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Summary

It is known that at nanoscale regime we must deal with the many-particle problem in order
to study electronic devices. In this scenario, the time-dependent many-particle Schrédinger
equation is only directly solvable for very few degrees of freedom. However, there are many
electrons (degrees of freedom) in any electron device. In this sense, many-particle quantum
electron formalisms (such as time-dependent Density Functional Theory, Green’s functions
techniques or Quantum Monte Carlo techniques) have been developed in the literature to
provide reasonable approximations to model many-particle electron transport. An alterna-
tive proposal has been developed by Dr. Oriols to decompose the N-particle Schrodinger
equation into a N-single particle Schrodinger equation using Bohmian trajectories. Based on
this proposal a general, versatile and time-dependent 3D electron transport simulator for na-
noelectronic devices, named BITLLES (Bohmian Interacting Transport for non-equiLibrium
eLEctronic Structures) is presented.

The novelty of the BITLLES simulator is based on two points. First, it presents a many-
particle quantum electron transport model taking into account explicitly the Coulomb and
exchange correlations among electrons using Bohmian trajectories. Second, it provides a
full information of the all current distribution moments (i.e. DC, AC fluctuations and even
higher moments).

We summarize the important contributions of this thesis to the development of BITLLES
simulator. Thus, we introduce explicitly the exchange correlations among electrons. In this
context, we show how exchange interaction is the final responsible for determining the total
current across the system. We also present a new approximation to study many-particle
systems with spin of different orientations. Some practical examples are studied taking into
account the exchange interaction. To the best of our knowledge, it is the first time that the
exchange interaction is introduced explicitly (imposing the exchange symmetry properties
directly into the many-particle wavefunction) in practical electron transport simulators.

We present the computation of the time-dependent total current in the high-frequency
regime where one has to compute time-dependent variations of the electric field (i.e. the
displacement current) to assure current conservation. We discuss the computation of the
total (conduction plus displacement) current using Bohmian trajectories and the Ramo-
Shockley-Pellegrini theorems. Different capabilities of BITLLES simulator such as AC and
fluctuations are presented for Resonant Tunneling Devices.

We have used the BITLLES simulator to test a new type of nanoelectronic device de-
signed to process signals at THz regime named Driven Tunneling Device. It is a three
terminal device where the drain-source conductance is controlled by a gate terminal that
can oscillate at THz frequencies. We also present practical examples on the functionality of
this device such as rectifier and frequency multiplier.

Finally, we have developed a numerical approximation to solve the Schrodinger equa-
tion using tight-binding model to improve the band structure description of the BITLLES
simulator.



i

Esta tesis esta dedicada a mis padres Mayte y Alfonso



il

Un camino de mil kilometros se hace dando un paso detrds de otro.
(Proverbio Japonés)



v

Acknowledgements

Mi primer agradecimiento es para Xavier Oriols por haberme dado la oportunidad de
comenzar en el mundo de la investigacion. Agradecer su paciencia y el aprendizaje recibido
durante estos anos de relaciéon académica.

También quiero dar las gracias a los companieros (presentes y pasados) del departamento
de Ingenieria electronica: Guillem, Fabio, Abdelilah, Emmanuela, Gerard, Fito, Hender,
Nuria, Ferran, Javi, Fran, Marta, Miguel, Gabriel, Jordi Selga y Eloy. A mis amigos del
CIN2: Joan, Irene, Carlos, Miriam y Lorena. También quiero agradecer a Laura, Jorge y
Amanda por todos esos momentos inolvidable vividos durante los viajes y congresos. Gracias
a todos por los ratos agradables que hemos pasado juntos.

Finalmente quiero dar las gracias a mi familia, a mis padres, a quienes debo mis primeras
motivaciones en el campo de la ciéncia, por su infinita paciencia y por todos estos anos de
apoyo incondicional, sin ellos nada de esto hubiera sido posible. Por tultimo un beso muy
fuerte a mi hermana Mayte y a mis sobrinas Gemma y Estela.

Alfonso Alarcén Pardo

Marzo del 2011



Contents

(1__Introductionl 1
2 An overview about simulation techniques| 5
2.1 Introduction| . . . . . . . . .. 5
2.2 From electronics to nanoelectronics . . . . . . . . . ... 5}
[2.3  An overview about electron transport formalisms for nanoelectronics devices |

[ simulators] . . . . . . e e e 6
[2.3.1 Boltzmann transport equation| . . . . . . . . . .. ... ... ... .. 7

2.3.2 Landauer-Buttiker formulism|l . . . . ... ... ... ... ... ... 8

[2.3.3  Wigner function model . . . . . .. ... 9

2.3.4  Non-equilibrium Green’s functions (NEGF)| . . ... ... ... ... 11

2.3.5  Density functional theory (DFT)] . . .. ... ... ... ....... 11

2.3.6 Time-Dependent Density Functional Theory (TDDFT) . . . . . . .. 13

[2.3.7  Monte-Carlo solution of many-particle Schrodinger equation| . . . . . 14
3_Bohmian mechanicsl 17
3.1 Introduction| . . . . . . . . .. 17
[3.2  Historical development of Bohmian mechanics| . . . . . . ... ... ... . 17
[3.3  Bohmian Mechanics for a single-particlel . . . . .. ... ... ... ... .. 19
[3.3.1  Single-particle continuity equation|. . . . . . . .. ..o 0oL 20

[3.3.2  Single-particle quantum Hamilton—Jacobi equation| . . . . . . . . .. 21

[3.3.3  The basic postulates for a single-particle system| . . . . . . . . . . .. 22

[3.4  Bohmian Mechanics for many-particle systems| . . . . . . ... ... ... .. 23
[3.4.1 The many-body problem| . . . . . . ... ... ... ... .. ..... 23

[3.4.2  Many-particle continuity equationl . . . . . . . . ... ... L. 24

[3.4.3 Many-particle quantum Hamilton Jacobi equation| . . . . . . . . . .. 25

[3.4.4  Spin and identical particles] . . . . . .. ... o000 26

13.4.5 Single-particle system for s = 1/2 particles| . . . . .. ... ... ... 26

[3.4.6  The basic Postulates for many-particle system| . . . . . .. ... ... 28

B.5 Bohmian measurement] . . . . . ... L 30
3.5.1  Differences between orthodor and Bohmian measurements . . . . . . 30

4 Exchange interaction among electrons| 35
4.1 Introduction| . . . . . . . . . 35
[4.2  Exchange interaction for spinless electrons| . . . . . . . .. ... ... .. .. 35




CONTENTS vi

[4.2.1  Density of states and exchange interaction| . . . . . . ... ... ... 36

[4.2.2  Bohmian velocities for spinless electrons| . . . . . . . ... ... ... 38

[4.3  Exchange interaction for electrons with difterent spin| . . . . . . . . . . . .. 40
[4.3.1 Bohmian velocities with arbitrary spin-orientation| . . . . . . . . . .. 40

[4.3.2  An approximation for the Bohmian velocities|. . . . . . . .. ... .. 41

6 The BITLLES simulator] 45
b1 introduction| . . . . . ... 45
(5.2  Solving many-particle systems with Bohmian trajectories . . . . . . . . . .. 45
5.3  Coulomb and exchange interactions| . . . . . . . . . . .. .. ... ... ... 46
[5.3.1  Coulomb interaction among electrons| . . . . . . . . . ... ... ... 46

[5.3.2  Explicit algorithm for Coulomb interaction| . . . . . . . . .. ... .. 49

[5.3.3  Exchange and Coulomb interaction among electrons| . . . . . . . . .. 50

(.4 Time-dependent electron current| . . . . . . . ... ... ... ... .. ... 52
[5.4.1  Preliminary discussion| . . . . . . . . . . ... .. ... ... ... .. 52

5.4.2  The practical computation of I, ,(¢)[. . . . . . . ... ... ... 54

5.4.3  The practical computation of DC, AC and transient currents| . . . . . o7

6 Numerical results| 61
6.1 Introductionl . . . . . . . . . . .. 61
(6.2 Resonant Tunneling Diode (RTD)|. . . . . . . ... ... .. ... .... 61
[6.3 RTD applications| . . . . . . . . . . ... 63
6.3.1 Coulomb interaction in DC scenariol . . . . . ... ... .. ... ... 63

[6.3.2  Coulomb interaction in high frequency scenarios) . . . . . . . . . . .. 65

[6.3.3  Current-current correlations . . . . .. ... ... 0oL 67

(6.4 Driven Tunneling Device (DTD)|. . . . . . . . ... ... . ... .... 70
6.5 DTD applications|. . . . . . . . . ... 74
[6.5.1  Frequency Rectifier| . . . . . . ... ... ... L. 74

[6.5.2  Frequency multiplier] . . . . ... ..o 75

[6.6 Exchange interaction in a nano-resistor| . . . . . . . ... ... ... ... .. 76
[6.6.1 Computation of I-V characteristic in a nano-resistor with exchange |

[ mteractionl . . . . . . . L L e e 76
[6.6.2 Computation ot the noise characteristic in a nano-resistor with ex- |

| change interaction| . . . . . . . ... ... Lo 79
[7__Conclusions| 85
[8  Bibliography| 87
[A Tight-binding modell 97
[A.1 Orthogonal orbitals| . . . . . . . ... ... ... ... .. ... ... ..., 97

[A.1.1 Development of tight-binding Hamiltonian without Coulomb interaction| 97
[A.1.2  Development of tight-binding Hamiltonian with Coulomb interaction| 99
[A.2 Non-Orthogonal orbitals| . . . . . . ... ... ... ... ... ... ..... 100




CONTENTS

[B  List of publications, congress and conferences
[B.1 Chaptersin books|. . . . . . . . ... ...
B2 Articled . . . . . . ..

vil



List of Figures

B

(a) The Bohmian measurement assumes that the quantum system and the measuring ap-

paratus are explicitly simulated. (b) The Orthodoxr measurement assumes that only the

quantum system 1s explicitly simulated, but the measuring apparatus is substituted by a

proper operator acting of the wavefunction of the system.|

[0.2

Schematic explanation of the ability of Bohmian mechanics to discuss unitary and non-

unitary evolution of a wavepacket incident upon a tunneling barrier.|

1

a) Schematic representation of three electron system. b) Variation of the mean value of the

kinetic energy (square solid line) and theoretical kinetic energy as a sum of the individuals

kinetics energies (up triangle solid line) as we decrease the distance d for a three electron

system. The quantity of kinetic energy increases as we decrease the valor of d.|. . . .

12

(a) Bohmian velocity for an independent electron. (b) Schematic representation of the

system for an electron where we indicate the central value of the Xy and wavevector K of

initial wavepacket.| . . .

13

(a) Bohmian velocities for 1-electron using different values of d for a system of 5 electrons

(3 spin-up and 2 spin-down). (b) In this scheme we indicate the central value of the Xy

and wavevector K of initial wavepacket.|

i}

(a) Bohmian velocities for 1-electron using different values of d for a system of 3 electrons

(spin-up). (b) In this scheme we indicate the central value of the Xy and wavevector K of

initial wavepacket. |

5

For a particular position (Xo = 150nm) of Bohmian velocity of Figs|4.3[and |4.4 We plot

the Bohmian velocity in function distance d among electrons for three different electron

scenarios: independent electron, exact computation and computational. Lines are a guide

to the eye.| . . .

5.1

Schematic representation of the current measurement in an electron device. Device simula-

tors compute the current on the surface, Sp, of the device active region, while the ammeter

measures it on the surface, S4. |. . . .

[0.2

Volume (): this is a schematic representation of the arbitrary 3D geometry considered in

this chapter as simulation box for the computation of quantum transport with local current

conservation.| . .

6.1

(a) Basic configuration for a typical RTD and (b) Related conduction and valence band

structure. | . . .

viii



LIST OF FIGURES

X

(0.2

Schematic representation of the I-V curve of a typical RT'D. The resonant energy inside the

quantum well acts like an energetic filter that lets the electrons from the source to arrive

at the drain. . .

(0.0

RTD Current-voltage characteristic. Results taking into account the Coulomb correlations

between the electrons of the leads and the electrons of device active region are presented in

solid circles. Open circles refer to the same results neglecting the lead-device active region

interaction. Open triangles refer to a wholly non-interacting scenario, 1.e. both Coulomb

interaction between the leads and the device active region and Coulomb interaction among

electrons within the device active region are neglected.| . . . .

(0.4

Dashed line: Potential energy profile for a double-barrier structure. Solid line: Bohmian

trajectory of an electron crossing the heterostructure. Dashed dotted line: Schematic rep-

| .o he s of (ho vol O Trection] . .

[0.5

Time-dependent total current computed on the six surfaces that form the volume (2 of Fig.

[5.2l The computation of the current within the first method (dashed lines) has spurious

effects that are not present when the second method (solid line) is used.|. . . .

6.6

Iirq,(t) an its Fourier transform in inset a and b respectively.|. . .

[0.7

Fano Factor evaluated using the current fluctuations directly available from BITLLES| . .

[0.8

RTD Band diagram deformation caused by particle tunneling in the well] . . .

(6.9

Current noise power spectrum referred to Poissonian shot noise at different biases.| . . . .

[0.10

Schematic representation to explain the control on the source-drain current from the voltage

applied in the gate terminal. a) From the voltage applied in the gate terminal the resonant

energy in the quantum well is aligned with the energies of the bottom of the conduction

band and the current increases. b) When voltage applied in the gate brokes the energetic

alignment and the current source-drain decreases.| . . .

[0.11

Transmission coeflicient in function of the oscillating signal applied in the gate terminal.

We have adiabatic limit for { ) 100 GHz and non-adiabatic limit (high frequency) for f) 50

I 772

6.12

Schematic representation of a frequency multiplier DTD composed of a double barrier

heterostructure inside the channel of a double-gate field effect transistor.|

[0.15

Red line: We present the DTD applied gate voltage that is the input signal. Black line:

We present the rectified signal that corresponds at the output signal of DTD. . . . .

[0.14

Red line: We present the DT'D applied gate voltage that is the input signal. Black line:

We present the multiplier signal that corresponds at the output signal of DTD.|

6.15

Nano-resistor designed with N doped source and drain AsGa regions, a device active

region of L, = 30nm, an effective mass m’ -, = 0.067mo with mg the electron free mass

and a fermi level of 0.15eV. The lateral dimensions are L, = L, = 9nm.| . .

[0.16

We present the I-V curves for the simulated system in four different situations: without

correlation (square black line), with exchange correlation (circle red line), with Coulomb

correlation (up triangle blue line) and Coulomb plus exchange correlations(down triangle

green line). In this figure, we consider the importance of exchange correlations in the

prediction of the I-V characteristic of a typical nano-resistor.| . . .




LIST OF FIGURES

[06.17  Square black line, red circle blue line, up triangle blue line and down triangle green line: we

plot the main number of electrons from drain to source for the different situations showed

in Fig. [6.16] Square black dotted line, circle red dotted line, up triangle blue dotted line and

down triangle green dotted line: we plot the main number of electrons from source to drain

for the different situations showed in Fig. [6.16 | . . . . . . . . . . . . . . ... ...

78

[0.13

Square black line,circle red line, up triangle blue line and down triangle green line: we plot

the main number of electrons injected from drain that have been bounced for the different

situations showed in Fig. [6.16] Square black dotted line, circle red dotted line, up triangle

blue dotted line and down triangle green dotted line: we plot the main number of electrons

injected from source that have been bounced for the different situations showed in Fig. [6.16]] 79

[0.19

Fano factor evaluated in a nano-resistor using the current fluctuations computed from dif-

ferent bias computed using BITLLES simulator.| . . . . . . . . . . . . .. ... ...

80

[0.20

We present the current power spectrum for V' = 0,06V . The noise has almost a Poissonian

value for all cases but still super-Poissonian. The fluctuation of the current power spectrum

[0.21

We present the current power spectrum for V' = 0, 10V. the noise is Poissonian for simula-

tions without correlations and with exchange correlation but is sub-Poissonian (0 < v < 1)

for simulations with Coulomb and Coulomb plus exchange correlations.| . . . . . . . . .

622

We present the current power spectrum for V' = 0,20V. From high bias, we realize that

the electrons are not have bounced so we do not have any perturbation of the spectrum for

ITHZ) . . o o o




Chapter 1

Introduction

Electronic devices have a great impact on our lives so much that it is imposible to imagine
our present society without them. For example, they are the essential elements of computers
that we use to work or of mobile phones that we use in our personal communication. In
the last 50 years the electronics industry has been characterized by a progressive decrease in
the dimensions of these electronic devices. This decrease in dimensions follows the so-called
Moore’s law which says that the number of transistors that can be implemented on a chip
doubles roughly every two years. This simple rule has dominated the electronics industry
since the second half of the twentieth century, the so-called microelectronics, Nowadays, the
dimensions of the new commercial electron devices will attain few nanometers, so that we
are now leaving the mentioned microelectronic era to enter into the new nanoelectronic era.
However, at this atomic scales, electrons devices can no longer be described by classical
mechanics and must be understood with quantum mechanics.

Theoretical approaches to treat electron transport constitute today a necessary tool to
guide the continuous progress of the electronic industry. Electron transport theory and
its application to electron device modeling has matured into a well-established field with
active research, intensive software development, and vast commercial applications. The most
successful technique to simulate electron devices has been the Monte Carlo technique based
on Boltzmann transport equation. The Monte Carlo solution of the semiclassical Boltzmann
transport equation has been extensively employed as a versatile, intuitive and realistic tool
for nanoelectronics. However, it does not permit to study nanoelectronics devices with
quantum effects (like tunneling or exchange interaction) and it must be replaced by others
techniques based on the solution of the Schrodinger equation.

In the quantum regime we must treat with the many-particle problem to solve the
time-dependent many-particle Schrodinger equation. However, it is well-known that the
many-particle Schrodinger equation can be solved for very few degrees of freedom (two,
three,...). Therefore, many-particle quantum electron techniques (such as time-dependent
Density Functional Theory, Green’s functions techniques or Quantum Monte Carlo tech-
niques) have been developed to provide reasonable approximations to treat with this prob-
lem.

Alternatively, Dr. Oriols Group is developing a general, versatile and time-dependent 3D
electron transport simulator for nanoelectronic devices, named BITLLES (Bohmian Inter-
acting Transport for non-equiLibrium eLEctronic Structures) based on Bohmian mechanics.
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Today, the Bohmian mechanics is starting to leave behind the original controversies that
have accompanied it during the last decades. Now, it is well accepted that Bohmian me-
chanics can reproduce all experimental results as Copenhagen formulism. Even, when the
Copenhagen mathematical machinery is used to compute observable results, the Bohmian
interpretation can offer better interpretational tools. In many textbooks, we can find de-
scriptions of electron dynamics as “an electron crosses a resonant tunneling barrier and
interacts with another electron inside the well”. However, an electron crossing a tunneling
region is not rigourously supported within orthodox quantum mechanics, but it is within the
Bohmian picture. In some systems, the Bohmian equations might provide better computa-
tional tools than the ones obtained from the orthodox formalism, resulting in a reduction of
the computational time and a better treatment of the number of degrees of freedom directly
simulated.

In particular the BITLLES simulator is based on a novel algorithm for solving the many-
particle Schrodinger equation with Bohmian mechanics. This algorithm is based on the
work of reference [I] developed by Dr. Oriols, my thesis supervisor. It can include explic-
itly the Coulomb and exchange correlations (at a level comparable to the time-dependent
Density Functional Theory) among electrons. The BITLLES simulator solves the many-
particle correlations introduced by the Coulomb interaction among electrons by solving the
time-dependent Poisson equation self-consistently with the time-dependent many-particle
Schrodinger equation. This procedure provides a self-consistent solution of the Poisson and
the many-particle Schrédinger equations beyond the mean field approximation [2-4].

The treatment of the Coulomb correlations has been investigated in detail by others
members of the Dr. Oriols’s group, [5]. However, the investigation of the exchange correlation
is one of the milestone of this thesis. Electrons are fermions (spin 1/2) and, therefore, suffer
from this exchange interaction. In a very simple picture, following Pauli exclusion principle,
on can say that electrons with identical spin repel each other when they try to occupy the
same regions of the phase-space. This interaction is not classical and we cannot find a term
in the potential energies of the many-particle Schrodinger equation that accounts for it.
This interaction is introduced in the shape of the wavefunction, through the requirement
of providing anti-symmetrical wavefunctions. We say that a many-particle wavefunction is
anti-symmetrical when the interchange of the degrees of freedom associated to two different
electrons (positions and spin) provides a global change of the sign of the wavefunction.

An another relevant point of this thesis is the computation of electrical characteristics
of nanoelectronics devices in a high-frequency regime such as AC and fluctuations. In these
scenarios one has to compute time-dependent variations of the electric field (i.e. the displace-
ment current) to assure that the total time-dependent current computed in a surface of the
device active region is equal to that measured by an ammeter, i.e. current conservation [34].
Therefore, the computation of the total (conduction plus displacement) current in BITLLES
simulator is made by means of an algorithm based on the Ramo-Shockley-Pellegrini theorems
[6HI0] to compute the total current from the knowledge of the Bohmian particle dynamics
in a 3D volume and the time-dependent variations of the electric field on the boundaries of
that volume.

After this introduction we briefly explain the outline of this thesis. We divide its contents
in the next chapters.

