PREDICTORES DE CRECIMIENTO DE LA HEMORRAGIA INTRACEREBRAL AGUDA
Y SU IMPACTO EN LA EVOLUCIÓN CLÍNICA Y EL PRONÓSTICO FUNCIONAL

Tesis Doctoral

Autor:
David Rodríguez Luna

Directores:
Dr. José Álvarez Sabín
Dr. Carlos A. Molina Cateriano

Departament de Medicina
Facultat de Medicina
Universitat Autònoma de Barcelona
2012
A mis padres
ÍNDICE

1. Introducción: hemorragia intracerebral ... 5
 1.1. Definición .. 6
 1.2. Importancia e incidencia .. 6
 1.3. Factores de riesgo ... 7
 1.4. Etiología .. 8
 1.5. Fisiopatología ... 13
 1.6. Clínica .. 21
 1.7. Diagnóstico .. 21
 1.8. Tratamiento .. 27
 1.9. Pronóstico ... 36
2. Objetivos .. 39
3. Metodología ... 41
 3.1. Selección de pacientes .. 42
 3.2. Variables basales .. 43
 3.3. Hospitalización y manejo terapéutico 45
 3.4. Seguimiento clínico-radiológico .. 45
 3.5. Análisis estadístico ... 46
4. **Copia de las publicaciones** ... 48

5. **Síntesis de resultados y discusión** .. 63

5.1. Crecimiento de la HIC aguda .. 64

5.2. Evolución clínica y pronóstico funcional tras una HIC aguda 65

5.3. Colesterol LDL como predictor de crecimiento del hematoma y evolución clínica .. 68

5.4. Crecimiento ultraprecoz del hematoma como predictor de crecimiento del hematoma, evolución clínica y pronóstico funcional 70

6. **Conclusiones** .. 73

7. **Bibliografía** .. 75

8. **Anexos** .. 95

8.1. Escalas .. 96

8.2. Índice de figuras y tablas ... 101

8.3. Acrónimos y abreviaciones ... 103
1. INTRODUCCIÓN: HEMORRAGIA INTRACEREBRAL
1.1. DEFINICIÓN

El ictus se define como un síndrome clínico de origen vascular que se caracteriza por el desarrollo rápido de signos de afectación neurológica focal. Éstos pueden producirse por una disminución súbita del aporte sanguíneo al parénquima cerebral (ictus isquémico), o como consecuencia de la rotura de un vaso en el interior de la cavidad craneal (ictus hemorrágico).

Los ictus hemorrágicos se clasifican, en función de la localización de la sangre extravasada, en: hemorragia intracerebral (HIC), hemorragia intraventricular, hemorragia subaracnoidea, hematoma epidural y hematoma subdural. Será objeto de nuestro estudio la HIC.

La HIC se define como aquella colección hemática situada dentro del parénquima encefálico que puede extenderse al sistema ventricular o al espacio subaracnoideo.

1.2. IMPORTANCIA E INCIDENCIA

El ictus representa en España la primera causa de mortalidad en la mujer y la tercera en el hombre. Además, es la primera causa de discapacidad en la edad adulta y la segunda de demencia.

La HIC representa aproximadamente el 10% de los ictus, y es el doble de frecuente que la hemorragia subaracnoidea. Su incidencia en Europa es de aproximadamente 15 casos por cada 100.000 habitantes. Sin embargo, se estima que la incidencia podría duplicarse en los próximos 50 años debido al incremento de la edad de la población y a variantes demográficas y raciales.

La HIC es el subtipo de ictus más devastador, acarreando una alta tasa de dependencia funcional y de mortalidad. Sin embargo, y en contraposición a los importantes avances terapéuticos en el ictus isquémico y en la hemorragia subaracnoidea,
actualmente no existe ningún tratamiento eficaz para la HIC, por lo que el tratamiento continúa basándose en medidas de soporte.7

1.3. FACTORES DE RIESGO

De entre los factores de riesgo modificables y no modificables para presentar una HIC, la hipertensión arterial (HTA) es el más importante para todos los grupos de edad, sexo y raza.

1.3.1. No modificables

La HIC es más frecuente en la 7a y 8a décadas del la vida, en hombres que en mujeres4 y en ciertas poblaciones como afroamericanos y japoneses.

La incidencia de HIC en afroamericanos alcanza los 50 casos por cada 100.000 habitantes, casi el doble que en blancos americanos (28 casos por cada 100.000 habitantes). Sin embargo, estas diferencias podrían no sólo explicarse por la raza, sino también por una mayor prevalencia de HTA y de menor nivel educativo en este grupo, influyendo este último en una deficiente prevención primaria.5

Por su parte, los japoneses presentan una incidencia de HIC (55 casos por cada 100.000 habitantes) similar a los afroamericanos.8 Una mayor prevalencia de HTA y de consumo de alcohol9 así como unos niveles menores de colesterol sérico10 en esta población podrían influir en esta mayor incidencia.

La variación estacional influye en el riesgo de HIC de causa hipertensiva, siendo mayor en invierno. Este hecho se ha relacionado con un hipotético aumento de la presión arterial (PA) frente a la exposición al frío.11
1.3.2. Modificables

La HTA es el factor de riesgo más importante de la HIC.12 Aumenta el riesgo de HIC especialmente en pacientes menores de 55 años, en fumadores y en aquellos que no cumplimentan correctamente el tratamiento antihipertensivo.13 Además, un tratamiento antihipertensivo adecuado ha demostrado disminuir el riesgo de HIC.14,15

El consumo excesivo de alcohol incrementa el riesgo de sufrir una HIC.16 Los mecanismos son varios, incluyendo la alteración de la coagulación por afectación hepática, la inducción de HTA, o la afectación directa de la integridad de los vasos cerebrales.17 El tabaco, sin embargo, pese a que un estudio objetivó una mayor incidencia de HIC en fumadores,18 no ha demostrado una clara asociación con la HIC.

Los niveles séricos de colesterol disminuido, tanto colesterol total como \textit{low-density lipoprotein} (LDL) colesterol, se han asociado con un mayor riesgo de HIC.10,19-21 Este hecho podría estar en relación tanto al desarrollo de necrosis de las células musculares lisas de la capa media arterial22 como a la disminución de la agregación plaquetaria23,24 ante niveles bajos de colesterol.

La angiopatía amiloide cerebral (AAC) es otro importante factor de riesgo de HIC, especialmente en personas mayores, en sujetos con enfermedad de Alzheimer25 y en portadores de determinados polimorfismos genéticos como los de la apolipoproteína E.26

Entre otros factores, también aumenta el riesgo de HIC el uso de determinados fármacos como antiagregantes, anticoagulantes, trombolíticos o simpaticomiméticos, así como el ser portador de una diástesis hemorrágica.

1.4. ETIOLOGÍA

Dependiendo de la causa subyacente del sangrado, las HIC se clasifican en primarias y secundarias. Las primarias, más frecuentes, se producen por la rotura espontánea de un vaso afectado por los cambios producidos por la HTA o la AAC. Las
secundarias se producen en relación con anomalías vasculares (como malformaciones vasculares o aneurismas), neoplasias o alteraciones de la coagulación, entre otras causas. Será objeto de nuestro estudio las HIC primarias.

1.4.1. Primarias

a) Hipertensión arterial

La HTA es la causa más frecuente de HIC. Puede producir una HIC tanto por la rotura de arterias perforantes lesionadas por la HTA crónica como por alteraciones agudas de la PA en arteriolas y capilares no lesionados por la HTA crónica.

Por una parte, la HTA crónica produce cambios histológicos que afectan predominantemente las porciones medias o distales de las arterias perforantes o de sus bifurcaciones, como la lipohialinosis, la necrosis fibrinoide, la degeneración de la capa media y los microaneurismas de Charcot-Bouchard\(^27\) (Figura 1).

Figura 1. Muestras de cerebro de sujetos hipertensos

A. Necrosis fibrinoide: material fibrinoide, teñido de rojo, en la pared arteriolar debido a la insudación de proteínas plasmáticas incluyendo la fibrina (azocarmine, escala: 100 micrómetros).
B. Microaneurisma sacular anclado a su arteriola: los restos ondulados de la elástica se tiñen de azul (azocarmine, escala: 100 micrómetros).

Tomada de Rosenblum.\(^28\)
La afectación predominante de arterias perforantes hace que las principales localizaciones de las HIC de causa hipertensiva sean el putamen, el tálamo, la protuberancia, el cerebelo y la sustancia blanca subcortical, aunque la HTA también puede causar hemorragias lobulares.29

Por otra parte, la HIC puede ser la forma de presentación de la HTA. En estos pacientes, elevaciones agudas de la PA producirían la rotura de arteriolas y capilares no acostumbrados a estos cambios hemodinámicos.30

b) Angiopatía amiloide cerebral

La AAC o angiopatía congófila se caracteriza por el depósito de material congófilo, es decir, que se tiñe con tinción rojo congo (Figura 2), en las arterias, arteriolas y capilares del córtex cerebral y de las leptomeninges (raramente en venas). El depósito de material amiloide, predominantemente compuesto por proteína β-amiloide, sustituye gradualmente las células musculares lisas y los elementos elásticos de la pared vascular, lo que progresivamente debilita la pared y predispone a su rotura.31

Figura 2. Muestras de cerebro de sujetos con HIC en relación con AAC

A. Los vasos afectados por AAC muestran el depósito de material eosinofílico en su pared (hematoxilina-eosina, x100). B. Tras tinción con rojo congo, el material amiloide de la pared vascular muestra birreñingencia bajo luz polarizada (rojo congo, x100)

Tomada de Qureshi et al.5
La incidencia de la AAC aumenta con la edad y en sujetos con enfermedad de Alzheimer, siendo la causa más frecuente de HIC no hipertensiva en personas mayores de 60 años.25 Las HIC en relación con AAC suelen localizarse en los lóbulos cerebrales, predominan en el sexo femenino, tienden a la recurrencia, y frecuentemente son múltiples y con extensión subaracnoidea.25

Los Criterios Boston para el diagnóstico clínico de HIC en relación con AAC se basan en la coexistencia de HIC de localización lobular, de una edad \(\geq 55 \) años o de HIC múltiples, ya que el diagnóstico definitivo sólo puede realizarse mediante necropsia cerebral (Tabla 1).26,32

Tabla 1. Criterios Boston para el diagnóstico de HIC en relación a AAC

<table>
<thead>
<tr>
<th>AAC Definida. Examen completo postmortem muestra:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC lobular, cortical o subcortical</td>
<td></td>
</tr>
<tr>
<td>AAC severa con vasculopatía</td>
<td></td>
</tr>
<tr>
<td>Ausencia de otro diagnóstico</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AAC Probable con soporte patológico. Datos clínicos y tejido patológico muestran:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC lobular, cortical o subcortical</td>
<td></td>
</tr>
<tr>
<td>Algún grado de AAC en el tejido</td>
<td></td>
</tr>
<tr>
<td>Ausencia de otro diagnóstico</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AAC Probable. Datos clínicos y TC o RM muestran:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Múltiples HIC restringidas a regiones lobulares, corticales o subcorticales (incluido cerebelo)</td>
<td></td>
</tr>
<tr>
<td>Edad (\geq 55) años</td>
<td></td>
</tr>
<tr>
<td>Ausencia de otra causa de hemorragia*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AAC Posible. Datos clínicos y TC o RM muestran:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Una única HIC lobular, cortical o subcortical</td>
<td></td>
</tr>
<tr>
<td>Edad (\geq 55) años</td>
<td></td>
</tr>
<tr>
<td>Ausencia de otra causa de hemorragia*</td>
<td></td>
</tr>
</tbody>
</table>

*Otras causas de HIC: traumatismo craneal, infarto cerebral, neoplasia intracraneal, malformación vascular, vasculitis, anticoagulación oral con INR >3, discrasia sanguínea o coagulopatía.

Adaptada de Knudsen et al.32
La forma más común de AAC es la esporádica, aunque existen algunas formas familiares con un patrón de herencia autosómico en las que se ha objetivado diferentes mutaciones del gen de la proteína precursora de la β-amiloide.33 Por otra parte, diversos polimorfismos genéticos aumentan el riesgo de presentar una AAC, como el del gen de la apolipoproteína E.26 Así, los sujetos portadores de los alelos E2 y E4 del gen de la apolipoproteína E presentan mayor riesgo de recurrencia tras haber sufrido una HIC lobular en relación con AAC.34

1.4.2. Secundarias

Las principales causas de HIC secundaria y los mecanismos de producción de la misma se muestran en la Tabla 2:

<table>
<thead>
<tr>
<th>Causas</th>
<th>Mecanismos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malformación arteriovenosa</td>
<td>Rotura de vasos anormales que conectan arterias y venas</td>
</tr>
<tr>
<td>Angioma cavernoso</td>
<td>Rotura de vasos anómalos (excluidos de la circulación)</td>
</tr>
<tr>
<td>Angioma venoso</td>
<td>Rotura de dilataciones anormales de las vénulas</td>
</tr>
<tr>
<td>Aneurisma</td>
<td>Rotura de dilatación sacular de una arteria de calibre mediano (aunque habitualmente se asocia a hemorragia subaracnoidea)</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Rotura de arterias de pequeño y mediano calibre con inflamación y degeneración</td>
</tr>
<tr>
<td>Trombosis de seno venoso dural</td>
<td>Trombosis de un seno venoso dural que provoca un infarto hemorrágico</td>
</tr>
<tr>
<td>Infarto cerebral arterial</td>
<td>Hemorragia en el seno de un infarto cerebral como resultado del daño de la barrera hematoencefálica</td>
</tr>
<tr>
<td>Neoplasia</td>
<td>Necrosis y hemorragia de neoplasias hipervascularizadas</td>
</tr>
<tr>
<td>Coagulopatías</td>
<td>Alteración de la coagulación con predisposición al sangrado</td>
</tr>
</tbody>
</table>

Adaptada de Qureshi et al.5
1.5. **FISIOPATOLOGÍA**

Los cambios producidos en la pared vascular por la HTA o la AAC reducirán la distensibilidad y aumentarán la posibilidad de una rotura espontánea. Dependiendo de la arteria donde se produzca la rotura se localizará la HIC. Las localizaciones más frecuentes (Figura 3) son los lóbulos cerebrales (ramas penetrantes corticales de las arterias cerebrales anteriores, medias y posteriores), los ganglios basales (ramas lenticulo-estriadas ascendentes de la arteria cerebral media), el tálamo (ramas tálamo-geniculadas ascendentes de la arteria cerebral posterior), la protuberancia (ramas paramedianas de la arteria basilar) y el cerebelo (ramas penetrantes de las arterias cerebelosas posteroinferiores, antero-inferiores o superiores). En función de la localización del hematoma respecto al tentorio, las HIC pueden clasificarse en infratentoriales o supratentoriales, las cuales a su vez pueden dividirse en lobulares (cuando afectan predominantemente la sustancia blanca subcortical de los lóbulos cerebrales) o profundas (limitadas en ganglios basales o tálamo). Será objeto de nuestro estudio las HIC supratentoriales.

Figura 3. Localizaciones habituales de la HIC

Localizaciones supratentorial lobular (**A**), supratentorial profunda (**B**: ganglios basales; **C**: tálamo) e infratentorial (**D**: protuberancia; **E**: cerebelo).

Tomada de Qureshi et al.⁵
Una vez producida la rotura arterial, la hemorragia se propaga disecando planos de tejido nervioso, pudiendo dejar nidos de tejido intacto dentro y alrededor del hematoma. Los hematomas profundos, principalmente los talámicos y los de mayor tamaño, asocian frecuentemente extensión intraventricular, mientras que los lobulares pueden presentar extensión subaracnoidea.

Tras la rotura inicial de una arteria cerebral se producen dos importantes eventos: el crecimiento del hematoma (CH) y la hipodensidad perihematoma.

1.5.1. Crecimiento del hematoma

La HIC fue considerada inicialmente un evento monofásico que rápidamente se detenía como resultado de los mecanismos de coagulación y de taponamiento de las regiones circundantes. Sin embargo, varios estudios demostraron mediante tomografía computarizada (TC) craneal que las HIC crecen con el tiempo (Figura 4), lo que se ha atribuido a un sangrado continuo de la fuente primaria y la alteración mecánica de los vasos circundantes.

Figura 4. Crecimiento del hematoma

![Figura 4](image)

Paciente con un volumen basal de HIC de 44.6 mL a las 3 horas de evolución (A), que presenta un crecimiento del hematoma con un volumen de 122.3 mL a las 24 horas del inicio (B).
El CH ocurre principalmente durante las primeras 6 horas de una HIC. \(^{37,38,40,41}\) Además, se ha demostrado un crecimiento precoz del hematoma tan solo una hora después de la TC craneal basal realizada durante las primeras horas tras una HIC. \(^{39}\) Sin embargo, la frecuencia del CH varía ampliamente entre diferentes estudios (Tabla 3). Esto podría explicarse por los diferentes criterios utilizados para definir un CH significativo, así como por la variabilidad en el tiempo desde el inicio de la HIC hasta la realización de la TC craneal basal.

