
Universitat Autònoma de Barcelona

Departament de Filologia Catalana

Doctorat en
ciència cognitiva i llenguatge

Tesi Doctoral

Theory of Discontinuous
Lambek Calculus

Autor:
Oriol Valent́ın
Gallart

Director de tesi:
Dr. Glyn Morrill

Tutora:
Dra M. Teresa Espinal

2012

2

Contents

1 Type Logical Grammar and the Quest for Discontinuity 11
1.1 The (Continuous) Lambek Calculus L 12

1.1.1 Type-Logical Semantics 16
1.2 Type Logical Linguistic Theories Facing the Problem of Discon-

tinuity . 18
1.2.1 Precedents of the Discontinuous Lambek Calculus in the

90’s: the wrapping approach 20
1.2.2 Challenges of this Thesis w.r.t. its 90’s Precedents 22
1.2.3 Contributions of this Thesis 24

2 Model Theoretical Foundations for Discontinuity 27
2.1 Some technical preliminaries . 28

2.1.1 Notion of occurrence of a subterm in an unsorted or a
sorted Σ-term . 31

2.2 Towards Discontinuity: Displacement Algebras and their sorted
equational theory . 32
2.2.1 A useful mapping: V·W . 38
2.2.2 A normal form for TΣD

[X] terms in EqD 40
2.2.3 Properties of terms in normal form 41
2.2.4 On positions of terms in a product term which permute

from left to right . 44
2.2.5 Strong Normalization for �EqD

. 51

2.3 Visibility for extraction in ΣD-Terms in the theory EqD 58
2.4 Appendix . 64

3 Proof Theory 67
3.1 Theory of Discontinuous Lambek Calculus 68
3.2 A Sorted Multimodal Calculus for D: mD 71

3.2.1 The Multimodal Calculus mD 74
3.3 Absorbing the Structural Rules: the Rise of Hypersequent Syntax 81

3.3.1 Hypersequent Syntax I: the String-Based Version 82
3.3.2 Hypersequent Syntax II: the Tree-Based Version 83

3.4 Hypersequent Calculus: the Intermediate Formulation 86
3.4.1 The Intermediate Hypersequent Calculus 89
3.4.2 Axioms . 89

3.5 Hypersequent Calculus: the abstract metanotation 96
3.6 The Faithful Embedding Translation Theorem between mD and

hD . 99

3

4 CONTENTS

3.7 Extension of D with the Additive Conjunction and Disjunction
of Linear Logic . 105

3.8 Synthetic Connectives . 105
3.8.1 Deterministic Synthetic Rules 107
3.8.2 Nondeterministic Synthetic Rules 109
3.8.3 An Embedding Translation from DND into DA 111

3.9 A Direct Proof of Cut Elimination for hD and its Extensions . . 115

4 Syntactical Interpretation 125
4.1 On Residuated Displacement Algebras and the Standard Syntac-

tical Interpretation . 126
4.2 Some Interesting Completeness results for fragments of D 127

4.2.1 A canonical model for the implicative fragment F [→] . . 129
4.2.2 A source of incompleteness: some remarks w.r.t. units

and their interpretation in standard semantics 138
4.3 Towards Full Completeness for D 138

4.3.1 The new semantics at work: falsifying some underivable
hypersequents . 144

4.3.2 Completeness I . 149
4.3.3 Completeness II: Accomodating the Nondeterministic Con-

nectives . 154
4.3.4 A Modification of the Nonstandard Syntactical Interpre-

tation . 155
4.3.5 Completeness III: giving DND a syntactical interpreta-

tion using DA . 162
4.3.6 Using PDAA syntactical interpretation for the interpreta-

tion of DND . 167

5 On the generative capacity of D-grammars 169
5.1 On Discontinuous Lambek grammars 169

5.1.1 A Source of Undecidability 173
5.2 On the Generative Capacity of D-grammars 174

5.2.1 Some non-context free D-languages 174
5.2.2 Lower bounds on the recognizing power of

D-grammars . 175
5.2.3 On Head-Grammars and D-grammars 180
5.2.4 From Lexicalized Head-Grammars to D-grammars 181

6 Linguistic Applications 187
6.1 Linguistic Applications of Db . 187

6.1.1 Linguistic Applications of 1-D 190
6.1.2 Linguistic Applications of Deterministic 2-D 200
6.1.3 Nondeterminism . 203
6.1.4 Beyond 2-D? . 205

6.2 More Logical Machinery for further Binding Theory 206
6.3 Semantics . 208

6.3.1 More on Reflexives . 210
6.3.2 Personal pronouns . 212
6.3.3 Some Binding Theory for Romance Languages: 213

CONTENTS 5

7 Conclusions 229
7.1 Future Work and Open Problems 230

6 CONTENTS

Agräıments

Estic infinitament agräıt a Glyn Morrill. Ell m’ha ajudat a endinsar-me en una
disciplina apassionant com és la Gramàtica Lògica de Tipus, o en anglès Type
Logical Grammar (TLG). He tingut a més a més l’oportunitat de treballar en
seminaris, i molts articles en conjunt, on he intentat posar tot el millor de mi. Li
estic també molt agräıt per la seva humanitat que ha demostrat tantes vegades
en hores baixes de la meva vida com ara quan va morir el meu germà Luis
Valent́ın.

D’altra banda, també voldria agrair molt a M. Teresa Espinal el fet d’haver-
me donat l’oportunitat de matricular-me al doctorat de ciències cognitives i
llenguatge. També m’ha ajudat en moments en què no anava enlloc i no feia les
tasques acadèmiques en el seu corresponent moment.

Hi ha unes quantes persones que m’han ajudat en TLG a més a més de Glyn
Morrill: Michael Moortgat, Wojciech Buszkowski, Philippe de Groote, Mario
Fadda i Claudia Casadio.

A nivell laboral, agraeixo molt a Toni Badia pel fet d’haver-me integrat en un
grup de recerca en processament de llenguatge natural (a la UPF i, més tard, a
Barcelona Media) des del 2001 fins al 2011. No oblido els meus col·legues Stefan
Bott, Mart́ı Quixal, Gemma Boleda i Judith Domingo.

A nivell personal, dec molt a la meva estimada companya Nuria Iranzo, a qui
dedico aquesta tesi. Els meus pares Luis Valent́ın i Maria Teresa Gallart m’han
donat un suport no quantificable. Gràcies! Montserrat Consul i Montserrat
Arcas, les Montses, m’han sabut entendre i ajudar molt durant tot aquest any
de redacció d’aquesta tesi. Finalment, Luis, parapoeta, te añoro.

8 CONTENTS

List of Figures

2.1 Inference system for equational logic 35
2.2 EqD . 36
2.3 EqD2 . 37

3.1 The sorted types of D . 69
3.2 Standard syntactical interpretation of D types 70
3.3 Sorted D types, and syntactical sort map for D 70
3.4 Categorical calculus cD . 72
3.5 Sorted multimodal calculus mD, Part I 75
3.6 Sorted multimodal calculus mD, Part II 76
3.7 Initial hypertrees with ∗i ∈ {Λ, []} 84
3.8 Hypertree generating functions 85
3.9 Intermediate hypersequent calculus hD 92
3.10 Standard interpretation of linear logic additive connectives in DA 105
3.11 Categorical calculus cDA: the additive connectives 105
3.12 Multimodal mDA: the additive connectives 106
3.13 Hypersequent hDA: the additive connectives 106
3.14 Deterministic and nondeterministic Synthetic Connectives 107
3.15 Hypersequent rules for deterministic synthetic connectives 108
3.16 Hypersequent calculus rules for nondeterministic synthetic con-

nectives . 109
3.17 Semantic type map for DADND 115

6.1 Labelled natural deduction derivation of medial extraction (284) 192
6.2 Hypersequent derivation of pied-piping (287) 193
6.3 Labelled natural deduction derivation of parenthesization (293c) 195
6.4 Hypersequent derivation of gapping (296) 196
6.5 Hypersequent derivation of comparative subdeletion (298) 197
6.6 Labelled natural deduction derivation of Dutch verb-raising (304) 199
6.7 Hypersequent derivation of (309): Jan wil boeken lezen. 201
6.8 Hypersequent derivation of Marie zegt dat Jan Cecilia Henk de

nijlpaarden zag helpen voeren . 202
6.9 Hypersequent derivation of VP medial object-oriented reflexiviza-

tion (310b) . 203
6.10 Connectives and type map . 208
6.11 Syntax of terms for semantic representation 209
6.12 Semantics of terms for semantic representation 209
6.13 Semantic conversion laws . 210

9

10 LIST OF FIGURES

6.14 Semantically labelled hypersequent calculus for extended D, Part I211
6.15 Semantically labelled sequent calculus for extended D, Part II . . 212
6.16 Labelled ND derivation of the sloppy reading of sentence (349c) . 218
6.17 Labelled ND derivation of the first strict reading of sentence

(349a) . 219
6.18 Labelled ND derivation of the strict reading of sentence (349b) . 220
6.19 Hypersequent derivation of the strict reading of sentence (349a) . 220
6.20 Hypersequent derivation of the strict reading of sentence (349b) . 221
6.21 Hypersequent derivation of the sloppy reading of sentence (349c) 221
6.22 Labelled ND derivation of the sloppy reading of sentence (350) a. 222

Chapter 1

Type Logical Grammar and
the Quest for Discontinuity

The point of departure of this thesis is Lambek’s seminal paper ‘The Mathe-
matics of Sentence Structure’ published in 1958 by the mathematician Joachim
Lambek (Lambek (1958)) in which he presented the celebrated ‘Syntactic Cal-
culus’, which we write L. Lambek was inspired by Ajdukiewicz (Ajdukiewicz
(1935)) and Bar-Hillel (Bar-Hillel (1953)). The syntactic calculus was formu-
lated by an axiomatic presentation of a calculus based on the concept of residu-
ation. In order to prove the decidability of the calculus he formulated it also as
a Gentzen sequent system. In this way he was able to prove the Cut elimination
theorem which was the key to show the decidability.

We can say that Lambek formulated a system which could essentially capture
the logic of string concatenation. L can be considered as the first formulation of
a substructural logic, namely the intuitionistic multiplicative fragment of non-
commutative Linear logic (Girard (1987)). Of course, L is a very rudimentary
logic because it has no additive conjunction and disjunction. Moreover, due to
the fact that L is intuitionistic, the multiplicative disjunction of linear logic (the
so-called par connective `) is not present in L. Nevertheless, from a linguistic
point of view L turned out to be quite expressive and intuitive as we shall see.

But the logic of concatenation is a priori limited to express mismatches be-
tween functors and dependents. In fact, it seems that a pervasive characteristic
of natural languages is that functors/dependents are very frequently not ad-
jacent (see Bresnan (2001)). This phenomenon can be named the problem of
discontinuity of natural languages. Even the so-called configurational languages
(like for example English) that at a first sight could be considered essentially
continuous, have many phenomena which contradict the apparent continuity. L
seems not to be able to account for the syntax and semantics of, for example in
English:

(1) • Discontinuous idioms (Mary gave the man the cold shoulder).

• Quantification (John gave every book to Mary; Mary thinks someone
left; Everyone loves someone).

• VP ellipsis (John slept before Mary did; John slept and Mary did
too).

11

12 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

• Medial extraction (drummer that John Coltrane saw in 1960).

• Pied-piping (mountain the painting of which by Cezanne John sold
for $10,000,000).

• Appositive relativization (John, who jogs, sneezed).

• Parentheticals (Fortunately, John has perserverance; John, fortu-
nately, has perserverance; John has, fortunately, perseverance; John
has perseverance, fortunately).

• Gapping (John studies logic, and Charles, phonetics).

• Comparative subdeletion (John ate more donuts than Mary bought
bagels).

• Reflexivization (John sent himself flowers).

In this thesis the examples itemized in (1) will be analyzed in depth. In the
literature there are compelling arguments against the context-freeness of many
natural languages, like for example Shieber (1985). But Pentus (1992) proved
that L is weakly context-free. Hence, L contains a serious limitation for the
task of the analysis of the syntax/semantics of natural languages.

Nevertheless, L is a very elegant calculus which can easily describe phenom-
ena like coordination. In the next section we see its basic properties and we
address with more detail the weak points of L w.r.t. discontinuity.

1.1 The (Continuous) Lambek Calculus L

We take as basic type logical grammar (henceforth TLG) L, by which we mean
the system of Lambek (1958) with type-logical semantics along the lines of van
Benthem (1983) and Lambek (1988).

(2) Definition (Basic Syntactical Algebra)

A basic syntactical algebra is an algebra (L,+, 0) of arity (2, 0) which
is a free monoid. I.e. L is a set, and + is a binary operation on L such
that for all s1, s2, s3 ∈ L,

s1+(s2+s3) = (s1+s2)+s3 associativity;
0+s = s = s+0 identity

furthermore, up to associativity every element of L has a unique factor-
ization into primes (freeness).1

We call + concatenation.
We use now the term “syntactical” in the sense in which Morrill in the 90’s

called “prosodic” algebra.

(3) Definition (Types of L)

1Factors of an element s are elements s1, . . . , sn such that s = s1+ · · ·+sn; a prime is an
element which has no factorization other than into just itself.

1.1. THE (CONTINUOUS) LAMBEK CALCULUS L 13

The set F of types of L is defined on the basis of a set P of primitive
or atomic basic types as follows:

F ::= P | F•F | F\F | F/F

The connective • is called (continuous) ‘product’, \ is called ‘under’, and
/ is called ‘over’.

(4) Definition (Syntactical Interpretation of L)

A syntactical interpretation of L is a function J · K mapping each type
A ∈ F into a subset of L such that:

JA\CK = {s2| ∀s1 ∈ JAK, s1+s2 ∈ JCK}
JC/BK = {s1| ∀s2 ∈ JBK, s1+s2 ∈ JCK}
JA•BK = {s1+s2| s1 ∈ JAK & s2 ∈ JBK}

Such a formalized interpretation appears to have been first made explicit in
Buszkowski (1982) (in Lambek (1958) the syntactical interpretation was im-
plicit). Observe that the (continuous) product • inherits associativity from the
basic syntactical algebra:

(5) A•(B•C) = (A•B)•C

(6) Remark
Although the syntactical interpretation is made in monoids we have not
incorporated in the set of types F the product unit type I which satisfies:

I•A = A = A•I

Note also that (\, •, /;⊆) constitutes a residuated triple, i.e.

(7) B ⊆ A\C iff A•B ⊆ C iff A ⊆ C/B

(8) Definition (Configurations and Sequents of L)

The set O of configurations of L is defined as follows:

O ::= Λ | F ,O

The set Σ of sequents of L is defined as follows:

Σ ::= O ⇒ F

O is called the antecedent configuration and F is called the succedent type.

Notice that contrarily to the standard Lambek calculus the non-empty an-
tecedent constraint is dropped, i.e. empty antecedents in sequents are allowed.2

2Although it is known in the type logical community that the non-empty antecedent con-
straint rules out ungrammatical expressions like a+very+man, it is maybe not widely known
that the possibility of sequents with empty antecedent allows that one single type assignment
for relative pronouns like which accounts for relative sentences with or without pied-piping
(see Chapter 6).

14 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

(9) Definition (Syntactical Interpretation of Configurations and Validity of
Sequents in L)

We extend the interpretation of types to include configurations as follows:

JΛK = {0}
JA,ΓK = {s1+s2| s1 ∈ JAK & s2 ∈ JΓK}

A sequent Γ ⇒ A is valid iff JΓK ⊆ JAK in every interpretation.

(10) Definition (sequent calculus for L)

The sequent calculus for L is as follows, where ∆(Γ) indicates a configu-
ration ∆ with a distinguished subconfiguration Γ:

id
A ⇒ A

Γ ⇒ A ∆(A) ⇒ B
Cut

∆(Γ) ⇒ B

Γ ⇒ A ∆(C) ⇒ D
\L

∆(Γ, A\C) ⇒ D

A,Γ ⇒ C
\R

Γ ⇒ A\C

Γ ⇒ B ∆(C) ⇒ D
/L

∆(C/B,Γ) ⇒ D

Γ, B ⇒ C
/R

Γ ⇒ C/B

∆(A,B) ⇒ D
•L

∆(A•B) ⇒ D

Γ ⇒ A ∆ ⇒ B
•R

Γ,∆ ⇒ A•B

In L, a theorem is a sequent which is derivable in this calculus.

Observe that in the sequent calculus for L, for each connective there is a left
(L) rule introducing it in the antecedent, and a right (R) rule introducing it in
the succedent; the type in which this connective occurs is called active; the other
types are called side formulas. The L and R rules reflect respectively sufficient
conditions for use, and necessary conditions for proof, of a type so-built. The
sequent calculus fully modularizes the inferential properties of connectives: it
deals with a single occurrence of a single connective at a time.

(11) Proposition (soundness of L)

In L, every theorem is valid.

Proof. Straightforward induction on the length of sequent proofs. �

(12) Theorem (Cut-elimination for L)

In L, every theorem has a Cut-free sequent proof.

Proof. Lambek (1958). Where A is a type, let d(A) be the number of separate
occurrences of the connectives \, •, / in A, and let d(A1, A2, . . . , An) = d(A1) +
d(A2) + · · ·+ d(An). The degree of an instance of Cut

Γ ⇒ A ∆1, A,∆2 ⇒ B

∆1,Γ,∆2 ⇒ B

1.1. THE (CONTINUOUS) LAMBEK CALCULUS L 15

is defined to be d(Γ)+d(∆1)+d(∆2)+d(A)+d(B). It is shown that in any Cut
the premises of which have been proved without Cut, the conclusion is either
identical with one of the premises, or else the Cut can be replaced by one or two
Cuts of smaller degree. Therefore since no degree is negative, every theorem
has a Cut-free proof. �

(13) Corollary (subformula property for L)

In L, every theorem has a sequent proof containing only its subformu-
las.

Proof. Every rule except Cut has the property that all the types in the premises
are either in the conclusion (side formulas) or are the immediate subtypes of
the active formula, and Cut itself is eliminable. �

(14) Corollary (decidability of L)

In L, it is decidable whether a sequent is a theorem.

Proof. By backward-chaining in the finite Cut-free sequent search space. �
We see now the completeness of L w.r.t. the implicative fragment (see

Buszkowski (1982)).

(15) Theorem (Completeness of the L[\, /] fragment)

If ∆ ⇒ A is a valid L sequent with types ranging in the so-called im-
plicative fragmentF [\, /] then it is L provable.

Proof. It is worth seeing the simple proof of this result. A notational con-
vention: we will write ` instead of `L. Consider the basic syntactical algebra
A = 〈(F [\, /])∗, (,),Λ〉. Define the following valuation on the atomic types:

v(A) := {∆ : ` ∆ ⇒ A}

We show that for every implicative type C:

JCKv = {∆ : ` ∆ ⇒ C}

We proceed by induction on the structure of the implicative types.

• Base case. True by definition.

• Inductive case. Let us suppose that C = B/A:

- [⊆]: suppose ∆ ∈ JB/AKv. Let ΓA be an arbitrary configuration belong-
ing to JAKv. By induction hypothesis (i.h.), ` ΓA ⇒ A. By hypothesis
∆,ΓA ∈ JBKv. Again, by i.h. ` ∆,ΓA ⇒ B. Then

ΓA ⇒ A ∆,ΓA ⇒ B
Cut

∆, A ⇒ B
/R

∆ ⇒ B/A

Hence ∆ ∈ {Γ : ` Γ ⇒ B/A}.

16 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

- [⊇]: Let ∆ be such that ` ∆ ⇒ B/A. Let ΓA ∈ JAKv. By i.h. ΓA ⇒ A.
Then:

∆ ⇒ B/A ΓA ⇒ A
/E

∆,ΓA ⇒ B

Hence ∆ ∈ JB/AK.

�

(16) Theorem (Completeness of L)

In L, every valid sequent is a theorem.

Proof. By the reasoning of Pentus (1993), which goes via “quasimodels”. �

1.1.1 Type-Logical Semantics

(17) Definition (semantic types)

The set T of semantic types is defined on the basis of a set δ of prim-
itive semantic types by:

T ::= δ | T &T | T → T

(18) Definition (semantic frame)

A semantic frame is a T -indexed family of non-empty sets {Dτ}τ∈T such
that:

Dτ1&τ2 = Dτ1 ×Dτ2 cartesian product

Dτ1→τ2 = D
Dτ1
τ2 functional exponentiation

For example, we might select as basic types a type e of entities, δ(e) a nonempty
set of individuals, and a basic type 2 of two truth values, δ(2) = {∅, {∅}}.

(19) Definition (semantic terms)

The sets Φτ of semantic terms of type τ for each type τ are defined on
the basis of a set Cτ of constants of type τ and an denumerably infinite
set Vτ of variables of type τ for each type τ as follows:

Φτ ::= Cτ | Vτ | (Φτ ′→τ Φτ ′) | π1Φτ&τ ′ | π2Φτ ′&τ
Φτ→τ ′ ::= λVτΦτ ′
Φτ&τ ′ ::= (Φτ ,Φτ ′)

(We allow ourselves to abbreviate ((φ ψ) χ) as (φ ψ χ), etc.3) An occurrence
of a variable x in a term is free iff it does not fall within any part of the term
of the form λx·; otherwise it is bound (by the closest λx within the scope of
which it falls). Each term φ ∈ Φτ receives a semantic value [φ]g ∈ Dτ with
respect to a valuation f sending each constant in Cτ to an element in Dτ , and
an assignment g sending each variable in Vτ to an element in Dτ , as follows:

3Likewise, ((φ, ψ), χ) would be abbreviated (φ, ψ, χ), etc.

1.1. THE (CONTINUOUS) LAMBEK CALCULUS L 17

(20) [c]g = f(c) for c ∈ Cτ
[x]g = g(x) for x ∈ Vτ

[(φ ψ)]g = [φ]g([ψ]g) functional application
[π1φ]g = fst([φ]g) first projection
[π2φ]g = snd([φ]g) second projection

[λxτφ]g = Dτ 3 d 7→ [φ](g−{(x,g(x))∪{(x,d)} functional abstraction
[(φ, ψ)]g = 〈[φ]g, [ψ]g〉 ordered pair formation

The result φ{ψ/x} of substituting term ψ (of type τ) for variable x (of type τ)
in a term φ is the result of replacing by ψ every free occurrence of x in φ. The
application of the substitution is free iff no variable free in ψ is bound in its new
location. (Manipulations can be pathological if substitution is not free.) The
following laws of lambda-conversion obtain:

(21) λyφ = λx(φ{x/y}) if x is not free in φ and φ{x/y} is free
α-conversion

(λxφ ψ) = φ{ψ/x} if φ{ψ/x} is free
π1(φ, ψ) = φ
π2(φ, ψ) = ψ

β-conversion

λx(φ x) = φ if x is not free in φ
(π1φ, π2φ) = φ

η-conversion

(22) Definition (semantic type map for L)

The semantic type map for L is a homomorphism T from syntactic types
F to semantic types T such that:

T (A•B) = T (A)&T (B)
T (A\C) = T (A)→ T (C)
T (C/B) = T (B)→ T (C)

Categorial semantics, Curry-Howard type-logical semantics, works because un-
der such a type map categorial derivations are homomorphically sent to in-
tuitionistic proofs, i.e. pure terms of the typed lambda calculus. These com-
pose lexical semantics expressed as terms of higher-order logic into meanings
in higher-order logic of projected expressions. Montague (1970) observed that
algebraically, compositionality is a homomorphism from syntax to semantics.
TLG goes further in asserting that it is a homomorphism from syntactic proofs
to semantic proofs.
In this sense, we see that L adheres to the following theoretical principles:

(23) • Strong homomorphism from the syntactic dimension into the seman-
tic dimension.

• Direct semantics: the different semantic readings of a linguistic ex-
pression Φ are strictly controlled by the different syntactic derivations
of a provable sequent associated to Φ.

• Intuitionistic regime.

18 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

• Language models (interpretating L in basic syntactical algebras) con-
stitute an important characteristic of TLG which measures the qual-
ity of a type logical system w.r.t. soundness and completeness. Kripke-
like interpretations with abstract ternary relations are not considered
a good measure of the logical machinery.

• L has a sequent system whitout structural rules.

We realize then that L is for our approach the starting point for further logi-
cal/linguistic evolutions. A classical criticism against L is its inability to project
constituents like in the generative paradigm. A radically different view of L is to
identify it with the non-associative Lambek calculus (Lambek (1961)) extended
with the non-logical postulate of associativity: NL+Assc. Nevertheless, the L
invisibility of the constituent structure can be remediated with the use of modal
unary connectives (see Morrill (1994) and Chapter 6 from this thesis). Hence
there is no reason to drop L as an initial theoretical construct for type logical
investigations.

We will see in the next section that the landscape of type logical linguistic
theories have a rich variety of different theoretical evolutions (or even revolu-
tions!) from the principles formulated in (23).

1.2 Type Logical Linguistic Theories Facing the
Problem of Discontinuity

In this section we formulate a general theoretical test which we think constitutes
a good technical device to measure the goodness of a TLG theory facing the
problem of discontinuity:

(24)

Given a type logical theory T and an arbitrary linguistic expression Φ[Ψ]
with a distinguished occurrence of a linguistic subexpression Ψ,
in T there is a derivation such that:

Φ[Ψ]→ Φ[] ◦̂ Ψ

It is illustrative to see how the principle (24) beahaves in L. The way a type
logical linguistic theory accounts for extraction in relatives is a good instance
of test (24). Consider the following contrast:

(25) a. Man that Peter saw
λx[(man x) ∧ (saw x peter)]

b. Man that Peter saw today
λx[(man x) ∧ (today (saw x peter))]

Let us see the standard L type assignments:

(26)

man : CN : man
that : (CN\CN)/(S/N) : λP.λQ.λz((Q z) ∧ (P z))
loves : (N\S)/N : love
Peter : N : peter

1.2. TYPE LOGICAL LINGUISTIC THEORIES FACING THE PROBLEM OF
DISCONTINUITY 19

In (25), given the standard lexicon (26), a straightforward derivation in L ac-
counts for the grammaticality of a) and its reading. Nevertheless, the gram-
matical common noun in (25.b) is not derivable in L. We can build an L model
(A, v) which falsifies (25.b).

Let A = 〈{d,m, p, s, t}∗, (,),Λ〉 be a basic syntactical algebra and let v be a
valuation which is defined on atomic types as follows:

v(N) := {p}
v(CN) := {m+ (t+ p+ s)n : n ∈ ω}
v(S) := {p+ s+ p+ dn : n ∈ ω}

From the interpretation on the atomic types we can then compute the interpre-
tations of the lexical types:

J(CN\CN)/(S/N)K := {t}
J(N\S)/NK := {s}
JS\SK := {dn : n ∈ ω}

Since m + t + p + s + d ∈ JCN, (CN\CN)/(S/N), N, (N\S)/N, S\SKv, but
m+ t+ p+ s+ d 6∈ {m+ (t+ p+ s)n : n ∈ ω} = JCNKv, it follows that:

6|= CN, (CN\CN)/(S/N), N, (N\S)/N, S\S ⇒ CN

The type of the relative pronoun of our examples has as a subtype S/N which
simply means that it must combine with a linguistic expression which is a prefix
of a sentence, i.e. a context. But, crucially here the combination with the context
inside the relative sentence is blocked because it is no longer peripheral due to
the presence of the adverbial today.

In recent years (2000-2012), scholars have developed a variety of type log-
ical theories which diverge from the ones that were studied in the 90’s like
the widely kown influential works of Morrill (1994) and Moortgat (1997). The
former author, who can be considered the scholar who invented the term type
logical grammar, assumed that in principle any type logical theory should have
L as a basic underlying theory. The latter author instead considered the non-
associative Lambek calculus (Lambek (1961)) NL as the basic theory for fur-
ther theoretical developments like multimodal categorial grammar (henceforth
MMCG). Morrill’s and Moortgat’s theories adhered to the principles itemized
in (23). In the case of Moortgat’s work (op. cit.) Krike frames (with ternary
relations) were considered instead of language models.

The type logical theories from the period 2000 to 2012 are not easy to clas-
sify because they diverge and share properties in many aspects. It seems then
convenient to give some classifying theoretical axes in order to grasp the new
type logical landscape:

(27) 1) Intuitionistic regime versus classical regime.

2) Semantic readings controlled in some way by syntax versus what we
could call the Curry approach in which there is an abstract syntax
which is then mapped into diverse linguistic dimensions: the syntactic
dimension, the semantic dimension, etc.

20 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

3) Direct semantics versus the so-called continuation semantics or the
use of extensions of the lambda calculus (like for example the λµµ̃-
calculus; Herbelin (2005); Curien and Herbelin (2000)) which are not
confluent calculi.

4) Complete use of a (substructural) logic versus the controlled or lim-
ited use of the rules of for example a sequent calculus.

Notice that every item of (27) contains the word versus, meaning that the item
is polarized. For instance, if a theory T is such that it does adhere to direct
semantic we will say that T adheres to the third item 3) from (27), i.e. 3)+.
Otherwise we say T satifies 3)−. In case that a theory T is such it has variants
that adhere respectively to say 2)+ and 2)−, we will write 2)+,−. We will also
write +,− in case that the theory T does not adhere exactly to any feature of
the points itemized in (27). Let us see then some representative theories which
have arisen in the last 12 years (for an excellent survey see Lecomte (2011)):4

• Symmetric categorial grammar Moortgat (2009): 1)−, 2)+, 3)−, 4)+.

• Abstract categorial grammar De Groote (2001): 1)+, 2)−, 3)+, 4)+.

• Categorial grammar for minimalism Lecomte (2005): 1)+, 2)+,−, 3)+,−,
4)−.

• Convergent grammars Pollard (2007): 1)+, 2)−, 3)+, 4)−.

• Linear grammars Anoun and Lecomte (2006): 1)+, 2)−, 3)+, 4)−.

• Barker’s continuation semantics program Barker (2002): 1)+, 2)+,−, 3)−,
4)+.

According to (27), the approach of this thesis would be: 1)+, 2)+, 3)+, 4)+.
The discontinuous Lambek calculus has deep precedents in the 90’s, which in
the next subsection are summarized

1.2.1 Precedents of the Discontinuous Lambek Calculus
in the 90’s: the wrapping approach

The idea of discontinuity operators for categorial grammar appears to originate
in Bach (1981) and Bach (1984). Where s = a1+ · · ·+an is the factorization of
s into primes, let us define:

(28) FIRST (s) =df a1

RREST (s) =df a2+ · · ·+an
LAST (s) =df an

LREST (s) =df a1+ · · ·+an−1

Bach (1984) defined the operations RWRAP and LWRAP , and their converses
LINFIX and RINFIX respectively, as follows:

(29) RWRAP (s1, s2) = LINFIX(s2, s1) = FIRST (s1)+s2+RREST (s1)
LWRAP (s1, s2) = RINFIX(s2, s1) = LREST (s1)+s2+LAST (s1)

4Lecomte (2011) is detailed and exhaustive. In case of doubts we refer the reader to this
book.

1.2. TYPE LOGICAL LINGUISTIC THEORIES FACING THE PROBLEM OF
DISCONTINUITY 21

Bach had in mind such applications as a characterization of the object equi per-
suade/subject equi promise distinction in terms of alternative argument order,
but here we would assume a coding of control properties in lexical semantics.
He also proposed ‘long-distance’ functors in relation to Dutch word order, which
we will address, but in terms of wrapping.

The first type-logical formulation of discontinuity, i.e. with an interpretation
of types and with a sequent calculus, appeared in Moortgat (1988). Moortgat
defined discontinuous types as follows (we modify his notation):

(30) F ::= F ↓∀ F | F ↑∃ F

(31) JA ↓∀ CK = {s| ∀s1+s2 ∈ JAK, s1+s+s2 ∈ JCK}
JC ↑∃ BK = {s| ∃s1, s2, s = s1+s2 & ∀s′ ∈ JBK, s1+s′+s2 ∈ JCK}

The following sequent rules were given:

(32) Γ ⇒ A ∆(C) ⇒ D
↓∀ L

∆(Γ(A ↓∀ C)) ⇒ D

Γ, B,∆ ⇒ C
↑∃ R

Γ,∆ ⇒ C ↑∃ B

Thus e.g. medial extraction, not otherwise derivable in the Lambek calculus, is
obtained from a relative pronoun type R/(S↑∃N). And S(neg)↓∀S(pos) would
be the type of a freely floating negation particle, if there were really such an
element. However, the other sequent rules cannot be formulated, so the logic is
incomplete.5

Moortgat (1991)6 defined a three-place in-situ binder type-constructor Q for
e.g. quantifier phrases, Q(S, N, S), and subject-oriented reflexives, Q(N\S, N,
N\S). The left sequent rule is:

(33) Γ(A) ⇒ B ∆(C) ⇒ D
QL

∆(Γ(Q(B,A,C))) ⇒ D

However the best that can be managed on the right is:

(34) Γ ⇒ A
QR

Γ ⇒ Q(B,A,B)

This is insufficient to derive e.g. Q(S, N, S) ⇒ Q(N\S, N, N\S) (that a quanti-
fier phrase can occur in a verb phrase conjunct, H. Hendriks, p.c.) so the logic is
incomplete again. Moortgat (1991) indicated that Q(B,A,C) might be decom-
posed into something like (B↑∃A)↓∀C, but he did not have a calculus ensuring
that the two points of discontinuity would be one and the same, as is required
in order to ensure, for example, that a quantifier phrase only binds the position
it occupies.7

5We resolve this by decomposing Moortgat’s connectives into ones for which both rules of
proof and use can be given, as follows: A↓∀C = ˇA↓C and C↑∃B = ˆ(C↑B).

6Moortgat (1991) also proposed a substring product:

(i) JA�∃BK = {s1+s2+s3| s1+s3 ∈ JAK & s2 ∈ JBK}

(ii) Γ1,Γ2 ⇒ A ∆ ⇒ B
�∃R

Γ1,∆,Γ2 ⇒ A�∃B
But again a left rule cannot be given. We resolve this by decomposing thus: A�∃B = ˇA�B.

7We resolve this by realizing exactly the decomposition Q(B,A,C) = (B↑A)↓C.

22 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

Versmissen (1991) observed that we want in some way to mark points of
discontinuity. Algebraic formulations, developed without knowledge of the head
grammars of Pollard (1984), were as follows:

• Solias Aŕıs (1992): syntactical algebra (L,+, 0, 〈·, ·〉) where (L,+, 0) is a
free monoid and (L, 〈·, ·〉) is a free groupoid. Wrap was a partial operation
defined by 〈s1, s3〉Ws2 =df s1+s2+s3.

• Morrill and Solias (1993): syntactical algebra (L,+, 0, 〈·, ·〉, 1, 2) where
(L,+, 0) is a monoid, (L, 〈·, ·〉) is a groupoid and 1〈s1, s2〉 = s1, 2〈s1, s2〉 =
s2 and 〈1s, 2s〉 = s. Wrap was a total operation defined by sWs′ =df

1s+s′+2s.

• Morrill (1994) and Morrill (1995): syntactical algebra (L,+, 0, (·, ·),W)
where (L,+, 0) is a monoid, (L, (·, ·)) and (L,W) are groupoids and there
is the structural rule of interaction (s1, s3)Ws2 = s1+s2+s3. Wrap was a
primitive total operation.

In Solias Aŕıs (1992) wrapping was derived and partial. In Morrill and Solias
(1993) it was derived and total. In Morrill (1994) and Morrill (1995) it was
primitive and total. But in all three cases, the representation of discontinu-
ous expressions in an (unsorted) algebra introduced syntactical terms in which
points of discontinuity, because embedded, could necessarily never wrap, e.g.
s1+(s2, s3), so the syntactical ontology contained much junk.

Morrill and Merenciano (1996) cleared this up admitting only n-tuples of
strings sorted by their arity. But in the generalized case (i.e. with no upper
bound on the number of points of discontinuity), both pairing and the empty
tuple would be required for the construction of unboundedly long tuples. Here
we reduce the machinery to a single operator of arity zero (i.e. a constant);
cf. also Moortgat (1996) for a constant operator, but here we use it to get the
generalized case of discontinuity. The nullary operator is in general internal to
concatenation, but whenever it is embedded it can be considered (by virtue of
the associativity of concatenation) to be immediately embedded, and as such,
always useful to undergo wrap.

1.2.2 Challenges of this Thesis w.r.t. its 90’s Precedents

In this thesis, the discontinuous Lambek calculus, in notation D, represents the
natural evolution of the 90’s wrapping approach. The challenges that D faces
in this thesis are the following:

• To have a clear class of algebras in which D is formulated: the so-called
class of standard displacement algebras FreeDisp and the class of general
displacement algebras Disp (c.f. Chapter 2). These algebras are close to
the so-called language models of the Lambek calculus.

• To discover an equational theory ED for Disp in which the notion of
(linguistic) context can be manipulated in order to build over it a type
logical theory. The notion of extraction of a subterm in a term is studied
in depth and the conditions for extractability are stated and proved. This
enables handling the notion of general contexts.

1.2. TYPE LOGICAL LINGUISTIC THEORIES FACING THE PROBLEM OF
DISCONTINUITY 23

• To formulate a (sorted) multimodal calculus mD (c.f. Chapter 3) which
has precisely as structural postulates the equations of ED.

• To build a data-structure (see the notion of hyperconfiguration in Chapter
3) that allows us to have a (sorted) sequent calculus without structural
rules, which in fact has absorbed the structural postulates of mD. We
call this new sequent calculus without structural rules the hypersequent
calculus, in notation hD.

• To give a faithfull embedding translation between the multimodal calculus
and the hypersequent calculus.

• To give for the first time a proof of the Cut elimination theorem for the
hypersequent calculus, and hence (via the referred embedding translation)
for the multimodal calculus. The proof is very similar to the one Lambek
(1958)) gave for the syntactic calculus.

• To prove several completeness results for the first time for the wrapping
approach.

• To extend the calculus with the linear logic (Girard (1987)) additive con-
junction and disjuntion. To consider new synthetic connectives which
allow for example extend the discontinous lambek Calculus to a nondeter-
ministic version. To prove the Cut elimination theorem for these exten-
sions.

• For the first time, to study and to prove results on the (weak) generative
capacity of the discontinuous Lambek calculus.

The road map for the wrapping approach for discontinuity in this thesis is
divided in 7 chapters:

• This chapter.

• Chapter 2 studies in depth the model-theoretical foundations of disconti-
nuity.

• Chapter 3 studies the different calculi: the categorical, the multimodal and
the hypersequent calculi, which has no structural rules. The Cut elimi-
nation theorem is proved for the discontinuous Lambek calculus and its
extensions. Several faithful embedding translations between the different
calculi are proved.

• Chapter 4 studies and proves several soundness and completeness results
for the discontinuous Lambek calculus.

• Chapter 5 studies the generative expressivity of the discontinuous Lambek
calculus. Several interesting results are proved.

• In Chapter 6, we show the new calculi at work: linguistic applications. The
discontinuous phenomena of (1) are accounted for. Moreover a detailed
study of anaphora in English is carried out. The case of some subtle
Romance reflexive binding properties are studied in depth.

• Finally, in Chapter 7 we find the conclusions and identify further studies
related to the discontinuous Lambek calculus.

24 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

1.2.3 Contributions of this Thesis

This thesis presents new material as well as the work of several years of this
author on the discontinuous Lambek calculus, as co-author with Glyn Morrill
and Mario Fadda. Several papers on the subject are listed:

• Morrill, Fadda, and Valent́ın (2007). In this paper the nondeterministic
discontinuous Lambek calculus is formulated with some linguistic appli-
cations. The joint development (of the three authors) of a new sequent
syntax (main feature of the paper), which is called hypersequent calculus,
was formulated. This new sequent syntax corresponds to the segmented
(or string-based) hypersequent calculus (cf. Chapter 3). The calculus al-
lows an unbounded number of points of discontinuity.

• Morrill, Valent́ın, and Fadda (2009). This paper contains a detailed type
logical account of processing issues in Dutch, namely the so-called cross-
serial dependencies. The calculus which is used in this analysis is a version
of the 1-DLC based on Valent́ın (2006). The main contribution of the
author in this paper is the formulation of unary synthetic connectives (cf.
Girard (2006)) and their hypersequent rules. These synthetic connectives
allows the authors to give an elegant linguistic account of a fragment of
Dutch. The 1-DLC is a proper subsystem of the hypersequent calculus
(cf. Chapter 3 and Chapter 6).

In the Spring of 2010 the author had the idea of a new sequent syntax, the
so-called tree-based hypersequent syntax. This idea concluded satisfactorily a
whole series of considerations on categorial discontinuity. It is essential to all
the following articles, which it enabled and precipitated.

• Morrill and Valent́ın (2010a). This paper contains the first published
formulation of the tree-based hypersequent calculus (cf. Chapter 3). This
calculus has an unbounded number of connectives but it does not contain
the nondeterministic connectives. The main contribution of the author
was the proof à la Lambek (1958) of the Cut elimination theorem for the
tree-based hypersequent calculus.

• Morrill and Valent́ın (2010c). In this paper the principles A, B and C
of Binding theory are accounted for with the discontinuous Lambek cal-
culus enriched with the modality S4, Jäger’s logic (cf. Jäger (2005)) of
limited contraction, and finally the negation as failure. The main con-
tribution of the author was a series of theoretical considerations on the
so-called negation as failure. Computer generated examples of binding
theory are given. Interestingly, there is no use of features like nominative
or accusative because English is a configurational language.

• Morrill and Valent́ın (2010b). Here a variant of the discontinuous Lambek
calculus is proposed. It is called the edge displacement logic. This variant
has two characteristic features: it allows an unbounded number of points
of discontinuity but the number of connectives is finite (compare with the
discontinuous Lambek calculus presented in this thesis and in Morrill and
Valent́ın (2010a)). The main contribution of the author was the formu-
lation of binary synthetic connectives and the discussion of the spurious

1.2. TYPE LOGICAL LINGUISTIC THEORIES FACING THE PROBLEM OF
DISCONTINUITY 25

ambiguity in the hypersequent calculus. These synthetic connectives were
defined with the so-called additive conjunction and disjunction of Linear
Logic (cf. Girard (1987)).

• Morrill and Valent́ın (2010d). This paper contains some interesting results
of the (weak) generative capacity of the discontinuous Lambek calculus.
The main contribution of the author was the formulation and proof of
the fronting lemma and the theorem which states the recognition of the
permutation closure of context-free languages.

• Morrill and Valent́ın (2011). In this paper the main contribution of the
author was the Cut elimination admissibility of the extended logic of Mor-
rill and Valent́ın (2010c): it was proved that a significative part of the
calculus (the whole system except the negation as failure) enjoys Cut
elimination. The problem of introducing a negation in type logical gram-
mar is addressed. Finally an exhaustive account of anaphora (cataphora
phenomena are studied) ends the paper.

• Morrill, Valent́ın, and Fadda (2011). This paper formulates the edge dis-
placement calculus introduced before. Several linguistic applications are
given and the Cut elimination theorem is proved. The main contribution
of the author was a proof of the Cut elimination theorem.

26 1. TYPE LOGICAL GRAMMAR AND THE QUEST FOR DISCONTINUITY

Chapter 2

Model Theoretical
Foundations for
Discontinuity

The principal purpose of this chapter is to set out the model-theoretical founda-
tions (mainly from universal algebra) underlying our approach to discontinuity
in natural language. The point of departure is the class of free monoids. From
free monoids we define the class of ω-sorted (standard) displacement algebras
FreeDisp, which we claim is an appropriate class of sorted algebras modelling
the segmented strings we defined in the introduction of this thesis. We pro-
pose an equational theory denoted EqD

1 which axiomatizes the class of general
displacement algebras, in notation Disp, which properly contains FreeDisp.
Interestingly, the equations which hold of the class of standard displacement
algebras are derivable in the equational theory EqD. In other words, EqD is
proved to be sound and complete w.r.t. FreeDisp.

In the introduction of this work we noted the relevance of having formal tools
to deal with what we called contexts for linguistic subexpressions in linguistic
expressions. As we saw in our type-logical agenda for discontinuity, formal
tools to work with contexts (of linguistic expressions) have been revealed to be
fundamental for the analysis of e.g. quantifier expressions and the problem of
quantifier scope, binding, negative polarities and so on. The equational theory
EqD we present in this chapter gives a way to express the metalogical notion of
context at an object level. This ability of EqD will be called visibility for extrac-
tion and some related results will be stated and proved. The main properties of
EqD will be used extensively in the next two chapters.

1In fact we propose two equational theories, namely EqD and EqD2.

27

28 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

2.1 Some technical preliminaries

A signature Σ is a graduated set, i.e., a set Σ =
⋃
n∈ω Σn. Each set Σn is

considered the set of n-ary functions. In particular, Σ0 is the set of constants.
Every signature Σ has associated a function ar : Σ −→ ω, called the arity
function. Given f ∈ Σn, we put ar(f) = n. Given n,m ∈ ω with n 6= m, Σn
and Σm are of course disjoint. If Σ is finite then it is called a ranked alphabet.

Let X be a (finite or infinite) set such that Σ and X are disjoint. Elements of
X are called variables. We define the set of formal terms TΣ[X] with signature
Σ. Elements of TΣ[X] are called Σ-terms. TΣ[X] is the least set such that:

(35) i) Σ0 ⊆ TΣ[X]

ii) X ⊆ TΣ[X]

iii) If f ∈ Σn with n > 0 and t1, · · · , tn ∈ TΣ[X] then f(t1, · · · , tn) ∈
TΣ[X].

This impredicative definition can be generated using the standard Backus Naur
Form (henceforth BNF) recursive definitions:

(36) TΣ[X] ::= X |Σ0 |Σn(TΣ[X], · · · , TΣ[X]︸ ︷︷ ︸
n

) for n > 0

(37) Example
Let Σ = Σ0 ∪ Σ1 ∪ Σ2 where Σ0 = {a, b}, Σ1 = {g} and Σ2 = {f}. Here,
x denotes an arbitrary variable. Σ-terms can be depicted graphically as
labelled trees:

(38)

Textual representation of the term Tree representation of the term
g(a) g

a

f(g(f(a, b)), x) f

xg

f

ba

(39) Definition (Σ-Algebras)

A Σ-Algebra A = 〈A, (fA)f∈Σ〉 comprises a set (the universe) and the
collection of the interpreted constants and functions of Σ in A, i.e:

• If ar(f) = 0 then fA ∈ A.

• If ar(f) = n > 0 then fA = An −→ A.

2.1. SOME TECHNICAL PRELIMINARIES 29

A Σ-homomorphism or simply a homomorphism is a function α : A → B be-
tween two Σ-algebras A and B such that for every n > 0 α(fA(a1, · · · , an)) =
fB(α(a1), · · · , α(an)), and if n = 0 α(fA) = fB. A Σ-monomorphism is an injec-
tive Σ-homomorphism. A Σ-epimorphism is an exhaustive Σ-homomorphism.
Finally a Σ-isomorphism is a Σ-homomorphism which is bijective.

In this chapter and the subsequent chapters we will need the notion of sorted
signatures. Sorted signatures are more fine-grained than standard signatures
and they constitute a useful way to introduce partiality. A sorted signature is a
pair (S,Σ) where S is called the set of sorts and Σ is, like in the case of unsorted
signatures, a graduated set Σ =

⋃
n∈ω Σn. For n > 0 every Σn is called the set

of n-ary functions and if n = 0 then Σn is called the set of constants. Every
sorted signature is associated a function Ω : Σ −→ S+, where S+ is the set
of non-empty finite lists of sort elements. Ω is such that for every f ∈ Σ0, if
Ω(f) = s (i.e. Ω(f) is a list containing a single sort element) then s is the sort of
the constant f , and if Ω(f) = 〈s1, · · · , sn, sn+1〉, f is a functional symbol which
must be thought of as a typed function as follows:

(40) f : s1, · · · , sn −→ sn+1

We say that f is of sort functionality s1, · · · , sn −→ sn+1. Intuitively f is a
function of arity n > 0 which needs n arguments of the appropriate sorts si’s
giving a value of sort sn+1.

Let X be an S-graduated set X =
⋃
s∈SXs. We suppose that X and Σ are

disjoint. Intuitively X is the set of S-sorted variables. Like in the unsorted case,
we can define the set of formal terms TΣ[X] with signature (S,Σ). Elements of
TΣ[X] are called (S,Σ)-terms, or simply Σ-terms. TΣ[X] is the least set such
that:

(41) i) Σ0 ⊆ TΣ[X]

ii) X ⊆ TΣ[X].

iii) If f ∈ Σn with n > 0 and sort functionality s1, · · · , sn → sn+1, and
ti are of sort si (i = 1, · · · , n), then f(t1, · · · , tn) ∈ TΣ[X]. Of course,
Ω(f(t1, · · · , tn)) = sn+1

TΣ[X] can be thought of as a graduated set, i.e. TΣ[X] =
⋃
s∈S(TΣ[X])s. Each

set (TΣ[X])s is the set of Σ-terms of sort s. We say that s1, · · · , sn → s is
a sort functionality of Σ if there exist at least one f ∈ Σ such that Ω(f) =
s1, · · · , sn → s. We can give a BNF definition of TΣ[X]:

(42) Definition (Sorted Σ-Algebras)

A sorted (S,Σ) algebra is the following tuple A = 〈{Ls}s∈S, {fAL }L=Ω(f)〉.
The S-indexed set (Ls)s∈S is called the set of sort domains. The interpre-
tations of elements of Σ are such that:

• If n = 0 then fA ∈ Ls where s = Ω(f).

• If n > 0, where Ω(f) = (s1, · · · , sn, sn+1), then fA is an interpreted
function as follows:

(43) fA : Ls1 × . . .× Lsn −→ Lsn+1

30 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

We present two examples of sorted Σ-algebras:

(44) Example
An example from computer science, taken from Lalement (1990): consider
the set data-structure. Lalement proposes a set of sorts with only two
elements, S := {element, set}. The signature is Σ = {∅,#}, where ∅ is
a constant of sort set and # is a function of sort functionality Ω(#) =
element, set→ set. The axioms proposed for the set data-structure are:

• a#(a#x) ≈ a#x

• a#(b#x) ≈ b#(a#x)

Where a and b are of sort element, and x is of sort set. # must be
interpreted as the function of insertion of an element in a set.

(45) Example
Consider the class RL-Mod of (not necessarily unital) left R-modules
where R denotes an arbitrary ring. Giving an equational axiomatization
for RL-Mod in standard unsorted universal algebra is complex. Scalars
must be simulated with the help of R-indexed unary functions (fr)r∈A.
But in sorted universal algebra the axiomatization is very clear and easy.
Consider the sorts scalar and vector and the sorted {vector, scalar}-
signature:

(46) Σ = {0vector,+vector,−vector, 0scalar,+scalar,−scalar, ·scalar, ·scalar×vector}

Sort functionalities of Σ and the axiomatization of RL-Mod are:2

0vector : vector
0scalar : scalar
+vector : vector× vector −→ vector

(v, w) 7→ v +vector w
−vector : vector −→ vector

v 7→ −vectorv
+scalar : scalar× scalar −→ scalar

(a, b) 7→ a+scalar b
−scalar : scalar −→ scalar

r 7→ −scalarr
·scalar : scalar× scalar −→ scalar

(r, s) 7→ r ·scalar s
·scalar×vector : scalar× vector −→ scalar

(r, v) 7→ r ·scalar×vector v

〈Lvector,+vector,−vector, 0vector〉 is an abelian group

〈Lscalar,+scalar, ·scalar,−scalar, 0scalar〉 is a ring

r(v +vector w) ≈ rv +vector rw
(r +scalar s)v ≈ rv +vector sw
r(sv) ≈ (r ·scalar s)v

2Usually, r ·scalar×vector v is denoted rv omitting ·scalar×vector, where r is of scalar sort
and v is of vector sort.

2.1. SOME TECHNICAL PRELIMINARIES 31

Note that in the previous example, the operations could have been presented as
sort-polymorphic.

2.1.1 Notion of occurrence of a subterm in an unsorted or
a sorted Σ-term

In what follows we describe the notion of context for an unsorted or sorted term.
The definition we give is almost the same for both unsorted and sorted cases.
Let s be a term (unsorted or sorted) in which occurs a subterm r. In the tree
representation of s we can see what is a occurrence of a subterm in a term: an
address in the tree representation of the term s.3

A simple way to deal with contexts is considering the use of linear occurrences
of variables. Let t be a (sorted or unsorted) term with a linear occurrence of
the variable x. We define t[r] as follows:

(47) t[r]
def
= σr/x(t)

Where σr/x is the term substitution map which replaces x by r. If the term t
is sorted then of course x is also sorted, and therefore r is required to have the
same sort of x, i.e. Ω(x) = Ω(r), where Ω is the associated map to an arbitrary
sorted signature (S,Σ). It is interesting to signal that the following holds:

t[x] = t, for t[x] = σx/x(t) = t

The bracket notation t[r] which signals the distinguished occurrence of the sub-
term r in s presupposes that t has a linear occurrence of a variable which is
replaced by r. Usually, when proving results which use contexts, without loss of
generality we assume that x’s occurrence in t[x] is linear. The notion of context
we have defined is very simple and works correctly for the unsorted/sorted case.

As will shall see in section (2.3), we will define what we call visibility for
extraction of a term. As we have seen, contexts need a metalogical point of
view. Here we will be able to render this point of view at the object level (see
the following sections on displacement algebras (2.2) and visibility for extraction
(2.3)).
More concretely we will have the following duality:

(48)

{
t[r] = σr/x(t[x]) where x′s occurrence is linear
t[x] ≈ t′◦ix where t′ is a term and ◦i is a binary function

As we see in (48), the equation t[x] ≈ t′◦ix gives a term t′ which can be con-
sidered the context of x in t[x] at the object level. Therefore, the substitution
operation σ which is at a metalevel is transformed into a term level operation:
◦ix:

t[x] ≈ t′︸︷︷︸
Object level context

◦ix︸︷︷︸
Operation at object level

3In the literature there are different ways to make explicit the notion of occurrence of a
term in a tree (or even in more complex (data) structures). A quite common way is the use
of addresses through the so called tree domains.

32 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

This ability to deal with the context at the object level (with the help of an
equational theory) will be crucial on our road to discontinuity. The next sections
give the necessary machinery to work with contexts. This material will be
exported to the type-logical setting in the next chapter. In this way, as promised
in the previous chapter we build the tools for managing discontinuity.

2.2 Towards Discontinuity: Displacement Alge-
bras and their sorted equational theory

As we said in the introduction of this chapter our point of departure on the
road to discontinuity is the class of free monoids with a distinguished element
different from the neutral element which we call separator which is in fact a
prime (see Morrill (2002)). We need to define the concept of prime in a free
monoid:

(49) Definition (Prime)

Let M = (L,+, 0, 1) be a free monoid with a distinguished constant 1.
We say that 1 is a prime iff 1 does not have other factors than of itself
and of the 0, i.e.:

For every x, y if 1 = x+y then either x = 1 and y = 0 or x = 0 and y = 1

(50) Definition (Syntactical Algebra)

A syntactical algebra is a free algebra (L,+, 0, 1) of arity (2, 0, 0) such
that (L,+, 0) is a monoid and 1 is a prime. I.e. L is a set, 0 ∈ L and + is
a binary operation on L such that for all s1, s2, s3, s ∈ L,

s1+(s2+s3) = (s1+s2)+s3 associativity
0+s = s = s+0 identity

The distinguished constant 1 is called a separator.

(51) Definition (Sorts of Elements in a Syntactical Algebra)

The sort S(s) of an element s of a syntactical algebra (L,+, 0, 1) is defined
by the homomorphism of monoids S to the additive monoid of naturals
defined thus:

S(1) = 1
S(a) = 0 for a prime a 6= 1

S(s1+s2) = S(s1) + S(s2)

I.e. the sort of a syntactical element is simply the number of separators it con-
tains; we require the separator 1 to be a prime and the syntactical algebra to
be free in order to ensure that this induction is well-defined.

By using the concept of syntactical algebra, we now define one of the main
classes of (sorted) algebras which will be used in this thesis, the class of standard

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 33

displacement algebras, in notation FreeDisp. Let us consider the ω-sorted sig-
nature of displacement algebras ΣD = (⊕, {⊗i+1}i∈ω, 0, 1) of sort functionality
({i, j −→ i + j}i,j∈ω, {k + 1, l −→ k + l}k,l∈ω, 0, 1). It must be observed that
the operations ⊕ and {⊗i+1}i∈ω are sort-polymorphic.

The ω-sorted set of variables for the algebra of ΣD-terms is the following:

X =
⋃
i∈ω

Xi, where Xi is defined for every i as follows:

Xi = (xij)j ∈ω

As can be observed, for any i ∈ ω there is an infinite set of variables of sort i
Xi. For any i ∈ ω, Xi is denumerable, although it could have another cardinal.
For the necessities of this thesis, the denumerable sets Xi, i ∈ ω are sufficient.

(52) Definition (Sort Domains)

Where (L,+, 0, 1) is a syntactical algebra, the sort domains Li of sort
i of generalized discontinuous Lambek calculus are defined as follows:

Li = {s|S(s) = i}, i ≥ 0

The ΣD-operations are defined as follows:

(53) Definition (Displacement Algebra)

The displacement algebra A with ω-sorted signature ΣD defined by a syn-
tactical algebra (L,+, 0, 1) is the following:

({Li}i∈ω,+, {×k+1}k∈ω, 0, 1)

where + and {×k}k∈ω correspond respectively to the formal term con-
structors of the signature ΣD, ⊕ and (⊗k+1)k∈ω. The reader has to notice
that we write + and ×i, i > 0 than rather the more rigorous notation
⊕A and ⊗Ai . The constants 0 and 1 are simply written in the algebra 0
and 1 instead of 0A and 1A. The interpretation of the ΣD-terms in the
displacement algebra is as follows:

operation is such that

+ : Li × Lj → Li+j as in the syntactical algebra

×k : Li+1 × Lj → Li+j
×k(s, t) is the result of replacing the k-th
separator in s by t

0 : L0
0 is the neutral element of the correspond-
ing syntactical algebra

1 : L1
1 is the prime defined in the corresponding
syntactical algebra

The class of displacement algebras will be denoted FreeDisp. Algebras of
FreeDisp are also called standard displacement algebras. This is to be con-
trasted with general displacement algebras which we will present in a few lines.
An important property which holds of FreeDisp is the separation property:

34 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

(54)


(1) ∀x ∈ Li with i > 0, there exists 〈a0, · · · , ai〉 ∈ Li+1

0

such that x = a0 + 1 + a1 + 1 + · · ·+ ai−1 + 1 + ai

(2) If a0 + 1 + a1 + 1 + · · ·+ ai−1 + 1 + ai =
b0 + 1 + b1 + 1 + · · ·+ bi−1 + 1 + bi then ∀i ai = bi

(Separation property)

The separation property will be extensively used in many results of this chapter.

(55) Definition (Standard Displacement Models)

Let A = (M,+, {×i+1}i∈ω, 0, 1) be a standard displacement algebra. Let
v be a mapping, called a valuation, between the set of variables X to the
set M ; then:

0
v7→ 0

1
v7→ 1

xij
v7→ v(xij) ∈ Li for every i, j ∈ ω

t ⊕ s
v7→ v(t) + v(s)

t⊗i s
v7→ v(t)×i v(s)

Here xij ∈ X and t, s ∈ TΣD
[X]. (A, v) is called a ΣD-model.

As it can be seen, the mapping v is a homomorphism between ΣD algebras,
namely the (sorted) term algebra TΣD

[X] and the displacement algebra A.

(56) Definition (Displacement Model of an Equation)

Let (A, v) be a displacement model:

(A, v) |= t ≈ s iff v(t) = v(s)

We say that the equation t ≈ s is satisfied in the model (A, v).