We begin the chapter 2 with a brief explanation on the birth of the electronics and its
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evolution towards nanoelectronics. Next, we introduce some revelent simulators of electronic
devices and we explain the theoretical approaches that support them. We can divide these
approaches into classical and quantum simulators. The first one are mainly solutions based
on the Boltzmann transport equation using Monte Carlo technique. The second, are based
on full quantum mechanics treatments, emphasizing the wave-like nature od electrons either
for single-particle formalisms, as Landauer-Biittiker formalism, or many-particle formalisms
such as Density Functional Theory, Time-Dependent Density Functional Theory, or Quantum
Monte Carlo techniques.

In chapter 3, we introduce the main concepts on Bohmian mechanics. First, we develop
a historical overview about Bohmian mechanics. Next, we present the theoretical basis that
describes Bohmian mechanics for both single and many-particle quantum systems, respec-
tively. At the end of each of both sections we summarize the main ideas and equations
in the form of few postulates. Finally, we explain the measurement process with Bohmian
mechanics.

In chapter 4, we explain the exchange interaction and its role in determining the total
current across the system. In this sense, we present how exchange interaction determines the
maximum number of electrons in the device active region. This limitation results from the
huge energy that is needed to put two electrons very close. We also present an approximation
to study many-particle system with spin of different orientations and an numerical example
to test the mentioned approximation.

In the chapter 5, we explain the main characteristics of our simulator named BITLLES
(Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures) developed by
Dr. Oriols group. We present the algorithm to solve the many-particle time-dependent
Schrodinger equation using Bohmian mechanics that explicitly includes the Coulomb and
exchange correlation. We also explain how the Poisson equation and its boundary condition
are implemented. Finally, we present the computation of the time-dependent current based
on the quantum version of the Ramo-Shockley-Pellegrini theorems.

The chapter 6 is devoted to present the numerical results. Here, we validate the func-
tionality of BITLLES simulator with some examples. The first example is a Resonant Tun-
neling Diode (RTD) device. We comment the main functionalities of this device and next we
present a serie of electrical applications (DC, AC and noise). The second, is a new type of
device patented by our group, which we have called Driven Tunneling Device (DTD). This
device is specially designed to model characteristic of high frequency such as AC or noise. A
serie of electrical applications such as frequency rectifier and frequency multiplier for DTD
devices are presented. Finally, we apply the concepts on exchange interaction introduced in
chapter 4 to study a nano-resistor using BITLLES simulator.

We end this work summarizing in chapter 7 the main contributions of this thesis in
the conclusions. And with an appendix where we present the application of tight-binding
techniques for BITLLES simulator.
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Chapter 2

An overview about simulation
techniques

2.1 Introduction

In order to introduce the reader into the topic of this thesis, in Sec. [2.2] we explain briefly
the birth of the electronics and its evolution towards nanoelectronics.

Next, in Sec. we present a set of approaches to model electron devices. We can
divide this approaches into classical and quantum. The first one are mainly solutions based
on the Boltzmann transport equation using Monte Carlo technique often incorporating de-
tailed descriptions of semiconductor properties such as band structures and scattering rates.
The second, are based on full quantum mechanics treatments, emphasizing the wave-like
nature either for single-particle scenarios, as Landauer-Bittiker formalism, or many-particle
formalism such as Density Functional Theory, time-dependent Density Functional Theory,
or quantum Monte Carlo techniques.

2.2 From electronics to nanoelectronics

Electronics as a scientific discipline was born around 1897, when Thomson showed that
cathode rays were composed by a negatively charged particle, named the electron} Later,
in 1904, Fleming discovered that placing an electrode (a metallic material with lots of un-
bounded electrons inside) close to the filament of an incandescent bulb, was enough to estab-
lished a net flow of electrons from the filament to the new electrode. This electronic device
was called a diode. De Forest improved Fleming’s original invention by creating the triode
with an additional third terminal, the grid. The flux of electrons from the filament to the
electrode was controlled by the voltage applied in the grid [II]. A particular voltage was
used to defined an On state with a net current through the triode and another voltage for
the Off state without current.

During half a century, spectacular electronic applications were developed with these vac-
uum valve tubes (diodes and triodes). However, the short life and high power consumption of

'In fact, the name electron was first used by the Greeks, elecktron, to refer to amber, which acquires the
property of attracting other objects when it is rubbed. This process is called frictional electrification [12]
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the vacuum tubes made the Bell laboratories to establish a research group focused on inves-
tigating the possibility of using semiconductor solid-state electron devices. In 1947, Bardeen,
Brattain and Shockley created the first solid-state transistor at Bell laboratories. Although
the functionality of the solid-state transistor was quite similar to that of the triode, the for-
mer was much smaller, faster, cheaper and more reliable. Thus, it became the fundamental
element of the electronic technology in the second half of the 20th century. In the 60’s, the
previous solid-state transistor was improved by using a Metal-Oxide-Semiconductor (MOS)
solid-state capacitor. A third terminal, the (metal) gate, separated from the (semiconduc-
tor) channel by an (oxide) dielectric, controlled the On and Off states of the transistor
by means of a simple electrostatic force between gate and channel electrons. Because the
importance of the electric field in defining the behavior of such MOS transistor, it was also
called Field-Effect-Transistor (FET )

In the near future, the development of electronics is expected to follow the Moore’s
lawf] The International Technology Roadmap for Semiconductors (ITRS) [13], points to the
improvement of the FET transistor as the best strategy to be followed. Nonetheless, the
scientific community is looking for completely different alternatives to the FET transistors
because of the mid-term scaling required by Moore’s law (4 nm channel length transistors pre-
dicted for 2022 [13]) will be technologically and economically unattainable with the present
FET technology. It is, however, still not clear which proposals will replace the present FET
transistors in the mid-term future. Some works suggest that a revolution (similar to the sub-
stitution of vacuum tubes by solid state transistor) is awaiting for the electronic industry.
Others affirm that such revolution will not take place, but we will see just an evolution of
present FET transistors into smaller structures.

In any case, what is unquestionable is that the dimensions of the new commercial electron
devices will attain few nanometers, so that we are now leaving the microelectronic era to enter
into the new nanoelectronic era. Electrons devices can no longer be described by classical
laws and must be understood with quantum laws. Therefore, theoretical approaches to
treat quantum electron transport constitute today a necessary tool to guide the continuous
breakthroughs of the electronic industry. We dedicated the next section to describe several
simulation techniques developed for electron devices.

2.3 An overview about electron transport formalisms
for nanoelectronics devices simulators

In the next subsections we summarize briefly the main theoretical tools developed to model
electron transport and we present a set of highlight simulators related with these formalisms.

2Tt was also named MOSFET by combining both previous acronyms.

3In 1958, with the invention of the integrated circuit, i.e. the chip, a race for chip miniaturization started
that lead to an empirical law known as Moore’s Law: ”The number of transistors that can be implemented
in a chip doubles approximately every 2 years”. The increase in the number of transistors in a chip, offers
more functions per chip with much lower cost per function, which gives as a result smaller electron devices,
higher performance and greater energy efficiency.



CHAPTER 2. AN OVERVIEW ABOUT SIMULATION TECHNIQUES 7

2.3.1 Boltzmann transport equation

In this formulism we consider that particles behave classically and that we can know the
position and the momentum of each particle as a function of time. The probability of finding

a carrier distribution with momentums centered at (pi, ..., pn,t) and with positions located
at (71,...,7y), and time ¢ is the many-particle distribution function:
f(Flw"7FN7517"'7ﬁN7t)dQ7 (21)

where df) is an infinitesimal element of the phase-space spanned by the coordinates and
momentum of all carrier.

However, the many-particle distribution function f(7y,...,7y,p1,...,Pn,t) is too diffi-
cult to be determined since it contains all possible correlations among particles (each particle
motion depends on the other particles). A simplified distribution function is the one-particle
distribution function:

f(f;ﬁt) X /HindFZd@f(FaﬁF% s 7FN7ﬁ27 s 7ﬁN7t)a (22)

where f(7,p,t)drdp is the average number of particles that at time ¢ is found in a phase
volume drdp, around the phase-space point (7, p) [5] [14].

The Boltzmann transport equation is precisely a semiclassical equation of motion for a
single-particle distribution function, also know as the Boltzmann distribution function:

of(7,pt D~ = of(7,p,t
ot m coll

" (2.3)

where F' is an external force, m is the electron mass and (%) is the so-called
coll

collision integral that includes, in principle, all scattering processes such as electron-electron
scattering, generation and recombination precesses, the interaction with phonon and impu-
rity [5), [15], etc.

2.3.1.1 Monte Carlo solution of the Boltzmann transport equation

The Monte Carld]|technique, applied to the solution of the Boltzmann equation, has been the
most successful tool chosen for the international scientific community to simulate electron
devices because it provides a strictly accurate solution of the Boltzmann equation through
an intuitive picture of the dynamics of electrons by using trajectories. The Monte Carlo
technique allows us to obtain the I-V characteristics of electron devices and other relevant
information such as the local velocity distribution or the local electric field. It is a very ver-
satile technique used as a simulated experiment to save costs and efforts in the development
prototypes.

Although the Boltzmann transport equation (and the Monte Carlo method) accounts for
far from equilibrium conditions, its fundamental limitation it is not able to directly include
quantum effects.

4This technique is based on using random numbers hence the name of Monte Carlo.
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2.3.1.2 MONACO simulator

The Monte Carlo code named MONACO is based on solve the semiclassical Boltzmann
transport equation self-consistently with 1D, 2D or 3D Poisson’s equation.

This software has been developed in the CMO (Composants pour la Microelectronique et
I’Optoelectronique) department at the Institut d’Electronique Fondamentale (IEF), Paris-
Sud University [16].

This simulator has been used to study electron transport in advanced semiconductor
devices but also for spin polarized transport in III-V heterostructures, and has been ex-
tended to carbon nanotubes transistors. Among the characteristics included in the code,
one can mentioned the full-band description by coupling with k.p calculation, the multisub-
band transport in FET by self-consistent coupling with the Schrédinger equation, and the
Monte Carlo solution of the Wigner quantum transport equation for RTDs, MOSFETSs and
CNTFETS.

2.3.1.3 DAMOCLES simulator

DAMOCLES are the acronym for Device Analysis using MOnte CarLo Et PoiSson solver
[17]. The code of DAMOCLES was developed in 1987 by M.V. Fischetti and S.E. Laux
to provide predictions for prototypes of the IBM company. This program combines a self-
consistent solution, via a Monte Carlo technique, to the Boltzmann transport equation and
the Poisson equation. Conditionally, the Schrédinger equation can also be coupled into the
self-consistent solution, which allows DAMOCLES to model quantization in inversion layers
and quantum wells. DAMOCLES uses the full band structure of the semiconductor with
consistently calculated scattering rates in pursuit of physical accuracy and rigor.

2.3.2 Landauer-Biittiker formulism
2.3.2.1 Landauer formulism

The Landauer approach probably constitutes the simplest quantum description of electron
transport. The description of the transport with this formalism is strictly based on the
quantum nature of the electrons and it supposes that the current through a conductor is
only expressed in terms of the quantum transmission probability of carriers injected from
the external contacts.

In Landauer approach, in order to model the I-V characteristics, we consider a one-
dimensional structure under an applied source-drain bias, V4, for various gate bias (that
determines the barrier height) conditions. For a finite temperature the Landauer formula
[18] is

2
Iy, = = / dE Z Tom(E) [f(E) = f(E + qVsa)] (24)
0 n,m=1
where ¢ is the electron charge, h is the Planck’s constant, f(E) and f(E + ¢Vi4) are
the Fermi-Dirac distributions of source and drain reservoir respectively, and 7, ,,(E) is the
transmission coefficient that depends on the detailed shape that define the potential. Also,
Tn.m(E) depends on the electron conduction channels that can be defined through the use of
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the indexes, n and m, that accounts for the electron energy confinement in the two lateral
dimensions.

Probably, most relevant and successful result of the Landauer theory is the conductance
formula [19, 20] which constitutes one of the most important achievements in quantum
electron transport theory. In particular, the two-terminal version is:

G* =1/V* =2¢*/hT. (2.5)

Equation (2.5 relates the macroscopic conductance G' with the microscopic total transmis-
sion coeflicient 7' (T is the sum of the T;, ,,, terms corresponding to different energies levels of
the system) of the electron device, and provides a conceptual framework of thinking about
conductance.

The original formulation of the Landauer approach is a single-particle model and it ne-
glects electron-electron interaction, i.e. it assumes that the systems behaves as a Fermi
liquid [21]. The popularity and the main virtues of the Landauer approach are due to its
simplicity, the relatively low computational requirements and its rather intuitive picture of
quantum electron transport. However, since continuous particles (scattering states) are as-
sumed throughout the system, transient simulations are difficult or impossible to implement
using the Landauer approach, i.e. it is a steady-state formalism.

2.3.2.2 Buttiker formulism

For predicting AC (also DC and fluctuation) properties of mesoscopic systems, important
contributions were made by Biittiker and co-workers within the scattering matrix formalism.
The main contribution of Biittiker was the development of the Landauer ideas within a second
quantization formulation that allows the creation or annihilation of electrons. This extension
does also take into account, somehow, the exchange interaction between electrons. They
do also applied different many-body approximations (a simple one potential per conductor
[22], a ThomasFermi screening potential [23], a Hartree-like approximation [24], a treatment
of the electronelectron interactions on the level of a HartreeFock approach [25] and also
a generalization of the scattering matrix to deal with Coulomb blockade [26]) to provide
self-consistent theories for the AC conductance of mesoscopic systems with overall charge
neutrality and total current conservation in the whole system plus reservoirs region.

2.3.3 Wigner function model

The quantum analogous of the classical many-particle distribution function of Eq. , is
the generalized Wigner pseudo-distribution, also called Wigner function. It was introduced
by Eugene Wigner in 1932 to study quantum corrections to classical statistical mechanics
[27]. The goal was to link the wave function that appears in the Schédinger equation to a
probability distribution in phase space.
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It was firstly introduced by Wigner as:
— — +oo
A GRS ) OCZ/ U (7 + Grs oo Py + v 1) -
j —0o0

. \If;k (Fl — 371, T yN’ de e2zk1yl 2 6)

Analogously to the deduction of the one-particle distribution function f (7, p,t) from the
classical many-particle distribution function f (7, ...,7n(t),p1, ..., Pn(t), 1), we can obtain a
reduced density matriz as follows:

N
") o Z/\Irj (P o P 8) W5 (7, 7, o, ) [ [ (2.7)
j i=2

The Wigner function, can be then calculated from the reduced density matrixz as:
fu (7 Ft) o / p(F+ 7,7 — §,1) e, (2.8)

—0o0

The kinetic equation for the Wigner function, reads very similar to the Boltzmann [28]:
afw <F: E? t) h]; - - 1
S UV (R ) ARV, (7 E = F) fu (7R 1) =
ot —i—me(r +27Th/ Jo 7

Ofw (T, k,t
:< <8t >>coll7 2

Vi, (F, E) - Zh(%ﬂ)?, / (V (7= §) — V (7 + 7)) exp (—zl%}j) d7. (2.10)

where the Wigner potential V,, is defined as:

The Wigner formalism has several virtues. It constitutes a time-dependent approach
to electrical transport accounting for far from equilibrium conditions in a rather natural
way. In the same way as the collision integral in the Boltzmann transport equation, the
Wigner’s one can account, in principle, for all the many-body interactions. Unfortunately,
obtaining analytical expressions for the collision integral is a very complicate job, and in
practice, interactions are included just at a two-particle level. In this sense, the Wigner
function constitutes in practice a mean-field approach to quantum electron transport without
explicitly considering exchange interaction. In addition, Wigner function model have some
difficulties to deal with time-dependent correlations, limiting thus their capabilities to predict
AC or noise properties of electron devices.
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2.3.4 Non-equilibrium Green’s functions (NEGF)

Non-equilibrium Green’s functions (NEGF), also referred as Keldysh formalism [29, 30],
constitutes perse a many-body technique which allows us, at least in principle, to solve
exactly the time-dependent Schrodinger equation for an interacting many-body system. The
NEGF, are used into non-lineal systems under non-equilibrium conditions. This is done by
solving equations of motion for specific time-dependent single-particle Green’s functions [15].
However, NEGF are deduced from perturbation theory’] so they can be strictly applied only
to those systems where many-body perturbation theory holdsﬂ [14].

A rigorous introduction of the basis of NEGF requires a basic knowledge on the second
quantization formalism [I4] [3T], so it becomes difficult to introduce them in a self-contained
way without introducing some concepts that would extend unnecessarily this rather informal
summary.

Despite the powerful and rigorous character of non-equilibrium Green’s functions, they
are in general accompanied by a rather nonintuitive and hard mathematical formulation.
Even more, although electron-electron interactions beyond the mean-field approximation can
be introduced throughout the self-energies, using them, except for simple model systems, it
is a huge computationally demanding task, and most of the time outright impossible.

2.3.4.1 NEMO simulator

The NEMO (NanoElectronic MOdeling tool) software, was designed initially by S. Datta,
R. Lake and G. Klimeck to study High speed electronics for RTD’s devices at the Texas
Instruments company, and subsequently evolved into a general-purpose nanoelectronic sim-
ulator used by Intel, Motorola, HP, Texas Instruments and many universities. The NEMO
software is divided into two alternatives simulators: NEMO-1D and NEMO-3D.

The primary objective of NEMO-1D [32] tool was the quantitative modeling of high per-
formance RTD’s. This simulation tool is based on the NEGF that includes proper treatment
of materials band structure.

On the other hand, NEMO-3D [33] calculates eigenstates in arbitrarily shaped semicon-
ductor structures in the typical column IV and III-V materials. Atoms are represented by
the empirical tight-binding model using s, sp3s* or sp3d5s* models with or without spin.

NEMO-3D is capable to compute the electronic structure within an empirical tight-
binding model for quantum dots (3-D confinement), nanowires (2-D confinement), quantum
wells (1-D) confinement, and bulk (no confinement) under limited crystal distortions.

2.3.5 Density functional theory (DFT)

The Density Functional Theory technique (DFT) was proposed by Dr. W. Kohn in 1964 [34]
(which received the Nobel Prize in Chemistry in 1998 ”for his development of the density-
functional theory”) to calculate equilibrium ground states (i.e. minimum energy).

SNEGF formalism follows steps similar to those of the kubo approach to determine the response of a
closed system to an external time-dependent perturbation. However, the major difference with the Kubo
approach is that it do not limits to weak perturbations.

6Examples of problems beyond standard many-body perturbation techniques are the Kondo effect [35] or
the Luttinger liquid [36].
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Starting from a N-electron Hamiltonian:
H (Pl ooy Pay Py oen D) = T+ W+ V, (2.11)

where 7" is the kinetic energy operator and W is the electron-electron interaction operator
and V is the potential energy operator. Defining the density operator n as the reduced
density operator of Eq. (2.7)) evaluated at 7 = 7

N
n(F):N/\‘P(F,Fz,---,FN,t)IQHdﬁ, (2.12)
i=2
and satisfying,

/n (7) di = N, (2.13)

then, the operator V, describing a local static potential (like the electron-ion potential), can
be written as:

7= /dﬂ/ () (7). (2.14)

The Hohemberg-Kohn theorem states that two external potentials, which differ by more
than a constant, cannot give the same ground-state density. This establishes a one-to-one
correspondence between the external potential and the ground-state density [37].

Inspired on the above theorem, Kohn and Sham deduced in 1965 their famous equations
[38]:

—2h—m€2 + Vi (F) + Ve (F) +V (f)} £(S (F) = 5k¢£(s (7‘*’) 7 (2_15)

corresponding to the solution of the time-independent Schrodinger equation of auxiliary
non-interacting electrons in the presence of the potential Vg (7) = Vi (7) + Vo (7) + V (7),
where:

n (1)

|7 — 7|

Vg (7) = 62/dﬁ (2.16)
is the Hartree potential, and V. () is the unknown exchange-correlation potential including
all the many-body correlation effects. We emphasize that exchange interaction is not directly
considered.

Solving the above equations yields the wavefunctions ¢£° (7), from which the ground-

state density is:
N

n () = 3 |65 (7). (2.17)
k=1
All properties of the ground-state system can be then extracted from Eqg. . Unfor-
tunately, since the exchange-correlation potential is unknown, some kind of educated guess
must be formulated.

Despite its undeniable success for qualitative DC predictions obtaining information about
the device frequency behavior is not possible. In summary, the main limitation of the
ground-state Density Functional Theory in order to describe electron transport, is precisely
its ground-state nature. In other words, such a theory assumes that the system under study
occupies a time-independent equilibrium state.
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2.3.5.1 SIESTA simulator

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) was born in
1996 to implement, in self consistent DF'T), the order-N techniques developed for tight-binding
in the early 1990s. SIESTA is both a method and its computer program implementation,
to perform electronic structure calculations and ab initio molecular dynamics simulations of
molecules and solids [39].

2.3.5.2 TRANSIESTA simulator

TRANSIESTA project [41] (which has generated the Danish spin-off company Atomistix)
was originally developed by Mads Brandbyge, José Luis Mozos, Pablo Ordejon, Jeremy Tay-
lor and Kurt Stokbro. TRANSIESTA is a procedure to solve the electronic structure of an
open system formed by a finite structure sandwiched between two semi-infinite metallic leads.
A finite bias can be applied between both leads, to drive a finite current. Using TRANSI-
ESTA one can compute electronic transport properties, such as the zero bias conductance
and the I-V characteristic, of a nanoscale system in contact with two electrodes at different
electrochemical potentials. The method is based on using NEGF, that are constructed using
the Density Functional Theory Hamiltonian obtained from a given electron density. A new
density is computed using the NEGF formalism, which closes the DFT-NEGF self consistent
cycle.