Tabla 3. Frecuencia de crecimiento del hematoma en diferentes estudios

<table>
<thead>
<tr>
<th>Autor</th>
<th>Brott(^ {39})</th>
<th>Kazui(^ {40})</th>
<th>Fujii(^ {41})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de pacientes</td>
<td>103</td>
<td>186</td>
<td>627</td>
</tr>
<tr>
<td>Ventana a TC basal (desde inicio)</td>
<td>3 horas</td>
<td>24 horas</td>
<td>24 horas</td>
</tr>
<tr>
<td>Tiempo Inicio - TC basal, media ± desviación estándar</td>
<td>89 ±37 minutos</td>
<td>6'5 ±6'2 horas</td>
<td>-</td>
</tr>
<tr>
<td>Ventana a TC control</td>
<td>20 horas desde TC basal</td>
<td>120 horas desde inicio</td>
<td>24 horas desde admisión</td>
</tr>
<tr>
<td>Tiempo Inicio - TC control, media ± desviación estándar</td>
<td>-</td>
<td>32 ±29'1 horas</td>
<td>-</td>
</tr>
<tr>
<td>Definición de crecimiento del hematoma</td>
<td>>33%</td>
<td>≥40%</td>
<td>>50% y >2 mL</td>
</tr>
<tr>
<td></td>
<td>o ≥12'5 mL</td>
<td>o >20 mL</td>
<td></td>
</tr>
<tr>
<td>Crecimiento del hematoma</td>
<td>38%</td>
<td>22%</td>
<td>14%</td>
</tr>
</tbody>
</table>

Así, diferentes puntos de corte han sido utilizados anteriormente para definir un CH significativo, incluyendo incrementos de volumen entre la TC de control y la basal relativos (>30%, >33% o ≥40%),\(^ {38,39,42}\) absolutos (>6 mL, ≥12'5 mL o >20 mL),\(^ {37,40,42}\) o una combinación de relativo y absoluto (>50% y >2 mL).\(^ {37}\) De entre ellos, el punto de corte más utilizado ha sido el de un aumento de volumen relativo mayor al 33%, cambio que correspondería al incremento de un 10% en el diámetro de una esfera.\(^ {39}\) Sin embargo, en las HIC más grandes un incremento de volumen absoluto reflejaría mejor un crecimiento
significativo del hematoma. Por ello, y en base a la demostración de una peor evolución clínica con un aumento de volumen de sólo 5'8 mL en aquellos pacientes con HIC no tratados con factor VIIa recombinante en el grupo tratado con la dosis mayor, recientes trabajos han optado por utilizar, además de un incremento relativo de volumen, un incremento absoluto de 6 mL como criterio para determinar un CH significativo.

Diferentes factores se han relacionado con el CH con mayor o menor grado de evidencia, entre los que se destacan:

a) Tiempo de evolución

El tiempo de evolución desde el inicio de la HIC hasta la realización de la TC craneal basal es uno de los factores relacionados con el CH más importantes. Puesto que la HIC crece a lo largo del tiempo y el CH ocurre mayoritariamente durante las primeras horas tras la HIC, cuanto más precozmente se realice la TC basal más probabilidad habrá de que se detecte el CH.

b) Afectación neurológica

La afectación del nivel de consciencia se ha asociado con el CH. Sin embargo, esta afectación puede estar representando múltiples factores, incluyendo el volumen basal de la HIC y el propio CH. Por ello el nivel de consciencia, más que un factor de riesgo para el CH, podría representar una manifestación del CH.

c) Presión arterial

Aunque las cifras elevadas de PA en la fase aguda de la HIC pueden contribuir teóricamente a la expansión hidrostática del hematoma, al edema perihematoma y al resangrado, una asociación clara entre la PA y es riesgo de CH no ha sido demostrada. Así, mientras que en unos estudios se ha objetivado un aumento del riesgo de CH con cifras mayores de PA, en otros no se ha objetivado esta relación. Sin embargo, en la mayoría de estos estudios se realizaron sólo unas pocas determinaciones de PA durante las
primeras horas tras la HIC, sin evaluar así mismo otras variables como la variabilidad de la PA.

Por otra parte, el ensayo INTERACT (*INTEnsive blood pressure Reduction in Acute Cerebral haemorrhage Trial*) mostró una tendencia a disminuir el CH relativo y absoluto a las 24 horas en aquellos pacientes que recibieron un tratamiento intensivo de reducción de la PA,\(^{49}\) apuntando así a una relación entre la PA y el CH.

d) Parámetros de laboratorio, función hepática y medicación previa

Entre otros parámetros básicos de laboratorio se han relacionado con un mayor riesgo de CH los niveles séricos de glucosa, colesterol total y creatinina, el recuento y la función plaquetar y diferentes parámetros de la coagulación. Asimismo, la alteración de la función hepática y la toma de medicación previamente a la HIC como antiagregantes o anticoagulantes han sido descritos como factores asociados al CH.

Tanto niveles elevados de glucosa\(^{45}\) como la interacción de glucosa y PA sistólica elevadas\(^{40}\) se han relacionado con un mayor riesgo de CH. Aunque esta asociación podría estar influenciada por una elevación de glucosa en relación a la severidad de la HIC, también se ha objetivado un mayor riesgo de CH en pacientes con hemoglobina glucosilada y PA sistólica elevadas (aunque no la hemoglobina glucosilada individualmente).\(^{40}\) Por ello, persiste la incertidumbre sobre la relación causal entre niveles séricos de glucosa y CH.

Niveles de colesterol total menores se han asociado a un mayor riesgo de CH.\(^{45}\) Sin embargo, se desconoce la relación del colesterol LDL con el CH pese a que niveles séricos de colesterol LDL menores se han asociado,\(^{19}\) al igual que de colesterol total,\(^{10,20,21}\) con un mayor riesgo de presentar una HIC.

También se ha objetivado un mayor riesgo de CH en pacientes con niveles mayores de creatinina.\(^{45}\) Esta relación podría estar sin embargo influenciada por el hecho de que estos niveles mayores puedan ser un marcador de HTA de larga evolución, lo que reflejaría una mayor fragilidad de los pequeños vasos y por tanto una mayor predisposición al CH.
Además, niveles elevados de creatinina podrían reflejar una afectación renal, la cual se asocia con disfunción plaquetar.50

Respecto a la relación de las plaquetas con el CH, tanto un recuento plaquetar disminuido37 como una disfunción de la actividad plaquetar51 o el tratamiento con fármacos antiagregantes45,52,53 se han relacionado con el CH. Sin embargo, otros estudios no han objetivado estas asociaciones, por lo que esta relación continúa siendo controvertida.

La alteración de la función hepática también se ha relacionado con el CH. Se ha objetivado una mayor frecuencia de CH en pacientes con enfermedad hepática conocida40 así como un incremento de la frecuencia del CH a medida que aumentan las cifras de transaminasas.37 Igualmente, la frecuencia de CH aumenta a medida que aumenta la cantidad de alcohol consumida regularmente.41 Tanto la alteración de la función hepática como el consumo de alcohol podrían relacionarse con el CH como consecuencia de la alteración de la coagulación por afectación hepática.17,54

Diferentes alteraciones de parámetros de la coagulación se han relacionado con el CH, como la disminución de los niveles de fibrinógeno37,41 o el aumento de los niveles de Dímero D,55 sugiriendo una prolongación del sangrado debido a la alteración de la hemostasia. De forma similar, el tratamiento con fármacos anticoagulantes orales se asocia con un mayor riesgo de CH.56,57

e) Parámetros radiológicos

De entre los diferentes parámetros radiológicos que se han relacionado con el CH destacan el volumen basal de la HIC, la forma y densidad del hematoma, y la presencia del spot sign en la angiografía por tomografía computarizada (angioTC) craneal.

El volumen basal del hematoma se ha relacionado con el CH en diferentes estudios, de forma que cuanto mayor es el volumen basal, mayor es el riesgo de CH. Así, mientras volúmenes >25 mL se han asociado con un mayor riesgo de CH,40 es menos probable que
se produzca crecimiento en hematomas <10 mL, particularmente en aquellos menores a 3 mL.

Sin embargo, el impacto del volumen basal del hematoma en el CH puede variar ampliamente dependiendo del tiempo desde el inicio de los síntomas hasta la realización de la TC craneal basal debido al CH previo a la a realización del mismo. Pese a que un estudio mostró que la combinación de volumen de HIC basal >25 mL y tiempo desde el inicio de los síntomas hasta la TC craneal <6 horas predecía el CH, se desconoce el impacto en el CH del ajuste del volumen basal del hematoma con el tiempo desde el inicio de los síntomas hasta la realización de la TC craneal, el cual definiremos como crecimiento ultraprecocz del hematoma.

Entre otros parámetros radiológicos relacionados con el CH se encuentran, además de los hematomas con un volumen mayor, la forma más irregular o la densidad más heterogénea de la HIC.

La extravasación de contraste en la angioTC craneal basal o spot sign como marcador indirecto de hemorragia activa es un potente predictor de CH que ha sido recientemente validado en el ensayo multicéntrico denominado PREDICT (PRedicting hEmatoma growth anD outcome in Intracerebral hemorrhage using contrast bolus CT). De forma similar, estudios recientes sugieren que la identificación de extravasación de contraste en imágenes de angioTC realizadas unos minutos tras el bolus inicial de contraste podría incrementar la capacidad predictiva del spot sign.

1.5.2. Hipodensidad perihematoma

La presencia del hematoma inicia la formación de una hipodensidad a su alrededor caracterizada por edema, apoptosis, necrosis y presencia de células inflamatorias. La lesión perihematoma se produce inicialmente por el efecto directo del hematoma en el tejido circundante, mientras que posteriormente es secundaria a los productos liberados por el propio hematoma.
El hematoma produce inicialmente por disrupción mecánica daño neuronal y de la glía seguido de una deformación mecánica que causa oligoemia, liberación de neurotransmisores, disfunción mitocondrial y despolarización de membrana. En función de la severidad de la disfunción mitocondrial se producirá desde una supresión metabólica temporal (hibernación) hasta una necrosis.65

Progresivamente, unas 4 horas después de producirse la lesión inicial, se va lesionado el tejido perihematoma por los productos de la degradación de la hemoglobina y por la cascada de la coagulación, fundamentalmente la trombina, que activa la microglía.66 Tras su activación, la microglía libera productos que inducen la ruptura de la barrera hematoencefálica, la formación de edema vasogénico y la apoptosis neuronal y de la glía.65

El edema perihematoma alcanza un 75% de su volumen máximo en las primeras 24 horas (Figura 5),67 con un pico alrededor del 5\textdegree{} o 6\textdegree{} día, manteniéndose hasta el día 14 y disminuyendo posteriormente.68

\textbf{Figura 5. Hipodensidad perihematoma}

La hipodensidad perihematoma aparece de forma precoz en la HIC. En la imagen, HIC lobular parietal izquierda de 145 minutos de evolución con hipodensidad perihematoma.

Sin embargo, esta hipodensidad no siempre se asocia con un peor pronóstico. En este sentido, estudios que han evaluado la relación de la hipodensidad perihematoma con la
La HIC suele presentarse con síntomas neurológicos focales de instauración aguda que dependen de la localización y el tamaño del hematoma.

Los síntomas focales pueden asociar disminución del nivel de consciencia, cefalea o vómitos por aumento de la presión intracraneal (PIC), signos de irritación meníngea en caso de extensión intraventricular o subaracnoidea del hematoma, así como crisis epilépticas, especialmente en HIC de localización lobular. Además, los pacientes con HIC aguda suelen presentar cifras elevadas de PA, habiéndose descrito que hasta el 75% de ellos presenta una PA sistólica >140 mmHg.

Las manifestaciones clínicas de la HIC pueden progresar tras su instauración debido principalmente al CH durante las primeras horas, aunque también puede existir un deterioro neurológico en los días siguientes debido a la formación de edema perihematoma.

Para diagnosticar una HIC es necesaria la realización de una anamnesis completa, de una exploración física exhaustiva y de exploraciones complementarias básicas, como pruebas de laboratorio. No obstante, es imprescindible la realización de exploraciones de neuroimagen que la confirmen.

Entre las distintas técnicas de neuroimagen útiles en la HIC destacan la TC craneal, la ecografía transcraneal, la resonancia magnética (RM) cerebral, la angioTC craneal y la angiografía cerebral convencional. La necesidad de realizar cualquiera de estas exploraciones debe valorarse de forma individualizada.
1.7.1. Tomografía computarizada craneal

La TC craneal es el método de elección para el diagnóstico de la HIC aguda. Permite evaluar su localización (Figura 6), calcular el volumen del hematoma y evaluar el CH mediante su realización seriada. Permite además valorar la existencia de extensión intraventricular o subaracnoidea, de efecto masa que pueda ejercer el hematoma o de hipodensidad perihematoma, así como puede ayudar en algunos casos al diagnóstico etiológico.

Figura 6. HIC por TC craneal

La HIC aparece en fase aguda como una colección hiperdensa en la TC craneal. En la imagen, HIC putaminal izquierda de 125 minutos de evolución.

El volumen de la HIC aguda se puede estimar rápidamente mediante la fórmula ABC/2, método basado en el cálculo del volumen de un elipsoide. Para ello, se identifica el corte de la TC craneal donde se observa el área hemorrágica de mayor tamaño: A es el mayor diámetro de esta área y B el mayor diámetro perpendicular a A en este mismo corte. El parámetro C se calcula en función del número de cortes en los cuales se visualiza la lesión.
1.7.2. Ecografía transcraneal

La ecografía transcraneal en modo B es una técnica que proporciona una imagen bidimensional del parénquima encefálico y que permite visualizar la HIC aguda como una colección hiperecogénica (Figura 7).76,77 Permite, además de evaluar la localización y el volumen de la HIC, valorar la presencia de extensión intraventricular78 y de desplazamiento de la línea media,79 así como monitorizar el CH.80

\textbf{Figura 7. HIC por ecografía transcraneal}

La HIC aparece en fase aguda como una colección hiperecogénica en la ecografía transcraneal en modo B. En la imagen, HIC putaminal derecha de 258 minutos de evolución.

Sin embargo, la precisión de esta técnica está limitada a la fase inicial de la HIC, ya que a partir del quinto día la ecogenicidad de la HIC comienza a disminuir y sus márgenes a desdibujarse.78 Además, la HIC puede no ser visualizada en pacientes con una ventana acústica inadecuada así como en aquellos con HIC pequeñas o de localización infratentorial o muy superficial.78,80

No obstante, tiene como ventajas la posibilidad de evaluar conjuntamente mediante Doppler transcraneal la hemodinámica cerebral78,81 así como ser una técnica no invasiva que se puede realizar a la cabecera del paciente, facilitando la monitorización del CH en la
fase aguda. Por ello, es una técnica que puede aportar información útil y en tiempo real complementaria a la ofrecida por la TC craneal.

1.7.3. **Resonancia magnética cerebral**

Pese a las dudas iniciales acerca de la sensibilidad en la detección de la HIC durante las primeras horas, la RM cerebral permite el diagnóstico de la HIC aguda de forma fiable en comparación con la TC craneal. Mediante secuencias eco de gradiente potenciadas en T2, la HIC aparece en las primeras horas como una lesión con un núcleo de señal heterogénea y un borde hipointenso (Figura 8).

![Figura 8. HIC por RM cerebral](image)

La HIC aparece en fase aguda como una masa con un núcleo de señal heterogénea rodeada de un borde hipointenso (cabeza de flecha) en secuencias eco-gradiente. En la imagen, HIC putaminal izquierda de 72 minutos de evolución.

Tomada de Kidwell et al.

La RM cerebral es sin embargo superior a la TC craneal en la detección de HIC crónicas, especialmente microsangrados, así como en la detección de causas secundarias de HIC, como angiomas cavernosos, trombosis de senos venosos durales o neoplasias intracraneales. No obstante, en caso de HIC pequeñas puede ser difícil mediante
RM cerebral la distinción entre aguda y crónica, por lo que en estos casos es necesario la realización de una TC craneal.83

1.7.4. Angiografía por tomografía computarizada craneal

La angioTC craneal es una técnica fácilmente accesible que proporciona una valoración rápida y no invasiva de la vascularización cerebral. Por ello, se ha extendido su uso para la valoración urgente de la patología vascular estructural cerebral, pudiendo identificar causas secundarias de HIC como malformaciones arteriovenosas o aneurismas.87

Por otra parte, además de su utilidad para descartar causas secundarias de HIC, la angioTC craneal es capaz de detectar pacientes con un riesgo aumentado de CH. Así aquellos pacientes que presentan extravasación de contraste en la angioTC, bien en las imágenes de primer paso o \textit{spot sign} (Figura 9),42,60,62 bien en las imágenes realizadas unos minutos tras la administración del bolus de contraste (segundo paso),63,64 presentan mayor riesgo de CH.

\begin{center}
\textbf{Figura 9. \textit{Spot sign} en angioTC craneal}
\end{center}

El \textit{spot sign} aparece en las imágenes fuente de la angioTC craneal como un foco de realce de contraste en el seno de la HIC. En la imagen, HIC talámica derecha de 129 minutos de evolución en la que se objetiva la presencia de un \textit{spot sign} en la periferia (flecha).
1.7.5. Angiografía cerebral convencional

Pese a la posibilidad de realizar una valoración angiográfica mediante angioTC o angiografía por RM, la angiografía cerebral convencional continúa siendo la técnica de elección ante la sospecha de patología vascular estructural subyacente a una HIC. Así, en pacientes seleccionados debe considerarse la realización de una angiografía para descartar causas como malformaciones arteriovenosas (Figura 10), aneurismas o vasculitis.