(57) Definition (Satisfaction of an equation in FreeDisp)

Let t, s ∈ TΣD
[X]. We say that:

FreeDisp |= t ≈ s iff for every (A, v) with A ∈ FreeDisp, (A, v) |= t ≈ s

We propose two ω-sorted sets of equations EqD and EqD2 (see figures 2.2
and 2.3). We consider the extensions of EqD and EqD2 which are the smallest
congruence closed by substitutions which contain respectively EqD and EqD2

(see Lalement (1990)). We denote these extensions with the same names, i.e.
EqD and EqD2. As we know (op. cit.), these types of sets of equations are called
equational theories which are also characterized as Eq(C) for some class C of
ΣD-algebras, where the Eq(·) operator applied to a class of algebras C denotes
the set of valid equations in C. The converse operator of Eq(·) is Mod(·).
If E is a set of ΣD-equations, then Mod(C) denotes the class of ΣD-algebras
which are models of the equations of E . We denote the class of Mod(EqD)
as Disp, which will be called the class of general displacement algebras. At

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 35

the end of the chapter we will see that FreeDisp (Disp by exhibiting two
Disp algebras which are not FreeDisp algebras. It is important to remark
that the separation property which we presented before does not hold of all
displacement algebras of Disp. We will see this at the end of the chapter.
As we will prove later, EqD and EqD2 are syntactically equivalent, whence
Mod(EqD2) is equal to Mod(EqD), i.e. to Disp. We can also then identify
EqD and EqD2 for they contain the same equations. An important result of
this chapter is that EqD = Eq(FreeDisp).

It is time to show the inference system of (sorted) equational logic. Metaterms
appearing in Figure 2.1 range over a set of Σ-terms TΣ[X] for a given unsorted
or sorted signature Σ. Semantic inferences are denoted as usual with |=. Deriva-
tions in equational logic w.r.t. a system of equations E are denoted by `E .

R
M ≈M

M ≈ N
S

N ≈M

M ≈M ′ M ′ ≈M ′′
T

M ≈M ′′

M1 ≈ N1 · · · Mn ≈ Nn, n > 0
Cong

f(M1, · · · ,Mn) = f(N1, · · · , Nn)

M ≈ N
Subst

σ(M) ≈ σ(N)

Figure 2.1: Inference system for equational logic

A few words on notation. Arbitrary variables of X will usually be denoted
x, y instead of xik for i, k ∈ ω and we will generally drop in formal derivations
of equations the reference to the equational theories EqD or EqD2. The reader
has to keep in mind that equations appearing in Figure 2.2 and in Figure 2.3 are
sorted. The following technical definition is crucial for our work in this chapter.4

Definition 1 Given the term (t1 ⊗i t2)⊗j t3 with ti ∈ TΣD
[X] with i = 1, 2, 3,

we say that:

(P1) t2 ≺t1 t3 iff i+ S(t2)− 1 < j.

(P2) t3 ≺t1 t2 iff j < i.

(O) t2 Gt1 t3 iff i ≤ j ≤ i+ S(t2)− 1.

Observe that in a term like (t1 ⊗i t2) ⊗j t3, if (P1) or (P2) hold, then (O)
does not apply. Conversely, if (O) is applicable, neither (P1) nor (P2) hold. If
t2 ≺t1 t3, we say that t2 and t3 permute in t1 (similarly in the case of (P3)).
Otherwise, if (O) holds, we say that t2 wraps t3 in t1.

4The intuition of this definition will be apparent in the following sections.

36 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

Continuous associativity

x⊕ (y ⊕ z) ≈ (x⊕ y)⊕ z (Assc)

Discontinuous associativity

x⊗i (y ⊗j z) ≈ (x⊗i y)⊗i+j−1 z with y Gx z (Asscd1)
(x⊗i y)⊗j z ≈ x⊗i (y ⊗j−i+1 z) (Asscd2)

Mixed permutation 1 case y ≺x z

(x⊗i y)⊗j z ≈ (x⊗j−S(y)+1 z)⊗i y (MixPerm1)
(x⊗i z)⊗j y ≈ (x⊗j y)⊗i+S(y)−1 z (MixPerm1)

Mixed permutation 2 case z ≺x y

(x⊗i y)⊗j z ≈ (x⊗j z)⊗i+S(z)−1 y (MixPerm2)
(x⊗i z)⊗j y ≈ (x⊗j−S(z)+1 y)⊗i z (MixPerm2)

SplitWrap

x⊕ y ≈ (x+ 1)⊗S(x)+1 y
x⊕ y ≈ (1 + y)⊗1 x

Continuous unit and discontinuous unit

0⊕ x ≈ x ≈ x⊕ 0 and 1⊗1 x ≈ x ≈ x⊗i 1

Figure 2.2: EqD

A simple examination of the operations of displacement algebras gives that
both EqD and EqD2 hold of in the class FreeDisp.

(58) Theorem (Soundness of EqD and EqD2 w.r.t. FreeDisp)

Let t, s ∈ TΣD
[X]. We have

`EqD
t ≈ s then FreeDisp |= t ≈ s

`EqD2
t ≈ s then FreeDisp |= t ≈ s

Proof. By a straightforward inspection of all the equations of EqD and EqD2.
�

Now we see that both EqD and EqD2 are syntactically equivalent, i.e.:

(59) Theorem (Equivalence between EqD and EqD2)

Let t ≈ s be an equation in the signature of ΣD. Then:

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 37

Continuous associativity

x⊕ (y ⊕ z) ≈ (x⊕ y)⊕ z (Assc)

Discontinuous associativity

x⊗i (y ⊗j z) ≈ (x⊗i y)⊗i+j−1 z with y Gx z (Asscd1)
(x⊗i y)⊗j z ≈ x⊗i (y ⊗j−i+1 z) (Asscd2)

Mixed permutation 1 case y ≺x z

(x⊗i y)⊗j z ≈ (x⊗j−S(y) +1 z)⊗i y (MixPerm1)
(x⊗i z)⊗j y ≈ (x⊗j y)⊗i+S(y)−1 z (MixPerm1)

Mixed permutation 2 case z ≺x y

(x⊗i y)⊗j z ≈ (x⊗j z)⊗i+S(z)−1 y (MixPerm2)
(x⊗i z)⊗j y ≈ (x⊗j−S(z)+1 y)⊗i z (MixPerm2)

Mixed associativity

(x⊕ y)⊗i z ≈ (x⊗i y)⊕ z iff 1 ≤ i ≤ S(x)
(x⊕ y)⊗i z ≈ x⊕ (y ⊗i−S(x) z) iff x+ 1 ≤ i ≤ S(x) + S(y)

Continuous unit and discontinuous unit

0⊕ x ≈ x ≈ x⊕ 0 and 1⊗1 x ≈ x ≈ x⊗i 1

Figure 2.3: EqD2

`EqD
t ≈ s iff `EqD2

t ≈ s

Proof. All the axioms of both theories are equal except Split-Wrap and Mixed Associativity.

• If part:

We want to prove that the Split-Wrap is derivable in EqD2, i.e.:

`EqD2
x⊕ y ≈ (x⊕ 1)⊗S(x)+1 y

`EqD2
x⊕ y ≈ (1⊕ y)⊗1 x

We have the following `EqD2
derivations:

x⊕ y ≈ x⊕ (1⊗1 y) by Discontinuous Unit
≈ (x⊕ 1)⊗S(x)+1 y by Mixed Associativity

x⊕ y ≈ (1⊗1 x)⊕ y by Discontinuous Unit
≈ (1⊕ y)⊗1 x by Mixed Associativity

38 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

We have proved that the Split-Wrap rule is derivable in EqD2.

• Only if:

We want to prove that the Mixed Associativity rule is derivable in EqD:

`EqD
(x⊕ y)⊗i z ≈ (x⊗i z)⊕ y if i ≤ S(x)

`EqD
(x⊕ y)⊗i z ≈ x⊕ (y ⊗i−S(x) z) if i > S(x)

We consider two cases:

1. i ≤ S(x)

We have the following `EqD
derivation:

(x⊕ y)⊗i z ≈ ((1⊕ y)⊗1 x)⊗i z by Split Wrap
≈ (1⊕ y)⊗1 (x⊗i z) by Mixed Associativity for x G1⊕y z
≈ (x⊗i z)⊕ y by Split-Wrap

Here x G1⊕y z because x G1⊕y z is equivalent to 1 ≤ i ≤ 1+S(x)−1 =
S(x), which is the case.

2. S(x) < i ≤ S(x) + S(y)

(x⊕ y)⊗i z ≈ ((x⊕ 1)⊗S(x)+1 y)⊗i z by Split Wrap
≈ (x⊕ 1)⊗S(x)+1 (y ⊗i−S(x)6−1+61 z) by Mixed Associativity for x G1⊕y z
≈ (x⊕ 1)⊗S(x)+1 (y ⊗i−S(x) z) by rewriting the above equation
≈ x⊕ (y ⊗i−S(x) z) by Split-Wrap

Here x G1⊕y z holds for it is equivalent to S(x) + 1 ≤ i ≤ S(x) + 1 +
S(y)− 1 = S(x) + S(y). The proof is complete.

�

2.2.1 A useful mapping: V·W
Let VD = (akij)i,j∈ω, 0≤k≤i be an infinite alphabet. Two new useful notations
are introduced: −→aijn and −→aijnm for n ≥ 0 and 0 ≤ k ≤ i. The first one is the
following:

For every n ≥ 0, −→aijn =

{
a0
ij if n = 0
−→aijn−1 + 1 + anij if 0 < n ≤ i

For a given (akij)0≤k≤i we define −→aij as follows:
−→a0j = a0j if i = 0

−→aij =
i−1∑
k=0

(akij + 1) + aiij if i > 0

Notice that in fact we have that −→aij corresponds to −→aij i. For example −→a32, −→a00

and −→a11 are respectively:

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 39


−→a32 = a0

32 + 1 + a1
32 + 1 + a2

32 + 1 + a3
32−→a00 = a00

−→a11 = a0
11 + 1 + a1

11

We now introduce the second notation we mentioned above, i.e. −→aijnm, with
0 ≤ m ≤ n ≤ i. We have that for every n,m with 0 ≤ m ≤ n ≤ i:

−→aijnm =

{
anij if n = m
−→aijn−1

m + 1 + anij if 0 ≤ m < n ≤ i

With this notation −→aij can also be written as −→aij i0.
We recall the definition of the ω-sorted graduated set X of variables of

arbitrary sort:

X =
⋃
i∈ω

Xi, where Xi is defined for every i as follows:

Xi = (xij)j ∈ω

We define the following ΣD-homomorphism from TΣD [X] to the standard dis-
placement algebra defined by the syntactical algebra 〈(VD ∪ {1})∗,+,Λ, 1〉 (we
call this algebra AVD):

V·W : TΣD [X] −→ AVD
0 7→ Λ
1 7→ 1

xij 7→ −→aij i

V·W is then defined recursively as follows:

t⊕ s V·W7→ VtW + VsW
t⊗i s 7→ VtW×i VsW

The mapping V·W is a ΣD-homomorphism between the term algebra TΣD
[X] and

a special displacement algebra of freeDisp. It follows then that by soundness:

(60) Lemma
if `EqD

t ≈ s or `EqD2
t ≈ s then:

VtW = VsW

Let us see an example:

(61) Example
Vx05W = a05

Vx10W = a0
10 + 1 + a1

10

Vx21W = a0
21 + 1 + a1

21 + 1 + a2
21

Vx21 ⊗2 0W = a0
21 + 1 + a1

21 + a2
21

Observe that Im(V·W) is a general displacement algebra.

40 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

2.2.2 A normal form for TΣD
[X] terms in EqD

We now define a relation � at the level of TΣD
[X] which will be crucial for the

main results of this chapter.

(62) R1 Unit elimination: if t = 0⊕ s or t = s⊕ 0 transform t to s: t� s. If
t = 1⊗1 s or t = s⊗i 1 transform t to s: t� s.

R2 If t = s⊕ k then if s = s1 ⊕ s2, then t� s1 ⊕ (s2 ⊕ k).

R3 If t = s⊗i k. If s = s1 ⊕ s2, then t� (s1 ⊗i k)⊕ s2, if 1 ≤ i ≤ S(s1),
or t� s1 ⊕ (s2 ⊗i−s1 k), if S(s1) < i.

R4 If t = (s1 ⊗i s2) ⊗j k, and in case that k ≺s1 s2, which holds iff
j < S(k), then t� (s1 ⊗i k)⊗k+S(s2)−1 s2.

R5 If t = (s1 ⊗i s2) ⊗j k, and in case that k Gs1 s2, which holds iff
i ≤ j ≤ i+ S(s2)− 1, then t� s1 ⊗i (s2 ⊗j−i+1 k)

�∗ is defined to be the reflexive and transitive closure of � . The reductions
R1-R5 for � are motivated by the following facts:

(63) • R1 is motivated by the rules of the continuous and discontinuous
units:

0⊕ x ≈ x x⊕ 0 ≈ x
1⊗1 x ≈ x x⊗i 1 ≈ x, 1 ≤ i ≤ S(x)

• R2 is motivated by continuous associativity.

• R3 is motivated by Eq2
D displacement axiom mixed associativity

MixAssc:5

(s1 ⊕ s2)⊗i k ≈ (s1 ⊗i k)⊕ s2 if i ≤ S(s1)
(s1 ⊕ s2)⊗i k ≈ s1 ⊕ (s2 ⊗i−S(s1) k) if i > S(s1)

• R4 is motivated by the mixed permutation rule MixPerm.

• R5 is motivated by the discontinuous associativity rule.

(64) Definition (Normal form for TΣD
[X] terms)

Given a term t ∈ TD[X], we say that t is in EqD normal form iff no
reduction from the reductions R1-R5 can be applied to it.

In the next section we take a look at some properties of TΣD
[X] terms in

normal form. We will usually write a term in normal form instead of the more
formal term in EqD normal form.

5As we saw before EqD and EqD2 are equivalent: MixAssc is a derived rule in EqD (cf.
the previous section).

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 41

2.2.3 Properties of terms in normal form

We present some properties of terms in normal form. In the following lemma t
denotes an arbitrary term in normal form.

(65) Lemma (Properties of Terms in Normal Form)

The following properties hold:

i) 0 and 1 are in normal form.

ii) Every subterm of t is in normal form.

iii) t is unit-free, i.e., no subterm of t can be 0⊕ s, s⊕ 0, 1⊗1 s or s⊗i 1
(1 ≤ i ≤ S(s)).

iv) If the main constructor of t is a discontinuous product, say ⊗i for
some i, then there exists a variable xnj ∈ X, which we call the foot
with sort S(xnj) = n > 0, and terms ti, i = 1, · · · ,m in normal form
such that:

t = (· · · (xnj ⊗i1 t1)⊗i2 t2 · · ·)⊗im tm

Moreover the terms tk’s permute from left to right in t meaning that:

(66)

t1 ≺x t2
t2 ≺x×i1 t1 t3, if k ≥ 3
...
tk−1 ≺(···(x×i1 t1)···×ik−2

tk−2) tk, if k ≥ 3

If k = 1 then t = x ⊗i1 t1 and there is no constraint of the kind of
(66). If k = 2 then in (66) we have only the first line, i.e.:

t1 ≺x t2

v) 1 can only appear in ⊕ contexts, e.g. t[r⊕ 1], whereas 0 can only ap-
pear in wrapping contexts, e.g. t[s⊗i 0], for i > 0, for some subterms
r and s.

vi) Terms in normal form are ⊕ right-associative. If t = r⊕s then either
r = xij (for some xij ∈ X) or 1, or r = l⊗ik, for terms r, k and index
i. An interesting consequence is that if t = r⊕s, then l(Vr⊕sW) ≥ 2,
where for any string α, l(α) is the length of α.

vii) If s is a term in normal form such that VsW = 0, then s = 0.

viii) If s is a term in normal form such that VsW = 1 or VsW = −→aij , then
either s = 1 or s = xij for a given variable xij ∈ X.

ix) If t is not of the form r ⊕ s for some terms r and s, then VtW is
prefix-free, i.e. no term s in normal form is such that VtW = VsW + α
with α different from 0.

x) No reduction step increases the complexity of a term.6

Proof.

6Contrast this with the simply typed lambda calculus where a β reduction of a term M ,
M �β M

′, can increase the complexity of the original term, i.e., |M ′| > |M |.

42 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

i), ii), iii) and v) are obvious. We prove iv).

iv) t cannot have the form:

t = (r ⊕ s)⊗i t2, for some i > 0

because in that case t would not be in normal form for otherwise step R3
would apply obtaining:

t ≈ (r ⊗i k)⊕ s if i ≤ S(t) or t ≈ r ⊕ (s⊗i−S(s) k) if i > S(t)

By the same reasoning t must be equal to (t11⊗i2 t12)⊗i t2 for some terms
t11, t12 and index i2. Repeating this process (which is of course finite) we
have that t is what we call a product term, i.e. t has the form:

t = (· · · (t′ ⊗i1 t1)⊗2 · · ·)⊗im tm for some indexes ik,m and terms t′, tik .

Now, since t is in normal form no subterm tik can wrap its next term tik+1

for in that case step R4 would apply. By the same token we cannot have
a precedence inequality such as the following:

tk ≺(···(x×i1 t1)···)×ik−2
tk−2

tk−1, if k ≥ 3

because in that case step R4 would apply again. Finally, t′ cannot be a
discontinuous product (by assumption) nor a term of the form r ⊕ s for
some terms r and s (in that case R3 would apply!). Hence t′ is equal
either to a variable xnj for some n, j with n > 0, or to 1. The latter case
is not possible because in that case t would not be unit-free. It follows
that t′ = xnj . We are done.

vi) Suppose t = r ⊕ s with r = r1 ⊕ r2. This is not possible since R2 would
apply contradicting the fact that t is in normal form. Hence, r can be
either 1 or a variable or a product term r1 ⊗i r2 for some i and terms
r1, r2.

Clearly l(Vr1W) ≥ 1 as well as l(Vr2W) ≥ 1. Hence l(Vr1 ⊕ r2W) ≥ 2.

vii) We have that l(VtW) = 0. Suppose:

– If t = 1 or t = x for some x ∈ X then l(VtW) 6= 0.

– If t = r ⊕ s for some terms r, s.then by vi) we would have that
l(VtW) 6= 0.

– If t = r ⊕i s for some terms r, s and index i, then again l(VtW) 6= 0
for by iv) t has a foot xij ∈ X for some i, j S(x) = i > 0. In this
case l(VtW) would contain elements of akij .

In either case the length of VtW would be different from 0. We are
done.

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 43

viii) • Suppose VtW = 1.

Obviously t cannot be 0. Suppose t were a variable x0j ∈ X for some
j ∈ ω. We have that l(Vx0jW) = 1 but VtW should be equal to Vx0jW,
i.e. we would have 1 = a0j , which is impossible. If t were a variable x
of sort greater than 0, we would have that l(VxW) > 1 contradicting that
l(VtW) = 1.

Now, suppose t = r ⊕ s for some terms r and s. By vi) r should be equal
to 1. But since s is not 0 (for in that case t would not be in normal form),
it follows that l(VsW) 6= 0, and hence l(VtW) > 1. Contradiction.

Finally, if t were a product term (see iv)) t’s foot would contribute to VtW
with at least two elements ak1ij and ak2ij . Again in this case, l(VtW) would
be greater than 1. Contradiction.

It follows that t must be equal to 1.

• Suppose VtW = −→aij for some i, j ∈ ω.

It is obvious that t cannot be 1 nor 0.

If t = r ⊕ s for some terms r and s, then VtW) could not be equal to −→aij .

If t = r⊗i s for some terms r, s and index i, then again VtW) could not be
equal to −→aij .

Hence t is necessarily equal to xij .

ix) If t is equal to 0, 1, or x0j ∈ X (S(x0j) = 0), then t is obviously prefix-free.

Suppose t = r ⊗i s for some terms r, s and index i. By iv) t has a foot
xnj ∈ X for some indexes n, j such that S(xnj) = n > 0. Applying the
map V·W to t we have that:

VtW = a0
nj + α1 + a0

nj + · · ·+ an−1
nj + αn + annj

Let s be such that VtW = VsW + β with β 6= Λ. We prove that this is
impossible by induction on the structure of terms s in normal form. Cases
where s = 0 or s = 1 or s = x0l are obvious. Suppose s = xkl. By
comparing VsW and VtW we would have forcefully that k = n and l = j,
i.e. xnj = xkl. Clearly VxnjW cannot be a prefix of VtW.

Case: s = s1 ⊕ s2. If s1 = 1 or s1 = xlj or s is a product term then again
VsW cannot be a prefix of VtW.

Finally, for the case where s is a product term, forcefully the foot of s
should coincide with t’s foot. Like before clearly VsW cannot be a prefix
of VtW. This ends the recursion on s.

Summing up, VtW is prefix-free. We are done.

x) It is obvious that no reduction step increases the complexity of a term.

�

44 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

2.2.4 On positions of terms in a product term which per-
mute from left to right

Let x be an arbitrary variable of sort strictly positive. Then, x = xij for some
i, j ∈ ω with i = S(x). We recall that product terms in normal permute also
from left to right. Consider the term t:

t = (· · · ((x⊗i1 t1)⊗i2 t2) · · · ⊗ik−1
tk−1)⊗ik tk

Suppose t permutes from left to right:

(67)

t1 ≺x t2
t2 ≺x⊗i1 t1 t3, if k ≥ 3
...
tk−1 ≺(···(x⊗i1 t1)···⊗ik−2

tk−2) tk, if k ≥ 3

We define now the following function from the finite set of terms {t1, · · · , tk} to
ω:

post
x : {t1, · · · , tk} −→ ω

t1 7→ i1
tl 7→ il − S(t1)− · · · − S(tl−1) + l − 1 if 1 < l ≤ k

(68) Remark
The reader has to keep in mind that this function post

x only applies to
product terms which permute from left to right.

In the following we will give the intuitive meaning of the function post
x which

we call position. post
x(tl) (for 1 ≤ l ≤ k) is the position of the term tl relatively

to the foot7 x of the term t. This function has notable properties:

(69) Theorem (Properties of Positions of Terms)

The following two properties hold:

i) Strict monotonicity:

For every l, l′ ∈ {1, · · · , k} such that l < l′, post
x(tl) < post

x(tl′)

ii) The range of post
x is contained in the set:

{1, · · · , S(x)}

7Recall that in a product term (· · · (x⊗i1 t1) · · · ⊗in−1 tn−1)⊗in tn x is called the foot of
the product term.

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 45

Proof.

i) Strict Monotonicity: If k = 1 there is nothing to prove. Suppose k = 2.
Hence:

post
x(t1) < post

x(t2)

Since the above inequation is equivalent to:

i1 < i2 − S(t1) + 1
iff

i1 + S(t1)− 1 < i2
iff

t1 ≺x t2

The last line is true because t1 and t2 permute from left to right in t.

Suppose then that k ≥ 3. We prove that for every l such that 1 < l ≤ k:

post
x(tl−1) < post

x(tl)

By the definition of post
x we have that:

post
x(tl−1) = il−1 − S(t1)− · · · − S(tl−2) + l − 1

post
x(tl) = il − S(t1)− · · · − S(tl−1) + l

Hence:

il−1 − S(t1)− · · · − S(tl−2) + l − 1 < il − S(t1)− · · · − S(tl−1) + l
iff

il−1 − 1 < il − S(tl−1)
iff

il−1 + S(tl−1)− 1 < il
iff

tl−1 ≺(···((x⊗i1 t1)⊗i2 t2)···)⊗il−2
tl−2

tl(?)

Where the last line (?) is true by hypotesis, i.e., tl−1 and tl permute from
left to right. Hence post

x(tl−1) < post
x(tl). We have therefore that:

(70) post
x(t1) < post

x(t2) < · · · < post
x(tk)

Hence, for every l, l′ ∈ {1, · · · , k} such that l < l′ we have that:

post
x(tl) < post

x(tl′)

This proves i).

ii) By definition, since post
x(t1) = i1 ≥ 1 and the property of strict mono-

tonicity property (70), it follows that for every l:

1 ≤ post
x(tl)

This proves the first inequality. Now, for every l we have that:

1 ≤ il ≤ S((· · · (x⊗i1 t1) · · ·)⊗il−1
tl−1) = S(x)+S(t1)+· · ·+S(tl−1)−l+1

46 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

Since we recall that the term t has the form:

((· · · (x⊗i1 t1) · · ·)⊗il−1
tl−1)⊗il tl

il must therefore satisfy:

1 ≤ il ≤ S(x) + S(t1) + · · ·+ S(tl−1)− l + 1
iff

il − S(t1)− · · · − S(tl−1) + l − 1 ≤ S(x)

And the left hand side of the above inequality is:

post
x(tl)

I.e, for any l such that 1 ≤ l ≤ k:

post
x(tl) ≤ S(x)

It follows that the range of post
x is contained in {1, · · · , S(x)}. This proves

ii).

�

(71) Corollary (Number of Terms in a Product Term which Permutes from
Left to Right)

Let t be a product term which permutes from left to right:

t = (· · · ((x⊗i1 t1)⊗i2 t2) · · · ⊗ik−1
tk−1)⊗ik tk

It follows that the number of terms t1, · · · , tk is bounded by the sort of
the foot x of t, i.e.:

1 ≤ k ≤ S(x)

Proof. Suppose that k > S(x). By lemma (71) post
x({t1, · · · , tk}) forms a

strictly increasing sequence of natural numbers contained in the natural num-
ber interval [1, S(x)]. We have therefore a strictly increasing sequence of natural
numbers of length k. The longest chain in this interval must be bounded above
by S(x). Contradiction because post

x({t1, · · · , tk}) forms a chain strictly greater
than S(x). �

It follows that if we have a product term t with foot x and l wrapped terms in
the product term such that l > S(x), then t cannot be in normal form.

What is the intuition behind the function post
x? We will prove that if we

have a term t = (· · · ((x⊗i1 t1)⊗i2 t2) · · · ⊗ik−1
tk−1)⊗ik tk, then applying the

map V·W to t there holds the following property:

VtW = a0
ij + 1 + a1

ij+

a
postx(t1)−1
ij + Vt1W + a

postx(t1)
ij +

· · ·+ a
postx(tl)−1
ij + VtlW + a

postx(tl)
ij + · · ·+

· · ·+ a
postx(tk)−1
ij + VtkW + a

postx(tk)
ij + · · ·+ aiij

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 47

where x = xij with i = S(x). We see then that the function post
x gives the posi-

tion of the string VtlW relative to (akij)k=0,···,i. Where α, β ∈ ((akij)i,j∈ω and 0≤k≤i∪
{1})∗, we will say that VtlW occurs in VtW near arij when:

VtW = α+ ar−1
ij + VtlW + arij + β

We note that if we apply an axiom of EqD to the term t, the occurrence of VtlW
does not change for we have that:

If t ≈ t′ then VtW = Vt′W

Let us prove formally the intuition behind post
x we talked about above. We

have the following lemma:

(72) Theorem (Intuitive Meaning of the Function post
x)

Let t = (· · · ((x⊗i1 t1)⊗i2 t2) · · ·⊗ik−1
tk−1)x⊗ik tk. We suppose t permutes

from left to right. It follows that for every 1 ≤ l ≤ k, VtlW occurs in t near

a
posx(tl)
ij , i.e.:

VtW = α+ a
posx(tl)−1
ij + VtlW + a

posx(tl)
ij + β (?)

where as before, α, β ∈ V ∗D = ((akij)i,j∈ω and 0≤k≤i ∪ {1})
∗.

Proof. We suppose that x occurs linearly in t. The result generalizes to
nonlinear occurrences of x using the concept of distinguished occurrence of x.

We prove the result by induction on the number k of terms t1, · · · , tk (with
k ≥ 1).

• Case k = 1: In this case we have that posx(t1) = i1.

Then by definition of the map V·W, applying V·W to t = x ⊗i1 t1 is the
result of replacing the i1-th occurrence of 1 in VxW. We have hence that
post

x(t1) = i1 occurs in t near post
x(t1). This proves the case k = 1.

• Case k = 2: In this case we have that:

t = (x⊗i1 t1)⊗i2 t2

Since t is in normal form, we have that:

t1 ≺x t2

Hence t1 and t2 permute in t. So we have that the following equation
holds:

(x⊗i1 t1)⊗i2 t2 ≈ (x⊗i2−S(t1)+1 t2)⊗i1 t1 =: t′

x⊗i2−S(t1)+1 t2 is in normal form and the number of terms wrapped in t
is equal to 1. We can then apply the induction hypothesis (i.h.) whence:

48 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

t2 occurs near pos
x⊗i2−S(t1)+1
x (t2) = i2−S(t1)+1 in (x⊗i2−S(t1)+1t2)⊗i1t1

t2 occurs also near i2 − S(t1) + 1 in t′. Since VtW = Vt′W (because t ≈ t′),
it follows that t2 occurs near i2 − S(t1) + 1 in t. Finally we realize that
post

x(t2) is equal to i2 − S(t1) + 1. Therefore t2 occurs near post
x(t2) in

t. This proves the case k = 2.

• Case k ≥ 3: We have that:

t = ((· · · ((x⊗i1 t1)x⊗i2 t2) · · · ⊗ik−2
tk−2)⊗ik−1

tk−1)⊗ik tk

Since t is in normal form it follows that:

(73) tk−1 ≺(···(x⊗i1 t1)···)⊗ik−2
tk−2

tk

We can apply Mixed Permutation to the term t (because t is in normal
form!) obtaining:

t ≈ ((· · · ((x⊗i1 t1)x⊗i2 t2) · · ·⊗ik−2
tk−2))⊗ik−S(tk−1+1 tk)⊗ik−1

tk−1 =: t′

The term:

A := (· · · ((x⊗i1 t1)x⊗i2 t2) · · · ⊗ik−2
tk−2)⊗ik−S(tk−1)+1 tk

has k − 1 wrapped terms and moreover is in normal form since:

ik−2 + S(tk−2)− 1 < ik−1 < il − S(tk−1) + 1

We can then apply i.h. to the term A. And we know that tk occurs near
posA

x (tk) in the term A: we calculate posA
x (tk). Then:

(74)
posA

x (tk) = (ik − S(tk−1) + 1)− S(t1)− · · · − S(tk2) + k − 2 =
ik − S(t1)− · · · − S(tk−2)− S(tk−1) + k − 1

tk occurs near posA
x (tk) in A and hence it occurs near posA

x (tk) in t′ as
well as in t. We see that posA

x (tk) is precisely post
x(tk). It follows that

tk occurs near post
x(tk) in t. This completes the induction step. We are

done.

�

(75) Lemma
Let t = (· · · ((x⊗i1 t1)⊗i2 t2) · · ·)⊗in tn with n ≥ 1. t has a normal form.

Proof. We prove by induction on n that by applying a finite number of times
the reducing step R4 to t we get:

t ≈ (· · · (x⊗j1 s1)⊗j2 · · · sm−1)⊗jm sm for m ≥ 1 and for some j1, · · · , jk ∈ ω and
terms sjk

Such that:

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 49

(76)

s1 ≺x s2

s2 ≺x×i1s1 s3

...
sk−1 ≺(···(x⊗i1s1)···)⊗ik−2

sk−2
sk

(?)

The case n = 1 is obvious. The case n = 2 is also trivial since either mixed
permutation or mixed associativity apply.

Suppose n ≥ 3. By induction hypothesis (i.h.) we have that:

(· · · (x⊗j1 t1)⊗j2 · · · tn−2)⊗jn−1
tn−1 ≈ (· · · (x⊗j1 s1)⊗j2 · · ·)⊗jm sm

In such a way that (?) applies to the right hand side of the above equation. We
now have the term:

t ≈ ((· · · (x⊗j1 s1)⊗j2 · · ·)⊗jm−1 sm)⊗in tn
To the above equation we apply the reducing step R4 (permuting tn to the left)
as many times as possible obtaining the two following possible results (where
the term displaced to the left is underbraced for more clarity):


((· · · (x⊗j1 s1)⊗j2 · · ·)⊗jl sl)⊗in tn︸ ︷︷ ︸⊗jl+1+S(tn)−1sl+1 ⊗jl+2+S(tn)−1 · · ·)⊗jm+S(tn)−1 sm (1)

Or
((· · · (x⊗j1 s1)⊗j2 · · ·)⊗jl (sl⊗jl+in−1tn︸ ︷︷ ︸)⊗jl+1+S(tn)−1 sl+1 ⊗jl+2+S(tn)−1 · · ·)⊗jm+S(tn)−1 sm (2)

We have to check that both (1) and (2) expressions permute from left to right.
In the case of (1), by i.h. si with i = 1, · · · , l permute from left to right. We
have that by assumption (tn has been displaced to the left as many times as
possible):

sl ≺(···(x⊗j1s1)⊗j2 ···)⊗jlsl−1sl−1
tn

In the case of:

tn ≺(···(x⊗j1s1)⊗j2 ···)⊗jlsl sl+1

The above inequality holds for:

in + S(tn)− 1 < jl+1 + S(tn)− 1 which is equivalent to in < jl+1

And in < jl+1 is true because it is the condition for tn to permute to the left.
Finally the terms sl+k precede sl+k+1 in (1) because

jl+k + S(tn)− 1 + S(sjl+k)− 1 < jl+k+1 + S(tn)− 1

which is equivalent to jl+k + S(sjl+k)− 1 < jl+k+1 which is true by i.h..
In the case of (2), the term precedence inequalities which have to be checked
are the same as (1) but with the term precedence inequality below:

sl ⊗jl+in−1 tn ≺(···(x⊗j1s1)⊗j2 ···)⊗jl−1
sl+1

50 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

The above precedence inequation holds since:

jl + S(sl) + S(tn)− 1− 1 < jl+1 + S(tn)− 1

which is equivalent by i.h. to the true inequality:

jl + S(sl)− 1 < jl+1

The proof is complete. �

(77) Lemma (Product Terms in Normal Form)

Consider the following two product terms in normal form:

t = (· · · ((x⊗i1 t1)⊗i2 t2) · · ·)⊗in tn
t′ = (· · · ((x′ ⊗i′1 t

′
1)⊗i′2 t

′
2) · · ·)⊗i′m t′m

This means that t and t′ permute from left to right, that ti (1 ≤ i ≤ n)
and t′j (1 ≤ j ≤ m) are in normal form, and finally, that neither ti nor t′j
is equal to 1. Suppose that VtW = Vt′W. It follows that: x = x′

n = m
ik = i′k for 1 ≤ k ≤ n

Proof. We suppose without loss of generality that the feet x and x′ occur
linearly respectively in the terms t and t′. We have that there exist j, j′ such
that VxW = −−−−→aS(x),j and Vx′W = −−−−−→aS(x′),j′ . We ease the notation and write −→a
instead of −−−−→aS(x),j ,

−→
b instead of −−−−−→aS(x′),j′ , n instead of S(x) and m instead of

S(x′). By theorem (72) we have that for every i, k:{
VtW = a0 + α0 + apostx(ti)−1 + VtiW + apostx(ti) + α1 + an

Vt′W = b0 + β0 + bpost
′

x′ (t
′
k)−1 + Vt′kW + bpost

′
x′ (t

′
k) + β1 + bm

Where αi, βi ∈ ((akij)i,j∈ω and 0≤k≤i ∪ {1})
∗. Since neither of ti, t

′
j is equal to

1, we have that equating VtW = Vt′W satisfies the following properties:

n = m, ai = bi(for i = 0, · · · , n) and that for every i = 1, · · · , n

post
x(ti) = post′

x′(t
′
i) (?)

VtiW = Vt′iW for 1 ≤ i ≤ n (??)

From (??) we get that S(ti) = S(t′i). From (?) and the definition of post
x we

have that i1 = i′1 and in general for l such that 1 ≤ l ≤ n:

il − S(t1)− · · · − S(tl−1) + l − 1 = il − S(t′1)− · · · − S(tl−1′) + l − 1

Since S(tl) = S(t′l), we have that il = i′l. We are done.

�

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 51

2.2.5 Strong Normalization for �EqD

(78) Definition (Constant Free Linear Terms)

We define the set Lin-TΣD [X] to be the set of constant free linear terms.
Lin-TΣD [X] admits a definition by recursion as follows:

i) xij ∈ X (for some i, j ∈ ω) is a constant free linear term.

ii) If t1, t2 are constant free linear terms such that V ar(t1)∩V ar(t2) = ∅,
then t1 ⊕ t2 is also a constant free linear term.

iii) If t1, t2 are constant free linear terms such that V ar(t1)∩V ar(t2) = ∅,
then t1 ⊗i t2 (1 ≤ i ≤ S(t1)) is also a constant free linear term.

If we have a finite set of variables x1, · · · , xn, we define the set of constant free
linear terms with variables ranging over the set {x1, · · · , xn}. We denote it
Lin-TΣD [x1, · · · , xn].

(79) Lemma
For every term t ∈ Lin-TΣD [X], we have that:

S(t) ≤
∑

x∈V ar(t)

S(x)

Proof. We prove the lemma by induction on the structure of terms in Lin-TΣD [X].

i) In the case of a variable xij (i, j ∈ ω), the result trivially holds, i.e.

S(xij) ≤
∑

x∈V ar(xij)

S(x).

ii) Suppose t = t1 ⊕ t2. Since t ∈ Lin-TΣD [X], we have that V ar(t1) ∩
V ar(t2) = ∅. Let the variables of t1 be {x1, · · · , xm} m ≥ 1. Similarly let
the variables of t2 be {xm+1, · · · , xm+n} with n ≥ 1. Obviously V ar(t) =
{x1, · · · , xm+n}. By induction hypothesis (i.h.) we have that:

S(t1) ≤ S(x1) + · · ·+ S(m) and
S(t2) ≤ S(xm+1) + · · ·+ S(xm+n)

Since S(t) = S(t1 ⊕ t2) = S(t1) + S(t2), it follows that:

S(t) ≤ S(x1) + · · ·+ S(m) + S(xm+1) + · · ·+ S(xm+n) =
∑

x∈V ar(t)

S(x)

iii) Suppose t = t1 ⊗i t2 (1 ≤ i ≤ S(t1)). With the same notation for the
variables of t1 and t2 as in ii), we have that by i.h.:

S(t) = S(t1 ⊗i t2) = S(t1) + S(t2)− 1 ≤
S(x1) + · · ·+ S(m) + S(xm+1) + · · ·+ S(xm+n) =

∑
x∈V ar(t)

S(x)

We are done.

52 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

�

(80) Lemma
For every term t ∈ Lin-TΣD [X], every ⊗i term constructor (for some
i > 0) is such that:

i ≤
∑

x∈V ar(t)

S(x)

Proof. By induction on the structure of terms of Lin-TΣD [X].
Variables are a trivial case.
Suppose that t = t1 ⊕ t2. The induction hypothesis (i.h.) holds of t1 and t2.
Hence it holds also of t, for the term constructor is ⊕. Case where t = t1 ⊗i t2.
i.h. holds of both t1 and t2. It remains to check the result for the index i. Now,

we know by the previous lemma that S(t1) ≤
∑

x∈V ar(t1)

S(x). Hence:

i ≤
∑

x∈V ar(t1)

S(x) <
∑

x∈V ar(t)

S(x)

We are done. �

(81) Lemma (Finiteness of the Set Lin-TΣD [x1, · · · , xn])

Lin-TΣD [x1, · · · , xn] is finite.

Proof. Let t be an arbitrary term of Lin-TΣD [x1, · · · , xn]. Since the set
of variables Lin-TΣD [x1, · · · , xn] is finite, we have that the height of the tree
domain associated with t is at most n. For if this were not the case, since the
tree associated with t is binary, then a path with length h > n would force that
t had more than n leaves, which is false since t has at most n leaves.
The number of term constructors could be a priori infinite since there exists an
infinite number of discontinuous term constructors ⊗i with i ∈ ω and i > 0. But
by the previous lemma, any t of Lin-TΣD [x1, · · · , xn] is such that i is bounded

above byM:=
∑

x∈V ar(t)

S(x).

We have then a set of terms of bounded height and bounded number of term
constructors. It is easy to see then that the set Lin-TΣD [x1, · · · , xn] is finite.
This completes the proof. �

(82) Lemma
Let t[(t1⊗it2)⊗jt3] be an arbitrary term. Suppose there exists an R4 redex
of the form (t1⊗i t2)⊗j t3, i.e. we have that t3 ≺t1 t2. Let t′[(t1⊗k t3)⊗l t2]
be such that t[(t1 ⊗i t2)⊗j t3] ≈ t′[(t1 ⊗k t3)⊗l t2]. It follows that:

t′[(t1 ⊗k t3)⊗l t2] cannot have an R4 redex in (t1 ⊗k t3)⊗l t2

I.e. the following condition in t′[(t1 ⊗k t3)⊗l t2] cannot hold:

t2 ≺t1 t3

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 53

Proof. Without loss of generality we prove the lemma for the following term
t[(x⊗i y2)⊗j y3], where x, y2, y3 occur linearly in the term. Let us denote Vy2W
and Vy3W by −→a and

−→
b respectively, i.e. −→a := Vy2W and

−→
b := Vy3W.

In t[(x⊗i y2)⊗j y3] we have by hypothesis that y3 ≺x y2. Then it is easy to see
that the image under V·W of t[(x⊗i y2)⊗j y3] is such that:

(83) Vt[(x⊗i y2)⊗j y3]W = α0 + bS(y3) + α1 + a0 + α2

where α0, α1, α2 are strings of (VD)∗. By the same reasoning, if y2 ≺x y3 held
in t′[(x⊗k y2)⊗l t2] we would have:

(84) Vt[(x⊗i y2)⊗j y3]W = α′0 + aS(y2) + α′1 + b0 + α′2

where α′0, α
′
1, α
′
2 are strings of (VD)∗. Clearly, both (83) and (84) cannot hold

at the same time. Contradiction. We are done. �

(85) Theorem (Strong Normalisation for �EqD
)

The reduction relation �EqD
is strongly normalizing, i.e. there is no

infinite chains of reductions.

Proof. We prove the result by contradiction. Let us suppose that there exists
an infinite sequence (ti)i∈ω such that the following holds:

ti� ti+1, i ∈ ω

There could be repetitions of terms in the sequence (ti)i∈ω. Let us suppose
that there does not exist such repetitions, i.e. for every i, j ∈ ω, if i 6= j then
ti 6= tj . We prove that this is not possible. Suppose t1 has n leaves with n ≥ 1.
Let t̃1 ∈ Lin-TΣD [x1, · · · , xn] such that there exists a substitution σ satisfying
σ(t̃1) = t1. Since the EqD reductions are size-preserving there exists another
term t̃2 ∈ Lin-TΣD [x1, · · · , xn] such that σ(t̃2) = t2. In general, for every i we
obtain a sequence (t̃i)i∈ω with t̃i ∈ Lin-TΣD [x1, · · · , xn] and σ(t̃i) = ti.

Now, the sequence (t̃i)i∈ω must have repetitions, say t̃i = t̃i+l with l > 0, for
the set Lin-TΣD [x1, · · · , xn] is finite by lemma (81). From t̃i = t̃i+l we have that
σ(t̃i) = σ(t̃i+l), whence ti = ti+l. Contradiction with the fact that the sequence
(ti)i∈ω was supposed to have no repetitions.

It follows then that our infinite sequence (ti)i∈ω must have repetitions:

ti� ti+1 � · · · � ti+l−1 � ti with i, l ∈ ω such that l ≥ 2 or
ti� ti

(?)

Without loss of generality we suppose that for every k such that 1 ≤ k ≤ l − 1
there are no repetitions between ti and ti+k. We prove that this situation is
again impossible by looking at the reduction cases:

• Suppose that in the chain of reductions (?), there is at least one R1
reduction. Since a (continuous or discontinuous) unit is eliminated, it

54 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

follows that a term constructor ⊕ or ⊗i (for some i > 0) has been removed.
Hence the weight |t| is decreased, where for any term s, |s| is the number of
connectives of s. As we already said before, the other reductions R2−R5
maintain constant the weight |t|. We conclude that this reduction chain
cannot end with the first term of the chain ti, since we would get |ti| < |ti|.
Contradiction.

• Suppose now there is at least one R3 reduction. We can assume there
are no R1 reductions, for in this case we could conclude that the chain of
reductions (?) is impossible. Let us write ti as:

ti := t[(r1 ⊕ r2)⊗i s]

Where r1, r2 and s are arbitrary terms and i > 0. ti contains the R3
redex (r1⊕ r2)⊗i s. Without loss of generality we suppose that ti+1 is the
result of reducing the (r1 ⊕ r2)⊗i s, i.e.:

(86) ti� t[(ri ⊗i s)⊕ r2] =: ti+1

Where 1 ≤ i ≤ S(r1).8 All rules which can apply to (86), i.e. R3, R4 and
R5 are such that in the contractum ti+1 no reduction is able to place s
dominating (r1⊕ r2), and in ti s dominates (r1⊕ r2). Hence, in a chain of
reductions from ti+1, no reduction will be such as to place s dominating
both r1 and r2.

• Continuous associativity
We can suppose that there are no R1,R3 reductions. We define the
following measure | · |R2 which is sensitive to continuous associativity:

|0|R2 = 1
|1|R2 = 1
|x|R2 = 1 if x is a variable
|t1 ⊕ t2|R2 = 2 |t1|R2 + |t2|R2

|t1 ⊗i t2|R2 = |t1|R5 + |t2|R2

| · |R2 satisfies:

|t1 ⊕ (t2 ⊕ t3)|R2 < |(t1 ⊕ t2)⊕ t3|R2

|t1|R2 < |t′1|R2

|t′1 ∗ t2|R2 < |t1 ∗ t2|R2

|t2|R2 < |t′2|R2

|t1 ∗ t′2|R2 < |t1 ∗ t2|R2

where ∗ ∈ {⊕} ∪ (⊗i)i>0

If t�Rt
′ where R ∈ {R4,R5}

then |t′|R2 = |t|R2

Now, if in (?) there is at least one R2 redex, say ti+k �R2ti+k+1 with
0 < k ≤ l − 1, then |ti+k+1|R2 < |ti+k|R2 and |ti+l|R2 < |ti+k|R2 ≤ |ti|R2.
Hence we get the impossible |ti|R2 < |ti|R2. Contradiction, whence there
cannot exist such a chain (?) with at least one R2 redex.

8The case where i is such that S(r1) < i ≤ S(r1) + S(r2) is completely similar to the case
0 < i ≤ S(r1).

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 55

• We suppose now that in (?), R1-R3 do not apply. We only allow R4-R5
reductions. Suppose we have the R4 redex (A ⊗jk sk) ⊗jk+1

sk+1 in the
term:

ti[(A⊗jk sk)⊗jk+1
sk+1]

Where A is a product term. The side-condition of R5 is the property
sk+1 ≺A sk. Without loss of generality we assume that ti+1 is the R4
contractum of ti, i.e.:

ti[(A⊗jk sk)⊗jk+1
sk+1]� ti[(A⊗ji+1

si+1)⊗ji+S(ti+1)−1 si]

Now, since the reduction chain (?) ends with the first term of the chain,
i.e. ti, it follows that in (?) we must have the redex (A′⊗lk sk)⊗lk+1

sk+1:

tj [(A
′ ⊗lk sk+1)⊗lk+1

sk]

Where i < j < i + l and the condition sk ≺A′ sk+1. This situation is
impossible by lemma (82).

• Finally, suppose that no reductions from reduction rules R1-R4 apply in
the chain (?). Therefore, in this case only reduction rule R5 can apply. We
define a measure on terms which is sensitive to discontinuous associativity:

|0|R5 = 1
|1|R5 = 1
|x|R5 = 1 if x is a variable
|t1 ⊕ t2|R5 = |t1|R5 + |t2|R5

|t1 ⊗i t2|R5 = |t1|R5 + |t2|R5, if t2 does not form an R5 redex
|(t1 ⊗i t2)⊗j t3|R5 = 2 |t1|R5 + |t2 ⊗ t3|R5, if t2 Gt1 t3

Similarly to the case of | · |R2, | · |R5 satisfies:

|t1 ⊗i (t2 ⊗j−i+1 t3)|R5 < |(t1 ⊗i t2)⊗j t3|R5

|t1|R5 < |t′1|R5

|t′1 ∗ t2|R5 < |t1 ∗ t2|R5

|t2|R5 < |t′2|R5

|t1 ∗ t′2|R5 < |t1 ∗ t2|R5

It follows that if there is at least one R5 redex, then the measure | · |R5 is
decreased. We obtain the contradictory inequality |ti|R5 < |ti|R5.

Hence no cyclic reduction chain like (?) is possible. Summing up, any
chain of reductions must be terminating. This completes the proof.

�

56 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

Construction of an EqD normal form for a term t

We already know that every TΣD
[X] term has a EqD normal form9 because

strong normalization holds (theorem (85)). Here we give a particular strategy
for obtaining the normal form. The construction of a normal form t∗ for a given
term t is done inductively. We compute the normal forms of every subterm and
do some reductions if necessary. As the complexity of t is finite and the subterms
we consider are strictly less complex than t, the computation of a normal form
is terminating:

NF1 Render t unit-free.

NF2 If t = 0, then t∗ = 0. If t = 1, then t∗ = 1.

NF3 Else if t = xij for a given variable xij ∈ X, (i, j ∈ ω), then t∗ = xij .

NF4 Else if t = s ⊕ k and s = s1 ⊕ s2, then do R2 reductions until either
t� ∗xij ⊕ l, where xij is a variable, or t� ∗(l1 ⊗i l2)⊕ l, for i > 0. In case
t� ∗xij ⊕ l, t∗ = xij ⊕ l∗. In case t� ∗(l1 ⊗i l2)⊕ l, t∗ = (l1 ⊗i l2)∗ ⊕ l∗.

NF5 Else t = s⊗i k, and s’s main term constructor is ⊕. Then apply reduction
R3 until t� ∗(· · · (xij⊗i1 s1)⊗i2 s2 · · ·)⊗in sn, for a given variable xij ∈ X.
In that case, apply R4 until t� ∗(· · · (xij ⊗j1 s1) ⊗j2 s2 · · ·) ⊗jm sm, such
that m ≤ S(xij). Then t∗ = (· · · (xij ⊗i1 s1

∗)⊗i2 s2
∗ · · ·)⊗im sm

∗.

As expected, terms in normal form are unique. We need to prove some results:

(87) Theorem (Equivalence theorem for TΣD
[X] Terms in Normal Form)

Let t, s be terms in normal form. The following holds:

If VtW = VsW then t = s

.

Proof. We proceed by induction on the structure of terms in normal form.
More formally we want to prove that:

(88) ∀t in normal form, if s is a term in normal form such that VtW = VsW,
then t = s

• Base case:

- t = 0. From lemma (65) if s is in normal form such that VsW = 0 then
s = 0. Therefore (88) holds for t = 0.

- t = 1. By lemma (65) we get that if s is in normal form such that
VsW = 1 then s = 1. Therefore (88) holds for t = 1.

- Finally, let t = xij for some i, j ∈ ω. We have that VxijW = −→aij . Again
by lemma (65) we have that if VsW = −→aij then s = xij .

9Later we see the unicity of normal forms.

2.2. TOWARDS DISCONTINUITY: DISPLACEMENT ALGEBRAS AND THEIR
SORTED EQUATIONAL THEORY 57

• Inductive case: suppose t = t1 ⊕ t2. Let s be a term in normal form such
that VsW = VtW.

Clearly, by vii) from lemma (65), since l(Vt1 ⊕ t2W) ≥ 2 s cannot be 0 nor
1 nor x0j (a variable of sort 0). Let now s be a variable of sort strictly
greater that 0, i.e. s = xij with i > 0. VxijW = −→aij . Let us see that s
cannot be equal to t1⊕t2. If V−→aijW 6= Vt1W, either V−→aijW is a proper prefix of
Vt1W or conversely. This is not possible because by lemma (65) both Vt1W
and VxijW are prefix-free. Hence, we have that Vt1W = VxijW. We get a
contradiction, for in that case l(VxijW) = l(Vt1W) and l(Vt1W) < l(Vt1⊕t2W).

Suppose now s = s1 ⊗i s2 for some terms s1, s2 and index i > 0. By
lemma (65) s is a product term. A product term is prefix-free. By the
same mentioned lemma we know that t1 is also prefix-free. Comparing
Vt1W and VsW we have that either t1 is a proper prefix of s or conversely. In
either case we have prefix-free terms which contain a prefix. Contradiction.
Hence t1 = s, whence we get again a contradiction for l(VtW) > l(Vt1W) =
l(VsW).

It follows then that s has to be equal to s1⊕ s2 for some terms s1, s2. We
know by lemma (65) that t1, s1 are prefix-free. Hence Vt1W = Vs1W. We
have t1 is a proper subterm of t, and therefore we can apply the induction
hypothesis (i.h.), i.e. since t1 and s1 are in normal form and Vt1W = Vs1W
we have that t1 = s1. We have also Vt2W = Vs2W. We apply i.h. and get
that t2 = s2. This completes the case t = t1 ⊕ t2.

• Finally, suppose s = s1 ⊗i s2 for some terms s1, s2 and index i. We have
two product terms t and s such that VtW = VsW. We can apply lemma
(77), and we get that t and s must satisfy:

t = (· · · ((xnj ⊗i1 t1)x⊗i2 t2) · · · ⊗in−1 tn−1)⊗in tn
s = (· · · ((xnj ⊗i1 t′1)x⊗i2 t′2) · · · ⊗in−1 t

′
n−1)⊗in t′n

VtiW = Vt′iW for i such that 1 ≤ i ≤ n

For i = 1, · · · , n we have terms in normal form ti which are proper subterms
of t and subterms si in normal form such that VtiW = Vt′iW. We can apply
i.h. It follows that for every i = 1, · · · , n that ti = t′i. It follows that t = s.
This completes the last inductive case. We are done.

�
As the last results suggest, terms in EqD form are unique:

(89) Theorem (EqD Normal form unicity for TΣD
[X])

Let t∗, t∗∗ be two normal forms for the term t. It follows that:

t∗ = t∗∗

Proof. We have that:

t ≈ t∗
t ≈ t∗∗

58 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

It follows that t∗ ≈ t∗∗. By soundness, Vt∗W = Vt∗∗W. By the equivalence
theorem t∗ = t∗∗. We are done. �

(90) Theorem (General Equivalence Theorem for TΣD
[X])

Let t and s be arbitrary TΣD
[X] terms not necessarily in normal form.

The following holds:

If VtW = VsW then t ≈ s

Proof. Let t∗ and s∗ be the normal form terms for t and s. We have t ≈ t∗

and s ≈ s∗. Therefore:

Vt∗W = VtW = VsW = Vs∗W

Hence by the general equivalence theorem (90) for TΣD
[X] terms in normal form

there holds t∗ = s∗. We have t ≈ t∗ = s∗ ≈ s, whence by transitivity of ≈,
t ≈ s. We are done. �

(91) Theorem (Completeness of EqD and EqD2 w.r.t. FreeDisp)

Let t, s ∈ TΣD
[X]. Both EqD and EqD2 are complete w.r.t. FreeDisp:

If `EqD
t ≈ s then FreeDisp |= t ≈ s

If `EqD2
t ≈ s then FreeDisp |= t ≈ s

Proof. We already have seen soundness. Suppose FreeDisp |= t ≈ s. It
follows that:

`EqD
t ≈ s as well as `EqD2

t ≈ s

For since FreeDisp |= t ≈ s, soundness implies that VtW = VsW. By the general
theorem (90) for TΣD

[X] terms we have that t ≈ s. This completes the proof.
�

2.3 Visibility for extraction in ΣD-Terms in the
theory EqD

For commodity we will write x instead of xij , as well as −→a instead of −→aij . In the
following t[x] is a ΣD-term where x is a variable which occurs linearly in t[x].
The results we will prove easily extend to the general case with the concept of
distinguished occurrence. We say that an x’s occurrence in t[x] is wrap-free if
and only if in the normal form t∗[x] of t[x], x’s occurrence is not a foot, i.e. it is
not a left child of a ⊗i term constructor.

(92) Definition (Wrap-Free)

Let t∗[x] be the normal form of t[x]. x occurs wrap-free in t[x] iff x does
not occur as a foot in t∗[x].

2.3. VISIBILITY FOR EXTRACTION IN ΣD-TERMS IN THE THEORY EQD 59

If a term t∗[x] is in normal form such that x’s occurrence is not a foot, then no
term s[x] could be derived from t∗[x] in such a way that t∗[x] ≈ s[x] and x is a
foot in s[x], i.e. not being a foot in a term in normal form is an invariant w.r.t.
the application of the axioms of EqD or EqD2.

One point which will be crucial on our road to discontinuity is the notion of
visibility for extraction:

(93) Definition (Visibility for Extraction)

x is visible for extraction in t[x] if and only if t[x] ≈ s ⊗k x for some
k > 0 and some term s.

(94) Theorem (Visibility for Extraction)

Let t[x] ∈ TΣD
[X]. The following holds:

x is visible for extraction in t[x] iff Vt[x]W = Vt′W×k VxW, for some k > 0

and t′ ∈ TΣD
[X]

Proof.

• Only if case. Obvious.

• If case. Suppose we have that:

Vt[x]W = Vt′W×k VxW, for some k > 0

By the general equivalence theorem (90) for TΣD
[X], it follows that:

t[x] ≈ t′ ×k x

We are done.

�
In other words, visibility for extraction of a single occurrence of x in a term,
means that the x occurrence can be displaced to the right periphery of the
original term while maintaining EqD-equivalence. Theorem (94) will turn out
to be fundamental for the main results of the next chapter. We should point
out that the proof of the theorem is not constructive for we only use the power
of the general theorem of equivalence of TΣD

[X] terms (theorem (90)). In the
following result, we see that visibility for extraction is strongly related to the
concept of wrap-free.

(95) Theorem (Visibility for Extraction and the Wrap-Free Concept)

x is visible for extraction in t[x] iff x occurs wrap-free in t[x].

Proof.

• Only if direction:

Suppose x is visible for extraction, i.e., t[x] ≈ s⊗k x for some term s and
k > 0. Then we have:

60 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

(96) Vt[x]W = Vs⊗k xW = VsW×k VxW

• If direction:

Let t∗[x] be the normal form. We reason by induction on the structural
complexity of the term t∗[x].

In the following cases we will use the fact that t[x] = t∗[x], and therefore
if x is visible for extraction in t∗[x] then x is also visible for extraction in
t[x]. The cases are as follows:

i) t∗[x] = x.

We put s = 1 and hence :

t∗[x] ≈ 1⊗1 x

ii) t∗[x] = s[x]⊕ r.

By induction hypothesis (i.h.), s[x] ≈ s′ ⊗k x for some k > 0. We
have the following equational derivation:

t[x] ≈ (s′ ⊗k x)⊕ r
≈ (1⊕ r)⊗1 (s′ ⊗k x) by SW
≈ ((1⊕ r)⊗1 s

′)⊗k x) by Asscd

≈ (s′ ⊕ r)⊗k x by SW

In tree format:

⊕

r

· · ·x · · ·

s[x]

; ⊗i

x⊕

rs′

iii) t[x] = s⊕ r[x]

By i.h. r[x] ≈ r′ ⊗k x for some term r′ and k > 0. It follows that:

t[x] ≈ s⊕ (r′ ⊗k x)
≈ (s⊕ 1)⊗S(s)+1 (r′ ⊗k x) by SW
≈ ((s⊕ 1)⊗S(x)+1 r

′)⊗S(s)+k x by Asscd

≈ (s⊕ r′)⊗S(s)+k x by SW

In tree format:

⊕

· · ·x · · ·

r[x]s

; ⊗S(x)+k

x⊕

r′s

2.3. VISIBILITY FOR EXTRACTION IN ΣD-TERMS IN THE THEORY EQD 61

iv) t[x] = s[x]⊗i r for some term s[x], r and i > 0.