2.3.5.3 Gaussian simulator

The Gaussian [42] is a computational chemistry software program initially released in 1970
by John Pople and his research group at Carnegie-Mellon University as Gaussian 70. It has
been continuously updated since then. The name originates from Pople’s use of Gaussian
orbitals to speed up calculations compared to those using Slater-type orbitals, a choice
made to improve performance on the limited computing capacities of then-current computer
hardware for Hartree-Fock calculations. The current version of the program is Gaussian 09.
The Gaussian simulator has a rigorous treatment of quantum correlations and it is designed
solely for physical-chemical studies, but they are far from the possible application to estimate
the time-dependent current in electronic devices.

2.3.6 Time-Dependent Density Functional Theory (TDDFT)

In 1984, Runge and Gross generalized DFT to its time-dependent version [43]. Time-
Dependent Density Functional Theory (TDDFT) includes time in the results of Sec.
in a very natural way, and more importantly, it is capable of describing non-equilibrium
scenarios. Including a time-dependence into the Kohn-Sham potential, i.e. Vg (7,t) =
Vi (7, t) + Voo (7, t) + V (7, 1), the time-dependent version of the Kohn-Sham equations be-
comes:

-
O GV (1)~ Vi (R1) — V (0)| 0 (70) =0 (2.18)
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And the charge density is then:

n(F ) =Y |or® (7.1). (2.19)

TDDF'T is in principle capable of accounting for both, far from equilibrium conditions and
many-body phenomena. There exist, too, a series of theorems based on some reformulations
of the TDDF TE] guaranteeing that, if we know the exact dynamical functional V. (7, t), all
many-body dynamical effects can be evaluated using effective single-particle equations. We
emphasize that the exchange interaction is not directly considered [14]. TDDFT [43] is an
excited state theory, enabling the rigorous analysis of out of equilibrium systems.

2.3.6.1 Octopus simulator

The Octopus simulator [44], developed by the group of A. Rubio belonging to the Nano-Bio
Spectroscopy Group of San Sebastidn, is designed for a future implementation of methods
to estimate the current in electronic systems, although their main activity is the study of
temporal dynamics of more basic physical-chemical phenomena.

Octopus is a pseudo-potential real-space package aimed at the simulation of the electron-
ion dynamics of 1D, 2D, and 3D finite systems subject to time-dependent electromagnetic
fields. The program is based on TDDFT in the Kohn-Sham scheme. All quantities are
expanded in a regular mesh in real space, and the simulations are performed in real time.
The program has been successfully used to calculate linear and non-linear absorption spectra,
harmonic spectra, laser induced fragmentation, etc. of a variety of systems. In Octopus,
nuclei are described classically as point particles. Electron-nucleus interaction is described
within the pseudo-potential approximation.

2.3.7 Monte-Carlo solution of many-particle Schrodinger equation

In Sec. we applied Monte Carlo techniques to classical many-particle systems, here,
we use this random techniques for studying quantum systems. Quantum Monte Carlo (QMC)
techniques is a large class of computer algorithms to simulate quantum systems with the idea
of solving the non-relativistic many-particle Schrodinger equation directly. It is an explicitly
many-body method which takes into account electron correlation.

Among the quantum Monte Carlo methods that we can find in the literature [45H47] we
emphasize the following:

Variational Monte Carlo: in this method we use Monte Carlo techniques to calculate
for the quantum mechanical expectation value of the ground state energy. Also, it is used in
order to optimize this expectation value by adjusting a trial wave function in a variational
type of approach.

Diffusion Monte Carlo: this method employ the similarity between the Schrédinger
equation and the diffusion equation in order to calculate the properties of a collection of
interacting mechanical particles by simulating a diffusion process of the particles involved.

"There exist two modifications of the TDDFT called Time-Dependent Current Density Functional Theory,
TDCDFT [48], and stochastic time-dependent current Density Functional Theory, STDCDFT [49].
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Path integral Monte Carlo Method: this method describes a path-integral formal-
ism of quantum mechanics which is a formulation elaborated by Feynman, based on ideas
put forward by Dirac in which a quantum mechanical problem is mapped onto a classical
mechanical system.

There are others quantum Monte Carlo methods, each of which uses the intrinsic ran-
domness of the Monte Carlo concepts in different ways to solve the many-body problem. We
can find an extensive description of these method in the references [45], [46].

2.3.7.1 CASINO simulator

CASINO is a code for performing quantum Monte Carlo (QMC) electronic structure calcula-
tions for finite and periodic systems. This code was written in the early 1990s in Cambridge
by Richard Needs and Guna Rajagopal, assisted by many helpful discussions with Matthew
Foulkes. This was later extended by Andrew Williamson up to 1995 and then by Paul Kent
and Mike Towler up to 1998. CASINO is based on variational Monte Carlo and diffusion
Monte Carlo techniques. It is applicable to finite systems such as atoms and molecules
and also to systems with periodic boundary conditions in 1, 2 or 3 dimensions (polymers,
slabs/surfaces, crystalline solids) with any crystal structure.
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Chapter 3

Bohmian mechanics

3.1 Introduction

This chapter provides a description of Bohmian mechanics. It is divided into three sections.
The first section is a historical overview about Bohmian mechanics. We develop the history
of quantum mechanics in order to explain the election of the Copenhagen interpretation
of quantum mechanics becomes the successful explanation of quantum phenomena in front
of others theories as Bohmian mechanics. In the next sections, Sec. and Sec. we
present the theoretical basis that describes Bohmian mechanics for both single and many-
particle quantum systems, respectively. At the end of each of both sections we summarize
the main ideas and equations in the form of few postulates. Finally, we explain the process
of measurement of the current in a nanoelectronic system. The measure is one of the points
of the quantum theory where the Bohmian mechanics has more advantages. The contents
of this chapter follows [4].

3.2 Historical development of Bohmian mechanics

In general, the history of quantum mechanics is explained in textbooks as a history where
each step follows naturally from the one preceding it. However, it was exactly the opposite.
The beginning of the twentieth century were a time where new routes to understand the
quantum phenomena were proposed. Most of the new routes, were nowhere and others
were simply abandoned. Some of the routes were successful in providing new mathematical
formalism capable of predicting quantum phenomena. In this section we explain the history
of one of this routes: Bohmian mechanics.

In 1900, Max Planck suggested [50] that black bodies emit electromagnetic radiation
in discrete energies hr, where v is the frequency of the emitted radiation and h is the
(now called) Plank constant. Five years later, Albert Einstein used this discovery in his
explanation of the photoelectric effect [51], suggesting that the energy transfer between light
and matter was done in terms of light quanta or photond| of energy hv. Even though this
theory solved the black body radiation problem, the fact that the absorption and the emission

n fact, the word photon was not coined until 1926, by Gilbert Lewis [52]. The word quantum referred as
the minimum unit of any physical entity (for example, the energy) involved in an interaction.

17
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of light by atoms is discontinuous was still in conflict with the classical description of the light-
matter interaction. In 1913, Niels Bohr [53-55] wrote a revolutionary paper on the hydrogen
atom where he solved the (erroneously predicted) instability by postulating that electrons can
only orbit around atoms in some particular non-radiating orbits. Thus, atom radiation occurs
when electrons jump from one orbit to another of lower energy. His imaginative postulates
were in full agreement with the experiments on spectral lines. Werner Heisenberg wrote his
first paper on quantum mechanics in 1925 [57] and two years later stated his uncertainty
principle [59]. It was him, with the help of Max Born and Pascual Jordan, who developed
the first version of quantum mechanics based on a matrix formulation [57, 58, [60, 61]. On
the other hand, in 1923, Louis de Broglie proposed in his PhD dissertation, that all particles
(as electrons) exhibit wave-like phenomena such as diffraction or interference [56].

In 1926, Erwin Schrédinger published An undulatory theory of the mechanics of atoms
and molecules [63] where, inspired by de Broglie’s work [56], [62] [64], he described particles
(such as electrons or protons) with a wave, solution of a (wave) equation, the Schrodinger
equation. In this equation, we find a potential energy, V (7, t), that represents the potential
felt by the electron, and also we find the wave(field) (7, ¢) that was called the wavefunc-
tion. Schrodinger, at first, interpreted his wavefunction as a description of electron charge
density q |¢(7, t)|2 with ¢ the electron charge. Later, Max Born refined the interpretation
of Schrodinger and defined [¢(7,t)|* as the probability density of finding the electron in
a particular position 7 at time t [65]. Schrodinger’s wave version of quantum mechanics
and Heisenberg’s matrix mechanics were apparently incompatible, but they were eventually
shown to be equivalent [65] [66] by Wolfgang Ernst Pauli and Carl Eckart, independently.

Physicist stored to develop successful theories for understanding quantum phenomena.
To explain the physics behind quantum systems, the concepts of wave and particle should
be merged in some way. Two different routes appeared:

1. Wave or particle?: The concept of trajectory was, consciously or unconsciously,
abandoned by most the young scientists (Heisenberg, Pauli, Dirac, Jordan, ...). The
main idea behind this route is that depending of the experimental situation one has
to choose between a wave or a particle behavior. Electrons are associated basically
to probability (amplitude) waves. The particle nature of the electron appears when
we measure the position of the electron. In Bohr’s words, an object cannot be both a
wave and a particle at the same time; it must be either one or the other, depending
upon the situation. This approach is the Copenhagen, or orthodoz interpretation of
quantum mechanics.

2. Wave and particle: Louis de Broglie, on the other hand, presented an explanation
of quantum phenomena were the wave and particle concepts merge at the atomic scale
by assuming that a pilot-wave solution of Schrodinger equation guides the electron
trajectory, as the electron is guided by the electromagnetic field. This is what we call
Bohmian mechanics. An object cannot be a wave and a particle at the same time, but
two can.

Perhaps the most relevant event for the historical development of the quantum theory
was the fifth Solvay Conference, that took place from 24 to 29 October 1927 in Brussels [67].
There, de Broglie, presented his recently developed pilot-wave theory and how it could
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account for quantum interference phenomena in electrons [67]. He did not receive an en-
thusiastic reaction from the illustrious audience gathered for the occasion. In the following
months, it seems that he had some difficulties on interpreting quantum measurement within
his theory, and decided to avoid it.

Let us mention that the elements of the pilot-wave theory (electrons guided by waves)
were already in place in de Broglie’s thesis in 1924 [56], before either matrix or wave mechan-
ics existed. In fact, Schrodinger used the de Broglie phases to develop its famous equation.
In addition, it is important to remark that de Broglie himself developed a single-particle
and a many-particle description of his pilot-waves visualizing also the non-locality of the
latter [67]. Perhaps, his remarkable contribution and influence on Bohmian mechanics has
not been fairly recognized by scientists and historians because he abandoned his own ideas
rapidly without defending them [67, [68].

David Bohm’s formulation of quantum mechanics appeared in 1952 after the orthodox
formalism was fully established. He was, perhaps, the first person to genuinely understand
the significance and fundamental implications of the description of quantum phenomena by
trajectories guided by waves.

The original papers by Bohm [69, [71] provide a formal justification of the guidance
equation developed 25 years before by de Broglie. David Bohm completed the work of
Louis de Broglie in two fundamental aspects. First, as explained before, he demonstrated
that Bohmian mechanics leads to exactly the same predictions as the ones obtained by
orthodoxr quantum mechanics. Second, he provided a theory of measurement. He developed
an explanation of the measurement problem without invoking the wavefunction collapse.

Nowadays, the theory developed by de Broglie and Bohm that we called Bohmian me-
chanics is quite marginal among scientific community. After the Solvay conference, Bohr,
Heisenberg and their colleagues spread the orthodox interpretation around the world and
convinced the vast majority of the physics community that both quantum mechanics and
their interpretation worked with extraordinary precision. A lot of young physicists were at-
tracted to European institutes to study with the fathers of this new theory, and during the
second quarter of the twentieth century, that as good disciples, they spread the Copenhagen
interpretation over the entire globe. Among others, the goal of this thesis is to show that
Bohmian mechanics is in fact, a very useful theory for computing quantum phenomena.

3.3 Bohmian Mechanics for a single-particle

In this section we show how to describe a quantum system associated to only one particle
(or one degree of freedom) in terms of trajectories. We will derive such trajectories from
two different procedures. First, as a direct consequence of the local conservation of particles
extracted from the Schrodinger equation and, second, directly following the work presented
by Bohm in his original paper [69)].
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3.3.1 Single-particle continuity equation

The single-particle Schrodinger equation in a 1D system subjected to a scalar time-dependent
potential energy, V(z,1), is:

dpe,t) B Pulat)
ot 2m  Ox2

It is important to emphasize that in the orthodozr interpretation of ¢ (z,t), equation Eq.
does not describe a single-experiment, but an ensemble of identical (single-particle)
experiments. The orthodor meaning of the square modulus of the wavefunction [¢(x,t)[* is
the probability density of finding a particle at the position z at time ¢ when a measurement
is done.

It is interesting to look for a local continuity equation inside Eq. . In order to find
it, let us work with v (x,t) and its complex conjugate ¥*(x,t). In particular, we can rewrite

Eq. as:

ih

V(@ )z, b). (3.1)

0 h* 02
o i 0D e g DO eV i), (32)
a * h2 82 *
—w(x,t)ih%x’t) = —w(x,t)%% + (x, )V (z, )" (x, ). (3.3)

From the rest of Eq. (3.2) and Eq. (3.3]), we see:

8|¢(gt,t)| :i%(% (¢*(x=f>a¢éi’t)_Q/’(I’t)%)' (3.4)

We can easily identify Eq. (3.4) as the local conservation of particles when p(z,t) = |[¢(x,t)|?
and we define the current density, J(x,t), as:
oY*(z,t)

J(x,t) = 2% (w(x,t)T - w*(x,t)%) . (3.5)

Unlike most wave equations, the Schrodinger equation is compatible with a local conser-
vation of particles due to the fact that V' (z,t) is a real function. We have noticed above that
we can interpret p(x,t) = |¢(x,t)|* as a spatial distribution of an ensemble of trajectories.
Such ensemble of particles can be obtained by repeating a single-particle experiment and
measuring, at each time ¢, the number of particles at each position . The presence of the
local conservation of particles is very relevant because, then, we can justify our starting point
for looking for an ensemble of continuous trajectories describing p(z,t) = |¢(z,t)]2.

Now, if we want to find the quantum trajectories supported by the local conservation law
Eq. , we just have to search for a definition of the particle velocity. From the knowledge
that |1 (z,t)|* is the distribution of the ensemble of particles in the configuration space,
we can easily conclude that the particle velocity compatible with the local conservation of
particles is:

J (1)
v(z,t) = ———, (3.6)
Y (z, 1)
when J(x,t) is defined from Eq. (3.5). Due to the continuity equation, an ensemble of
well-defined trajectories whose initial positions are all selected according to the distribution

| (x4, t,)|* will reproduce |i(x,t)[* at all times.
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3.3.2 Single-particle quantum Hamilton—Jacobi equation

Alternatively, we can look for a definition of particle velocity (i.e. trajectory) from a quantum
Hamilton-Jacobi equation. This is exactly the path followed by Bohm in his original paper.
We write the quantum (complex) wavefunction, ¢ (x,t) = v, (x,t)+itp;(x,t), in a polar form:

RQ(QS,t) :@/13(93715)4'103(%0» (37)
S(x,t) = harctan (gjﬂii’ 2) : (3.8)

In principle, S(z,t) is not well defined when ,.(z,t) = 1;(x,t) = 0. At those points,
R(z,t) = 0, meaning that no electrons will reach themf|

The quantum Hamilton-Jacobi equation can be found by introducing into Eq.
U(x,t) = R(x,t)exp(iS(x,t)/h). On the one hand, the imaginary part of the resulting
equation gives the local conservation law:

OR*(z,t) O < 195(x,1)

o 52 R%:,t)) =0. (3.9)
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On the other hand, the real part gives a quantum Hamilton-Jacobi equation:

0S(z,t) 1 (85(x, )

T el (e

ot 2m ) +V(z,1) + Q(z,1) = 0. (3.10)

An additional term appears in the quantum Hamilton-Jacobi equation, the so-called
quantum potential, this is defined as:

W2 R(x,t)/0a

Qz,t) = 2m  R(z,t)

(3.11)

In conclusion, we obtain an interpretation of the wavefunction solution of the Schrodinger
equation as an ensemble of quantum trajectories, with different initial positions and veloci-
ties. The velocity of each trajectory x[t] is defined as:

off] = [iM} Y (3.12)

m Oz

Interestingly, it can be easily shown that this new expression of quantum velocity is
identical to that mentioned in expression Eq. ({3.6):
1 0S(x,t J(x,t
v(z,t) = — (z,1) = (z,1) ,
m O (. t)|?
where J(z,t) is defined by expression Eq. (3.5]).

(3.13)

2We assume that the wavefunction is single-valued so that R(z,t) is also single-valued. However, the
definition of S(x,t) has some practical difficulties. In principle, S(z,t) is a multi-valued function because
of the function arctan(z) itself is a multi-valued function. If we want to use Eq. and Eq. to
reconstruct the wavefunction, then, the multi-valued problem can be eliminated by imposing an (arbitrary)
additional restriction on the definition of S. [0l [72], [73]
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3.3.3 The basic postulates for a single-particle system

In this subsection we present the basic postulates of the Bohmian theory. They synthesize in
few sentences all the discussions done up to here. In general, the postulates of any physical
theory can be presented in different compatible ways. We follow here the standard presen-
tation of Bohmian mechanics that provides the smaller number of ingredients [70, [72], [74) [75].

FIRST POSTULATE: The dynamics of a single-particle in a quantum system is de-
fined by a trajectory x[t] that moves continuously under the gquidance of a wavefunction
Y(z,t). The wavefunction (x,t) is a solution of the Schridinger equation:

opat) B ()
o 2m  Ox2
The tragectory x[t] is obtained by time-integrating the particle velocity v[t] defined from ex-

pression Eq. (3.6):

ih + V(z, t)(z,t). (3.14)

J(z,t
vz, t) = ﬁ (3.15)
where J(x,t) is the current density defined as:
h oY*(x,t . oY(x,t
ﬂ%ﬂzg%(waﬂj%$l—¢@w%%%l)~ (3.16)

The initial position xz[t,] = x, and velocity v[t,] = v, have to be specified to completely de-
termine the trajectory x[t].

SECOND POSTULATE (quantum equilibrium hypothesis): The initial position and
velocity of a particular trajectory cannot be known with certainty. When the experiment is
repeated many times, the initial positions {x?} of an ensemble of trajectories {x’|t]}, associ-
ated to the same (x,t), have to be generated so that the number of particles of the ensemble
that lies between x and x + dz at the initial time t, is proportional to R*(x,t,) = |¢(x,t,)[>.
The initial velocity of each trajectory is determined by v, = J(22,t,) /|0 (22, t,)]?.

The condition on the initial position can be written mathematically as:

R¥(zt,) = lim_ % <i 5z — 29 [to])> fort —t, (3.17)

j=1

where j =1, ..., M is the number of different trajectories of the ensemble.

We want to discuss some points about these two postulates: First, these postulates
represent a minimalist explanation of the causal interpretation without mentioning neither
the Hamilton—Jacobi equation Eq. nor the quantum potential Eq. . Certainly,
we can formulate Bohmian mechanics without them, however, the quantum Hamilton—Jacobi
(and the quantum potential) allow us to improve our understanding of Bohmian mechanics
and provides clear arguments for discussing the similarities and differences between classical
and quantum theories.
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Second, according the second postulate and the continuity law, Eq. (3.4), an ensemble
of Bohmian trajectories will reproduce R(z,t)? = |1 (z,t)|? at any time:

R*(x,t) = lim L (i Sz — aﬂt])) for any t. (3.18)

M—>ooM

This is exactly the reason why it is claimed that Bohmian mechanics exactly reproduces the
position measurement of orthodox quantum mechanics.

Finally, since an ensemble of Bohmian trajectories reproduces ¢ (x,t) at any time, the
ensemble of trajectories will also reproduce the mean values of observables that can be written
in the position representation. Furthermore, no postulate about measuring is needed. For a
more detailed explanation about Bohmian measurement, please refer to Ref. [70, [72, [74, [75]

and Sec. 3.5

3.4 Bohmian Mechanics for many-particle systems

Most of our knowledge about the behavior of a quantum system has been understood from
a simple system composed of just one particle, the so-called single-particle system discussed
in the previous section. However, a single quantum particle system is some kind of rude
idealization of natural systems. A macroscopic object is composed of a very large number
of particles. This is true for an apple or even for an atom. The ultimate reason why we
compute single-particle, while the reality is many-particle, is just a practical limitation in
our computational capabilities. Hereafter, let us explain this point with detail.

3.4.1 The many-body problem

It is important to specify the meaning of the term many-particle in Bohmian mechanics,
as it can easily be misinterpreted. We need an infinite ensemble j = 1,..., M — oo of
trajectories to describe the statistics of a single-particle quantum system. However, this
ensemble of trajectories cannot be defined with the adjective many-particle that we discuss
here, since they all refer to different realizations of a quantum system with one degree of
freedom.