Figura 10. Malformación arteriovenosa por angiografía cerebral convencional

Angiografía por sustracción digital mediante cateterización selectiva de la arteria carótida interna derecha. Malformación arteriovenosa nutrida por ramas prerolándicas y rolándica de la arteria cerebral media (A) con drenaje a los senos venosos durales sagital superior, transverso y cavernoso (B).

Varios trabajos han estudiado la rentabilidad diagnóstica de la angiografía cerebral convencional en base a datos clínicos o radiológicos en pacientes con hemorragia intracranial espontánea (no traumática). Así, un estudio que incluía hemorragias intracerebrales e intraventriculares mostró que en base a hallazgos de la TC craneal basal (sangre subaracnoidea o intraventricular, calcificaciones intracraneales, estructuras vasculares prominentes o determinada localización de la HIC como perisilviana) la angiografía era positiva hasta en un 84’2% de los casos, frente a un 23’8% de los casos en que no existía ninguno de estos hallazgos. Por su parte, y tomando no sólo parámetros
radiológicos, otro estudio que incluía hemorragias intracerebrales, intraventriculares y subdurales objetivó que, mientras que la angiografía era positiva en el 34’5% del total de la muestra, ascendía a un 44’6% en pacientes no hipertensos (frente al 8’6% en hipertensos), a un 48’9% en HIC de localización lobular (frente al 23’3% en no lobulares), y a un 50’5% en sujetos menores de 46 años (frente al 17’8% en mayores de 45 años), llegando a un 65% en pacientes menores de 46 años no hipertensos con HIC lobular.89

Por tanto, la angiografía cerebral convencional ha de considerarse en aquellos pacientes en los que exista alta sospecha clínica o radiológica de una anomalía vascular subyacente.7

1.8. TRATAMIENTO

Pese a la elevada morbilidad y mortalidad asociada a la HIC,2 ningún tratamiento ha demostrado ser claramente eficaz en la HIC.7,90,91 Es por ello que el tratamiento actual se basa fundamentalmente en medidas de soporte, principalmente en el control de la PA.

Revisaremos brevemente las principales medidas terapéuticas generales así como las dianas terapéuticas consideradas actualmente más importantes en la HIC aguda, como son el CH, la evacuación quirúrgica del hematoma y la hemorragia intraventricular e hidrocefalia.92

1.8.1. Medidas generales

Todo paciente con una HIC debería ser tratado en una Unidad de Ictus, o bien en una Unidad de Cuidados Intensivos si fuera necesario.90 Los cuidados en una Unidad de Ictus reducen la mortalidad e incrementan la probabilidad de un pronóstico funcional favorable tras una HIC.93,94
Entre las medidas generales se incluyen la monitorización de funciones vitales y de la situación neurológica, el mantenimiento de la homeostasis y la prevención y tratamiento de complicaciones.

a) Monitorización de funciones vitales y de la situación neurológica

Funciones vitales como la oxigenación, la PA, la frecuencia cardíaca y la temperatura deben ser continua o regularmente monitorizadas. Para la monitorización del estado neurológico de los pacientes con HIC es preferible la utilización de escalas neurológicas validadas, como la escala de ictus del National Institute of Health (NIHSS)\(^{95,96}\) o la escala de coma de Glasgow.\(^{97}\) En general, en pacientes con una puntuación en la escala de coma de Glasgow menor a 8, está indicada la intubación endotraqueal y la ventilación mecánica.\(^{91}\)

b) Mantenimiento de la homeostasis

Los aspectos fundamentales sobre los que se debe incidir para evitar problemas sistémicos que pudieran influir negativamente en la evolución de la HIC son los gases sanguíneos, la PA, la glucemia y la temperatura.\(^{91}\)

La hipoxemia debe evitarse ya que aumenta el flujo sanguíneo cerebral y por tanto la PIC. Por ello, es necesaria una adecuada oxigenación en pacientes con disminución de la presión parcial de oxígeno en sangre arterial mediante la administración de oxígeno por vía nasal o mediante respiración asistida si fuera necesario.

La PA elevada se ha relacionado con el CH\(^{40,46}\) y con una mala evolución tras una HIC.\(^ {98}\) Por ello, la mayoría de guías actuales recomiendan mantener la PA sistólica por debajo de 180 mmHg en la fase aguda.\(^{7,91}\)

La hiperglucemia debe evitarse por el riesgo de aumentar el daño cerebral mediado por la glucosa. Así, los niveles de glucemia elevados tras una HIC se relacionan con un peor pronóstico en pacientes con o sin diabetes previa.\(^{99-101}\) Sin embargo, se desconoce cuáles son los niveles óptimos de glucemia en la HIC aguda, por lo que actualmente se recomienda mantener la normoglucemia evitando la hipoglucemia.\(^7\)
La duración de la fiebre se relaciona con una peor evolución tras una HIC102 por lo que requiere, además del tratamiento etiológico de la misma, tratamiento sintomático con fármacos antipiréticos.

c) Prevención y tratamiento de complicaciones

Las complicaciones deben ser correctamente prevenidas y tratadas ya que son una de las principales causas de mortalidad en la HIC aguda. Entre ellas, destacan la trombosis venosa profunda, las crisis comiciales y la hipertensión intracraneal.

Los pacientes con HIC tienen un riesgo aumentado de trombosis venosa profunda103 Sin embargo, se desconoce cuál es el mejor tratamiento en la prevención de la misma. Las dosis bajas de heparina subcutánea, pese a no incrementar el resangrado de la HIC104,105 y a asociarse con un menor riesgo de embolismo pulmonar al iniciarse el segundo día desde el inicio,105 no han demostrado disminuir el riesgo de trombosis venosa profunda en pacientes con HIC aguda.104,105 Por su parte, mientras que las medias con compresión graduada solas no son eficaces,106 las medias elásticas con compresión neumática intermitente son superiores a las medias elásticas solas.107 En base a esto, se recomienda la utilización de medias elásticas con compresión neumática intermitente o el inicio de heparina de bajo peso molecular subcutánea a partir del segundo día desde el inicio de la HIC y tras haberse documentado que ha cedido la hemorragia.7

Las crisis comiciales ocurren mayoritariamente en las primeras 24 horas tras la HIC72,108,109 y se han descrito hasta en un 17% de los pacientes con HIC supratentorial aguda.108 En pacientes con HIC aguda, mientras que las crisis comiciales no se relacionan con un peor pronóstico72,109,110 ni el estatus epiléptico con una mayor mortalidad,109 el tratamiento preventivo primario con fenitoína se asocia con una peor evolución.111,112 Por ello, se recomienda tratar las crisis comiciales manifiestas clínicamente, no estando recomendado utilizar fármacos antiepilépticos de forma preventiva.

El incremento de la PIC se produce habitualmente por el efecto masa del hematoma o por la hidrocefalia secundaria a la hemorragia intraventricular. Sin embargo, debido a la
escasez de estudios acerca de la frecuencia del aumento de la PIC en la HIC y su tratamiento, los principios de su manejo son adaptados de las guías de daño cerebral traumático, recomendándose un mantenimiento de la presión de perfusión cerebral entre 50 y 70 mmHg.7,113 Así, se recomienda tanto la monitorización invasiva de la PIC con dispositivos intraventriculares o intraparenquimatosos como el tratamiento de la misma en aquellos pacientes con una puntuación en la escala de coma de Glasgow menor a 9, herniación transtentorial o hemorragia intraventricular y/o hidrocefalia significativas.7 No obstante, y pese a que diversos métodos han sido descritos para disminuir la PIC como la elevación de la cabecera de la cama a 30\textdegree{}, la analgesia y sedación, el bloqueo neuromuscular, la hiperventilación controlada, los diuréticos osmóticos o el coma barbitúrico,114 el tratamiento de la hipertensión intracraneal debe dirigirse a la causa subyacente, especialmente si es debido al efecto masa del hematoma o a la hidrocefalia.7

1.8.2. Crecimiento del hematoma

El CH es un predictor independiente de deterioro neurológico precoz (DNP), mortalidad y discapacidad en pacientes con HIC.71,115 Por ello, limitar el CH es uno de los principales objetivos de las terapias emergentes en la HIC.7 Los tratamientos hemostáticos y el control de la PA son actualmente las dos dianas terapéuticas principales para limitar el CH.

a) Tratamientos hemostáticos

El factor VII recombinante activado (rFVIIa) promueve la hemostasia en lugares de ruptura vascular y ha demostrado limitar el CH tras una HIC en ensayos en fase 2b y 3.43,116 Un ensayo clínico en fase 2b, aleatorizado placebo-control, mostró que el rFVIIa administrado dentro de las primeras 4 horas tras el inicio de la HIC limitaba el CH y mejoraba la evolución clínica en comparación con el placebo, pese a un incremento en la frecuencia de fenómenos tromboembólicos arteriales.43 Sin embargo, y en contraste con este estudio, el ensayo en fase 3 denominado FAST (Factor seven for Acute hemorrhagic
Stroke Trial) no demostró diferencias en la evolución de los pacientes. Aunque el ensayo FAST confirmó el efecto del rFVIIa para limitar el CH en comparación con placebo, su administración no mejoró ni la mortalidad ni la discapacidad severa tras la HIC. Además, los fenómenos tromboembólicos fueron más frecuentes en el grupo tratado con dosis mayores de rFVIIa que en el grupo tratado con dosis menores y que en el grupo tratado con placebo.

Un análisis post-hoc del ensayo FAST apuntó que aquellos pacientes menores de 71 años con un volumen de HIC menor a 60 mL y de hemorragia intraventricular menor a 5 mL podrían beneficiarse de tratamiento con rFVIIa si se administraba en las dos primeras horas y media desde el inicio de los síntomas. Sin embargo, actualmente se desconoce si el rFVIIa puede beneficiar a un subgrupo concreto de pacientes con HIC, especialmente en aquellos con un mayor riesgo de CH. En este sentido, y puesto que el spot sign se considera un indicador de hemorragia activa y es un potente predictor de CH, diversos estudios están siendo desarrollados para investigar el efecto del rFVIIa en pacientes con spot sign, como los denominados SPOTLIGHT (spot sign selection of intracerebral hemorrhage to guide hemostatic therapy) y STOP-IT (the spot sign for predicting and treating intracerebral hemorrhage growth study). Sin embargo, y en base a los resultados del ensayo FAST, el tratamiento con rFVIIa no se recomienda actualmente en pacientes con HIC.

Respecto a la HIC asociada a la toma de anticoagulantes orales, la recomendación es corregir el INR (international normalized ratio) tan rápido como sea posible. La vitamina K endovenosa, el plasma fresco congelado, los concentrados de complejo protrombínico y el rFVIIa han sido considerados como tratamientos potenciales. Aunque las perfusiones endovenosas de vitamina K y de plasma fresco congelado han sido históricamente recomendadas, se necesitan terapias que actúen más rápidamente puesto que ambas tardan varias horas en corregir el INR. Los concentrados de complejo protrombínico, que contienen factores II, VII, IX y X, están siendo cada vez más recomendados puesto que se reconstituyen y se administran rápidamente, contienen concentraciones de factores de la coagulación altas en volúmenes pequeños (en contraste con el plasma fresco congelado), y normalizan el INR rápidamente (en minutos) en pacientes con anticoagulación oral, con un
riesgo relativamente bajo de complicaciones tromboembólicas. Respecto al rFVIIa, aunque puede normalizar rápidamente el INR en pacientes con HIC asociada a la toma de anticoagulantes orales, no repone todos los factores de la coagulación dependientes de la vitamina K, por lo que actualmente no está recomendado.\(^7\)

Por tanto, en pacientes con HIC asociada a la toma de anticoagulantes orales, el tratamiento actualmente más aceptado son los concentrados de complejo protrombínico (para normalizar el INR rápidamente) junto con suplementos de vitamina K endovenosa (para mantener la reversión de la anticoagulación durante días).\(^7\)

b) Control de la presión arterial

Aunque la PA elevada podría contribuir al CH, una asociación clara entre la PA en las primeras horas de la HIC y el riesgo de CH no ha sido demostrada. No obstante, el control de la PA es considerado como una importante diana terapéutica en la HIC aguda, y las guías actuales recomiendan mantener la PA sistólica por debajo de 180 mmHg en la fase aguda con fármacos antihipertensivos endovenosos de vida media corta.\(^7,91\) Sin embargo, y aunque las recomendaciones acerca del manejo de la PA en las guías no han cambiado sustancialmente en la última década,\(^7,118\) la demostración de la seguridad de una reducción mayor de la PA tras la publicación de los ensayos denominados INTERACT\(^{49}\) y ATACH (Antihypertensive Treatment in Acute Cerebral Hemorrhage)\(^{119}\) puede cambiar el manejo de la PA en pacientes con HIC aguda en el futuro.

El INTERACT fue un ensayo clínico abierto, controlado y aleatorizado de pacientes tratados en las primeras 6 horas de la HIC que mostró una tendencia a disminuir el CH relativo y absoluto a las 24 horas en el grupo de tratamiento intensivo de la PA (con objetivo de PA sistólica menor a 140 mmHg) comparado con el grupo control (menor a 180 mmHg) sin incrementar los efectos adversos.\(^{49}\) De forma similar, el ensayo ATACH también demostró la factibilidad y seguridad de un descenso de la PA precoz intensivo (PA sistólica menor a 140 mmHg).\(^{119}\)
Los resultados de estos estudios deben sin embargo ser respaldados por datos adicionales de estudios multicéntricos prospectivos mayores, como el denominado INTERACT2 (Second INTEnsive blood pressure Reduction in Acute Cerebral haemorrhage Trial),120 que actualmente se está llevando a cabo.

1.8.3. Evacuación quirúrgica del hematoma

La evacuación quirúrgica del hematoma puede teóricamente prevenir el CH, disminuir el efecto masa y bloquear la liberación de productos sanguíneos neurotóxicos. Sin embargo, los riesgos quirúrgicos pueden ser mayores a este hipotético beneficio, por lo que la decisión de a qué pacientes y cuándo se les debe realizar una evacuación quirúrgica del hematoma sigue siendo controvertida.7

a) Craneotomía

El STICH (Surgical Trial in IntraCerebral Haemorrhage) es el ensayo reciente más grande, aleatorizado y controlado comparando cirugía precoz (mediana de tiempo de 30 horas desde el inicio de la HIC hasta la cirugía) con tratamiento médico en pacientes con HIC.121 Este ensayo no objetivó beneficio en cuanto a mortalidad y discapacidad a los 6 meses de la HIC en el grupo quirúrgico. Sin embargo, el análisis de subgrupos mostró que HIC lobulares a menos de 1 cm de la superficie cortical posiblemente podrían beneficiarse de cirugía precoz. Así, en base a estos resultados, el ensayo STICH II (Surgical Trial in lobar IntraCerebral Haemorrhage) tiene por objetivo valorar si la evacuación quirúrgica precoz en este subgroupo de pacientes mejoraría la evolución en comparación con el tratamiento conservador.122

Los desesperanzadores resultados del STICH pueden ser explicados en parte por el daño neuronal y el alto riesgo de resangrado debido a la craneotomía abierta, sobre todo en HIC profundas. Por ello, algunos estudios se centran actualmente en la evacuación del hematoma mediante cirugía mínimamente invasiva.
b) Cirugía mínimamente invasiva

Las técnicas mínimamente invasivas tienden a realizar una aspiración del hematoma mejorada con trombolíticos123-125 o con endoscopía126-128 con o sin guía estereotáctica. Aunque estas técnicas han mostrado un aumento en la eliminación de coágulos, no han demostrado de forma consistente mejorar la evolución funcional de los pacientes con HIC en comparación con el tratamiento conservador, por lo que actualmente se encuentran en estudio.

Así, el ensayo MISTIE (\textit{Minimally Invasive Surgery plus Tissue plasminogen activator for Intracerebral hemorrhage Evacuation}) está actualmente bajo reclutamiento de pacientes. El MISTIE tiene como objetivo principal el determinar la seguridad de la combinación de la cirugía mínimamente invasiva con la lisis del coágulo con el activador tisular del plasminógeno (tPA), así como su impacto en la mortalidad y el pronóstico funcional tras la HIC en comparación con el tratamiento médico convencional.124

c) HIC cerebelosa

La HIC cerebelosa ha sido excluida de la mayoría de los ensayos aleatorizados de evacuación quirúrgica en HIC, como el STICH. Sin embargo, la HIC cerebelosa puede causar compresión del tronco encefálico o del cuarto ventrículo causando una hidrocefalia secundaria. Por ello, las guías actuales recomiendan la evacuación quirúrgica del hematoma tan pronto como sea posible, independientemente del tamaño, en aquellos pacientes con HIC cerebelosa que experimenten deterioro neurológico o que tengan comprensión del tronco encefálico y/o hidrocefalia por compresión del cuarto ventrículo.7

1.8.4. Hemorragia intraventricular e hidrocefalia

La hemorragia intraventricular es una complicación frecuente de la HIC (alrededor de un 45% de los casos)129 que se asocia con un importante incremento de la morbimortalidad.130-132 Esta mala evolución se relaciona con el desarrollo de hidrocefalia aguda secundaria a la obstrucción de la circulación de líquido cefalorraquídeo a través del
tercer y cuarto ventrículo, lo que conlleva un incremento progresivo de la PIC que puede llegar a ser letal en caso de no ser tratado de forma urgente.