By i.h. s[x] ≈ s′ ⊗k x for some s′ and i > 0. We derive the following
equation:

t[x] ≈ (s′ ⊗k x)⊗i r

Now x must permute with r in s′, i.e. x ≺s′ r or r ≺s′ x, for otherwise
x Gs′ r, and then discontinuous associativity would apply with the
consequence that x would be a foot, which is not possible if t[x] is in
normal form and x’s occurrence in t[x] is not a foot. Without loss of
generality, let us suppose that x ≺s′ r. In that case we have:

t[x] ≈ (s′ ⊗i−S(x)+1 r)⊗k x by MixPerm1

Hence x is permutated to right periphery in t[x]. In tree-format:

⊗i

r

· · ·x · · ·

s[x]

; ⊗k

x⊗i−S(x)+1

rs′

v) t[x] = s⊗i r[x] for some terms s and r[x] and i > 0. By i.h.
r[x] ≈ r′ ⊗k x. Then:

t[x] ≈ s⊗i (r′ ⊗k x)
≈ (s⊗i r′)⊗i+k−1 x by Asscd

In tree format:

⊗i

· · ·x · · ·

r[x]s

; ⊗i+k−1

x⊗i

rs′

In either case the variable x can be displaced to the right periphery. This
completes the proof.

�
A remark should be made. This theorem gives an effective procedure for deriving
the term which has x’s occurrence displaced at the right periphery. By applying
the axioms of EqD (or of course EqD2) a finite number of times we get the
extraction. It should be noted that all equations of EqD except continuous
associativity have turn out to be necessary for the extraction. This of course
raises the question of considering a weaker version of the equational theory EqD

in which continuous associativity is dropped.

62 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

(97) Corollary (Property for the Wrap-Free Concept)

Let t[x] be a term. The following holds:

x occurs wrap-free in t[x] iff Vt[x]W = Vt′W×kVxW, for some k > 0 and t′ ∈ TΣD
[X]

Proof. By theorems (94) and (95) we get the desired result. �

So if x occurs wrap-free in t[x] then we have:

t[x] ≈ s⊗i x

We may ask ourselves whether the index involved in the extraction is unique.
A similar question arises for the uniqueness of the term s. The answer is that
effectively the index is unique and the mentioned term s is unique modulo
≈EqD

.

(98) Theorem (Uniqueness of Extractability)

Suppose t[x] ≈ s⊗i x and t[x] ≈ s′ ⊗j x. Then:

i) i = j

ii) s ≈ s′

Proof.

• i) We proceed by contradiction. Suppose i 6= j. By assumption we have:

t[x] ≈ s⊗i x & t[x] ≈ s′ ⊗j x

Therefore, in any displacement model (A, v) we have:

Js⊗i xKv = Js′ ⊗j xKv

Consider the following displacement model:

(A, v),

where A is the finitely free generated monoid {a, 1}∗ and v is a valuation.
As expected 1 is the prime. Let J · Kv be the interpretation in A w.r.t. the
valuation v. We put:

v(x) = a+ 1 + a+ · · ·+ a+ 1 + a =︸ ︷︷ ︸
S(x) separators

: A

v(y) = 1 + · · ·+ 1︸ ︷︷ ︸
S(y) separators

for any variable x of arbitrary sort such that x 6= y

It follows then that since s and s′ do not contain the variable x,10 their
interpretations JsKv and Js′Kv as strings cannot contain a’s. They are equal
then to the empty string or a string of 1’s.

10Remember that the term t[x] is linear and therefore x occurs in it only once.

2.3. VISIBILITY FOR EXTRACTION IN ΣD-TERMS IN THE THEORY EQD 63

JS ⊗i xKv = 1 + · · ·+ 1︸ ︷︷ ︸
i−1 separators

+A+ αi + 1 + · · ·+ 1 + αs

JS′ ⊗j xKv = 1 + · · ·+ 1︸ ︷︷ ︸
j−1 separators

+A+ βj + 1 + · · ·+ 1 + βs

Since A is a (finitely) free generated monoid, we cannot have i− 1 6= j−1
for then it would follow that a (finite) summation of 1’s would be equal to
a, which of course is false in a displacement model. Therefore i−1 = j−1
whence i = j.

• ii) By the first part of this theorem i), we know that the indexes of the
discontinuous products in the extraction must be identical, i.e., we have
now:

s⊗i x ≈ s′ ⊗i x

We want to prove in the theory of EqD that s ≈ s′. It must be signalled
that the result for x of sort 1 is easily obtained:

s⊗i x ≈ s′ ⊗i x
Subst [x/1]

s⊗i 1 ≈ s′ ⊗i 1

By applying twice the equational rule Trans and the fact that 1 is a unit,
i.e. s⊗i 1 ≈ s and s′ ⊗i 1 ≈ s′, we get s ≈ s′. We now prove the result for
a variable x of arbitrary sort. x ∈ X and hence there exist indices l, k ∈ ω
such that x = xlk. We have then that S(xlk) = l.

Since s ⊗i x ≈ s′ ⊗i x we have that the sort of s and s′ are equal, i.e.
S(s) = S(s′) =: m. Applying the V·W homomorphism to s and s′ we have:

VsW = α0 + 1 + α1 + 1 + · · ·+ αi−1 + 1 + αi + · · ·+ 1 + αm

Vs′W = β0 + 1 + β1 + 1 + · · ·+ βi−1 + 1 + βi + · · ·+ 1 + βm

For every i, we have that αi, βi ∈ (VD)∗ − {a0
lk, · · · , allk}∗ (l is the sort of

xlk!). We have VxW = −→alk:

−→alk = a0
lk + 1 + a1

lk + · · ·+ al−1
lk + 1 + allk

Since s⊗i x ≈ s′ ⊗i x, we have that Vs⊗i xW = Vs′ ⊗i xW.

(99)
Vs⊗i xW = α0 + 1 + α1 + 1 + · · ·+ αi−1 +−→alk + αi + · · ·+ 1 + αm

(100)
Vs′ ⊗i xW = β0 + 1 + β1 + 1 + · · ·+ βi−1 +−→alk + βi + · · ·+ 1 + βm

We now equate (99) and (100):

64 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

α0 + 1 + α1 + 1 + · · ·+ αi−2 + 1 + αi−1 +−→alk + αi + · · ·+ 1 + αm
=

β0 + 1 + β1 + 1 + · · ·+ βi−2 + 1 + βi−1 +−→alk + βi + · · ·+ 1 + βm

Since for every i, αi and βi do not contain as substrings elements from
{a0
lk, · · · , allk} we have the following equalities:

(101)

α0 + 1 + α1 + 1 + · · ·+ αi−2 + 1 + αi−1 =
β0 + 1 + β1 + 1 + · · ·+ βi−2 + 1 + βi−1

αi + · · ·+ 1 + αs = βi + · · ·+ 1 + βs

From the above equalities (101), since the αi’s and βi’s do not contain the
separator 1 we infer that

∀i = 0, · · · , s, αi = βi

Hence VsW = Vs′W. By the equivalence theorem (90) we have then:

s ≈ s′

which gives our desired result for ii). This completes the proof.

�

2.4 Appendix

We have defined syntactical algebras as free monoids with a distinguished ele-
ment denoted 1 called the separator. From syntactical algebras we obtain the
standard displacement algebras which form the class of algebras FreeDisp. We
have seen that all standard displacement algebras satisfy the so-called separa-
tion property (54). Here we show two examples of general displacement algebras
which do not belong to the class FreeDisp.

• First example:

We present a general displacement algebra which satisfies the separation
property but its universe is not a free monoid and in consequence it is
not defined by a syntactical algebra. Let M = 〈M,+, 0〉 be an arbitrary
monoid which is not free, with for example nilpotent elements.11 We
build the following new monoid we denote M∞ which in fact is the least
monoid containing M and an distinguished element which plays the role
of separator in the sense of syntactical algebras. Such an element satisfies
the separation property. We define M∞ = 〈M∞,+, 0, 1〉 as follows:

(102) M∞
def
=
⋃
i∈ω

M i+1

We define the separator in M∞ as follows:

11We recall that a nilpotent element a of a monoid is such that an = 0 for some n > 1.

2.4. APPENDIX 65

(103) 1M
∞def

= (0, 0)

We denote it 1∞. Obviously, 0M
∞

= 0M, which we denote 0∞. The sort
domains of sort i are defined as follows:

(104) Li
def
= M i+1, i ∈ ω

Every element of Li is said to be of sort i. We denote −→x ∈ Li as −→x =
(x0, · · · , xi). We can now define the operations ⊕M∞ and {⊗i+1}M

∞

i∈ω . We
denote these operations simply as +∞ and {×∞i+1}i∈ω. Their definition is
sort-polymorphic:

(105) For every i, j ∈ ω,

+∞ : Li × Lj −→ Li+j

(−→x ,−→y) 7→ (x0, · · · , xi + y0, y1, · · · , yj)

(106) For every i, j ∈ ω and 1 ≤ k ≤ i,

×∞k : Li × Lj −→ Li+j−1

(−→x ,−→y) 7→ (x0, · · · , xk−1 + y0, y1, · · · , yj + xk, xk+1, · · · , xi)

Now, it is clear that for every −→x ∈ Li there exists a list of elements of L0

〈x0, · · · , xi〉 such that:

(107) −→x = x0 +∞ +1∞ +∞ x1 +∞ 1∞ +∞ · · ·+∞ xi−1 +∞ 1∞ + xi

This means that M∞ satisfies the first condition of the separation prop-
erty. The second condition of the separation property is also satisfied:

(108) If

−→x = x0 +∞+1∞+∞ x1 +∞ 1∞+∞ · · ·+∞ xi−1 +∞ 1∞+∞ xi = −→y =
y0 +∞ +∞1∞ +∞ y1 +∞ 1∞ +∞ · · ·+∞ yi−1 +∞ 1∞ +∞ yi

then ∀i, xi = yi

For such elements −→x ,−→y ∈ M i+1, and hence by definition of M i+1 two
tuples are equal iff they are equal point-wise.

• Second example: Let us consider the following ΣD-algebraD = 〈Im(V·W),+, (×i+1)i∈ω,Λ, 1)〉.
The sort domains (L∗i)i∈ω of D are the following:

(109) L∗i = V(TΣD [X])iW, i ∈ ω

Since D is a subalgebra of the syntactical algebra generated by VD ∪ {1},
and from the fact that V·W is a homomorphism of ΣD-algebras (in fact
of (standard) displacement algebras), we see that D is a general displace-
ment algebra. But D is not a standard displacement algebra, for the
first condition of the separation property is not satisfied. For example,
V(x20⊗1 1)⊗1 1W = a0

20 +1+a1
20 +1+a2

20, and no ai20 (i = 0, 1, 2) belongs
to L∗0 = V(TΣD [X])0W. The second condition of the separation property is
trivially satisfied.

Therefore we see that FreeDisp (Disp.

66 2. MODEL THEORETICAL FOUNDATIONS FOR DISCONTINUITY

Chapter 3

Proof Theory

In Chapter 2 ‘Model-Theoretical Foundations of Discontinuity’ we did the hard
work of defining a class of sorted algebras, namely the class of displacement
algebras FreeDisp, and of formulating a sound and complete equational theory
EqD. This class has as we demonstrated good properties from the point of view
of Type Logical Grammar, namely generalized extraction, not only peripheral
extraction. This last algebraic limitation was what constituted L rigid with
respect grammars of natural languages. Generalized extraction is the key in our
type-logical agenda to define a calculus which subsumes L and is able to deal
with discontinuous phenomena which are so wide-spread in natural language.

The road map of this Chapter is the following:

• To formulate the set of types which will be interpreted in displacement
algebras.

• To formulate the categorical Discontinuous Lambek (Syntactic) Calculus,
cD.

• To formulate for cD its corresponding sorted multimodal calculus mD.

• To export to mD from Chapter 2 the good formal properties which will
be crucial to prove some faithful embedding translations. The details will
be expounded carefully.

• To absorb à la Lambek (1958) the structural postulates in a new Gentzen
sequent syntax: the Hypersequent Calculus hD (not to be confused with
Avron’s hypersequent calculus, Avron (1991)). The rise of hypersequent
syntax needs the definition of new data-structures in the corresponding
Gentzen calculi. We will define therefore what we call the set of configu-
rations, now the set of hyperconfigurations and hypercontexts. As we will
see the prefix hyper will be ubiquitous.

• To define faithful embedding translations between all the calculi defined.

• To prove the Cut Elimination theorem for hD using crucially the very
easy hypersequent syntax which will allow us to make a proof of the Cut
Elimination theorem à la Lambek.

67

68 3. PROOF THEORY

• To extend D with the so-called linear logic additive connectives in order
to give much more logical power to the system.

• To define very useful synthetic connectives (see ‘Point Aveugle’ Girard
(2006)) and prove more embedding translations.

3.1 Theory of Discontinuous Lambek Calculus

The key to our treatment of discontinuity is the class FreeDisp of displacement
algebras. We recall some definitions:

(110) Definition (Syntactical Algebra)

A syntactical algebra is a free algebra (L,+, 0, 1) of arity (2, 0, 0) such
that (L,+, 0) is a monoid and 1 is a prime. I.e. L is a set, 0 ∈ L and + is
a binary operation on L such that for all s1, s2, s3, s ∈ L,

s1+(s2+s3) = (s1+s2)+s3 associativity
0+s = s = s+0 identity

The distinguished constant 1 is called a separator.

(111) Definition (Sorts)

The sorts of discontinuous Lambek calculus are the naturals 0, 1, The
sort S(s) of an element s of a syntactical algebra (L,+, 0, 1) is defined by
the morphism of monoides S to the additive monoid of naturals defined
thus:

S(1) = 1
S(a) = 0 for a prime a 6= 1

S(s1+s2) = S(s1) + S(s2)

I.e. the sort of a syntactical element is simply the number of separators it con-
tains; we require the separator 1 to be a prime and the syntactical algebra to
be free in order to ensure that this induction is well-defined.

(112) Definition (Sort Domains)

Where (L,+, 0, 1) is a syntactical algebra, the sort domains Li of sort
i of generalized discontinuous Lambek calculus are defined as follows:

Li = {s|S(s) = i}, i ≥ 0

(113) Definition (Displacement Algebra)

The displacement algebra defined by a syntactical algebra (L,+, 0, 1) is the
ω-sorted algebra with the ω-sorted signature ΣD = (⊕, {⊗i+1}i∈ω, 0, 1, ω,Ω)
defined in Chapter 2:

({Li}i∈ω,+, {×i+1}i∈ω, 0, 1)

3.1. THEORY OF DISCONTINUOUS LAMBEK CALCULUS 69

Fi ::= Ai where Ai is the set of atomic types of sort i

F0 ::= I Continuous unit
F1 ::= J Discontinuous unit

Fi+j ::= Fi•Fj continuous product
Fj ::= Fi\Fi+j continuous under
Fi ::= Fi+j/Fj continuous over

Fi+j ::= Fi+1�kFj discontinuous product
Fj ::= Fi+1↓kFi+j discontinuous extract
Fi+1 ::= Fi+j↑kFj discontinuous infix

Figure 3.1: The sorted types of D

where:

operation is such that

+ : Li × Lj → Li+j as in the syntactical algebra

×k : Li+1 × Lj → Li+j
×k(s, t) is the result of replacing the k-th
separator in s by t

The sorted types of the discontinuous Lambek Calculus, D, which we will define
residuating with respect to the sorted operations in (113), are defined by mutual
recursion in Figure 3.1. D types are to be interpreted as subsets of L and satisfy
what we call the principle of well-sorted inhabitation:

(114)
Principle of well-sorted inhabitation:
If A is a type of sort i, JAK ⊆ Li

I.e. every syntactical inhabitant of JAK has the same sort. The connectives
and their syntactical interpretations are shown in Figures 3.1 and 3.2. This
syntactical interpretation is called the standard syntactical interpretation. Given
the functionalities of the operations with respect to which the connectives are
defined, the grammar defining by mutual recursion the sets Fi of types of sort i
for each sort i on the basis of sets Ai of primitive types of sort i for each sort i,
and the homomorphic syntactical sort map S sending types to their sorts, are
as shown in Figure 3.3. When A is an arbitrary type, we will frequently write
in latin lower-case the type in order to refer to its sort S(A), i.e.:

a
def
= S(A)

We observe that for any type A ∈ F , the interpretation of A, i.e. JAK is contained
in La.

The syntactical sort map is to syntax what the semantic type map is to
semantics: both homomorphisms mapping syntactic types to the datatypes of
the respective components of their inhabiting signs in the dimensions of language
in extension: form/signifier and meaning/signified.

70 3. PROOF THEORY

JIK = {0} continuous unit
JJK = {1} discontinuous unit
JAK ⊆ Li for some i ∈ ω A ∈ Ai

JA•BK = {s1+s2| s1 ∈ JAK & s2 ∈ JBK} (continuous) product
JA\CK = {s2| ∀s1 ∈ JAK, s1+s2 ∈ JCK} under
JC/BK = {s1| ∀s2 ∈ JBK, s1+s2 ∈ JCK} over

JA�kBK = {×k(s1, s2)| s1 ∈ JAK & s2 ∈ JBK} k > 0 deterministic discontinuous product
JA↓kCK = {s2| ∀s1 ∈ JAK,×k(s1, s2) ∈ JCK} k > 0 deterministic discontinuous infix
JC↑kBK = {s1| ∀s2 ∈ JBK,×k(s1, s2) ∈ JCK} k > 0 deterministic discontinuous extract

Figure 3.2: Standard syntactical interpretation of D types

Fi ::= Ai S(A) = i for A ∈ Ai

F0 ::= I S(I) = 0
F1 ::= J S(J) = 1

Fi+j ::= Fi•Fj S(A•B) = S(A) + S(B)
Fj ::= Fi\Fi+j S(A\C) = S(C)− S(A)
Fi ::= Fi+j/Fj S(C/B) = S(C)− S(B)

Fi+j ::= Fi+1�kFj S(A�kB) = S(A) + S(B)− 1 1 ≤ k ≤ i+ 1
Fj ::= Fi+1↓kFi+j S(A↓kC) = S(C) + 1− S(A) 1 ≤ k ≤ i+ 1
Fi+1 ::= Fi+j↑kFj S(C↑kB) = S(C) + 1− S(B) 1 ≤ k ≤ i+ 1

Figure 3.3: Sorted D types, and syntactical sort map for D

3.2. A SORTED MULTIMODAL CALCULUS FOR D: MD 71

Observe also that (modulo sorting) (\, •, /;⊆) and (↓k,�k, ↑k;⊆) are resid-
uated triples:

(115) B ⊆ A\C iff A•B ⊆ C iff A ⊆ C/B
B ⊆ A↓kC iff A�kB ⊆ C iff A ⊆ C↑kB

We are now in a position to define the categorical calculus cD which subsumes
the continuous Lambek calculus L. The postulates of cD are in bijection with
the axioms of the equational theory EqD of Chapter 3. We call this set of
postulates EqD

∗. In Figure 3.4 the categorical calculus cD is displayed.
In the style of Moortgat (1995), in the next section we consider the associ-

ated sorted multimodal calculus corresponding to cD, mD. There, the details
of the intimately related concepts of EqD and mD are fully explained. We will
see that the work done in Chapter 3 helps us to set up the formal properties of
mD. As said before, we will formulate and prove important embedding transla-
tions with the goal in mind to illuminate hidden relations between mD and its
corresponding hypersequent calculus hD, which is a calculus that has absorbed
the structural postulates. These results are also relevant because chronologi-
cally the work of this author and Glyn Morrill and Mario Fadda presented hD
with two equivalent distinct hypersequent sintaxes. No mention of the hidden
multimodal calculus and its formal properties with respect to FreeDisp were
made. So, this is the first time, then, that it is presented.1

(116) Definition (arrow of D)

An arrow of D is of the form A → B where A and B are types of D
of the same sort.

We write `cD A → B when an arrow A → B is derived in the calculus cD. It
is not difficult to have the concept of context for subtypes of types like subterms
in a term. The internal nodes (i.e. not leaves) of a context must have as type-
constructors only the product connectives, i.e. • and �i (i > 0). In the next
section, the reader aquainted with substructural logic will notice that the con-
cept of context for types is mimicking the concept of context for a subtructure
in the antecedent of a sequent.

3.2 A Sorted Multimodal Calculus for D: mD

We consider now a sorted multimodal calculus with structural rules mimicking
the axioms of the categorical calculus of D, cD, and hence the axioms of the
equational theory EqD of Chapter 3. This sequent calculus is non standard in
two senses. Types and structural terms are sorted. Moreover, there are two
structural term constants which stand respectively for the continuous unit and
discontinuous unit. Structural term constructors are of two kinds: ◦ (which
stands for term concatenation) and ◦i (which stands for term wrapping at the

1It might be interesting for the reader to know that the first version accepted (but not
the one that was finally published) in the Journal of Logic, Language and Information of
the paper The Displacement Calculus, contained in part material on the hidden multimodal
calculus mD. In one conference (Conference Joachim Lambek: Mathematics, Logic and
Language, Chieti 2011) and one workshop (Second Workshop on Types, Logic, and Grammar
(Barcelona, 2007)) this material was presented with more details.

72 3. PROOF THEORY

Axiom

A → A for every A ∈ F

Residuation laws

B → A\C iff A•B → C iff A → C/B

B → A↓kC iff A�kB → C iff A → C↑kB

Postulates

A•(B•C)↔ (A•B)•C Continuous associativity

(A�iB)�jC ↔ (A�jC)�i+S(B)−1B, if j < i Mixed permutation (Case 1)
(A�iB)�jC ↔ A�i(B�j+1−iC), if i ≤ j < i+ S(B) Discontinuous associativity
(A�iB)�jC ↔ (A�j+1−S(B)C)�iB, if i+ S(B) ≤ j Mixed permutation (Case 2)

(A • J)�S(A)+1B ↔ A•B Split-Wrap (Case 1)
(J •B)�1A↔ A•B Split-Wrap (Case 2)

I •A↔ A↔ A • I Continuous unit
J �1 A↔ A↔ A�i J , 1 ≤ i ≤ S(A) Discontinuous unit

Transitivity

A → C if A → B and B → C

Figure 3.4: Categorical calculus cD

3.2. A SORTED MULTIMODAL CALCULUS FOR D: MD 73

i-th position, i ∈ ω+). Again, as in the case of sorted types, structural terms
are defined by mutual recursion and the sort map is computed in a similar way
(see (118)).

X[Y] denotes a structural term with a distinguished position occupied by
the structural term Y. If A, X are respectively a type and a structural term,
then a and x denote their sorts. We will enter into more detail in the following
lines. We are interested in the cardinality of the set F of types of D and their
structure. Consider the following lemma:

(117) Lemma
The set of types F is denumerable iff the set of atomic types is denumer-
able.

F =
⋃
i∈ω
Fi

Fi = (Aij)j∈ω

Proof. The proof can be carried out by coding in a finite alphabet the set
of types F . Of course, it is crucial that the set of sorted atomic types forms
a denumerable set. In the next Chapter, this coding is explicitely worked out. �

Let StructTermD[F] be the ω-sorted algebra over the signature ΣD =
({◦} ∪ (◦i+1)i∈ω, I, J). The sort functionality of ΣD is:

((i, j → i+ j)i,j∈ω, (i+ 1, j → i+ j)i,j∈ω, 0, 1)

Observe that the operations ◦ and ◦i’s (with i > 0) are sort polymorphic. In
the following, we will abbreviate StructTermD[F] by StructTerm. The set
of structural terms can be defined in BNF notation as follows:

(118)

StructTerm0 ::= I
StructTerm1 ::= J
StructTermi ::= Fi

StructTermi+j ::= StructTermi◦StructTermj

StructTermi+j ::= StructTermi+1◦kStructTermj

It is clear that the sort of StructTermi is such that:

S(StructTermi) = i

As we remarked above we realize that StructTerm looks like an ω-sorted term
algebra. This intuition is correct for we can put StructTerm in bijection with
the ω-sorted term algebra TΣD [X] of Chapter 3.

Let us consider the following bijective mapping f from the set of variables
X of Chapter 3 into the set of types F .2

f : X −→ F
xij 7→ Aij

This bijection is such that (for i, j ∈ ω):

2The existence of this bijection is not difficult to see given that the set of atomic variables
and atomic types are denumerable.

74 3. PROOF THEORY

S(xij) = S(f(xij)) = S(Aij) = i

So, for every i ∈ ω, the sets (xij)j∈ω and (Aij)j∈ω are respectively the set of
sorted variables of sort i and the set of types of sort i. f extends recursively to
f∗ as follows:

(119)
f∗ : TΣD [X] −→ StructTerm

0 7→ I
1 7→ J
xij 7→ Aij
t⊕ s 7→ f(t)◦f(s)
t⊗i s 7→ f(t)◦if(s)

Since f is bijective and f extends recursively to f∗, it is easy to prove by
induction on the structure of StructTerm that f∗ is bijective. Notice that in
fact f∗ is a sorted ΣD-isomorphism.

3.2.1 The Multimodal Calculus mD

The multimodal calculus mD is shown in Figures 3.5 and 3.6.
Like in the case of the equational theory EqD of Chapter 3, we need to define

some important relations between structural terms. These directly mimick the
precedence and wrap relations between terms in a product context. We overload
the symbols used in Chapter 3:

(120) Definition (Wrapping and Permutable Terms)

Given the term (T1 ◦i T2) ◦j T3, we say that:

(P1) T2 ≺T1 T3 iff i+ t2 − 1 < j.

(P2) T3 ≺T1
T2 iff j < i.

(O) T2 GT1
T3 iff i ≤ j ≤ i+ t2 − 1.

Observe that in a term like (T1 ◦i T2) ◦j T3, if (P1) or (P2) hold, (O) does not
apply. Conversely, if (O) is applicable, neither (P1) nor (P2) hold. If T2 ≺T1 T3

(respectively T3 ≺T1 T2), we say that T2 and T3 (respectively T3 and T2) per-
mute in T1. Otherwise, if (O) holds, we say that T2 wraps T3 in T1.

Let us see now the structural rules. We define the following relation between
structural terms ∼:

(121) T∼S iff S is the result of applying one structural rule to T

∼∗ is defined to be the reflexive, symmetric and transitive closure of ∼. There
exists a faithful embedding translation between cD and mD:

τ : cD = (F ,F , →) −→ mD = (StructTerm,F , →)
A → B 7→ A → B

Let us see some simple useful results on cD. If we have the provable arrows
A → B and C → D in cD then we have cD ` A • C → B • D. This was

3.2. A SORTED MULTIMODAL CALCULUS FOR D: MD 75

A → A Id
S → A T [A] → B

Cut
T [S] → B

T [I] → A
IL

T [I] → A
IR

I ⇒ I

T [J] → A
JL

T [J] → A
JR

J ⇒ J

X → A Y [B] → C
\L

Y [X◦A\B] → C

A◦X → B
\R

X → A\B

X → A Y [B] → C
/L

Y [B/A◦X] → C

X◦A → B
/R

X → B/A

X → A Y [B] → C
↑i L

Y [B ↑i A◦iX] → C

X◦iA → B
↑iR

X → B ↑i A

X → A Y [B] → C
↓i L

Y [X◦iA ↓i B] → C

A◦iX → B
↓i R

X → A ↓i B

X[A◦B] → C
•L

X[A •B] → C

X → A Y → B
•R

X◦Y → A •B

X[A◦iB] → C
�iL

X[A�iB] → C

X → A Y → B
�iR

X◦iY → A�iB

Figure 3.5: Sorted multimodal calculus mD, Part I

76 3. PROOF THEORY

Structural rules for units

- Continuous unit:

T [X] → A

T [I◦X] → A

T [I◦X] → A

T [X] → A

T [X] → A

T [X◦I] → A

T [X◦I] → A

T [X] → A

- Discontinuous unit:

T [X] → A

T [J◦1X] → A

T [J◦1X] → A

T [X] → A

T [X] → A

T [X◦iJ] → A

T [X◦iJ] → A

T [X] → A

Continuous associativity

X[(T1◦T2)◦T3] → D
Asscc

X[T1◦(T2◦T3)] → D

X[T1◦(T2◦T3)] → D
Asscc

X[(T1◦T2)◦T3] → D

Split-wrap

T1[T2◦T3] → D
SW

T1[(J◦T3)◦1T2] → D

T1[(J◦T3)◦1T2] → D
SW

T1[T2◦T3] → D

T1[T2◦T3] → D
SW

T1[(T2◦J)◦t2+1T3] → D

T1[(T2◦J)◦t2+1T3] → D
SW

T1[T2◦T3] → D

Discontinuous associativity T2 GT1 T3

S[T1◦i(T2◦jT3)] → C
Asscd1

S[(T1◦iT2)◦i+j−1T3)] → C

S[(T1◦iT2)◦jT3] → C
Asscd2

S[T1◦i(T2◦j−i+1T3)] → C

Mixed permutation 1 case T2 ≺T1 T3

S[(T1◦iT2)◦jT3] → C
MixPerm1

S[(T1◦j−S(T2)+1T3)◦iT2] → C

S[(T1◦iT3)◦jT2] → C
MixPerm1

S[(T1◦jT2)◦i+S(T2)−1z] → C

Mixed permutation 2 case T3 ≺T1
T2

S[(T1◦iT2)◦jT3] → C
MixPerm2

S[(T1◦jT3)◦i+S(T3)−1T2] → C

S[(T1◦iT3)◦jT2] → C
MixPerm2

S[(T1◦j−S(T3)+1T2)◦iT3] → C

Figure 3.6: Sorted multimodal calculus mD, Part II

3.2. A SORTED MULTIMODAL CALCULUS FOR D: MD 77

already proved by Lambek (1958) for unsorted types. For sorted types the
proof is exactly the same. In the case of the discontinuous products �i (0 <
i ∈ ω) the same result holds , i.e. A → B and C → D are provable in cD then
cD ` A�i c → B �i D. Again, the same reasoning works for this case.

We need the concept of type occurrence in a type (and later we will need the
concept of structural term occurrence in another structural term) and therefore
the concept of type context. Let us extend the set of types as follows:

(122) Fc
def
= F ∪ (∗if)i∈ω

The set (∗if)i∈ω can be considered as an extra set of sorted types (the subindex

f makes reference to the formulas or types). We call ∗if type holes. We say
that an A ∈ Fc is a product type context iff either A is a simple type of F or
A contains a single (or linear) occurrence of a type hole ∗if such that the ∗if ’s
occurrence is not dominated in its subformula tree by an implicative connective
like \, / or ↓i, ↑i (0 < i ∈ ω). Let A be a type context with type hole ∗bf and B

(b = S(B), i.e. ∗bf and B have the same sort) another type context (possibly a
normal type). We define A[B] as follows:

(123) A[B]
def
= σB/∗bf (A)

Where σB/∗bf denotes the type substitution map which replaces ∗bf by B. Notice

we have the interesting identity:

(124) A[∗bf] = A

(125) Remark
The condition that a type hole’s occurrence must not be dominated by an
implicative connective in its subformula tree rules out type contexts such
as for example A = B�2 (C/(E • ∗1f)), whereas a type context such as for

example B �2 ((C\D) • ∗1f) is a correct product type context.

We need a simple lemma:

(126) Lemma
Let C be a product type context with a type hole ∗af . Suppose that

cD ` A → B, where A and B are types.3 Then:

cD ` C[A] → C[B]

Proof. By induction on the structure of C:

1. The case C = ∗af is trivial.

2. Suppose without loss of generality that C = C1 �k C2[∗af] for some 0 <
k ∈ ω. By induction hypothesis we have that:

cD ` C2[A] → C2[B]

3If A and B were in Fc the result would go through also. But for the purposes of this
lemma it is not really necessary.

78 3. PROOF THEORY

By the monotonicity properties of cD we have the following inference:

C1 → C1 C2[A] → C2[B]
Monotonicity

C1 �k C2[A] → C1 �k C2[B]

Hence the lemma is true for discontinuous products. For continuous prod-
ucts it is completely similar. This completes the proof.

�
The work we have done on type contexts must also be done for structural

terms. Let us extend their set StructTerm as follows:

(127) StructTermc
def
= StructTerm ∪ (∗ist)i∈ω

The set StructTermc for structural terms mimics the set Fc. The set of struc-
tural holes4 can be considered to be an extra set of structural terms. A structural
context T is therefore defined as a structural term with variables in F ∪ (∗ist)i∈ω
such that every occurrence of a structural hole is linear. Consider T with struc-
tural hole ∗ist. Let S be another structural context of sort s = S(S). We define
T [S] as follows:

(128) T [S]
def
= σS/∗sst(T)

As in the case of type contexts we have the following interesting identity:

T [∗ist] = T

Where σS/∗sst denotes the structural term substitution map which replaces ∗sst
by S. We now define what we call the type equivalent for a structural term:

(129) Definition (Type Equivalent of a Structural Term)

Given a structural term T we define the type-equivalent T • of T by in-
duction on the structure of T :

• If T = I then T • = I.

• If T = J then T • = J .

• If T = A ∈ F then T • = A.

• If T = S1◦S2 then T • = S•1 • S•2 .

• If T = S1◦iS2 then T • = S•1 �i S•2 .

The type equivalent can also be defined for structural contexts. We have to add
to the above conditions the following one:

(130) If S = ∗ist then S• = ∗if

The following lemma will be useful for theorem (133):

(131) Lemma
Let T be a structural context and S be a structural term.5 Then:

4the subscript st stands for structural terms.
5S could be also a structural context.

3.2. A SORTED MULTIMODAL CALCULUS FOR D: MD 79

(132) (T [S])• = T •[S•]

Proof. By induction on the structure of structural terms:

1. Suppose T = ∗sst (s = S(S)). We have that T • = ∗sf . It follows that
T •[S•] = S•.

2. Suppose now T is complex, say:

T = T1◦iT2[∗sst]

T • = T •1�iT •2 [∗sf], so T •[S•] = T •1�iT •2 [S•]. On the other hand, (T [S])• =
T •1 �i (T2[S])•. By induction hypothesis (T2[S])• = T •2 [S•]. Hence:

(T [S])• = T •[S•]

Other cases are completely similar. This completes the proof.

�
With the formal machinery we have defined we can prove the following the-

orem:

(133) Theorem (Embedding Translation between cD and mD)

Let A,B ∈ F and T ∈ StructTerm. The following holds:

i) If `cD A → B then `mD A → B

ii) If `mD T → A then `cD T • → B

Proof.

i) Axioms are obvious as well as Cut. In mD we have the following fact:

`mD A�i B → C iff `mD A◦iB → C

The if case corresponds to the �i left rule. The only if is justified by Cut
with A◦iB → A�i B.

Let us see the residuation laws of cD:6

A�i B → C iff A → C↑iB

[only if] case. We have:

A◦iB → A�i B A�i B → C
Cut

A◦iB → C
↑iR

A → C↑iB

[if] case. We have:

6We consider the case of discontinuous connectives. Continuous connectives follow an
analogous proof.

80 3. PROOF THEORY

A → C↑iB C↑iB◦iB → C
Cut

A◦iB → C

Whence A�i B → C. The case of ↓i is completely similar.

Non-logical axioms of cD. Consider for example the case of Split-Wrap:

(A • J)�a+1 ↔ A •B

(134)

A◦B → A •B
SW

(A◦J)◦a+1B → A •B
JL

(A◦J)◦a+1B → A •B
•L

(A • J)◦a+1B → A •B
�a+1L

(A • J)�a+1 B → A •B

Other structural rules have similar reasoning.

ii) We prove by induction on the length of the derivations of mD that if
`mD T → A then `cD T • → A. We will use extensively two lemmas,
lemma (131) on type equivalents and lemma (126) on type contexts.

– Atomic axioms are obvious.

– Suppose that the last rule is ↑iL :

T → A S[B] → C
↑iL

S[B↑iA◦iS] → C

By induction hypothesis (i.h.), T • → A and S•[B] → C are prov-
able in cD. We have that `cD B↑iA �i T • → B↑iA � A → B. By
transitivity `cD B↑iA�i T • → B.

S•[B↑iA�i T ∗] → S•[B] and S•[B] → C

Again, by transitivity S•[B↑iA �i T • → C. And we know that
(S[B↑iA�i T •)• = S•[B↑iA�i T ∗]. This proves the case of ↑iL.

– Suppose that the last rule is ↑iR. We have by i.h. that (T◦iA)• → B.
We know that (T◦iA)• = T • �i A. By residuation in cD we infer
that T • → B↑iA. This proves the case of ↑iR. The case of ↓iL and
↓iR are almost identical.

– The cases of �iL and �iR are completely similar in reasoning to the
cases of the two rules for ↑i.

– Suppose now that the last rule is for example discontinuous associa-
tivity, i.e.:

T [A◦i(B◦jC)] → C
Asscd1

T [(A◦iB)◦i+j−1C] → C

By i.h. (T [A◦i(B◦jC)])• → C is provable in cD. We have that
(T [A◦i(B◦jC)])• = T •[A�i (B�jC)]. In cD `cD (A�iB)�i+j−1C
→ A�i (B �j C). Hence the following arrow is provable:

3.3. ABSORBING THE STRUCTURAL RULES: THE RISE OF HYPERSEQUENT
SYNTAX 81

T •[(A�i B)�i+j−1 C] → T •[A�i (B �j C)]

By i.h. (T [A �i (B �j C)])• → D and we know that (T [A �i (B �j
C)])• = T •[A�i (B �j C)] and (T [(A�i B)�i+j−1 C])• = T •[(A�i
B)�i+j−1C]. By transitivity we have therefore the following provable
arrow:

(T [(A�i B)�i+j−1 C])• → D

Which is what we wanted to prove. Other non-logical axioms of cD
follow completely similar reasonings.

– Suppose the last rule is Cut:

T → A S[A] → C
Cut

S[T] → C

By i.h. :

T • → A (S[A])• → C

We know that (S[A])• = S•[A] → C and that (S[T])• = S•[T •]. We
have that

S•[T •] → S•[A] → C

By Transitivity, the following arrow is provable:

S•[T •] → C

This completes the proof.

�

3.3 Absorbing the Structural Rules: the Rise of
Hypersequent Syntax

If one wants to absorb the structural rules of a Gentzen sequent system in
a substructural logic, one has to discover a convenient data structure for the
antecedent and the succedent of sequents. Here we propose two equivalent data
structures. They will both be called hypersequent syntax, a term which must
not be confused with Avron’s hypersequents (Avron (1991)). The reason for
using the prefix hyper in the term sequent is that the data-structures which are
proposed are quite nonstandard.

82 3. PROOF THEORY

3.3.1 Hypersequent Syntax I: the String-Based Version

Let us define what we call the set of types segments:

(135) Definition (Type Segments)

In hypersequent calculus we define the types segments SFk of sort k:

SF0 ::= A for A ∈ F0

SFa ::= i
√
A for A ∈ Fa and 0 ≤ i ≤ a = S(A)

A notational convention. When A is an arbitrary type, we will frequently write
in lowercase the type in order to refer to its sort S(A), i.e.:

a
def
= S(A)

Types segments of sort 0 are types. But, types segments of sort greater than
0 are no longer types. Strings of types segments can form meaningful logical
material like the set of hyperconfigurations, which we now define. The hypercon-
figurations O are defined unambiguously by mutual recursion as follows, where
Λ is the empty string:

O ::= Λ
O ::= A,O for S(A) = 0
O ::= [],O
O ::= 0

√
A,O, 1

√
A, . . . , a−1

√
A,O, a

√
A,O

for a = S(A) > 0

By the vectorial notation
−→
A we mean a particular hyperconfiguration for every

type A which we will use many times throughout this Chapter:

−→
A

def
=

{
A if S(A) = 0
0
√
A, [], 1

√
A, . . . , a−1

√
A, [], a

√
A if a = S(A) > 0

Notice that this notation is nonstandard in the field of substructural logics. The
intended meaning of i

√
A (for a type A with sort a = S(A) > 0 and 0 ≤ i ≤ a) is

that the i-th element αi of a string α0 + 1 +α1 + . . .+αa−1 + 1 +αa inhabiting
JAK. It is important to signal that a single occurrence of a types segment does

not have the status of a type. Only the so-called vectors
−→
A and generalized

wrappings (to be defined later) constitute the correct hyperconfigurations and
subhyperconfigurations. Moreover, note that not every substring of a hypercon-
figuration is a (well-formed) hyperconfiguration because as well as containing
all the segments of discontinuous types, these segments must be separated by
correct hyperconfigurations. For example, where C is supposed to be of sort 0
if A is a type of sort 2 then the following expression is incorrect:

(136) 0
√
A,C 1

√
A 6∈ O

We define the components of a hyperconfiguration as its maximal substrings not
containing the separator []. Components can be incorrect hyperconfigurations.
(136) exemplifies an incorrect hyperconfiguration whereas the following hyper-
configuration is correct (here A and C denote arbitrary types of sort respectively
2 and 0):

3.3. ABSORBING THE STRUCTURAL RULES: THE RISE OF HYPERSEQUENT
SYNTAX 83

0
√
A,C 1

√
A︸ ︷︷ ︸

first component

, [], 2
√
A, I, C/C︸ ︷︷ ︸

second component

∈ O

The set of the string-based hyperconfigurations will be denoted when neces-
sary as Os or simply O.

3.3.2 Hypersequent Syntax II: the Tree-Based Version

The main point of this subsection is to give an alternative hypersequent syntax
which is tree-based. It is interesting to note that this kind of hypersequent
syntax allowed7 Morrill (2011a) to implement the system CatLog which has all
the power of D and its extensions studied in this thesis. Let N and L be the
following sets:

(137)
N def

= {·} ∪
⋃
i∈ω
Fi+1

L def
= {Λ} ∪ {[]} ∪ F0

Sets N and L are called respectively, the set of internal nodes and the set of
leaves. We now define a set of trees which we call hypertrees. Let T be the set
of hypertrees generated by:

i) The set Init of initial hypertrees of Figure 3.7.

ii) The hypertree generating functions of Figure 3.8.

The partial functions Conc1, Conc2 and Initi have disjoint domains. In fact,
T is the least set satisfying the equation:

(138) T def
= Init ∪Conc1(T , T) ∪Conc2(T , T) ∪ Inti(T , T)

Let us give an example:

(139) a. Consider the hypertree: where A ∈ F2, B ∈ F1 and C ∈ F0:

·

A

ΛB

[]

[]C

We now give the linearized version Ot corresponding to T :

7Glyn Morrill p.c.

84 3. PROOF THEORY

·

A

·

[]

A

∗a. . . ∗i . . .∗1

Figure 3.7: Initial hypertrees with ∗i ∈ {Λ, []}

(140)

Ot ::= Λ
Ot ::= A,Ot
Ot ::= [],Ot
Ot ::= A{Ot : . . . : Ot︸ ︷︷ ︸

a Ot’s

},Ot for a = S(A) > 0

It is easy to see that Ot and T are in bijective correspondance. Types of sort
greater than 0 appear in the hypertrees as internal nodes. The intuition is
that types of sort greater than 0 appear in our multimodal calculus mD as
leaves which wrap some structural terms. In order to maintain the information
that these types are wrapping is the fact of occurring as internal nodes in the
hypertrees. The children of a given type A with a = S(A) > 0 correspond to
the material wrapped in the multimodal calculus. This intuition justifies that
we call hyperleaves the internal nodes labelled by types (of sort greater than 0).
Therefore, the interpretation in a syntactical algebra is the following:

JA{∆1 : · · · : ∆a}K
def
=

{α0 + δ1 + α1 + · · ·+ αa−1 + δa + αa :
α0 + 1 + α1 + · · ·+ αa−1 + 1 + αa ∈ JAK and δi ∈ J∆iK, 1 ≤ i ≤ a}

The vectorial notation for types, used in the string-based hypersequent syntax,
corresponds in the tree-based case to:

(141)

−→
A
def
= A

[]. . . [] . . .︸ ︷︷ ︸
a []′s

[]

Both string and tree based hypersequent syntaxes are very similar as we
shall see later. By recursion on the structure of Os we see that Os and Ot are
in bijective correspondance:

(142)

Os
h−→ Ot

Λ 7→ Λ
A,∆ 7→ A, h(∆)
[],∆ 7→ [], h(∆)

0
√
A,∆1,

1
√
A, · · · , a−1

√
A,∆a,

a
√
A,∆a+1 7→ A{h(∆1) : · · · : h(∆a)}, h(∆a+1)

A is such that S(A) > 0 and ∆i ∈ Os,
i = 1, · · · , a+ 1

The set of tree-based hyperconfigurations will be denoted when necessary as Ot
or simply O.

3.3. ABSORBING THE STRUCTURAL RULES: THE RISE OF HYPERSEQUENT
SYNTAX 85

·

∆

·

Γ
Conc1

·

∆ Γ

?1

∆

?2

Γ
Conc2 : at least one ?i is different from ·

·

?2

Γ

?1

∆

∆

[] . . . []︸︷︷︸
i-th separator

. . . []

Γ

Inti : i-th intercalation
∆

[] . . . Γ . . . []

Figure 3.8: Hypertree generating functions

86 3. PROOF THEORY

3.4 Hypersequent Calculus: the Intermediate For-
mulation

Some useful operations on hyperconfigurations

In this subsection we present some syntactic machinery in order to manipu-
late easily hyperconfigurations in both hypersequent syntaxes. The results we
present will be worked out with Os and hold of also in Ot with completely sim-
ilar reasonings. In the following, we will write O instead of Os. A convention
is to write in latin lower-case the sort of a hyperconfiguration, i.e.:

d
def
= S(∆)

We now define three operations on hyperconfigurations and show that the set of
hyperconfigurations is closed under them. We use the string-based hypersequent
syntax. Later we will see that these results hold also in the case of the tree-based
hypersequent syntax.

(143) Definition (Concatenation of hyperconfigurations)

(,) : O ×O −→ (SF ∪ {[]})∗
(∆,Γ) 7→ ∆,Γ

(144) Definition (Intercalation of a Hyperconfiguration at the i-th Occurrence
of a Separator in a Hyperconfiguration)

|i : O ×O −→ (SF ∪ {[]})∗
(∆,Γ) 7→ ∆|iΓ

(145) Definition (Generalized Wrapping)

⊗ : O × List(O) −→ (SF ∪ {[]})∗
(∆, 〈Γ1, · · · ,Γd〉) 7→ ∆⊗ 〈Γ1, · · · ,Γd〉

Where List(O) is the set of finite lists of hyperconfigurations and 1 ≤ b ≤ d

and d = S(∆). In the case that ∆ =
−→
A we see that:

−→
A ⊗ 〈∆1, · · · ,∆a〉 = 0

√
A,∆1,

1
√
A, · · · ,∆a−1,

a−1
√
A,∆a,

a
√
A

for the string-based hypersequent syntax

−→
A ⊗ 〈∆1, · · · ,∆a〉 = A{∆1 : · · · : ∆a}
for the tree-based hypersequent syntax

In the following lines we prove some lemmas which tell us that the set of hy-
perconfigurations is closed under the operations of intercalation and generalized
wrapping.

(146) Remark
In these lemmas we use the fact that ifO ⇒ ∆ then we have alsoO ⇒ ∆,O,
for the BNF production rules are all right-branching and a leftmost deriva-
tion has the form O ⇒ α,O, where α may contain the (unique) non-
terminal O.

3.4. HYPERSEQUENT CALCULUS: THE INTERMEDIATE FORMULATION 87

(147) Lemma
Let ∆ and Γ be arbitrary hyperconfigurations. We have that:

∆,Γ ∈ O

Proof. If ∆ = Λ then trivially ∆,Γ ∈ O. Suppose then that ∆ 6= Λ. We know
by the remark above that if O ⇒ ∆ then O ⇒ ∆,O:

O ⇒ ∆,O

Since O ⇒ Γ, we derive then from O ⇒ ∆,O the following:

O ⇒ ∆,O ⇒ ∆,Γ

This proves that ∆,Γ ∈ O. �

(148) Lemma
Let ∆ ∈ O such that d = S(∆) > 0. Let Γ ∈ O. It follows that:

∆|iΓ ∈ O

Proof. By hypothesis we have that:

O ⇒ ∆ and O ⇒ Γ

The leftmost derivation of ∆ until the i-th separator appears in the derivation
as follows:

O ⇒ α,O, β
O → [],O
⇒ α, []︸︷︷︸

i-th []

,O, β ⇒ α, [], γ, τ = ∆

Where we have applied the BNF production O → [],O. Here, α is terminal,
β is such that it may contain occurrences of O and O, β ⇒ γ, τ , where γ and
τ are terminal. We know that if O ⇒ Γ then O ⇒ Γ,O. From the derivation
O ⇒ α,O, β and replacing the underlined O by O ⇒ Γ,O:

O ⇒ α,O, β O⇒Γ,O⇒ α,Γ,O, β O,β ⇒ γ,τ⇒ α,Γ, γ, τ = ∆|iΓ

This completes the proof. �

(149) Lemma
Let ∆ ∈ O such that d = S(∆) > 0. Consider hyperconfigurations ∆i

with 1 ≤ i ≤ d. It follows that:

∆ ⊗ 〈∆1, · · · ,∆d〉 ∈ O

Proof. By induction on d ≥ 1.
Base case: d=1. This corresponds to the following:

∆ ⊗ 〈∆1〉

Here generalized wrapping corresponds to intercalation:

88 3. PROOF THEORY

∆ ⊗ 〈∆1〉 = ∆|1∆1 ∈ O
By the previous lemma, we know that hyperconfigurations are closed under in-
tercalation. The base case is proved.

Inductive step: given ∆i with 1 ≤ i ≤ d+ 1, we want to prove that:

∆⊗ 〈∆1, . . . ,∆d+1〉 ∈ O
By induction hypothesis:

∆⊗ 〈∆1, . . . ,∆d〉 ∈ O
Let j be the index of the d+ 1-th separator of ∆. We have that:

∆⊗ 〈∆1, . . . ,∆d+1〉 = (∆⊗ 〈∆1, . . . ,∆d〉)|j∆d+1 ∈ O
By the previous lemma, since hyperconfigurations are closed under intercalation
and ∆⊗ 〈∆1, . . . ,∆d〉 ∈ O, we have that:

∆⊗ 〈∆1, . . . ,∆d+1〉 ∈ O
This completes the proof. �

The proofs of the closedness of operations we have presented before works
also for the tree-based hypersequent syntaxes. Given the fact that Os and
Ot are in bijective correspondance and they are closed by the operations +
(concatenation) and |i (i-th wrapping or intercalation) (0 < i ∈ ω) we see that

the mapping Os
h−→ Ot is an isomorphism of displacement algebras.

Hypercontexts for Hypersequent Syntax

We consider a set of sorted holes (∗ij)i,j∈ω, which are important objects for
defining the concept of hypercontext for hyperconfigurations. Sorted holes can
be thought of as an extra set of types. Like types holes have sort:

S(∗ji)
def
= i, for i, j ∈ ω

We will give two kinds of hypercontexts, both necessary for the formulation of
a calculus which absorbs the structural rule of mD:

• Continuous hypercontexts

• Abstract hypercontexts

(150) Definition (Continuous Hypercontexts)

Hypercontexts are defined by unambiguous mutual recursion.

C ::= Λ
C ::= A, C for S(A) = 0
C ::= ∗j , C for j ∈ ω
C ::= [], C
C ::= 0

√
A, C, 1

√
A, . . . , a−1

√
A, C, a

√
A, C

for A ∈ F , a = S(A) > 0

3.4. HYPERSEQUENT CALCULUS: THE INTERMEDIATE FORMULATION 89

Observe that the set O of hyperconfigurations is properly contained in the set
C of hypercontexts. We will make an assumption on the holes of an arbitrary
hypercontext: given a hypercontext ∆ with n holes, every hole has a single
occurrence. Given n hypercontexts Γi (i = 1, · · · , n) we represent the operation
of simultaneous replacement of every hole by hypercontexts Γi as follows:

(151)
∆(Γ1, · · · ,Γn)

That the operation of simultaneous replacement of hyperholes is closed in the
set of hypercontexts can be justified in a completely analogous way to the one
of intercalation of hyperconfigurations at a separator.

Because of this similarity of separators and hyperholes, the reader is advised:

(152) Remark
It is fundamental to keep in mind that the separator [] and holes are
distinct objects. Usually hypercontexts Γ are hyperconfigurations. The []
is an object level expression of hypersequent syntax and of course helps
to refer to the context, but at an object level. Holes have the purpose of
making easier to work with and read with more commodity the rules of
hypersequent calculus. Without these mathematical devices, reading and
formulating hypersequent syntax would be very painful.

The results of concatenation, i-th intercalation and generalized wrapping on
hyperconfigurations can be easily extended to continuous hypercontexts. Note
that if ∆ is a continuous hypercontext with an occurrence of a hyperhole ∗ji
then ∆ = ∆(∗ji).

3.4.1 The Intermediate Hypersequent Calculus

We present now the intermediate hypersequent calculus hD which has two no-
table features: 1) there are only logical rules (there is no presence of structural
rules), i.e. as claimed, the structural postulates of mD are absorbed, and 2)
the notation of hD subsumes both string-based and tree-based hypersequent
syntax. The formulation of the logical rules of hD are easily motivated by the
interpretation in an arbitrary displacement algebra A.

Consider an arbitrary type B of sort S(B) > 0, arbitrary hyperconfigurations
∆i with 1 ≤ i ≤ S(B) and an arbitrary valuation v on types. We will write J · Kv
as J · K. We have that:

JB ⊗ 〈∆1, · · · ,∆b〉K =
{b0 + d1 + b1 · · ·+ bS(b)−1 + dS(B) + bS(B) :
b0 + 1 + b1 + · · ·+ bS(B)−1 + 1 + bS(B) ∈ JBK and di ∈ J∆iK, 1 ≤ i ≤ S(B)}

In the following Γ, Γi, Θ and Θi will denote arbitrary hyperconfigurations or
hypercontexts.

3.4.2 Axioms

id−→
A ⇒ A

90 3. PROOF THEORY

Continuous connective rules

a) / rules:
Consider the following syntactically interpreted hyperconfiguration:

J−→B ⊗ 〈∆1, · · · ,∆b〉K

And the following set-theoretical inclusion:

JΓK ⊆ JAK

Now since J
−−→
B/A,ΓK ⊆ J

−−→
B/A,AK ⊆ JBK, we have that

J(
−−→
B/A,Γ)⊗ 〈∆1, · · · ,∆b〉K ⊆ J−→B ⊗ 〈∆1, · · · ,∆b〉K

Extending to a hypercontext ∆ for
−→
B ⊗ 〈∆1, · · · ,∆b〉 then:

If J∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉)K ⊆ JCK and JΓK ⊆ JAK

Then J∆((
−−→
B/A,Γ)⊗ 〈∆1, · · · ,∆b〉)K ⊆ JCK

This corresponds to the hD left rule for the connective /. The right rule
for this continuous implication has no surprises. Hence the following rules
obtain soundly:

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

/L
∆((
−−→
B/A,Γ)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

∆,
−→
A ⇒ B

/R
∆ ⇒ B/A

b) \ The rules for this connective are completely similar to the previous case.
Hence we have the rules:

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

\L
∆((Γ,

−−→
A\B)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

−→
A,∆ ⇒ B

\R
∆ ⇒ A\B

c) • rules:

∆((
−→
A,
−→
B)⊗ 〈∆1, · · · ,∆a+b〉) ⇒ C

•L
∆(
−−−→
A •B ⊗ 〈∆1, · · · ,∆a+b〉) ⇒ C

∆ ⇒ A Γ ⇒ B
•R

∆,Γ ⇒ A •B

Discontinuous connective rules

a) ↓i rules (i > 0):

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

↑iL
∆((Γ|i

−−−→
A↓iB)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

−→
A |i∆ ⇒ B

↓iR
∆ ⇒ A↓iB

3.4. HYPERSEQUENT CALCULUS: THE INTERMEDIATE FORMULATION 91

b) ↑i rules (i > 0):

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

↑iL
∆((
−−−→
B↑iA|iΓ)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

c) �i rules (i > 0):

∆((
−→
A |i
−→
B)⊗ 〈Γ1, · · · ,Γa+b−1〉) ⇒ C

�iL
∆(
−−−−→
A�i B ⊗ 〈∆1, · · · ,∆a+b−1〉) ⇒ C

∆ ⇒ A Γ ⇒ B
�iR

∆|iΓ ⇒ A�i B

Units

a) Continuous unit rules:

∆(Λ) ⇒ A
IL

∆(I) ⇒ A
IR

Λ ⇒ I

b) Discontinuous unit rules:

∆([]⊗ 〈Γ〉) ⇒ A
JL

∆(J ⊗ 〈Γ〉) ⇒ A
JR

[] ⇒ J

Cut rule

∆ ⇒ A Γ(
−→
A ⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

Cut
Γ(∆⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

We summarize the rules in Figure 3.9.
We consider the following embedding translation from mD to hD:

(·)] : mD = (F ,StructTerm, →) −→ hD = (F ,O,⇒)
T → A 7→ (T)] ⇒ (A)]

(·)] is such that:

A] = 0
√
A, [], 1

√
A, · · · , a−1

√
A, [], a

√
A if A is a type of at least sort 1 or

A] = A{[] : · · · : []} if we use the tree-based hypersequent syntax
A] = A if A is of sort 0

(T1 ◦ T2)] = T]1 , T
]
2

(T1 ◦i T2)] = T]1 |iT
]
2

I] = Λ
J] = []

Collapsing the structural rules

Let us see how the structural rules are absorbed in hD. The proof uses the
string-based hypersequent syntax, but the tree-based one has a very similar
proof. We show here that structural postulates of mD collapse into the same
textual form when they are mapped through (·)]. Later we will show that:

92 3. PROOF THEORY

id−→
A ⇒ A

∆ ⇒ A Γ(
−→
A ⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

Cut
Γ(∆⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

/L
∆((
−−→
B/A,Γ)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

∆,
−→
A ⇒ B

/R
∆ ⇒ B/A

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

\L
∆((Γ,

−−→
A\B)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

−→
A,∆ ⇒ B

\R
∆ ⇒ A\B

∆((
−→
A,
−→
B)⊗ 〈∆1, · · · ,∆a+b〉) ⇒ C

•L
∆(
−−−→
A •B ⊗ 〈∆1, · · · ,∆a+b〉) ⇒ C

∆ ⇒ A Γ ⇒ B
•R

∆,Γ ⇒ A •B

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

↑iL
∆((
−−−→
B↑iA|iΓ)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

↑iL
∆((Γ|i

−−−→
A↓iB)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

−→
A |i∆ ⇒ B

↓iR
∆ ⇒ A↓iB

∆((
−→
A |i
−→
B)⊗ 〈Γ1, · · · ,Γa+b−1〉) ⇒ C

�iL
∆(
−−−−→
A�i B ⊗ 〈∆1, · · · ,∆a+b−1〉) ⇒ C

∆ ⇒ A Γ ⇒ B
�iR

∆|iΓ ⇒ A�i B

∆ ⇒ A Γ(
−→
A ⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

Cut
Γ(∆⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

Figure 3.9: Intermediate hypersequent calculus hD

If T∼∗S then T] = S]

Moreover will see that for every A,B,C ∈ F the following hypersequents are
provable in hD:

(153) • Continuous associativity

−−−−−−−−→
A • (B • C) ⇒ (A •B) • C and

−−−−−−−−→
(A •B) • C ⇒ A • (B • C)

• Mixed associativity If we have that B GA C:

−−−−−−−−−−→
A�i (B �j C) ⇒ (A�iB)�i+j−1C and

−−−−−−−−−−−−−−→
(A�i B)�i+j−1 C) ⇒ A�i(B�jC)

• Mixed permutation If we have that B ≺A C:

−−−−−−−−−−−→
(A�i B)�j C) ⇒ (A�j−b+1C)�iC and

−−−−−−−−−−−−−−→
(A�j−b+1 C)�i C ⇒ (A�iB)�jC)

If we have that C ≺A B:

−−−−−−−−−−−→
(A�i B)�j C) ⇒ (A�jC)�i+c−1C

−−−−−−−−−−−−−−→
(A�j C)�i+c−1 C ⇒ (A�iB)�jC)

3.4. HYPERSEQUENT CALCULUS: THE INTERMEDIATE FORMULATION 93

• Split wrap:

−−−→
A •B ⇒ (A • J)�a+1 B and

−−−−−−−−−−−→
(A • J)�a+1 B ⇒ A •B

and: −−−−−−−−−→
(J •B)�1 A ⇒ A •B and

−−−→
A •B ⇒ (J •B)�1 A

• Continuous unit and discontinuous unit:

−−−→
A • I ⇒ A and

−→
A ⇒ A • I and

−−−→
I •A ⇒ A and

−→
A ⇒ I •A

and:

−−−−→
A�i J ⇒ A and

−→
A ⇒ A�i J and

−−−−→
J �1 A ⇒ A and

−→
A ⇒ J �1 A

That hD absorbs the rules is proved in the following theorem:

(154) Theorem (hD Absorption of EqD
∗ Structural Rules)

For any T, S ∈ StructTerm, if T∼∗S then (T)] = (S)].