Here, we will discuss quantum systems with NV degrees of freedom, i.e. a N body quantum
systems. We will keep a particular variable x; for each degree of freedom ¢ =1,..., N. The
wavefunction, itself, is an explicit functions of all {xy,...,zy} variables. Now, a many-
particle Bohmian trajectory involves N interacting particles {z1[t],...,zn[t]}. Along this
section, in order to simplify our notation, we will use either Z[t] = {z1]t],...,zn][t]} or
¥ = {x1,...,xn}. The relevant point that allows us to use the adjective many-particle is
that the N particles interact among them, i.e., the potential energy that appears in the
many-particle Schrédinger equation depends on all particle positions {z1,...,zx}.

An ensemble average of the many-particle system will require j = 1,..., M — oo many-
particle Bohmian trajectories #/[t]. When needed, we will use the superscript j to refer to
the statistical index 7 = 1,..., M and the subscript ¢ to the N interacting particles, i.e.

Dt = {aflt],..., ox [t}



CHAPTER 3. BOHMIAN MECHANICS 24

For the non-relativistic systems discussed here, the dynamics of the many-particle quan-
tum system is obtained from the following Schrodinger equation:

. 8¢(I1,...,$N,t) - N hz 82
ih 5 = (;—%@—l—U(m,...,x]\;,t) W(xq, ..., xN,t). (3.19)

The solution t(z1,...,zyN,t) of this equation is the so-called many-particle wavefunction,
that is defined in a N-dimensional space (plus time) [

Due to the computational burden associated with this equation Eq. , it is unsolvable
most of the times. The computational problem is that we have to evaluate the wavefunction

Y(zy,...,xN,t) and the potential V(zq,...,zx,t) in the configuration space xq,xs, ..., TN
plus time. Let us put numbers to understand the problem. Let us count the number of
hard discs that we have to use to save the information contained in ¥ (xy,...,xy,t). We

consider, for example, a system with N = 10 particles in a 1D space 0 nm < z < 10 nm.
Let us assume that equation Eq. is solved with a finite-difference methodﬁ with a
spatial-step Az = 14 (a much larger Az would imply a bad accuracy in the solution of
Schrodinger equation). Therefore, the number of discrete (complex) points for each x; axis
is about 100. Then, the total number of points in the configuration space for the 10 particles
is 100 = 10%°. If we use 16 bits for each real variable, we will need 32 bits for saving the
complex value of the wavefunction in each grid point. Let us assume that each hard disk
is able to keep 1 Terabyte of information (1 Terabyte=8 x 1024* bits). Finally, the number
of hard disks needed for saving the information contained in ¢(xy, ..., zy,t) would be more
than 3 x 10® computers for 10 particles (more than 3 x 10?® computers for 20 particles).
Impossible with today computers.

In the scientific literature, there are many attempts to provide reasonable approximations
to the many-body quantum problem. The Density Functional Theory [37, B8] and quantum
Monte-Carlo are some of the most popular techniques among the scientific community for
dealing with the many-body problem. In the next chapter, in Sec. 5.2 we will discuss
how Bohmian trajectories can help us in solving the many-body problem. First, in the next
section, we present the basic developments of the many-particle Bohmian trajectories, from
the continuity equation and also from the quantum Hamilton-Jacobi equation.

3.4.2 Many-particle continuity equation

We start by considering (non-relativistic) spinless particles. Later in section Sec. we
will introduce spin. As we did for the single-particle version, we can look for a local continuity

3The variable N can be defined as the number of particles in a 1D space or it can be related to the
number of particles in a 3D space. For example, we can assume 7 = (z1,%2,23) as the 3D position for
first particle and 7 = (24,5, x6) for the second. In simple words, ¥ (z1, 22, x3,t) can be interpreted as 3
particles in a 1D space or just one particle in a 3D space. From a physical point of view, one particle in a
3D space is a single-particle system. However, from the computational point of view, it is equivalent to a 3
particle system in 1D. Here, we will use the notation & = x1,xo,...,xy to write compactly the degrees of
freedom (without specifying if the real space is 3D or 1D)

4we truncate the continuous variable x; into a discrete number of points that are called the grid.
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equation inside the Eq. (3.19). In particular, we found:

o e +Zz2m - ( 9@, ) 20D o 2URD) t)) —0. (3.20)
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We can easily identify Eq. (3.20) as the local conservation of particles discussed in the
previous section when we define the k-th component of the N-vector current density as:

To(Z 1) :i% (w(f, )awa;i ) _ iz, )azg(jkt)) (3.21)

Since the many-particle Schrodinger equation is also compatible with a local conservation of
particles, therefore, we can interpret |¢)(x1,...,zy,t)[* as a distribution of an ensemble of
N trajectories in configuration space. The velocity of the k-th trajectory is:

Jk(ZEl, e ,.%‘N,t)

|¢($17"'7:EN7t)|2’

In fact, the strategy followed here to develop Bohmian mechanics from non-relativistic
Schrodinger equation can be extended to any quantum theory where a continuity equations
holds: first, look for a continuity equation for the presence probability and, then, define a
velocity for the Bohmian trajectories as the current density divided by the previous presence
probability.

(a1, ..., aN,t) = (3.22)

3.4.3 Many-particle quantum Hamilton Jacobi equation

Alternatively, we can obtain Bohmian mechanics from a quantum Hamilton—Jacobi equation.
We start by introducing the polar form of the many-particle wavefunction ¢ (z1, ..., zy,t) =
R(xy,...,2N,t)eS@2v0/0 into the (non-relativistic) many-particle Schrédinger equation
Eq. . Then, after a quite simple manipulation, one obtains from the imaginary part:

OR*(xy,...,xN,1) Y9 /1 OS(z1,. .., N, t) o
— = .2
o + Z Fon (m o R*(zy, ,a:N,t)) 0, (3.23)

where we recognize a local conservation of particles and the velocity of the x; particle as:

L 0S(er,. . axt
U1, .., TN, ) = — (xl’ax N )
k

(3.24)

Equations Eq. (3.22)) and Eq. (3.24) are identical. The real part of the Schrodinger equation,
leads to a many-particle version of the quantum Hamilton—Jacobi equation:

85(1’1,...,$N,t) al 1 825($1,...,$N,t)
ot ‘f';% 8$i —f-V(ZL‘l,...,l’N,t)+Q(ZE1,...,IN,t):0.

(3.25)
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where the kinetic energy provides an additional justification of our definition of velocity. We
have defined the quantum potential:

N

Q(xl)"'ax]\fat):ZQk(‘rl7“'7xN7t)7 (326)

k=1
with:
h_282R(x1, TN, b)) 0T

t)=—
Qr(z1,... 2N, 1) 2m R(z,... 2N, )

(3.27)

3.4.4 Spin and identical particles

Up to here, we have only discussed particles without spin, i.e. spinless particles. However,
elementary particles have spin, which is an additional discrete degree of freedom of particles
(different from its position). In this subsection we will briefly explain the extension of
Bohmian mechanics to include spin.

In the orthodox interpretation of quantum mechanics, a non-relativistic particle with spin
s is described by means of a vector of wavefunctions with (2s + 1) components:

1 (T) ), Yo (7, 1), . .. Posiq (7, 1). (3.28)

In principle, the time evolution of each component is not a solution of the Schrodinger
equation, but of more involved wave equations such as the Pauli, Klein-Gordon or Dirac
equations [79-R1]. In this subsection, we will use the vector 7 to represent the 3D position
of each particle ¥ = (x1, 2, z3).

As mentioned before, the strategy to find Bohmian trajectories inside these new quantum
wave equation is the following: first, look for a continuity equation of the probability presence
in the modified equation. Second, from the current density of the continuity equation,

define the Bohmian velocity as indicated in expression d’;(tt) = (7, t) = i E::? The idea is
quite simple, but the mathematical development for the Pauli equation can be much more

complicated.

3.4.5 Single-particle system for s = 1/2 particles

For an electron with s = 1/2, the vector of wavefunctions has two components 2s + 1 = 2.
See practical examples of the particle trajectories for spin-1/2 eigenstate for the two slit
experiment in [82] and spin-1/2 particle trajectories for hydrogen eigenstates [81].
Fortunately, the fact that single and many-particle Schrodinger equations discussed along
this chapter do not take into account the spin of the particles does not invalidate them.
Because of the properties of the Pauli matrices, if the magnetic field can be neglected, then
the Pauli equation reduces to the familiar Schrodinger equation for a particle in a purely
electric potentia]ﬂ, except that it operates on a two component spinor. Hence Schrodinger
equation is actually satisfied by each component of the spinor W(7,t) = {¢o(7,t), 1 (7, t)}.

5The electric field depends on ﬁV(F, t) and &I(F, t)/0t. Thus, we are not assuming that ff(r", t) =0.
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In many practical situations, when the total Hamiltonian is separable into a part depend-
ing only on the positions plus a part only on the discrete spin degree of freedom, and the
initial state is ¥y (7,0) = ¥(7,0)ay(0) and 11 (7, 0) = (7, 0)a2(0). Then, in later times, one
can write the spinor evolution in a simpler form as:

B0 = (010 = oo (00 ) =veo- (1)) e

where the function (7, t) depends only on the coordinate of the particles and the function
X(t) is a vector function that depends only on the spins and time. We call the former the
coordinate or orbital wavefunction, and the latter spin wavefunction. Schrodinger equation
essentially determines the coordinate function ¢)(7,¢). The evolution of the spin wavefunction
evolves independently of ¥(7,¢). In any instance where we are not interested in the actual
spin of the particles, we can use Schrodinger equation and regard as the wavefunction the
coordinate function alone, ¥ (7, t), as we have done hitherto. On the contrary, if we are only
interested in spin, we can look for the time-evolution of \() alone.

3.4.5.1 Many-particle system for s = 1/2 particles

For a non-relativistic system of many-particles without magnetic field (when the orbital and
spin contributions of the Hamiltonian are separable) and the initial wavefunction can be writ-
ten as a product of the orbital part ¢ (7, 7, . .. 7x,0) multiplied by the vector wavefunction
of spin Y(0), then, we can write the many-particle wavefunction as:

U(ry, ... 7N, t) = @71, 72, ... TN, 1)X (1), (3.30)

where X(t) = {a1(t),a(t),...,aw(t)}. The subindex W refers to the number of possible
values of the measurement of the spin in one direction for the whole many-particle system.
You can determine W by looking on the possibilities that arise when combining the spin
projections of each individual particle, i.e. a1(t) = {t172 ... Tn (&)} Then we can write:

Tite ... T ()
X)(t) — TlTQ \LN (t) , (331)
bida ooy (2)

Let us emphasize that, even without magnetic field, when the initial many-particle wave-
function cannot be written as a product of the orbital and spin wavefunctions:

{1(71, .. 7N, 0), o (7, o PN, 0)y e 0w (71, - o, T, 0) ] (3.32)

6 Additionally, you can look also for the projection of the spin of the total system. Both, procedures are
connected by the Clebsch-Gordon coefficients [79)
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then, we have to look for a global non-factorizable wavefunction:

U1 (71, .., TN, t)

G, ety = | 20T 0)

Yw (T, T, t)
ita o (8) 0
S S 0 . . 0
:@ZJ1<7"1,...,7"N,t) —|—...+’¢W(7“1,...,7“N,t)
0 bido oo (1)
(3.33)
Again, each ¢;(7, ..., TN, t) is just a solution of the many-particle Schrodinger equation.

3.4.5.2 Bohmian mechanics for identical particles

In Bohmian mechanics for identical particles, one uses the same type of wavefunction as in
orthodor quantum mechanics. In addition, the same expression for the Bohmian velocity
Eq. is used for identical or non-identical particles. Therefore, we have to include the
symmetrization postulate of the wavefunction among the postulates of Bohmian mechanics.

It is a traditional claim in many textbooks on quantum mechanics that the identical
particles defined here (i.e. two electrons with an anti-symmetrical wavefunction) are indis-
tinguishable. If the particles had trajectories, it is suggested, then they would automatically
be distinguishable. From Bohmian mechanics with the symmetrization postulate we see that
the adjective indistinguishable is inappropriate because we can perfectly label one particle
as 71[t] and another as 75[t] and distinguish their trajectories perfectly.

In fact, the Bohmian trajectories actually enhance our understanding of the symmetriza-
tion postulate. Let us assume a two-electron system, with an anti-symmetrical orbital wave-
function (7, 7, t). We assume that an electron labeled as 1 with initial position 71[0] = a
evolves into ri[t] and 73[0] = b evolves into 73[t]. Then, it can be easily understood that
r710] = b evolves into [t] = 73[t] and 75[0] = a evolves into r4[t] = 7i[t]. We use primes to
notice that ri[t] and r [t] correspond to trajectories of the same degree of freedom 7 with
different initial positions (a or b). This condition follows from the symmetry of the velocity
Eq. (i.e. the symmetry of the current density and modulus) when positions of the two
electrons are interchanged. Then, the ensamble computed from 77[¢] and 73[t] are identical
to those computed from 7% [t] and r4[¢]. This is the exact requirement for identical particles.

3.4.6 The basic Postulates for many-particle system

The basic postulates of Bohmian mechanics for many-particle are exactly the same that we
have developed for single-particles, plus the new symmetrization postulate.
In order to simplify our presentation, we assume that the simpler many-particle wave-
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function, written as:

T2 .. T (2)

=, S S S 0
@(Tl,...,TN,t) :¢(T1,...,TN,t) . (334)

0

The generalization of the present postulates to include the more general wavefunctions Eq.
(13.33) or Eq. (3.30) follows straightforwardly from what we have done. However, it will
imply writing W-different wavefunctions in the postulates.

FIRST POSTULATE: The dynamics of a many-particle quantum system comprises
a wavefunction FEq. whose orbital part (7, Ty, ..., TNn,t) is defined everywhere in
the configuration space (x1,2a,...,xN) and in every time, plus a many-particle trajectory
Zt] = (x1[t], xo[t], . . ., xn(t]) that moves continuously under the guidance of the wavefunction.

The orbital part of the wavefunction (71,7, ..., Fn,t) is solution of the many-particle
Schrodinger equation:

ot 2m da?
k=1

N 2 a2
iha¢($1,...,xN,t) _ <Z h® 0 —I—V(Il,-uwvat)) ¢(x17,,.,$N,t)~

FEach component xi[t] of the many-particle trajectory T[t] = {x1[t], ..., xn[t]} is obtained
by time-integrating the particle velocity vg[t] defined from:

Jk(Il,...,ZL‘N,t)

t) =
/Uk(xla 7xN7 ) |¢($17...,x]\[,t)|27
where |Y(xy, ..., xn,)* = W(z1,..., 2N, )" (21, ..., 2N, 1) is the square modulus of the
wavefunction and J;(xy,...,xxn,t) is the mean value of the current density:
aw(xl7”7xN7t) a¢*<l'1,..,l’]\[,t)

(1, ..., zN,t) = (1, .., TN, t) — Z1,.., TN, 1).

o t) = STy a1 P L RRENR)
The initial positions T,[t,] = {T10,T20,---,TNo} and velocities U,[t,] = {v10, V20, -, UNo}

have to be specified in order to completely determine the many-particle trajectory.

SECOND POSTULATE (quantum equilibrium hypothesis): The initial positions
Tolto] = {T10, T20, - - -, TNo} and wvelocities Uy[t,] = {V10, V20, -, UNo} Of a particular many-
particle j-trajectory cannot be known with certainty. When the experiment is repeated many
times, the initial positions T[t,] = {),,..., 2%} of an ensemble of trajectories T/[t] =
{x1[t], .., xN[t]}, associated to the same (xq,...,xN,1t), have to be generated so that the
number of particles of the ensemble that lies between {x1,...,xn} and {x1 + dz1,..., x5 +
drn} at the initial time t, is proportional to R*(x1e,...,Tne) = [V(T10s .-, TNosto)|[?. The
initial velocity is determined by vi = J(T10, .-+, TNos to)/|U0(T10, - -, TNy o) |?
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The condition on the initial position can be written mathematically as:

M N
RQ(xl,...,xN,to):A}g}nw% (ZH(S@—%[%D) for t = t,. (3.35)

j=1 k=1

Notice the presence of two indices, the j = 1,..., M for the infinite ensemble and the
k=1,...,N for the N degrees of freedom.

THIRD POSTULATE (symmetrization postulate of quantum mechanics): If the vari-
ables 7, T; and 7,1, that refer to two identical particles (i.e. two particles of the same species,
such as two electrons) then the wavefunction Eq. (3.34) is either symmetric:

T Ty T T
S 0 L. 0
w<'7ri7'77'j7'7t) :¢(-7Tj>-,7"i,-,t) ) (336)
0 0
if the species is bosonic (every species with integer spin 0, 1, 2, . . . is bosonic), or
anti-symmetric:
Tt PR
S 0 L 0
Y(., Ty oy Ty oy 1) =—(., 7}, . T, 1) , (3.37)
0 0
if the species is fermionic (every species with half-odd spin 1/2 , 3/2 , . . is fermionic).

In Eq. and Eq. it is understood that all other degrees of freedom of the other
particles remain unch(mgecﬁ. Again, no postulate about measuring is needed, since in
Bohmian mechanics measurement is treated as a particular case of the interaction between
particles in next section.

3.5 Bohmian measurement

The Bohmian explanation of a quantum measurement is, perhaps, the most attractive (and
also ignored) feature of the Bohmian explanation of the quantum nature. In this section we
explain the measurement process from the point of view of Bohmian mechanics.

3.5.1 Differences between orthodoxr and Bohmian measurements

According to Bohmian postulates, the evolution of the wavefunction is uniquely determined
by the Schrodinger equation with the appropriate Hamiltonian. Surprisingly, this is not true
for the orthodox interpretation of the quantum theory.

"This simple spin vector wavefunction is clearly symmetrical, so that the orbital wavefunction has to be
either symmetrical or anti-symmetrical. For a general wavefunctions Eq. (3.33)) or Eq. (3.30), this postulate
implies much more complicated restrictions on the possible orbital and spin wavefunctions.
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Figure 3.1: (a) The Bohmian measurement assumes that the quantum system and the measuring apparatus
are explicitly simulated. (b) The Orthodoxr measurement assumes that only the quantum system is explicitly
simulated, but the measuring apparatus is substituted by a proper operator acting of the wavefunction of
the system.

In the measurement process, one usually separates the quantum system and the measuring
apparatus. See Fig. [3.1} The orthodozr theoretical prediction of some experimental property
of the quantum system is described through the use of a proper operator A that is related,
somehow, to the measuring apparatus, and whose eigenvalues give the possible outcomes of
the measurement. Thus, the time-evolution of the wavefunction of the quantum system is
governed by two (quite) different laws}

1. The first dynamical evolution is the Schrodinger equation. This dynamical law is
deterministic in the sense that the final wavefunction of the quantum system is perfectly
determined when we know the initial wavefunction and the Hamiltonian of the quantum
system.

2. The second dynamical law is called the collapse of the wavefunction. The collapse is a
process that occurs when the wavefunction interacts with a measuring apparatus. The
wavefunction before the measurement is substituted by one of the eigenstates of the
particular operator A related to the measuring apparatus. Contrarily to the dynamical
law given by the Schrodinger equation, the collapse law is not deterministic. The final
wavefunction is selected randomly from the list of the operator’s eigenstates.

The duality in the time-evolution of quantum systems in the orthodozr interpretation is
certainly a persistent controversial issue, the so-called measurement problem or collapse of
the wavefunction |84, [85].

8Here we describe the van Neumman measurement. Other types less invasive measurements are also
possible [83]
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In the Bohmian theory, the measurement process is treated just as any other quan-
tum process and the previous measurement difficulties of the orthodoz interpretation simply
disappear. There is no need to introduce operators 70}, 86] although is posible to define oper-
ators in Bohmian mechanics, see Sec. Here, the whole quantum system is described
by a particle plus a wavefunction (rather than a wavefunction alone). The wavefunction
and the trajectories are both, associated to the quantum system plus the measuring appa-
ratus. See Figure 3.1l The whole quantum system includes the pointer of the apparatus.
In fact, what we measure is not a property of the quantum system, but a position of the
pointer. Then, there is one dynamical law for the evolution of the wavefunction and another
dynamical law for the evolution of the trajectory:

1. The Schrodinger equation (with the appropriate Hamiltonian of the quantum system
plus the measuring apparatus) determines the time-evolution of the wavefunction, in-
dependently of the fact that a measurement process takes place or not.

2. The time-evolution of the particle is determined by the time-integration of the Bohmian
velocity, independently of the fact that a measurement process takes place or not.

The Bohmian and the orthodox explanations of a measurement produce the same pre-
dictions. This important fact is clearly manifested in the excellent work of Goldstein and
co-workers [87]. However, the mathematical implementation of the equations of motion in
each case are quite different. The orthodor quantum theory requires an operator to de-
scribe the effect of the measuring apparatus, but this operator is not needed in the Bohmian
explanation.

Therefore, a proper modeling of a Bohmian measurement just needs the explicit con-
sideration of the degrees of freedom of the pointer in the many-particle wavefunction and
many-particle Bohmian trajectories that define the whole system. The back-reaction of the
measurement process on the wavefunction is trivially considered. Certainly, a Hamiltonian
with or without the measuring apparatus will provide a different evolution of the quantum
system wavefunction.