Pese a que la colocación de un catéter de drenaje ventricular externo puede facilitar el drenaje de la sangre y del líquido cefalorraquídeo de los ventrículos evitando el deterioro neurológico secundario a la hidrocefalia, su uso de forma aislada puede ser inefectivo debido a la dificultad para mantener su permeabilidad y a la lentitud en la evacuación de la sangre intraventricular. Por ello, se ha planteado el uso de agentes trombolíticos en adición al drenaje ventricular externo.

La trombólisis intraventricular se está evaluando en los últimos años para intentar evitar la trombosis y la obstrucción del drenaje ventricular externo. Tanto la urokinasa como el tPA han mostrado un mejor mantenimiento del drenaje ventricular externo así como una resolución del trombo intraventricular más rápida, lo que podría mejorar la evolución de los pacientes con HIC y extensión intraventricular.

Estos prometedores resultados llevaron al diseño del ensayo clínico en fase 2 denominado CLEAR-IVH (Clot Lysis: Evaluating Accelerated Resolution of IntraVentricular Hemorrhage), el cual mostró tanto la seguridad de la administración de dosis repetidas de 1 mg de tPA cada 8 horas como un posible efecto beneficioso en la evolución clínica. Por ello, el ensayo en fase 3 denominado CLEAR III (Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III) está actualmente en curso con el objetivo de demostrar la eficacia de la trombólisis intraventricular con 1 mg de tPA cada 8 horas en la evolución clínica de pacientes con hemorragia intraventricular. Entretanto, y en esta misma línea, se ha descrito recientemente en un ensayo en fase 2 la seguridad de dosis repetidas de 3 mg de tPA cada 12 horas, con una tendencia a una mejor evolución clínica aunque también a mayores complicaciones hemorrágicas.

Por otra parte, pese a que se han planteado procedimientos alternativos para el tratamiento de la hemorragia intraventricular y la hidrocefalia, como la evacuación endoscópica con ventriculostomía, la derivación ventrículo-peritoneal o el drenaje lumbar, existe poca evidencia acerca los mismos.
1.9. PRONÓSTICO

La HIC es el subtipo de ictus más devastador. Se ha descrito que hasta un 52% de los pacientes que presentan una HIC fallecen durante los primeros 30 días (la mitad en los primeros dos días), siendo funcionalmente independientes a los 6 meses sólo un 20%.⁶

Diferentes estudios han identificado factores basales predictores de la evolución clínica y el pronóstico funcional tras una HIC. Entre ellos destacan la puntuación en la escala de coma de Glasgow o en la NIHSS, la edad, el volumen basal de la HIC, la localización del hematoma y la presencia de hemorragia intraventricular.⁶⁹,¹³⁰,¹⁴²-¹⁴⁵ Utilizando estos y otros factores se han desarrollado escalas pronósticas de evolución tanto clínica como funcional en la HIC, como son el ICH score¹³⁰ o el FUNC score,¹⁴⁵ dos escalas fácilmente aplicables.

El ICH score es una escala pronóstica de mortalidad a los 30 días de una HIC. Compuesta por 5 ítems, la puntuación total se sitúa entre 0 y 6 (tabla 4). En el estudio en que se desarrolló se objetivó que mientras que la mortalidad a los 30 días en el grupo con una puntuación de 0 en la ICH score era del 0%, ésta aumentaba progresivamente hasta llegar a ser el 100% en el grupo con 5 puntos (ningún paciente obtuvo 6 puntos).¹³⁰

<table>
<thead>
<tr>
<th>Tabla 4. ICH score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componente</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Escala de coma de Glasgow</td>
</tr>
<tr>
<td>3-4</td>
</tr>
<tr>
<td>5-12</td>
</tr>
<tr>
<td>13-15</td>
</tr>
<tr>
<td>Volumen HIC, mL</td>
</tr>
<tr>
<td>≥30</td>
</tr>
<tr>
<td><30</td>
</tr>
<tr>
<td>Hemorragia intraventricular</td>
</tr>
<tr>
<td>Sí</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Localización infratentorial</td>
</tr>
<tr>
<td>Sí</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Edad, años</td>
</tr>
<tr>
<td>≥80</td>
</tr>
<tr>
<td><80</td>
</tr>
</tbody>
</table>

Adaptada de Hemphill et al.¹³⁰
Esta escala ha sido posteriormente validada externamente por diversos grupos independientes en diferentes comunidades con resultados similares.143,146-148 Asimismo, ha sido validada de forma prospectiva para la evaluación del pronóstico funcional a los 12 meses de la HIC.149

El FUNC score, por su parte, es una escala pronóstica de independencia funcional a los 90 días de una HIC. Compuesta por 5 ítems, la puntuación total se sitúa entre 0 y 11 (tabla 5). En el estudio en que se desarrolló se objetivó que ningún paciente con una puntuación en la escala menor a 5 alcanzó la independencia funcional a los 90 días, definida ésta como una puntuación en la escala Glasgow Outcome Score150 mayor a 3. Por el contrario, más del 80% de los pacientes con una puntuación en la FUNC score de 11 lograron la independencia funcional a los 3 meses.145

Tabla 5. FUNC score

<table>
<thead>
<tr>
<th>Componente</th>
<th>Puntuación (0-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumen HIC, mL</td>
<td></td>
</tr>
<tr>
<td><30</td>
<td>4</td>
</tr>
<tr>
<td>30-60</td>
<td>2</td>
</tr>
<tr>
<td>>60</td>
<td>0</td>
</tr>
<tr>
<td>Edad, años</td>
<td></td>
</tr>
<tr>
<td><70</td>
<td>2</td>
</tr>
<tr>
<td>70-79</td>
<td>1</td>
</tr>
<tr>
<td>>79</td>
<td>0</td>
</tr>
<tr>
<td>Localización de la HIC</td>
<td></td>
</tr>
<tr>
<td>Lobular</td>
<td>2</td>
</tr>
<tr>
<td>Profunda</td>
<td>1</td>
</tr>
<tr>
<td>Infratentorial</td>
<td>0</td>
</tr>
<tr>
<td>Escala de coma de Glasgow</td>
<td></td>
</tr>
<tr>
<td>>8</td>
<td>2</td>
</tr>
<tr>
<td>≤8</td>
<td>0</td>
</tr>
<tr>
<td>Deterioro cognitivo previo</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Sí</td>
<td>0</td>
</tr>
</tbody>
</table>

Adaptada de Rost et al.146
Sin embargo, no sólo las características basales de los pacientes con HIC son predictores pronósticos de la misma. De hecho, el CH desde la TC basal a la de control es uno de los factores pronósticos más potentes en la HIC. Así, se ha demostrado que el CH es un predictor independiente de DNP, mortalidad y discapacidad tras una HIC.71,115

Debido a la elevada morbilidad y mortalidad que asocia la HIC y a la inexistencia de tratamientos claramente eficaces, es muy importante la identificación de factores que puedan contribuir tanto al CH como al deterioro clínico y funcional de estos pacientes.
2. OBJETIVOS
Los objetivos principales de la presente Tesis Doctoral son:

1. Investigar la relación entre los niveles de colesterol LDL y el crecimiento del hematoma en pacientes con HIC aguda.

2. Evaluar el impacto de los niveles de colesterol LDL en la evolución clínica y el pronóstico funcional tras una HIC aguda.

3. Estudiar la relación existente entre el crecimiento ultraprecoz del hematoma, la presencia del *spot sign* y el crecimiento del hematoma en pacientes con HIC aguda.

4. Determinar el impacto del crecimiento ultraprecoz del hematoma en la evolución clínica y el pronóstico funcional tras una HIC aguda.
3. METODOLOGÍA
La metodología de los dos trabajos fue similar, por lo que la expondremos conjuntamente en los siguientes apartados.

3.1. SELECCIÓN DE PACIENTES

Ambos trabajos incluyeron a pacientes atendidos consecutivamente en el Servicio de Urgencias del Hospital Universitari Vall d’Hebron con diagnóstico de HIC primaria supratentorial. El periodo de inclusión del primer trabajo, en el que se determinó el papel del colesterol LDL, fue de abril de 2009 a junio de 2010; mientras que el del segundo trabajo, en el que se valoró el impacto del crecimiento ultraprecoz del hematoma (CuH), fue de marzo de 2009 a agosto de 2010.

Los criterios de inclusión fueron los siguientes:
- Pacientes con una HIC primaria de localización supratentorial diagnosticados mediante la práctica de una TC craneal.
- Tiempo de evolución desde el inicio de los síntomas menor a 6 horas. En aquellos pacientes con inicio de la sintomatología indeterminado, se consideró el momento de inicio aquél en que fueron vistos asintomáticos por última vez.
- Firma del consentimiento informado por parte de los pacientes o de sus familiares para participar en los estudios.

Fueron considerados criterios de exclusión los siguientes:
- Pacientes con una puntuación en la escala de coma de Glasgow menor a 8.
- Pacientes que requirieron una evacuación quirúrgica del hematoma.
- En el primer trabajo, pacientes bajo tratamiento anticoagulante.
- En el segundo trabajo, pacientes que, aunque con tiempo desde el inicio de los síntomas menor a 6 horas, con momento exacto de inicio de síntomas incierto.

Siguiendo estos criterios, en el primer trabajo se incluyeron 108 pacientes, mientras que en el segundo trabajo se incluyó a un total de 133 pacientes.
3.2. VARIABLES BASALES

3.2.1. Variables clínicas

Las variables clínicas basales estudiadas fueron la edad, el sexo, los hábitos tóxicos (tabaquismo, enolismo), los principales factores de riesgo vascular (HTA, diabetes mellitus y dislipemia), y la medicación previa que tomaban los pacientes (antihipertensivos, antidiabéticos, estatinas, antiagregantes, anticoagulantes).

En la evaluación inicial se determinó la temperatura corporal axilar así como la PA sistólica y diastólica. Asimismo, se valoró el nivel de consciencia mediante la escala de coma de Glasgow (Anexo 8.1.1.)97 y la situación neurológica mediante la NIHSS (Anexo 8.1.2).95,96

En el primer trabajo, las puntuaciones basales en la NIHSS y en la escala de coma de Glasgow fueron utilizadas como marcadores clínicos de severidad de la HIC.

3.2.2. Variables radiológicas

En la TC craneal inicial los parámetros recogidos fueron el tiempo transcurrido desde el inicio de los síntomas hasta la realización de la TC, el volumen del hematoma, la localización del hematoma (lobular, profundo) y la extensión intraventricular y/o subaranoidea. El cálculo del volumen del hematoma se realizó mediante la fórmula ABC/2.75

En el primer trabajo, el volumen basal del hematoma fue utilizado como marcador radiológico de severidad de la HIC.

En el segundo trabajo, se definió CuH como la relación entre el volumen basal del hematoma y el tiempo desde el inicio de los síntomas hasta la realización de la TC craneal, como se ilustra en la figura 11.
Figura 11. Caso ejemplo de crecimiento ultraprecoz del hematoma

Paciente con un volumen basal de HIC de 44’6 mL y tiempo desde inicio de síntomas hasta TC de 3 horas. Por tanto, el crecimiento ultraprecoz del hematoma fue de 14’87 mL/h.

A un amplio subgrupo de pacientes del segundo trabajo (89 de 133) se le realizó además una angioTC craneal para la evaluar la presencia del spot sign.

Todas las TC y las angioTC fueron evaluadas por 2 neurorradiólogos ciegos para el resto de datos de los estudios.

3.2.3. Parámetros de laboratorio

A todos los pacientes se les realizó una extracción de sangre venosa mediante venopunción a su llegada a Urgencias. Los principales parámetros de rutina recogidos fueron: glucosa, creatinina, hemoglobina, leucocitos, plaquetas, tiempo de protrombina, tiempo de tromboplastina parcial activado y fibrinógeno.

A los pacientes del primer estudio se les realizó además una segunda extracción de sangre venosa por venopunción en las primeras 24 horas tras el inicio de los síntomas y tras un periodo mínimo de ayuno de 12 horas. En esta muestra sanguínea se determinaron los siguientes parámetros: albúmina, colesterol total, colesterol LDL, high-density lipoprotein
colesterol y triglicéridos. Los niveles de albúmina se utilizaron como marcador del estado nutricional de los pacientes.151 Los niveles de colesterol LDL fueron calculados según la fórmula de Friedewald.152 En los casos en que los niveles de triglicéridos fueron mayores a 300 mg/dL, los niveles de colesterol LDL fueron determinados por métodos de ultracentrifugación.

3.3. HOSPITALIZACIÓN Y MANEJO TERAPÉUTICO

Los pacientes fueron ingresados durante las primeras 24 horas en la Unidad de Ictus, donde se aplicó un protocolo diagnóstico-terapéutico siguiendo la “Guía para el diagnóstico y tratamiento del ictus” de la Sociedad Española de Neurología.91

Así, entre otras medidas, se administró tratamiento hipotensor endovenoso cuando la PA sistólica era mayor o igual a 180 mmHg, así como cuando la PA diastólica era mayor o igual a 105 mmHg. Los fármacos de primera elección utilizados fueron el labetalol o el urapidil.

3.4. SEGUIMIENTO CLÍNICO-RADIOLÓGICO

3.4.1. Seguimiento clínico

El seguimiento clínico se realizó a las 24 horas y a los 3 meses tras el inicio de los síntomas.

En la evaluación de las 24 horas se valoró tanto la situación neurológica mediante la NIHSS como la mortalidad. Definimos DNP como un incremento de 4 o más puntos en la NIHSS a las 24 horas con respecto a la basal153 o muerte en las primeras 24 horas.
En la evaluación de los 3 meses se evaluó la puntuación en la escala modificada de Rankin (mRS; Anexo 8.1.3.).154,155 Definimos pronóstico funcional desfavorable como una puntuación mayor a 2 en la mRS a los 3 meses.

Así, los parámetros pronósticos utilizados fueron DNP, mortalidad a los 3 meses y pronóstico funcional desfavorable.

3.4.2. Seguimiento radiológico

El seguimiento radiológico se realizó mediante una TC craneal a las 24 horas tras el inicio de los síntomas en la que se valoró el tamaño del hematoma por 2 neurorradiólogos ciegos para el resto de datos de los estudios. En el caso de que a algún paciente se le realizara una TC craneal previa a la de control 24 horas por haber presentado un deterioro neurológico, ésta no fue utilizada para el análisis.

Definimos crecimiento significativo del hematoma como un aumento del volumen superior a 33% o a 6 mL del volumen inicial a las 24 horas.39,42

3.5. ANÁLISIS ESTADÍSTICO

El análisis estadístico fue realizado utilizando el paquete estadístico SPSS 17.0. Las variables categóricas se presentan como porcentajes, mientras que las continuas son presentadas como medias y desviación estándar si están distribuidas normalmente o como medias y rangos intercuartílicos si no siguen una distribución normal.

La significación estadística para diferencias intergrupo se evaluó mediante los tests Chi cuadrado de Pearson o exacto de Fisher para variables categóricas, o mediante los tests t de Student o Mann-Whitney U para variables continuas. Para estudiar correlaciones entre variables continuas se utilizó el coeficiente de correlación de Spearman. El punto de corte de cada variable que mejor predijo el crecimiento del hematoma o la evolución clínica se estableció mediante la utilización de curvas ROC.
Para determinar los factores que pudieran ser considerados predictores independientes de crecimiento del hematoma y de evolución clínica se realizó un análisis multivariable de regresión logística. Éste se ajustó para variables confusoras en función de los resultados del análisis univariante (en el primer trabajo se ajustó además para niveles de albúmina y tratamiento previo con estatinas). Las variables con un valor de p menor a 0’1 en el análisis univariante fueron incluidas en el modelo multivariante. Los resultados de la regresión logística se presentan como odds ratio (OR) y 95% de intervalo de confianza. Un valor de p menor a 0’05 fue considerado significativo para todos los tests.
4. COPIA DE LAS PUBLICACIONES
4.1. SERUM LOW-DENSITY LIPOPROTEIN CHOLESTEROL LEVEL PREDICTS HEMATOMA GROWTH AND CLINICAL OUTCOME AFTER ACUTE INTRACEREBRAL HEMORRHAGE.

Serum Low-Density Lipoprotein Cholesterol Level Predicts Hematoma Growth and Clinical Outcome After Acute Intracerebral Hemorrhage

David Rodriguez-Luna, MD; Marta Rubiera, MD, PhD; Marc Ribo, MD, PhD; Pilar Coscojuela, MD; Jorge Pagola, MD, PhD; Socorro Piñeiro, MD; Bernardo Ibarra, MD; Pilar Meler, RN; Olga Maisterra, MD; Francisco Romero, MD, PhD; Jose Alvarez-Sabin, MD, PhD; Carlos A. Molina, MD, PhD

Background and Purpose—Lower serum low-density lipoprotein cholesterol (LDL-C) levels have been associated with increased risk of death after intracerebral hemorrhage (ICH). Nevertheless, their link with hematoma growth (HG) is unknown. Therefore, we aimed to investigate the relationship between LDL-C levels, HG, and clinical outcome in patients with acute ICH.