Proof. We define a useful notation for vectorial types which will help us to
prove the theorem. Where A is an arbitrary type of sort greater than 0:

(155)
−→
A
j

i =

{
i
√
A, if i = j
−→
A
j−1

i , [], j
√
A, if j − i > 0

Note that
−→
A =

−→
A
a

0 . Now, consider arbitrary types A,B and C. As usual we
denote their sorts respectively by a, b and c. We have then:

• Continuous associativity:{
((A◦B)◦C)] = (

−→
A,
−→
B),
−→
C =

−→
A,
−→
B,
−→
C

(A◦(B)◦C))] =
−→
A, (
−→
B,
−→
C) =

−→
A,
−→
B,
−→
C

• Discontinuous associativity: Suppose that B GA C

We have that:

−→
B |j
−→
C =

−→
B
i−1

0 ,
−→
C ,
−→
B
b

i
−→
A |i(
−→
B |j
−→
C) =

−→
A
i−1

0 ,
−→
B
j−1

0 ,
−→
C ,
−→
B
b

j ,
−→
A
a

i

On the other hand, we have that:

−→
A |i
−→
B =

−→
A
i−1

0 ,
−→
B,
−→
A
a

i =
−→
A
i−1

0 ,
−→
B
j−1

0 , []︸︷︷︸
(i+j−1)-th []

,
−→
B
b

j ,
−→
A
a

i

It follows that:

(
−→
A |i
−→
B)|i+j−1

−→
C =

−→
A
i−1

0 ,
−→
B
j−1

0 ,
−→
C ,
−→
B
b

j ,
−→
A
a

i

94 3. PROOF THEORY

Summarizing:{
(A◦i(B◦jC))] =

−→
A
i−1

0 ,
−→
B
j−1

0 ,
−→
C ,
−→
B
b

j ,
−→
A
a

i

((A◦iB)◦i+j−1C)] =
−→
A
i−1

0 ,
−→
B
j−1

0 ,
−→
C ,
−→
B
b

j ,
−→
A
a

i

Hence:

(A◦i(B◦jC))] = ((A◦iB)◦i+j−1C)]

For the case (A◦iB)◦kC, if one puts k = i+ j − 1 one gets j = k − i+ 1.
Therefore, changing indices: we have that:

((A◦iB)◦jC)] = (A◦i(B◦j−i+1C))]

This ends the case of discontinuous associativity.

• Mixed permutation:

There are two cases: B ≺A C or C ≺A B. We consider only the first case,
i.e. B ≺A C. The other case is analogous. Let us see ((A◦iB)◦jC)]:

−→
A |i
−→
B =

−→
A
i−1

0 ,
−→
B,
−→
A
k−1

i , []︸︷︷︸
j-th []

,
−→
A
a

k

We have therefore:

j = k − 1 + b iff k = j − b+ 1

((A◦iB)◦jC)] =
−→
A
i−1

0 ,
−→
B,
−→
A
k−1

i ,
−→
C ,
−→
A
a

k

Hence:

(
−→
A◦j−b+1

−→
C)] =

−→
A
i−1

0 , [],
−→
A
k−1

i ,
−→
C ,
−→
A
a

k

It follows that:

((A◦j−b+1C)◦iB)] =
−→
A
i−1

0 ,
−→
B,
−→
A
k−1

i ,
−→
C ,
−→
A
a

k

Summarizing:{
((A◦iB)◦jC)] =

−→
A
i−1

0 ,
−→
B,
−→
A
k−1

i ,
−→
C ,
−→
A
a

k

((A◦j−b+1C)◦iB)] =
−→
A
i−1

0 ,
−→
B,
−→
A
k−1

i ,
−→
C ,
−→
A
a

k

Hence
((A◦iB)◦jC)] = ((A◦j−b+1C)◦iB)]

Putting i = j − b+ 1 we have that j = i+ b− 1. Hence:

3.4. HYPERSEQUENT CALCULUS: THE INTERMEDIATE FORMULATION 95

((A◦iC)◦jB)] = ((A◦jC)◦i+b−1B)]

This ends the case of mixed permutation.

• Split-wrap:
We have:

((A◦J)◦a+1B)] = (
−→
A, [])|a+1

−→
B =

−→
A,
−→
B

((J◦B)◦1A)] = ([],
−→
B)|1

−→
A =

−→
A,
−→
B

Hence:

((A◦J)◦a+1B)] = (A◦B)]

and
((J◦B)◦1A)] = (A◦B)]

This ends the case of split-wrap.

• Units:

(I◦A)] =
−→
A = (A◦I)]

(J◦1A)] = ([]|1
−→
A) =

−→
A =

−→
A |i[] = (A◦iJ)]

We recall that types play the role of variables of structural terms. Now,
we have seen that structural rules for arbitrary type variables collapse
into the same textual form. This result generalizes to arbitrary structural
terms by simply using type substitution.

More concretely, we have proved that: if T∼S (i.e. S is the result of
applying a single structural rule to T) then T] = S]. Suppose we have
T∼∗S (we omit the trivial case T∼∗T). We have then a chain:

T := T1∼T2∼ · · ·∼Ti−1∼Ti =: S for i ≥ 2

Applying (·)] to each Tk∼Tk+1 (1 ≤ k ≤ i− 1) we have proved that:

(Tk)] = (Tk+1)]

We have therefore a chain of identities:

(T)] = (T1)] = (T2)] = . . . = (Ti)
] = (S)]

This completes the proof.

�

(156) Remark
Note that we have also proved that Os is a displacement algebra. Analo-
gously, we have then that Ot is a general displacement algebra. In fact, we

have that the bijective mapping Os
h−→ Ot is an isomorphism of general

displacement algebras.

96 3. PROOF THEORY

We will now prove the associativity theorems of hD displayed in (153). Other
theorems corresponding to the structural postulates of mD have similar proofs.

• Continuous associativity is obvious as in the Lambek calculus. The only
difference is that types are sorted and in our notation the antecedent of
hypersequents have the vectorial notation.

• Discontinuous associativity: we suppose that B GA C. The following
hypersequents are provable:

−−−−−−−−−−−−−−→
(A�i B)�i+j−1 C ⇒ A�i (B �j C)

And:

−−−−−−−−−−→
A�i (B �j C) ⇒ (A�i B)�i+j−1 C

By the previous lemma the identity
−→
A |i(
−→
B |j
−→
C) = (

−→
A |i
−→
B)|i+j−1

−→
C holds.

We have the two following hypersequent derivations:

−→
A ⇒ A

−→
B ⇒ B

−→
C ⇒ C

�jR−→
B |j
−→
C ⇒ B �j C

�iR−→
A |i(
−→
B |j
−→
C) = (

−→
A |i
−→
B)|i+j−1

−→
C ⇒ A�i (B �j C)

(
−→
A |i
−→
B)|i+j−1

−→
C ⇒ A�i (B �j C)

�iL−−−−→
A�i B|i+j−1

−→
C ⇒ A�i (B �j C)

�i+j−1L−−−−−−−−−−−−−−→
(A�i B)�i+j−1 C ⇒ A�i (B �j C)

and

−→
A ⇒ A

−→
B ⇒ B

�iR−→
A |i
−→
B ⇒ (A�i B)

−→
C ⇒ C

�i+j−1R
(
−→
A |i
−→
B)|i+j−1

−→
C =

−→
A |i(
−→
B |j
−→
C) ⇒ (A�i B)�i+j−1 C

�jL−→
A |i(
−−−−−→
B �j C) ⇒ (A�i B)�i+j−1 C

�iL−−−−−−−−−−→
A�i (B �j C) ⇒ (A�i B)�i+j−1 C

3.5 Hypersequent Calculus: the abstract metan-
otation

In this section we present the abstract hypersequent calculus which we will
use in the direct syntactic algorithmic proof of the Cut elimination theorem.
As in the case of continuous hypercontexts, we will use the set of hyperholes
(∗ji)i,j∈ω. In order to see tree-based hyperconfigurations at work, we define
abstract hypercontexts in terms of Ot. Of course, in the case of Os the results
are completely analogous. The set of abstract hypercontexts will be denoted C,
although if one wanted to use a particular hypersequent syntax, the notations
Cs and Ct are completely sound.

3.5. HYPERSEQUENT CALCULUS: THE ABSTRACT METANOTATION 97

(157) Definition (Abstract Hypercontexts)

C ::= Λ
C ::= A, C for S(A) = 0

C ::= ∗j0, C for j ∈ ω
C ::= [], C
C ::= A{C, . . . , C︸ ︷︷ ︸

a times

}, C for A ∈ F , a = S(A) > 0

C ::= ∗ji{C, . . . , C︸ ︷︷ ︸
i times

}, C, where i > 0

If we consider the set of hyperholes (∗ji)i,j∈ω, i>0 as an extra set of types it
is easy to see (mimicking the proof for hyperconfigurations) that C is closed
under concatenation, intercalation, generalized wrapping and substitution of
∗ji by a hypercontext. Like in the case of continuous hypercontexts we adopt
the convention that every hyperhole has a linear occurrence. Notice here that
hyperholes occur in a very different way from the case of continuous hyperholes,
because they only appear either as hyperholes of sort 0 or hyperholes of sort
greater than 0 which are wrapping material. The last BNF definition of (157) is
the key to define the abstract formulation of hypersequent calculus. This gives a
final version of hypersequent syntax that is very close (in its formulation) to the
one of the sequent calculus for L. Finally, as claimed, this abstract formulation
of hypersequent syntax for hD will enable us to make a syntactic proof of the
Cut Elimination theorem following the same strategy which Lambek (1958) used
to prove Cut elimination for his calculus L.

From the intermediate hypersequent syntax to the abstract hyperse-
quent syntax

Let us consider a hyperconfiguration Γ = ∆(
−→
A⊗〈∆1, · · · ,∆a〉) where a = S(A).

∆ is a hypercontext with an occurrence of a continuous sorted hyperhole, say
∗ji where i = S(

−→
A ⊗ 〈∆1, · · · ,∆a〉). The notation with parentheses signals that

the distinguished occurrence is continuous. Let ∗ka be a hyperhole such that
S(∗ka) = a. Let us replace the occurrence of

−→
A in Γ by our hyperhole. We get:

∆(∗ka ⊗ 〈∆1, · · · ,∆a〉) (?)

As a convention we write the expression in (?) as follows:

(158) ∆〈∗ka〉

The angle brackets in (158) indicate that any substitution of ∗ka by an arbitrary
hyperconfiguration Θ of sort a will wrap (i.e. ⊗) the material 〈∆1, · · · ,∆a〉. For

example, we can replace ∗ka by
−→
A :

∆〈−→A 〉

∆〈−→A 〉 is identical to ∆(
−→
A ⊗ 〈∆1, · · · ,∆a〉). Notice that we have the identity

∆ = ∆〈∗ka〉. Now, ∆〈∗ka〉 is quite different from ∆(∗ki). In ∆〈−→A 〉 there is the

hidden presence of the material 〈∆1, · · · ,∆a〉, while in ∆(∗ji) this is not the case.
Let us remark that the use of angle brackets has as purpose to discern when

98 3. PROOF THEORY

we are dealing with a continuous hypercontext or an abstract hypercontext.
Finally, as useful abus de langage, the distinguished occurrence of a hypercon-
figuration of sort 0 is also signalled with the angle brackets notation. In this
sense abstract hypercontexts subsume continuous hypercontexts.

We are now in a position to formulate the abstract hypersequent calculus:

• Continuous connectives:

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

/L
∆((
−−→
B/A,Γ)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

∆,
−→
A ⇒ B

/R
∆ ⇒ B/A

;

Γ ⇒ A ∆〈−→B 〉 ⇒ C
/L

∆〈−−→B/A,Γ〉 ⇒ C

∆,
−→
A ⇒ B

/R
∆ ⇒ B/A

The case of \ is completely similar to the one of /. The continuous product
abstract formulation is as follows:

∆((
−→
A,
−→
B)⊗ 〈∆1, · · · ,∆a+b〉) ⇒ C

•L
∆(
−−−→
A •B ⊗ 〈∆1, · · · ,∆a+b〉) ⇒ C

∆ ⇒ A Γ ⇒ B
•R

∆,Γ ⇒ A •B

;

∆〈−→A,−→B 〉 ⇒ C
•L

∆〈−−−→A •B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
•R

∆,Γ ⇒ A •B

• Discontinuous connectives:

Γ ⇒ A ∆(
−→
B ⊗ 〈∆1, · · · ,∆b〉) ⇒ C

↑iL
∆((
−−−→
B↑iA|iΓ)⊗ 〈∆1, · · · ,∆b〉) ⇒ C

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

;

Γ ⇒ A ∆〈−→B 〉 ⇒ C
↑iL

∆〈−−−→B↑iA|iΓ〉 ⇒ C

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

The case of ↓i is very similar to the case of ↑i. Let us formulate the rules
for the discontinuous product �i:

∆((
−→
A |i
−→
B)⊗ 〈Γ1, · · · ,Γa+b−1〉) ⇒ C

�iL
∆(
−−−−→
A�i B ⊗ 〈∆1, · · · ,∆a+b−1〉) ⇒ C

∆ ⇒ A Γ ⇒ B
�iR

∆|iΓ ⇒ A�i B

;

∆〈−→A |i
−→
B 〉 ⇒ C

�iL
∆〈−−−−→A�i B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
�iR

∆|iΓ ⇒ A�i B

3.6. THE FAITHFUL EMBEDDING TRANSLATION THEOREM BETWEEN MD AND
HD 99

• Units. Continuous unit:

∆(Λ) ⇒ A
IL

∆(I) ⇒ A
IR

Λ ⇒ I

;

∆〈Λ〉 ⇒ A
IL

∆〈I〉 ⇒ A
IR

Λ ⇒ I

The discontinuous unit abstract formulation is as follows:

∆([]⊗ 〈Γ〉) ⇒ A
JL

∆(J ⊗ 〈Γ〉) ⇒ A
JR

[] ⇒ J

;

∆〈[]〉 ⇒ A
JL

∆〈−→J 〉 ⇒ A
JR

[] ⇒ J

• Finally the Cut rule:

∆ ⇒ A Γ(
−→
A ⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

Cut
Γ(∆⊗ 〈Γ1, . . . ,Γa〉) ⇒ B

;

∆ ⇒ A Γ〈−→A 〉 ⇒ B
Cut

Γ〈∆〉 ⇒ B

3.6 The Faithful Embedding Translation Theo-
rem between mD and hD

We recall from section 3.4.1 the mapping from mD to hD:

(·)] : mD = (StructTerm,F , →) −→ hD = (O,F ,⇒)
T → A 7→ (T)] ⇒ (A)]

Consider the following two sets:

VD ∪ {1} = (akij)i,j,k∈ω with k≤i ∪ {1}
SF ∪ {[]} = (k

√
Aij)i,j,k∈ω with k≤i ∪ {[]}

We want to prove that mD and hD are in fact equivalent. One has structural
rules while the other one does not have.

g : VD ∪ {1} −→ SF ∪ {[]}
akij 7→ k

√
Aij

1 7→ []

Let us define the following two displacement algebras freely generated by the
previous sets VD ∪ {1} and SF ∪ {[]}:

100 3. PROOF THEORY

D1 = 〈〈VD ∪ {1}〉,+, (×i)i>0,Λ, 1〉
D2 = 〈〈SF ∪ {[]}〉, (·, ·), (|i)i>0, ,Λ, []〉

g induces a morphism of displacement algebras g∗:

g∗ : D1 −→ D2

Λ 7→ Λ
1 7→ []
akij 7→ k

√
Aij

r + s 7→ g∗(r), g∗(s)
r ×i s 7→ g∗(r)|ig∗(s)

We now formulate a lemma which clarifies the relations between these displace-
ment algebras and the four mappings V·W, (·)], f∗ and g∗.

(159) Lemma
The following diagram commutes:

TΣD [X]

D1

StructTerm

D2

f∗

V·W (·)]

g∗

Proof. We must prove that given an arbitrary TΣD [X] term r we have that:

g∗(VrW) = (f∗(r))]

We proceed by induction on the structure of the term t:

• Constants:

g∗(VtW) = g∗(0) = Λ = (f∗(r))] = (I)] if t = 0

g∗(VtW) = g∗(1) = [] = (f∗(r))] = (J)] if t = 1

• Variables:

g∗(VxijW) = g∗(−→aij) =
−→
Aij

(f∗(xij))
] = (Aij)

] =
−→
Aij

It follows that g∗(VxijW) = (f∗(xij))
].

• If t = r ⊕ s:

3.6. THE FAITHFUL EMBEDDING TRANSLATION THEOREM BETWEEN MD AND
HD 101

g∗(VtW) = g∗(Vr ⊕ sW) = g∗(VrW + VsW) = g∗(VrW), g∗(VsW)

(f∗(r ⊕ s))] = (f∗(r)◦f∗(s))] = (f∗(r))], (f∗(r))]

By induction hypothesis (i.h.) we have that:

g∗(VrW) = (f∗(r))]

g∗(VsW) = (f∗(s))]

Hence we have that g∗(Vr ⊕ sW) = (f∗(r ⊕ s))].

• If t = r ⊗i s:

g∗(Vr ⊗i sW) = g∗(VrW×i VsW) = g∗(VrW)|ig∗(VrW)

(f∗(r ⊗i s))] = (f∗(r)◦if∗(s))] = (f∗(r))]|i(f∗(r))]

By i.h. we have that:

g∗(VrW) = (f∗(r))]

g∗(VsW) = (f∗(s))]

Hence we have that g∗(Vr⊗i sW) = (f∗(r⊗i s))]. This completes the proof.

�
It is easy to see that for any r, s ∈ TΣD [X] we have that:

(160)

EqD ` r ≈ s iff EqD
∗ ` f∗(r)∼∗f∗(s)

We see then that as expected, EqD and EqD
∗ are very close. We can therefore

benefit from the results on EqD in Chapter 2. The concept of normal form
defined in Chapter 2 and the corresponding associated results can be exported
to the equational theory EqD

∗. The following theorem is a witness of what we
have exposed:

(161) Theorem (Equivalence Theorem for StructTerm)

Let R and S be arbitrary structural terms. The following holds:

R∼∗S iff (R)] = (S)]

Proof. Let r, s ∈ TΣD [X] such that r := f∗−1(R) and s := f∗−1(S). We have
that:

(R)] = (S)] iff VrW = VsW (?)
iff EqD ` r ≈ s (Equivalence theorem for TΣD [X])
iff EqD

∗ ` R∼∗S

Now, (?) holds for we have that by lemma (159):

102 3. PROOF THEORY

g∗(VrW) = (f∗(r))] = (f∗(f∗−1(R)))] = (R)]

g∗(VsW) = (f∗(s))] = (f∗(f∗−1(S)))] = (S)]

Since g∗ is bijective we have that:

(R)] = g∗(VrW) = g∗(VsW) = (S)] iff VrW = VsW

Hence (?) is proved. This completes the proof. �

(162) Lemma ((·)] is an Epimorphism)

For every ∆ ∈ O there exists a structural term8 T∆ such that:

(T∆)] = ∆

Proof. This can be proved by induction on the structure of hyperconfigu-
rations, say the tree-based hyperconfigurations. We define recursively T∆ such
that (T∆)] = ∆:

• Case ∆ = Λ (the empty tree): T∆ = I.

• Case where ∆ = A,Γ: T∆ = A◦TΓ, where by induction hypothesis (i.h.)
(TΓ)] = Γ.

• Case where ∆ = [],Γ: T∆ = J◦TΓ, where by i.h. (TΓ)] = Γ.

• Case ∆ = A{∆1 : · · · : ∆a},∆a+1. By i.h. we have:

(T∆i
)] = ∆i for 1 ≤ i ≤ a+ 1

T∆ = (A◦1T∆1
)◦T∆2

if a = 1
T∆ = (· · · ((A◦1T∆1

)◦1+d1T∆2
) · · ·)◦1+d1+···+da−1

T∆a+1
if a > 1

�

By induction on the structure of StructTerm, we have the following intu-
itive result on the relationship between structural contexts and hypercontexts:

(163) (T [S])] = T]〈S]〉

These two technical results we have seen above are necessary for the proof of
the faithful embedding translation (·)] of theorem (165). We prove now an
important theorem which is crucial for the mentioned theorem (165). This
theorem could be proved via the commutative diagram of lemma (159), but
we think it is informative to prove it directly with the help of the equivalence
theorem for TΣD

[X] (theorem (161)).

8In fact there exists an infinite set of such structural terms.

3.6. THE FAITHFUL EMBEDDING TRANSLATION THEOREM BETWEEN MD AND
HD 103

(164) Theorem (Visibility for Extraction in StructTerm)

Let T [A] be a structural term with a linear occurrence of type A. Suppose
that:

(T [A])] = ∆|i
−→
A

where ∆ ∈ O9 and A ∈ F . Then A is visible for extraction in T [A], i.e.
there exist a structural term T ′ and an index i such that:

T ∼∗ T ′◦iA

Proof. Let T∆ be a structural term such that (T∆)] = ∆. This is possible by

lemma (162). We have (T∆◦iA)] = ∆|i
−→
A . We have then (T∆◦iA)] = (T [A])].

By the equivalence theorem (161) it follows that T [A]∼∗T∆◦iA. Put T ′ := T∆.
We are done. �

This result easily extends to the non-linear A’s occurrence case with the help of
the notion of distinguished occurrence of a term. This theorem will be crucial
for the proof of the (·)] embedding theorem (165).

(165) Theorem (Faithfulness of (·)] Embedding Translation Theorem)

Let A, X and ∆ be respectively a type, a structural term and a hy-
perconfiguration. The following statements hold:

i) If `mD X → A then `hD (X)] ⇒ A

ii) For any X such that (X)] = ∆, if `hD ∆ ⇒ A then `mD X → A

Proof.

i) Logical rules in mD translate without any problem to hD. We need recall
only that if X and Y are structural terms then (X◦Y)] = (X)], (Y)]

and (X◦iY)] = (X)]|i(Y)]. Structural rules in mD collapse in the same
textual form as theorem (154) proves. Finally, the Cut rule has no surprise.
This proves i).

ii) This part of the theorem becomes easy if we use the following four facts:

– Lemma (162) which states that for any hyperconfiguration ∆ there
is a structural term T∆ such that (T∆)] = ∆.

– The fact (163) we stated before which gives the relationship between

structural terms and hypercontexts (T [A])] = T]〈−→A 〉.

– Theorem (161).

– Theorem (164).

9As usual, ∆ could be a string-based or a tree-based hyperconfiguration.

104 3. PROOF THEORY

The proof is by induction on the length of hD derivations. The three
first facts prove the induction of all the rules but the right rule of the
connectives ↑i. Suppose the last rule of a hD derivation is ↑iR:

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

Let T [A] be such that (T [A])] = ∆|i
−→
A . We know by induction hypothesis

that `mD T [A] ⇒ B. By the last fact of above, i.e. theorem (164) of

visibility of extraction, since (T [A])] = ∆|i
−→
A , we know there exist T ′ and

i such that T [A]∼∗T ′◦iA. It follows that in mD:

T [A] → B

... Sequence of structural rules

T ′◦iA → B
↑iR

T ′ → B↑iA

Hence, `mD T ′ → B↑iA. And T ′ is in fact T∆, and therefore (T ′)] = ∆.
Moreover, for any S such that (S)]∼∗T ′, we have that applying a finite
number of structural rules we obtain the mD provable sequent S → B↑iA,
and of course (S)] = ∆. This completes the proof of ii).

�
We define now what we call the type equivalent of a hyperconfiguration,

which will be very useful for the next chapter:

(166) Definition (Type Equivalent of a Hyperconfiguration)

The type equivalent ∆• of an arbitrary hyperconfiguration ∆ is defined
by recursion on the structure of hyperconfigurations as follows:

• Λ•
def
= I.

• Given a type A of sort 0 and a hyperconfiguration Γ, if Γ 6= Λ then

(A,Γ)•
def
= A • Γ•, otherwise (A,Γ)•

def
= A.

• Given a hyperconfiguration Γ, if Γ 6= Λ then ([],Γ)•
def
= J • Γ•, other-

wise ([],Γ)•
def
= J .

• Suppose Γ1, · · · ,Γa+1 are hyperconfigurations. Let i1 < i2 < · · · < ik
(with 1 ≤ ij ≤ a) be such that Γik 6= Λ. If Γa+1 6= Λ then

(A{Γ1 : · : Γa},Γa+1)•
def
= ((· · · (A �i1 Γ•i1) · · ·) �1+i1+···+ik1 Γ•ik) •

Γ•a+1. If Γa+1 = Λ then (A{Γ1 : · : Γa},Γa+1)•
def
= ((· · · (A �i1

Γ•i1) · · ·) �1+i1+···+ik1 Γ•ik . If Γ1 = · · · = Γa = Λ and Γa+1 6= Λ

then (A{Γ1 : · : Γa},Γa+1)•
def
= A •Γ•a+1. Finally, if all Γi are equal to

Λ then (A{Γ1 : · : Γa},Γa+1)•
def
= A.

3.7. EXTENSION OF D WITH THE ADDITIVE CONJUNCTION AND DISJUNCTION
OF LINEAR LOGIC 105

3.7 Extension of D with the Additive Conjunc-
tion and Disjunction of Linear Logic

We consider the extension of D to a more powerful calculus from the logical and
linguistic point of view: the linear logic additive conjunction and disjunction
(Girard (1987)). The extended system is called DA. The set of types F of DA
is extended as follows:

(167) Fi ::= Fi&Fi | Fi⊕Fi

JA&BKv = {s : s ∈ JAKv and s ∈ JBKv}

JA⊕BKv = {s : s ∈ JAKv or s ∈ JBKv}

Figure 3.10: Standard interpretation of linear logic additive connectives in DA

Their interpretation in a standard displacement algebra is showed in Figure
3.10. The new type type-constructors adhere to the principle of well-sorted
inhabitation (114) as is clear from the BNF definition (167). Figures 3.11, 3.12
and 3.13 display the rules of the new connectives added to D.

The notations for the categorical, multimodal and hypersequent calculi are re-
spectively cDA, mDA and hDA. The theorems (133) and (165) which state
the faithfulness of the embedding translations from the categorical calculus cD
to the multimodal calculus mD and (·)], which is an embedding translation
from mD to hD, can be extended straightforwardly to DA.

3.8 Synthetic Connectives

We define the following synthetic (see Girard (2006)) connectives. These con-
nectives are classified in two groups: the deterministic and the nondeterministic
synthetic connectives.

A → C
&L1

A&B → C

B → C
&L2

A&B → C

A → B A → C
&R

A → B&C

A → C B → C
⊕L

A⊕B → C

A → C
⊕R1

A → B⊕C

A → B
⊕R2

A → B⊕C

Figure 3.11: Categorical calculus cDA: the additive connectives

106 3. PROOF THEORY

Γ[A] ⇒ C
&L1

Γ[A&B] ⇒ C

Γ[B] ⇒ C
&L2

Γ[A&B] ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ[A] ⇒ C Γ[B] ⇒ C
⊕L

Γ[A⊕B] ⇒ C

Γ ⇒ A
⊕R1

Γ ⇒ A⊕B

Γ ⇒ B
⊕R2

Γ ⇒ A⊕B

Figure 3.12: Multimodal mDA: the additive connectives

Γ〈−→A 〉 ⇒ C
&L1

Γ〈−−−→A&B〉 ⇒ C

Γ〈−→B 〉 ⇒ C
&L2

Γ〈−−−→A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ〈−→A 〉 ⇒ C Γ〈−→B 〉 ⇒ C
⊕L

Γ〈−−−→A⊕B〉 ⇒ C

Γ ⇒ A
⊕R1

Γ ⇒ A⊕B

Γ ⇒ B
⊕R2

Γ ⇒ A⊕B

Figure 3.13: Hypersequent hDA: the additive connectives

3.8. SYNTHETIC CONNECTIVES 107

(168)

/A
def
= A • J left injection

/−1A
def
= A/J left projection

.A
def
= J •A right injection

.−1A
def
= J\A right injection

ˆiA
def
= A�i I i-th bridge

ˇiA
def
= A↑iI i-th split

A}B
def
=

⊕
i=1,···,a

A�i B nondeterministic product

B⇑A def
= B↑1A& · · · &B↑b−a+1A nondeterministic extract

A⇓B def
= A↓1B& · · · &A↓b−a+1B nondeterministic infix

ˆA
def
=

⊕
i=1,···,a

A�i I nondeterministic bridge

ˇB
def
= B↑1I & · · · &B↑b−a+1I nondeterministic split

From a logical point of view, synthetic connectives abbreviate derivations
mainly in sequent systems. They form new connectives with left and right se-
quent rules. Using a linear logic slogan, synthetic connectives help to eliminate
some bureaucracy in cut-free proofs and in the (syntactic) Cut elimination algo-
rithms. But interestingly, from the linguistic side these defined connectives will
turn out to be very useful (see Chapter 6).

We add these connectives to the categorical calculus as logical equivalences
(see Figure 3.14). By these equivalences it is readily seen that the unary syn-
thetic connectives form residuated pairs, and the binary synthetic connectives
form residuated triples. We call DA extended with the synthetic connectives
(168) DADND. DND designates the calculus with the synthetic connectives
but without the additive connectives. Later we will see an interesting faithful
embedding translation between hDND and hDADND

/A ↔ A • J
/−1A ↔ A/J
.A ↔ J •A
.−1A ↔ J\A
ˆiA ↔ A�i I
ˇiA ↔ A↑iI

A}B ↔
⊕

i=1,···,aA�i B
B⇑A ↔ B↑1A& · · · &B↑b−a+1A
A⇓B ↔ A↓1B& · · · &A↓b−a+1B

Figure 3.14: Deterministic and nondeterministic Synthetic Connectives

3.8.1 Deterministic Synthetic Rules

We show in Figure 3.15 the hypersequent calculus rules for the deterministic
synthetic connectives.

108 3. PROOF THEORY

Γ〈−→A 〉 ⇒ B
/−1L

Γ〈
−−−→
/−1A, []〉 ⇒ B

Γ, [] ⇒ A
/−1R

Γ ⇒ /−1A

Γ〈−→A, []〉 ⇒ B
/L

Γ〈−→/A, []〉 ⇒ B

Γ ⇒ A
/R

Γ, [] ⇒ /A

Γ〈−→A 〉 ⇒ B
.−1L

Γ〈[],
−−−→
.−1A〉 ⇒ B

[],Γ ⇒ A
.−1R

Γ ⇒ .−1A

Γ〈[],−→A 〉 ⇒ B
.L

Γ〈−→.A, []〉 ⇒ B

Γ ⇒ A
.R

[],Γ ⇒ .A

∆〈−→B 〉 ⇒ C
ˇiL

∆〈−−→ˇiB|iΛ〉 ⇒ C

∆|iΛ ⇒ BB
ˇR

∆ ⇒ ˇiB

∆〈−→B |iΛ〉 ⇒ C
ˆiL

∆〈−−→ˆiB〉 ⇒ ˆC

∆ ⇒ B
ˆR

∆|iΛ ⇒ ˆB

Figure 3.15: Hypersequent rules for deterministic synthetic connectives

(169) Lemma (Elementary Syntactic Results for Deterministic Connectives in
hD)

The following hypersequents are provable in hD:

i) `hD
−→
/A ⇒ A • J

ii) `hD
−−−→
A • J → /A

iii) `hD
−−−→
/−1A ⇒ A/J

iv) `hD
−−→
A/J ⇒ /−1A

v) `hD
−−−→
.−1A ⇒ J\A

vi) `hD
−−→
J\A ⇒ .−1A

vii) `hD
−−→
ˆiA → A�i I

viii) `hD
−−−−→
A�i I → ˆiA

ix) `hD
−−→
ˇiA ⇒ A↑iI

x) `hD
−−→
A↑iI ⇒ ˇiA

Proof.

i)

−→
A ⇒ A [] ⇒ J

•R−→
A, [] ⇒ A • J

/L−→
A ⇒ A • J

ii)

−→
A ⇒ A

/R−→
A, [] ⇒ /A

JL−→
A,
−→
J ⇒ /A

•L−−−→
A • J ⇒ /A

3.8. SYNTHETIC CONNECTIVES 109

∆〈−→A |1
−→
B 〉 ⇒ C · · · ∆〈−→A |a

−→
B 〉 ⇒ C

}L
∆〈−−−−→A}B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
}R

∆|iΓA}B

∆ ⇒ A Γ〈−→B 〉 ⇒ C
⇑L

Γ〈−−−→B⇑A|iΓ〉 ⇒ C

∆|1
−→
A ⇒ B · · · ∆|d

−→
A ⇒ B

⇑R
∆ ⇒ B⇑A

∆ ⇒ A Γ〈−→B 〉 ⇒ C
⇓L

Γ〈Γ|i
−−−→
A⇓B〉 ⇒ C

−→
A |1∆ ⇒ B · · · −→

A |a∆ ⇒ B
⇓R

∆ ⇒ A⇓B

∆〈−→B 〉 ⇒ C
ˇL

∆〈−→̌B|iΛ〉 ⇒ C

∆|1Λ ⇒ B · · · ∆|dΛ ⇒ B
ˇR

∆ ⇒ ˇB

∆〈−→B |1Λ〉 ⇒ C · · · ∆〈−→B |bΛ〉 ⇒ C
ˆL

∆〈−→̂B〉 ⇒ ˆC

∆ ⇒ B
ˆR

∆|iΛ ⇒ ˆB

Figure 3.16: Hypersequent calculus rules for nondeterministic synthetic connec-
tives

iii)

−→
A ⇒ A

/−1L−−−→
/−1A, [] ⇒ A

JL−−−→
/−1A, J ⇒ A

/R−−−→
/−1A ⇒ A/J

iv)

−→
A ⇒ A [] ⇒ J

/L−−→
A/J, [] ⇒ A

/−1R−−→
A/J ⇒ /−1A

v) and vi) are a direct mirror image of iii) and iv).

vii)

−→
A ⇒ Λ ⇒ I

�iR−→
A |iΛ ⇒ A�i I

ˆiL−−→
ˆiA ⇒ A�i I

viii)

−→
A ⇒ A

ˆiR−→
A |iΛ ⇒ AˆiA

IL−→
A |iΛ ⇒ ˆiA

�iL−−−−→
A�i I ⇒ ˆiA

ix)

−→
A ⇒ A

ˇi−−→
ˇiA|iΛ ⇒ A

IL−−→
ˇiA|iI ⇒ A

↑iR−−→
ˇiA ⇒ A↑iI

x)

Λ ⇒ I
−→
A ⇒ A

↑iL−−→
A↑iI|iΛ ⇒ A

ˇiR−−→
A↑iI ⇒ ˇiA

�

3.8.2 Nondeterministic Synthetic Rules

We show in Figure 3.16 the hypersequent calculus rules for the nondeterministic
synthetic connectives. Let us see at some elementary syntactic results w.r.t. the
nondeterministic connectives.

(170) Lemma (Elementary Syntactic Results for Nondeterministic Connec-
tives)

110 3. PROOF THEORY

The following hypersequents are provable in hDADND:

i) `hDAND
−−−−→
A}B ⇒

⊕
i=1,···,a

A�i B

ii) `hDAND

−−−−−−−−−−→⊕
i=1,···,a

A�i B ⇒ A}B

iii) `hDAND
−−−→
B⇑A ⇒ B↑1A& · · · &B↑b−a+1A

iv `hDAND
−−−−−−−−−−−−−−−−−−→
B↑1A& · · · &B↑b−a+1A ⇒ B⇑A

v) `hDAND
−−−→
A⇓B ⇒ A↓1B& · · · &A↓b−a+1B

vi) `hDAND
−−−−−−−−−−−−−−−−−−→
A↓1B& · · · &A↓b−a+1B ⇒ A⇓B

vii) `hDAND
−→̂
A ⇒

⊕
i=1,···,a

A�i I

viii) `hDAND

−−−−−−−−−→⊕
i=1,···,a

A�i I ⇒ ˆA

ix) `hDAND
−→̌
A ⇒ A↑1I & · · · &A↑a+1I

x) `hDAND
−−−−−−−−−−−−−−−→
A↑1I & · · · &A↑b+1I ⇒ ˇA

Proof.

i) For every k = 1, · · · , a we have that:

−→
A |k
−→
B ⇒

⊕
i=1,···,a

A�i B

−→
A |1
−→
B ⇒

⊕
i=1,···,a

A�i B · · · −→
A |a
−→
B ⇒

⊕
i=1,···,a

A�i B

}L−−−−→
A}B ⇒

⊕
i=1,···,a

A�i B

ii) For every k = 1, · · · , a we have by the �k right rule that:

−→
A |k
−→
B ⇒ A}B

By applying a− 1 times the ⊕ left rule we obtain:

...
⊕L⊕

i=1,···,a
A�i B ⇒ A}B

iii) For every k = 1, · · · , b − a + 1, by application of the ⇑ left rule we have
that:

−−−→
B⇑A|k

−→
A ⇒ B

3.8. SYNTHETIC CONNECTIVES 111

For every k = 1, · · · , b− a+ 1, by application of the ↑k right rule we have
that:

−−−→
B⇑A ⇒ B↑kA

By b− a applications of the & right rule:

&R−−−→
B⇑A ⇒ B↑1A& · · ·&B↑b−a+1A

iv) Let i be any index ranging in {1, · · · , b− a+ 1}. We have by application
of the ↑i left rule:

−−−→
B↑iA|i

−→
A ⇒ B

Appplying the & left rule we obtain:

−−−−−−−−−−−−−−−−−−−−−−−−→
(· · · (B↑1A&B↑2A)& · · ·)&B↑iA ⇒ B

Appplying one more time the & left rule we obtain:

−−−−−−−−−−−−−−−−→
B↑1A& · · ·&B↑b−a+1|i

−→
A ⇒ −→B

Summarizing, we can apply the ⇑ right rule:

−−−−−−−−−−−−−−−−−→
B↑1A& · · ·&B↑b−a+1A|1

−→
A ⇒ −→B · · · −−−−−−−−−−−−−−−−−→

B↑1A& · · ·&B↑b−a+1A|b−a+1
−→
A ⇒ −→B

⇑R−−−−−−−−−−−−−−−−−→
B↑1A& · · ·&B↑b−a+1A ⇒

−−−→
B⇑A

The remaining cases are completely similar to i), ii), iii) and iv).

�

3.8.3 An Embedding Translation from DND into DA

We consider an interesting embedding from DND into DA, more concretely
τ : (ODND,FDND, ⇒) −→ (ODA,FDA ⇒):

τ(ˆA) = τ(A)�I
τ(ˇA) = τ(A) ↑ I
τ(ˆiA) = τ(A)�iI
τ(ˇiA) = τ(A) ↑i I
τ(/A) = τ(A) • J
τ(/−1A) = τ(A)/J
τ(.A) = J • τ(A)
τ(.−1A) = J\τ(A)

τ(A}B) =
⊕

i=1,···,a
A�i B

τ(B⇑A) = τ(B)↑1τ(A)& · · ·&τ(B)↑b−a+1τ(A)
τ(B⇓A) = τ(A)↓1τ(B)& · · ·&τ(A)↓b−a+1τ(B)
τ(A ? B) = τ(A) ? τ(B) for ? ∈ {\, /, •} ∪ (↓i+1)i∈ω ∪ (↑i+1)i∈ω ∪ (�i+1)i∈ω

112 3. PROOF THEORY

τ extends to a hypersequent ∆ ⇒ A, where A is a type and ∆ a hypercon-
figuaration, by mapping ∆ under τ recursively as follows:

τ(Λ) = Λ
τ(A,Γ) = τ(A), τ(Γ) where S(A) = 0
τ([],Γ) = [], τ(Γ)
τ(A{Γ1 : · · · : Γa},Γa+1) = τ(A){τ(Γ1) : · · · : τ(Γa)}, τ(Γa+1)

In the following lines we assume that the Cut elimination theorem for hDADND
holds (see 176).

(171) Lemma
Let A be a DND type. It follows that:

i)

`DADND
−→
A ⇒ τ(A)

and

`DADND
−−→
τ(A) ⇒ A

ii)

`DADND [], · · · , []︸ ︷︷ ︸
b

⇒ τ(B) iff `DADND [], · · · , []︸ ︷︷ ︸
b

⇒ B

Where if b = 0 then [], · · · , []︸ ︷︷ ︸
b

is the empty string Λ.

Proof. In this proof the hypersequent derivations take place in DADND.
i) We proceed by induction on the structure of DND types. In the case of

atomic cases there is nothing to prove.

• Suppose we have the type ˇiA. By lemma (169) we have that:

−−→
ˇiA ⇒ A↑iI

By induction hypothesis (i.h.),
−→
A ⇒ τ(A). By the tonicity properties of

↑i
−→
A↑iI ⇒ τ(A)↑iI. It follows that:

−−→
ˇiA ⇒ A↑iI

−−→
A↑iI ⇒ τ(A)↑iI

Cut−−→
ˇiA ⇒ τ(A)↑iI = τ(ˇiA)

Conversely: by i.h.
−−→
τ(A) ⇒ A. We know by lemma (169) that

−−−−→
A�i B ⇒ ˇiA.

Therefore we have the following derivation:

−−→
τ(A) ⇒ A Λ ⇒ I

�iR−−→
τ(A)|iΛ ⇒ A�i I

−→
A �i I ⇒ ˇiA

Cut−−→
τ(A)|iΛ ⇒ ˇiA

By application of the rules IL and �iL to the end-hypersequent and the fact

that
−−−−→
τ(ˇiA) =

−−−−−−→
τ(A)�i I, we obtain

−−−−→
τ(ˇiA) ⇒ ˇiA.

3.8. SYNTHETIC CONNECTIVES 113

• } case. We want to see:

A}B ⇒ −−−−−−→τ(A}B)

By lemma (170) we have
−−−−→
A}B ⇒

⊕
i=1,···,a

A�iB. By i.h.
−−−−→
A�i B ⇒ τ(A�i

B). By monotonicity of ⊕ and Cut, the following holds:

−−−−→
A}B ⇒

⊕
i=1,···,a

τ(A�i B) = τ(A}B)

Conversely, by i.h.
−−−−−−−→
τ(A�i B) ⇒ A �i B. By monotonicity of ⊕, we

have that
−−−−→
A}B =

−−−−−−−−−−−−→⊕
i=1,···,a

τ(A�i B) ⇒
⊕

i=1,···,a
A�i B. By lemma (170)

−−−−−−−−−−→⊕
i=1,···,a

A�i B ⇒ A}B.

The remaining connectives have analogous proofs.

ii) We prove a case, e.g. the } one. If ⇒ A}B is provable we have that:

⇒ A}B
−−−−→
A}B ⇒ τ(A}B), by lemma i)

Cut
⇒ τ(A}B)

And if ⇒ τ(A}B) is provable we have that:

⇒ τ(A}B)
−−−−−−→
τ(A}B) ⇒ A}B, by lemma i)

Cut
⇒ A}B

This completes the proof. �

(172) Theorem (Faithful Embedding Translation from hDND into hDA)

Let ∆ ⇒ A be a DND hypersequent. Then we have that:

`DND ∆ ⇒ A iff `DADND τ(∆) ⇒ τ(A)

Proof. Let ∆〈−→A1; · · · ;−→An〉 ⇒ B be a DND hypersequent with exactly n type
occurrences. In the following we write ` for `DADND. When necessary, we will
write `DND. We prove by induction on n that:

∆〈τ(
−→
A1); · · · ; τ(

−→
An)〉 ⇒ τ(B) iff ∆〈−→A1; · · · ;−→An〉 ⇒ B

If n = 0 we have by the previous lemma that:

(173) [], · · · , []︸ ︷︷ ︸
b

⇒ τ(B) iff [], · · · , []︸ ︷︷ ︸
b

⇒ B

Suppose n ≥ 1. By the previous lemma we know that for every A ∈ FDND,

` −→A ⇒ τ(A) and
−−→
τ(A) ⇒ A. We have the following two derivations:

114 3. PROOF THEORY

(174)

−→
An ⇒ τ(An) ∆〈τ(

−→
A1); · · · ; τ(

−→
An)〉 ⇒ τ(B)

Cut
∆〈τ(

−→
A1); · · · ;−→An〉 ⇒ τ(B)

−−−→
τ(B) ⇒ B

Cut
∆〈τ(

−→
A1); · · · ;−→An〉 ⇒ B

(175)

−−−→
τ(An) ⇒ An ∆〈τ(

−→
A1); · · · ;−→An〉 ⇒ B

Cut
∆〈τ(

−→
A1); · · · ; τ(

−→
An)〉 ⇒ B

−→
B ⇒ τ(B)

Cut
∆〈τ(

−→
A1); · · · ; τ(

−→
An)〉 ⇒ τ(B)

Hence we have:

∆〈τ(
−→
A1); · · · ; τ(

−→
An)〉 ⇒ τ(B) iff ∆〈τ(

−→
A1); · · · ;−→An〉 ⇒ B

Doing the same as in (174) and (175) with the remaining type occurrences
A1, · · · , An−1, we get eventually:

∆〈τ(
−→
A1); · · · ; τ(

−→
An)〉 ⇒ τ(B) iff ∆〈−→A1; · · · ;−→An〉 ⇒ B

Now, since Cut elimination holds of DADND (see section 3.9), for DND
we have that for an arbitrary DND hyperconfiguration ∆ and for an arbitrary
DND type A:

`DND ∆ ⇒ A iff `DADND τ(∆) ⇒ τ(A)

This completes the proof. �
It is time to formulate the Cut elimination theorem for D. In fact we prove

it for all the extensions, i.e. we prove Cut elimination for DADND.

(176) Theorem (Cut Elimination Theorem)

hDADND enjoys Cut elimination.

Proof. See Section 3.9. �

(177) Corollary (Subformula property)

In hDADND every provable hypersequent contains a proof containing
only its subformulas.

Proof. Every rule except Cut has the property that all the types in the premises
are either in the conclusion or are the immediate subtypes of the active formula.
And we know that Cut in hDADND is eliminable. We are done. �

(178) Corollary (Decidability of hDADND)

In hDADND, it is decidable whether a hypersequent is provable.

Proof. By backward-chaining in the finite Cut-free hypersequent search space.
�

We give the semantic type T map for discontinuous Lambek calculus in
Figure 3.17. T sends hDADND hypersequent derivations into intuitionistic
proofs in the same way as for the Lambek calculus. Therefore, the so-called

3.9. A DIRECT PROOF OF CUT ELIMINATION FOR HD AND ITS EXTENSIONS115

Curry-Howard categorial type logical semantics comes for free. Since the Cut-
free search space of hDADND is finite, it follows that the number of derivations
is finite, whence the so-called finite reading property holds. We have proved the
following theorem:

(179) Theorem (Finite Reading Property for hDADND)

In hDADND, every hypersequent has a finite number of semantic read-
ings.

By the subformula property for hDADND, it follows that the following
fragments enjoy Cut elimination, the subformula property, decidability and the
finite reading property:

• hDA

• hDA

• hDND

T (I) = >
T (J) = >
T (A\C) = T (A) → T (C)
T (C/B) = T (B) → T (C)
T (A •B) = T (A)&T (B)
T (A↓kC) = T (A) → T (C)
T (C↑kB) = T (B) → T (C)
T (A�k B) = T (A)&T (B)
T (A&B) = T (A)&T (B)
T (A⊕B) = T (A) ∨ T (B)
T (A⇓C) = T (A) → T (C)
T (C⇑B) = T (B) → T (C)
T (A}B) = T (A)&T (B)
T (A↓kC) = T (A) → T (C)
T (C↑kB) = T (B) → T (C)
T (∗A) = T (A) for ∗ ∈ {ˆk , ˇk , ˆ, ˇ , /, /−1, ., .−1}

Figure 3.17: Semantic type map for DADND

3.9 A Direct Proof of Cut Elimination for hD
and its Extensions

Cut Elimination Steps for D

Lambek (1958) proved Cut elimination for the Lambek calculus L. Cut elimina-
tion states that every theorem can be proved without the use of Cut. Lambek’s
proof is simpler than that of Gentzen for standard logic due to the absence of
structural rules. It consists of defining a notion of degree of Cut instances and

116 3. PROOF THEORY

showing how Cuts in a proof can be succesively replaced by Cuts of lower degree
until they are removed altogether. Thus Lambek’s proof provides an algorithm
for transforming proofs into Cut-free counterparts. The Cut-elimination theo-
rem has as corollaries the subformula property and decidability. Here we prove
Cut-elimination for the displacement calculus D in its hypersequent presenta-
tion, i.e. hD. Like L, hD contains no structural rules (structural properties
are built into the sequent calculus notation) and the Cut-elimination is proved
following the same strategy as for L.

We define the weight |A| of a type A as the number of connectives occurrences
(including units) that it contains. The weight |Γ| of a hyperconfiguration is
the sum of the weights of the types that occur in it, that is, it is defined by
unambiguous recursion10 as follows:

(180) |Λ| = 0
|A,∆| = |A|+ |∆|
|[],∆| = |∆| i.e. |[]| = 0

|A{Γ1 : · · · : Γi+1},∆| = |A|+
i+1∑
j=1

|Γj |+ |∆|

It is not difficult to prove that if ∆,Γ are arbitrary hyperconfiguration then
concatenation and intercalation of hyperconfigurations satisfy:

|Γ,Θ| = |Γ|+ |Θ| and |Γ |i Θ| = |Γ|+ |Θ|

The weight of a hypercontext is defined similarly with a hole having weight zero.
Consider the Cut rule:

(181)
Γ ⇒ A ∆〈−→A 〉 ⇒ B

Cut (?)
∆〈Γ〉 ⇒ B

We define the degree d(?) of an instance ? of the Cut rule as follows:

(182) d(?) = |Γ|+ |∆|+ |A|+ |B|

We call the type A in (181) the Cut formula. Consider a proof which is not
Cut-free. Then there is some Cut-instance above which there are no Cuts. We
will show that this Cut can either be removed or replaced by one or two Cuts
of lower degree. The following three cases are exhaustive:

(183) • A premise of the Cut is the identity axiom: then the conclusion is
identical to the other premise and the Cut as a whole can be removed.

• Both the premises are conclusions of logical rules and it is not the
case that the Cut formula is the active formula of both premises:
then we apply permutation conversion cases.

• Both the premises are conclusions of logical rules and the Cut formula
is the active formula of both premises: then we apply principal Cut
cases.

There are several cases to consider. We give representative examples.

- Permutation conversion cases
10In order that | · | be well defined, we require the recursive definition to be unambiguous.

3.9. A DIRECT PROOF OF CUT ELIMINATION FOR HD AND ITS EXTENSIONS117

The active formula in the left premise of the Cut rule is not the Cut
formula

• The rule applying at the left premise of the Cut rule is �i L:

∆〈−→B |i
−→
C 〉 ⇒ A

�iL
∆〈−−−−→B�iC〉 ⇒ A Γ〈−→A 〉 ⇒ D

Cut
Γ〈∆〈−−−−→B�iC〉〉 ⇒ D

;

∆〈−→B |i
−→
C 〉 ⇒ A Γ〈−→A 〉 ⇒ D

Cut
Γ〈∆〈−→B |i

−→
C 〉〉 ⇒ A

�iL
Γ〈∆〈−−−−→B�iC〉〉 ⇒ D

• The rule applying at the left premise of the Cut rule is ↑iL:

Γ〈−→C 〉 ⇒ A ∆ ⇒ B
↑iL

Γ〈−−−→C↑iB|i∆〉 ⇒ A Θ〈−→A 〉 ⇒ D
Cut

Θ〈Γ〈−−−→C↑iB|i∆〉〉 ⇒ D

;

Γ〈−→C 〉 ⇒ A Θ〈−→A 〉 ⇒ D
Cut

Θ〈Γ〈−→C 〉〉 ⇒ D ∆ ⇒ B
↑iL

Θ〈Γ〈−−−→C↑iB|i∆〉〉 ⇒ D

• The rule applying at the left premise of the Cut rule is JL:

Γ〈[]〉 ⇒ A
JL

Γ〈−→J 〉 ⇒ A ∆〈−→A 〉 ⇒ B
Cut

∆〈Γ〈−→J 〉〉 ⇒ B

;

Γ〈[]〉 ⇒ A ∆〈−→A 〉 ⇒ B
Cut

∆〈Γ〈[]〉〉 ⇒ A
JL

∆〈Γ〈−→J 〉〉 ⇒ B

• The rule applying at the left premise of the Cut rule is /−1L:

∆〈−→B 〉 ⇒ A
/−1L

∆〈
−−→
/−1, []〉 ⇒ A Γ〈−→A 〉 ⇒ C

Cut
Γ〈∆〈

−−−→
/−1B, []〉〉 ⇒ C

;

∆〈−→B 〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−→B 〉〉C
/−1L

Γ〈∆〈
−−−→
/−1B, []〉〉 ⇒ C

118 3. PROOF THEORY

• The rule applying at the left premise of the Cut rule is /L:

∆〈−→/B, []〉 ⇒ A
/L

∆〈−→/B〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−→/B〉〉 ⇒ C

;

∆〈−→/B, []〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−→B, []〉〉 ⇒ C
/L

Γ〈∆〈−→/B〉〉 ⇒ C

• The rule applying at the left premise of the Cut rule is ˇiL:

∆〈−→B 〉 ⇒ A
ˇiL

∆〈−−→ˇiB|iΛ〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−−→ˇiB|iΛ〉〉 ⇒ C

;

∆〈−→B 〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−→B 〉〉 ⇒ C
ˇiL

Γ〈∆〈−−→ˇiB|iΛ〉〉 ⇒ C

• The rule applying at the left premise of the Cut rule is ˆiL:

∆〈−→B |iΛ〉 ⇒ A
ˆiL

∆〈−−→ˆkB〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−−→ˆiB〉〉 ⇒ C

;

∆〈−→B |iΛ〉 ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〈−→B |iΛ〉〉 ⇒ C
ˆiL

Γ〈∆〈−−→ˆiB〉〉 ⇒ C

The active formula in the right premise of the Cut rule is not the Cut
formula

• The rule applying at the right premise of the Cut rule is ↑i L :

∆ ⇒ A

Γ〈−→A ;
−→
C 〉 ⇒ D Θ ⇒ B

↑iL
Γ〈−→A ;

−−−→
C↑iB|iΘ〉 ⇒ D

Cut
Γ〈∆;

−−−→
C↑iB|iΘ〉 ⇒ D

;

∆ ⇒ A Γ〈−→A ;
−→
C 〉 ⇒ D

Cut
Γ〈∆;

−→
C 〉 ⇒ D Θ ⇒ B

↑iL
Γ〈∆;

−−−→
C↑iB|iΘ〉 ⇒ D

3.9. A DIRECT PROOF OF CUT ELIMINATION FOR HD AND ITS EXTENSIONS119

• The rule applying at the right premise of the Cut rule is ↑iR:

∆ ⇒ A

Γ〈−→A 〉|i
−→
B ⇒ C

↑iR
Γ〈−→A 〉 ⇒ C↑iB

Cut
Γ〈∆〉 ⇒ C↑iB

;

∆ ⇒ A Γ〈−→A 〉|i
−→
B ⇒ C

Cut
Γ〈∆〉|i

−→
B ⇒ C

↑iR
Γ〈∆〉 ⇒ C↑iB

• The rule applying at the right premise of the Cut rule is �i L:

∆ ⇒ A

Γ〈−→A ;
−→
B |i
−→
C 〉 ⇒ D

�iL
Γ〈−→A ;

−−−−→
B�iC〉 ⇒ D

Cut
Γ〈∆;

−−−−→
B�iC〉 ⇒ D

;

∆ ⇒ A Γ〈−→A ;
−→
B |i
−→
C 〉 ⇒ D

Cut
Γ〈∆;

−→
B |i
−→
C 〉 ⇒ D

�iL
Γ〈∆;

−−−−→
B�iC〉 ⇒ D

• The rule applying at the right premise of the Cut rule is �iR:

∆ ⇒ A

Γ〈−→A 〉 ⇒ B Θ ⇒ C
�iR

Γ〈−→A 〉|iΘ ⇒ B�iC
Cut

Γ〈∆〉|iΘ ⇒ B�iC

;

∆ ⇒ A Γ〈−→A 〉 ⇒ B
Cut

Γ〈∆〉 ⇒ B Θ ⇒ C
�iR

Γ〈∆〉|iΘ ⇒ B�iC

• The rule applying at the right premise of the Cut rule is /−1R:

∆ ⇒ A

Γ〈−→A 〉, [] ⇒ C
/−1R

Γ〈−→A 〉 ⇒ /−1C
Cut

Γ〈∆〉 ⇒ /−1C

;

∆ ⇒ A Γ〈−→A 〉, [] ⇒ C
Cut

Γ〈∆〉, [] ⇒ C
/−1R

Γ〈∆〉 ⇒ /−1C

120 3. PROOF THEORY

• The rule applying at the right premise of the Cut rule is /R:

∆ ⇒ A

Γ〈−→A 〉 ⇒ C
/R

Γ〈−→A 〉, [] ⇒ /C
Cut

Γ〈∆〉 ⇒ /C

;

∆ ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〉 ⇒ C
/R

Γ〈∆〉, [] ⇒ /C

• The rule applying at the right premise of the Cut rule is ˇiR:

∆ ⇒ A

Γ〈−→A 〉|iΛ ⇒ C
ˇiR

Γ〈−→A 〉 ⇒ ˇiC
Cut

Γ〈∆〉 ⇒ ˇiC

;

∆ ⇒ A Γ〈−→A |iΛ〉 ⇒ C
Cut

Γ〈∆|iΛ〉 ⇒ C
ˇiR

Γ〈∆〉 ⇒ ˇiC

• The rule applying at the right premise of the Cut rule is ˆiR:

∆ ⇒ A

Γ〈−→A 〉 ⇒ C
ˆiR

Γ〈−→A 〉|iΛ ⇒ ˆiC
Cut

Γ〈∆〉|iΛ ⇒ ˆiC

;

∆ ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆〉 ⇒ C
ˇiR

Γ〈∆〉|iΛ ⇒ ˆiC

- Principal Cut cases

• The rules applying at the left and right premises of the Cut rule are
respectively �iR and �i L:

∆ ⇒ A Γ ⇒ B
�iR

∆|iΓ ⇒ A�iB

Θ〈−→A |i
−→
B 〉 ⇒ C

�iL
Θ〈−−−−→A�iB〉 ⇒ C

Cut
Θ〈∆|iΓ〉 ⇒ C

;

Γ ⇒ B

∆ ⇒ A Θ〈−→A |i
−→
B 〉 ⇒ C

Cut
Θ〈∆|i

−→
B 〉 ⇒ C

Cut
Θ〈∆|iΓ〉 ⇒ C

3.9. A DIRECT PROOF OF CUT ELIMINATION FOR HD AND ITS EXTENSIONS121

• The rules applying at the left and right premises of the Cut rule are
respectively ↑iR and ↑i L:

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

Γ ⇒ A Θ〈−→B 〉 ⇒ C
↑iL

Θ〈B↑iA|iΓ〉 ⇒ C
Cut

Θ〈∆|iΓ〉 ⇒ C

;

∆ ⇒ A

∆|i
−→
A ⇒ B Θ〈−→B 〉 ⇒ C

Cut
Θ〈−→A |iΓ〉 ⇒ C

Cut
Θ〈∆|iΓ〉 ⇒ C

• The rules applying at the left and right premises of the Cut rule are
respectively IR and IL:

IR
Λ ⇒ I

∆〈Λ〉 ⇒ A
IL

∆〈I〉 ⇒ A
Cut

∆〈Λ〉 ⇒ A

;

∆〈Λ〉 ⇒ A

• The rules applying at the left and right premises of the Cut rule are
respectively JR and JL:

JR
[] ⇒ J

∆〈[]〉 ⇒ A
JL

∆〈−→J 〉 ⇒ A
Cut

∆〈[]〉 ⇒ A

;

∆〈[]〉 ⇒ A

• The rules applying at the left and right premises of the Cut rule are
respectively /−1R and /−1L:

∆, [] ⇒ A
/−1R

∆ ⇒ /−1A

Γ〈−→A 〉 ⇒ C
/−1L

Γ〈−→A, []〉 ⇒ C
Cut

Γ〈∆, []〉 ⇒ B

;

∆, [] ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆, []〉 ⇒ C

122 3. PROOF THEORY

• The rules applying at the left and right premises of the Cut rule are
respectively /R and /L:

∆ ⇒ A
/R

∆, [] ⇒ /A

Γ〈−→A, []〉 ⇒ C
/L

Γ〈−→/A〉 ⇒ C
Cut

Γ〈∆, []〉 ⇒ B
;

∆ ⇒ A Γ〈−→A, []〉 ⇒ C
Cut

Γ〈∆, []〉 ⇒ C

• The rules applying at the left and right premises of the Cut rule are
respectively ˇiR and ˇiL:

∆|iΛ ⇒ A
ˇiR

∆ ⇒ ˇiA

Γ〈−→A 〉 ⇒ C
ˇiL

Γ〈−−→ˇiA|iΛ〉 ⇒ C
Cut

Γ〈∆|iΛ〉 ⇒ C
;

∆|iΛ ⇒ A Γ〈−→A 〉 ⇒ C
Cut

Γ〈∆|iΛ〉 ⇒ C

• The rules applying at the left and right premises of the Cut rule are
respectively ˆiR and ˆiL:

∆ ⇒ A
ˆiR

∆|iΛ ⇒ ˆiA

Γ〈−→A |iΛ〉 ⇒ C
ˆiL

Γ〈−−→ˆiA〉 ⇒ C
Cut

Γ〈∆|iΛ〉 ⇒ C

;

∆|iΛ ⇒ A Γ〈−→A |iΛ〉 ⇒ C
Cut

Γ〈∆|iΛ〉 ⇒ C

Let us see the nondeterministic cases:

Principal Cuts

• The rules applying at the left and right premises of the Cut rule are
respectively }R and }L:

∆ → A Γ → B
}R

∆|iΓ → A}B

Θ〈−→A |1
−→
B 〉 → C · · · Θ〈−→A |a

−→
B 〉 → C

}L
Θ〈−−−−→A}B〉 → C

Cut
Θ〈∆|iΓ〉 → C

;

∆ → A Θ〈A|iB〉 → C
Cut

Θ〈∆|iB〉 → C Γ → B
Cut

Θ〈∆|iΓ〉 → C

3.9. A DIRECT PROOF OF CUT ELIMINATION FOR HD AND ITS EXTENSIONS123

• The rules applying at the left and right premises of the Cut rule are
respectively ⇑R and ⇑L:

∆|1
−→
A → B · · · ∆|x

−→
A → B

⇑L
∆ → B⇑A

Γ → A Θ〈−→B 〉 → C
⇑L

Θ〈−−→B↑A|iΓ〉 → C
Cut

Θ〈∆|iΓ〉 → C

;

∆|i
−→
A → B Θ〈−→B 〉 → B

Cut
Θ〈∆|i

−→
A 〉 → C Γ → A

Cut
Θ〈∆|iΓ〉 → C

• The rules applying at the left and right premises of the Cut rule are
respectively ⇓R ⇓L:

−→
A |1Γ → B · · · −→

A |aΓ → B
⇓R

Γ → A⇓B

X → A Θ〈−→B 〉 → C
⇓L

Θ〈X|i
−−−→
A⇓B〉 → C

Cut
Θ〈X|iΓ〉 → C

;
−→
A |iΓ → B Θ〈B〉 → C

Cut
Θ〈−→A |iΓ〉 → C X → A

Cut
Θ〈X|iΓ〉 → C

Permutation Conversions

• The rule applying at the left premise of the Cut rule is }L:

∆〈−→B |1
−→
C 〉 → A · · · ∆〈−→B |b

−→
C 〉 → A

}L
∆〈−−−−→B } C〉 → A Γ〈−→A 〉 → D

Cut
Γ〈∆〈−−−−→B } C〉〉 → D

;

∆〈−→B |1
−→
C 〉 → A Γ〈−→A 〉 → D

Cut
Γ〈∆〈−→B |1

−→
C 〉〉 → D · · ·

∆〈−→B |b
−→
C 〉 → A Γ〈−→A 〉 → D

Cut
Γ〈∆〈−→B |b

−→
C 〉〉 → D

}L
Γ〈∆〈−−−−→B } C〉〉 → D

• The rule applying at the left premise of the Cut rule is ⇓L:

∆ → B Γ〈−→C 〉 → A
⇓L

Γ〈∆|i
−−−→
B⇓C〉 → A Z〈−→A 〉 → D

Cut
Z〈Γ〈∆|i

−−−→
B⇓C〉〉 → D

;

∆ → B

Γ〈−→C 〉 → A Z〈−→A 〉 → D
Cut

Z〈Γ〈−→C 〉〉 → D
⇓L

Z〈Γ〈∆|i
−−−→
B⇓C〉〉 → D

124 3. PROOF THEORY

• The rule applying at the left premise of the Cut rule is ⇑L:

∆ → −→A

Γ〈−→A 〉|1
−→
B → C · · · Γ〈−→A 〉|

S(Γ〈
−→
A 〉)
−→
B → C

⇑R
Γ〈−→A 〉 → C⇑B

Cut
Γ〈∆〉 → C↑B

;

∆ → A Γ〈−→A 〉|1
−→
B → C

Cut
Γ〈∆〉|1

−→
B → C · · ·

∆ → A Γ〈−→A 〉|
S(Γ〈
−→
A 〉)
−→
B → C

Cut
Γ〈∆〉|cB → C

↑R
Γ〈∆〉 → C↑B

W.r.t. Cut elimination including the additive conjunction and disjunction,
the proof is standard.