3.5.1.1 The evaluation of sequential measurement with Bohmian trajectories

Here, we provide a didactic explanation on how Bohmian mechanics explains the unitary
and non-unitary evolution of a quantum system. The wavepackets in Fig. represent the
solution of the (unitary) Schrédinger equation for a wavepacket incident upon a tunneling
barrier, at three different times. The initial wavepacket (with norm equal to one) is divided
into a transmitted plus a reflected wavepackets. According to Copenhagen explanation, when
the system is measured at time ¢;, a non-unitary evolution appears in the wavefunction and,
randomly, the reflected wavepacket disappears. Only the transmitted wavepacket describes
the electron at time ¢;. Then, when the system is measured again at to, the electron is still
represented by the transmitted wavepacket. Alternatively, the same unitary and non-unitary
evolution can be explained with Bohmian mechanics. The initial position of the Bohmian
trajectory is selected randomly at the initial time. Then, at times ¢; and 5 the evolution of
the trajectory is only determined by the transmitted wavepacket. The reflected wavepacket
is an empty wave that has no effect on the evolution of the trajectory.
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Figure 3.2: Schematic explanation of the ability of Bohmian mechanics to discuss unitary and non-unitary
evolution of a wavepacket incident upon a tunneling barrier.

3.5.1.2 The evaluation of a mean value in terms of hermitian operators with
Bohmian trajectories

The operators, which are an indispensable tool in the orthodox formulation of quantum
mechanics to define the measurement process, become unnecessary in Bohmian formulation.
However, to be fair, the Bohmian measurement process explained in the previous subsection
has a quite limited practical utility. The inclusion of the measuring apparatus into the whole
Hamiltonian is not an easy task because it implies increasing enormously the number of
degrees of freedom that one has to simulate. In these circumstances, the use of an Hermitian
operator acting only on the wavefunction of the quantum system with the ability of providing
the outcomes of the measurement process without the explicit simulation of the measuring
apparatus is very welcomed. Let us emphasize that we are talking only about advantages
and desencantases at a computational level.

In simple words, operators are not needed in Bohmian mechanics, but they are a very
helpful mathematical trick in practical computational issues. This ideas are emphasized by
Goldstein, Diirr, Teufel and coworkers when they refer to the Naive realism about opera-

tors [70, [78], [87].

We can always write the hermitian operator A an the mean value <121> in the position
P

representation. Then, the mean value of this operator over the wavefunction v (z,t) is given
by:

<A>¢ - /_ Z o (o, 1) A (x —m%> b(w, t)da. (3.38)

Alternatively, the same mean value can be computed from Bohmian mechanics by defining
an spatial average of a local magnitude Ap(z) weighted by R?(z,t):

<A>w - / R, 1) Ap(2)da (3.39)

o0
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In order to obtain the same value with Eq. (3.38) and Eq. (3.39), we can easily identify the
local mean valud’] Ap(z) as:

(2, ) A (v, —ih L) ¢(,t)
Y (z, t)(x, 1) S(e)

P(zt)=R(z,t)e'

Ag(x) = Real [ (3.40)

For practical computations, we will compute the mean value using Eq. (3.39)) with an

large 7 = 1,..., M number of Bohmian trajectories with different initial positions. Finally,
we obtain:
<A> = lim_ M ZAB )t (3.41)

By construction, in the limit M — oo, the value of Eq. - ) is identical to the value of
Eq. . We have done a single-particle explanation its generalization to many-particle
systems is quite easy.

From last equations, we compute the mean value of the current density operator. First,
let us notice that probability density operator can be written as |x) (z| and its expected mean
value is (¢] ) (x| 1) = [¢(x,t)|” or, in the Bohmian language, (¥| ) (x| 1) = R*(z,t). The
(hermitian) current operator can be written as J = 1/(2m)(|z) (z|p + p|z) (z|). It can be
easily demonstrated that:

M
1
2
= = i t]). 42
(J)y = J(w,t) = v(x )Rz, t) = lim — 21} — z;[t]) (3.42)
]:

The average value of the current density depends on the position and it is equal to the average
Bohmian velocity multiplied by the square modulus of R(x,t). At a particular position z,
this current is just the sum of all particles that reside around this position x = z;[t] at time
t. More details about Bohmian measurement in [4].

9We take only the real part, Real(), of an expression because we know that mean value is real, but
Eq. (3.40) without Real() can take complex (real and imaginary) values. In any case, it is clear that the
integration of the imaginary part in Eq. (3.39) would give zero.



Chapter 4

Exchange interaction among electrons

4.1 Introduction

The exchange interaction is a pure quantum effect, without classical counterpart. The ex-
change interaction have the effect of imposing important restrictions on the type of many-
particle wavefunctions that are valid for describing a system of identical particles. Therefore
it has also some effect on determining the total current crossing an electron device. In Sec.
4.2 we present a preliminary discussion on how the exchange interaction determines the
maximum number of electrons in the device active region. This result arise from the huge
energy needed to put two electrons very close. Next, in Sec. we present a new ap-
proximation to study many-particle system with spin of different orientations. A numerical
example to test the mentioned approximation is presented.

4.2 Exchange interaction for spinless electrons

Electrons are fermions (spin 1/2) and, therefore, suffer from exchange interaction. In a very
simple picture, on can say that electrons with identical spin repel each other when they
try to occupy the same regions of the phase-space. This interaction is not classical and
we cannot find a term in the potential energies of the many-particle Schrodinger equation
that accounts for it. Alternatively, this new interaction is introduced in the shape of the
wavefunction, through the requirement of providing anti-symmetrical wavefunctions. See
the third postulate of the many-particle Bohmian formulation for identical particles, Eq.
. We say that a many-particle wavefunction is anti-symmetrical when the interchange
of the degrees of freedom associated to two different electrons (positions and spin) provides
a global change of the sign of the wavefunction.

First of all, let us discuss what we understand by spinless electrons. If we consider that
all electrons have the same spin, then, the interchange of spins is irrelevant and we know
for sure that the orbital wavefunction must be anti-symmetrical when we interchange the
positions of the electrons. The orbital wavefunction will be identical to the one constructed
by considering that electrons have no spin (i.e. spinless electrons). In summary, when we
talk about spinless electrons, we can understand that all electrons have identical spin.

35
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4.2.1 Density of states and exchange interaction
4.2.1.1 Preliminary discussions

As explained in the literature, the standard procedure to compute the density of states of
an electron device is assuming that its geometry is a rectangular box of size: AL,, AL,
and AL,. Then, we can use Born Von Karman boundary conditions for determining the
wavevectors in the three dimensions: k, = i—’;n:p, ky, = i—Zny and k, = i—tnz, where ng, n,
and n, are integers [14]. Then, in a 1D system, the number of allowed states, N (k), in the

phase-space ALAE is:

_ ALAE
o2
where the phase-space region ALAF is defined from:

N(k)

(4.1)

e a spatial region of length, AL = Ly — Ly, (i.e., the electron positions are restricted
to the values Ly < x < Lj). For the 1D system commented here this means that
AL =AL,.

e a wavevector region, Ak = ko — kq, (i.e., the wavevectors of the electrons are restricted
to the values k1 < k < ko). For example, we have k; = 27/L, for n, = 1. This means
that we need a phase-space of 2 = k1L, to put an electron there.

Alternatively the previous result can be understand from the exchange interaction with-
out invoking the Born Von Karman Boundary conditions. The exchange interaction have the
effect of imposing restrictions on the number of electrons in the device active region. This
theme is an important issue on the modeling of electron devices because of the maximum
number of electrons in the device active region is the responsible for determining the total
current across the system.

In reference [88], Dr. Oriols presents a many-particle wavepacket formalism to study
a system formed by two electrons where each electron is represented by a wavepacket. In
this formalism, it is demonstrated that the area a in the phase-space occupied by the first
wavepacket (and not allowed for the second wavepacket) is a = 27. This result, is an
universal value independent of any wavepacket parameter. It represents that each electron
forms around it a region in the phase-space equal to 27 forbidden for other electronﬂ

Then, when the entire phase-space is occupied (i.e., p = % = 27) we consider that we
arribe at a number maximum of electrons in this region. Therefore, one might think that no
more electrons can be injected into the device active region. But, what ultimately governs
the injection of electrons into the device active region is the amount of energy that we need
to inject a new electron into this region. Therefore, we need add more and more kinetic
energy into the system to inject a new electron overcoming the natural p = 27 density.

"'We mention that if p = 27 is the phase-space density, the computation of the conductance G = %p,
where ¢ is the electron charge and h is the reduced Plank constant, leads to the Landauer conductance,

2
G= 2,%, where the factor two is for the electron spin degeneracy.
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4.2.1.2 Exchange interaction and total energy

We can study the influence of the total energy with a numerical example. We consider a three-
electron system, all with spin up orientation, represented by the next Gaussian wavepackets:

1 . T — T, 2
(1) = 371 XP (tkorz1) exp —(12—21) ,
(Wagl Uan
1 , Ty — Toy)’
o(x2) = ——71 ¢XP (tkoaxo) exp —(22—22) , (4.2)
(’/TO'%Q) Oy
1 . T3 — To3)°
V3(w3) = T o N1ja XP (iko323) €XP —(32—203> )
(mo2, Tz
where 0, = a%l’ Opo = U—;, Op3 = U—ig, are the wavepacket spatial dispersions, x,1, T,

and x,3, are the central positions for each wavepacket, k,; = (2”;1#)1/ 2, koo = (2"%#)1/ 2

and k.3 = (2”%#)1/2, are the central wavevector values for each wavepacket and E,;, F,o
and F,3, are the kinetic energies of each of the three electrons. To simplify the notation we
have considered a system 1D in the x direction. No Coulomb interaction is present in this
simple system, then, the total energy is only due to the kinetic energy.

The wavefunction of this system is defined as a Slater determinant:

N!
U(z1, 29, 73) = C Z V1(@p(h)1 )02 (Tp()2 ) V3 (Tp(h)s) (8(D5)) (4.3)

where, the sum is over all N! permutations p; = {p(j)1,p(7)2,p(j)s} and s(p;) = £1 is
the sign of the permutations and C' is a constant of normalizationﬂ.

Then, we can compute the mean (average) value of the kinetic energy for the three-electron
system as follows:

. f_oooo ffooo f_oooo \Ij*(ZL‘l,ZE%J]g)T\IJ(ZEl,fEQ,l’g)dl?ldxgdxg

<T> oo oo o0 ) (4'4)
f—oo f—oo f—oo ’\11(1'1,252,.1'3)‘2611’1(1.’1726[333
where the operator kinetic energy is T = —%;—;. We do not specify z1,2, and x3

because (T1) = (Ty) = (T3) = (T). Now, we define the normalized phase-space distance
between the central positions of two wavepackets, as [8§]:

(lﬁ - ki)Q i (1301 - 'Toi)Q.

2 2
20}, 207

d(1,i)* = i=2,3. (4.5)

To measure the relevance of the kinetic energy we compute the mean value of the kinetic
energy as we decrease the distance d between one of the electrons, that we named electron 1,

2The constant of normalization C is irrelevant to the computation of Bohmian velocity and so from now
we will not account with it. In Sec. we treat the computational difficulties for the computation of the
Bohmian velocity in many particle scenarios because we do not know the wavefunction.
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and the other two electrons, 2 and 3 respectively. For simplicity, we study d(1,2) = d(1, 3)E|
In Fig. [A.1] we plot in the square black line the mean value of the kinetic energy of the three-
electron system as we decrease the value of the distance d among electrons. In principle the
total kinetic energy of a system of identical particles, as electrons, is the sum of the kinetic
energies of the individual components. For this reason, in order to make a comparison with
the previous plot, in the circle red line of Fig. we plot the theoretical kinetic energy as
a sum of the individuals kinetics energies of the three electrons that conforms the system.

In Fig. 4.1, we show that for large values of d the mean value of the kinetic energy of
the three-electron system is equal to the value of the sum of the kinetic energies from its
individuals components. In this context all of the electrons are place in a separate area of the
phase-space equal of 27. But, this is not true for small values of d. This difference between
the two values represents the amount of kinetic energy that we have to add into the system
in order to place inside the phase-space area of the independent electron 1 the others two
electrons.

10000 y——————T T T T T T T T T3

[ ] a) X

1000 \ T .
E 23 : 3
E | 3
100 :
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Figure 4.1: a) Schematic representation of three electron system. b) Variation of the mean value of the
kinetic energy (square solid line) and theoretical kinetic energy as a sum of the individuals kinetics energies
(up triangle solid line) as we decrease the distance d for a three electron system. The quantity of kinetic
energy increases as we decrease the valor of d.

In summary, the reason why we cannot put another electron in a region with a density
p = 21 is not because it is imposible, but because it requieres a lot of energy.

4.2.2 Bohmian velocities for spinless electrons

Here, we generalize the expression of Eq. (4.3]) for N particles and we comment a set of rules
to compute numerically this wavefunction and the Bohmian velocity. The many-particle

3This scheme is completely equivalent to inject a new electron when the phase-space is completely occupied
by other two electrons.
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antisymmetrical wavefunction for N spinless electrons is:

W, o, w5, on) = 3 L] w0 ) (7). (4.6)

j=1 i=1
For the practical computation of Bohmian velocity, we follow the next steps:

1. First, we represent the wavefunction, Eq. (4.6)), in a matrix where its terms are the
particular wavefunctions for each electron with their positions permuted:

Vi(@p(yy) 1)) - i(@pe)n)
Vo (Tp(5),)
wN(xP(j)l) S cee wN(mp(J')N>

2. the practical computation of the previous matrix is impossible. Thus, we can simplify
the matrix using the Gauss method. The result is a matrix with all of zero under the
mean diagonal. Then, V(z,xq,x3,...,2x) of Eq. (which is the determinant of
Eq. ) is equal to the product of the diagonal elements of such matrix.

3. Then, from Eq. (4.6) we can compute the Bohmian velocity:

Ji (xl, T2, T3..., -TN)

(4.8)

v; ($1,$2,1‘3--~axN) = ’\p ($1’x2,x3...,x]v) ’2’

where , J; (21, 2, Z3..., Ty ), is the mean value of the quantum current for a particular
electron 7 and |¥ (xy, x9, T3..., 7x) |? is the total norm of the many - particle wavefunc-
tion.

If instead of study N fermions we study a system of N bosons we also can compute the
wavefunction Eq. (4.6)) as:

N!' N
U(wy, 9,25, on) = Y [ [on(@a0)n)- (4.9)

j=1 i=1
Equation , have difficulties to be solved because of the N! factorial terms have to be
computed explicitly (because of the absence of sign in Eq. is not possible build a
determinant as in Eq. , and then, there is no Gauss method available). Finally, we
comment that expression Eq. , is the determinant of Eq. and expression Eq.

(4.9), is the permanent of Eq. (4.7)).



CHAPTER 4. EXCHANGE INTERACTION AMONG ELECTRONS 40

4.3 Exchange interaction for electrons with different
spin

In the previous section, we have neglected the electron spin to study many-particle systems
with spinless electrons. However, even if we are not interested in the evaluation of the
spinor, we cannot neglect the degrees of freedom of electron with arbitrary spins because the
exchange of particles must interexchange the particle coordinates and the spins. Thus, the
symmetry of the function of spins is very relevant to determine the exchange properties of
the orbital part.

4.3.1 Bohmian velocities with arbitrary spin-orientation

Following reference [89] we compute the Bohmian velocities associated to N-electron wave-
functions with arbitrarily spin orientations. To understand the complexity on computing the
antisymmetrize wavefunction taking into account the N!N! products of permutations with
spins with different directions, we present an example for three electrons, one with spin up
(1:) and the others two with spin down (J;). For simplicity, we assume that electrons have no
Coulomb interaction. We define the orbital wavefunctions of these electrons as the Gaussian
wavepackets of Eq. . Thus,the antisymmetric wavefunction of the total system is:

‘I’(Jil,ﬂ?z, T3 T17¢2,¢3) = +1P1($1)¢2($2)¢3($3)(T1¢2¢3) - ¢1($1)¢2(I3)¢3($2)(T1¢3¢2)
—1(@2) Yo (21)V3(23) (L2 T1ds) + 1 (23) 2 (21)¥3(22) (I3T1d2)(4.10)
+h1(z2)Pa(3)Ys(w1) (J2lsTr) — i (@3)a(w2) s (1) (I3d2T1)-

The previous equation has 3! terms composed of the product of an orbital function by
a spin function. Next, we compute the total norm taking into account the 3!3! products of
permutations. For this purpose we have to multiply the orbital parts and the spin parts
separately. The product of the spin part can be either 0 and 1. The final result is:

[\

|\I’($1,$2,$3,T1,¢27$3)| =

+ 7 (21) 03 (22) 3 (w3)] 1 (21)Ya(2) s (23) — [¥07 (21)5 (22) 05 (23)] 1 (21) Y2 (23) 103 (22)
— [W7 (20)3 (23) 05 (22)] Y1 (21) P2 (22)03(w3) + [07 (1) (23) 05 (22)] b1 (1) 02 (23) 3 (w2)
+ (7 ()05 (21)03(w3)] 1 (w2) o (21) 3 (23) — [U07 (22)5 (210) 5 (23)] 1 (23) 2 (1) 103 (22)
— [W7 (3)5 (21) 03 (z2)] Y1 (z2) Yo (1) 3(w3) + 7 (w3)5 (1) 05 (22)] b1 (23) 82 (21) 13 (2)
+ [U5 (w2)5 (23) 05 (21)] 1 (w2) P2 (23) s (1) — [0 (w2) 5 (23)05 (21)] Y1 (23) o (w2) 03 (21)
— [¥7 (w3)3 (z2) 5 (21)] 1 ()2 (@3) 03 (1) + U5 (23) Y5 (w2) 005 (1)) 1 (w3) e (22) Y3 (21).

Let us notice that 3!3! = 36 terms. However, we have only keep alive these terms whose
spin part is 1. Then, the computation of the Bohmian velocity of each electron 7 in a system
of N electrons has to be computed directly from the many-particle wavefunction as follows:

Ji (01,22, 73... T1, 12,13 ...)
(U (21, 22, T3... T1, 2, 3 -..) [2

Vi (11,2, 3. T1, 42, 43, 0) = (4.11)
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where J; (1, 9, T3... T1,12, 3 ...) is the mean value of the quantum current for a particular
electron ¢ and |W (7, 7, 73... T1, 12, 43 ..., ) |* is the total norm of the many - particle wave-
function. If we increase the number of electrons the computation of the previous equation
for NIN! products of permutations is computationally inaccesible. In Sec. we provide
a approximation to treat wavefunctions with spin of different orientations.

4.3.2 An approximation for the Bohmian velocities

As we have mentioned above, the main difficulty to treat N different electron spin orientations
with time-dependent wavepackets is that one must study all possible N!N! products of
permutations among spin states in the construction of the antisymmetrical wavefunction.
Therefore, for N electrons, the explicit evaluation of N!N! products of permutations is
intractable for more than very few electrons [

To overcome this computationally inaccessible problem, the total wavefunction can be
treated as a separated product of two many-particle wavefunctions, the first with spin up
and the second with spin down. Then, we assume that the many-particle wavefunction can
be separated into a product of spin up (1) and spin down (J) many-particle wavefunctions:

U (21, 22, T3, Taoo. T1,d2, 43, T4 o) &
)

Pr (1, g T1,Ta o) - ol (z2, 3. d2, 43 -.) (4.12)

where the wavefunctions U, ¢;, ¢; are antisymmetrize wavefunctions and therefore are com-
posed by a sum of different interchanged components [89].

Using the approximation written in the right hand side of Eq. , the numerical
difficulties in the computation of the many-particle wavefunction disappear because it can
be computed from a complex matrix (Slater) determinant of equation Eq. .

Now, in order to numerically verify the correctness of Eq. , we compute the
Bohmian velocity associated to electron 1 (see Fig. in three different situations keeping
the antisymmetry of the total wavefunction: First, when the electron 1 is alone. Next, in
other two situations, where we compute the velocity of electron 1 when it is surrounded by
four and two additional exchange-interacting electronsﬂ respectively.

In the first situation, represented by Fig. we show the computation of the Bohmian
velocity (with an approximate value of 6 - 10*m/s) for one independent (spin-up) electron
along different positions.

In Figure 4.3] we plot the exact computation of Bohmian velocity for a system of 5
electrons (the left hand side of Eq. (4.12)) studying the electron 1 (see inset) when other 4
exchange-interacting electrons are present. We use the parameter d defined in Eq. , (see
insets in Figs. , and . Then, we compute the Bohmian velocity for four different
values of distance d among electrons:1.41,2.83,5.65 and 7.07. For large d (left triangle line)
the velocity of the electron 1 is not changed by the position of the other 4 electrons. But
when we decrease d (cross line), the Bohmian velocity becomes very different from the result
of Fig. as a consequence of the Pauli (Exclusion) principle.

4Note that 8!2 = 403202
5We use the expression exchange-interacting electrons in reference only at the interaction among electrons
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Figure 4.2: (a) Bohmian velocity for an independent electron. (b) Schematic representation of the system
for an electron where we indicate the central value of the X, and wavevector K| of initial wavepacket.

In Figure [4.4] we consider the same system as in Fig. [1.3] but we compute the Bohmian
velocity using the right hand side of Eq. . Thus, when we compute the Bohmian
velocity Eq. of the particle 1 we observe that only the many - particle wave function
with spin up ¢4 (1, z4... T1, T4 ..., ) will contribute to the computation of Bohmian velocity.

The strong resemblance between the Bohmian velocities of Figs. [4.3]and [4.4] from different
values of d provides a numerical justification of the approximation mentioned in Eq.
for the computation of many-particle Bohmian velocities. Similar results are obtained for
many other spin schemes.

as results of Pauli’s exclusion principle.