Methods—We prospectively studied 108 consecutive patients with primary supratentorial ICH presenting within 6 hours from symptoms onset. National Institutes of Health Stroke Scale score and ICH volume on computed tomography scan were recorded at baseline and at 24 hours. Lipid profile was obtained during the first 24 hours. Significant HG was defined as hematoma enlargement >33% or ≥6 mL at 24 hours. Early neurological deterioration as well as mortality and poor long-term outcome (modified Rankin Scale score >2) at 3 months were recorded.

Results—Although LDL-C levels were not correlated with ICH volume (r = -0.18; P = 0.078) or National Institutes of Health Stroke Scale score (r = -0.17; P = 0.091) at baseline, lower LDL-C levels were associated with HG (98.1 ± 33.7 mg/dL versus 117.3 ± 25.8 mg/dL; P = 0.003), early neurological deterioration (89.2 ± 31.8 mg/dL versus 112.4 ± 29.8 mg/dL; P = 0.012), and 3-month mortality (94.9 ± 37.4 mg/dL versus 112.5 ± 28.5 mg/dL; P = 0.029), but not with poor long-term outcome (109.5 ± 31.3 mg/dL versus 108.3 ± 30.5 mg/dL; P = 0.875). Moreover, LDL-C levels were inversely related to the amount of hematoma enlargement at 24 hours (r = -0.31; P = 0.004). In multivariate logistic regression analysis, LDL-C level <95 mg/dL emerged as an independent predictor of HG (OR, 4.24; 95% CI, 1.26–14.24; P = 0.020), early neurological deterioration (OR, 8.27; 95% CI, 1.66–41.16; P = 0.010), and 3-month mortality (OR, 6.34; 95% CI, 1.29–31.3; P = 0.023).

Conclusions—Lower serum LDL-C levels independently predicts HG, early neurological deterioration, and 3-month mortality after acute ICH. (Stroke. 2011;42:2447-2452.)

Key Words: intracerebral hemorrhage • cholesterol • low-density lipoprotein cholesterol • growth • outcome

Intracerebral hemorrhage (ICH) accounts for about 10% of strokes and is associated with poor outcome and high mortality rates.1 Despite its devastating effects and social burden, no proven treatment has been consistently demonstrated to be effective in ameliorating ICH consequences.2 Hematoma growth (HG) has been shown to be an independent determinant of death and disability after ICH,3 and limiting HG represents the main target for emergent therapies for ICH.2 HG occurs mainly during the first hours after ICH onset, most frequently within the first 6 hours.4–6 Besides earlier time to computed tomography (CT) scan, several factors have been related to HG, including larger baseline ICH volume, irregularly shaped hematoma, liver disease, alcohol consumption, higher systolic blood pressure, hyperglycemia, and hypofibrinogenemia.6–8 A post hoc analysis of the Recombinant Activated Factor VII Intracerebral Hemorrhage Trial showed that lower serum total cholesterol (total-C) levels were related to HG.8

Decreased low-density lipoprotein cholesterol (LDL-C)9 and total-C10–12 levels have been previously demonstrated to be associated with a higher risk of ICH. Moreover, both lower total-C and LDL-C levels have been shown to increase risk of death after ICH in several studies.11,13–15 Although lower cholesterol levels have been involved in the destruction of smooth muscle cells in arterial media promoting active
bleeding, the link between LDL-C levels, HG, and clinical deterioration in patients with acute ICH remains largely unknown.

The aim of the present study was to investigate the relationship between LDL-C levels and HG in patients with acute ICH and their impact on clinical outcome.

Subjects and Methods

Study Population
We prospectively evaluated consecutive patients with acute primary supratentorial ICH admitted to our emergency room within 6 hours from symptoms onset. A total of 142 patients were initially evaluated between April 2009 and June 2010. We excluded those patients who were under anticoagulant treatment (n = 15), those with a Glasgow Coma Scale (GCS) score < 8 (n = 17), and those who underwent a surgical procedure (n = 2). Finally, 108 patients were included in this study. The ethics committee approved all aspects of the study protocol.

CT Scan Protocol
All patients underwent 2 cranial CT scans: an initial CT scan on admission (<6 hours), and at 24 hours from symptoms onset (follow-up CT scan). All CT scans were performed according to the Neuroradiology Department protocol, with an image matrix of 340×340, 1.3-mm-slice thickness.

ICH location (lobar or deep) and presence of intraventricular extension were recorded on initial CT scan. Hematoma volumes were calculated by 2 neuroradiologists blinded for clinical data on initial and follow-up CT scans using the formula ABC2/3. Most previous studies have used the threshold of 33% as the criterion for determining significant HG. However, following the results of the study of Mayer et al, which showed significantly worse outcomes in patients who did not receive recombinant factor VIIa with an absolute mean increase of only 5.8 mL in the group treated with the highest dose, recent works have also used the threshold of 6 mL. Accordingly, we defined significant HG as hematoma enlargement >33% or >6 mL at 24 hours.

Clinical Assessment
On admission, body temperature, systolic and diastolic blood pressure, GCS score, and National Institute of Health Stroke Scale (NIHSS) score were obtained from all patients. GCS score, NIHSS score, and ICH volume at baseline were used as markers of ICH severity.

Early neurological deterioration (END) was defined as an increase of ≥4 points in NIHSS score or death at 24 hours from symptoms onset. Long-term outcome was assessed by means of the modified Rankin Scale (mRS) score at 3 months. We defined poor long-term outcome as mRS score ≥2. In patients with a baseline mRS score ≥2, we considered it poor long-term outcome when mRS score increased at least 1 point at 3 months.

Laboratory Parameters
The following routine laboratory tests were performed on admission: serum glucose, creatinine, hemoglobin, leukocyte count, platelet count, prothrombin time, activated partial thromboplastin time, and fibrinogen.

Serum albumin, total-C, LDL-C, high-density lipoprotein cholesterol, and triglyceride levels were determined in blood samples obtained within the first 24 hours from symptom onset, after a minimum of 12 hours fasting. LDL-C levels were calculated by Friedewald’s formula. When triglyceride levels were >300 mg/dL, LDL-C levels were measured by ultracentrifugation method.

Statistical Analysis
Descriptive and frequency statistical analysis were obtained and comparisons were made by use of the SPSS 17.0 (SPSS, Inc.). Statistical significance for intergroup differences was assessed by Pearson’s χ² or Fisher’s exact test for categorical variables, and by Student t test or Mann-Whitney U test for continuous variables. Correlations between continuous variables were assessed by Spearman’s correlation coefficient. Receiver operating characteristic curves were configured to establish different cut-off points of each continuous variable that optimally predicted HG, END, 3-month mortality, and poor long-term outcome. Multivariate logistic regression analyses were performed to determine factors that could be considered independent predictors of HG and clinical outcome, adjusted by statin pretreatment, serum albumin level, and other possible confounding variables according to univariate analysis results. Variables showing P < 0.1 in univariate analysis were included in the multivariate model. A probability value of <0.05 was considered significant for all tests.

Results
The main baseline characteristics are summarized in Table 1. Mean time from symptom onset to initial CT scan was 169.2 ± 84.2 minutes, and mean time to obtain lipid profile sample was 12.1 ± 7.4 hours. Mean LDL-C levels were 109.2 ± 31 mg/dL (102.4 ± 28 mg/dL in statin users, and 110.3 ± 31.4 mg/dL in nonusers), and mean triglyceride levels were 110.5 ± 48.3 mg/dL (maximum value 270).

Of 108 patients, 14 patients did not have a follow-up CT scan (8 of them died <24 hours) and were excluded from HG analysis. HG occurred in 30 patients (31.9%) of 94 who had a follow-up CT scan. In these 94 patients, mean ICH volumes at baseline and at 24 hours were 20.8 ± 21.8 mL and 25.8 ± 29.2 mL, respectively, and mean HG was 5 ± 9.7 mL. From the total sample, 22 patients (20.4%) experienced END. At 3 months, 83 patients (76.9%) had poor long-term outcome, including the 28 patients (25.9%) who died. Median time from onset to death was 3 (1–10) days. Of 28 patients who died within 3 months, 11 patients (39.3%) died within the first 48 hours, 8 patients (28.6%) between 48 hours and day 7, and 9 patients (32.1%) between day 7 and 3 months.

HG was significantly associated with both END (30% of patients who experienced HG deteriorated versus 3.1% of patients without HG; P < 0.001), and 3-month mortality (40% of HG patients died versus 6.3% who did not experience HG; P < 0.001), but not with poor long-term outcome (86.7% of HG patients had a poor long-term outcome versus 68.8% of no-HG patients; P = 0.078).

Relationship Between LDL-C and Hematoma Growth
Potential predictors of HG are shown in Table 1. HG patients had lower LDL-C (Figure) and total-C levels, as well as higher creatinine levels and greater ICH volume at baseline than no-HG patients. LDL-C levels were unrelated to ICH location (lobar 100.6 ± 33.6 mg/dL versus deep 112.6 ± 29.4 mg/dL; P = 0.110), and were lower in HG patients in both lobar (86.5 ± 34.5 mg/dL versus 117.4 ± 20.9 mg/dL; P = 0.010) and deep (103.9 ± 32.7 mg/dL versus 117.3 ± 27.4 mg/dL; P = 0.042) ICH.

Mean time from symptom onset to initial CT scan was 173.6 ± 84.6 minutes in HG patients, and 167.9 ± 83.8 minutes in no-HG patients (P = 0.688). Similarly, there were no significant differences in mean time from symptom onset to
Table 1. Baseline Characteristics and Potential Baseline Factors Associated With Presence (Yes) or Absence (No) of Hematoma Growth (N=94) and Early Neurologic Deterioration (N=108)

<table>
<thead>
<tr>
<th>Baseline Characteristic</th>
<th>All Patients (N=108)</th>
<th>Hematoma Growth</th>
<th>Early Neurologic Deterioration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y, mean±SD</td>
<td>71.6±11.5</td>
<td>74.1±11.9</td>
<td>69.8±11.7</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>62 (57.4)</td>
<td>18 (60)</td>
<td>37 (57.8)</td>
</tr>
</tbody>
</table>
| Antiplatelet pretreatment, n (%) | 21 (19.4) | 8 (26.7) | 8 (12.5) | 0.139
| Statin pretreatment, n (%) | 17 (15.7) | 3 (10) | 10 (15.6) | 0.540*
| GCS, median (IQ) | 15 (11-15) | 14 (11-15) | 15 (13-15) |
| NIHSS, median (IQ) | 17 (10-20) | 17 (14-20) | 15 (7-19) | 0.078*
| Body temperature, °C, mean±SD | 36.2±0.5 | 36.0±0.4 | 36.2±0.4 | 0.072*
| SBP, mm Hg, mean±SD | 175±32.6 | 174±39.8 | 172±26.7 |
| DBP, mm Hg, mean±SD | 91.6±18.5 | 93.1±21.3 | 90±15.8 |
| Glucose, mg/dl, mean±SD | 144±56.1 | 138±43.7 | 142±62.2 |
| Creatinine, mg/dl, mean±SD | 0.85±0.3 | 0.91±0.3 | 0.79±0.2 | 0.048*
| Hemoglobin, g/dl, mean±SD | 13.9±1.8 | 13.7±2.1 | 14.1±2.4 |
| Leukocyte count, 10^3/uL, mean±SD | 9.2±3.4 | 9.3±4.6 | 9.2±8.8 | 0.785
| Platelet count, 10^3/uL, mean±SD | 226.7±83.5 | 231.5±108.4 | 222±68.1 |
| PT, s, mean±SD | 15.2±1.7 | 15.8±2 | 15.6±3.8 | 0.063*
| aPTT, s, mean±SD | 28.3±3.5 | 28.5±3.2 | 28.3±3.2 |
| Fibrinogen, g/L, mean±SD | 2.7±0.5 | 2.7±0.5 | 2.7±0.5 |
| Albumin g/dl, mean±SD | 3.7±0.5 | 3.6±0.5 | 3.8±0.4 |
| Total-C, mg/dl, mean±SD | 181.4±41.8 | 167.9±41.9 | 191.1±39.2 | 0.011*
| LDL-C, mg/dl, mean±SD | 109.2±31.1 | 98.1±33.7 | 117.3±25.8 | 0.003*
| HDL-C, mg/dl, mean±SD | 49±14.4 | 47.9±14.3 | 49.5±14.6 |
| Triglycerides, mg/dl, mean±SD | 110.5±48.3 | 107.3±52.5 | 113±46.8 |
| ICH volume, ml, mean±SD | 27.4±33.2 | 30.3±27.6 | 16.4±16.9 |
| Intraventricular extension, n (%) | 47 (43.6) | 46 (53.3) | 22 (34.4) | 0.114
| ICH location, lobar, n (%) | 29 (26.9) | 10 (33.3) | 15 (23.4) | 0.221

GCS indicates Glasgow Coma Scale; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; PT, prothrombin time; aPTT, activated partial thromboplastin time; Total-C, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ICH, intracerebral hemorrhage; SD, standard deviation.

*Variables included in the multivariable model (P<0.01, statin pretreatment, and serum albumin level).

obtain lipid profile between HG and no-HG patients (11.9±7.4 hours versus 11.9±7.5 hours; P=0.956).

Although LDL-C was unrelated to baseline ICH volume (r=-0.18; P=0.078), LDL-C levels were inversely correlated with the amount of hematoma enlargement at 24 hours (r=-0.31; P=0.004) and with 24-hour ICH volume (r=-0.23; P=0.033). A receiver operating characteristic curve identified LDL-C level <95 mg/dl as the value that better predicted HG (sensitivity, 86.9%; specificity, 60%). In contrast, total-C level <168 mg/dl, creatinine level >0.73 mg/dl, and baseline ICH volume >21.9 mL were the cut-off values that better discriminate between presence or absence of HG. In multivariate logistic regression analysis, LDL-C level <95 mg/dl (OR, 4.24; 95% CI, 1.26–14.24; P=0.020) and baseline ICH volume >21.9 mL (OR, 4.25; 95% CI, 1.14–15.9; P=0.032) emerged as independent predictors of HG. Using 25th-percentile cut-off points, low LDL-C level (<91 mg/dl: 25th percentile) remained a predictor of HG (OR, 9.17; 95% CI, 3.03–27.69; P<0.001).

Relationship Between LDL-C and Clinical Outcome

LDL-C levels were not correlated with markers of ICH severity at baseline including ICH volume (r=-0.18; P=0.078), GCS score (r=-0.12; P=0.255), and NIHSS score (r=-0.17; P=0.091). Similarly, patients pretreated with statins had similar

Figure. Relationship between low-density lipoprotein cholesterol (LDL-C) levels and hematoma growth (HG), early neurological deterioration (END), 3-month mortality, and poor long-term outcome (mRS >2).
Table 2. Potential Baseline Predictors of 3-Month Mortality and Poor Long-Term Outcome

<table>
<thead>
<tr>
<th>Baseline Predictor</th>
<th>3-Month Mortality</th>
<th>Poor Long-Term Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes (n = 28)</td>
<td>No (n = 80)</td>
</tr>
<tr>
<td>Age, y, mean ± SD</td>
<td>78 ± 8.9</td>
<td>69.3 ± 11.5</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>12 (42.9)</td>
<td>50 (62.5)</td>
</tr>
<tr>
<td>Antiplatelet pretreatment, n (%)</td>
<td>7 (25)</td>
<td>14 (17.5)</td>
</tr>
<tr>
<td>Statin pretreatment, n (%)</td>
<td>4 (14.3)</td>
<td>13 (16.3)</td>
</tr>
<tr>
<td>NIHSS, median (IQR)</td>
<td>19 (17–23)</td>
<td>15 (7–18)</td>
</tr>
<tr>
<td>Body temperature, °C, mean ± SD</td>
<td>36.2 ± 0.5</td>
<td>36.2 ± 0.5</td>
</tr>
<tr>
<td>SBP, mm Hg, mean ± SD</td>
<td>175.6 ± 38.7</td>
<td>174.7 ± 30.5</td>
</tr>
<tr>
<td>DBP, mm Hg, mean ± SD</td>
<td>90.6 ± 22.2</td>
<td>92.7 ± 17.2</td>
</tr>
<tr>
<td>Glucose, mg/dL, mean ± SD</td>
<td>149.8 ± 41.5</td>
<td>142.6 ± 60.5</td>
</tr>
<tr>
<td>Creatinine, mg/dL, mean ± SD</td>
<td>0.9 ± 0.5</td>
<td>0.83 ± 0.3</td>
</tr>
<tr>
<td>Hemoglobin, g/dL, mean ± SD</td>
<td>13.5 ± 1.8</td>
<td>14.1 ± 1.7</td>
</tr>
<tr>
<td>Leukocyte count, 10³ u/L, mean ± SD</td>
<td>10.8 ± 4.7</td>
<td>8.7 ± 2.7</td>
</tr>
<tr>
<td>Platelet count, 10³ u/L, mean ± SD</td>
<td>244.7 ± 95</td>
<td>220.8 ± 79.2</td>
</tr>
<tr>
<td>PT, s, mean ± SD</td>
<td>15.3 ± 1.6</td>
<td>15.2 ± 1.8</td>
</tr>
<tr>
<td>aPTT, s, mean ± SD</td>
<td>27.8 ± 4.2</td>
<td>28.4 ± 3.3</td>
</tr>
<tr>
<td>Fibrinogen, g/L, mean ± SD</td>
<td>2.8 ± 0.5</td>
<td>2.7 ± 0.5</td>
</tr>
<tr>
<td>Albumin, g/dL, mean ± SD</td>
<td>3.7 ± 0.5</td>
<td>3.7 ± 0.5</td>
</tr>
<tr>
<td>Total-C, mg/dL, mean ± SD</td>
<td>169.7 ± 44.1</td>
<td>184.1 ± 41.1</td>
</tr>
<tr>
<td>LDL-C, mg/dL, mean ± SD</td>
<td>94.9 ± 37.4</td>
<td>112.5 ± 28.5</td>
</tr>
<tr>
<td>HDL-C, mg/dL, mean ± SD</td>
<td>54.9 ± 15.2</td>
<td>47.6 ± 14</td>
</tr>
<tr>
<td>Triglycerides, mg/dL, mean ± SD</td>
<td>101.2 ± 51.6</td>
<td>112.7 ± 47.6</td>
</tr>
<tr>
<td>ICH volume, mL, mean ± SD</td>
<td>60.6 ± 45.6</td>
<td>15.7 ± 15.7</td>
</tr>
<tr>
<td>Intraventricular extension, n (%)</td>
<td>20 (71.4%</td>
<td>27 (33.8)</td>
</tr>
<tr>
<td>ICH location, lobar, n (%)</td>
<td>11 (39.3)</td>
<td>18 (22.5%)</td>
</tr>
</tbody>
</table>

GCS indicates Glasgow Coma Scale; NIHSS, National Institutes of Health Stroke Scale; SBP, systolic blood pressure; DBP, diastolic blood pressure; PT, prothrombin time; aPTT, activated partial thromboplastin time; Total-C, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; ICH, intracerebral hemorrhage; SD, standard deviation.