Chapter 4

Syntactical Interpretation

In this chapter we study what we call syntactical interpretation of the displace-
ment calculi which we defined and studied from a proof theoretical point of view
in Chapter 3. Why the term syntactical interpretation? The logic mainstream
would say semantical interpretion or simply, semantics, for in fact our calculi
are (noncommutative) substructural logics which are homomorphic with intu-
itionistic multiplicative additive linear logic with units (MALL). But we are
doing type-logical grammar, and this involves signs (in the de Saussure tradi-
tion), which at least incorporate a semantical dimension, a syntactical/prosodic
dimension and finally a sign combinatorial dimension, which in our framework is
simply the use of (syntactic) types. Our logics constitute an instance of the so-
called intuitionistic type logics which are used as a main means to parse natural
language sentences and assign them what we call semantic form, or logical form
if one prefers the generative terminological tradition. Semantics is for us the
derivation of a theorem in our type logics, which thanks to the so-called Curry-
Howard1 homomorphism, is a term of the (extended2) simply typed lambda
calculus. Adding logical constants to the simply typed lambda calculus give us
the way to get (typed) higher-order logic and give a meaning to sentences of
fragments of natural language. So, it is clear that we need another term to refer
to what logicians call semantics, and Glyn Morrill with some collaboration of
this author, decided to use the term syntactical interpretation.

In this chapter we address the model-theoretical interpretation of displace-
ment calculi. We see different syntactical interpretations which all have in com-
mon that they are close to what linguists call language models. For many au-
thors, language models are sets of string or trees. As has been clear in this
thesis, for the author, language models are sets of strings. The syntactical in-
terpretations we define preserve the closeness to objects which are meaningful
for linguists.

More technically, we will see the soundness and completeness of four syntac-
tical interpretations. This chapter has as eventual goal to give finally complete-
ness results for the logics of discontinuity (in our words displacement logics)
which have been in the (type logical) air for many years. The results of this

1In fact, in type logical grammar this important isomorphism/homomorphism is related to
other famous scholars like Jim Lambek, Johan Van Benthem, and some more authors.

2We consider type logics which contain many connectives over and above the traditional
implication.

125

126 4. SYNTACTICAL INTERPRETATION

chapter appear for the first time in a manuscript, i.e., in this thesis.

4.1 On Residuated Displacement Algebras and
the Standard Syntactical Interpretation

We already presented displacement algebras in Chapters 2 and 3. We recall
some definitions. A syntactical algebra is a free monoid with a distinguished
element called the prime, in notation, S = 〈M,+, 0, 1〉. A prime in a freely
generated monoid is simply an element of the set of generators. Here then, the
prime implies the choice of one element of the set of generators. In a syntactical
algebra we can define a map called the sort map which we recall here:

S(a) = 0 for a prime a different from 1
S(1) = 1
S(w1 + w2) = S(w1) + S(w2)

From this definition, we see that what the sort map does is to count the number
of primes composing a string of the syntactical algebra. From the syntactical
algebra S, we can induce a standard displacement algebra which is in fact an
ω-indexed algebra:

A = 〈{Li}i∈ω,+, {×k}k>0, 0, 1〉
Where the ω-indexed {Li}i∈ω are the sequence or collection of what we have
called sort domains, which are defined as follows:

Li = {w : w ∈M and S(w) = i}
A valuation is a mapping v : A −→

⋃
2Li , where:

A =
⋃
i∈ω
Ai

Where Ai (i ∈ ω) are the sets of atomic types of sort i. Given the valuation
v, we define the map J·KAv which (syntactically) interprets types. A notational
convention: the map J·KAv will be simply denoted J·Kv, or even J·K. Let us see
the recursive definition of J·KAv for the deterministic connectives (including the
synthetic connectives).

JIK = {0} continuous unit
JJK = {1} discontinous unit

J.AK = {1+s| s ∈ JAK} right injection
J.−1BK = {s| 1+s ∈ JBK} right projection

J/AK = {s+1| s ∈ JAK} left injection
J/−1BK = {s| s+1 ∈ JBK} left projection

JˆiAK = {s1+s2| s1+1+s2 ∈ JAK and i = S(s1) + 1} bridge
JˇiBK = {s1+1+s2| s1 + s2 ∈ JBK and i = S(s1) + 1} split

JA•BK = {s1+s2| s1 ∈ JAK & s2 ∈ JBK} (continuous) product
JA\CK = {s2| ∀s1 ∈ JAK, s1+s2 ∈ JCK} under
JC/BK = {s1| ∀s2 ∈ JBK, s1+s2 ∈ JCK} over

JA�iBK = {s1+s2+s3| s1+1+s3 ∈ JAK & s2 ∈ JBK and i = S(s1) + 1} discontinuous product
JA↓iCK = {s2| ∀s1+1+s3 ∈ JAK, s1+s2+s3 ∈ JCK and i = S(s1) + 1} infix
JC↑iBK = {s1+1+s3| ∀s2 ∈ JBK, s1+s2+s3 ∈ JCK and i = S(s1) + 1} extract

4.2. SOME INTERESTING COMPLETENESS RESULTS FOR FRAGMENTS OF D127

We give now the interpretation of the (linear logic) additive connectives and the
nondeterministic connectives:

JA&BK = JAK ∩ JBK additive conjunction

JA⊕BK = JAK ∪ JBK additive disjunction

JC⇑BK =

S(C)−S(B)+1⋂
i=1

JC↑iBK nondeterministic extract

JB⇓CK =

S(C)−S(B)+1⋂
i=1

JB↓iCK nondeterministic infix

JA}BK =

S(A)⋃
i=1

JA�iBK nondeterministic wrapping

JˇBK =

S(ˇiB)⋂
i=1

JˇiBK nondeterministic split

JˆAK =

S(A)⋃
i=1

JˆiABK nondeterministic wrapping

This syntactical interpretation is what we have called in this thesis the standard
syntactical interpretation. Later, we will see, as we said before, a generalization
of syntactical algebras, the so-called general displacement algebras (in Chapter
2 we already introduced general displacement algebras). In fact, looking at
the definition of the equational theory of general displacement algebras, we can
abstract notions as sort, prime and freeness. This will be addressed at the end
of the chapter.

4.2 Some Interesting Completeness results for
fragments of D

Let us consider the following alphabet ΣD = {p, $, \, /, ↓, ↑,⇑,⇓, /−1, .−1, 〈, 〉,
[,],
√}. We define the following sets:

(184)
Σ∗,0D = (ΣD − {$})∗

Σ∗,n+1
D = Σ∗,nD · $ · Σ∗,0D for n ≥ 0

The sets Σ∗,iD (i ∈ ω) can be then represented as follows:

Σ∗,iD = ΣD
∗,0 · $ · ΣD∗,0 · . . . · $ · ΣD∗,0︸ ︷︷ ︸

i $’s

Our main goal is to code the set of types, segmented types and hyperconfigura-
tions with the symbols of the finite set ΣD:

Σ∗D =
⋃
i∈ω

Σ∗,iD

128 4. SYNTACTICAL INTERPRETATION

We build now the sets F̃ , S̃F and Õ. In Chapter 3 we saw that the set of
atomics types of D can be represented as follows:

Ai = (pij)j∈ω

A =
⋃
i∈ω
Ai

We restrict the set of types to what we call the implicative fragment, which we
denote F [→]:

F [→]
def
= F [\, /,⇓,⇑, {↓i}i>0, {↑i}i>0, /

−1, .−1]

The term implicative follows from the following facts. We consider the contin-
uous and discontinuous connectives (deterministic or nondeterministic) which
have a model-theoretical definition in terms of an implication, e.g.:

JB↑iAK = {t : ∀a[a ∈ JAK→ t×i a ∈ JBK]}

Implicative unary connectives are those which in Chapter 3 were proved to be
definable in terms of continuous or discontinous implications. We recall these
definable unary connectives:

/−1A = A/J
.−1A = J\A
ˇiA = A↑iI
ˇA = A⇑I

We can code the set of types with the symbols of ΣD. We define a mapping ρ
at the level of atomic types and then recursively for the remaining (implicative)
types:

ρ : F −→ Σ∗D
pij ∈ A 7→ 〈0i p 0j〉
B/A 7→ 〈ρ(B)/ρ(A)〉
A\B 7→ 〈ρ(A)\ρ(B)〉
B ↑kA 7→ 〈ρ(B)〈↑ 0k〉ρ(A)〉
A ↓kB 7→ 〈ρ(A)〈↓ 0k〉ρ(B)〉
B ⇑A 7→ 〈ρ(B)⇑ρ(A)〉
(A⇓B) 7→ 〈ρ(A)⇓ρ(B)〉
/−1A 7→ 〈/−1ρ(A)〉
.−1A 7→ 〈.−1ρ(A)〉

Notice we do not include the unary connectives (ˇi+1)i∈ω and ˇ.3 Segmented
types can be coded as well. The coding mapping is again called ρ:

ρ : SF −→ Σ∗D
i
√
A 7→ [0i

√
ρ(A)]

Finally we code the hyperconfigurations. For the sake of commodity for the
reader, we show again the (unambiguous) recursive definition of hyperconfigu-
rations:

3The reason will be apparent later in a remark after the truth lemma (193).

4.2. SOME INTERESTING COMPLETENESS RESULTS FOR FRAGMENTS OF D129

O ::= Λ
O ::= A,O for S(A) = 0
O ::= [],O
O ::= 0

√
A,O, 1

√
A, . . . , S(A)−1

√
A,O, S(A)

√
A,O

for S(A) > 0

The coding of Õ is therefore defined recursively as follows:

Õ ::= Λ

Õ ::= ρ(A), Õ for S(A) = 0

Õ ::= $, Õ
Õ ::= ρ(0

√
A), Õ, ρ(1

√
A), . . . , ρ(S(A)−1

√
A), Õ, ρ(S(A)

√
A), Õ

for S(A) > 0

The ρ map codes three types of sets. It is readily seen that this overloaded
mapping is injective:

(185)
ρ : F −→ Σ∗D
ρ : SF −→ Σ∗D
ρ : O −→ Σ∗D

The images of ρ are denoted respectively F̃ , S̃F and Õ. Because of the fact
that ρ is injective, F̃ , S̃F and Õ are in bijection respectively with F , SF and
O. Moreover, the ρ mapping from O into Õ is an isomorphism of displacement
algebras. Later, we will see that both O and Ã constitute a generalization of
the concept of displacement algebras. Without terminological surprise, these
displacement algebras will be called general displacement algebras, which as we
shall see, will become crucial to get different sound and complete syntactical
interpretations of the different displacement calculi.

4.2.1 A canonical model for the implicative fragment F [→]

We are now in a position to define a standard displacement algebra which is
moreover finitely generated:

(186)
As = 〈{Σ∗,iD }i∈ω, (·, ·), {|i}i>0,Λ, $〉 (∗)

The prime is here denoted $ (which corresponds in fact to the so-called sepa-
rator of the set of hyperconfigurations). The operations (·, ·) (which stands for
concatenation) and {|i+1}i∈ω (which stand for i+ 1-th intercalation) mimic the
operations defined on the set of hyperconfigurations. From A we will build a
canonical model which will give us a completeness result in the standard se-
mantics because the displacement algebra A is standard, i.e. it is induced by
a syntactical algebra, in this case 〈Σ∗D, (,), $,Λ〉. The following set-theoretical
equality holds:

(187) Li = Σ∗,0D · 1 · Σ
∗,0
D · . . . · Σ

∗,0
D · 1 · · ·Σ

∗,0
D︸ ︷︷ ︸

i 1’s

130 4. SYNTACTICAL INTERPRETATION

(188) Remark

Notice that the ΣD-algebra C = 〈{Õi}i∈ω, (·, ·), {|i}i>0,Λ, $〉 is a (general)
displacement algebra which is not standard for the first condition of the
separation property ((54) defined in Chapter 2) is not satisfied, and we
know that the separation property holds of FreeDisp. In fact we have
that C is a subalgebra of A, and their sort domains are in a relation of
proper inclusion:

Õi (Li, i ∈ ω

We need some technical results in order to prove the truth lemma which will
be crucial for the construction of the canonical model. Given a t[$] ∈ Σ∗D and

γ ∈ Õ, we say that γ well-occurs in t[γ] ∈ Σ∗D iff t[$] ∈ Õ.

(189) Lemma (Results on Substrings of the Image of the Mapping ρ)

The following properties hold:

i) Let A be an arbitrary type of sort 0. Let t[$] = α, $, β ∈ Σ∗D. We
have that ρ(A,A/A) well-occurs in t[ρ(A,A/A)].

ii) Let A be an arbitrary type of sort strictly greater than 0. We have

then that ρ(
−→
A) well-occurs in t[ρ(

−→
A)].

Proof. We proceed for both cases i) and ii) by induction on the structure of

derivations of Õ (by the unambiguous BNF grammar generating Õ):

i) - Suppose t[ρ(A,A/A)] = ρ(B), α where S(B) = 0 and α ∈ Õ. We
have that ρ(A,A/A) = ρ(A), ρ(A/A). Clearly ρ(A), ρ(A/A) cannot be
a proper infix ρ(B) because in that case ρ(B) would contain two adja-
cent types (of sort 0) coded (by ρ), which is not possible. By the same
token, ρ(A), ρ(A/A) could not be a proper prefix or suffix of ρ(B). By
the balancing (of parenthesis) properties, a proper suffix of ρ(B) cannot
be a prefix of ρ(A), ρ(A/A). Hence, ρ(A), ρ(A/A) must occur in α. By
induction hypothesis (i.h.), it follows that ρ(A), ρ(A/A) well-occurs in α.
Summing up, ρ(A), ρ(A/A) well-occurs in ρ(B), α.

- Suppose t[ρ(A,A/A)] = $, α with α ∈ Õ. Necessarily, ρ(A,A/A) well-
occurs in α because $ does not appear in ρ(A,A/A).

- Suppose that:

t[ρ(A,A/A)] = ρ(0
√
B), α1, ρ(1

√
B), α2 · · · , ρ(S(B)−1

√
B), αS(B), ρ(S(B)

√
B), β

where αi, β ∈ Õ(i = 1, · · · , S(B)). ρ(A), ρ(A/A) cannot be a prefix or
suffix of ρ(i

√
B) (i = 1, · · · , S(B)) for in that case ρ(A), ρ(A/A) would

contain the symbols [or]. ρ(A), ρ(A/A) cannot be an infix of a type
segment for it would contain two coded adjacent types (of sort 0). We are
done.

ii) Suppose S(A) > 0.

4.2. SOME INTERESTING COMPLETENESS RESULTS FOR FRAGMENTS OF D131

- Suppose that t[ρ(
−→
A)] = ρ(B), α, where S(B) = 0 and α ∈ Õ: ρ(

−→
A)

can be neither a proper infix of ρ(B) nor a proper suffix. ρ(
−→
A) cannot be

equal to ρ(B). Consequently, if ρ(
−→
A) occurs in t it must occur in α and

hence, by i.h., it well-occurs in α.

- Suppose that t[ρ(
−→
A)] = $, α, where α ∈ Õ. In this case, ρ(

−→
A) forcefully

occurs in α. Hence, by i.h., ρ(
−→
A) well-occurs in t.

- Suppose that t[ρ(
−→
A)] has the form:

0
√
ρ(B), α1,

1
√
ρ(B), α2, · · · , S(B)−1

√
ρ(B), αS(B),

S(B)
√
ρ(B), β

where αi, β ∈ Õ. We have that ρ(
−→
A) cannot occur as a proper infix of a

type segment, in this case in i
√
ρ(B), for in that case t would not belong to

Õ. And ρ(
−→
A) cannot occur as a proper prefix or suffix of a type segment,

in this case in i
√
ρ(B), for in that case t it would not belong to Õ. ρ(

−→
A)

could be equal to (but not contain as a proper prefix):

0
√
ρ(B), α1,

1
√
ρ(B), · · · , S(B)−1

√
ρ(B), αS(B)−1,

S(B)
√
ρ(B)

In that case, necessarily A = B and αi = [] (i = 1, · · · , S(B)). Otherwise,

ρ(
−→
A) can only occur in αi (i = 1, · · · , S(B)) or β. Hence, by i.h. ρ(

−→
A)

would well-occur in t[ρ(
−→
A)].

�

(190) Remark

Notice that for example the string 〈$〉 ∈ Σ∗,1D does not belong to Õ. But if

we replace $ by p we obtain 〈p〉 ∈ Õ. By i) of the previous lemma, if $ in
〈$〉 is substituted by ρ(A), ρ(A/A) for an arbitrary type A of sort 0 then

the result is a string of Õ. This will be crucial for the truth lemma (193).
On the other hand, if the result of replacing the $ of a string t[$] ∈ Σ∗D
by the empty string is a Õ string, t[$] is not necessarily a Õ. Consider for
example 〈$p〉.

We construct the canonical power-set displacement algebra over the standard
displacement algebra As:

CAs = 〈{2Σ∗,iD }i∈ω, ◦, {◦i+1}i∈ω, {Λ}, {$}〉

Here the operators ◦, and {◦i}i>0 are induded by the operations of the displace-
ment algebra. CAs has moreover induced residuated analogues of the discon-
tinuous connectives {•, \, /, (�i+1)i∈ω, (↓i+1)i∈ω, (↑i+1)i∈ω}. The partial order
associated with CAs is the inclusion ⊆.
Let us consider the following valuation v on the set of atomic types A:

(191)
v : A −→

⋃
i∈ω

2Li

pij 7→ v(pij) = {δ : δ ∈ Õ and `hD ρ−1(δ) ⇒ pij}

We consider the canonical model CMs = (CAs, v). Let us define the following
operator:

132 4. SYNTACTICAL INTERPRETATION

(192)
`−1: F −→

⋃
i∈ω 2Σ∗,iD

A 7→ `−1(A)
def
= {δ : δ ∈ Õ and `hD ρ−1(δ) ⇒ A}

(193) Lemma (Truth Lemma)

• For every type A,B ∈ F [→] and for every connective
∗ ∈ {\, /,⇓,⇑, {↓i+1}i∈ω, {↑i+1}i∈ω}:

JB ∗AKCMs
v = `−1(B ∗A)

• For every type A,B ∈ F [→] and for every connective ∗ ∈ {/−1, .−1}:

J∗AKCMs
v = `−1(∗A)

Proof. By induction on the structure of the types generated from the implica-
tive fragment. For the set A of atomic types we are done by the fact that in
the valuation in the canonical model we have by definition (see (191)):

v(pij) = `−1(pij)

In the following we write ` ∆ ⇒ A instead of `hD ∆ ⇒ A and J·K instead of

J·KCMs
v .

• Binary connectives:

– /: We want to prove:

JB/AK = `−1(B/A)

[⊇]: let δ ∈ `−1(B/A). We have therefore that δ ∈ Õ and ρ−1(δ) ∈
`−1(B/A). In particular:

ρ−1(δ),
−→
A ⇒ B

By induction hypothesis (i.h.) JAK = `−1 (A). Hence for every
γA ∈ JAK we have that ` ρ−1(γA) ⇒ A. Consider the following
derivation:

ρ−1(δ) ⇒ B/A ρ−1(γA) ⇒ A
•R

ρ−1(δ), ρ−1(γA) ⇒ B/A•A B/A •A ⇒ B
Cut

ρ−1(δ), ρ−1(γA) ⇒ B

Therefore ρ(ρ−1(δ), ρ−1(γA)) = ρ(ρ−1(δ)), ρ(ρ−1(γA)) = δ, γA with
δ, γA ∈ `−1 (B) and since by i.h. `−1 (B) = JBK, we have that
δ, γA ∈ JBK. We are done.

[⊆]: Let δ ∈ JB/AK. ρ(
−→
A) ∈ `−1(A), for ρ(

−→
A) ∈ Õ and:

` ρ−1(ρ(
−→
A)) =

−→
A ⇒ A

4.2. SOME INTERESTING COMPLETENESS RESULTS FOR FRAGMENTS OF D133

Since by i.h. `−1(A) = JAK we have that ρ(
−→
A) ∈ JAK. By assumption

δ ∈ JB/AK. It follows that:

δ, ρ(
−→
A) ∈ JBK

By i.h. `−1(B) = JBK, and hence:

ρ−1(δ, ρ(
−→
A)) ∈ Õ and ρ−1(δ, ρ(

−→
A)) ⇒ B

By lemma (189) δ ∈ Õ. Hence ρ−1(δ, ρ(
−→
A)) = ρ−1(δ),

−→
A ∈ Õ.

Summing up:

` ρ−1(δ),
−→
A ⇒ B

By application of the right rule of / we have:

ρ−1(δ),
−→
A ⇒ B

/R
ρ−1(δ) ⇒ B/A

We have therefore that δ `−1(B/A).

– ↑i: Here i ranges over {1, · · · , S(B)− S(A) + 1} We want to prove:

JC↑iBK = `−1(C↑iB)

[⊇]: Let δ ∈ `−1(C↑iB). Call ∆ to ρ−1(δ). By assumption:

δ ∈ Õ and ` ρ−1(δ) = ∆ ⇒ C↑iB

We have to see that for any γB ∈ JBK δ|iγB ∈ JCK. By i.h. we have:

JBK = `−1(B)

γB ∈ Õ and ` ρ−1(γB) ⇒ B

ρ−1(δ) ⇒ C↑iB ρ−1(γB) ⇒ B
�i

ρ−1(δ)|iρ−1(γB) ⇒ (C↑iB)�iB (C↑iB)�iB ⇒ B
Cut

ρ−1(δ)|iρ−1(γB) ⇒ C

By i.h. JCK = `−1 (C). Since δ|iγB ∈ `−1 (C), it follows that
δ|iγB ∈ JCK which proves the inclusion.

[⊆]: Let δ ∈ JC↑iBK. By lemma (189), if S(B) > 0, from the fact

that δ|iρ(
−→
A) ∈ Õ, then δ ∈ Õ. If S(B) = 0, from the fact that

δ|iρ(A,A/A) ∈ Õ then δ ∈ Õ. In either case we have that δ ∈ Õ. By

i.h. JBK =`−1(B). Hence ρ(
−→
B) ∈ `−1(B). By definition of JC↑iBK:

δ|i ρ(
−→
B) ∈ JCK

By i.h. ∆|i
−→
B ⇒ C. Hence:

134 4. SYNTACTICAL INTERPRETATION

∆|i
−→
B ⇒ C

↑iR
∆ ⇒ C↑iB

It follows then δ ∈ `−1(C↑iB). This proves the inclusion [⊆].

– Nondeterministic ⇑. We want to prove:

JC⇑BK = `−1(C⇑B)

[⊇]: Let δ ∈ `−1(C⇑B)

ρ−1(δ) ⇒ C⇑B γB ⇒ B
�R

ρ−1(δ)|iγB ⇒ (C⇑B)�iB

−→
C ⇒ C

−→
B ⇒ B

⇑L−−−−→
(C⇑B)|i

−→
B ⇒ C

�L−−−−−−−−→
(C⇑B)�iB ⇒ C

Cut
ρ−1(δ)|iγB ⇒ C for every i ∈ {1, · · · , S(C)− S(B) + 1}

By i.h. :

JCK = `−1(C)

Hence for every i ∈ {1, · · · , S(C)− S(B) + 1}:

ρ(ρ−1(δ)|iρ−1(γB)) = δ|iγB ∈ JCK

The inclusion [⊇] has been proved.

[⊆]: For every i ∈ 1, · · · , S(C)− S(B) + 1:

δ|iγB ∈ JCK

By a reasoning similar to the case [⊆] for ↑i we have that:

δ ∈ Õ and ρ−1(δ|iρ(
−→
B)) ⇒ C

Since ρ−1(δ|iρ(
−→
B)) = ρ−1(δ)|i

−→
B we have that:

For every i ρ−1(δ)|i
−→
B ⇒ C

and hence:

ρ−1(δ)|1
−→
B ⇒ C · · · ρ−1(δ)|S(C)−S(B)+1

−→
B ⇒ C

⇑R
ρ−1(δ) ⇒ C

Therefore δ ∈ `−1(C).

• Unary connectives:

4.2. SOME INTERESTING COMPLETENESS RESULTS FOR FRAGMENTS OF D135

– /−1:

[⊇]: Let δ ∈ `−1(/−1A). It follows that:

ρ−1(δ) ⇒ /−1A
/−1R

[], ρ−1(δ) ⇒ //−1A
−−−−→
//−1A ⇒ A

Cut
[], ρ−1(δ) ⇒ A

We have ρ([], ρ−1(δ)) = $ · ρ(ρ−1(δ) = $ · δ. Since by i.h. `−1(A) =
JAK, $ · δ ∈ JAK. We are done.

[⊆]: Consider δ ∈ J/−1AK. By definition:

$ · δ ∈ JAK

By i.h. `−1(A) = JAK. Hence:

ρ($ · δ) ∈ Õ and ` ρ−1(ρ($ · δ)) ⇒ A

Now, again by lemma (189) we have that δ ∈ Õ. Therefore, ρ−1($ ·
δ) = [], δ and it follows that:

` [], δ ⇒ A

By right application of /−1 we obtain:

` [], δ ⇒ A
/−1R

` [], δ ⇒ /−1A

We are done.

The other implicative connectives follow similar reasonings.
�

(194) Remark
We could have tried to include in what we have called implicative con-
nectives the unary ˇi and ˇ. But the result would not go through in the
case of an underlying finitely generated syntactical algebra. For in the
standard interpretation t[$] := 〈$p〉 is such that t[Λ] = ρ(p0

0) ∈ Õ, but

t[$] 6∈ Õ. Nevertheless, if we considered a syntactical algebra generated
by the infinite alphabet ΣD = F [→]∪SF [→]∪{[]} then the truth lemma
for the connectives ˇi and ˇ would work.

(195) Lemma
For any ∆ ∈ O, ρ(∆) ∈ J∆K.

Proof. By induction on the complexity of O. �

(196) Theorem (Completeness of the Restricted Implicative fragment of D
w.r.t. Displacement Algebras induced by Finitely Generated Syntactical
Algebras)

136 4. SYNTACTICAL INTERPRETATION

D is complete w.r.t. the class of powerset residuated displacement al-
grebras over finitely finitely generated syntactical algebras in the so-called
restricted implicative fragment:

D[\, /,⇓,⇑, {↓i}i>0, {↑i}i>0, /
−1, .−1]

Proof. Let S = ∆ ⇒ A be a hypersequent valid in every powerset displace-

ment model over a finitely generated free syntactical algebra. Here, JKCMs
v will

be simply denoted J·K. In particular, S holds of the canonical model defined
above:

CMs |= ∆ ⇒ A

By the previous lemma, we have that ρ(∆) ∈ J∆K. Since J∆K ⊆ JAK, ρ(∆)
∈ JAK. By the truth lemma:

ρ(∆) ∈ `−1(A)(?)

We have then that ρ−1(ρ(∆)) = ∆ and ` ∆ ⇒ A. So we are done. �
We present now an extended implicative completeness result where we add

the connectives {ˇi+1}i∈ω and ˇ. But this result is weaker than theorem (196)
in the sense that we no longer interpret types in finitely generated syntactical
algebras.

(197) Theorem (Completeness of the Implicative fragment of D w.r.t. Dis-
placement Algebras induced by Syntactical Algebras)

D is complete w.r.t. the class of powerset residuated displacement al-
grebras over syntactical algebras in the so-called implicative fragment:

D[\, /,⇓,⇑, {↓i}i>0, {↑i}i>0, /
−1, .−1, (ˇi+1)i∈ω, ˇ]

Proof. The proof is similar to the one of theorem (196). But the proof of this
theorem is easier because we are considering the class of syntactical algebras4, a
fact which allows us to build a simpler canonical model based on the canonical
displacement algebra:

CAs = 〈{2Σ∗,iD }i∈ω, ◦, {◦i+1}i∈ω, {Λ}, {$}〉

Where Σ∗D
def
= (F0 ∪ SF ∪ {[]})∗. Of course, it is not finitely generated. Here

Σ∗D is a set graduated by the collection of Σ∗,iD which are simply the subsets Σ∗D
whose strings contain i []’s. Given an arbitrary type A, the operator is defined

in such a way that `−1 (A)
def
= {∆ : ∆ ∈ O and ` ∆ ⇒ A}.

We have now only to check the connectives (ˇi+1)i∈ω and nondeterministic
ˇ:

• Deterministic ˇk :

[⊇]: Let δ ∈ `−1(ˇkA). It follows that:

4Which properly contains the class of finitely generated syntactical algebras.

4.2. SOME INTERESTING COMPLETENESS RESULTS FOR FRAGMENTS OF D137

δ ⇒ ˇk(A)
ˆkR

∆|kΛ ⇒ ˆkˇk(A)

Since ˆkˇk(A) ⇒ A it follows that:

∆|kΛ ⇒ ˆkˇk(A)
−−−−→
ˆkˇkA ⇒ A

Cut
∆|kΛ ⇒ A

It follows that ∆|kΛ ∈ `−1(A). Hence, by i.h. ∆|kΛ ∈ JAK. We are done.

[⊆]:

Let ∆ ∈ JˇkAK. It follows that ∆|kΛ ∈ JAK. By i.h. ∆|Λ ⇒ A. Hence:

∆|kΛ ⇒ A
ˇkR

∆ ⇒ ˇkA

It follows that ∆ ∈ `−1ˇk(A). This proves the inclusion.

• Nondeterministic ˇ:

[⊇]:

∆ ⇒ ˇA
ˆi

∆|iΛ ⇒ ˆˇA

−→
A ⇒ A

ˇL−→̌
A|iΛ ⇒ A

ˆi−−−→
ˆiˇA ⇒ A

∆|iΛ ⇒ A for every i ∈ {1, · · · , S(A) + 1}

By i.h. for every i, ∆|iΛ ∈ JAK. The inclusion is proved.

[⊆]: by a reasoning similar to the case [⊆] for the connectives ˇi we have
that:

∆|iΛ ⇒ A

Therefore:

For every i ∈ {1, · · · , S(A) + 1} ∆|iΛ ⇒ A

Hence:

∆|1Λ ⇒ A · · · ∆|S(A)+1Λ ⇒ A
ˇR

∆ ⇒ ˇA

We have therefore that ∆ ∈ `−1(ˇA). We are done.

�

138 4. SYNTACTICAL INTERPRETATION

4.2.2 A source of incompleteness: some remarks w.r.t.
units and their interpretation in standard semantics

Units may be the source of incompleteness with the more standard semantics,
i.e. powerset frames over full displacement algebras. Hence incompleteness may
appear in the displacement calculus. We present two examples, one from a
subsystem of the displacement calculus, L + {I}, i.e. the Lambek Calculus
with unit. This calculus is enriched with the usual left/right rules for the unit
of sequent calculus. L + {I} corresponds to 0 -D necessarily restricted to the
fragment with types ranging over F [•, /, \, I].

As we said, interpreting the calculus in free monoids we immediately get
incompleteness in 0 -D:

|= I/A,B,A ⇒ B for A,B atomic types (?)

We have JI/A,B,AK =

{
∅ if JAK 6= {λ}
JBK if JAK = {λ} . Suppose JAK 6= {λ}. If JAK =

∅, then the antecedent of (?) is empty. If JAK 6= ∅ but (6= {λ}), then JI/AK = ∅
and hence the antecedent of (?) is again the empty set. Now, if JAK = {λ},
then JAK = JI/AK = λ, whence the antecedent of (?) is JBK. In either case,
JI/A,B,AK ⊆ JBK, and hence |= I/A,B,A ⇒ B. This sequent is however not
derivable in L + {I} as a simple inspection in the finite Cut-free search space
shows.

In 1-D we have the following derivation:

I ⇒ I
JL

J{I} ⇒ I
↑R

J{[]} ⇒ I↑I
However the converse hypersequent is underivable in 1-D but is valid in the
standard powerset frame semantics:

|= I↑I{[]} ⇒ J

For we have:

JI↑IK = {1} = JJK

If we want to maintain units in our syntactic calculus, we should use units
in a rather safer way. This is exactly what we do in the next section. The
interpretation is nonstandard but almost standard.

4.3 Towards Full Completeness for D

We present a syntactical interpretation which is very close to what we called
standard semantics. The idea of this syntactical interpretation originated in a
Fadda and Morrill paper (Fadda and Morrill (2005)) in which there was consid-
ered the concept of preordered monoid in order to give a sound and complete
syntactical interpretation for the Lambek Calculus with brackets Lb.

Here we extend the idea to the concept of preordered displacement algebras
and preordered nondeterministic displacement algebras. In this way, we will be

4.3. TOWARDS FULL COMPLETENESS FOR D 139

able to give for the first time two completeness results for the displacement cal-
culus including all the connectives, i.e., units, deterministic products and all the
nondeterministic connectives. As in the standard case, we are given a syntac-
tical algebra M = 〈M,+, 0, 1〉, i.e., we preserve freenees. From M we induce
what we call a general displacement algebra A = 〈{Li}i∈ω,+, {×k}k>0, 0, 1〉:

(198)
∀i ∈ ω, Li ⊆M0 · 1 ·M0 · · ·M0 · 1 ·M0︸ ︷︷ ︸

i 1’s

M0 denotes the subset of M with 0 primes, and L0 ⊆M0. In general displace-
ment algebras, the inclusions of sort domains in (198) crucially may be proper.
As we saw before, units are a source of incompleteness in standard semantics
for displacement calculus, and even for the plain Lambek calculus. Moving to
general models will be one of the keys to avoid incompleteness. Another differ-
ence with standard semantics, which will be very useful, is to incorporate into
our displacement algebra A a preorder ≤ compatible with the operations + and
{×i+1}i∈ω.

(199) Definition (Preorder Compatibility)

Let A = 〈{Li}i∈ω,+, {×k+1}k∈ω, 0, 1〉 be a general displacement algebra.
We say that a binary relation ≤ on A is a preorder compatible with the
operations iff:

• For all x, y ∈ Li and t, z ∈ Lj with i, j ∈ ω:

x ≤ y t ≤ z
Comp1

x+ t ≤ y + z

• For all x, y ∈ Li with i > 0 and t, z ∈ Lj with j ∈ ω:

x ≤ y t ≤ z
Comp2

x×k t ≤ y ×k z

The interpretation of types in this new nonstandard semantics will be made
in the set of subsets of Li (i ∈ ω) which are well-sorted and downward-closed
(d.c.):

(200)
A ⊆ Li with i ∈ ω is d.c.
iff
for every x, if x ≤ a and a ∈ A then x ∈ A

The set of d.c. sets of A is denoted
⋃
i∈ω 2Li≤ .

Let us now define powerset frame models over general preordered displace-
ment algebras. Let (A;≤) be a general preordered displacement algebra and let
v be a mapping of atomic types to

⋃
i∈ω 2Li≤ . The new interpretation of types

is as follows:

(201) Definition (Interpretation of Types in Powerset Frame Models over Pre-
ordered Displacement Algebras)

140 4. SYNTACTICAL INTERPRETATION

JAKv
def
= v(A) ∈ 2

LS(A)

≤ for A atomic type

JIKv
def
= {x : x ≤ 0}

JJKv
def
= {y : y ≤ 1}

JA•BKv
def
= {c : ∃a ∈ JAKv ∃b ∈ JBKv, c ≤ a+ b}

JB/AKv
def
= {t : ∀a ∈ JAKv, t+ a ∈ JBKv}

JA\BKv
def
= {t : ∀a ∈ JAKv, a+ t ∈ JBKv}

JA�iBKv
def
= {c : ∃a ∈ JAKv ∃b ∈ JBKv, c ≤ a×i b} with 1 ≤ i ≤ S(A)

JB↑iAK def
= {t : ∀a ∈ JAKv, t×i a ∈ JBKv} with 1 ≤ i ≤ S(B)− S(A) + 1}

JA↓iBKv
def
= {t : ∀a ∈ JAKv, a×i t ∈ JBKv} with 1 ≤ i ≤ S(A)

J/−1AK def
= {t : ∀x ≤ 1, t+ x ∈ JAKv}

J.−1AK def
= {t : ∀x ≤ 1, x+ t ∈ JAKv}

JA}BKv
def
= {c : ∃i with 1 ≤ i ≤ S(A),∃a ∈ JAKv ∃b ∈ JBKv, c ≤ a×i b}

JB⇑AKv
def
= {t : ∀a ∈ JAKv,∀i with 1 ≤ i ≤ S(B)− S(A) + 1, t×i a ∈ JBKv}

JA⇓BKv
def
= {t : ∀a ∈ JAKv,∀i with 1 ≤ i ≤ S(A), t×i a ∈ JBKv}

JˇiAKv
def
= {t : ∀a ≤ 0, t×i a ∈ JAKv}

JˆiAKv
def
= {t : ∃a ∈ JAKv ∃γ ≤ 0, such that t ≤ a×i γ}

J ǍKv
def
= {t : ∀a ≤ 0,∀i with 1 ≤ S(A) + 1, t×i a ∈ JAKv}

J ÂKv
def
= {t : ∃i with 1 ≤ i ≤ S(A),∃a ∈ JAKv, ∃γ ≤ 0 such that t ≤ a×i γ}

(202) Lemma
Let M = (A, J·Kv) be a powerset frame model over a general preordered
displacement algebra A. We have that the interpretation of every type is
d.c.:

For every type A ∈ Fi, i ∈ ω, JAK ∈ 2Li≤

Proof. By induction on the complexity of types.

• Base cases

i) Atomic types: d.c. by definition.

ii) Units: d.c. by definition.

• Inductive step: we show some representative examples.

i) Products and product-like unary synthetic connectives: d.c. by def-
inition. Let us see them in some detail. In powerset frames over
preordered displacement algebras continuous product is defined as
follows:

JA•BKv
def
= {x : ∃a ∈ JAKv, ∃b ∈ JBKv such that x ≤ a+ b}

Suppose α ≤ γ such that γ ∈ JA•BKv. We know that that there exist
a ∈ JAKv and b ∈ JBKv such that γ ≤ a+ b. We have by transitivity
of ≤:

4.3. TOWARDS FULL COMPLETENESS FOR D 141

α ≤ γ γ ≤ a+ b
Trans

α ≤ a+ b

Hence α ∈ JA•BKv.
Nondeterministic product: suppose that y ∈ JA } BK and x ≤ y. It
follows that for some i, a ∈ JAK and b ∈ JBK we have that y ≤ a×i b.
By transitivity of ≤, x ≤ a×ib. Hence, there exists i ∈ {1, · · · , S(A)},
a ∈ JAK and b ∈ JBK such that x ≤ a×i b, whence x ∈ JA}BK.
Let us see a product-like synthetic connective ˆk :

JˆkAKv
def
= {t : ∃a ∈ JAKv ∃γ ≤ 0, such that t ≤ a×k γ}

Following a reasoning similar to the previous one, the nondetermin-
istic (synthetic) unary connective ˆ is also d.c.

ii) Implicative connectives:

Consider the continuous connective /. We want to see that JB/AK is
d.c. Let δ ∈ JB/AK. Suppose we are given x such that x ≤ δ. Let
a ∈ JAK. We have:

x ≤ δ a ≤ a
Comp1

x+ a ≤ δ + a

δ + a ∈ JBK. By induction hypothesis (i.h.) JBK is d.c. Whence
x+ a ∈ JBK. Hence, we have that for every a ∈ JAK, x+ a ∈ JBK. It
follows that x ∈ JB/AK.
Let us see the case of a discontinuous connective, say ↓i for some
i > 0. Let δ ∈ JBK. Let a be an arbitrary element of JAK. We have:

x ≤ δ a ≤ a
Comp2

a×i x ≤ a×i δ
a×i δ ∈ JAK. By i.h. JAK is d.c. Hence by transitivity a×i x ∈ JBK,
whence x ∈ JA↓iBK.
Finally, let us see nondeterministic extraction ⇑. Let δ ∈ JB⇑AK and
x be such that x ≤ δ. Let a be an arbitrary element of JAK. For
every i = 1, · · · , S(B)− S(A) + 1, we have that:

x ≤ δ a ≤ a
Comp2

x×i a ≤ δ ×i a
For every i = 1, · · · , S(B) − S(A) + 1 δ ×i a ∈ JBK. By i.h. JBK for
every i = 1, · · · , S(B)− S(A) + 1, x×i a ∈ JBK, whence x ∈ JB⇑AK.

�
The new semantics we have defined is sound, i.e., every derivable hyperse-

quent is valid. Let us call PDA the class of general preordered displacement
algebras. We see the result for the categorical calculus of the full fragment in-
cluding the synthetic connectives defined in Chapter 3. Since the categorical
calculus and the hypersequent calculus are equivalent, the result extends to the
hypersequent calculus:

142 4. SYNTACTICAL INTERPRETATION

(203) Theorem (Soundness of Full DND w.r.t. Powerset Frame Models over
General PDA’s)

Let A→ B be a provable categorical arrow in cDND. It follows that:

(204)
PDA |= A→ B

Proof. We proceed by induction on the length of derivations in the categorical
calculus cDND. The property of compatibility of the operations in a preordered
displacement algebra and the fact that type are interpreted in d.c. sets will turn
out to be crucial in the proof.

• Axiom:

A→ A

for any type A ∈ F . This case is trivial.

• The laws of residuation for the different connectives are sound. Let us see
this with an example. The remaining connectives have completely similar
reasonings. Consider the nondeterministic residuated triple (},⇓,⇑):
Nondeterministic residuation:

A}B → C iff A→ C⇑B
iff B → A⇓C

Let us see the first only if. Suppose we have JA}BK ⊆ JCK. Let a ∈ JAK.
Let b ∈ JAK and i be such that 0 < i ≤ S(A). Hence by induction
hypothesis (i.h.), a×i b ∈ JA}BK ⊆ JCK. It follows then that a ∈ JC⇑BK.

Let us see the first if. By i.h., we have JAK ⊆ JC⇑BK. Let a ∈ JAK, b ∈ JBK
and i be such that 0 < i ≤ S(A). Since a ∈ JC⇑BK we have a×i b ∈ JCK.
Let γ be such that γ ≤ a×i b. Since the types and arrows are interpreted
in sets which are d.c. it follows that γ ∈ JA } BK ⊆ JCK. We are done.
The second only if and if is completely similar.

• Structural rules are sound.

A remark on notation. We adopt the following convention:

xA or xBC mean respectively that xA ∈ JAK and xBC ∈ JB ∗ CK where ∗
is an operation which is clear from the context.

- From the axioms of cD, let us see for example the case of discontinu-
ous associativity. The other axioms have analogous proofs. Consider the
following:

A�i(B�jC)↔ (A�iB)�i+j−1C with B GA C

We want to see that:

JA�i(B�jC)K = J(A�iB)�i+j−1CK with B GA C

4.3. TOWARDS FULL COMPLETENESS FOR D 143

Let us see the case [⊆]. Let δ ∈ JA ×i (B ×j C)K. It follows that by
our nonstandard definition of products (in particular the discontinuous
products) we have the following:

δ ≤ xA ×i (xBC)

where xA is an arbitrary element of JAK and xBC is such that xBC ≤
xB ×j xC for arbitrary elements xB and xC . In the underlying syntactical
algebra 〈M,+, 0, 1〉 the following holds:

xA ×i (xB ×j xC) = (xA ×i xB)×i+j−1 xC

Since δ ≤ xA ×i xBC ≤ xA ×i (xB ×j xC), it follows that:

δ ≤ (xA ×i xB)×i+j−1 xC

whence δ ∈ J(A�iB)�i+j−1CK, because as we have proved, for any type
D, JDK is d.c., in particular J(A�iB)�i+j−1CK. We are done.

The other inclusion [⊇] is completely similar to the case of [⊆].

- Nondeterministic rule:

We consider the two nondeterministic rules ND1 and ND2:

A�1 B → C · · · A�a B → C
ND1

A}B → C

A}B → C
ND2

A�i B → C for i = 1, · · · , a

Let us prove ND1. Let γ be such that there exist i ∈ {1, · · · , a}, xA ∈ JAK,
xB ∈ JBK and γ ≤ a ×i b. The premises of ND1 give us the arrow
A�iB → C. It is clear that γ ∈ JA�iBK. By assumption, JA�iBK ⊆ JCK.
Hence γ ∈ JCK. Consider now rule ND2. Suppose we have γ and i, xA, xB
such that γ ≤ xA ×i xB . By assumption we have that JA } BK ⊆ JCK.
By definition of the syntactical interpretation of A } B, it follows that
γ ∈ JA}BK. We have then that γ ∈ JCK, whence JA�i BK ⊆ C.

• Units: we have that the following rules for units are sound:

I •A↔ A↔ A • I
J �1 A↔ A↔ A�i J for 1 ≤ i ≤ S(A)

Let us see the case of discontinous units. We show an example:

JJ �1 AK = JAK = JA�i JK for 1 ≤ i ≤ S(A)

Consider the second equality. Let δ ∈ JAK. Let xJ be an arbitrary element
of JJK, i.e., an element x such that x ≤ 1. Since we are interpreting types
in a preordered displacement algebra, we have that:

144 4. SYNTACTICAL INTERPRETATION

δ = δ ×i 1 ∈ JAK

Since δ = δ ×i 1, δ ≤ δ ×i 1 ∈ JA�i JK. Hence we have seen the inclusion
JAK ⊆ JA �i JK. Let us see the other inclusion, i.e., JA �i JK ⊆ JAK.
Consider an arbitrary element xAJ such that xAJ ∈ JA �i JK. It follows
that:

xAJ ≤ xA ×i xj with xj ≤ 1 and xA ×i xj ≤ xA ×i 1 ≤ xA

It follows that xAJ ≤ xA with xA ∈ JAK. Since JAK is d.c., we have that
xAJ ∈ JAK, whence the inclusion JA�i JK ⊆ JAK holds.

The first equality JJ �1 AK = JAK follows a similar reasoning in which the
fact that xA = xA ×i 1 holds in preordered displacement algebra.

Finally, the proof of soundness in the case of the continuous unit is com-
pletely similar to the discontinous one where in the reasonings ×i and 1
must be replaced respectively by + and 0.

• The Cut rule for cDND:

A→ B B → C
Cut

A→ C

This case holds trivially by the transitivity of the inclusion.

This completes the proof.

�
In the following subsection we see how this new nonstandard semantics works

falsifying the hypersequents which are underivable but valid w.r.t. the standard
semantics. After this, we will see two results of completeness: one for the full
fragment of D without the nondetermistic connectives and the second one for the
full fragment including the nondeterministics rules. In the second completeness
result, we will slightly modify the definition of preordered displacement algebra
and the interpretation of types.

4.3.1 The new semantics at work: falsifying some under-
ivable hypersequents

(205) Lemma
There exist powerset frame models over full preordered displacement al-
gebras which falsify the following hypersequents:

i) I/A,B,A ⇒ B

ii) I↑I{[]} ⇒ J

Proof.

4.3. TOWARDS FULL COMPLETENESS FOR D 145

i) I/A,B,A ⇒ B:

Ler us build a powerset model over a preordered displacement algebra
(PDA) which falsifies the above sequent. Let (M,+, 0, 1) be the syntac-
tical algebra freely generated by the set Σ = {1, a, b} and consider its
associated standard displacement algebra. We will build a preorder based
on a mapping on strings of M . Let w be a string of M . Let us consider
the following factorization of w around the a’s :

w = α0 + ai1 + α1 + · · ·+ ain−1 + αn−1 + ain + αn

Where the αi’s (i = 1, · · · , n−1 if n > 0) are nonempty strings without any
occurrence of a. α0 and αn are possibly empty strings with no occurrence
of a. If n = 0 then we put w = α0. In sigma notation we would have:

w = α0 +
n∑
k=1

(aik + αk)

With this factorization around the a’s we define a mapping, which we
call the reducing mapping, which erases every occurrence of a3 of a given
string. Before defining formally this mapping, which we denotate as [·],
let us see an example:

[b+ a2 + b2 + a5 + b2 + a9 + b+ a7] = b+ a2 + b2 + a2 + b3 + a

More formally:

[·] : M −→ M

w = α0 +
n∑
k=1

(aik + αk) 7→ [w] = α0 +
n∑
k=1

(aikmod 3 + αk)

Where imod 3 with i ∈ ω is the standard arithmetical operation i modulo 3.

Using the mapping [·] allows us to define the following relation on M :

For every r, s,∈M r ≤ s iff [r] = [s]

We have to check that ≤ is a preorder compatible with the operations:

– Preorder:

Reflexifity of≤: Givenm ∈M , we have by the functionality of [·] that
[m] = [m] whence m ≤ m. Transitivity comes from the transitivity
of the equality:

r ≤ s s ≤ t
T rans

r ≤ t

The premises of Trans can be expressed in terms of [·]:

[r] = [s] and [s] = [t]

146 4. SYNTACTICAL INTERPRETATION

Therefore [r] = [t] which is equivalent by definition to r ≤ t. A
remark: in fact ≤ is an equivalence relation because symmetry holds:

m ≤ n iff [m] = [n] iff n ≤ m

– Compatibility: We have the following fact:

Given m,n ∈M we have that:

(206)
[[m] + [n]] = [m+ n]

And in general, we have that:

(207)
[[m1] + · · ·+ [mn]] = [m1 + · · ·+mn]

(206) and (207) are due to the following fact of elementary arith-
metic:5

(a+ b) mod p = (amod p+ bmod p) mod p

And in general, we have:

(a1 + · · ·+ an) mod p = (a1 mod p+ · · ·+ an mod p) mod p

Where a, b and ai ∈ ω for i = 1, · · · , n and p denotes an arbitrary
natural number. Let us prove now that ≤ is compatible with +. We
want to see that:

x ≤ y t ≤ z

x+ t ≤ y + z

From x ≤ y and t ≤ z we have that:

[x] = [y] and [t] = [z]

It follows that:

[x] + [t] = [y] + [z]

Applying [·] to the last equality we obtain:

[[x] + [t]] = [[y] + [z]]

By (206) the following holds:

[x+ t] = [[x] + [t]] = [[y] + [z]] = [y + z]

Hence [x+ t] = [y + z] whence x+ t ≤ y + z.

5The proofs of these arithmetical facts are from to the so-called theorem of arithmetical
division: for every a, b ∈ ω there exist q, r ∈ ω such that:

a = b · q + r such that 0 ≤ r < b

Moreover one can easily prove that q and r are unique.

4.3. TOWARDS FULL COMPLETENESS FOR D 147

Let us see now the compatibility of ≤ with the ×i (i > 0) operations:

x ≤ y t ≤ z

x×i t ≤ y ×i z

Let us split x and y around the i-th occurrence of 1:

x = x1 + 1 + x2 and y = y1 + 1 + y2

It is readily seen that:

[x1 + 1 + x2] = [x1] + 1 + [x2]

[y1 + 1 + y2] = [y1] + 1 + [y2]

From x ≤ y we have that:

[x1] + 1 + [x2] = [x1 + 1 + x2] = [y1 + 1 + y2] = [y1] + 1 + [y2]

From t ≤ z we have that [t] = [z]. Hence:

[x1] + [t] + [x2] = [y1] + [z] + [y2]

Applying [·] to the last equation:

[[x1] + [t] + [x2]] = [[y1] + [z] + [y2]]

It follows that:

[x1 + t+ x2] = [y1 + z + y2]

From the last equation:

[x×i t] = [x1 + t+ x2] = [y1 + z + y2] = [y ×i z]

Hence:

[x×i t] ≤ [y ×i z]

We have seen therefore that ≤ is a preorder compatible with the operations
of the displacement algebra. Notice that in fact what we have proved is
that ≤ is a congruence, for we have seen that ≤ is symmetric whence it is
an equivalence relation. Let us define the following powerset frame model
over our preordered displacement algebra:

v(A) = {x : x ≤ a}
v(B) = {x : x ≤ b}

By definition of a preordered displacement model:

JIK = {x : x ≤ 0}
JJK = {y : y ≤ 1}

148 4. SYNTACTICAL INTERPRETATION

JI/AKv = {x : ∀a ∈ JAKx+ a ≤ 0}

The last interpretation of the type I/A can be rewritten as:

JI/AKv = {x : ∀a ∈ JAK, [x+ a] = [0]}

Now, a2 ∈ JI/AKv for [a2 + a] = [a3] = [0]. We have that a ∈ JAKv and
b ∈ JBKv. It follows that:

a2 + b+ a ∈ JI/A,B,AK

But a2 + b + a 6≤ b for [a2 + b + a] = a2 + b + a 6= b = [b], whence
a2 + b+ a 6∈ JBKv.

