affine-
covariant regions outperformed Lowe’s scale-invariant method.
In order to speed-up the otherwise very expensive descriptor
matching phase, a global similarity technique usually employed
for object recognition, the Vocabulary Tree from Nister and Stewe-
nius (2006), has been effectively applied to re-rank the map nodes
for a given query panorama and save most of the computation
time.
Furthermore, we tested how the performance degrades if only a
conventional perspective image is used instead of an omnidirec-
tional image. Results of a 10 repetitions experiment with random
45◦ sections (with a minimum amount of texture) from all the test
panoramas show a surprisingly good performance.
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To complement the proposed global localization system, in
Chapter
Although there are several methods to do homing, such as the
1D method of Hong et al (1991), warping (Franz et al, 1998)
or snapshots (Lambrinos et al, 2000), the ALV homing method
(Lambrinos et al, 1998, 2000) has been used mainly because of
its simplicity and low computational complexity.
In order to evaluate the proposed method, initial experiments
using a simulated environment were conducted and later it was
tested in a real world scenario. The real world experiments were
done with panoramas acquired in three different rooms at the
IIIA research center.
The locations at which the robot acquired the panoramas were
measured manually and used to calculate the ground truth hom-
ing directions, which were then used to verify the homing method
results. Features were extracted from panoramic images to be
used by the homing method. Two invariant feature detectors
were tested: Difference of Gaussians extrema (DoG) by Lowe
(2004) and the Maximally Stable Extremal Regions (MSER) by
Matas et al (2002). Only the horizontal location of the features
was used, i.e. the cylindrical angle, and not height, nor scale,
because it is not necessary for the method.
The ALV homing was found to be a good working method, how-
ever it performed worse in rooms where the width and length
differ greatly. This has been explained by the way the features
are projected on the panorama and by the equal distance assump-
tion (Franz et al, 1998).
Vardy (2005) discusses biologically based homing methods in his
thesis and also did experiments with several of them. In his work
he used panoramas that were made with a camera pointed to a
parabolic mirror. The advantage of acquiring a panorama like
this is the speed of acquisition, whereas with our method first
images from several angles had to be retrieved and then stitched
to create a high resolution panorama. In order to compare both
methods of panorama acquisition additional experiments using
Vardy’s data sets were performed using the SIFT and MSER
features.
When comparing the results of IIIA data sets and Vardy’s data
sets we can see that the ALV homing method performs slightly
better on the IIIA data sets, but the difference is not significant.
There might be several reasons to explain this, such as the dif-
ference in resolution, the camera or the environment. For these
reasons it cannot be concluded that having a panorama with a
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higher resolution made by rotating a camera or a camera ring is
much better for our proposed ALV homing approach than using
a camera and a parabolic mirror. On the other hand, the faster
acquisition of the parabolic panoramas might be more important
than the slightly better performance.
Regarding the feature types, in our experiments MSER signif-
icantly outperformed SIFT. Also Mikolajczyk et al (2005) con-
firmed that MSER is one of the most robust feature detectors.
The artificial landmarks in the robotics laboratory were used to
compare the local feature approach with the more traditional ar-
tificial landmarks. The results with the artificial landmarks were
significantly better than with the invariant features, the error was
about 7◦ less than using the MSER detector (in only the lower half
of the panorama). However, this difference seems low enough to
justify the applicability of the presented homing method, because
does not require setting up the environment by placing artificial
landmarks.