* Variables included in the multivariable model (P < 0.01, statin pretreatment, and serum albumin level).

ICH volume (31.5 ± 50.8 mL versus 26.7 ± 29.1 mL; P = 0.585), GCS score (15 [11–15] versus 15 [11–15]; P = 0.931), and NIHSS score (16 [7–19] versus 17 [11–20]; P = 0.548) at baseline than those without, respectively.

END patients had lower GCS score and LDL-C level (Figure); higher NIHSS score, glucose level, and baseline ICH volume; and more frequently had lobar location or intraventricular extension. Table 1 shows factors associated with END. Of these variables, LDL-C level < 95 mg/dL (OR, 8.27; 95% CI, 1.66–41.16; P = 0.010), ICH volume > 21.9 mL (OR, 13.24; 95% CI, 2.52–69.56; P = 0.002), and intraventricular extension (OR, 6.94; 95% CI, 1.34–36; P = 0.021) emerged as independent predictors of END.

At 3 months, patients with poor long-term outcome or who had died had older age, higher NIHSS score and glucose level, larger baseline ICH volume, and more frequently had intraventricular extension (Table 2). Lower LDL-C level was significantly associated with 3-month mortality, but not with poor long-term outcome (Figure).

Multivariable logistic regression analysis showed that variables independently related to 3-month mortality were LDL-C level < 95 mg/dL (OR, 6.34; 95% CI, 1.29–31.3; P = 0.023), baseline ICH volume > 26 mL (OR, 21.48; 95% CI, 3.85–119.9; P < 0.001), intraventricular extension (OR, 7.29; 95% CI, 1.45–36.64; P = 0.016), and age > 75 years (OR, 16.31; 95% CI, 2.36–112.61; P = 0.005). Similarly, LDL-C levels below 25th percentile also predicted END (OR, 4.49; 95% CI, 1.01–20.05; P = 0.049) and 3-month mortality (OR, 7.13; 95% CI, 1.33–38.19; P = 0.022). Regarding long-term outcome, age > 67 years (OR, 3.28; 95% CI, 1.07–9.99; P = 0.037), baseline ICH volume > 14.2 mL (OR, 6.91; 95% CI, 1.99–23.95; P = 0.002), and intraventricular extension (OR, 4.61; 95% CI, 1.29–16.49; P = 0.019) independently predicted poor long-term outcome.

When analyzing separately patients with 3-month mRS score 3 to 5 (n = 55), LDL-C levels were comparable with those with mRS score ≤ 2 (n = 25; 114.4 ± 27.7 mg/dL versus 108.3 ± 30.5 mg/dL; P = 0.388). Variables significantly associated with 3-month mRS score 3 to 5 were higher baseline NIHSS score (16 [11–19] versus 9 [6–16]; P = 0.014), higher glucose level (150.2 ± 66.3 mg/dL versus 114 ± 40.4 mg/dL; P = 0.049), and intraventricular extension (41.8% versus 16%; P = 0.023). After multivariate regression analysis, baseline NIHSS score > 14 (OR, 3.7; 95% CI, 1.31–10.47; P = 0.013)
and intraventricular extension (OR, 3.64; 95% CI, 1.06–12.54; P=0.041) remained as independent predictors of 3-month mRS score 3 to 5.

Finally, regarding ICH location, LDL-C levels were lower in patients with END or who had died at 3 months, respectively, in both lobar (85±34.6 mg/dL versus 108.3±31.2 mg/dL; P=0.039; 84.3±31.2 mg/dL versus 108.7±32.6 mg/dL; P=0.045) and deep (98.8±25.7 mg/dL versus 113.6±29.8 mg/dL; P=0.026; 105.6±41.8 mg/dL versus 113.8±27.6 mg/dL; P=0.054) hematomas. In addition, LDL-C levels were similar in patients with poor long-term outcome than those without in both lobar (95±36.3 mg/dL versus 101.8±33.8 mg/dL; P=0.690) and deep (113±30.2 mg/dL versus 111.8±28.9 mg/dL, P=0.882) ICH.

Discussion

This study shows an association between serum LDL-C levels and risk of HG after an acute primary supratentorial ICH. LDL-C levels were inversely correlated and independently associated with HG at 24 hours. Moreover, lower LDL-C levels independently predicted END and 3-month mortality. However, in our series, LDL-C was unrelated to poor long-term outcome after acute ICH.

Previous studies focused on the relationship between serum cholesterol levels and risk of ICH have shown divergent results,9–12,21 but overall they suggest increasing ICH risk as LDL-C and total-C levels decrease. This effect, however, appears to be unrelated to statin pretreatment in patients without previous stroke.22,23 In our study, an LDL-C level <95 mg/dL emerged as a powerful predictor of HG, END, and 3-month mortality. Although lower total-C levels have previously been reported to be related to HG9 and lower LDL-C levels to 3-month mortality,14,15 to our knowledge, this is the first report on the relationship between LDL-C, HG, and END in patients with acute ICH.

Several factors may influence the relationship between LDL-C, HG, and clinical outcome. Although LDL-C might represent a marker of ICH severity rather than a predictor of HG or clinical outcome, in our series, LDL-C levels were unrelated to baseline ICH volume, GCS, and NIHSS scores. Moreover, LDL-C was inversely correlated with ICH volume at 24 hours, further supporting the relationship between LDL-C and HG. Conversely, statin pretreatment may potentially alter LDL-C levels. However, in our study, no relationship was found between statin pretreatment and HG or clinical outcome.

The mechanisms that explain the association of LDL-C and ICH are unclear. A possible explanation for this relationship would be the role of serum cholesterol levels for maintaining the integrity of vascular vessels. Lower cholesterol levels have been related to the development of medial smooth muscle cell necrosis,16 thus decreasing the resistance to rupture of vascular wall. Moreover, cholesterol levels modify platelet aggregability by their action on the platelet activating factor, so that lower cholesterol levels may decrease platelet aggregation,24,25 thus predisposing to ICH growth.

This study has some limitations. Patients who were under anticoagulant treatment, those comatose, or who underwent a surgical procedure were excluded, which may underestimate the rate of END and poor outcome in our series. However, patients with these conditions usually receive different treatments than do those treated, making difficult any comparison between them. In contrast, both HG and LDL-C were unrelated to poor long-term outcome, which may be explained in part by the relative small sample size and exclusion of patients who died before follow-up CT scan. Similarly, although no influence of LDL-C was found according to ICH location, it may be also explained in part by the relative small sample size. Therefore, larger studies are needed to elucidate the impact of LDL-C level depending on ICH location and on long-term outcome.

In conclusion, in patients with acute primary supratentorial ICH, low LDL-C level (<95 mg/dL) is an independent predictor of HG, END, and mortality at 3 months. However, LDL-C appeared unrelated to long-term outcome.

Disclosures

None.

References

4.2. ULTRAEARLY HEMATOMA GROWTH PREDICTS POOR OUTCOME AFTER ACUTE INTRACEREBRAL HEMORRHAGE.

Neurology 2011; 77: 1599-1604.
Ultraearly hematoma growth predicts poor outcome after acute intracerebral hemorrhage

D. Rodríguez-Luna, MD
M. Rubiera, MD, PhD
M. Ribo, MD, PhD
P. Coscojuela, MD
S. Piñeiro, MD
J. Pagola, MD, PhD
M. Hernández-Guillamon, PhD
B. Ibarra, MD
F. Romero, MD, PhD
J. Álvarez-Sabin, MD, PhD
J. Montaner, MD, PhD
C.A. Molina, MD, PhD

Address correspondence and reprint requests to Dr. Carlos A. Molina, Stroke Unit, Department of Neurology, Hospital Universitari Vall d’Hebron, Departament de Medicina, Universitat Autònoma de Barcelona, P. Vall d’Hebron, 08035, Barcelona, Spain.
cmolina@vubhebron.net

ABSTRACT

Objective: To investigate the impact of the adjustment of initial intracerebral hemorrhage (ICH) volume by onset-to-imaging time (ultraearly hematoma growth [uHG]) on further hematoma enlargement and outcome in patients with acute ICH.

Methods: We studied 133 patients with acute (<6 hours) supratentorial ICH. Patients underwent baseline and 24-hour CT scans for ICH volume measurement, and a CT angiography (CTA) for the detection of the spot sign. We defined uHG as the relation between baseline ICH volume/onset-to-imaging time, hematoma growth (HG) as hematoma enlargement >33% or >6 mL at 24 hours, early neurologic deterioration (END) as increase ≥4 points in the NIH Stroke Scale score or death at 24 hours, and poor long-term outcome as modified Rankin Scale score >2 at 3 months.

Results: The uHG was significantly faster in spot sign patients (p < 0.001), as well as in patients who experienced HG (p = 0.021), END (p < 0.001), 3-month mortality (p < 0.001), and poor long-term outcome (p < 0.001). The uHG improved the accuracy of baseline ICH volume in the prediction of END (sensitivity 93.1% vs 82.8%, specificity 85.3% vs 82.4%) and 3-month mortality (sensitivity 77.5% vs 70%, specificity 87.9% vs 84.6%). A uHG >10.2 mL/hour emerged as the most powerful predictor of HG (odds ratio [OR] 3.55, 95% confidence interval [CI] 3.39–9.07, p = 0.008), END (OR 70.22, 95% CI 14.63–337.03, p < 0.001), 3-month mortality (OR 16.96, 95% CI 5.32–54.03, p < 0.001), and poor long-term outcome (OR 6.19, 95% CI 1.32–28.98, p = 0.021).

Conclusions: The uHG represents a powerful and easy-to-use tool for improving the prediction of HG and outcome in patients with acute ICH. Neurology® 2011;77:1599-1604

GLOSSARY

CI = confidence interval; CTA = CT angiography; END = early neurologic deterioration; GCS = Glasgow Coma Scale; HG = hematoma growth; ICH = intracerebral hemorrhage; IQR = interquar tile range; mRS = modified Rankin Scale; NIHSS = NIH Stroke Scale; OIT = onset-to-imaging time; OR = odds ratio; ROC = receiver operating characteristic; uHG = ultraearly hematoma growth.

Hemotama growth (HG) from baseline to follow-up CT scan has been shown to be an independent determinant of early deterioration, death, and disability in patients with intracerebral hemorrhage (ICH).1,2 HG occurs mainly during the first 6 hours,3-6 and an early HG has been demonstrated only 1 hour after a baseline CT scan performed during the first hours.7 The enlargment of the hematoma has been attributed to continued bleeding from the primary source as well as to secondary vessel injury.8 In this regard, the CT angiography (CTA) spot sign, that has been highly related to HG after acute ICH, may represent a surrogate marker of active hemorrhage.9,10

Initial hematoma volume has proven to be one of the most powerful predictors of mortality in patients with ICH.11,12 However, because of the enlargment of hematoma in the first hours, the impact of initial ICH volume on outcome may vary widely depending on the time from symptom onset to baseline CT scan (onset-to-imaging time [OIT]), even in patients with baseline CT scan performed within 6 hours from symptoms onset. Therefore, the adjustment
of initial ICH volume by OIT (ultracranially HG [uHG]) may improve the accuracy of baseline ICH volume to predict clinical outcome after acute ICH, as well as help to identify patients at risk of further hematoma enlargement.

The aim of the present study was to investigate the impact of the uHG on early and long-term outcome in patients with acute ICH, as well as the relationship between the uHG, the CTA spot sign, and with further hematoma enlargement.

METHODS Study population. We prospectively studied patients with acute primary supratentorial ICH evaluated within 6 hours from symptoms onset. A total of 176 consecutive patients were initially evaluated between March 2009 and August 2010. We excluded those patients with uncertainty on the exact time from symptom onset (n = 12), those with a Glasgow Coma Scale (GCS) score <8 (n = 27), and those who underwent surgical hematoma evacuation (n = 4). Finally, 133 patients were included in this study after informed consent was obtained from them or their relatives. The local ethics committee approved all aspects of the study protocol.

Clinical assessment. We recorded on admission from all patients previous antiplatelet or anticoagulant treatment, body temperature, systolic and diastolic blood pressure, and GCS score, as well as the following routine laboratory tests: serum glucose, creatinine, hemoglobin, leukocyte count, platelet count, prothrombin time, activated partial thromboplastin time, and fibrinogen.

We obtained the NIH Stroke Scale (NIHSS) score to assess neurologic status on admission and at 24 hours. We defined early neurologic deterioration (END) as an increase of ≥4 points in the NIHSS score or death at 24 hours from symptoms onset. We assessed long-term outcome by means of the modified Rankin Scale (mRS) score at 3 months. We defined poor long-term outcome as a mRS score ≥2.

CT-CTA scans protocol. Patients underwent on admission (<6 hours) an initial CT scan and a CTA, and a follow-up CT scan at 24 hours from symptoms onset. All noncontrast CT scans were performed according to the Neuroradiology Department protocol, with an image matrix of 340 × 340, 1.5-mm slices thickness. The CTA were performed using bolus-tracking method by injecting 90 ml of nonionic iodinated contrast at 5 ml/s. Parameters: 120 kVp; 360 mA; 2-mm-thick slices reconstructed to 0.65 mm. Scans were automatically triggered between 10 and 15 seconds.

Two neuroradiologists blinded to clinical data evaluated all CT and CTA scans. Hematoma volumes were calculated on the initial and follow-up CT scans using the previously validated ABC/2 method. We defined uHG as the relation between baseline ICH volume and OIT (figure 1), and HG as hematoma enlargement >33% or >6 mL at 24 hours. The ICH location (lobar or deep) and the presence of intraventricular or subarachnoid extension of hematoma were also recorded on initial CT scan. CTA studies were evaluated for the presence or absence of the spot sign.