It follows that:

6|= I/A,B,A ⇒ B

ii) Let us falsify the hypersequent:

I↑I{[]} ⇒ J

With the techniques from i) we define a preordered displacement algebra
freely generated by {a, 1}. We build a similar preorder to the one from i),
which is compatible with the operations as follows:

m ≤ n iff [m] = [n]

Where the function [·] is defined similarly to the one from i) with the
following difference:

[a2] = 0

The interpretation of units is of course

JIK = {x : x ≤ 0}
JJK = {y : y ≤ 1}

Let us see the interpretation of JI↑IK

JI↑IK = {x1 + 1 + x2 : ∀y ∈ JIK, x1 + y + x2 ∈ JIK}

We consider therefore the set:

{x1 + 1 + x2 : ∀y ≤ 0, x1 + y + x2 ≤ 0}

We observe that a+ 1 + a ∈ JI↑IK for:

(a+ 1 + a)×1 0 = a2 ≤ 0

4.3. TOWARDS FULL COMPLETENESS FOR D 149

a2 ≤ 0 because [a2] = 0. Now we have that:

a+ 1 + a 6≤ 1

Because a+ 1 + a = [a+ 1 + a] 6= 1. Hence:

6|= I↑I{[]} ⇒ J

�

4.3.2 Completeness I

In this subsection and the following ones we prove three completeness results
for D. The first one covers the implicative fragment and the deterministic
products and units. In this completeness result there is room for what we have
called implicative synthetic connectives including the nondetermistic ones, but
nondeterministic products are not included.

The completeness result is very close to the one of the implicative fragment.
We are given as in the implicative fragment a syntactical algebra freely generated
by a finite set of generators we call ΣD:

ΣD = {p, q, r, 0, $, \, /, •, ↓, ↑,�,⇑,⇓, (,), [,], ˇ}

The coding map ρ defined in Section 4.2.1 must be extended to the following
cases (the cases already covered in section 4.2.1 are omitted):

ρ : F −→ Σ∗D
I 7→ 〈q〉
J 7→ 〈r〉
A •B 7→ 〈ρ(A) • ρ(B)〉
A�i B 7→ 〈ρ(A)〈� 0i〉ρ(B)〉

The ρ map is extended as in section 4.2.1 to the sets S̃F and Õ. We can
then define in a similar way the canonical displacement algebra, where it must
be understood that now all the deterministic and implicative nondeterministic
connectives are covered:

(208)

A = 〈{Õi}i∈ω, (·, ·), {|i}i>0,Λ, $〉

We define now the relation ≤` on A as follows:

≤`
def
= {(γ, δ) : γ, δ ∈ Õ and hD ` ρ−1(γ) ⇒ (ρ−1(δ))•}

Where the map (·)• was defined in Chapter 3.

(209) Lemma

≤` is a prorder compatible with the operations of the canonical algebra
A.

Proof.

150 4. SYNTACTICAL INTERPRETATION

• ≤` is preorder:

In Chapter 3 we saw that for every ∆ ∈ O and any type A the following
two results hold:

i) hD ` ∆ ⇒ ∆•

ii) If hD ` ∆ ⇒ A then hD ` ∆• ⇒ A

Consider three hyperconfigurations ∆ = ρ−1(δ),Γ = ρ−1(γ) and Θ =

ρ−1(τ) where δ, γ and τ are arbitrary elements of Õ. It follows that the
following properties hold:

– ≤` is reflexive. For δ ≤` δ because ∆ ⇒ ∆•.

– ≤` is transitive:

δ ≤` γ γ ≤` τ

δ ≤` τ

For we have:

∆ ⇒ Γ•

Γ ⇒ Θ•

...
−→
Γ• ⇒ Θ•

Cut
∆ ⇒ Θ•

• ≤` is compatible with the operations: Consider now four arbitrary hy-
perconfigurations ∆ = ρ−1(δ),Γ = ρ−1(γ), Θ = ρ−1(τ) and Σ = ρ−1(σ).
There are two cases to consider:

– Compatibility with concatenation (·, ·):

δ ≤` γ τ ≤` σ

δ, τ ≤` γ, σ

We have to prove:

∆,Θ ⇒ (Γ,Σ)•

We can derive the following:

(210)
∆ ⇒ Γ• Θ ⇒ Σ•

∆,Θ ⇒ Γ• • Σ•

Suppose we have
−−−−→
Γ• • Σ• ⇒ (Γ,Σ)•. From this and (210) and by

applying Cut we obtain:

∆,Θ ⇒ (Γ,Σ)•

Let us prove now that
−−−−→
Γ• • Σ• ⇒ (Γ,Σ)• is derivable:

4.3. TOWARDS FULL COMPLETENESS FOR D 151

Γ,Σ ⇒ (Γ,Σ)•

...

Γ•,Σ• ⇒ (Γ,Σ)•

•L−−−−→
Γ• • Σ• ⇒ (Γ,Σ)•

– Compatibility with wrapping:

δ ≤` γ τ ≤` σ

δ|iτ ≤` γ|iσ

We have to prove:

∆|iΘ ⇒ (Γ|iΣ)•

We can derive the following:

Γ|iΣ ⇒ (Γ|iΣ)•

...

Γ|i
−→
Σ• ⇒ (Γ|iΣ)•

↑iR
Γ ⇒ (Γ|iΣ)•↑iΣ•

From the last hypersequent of the above derivation we derive:

Γ ⇒ (Γ|iΣ)•↑iΣ•

...
−→
Γ• ⇒ (Γ|iΣ)•↑iΣ•

We have therefore:

−→
Γ• ⇒ (Γ|iΣ)•↑iΣ•

−→
Σ• ⇒ Σ•

�iR−→
Γ•|i
−→
Σ• ⇒ ((Γ|iΣ)•↑iΣ•)�i Σ•

Since:

((Γ|iΣ)•↑iΣ•)�i Σ• ⇒ (Γ|iΣ)•

Applying Cut we have:

(211)

−→
Γ•|i
−→
Σ• ⇒ ((Γ|iΣ)•↑iΣ•)�i Σ•

−−−−−−−−−−−−−−→
((Γ|iΣ)•↑iΣ•)�i Σ• ⇒ (Γ|iΣ)•

−→
Γ•|i
−→
Σ• ⇒ (Γ|iΣ)•

It follows by the application of the left rule of �i:

−→
Γ•|i
−→
Σ• ⇒ (Γ|iΣ)•

�iL−−−−−−→
Γ• �i Σ• ⇒ (Γ|iΣ)•

152 4. SYNTACTICAL INTERPRETATION

We have:

∆ ⇒ Γ• Θ ⇒ Σ•

�iR
∆|iΓ ⇒ Γ• �i Σ•

From the end hypersequent of (211) we have by application of Cut

∆|iΓ ⇒ Γ• �i Σ•
−−−−−−→
Γ• �i Σ• ⇒ (Γ|iΣ)•

Cut
∆|iΓ ⇒ (Γ|iΣ)•

We are done.

�
In section 4.2 we introduced the `−1 operator. We slightly modify its definition:

`−1: F −→
⋃
i∈ω 2Õi

A 7→ `−1(A)
def
= {δ : δ ∈ Õ and `hD ρ−1(δ) ⇒ A}

(212) Lemma (Truth Lemma for Deterministic D and Nondeterministic Im-
plicative D)

For every typeA ∈ F [•, \, /, {�i+1}i∈ω, {↑i}i>0, {↓i}i>0,⇓,⇑, {ˇi i+1}i∈ω, ˇ,
I, J] we have:

JAKv = `−1 (A)

Where J·Kv is the valuation in the canonical model we have been consid-
ering through the different proofs of the completeness theorems.

Proof. We already covered the proofs for the so-called implicative fragment of
D. The proofs work also with the new syntactical interpretation. Let us see the
result for the product connectives • and {�i+1}i∈ω and for units. We proceed
by induction on the structures of types:

• Units. By definition of models based on preordered displacement algebras,
we have to define the interpretations of units in terms of the preorder
relation:

JIK = {γ : γ ≤ 0}
JJK = {γ : γ ≤ 1}

In the canonical model we have:

(213)
JIK = {γ : γ ∈ Õ and `hD ρ−1(γ) ⇒ I}
JJK = {γ : γ ∈ Õ and `hD

−−−−→
ρ−1(γ) ⇒ J}

It is clear by the definition given in (213) that JIK = `−1 (I) and JJK =
`−1 (J).

4.3. TOWARDS FULL COMPLETENESS FOR D 153

• Continuous product. We want to prove that:

JA •BKv = `−1 (A •B)

The proof follows the one of Fadda and Morrill (2005), in which a pre-
ordered monoidal interpretation was given to the (continuous) Lambek
calculus with brackets.6

• Discontinuous products. We want to prove for every i > 0 that:

JA�i BKv = `−1 (A�i B)

– [⊆]: Let δ ∈ JA �i BKv. There exist δA ∈ JAKv and δB ∈ JBKv such
that:

(214) δ ≤` δA|iδB
Let ∆A := ρ−1(δA), ∆B := ρ−1(δB) and ∆ := ρ−1(∆). From (214)
and the fact that ρ−1(δA|iδB) = ρ−1(δA)|iρ−1(δB) = ∆A|i∆B , it
follows that:

∆ ⇒ (∆A|i∆B)•

By induction hypothesis (i.h.), we have that JAKv = `−1 (A) and
JBKv = `−1 (B). Hence:

∆A ⇒ A
∆B ⇒ B

It follows that

∆A ⇒ A ∆B ⇒ B
�iR

∆A|i∆B ⇒ A�i B

We derive now the following

∆A|i∆B ⇒ A�i B
...

−−−−−−−→
(∆A|i∆B)• ⇒ A�i B

We have then:

∆ ⇒ (∆A|i∆B)•
−−−−−−−→
(∆A|i∆B)• ⇒ A�i B

Cut
∆ ⇒ A�i B

Hence, δ = ρ−1(∆) ∈ `−1 (A�i B).

6In (op. cit) the problem of discontinuity was not addressed.

154 4. SYNTACTICAL INTERPRETATION

– [⊇]: Let δ ∈ `−1 (A�i B). We have therefore (∆ := ρ−1(δ)):

∆ ⇒ A�i B

By i.h., JAKv = `−1 (A) and JBKv = `−1 (B). Hence:

−→
A ⇒ A and

−→
B ⇒ B

We have that: δ ≤` ρ−1(
−→
A)|iρ−1(

−→
B) which is equivalent to:

∆ ⇒ (
−→
A |i
−→
B)•

I.e.:

∆ ⇒ A�i B

Hence, δ ∈ JA�i BKv. We are done.

�

4.3.3 Completeness II: Accomodating the Nondetermin-
istic Connectives

In this subsection we have to extend the notion of syntactical algebra with a new
operation we call nondeterministic product, i.e., we have M = 〈M,+,×, 0, 1〉.
As in the case of the syntactical interpretations which we have studied so far, we
preserve the freeness of the monoid (M,+, 0, 1). This new extended syntactical
algebra will be called a nondeterministic syntactical algebra. FromM we induce
a nondeterministic general displacement algebra. The sort map of an element
of a nondeterministic syntactical algebra must be extended to the case of the
new operation ×:

S(0) = 0
S(1) = 1
S(a+ b) = S(a) + S(b)
S(a× b) = S(a) + S(b)− 1

We define the following ω-indexed family of subsets of M:

Mi = {a : a ∈M such that S(i) = i}

The induced nondeterministic general displacement algebra has as in the
case of (deterministic) general displacement algebras the following feature char-
acterizing the sort domains:

(215)
For every i ≥ 0, Li ⊆Mi

As we already saw in the result of completeness for full deterministic D, it
is crucial that the inclusion (215) may be proper. We have then the nondeter-
ministic general displacement algebra:

A = 〈{Li}i∈ω,+, {×i}i>0,×, 0, 1〉

4.3. TOWARDS FULL COMPLETENESS FOR D 155

Notice that the operation × is sort polymorphic of sort functionality (i +
1, j)→ i+ j (with i, j > 0).

As in the result of completeness I, we define a preorder ≤ in the algebra
which has to be compatible with the operations of the algebra. In completeness
I we required the compatiblity of ≤ with the operations +, {×}i>0. Now, we
require in addition compatibility with the operation ×, i.e.:

a ≤ b c ≤ d
Comp3

a× c ≤ b× d
The preordered algebra (A;≤) must satisfy the following rules:

(216)
a×1 b ≤ c · · · a×S(a) b ≤ c

(nd1)
a× b ≤ c

a× b ≤ c
(nd2)

a×i b ≤ c

4.3.4 A Modification of the Nonstandard Syntactical In-
terpretation

Accomodating the deterministic product-like connectives has been done in the
class of general preordered displacement algebras. The syntactical interpretation
of types J·Kv has been carried out in the set of well-sorted and downward-closed
(d.c.) subsets of a given general preordered displacement algebra. We have now
added to the general preordered displacement algebras the axioms connecting
the operations ×i (i > 0) and the nondeterministic operation ×. Here syntac-
tical interpretation of types J·Kv will be slightly modified. Interpretation in a
nondeterministic general preordered displacement algebra (we refer to this class
NDA) (A;≤) will be done in d.c. subsets B with a top element. More con-
cretely, every type B ∈ FDND is such that in a powerset frame model over a
NDA algebra:

• JBKv is d.c., i.e.:

If δ ≤ a and a ∈ JBKv then δ ∈ JBKv (DC)

• JBKv has a top element >JBKv , i.e.:

For every a ∈ JBKv,∃>JBKv ∈ JBKv such that a ≤ >JBKv (TE)

Powerset frame models over NDA algebras adhering to (DC) and (TE) will be
called powerset frame models over nondeterministic displacement algebras, in
notation, PNDA. Valididy of a categorical arrow A → B or a hypersequent
∆ ⇒ A will be denoted PNDA |= A → B or PNDA |= ∆ ⇒ A. We note
that downward-closedness of interpreted types (DC) is easily provable for every
nondeterministic displacement algebra. It is the condition (TE) which has to
be imposed. If one shows downward-closedness by induction on the structure of
types the case of the nondeterministic product } is trivial:

(217) JA}BKv
def
= {c : there exist a ∈ JAKv, b ∈ JBK such that c ≤ a× b}

156 4. SYNTACTICAL INTERPRETATION

(218) Theorem (Soundness of Full D w.r.t. Nondeterministic Powerset Frame
Models)

Let A→ B be a provable categorical arrow in cD. It follows that:

PNDA |= A→ B

Proof. The soundness of the deterministic structural rules and residuation
contains no surprises. The proof given in the deterministic case goes through.
We have to check then the soundness of the nondeterministic rule which we
recall now:

A�1 B → C . . . A�S(A) B → C
ND1

A}B → C

A}B → C
ND2 with 1 ≤ i ≤ S(A)

A�i B → C

Let 〈A;≤〉 be an NDA algebra. Let us see the soundness of the rule ND1.
Suppose γ ∈ JA } BKv. This means that γ ≤ a × b for a ∈ JAKv and b ∈ JAKv.
We want to see that γ ∈ JCKv. By hypothesis JCKv has a top element. Let us
denote it >JCKv .
Now, let a ∈ JAKv and b ∈ JBKv. Since by hypothesis we have for every i =
1, · · · , S(A) that JA�i BKv ⊆ JCKv it follows that

a×1 b ⊆ JCKv
...
a×S(A) b ⊆ JCKv

JCKv has a top element >JCKv (condition (TE) of interpreted NDA algebras).
Therefore:

a×1 b ≤ >JCKv
...
a×S(A) b ≤ >JCKv

By the property (nd1) of NDA algebras, we have that:

a×1 b ≤ >JCKv · · · a×1 b ≤ >JCKv
(nd1)

a× b ≤ >JCKv

Since we have:

γ ≤ a× b ≤ >JCKv ∈ JCKv

and JCKv is d.c., it follows that:

γ ∈ JCKv

This proves the nondeterministic rule ND1.

Let us consider now the other rule, ND2. Suppose we have that:

4.3. TOWARDS FULL COMPLETENESS FOR D 157

JA}BKv ⊆ JCKv

As before, let >JCKv be a top element of JCKv. Let a ∈ JAKv and b ∈ JBKv. We
have that:

a× b ≤ >JCKv

Hence, by the property (nd2) of NDA algebras, for any i = 1, · · · , S(A) it is the
case that:

a×i b ≤ >JCKv ∈ JCKv

Now, let γ ≤ a×i b for a given i. Since JCKv is d.c., it follows that:

γ ∈ JCKv

This proves ND2.

Let us see now the soundness of residuation for the nondeterministic triple
(},⇓,⇑):

A}B → C iff A→ C⇑B iff B → A⇓C

Let us consider the first iff (⇑ case). Let a ∈ JAKv. For every b ∈ JBKv, since by
hypothesis JA}BKv ⊆ JCKv, we have that:

a× b ⊆ JCKv

We have then JAKv ⊆ JC⇑BKv. This proves the only if.

Conversely, let a ∈ JAKv and b ∈ JBKv. By hypothesis, a ∈ JC⇑BKv. Hence, by
definition of ⇑:

a× b ∈ JCKv

Now, let γ ≤ a× b. By definition of the interpretation of }:

If γ ≤ a× b ∈ JA}BKv then γ ∈ JA}BKv

We have then the inclusion JA} BKv ⊆ JCKv. This proves the if part. We are
done.

�

In the definition of F̃ , S̃F and Õ which we defined in Completeness I,
the result of completeness did not cover the nondeterministic }. We repeat
a proof by the construction of a canonical model, but this time we can cover
the nondetermistic product. The canonical displacement algebra is now the
following:

(219) A = 〈{Õi}i∈ω, (·, ·), {|i}i>0,×,Λ, $〉

158 4. SYNTACTICAL INTERPRETATION

Where × is defined as follows:

γ × δ def
= ρ(

−−−−−−−−−−−−−−−−→
(ρ−1(γ))• } (ρ−1(δ))•) (∗)

Here (·)• is the type equivalent map defined in Chapter 3. To put (∗) in a
simpler form, let ∆ := ρ−1(δ) and Γ := ρ−1(γ). Then γ × δ is:

γ × δ = ρ(
−−−−−→
Γ• }∆•)

We define now the relation ≤` on A as follows:

≤`
def
= {(γ, δ) : γ, δ ∈ Õ and hDND ` ρ−1(γ) ⇒ (ρ−1(δ))•}

(220) Lemma
≤` is a preorder compatible with the operations of the canonical algebra
A.

Proof. In the section of Completeness I, we already saw almost all that we
have to show here. There only remains the case of the compatibility of × with
≤`. As in the previous lemma on the compatibility of the preorder with the
operations, we give some useful notation, namely ∆ = ρ−1(δ), Γ = ρ−1(γ),

Θ = ρ−1(τ) and Σ = ρ−1(σ), where δ, γ, τ and σ belong to Õ. Consider the
following situation:

δ ≤` γ τ ≤` σ

δ × τ ≤` γ × σ
By hypothesis we have that:

∆ ⇒ −→Γ• and Θ ⇒ −→Σ•

For every i = 1, · · · , S(∆):

∆ ⇒ −→Γ• Θ ⇒ −→Σ•
}R

∆|iΘ ⇒
−−−−−→
Γ• } Σ•

By a similar reasoning to the one of lemma (209) (which refers to the preorder
compatibility in the case without nondetermistic product-like connectives) we
have that from:

∆|iΘ ⇒
−−−−−→
Γ• } Σ•

we get:

−→
∆•|i
−→
Θ• ⇒ −−−−−→Γ• } Σ•

We can then apply the } left rule:

−→
∆•|1

−→
Θ• ⇒ −−−−−→Γ• } Σ• · · · −→

∆•|S(∆)
−→
Θ• ⇒ −−−−−→Γ• } Σ•

}R−−−−−→
∆• }Θ• ⇒ −−−−−→Γ• } Σ•

Hence we proved that:

δ × τ ≤` γ × σ

4.3. TOWARDS FULL COMPLETENESS FOR D 159

�

(221) Lemma
The canonical displacement algebra:

A = 〈{Õi}i∈ω, (·, ·), {|i}i>0,×,Λ, $〉

is effectively a NDA algebra.

Proof. Let ∆ = ρ−1(δ), Σ = ρ−1(σ) and Γ = ρ−1(γ). Let us see (nd1):

δ ×1 σ ≤` γ · · · δ ×S(∆) σ ≤` γ

δ × σ ≤` γ
Let us suppose that:

∆|1Σ ⇒ Γ• · · ·∆|S(∆)Σ ⇒ Γ•

After several steps we can get:

−→
∆•|1

−→
Σ• ⇒ −→Γ• · · · −→∆•|S(∆)

−→
Σ• ⇒ Γ•

We can now apply the } left rule:

−−−−−→
∆• } Σ• ⇒ −→Γ•

This proves (nd1).

Let us see (nd2):

δ × σ ≤` γ

δ ×i σ ≤` γ
We have that:

−−−−−→
∆• } Σ• ⇒ Γ•

By Cut:

−−−−−−→
∆• �i Σ• ⇒ −−−−−→∆• } Σ•

By Cut:

−−−−−−→
∆• �i Σ• ⇒ Γ•

This proves (nd2).
�
Like in Completeness I, we need again the `−1 operator:

`−1: F −→
⋃
i∈ω 2Õi

A 7→ `−1(A)
def
= {δ : δ ∈ Õ and `hDND ρ−1(δ) ⇒ A}

We need now a truth lemma:

160 4. SYNTACTICAL INTERPRETATION

(222) Lemma (Truth Lemma for cDND)

For every type A we have:

JAKv = `−1 (A)

Where J·Kv is the valuation in the canonical model we have been consid-
ering throughout the different proofs of the completeness theorems.

Proof. We already covered all the deterministic fragment of D. All the
proofs of the truth lemma presented for both the so-called implicative fragment
and the remaining deterministic product-like connectives are correct for the
new nonstandard syntactical interpretation we are considering. Let us see the
equality (222) for the nondeterministic product-like connectives.

Let us prove that the following equality holds:

JA}BK = `−1 (A}B)

• [⊆]:

Let δ ∈ Õ be such that δ ≤ α × β with α ∈ JAK and β ∈ JBK. For
commodity of the reading of the text let ∆A := ρ−1(α) and ∆B := ρ−1(β).
By induction hypothesis (i.h.):

α ∈ `−1 (A) and β ∈ `−1 (B)

Hence:

∆A ⇒ A and ∆B ⇒ B

It follows that:

−→
∆•A ⇒ A and

−→
∆•B ⇒ B

By application of the left rule for }:

−→
∆•A|1

−→
∆•B ⇒ A}B · · · −→

∆•A|S(A)
−→
∆•B ⇒ A}B

}L−−−−−−→
∆•A }∆•B ⇒ A}B

Since δ ≤` α× β it follows that:

∆ ⇒ ∆•A }∆•B

By applying Cut we obtain:

∆ ⇒ ∆•A }∆•B
−−−−−−→
∆•A }∆•B ⇒ A}B

Cut
∆ ⇒ A}B

4.3. TOWARDS FULL COMPLETENESS FOR D 161

Hence:

δ = ρ−1(∆) ∈ `−1 (A}B)

This proves the inclusion.

• [⊇]: Let δ ∈ `−1 (A}B). Let ∆ := ρ−1(δ). We have by hypothesis:

∆ ⇒ A}B

Now, ρ(
−→
A) ∈ JAK and ρ(

−→
B) ∈ JBK for by i.h.:

JAKv = `−1 (A) and JBKv = `−1 (B)

ρ(
−→
A)× ρ(

−→
B) = ρ(

−−−−−−→−→
A
•
}
−→
B
•
) = ρ(

−−−−→
A}B)

We have:

δ ≤` ρ−1(
−→
A)× ρ−1(

−→
B)

Hence δ ∈ JA}BKv. We are done.

�

(223) Lemma
Consider the canonical displacement model M = (A; J·Kv): we have that
M is a PDND model.

Proof. We have already seen that A is a DND algebra. It remains to see that
for every interpreted type JAKv has a top element.

For every A ∈ F , ρ(A) is a top element of JAKv (∗)

(∗) holds because for every A, JAKv = `−1 (A). For every δ ∈ JAKv, we have

that DND ` ρ−1(δ) ⇒
−−−−−−−→
ρ−1(ρ(A)) =

−→
A . This proves then that M is a PDNA

model. �

(224) Theorem (Completeness for Full DND)

DND is complete for the PDND syntactical interpretation.

Proof. Suppose that:

PDND |= ∆ ⇒ −→A

It follows that ∆ ⇒ −→A holds of the canonical model M = (A; v). As we have
already proved before we have in the canonical model that:

ρ(∆) ∈ J∆Kv

Hence we have that ρ(∆) ∈ JAKv, which is equivalent (by the truth lemma) to:

162 4. SYNTACTICAL INTERPRETATION

ρ(∆) ∈ `−1 (A)

Therefore DND ` ∆ = ρ−1(ρ(∆)) ⇒ −→A . i.e.:

hDND ` ∆ ⇒ −→A
This proves the theorem.
�

4.3.5 Completeness III: giving DND a syntactical inter-
pretation using DA

In this subsection, we propose a syntactical interpretation of DND with the
aid of the displacement calculus with additive disjunction and conjunction, i.e.,
DA. The other connectives have the same interpretation as in full D. We
suppose that we are given a syntactical algebra M = 〈M,+, {×i+1}i∈ω, 0, 1〉.
We add the following operator t of sort functionality (i, i)→ i for every i ∈ ω.
Notice that t does not modify the sort of the arguments which are moreover
required to have the same sort. So, if one writes a ≤ btc, it must be understood
that a, b and c have the same sort, where the sort map S is defined as usual.
Where α = a0 + 1 + a1 + · · ·+ an−1 + 1 + an︸ ︷︷ ︸

n 1′s

, S is defined as follows:

S(a0 + 1 + a1 + · · ·+ an−1 + 1 + an)
def
= n

We have then the extended syntactical algebra:

M = 〈M,+, {×i}i>0,t, 0, 1〉 (DAA)

For every M∈ DAA, it is required that the following holds:

(225)
a ≤ c b ≤ c

a t b ≤ c

a ≤ b
For any c

a ≤ b t c

a ≤ b
For any c

a ≤ c t b
For every i ∈ ω we define as usual the sort domains:

Li ⊆ Mi = {α ∈M : S(α) = i}
The interpretation of the connectives we have already seen in the induced

deterministic powerset frame remains the same. We now extend the syntactical
interpretation of full deterministic D to the additive connectives. There are no
nondeterministic connectives (neither implicative-like nor product-like). The
interpretation of the additive connectives we give is the following which does
not follow the linear logic (Girard (1987)) phase semantics definition:

JA&BKv
def
= JAKv ∩ JBKv

JA⊕BKv
def
= {γ : ∃ a ∈ JAKv∃b ∈ JBKv such that γ ≤ a t b}

The induced powerset frame model for a given valuation v is constrained as
follows:

4.3. TOWARDS FULL COMPLETENESS FOR D 163

(226)

For every A ∈ Fi (i ∈ ω), ∀a, b ∈ JAKv, a t b ∈ JAKv

This class of powerset frame models over general preordered displacement
algebras with additives will be denoted PDAA. We now see the soundness of
DA w.r.t. the proposed syntactical interpretation.

(227) Theorem (Soundness of DA w.r.t. PDAA)

For any categorical derivable arrow A → B ∈ Arrows(DA), there holds
that:

PDAA |= A→ B

Proof. Structural postulates of cD hold in the syntactical algebra with the
preordered product as we have already seen in the theorem of soundness of full
deterministictic D. Therefore, we have only to check the soundness for the
additive connectives. The proof goes by induction on the length of derivations
of cDA.

• Additive conjunction &:

Let us see the left rule for &:

A→ C
&L

A&B → C

We have that JA&BKv
def
= JAKv∩JBKv and since JAKv ⊆ JCKv and JA&BKv ⊆

JAKv, we obtain JA&BKv ⊆ JCKv.

Let us see now the right rule for &:

A→ B A→ C
&R

A→ B&C

Suppose we have:

JAKv ⊆ JBKv JAKv ⊆ JCKv

Hence, JAKv ⊆ JAKv ∩ JBKv
def
= JA&BKv.

• Additive disjunction ⊕:

Let us see the ⊕ left rule:

A→ C B → C
⊕L

A⊕B → C

Let a ∈ JAKv and b ∈ JBKv. Both a and b belong to JCKv. Since JCKv is
closed by joins t, it follows that:

164 4. SYNTACTICAL INTERPRETATION

a t b ∈ JCKv

Hence, by the definition of JA ⊕ BKv and the fact that interpreted types
are downward-closed, for any c ≤ a t b there holds that c ∈ JCKv. Hence:

JA⊕BKv ⊆ JCKv

We have to check the soundness of the ⊕ right rule:

A→ B
⊕R

A→ B ⊕ C

Let a ∈ JAKv. Let c ∈ JCKv. We have that:

a ≤ a t c

Since by hypothesis a ∈ JBKv, we have that a t c ∈ JB ⊕ CKv, and
hence, given the fact that a ≤ a t c, by downward-closedness of JB⊕CKv
a ∈ JB ⊕ CKv. We are done.

�
We proceed now to prove completeness. Consider the following canonical alge-
bra:

(228)

A = 〈{Õi}i∈ω, (·, ·), {|i}i>0,t,Λ, $〉

t is defined as follows:

δ t γdef= ρ(∆• ⊕ Γ•)

Where δ = ρ(∆) and γ = ρ(γ).

(229) Lemma (Preorder Compatibility)

≤` is compatible with the operations.

Proof. We have to check that for every δ, γ, τ, σ ∈ Õ:

δ ≤` γ τ ≤` σ

δ t τ ≤` γ t σ
We define ∆ = ρ−1(δ), Γ = ρ−1(γ), Θ = ρ−1(τ), Σ = ρ−1(σ). We have that
(we omit some explanations which have already been seen in similar lemmas):

∆ ⇒ Γ• Θ ⇒ Σ•

δ t τ ≤` γ t σ
We have that:

∆ ⇒ Γ•

⊕R
∆ ⇒ Γ• ⊕ Σ•

4.3. TOWARDS FULL COMPLETENESS FOR D 165

Similarly:

Θ ⇒ Σ•

⊕R
Θ ⇒ Γ• ⊕ Σ•

We can derive the following:

∆• ⇒ Γ• ⊕ Σ•

Θ• ⇒ Γ• ⊕ Σ•

Applying the ⊕ left rule:

∆• ⇒ Γ• ⊕ Σ• Θ• ⇒ Γ• ⊕ Σ•

−−−−−→
∆• ⊕Θ• ⇒ −−−−−→Γ• ⊕ Σ•

We have then proved that

δ t τ ≤` γ t σ

�
Like in Completeness II, we need again the `−1 operator which we slightly

modify:

`−1: FDA −→
⋃
i∈ω 2Õi

A 7→ `−1(A)
def
= {δ : δ ∈ Õ and `hDA ρ−1(δ) ⇒ A}

(230) Lemma (Truth Lemma for DA)

For every A ∈ FDA:

JAKv = `−1 (A)

Proof. The proof is similar to the cases of the previous truth lemmas. We
have only to check the connectives & and ⊕.

• &: We have to show the following equality:

JA&BKv = `−1 (A&B)

[⊆]:

Let δ ∈ JA&BKv. We have then that:

δ ∈ JAKv and δ ∈ JBKv

Let ∆ = ρ−1(δ). By induction hypothesis (i.h.):

∆ ⇒ −→A and ∆ ⇒ −→B

Applying the & right rule:

∆ ⇒ −−−→A&B

166 4. SYNTACTICAL INTERPRETATION

Hence, δ ∈ `−1 (A&B).

[⊇]:

Let δ ∈ `−1 (A&B). Hence:

∆ ⇒ A&B

Since & is an invertible connective7 we have that:

∆ ⇒ A
∆ ⇒ B

By i.h. δ ∈ JAKv and δ ∈ JBKv. Hence:

δ ∈ JA&BKv

• ⊕: We have to show the following equality:

JA⊕BKv = `−1 (A⊕B)

[⊆]: Let γ ∈ JA⊕BKv. By definition of the interpretation of the connective
⊕:

γ ≤` δA t δB

Now, δA t δB = ρ(∆•A ⊕∆•A). We have that:

∆•A ⇒ A
∆•B ⇒ B

By two applications of the ⊕ right rule we get:

∆•A ⇒ A⊕B
∆•B ⇒ A⊕B

By application of the ⊕ left rule we have that:

−−−−−−→
∆•A ⊕∆•B ⇒

−−−−→
A⊕B

Hence, δA t δB ∈ `−1 (A⊕B).

[⊇]: Let δ ∈ `−1 (A⊕B). It follows that:

∆ ⇒ −−−−→A⊕B
7We can prove this by Cut and the following facts:

A&B ⇒ A
A&B ⇒ B

4.3. TOWARDS FULL COMPLETENESS FOR D 167

Where ρ−1(A) t ρ−1(B) = ρ(A ⊕ B) ∈ JA ⊕ BKv. Hence, for any δ ≤`
ρ(A⊕B) there holds:

δ ∈ JA⊕BKv

We are done.
�

(231) Theorem (Completeness for Full DA)

DA is complete for the PDAA syntactical interpretation.

Proof. Suppose that:

PDAA |= ∆ ⇒ −→A

It follows that ∆ ⇒ −→A holds of the canonical model M = (A; v). As we have
already proved before we have in the canonical model that:

ρ(∆) ∈ J∆Kv

Hence we have that ρ(∆) ∈ JAKv, which is equivalent (by the truth lemma) to:

ρ(∆) ∈ `−1 (A)

Therefore DA ` ∆ = ρ−1(ρ(∆)) ⇒ −→A , i.e.:

hDA ` ∆ ⇒ −→A

This proves the theorem.
�

4.3.6 Using PDAA syntactical interpretation for the inter-
pretation of DND

Let ∆ ∈ ODND and A ∈ FDND. In Chapter 3 we saw the following lemma
which we recall:

DND ` ∆ ⇒ −→A iff DA ` τ(∆) ⇒ −−→τ(A)(?)

where τ is the faithfull embedding translation between DND and DA. The
faithful embedding translation of Chapter 3 is the following:

τ(A)
def
= A if A is atomic

τ(A}B)
def
=

⊕
i=1,···,S(A)

τ(A)�i τ(B)

τ(B⇑A)
def
= (τ(B)↑1τ(A)) & · · · & (τ(B)↑nτ(B)) where n = S(B)− S(A) + 1

τ(A⇓B)
def
= (τ(A)↓1τ(B)) & · · · & (τ(A)↓nτ(B)) where n = S(B)− S(A) + 1

τ(A ∗B)
def
= τ(A) ∗ τ(B) for other binary connectives

168 4. SYNTACTICAL INTERPRETATION

(232) Definition (DND Interpretation with DAA Algebras)

Given a DAA model M = (A, v), we can interpret via the faithful τ
FDND types:

JA⊕BKv
def
= J

⊕
i=1,···,S(A)

τ(A)�i τ(B)Kv

JB⇑AKv
def
= J(τ(B)↑1τ(A)) & · · · & (τ(B)↑nτ(B))Kv

JB⇑AKv
def
= J(τ(A)↓1τ(B)) & · · · & (τ(A)↓nτ(B))Kv

(233) Theorem (Completeness of DND w.r.t. DAA algebras)

Let ∆ ∈ ODND and A ∈ FDND; we have that:

DND ` ∆ ⇒ −→A iff PDAA |= τ(∆) ⇒ −−→τ(A)

Proof. We have that:

DND ` ∆ ⇒ −→A iff

DA ` τ(∆) ⇒ −−→τ(A) iff

PDAA |= τ(∆) ⇒ −−→τ(A)

Hence, following the chain of iff’s:

DND ` ∆ ⇒ −→A iff PDAA |= τ(∆) ⇒ −−→τ(A)

This completes the proof. �

Chapter 5

On the generative capacity
of D-grammars

5.1 On Discontinuous Lambek grammars

Digo para no mucho
En fin cansar.

Luis Valent́ın (Breviario de Extinción)

This chapter is based on Morrill and Valent́ın (2010d). Let Σ be a (finite)
alphabet containing a distinguished element 1 which plays the role of a prime
(see Chapters 2 and 3 for the definition of a prime). As 1 is a prime with respect
to Σ, strings belonging to Σ+ decompose uniquely around 1. We define the set
of admissible words which can inhabit a syntactic type as follows:

(234) AdmissWords
def
= Σ+ − {1 + · · ·+ 1︸ ︷︷ ︸

n

: n > 0}

We see then the empty string as well as strings containing only primes 1 cannot
inhabit types. This will be justified by the fact that the lexical empty string as-
signment or the assignment of a string formed by only primes constitute a source
of undecidability. By contrast, as we shall see, the problem of language recogni-
tion in the class of displacement grammars with lexicons with types inhabited
by elements of AdmissWords is decidable.

A lexical assignment comprises a type A and a string α ∈ AdmissWords
of sort S(A). A lexicon is a finite set of lexical assignments. More formally:

(235) Definition (Lexicon)

A lexicon Lex is a finite subrelation of AdmissWords × F such that
for every (α,A) ∈ Lex the sorts of the string α and the type A are the
same, i.e.:

S(α) = S(A)

169

170 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

Typically, an element of Lex will be denoted w : A. Lexicons will be dis-
played as follows:

w1 : Aw1
1 , · · · , Aw1

nw1

w2 : Aw2
1 , · · · , Aw2

nw2

...
wk : Awk

1 , · · · , Awk
nwk

A lexical entry can be read in two ways: A raw wk:A
wk
1 , · · · , Awk

nwk
means that

the word wk is assigned nwk types. Another view is to say that the types
Awk

1 , · · · , Awk
nwk

are all inhabited by the word wk.

We recall now from chapter 3 the definitions of level of a type and atomicity
of a type.

(236) Definition (Level of a Type)

A type A ∈ F is said to be of level l iff l is the maximum sort of the
(finite) set of subterms of A, i.e.:

level(A)
def
= max{S(B) : B is a subtype of A}

We illustrate this definition with some examples. Let A,B be atomic types of
sort 0. Consider the type C := (((((B↑1A)↑1A)↑1A)�1 A)�1 A)�1 A. Clearly
S(C) = 0. But there are subtypes of C such that their sort is greater than 0,
for instance:

((B↑1A)↑1A)↑1A

This type has sort 3. In this case, a little inspection at the (finite) algebra of
subtypes of C gives that the level of C is 3, i.e. level(C) = 3.

Consider now the type B↑1A. Clearly it has sort 1 and its level is 1 (B↑1A is a
subtype of B↑1A!).

The atomicity of a type A gives the maximum sort of all the atomic types
which are subtypes of A:

(237) Definition (Atomicity of a Type)

Let A ∈ F . The atomicity of A is defined as follows:

atomicity(A)
def
= max{S(B) : B is atomic and is a subtype of A}

Let us look again at the type C used above to illustrate the level of a type. A
look at C := (((((B↑1A)↑1A)↑1A)�1 A)�1 A)�1 A shows that all the atomic
types of C are of sort 0. Hence atomicity(C) = 0. In the following we extend
these three notions to lexicons.

Given a lexicon Lex, it will be called a sort-k lexicon iff k equals the upper
sort of the type assignments, i.e.:

5.1. ON DISCONTINUOUS LAMBEK GRAMMARS 171

(238) Definition (Sort of a Lexicon)

Let Lex be a lexicon. The sort S(Lex) is defined as:

k = max
(w:A)∈Lex

S(A)

(239) Definition (Level of a Lexicon)

A discontinuous Lambek lexicon Lex is said to be of level l if the maximum
of all the levels of the types of Lex is equal to l:

level(Lex)
def
= max{level(A) : where A is a type of Lex}

Finally we look at the atomicity of a lexicon:

(240) Definition (Atomicity of a Lexicon)

Let Lex be a lexicon. The atomicity of Lex is defined as follows:

atomicity(Lex)
def
= max{atomicity(A) : where A is a type of Lex}

(241) Example
Let us consider the following lexicons Lex1, Lex2 and Lex3. Here n, s
are atomic types of sort 0 and r an atomic type of sort 1:

Lex1 =

 everyone : (s↑n)↓s
love : (n\s)/n
Mary : n

Lex2 =


a + 1 + b + 1 : (s↑1n)↑2n

c : s/s
d : n
e : n

Lex3 =

{
a + 1 + b : (r↑2n)�1 n

c : r↓s

Lex1 is a sort 0 lexicon. Lex2 and Lex3 are respectively a sort 2 lexicon
and a sort 1 lexicon. Lex1 and Lex2 are 0-atomic lexicons because there
is no type assignment which uses atomic types of sort greater than 0, and
Lex3 is a lexicon of atomicity 1. Finally Lex1 is a lexicon of level 1, and
lexicons Lex2 and Lex3 are lexicons of level 2.

What is a discontinuous Lambek grammar? As in the case of Lambek gram-
mars, a discontinuous Lambek grammar is represented by two objects, one lex-
icon and a distinguised type. More concretely:

172 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

(242) Definition (Discontinuous Lambek Grammars)

A discontinuous Lambek grammar is a pair G = (Lex, S), i.e., a pair
consisting of a discontinuous Lambek lexicon and a distinguished type.

We will refer to discontinuous Lambek grammars as D-grammars.

(243) Definition (k-Discontinuous Lambek Grammars)

A discontinuous Lambek grammar G = (Lex, S) is said to be of level
k, in notation a k-D-grammar, if and only if Lex is of level k.

We will usually write k-grammar instead of k-D-grammar.
We now turn to D-grammars and the languages they generate. We define

a labelling map σ of a hyperconfiguration ∆ as a mapping sending each type
occurrence A in ∆ to a string of sort sA.

(244)
σ : ∆ −→ Σ+

A 7→ σ(A) such that σ(A) ∈ AdmissWords
[] 7→ 1

A labelled hyperconfiguration ∆σ comprises a hyperconfiguration ∆ and a la-
belling σ of ∆. We define the yield of a labelled hyperconfiguration ∆σ as
follows:

(245) yield(Λσ) = Λ
yield([]

σ
) = 1

yield((∆,Γ)σ) = yield(∆σ) + yield(Γσ)
yield(Aσ) = σ(A) for A of sort 0
yield((A{∆1 : · · · : ∆sA})σ) =
a1 + yield(∆σ

1) + a2 + yield(∆σ
2) + · · ·+

yield(∆σ
S(A)−1) + as(A)−1 + yield(∆σ

s(A)) + as(A)

where in the last line of the definition A is of sort greater than 0 and σ(A) is
a1 + 1 + a2 + · · ·+ as(A)−1 + 1 + as(A).

A labelling σ of a hyperconfiguration ∆ is compatible with a lexicon Lex if
and only if σ(A): A ∈ Lex for every A in ∆. The language L(Lex, A) generated
from lexicon Lex for type A is defined as follows:

(246) L(Lex, A) = {yield(∆σ)| such that ∆ ⇒ A is a theorem of D and σ is
compatible with Lex}

(247) Theorem (Recognition of D-Grammars)

The problem of recognition in the class of D-grammars is decidable. Given
a D-grammar (Lex, A) and a word w ∈ AdmissWords:

(248) The problem w ∈? L(Lex, A) is decidable.

Proof. We are given (Lex, A) and w ∈ AdmissWords. Consider the follow-
ing set X:

X = {(∆, σ) : ∆ ∈ O, σ is compatible with Lex and yield(∆, σ) = w}

5.1. ON DISCONTINUOUS LAMBEK GRAMMARS 173

(249) Claim X is finite.

Let us prove claim (249). By way of contradiction suppose X is infinite. Let
us suppose that the set of underlying hyperconfigurations is infinite. In this
case then we would have an infinite sequence of underlying hyperconfigurations
(∆n)n∈ω, such that their number of types occurrences would be unbounded,
because the number of different types occurring in ∆ is finite.1 In that case,
length(yield(∆n, σ)) would be also unbounded because any occurrence in ∆n

would contribute with an element of AdmissWords which has at least one ele-
ment of Σ−{1}. We have proved that the set of underlying hyperconfigurations
of X is finite. Let us see that the number of possible different labelling maps of
X is also finite. This is simply due to the fact that Lex is finite and hence the
number of compatible labelling maps is finite.

Now as theoremhood in D is decidable and X is a finite set, we have then
that the problem of recognition is decidable since it reduces to a finite number
of tests of theoremhood. �

A Prolog parser/theorem-prover for the calculus of displacement has been
implemented. It operates by Cut-free backward-chaining hypersequent proof
search (see Morrill (2011a)).

5.1.1 A Source of Undecidability

Let us consider the question of lexicons with empty string assignments. We
will work in this reduction with the unidirectional Lambek calculus without
product, i.e., L{/}.

2 Buszkowski (Buszkowski (1982)) proves that the languages
recognized by the class of L{/} grammars with a finite set of non-logical axioms
are the class of recursively enumerable languages. Let FAx be a finite set of
non-logical axioms of the form A ⇒ B with A,B ∈ F/.

Let LexFAx
be a lexicon of L{/}+FAx. We consider a lexicon in Lε, Lexε,

as follows:

Lexε
def
= LexFAx

∪ {ε :B/A : such that A ⇒ B ∈ FAx}

We present a reduction map τ from L{/}+FAx derivations into Lexε deriva-
tions. Every proof derivation of a sequent in LAx{/} is mapped into a proof deriva-

tion of a sequent in Lε without any trouble in the case of left/right logical rules
for the / connective (in fact they are identically mapped). The only interesting
case is when we have an instance of the Cut rule with one premise belonging to
the finite set of non-logical axioms FAx. We have:

(250)

`LAx{/}

FAx
α : A ⇒ α : B ∆(b : B) ⇒ β[b] : C

Cut
∆(α : A) ⇒ β[α] : C

iff

`Lε

α : A ⇒ α : A ∆̃(b : B) ⇒ β[b] : C
/L

∆̃(ε : B/A,α : A) ⇒ β[ε+ α] = β[α] : C

1If we disposed of an infinite number (An)n∈ω of types then we would have an infinite
number of different hyperconfigurations, say ∆n := An, n ≥ 0.

2We could of course consider the other slash, i.e., \. The same result on undecidability
would hold.

174 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

Here, type are labelled with syntactical for. Now, the correspondance (250) is
such that the use of non-logical axioms is substituted by empty string lexical
assignments coding the non-logical axioms. In (250), a proof-derivation D of
a sequent ∆ ⇒ β : C is mapped into a proof derivation τ(D) of a sequent
∆̃ ⇒ β : C. This correspondance crucially assigns the same syntactical term β
to the succedent type C. It follows then that a labelling map σ of ∆ is compatible
with LexFAx

if and only if the labelling map σ∪{(B/A, ε) : for assignments ε :
B/A ∈ Lexε} is compatible with Lexε. Hence for a given w ∈ Σ+, w ∈
L(LexFAx

, S) if and only if w ∈ L(Lexε, S). It follows then that the problem
of recognition of languages defined by Lambek grammar lexicons with empty
string assignments is undecidable, i.e.:

(251) Theorem (Undecidability of Empty String Lexical Assignments)

Let Lexε be a Lambek lexicon with possibly empty string lexical assign-
ments. The following problem is undecidable:

w
?
∈ L(Lexε, S)

As Morrill (Morrill (2011b)) points it out the remarkable (and desirable)
finite reading property of type-logical grammars is lost in presence of lexicons
with empty string lexical assignments.3 Of course, the reasoning in the case of
the Lambek calculus works also in the case of lexical assignments of the type
1 : A. This gives us the following corollary:

(252) Corollary (Undecidability of Empty String or 1 Lexical Assignments)

Let Lex be a displacement lexicon with possibly empty string or 1 lexical
assignments. The following problem is undecidable:

w
?
∈ L(Lex, S)

As a conclusion, we could say that the disposal of empty string lexical as-
signments is comparable with the use of lexical rules which as we know in many
cases leads the systems to undecidability.

5.2 On the Generative Capacity of D-grammars

In this section we take a look at some properties of the (weak) generative ca-
pacity of D-grammars.

5.2.1 Some non-context free D-languages

In this section we abbreviate ↓1, �1 and ↑1 as ↓, � and ↑; only discontinuities
with a single separator are considered (i.e. we consider 1-grammars).
The non-context free language {anbncn| n > 0} is generated by the following
assignments where s(A) = s(B) = s(C) = 1 and the distinguished type is A�I.

3Morrill (op.cit.) in fact notices the loss of the finite reading property with assignments of
the type 1 : A where 1 is the prime.

5.2. ON THE GENERATIVE CAPACITY OF D-GRAMMARS 175

(253) b: J\B, J\(A↓B)
c: B\C
a: A/C

The assignment b: J\B generates 1+b: B. Then combination with the as-
signment for c generates 1+b+c: C and combination of this with the assign-
ment for a gives a+1+b+c: A. Wrapping this around the product unit gives
a+b+c: A�I; alternatively b: J\(A↓B) which gives 1+b: A↓B can infix to form
a+1+b+b+c: B which combines with c and a again, and so on.

The non-context free copy language {ww| w ∈ {a, b}+} is generated by the
following assignments where s(A) = s(B) = 0 and s(S) = 1 and the distin-
guished type is S�I.

(254) a: J\(A\S), J\(S↓(A\S)), A
b: J\(B\S), J\(S↓(B\S)), B

The two lexicons of these examples are of sort 0, level 1, atomicity 1, and the
distingushed type is a complex type.

Let G be a rewrite grammar containing productions of the form A→ a and
B → cD | Dc. Replacing the former by a: A and the latter by c: (D↑I)↓B gives
a displacement grammar which generates the permutation closure of L(G). It
follows that there is a displacement grammar for every language Mixn of strings
with equal numbers of symbols a1, . . . , an. In particular, the non-context free
language Mix = {w ∈ {a, b, c}| |w|a = |w|b = |w|c > 0} is generated by the
following assignments:

(255) a: A, (S↑I)↓A
b: (A↑I)↓B
c: (B↑I)↓S

Here s(A) = s(B) = s(C) = 0 and the distinguished type is S. Appendix B
contains a sample derivation of this D-grammar for Mix. Interestingly, this
non-context free language has a lexicon of sort 0, level 0, atomicity 0, and the
distinguished type is atomic. In the next subsection we generalize the results
for the languages Mix and Mixn.

5.2.2 Lower bounds on the recognizing power of
D-grammars

D-grammars and the permutation closure of Context-Free grammars

In this section we prove that D-grammars recognize the permutation closures
of the context-free languages.

This result is obtained using a restricted fragment of the calculus. We define
the set T = {A| A is an atomic type} ∪ {(A↑I)↓B| A and B are atomic types}.
A T-hypersequent is a hypersequent such that the types of the antecedent belong
to T and the succedent is an atomic type.

As we saw in Chapter 3 the ˇ operation can be used to simulate types of the
form A↑I:

ˇA
def
= A↑I

In the following lines we will use both notations.

176 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

(256) Lemma (Rearrangement Lemma)

Let ∆ ⇒ S be a provable T-hypersequent with at least one occurrence
of an implicative type (i.e. of the form Ř↓S for some atomic R,S) in the
antecedent. Then, where D is a derivation of ∆ ⇒ S, D can be rearranged
into a new derivation D? of ∆ ⇒ S such that the last rule of D? has an
axiom S ⇒ S as the right premise of the ↓ left rule, i.e.:

D `
...

↓L
∆ ⇒ S

; D? `
...

Γ([]) ⇒ ˇR S ⇒ S
↓L

∆ ⇒ S

where ∆ = Γ(ˇR↓S) for some atomic type R.

Proof.
Let us prove the result by induction on the implicative weight | · | of the

antecedents of the provable T -hypersequent. Here | · | is defined for types as the
number of implicative connective occurrences (in this case, the infix connective
↓), i.e.:

|A| = 0 for some atomic A
|ˇA↓B| = 1 for atomic A,B

In the case of the antecedents of T -hypersequents the weight of the types
occurring will be 0 or 1. | · | is extended to antecedents as follows:

|A,∆| =def |A|+ |∆|
|Λ| = 0

• Base case: suppose the provable T -hypersequent ∆ ⇒ A has the least
implicative weight, i.e., 1. We have then two possibilities:

R, [] ⇒ ˇR S ⇒ S
↓L

R, ˇR↓S ⇒ S

[], R ⇒ ˇR S ⇒ S
↓L

ˇR↓S,R ⇒ S

• Case where |∆| = n+ 1 with n > 0. Let us suppose that the derivation of
the T -hypersequent is as follows:

Γ([]) ⇒ ˇP ∆(Q, ˇR↓S) ⇒ S
↓L

∆(Γ(ˇP↓Q), ˇR↓S) ⇒ S

Clearly |∆(Q, ˇR↓S)| < n+ 1 = |∆(Γ(ˇP↓Q), ˇR↓S)| because there is no
occurrence of ˇP↓Q in ∆(Q, ˇR↓S) and hence its implicative weight is
necessarily less than the one of ∆(Γ(ˇP↓Q), ˇR↓S). Hence we can apply
the induction hypotheses to the hypersequent ∆(Q, ˇR↓S) ⇒ S obtaining
the following derivation:

5.2. ON THE GENERATIVE CAPACITY OF D-GRAMMARS 177

Γ([]) ⇒ ˇP

∆(Q, []) ⇒ ˇR S ⇒ S
↓L

∆(Q, ˇR↓S) ⇒ S
↓L

∆(Γ(ˇP↓Q), ˇR↓S) ⇒ S

We now rearrange the above derivation as follows:

Γ([]) ⇒ ˇP ∆(Q; []) ⇒ ˇR
↓L

∆(Γ(ˇP↓Q), []) ⇒ ˇR S ⇒ S
↓L

∆(Γ(ˇP↓Q); ˇR↓S) ⇒ S

This completes the proof.

�

(257) Lemma (Fronting lemma)

Let ∆(A) ⇒ S be a provable T -hypersequent with a distinguished oc-
currence of type A. Then:

` A,∆(Λ) ⇒ S

Proof. We proceed by induction on the length of hypersequents. We shall write
A1, · · · , Aj , · · · , An ⇒ S for ∆(A) where we consider Aj as the distinguished oc-
currence we want to be displaced to the left of the antecedent. By the previous
lemma, A1, · · · , Aj , · · · , An ⇒ S has a derivation with last rule:4

A1, · · · , Ai−1, [], Ai+1 · · · , Aj , · · · , An ⇒ R↑I S ⇒ S
↓L

A1, · · · , Ai−1, (R↑I)↓S,Ai+1 · · · , Aj , · · · , An ⇒ S

Two cases are considered:
• Case Aj 6= (R↑I)↓S.

We have (R↑I)�I ⇒ R is provable. By applying the Cut rule to the left
premise of the last rule, we derive:

A1, · · · , Ai−1,Λ, Ai+1 · · · , Aj , · · · , An ⇒ R

Hence by induction hypothesis:

` Aj , A1, · · · , Ai−1,Λ, Ai+1 · · · ,Λ, · · · , An ⇒ R

We apply now the ↑ right rule after the introduction of the unit I:

Aj , A1, · · · , Ai−1, I, Ai+1 · · · ,Λ, · · · , An ⇒ R
↑R

Aj , A1, · · · , Ai−1, [], Ai+1 · · · ,Λ, · · · , An ⇒ R↑I
By the ↓ left rule:

Aj , A1, · · · , Ai−1, [], Ai+1 · · · ,Λ, · · · , An ⇒ R↑I S ⇒ S
↓L

Aj , A1, · · · , Ai−1, (R↑I)↓S,Ai+1 · · · ,Λ, · · · , An ⇒ S↑I
4Without loss of generality we write Aj to the right of (R↑I)↓S.

178 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

In this case, we have proved the fronting lemma.
• Case Aj = (R↑I)↓S.

As before we have the following provable hypersequent:

A1, · · · , Ai−1,Λ, Ai+1, · · · , An ⇒ R

By the right ↑ rule after the introduction of I, we derive:

[], A1, · · · , Ai−1,Λ, Ai+1 · · · , Aj , · · · , An ⇒ R↑I

By the left ↓ rule:

[], A1, · · · , Ai−1,Λ, Ai+1, · · · , An ⇒ R↑I S ⇒ S
↓L

(R↑I)↓S,A1, · · · , Ai−1,Λ, Ai+1, · · · , An ⇒ S

We have proved the fronting lemma in case Aj = (R↑I)↓S. In both cases then,
the lemma is proved. �

We now show how the permutation closure of any regular language (exclud-
ing the empty string) can be recognized by a D-grammar. Let G = (N,Σ, P, S)
be a regular grammar in normal form. Suppose G is right-linear. We define a
D-grammar comprising a lexicon LexG with atomic types the nonterminals N
of G. The vocabulary of LexG is Σ ∪ {1}. For every production of the form
A → c with A nonterminal and c ∈ Σ, we stipulate that c: A ∈ LexG. And
for every production of the form B → cA (with A,B ∈ N and c ∈ Σ), we stip-
ulate c: (A↑I)↓B ∈ LexG. We want to prove that the language recognized by
LexG with distinguished symbol S is the permutation closure of the language
generated by G: L(LexG, S) = Perm(L(G,S)). The following lemmas prove
the equation.

(258) Lemma
L(G,S) ⊆ L(LexG, S).

Proof. The proof of this lemma proceeds by a simple induction on the length of
the derivations of G. The base case is obvious. For the inductive case, suppose
we have the derivation whose rewritten string is a1 · · · anA such that A→ cB ∈
P . Then by induction hypothesis a1 + · · ·+an ∈ L(G,B) ⊆ L(LexG, B). Hence
there exists a labelled hyperconfiguration ∆σ whose types belong to the types
of LG, ` ∆ ⇒ B and the yield of ∆σ is a1 + · · ·+ an; after the introduction of
the unit:

I,∆ ⇒ B
↑R

[],∆ ⇒ B↑I A ⇒ A
↓L

(B↑I)↓A,∆ ⇒ A

Now, c: (B↑I)↓A ∈ LexG. Hence c+ a1 + · · ·+ an ∈ L(LexG, A). �

(259) Lemma
Perm(L(G,S)) ⊆ L(LexG, S)

Proof. Let ∆ ⇒ S be a provable hypersequent with a compatible labelling
such that the yield of ∆ is w ∈ L(G,S) and the types occurring in ∆ belong to
the set of types of LexG:

a1 : A1, · · · , an : An ⇒ S, w = a1 + · · ·+ an

5.2. ON THE GENERATIVE CAPACITY OF D-GRAMMARS 179

By the fronting lemma, any type Ai can be fronted, i.e.: ` ai : Ai, a1 :
A1, · · · , ai−1 : Ai−1,Λ, ai+1 : Ai+1, · · · , an : An ⇒ S. By repeating this pro-
cess via the fronting lemma, any permutation of the initial w can be obtained.
�

(260) Lemma
L(LexG, S) ⊆ Perm(L(G,S))

Proof. We prove that for every atomic type A ∈ N :

L(LexG, A) ⊆ Perm(L(G,A))

This entails in particular L(LexG, S) ⊆ Perm(L(G,S)) where S ∈ N is the
distinguished nonterminal symbol. The proof goes by induction on the length
of the antecedent of hypersequents ∆ ⇒ A such that the types occurring in ∆
belong to the types occurring in LexG.

Case where the length of the hypersequent is 1. Three hypersequents are
possible:  A ⇒ A

Λ ⇒ I
[] ⇒ J

Only the first hypersequent, the axiom case, corresponds to a LexG-hypersequent.
Here A is a type of Lex. By definition of LexG every a : A is such that A→ a
corresponds to a production A→ a where A ∈ N . The result holds trivially.

Case where the length is greater than 1: suppose we have a derivation of
the hypersequent ∆ ⇒ A, where the types occurring in ∆ belong to the lexicon
LexG. Let n+ 1 be the length of ∆. Clearly ∆ ⇒ A is a T -hypersequent. By
the rearrangement lemma, the derivation of ∆ ⇒ A can be modified in such a
way that the last rule of the derivation is a left ↓ rule, and the right premise of
the rule is an axiom:

∆([]) ⇒ ˇB A ⇒ A
↓L

∆(B̌↓A) ⇒ A

By application of the ˆ right rule we have a LexG-hypersequent whose length
is n:

∆(Λ) ⇒ ˆ B̌

As ˆ B̌ ⇒ B, by Cut ∆(Λ) ⇒ B is derivable. Since the types of ∆(Λ) belong
to the types of LexG and the length of ∆(Λ) is n we can apply the induction
hypothesis, and then we have that L(LexG, B) ⊆ Perm(L(G,B)). Now, every
w ∈ L(LexG, B) is the permutation of some w̃ ∈ L(G,B). If we apply the rule
A→ cB (for some c ∈ Σ) corresponding to the lexical type assignment c: ˇB↓A
we get c+ w̃ ∈ L(G,A). Hence, if we insert c (by the infixation of ˇB↓A) in w
we get a permutation of c+ w̃. �

(261) Theorem (Permutation Closure of Regular Languages by D-Grammars)

For every regular grammar G we have L(LexG, S) = Perm(L(G,S))

180 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

(262) Corollary (Permutation Closure of Context-Free Languages by D-Grammars)

For every context-free language L, the permutation closure of L Perm(L)
is recognized by a D-grammar.