Although equipping a robot with robust methods to extract se-
mantic information from perceptual data is of utmost importance
in order to have truly cognitive robots capable of realizing com-
plex tasks in complex environments, we are aware of few works
addressing this. Consequently, Chapters
In order to test the object recognition method we have created
a challenging dataset of video sequences with our mobile robot
while moving in an office type environment. These sequences
have been acquired at a resolution of 640 × 480 pixels with the
robot cameras, and are full of blurred images due to motion, large
viewpoint and scale changes and object occlusions.
In Chapter
From the results obtained, it can be seen that with the present im-
plementation of the methods, the SIFT object recognition method
adapts better to the performance requirements of a robotics ap-
plication. Furthermore, it is easy to train, since a single good
quality image sufficed to attain good recall and precision levels.
However, although this method is resistant to occlusion and rea-
sonable levels of motion blur, its usage is mostly restricted to flat
well textured objects. Also, classification (generalizing to unseen
object instances of the same class) is not possible with this ap-
proach.
On the other hand, the Vocabulary Tree method has obtained
good recognition rates both for textured and untextured objects,
but too many false positives per image were found.
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Since the two evaluated object recognition methods showed
complementary properties, in Chapter
The results obtained show that the use Reinforcement Learning to
decide which algorithm should be used to recognize objects yields
good results, performing better than a human expert in some
cases. To the best of our knowledge, there is no similar approach
using automatic selection of algorithms for object recognition.

Future Work

There are many lines in which the work done in this thesis can
be continued, especially the second part deserves much more re-
search effort.
The global localization method proposed in Chapter
For the object recognition experiments, only the SIFT and the
Shape Context descriptors have been evaluated, future work should
include testing other image descriptors, especially color-based
ones. Chromatic information is usually disregarded in computer
vision research, but it is obvious that including it in the object
representation would help improve the recognition results.
Although we have evaluated the proposed object recognition meth-
ods in a wide range of dimensions, one that is lacking is a more
in-depth study of how the composition and size of the training set
affects the overall results. For example, having similar objects, as
the different monitors or chairs in the IIIA30 dataset, can cause
confusion to the methods. Therefore future work should address
the evaluation of different sub-sets of target objects.
The main limitation of the SIFT object recognition method is
that only the first nearest neighbor of each test image feature is
considered in the subsequent stages. This restriction makes the
SIFT method very fast, but at the same time makes it unable to
detect objects with repetitive textures. Other approaches with
direct matching, like that of Leibe et al (2008), overcome this by
allowing every feature to vote for all feasible object hypotheses
given the feature position and orientation. Evaluating this type
of methods, or modifying the SIFT to accept several hypothe-
ses for each test image feature, would be an interesting line of
continuation.
The heuristics proposed in this work to improve the SIFT object
recognition method have been manually designed. Nevertheless,
it would be much better if the system itself was able to learn
and generalize which bounding boxes parameters constitute valid
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hypotheses, for instance using Reinforcement Learning. This con-
stitutes a research line on its own that we are very interested in
following.
The sliding windows approach could be improved by allowing
windows with a good probability of a correct detection to inhibit
neighboring and/or overlapping windows, or simply keeping the
best window for a given object would clearly reduce the number
of false positives.
Regarding the segmentation schema, we believe that results can
be improved by adopting more reliable techniques, able to resists
highlights and shadows. Besides, textured areas pose a problem
to the segmentation algorithm as, with the current technique,
no windows will be casted in scattered areas. using a Monte
Carlo approach to fuse neighboring regions may help alleviate the
problem without significantly affecting the computational time.
Also a voting mechanism to detect areas with a high number of
small regions can be attempted.
In each candidate region detected by the segmentation method,
a set of windows is evaluated. However, we used only square
windows, and the results of the different windows of the set were
not combined or used in a voting process to decide the most
probable object hypothesis.
Furthermore, combining the intensity and disparity segmenta-
tions could help improve the accuracy of the detected regions.
Also it would allow fusing the multiple small regions found in
areas with high information content, where the intensity segmen-
tation method fails to find a large enough region. Future work
towards evaluating these alternatives should therefore be under-
taken.
Despite the drawbacks found with the Vocabulary Tree approach,
bag of features techniques are a current topic of research, and
improved approaches are constantly being presented. An example
is the one proposed by Lampert et al (2008), that seems able
to overcome the problems encountered in this work. Therefore,
evaluating this method with the IIIA30 sequence is a natural
continuation line of this thesis.
Using the Reinforcement Learning method developed in Chapter
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