Statistical analysis. Statistical analysis was done using SPSS 17.0 software. The categorical variables are presented as percentages, and the continuous variables are presented as means and SD if normally distributed or medians and interquartile ranges (IQR) if not normally distributed. Statistical significance for intergroup differences was assessed by Pearson χ² or the Fisher exact test for categorical variables, and by Student t or Mann-Whitney U test for continuous variables. To study correlations between continuous variables, Spearman correlation coefficients were used. Receiver operating characteristic (ROC) curves were configured to establish cutoff points of each continuous variable that optimally predicted HG and outcome. Multivariable logistic regression analyses were performed to determine factors that could be considered as independent predictors of HG and outcome, adjusted by confounding variables according to the results.
Table 1 Baseline characteristics and potential baseline factors associated with presence or absence of early neurologic deterioration and mortality at 3 months

<table>
<thead>
<tr>
<th></th>
<th>Early neurologic deterioration</th>
<th>Mortality at 3 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All (n = 133)</td>
<td>Yes (n = 30)</td>
</tr>
<tr>
<td>Age, y</td>
<td>71.7 ± 11.8</td>
<td>76.4 ± 8.4</td>
</tr>
<tr>
<td>Gender, female</td>
<td>56 (42.1)</td>
<td>17 (56.7)</td>
</tr>
<tr>
<td>Antiplatelet pretreatment</td>
<td>24 (18)</td>
<td>7 (23.3)</td>
</tr>
<tr>
<td>Anticoagulant pretreatment</td>
<td>14 (10.5)</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>GCS</td>
<td>15 (11-15)</td>
<td>11 (9-14)</td>
</tr>
<tr>
<td>NIHSS</td>
<td>16 (11-19)</td>
<td>19 (17-21)</td>
</tr>
<tr>
<td>Body temperature, °C</td>
<td>36.2 ± 0.5</td>
<td>36.2 ± 0.5</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>173.1 ± 31.8</td>
<td>172.4 ± 38.6</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>91.8 ± 18.9</td>
<td>90.4 ± 23.5</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>142.8 ± 53.7</td>
<td>150.2 ± 45</td>
</tr>
<tr>
<td>Creatinine, mg/dL</td>
<td>0.87 ± 0.3</td>
<td>0.91 ± 0.4</td>
</tr>
<tr>
<td>Hemoglobin, g/dL</td>
<td>13.8 ± 1.7</td>
<td>13.3 ± 1.6</td>
</tr>
<tr>
<td>Leukocyte count, × 10^9/uL</td>
<td>9.2 ± 3.3</td>
<td>10.2 ± 4.5</td>
</tr>
<tr>
<td>Platelet count, × 10^9/uL</td>
<td>226.9 ± 78.5</td>
<td>256.4 ± 99.6</td>
</tr>
<tr>
<td>PT, s</td>
<td>17 ± 6.3</td>
<td>18.3 ± 8</td>
</tr>
<tr>
<td>aPTT, s</td>
<td>29.2 ± 5.1</td>
<td>30.2 ± 6.6</td>
</tr>
<tr>
<td>Fibrinogen, g/L</td>
<td>2.7 ± 0.6</td>
<td>2.9 ± 0.9</td>
</tr>
<tr>
<td>OIT, min</td>
<td>144 (103-225)</td>
<td>132 (84-174)</td>
</tr>
<tr>
<td>ICH volume, mL</td>
<td>13.6 (7.2-34.9)</td>
<td>62.6 (30.8-88)</td>
</tr>
<tr>
<td>uHg, mL/h</td>
<td>6.7 (2.8-14.1)</td>
<td>21.3 (14-60.1)</td>
</tr>
<tr>
<td>ICH location, lobar</td>
<td>40 (30.1)</td>
<td>15 (50)</td>
</tr>
<tr>
<td>Intraventricular extension</td>
<td>60 (45.1)</td>
<td>23 (76.7)</td>
</tr>
<tr>
<td>Subarachnoid extension</td>
<td>14 (10.5)</td>
<td>6 (20)</td>
</tr>
<tr>
<td>CTA spot signb</td>
<td>17 (19.1)</td>
<td>8 (53.3)</td>
</tr>
</tbody>
</table>

Abbreviations: aPTT = activated partial thromboplastin time; CTA = CT angiography; DBP = diastolic blood pressure; GCS = Glasgow Coma Scale; ICH = intracerebral hemorrhage; NIHSS = NIH Stroke Scale; OIT = onset-to-imaging time; PT = prothrombin time; SBP = systolic blood pressure; uHg = ultra-early hematoma growth.

Data are expressed as n(%), mean ± SD, or median (IQR) as appropriate.

Relationship between uHg, CTA spot sign, and HG.
The spot sign was present in 17 (19.1%) of the 89 patients who had a CTA following baseline CT scan. The presence of the spot sign was significantly associated with HG (32.3% vs 10.9%, p = 0.015), END (53.3% vs 12.2%, p < 0.001), and 3-month mortality (34.8% vs 13.6%, p = 0.026), but not with poor long-term outcome (21% vs 14.8%, p = 0.571). uHg was significantly faster in patients with the spot sign than those without (14.5 [6.8-27] vs 4.2 [1.8-8.5] mL/h, p < 0.001). Similarly, patients who experienced HG had a faster uHg than those who did not (8 [3.5-14.7] vs 4.8 [1.7-8.7] mL/h, p = 0.021).

Besides uHg and CTA spot sign, other baseline variables significantly associated with HG were higher baseline ICH volume (16.5 [9.8-44.8] vs 11.5 [5.5-16.8] mL, p = 0.004), older age (75.6 ± 11.6 vs 68.9 ± 12.2 years, p = 0.006), lower baseline GCS score (13 [11-15] vs 15 [13-15], p = 0.033), higher baseline NIHSS score (17 [14-19] vs 14 [7-18], p = 0.016), and antiplatelet pretreatment (26.3% vs 10.5%, p = 0.029). In multivariate logistic...
mortality (table 2). uHG markedly improved the accuracy of baseline ICH volume in the prediction of END and 3-month mortality.

Multivariate logistic regression analysis showed that variables independently related to END were uHG >10.2 mL/h (OR 70.22, 95% CI 14.63-337.03, p < 0.001) and presence of intraventricular extension (OR 4.32, 95% CI 1.25-14.91, p = 0.021). Regarding mortality, uHG >10.2 mL/h (OR 16.96, 95% CI 5.32-54.03, p < 0.001) and age >75 years (OR 6.82, 95% CI 2.14-21.79, p = 0.001) independently predicted mortality at 3 months.

Patients with a poor long-term outcome had older age (73.7 ± 10.3 vs 66 ± 14.1 years, p = 0.006), lower GCS score (14 [11-15] vs 15 [13-15], p = 0.011), higher NIHSS score (17 [14-20] vs 9 [6-16], p < 0.001), higher glucose levels (149.8 ± 56.8 vs 122.5 ± 36.8 mg/dL, p = 0.002), larger baseline ICH volume (15.6 [10.3-49.8] vs 8.3 [3.9-13.4] mL, p < 0.001), faster uHG (8.4 [3.5-17.6] vs 3.3 [1.4-5.9] mL/h, p < 0.001), and most frequently had intraventricular extension (54.1% vs 20.6%, p = 0.001). From all these variables, uHG >10.2 mL/h (OR 6.19, 95% CI 1.32-28.98, p = 0.021) and baseline NIHSS score >14 (OR 4.58, 95% CI 1.86-11.32, p = 0.001) remained as independent predictors of poor long-term outcome.

DISCUSSION This study demonstrated that the adjustment of initial (<6 hours) ICH volume by onset-to-imaging time (uHG) markedly improves its accuracy to predict early and long-term clinical outcome and help to identify patients at risk of further hematoma enlargement.

ICH was initially considered to be a monophasic event that stopped quickly as a result of clotting and tamponade by the surrounding regions. However, several studies have demonstrated that hematomas expand over time, which has been attributed to continued bleeding from the primary source and to the mechanical disruption of surrounding vessels. Although previous studies have shown that CT-confirmed HG mainly occurs within 6 hours from symptoms onset, both frequency and timing of HG vary widely among studies. This may be, at least in part, due to different criteria used to define significant HG as well as to the variability in the time from ICH onset to imaging. Although a previous study described that the combination of baseline ICH volume >25 mL and OIT <6 hours predicts hematoma enlargement, but not both factors individually, most studies did not specifically analyze the relationship between baseline ICH volume and OIT.
Although the speed of the hematoma enlargement prior to baseline CT scan cannot be accurately calculated because of the speed changes within the first hours due to the continued bleeding and rebleeding, the uHG may act as a surrogate marker of the speed of hematoma enlargement. Moreover, the adjustment of initial ICH volume by OIT may also help to avoid the possible confounding effect of clinical severity on time to hospital presentation.

In our series, uHG was significantly faster in patients who experienced hematoma enlargement at 24 hours compared to those who did not. Moreover, uHG >10.2 mL/h emerged as the most powerful predictor of HG. Regarding definition of HG, most prior studies have used the threshold of 33% as the criterion for determining significant HG.\(^7\) Moreover, significantly worse outcomes have been demonstrated in ICH patients who did not receive recombinant factor VIII with an absolute mean increase of only 5.8 mL in the group treated with the highest dose.\(^{14}\) Therefore, recent works have also used the threshold of 6 mL\(^2\) and, accordingly, we defined significant HG as hematoma enlargement >33% or >6 mL at 24 hours.

uHG was also significantly faster in patients with CTA spot sign than those without. Although it is unclear whether the spot sign represents primary or secondary vessel injury, there is growing evidence indicating that CTA spot sign may be a surrogate marker of active bleeding.\(^9\)\(^,\)\(^10\) Our study confirms and expands previous observations establishing the link between faster uHG, presence of CTA spot sign, and further hematoma enlargement.

Although both initial hematoma volume\(^3\)\(^,\)\(^12\) and subsequent HG\(^2\) have been shown to be independent determinants of death after acute ICH, their impact on clinical outcome may vary widely depending on OIT. We demonstrate that uHG markedly improved the predictive accuracy of baseline ICH volume in the prediction of neurologic deterioration at 24 hours and mortality at 3 months in our study. Similarly, uHG >10.2 mL/h emerged as the most powerful predictor of END, 3-month mortality, and poor long-term outcome.

Some limitations should be noted in the present study. Comatose patients or those who underwent surgical hematoma evacuation were excluded, which may underestimate the rate of END, 3-month mortality, and poor long-term outcome in our series. However, patients with these conditions usually receive different treatments than those without, making difficult any comparison between them. Conversely, patients who died within 24 hours from symptoms onset did not undergo a follow-up CT scan, which may underestimate the impact of the uHG on HG.

The uHG represents a powerful and easy-to-use tool for improving the prediction of HG and outcome in patients with acute ICH. A uHG >10.2 mL/h emerged as the most powerful predictor of HG, END, mortality at 3 months, and poor long-term outcome after acute ICH. External validation in larger datasets will further support the use of uHG for patient stratification in future pharmacologic or surgical trials in patients with acute ICH.

AUTHOR CONTRIBUTIONS

Dr. Rodriguez-Luna: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, acquisition of data, statistical analysis, study supervision. Dr. Rubiera: drafting/revising the manuscript, analysis or interpretation of data, acquisition of data. Dr. Ribo: drafting/revising the manuscript, study concept or design, acquisition of data. Dr. Consojuela: drafting/revising the manuscript, study concept or design, acquisition of data. Dr. Pitié: drafting/revising the manuscript, study concept or design, acquisition of data. Dr. Herandez-Guillamon: drafting/revising the manuscript, study concept or design. Dr. Ibura: study concept or design, acquisition of data. Dr. Romero: study concept or design, acquisition of data. Dr. Alvarez-Sabín: study concept or design. Dr. Montaner: analysis or interpretation of data. Dr. Molina: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, study supervision.

Received April 11, 2011. Accepted in final form July 7, 2011.

REFERENCES

5. SÍNTESIS DE RESULTADOS Y DISCUSIÓN
5.1. CRECIMIENTO DE LA HIC AGUDA

5.1.1. Frecuencia

El crecimiento significativo del hematoma a las 24 horas en pacientes con HIC aguda es un fenómeno frecuente, apareciendo en aproximadamente un tercio de los pacientes de nuestros trabajos. Así, en el primero se objetivó un crecimiento significativo en el 31,9% de los casos, mientras que en el segundo en un 33,3% de ellos. Estos datos están en concordancia con los publicados en anteriores estudios con similares puntos de corte de CH. \(^{39,42}\)

5.1.2. Repercusión clínica y funcional

El CH se asocia con una peor evolución clínica a corto y largo plazo. Como se muestra en el primer trabajo, la presencia de CH se asoció a una mayor frecuencia de DNP y de mortalidad a los 3 meses. Contrariamente, en este estudio el CH no se asoció a un peor pronóstico funcional a los 3 meses.

Sin embargo, hay que tener en cuenta que en los pacientes que fallecieron en las primeras 24 horas no se pudo valorar la existencia de CH, lo que podría subestimar el potencial impacto del CH tanto en la evolución clínica como en el pronóstico funcional.

5.1.3. Factores asociados y predictores independientes

Los factores asociados con crecimiento significativo del hematoma a las 24 horas en nuestros trabajos fueron:

- Niveles menores de colesterol total y colesterol LDL.
- Crecimiento ultraprecoz del hematoma más rápido.
- Presencia del spot sign.
- Mayor volumen basal de la HIC.
- Mayor edad.
- Menor puntuación basal en la escala de coma de Glasgow.
- Mayor puntuación basal en la NIHSS.
- Toma de tratamiento antiagregante previamente.
- Mayores niveles séricos de creatinina.

Así, nuestros trabajos aportan información del papel de los niveles de colesterol y del crecimiento ultraprecoz del hematoma en el crecimiento significativo del hematoma a las 24 horas, además de confirmar otros factores descritos previamente.

De entre todos estos factores, se asociaron de forma independiente con un crecimiento significativo del hematoma a las 24 horas: en el primer trabajo, los niveles de colesterol LDL (<95 mg/dL) y el volumen basal de la HIC (>21'9 mL); mientras que en el segundo, el crecimiento ultraprecoz del hematoma (>10’2 mL/h) y la edad (>75 años).

5.2. EVOLUCIÓN CLÍNICA Y PRONÓSTICO FUNCIONAL TRAS UNA HIC AGUDA

El análisis conjunto de nuestros datos en los dos trabajos confirma el conocido mal pronóstico tanto clínico como funcional de la HIC aguda. Así, la presencia de DNP (20’4% y 22’6%), mortalidad a los 3 meses (25’9% y 30’8%) y pronóstico funcional desfavorable (74’4% y 76’9%) en nuestros trabajos se ajusta a la publicada en la literatura.6,71,156

Cabe destacar que en ambos trabajos excluimos a aquellos pacientes con una puntuación basal en la escala de coma de Glasgow menor a 8, lo que puede minimizar los datos de mal pronóstico clínico y funcional. Asimismo, remarcar que en el primer trabajo se excluyeron aquellos pacientes con toma de tratamiento anticoagulante previamente (no así en el segundo), lo que puede haber influido en que la mortalidad a los 3 meses sea mayor en el segundo trabajo (30’8%) que en el primero (25’9%).
5.2.1. Deterioro neurológico precoz

Los factores asociados con DNP en nuestros trabajos fueron:

- Niveles menores de colesterol LDL.
- Crecimiento ultraprecoz del hematoma más rápido.
- Mayor volumen basal de la HIC.
- Extensión intraventricular o subaranoidea de la HIC.
- Localización lobular de la HIC.
- Menor puntuación basal en la escala de coma de Glasgow.
- Mayor puntuación basal en la NIHSS.
- Mayores niveles de glucosa.

De ellos, se asociaron de forma independiente con un DNP: los niveles de colesterol LDL (<95 mg/dL) y el volumen basal de la HIC (>21’9 mL) en el primer trabajo; el crecimiento ultraprecoz del hematoma (>10’2 mL/h) en el segundo; y la presencia de extensión intraventricular de la HIC en ambos trabajos.

5.2.2. Mortalidad a los 3 meses

Los variables que se relacionaron en nuestros trabajos con la mortalidad a los 3 meses fueron:

- Niveles menores de colesterol LDL.
- Crecimiento ultraprecoz del hematoma más rápido.
- Presencia del spot sign.
- Mayor volumen basal de la HIC.
- Extensión intraventricular o subaranoidea de la HIC.
- Localización lobular de la HIC.
- Mayor edad.
- Menor puntuación basal en la escala de coma de Glasgow.
- Mayor puntuación basal en la NIHSS.
- Toma de tratamiento anticoagulante previamente.
- Mayores niveles de glucosa.
- Mayor número de leucocitos.
- Niveles menores de hemoglobina.
- Mayor tiempo protrombina.

De todas estas variables, se asociaron de forma independiente con la mortalidad a los 3 meses: los niveles de colesterol LDL (<95 mg/dL), el volumen basal de la HIC (>26 mL) y la presencia de extensión intraventricular de la HIC en el primer trabajo; el crecimiento ultraprecoz del hematoma (>10’2 mL/h) en el segundo; y la edad (>75 años) en ambos trabajos.

5.2.3. Pronóstico funcional desfavorable

Los factores que se asociaron a un pronóstico funcional desfavorable (mRS >2) a los 3 meses fueron:
- Crecimiento ultraprecoz del hematoma más rápido.
- Mayor volumen basal de la HIC.
- Extensión intraventricular de la HIC.
- Mayor edad.
- Menor puntuación basal en la escala de coma de Glasgow.
- Mayor puntuación basal en la NIHSS.
- Mayores niveles de glucosa.
- Mayor temperatura corporal.

Los factores que se asociaron de forma independiente con un pronóstico funcional desfavorable fueron: en el primer trabajo, la edad (>67 años), el volumen basal de la HIC (>14’2 mL) y la presencia de extensión intraventricular de la HIC; mientras que en el segundo el crecimiento ultraprecoz del hematoma (>10’2 mL/h) y la situación neurológica basal (NIHSS >14).
5.3. COLESTEROL LDL COMO PREDICTOR DE CRECIMIENTO DEL HEMATOMA Y EVOLUCIÓN CLÍNICA

Nuestro primer trabajo muestra cómo niveles más bajos de colesterol LDL se asocian con el riesgo de CH significativo a las 24 horas, así como con el DNP y la mortalidad a los 3 meses, sin observarse relación sin embargo con el pronóstico funcional desfavorable (Figura 12). Además, tras el análisis multivariante, niveles de colesterol LDL <95 mg/dL emergieron como predictores independientes de CH, DNP y mortalidad a los 3 meses.