CHAPTER 4. EXCHANGE INTERACTION AMONG ELECTRONS 43

12
10 1
@
1S
< 8
o
—
Z 6
2
[S]
3 L. |
o 44 4 2
> (b) ko,; T” ; ?M —x—d=1,41
Z
S L] o f—ri— —x—d=283 ||
£ e o =565
£ :
2 ko, 51N 3}\T> — <—d=7,07
0 X0, X0, X0, X T
T T T T T T T T T T
150 160 170 180 190 200 210

Position X (nm)

Figure 4.3: (a) Bohmian velocities for 1-electron using different values of d for a system of 5 electrons (3
spin-up and 2 spin-down). (b) In this scheme we indicate the central value of the Xy and wavevector Ky of
initial wavepacket.
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Figure 4.4: (a) Bohmian velocities for 1-electron using different values of d for a system of 3 electrons
(spin-up). (b) In this scheme we indicate the central value of the X and wavevector K of initial wavepacket.

Despite the similitude between the two previous schemes (see Figs. and , we find
some differences in the plotted Bohmian velocities. We explain these differences in Fig.
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Figure 4.5: For a particular position (X = 150nm) of Bohmian velocity of Figs and We plot the
Bohmian velocity in function distance d among electrons for three different electron scenarios: independent
electron, exact computation and computational. Lines are a guide to the eye.

We choose a particular position (Xo = 150nm in Figs. and and we plot the
Bohmian velocity as a function of the distance d for independent electron (square black solid
line), the exact computation (circle red solid line) and our computational approximation (up
triangle blue solid line). In Fig. [A.F] we observe two different regions (circle dotted lines):
region with for small d and region with large d.

Finally, we make a clarification, in figures [4.3] and [4.4] we have shown that the Bohmian
velocity of electrons that are close to each other tends to infinity. This is because the total
norm of Eq. is zero when the electrons of the system are very close position among
them (note that for two electrons, when z1 = zy = x, then, U (zy,x2) = 1, (x)y(z) —
Yo(z)p(z) = 0). So, one can understand that the electrons with different wavevector but
with a very close position interact. Thus, one can think, that there is a contradiction with
the results explained in Sec. where we have commented that two electrons with different
wavevector but with the same position do not interact. We can observe this by means of
the Eq. simply when x; = x5. In fact, the effects explained in Sec. are related
to mean values and not to Bohmian velocities. A proper representation of W(xy,zs) shows
that there is no contradiction. Bohmian trajectories do only accomplisher the conditions
|U(x1,22)|? = 0, even for electrons with opposite wavevectors.



Chapter 5

The BITLLES simulator

5.1 introduction

Based on the Bohmian mechanics developed in chapter 3, here, we explain the main char-
acteristics of a general, versatile and time-dependent 3D electron transport simulator for
nanoelectronic devices. As indicated in the title of this chapter, the name of this simulator
is BITLLES[] This thesis has done an important contribution to the development of the
BITLLES simulator. This chapter is divided into other three sections.

In Sec. we present a novel algorithm developed by Dr. Oriols to solve the many-
particle time-dependent Schrodinger equation using Bohmian mechanics that explicitly in-
cludes the Coulomb and exchange correlations.

In Sec. we define each of the potential terms that we find in the single-particle time-
dependent Schrodinger equation presented in Sec. giving special attention to Coulomb
interaction. In Sec. [5.3.2] we present an algorithm to compute the Bohmian trajectories from
the solution of the many-particle time-dependent Schrédinger equation taking into account
only the Coulomb interaction. Next, in Sec. [5.3.3] we extend the previous algorithm to take
into account both Coulomb and exchange interactions.

In Sec. we explain the measurement of the current in an electron device under the
point of view of Bohmian mechanics. Next, in Sec. [5.4.2] we explain the computation of the
high-frequency current by means of the Ramo-Shockley-Pellegrini theorems.

5.2 Solving many-particle systems with Bohmian tra-
jectories

In chapter 3, in particular in Sec. [3.4.1] we have introduced the concept of many-particle
system, and also, we have discussed the computational problem associated to the solution
of the many-particle Schrodinger equation of Eq. (3.19). Problem that can only be directly
solved for very few degrees of freedom.

!The acronym BITLLES (Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures) is
also the catalan name of the bowling pins, which are solid pieces of plastic or wood situated in a periodic
structure (similar to a solid-state structure) waiting for a ball (an electron) to impinge on them.

45
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To surpass the computational problem associated to many-body problem, in this section,
we present a novel algorithm to solve the many-particle Schrodinger of Eq. using
Bohmian trajectories. In this conditions, in order to explain the mentioned algorithm we
summarize the work developed in [I] by Dr. Oriols. Following this reference a many-particle
Bohmian trajectory 7,[t] associated to an a-electron can be computed from the following
single-particle wavefunction, W,(7,,t), solution of the single-particle Schrédinger equationﬂ

OV 4(7, h’ . L 5
Yol (TG U Bl 0+ Gulr Bl 1) + 5.1)
i Jo(Fa Ro[t], 1) 4 (7, 1),
where Ry[t] = {7[t], Fac1[t], Faga[t], P [t]}, at a particular time ¢, is a vector that contains

all Bohmian trajectories except 7,[t]. We mention that for the explicit computation of 77,[t]
we integrate the single-particle velocity, Eq. , using the single-particle wavefunction
U, (7, t).

The explicit definition and computation of the potentials U, (7%, Byt ), Go(T, éb[t], t)
and J, (7, By[t], t) that appear in Eq. will be discussed in Sec.

The relevant point of our quantum trajectory model is that, in order to find 7, [t] from Eq.
, we do not have to evaluate the wavefunction and potential energies everywhere in the
conﬁguration space, {71, Ty_1, Ta, Tas1, 7N }, Dut only over a smaller number of configurations
points, {7, By[t]} = {r1[t], Ta-1[t], Ta, Taga [t], P[]}, because of all positions of the rest of
electrons are fixed at R,[t] in Eq. .

In summary, from the work of reference [I], we have been able to decompose an irre-
solvable single N-particle Schrodinger equation into a set of N single-particle Schrodinger
equation with time-dependent potentials. It is precisely in the time-dependence of the po-
tentials of Eq. where the correlations with other electrons appears. From a practical
point of view, all Bohmian trajectories 7,[t] have to be computed simultaneously.

5.3 Coulomb and exchange interactions

5.3.1 Coulomb interaction among electrons

Here, we define the different potential terms that we find in Eq. (5.1)). Although we be-
gin with the definition of the terms G, (7, Rp[t],t) and J, (7, Ry[t],t) the fundamental part

of this subsection is dedicated to the treatment of the term of the Coulomb interaction,
Ud (70, Rplt], ).

2We rewrite the N electrons vector-positions of the time- dependent many-particle Schrédinger equation,
Eq. - for a 3D system as, {Fj,7s, -, "N} = {ra,Rb} where 7, are the positions of a particular
a-electron and Rb is a vector with the rest of the electrons positions except 7.
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5.3.1.1 Terms Go(7,, Bylt],t) and J, (7, By[t], t)

Gao(Ta, ﬁb [t], 1) is defined as a real-valued potential energy. It takes into account, for example,
the exchange interaction among particles. According to [I] we can write G,(7,, Rp[t],t) as

Gulfan Pl ) = URalt )+ > (Kl + Qulrint) - 5= Dusile ). 52)

k=1;k#a

Jo(F, Rylt], 1) is defined as an imaginary-valued potential energy. It takes into account that
the norm of W, (7,,t) is not directly conserved (because in a many-particle system only the
norm of the many-particle wavefunction is conserved). We can write J,(7,, Ry[t], ) as:

N
L = h OR*(7,,t) 0 [ R%(7,,1) 0S(Ty, t)
Ja(raa Rb[t]at> = Z QRQ(F t) ( ark /Uk(ra[t]?t) - a_rk ( m ark )) :

k=1;k#a @

5.3)
The solution of Eq. (5.1) needs educated guesses for the terms G, (7, Ry[t],t) of Eq. (5.2),
and J, (7, Ry[t], t) of Eq. . In this subsection we provide a simple approximation. We
consider a system of N electrons with Coulomb interaction, but without exchange interaction.
Since no exchange interaction is considered, the correlation between the a-electron and the
rest is mainly contained in the term U, (7,, By[t],t). Thus, we can assume a Taylor expansion

of the other two terms, Eq. (5.2)) and Eq. (5.3)), in the variable 7, around the point 7,[t]:

GlFnt) = Gu(Tlt], 1) + {%} BEULAOIE (5.4)
and
TulFat) = Ju(Falt]. £) + [W} LIRSS (5.5)

The simplest approximation is just a zero-order Taylor term G,(7,,t) ~ G.(7,[t],t) and
Ja(Tayt) &= Jo(7,[t], t). Since, they are pure time-dependent terms (without spatial depen-
dencies), they have no influence in the Bohmian velocity computed as the spatial derivative

of the angle of Eq. (3.12).

5.3.1.2 Term U,(7,, Ry[t], 1)

U(7,, By[t],t) is the potential energy that takes into account the Coulomb interaction that
appears in Eq. (3.19). It can be divided into two parts:

U(Faa ﬁb[t]a t) = Ua(FM ﬁb [t]a t) + Ub(ﬁb[t]v t) (56)
To model Coulomb interaction, we consider a first ensamble {1,..., N} of electrons that are
inside the device active region and a second ensamble {N + 1,..., My} outside. Only the

dynamics of the N electrons of the first ensamble will be directly simulated using Bohmian
trajectories.
The evaluation of the term U, (7, Ry[t],t) can be simplified as:
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N
Ua _’a’é t’t = . 57
(7, Bt ) me_m + Z 4m,ra_rj[t” (5.7)
= =N+1
j#a

The term Uy(R,[t], t) , that appears in the definition of the potential Gy (7, By[t], t), has
no role in the single-particle wavefunction W, (7, t) because Uy(Ry[t],t) has no dependance
on 7, and it only introduces an irrelevant global phase on W, (7,,t). Interestingly, since we
deal with well-defined trajectories, instead of using Eq. , the term U,(7,, ﬁb[t],t) can
be alternatively computed from the following 3D Poisson equation:

V2, (20005 Rt 1) = pa(Fon Bl 1), (538)

with the appropriate boundary conditions determined by the second term of the right-
hand side of Eq. (i.e. the interaction of the first ensamble {1,..., N} with the second
{N +1,...,Mr}). Thus, the charge density that appears in Eq. only considers the
first ensamble of N electrons:

N
Pa(Ta Z 40 (F, = Tft]). (5.9)

J;a
We notice the restriction j # a in Eq. (5.9)) that eliminates the Coulomb self-interaction.
This implies that we compute on electrostatic potential for each electron. Thus, we are

beyond the standard_' mean-field approximation. Next, we discuss the explicit boundary
conditions of U, (7, Rp[t],t) in the development of the BITLLES simulator.

5.3.1.3 Time-dependent (Coulomb Correlated) Boundary Conditions of the
Poisson equation

Since we cannot simulate all electrons in an experimental set-up including the batteries,
the cable, the ammeter, etc..., we have to treat with accuracy the boundary conditions of
the Poisson equation, Eq. , to model correctly the effect of the Coulomb interaction
with other electrons outside the simulation box, which are responsible of the overall charge
neutrality.

Here, we discuss the explicit boundary conditions of the potential U,(7, ﬁb[t], t) on the
borders of the simulation box and also how we determine the electron charge on those
boundaries. The latter is what we call the injection model.

All boundary condition of electron transport simulators are based on specifying the value
of the scalar potential (or the electric field) and the charge density on the borders of the sim-
ulating box. However, it is very difficult to anticipate an educated guess for such quantities
on the borders of a small simulation box that excludes the leads and the reservoirs mainly
because of the far from equilibrium conditions present there [90]. Nonetheless, in order to
avoid such a complexity, we can develop analytical expressions for the charge density, the
electric field and the scalar potential along the leads and reservoirs [90] letting us to transfer
the specification of the boundary conditions at the borders of the small simulating box into a
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much simpler ones deep inside the reservoirs [90]. In particular, the two boundary conditions
are:

1. Noticing that the total charge in a large volume, including the device active region, the
leads and the reservoirs, tends to zero within the dielectric relaxation time, 7. = ¢/0,
it can be easily demonstrate that the electric field deep inside the reservoirs, Eg/ (),

tends to its drift value Eg/ p(t) — Eg;ifjt(t) within the same time 7. = ¢/0;

2. The scalar potentials deep inside the reservoir are fixed by the external bias V& (¢) = 0
and VDC (t) = %xternal(t)'

The temporal and spatial relations for the charge density, the electric field and the scalar
potential must be, however, ultimately coupled to the injection model [90] controlling the
amount of charge on the borders of the simulating box. Such a coupling process constitutes
the last piece of the puzzle providing overall charge neutrality and current conservation
without any fitting parameter. See reference [90, O1] for a detailed explanation of this
algorithm. In reference [91] we present a method of injection of electrons which are described
in terms of a binomial statistics, where the probability that N electrons are injected from
one contact during the time interval 7 is:

P(N.7) = T F(B)Y (1 () ) (5.10)

’ NY(M, — N)! ’ '

where M, is the number of attempts of injecting electrons during this time interval and
f(F) is the Fermi function evaluated at the energy F of the electron. This definition of the
rate of injection of electrons has an important role in the definition of average current and
fluctuations for 1D, 2D and 3D devices. However, the final value of the average current and
noise id determined by the dynamics inside the simulation box.

5.3.2 Explicit algorithm for Coulomb interaction

At this point, we summarize the theoretical concepts mentioned from here only taken into
account Coulomb interaction. The only approximation of this trajectory-based quantum
algorithm is in the potentials G, (7%, ﬁb[t], t) and J, (7, ﬁb[t], t) that appears in Eq. that
are unknown and need some educated guessed. In contrast, the term U, (7, R, [t], t) takes into
account (short and long) range Coulomb interaction without approximation. Interestingly,
our quantum trajectory algorithm can also be applied to systems with a space-dependent
permittivity () where the Poisson equation Eq. can be directly applicable.
The steps of the algorithm to solve Eq. are the following:

1. At the initial time t,, we fix the initial position of all a-particles and their associated
single-particle wavefunction W, (7%, ).

2. From all particle positions, we compute the exact value of the potential U, (7, Ry [to], 1)
for each particle.

A Taylor approximation for the other terms Ga(Fa,ﬁb[tO],to) and J, (7, ﬁb[to],to) of
equations Eq. (5.2) and Eq. (5.3) is needed.
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3. We use a finite-difference numerical method to solve each single-particle Schrodinger

equation, Eq. (5.1]), from ¢, till to + dt.

4. From the knowledge of the single-particle wavefunction W, (7,,to + dt) of Eq. (5.1), we
can compute the new Bohmian velocity (¢ + dt) of each a-particles and consider the
injection of additional electrons.

5. From the velocity, we compute the new position of each a-particle as 7,[ty + dt] =
Tulto] + Ua(to + dt)dt from the expression Eq. (3.6).

6. Finally, with the set of new positions and wavefunctions, we repeat the whole procedure
[steps (1) to (5)] for another infinitesimal time dt till the simulation time is finished.

The algorithm explained above, can be applied to many different many-particle quantum
problems (not only to study quantum electrons transport in nanoelectronics). More details
and numerical results discussing the accuracy and numerical viability of this many-particle
procedure can be found in Sec. [6 and in refs. 1] 3].

5.3.3 Exchange and Coulomb interaction among electrons

In the previous section we have showing that the wavefunction W, (7, t) solution of Eq. (/5.1))
can be constructed in two steps. First, solving Eq. (5.1)) without considering the purely
time-dependent potential terms, G, (7, [t],t) and J, (7 [t], 1), to find 1), (7, t):

OVa(Fat) [ B* O
o\ 2mo*,

ih U7 Fl10)) ), (5.1)
where the term U, (77, R, [t], 1) is defined in Sec. [5.3.1.2, Second, multiplying the wavefunction

&a(ﬁl, t) by a time-dependent (real or imaginary) values (without any spatial dependence)
for the final solution:

Uo7y t) ~ g (7o, t) exp(zq(t)), (5.12)

where z,(t) is a time-dependent term related with G, (7, Ry[t], ) and J, (7, By[t],t) defined
in Eq. and Eq. (5.5)).

Here, we propose a solution of the equation Eq. , with the purpose of extending the
previous algorithm to take into account the Coulomb and exchange interactions together.

For spinless electrons, the exchange interaction is effectively introduced into Eq.
through the terms G (7, Ry[t], t) and J, (7., By[t],t). Due to the Pauli exclusion principle,
the modulus of the wavefunction tends to zero, R(7,, Ry [t],t) — 0, whenever the position
7, — 7[t] at a particular time ¢. Thus, the term Gq(7,, By[t],t) and J, (7., Rylt],t) has
asymptotes at 7, — Tx[t], at a particular time ¢, that repel other electrons. Then when
we take into account Coulomb and exchange correlations together the approximation of Sec.
is no longer valid. The terms Gy (7, By[t], t) and J, (7, Ry[t], t) are no longer negligible.
Then, how we can approzimate Go(Fa, Rplt],t) and Jo(Fy, By[t],t) terms when the exchange
interaction is present? The strategy is assuming that an anti-symmetric wavefunction,
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U(7,t), can be constructed from permutations of a many-particle wavefunction without any
symmetry W, gm (7, 1):

N!

v(rt)=C Z “Ijno—sym(Fp(Z)l s Tp(l)as -+ FP(”N’ t) s (p(l)) - (5.13)

The constant C' is a normalization constant that will become irrelevant for the computation
of the Bohmian velocity. The sum is over all N! permutations p({) = {p(1);,p(0),,...,p({) 5}
and s (p(l)) = £1 is the sign of the permutations. Here, we are considering spinless electrons.
Then, each wavefunction:

\Ijnofsym(/r_')p(l)l, Fp(l)Q, ceey FP(Z)N? t), (514)

evaluated at 7= {7, Ry [t]}, can be computed following the previous (no-exchange) algo-
rithm, Eq. (5.11) and Eq. (5.12)). In particular,

Wrosym (P [y -oes Ty, [t], s Pty (8] ) = Py, (Ts ) €XD (zap0) (1)), (5.15)

where the permutation p(l) gives 7pu), = 74, i.e. p(l); = a. Now, we have to use two labels

in the subindex of &a,h (7, t) to specify the solution of Eq. . The first label a accounts
for the degree of freedom, i.e. the particular trajectory, that we are computing and it also
fixes the potential energy U, (7., By[t],t) in Eq. EI) The second label h fixes the initial
wavefunction that we will consider. If the initial many-particle wavefunction can be defined,
in a region without interactions, as:

\Ijnofsym(f'la "'7FN70) = %(771,0)7 """ 71/}N(77N70)- (516)

Then, QEW(l)j (7a,0) = ¥y, (74, 0). In other words, identical initial wavefunctions W; (7, to) =

W, (7, to) can evolve differently when using Uy (7, R;[t], t) or Ug(74, Ry[t],t). Finally, using
Eq. (5.12), the many-particle wavefunction W(7,, By[t],t) can be written as:

\Ija(raa Rb[ Cz¢ap ) Taa )eXp (Zap(l)( )) (ﬁ(l)) : (517)

=1
It can be easily demonstrate that using the following angles z, ()

N

exp (zapny(8) = [ Trpwn (Flt], 1), (5.18)

the symmetry requirements of the Bohmian trajectories are fulfilled. Finally, putting Eq.

(5.18) into Eq. (5.17)), we obtain the final wave-function:

OZ% ) W, (P ) - Uy, (PN Os(FD). (5.19)

The algorithm needs NxN wavefunctions. It can be computed from the determinant Eq.
(4.7). The generalization to electrons with arbitrarily spin can be easily constructed from

the approximation Eq. (4.12]).
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5.4 Time-dependent electron current

5.4.1 Preliminary discussion

The functionality of any electronic device is determined by the relationship between the
current measured by an ammeter and the voltage imposed at the external battery. See
Figure for a description of a typical electric circuit. The device active region is connected
to a real battery (modeled by an ideal voltage source plus an internal resistance R;y) and
to the ground by metallic wires. The ammeter located far from the device active region
measures the current. A load resistance Ry is also depicted in Fig. In the present
section, we comment on the measurement of the current in nanoelectronic devices in terms
of Bohmian trajectories.

Ammeter

R
= /
Sa

Figure 5.1: Schematic representation of the current measurement in an electron device. Device simulators
compute the current on the surface, Sp, of the device active region, while the ammeter measures it on the
surface, S4.

The ammeter of Fig. [5.1|provides a relationship between the value of the measured current
and the observed position of a pointer inside the ammeter E[ The Bohmian explanation of
the measurement process described in Sec. [3.5]tell us that what we have ultimately measured
is the position of the ammeter pointer, not the current itself. Thus, the pointer (Bohmian)
positions, {71[t], .., 7py[t]}, at time ¢, determines the current value, I(¢) on the surface Sp.
here, the subindex p is to refer the pointer (Bohmian) positions [4].

The ability of the Bohmian mechanics to predict measurable results without invoking the
wavefunction collapse resides in the fact that the measured quantity depends, ultimately, on
the distribution of positions of a set of Bohmian particles. Roughly speaking, we avoid
collapsing the wavefunction to a particular position 7[t] at the time t because we have
already collapsed it at 7tg] at the initial time t5. For a more detailed explanation of the
measurement process see Sec. and reference [4].