Proof. By an argument invoking properties of semi-linear sets,5 we know that
any permutation closure of a context-free language is equal to the permutation
closure of some regular language. This reduces the proof of this corollary to the
class of regular languages. The previous theorem proves it. �

5.2.3 On Head-Grammars and D-grammars

Let Σ be a fixed alphabet. Elements of Σ will be denoted with latin letters
and words belonging to Σ∗ will be denoted with greek alphabet letters. In this
section strings of sort 1 will be displayed as pairs in order to meet the standard
notation of formal language literature. Pairs of strings will be denoted as (α, β)
where α, β ∈ Σ∗. Consider the following linear functions on pairs of strings:

Function Infix notation functionality
wrap1 �1 1× 1 −→ 1
wrap2 �2 1× 0 −→ 0
conc> ◦> 1× 1 −→ 1
conc< ◦< 1× 1 −→ 1
conc1 ◦1 1× 0 −→ 1
conc2 ◦2 0× 1 −→ 1
conc3 ◦3 0× 0 −→ 0
bridge ˆ 0 −→ 1

These functions are defined as follows:

wrap1 : L1 × L1 −→ L1

((x, y), (z, t)) 7→ (xz, ty)
wrap2 : L1 × L0 −→ L0

((x, y), z) 7→ xzy
conc> : L1 × L1 −→ L1

((x, y), (z, t)) 7→ (xyz, t)
conc< : L1 × L1 −→ L1

((x, y), (z, t)) 7→ (x, yzt)
conc1 : L1 × L0 −→ L1

((x, y), z) 7→ (x, yz)
conc2 : L0 × L1 −→ L1

(x, (y, z)) 7→ (xy, z)
conc3 : L0 × L0 −→ L0

(x, y) 7→ x y
bridge : L1 −→ L0

(x, y) 7→ xy

K Vijay-Shanker (1986) worked with the so-called modified Head-Grammars
which use the three linear functions wrap1, conc> and conc<.
We can define the following sort polymorphic functions:

5See van Benthem (1991).

5.2. ON THE GENERATIVE CAPACITY OF D-GRAMMARS 181

(263)
conc

def
= conc1] conc2] conc3

wrap
def
= wrap1]wrap2

The functions from (264) can be encoded with the functions wrap and bridge
as follows

(264)
conc>(u, v) = conc(bridge(u), v)
conc<(u, v) = conc(u,bridge(v))

5.2.4 From Lexicalized Head-Grammars to D-grammars

We define a class of D-grammars of level 1, which are close to head-grammars.

(265) Definition (Lexicalized Head-Grammars)

Let G = (V,N, P, S) be a modified head-grammar. We say that G is
lexicalized if and only if all the production rules have one of the following
types:

• X → Y � (α, β)

• X → (α, β)� Y
• X → ˆY ◦ (α, β)

• X → α ◦ Y
• X → (α, β) ◦ ˆY

• X → Y ◦ α

We will say that a lexicalized extended Head-Grammar is simply lexicalised if
and only if α occurrences are a single element a of the alphabet and in the case
of pairs of strings (α, β) have the form (a, ε) or (ε, a) where a ∈ Σ.

Let G be a lexicalized head-grammar. We present a procedure to transform
G into a simply lexicalized head-grammar. We supose that α = a1 · · · an and
β = b1 · · · bm, where ai, bj ∈ Σ. In case n = 0 or m = 0 then α or β are both
the empty string ε.

(266) • For a production rule X → Y � (α, β), substitute it by the following
productions:

X → Y � (a1, ε)�Xα, β

Xα, β → Xα, β � (a2, ε)
...

Xα, β → Xα, β � (am, ε)
Xα, β → Xα, β � (ε, bm)
Xα, β → Xα, β � (ε, bm−1)

...
Xα, β → Xα, β � (ε, b1)

• For a production rule X → (α, β)◦ˆY , substitute it by the following
productions:

182 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

X → ((a1, ε)�Xα, β) ◦ ˆY
Xα, β → (a2, ε)�Xα, β

...
Xα, β → (am, ε)�Xα, β

Xα, β → Xα, β � (am, ε)
Xα, β → Xα, β � (ε, bm)
Xα, β → Xα, β � (ε, bm−1)

...
Xα, β → Xα, β � (ε, b1)

For the remaining rules of (264) a similar construction is carried out.
If we apply this process to all the productions of G we obtain another
one G∗ which is weakly equivalent to G. The construction of G∗ is
such that it is a simply lexicalized head-grammar.

(267) Theorem (Languages Recognized by Lexicalized Head-Grammar)

Let G = (V,N, P, S) be a lexicalized head-grammar. There exists a 1-
D sort 0 lexicon which recognizes the language L(G, S).

Proof. By the procedure (266) we know there exists a simply lexicalized
head-grammar G∗ weakly equivalent to G. From G∗ we define a displacement
lexicon LexG∗ as follows:

• If N → (a, ε) is a production of G∗ then a : /−1(N) ∈ LexG∗

• IfX → ((a1, ε)�Xα, β)◦ˆY is a production of G∗ then a1 : /−1((ˆY \X)↑1Xα, β) ∈
LexG∗

Other cases from (266) are similar to the ones above.
It is readily seen by induction on the length of the derivations that:

L(G, S) = L(G∗, S) = L(LexG∗ , S)

�

Appendix A. Computer-generated output for Dutch verb
raising and cross-serial dependencies

The outputs have been generated under a preliminary version of CatLog (Mor-
rill (2011a)).

boeken : N : books
cecilia : N : c
de : N/CN : ι
jan : N : j
helpen : J\((N\Si)↓(N\(N\Si))) : λAλBλCλD((help D) (B C))
henk : N : h
kan : (N\Si)↓(N\S) : λAλB((isable B) (A B))
kunnen : J\((N\Si)↓(N\Si)) : λAλBλC((beable C) (B C))
las : N\(N\S) : reads
lezen : J\(N\(N\Si)) : λAread
nijlpaarden : CN : hippos
voeren : J\(N\(N\Si)) : λAfeed
wil : (N\Si)↓(N\S) : λAλB((wants B) (A B))
zag : (N\Si)↓(N\(N\S)) : λAλBλC((saw C) (A B))

(1) jan+boeken+las : S

N : j , N : books, N\(N\S) : reads ⇒ S

5.2. ON THE GENERATIVE CAPACITY OF D-GRAMMARS 183

N ⇒ N

N ⇒ N S ⇒ S

\L

N,N\S ⇒ S

\L

N,N,N\(N\S) ⇒ S

((reads books) j)

(2) jan+boeken+kan+lezen : S

N : j , N : books, (N\Si)↓(N\S) : λAλB((isable B) (A B)), J\(N\(N\Si)) : λAread ⇒ S

J
R

[
]
⇒

J

N
⇒

N

N
⇒

N
S
i{

[
]}
⇒

S
i

\
L

N
,
N
\
S
i{

[
]}
⇒

S
i

\
L

N
,
N
,
N
\
(
N
\
S
i){

[
]}
⇒

S
i

\
L

N
,
N
,
[
],
J
\
(
N
\
(
N
\
S
i)
)
⇒

S
i

\
R

N
,
[
],
J
\
(
N
\
(
N
\
S
i)
)
⇒

N
\
S
i

N
⇒

N
S
⇒

S

\
L

N
,
N
\
S
⇒

S

↓
L

N
,
N
,
(
N
\
S
i)↓

(
N
\
S
)
,
J
\
(
N
\
(
N
\
S
i)
)
⇒

S

((isable j) ((read books) j))

(3) jan+boeken+wil+kunnen+lezen : S

N : j , N : books, (N\Si)↓(N\S) : λAλB((wants B) (A B)), J\((N\Si)↓(N\Si)) : λAλBλC((beable C) (B C)), J\(N\(N\Si)) :
λAread ⇒ S

184 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

JR
[] ⇒ J

JR
[] ⇒ J

N ⇒ N

N ⇒ N Si{[]} ⇒ Si
\L

N,N\Si{[]} ⇒ Si
\L

N,N,N\(N\Si){[]} ⇒ Si
\L

N,N, [], J\(N\(N\Si)) ⇒ Si
\R

N, [], J\(N\(N\Si)) ⇒ N\Si

N ⇒ N Si{[]} ⇒ Si
\L

N,N\Si{[]} ⇒ Si
↓L

N,N, (N\Si)↓(N\Si){[]}, J\(N\(N\Si)) ⇒ Si
\L

N,N, [], J\((N\Si)↓(N\Si)), J\(N\(N\Si)) ⇒ Si
\R

N, [], J\((N\Si)↓(N\Si)), J\(N\(N\Si)) ⇒ N\Si

N ⇒ N S ⇒ S
\L

N,N\S ⇒ S
↓L

N,N, (N\Si)↓(N\S), J\((N\Si)↓(N\Si)), J\(N\(N\Si)) ⇒ S

((wants j) ((beable j) ((read books) j)))

(4) jan+cecilia+henk+de+nijlpaarden+zag+helpen+voeren : S

N : j , N : c, N : h, N/CN : ι,CN : hippos, (N\Si)↓(N\(N\S)) : λAλBλC((saw C) (A B)), J\((N\Si)↓(N\(N\Si))) :
λAλBλCλD((help D) (B C)), J\(N\(N\Si)) : λAfeed ⇒ S

CN ⇒ CN

JR

[] ⇒ J

JR

[] ⇒ J

N ⇒ N

N ⇒ N Si{[]} ⇒ Si

\L

N,N\Si{[]} ⇒ Si

\L

N,N,N\(N\Si){[]} ⇒ Si

\L

N,N, [], J\(N\(N\Si)) ⇒ Si

\R

N, [], J\(N\(N\Si)) ⇒ N\Si

N ⇒ N

N ⇒ N Si{[]} ⇒ Si

\L

N,N\Si{[]} ⇒ Si

\L

N,N,N\(N\Si){[]} ⇒ Si

↓L

N,N,N, (N\Si)↓(N\(N\Si)){[]}, J\(N\(N\Si)) ⇒ Si

\L

N,N,N, [], J\((N\Si)↓(N\(N\Si))), J\(N\(N\Si)) ⇒ Si

/L

N,N,N/CN ,CN , [], J\((N\Si)↓(N\(N\Si))), J\(N\(N\Si)) ⇒ Si

\R

N,N/CN ,CN , [], J\((N\Si)↓(N\(N\Si))), J\(N\(N\Si)) ⇒ N\Si

N ⇒ N

N ⇒ N S ⇒ S

\L

N,N\S ⇒ S

\L

N,N,N\(N\S) ⇒ S

↓L

N,N,N,N/CN ,CN , (N\Si)↓(N\(N\S)), J\((N\Si)↓(N\(N\Si))), J\(N\(N\Si)) ⇒ S

((saw j) ((help c) ((feed (ι hippos)) h)))

5.2. ON THE GENERATIVE CAPACITY OF D-GRAMMARS 185

Appendix B. Computer generated derivation of accbab in
Mix

a ⇒ a
IL

a, I ⇒ a
IL

a, I, I ⇒ a
IL

a, I, I, I ⇒ a
↑R

a, I, I, [] ⇒ a↑I b ⇒ b
↓L

a, I, I, (a↑I)↓b ⇒ b
↑R

a, I, [], (a↑I)↓b ⇒ b↑I

S ⇒ S
IL

S, I ⇒ S
↑R

S, [] ⇒ S↑I

a ⇒ a
IL

a, I ⇒ a
↑R

a, [] ⇒ a↑I b ⇒ b
↓L

a, (a↑I)↓b ⇒ b
↓L

S, (S↑I)↓a, (a↑I)↓b ⇒ b
↓L

a, I, (b↑I)↓S, (a↑I)↓b, (S↑I)↓a, (a↑I)↓b ⇒ b
↑R

a, [], (b↑I)↓S, (a↑I)↓b, (S↑I)↓a, (a↑I)↓b ⇒ b↑I S ⇒ S
↓L

a, (b↑I)↓S, (b↑I)↓S, (a↑I)↓b, (S↑I)↓a, (a↑I)↓b ⇒ S

186 5. ON THE GENERATIVE CAPACITY OF D-GRAMMARS

Chapter 6

Linguistic Applications

This chapter addresses linguistic issues which are discontinuous in nature. The
discontinuous Lambek calculus D and its extensions, which were studied in
previous chapters, can be seen now at work.1 The slogan grammaticality =
provability is fully applied by working linguistic examples in hypersequent cal-
culus and in labelled natural deduction. The sources of these examples can be
found in Morrill, Valent́ın, and Fadda (2011), Morrill and Valent́ın (2010a) and
in Morrill and Valent́ın (2011).

There are several linguistic phenomena we account for, such as discontinuous
idioms, quantification, VP ellipsis, medial-extraction, pied-piping, appositive
relativization, parentheticals, gapping, comparative subdeletion, (a first analysis
of) English reflexivization, dative alternation and particle shift.

Moreover, we analyze in some detail binding theory. English binding theory
was studied in Morrill and Valent́ın (2010c) and Morrill and Valent́ın (2011).
In these two last references there were considered several extensions2 of D,
which are presented in detail in this thesis. With respect to Catalan (and in
fact in some other Romance languages), reflexive binding theory is also ana-
lyzed.3 We show and formally account for some remarkable puzzling linguistic
differences which exist between the so-called reflexive clitic and the reflexive
syntactic anaphor (cf. Alsina (1996)). Finally, Catalan reflexive clitic climbing
is addressed.

A relevant feature of all the linguistic analyses which are carried out here,
is that no structural rule is used.

6.1 Linguistic Applications of Db

By Basic discontinuous Lambek calculus Db we mean D with level 1, atomicity
0, and in which the displacement algebra algebra is restricted to just + : L0 ×
L0 → L0 and × : L1 × L0 → L0. Therefore the only discontinuous connectives
it contains are sort non-polymorphic ↓, � and ↑. In this section we list accounts
of linguistic phenomena falling within the scope of this minimal discontinuity

1This chapter is based on Morrill, Valent́ın, and Fadda (2011).
2The extensions we refer to are different from the extensions considered in this thesis, in

this case DADND.
3This work on Catalan binding theory is new, and consequently it does not appear in the

works cited.

187

188 6. LINGUISTIC APPLICATIONS

calculus. Notice that Db is a strictly proper subcalculus of 1-D with atomicity
0.

Discontinuous Idioms

Idioms are complex expressions which have a meaning not compositionally at-
tributable to the meanings of their parts (e.g. red herring). In grammar deliv-
ering logical semantics, they must be listed in the lexicon, because there is no
other place from which their meaning can come. In discontinuous idioms, the
idiomatic material is interpolated by non-idiomatic dependents, for example:

(268) Mary gave John/the man/. . . the cold shoulder.

Let there be the following lexical assignment:

(269) gave+1+the+cold+shoulder : (N\S)↑N : shun

Then our example is derived as follows in the hypersequent calculus and the
labelled natural deduction calculus respectively:

(270) N ⇒ N

N ⇒ N S ⇒ S
\L

N,N\S ⇒ S
↑L

N, (N\S)↑N{N} ⇒ S

(271)
Mary

Mary : N : m

gave . . . the cold shoulder

gave+1+the+cold+shoulder : (N\S)↑N : shun

John

John : N : j
E↑

gave+John+the+cold+shoulder : N\S : (shun j)
E\

Mary+gave+John+the+cold+shoulder : S : (shun j m)

Quantification

Quantification is a classical instance of discontinuity, i.e. syntactic-semantic mis-
match. Quantifier phrases occupy nominal positions syntactically but take sen-
tential scope semantically, for example:

(272) a. John gave every book to Mary.

b. ∀x[(book x)→ (give m x j)]

We treat quantification by type assignments such as the following:

(273) every : ((S↑N)↓S)/CN : λxλy∀z[(x z)→ (y z)]

Such a composite of extraction and infixation to treat quantification was sug-
gested in Moortgat (1991), but he did not have a calculus ensuring that the
extraction and infixation points would be one and the same.

An example like (272a) is derived (with the right semantics) as follows, where
PTV abbreviates (N\S)/(N•PP) or ((N\S)/PP)/N:

6.1. LINGUISTIC APPLICATIONS OF DB 189

(274)
CN ⇒ CN

N,PTV,N,PP ⇒ S
↑R

N,PTV, [],PP ⇒ S↑N S ⇒ S
↓L

N,PTV, (S↑N)↓S,PP ⇒ S
/L

N,PTV, ((S↑N)↓S)/CN,CN,PP ⇒ S

Montague (1973) presumably takes its title from its treatment of quantifiers
and it is interesting to compare our treatment with his rule of term-insertion
S14. Ignoring for the moment pronoun-binding aspects, S14 replaces by a noun
phrase a variable in a nominal position in a sentence and semantically applies
the noun phrase to the lambda abstraction of the sentence meaning over that
of the nominal position. Our analysis splits such a step into two parts: con-
ditionalization of the sentence over the nominal, semantically interpreted by
functional abstraction over the nominal meaning, and infixing of the quantifier
phrase into the conditionalized sentence, semantically interpreted by functional
application of the infix to the circumfix.

Like that of Montague, our account allows quantifier phrases to take scope
at the level of any embedding sentence, a feature which must eventually be
constrained. However this successfully characterises the de re/specific and de
dicto/nonspecific ambiguity of (275).

(275) Mary thinks someone left.

The de dicto reading, where the propositional attitude verb has wider scope than
the existential quantifier (Mary does not necessarily have a particular person in
mind), is generated by:

(276)

N,N\S ⇒ S
↑R

[],N\S ⇒ S↑N S ⇒ S
↓L

(S↑N)↓S,N\S ⇒ S N,N\S ⇒ S
/L

N, (N\S)/S, (S↑N)↓S,N\S ⇒ S

The de re reading, where the existential quantifier has wider scope than the
propositional attitude verb (Mary has a particular person in mind), is generated
by:

(277)

N, (N\S)/S,N,N\S ⇒ S
↑R

N, (N\S)/S, [],N\S ⇒ S↑N S ⇒ S
↓L

N, (N\S)/S, (S↑N)↓S,N\S ⇒ S

Also like the account of Montague, ours allows multiple quantifiers to scope
in any order, another feature which must eventually be constrained (for example,
each appears to always take wider scope). But this successfully characterizes
the classical example of ambiguity:

(278) Everyone loves someone.

On the (dominant) subject wide scope reading, different people love, in general,
different people (as in when we all love our respective mothers). On the (subor-
dinate) object wide scope reading, different people love the same person (as in
when we all love one and the same queen). The subject wide scope (∀∃) reading
is generated by:

190 6. LINGUISTIC APPLICATIONS

(279)

N, (N\S)/N,N ⇒ S
↑R

N, (N\S)/N, [] ⇒ S↑N S ⇒ S
↓L

N, (N\S)/N, (S↑N)↓S ⇒ S
↑R

[], (N\S)/N, (S↑N)↓S ⇒ S↑N S ⇒ S
↓L

(S↑N)↓S, (N\S)/N, (S↑N)↓S ⇒ S

The object wide scope (∃∀) reading is generated by:

(280)

N, (N\S)/N,N ⇒ S
↑R

[], (N\S)/N,N ⇒ S↑N S ⇒ S
↓L

(S↑N)↓S, (N\S)/N,N ⇒ S
↑R

(S↑N)↓S, (N\S)/N, [] ⇒ S↑N S ⇒ S
↓L

(S↑N)↓S, (N\S)/N, (S↑N)↓S ⇒ S

(The sooner processed, i.e. the nearer the root of the sequent proof, the wider the
scope of the quantifier). Note that even assuming nondeterministic wrapping,
in our account multiple quantifiers cannot get tangled up and bind each others’
positions because the types driving the derivation ensure that the quantifier
separator positions are only opened up and closed off one at a time, so that the
only positions ever available are the unique correct ones.

For an account of the preference for ∀∃ scope over ∃∀ scope (i.e. left-to-right
quantifier scope preference), see Morrill (2000b), which defines a complexity
metric on analyses expressed as proof nets (Girard (1987)) motivated by the
incrementality of processing. A range of other performance phenomena are also
accounted for there in the same way.

6.1.1 Linguistic Applications of 1-D

By 1-D we mean D with level 1. Connectives are now sort-polymorphic, but
only one single separator is found in its interpretation in a displacement algebra.
The atomicity of 1-D equals the level of 1-D, i.e. it is equal to 1. 1-D allows
several linguistic applications. Let us see them.

VP Ellipsis

VP ellipsis refers to a class of constructions in which a form of do (perhaps suf-
fixed by too) takes its interpretation from a preceding verb phrase, for example:

(281) a. John slept before Mary did.

b. John slept and Mary did too.

Let there be the following lexical type assignment to the auxiliary, where VP
abbreviates N\S:

(282) did : ((VP↑VP)/VP)\(VP↑VP) : λxλy(x y y)

Then an example such as (281a) is derived as follows:

6.1. LINGUISTIC APPLICATIONS OF DB 191

(283)

VP, (VP\VP)/S,N,VP ⇒ VP
↑R

[], (VP\VP)/S,N,VP ⇒ VP↑VP
/R

[], (VP\VP)/S,N ⇒ (VP↑VP)/VP

VP ⇒ VP N,VP ⇒ S
↑L

N,VP↑VP{VP}, ⇒ S
\L

N,VP, (VP\VP)/S,N, ((VP↑VP)/VP)\(VP↑VP) ⇒ S

VP ellipsis can also occur intersententially, so an account must eventually be
set up at the level of discourse.

Medial Extraction

Extraction in which the gap is not at the periphery such as

(284) dog that Mary saw today

can be modelled as follows:

(285) that : (CN\CN)/ˆ(S↑N) : λxλyλz[(x z) ∧ (y z)]

The example (284) is derived thus in the hypersequent calculus:

(286)

N, (N\S)/N,N, (N\S)\(N\S) ⇒ S
↑R

N, (N\S)/N, [], (N\S)\(N\S) ⇒ S↑N
ˆR

N, (N\S)/N, (N\S)\(N\S) ⇒ ˆ(S↑N) CN,CN\CN ⇒ CN
/L

CN, (CN\CN)/ˆ(S↑N),N, (N\S)/N, (N\S)\(N\S) ⇒ CN

The derivation in labelled natural deduction is as shown in Figure 6.1.

Pied-Piping

Pied-piping is the embedding of a filler such as a relative pronoun within ac-
companying material from the extraction site:

(287) scene the painting of which by Cezanne John sold for $10,000,000

The depth of embedding is unbounded:

(288) thesis the height of the lettering on the first line of the second page of the
third chapter of . . . of which is 0.5cm

Pied-piping can be treated by assignment as follows (cf. Morrill (1994) (ch. 4);
Morrill (1995)):

(289) which : (N↑N)↓((CN\CN)/ˆ(S↑N)) : λxλyλzλw[(z w) ∧ (y (x w))]

Then (287) is derived as shown in Figure 6.2, where PTV abbreviates (N\S)
/(N•PP). Note that (289) can also generate relativisation in which there is no
pied-piping by deriving an empty pied-piping context as N↑N ([] ⇒ N↑N is a
theorem): once the assignment (289) is included, that of medial extraction is
no longer required: the assignment (285) is derivable from, and so subsumed
by, (289). The reader should notice that all these derivations of pied-piping are
allowed because D is defined model-theoretically in displacement algebras which
are based in monoids. Hence the usual restriction of non-empty antecedent in
left/right slashes rules of the Lambek calculus as formulated in Lambek (1958)
are no longer required.

192 6. LINGUISTIC APPLICATIONS

d
o
g

d
o
g−

d
o
g
:

C
N

th
a
t

t
h
a
t−
λ
x
λ
y
λ
z
[(x

z
)
∧

(y
z
)]:

(C
N
\
C

N
)/

ˆ
(S↑

N
)

M
a
ry

M
a
r
y−

m
:

N

sa
w

s
a
w
−
see

:
(N
\
S
)/

N
i

a−
x

:
N
E
/

s
a
w

+
a−

(see
x

):
N
\
S

to
d
a
y

t
o
d
a
y−

to
d
a
y
:

(N
\
S
)\

(N
\
S
)

s
a
w

+
a
+

t
o
d
a
y−

(to
d
a
y

(see
x

)):
N
\
S
E
\

M
a
r
y

+
s
a
w

+
a
+

t
o
d
a
y−

(to
d
a
y

(see
x

)
m

):
S

I↑
i

M
a
r
y

+
s
a
w

+
1
+

t
o
d
a
y−

λ
x

(to
d
a
y

(see
x

)
m

):
S↑

N
I
ˆ

M
a
r
y

+
s
a
w

+
t
o
d
a
y−

λ
x

(to
d
a
y

(see
x

)
m

):
ˆ
(S↑

N
)
E
/

t
h
a
t
+

M
a
r
y

+
s
a
w

+
t
o
d
a
y−

λ
y
λ
z
[(to

d
a
y

(see
z
)
m

)
∧

(y
z
)]:

C
N
\
C

N
E
\

d
o
g

+
t
h
a
t
+

M
a
r
y

+
s
a
w

+
t
o
d
a
y−

λ
z
[(to

d
a
y

(see
z
)
m

)
∧

(d
o
g
z
)]:

C
N

Figure 6.1: Labelled natural deduction derivation of medial extraction (284)

6.1. LINGUISTIC APPLICATIONS OF DB 193

N
/
C

N
,
C

N
,
N
,
C

N
\
C

N
⇒

N
↑
R

N
/
C

N
,
C

N
/
P

P
,
P

P
/
N
,
[],

C
N
\
C

N
⇒

N
↑
N

N
,
P

T
V
,
N
,
P

P
⇒

S
↑
R

N
,
P

T
V
,
[],

P
P
⇒

S↑
N

ˆ
R

N
,
P

T
V
,
P

P
⇒

ˆ
(S↑

N
)

C
N
,
C

N
\
C

N
⇒

C
N
/
L

C
N
,
(C

N
\
C

N
)/

ˆ
(S↑

N
),

N
,
P

T
V
,
P

P
⇒

C
N
↓
L

C
N
,
N
/
C

N
,
C

N
/
P

P
,
P

P
/
N
,
(N
↑
N

)↓
((C

N
\
C

N
)/

ˆ
(S↑

N
)),

N
,
P

T
V
,
P

P
⇒

C
N

Figure 6.2: Hypersequent derivation of pied-piping (287)

194 6. LINGUISTIC APPLICATIONS

Appositive Relativisation

Apposative (‘nonrestrictive’) relativisation is relativisation in which the relative
clause forms a lowered intonational phrase marked off by commas in writing,
and modifies a noun phrase:

(290) John, who jogs, sneezed.

Semantically, the predication of the body of the appositive relative clause to
the noun phrase modified is conjoined with the semantics of the embedding
sentence in which the noun phrase is (also) understood. This discontinuity can
be treated by the following assignment:

(291) which : (N\((S↑N)↓S))/ˆ(S↑N) : λxλyλz[(x y) ∧ (z y)]

Our example (290) is derived as follows:

(292)

N,N\S ⇒ S
↑R

[],N\S ⇒ S↑N
ˆR

N\S ⇒ ˆ(S↑N)

N ⇒ N

N,N\S ⇒ S
↑R

[],N\S ⇒ S↑N S ⇒ S
↓L

(S↑N)↓S,N\S ⇒ S
\L

N,N\((S↑N)↓S),N\S ⇒ S
/L

N, (N\((S↑N)↓S))/ˆ(S↑N),N\S,N\S ⇒ S

Parentheticals

Parentheticals are adsentential modifiers such as fortunately which, to a very
rough first approximation, can appear anywhere in the sentence they modify:4

(293) a. Fortunately, John has perseverance.

b. John, fortunately, has perseverance.

c. John has, fortunately, perseverance.

d. John has perseverance, fortunately.

Such a distribution is captured by the following type assignment, as in Morrill
and Merenciano (1996):

(294) fortunately : ˇS↓S : fortunately

For example, (293c) is derived as follows in the hypersequent calculus:

(295)

N, (N\S)/N,N ⇒ S
ˇR

N, (N\S)/N, [],N ⇒ ˇS S ⇒ S
↓L

N, (N\S)/N, ˇS↓S,N ⇒ S

In labelled natural deduction, example (293c) is derived as shown in Figure 6.3.

4Of course, parentheticals cannot really occur anywhere, e.g. *The, fortunately, man left.
In the end there will have to be some kinds of domains which they cannot penetrate.

6.1. LINGUISTIC APPLICATIONS OF DB 195

J
o
h
n

J
o
h
n
−
j:

N

h
a
s

h
a
s−

h
a
v
e
:

(N
\
S
)/

N

p
e
rse

v
e
ra

n
c
e

p
e
r
s
e
v
e
r
a
n
c
e−

p
e
r
se

v
e
ra

n
ce

:
N
E
/

h
a
s
+

p
e
r
s
e
v
e
r
a
n
c
e−

(h
a
v
e
p
e
r
se

v
e
ra

n
ce

):
N
\
S
E
\

J
o
h
n

+
h
a
s
+

p
e
r
s
e
v
e
r
a
n
c
e−

(h
a
v
e
p
e
r
se

v
e
ra

n
ce

j):
S

I
ˇ

J
o
h
n

+
h
a
s
+

1
+

p
e
r
s
e
v
e
r
a
n
c
e−

(h
a
v
e
p
e
r
se

v
e
ra

n
ce

j):
ˇ
S

fo
rtu

n
a
te

ly

fo
r
t
u
n
a
t
e
ly−

fo
r
tu

n
a
te
ly

:
ˇ
S↓

S
E
↓

J
o
h
n

+
h
a
s
+

fo
r
t
u
n
a
t
e
ly

+
p

e
r
s
e
v
e
r
a
n
c
e−

(fo
r
tu

n
a
te
ly

(h
a
v
e
p
e
r
se

v
e
ra

n
ce

j)):
S

Figure 6.3: Labelled natural deduction derivation of parenthesization (293c)

196 6. LINGUISTIC APPLICATIONS

N
,
T

V
,
N
⇒

S
↑
R

N
,
[],

N
⇒

S↑
T

V
ˆ
R

N
,
N
⇒

ˆ
(S↑

T
V

)

N
,
T

V
,
N
⇒

S
↑
R

N
,
[],

N
⇒

S↑
T

V

T
V
⇒

T
V

S
⇒

S
↑
L

S↑
T

V
{
T

V
}
⇒

S
\
L

N
,
T

V
,
N
,
(S↑

T
V

)\
(S↑

T
V

)
⇒

S
/
L

N
,
T

V
,
N
,
((S↑

T
V

)\
(S↑

T
V

))/
ˆ
(S↑

T
V

),
N
,
N
⇒

S

Figure 6.4: Hypersequent derivation of gapping (296)

Gapping

Gapping is a coordinate construction in which, in English in the simplest case,
a verb missing medially in the second conjunct shares its interpretation with
one present in the first conjunct:

(296) John studies logic, and Charles, phonetics.

Hendriks (1995) proposed a like-type coordination assignment for gapping which
we adapt as follows, where TV abbreviates (N\S)/N.

(297) and : ((S↑TV)\(S↑TV))/ˆ(S↑TV) : λxλyλz[(y z) ∧ (x z)]

That the coordination is (almost) like-type is attractive, since it narrows the
distance between gapping and constituent coordination (cf. Steedman (1990)).
The example (296) is derived as shown in Figure 6.4.

Comparative Subdeletion

Comparative subdeletion refers to comparisons in which the than-clause is miss-
ing a determiner:

(298) John ate more donuts than Mary bought bagels.

Type-logical analyses were given in Hendriks (1995), see also Morrill and Meren-
ciano (1996). Here we assign separate types to the two comparative elements:

6.1. LINGUISTIC APPLICATIONS OF DB 197

N,TV,Q,CN ⇒ S
↑R

N,TV, [],CN ⇒ S↑Q

CP/S,N,TV,Q,CN ⇒ CP
↑R

CP/S,N,TV, [],CN ⇒ CP↑Q
ˆR

CP/S,N,TV,CN ⇒ ˆ(CP↑Q) S ⇒ S
/L

S/ˆ(CP↑Q),CP/S,N,TV,CN ⇒ S
↓L

N,TV, (S↑Q)↓(S/ˆ(CP↑Q)),CN,CP/S,N,TV,CN ⇒ S

Figure 6.5: Hypersequent derivation of comparative subdeletion (298)

(299) more :(S↑(((S↑N)↓S)/CN))↓(S/(CP↑ˆ(((S↑N)↓S)/CN))):
λxλy[|λz(x λpλq[(p z) ∧ (q z)])| > |λz(y λpλq[(p z) ∧ (q z)])|]

(300) than :CP/S: λxx

Then (298) is derived as shown in Figure 6.5, where Q abbreviates ((S↑N)↓S)/CN
and TV abbreviates (N\S)/N.

Cross-Serial Dependencies

Chomsky (1957) informally argued that even if natural languages were context-
free, context-free grammar could never give a scientifically satisfactory char-
acterisation of even English. Although some have defended context-freeness
(Gazdar, Klein, Pullum, and Sag (1985)), Huybregts (1976), Huybregts (1985)
argued that Dutch is not context-free and Shieber (1985) formally proved that
Swiss German is not context-free.5 The relevant feature of both languages is
semantic cross-serial dependency in subordinate clauses, and the formal (i.e.
string set) proof is enabled by the morphological case-marking of dependents
by verbs in Swiss German (but not Dutch). Cross-serial dependency in Swiss
German is illustrated by the following examples:

(301) a. . . . das mer em Hans es huus hälfed aastriiche
that we Hans-dat the house-acc helped paint

“that we helped Hans paint the house”

b. . . . das mer d’chind em Hans es huus lönd hälfe aastriiche
that we the children-acc Hans-dat the house-acc let help paint

“that we let the children help Hans paint the house”

Calcagno (1995) provides an analysis of cross-serial dependencies which is a close
precedent to ours, but in terms of categorial head-wrapping of headed strings.
In that account, all expressions are of the same datatype (headed string) and
there is no sorting. Here we present a similar account, but using the same sorted
discontinuity calculus also motivated by our other linguistic applications.

Dutch subordinate clauses are verb final:

(302) (. . . dat) Jan boeken las
(. . . that) J. books read
CP/S N N N\(N\S) ⇒ CP
‘(. . . that) Jan read books’

5See also Culy (1985)Culy (1985) for the non-context-freeness of Bambara morphology.

198 6. LINGUISTIC APPLICATIONS

Modals and control verbs, so-called verb raising triggers, appear in a clause-final
verb cluster but in the English word order relative to one another:

(303) (. . . dat) Jan boeken kan lezen
(. . . that) J. books is able read
CP/S N N (N\Si)↓(N\S) .−1(N\(N\Si)) ⇒ CP
‘(. . . that) Jan is able to read books’

(304) (. . . dat) Jan boeken wil kunnen
(. . . that) J. books wants be able
CP/S N N (N\Si)↓(N\S) .−1((N\Si)↓(N\Si))

lezen
read
.−1(N\(N\Si)) ⇒ CP
‘(. . . that) Jan wants to be able to read books’

The basic idea of our analysis Morrill (2000a), Morrill, Fadda, and Valent́ın
(2007) is to mark the left edge of the subordinate clause verb cluster with a
separator, and to have successive verb-raising triggers infixing at this point and
inserting another separator to their own left (if they are infinitive) or closing off
the point of discontinuity (if they are finite). The labelled natural deduction
derivation of the subordinate clause verb phrase in (304) is given in Figure 6.6.

However, caution needs to be taken in relation to the interaction of verb-
raising with our account of quantification:

(305) a. . . . dat Jan alles las
that Jan everything read

“that Jan read everything”

b. . . . dat Jan alles kan lezen
that Jan everything is-able read

“that Jan can read everything”

Such a quantifier phrase presumably at least sometimes needs to be allowed
to take scope which is intermediate with respect to the clause-final verbs, i.e.
within clauses that still contain the verb-raising separator, and the process of
quantification introduces its own separator in addition. The two positions of
discontinuity must not be confused.

We thus propose to allow a new additional separator for the verb cluster left
edge. Thus Si is of sort 1v where 1v is the new verb cluster left edge separator,
etc. All the machinery is just duplicated for the additional separator. The ease
of this iteration (which can apparently be repeated indefinitely) would appear
to be a virtue of the separator approach. But for the purposes of illustration
here we use the same notation as always.

To generate alternative quantifier scopings of examples like (305b) we require
a quantifier assignment for quantification in Si of sort 1, in addition to the
standard one for quantification in S(fin) of sort 0 for (305a); we would want to
collapse these into a sort-polymorphic type:

(306) alles − λx∀y[(thing y)→ (x y)]
:= (Sα↑N)↓Sα

6.1. LINGUISTIC APPLICATIONS OF DB 199

b
o
e
k
e
n

b
o
e
k
e
n
−
bo

o
k
s:

N

le
z
e
n

le
z
e
n
−
rea

d
:
.
−

1
N
\
(N
\
S
in

f)
E
.
−

1

1
+

le
z
e
n
−
rea

d
:

N
\
(N
\
S
in

f)
E
\

b
o
e
k
e
n

+
1
+

le
z
e
n
−

(rea
d
bo

o
k
s):

N
\
S
in

f

k
u
n
n
e
n

k
u
n
n
e
n
−
be

-a
b
le

:
.
−

1
(N
\
S
in

f)↓
(N
\
S
in

f)
E
.
−

1

1
+

k
u
n
n
e
n
−
be

-a
b
le

:
(N
\
S
in

f)↓
(N
\
S
in

f)
E
↓

b
o
e
k
e
n

+
1
+

k
u
n
n
e
n

+
le

z
e
n
−

(be
-a

b
le

(rea
d
bo

o
k
s)):

N
\
S
in

f

w
il

w
il−

w
a
n
t:

(N
\
S
in

f)↓
(N
\
S
)
E
↓

b
o
e
k
e
n

+
w

il+
k
u
n
n
e
n

+
le

z
e
n
−

(w
a
n
t

(be
-a

b
le

(rea
d
bo

o
k
s))):

N
\
S
in

f

Figure 6.6: Labelled natural deduction derivation of Dutch verb-raising (304)

200 6. LINGUISTIC APPLICATIONS

When the infinitival complement verbs also take objects, cross-serial depen-
dencies are generated:6

(307) (. . . dat) Jan Cecilia1 Henk2 de nijlpaarden3

(. . . that) J. C. H. the hippos
CP/S N N N N/CN CN

zag1 helpen2 voeren3

saw help feed
(N\Si)↓(N\(N\S)) .−1((N\Si)↓(N\(N\Si))) .−1(N\(N\Si)) ⇒ CP
‘(. . . that) Jan saw1 Cecilia1 help2 Henk2 feed3 the hippos3’

These are generated by assignments with the verbs seeking objects cross-serially
to the far left after infixing at the separator-marked left edge of the verb cluster.

Main clause yes/no interrogative word order, V1, is derived from subordinate
clause word order by fronting the finite verb. We therefore propose a lexical
rule mapping (subordinate clause) finite verb types V to Q/ˆ(S↑V), cf. Hepple
(1990).

(308) Wil Jan boeken lezen?
wants J. books read
Q/ˆ(S↑((N\Si)↓(N\S))) N N .−1(N\(N\Si)) ⇒ Q
‘Does Jan want to read books?’

Main clause declarative word order, V2, is further derived from V1 by fronting a
major constituent. We propose to achieve this by allowing complex distinguished
types (Morrill and Gavarró (1992)).

(309) Jan wil boeken lezen.
J. wants books read
N Q/ˆ(S↑((N\Si)↓(N\S))) N .−1(N\(N\Si)) ⇒ N•ˆ(Q↑N)
‘Jan wants to read books.’

A hypersequent calculus derivation of the main clause Jan wil boeken lezen is
given in Figure 6.7, where VP abbreviates N\S and VPi abbreviates N\Si. A
hypersequent calculus derivation of the main clause Marie zegt dat Jan Cecilia
Henk de nijlpaarden zag helpen voeren (‘Marie says that Jan saw Cecilia help
Henk feed the hippos’), with subordinate clause cross-serial dependencies, is
given in Figure 6.8.

6.1.2 Linguistic Applications of Deterministic 2-D

Here we consider deterministic discontinuity allowing two separators. The level
of 2-D is of course 2 and atomicity also 2. Here nevertheless, linguistic applica-
tions have only at most atomicity 1.

Reflexivization

Reflexive pronouns occupy nominal positions and take their interpretation from
an antecedent noun phrase. This antecedent is usually clause-local (Principle
A). The antecedent can be a subject as in (310a) or an object as in (310b):

6‘An increasing load in processing makes such multiple embeddings increasingly unaccept-
able’, Steedman (1985), fn. 29, p.546.

6.1. LINGUISTIC APPLICATIONS OF DB 201

N ⇒ N

N ⇒ N

0
√

VPi, [], 1
√

VPi ⇒ 0
√

VPi, [], 1
√

VPi N,VP ⇒ S
↓L

N, 0
√

VPi,VPi↓VP, 1
√

VPi ⇒ S
\L

N,N, 0
√

N\VPi,VPi↓VP, 1
√

N\VPi ⇒ S
.−1L

N,N,VPi↓VP, .−1(N\VPi) ⇒ S
↑R

N,N, [], .−1(N\VPi) ⇒ 0
√

S↑(VPi↓VP), [], 1
√

S↑(VPi↓VP)
ˆR

N,N, .−1(N\VPi) ⇒ ˆ(S↑(VPi↓VP)) Q ⇒ Q
/L

Q/ˆ(S↑(VPi↓VP)),N,N, .−1(N\VPi) ⇒ Q
↑R

Q/ˆ(S↑(VPi↓VP)), [],N, .−1(N\VPi) ⇒ 0
√

Q↑N, [], 1
√

Q↑N
ˆR

Q/ˆ(S↑(VPi↓VP)),N, .−1(N\VPi) ⇒ ˆ(Q↑N)
•R

N,Q/ˆ(S↑(VPi↓VP)),N, .−1(N\VPi) ⇒ N•ˆ(Q↑N)

Figure 6.7: Hypersequent derivation of (309): Jan wil boeken lezen.

(310) a. Johni sent himselfi flowers.

b. Dorothy bet [the straw man]i half of himselfi that she would reach
Emerald City first.

In e.g. Norwegian, subject-oriented and object-oriented reflexives have distinct
forms; in English they are the same, but we treat them apart. For the subject
case we assume the following assignment, cf. Moortgat (1991):

(311) himself : ((N\S)↑N)↓(N\S) : λxλy(x y y)

Then (310a) is derived as follows:

(312)

(N\S)/(N•N),N,N ⇒ N\S
↑R

(N\S)/(N•N), [],N ⇒ (N\S)↑N N,N\S ⇒ S
↓L

N, (N\S)/(N•N), ((N\S)↑N)↓(N\S),N ⇒ S

We leave it to the reader to check that this account of reflexivisation interacts
correctly with our account of quantification to create binding of a reflexive by
a quantified antecedent, as in:

(313) [Every man]i loves himselfi.

On its own however, this account overgenerates, allowing long-distance re-
flexivisation in English:

(314) *Johni thinks Mary loves himselfi.

In Morrill (1990) and Morrill (1994, chap. 4), it is claimed that once TLG is
modalised so as to deliver intensional semantics, the locality of reflexivisation
can be captured by a modal type assignment suitably restricting the antecedent
to lie within the local intensional/temporal domain, i.e. the same tensed clause
as the reflexive.

In English, an object-oriented reflexive must be preceded by its antecedent:

202 6. LINGUISTIC APPLICATIONS

N
⇒

N

N
⇒

N

0 √
V

P
i,

[],
1 √

V
P

i
⇒

0 √
V

P
i,

[],
1 √

V
P

i

N
⇒

N

0 √
V

P
i,

[],
1 √

V
P

i
⇒

0 √
V

P
i,

[],
1 √

V
P

i

N
⇒

N
N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
V

P
⇒

S
\
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,
N
\
V

P
⇒

S
↓
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,

0 √
V

P
i,

V
P

i↓
(N
\
V

P
),

1 √
V

P
i
⇒

S
\
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,
N
,

0 √
N
\
V

P
i,

V
P

i↓
(N
\
V

P
),

1 √
N
\
V

P
i
⇒

S
↓
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,
N
,

0 √
V

P
i,

0 √
V

P
i↓

(N
\
V

P
i),

V
P

i↓
(N
\
V

P
),

1 √
V

P
i↓

(N
\
V

P
i),

1 √
V

P
i
⇒

S
.
−

1
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,
N
,

0 √
V

P
i,

V
P

i↓
(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

1 √
V

P
i
⇒

S
\
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,
N
,
N
,

0 √
N
\
V

P
i,

V
P

i↓
(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

1 √
N
\
V

P
i
⇒

S
.
−

1
L

N
,
V

P
/
C

P
,
C

P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

S
↑
R

N
,
[],

C
P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

0 √
S↑

(V
P
/
C

P
),

[],
1 √

S↑
(V

P
/
C

P
)

ˆ
R

N
,
C

P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

ˆ
(S↑

(V
P
/
C

P
))

Q
⇒

Q
/
L

Q
/
ˆ
(S↑

(V
P
/
C

P
)),

N
,
C

P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

Q
↑
R

Q
/
ˆ
(S↑

(V
P
/
C

P
)),

[],
C

P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

0 √
Q
↑
N
,
[],

1 √
Q
↑
N

ˆ
R

Q
/
ˆ
(S↑

(V
P
/
C

P
)),

C
P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

ˆ
(Q
↑
N

)
•
R

N
,
Q
/
ˆ
(S↑

(V
P
/
C

P
)),

C
P
/
S
,
N
,
N
,
N
,
N
,
V

P
i↓

(N
\
V

P
),
.
−

1
(V

P
i↓

(N
\
V

P
i)),

.
−

1
(N
\
V

P
i)
⇒

N
•
ˆ
(Q
↑
N

)

Figure 6.8: Hypersequent derivation of Marie zegt dat Jan Cecilia Henk de
nijlpaarden zag helpen voeren

6.1. LINGUISTIC APPLICATIONS OF DB 203

(VP/CP)/(N•N),N,N/N,N,CP ⇒ VP
↑R

(VP/CP)/(N•N), [],N/N,N,CP ⇒ VP↑N
↑2R

(VP/CP)/(N•N), [],N/N, [],CP ⇒ (VP↑N)↑2N

N ⇒ N VP ⇒ VP
↑L

VP↑N{N} ⇒ VP
↓2L

(VP/CP)/(N•N),N,N/N, ((VP↑N)↑2N)↓2(VP↑N),CP ⇒ VP

Figure 6.9: Hypersequent derivation of VP medial object-oriented reflexivization
(310b)

(315) a. Mary talked to Johni about himselfi.

b. *Mary talked about himselfi to Johni

Such a feature can be captured using second-position deterministic wrapping
(VP abbreviates N\S):

(316) himself : ((VP↑N)↑2N)↓2(VP↑N) : λxλy(x y y)

Then (310b) is derived as shown in Figure 6.9.

6.1.3 Nondeterminism

Until now we have used the implicative and product connectives of D jointly
with deterministic synthetic connectives. In this subsection we take a look
at examples using nondeterministic connectives (unary and binary). Here we
consider nondeterministic discontinuity allowing two separators. The level is of
course 2 and the examples’ atomicity is at most 1. For the commodity of the
reader, we recall the definition of the nondeterministic synthetic connectives
with their standard syntactical interpretation leaving aside the definition of
these connectives with the linear logic additive connectives conjunction and
disjunction & and ⊕. We recall the sort polymorphic relations +(s1, s2, s3) and
×(s1, s2, s3). +(s1, s2, s3) holds iff s3 = s1+s2 or s3 = s2+s1. ×(s1, s2, s3) holds
iff either s3 = s1 ×1 s2 or s3 = s1 ×2 s2 or . . . or s3 = s1 ×S(s1) s2. Denotation
J · Kv for a given displacement algebra and a valuation v will be simply written
J · K.

204 6. LINGUISTIC APPLICATIONS

(317)

nondeterministic division

JBA Kdef= {s : ∀s′ ∈ JAK, s3, +(s, s′, s3)→ s3 ∈ JBK}

nondeterministic product

JA⊗BKdef= {s3 : ∃s1 ∈ JAK, s2 ∈ JBK}, +(s1, s2, s3)}

nondeterministic infix

JA⇓CKdef= {s2 : ∀s1 ∈ JAK, s3, ×(s1, s2, s3)→ s3 ∈ JCK}

nondeterministic extract

JC⇑BKdef= {s1 : ∀s2 ∈ JBK, s3, ×(s1, s2, s3)→ s3 ∈ JCK}

nondeterministic discontinuous product

JA}BKdef= {s3 : ∃s1 ∈ JAK, s2 ∈ JBK, ×(s1, s2, s3)}

nondeterministic bridge

JˆAKdef= {s3 : ∃s1 ∈ JAK, ×(s1, ε, s3)}

nondeterministic split

JˇAKdef= {s1 : ×(s1, ε, s3)→ s3 ∈ JAK}

Subject postposing

A functor of type B
A can concatenate with its argument either to the left or to

the right to form B. For example in Catalan:

(318) a. Barcelona creix.
‘Barcelona expands/grows.’

b. Creix Barcelona.
‘Expands/grows barcelona.’

This generalization may be captured by assigning a verb phrase such as creix
the type B

A .

Another equivalent formulation of B
A can be simulated (with the aid of deter-

ministic and nondeterministic unary synthetic connectives) by:

B
A ⇒ /−1.−1(ˇ(S↑1N))
/−1.−1(ˇ(S↑1N)) ⇒ B

A

Notice that the level of B
A is 1, whereas its equivalent type in DADND is 2,

for the subtype ˇ(S↑N) has level 2.

Let us see some examples involving the equivalent type /−1.−1(ˇ(S↑1N)). The
derivations in labelled natural deduction of (318) are the following:

6.1. LINGUISTIC APPLICATIONS OF DB 205

creix : /−1.−1(ˇ(S↑1N))
/−1E

1 + creix : .−1(ˇ(S↑1N))
.−1E

1 + creix + 1 : ˇ(S↑1N)
ˇE

1 + creix : S↑1N Barcelona : N
↑1E

Barcelona + creix : N

creix : /−1.−1(ˇ(S↑1N))
/−1E

1 + creix : .−1(ˇ(S↑1N))
.−1E

1 + creix + 1 : ˇ(S↑1N)
ˇE

creix + 1 : S↑1N Barcelona : N
↑1E

creix + Barcelona : N

The derivation of (318b) Creix Barcelona in hypersequent calculus is the fol-
lowing:

N ⇒ N S ⇒ S
↑1L

S↑1N{N} ⇒ S
ˇL

ˇ(S↑1N)){Λ : N} ⇒ S
.−1L

.−1((ˇ(S↑1N)){N} ⇒ S
/−1L

/−1.−1(ˇ(S↑1N)), N ⇒ S

(319) Remark
Some scholars (Vallduv́ı, chapter 4 in Solà, Lloret, Mascaró, and Pérez
(1996)) claim that Catalan (and in fact also Iberian Spanish) is a VO
language with no constraint on the subject’s position, and therefore the
typing for a Catalan (Iberian Spanish) transitive verb could be:

TV
def
= (

S

N
)/N

6.1.4 Beyond 2-D?

A question remains as to the levels which the lexicons of natural languages need.
Is it necessary to go beyond 2-D, to say 3-D? This is clearly an open problem.
Interestingly, in some linguistic registers, spanish transitive verbs admit orders,
SVO, VOS, VSO and OVS.7 In D we can give a typing for such orders (although
in fact we generate more orders which are very unlikely), and in that case the
level would be 4. Consider:

(320) TV
def
= /−1/−1.−1.−1(ˇ(ˇ(S↑N)⇑N))

7This is my intuition as an Iberian Spanish native speaker.

206 6. LINGUISTIC APPLICATIONS

Using labelled natural deduction, it is relatively straightforward to derive the
3! = 6 possible orders which the typing (320) allows to accept. Let us see how
the order VSO could be derived:

V : /−1/−1.−1.−1(ˇ(ˇ(S↑N)⇑N))
/−1E

...
ˇE

1+1+V+1+1 : ˇ(ˇ((S↑N)⇑N))
ˇE

1+V+1+1 : ˇ((S↑N)⇑N)
ˇE

V+1+1 : (S↑N)⇑N
⇑E

V+S+1 : (S↑N)
↑E

V+S+O : S

6.2 More Logical Machinery for further Binding
Theory

In this section D is extended with the following connectives:

• The Jäger connective | (Jäger (2005)).

• The additive conjunction and disjunction of linear logic (Girard (1987)).

• The S4 modality.

• The difference operator − based on the concept of negation as failure,
familiar in the field of logic programming.

The Lambek calculus is free of structural rules but anaphora involves du-
plication of antecedent semantics. Jäger (2005) extends the Lambek calculus
with limited contraction to provide an account of anaphora with syntactic du-
plication. Here we employ a very slight variant of this in the context of the
displacement calculus. Limited contraction is for a binary type-constructor |
such that B|A signifies an expression of type B containing a free anaphor of
type A (cf. Jacobson (1999), who writes BA). We extend the types of the
displacement calculus as follows:

(321) Fi+j ::= Fi+j |Fj

We assume rules as follows, where the semicolon separates disjoint hyperoccur-
rences which may be consistently in any order left-to-right:8

(322)
Γ ⇒ A ∆〈−→A ;

−→
B 〉 ⇒ D

|L
∆〈Γ;

−−→
B|A〉 ⇒ D

Γ〈−→B0; . . . ;
−→
Bn〉 ⇒ D

|R
Γ〈−−−→B0|A; . . . ;

−−−→
Bn|A〉 ⇒ D|A

We call DC the extension of D with this version of limited contraction. DA, is
the extension of D with the additive connectives of linear logic (Girard (1987)).
In the sorting and hypersequent regime of the discontinuous Lambek calculus
these are as follows:

8Jäger (2005) has only |L (limited contraction) with the antecedent preceding the anaphor,
giving rise to backward anaphora only; our variant allows also forward anaphora (cataphora).

6.2. MORE LOGICAL MACHINERY FOR FURTHER BINDING THEORY 207

(323) Fi ::= Fi&Fi | Fi ⊕Fi

(324)
Γ〈−→A 〉 ⇒ C

&L1
Γ〈−−−→A&B〉 ⇒ C

Γ〈−→B 〉 ⇒ C
&L2

Γ〈−−−→A&B〉 ⇒ C

Γ ⇒ A Γ ⇒ B
&R

Γ ⇒ A&B

Γ〈−→A 〉 ⇒ C Γ〈−→B 〉 ⇒ C
⊕L

Γ〈−−−−→A⊕B〉 ⇒ C

Γ ⇒ A
⊕L1

Γ ⇒ A⊕B

Γ ⇒ B
⊕L2

Γ ⇒ A⊕B

We call D2 the extension of D with S4 modality. In the sorting and hyperse-
quent regime of the D this is as follows, where 2Γ signifies a configuration all
the types of which have 2 as the main connective.

(325) Fi ::= 2Fi

(326)
Γ〈−→A 〉 ⇒ B

2L
Γ〈−→2A〉 ⇒ B

2Γ ⇒ A
2R

2Γ ⇒ 2A

We call DCA2 the extension of D with limited contraction, additives and
S4 modality. The Cut-elimination for this calculus is proved in Morrill and Va-
lent́ın (2011) (to appear).

Finally, we add the difference operator −. The definition of syntactic types
and the semantic type map T sending syntactic types to semantic types is as
shown in Figure 6.10 for the calculus DCA2 with succedent difference. We
call this calculus DCA2−. The definition distinguishes types with antecedent
polarity (superscript •) and succedent polarity (superscript o); where p is a
polarity, p is the opposite polarity. The rule for − is the following:

(327)
Γ ⇒ A : φ 6` Γ ⇒ B :

−R
Γ ⇒ A−B : φ

The sort map for the difference operator satisfies the following:9

S(A−B) = S(A) = S(B)

This rule is nonstandard since the right premise has a non provable hyperse-
quent. We have therefore a rule which combines provability with disprovability.
Moreover, this rule has a side effect. If we have a provable DCA2− hyperse-
quent Γ ⇒ A−B, then the last rule must necessarily be the difference operator
rule. And as stated in Figure 6.10, if A and B are types (with the same sort!),
then A−B must occur with succedent polarity.

Adding the difference operator brings our categorial logic into the realms
of non-monotonic reasoning where the transitivity of the consequence relation

9In rule (327) the two premises have the same antecedent Γ. This justifies that S(A) =
S(B), and of course that S(A−B) = S(A) = S(B).

208 6. LINGUISTIC APPLICATIONS

Fpj ::= Fpi \F
p
i+j T (A\C) = T (A)→ T (C)

Fpi ::= Fpi+j/F
p
j T (C/B) = T (B)→ T (C)

Fpi+j ::= Fpi •F
p
j T (A•B) = T (A)&T (B)

Fp0 ::= I T (I) = >
Fpj ::= Fpi+1↓kF

p
i+j T (A↓kC) = T (A)→ T (C)

Fpi+1 ::= Fpi+j↑kF
p
j T (C↑kB) = T (B)→ T (C)

Fpi+j ::= Fpi+1�kF
p
j T (A�kB) = T (A)&T (B)

Fp1 ::= J T (J) = >
Fpi+j ::= Fpi+j |F

p
j T (B|A) = T (A)→ T (B)

Fpi ::= Fpi &Fpi T (A&B) = T (A)&T (B)
Fpi ::= Fpi ⊕F

p
i T (A⊕B) = T (A) + T (B)

Fpi ::= 2Fpi T (2A) = LT (A)
Fio ::= Fio −Fio T (A−B) = T (A)

Figure 6.10: Connectives and type map

must be dropped. The other connectives used in this chapter, the additive
connectives, the limited contraction | and the S4 modality, enjoy Cut-elimination
(see the paper Morrill and Valent́ın (2011)). But in the presence of negation
as failure, the Cut rule must be considered not only no longer eliminable, but
inadmissible as Morrill and Valent́ın (op.cit.) show. However, the subformula
property holds of all the connectives used here: the hypersequent presentation
is such that for every rule, the formula occurrences in the premises are always
subformulas of those in the conclusion. Given this state of affairs, the Cut-free
backward chaining sequent proof search space is finite and hence the categorial
logic DCA2− is decidable.

The treatment of this connective will crucially assign a Curry-Howard term
to all the derivations of hypersequents in DCA2−, as Morrill and Valent́ın (op.
cit.) prove. In the next section in which we present the semantics; Figures 6.14
and 6.15 display the DCA2− calculus labelled with Curry-Howard terms.

6.3 Semantics

The set T of semantic types is defined on the basis of a set δ of basic semantic
types as follows:

(328) T ::= δ | > | T +T | T &T | T →T | LT

A semantic frame comprises a non-empty set W of worlds and a family {Dτ}τ∈T
of non-empty semantic type domains such that:

(329) D> = {0} singleton set
Dτ1+τ2 = Dτ2]Dτ1 ({1} ×Dτ1) ∪ ({2} ×Dτ2) disjoint union
Dτ1&τ2

= Dτ1 ×Dτ2 {〈m1,m2〉| m1 ∈ Dτ1 & m2 ∈ Dτ2} Cartesian product

Dτ1→τ2 = D
Dτ1
τ2

the set of all functions from Dτ1 to Dτ2 functional exponentiation

DLτ = DWτ the set of all functions from W to Dτ functional exponentiation

The sets Φτ of terms of type τ for each type τ are defined on the basis of sets
Cτ of constants of type τ and denumerably infinite sets Vτ of variables of type
τ for each type τ as shown in Figure 6.11.