Figura 12. Papel del colesterol LDL en la HIC

Relación entre los niveles de colesterol LDL y el crecimiento del hematoma, el DNP, la mortalidad a los 3 meses y el pronóstico funcional desfavorable (mRS >2).

La asociación entre colesterol LDL y crecimiento de la HIC no se relacionó con la localización del hematoma, siendo los niveles más bajos en aquellos pacientes que presentaron crecimiento de la HIC, tanto en hematomas lobulares como profundos.
Estudios previos sobre la relación de los niveles de colesterol y el riesgo de HIC sugieren un aumento del riesgo de sufrir una HIC con niveles menores de colesterol LDL19 y colesterol total.10,20,21 Esta relación, sin embargo, no parece estar relacionada con el tratamiento previo con estatinas en pacientes que no han sufrido un ictus previamente.157,158 En nuestro primer trabajo, los niveles de colesterol LDL <95 mg/dL fueron predictores de CH, DNP y mortalidad a los 3 meses. Pese a que niveles más bajos de colesterol total habían sido relacionados previamente con CH45 y de colesterol LDL con mortalidad a los 3 meses,156,159 nuestro trabajo es el primero que informa de la asociación entre colesterol LDL, CH y DNP en pacientes con HIC aguda.

Sin embargo, hay que tener en cuenta que los niveles de colesterol LDL podrían representar un marcador de la severidad de la HIC más que un predictor de crecimiento o evolución clínica. Además, estos niveles podrían verse influenciados tanto por el estado nutricional previo de los pacientes como por el tratamiento previo con estatinas.

Referente al hecho de que los niveles de colesterol LDL podrían representar un marcador de la severidad de la HIC, en nuestro estudio no se relacionaron ni con el volumen basal de la HIC ni con las puntuaciones basales en la escala de coma de Glasgow o en la NIHSS. Es más, éstos se correlacionaron inversamente tanto con la cantidad de crecimiento del hematoma como con el volumen de la HIC a las 24 horas, reforzando así la relación entre los niveles de colesterol bajos y el crecimiento del hematoma.

Respecto al estado nutricional, los niveles de colesterol bajos podrían reflejar un mal estado nutricional, lo que podría relacionarse con una peor evolución clínica o funcional tras una HIC.151 Sin embargo, no encontramos relación entre los niveles de albúmina (como marcador de estado nutricional) y la evolución clínica o funcional tras una HIC, por lo que esta mala evolución en pacientes con niveles de colesterol LDL bajos no podría explicarse por un mal estado nutricional.

Por su parte, el tratamiento previo con estatinas puede modificar los niveles basales de colesterol LDL y por tanto influir en el impacto en el crecimiento y en la evolución clínica.
Sin embargo, en nuestro trabajo no encontramos ninguna relación entre el tratamiento previo con estatinas y el crecimiento del hematoma o la evolución clínica. De forma similar, pese a que estudios como el SPARCL han objetivado un riesgo incrementado de HIC en pacientes tratados con estatinas tras un infarto cerebral, otros estudios llevados a cabo en la población general no han objetivado relación entre el tratamiento previo con estatinas y el riesgo de HIC.

Los mecanismos que puedan explicar la asociación entre colesterol LDL y la HIC no están claros. Una posible explicación de esta relación podría ser el papel de los niveles de colesterol en el mantenimiento de la integridad de los vasos. En este sentido, los niveles bajos de colesterol se han relacionado con el desarrollo de necrosis de las células musculares lisas de la capa media, disminuyendo así la resistencia a la rotura vascular. Además, los niveles de colesterol pueden modificar la agregabilidad plaquetaria a través de su acción en el factor de activación plaquetaria. De este modo, niveles de colesterol bajos pueden disminuir la agregación plaquetaria, predisponiendo así al crecimiento del hematoma.

5.4. CRECIMIENTO ULTRAPRECOZ DEL HEMATOMA COMO PREDICTOR DE CRECIMIENTO DEL HEMATOMA, EVOLUCIÓN CLÍNICA Y PRONÓSTICO FUNCIONAL

Nuestro segundo trabajo muestra cómo el crecimiento ultraprecoz del hematoma mejora la precisión del volumen basal de la HIC para predecir crecimiento del hematoma, evolución clínica y pronóstico funcional tras una HIC aguda.

Estudios previos han mostrado cómo el CH ocurre principalmente durante las primeras 6 horas de una HIC, habiéndose demostrado un crecimiento precoz del hematoma tan solo una hora después de la TC craneal basal realizada durante las primeras horas tras una HIC. Sin embargo, la frecuencia y el ritmo del CH varía ampliamente entre
diferentes estudios. Este hecho podría explicarse, al menos en parte, por los diferentes criterios utilizados para definir un CH significativo, así como por la variabilidad en el tiempo desde el inicio de la HIC hasta la realización de la TC craneal basal. Pese a que un estudio mostró que la combinación de un volumen de HIC basal >25 mL con un tiempo desde el inicio de los síntomas hasta la TC craneal <6 horas predecía el CH, la mayoría de estudios no han analizado específicamente la relación entre volumen basal del hematoma y tiempo desde inicio de los síntomas hasta la TC craneal basal.

A pesar de que la velocidad del CH previa a la TC basal no puede ser calculada con exactitud debido a los cambios de velocidad producidos por el sangrado continuo y resangrado, el CuH podría actuar como indicador indirecto de la velocidad de CH. En nuestro trabajo, el CuH fue más rápido en los pacientes que presentaron CH significativo a las 24 horas, siendo el CuH >10’2 mL/h el predictor más potente de CH. De forma similar, el CuH fue más rápido en pacientes con presencia spot sign en la angioTC, lo que apoyaría la idea del spot sign como marcador de hemorragia activa.

Tanto el volumen basal de la HIC como el CH han demostrado ser predictores independientes de mortalidad tras una HIC. No obstante, su impacto en la evolución clínica también puede variar dependiendo del tiempo desde el inicio de los síntomas. Nuestro segundo trabajo confirma cómo el CuH mejora la capacidad predictiva clínica del volumen basal de la HIC (Tabla 6).

| Tabla 6. Capacidad predictiva clínica del CuH frente al volumen basal de la HIC |
|----------------|----------------|----------------|----------------|----------------|
| | Deterioro neurológico precoz | Mortalidad a los 3 meses |
| | CuH >10’2 mL/h | Volumen HIC >25 mL | CuH >10’2 mL/h | Volumen HIC >25 mL |
| Sensibilidad | 93’1% | 82’8% | 77’5% | 70% |
| Especificidad | 85’3% | 82’4% | 87’9% | 84’6% |
| VPP | 64’3% | 57’1% | 73’8% | 66’7% |
| VPN | 97’8% | 94’4% | 89’9% | 86’5% |
Así, pacientes con un CuH más rápido con mayor frecuencia presentaron DNP o habían fallecido a los 3 meses (Figura 13), y más frecuentemente presentaron un pronóstico funcional desfavorable. De forma similar al CH, el CuH >10'2 mL/h fue el predictor más potente de DNP, mortalidad a los 3 meses y pronóstico funcional desfavorable.

Figura 13. Relación del CuH con el DNP y la mortalidad a los 3 meses

Los diagramas de cajas muestran un CuH más rápido en pacientes que presentaron deterioro neurológico en las primeras 24 horas o habían muerto a los 3 meses.

Por ello, el CuH es una potente herramienta de fácil aplicación que mejora la predicción del CH y de la evolución clínica en pacientes con HIC aguda. La validación externa en series mayores podría validar su uso para poder seleccionar pacientes con alto riesgo de CH para futuros ensayos médicos o quirúrgicos en pacientes con HIC aguda.
6. CONCLUSIONES
En pacientes que presentan una HIC primaria supratentorial aguda:

1. Los niveles de colesterol LDL predicen de forma independiente el crecimiento del hematoma a las 24 horas.

2. Los niveles de colesterol LDL se asocian de forma independientemente con deterioro neurológico precoz y mortalidad a los 3 meses; no se relacionan sin embargo con un pronóstico funcional desfavorable.

3. El crecimiento ultraprecoz del hematoma es más rápido en pacientes con spot sign, y se relaciona independientemente con el crecimiento del hematoma a las 24 horas.

4. El crecimiento ultraprecoz del hematoma mejora la precisión del volumen basal del hematoma en la predicción de evolución clínica, y es predictor independiente de deterioro neurológico precoz, mortalidad a los 3 meses y pronóstico funcional desfavorable.

111. Messe SR, Sansing LH, Cucchiara BL, Herman ST, Lyden PD, Kasner SE. Prophylactic antiepileptic drug use is associated with poor outcome following ICH. Neurocrit Care 2009; 11: 38-44.

143. Cheung RT, Zou LY. Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage. Stroke 2003; 34: 1717-1722.

8. ANEXOS
8.1. ESCALAS

8.1.1. Escala de coma de Glasgow

Apertura ocular

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espontánea</td>
<td>4</td>
</tr>
<tr>
<td>Tras estímulo verbal</td>
<td>3</td>
</tr>
<tr>
<td>Tras estímulo doloroso</td>
<td>2</td>
</tr>
<tr>
<td>Ausente</td>
<td>1</td>
</tr>
</tbody>
</table>

Respuesta verbal

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientado</td>
<td>5</td>
</tr>
<tr>
<td>Conversación confusa</td>
<td>4</td>
</tr>
<tr>
<td>Palabras inapropiadas</td>
<td>3</td>
</tr>
<tr>
<td>Incomprensible</td>
<td>2</td>
</tr>
<tr>
<td>Ausente</td>
<td>1</td>
</tr>
</tbody>
</table>

Respuesta motora

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Puntaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obedece órdenes</td>
<td>6</td>
</tr>
<tr>
<td>Localiza el dolor</td>
<td>5</td>
</tr>
<tr>
<td>Flexión al dolor</td>
<td>4</td>
</tr>
<tr>
<td>Flexión anormal</td>
<td>3</td>
</tr>
<tr>
<td>Extensión al dolor</td>
<td>2</td>
</tr>
<tr>
<td>Ausente</td>
<td>1</td>
</tr>
</tbody>
</table>
8.1.2. Escala de ictus del *National Institute of Health (NIHSS)*\(^{95,96}\)

Versión española simplificada de la NIHSS con algunas “ayudas” para pasarla en español.

1a. Nivel de consciencia

0. Alerta
1. Somnoliento
2. Estuporoso
3. Coma

1b. Preguntas LOC

0. Responde ambas correctamente
1. Responde una correctamente
2. Incorrecto

1c. Órdenes LOC

0. Realiza ambas correctamente
1. Realiza una correctamente
2. Incorrecto

2. Mirada

0. Normal
1. Parálisis parcial de la mirada
2. Desviación óculocefálica
3. Campos visuales
 0. Sin déficits campimétricos
 1. Cuadrantanopsia
 2. Hemianopsia homónima
 3. Hemianopsia homónima bilateral, ceguera

4. Parálisis facial
 0. Movimientos normales y simétricos
 1. Paresia ligera
 2. Parálisis parcial
 3. Parálisis completa

 0. No claudica
 1. Claudica
 2. Algún esfuerzo contra gravedad
 3. Sin esfuerzo contra gravedad
 4. Ningún movimiento

 0. No claudica
 1. Claudica
 2. Algún esfuerzo contra gravedad
 3. Sin esfuerzo contra gravedad
 4. Ningún movimiento
7. Ataxia de miembros
 0. Ausente
 1. Presente en una extremidad
 2. Presente en dos extremidades

8. Sensibilidad
 0. Normal
 1. Hipoestesia ligera a moderada
 2. Hipoestesia severa o anestesia

9. Lenguaje
 0. Normal
 1. Afasia ligera a moderada
 2. Afasia severa
 3. Afasia global o mutismo

10. Disartria
 0. Articulación normal
 1. Ligera a moderada
 2. Severa o anartria

11. Extinción e inatención (negligencia)
 0. Sin anormalidad
 1. Parcial (sólo una modalidad afecta)
 2. Completa (más de una modalidad)
8.1.3. Escala de Rankin modificada (mRS)154,155

0. Asintomático.

1. Discapacidad no significativa pese a la existencia de síntomas: capaz de llevar a cabo todas las tareas y actividades habituales.

2. Discapacidad ligera: incapaz de llevar a cabo todas sus actividades habituales previas, pero es capaz de realizar sus necesidades personales sin ayuda.

3. Discapacidad moderada: requiere alguna ayuda, pero es capaz de caminar sin ayuda de otra persona.

4. Discapacidad moderadamente severa: incapaz de caminar y de atender sus necesidades personales sin ayuda.

5. Discapacidad severa: confinamiento a la cama, incontinencia, requerimiento de cuidados y atenciones constantes.

8.2. ÍNDICE DE FIGURAS Y TABLAS

8.2.1. Índice de figuras

Figura 1. Muestras de cerebro de sujetos hipertensos .. 9
Figura 2. Muestras de cerebro de sujetos con HIC en relación con AAC 10
Figura 3. Localizaciones habituales de la HIC ... 13
Figura 4. Crecimiento del hematoma ... 14
Figura 5. Hipodensidad perihematoma .. 20
Figura 6. HIC por TC craneal ... 22
Figura 7. HIC por ecografía transcranial .. 23
Figura 8. HIC por RM cerebral ... 24
Figura 9. Spot sign en angioTC craneal ... 25
Figura 10. Malformación arteriovenosa por angiografía cerebral convencional ... 26
Figura 11. Caso ejemplo de crecimiento ultraprecoz del hematoma 44
Figura 12. Papel del colesterol LDL en la HIC ... 68
Figura 13. Relación del CuH con el DNP y la mortalidad a los 3 meses 72
8.2.2. Índice de tablas

Tabla 1. Criterios Boston para el diagnóstico de HIC en relación a AAC 11
Tabla 2. Principales causas de HIC secundaria y sus mecanismos de producción 12
Tabla 3. Frecuencia de crecimiento del hematoma en diferentes estudios 15
Tabla 4. ICH score .. 36
Tabla 5. FUNC score .. 37
Tabla 6. Capacidad predictiva clínica del CuH frente al volumen basal de la HIC . 71
8.3. ACRÓNIMOS Y ABREVIACIONES

AAC Angiopatía amiloide cerebral
angioTC Angiografía por tomografía computarizada
ATACH Del inglés, Antihypertensive Treatment in Acute Cerebral Hemorrhage
CLEAR III Del inglés, Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage Phase III
CLEAR-IVH Del inglés, Clot Lysis: Evaluating Accelerated Resolution of Intraventricular Hemorrhage

cm Centímetro
dL Decilitro
DNP Deterioro neurológico precoz
FAST Del inglés, Factor seven for Acute hemorrhagic Stroke Trial
HIC Hemorragia intracerebral
HTA Hipertensión arterial
INR Del inglés, International Normalized Ratio
INTERACT Del inglés, INTEnsive blood pressure Reduction in Acute Cerebral haemorrhage Trial
INTERACT2 Del inglés, Second INTEnsive blood pressure Reduction in Acute Cerebral haemorrhage Trial
LDL Del inglés, Low-Density Lipoprotein
mg Miligramo
MISTIE Del inglés, Minimally Invasive Surgery plus Tissue plasminogen activator for Intracerebral hemorrhage Evacuation

mL Mililitro
mmHg Milímetros de mercurio
mRS Del inglés, modified Rankin Scale (escala modificada de Rankin)
<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Definición en español</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHSS</td>
<td>Del inglés, National Institute of Health Stroke Scale (escala de ictus del National Institute of Health)</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>PA</td>
<td>Presión arterial</td>
</tr>
<tr>
<td>PIC</td>
<td>Presión intracraneal</td>
</tr>
<tr>
<td>PREDICT</td>
<td>Del inglés, PRedicting hEmatoma growth anD outcome in Intracerebral hemorrhage using contrast bolus CT</td>
</tr>
<tr>
<td>rFVIIa</td>
<td>Del inglés, recombinant Factor VII activated (factor VII recombinante activado)</td>
</tr>
<tr>
<td>RM</td>
<td>Resonancia magnética</td>
</tr>
<tr>
<td>ROC</td>
<td>Del inglés, Receiver Operating Characteristic</td>
</tr>
<tr>
<td>SPOTLIGHT</td>
<td>Del inglés, Spot sign selection of intracerebral hemorrhage to guide hemostatic therapy</td>
</tr>
<tr>
<td>STICH II</td>
<td>Del inglés, Surgical Trial in lobar IntraCerebral Haemorrhage</td>
</tr>
<tr>
<td>STICH</td>
<td>Del inglés, Surgical Trial in IntraCerebral Haemorrhage</td>
</tr>
<tr>
<td>STOP-IT</td>
<td>Del inglés, The spot sign for predicting and treating intracerebral hemorrhage growth study</td>
</tr>
<tr>
<td>TC</td>
<td>Tomografía computarizada</td>
</tr>
<tr>
<td>tPA</td>
<td>Del inglés, tissue Plasminogen Activator (activador tisular del plasminógeno)</td>
</tr>
<tr>
<td>VPN</td>
<td>Valor predictivo negativo</td>
</tr>
<tr>
<td>VPP</td>
<td>Valor predictivo positivo</td>
</tr>
</tbody>
</table>