3The relationship between the current and the pointer positions can be established, for example, by the
magnetic deflection of a pointer: a current passing through a coil in a magnetic field causes the coil to move.
The position of a pointer fixed to this coil will indicate the final value of the current.
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In an electron device as the described in Fig. [5.1] is not possible to take into account
all of degrees of freedom. It is necessary to neglect a large part of the degrees of freedom
of the circuit. In this sense, we follow standard simplifying assumption that reduce the
Hamiltonian of the total system into a solvable equation E| Thus, we cannot completely
specify the initial N-particle wavefunction inside the simulation box (we do not know with
certainty the number of electrons N inside the device active region, their energies...). We can
only know these characteristics in a statistical manner. For example, we can assume that the
mean energy of injected electrons follows a Fermi-Dirac statistics. In other words, we cannot
longer deal with a single pure N-particle state, but with a mixzed quantum system prepared
by statistically combining different pure states. In this sense, we define two distributions g
and h to deal with electron transport:

1. g-distribution: Is an infinite set of all of the initial position of Bohmian particles,
g =1,...,N;. The probability of each element of the g—ensemble is 1/N,. Where N,
is the number of the all the possible distributions g.

2. h-distribution: It takes into account our uncertainty on the number of electrons
inside the simulation box, N, on the energy of the wavepackets associated to these
electrons, on the injection time of each electron, etc. The probability of each element
of the ensemble is 1/N;,. Where N, is the number of the all the possible distributions
h.

In fact, the adaptation of Bohmian mechanics to study quantum electron transport by
means of the BITLLES simulator leads to an algorithm based in the Monte Carlo technique
where the randomness appears as a result of the uncertainties associated to these g and h
distributions.

We continue this subsection showing that the current Ig, ,5(t) crossing the surface of
the ammeter, S, drawn in Fig. can be related to the current Ig, ,,(t) on the surface of
the device active region, Sp. Let us assume that we deal with a particular g—element and
h—element of the Bohmian trajectories of the circuit {ry [t], .., "apgnlt]}. We keep the
subindex ¢g and A to remind this point. Let us start by rewriting the current conservation in
any point along the wire:
apg,h (F, t)

ot

The first term, of Eq. l} is the divergence of the conduction current density, ]ﬁ'cyg,h(ﬁ t) =
g SN | 7 ()3((t)—7), while the other is the temporal variation of the electron charge density

Vegn(Fot) + —0. (5.20)

4Standard approximations[4]:

1. We use the standard Born-Oppenhaimer approximation that can be justified because of the mass of
atomic nuclei is much higher than the electron mass.

2. From the My electrons in all the system described in Fig. , we do only consider explicitly IV
(free) electrons inside the 3D device active region.

3. The interaction of the N electrons with the (fixed) atomic nuclei in the device active region can be
considered through the effective electron mass approximation.
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pg.n(7,t) of Eq. ‘) The second term can be related to the electric field, Eg,h (7, t), by using
the Poisson (i.e. first Maxwell) equation:

— —

V (s Egn(7.1)) = pon(Ft), (5.21)

where the electric permittivity, €(7), is assumed to be a time-independent scalar function.
Thus, we can rewrite Eq. (5.20]) as:

= . = 5 85 ’F:t =d hvd = v d =
Viegn(Tt)+V (5(7’)%) =V (jcyg,h(r, t) + Jagn (7, t)) =0, (5.22)

where the displacement current density is g 5(7, 1) = S(F)%@. From Equation ([5.22)),

we can define the total current 77 4 (7, t) = Jogn(F,t) + Jagn(F,t) as a divergence free vector.
The subindex T', ¢ and d mean total, conduction and displacement. Finally, by integrating
Eq. (5.22)) on the wire volume of A of Fig. |5.1] we arrive to the following identity for the
total current:

Vg (7. ) = / Fran(Ft)ds =0, (5.23)
A S

where the first integral is evaluated inside the volume A and the second integral over the
closed surface S limiting this volume A. The surface S is composed of the ammeter surface,
Sa, the device surface Sp and a lateral cylindrical surface drawn in Fig. [5.1, We assume
that this lateral surface is so far away from the metallic wire that the electric field there is
almost zero and there are no particles crossing itE|. Thus, the integral surface of the right
hand side of expression can be rewritten as:

/ Fran(7 1)d5 + / Fron(@ 8)ds = 0. (5.24)
Sp Sa

Expression tells us that Ig, ,n(t) = —1(t)s, 4.n- There is an irrelevant sign related
with the direction of the vector ds.

In conclusion, the current measured on the surface S, is equal to the current measured on
the surface of the simulation box Sp. We have emphasized the importance of the Coulomb
interaction among electrons to assure overall charge neutrality. Also, we have discussed that
one has to compute time-dependent variations of the electric field (i.e. the displacement cur-
rent) to assure that the total time-dependent current computed in a surface of the simulating
box is equal to that measured by an ammeter, i.e. current conservation.

5.4.2 The practical computation of [, ;(t)

In the previous section, we have determined how to compute the current I ;(t) from the
Bohmian trajectories crossing the surface Sp. However, from a practical point of view,

5In fact, the relevant point is not only that the lateral surface is far away from the wire, but also that
the difference between the relative dielectric constants in the wire and in the air tends to concentrate the
electromagnetic field inside the wire



CHAPTER 5. THE BITLLES SIMULATOR 55

an algorithm based on the Ramo-Shockley-Pellegrini theorems [6HI0] that computes the
current from a volume integral is greatly preferred. These provide useful expressions for the
computation of the total (conduction plus displacement) currents on a particular surface.
These expressions involve a spatial integral over a volume that contains this surface, see
Fig. 5.2l We develop these expressions in Sec. [5.4.2.2] In order to understand the practical
advantages of Ramo-Shockley-Pellegrini theorems, we will compare it with a direct method.
Theoretically, both algorithms, provide identical results, but the latter avoids some spurious
numerical effects. Here we directly follow the development of ref. [3, [02]. We will use the
volume 2 drawn in Fig. [5.2) which contains the whole device active region. In particular, we
assume that one of the surface of the volume € of Fig. [5.2]is in contact with the surface Sy
of the volume A of Fig. 5.1 We will discuss one particular element of the g and h ensembles,
but we will omit the subindexes to simplify the notation.

5.4.2.1 Direct method

As we have mentioned at the beginning of this section, the total current flowing through one
surface S; (of the volume € of Fig. |5.2)) has two different components:

Displacement current: We write the displacement current as:

Ly(t) = /S () (%) i (5.25)

We use the vector 7; to remind us that Eq. is evaluated only on the surface S;. It
is important to specify that E (7,t) is the electric field seen by an additional probe electron
located at the observation position 7" at time t due to the presence of the rest of the electrons.

We remark that the scalar electrostatic potential used in the computation of the electric
field E(F, t) has an infinite value each time that the position 7 is equal to the position of
any Bohmian trajectory, 7 = 7, [t]. Therefore, each time that a Bohmian particle crosses the

surface S;, an infinity appears in Eq. (5.25)).

Particle (conduction) current: Since our algorithms deal with Bohmian trajectories
7 [t], the particle (conduction) current density on a particular point 7; of the surface S; at
time t has to be computed from:

N'(t)

L(t) = / JiF 1)dg = lim Y ;—fsgn(i). (5.26)
S; 1

In Equation the sum N'(t) is over the number of Bohmian trajectories that have

crossed the surface S; during the temporal step dt. The function sgn(i) = 1 when one
trajectory leaves the volume (2 through the surface S;, while we put sgn(i) = —1 when the
trajectory enters.
In this equation the simulation time step, dt, provides the temporal resolution of our approach
plays a crucial role. We observe that the current density of Eq. tends to infinity (when
dt tends to zero) each time that a Bohmian trajectory crosses S;. In principle, this infinity
of the conduction current has an opposite sign to the infinity of the displacement current
and both compensates. Numerically, such compensation is not trivial.
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Figure 5.2: Volume : this is a schematic representation of the arbitrary 3D geometry considered in this
chapter as simulation box for the computation of quantum transport with local current conservation.

5.4.2.2 The use of the Ramo-Shockley-Pellegrini theorems

Next, we compute the total current with a second method using the Ramo-Shockley-Pellegrini
theorems [3], 02, [93]. The extension of these to Bohmian mechanics provides a numerically
viable algorithm to compute the time-dependent many-particle conduction and displacement
currents fulfilling current conservation. A vector function Fj(7) inside the volume € is de-
fined through the expression Fj(7) = —V®;(7) where the scalar function ®;(7) is the solution
of the Laplace equation (for the particular boundary condition at the surface S;, ®;(7) = 1
; 7eS; and zero elsewhere, @;(r) = 0 ; 7eS);):

V (cF(7)) = =V ((7):(7)) = 0. (5.27)

The total time-dependent current through the surface S; can be then decomposed into
three terms [92]:

1(t) = T(t) + T5() + T7 (1), (5.28)

where:

[it) = - /Q 7 (7) g7, 1) d°F (5.29)

re(t) = /S 2(?)5<f)%vm 1\ds. (5.30)
(0 = [ A=) 55 A 0 (5.31)

We use the subindex, i, in Egs. - because of the current through a surface
different from S; leads to a different definition of ]3@(7?) Let us remark that the first method
provides a computation of the total current through the integration on the surface 5;. Con-
trarily, this second method computes the total current in a surface S5; through a volume
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integral in Eq. and an integral over all surfaces of the volume () in Eq. . Let
us note that the evaluation of the third term I'7*(#) can be omitted because it is related to
the radiation properties of the electromagnetic field generated inside €2 that are negligible
for the system studied here [92].

In particular, the computation of I'{(¢) and I'¢(¢) can be obtained numerically from:

Current component I'!(t): The evaluation of Eq. (5.29)) can be simplified by [3]:

N
Ti(t) = > Fo(F [t)qii(7 [t). (5.32)
i=1
Let us mention that Eq. (5.32) not only contains the conduction current, but also contains
partially the displacement current.

Current component I'¢(t): The evaluation of I'¢(¢) follows directly the Eq. (5.30]). We

rewrite it here for convenience:

re(t) = /S ﬁi(f)g(f)wd; (5.33)

The time derivative is obtained with a simple finite-difference evaluation, 0V (7,t)/0t =
(V(r,t) = V(r,t —dt))/dt.

In summary, the numerical evaluation of the total current through a particular surface
S; due to a set of N Bohmian trajectories can be computed from Egs. and
with the direct method, and from Egs. and with the Ramo-Shockley-Pellegrini
theorems. In principle, both provide identical results. However, from a computational point
of view, we will see in the numerical results that the latter is preferred because it is free from
technical difficulties in its numerical implantations. More details in references [3, 4].

5.4.3 The practical computation of DC, AC and transient currents

We compute the time-dependent current from the Bohmian trajectories crossing the surface
Sp through Eq. and Eq. . Here, we discuss how we can determine the average
value of the current at time t; (or the expectation value, or the mean, or the first moment).
We use the following ensemble average:

Ng Ny

U = lim SO L(h). (5.34)

NnghHOO NgNh g—l he1

When the battery of Fig. is fixed to a constant value, then, the whole circuit becomes
stationary. For a stationary process, the mean current in Eq. is independent of
time. Then, if the process is ergodic, we can compute the mean current from the following
(first-order) time average expression:

' 1 T/2
]th(t) = lim —/ ]th(t)dt. (535)

T—00 T 7T/2

In this case, the practical procedure for the computation of the mean current is simpler. Be-
fore beginning the simulation, we select only one particular realization of the h—distribution
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for an mﬁmteﬂ number of electrons. Simultaneously, we fix the g—distribution of the initial
positions for the previous (infinite) realization of wavepackets.

A single sample function often provides little information about the statistics of the
process. However, if the process is ergodic, that is, time averages equal ensemble averages,
then all statistical information can be derived from just one sample element of the h— and
g— distributions.

Electrical engineers are not only interested in the DC behavior of nanoelectronic devices,
but also in their transient or AC performance. For these time-dependent scenarios, the
circuit is no longer neither stationary nor ergodic. Then, we cannot use ergodicity and we
have to compute the mean value of the current at each particular time, t;, only from the
ensemble average of Eq. .

When we measure experimentally the current, we do not found a fixed (DC) value but
a randomly varying function of time. These fluctuations of the current are simply called
noise [94], 7). The characterization of the noise is an important issue in electronics in order
to understand how to avoid it in practical circuit applications. On the other hand, from
a physical point of view, there is a lot of useful information in the noise that is missing
(because of the average) in the mean values discussed above. Roughly speaking, the noise
can be characterized by the wvariance of the probability distribution of the current. The
average current is known as the first moment of the current probability distribution, while
the variance as the second moment. In fact, once we know all values I, ;,(¢) from the infinite
g— and h— ensembles, one can compute the probability of each current value and, from
them, any higher moments of the current distribution. In this sense, our Bohmian simulation
algorithm can be compared to the orthodox full counting statistics technique; both, provides
full information about the current distribution for quantum transport. See references [95-H97]
for an explanation of the latter technique.

The practical expressions for the computation of the current fluctuations within Bohmian
mechanics are quite simple. In fact, once the simulations are done, we directly know all
possible measurable current values I, ;(¢;) and their probabilities 1/(N,N},), thus, we can
use standard statistical techniques to characterize the fluctuations of the current. This is
another very relevant advantage of using Bohmian mechanics to study quantum electron
transport in front of orthodoz techniques [97].

The fluctuating signal of the current can be defined from A, ,(t) = I, 5(t) — (Ign(2)).
We can obtain information of the noise from the variance (or the mean square or the second
moment) defined as (AI(t)?) = (I(t)?) — (I(t))?>. However, experimentalists are interested in
having information on how the noise is distributed along the different frequencieﬂ. Therefore,
the characterization of fluctuations of the current are computed from the covariance:

Ng Ny

DY AL ()AL (). (5.36)

g=1 h=1

| |
(Al(E)AL(E) = | lm

If the process is ergodic, i.e. (Alyp(t)ALyn(t+ 7)) = AL(t)AL(t + 7), we can compute the

6The practical procedure for the infinite number is selecting a number large enough so that the mean
current remains practically unchanged for successive times.

"Most of electronic apparatuses, and the ammeter itself, have to be interpreted as low-pass filters. There-
fore, they are not able to measure all noise of the spectrum, but only up to a maximum frequency
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noise equivalently from the autocorrelations function:

1 (T2
ATOAET7) = lim — / AL p(O)AL, (¢ + 7)dt, (5.37)

T—o0 —T/2

In addition, a process is called wide-sense (or weakly) stationary if its mean value is con-
stant and its autocorrelation function depends only on 7 = t5 — t;. Then, we define the
autocorrelation function R(7) as:

R(r) = MDA+ 1), (5.38)

because depends only on 7 = t5 —t;. Wide-sense stationary processes are important because
of the autocorrelation function of Eq. (5.37) and the power spectral density function S(f)
(measured by experimentalists) form a Fourier transform pair:

S(f) = / h R(1)e™ %7 dr. (5.39)

oo

This is known as the Wiener-Khinchine theorem. In many systems, one obtains the well
known Schottky’s result [98] for the shot noise:

Ssenot (f) = 2q (1), (5.40)

which is also referred in the literature as Poissonian value of shot noise. More details in
reference [4].
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Chapter 6

Numerical results

6.1 Introduction

We can implement the BITLLES simulator with different electronic devices where each
device is designed with its proper electrical parameters. In this chapter we present a set of
numerical results configurating the BITLLES simulator for three different electron devices.

The first one, Sec. is the Resonant Tunneling Diode (RTD). RTD’s play a crucial
role to understand many of the electronic transport features belonging solely to the quantum
world. These features make it ideal for testing the BITLLES simulator. Next, in Sec. we
present the main results of a set of applications for RTD. First, we present the characteristic
[-V for different boundary conditions between the contacts and the device active region in
a DC scenario. Later, we present a frequency multiplier using Ramo-Shockley-Pellegrini
theorems and finally we model the noise characteristics of a RT'D to obtain the Fano factor.

The second of these devices, Sec. [6.4] is a new type of devices which we have called
Driwven Tunneling Device (DTD)E]. This device is specially designed to process signal at high
frequency. In Sec. [6.0] we present the mean results of two high frequency applications:
frequency rectifier and frequency multiplier.

In both set of results we have included a list of articles related with this applications
(Sec. and Sec. . These results have been computed with Coulomb correlation, but
without exchange correlations.

Finally, in Sec. we test the capabilities of BITLLES simulator to compute electrical
parameters taking into account Coulomb and exchange correlations together. In particular,
we present the DC and noise characteristics of a nano-resistor.

6.2 Resonant Tunneling Diode (RTD)

From the original electronic transport analysis of structures exploiting a finite sequence of
potential barriers spaced by a distance shorter than the electron mean free path, Esaki, in
1970, introduced for the first time the RTDs [99-101]. The simple case of two barriers, useful

IThe patent was deposited with the number of request 2005011937 with title: ”Device to generate an
electrical signal”.

61
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to study the relevant quantum features generally involved in superlattice, is also the basic
physical picture of the RTD active zone, see Fig. (6.1}

LResonant

energy
Source

Barrier

Quantum well I:

Barrier

Drain |(

(a) Heterostructure (b) Band structure

Figure 6.1: (a) Basic configuration for a typical RTD and (b) Related conduction and valence band
structure.

To understand electronic transport in this device, it can be assumed that the only per-
mitted energies in the well for the electrons are those very close to the resonant energies Fg,
E[ If the transport is assumed ballistic, tunneling of the whole device is possible for electrons
with energies close to Eg, (the resonant tunneling transport). Varying the applied voltage
V', the whole potential profile is modified. Let us assume that we keep the source contact
grounded and the drain contact at V' bias. Then, the resonant energies shift down when we
increase bias. The electrons from the source will be able to reach the drain until the reso-
nant energy is lower than the bottom of the source conduction band. If the resonant energy
overcomes this limit, resonant tunneling is no longer permitted and the RTD differential
conductance rapidly decreases, see Fig. [6.2] This transport behavior results in a Negative
Differential Conductance (NDC) region of the current-voltage (I — V') characteristic. For
more details about features of RTDs, please see [102] [103].

The resonant tunneling is of general interest in many applications of quantum mechanics
(see references therein [104]), the particular case of RTD is very intriguing not only for its
peculiar properties [I02] but also for its potential applications in both analogue [105] [106] and
digital [107] electronics. Nevertheless technology solutions to integrate RTDs in electronic
circuits are still under investigation.

From a theoretical point of view RTDs have been widely studied. Their peculiar proper-
ties have attracted the interest either of important corporations such as IBM (with the works
of Biittiker [97), [104] and Fischetti [I0§]) and Texas Instruments (Frensley [109] and Klimeck
[110]) or leading universities like MIT (Brown [111]) and Purdue University (Datta [112]).
Singular transmission coefficient shape and NDC region of the I —V characteristic [102] [103],
are only some of the most impacting RTD properties. Unfortunately single-particle theory for
mesoscopic structures is not adequate to describe the totality of the typical behavior of these

2Roughly speaking, the value Er, are the energies of the single-particle stationary quantum states of the
well with infinite thickness barriers.
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Figure 6.2: Schematic representation of the I-V curve of a typical RTD. The resonant energy inside the
quantum well acts like an energetic filter that lets the electrons from the source to arrive at the drain.

devices. Also in the most idealized case of RTD, the inclusion of the Coulomb correlation be-
tween electrons is enough to spoil the results of the single-particle theory. Many-body based
theories and simulations, confirmed by experimental measurements show for example, differ-
ent current patterns [2l 110} [112] or very enhanced noise spectrum in NDC region [113] [114].
However theories involving the solution of the many-body Schrédinger equation are in gen-
eral very hard to treat. The widely used approximation to partially overcome this problem is
the Breit-Wigner formalism [IT5], [IT7]. This picture includes many of the effects arising from
the quantum correlations by introducing a phenomenological scattering parameter based on
the concept of decoherence [97, 118]. It furnishes a powerful tool to analyze theoretically
RTDs and reproduce their characteristics in an analytical way [103]. Nevertheless, some
other tools as second quantization ([I13] and references therein) or Hartree approximation
and Bardeen approach ([I16] and references therein), must be adopted in order to treat more
complicated phenomena as noise. Other approaches devoted to the numerical simulation are
the non-equilibrium Green function combined with the Landauer formalism [112], Wigner
distribution function [109, 110, 119]. Besides Monte Carlo methods are also used to simulate
mesoscopic devices [120]. Some of these techniques have been explained in chapter 2.

6.3 RTD applications

In this section, we configure BITLLES simulator as a RTD and we discuss its numerical
results.

6.3.1 Coulomb interaction in DC scenario

e A.Alarcén, G.Albareda , F.L.Traversa and X.Oriols Nanoelectronics: Quantum electron transport in the
book ”Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology”, edited by X. Oriols and J.
Mompart, Panstanford Publishing, ISBN: 978-981-4316-39-2

As a first example, we consider the importance of the Coulomb interaction in the pre-
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diction of the current-voltage characteristic of a typical RTD using BITLLES simulator. It
consists on two highly doped drain-source GaAs regions (the leads), two AlGaAs barriers
of 1.2nm, and a quantum well (the device active region) of 6nm. Transport takes place
from source to drain in the z direction. The lateral dimensions are L, = L, = 48.6nm.
Room temperature is assumed. As discussed in Sec. [5.3.1] the practical quantum algorithm
for the RTD implies solving numerically N time-dependent single-particle 1D Schrodinger
equations. All Schrodinger equations are coupled to the Poisson equations with the bound-
ary conditions given by our boundary condition algorithm, see Sec. [5.3.1.3] More technical
details can be found in references [I] and [2].