6.3. SEMANTICS 209

Φτ ::= Cτ
Φτ ::= Vτ
Φ> ::= 0
Φτ ::= Φτ1+τ2 → Vτ1 .Φτ ; Vτ2 .Φτ case statement

Φτ+τ ′ ::= ι1Φτ first injection
Φτ ′+τ ::= ι2Φτ second injection

Φτ ::= π1Φτ&τ ′ first projection
Φτ ::= π2Φτ ′&τ second projection

Φτ&τ ′ ::= (Φτ ,Φτ ′) ordered pair formation
Φτ ::= (Φτ ′→τ Φτ ′) functional application

Φτ→τ ′ ::= λVτΦτ ′ functional abstraction
Φτ ::= ∨ΦLτ extensionalization

ΦLτ ::= ∧Φτ intensionalization

Figure 6.11: Syntax of terms for semantic representation

[a]g,i = f(a) for constant a ∈ Cτ
[x]g,i = g(x) for variable x ∈ Vτ
[0]g,i = 0

[φ→ x.ψ; y.χ]g,i =

{
[ψ]g[x:=m],i if [φ]g,i = 〈1,m〉
[χ]g[y:=m],i if [φ]g,i = 〈2,m〉

[ι1φ]g,i = 〈1, [φ]g,i〉
[ι2φ]g,i = 〈2, [φ]g,i〉
[π1φ]g,i = fst([φ]g,i)
[π2φ]g,i = snd([φ]g,i)

[(φ, ψ)]g,i = 〈[φ]g,i, [ψ]g,i〉
[(φ ψ)]g,i = [φ]g,i([ψ]g,i)

[λxφ]g,i = m 7→ [φ]g[x:=m],i

[∨φ]g,i = [φ]g,i(i)
[∧φ]g,i = j 7→ [φ]g,j

Figure 6.12: Semantics of terms for semantic representation

Given a semantic frame, a valuation f is a function mapping each constant
of type τ into an element of Dτ , and an assignment g is a function mapping each
variable of type τ into an element of Dτ . Where g is such, the update g[x := m]
is (g − {(x, g(x))}) ∪ {(x,m)}. Relative to a valuation, an assignment g and a
world i ∈ W , each term φ of type τ receives an interpretation [φ]g,i ∈ Dτ as
shown in Figure 6.12.

An occurrence of a variable x in a term is called free if and only if it does
not fall within any part of the term of the form x.· or λx·; otherwise it is
bound (by the closest x. or λx within the scope of which it falls). The result
φ[ψ1/x1, . . . , ψn/xn] of substituting terms ψ1, . . . , ψn (of types τ1, . . . , τn) for
variables x1, . . . , xn (of types τ1, . . . , τn) in a term φ is the result of simultane-
ously replacing by ψ1, . . . , ψn every free occurrence of x1, . . . , xn respectively in
φ. We say that ψ is free for x in φ if and only if no variable occurrence in ψ
becomes bound in φ[ψ/x] (i.e. if and only if there is no “accidental capture”).
We say that a term is modally closed if and only if every occurrence of ∨ occurs

210 6. LINGUISTIC APPLICATIONS

φ→ x.ψ; y.χ = φ→ z.(ψ[z/x]); y.χ
if z is not free in ψ and is free for x in ψ
φ→ x.ψ; y.χ = φ→ x.ψ; z.(χ[z/y])

if z is not free in χ and is free for y in χ
λxφ = λy(φ[y/x])

if y is not free in φ and is free for x in φ
α-conversion

ι1φ→ y.ψ; z.χ = ψ[φ/y]
if φ is free for y in ψ and modally free for y in ψ
ι2φ→ y.ψ; z.χ = χ[φ/z]
if φ is free for z in χ and modally free for z in χ

π1(φ, ψ) = φ
π2(φ, ψ) = ψ
(λxφ ψ) = φ[ψ/x]

if ψ is free for x in φ, and modally free for x in φ
∨∧φ = φ

β-conversion

(π1φ, π2φ) = φ
λx(φ x) = φ

if x is not free in φ
∧∨φ = φ

if φ is modally closed
η-conversion

Figure 6.13: Semantic conversion laws

within the scope of an ∧. A modally closed term is denotationally invariant
across worlds. We say that a term ψ is modally free for x in φ if and only if
either ψ is modally closed, or no free occurrence of x in φ is within the scope of
an ∧. The laws of conversion in Figure 6.13 obtain; for the sake of brevity we
omit the so-called commuting conversions for the case statement.

6.3.1 More on Reflexives

Reflexive pronouns such as himself/herself/itself can take subject antecedents
or object antecedents.

Subject-oriented reflexivization like

(330) Johni buys himselfi coffee.

is generated by assignment as follows, where here and throughout VP abbrevi-
ates N\S, and as remarked earlier we allow ourselves to omit the subscript 1
for ↓1 and ↑1:

(331) himself/herself/itself : 2(((N\S)↑N)↓(N\S)) : ∧λxλy(x y y)

Consider:

(332) a. *Johni believes Mary likes himselfi.

6.3. SEMANTICS 211

id−→
A : x ⇒ A : x

Γ ⇒ A : φ ∆〈−→C : z〉 ⇒ D : ω
\L

∆〈Γ,−−→A\C : y〉 ⇒ D : ω[(y φ)/z]

−→
A : x,Γ ⇒ C : χ

\R
Γ ⇒ A\C : λxχ

Γ ⇒ B : ψ ∆〈−→C : z〉 ⇒ D : ω
/L

∆〈−−→C/B : x,Γ〉 ⇒ D : ω[(x ψ)/z]

Γ,
−→
B : y ⇒ C : χ

/R
Γ ⇒ C/B : λyχ

∆〈−→A : x,
−→
B : y〉 ⇒ D : ω

•L
∆〈−−→A•B : z〉 ⇒ D : ω[π1z/x, π2z/y]

Γ1 ⇒ A : φ Γ2 ⇒ B : ψ
•R

Γ1,Γ2 ⇒ A•B : (φ, ψ)

Γ ⇒ A : φ ∆〈−→C : z〉 ⇒ D : ω
↓kL

∆〈Γ|k
−−−→
A↓kC : y〉 ⇒ D : ω[(y φ)/z]

−→
A : x|kΓ ⇒ C : χ

↓kR
Γ ⇒ A↓kC : λxχ

∆〈−→A : x,
−→
B : y〉 ⇒ D : ω

∆〈−−−−→A�i B : z〉 ⇒ D : ω[π1z/x, π2z/y]

Γ1 ⇒ A : φ Γ2 ⇒ B : ψ

Γ1|iΓ2 ⇒ A�iB : (φ, ψ)

Γ ⇒ B : ψ ∆〈−→C : z〉 ⇒ D : ω
↑kL

∆〈−−−→C↑kB : x|kΓ〉 ⇒ D : ω[(x ψ)/z]

Γ|k
−→
B : y ⇒ C : χ

↑kR
Γ ⇒ C↑kB : λyχ

Γ ⇒ A : φ ∆〈A : x;B : y〉 ⇒ D : ω
|L

∆〈Γ;B|A : z〉 ⇒ D : ω[φ/x, (z φ)/y]

Γ〈B0 : y0; . . . ;Bn : yn〉 ⇒ D : ω
|R

Γ〈B0|A : z0; . . . ;Bn|A : zn〉 ⇒ D|A : λx(ω[(z0 x)/y0, . . . , (zn x)/yn])

Γ〈−→A : x〉 ⇒ B : ψ
2L

Γ〈−→2A : z〉 ⇒ B : ψ[∨z/x]

2Γ ⇒ A : φ
2R

2Γ ⇒ 2A : ∧φ

Γ ⇒ A : φ 6` Γ ⇒ B :
−R

Γ ⇒ A−B : φ

Figure 6.14: Semantically labelled hypersequent calculus for extended D, Part
I

212 6. LINGUISTIC APPLICATIONS

Γ〈−→A : x〉 ⇒ C : ϕ[x]
&L1

Γ〈−−−→A&B : z〉 ⇒ C : ϕ[π1z]

Γ〈−→B : y〉 ⇒ C : ϕ[y]
&L2

Γ〈−−−→A&B : z〉 ⇒ C : ϕ[π2z]

Γ ⇒ A : Φ Γ ⇒ B : Ψ
&R

Γ ⇒ A&B : (Φ,Ψ)

Γ〈−→A : x〉 ⇒ B : ϕ1 Γ〈−→B : y〉 ⇒ B : ϕ2

⊕L
Γ〈−−−−→A⊕B : z〉 ⇒ C : (z → x · ϕ1; y · ϕ2)

Γ ⇒ A : Φ
⊕R1

Γ ⇒ A⊕B : ι1Φ

Γ ⇒ B : Ψ
⊕R2

Γ ⇒ A⊕B : ι2Ψ

Figure 6.15: Semantically labelled sequent calculus for extended D, Part II

Crucially, believes is assigned:

believes : 2((N\S)/2S)

The subtype 2S in succedent polarity projects therefore a local domain ruling
out long-distance reflexivization (cf. Principle A of Chomsky (1981)).

For object-oriented reflexivization such as

(333) John talked to Maryi about herselfi.

We assume assignment:

(334) himself/herself/itself : 2(((VP↑N)↑2N)↓2(VP↑N)) : ∧λxλy(x y y)

This embodies a precedence condition on object-oriented reflexivization:

(335) *Mary revealed himselfi to Johni.

The fact that the antecedent hypothetical subtype is not modalized prevents a
clause non-local antecedent:

(336) *Mary notified the fact that Johni won to himselfi.

6.3.2 Personal pronouns

We distinguish “external anaphora” in which the antecedent is intrasentential
but outside the clause of the pronoun, or intersentential or extralinguistic, and
“internal anaphora” in which the antecedent is within the clause of the pronoun
or within a clause subordinate to that clause.
We assign to the nominative personal pronouns he/she as follows:

(337) he/she : 2((2S|N)/2VP) : ∧λxλy∧(∨x y)

This captures that nominative pronouns only appear in subject positions, and
that they permit no internal anaphora (cf. Principle C of Chomsky (1981)):

(338) a. *Hei likes Johni.
b. *Hei believes Johni flies.
c. *Hei believes Mary likes Johni.

6.3. SEMANTICS 213

To the both nominative and accusative personal pronoun it we assign for exter-
nal anaphora thus:

(339) it : 2(2(S↑N)↓(2S|N)) : ∧λxλy∧(∨x y)

This allows it to appear in both nominative and accusative positions.
To the accusative pronouns him/her we assign for external anaphora:

(340) him/her : 2(2((S↑N)− (J•VP))↓(2S|N)) : ∧λxλy∧(∨x y)

This represents that case in English is configurational and that the default case
is accusative: the use of the difference operator (i.e. negation as failure) allows
the accusative pronouns to appear anywhere except in subject position. For
example, *Johni thinks himi runs blocks because 1+runs, although it is of
type (2)(S↑N), is also of type J•VP.

Finally, for internal anaphora we assign thus to the accusative personal pro-
nouns him/her/it :

(341) him/her/it : 2((((S↑N)↑2N)−(J•(VP↑N)))↓2(S↑2N)) : ∧λxλy(x y ∨y)

A similar device as before limits the accusative pronouns to only non-subject
positions. That the antecedent hypothetical subtype is modalized allows a non-
clause-local internal antecedent (by contrast with the reflexivization (336)):

(342) The fact that Mary employed Johni surprised himi.

The type embodies a precedence constraint on internal anaphora:

(343)*Mary revealed himi to Johni.

And the negation ensures that the pronoun cannot take as antecedent the sub-
ject of its own clause (cf. Principle B of Chomsky (1981)):

(344)*Johni likes himi.

The exemplification for Binding English using the machinery we have presented
can be found in Morrill and Valent́ın (op. cit.).

6.3.3 Some Binding Theory for Romance Languages:

In this subsection we review some interesting linguistic phenomena which can
be observed in Romance languages. The main linguistic focus will be Catalan
reflexives. The main reference used in this sketch of Romance reflexive binding
theory is Alsina (1996), namely his book The Role of Argument Structure in
Grammar: Evidence from Romance.

Alsina distinguishes in Catalan (and in fact in other Romance languages)
two types of reflexive, which have remarkable syntactic and semantic differences
(in the literal translations of linguistic examples we will denote the reflexive
clitic as RF):

• The reflexive clitic se.10

10Phonological constraints may alter the pronunciation of this word and its spelling as the
following examples show:

214 6. LINGUISTIC APPLICATIONS

• The reflexive syntactic anaphor a si mateix/a si mateixa.11

Alsina adopts a theory which focuses on the argument structure and the map-
ping from argument structure to syntactic functions (such as subject, direct ob-
ject, oblique, and so on). He is able to account in a modified Lexical Functional
Grammar framework (LFG, see Bresnan (1982)) for several puzzling linguistic
phenomena. One important feature of Alsina’s work is his rejection of a strongly
supported principle in the generative community: the so-called UTAH (“Uni-
formity of Theta Assignment Hypothesis”, see Baker (1988)). UTAH basically
consists of the claim that theta-roles are in a bijective mapping with syntactic
functions. By allowing a many to one mapping, he is able to solve several prob-
lematic linguistic issues for generative-based theories.

Here we give a type-logical solution to what we call Alsina’s puzzle on re-
flexives. Our account is formal contrary to Alsina’s which is rather informal,
but of course we do not attempt to explain in our type-logical approach the
great variety of linguistic problems which Alsina is able to solve. We also for-
mally analyze reflexive clitic climbing, which is an nondeterministic linguistic
phenomenon because in a verbal complex apparently there is freedom for the
site of insertion of the reflexive clitic, although with some constraints we will
detail later. Our explanation of the linguistic cases makes essential use of the
categorial apparatus developed in the previous section, namely DCA2− with
moreover atomic subtyping. Nevertheless, the necessary projection of domains
for reflexives with the modal machinery is excluded.

Alsina’s puzzle on reflexive clitic binding in Catalan

Catalan has a constraint on the reflexive syntactic anaphor (and in fact in all
nominative/accusative clitic pronouns). This is the clitic doubling condition,
i.e. in our case, the reflexive syntactic anaphor must cooccur with the reflexive
clitic as the following contrast shows:

(346) a. La Maria es defensa a si mateixa.
The Maria RF defends herself
‘Maria defends herself.’

b. *La Maria defensa a si mateixa.
The Maria defends herself

It is interesting to remark that the property of cooccurrence of both reflexive
clitic and reflexive syntactic anaphor does not hold of all Romance languages as
the case Italian (op.cit. Alsina p.243) shows:

(345) a) Es vol defensar.
RF wants defend
‘He wants to defend himself.’

b) Vol defensar-se.

a. Wants defend RF

b. ‘He wants to defend himself.’

In this account of the reflexive clitic we will skip over these details.
11The reflexive syntactic anaphor varies with respect to the gender of the antecedent.

6.3. SEMANTICS 215

(347) a. Ugo ha difeso se stesso.
Ugo has defended himself
‘Ugo has defended himself.’

b. Ugo si è defeso.
Ugo RF is defended
‘Ugo has defended himself.’

But it is important to point out that a simple reflexive sentence has a priori the
optionality of cooccurring with a reflexive syntactic anaphor with no apparent
semantic differences. Consider the following contrast:

(348) a. El Pere es defensa a si mateix.
The Pere RF defends himself
‘Pere defends himself.’

b. El Pere es defensa.
The Pere RF defend
‘Pere defends himself.’

Sentences a) and b) from (348) are synonymous. They share the same semantic
form: (defend peter peter). But only in simple sentences there seems that
both options are equivalent. Reflexive sentences with elliptical verb phrases
show important semantic differences which hide deep syntactic differences. In a
nutshell, Alsina’s main claim is that the reflexive clitic without the cooccurrence
of the reflexive syntactic anaphor has an effect of what he calls A-structure bind-
ing which essentially consists of giving the same index to both proto-agentive
(P-A) and proto-patient (P-P) theta roles in the argument structure. This has
the consequence that at the level of functional structure, or f-structure, there
is only one syntactic function, i.e. the subject.12 The object function is not
present, but the external argument which has subject function has the property
that both P-A and P-P are mapped onto it. In other words, a sentence like (348)
b) is an intransitive sentence. We say that the reflexive clitic intransitivizes the
sentence, i.e. there is a valence reduction effect.

But the case of the reflexive syntactic anaphor has another story. As we
already said, it must cooccur with the reflexive clitic (as if the reflexive clitic
were an agreement marker). Now the f-structure associated to a sentence like
(348) a) has two syntactic functions, namely a subject and an object. They have
according to the semantic theory Alsina adopts the same referential indexes,
but crucially there is no A-structure binding at the level of argument structure.
Despite the differences at the level of f-structures (and in fact at the level of
c-structures), the sentences a) and b) from (348) are synonymous. But with
more complex sentences, in particular with elliptical material, we can expect
semantic differences. The following sentences from Alsina (op.cit. p. 246 and
247) show these differences:

12In fact by the mapping principles Alsina assumes, by what he call the subject condition,
there has to be a subject function.

216 6. LINGUISTIC APPLICATIONS

(349) 1) La Gertrudis es defensa a si mateixa millor que la Maria.

a. ‘Gertrudisi defends herselfi better than Maria (defends Gertrudis).’

b. ‘Gertrudisi defends herselfi better than (Gertrudis defends) Maria.’

c. ‘Gertrudisi defends herselfi better than Mariaj (defends herselfj).’

(350) 2) La Gertrudis es defensa millor que la Maria.

a. ‘*Gertrudisi defends herselfi better than Maria (defends Gertrudis).’

b. ‘*Gertrudisi defends herselfi better than (Gertrudis defends) Maria.’

c. ‘Gertrudisi defends herselfi better than Mariaj (defends herselfj).’

Readings a), b) and c) in sentence (349) are possible whereas in a similar sen-
tence like (350) with only the reflexive clitic, only reading c) is possible. In the
literature, readings a) and b) are called strict readings, and the c) reading, the
sloppy reading. These differences in readings between sentences (349) and (350)
constitute what we call Alsina’s puzzle on reflexives.

We proceed now to account for Alsina’s puzzle and clitic climbing phe-
nomenon in our type-logical framework. In our account of Alsina’s puzzle we
assume for simplicity that there is no clitic climbing. We omit also the definite
article which precedes proper names in Catalan. Later we show how to give
adequate lexical entries for both clitic climbing and Alsina’s puzzle.
Let us consider the following lexical entries:13

• a+si+mateixa : SELF : λPλw.(P w w). Here SELF abbreviates:14

SELF
def
= ((N\Sr)↑N))↓(N\Sr)

• se : CLSELF : λV.V, where CLSELF abbreviates TVr/TV and TVr and
TV abbreviate respectively (N\Sr)/N and (N\S)/N. This lexical entry
is necessary for accounting for clitic doubling with the syntactic reflexive
a+si+mateixa/a+si+mateix.

• mq : COMPAR : λPλz.BT[(π1P π2P), (π1P z)], where the semantic con-
stant BT stands for better than and the syntactic constant mq abbreviates
millor+que (better than). Here, the type abbreviation COMPAR stands
for:

COMPAR
def
= ((Sr↑N)�N)\(Sr/N))

• se : SE : λVλw.(V w w), where the type abbreviation SE stands for:

SE
def
= (N\S)/TV

13In order to be consistent with the previous section, the types we are proposing should be
intensionalized. It is only for commodity of the reader that we have avoided intensionalize the
types in order to project syntactic domains for binding.

14The gender marking of the reflexive syntactic anaphor in Catalan is ignored.

6.3. SEMANTICS 217

Notice how SE has the role of intransitivizing, in absence of the syntactic
reflexive, the transitive verb as Alsina’s theory predicts. There is a valence
reduction effect and consequently only one gramatical function is possible,
namely the subject function, which in our framework (without atomic
subtyping for case) corresponds to the subtype N\S of the type SE.

Observe the subtyping Sr which ensures that reflexive syntactic anaphor
is infixing in a reflexive clitized transitive verb phrase as it is necessary in
Catalan. It is then necessary to postulate the atomic axiom:

Sr ⇒ S

In Figure 6.16 we have the labelled ND hypersequent derivation of the sloppy
reading of sentence (349), and in Figures 6.17 and 6.18 we find respectively
the labelled ND and hypersequent derivations of the strict readings of sentence
(349). These lexical entries we have proposed account for all the Alsina’s pre-
dictions of what we have called Alsina’s puzzle. If one inspects carefully the
derivations in ND or hypersequent format, we realize that in the absence of the
reflexive syntactic anaphor the sentence behaves as an intransitive sentence and
that the reflexive clitic has a role of intransitivizer or reducer of the valence of the
transitive verb, whereas in the sentences with reflexive clitic doubling, this has
a role similar to an agreement marker. In the reflexive clitic doubling sentence
the two possible strict readings depend on which argument of the transitive verb
is extracted.

218 6. LINGUISTIC APPLICATIONS

Lex
es : CLSELF : λV.V

Lex
defensa : TV : defend

es+defensa : TVr : defend (/E) a : N : xa

es+defensa+a : N\Sr : (defend xa) (/E)

es+defensa+1 : (N\Sr)↑N : λxa.(defend xa) (↑I) Lex
a+si+mateixa : SELF : λV.λw.(V w w)

es+defensa+a+si+mateixa : (N\Sr) : λw.(defend w w) (↓E) b : N : xb

b+es+defensa+a+si+mateixa : Sr : (defend xb xb) (\E)

1+es+defensa+a+si+mateixa : Sr↑N : (λxb.defend xb xb) (↑I) Lex
gertrudis:N:gertrudis

gertrudis+es+defensa+a+si+mateixa : (Sr↑N)�N : (λxb.(defend xb xb), gertrudis) (�I)

Lex
mq : CMPAR : λP.λz.BT [(λxb.(defend xb xb) gertrudis, (λxb.(defend xb xb) gertrudis)]

gertrudis+es+defensa+a+si+mateixa+mq : Sr/N : λz.BT [(defend gertrudis gertrudis), (defend z z)] (\E)

N
maria : N : maria

gertrudis+es+defensa+a+si+mateixa+mq+maria : Sr :
BT [(defend gertrudis gertrudis), (defend maria maria)] (/E) Sr ⇒ S

gertrudis+es+defensa+a+si+mateixa+mq+maria : S :
BT [(defend gertrudis gertrudis), (defend maria maria)] (Cut)

Figure 6.16: Labelled ND derivation of the sloppy reading of sentence (349c)

6.3. SEMANTICS 219

a : N : xa Lex
defensa : TV : defend

Lex
g : N : g

b : N : xb Lex
es : CLSELF : λV.V

es+defensa : (N\Sr)/N : defend (/E)
es+defensa+a : N\Sr : (defend xa) (/E)
b+es+defensa+a : Sr : (defend xa xb) (\E)

1+es+defensa+a : Sr↑N : λxb(defend xa xb) ↑I t : n : xt

t+es+defensa+a : (Sr↑N)�N :< λxb.(defend xa xb), xt > (�I)

Lex
mq : ((Sr↑N)�N)\(Sr/N) : λPλz.BT [(π1P π2P), (π1P z)]

t+es+defensa+a+mq : Sr/N : λz.BT [((λxb.defend xa xb) xt), (λxb.(defend xa xb) z)] =β

λz.BT [(defend xa xt), (defend xa z))] (\E) Lex
maria : N : maria

t+es+defensa+a+mq+maria : Sr : BT [((defend xa xt), (defend xa maria))] (/E)

es+defensa+t+mq+maria : N\Sr : λxt.BT [((defend xa xt), (defend xa maria))](\I)

es+defensa+1+mq+maria : (N\Sr)↑N : λxaλxt.BT [(defend xa xt), (defend xa maria))] (↑I)

Let Φ := λxaλxt.BT [(defend xa xt), (defend xa maria))]

Lex
a+si+mateixa : ((N\Sr)↑N)↓(N\Sr) : λP.w(P w w)

es+defensa+a+si+mateixa+mq+maria : N\Sr : (λPλw(P w w) Φ) =β λw.(Φ w w)) =β
λw.BT [((defend w w), (defend w maria))] (↓E)

Lex
gertrudis : N : gertrudis

gertrudis+es+defensa+a+si+mateixa+mq+maria : Sr :
BT [((defend gertrudis gertrudis), (defend gertrudis maria))] (\E)

Sr ⇒ S
gertrudis+es+defensa+a+si+mateixa+mq+maria : S :
BT [((defend gertrudis gertrudis), (defend gertrudis maria))] (Cut)

Figure 6.17: Labelled ND derivation of the first strict reading of sentence (349a)

220 6. LINGUISTIC APPLICATIONS

a : N : xa Lex
defensa : TV : defend

Lex
g : N : g

b : N : xb Lex
es : CLSELF : λV.V

es+defensa : (N\Sr)/N : defend
es+defensa+a : N\Sr : (defend xa) (/E)
b+es+defensa+a : Sr : (defend xa xb) (\E)

b+es+defensa+1 : Sr↑N : λxa(defend xa xb) (\E) t : n : xt

b+es+defensa+t : (Sr↑N)�N : (λxa.(defend xa) xb), xt) (�I)

Lex
mq : ((Sr↑N)�N)\(Sr/N) : λPλz.BT [(π1P π2P), (π1P z)]

b+es+defensa+t+mq : Sr/N : λz.BT [((λxa.defend xa xb) t)), λxa.(defend xa xb) z)] (\E)

b+es+defensa+t+mq : Sr/N : λz.BT [((defend xt xb))), (defend z xb))] Lex
m : N : maria

b+es+defensa+t+mq+maria : Sr : BT [((defend xt xb))), (defend maria xb))](E /)

es+defensa+t+mq+maria : N\Sr : λxb.BT [((defend t xb), (defend maria xb))](I \)

es+defensa+1+mq+maria : (N\Sr)↑N : λxtλxb.BT [(defend xt xb), (defend maria xb)] (↑I)

Let Φ := λxtλxb.BT [(defend xt xb), (defend maria xb)]

Lex
a+si+mateixa : ((N\Sr)↑N)↓(N\Sr) : λPλw(P w w)

es+defensa+a+si+mateixa+mq+maria : N\Sr : (λPλw(P w w) Φ) =β λw(Φ w w)(↓ E)

Lex
gertrudis : N : gertrudis

gertrudis+es+defensa+a+si+mateixa+mq+maria : Sr : (λw(Φ w w) gertrudis) =β
(Φ gertrudis gertrudis)) =β BT [(defend gertrudis gertrudis), (defend maria gertrudis)] (\E)

Sr ⇒ S

gertrudis+es+defensa+a+si+mateixa+mq+maria : S :
BT [(defend gertrudis gertrudis), (defend maria gertrudis)] (Cut)

Figure 6.18: Labelled ND derivation of the strict reading of sentence (349b)

[], TVr, N ⇒ Sr↑N TV ⇒ TV
/L

[], CLSELF, TV,N ⇒ Sr↑N Sr/N,N ⇒ Sr
�R

N.CLSELF, TV,N ⇒ (S↑N)�N Sr/N,N ⇒ S
/L

N,CLSELF, TV,N,COMPAR,N ⇒ Sr
\R

CLSELF, TV,N,COMPAR,N ⇒ N\Sr
↑R

CLSELF, TV, [], COMPAR,N ⇒ (N\Sr)↑N

N ⇒ N Sr ⇒ S
\L

N,N\Sr ⇒ S
↓L

N,CLSELF, TV, SELF,COMPAR,N ⇒ S

Figure 6.19: Hypersequent derivation of the strict reading of sentence (349a)

6.3. SEMANTICS 221

N, TVr, [] ⇒ Sr↑N TV ⇒ TV
/L

N,CLSELF, TV, [] ⇒ Sr↑N Sr/N,N ⇒ Sr
�R

N.CLSELF, TV,N ⇒ (S↑N)�N Sr/N,N ⇒ S
/L

N,CLSELF, TV,N,COMPAR,N ⇒ Sr
\R

CLSELF, TV,N,COMPAR,N ⇒ N\Sr
↑R

CLSELF, TV, [], COMPAR,N ⇒ (N\Sr)↑N

N ⇒ N Sr ⇒ S
\L

N,N\Sr ⇒ S
↓L

N,CLSELF, TV, SELF,COMPAR,N ⇒ S

Figure 6.20: Hypersequent derivation of the strict reading of sentence (349b)

TV ⇒ TV

TVr, [] ⇒ Sr↑N N,N\Sr ⇒ Sr
↓L

N, TVr, SELF ⇒ Sr
/L

N, TVr/TV, TV, SELF ⇒ Sr
↑R

[], TVr/TV, TV, SELF ⇒ Sr↑N N ⇒ N
�R

N, TVr/TV, TV, SELF ⇒ (Sr↑N)�N

N ⇒ N Sr ⇒ S
/L

Sr/N,N ⇒ S
\L

N,CLSELF, TV, SELF,COMPAR,N ⇒ S

Figure 6.21: Hypersequent derivation of the sloppy reading of sentence (349c)

222 6. LINGUISTIC APPLICATIONS

Lex
es : CLSELF : λV.V

Lex
defensa : TV : defend

es+defensa : TVr : defend (/E) a : N : xa

es+defensa+a : N\Sr : (defend xa) (/E)

es+defensa+1 : (N\Sr)↑N : λxa.(defend xa) (↑I) a+si+mateixa : SELF : λV.λw.(V w w)

es+defensa+a+si+mateixa : (N\Sr) : λw.(defend w w) (↓E) b : N : xb

b+es+defensa+a+si+mateixa : Sr : (defend xb xb) (\E)

1+es+defensa+a+si+mateixa : Sr↑N : (λxb.defend xb xb) (↑I) Lex
gertrudis:N:gertrudis

gertrudis+es+defensa+a+si+mateixa : (Sr↑N)�N :< λxb.defend xb xb), gertrudis > (�I)

Lex
mq : CMPAR : λP.λz.BT [(λxb.(defend xb xb) gertrudis, (λxb.(defend xb xb) gertrudis)]

gertrudis+es+defensa+a+si+mateixa+mq : Sr/N : λz.BT [(defend gertrudis gertrudis), (defend z z)] (\E)

N
maria : N : maria

gertrudis+es+defensa+a+si+mateixa+mq+maria : Sr :
BT [(defend gertrudis gertrudis), (defend maria maria)] (/E) Sr ⇒ S

gertrudis+es+defensa+a+si+mateixa+mq+maria : S :
BT [(defend gertrudis gertrudis), (defend maria maria)] (Cut)

Figure 6.22: Labelled ND derivation of the sloppy reading of sentence (350) a.

6.3. SEMANTICS 223

Labelled natural Deduction has the attractive feature of inserting the lex-
ical semantics through the derivation. Hypersequent calculus does not have
this feature. We can nevertheless give the derivational semantics of a hyper-
sequent derivation, and then substitute lexical semantics.15 For example, the
hypersequent derivation (349a) is the following:

(xCOMPAR(λx1.(xSELF xTV x1), xg) xm)

Where the free variables of the above expression correspond to the lexical entries:

(351)
xCOMPAR ; λPλz.BT [(π1P π2P), (π1P z)]
xSELF ; λPλw.(P w w)
xg ; gertudis
xm ; maria

If in the above expression we replace every free variable by its corresponding
lexical entry we get after β-reduction:

(xCOMPAR < λx1.(xSELF xTV x1), xg > xm) ;
BT [(defend gertrudis gertrudis), (defend maria maria)]

The hypersequent derivation corresponding to the strict reading (349) c) has
the following derivational semantics:

(xSELF (λxt.λxsubj .(xCOMPAR (λxobj .(xTV xobj xsubj), xt) xm)) xg)

Substituting lexical semantics from (351) and β-reducing we get:

(xSELF (λxt.λxsubj .(xCOMPAR < λxobj .(xTV xobj xsubj), xt > xm)) xg) ;
BT [(defend gertrudis gertrudis), (defend maria gertrudis)]

Hypersequent derivational semantics and lexical semantics substitution corre-
sponding to the first strict reading (349) b) gives the expected semantics seen
in the ND derivation (6.17).

Notice how the insertion of the reflexive syntactic anaphor type precedes the
insertion of the comparative type in the ND and hypersequent derivations of
the sloppy reading of sentence (349 c)), whereas in the corresponding strict
readings of sentence (349) in both ND and hypersequent calculus derivations
the comparative type insertion precedes the reflexive syntactic anaphor type
insertion.

Accounting for reflexive clitic climbing in Catalan

When we treated Alsina’s puzzle on reflexives in Catalan, we had to satisfy the
Catalan constraint on reflexive syntactic anaphors which requires the cooccur-
rence of the reflexive clitic, (see Alsina op.cit.), i.e. a si mateix/mateixa without

15In the sentences with the reflexive syntactic anaphor we have avoided to include the
semantic contribution of CLSELF in the derivational semantics, given the fact that CLSELF
is a syntactic type whose function is to signal a kind of agreement between the reflexive
syntactic anaphor and the reflexive clitic, and that the lexical semantics of CLSELF is the
identity function.

224 6. LINGUISTIC APPLICATIONS

the occurrence of the reflexive clitic renders the sentence ungramatical.

The type CLSELF used before was too much simplistic, for in particular it does
not account for the reflexive clitic climbing property which holds of Catalan and
several other Romance languages (see Bosque and Demonte (1999)). We recall
the type definition of CLSELF :

CLSELF := TVr/TV

Consider the following grammatical sentences. The type CLSELF for the lexical
entry of the reflexive clitic only accepts as grammatical sentences b) and e):

(352) a. La Maria vol defensar-se.
The Maria wants defend RF
‘Maria wants to defend herself.’

b. La Maria es vol defensar.
The Maria RF wants defend
‘Maria wants to defend herself.’

c. La Maria vol poder defensar-se.
The Maria wants be able defend RF
‘Maria wants to be able to defend herself.’

d. La Maria vol poder-se defensar.
The Maria wants be able RF defend
‘Maria wants to be able to defend herself.’

e. La Maria es vol poder defensar.
The Maria RF wants be able defend
‘Maria wants to be able to defend herself.’

Moreover clitic climbing in Catalan has an important constraint: the reflexive
clitic cannot occur between a finite verb and a non-finite verb, or occur after a
single transitive verb, as the following contrast shows:16

(354) a. *La Maria defensa’s.
The Maria defends RF

b. La Maria vol defensar-se.
The Maria wants defend RF
‘Maria wants to defend herself.’

16It is interesting to remark that Iberian Spanish clitic climbing is very similar to the case
of Catalan but the constraint we are referring to does not hold. Hence, it is possible to say:

(353) a. Maŕıa defiéndese.
Maŕıa defends RF
‘Maŕıa defends herself.’

b. Maŕıa quiérese defender.
Maŕıa wants RF defend
‘Maria wants to defend herself.’

6.3. SEMANTICS 225

c. *La Maria vol es defensar.
The Maria wants RF defend

d. La Maria es vol defensar
. Maria RF wants defend
‘Maria wants to defend herself.’

We propose now lexical entries (for clitic climbing) which use the machinery
of DCA2-. We will use some basic type abbreviations:

• TV and TVr, as we already saw, respectively stand for (N\S)/N and
(N\Sr)/N .

• TV− is an abbreviation for infinite transitive verb:

TV−
def
= (S−/N)/N

• MV stands for a tensed modal verb:

MV
def
= (N\S)/(S−/N)

We give reflexive types for reflexive clitic double constructions: a) for a single
reflexive clitic transitive verb, and b) for a reflexive complex transitive verb:

CLSELF1
def
= (J • TV − ˇ((TV↑MV)�MV))↓TVr

for a single transitive verb

CLSELF2
def
= (ˇ((TV↑MV)�MV))−MV • J • TV−)↓TVr

for a complex transitive verb

In the case of a reflexive verb construction without clitic doubling, the following
types are proposed. Here the type abbreviation used is SE because as we showed
before there are important semantic differences between a reflexive construction
without clitic doubling and a reflexive construction with clitic doubling:

SE1
def
= (J • TV − ˇ((TV↑MV)�MV))↓(N\S)

for a single transitive verb

SE2
def
= (ˇ((TV↑MV)�MV))−MV • J • TV−)↓(N\S)

for a complex transitive verb

Useful type abbreviations for the landing site of the reflexive clitic in the types
we have proposed above are (CLINS is an abbreviation of CLitical INSertion):

CLINS1
def
= J • TV − ˇ((TV↑MV)�MV)

for a single transitive verb

CLINS2
def
= ˇ((TV↑MV)�MV)−MV • J • TV−

for a complex transitive verb

Finally, we can give only one type which does the work of CLSELF1, CLSELF2,
SE1 and SE2:

226 6. LINGUISTIC APPLICATIONS

(355)

RFCL
def
= (CLINS1 ⊕ CLINS2) ↓ (TVr & N\S)

The lexical semantics assigned to RFCL is:

λQ ·Q → [x]〈x, λw.(x w w)〉; [y]〈(π1y π2y), λw.((π1y π2y) w w)〉

We have to point out that relative pronouns such as who/which must have the
subtype ˆ(S↑N) modalized, i.e.:

who/which : 2(CN\CN)/2(ˆ(S↑N))

In this way we successfully block reflexive clitic insertion in phrases as the
following:

(356) a. saw + the + man + who + ate : TV

Some examples of reflexive clitic climbing

Consider the following sentences:

(357) a) La Gertrudis es defensa.
The Gertrudis RF defends
‘Gertrudis defends herself.’

b) La Gertrudis es defensa a si mateixa.
The Gertrudis RF defends herself
‘Gertrudis defends herself.’

c. *La Gertrudis defensa’s.
The Gertrudis defends RF

d. La Gertrudis es vol defensar.
The Gertrudis RF wants defend
‘Gertrudis wants to defend herself.’

e. *La Gertrudis vol-se defensar.
The Gertrudis wants RF defend

f. La Gertrudis vol defensar-se.
The Gertrudis wants defend RF. ‘Gertrudis wants to defend herself.’

We give a DCA2- account for examples of (357):

• Hypersequent corrresponding to a):

` N,RFCL,TV ⇒ S

Proof:

[], TV ⇒ CLINS1
⊕R

[], TV ⇒ CLINS1 ⊕ CLINS2

N,N\S ⇒ S
&L

N, TVr&(N\S) ⇒ S
↓L

N,RFCL,TV ⇒ S

6.3. SEMANTICS 227

And ` [], TV ⇒ CLINS1 for:

` [], TV ⇒ J • TV and
6` [], TV ⇒ ˇ((TV ↑MV)�MV)

• Hypersequent corresponding to b):

` N,RFCL,TV,SELF ⇒ S

Proof:

[], TV ⇒ CLINS1
⊕R

[], TV ⇒ CLINS1 ⊕ CLINS2

N,TVr, [] ⇒ (N\Sr)↑N Sr ⇒ S
↓L

N, TVr, SELF ⇒ S
&L

N, TVr&(N\S), SELF ⇒ S
↓L

N,RFCL,TV,SELF ⇒ S

• Hypersequent corresponding to c):

6` N,TV,RFCL

Disproof:

6` TV, [] ⇒ CLINS1 6` TV, [] ⇒ CLINS2
⊕R

6` TV, [] ⇒ CLINS1 ⊕ CLINS2

N,N\S ⇒ S
&L

N, TVr&(N\S) ⇒ S
↓L

6` N,TV,RFCL ⇒ S

I.e. the last rule ↓L cannot be applied, and the hypersequent corresponding
to c) is not provable.

• Hypersequent corresponding to d):

` N,RFCL,MV, TV− ⇒ S

This hypersequent is provable for:

` [],MV, TV− ⇒ CLINS2

Which is provable because:

` [],MV, TV− ⇒ ˇ((TV ↑MV)�MV) and
6` [],MV, TV− ⇒ MV • J • TV−

• Hypersequent corresponding to e):

6` N,MV,RFCL, TV− ⇒ S

For 6`MV, [], TV− ⇒ CLINS1 and `MV, [], TV− ⇒ ˇ((TV ↑MV)�MV)
but:

228 6. LINGUISTIC APPLICATIONS

`MV [], TV− ⇒ MV • J • TV−

Whence 6`MV, [], TV− ⇒ CLINS1 ⊕ CLINS2.

f) Hypersequent corresponding to f):

` N,MV, TV−, RFCL, SELF ⇒ S

On the one hand we have that:

`MV,TV−, [] ⇒ CLINS2
⊕R

`MV,TV−, [] ⇒ CLINS1 ⊕ CLINS2

On the other hand:

` N,TVr, SELF ⇒ S
&L

` N, (TVr&(N\S)), SELF ⇒ S

Hence, applying the ↓ left rule we get:

` N,MV, TV−, RFCL, SELF ⇒ S

Chapter 7

Conclusions

For several years, the main goal of this author has been to solve open problems
in the so-called wrapping approach (cf. Chapter 1 of this thesis), jointly with
co-workers Glyn Morrill and Mario Fadda. In the wrapping approach of the
90’s the attention was always focused on the algebraic side. The calculi which
were proposed were labelled deductive systems with syntactic1 and semantic
annotation. The sequent systems were not ordered in the sense that the alge-
braic labelling was necessary to have all the information of the derivation of a
sequent. Morrill (1997) gave a first formulation of a sequence logic (or ordered
logic) which constitutes for this author a germ of the hypersequent syntax (in
its segmented formulation; see Chapter 3) with an unlimited number of separa-
tors which appeared in Morrill, Fadda, and Valent́ın (2007). In that work the
so-called hypersequent syntax was formally formulated with a clear sound syn-
tactical interpretation. In the following papers to which this author contributed,
several variations were proposed trying to find the final (hyper)sequent calcu-
lus.2

Nevertheless, in the wrapping approach of the 90’s, there was no exploration
of several important logical and computational aspects. Cut elimination theo-
rems and completeness results were not given. Moreover, results on expressivity,
generative capacity and decidability were also absent. But this is certainly not
a criticism against this period. In the 90s Morrill and co-workers aspired to
find the right and if possible definitive calculus which could satisfy the problem
of discontinuity in natural languages. During these years of active and excit-
ing research, the tools they disposed of were the classes of algebras they were
proposing as well as the labelled deductive systems (in natural deduction form
or in Gentzen sequent style)

It follows then that this thesis has aspired to give solutions to all these
problems that simply were not explored:

• The underlying (sorted universal) algebraic machinery of the discontinuous
Lambek calculus (see Chapter 2).

• A detailed proof theory with a syntactic proof of the Cut elimination

1In the 90’s the term prosodic algebra was used instead of the term syntactical algebra (the
latter term was the one chosen in several papers after the year 2000 and in this thesis).

2It was in Morrill, Valent́ın, and Fadda (2011) that the tree-based hypersequent syntax
was proposed.

229

230 7. CONCLUSIONS

theorem for D and the extensions which have been proposed in Chapter
3.

• Several soundness and completeness results.

• A first approach to the expressive power of the discontinuous Lambek
calculus.

• Finally, in Chapter 6 there have been exposed the theory at work with
natural language examples.

The hypersequent calculus as said before was formally formulated for the
first time in Morrill, Fadda, and Valent́ın (2007). The sequence logic, although
non-standard (see Chapter 3), has no structural rules. But in this work we have
demonstrated the intimate relation between the sorted multimodal calculus mD
and the hypersequent calculus hD. In other words the hidden structural pos-
tulates which are absorbed in the hypersequent calculus have been discovered.
We think that this is a remarkable finding.

7.1 Future Work and Open Problems

Is this thesis a kind of ending of the wrapping approach? We can say that we
have tried to conclude it. We have formulated and proved several results. But
as could be expected, many questions have arisen:

• Is it possible to extend D with the Moortgat’s residuated unary modalities
(or bracket modalities in Morrill’s approach)? We already know that an
absorbed syntax for the S4 modality can extend D.

• What happens with the sorting regime if brackets are added to D?

• Is Fadda and Morrill (2005)’s syntactical interpretation for bracket modal-
ities compatible with sorts? Can we invent a new sorting system in order
to reach compatibility with the syntactical interpretation of brackets?

• Is it possible to extend hypersequent syntax with another binary modes of
composition. For example, we think of the morphology composition mode
opposed to word level composition mode. This is particularly relevant in
some Amerindian languages (e.g. Navajo) which are called polysynthetic,
in which the morphological mode of composition is extremely rich and
complex (see Baker (1996)).

• Following the previous item, can we give D structural rules? What would
happen with the syntax of the hypersequent syntax and the sorting regime?

• Is a Pentus like theorem for D-grammars possible? We are sceptical.
As we have proved, the class of the permutation closure of context-free
languages is is recognized by D-grammars. For the time being, the Lambek
calculus with permutation, i.e. LP does not have a Pentus like proof. And
undoubtably, LP is simpler than D.

Bibliography

Ajdukiewicz, K. (1935). Die syntaktische konnexität. Studia Philosophica 1,
1–27. Translated in S. McCall, editor, 1967, Polish Logic: 1920–1939, Oxford
University Press, Oxford, 207–231.

Alsina, A. (1996). The Role of Argument Structure in Grammar. Evidence from
Romance. Leland Stanford Junior University: CSLI Lecture Notes.

Anoun, H. and A. Lecomte (2006). Linear grammars with labels. In Proceedings
of the Conference Formal Grammar, Stanford.

Avron, A. (1991). Hypersequents, Logical Consequence and Intermediate Logic
form Concurrency. Annals of Mathematics and Artificial Intelligence 4, 225–
248.

Bach, E. (1981). Discontinuous constituents in generalized categorial grammars.
In V. Burke and J. Pustejovsky (Eds.), Proceedings of the 11th Annual Meet-
ing of the North Eastern Linguistics Society, New York, pp. 1–12. Amherst,
Massachussets: GLSA Publications, Department of Linguistics, University of
Massachussets at Amherst.

Bach, E. (1984). Some Generalizations of Categorial Grammars. In F. Land-
man and F. Veltman (Eds.), Varieties of Formal Semantics: Proceedings of
the Fourth Amsterdam Colloquium, pp. 1–23. Dordrecht: Foris. Reprinted
in Walter J. Savitch, Emmon Bach, William Marsh and Gila Safran-Naveh,
editors, 1987, The Formal Complexity of Natural Language, D. Reidel, Dor-
drecht, 251–279.

Baker, M. (1988). Incorporation: A Theory of Grammatical Function Changing.
Chicago: University of Chicago Press.

Baker, M. (1996). The polysynthesis parameter. New York: Oxford University
Press.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description.
Language 29, 47–58.

Barker, C. (2002). Continuations and the nature of quantification. Natural
Language Semantics 10, 211–242.

Bosque, I. and V. Demonte (1999). Gramática descriptiva de la lengua española.
Espasa.

231

232 BIBLIOGRAPHY

Bresnan, J. (1982). The Mental Representation of Grammatical Relations. MIT
Press.

Bresnan, J. (2001). Lexical Functional Syntax. Basil Blackwell.

Buszkowski, W. (1982). Compatibility of categorial grammar with an associated
category system. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik 28, 539–548.

Calcagno, M. (1995). A Sign-Based Extension to the Lambek Calculus for
Discontinuous Constituency. Bulletin of the IGPL 3 (4), 555–578.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Chomsky, N. (1981). Lectures on Government and Binding: The Pisa Lectures.
Dordrecht: Foris Publications.

Culy, C. (1985). The Complexity of the Vocabulary of Bambara. Linguistics
and Philosophy 8, 345—351. Reprinted in Walter J. Savitch, Emmon Bach,
William Marsh and Gila Safran-Naveh, editors, 1987, The Formal Complexity
of Natural Language, D. Reidel, Dordrecht, 349–357.

Curien, P. and H. Herbelin (2000). Duality of computation. In Proceedings of
the Fith AGM SIGPLAN, Montreal.

De Groote, P. (2001). Towards abstract categorial grammars. In ACL, pp.
148–155.

Fadda, M. and G. Morrill (2005). The Lambek Calculus with Brackets. In
C. Casadio, P. Scott, and R. Seely (Eds.), Language and Grammar: Studies in
Mathematical Linguistics and Natural Language, Number 168 in CSLI Lecture
Notes, pp. 113–128. Stanford: CSLI Publications.

Gazdar, G., E. Klein, G. Pullum, and I. Sag (1985). Generalized Phrase Struc-
ture Grammar. Oxford: Basil Blackwell.

Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50, 1–102.

Girard, J.-Y. (2006). Le Point Aveugle I, Volume 1. Paris: Hermann éditeurs.

Hendriks, P. (1995). Comparatives and Categorial Grammar. Ph. D. thesis,
Rijksuniversiteit Groningen, Groningen.

Hepple, M. (1990). The Grammar and Processing of Order and Dependency.
Ph. D. thesis, University of Edinburgh.

Herbelin, H. (2005). Au coeur de la dualité. Ph. D. thesis, Université Paris 11.

Huybregts, M. (1976). Overlapping dependencies in Dutch. Utrecht Working
Papers in Linguistics 1, 24–65.

Huybregts, R. (1985). The weak inadequacy of Context-Free Phrase Structure
Grammars. In G. J. de Haan, M. Trommelen, and W. Zonneveld (Eds.), Van
Periferie naar Kern, pp. 81–99. Dordrecht: Foris Publications.

BIBLIOGRAPHY 233

Jacobson, P. (1999). Towards a variable-free semantics. Linguistics and Philos-
ophy 22 (2), 117–184.

Jäger, G. (2005). Anaphora and Type Logical Grammar, Volume 24 of Trends
in Logic – Studia Logica Library. Dordrecht: Springer.

K Vijay-Shanker, D J Weir, A. K. J. (1986). Tree adjoining and head wrap-
ping. In G. Bosch and Lang (Eds.), Logic, Language, and Computation: 7th
International Tbilisi Symposium, Revised Selected Papers, Number 5422 in
Springer Lecture Notes in Artificial Intelligence, Berlin, pp. 272–286. Springer.

Lalement, R. (1990). Logique, réduction, résolution. Masson. Études et
recherches en informatique.

Lambek, J. (1958). The mathematics of sentence structure. American Mathe-
matical Monthly 65, 154–170. Reprinted in Buszkowski, W., W. Marciszewski,
and J. van Benthem, editors, 1988, Categorial Grammar, Linguistic & Lit-
erary Studies in Eastern Europe volume 25, John Benjamins, Amsterdam,
153–172.

Lambek, J. (1961). On the calculus of syntactic types. In R. Jakobson (Ed.),
Structure of Language and its Mathematical Aspects, Proceedings of the Sym-
posia in Applied Mathematics XII, pp. 166–178. Providence, Rhode Island:
American Mathematical Society.

Lambek, J. (1988). Categorial and Categorical Grammars. In R. T. Oehrle,
E. Bach, and D. Wheeler (Eds.), Categorial Grammars and Natural Language
Structures, Volume 32 of Studies in Linguistics and Philosophy, pp. 297–317.
Dordrecht: D. Reidel.

Lecomte, A. (2005). Categorial grammar for minimalism. In C. Casadio,
P. Scott, and R. Seely (Eds.), Language and Grammar: Studies in Mathemat-
ical Linguistics and Natural Language, Number 168 in CSLI Lecture Notes,
pp. 163–188. Stanford: CSLI Publications.

Lecomte, A. (2011). Meaning, Logic and Ludics. London: Imperial College
Press.

Montague, R. (1970). Universal grammar. Theoria 36, 373–398. Reprinted in
R.H. Thomason, editor, 1974, Formal Philosophy: Selected Papers of Richard
Montague, Yale University Press, New Haven, 222–246.

Montague, R. (1973). The Proper Treatment of Quantification in Ordinary
English. In J. Hintikka, J. Moravcsik, and P. Suppes (Eds.), Approaches to
Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar
and Semantics, pp. 189–224. Dordrecht: D. Reidel. Reprinted in R.H. Thoma-
son, editor, 1974, Formal Philosophy: Selected Papers of Richard Montague,
Yale University Press, New Haven, 247–270.

Moortgat, M. (1988). Categorial Investigations: Logical and Linguistic Aspects
of the Lambek Calculus. Foris, Dordrecht. PhD thesis, Universiteit van Ams-
terdam.

234 BIBLIOGRAPHY

Moortgat, M. (1991). Generalized Quantification and Discontinuous Type Con-
structors. Manuscript, Universiteit Utrecht . Published in H. Bunt, editor,
Discontinuous Constituency, De Gruyter, Berlin, 1996.

Moortgat, M. (1995). Multimodal linguistic inference. Journal of Logic, Lan-
guage and Information 5, 349–385. Also in Bulletin of the IGPL, 3(2,3):371–
401, 1995.

Moortgat, M. (1996). In situ binding: a modal analysis. In P. Dekker and
M. Stokhof (Eds.), Proceedings of the 10th Amsterdam Colloquium, Amster-
dam, pp. 235–240. ILLC, Universiteit van Amsterdam.

Moortgat, M. (1997). Categorial Type Logics. In J. van Benthem and A. ter
Meulen (Eds.), Handbook of Logic and Language, pp. 93–177. Amsterdam and
Cambridge, Massachusetts: Elsevier Science B.V. and The MIT Press.

Moortgat, M. (2009). Symmetric categorial grammar. Journal of Philosophical
Logic 38, 681–710.

Morrill, G. (1990). Intensionality and Boundedness. Linguistics and Philoso-
phy 13 (6), 699–726.

Morrill, G. (1995). Discontinuity in Categorial Grammar. Linguistics and Phi-
losophy 18 (2), 175–219.

Morrill, G. (1997). Proof Syntax of Discontinuity. In P. Dekker, M. Stokhof,
and Y. Venema (Eds.), Proceedings of the 11th Amsterdam Colloquium, Uni-
versiteit van Amsterdam, pp. 235–240. Institute for Logic, Language and
Computation, ILLC.

Morrill, G. (2000a). Dutch Word Order and Binding. Report de Recerca LSI-
00-59-R, Departament de Llenguatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya.

Morrill, G. (2000b). Incremental Processing and Acceptability. Computational
Linguistics 26 (3), 319–338.

Morrill, G. (2002). Towards Generalised Discontinuity. In G. Jäger, P. Monach-
esi, G. Penn, and S. Wintner (Eds.), Proceedings of the 7th Conference on
Formal Grammar, Trento, pp. 103–111. ESSLLI.

Morrill, G. (2011a). Logic Programming of the Displacement Calculus. In
S. Pogodalla and J.-P. Prost (Eds.), Logical Aspects of Computational Lin-
guistics, Number 6736 in Lecture Notes in Artificial Intelligence, Berlin, pp.
175–189. Springer.

Morrill, G., M. Fadda, and O. Valent́ın (2007). Nondeterministic Discontinuous
Lambek Calculus. In J. Geertzen, E. Thijsse, H. Bunt, and A. Schiffrin
(Eds.), Proceedings of the Seventh International Workshop on Computational
Semantics, IWCS-7, pp. 129–141. Tilburg University.

Morrill, G. and A. Gavarró (1992). Catalan Clitics. In A. Lecomte (Ed.),
Word Order in Categorial Grammar / L’Ordre des mots dans les grammaires
catégorielles, pp. 211–232. Clermont-Ferrand: Édicions Adosa.

BIBLIOGRAPHY 235

Morrill, G. and J.-M. Merenciano (1996). Generalising discontinuity. traitement
automatique des langues 37 (2), 119–143.

Morrill, G. and M. T. Solias (1993). Tuples, Discontinuity and Gapping in Cat-
egorial Grammar. In Proceedings of the European Chapter of the Association
for Computational Linguistics, EACL93, Utrecht, pp. 287–297.

Morrill, G. and O. Valent́ın (2010a). Displacement Calculus. Linguistic Analy-
sis 36 (1-4), 167–192.

Morrill, G. and O. Valent́ın (2010b). Generalized discontinuity. In Proceedings
of formal grammar 2010, Copenhagen. To appear.

Morrill, G. and O. Valent́ın (2010c). On Anaphora and the Binding Principles
in Categorial Grammar. In A. Dawar and R. de Queiroz (Eds.), Proceedings
of the 17th International Workshop on Logic, Language, Information and
Computation, WoLLIC 2010, Braśılia, Number LNAI 6188 in Lecture Notes
in Artificial Intelligence, Berlin, pp. 176–190. Springer.

Morrill, G. and O. Valent́ın (2010d). On calculus of displacement. In Proceedings
of TAG+Related Formalisms 2010, Yale.

Morrill, G. and O. Valent́ın (2011). Displacement Logic for Anaphora. Journal
of Computer and System Sciences. To appear.

Morrill, G., O. Valent́ın, and M. Fadda (2009). Dutch grammar and processing:
A case study in tlg. In G. Bosch and Lang (Eds.), Logic, Language, and
Computation: 7th International Tbilisi Symposium, Revised Selected Papers,
Number 5422 in Springer Lecture Notes in Artificial Intelligence, Berlin, pp.
272–286. Springer.

Morrill, G., O. Valent́ın, and M. Fadda (2011). The Displacement Calculus.
Journal of Logic, Language and Information 20 (1), 1–48. Doi 10.1007/s10849-
010-9129-2.

Morrill, G. V. (1994). Type Logical Grammar: Categorial Logic of Signs. Dor-
drecht: Kluwer Academic Press.

Morrill, G. V. (2011b). Categorial Grammar: Logical Syntax, Semantics, and
Processing. Oxford: Oxford University Press.

Pentus, M. (1992). Lambek grammars are context-free. Technical report, Dept.
Math. Logic, Steklov Math. Institute, Moskow. Also published as ILLC Re-
port, University of Amsterdam, 1993, and in Proceedings Eighth Annual IEEE
Symposium on Logic in Computer Science, Montreal, 1993.

Pentus, M. (1993). Lambek calculus is L-complete. ILLC Report, University
of Amsterdam. Shortened version published as Language completeness of the
Lambek calculus, Proceedings of the Ninth Annual IEEE Symposium on Logic
in Computer Science, Paris, pages 487–496, 1994.

Pollard, C. (1984). Generalized Phrase Structure Grammars, Head Grammars
and Natural Language. Ph. D. thesis, Stanford University.

236 BIBLIOGRAPHY

Pollard, C. (2007). Convergent grammars. Technical report, Ohio State Uni-
versity.

Shieber, S. (1985). Evidence Against the Context-Freeness of Natural Language.
Linguistics and Philosophy 8, 333–343. Reprinted in Walter J. Savitch, Em-
mon Bach, William Marsh and Gila Safran-Naveh, editors, 1987, The Formal
Complexity of Natural Language, D. Reidel, Dordrecht, 320–334.

Solà, J., M. R. Lloret, J. Mascaró, and M. Pérez (1996). Gramàtica del català
contemporani. Barcelona: Empúries.

Solias Aŕıs, M. T. (1992). Gramáticas Categoriales, Coordinación Generalizada
y Elisión. Ph. D. thesis, Universidad Autónoma de Madrid. Revised version
published as Gramática categorial: Modelos y aplicaciones, Editorial Sintesis,
Madrid, 1996.

Steedman, M. (1985). Dependency and Coordination in the Grammar of Dutch
and English. Language 61, 523–568.

Steedman, M. (1990). Gapping as Constituent Coordination. Linguistics and
Philosophy 13 (2), 207–263.

Valent́ın, O. (2006). 1-Discontinuous Lambek Calculus: Type Logical Gram-
mar and discontinuity in natural language. DEA dissertation, Universitat
Autònoma de Barcelona. http://seneca.uab.es/ggt/tesis.htm.

van Benthem, J. (1983). The Semantics of Variety in Categorial Grammar.
Report 83–29 . Published in Buszkowski, W., W. Marciszewski, and J. van
Benthem, editors, 1988, Categorial Grammar, Linguistic & Literary Studies
in Eastern Europe Volume 25, John Benjamins, Amsterdam, 37–55.

van Benthem, J. (1991). Language in action: Categories Lambdas, and Dynamic
Logic, Volume 130 of Studies in Logic and the Foundations of Mathematics.
Amsterdam: North-Holland.

Versmissen, K. (1991). Discontinuous Type Constructors in Categorial Gram-
mar. MSc. dissertation, Universiteit Utrecht .