As discussed in Sec. [5.3.1 we distinguish between (i) the Coulomb interaction among
electrons inside the simulation box plus (ii) the Coulomb correlations among these electrons
and those outside the simulation box. Therefore, we will compare the results obtained by
means of the previously described model, with those obtained, in one hand by eliminating
the Coulomb correlations among the electrons of the device active region and those of the
leads (i.e. assuming standard Dirichlet external bias at the borders of the device active
region of the RTD. Please see Sec. for a detailed description), and on the other
hand, with those obtained by switching off the Coulomb correlations (i.e. assuming the
simplest single particle treatment of electrical transport). In Figure , we present the
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Figure 6.3: RTD Current-voltage characteristic. Results taking into account the Coulomb correlations
between the electrons of the leads and the electrons of device active region are presented in solid circles.
Open circles refer to the same results neglecting the lead-device active region interaction. Open triangles
refer to a wholly non-interacting scenario, i.e. both Coulomb interaction between the leads and the device
active region and Coulomb interaction among electrons within the device active region are neglected.

current-voltage curves of the simulated RTD using our boundary conditions algorithm (solid
circles), standard Dirichlet external bias boundary conditions (open circles), and switching of
Coulomb correlations (open triangles). As it can be observed, the differences between these
three approaches appear not only in the magnitude of the current but also in the position of
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the resonant region. More details are explained in Ref. [90].

6.3.2 Coulomb interaction in high frequency scenarios

e Source: A.Alarcén and X.Oriols, Computation of quantum electron transport with local current conser-
vation using quantum trajectories, Journal of Statistical Mechanics: Theory and Experiment. Volume:
2009(P01051), (2009).

e F. L. Traversa, E. Buccafurri, A. Alarcén, G. Albareda, R. Clerc, F. Calmon, A. Poncet , X. Oriols,
Time dependent many-particle simulation for Resonant Tunneling Diodes: interpretation of an analytical
small signal equivalent circuit, Transaction on electron devices (submitted) (2011).

Next, we design BITLLES simulator to provide an example of the computation of the
total current in time-dependent scenarios that includes a time-dependent solution of the
3D Poisson equation. First, we will consider a single-electron crossing a RTD to show the
accuracy of our quantum electron transport approach in providing local current conservation,
i.e. the sum of the conduction plus the displacement currents is zero when integrated on any
closed surface. Second, as an enlightening example, we will compute transient currents with
BITLLES simulator.

For the first example, we consider a RTD composed of two highly doped source-drain
GaAs regions, two AlGaAs barriers with the length of 1.6nm and height 0.5¢V, and a
quantum well with a length of 2.4nm. We assume a constant effective mass m ., =
0.067mg with mg the electron free mass along the whole 3D structure. Transport takes place
from source to drain in the x direction. The lateral dimensions y and z are small enough
for considering electron confinement?] In the x direction, the time evolution of an initial
Gaussian wavepacket with initial kinetic energy of 0.25¢V coming from the source contact is
computed. The computation of the trajectory requires the algorithm explained in the Sec.
. At each simulation time step dt, we solve the Poisson equation (in this single-electron
case we solve the Laplace equation) with the appropriate boundary conditions. From this
potential profile, we solve Eq. to find W, (7,,t) with a temporal step dt = 107"s and a
spatial resolutions in the x direction of dx = 0.2nm. Finally, we compute the next position
of the Bohmian trajectory.

In detail, the scalar electrostatic potential energy is obtained from the numerical solution
of the 3D Poisson equation. The boundary conditions at the source and drain surfaces are
equal to zero volts. In the rest of the surfaces, we assume an electric field equal to zero, but
no explicit restriction is imposed on the value of the potential. For simplicity, we assume a
homogeneous dielectric constant ¢ = 13gy (with gy the vacuum permittivity) in the whole
device active region. The time-dependent electric field, E (7 t) = —6\/(77, t), changes with
time due to electron dynamics and it is different from zero even in the source and drain
surfaces.

The computation of the total current following the expressions developed in Sec. [5.4.2]
needs the knowledge of (¢) the Bohmian trajectory depicted in Fig. [6.4] (i7) the time deriva-
tive of the potential profile (and the associated electric field) and (iii) the function F(7)
defined as the solution of the Laplace equation, see Eq. (5.26)). In Figure , we show the

3Then, the Bohmian velocities in the lateral directions are zero because we consider that the wavefunction
involves only one quantized level.
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Figure 6.4: Dashed line: Potential energy profile for a double-barrier structure. Solid line: Bohmian
trajectory of an electron crossing the heterostructure. Dashed dotted line: Schematic representation of the
limits of the volume €2 in the z direction.

total time-dependent current on the six surfaces of volume €2 of Fig. [5.2l The numerical
evaluation of the total current through each of the six surfaces is computed from the Eqgs.
and with the direct method, and from Egs. and for the Ramo-
Shockley-Pellegrini method. It is interesting to notice that there is a correlation between the
three accelerations of the Bohmian trajectory in Fig. [6.4] and the three oscillatory behaviors
of the currents in Fig. In general, the results obtained for the total current are identical
for the two methods. However, we observe in the plots of the surfaces 1 and 4 two peaks
when the total current is computed from the first method. As mentioned in Sec. [5.4.2] these
spurious peaks are a consequence of the infinities generated in Egs. and when a
Bohmian trajectory crosses these surfaces. The computation of the current using the second
method is free from these spurious numerical peaks. The reason for the advantage of the
second method is that Eq. (5.32)) contains not only the conduction current, but also part of
the displacement current.

Once we have already discussed the ability our the BITLLES simulator to compute
time-dependent currents, we show here, the current response to the step input voltage in the
NDC region. In order to capture the pure effects of the dynamic in RTD, we introduce some
formalism.

If the input signal at the bias is the step voltage V (t) = Viu(t) + Vo [1 — u(t)] where u(?)
is the Heaviside (step function) function. The voltages V; and V5 are constant. Then the
current response can be expressed as I(t) = Iypan(t) + Liu(t) + I [1 — u(t)] where I; and I
are the stationary currents corresponding to V; and V5 respectively, and [y,.q, is the intrinsic
transient current. This formalism permits to focus on the current component carrying the
dynamics involved in the RT'D without performing any time derivative that from a numerical
point of view could be very inaccurate.
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Figure 6.5: Time-dependent total current computed on the six surfaces that form the volume € of Fig.
The computation of the current within the first method (dashed lines) has spurious effects that are not
present when the second method (solid line) is used.

The results reported in Fig. are for a RTD including Coulomb correlation among the N
electrons and among these electrons and those in the leads. Some behaviors can be observed.
As pointed out in the inset a, I;.4,(t) manifests a delay of about 0.2ps with respect to the
step input voltage, due to the dynamical adjustment of the electric field in the leads. After
the delay, the current response becomes a RLC-like response (inset a, solid line RLC response
2) i.e. purely exponential. Performing the Fourier transform of I, (t) (inset b solid line)
and comparing with the single pole spectra (Fourier transform of RLC-like responses, inset
b, dashed and dashed dotted lines) as depicted in the inset b, we are able to estimate the
cut-off frequency (about 1.6 T'H z for this device) and the frequency offset (about 0.76 T'H z)
due to the delay.

6.3.3 Current-current correlations

e A.Alarcén, G.Albareda , F.L.Traversa and X.Oriols Nanoelectronics: Quantum electron transport in the
book ”Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology”, edited by X. Oriols and J.
Mompart, Panstanford Publishing, ISBN: 978-981-4316-39-2

In the following example, we show how the BITLLES simulator can compute noise fea-
tures. Each Bohmian trajectory used to evaluate the current is selected according to the g—
and h— distribution (see Sec. giving rise to the noise. Thus, in the BITLLES simulator
the noise in the current can be easily obtained evaluating the autocorrelation function R(7)
of the current I, (¢) from Eq. (5.38). Taking the Fourier transform, it gives the two-sided
power spectrum S(f) of the fluctuations of Eq. . In the following we will refer to the
Fano factor as the ratio v = S(0)/Sschot With Ssenor given by Eq. .
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Figure 6.6: I,4,(t) an its Fourier transform in inset a and b respectively.

We now briefly discuss on how the many-body Coulomb interaction might affect noise
in RTDs. Specifically, we investigate on the correlation between an electron trapped in the
resonant state during a dwell time 7; and the ones remaining in the left reservoir. This
correlation occurs essentially because of the trapped electron perturbs the potential energy
felt by the electrons in the reservoir. In the limit of non-interacting electrons and mean field
approximation, the Fano factor will be essentially proportional to the partition noise (see
Fig. . However if the Coulomb correlation is self-consistently included in the simulations

W7
—e— BITLLES

2,54
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1,5 1

Fano Factor
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0,54 S S SO . B .

016 0,18 020 0,22 024 026 028 030 032 034

Voltage (V)
Figure 6.7: Fano Factor evaluated using the current fluctuations directly available from BITLLES

(see Sec. this result is no longer reached. Roughly speaking, as depicted in Fig. ,
an electron tunneling into the well from the source, raises the potential energy of the well
by an amount of e/Ce,,, where e is the electron charge and C,, the structure equivalent
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capacitance. As a consequence, the density of state in the well is shifted upwards by the
same amount. This can affect the noise in the following ways: If the resonant energy Eg, is

Source Source

Resonant
energy

[e/C,,

Drain Drain

Quasi Shifted
Fermi Resonant

levels energy

Figure 6.8: RTD Band diagram deformation caused by particle tunneling in the well

over the bottom of the conduction band in the source, when an electron enters into the well,
the density of state inside the well is raised but it does not change much the transmittance
of the sample for other electrons. The noise remains in the sub-poissonian regime (v < 1)
already present in the limit of partition noise only. Conversely if the resonant energy is under
the conduction band at the source, the raised density of state because of the presence of an
electron in the well makes accessible the resonant energy to other electrons staying near the
bottom of the source conduction band. Therefore, many electrons in the source can tunnel
into the well thanks to the first transmitted electron. Thus the Coulomb interaction tries to
regroup the electrons providing a super-poissonian noise (y > 1) (see Fig. .

Because of the inclusion of the time dependence self-consistent solution of the potential,
with BITLLES simulator we are not only able to reproduce Fano factor for 0 frequency as
reported in Fig. but we can also evaluate the high frequency spectrum S(f) given by
Eq. revealing information about internal energy scale of RTDs not available from DC
transport.
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Figure 6.9: Current noise power spectrum referred to Poissonian shot noise at different biases.

6.4 Driven Tunneling Device (DTD)

The lack of devices capable of generating, detecting and processing signals at frequencies of
Terahertz (THz) is currently one of the main difficulties for the progress of new technologies
for communications. Nowadays, solid-state devices with nanometric dimensions can also
generate output currents at THz frequencies (for example, some prototype transistors [121],
122] have been reaching gate lengths below 10 nm and frequencies working close to THz).
Since the conduction current is directly related to the electron dynamics, electron transit
times of few picoseconds [123] lead to output currents with THz frequencies.

In general, quantum electron transport in nanoscale systems is studied with static sce-
narios because of the electron transit time is much shorter than the inverse of any external
frequency affecting the device active region. However, in quantum systems driven by THz
signals the previous approximation is not valid and the electron transport cannot rely on
(stationary) Hamiltonian eigenstates (i.e. the electron energy along the device active region
is no longer a constant of motion). Several driven tunneling phenomena, such as control of
tunneling [125], harmonic generation [124] or the manipulation of the population dynam-
ics [130] are already discussed in the literature for different physical [126] or chemical [127]
systems. However, to our knowledge, the use of driven tunneling phenomenology for devel-
oping THz electron devices remains practically unexplored, in part, because of the difficult
coupling between quantum electron transport and electromagnetism [128|, [129]. If electrons
were neutral particles, only the Schrodinger equation determines their dynamics in nanoscale
scenarios. However, electrons are charged particles and they obey Schrodinger and Maxwell
equations, simultaneouslylz_f].

4Interestingly, the coupling between semi-classical electron transport and electromagnetism has been
already investigated [134] [135].
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Here, we present a new type of nanoelectronic device designed to process signals at THz
regime. We have called this device Driven Tunneling Device (DTD). It is a three terminal
device where the drain-source conductance is controlled by a gate terminal that can oscillate
at THz frequencies. The device active region is formed by a double barrier and a quantum
well. DTD can operate at room temperature, as most double barrier devices, see Fig.

2 nm
_o 6 Nnm
Source
Drain
—»I
Source
a VDS ¢ qv, Drain

(b) Gate

Figure 6.10: Schematic representation to explain the control on the source-drain current from the voltage
applied in the gate terminal. a) From the voltage applied in the gate terminal the resonant energy in the
quantum well is aligned with the energies of the bottom of the conduction band and the current increases.
b) When voltage applied in the gate brokes the energetic alignment and the current source-drain decreases.

The original contribution of this proposal is the use of dynamically modulated tunneling
[124, [125] 130] to control the output quantum current at THz frequencies (i.e. previous
proposals [I31} [132] do not exploit the capabilities of the driven tunneling phenomenology).

The essential characteristics that specify the DTD device are the following [133]:

1. The performance of DTD is based on coupling non-stationary quantum transport (i.e.
quantum electron transport with Hamiltonians that vary at frequencies comparable to
the inverse of the electron transit time) with electromagnetism.

2. The density of states inside the device active region of the DTD is designed/adapted
by properly modifying the conduction or valence band (by introducing perturbations
on the potential profile as double barrier structure).

3. The DTD is designed to produce an output current through the device active region
of the DTD that is mainly due to quantum time-dependent conduction current. In
other words, the DTD behaves as a conductor rather than as a dielectric, even at THz
frequencies below.

Let us enlarge the explanation of these three basic characteristics of a DTD with the

help of Fig. In the inset of Fig. we show a double barrier structure where the
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Figure 6.11: Transmission coefficient in function of the oscillating signal applied in the gate terminal. We
have adiabatic limit for f ) 100 GHz and non-adiabatic limit (high frequency) for f ) 50 THz.

bottom of the conduction band varies sinusoidally. Figure [6.11] shows the evolution of the
transmission probability of an electron in the double barrier when we vary the frequency
of oscillation by means of the gate voltage. We can distinguish three different regimes by
comparing the electron transit (dwell) time and the inverse of the frequency of the gate
voltage [136], [137):

1.

Adziabatic limit: If the potential variations that occurs at the gate are much slower
than the times involved in the description of the dynamics of electrons them we are
under a static or quasi-static regime and the quantum electron transport through
the double barrier can be understood by quantum theories independent of time. For
frequencies of few GHz can be assumed an adiabatic behavior of the system (the system
varies slowly between static states) because of the dynamics of electrons in nanoscale
devices involving transit times of order of picoseconds.

DTD working operation: The DTD exploit the potential of quantum electron
transport in non-static systems, i.e., when the adiabatic limit does not apply. For
its part, the dynamic transmission coefficient varies between the maximum and the
minimum of static transmission coefficient. For frequencies below 100 GHz (within
the adiabatic limit) the transmission is not affected by the oscillation of the double
barrier. However, when the frequency gets into the THz (comparable to the inverse of
the transit time of electrons) the transmission coefficient depends of the frequency of
oscillation.
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3. Non-adiabatic limsit: Finally, for frequencies much greater, non-adiabatic limit of
very high frequency, the result is still independent of the frequency of the oscillations
of the gate voltage.

As shown in Fig. [6.11] the range of frequencies where DTD can operate exactly focuses
the THz frequencies (the limit can be extended to adiabatic or non-adiabatic high frequency
for particular applications).

It is noteworthy that in DTD, the transit time of electrons is controlled largely by the
potential barrier (height and width). On the other hand, DTD can be implemented with
different systems containing some kind of interaction that form energy barriers (such as
double or triple barriers, and even multiple barriers). Therefore, the exact range of frequen-
cies shown in Fig. [6.11] can change with other DTD configurations. In particular, we have
developed our proposal to double potential barrier, as described Fig. [6.11} Thus, from a
manufacturing point of view, DTD devices allow different implementations. The only pre-
requisite is to have a potential profile of double / multiple barrier with a total length of
few nanometersﬂ Finally, it is important mention that the habitual static (or quasi-static)

§ ——, Gate - -
- T=16mm Vsl Dielectric

Transmission
line
uoissiwsuel | ~—

N AlGaAs
% InGaAs
[ ] GaAs

Gate V()

Figure 6.12: Schematic representation of a frequency multiplier DTD composed of a double barrier het-
erostructure inside the channel of a double-gate field effect transistor.

applications of tunneling devices depend on the exact value of resonant energies and these
can vary of a devices to other because of small fluctuations of the barriers dimensions or
imperfections of fabrication. On the contrary, the operation of DTD is based in the presence
or not of resonant energies, without being important its exact value as this value varies with
the gate voltage.

5In detail, one of the possible proposals for the manufacture of the devices is to use DTD techniques and
manufacturing technologies for MOSFETSs (such as double gate devices mentioned in Fig. introducing
into the canal two materials with an energy gap greater than the Si to form double barrier structure.
For its part, the control of double barrier profile can be achieved through the gate voltages through of
typical field effect of MOSFETs (i.e., the Coulomb interaction between electrons in the gate and channel).
The configuration of double-gate MOSFET allows a robust control of the potential profile for nanoscale
transistors
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6.5 DTD applications

e Source: X. Oriols, F. Boano, and A. Alarcén Self-consistent coupling between driven electron tunneling
and electromagnetic propagation at terahertz frequencies Applied Physics letters., 92, No 22 (2008).

o Source: X. Oriols, A. Alarcén, L. Baella. Dynamically modulated tunneling for multipurpose electron
devices: Application to THZ frequency multiplication. Solid-State Electronics, 51, 1287-1300 (2007).

In this section we configure BITLLES as a DTD device. The results presented here,
follows the reference [3[]

In this section we present two of the possible DTD applications, in detail, a rectifier and
a frequency generator. The computation of the total current for both applications is made
exclusively by Ramo-Shockley-Pellegrini theorems explained in section Sec. using Eq.
for the conduction current and Eq. for the displacement current.

In order to compute both applications we design a DTD with source and drain AsGa
regions and with two AlAsGa potentials barriers. The dimensions of the different regions of
DTD depends of the particular application.

In all of the DTD 3D structure we apply an effective mass of m = 0.068m, where m,
electron free mass of the electrons. The Fermi energy has a value of 0.25¢V. The quantum
transport takes place from source to drain in the x direction. The lateral area of DTD
is sufficiently small to consider electron confinement. In detail, the lateral area in the y
direction is 3nm and in the z direction is the 4.8nm.

6.5.1 Frequency Rectifier

As a first example, we consider a DTD with a double barrier of 1.5nm with a height of
0.6eV and a quantum well with a value of 2.5nm. We also apply a frequency at the gate
terminal, Vi (¢), of 250GHz. In Fig. [6.13] in the red line, we show the input signal voltage
that we apply at the gate terminal of DT'D. While in the black line show the rectified output
signal. The rectification is carried out because of the gate negatives values. In this case the
electrons find a resonant barrier that avoid the pass of current.

5The equations presented in reference [3] are written in a general form and are also valid for both single
and many- particle systems.
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Figure 6.13: Red line: We present the DTD applied gate voltage that is the input signal. Black line: We
present the rectified signal that corresponds at the output signal of DTD.

6.5.2 Frequency multiplier

Here, we consider a DTD with a double barrier of 1.5nm with a height of 0.8eV and a
quantum well with a value of 5.1nm. We apply a frequency at the gate terminal of 100G H z.
In Fig. [6.14] we show in the red line a period of the gate voltage and in the black line we
show the generated signal with a period of 200G H z. The multiplication appears because of
the gate negative bias values, the electrons find another resonant energy different from the
one used in the positive bias values.
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Figure 6.14: Red line: We present the DTD applied gate voltage that is the input signal. Black line: We
present the multiplier signal that corresponds at the output signal of DTD.

6.6 Exchange interaction in a nano-resistor

In Sec. we have introduced how to treat exchange interaction with Bohmian trajectories
in a spinless system. This interaction has the effect of imposing restrictions at the maximum
number of electrons in the device active region and, by extension, in the total current across
the system. Previous results (Sec. and Sec. have been obtained with Coulomb
correlations, but without exchange correlations. Here, we consider the importance of the
exchange correlations in the prediction of the I-V characteristic of a nano-resistor, see Fig.
6. 151

6.6.1 Computation of I-V characteristic in a nano-resistor with
exchange interaction

We configure the BITLLES simulator as the nano-resistor depicted in the Fig. [6.15, with
N* doped source and drain AsGa regions and a device active region of L, = 30nm.
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Figure 6.15: Nano-resistor designed with N doped source and drain AsGa regions, a device active region
of L, = 30nm, an effective mass m¥ o, = 0.067mg with mg the electron free mass and a fermi level of
0.15eV. The lateral dimensions are L, = L, = 9nm.

The lateral dimensions are L, = L, = 9nm. We assume a constant effective mass
Mysce = 0.067my with my the electron free mass and we consider a fermi level of 0.15eV.
Room temperature is also considered in all simulations. We consider that the transport
takes place from source to drain in the x direction. We study a 1D system (L, > L,, L.),
where we only take into account the first energy of the subband of AsGa with a value of
E; = 0.13eV, just below of fermi energy.

In Fig. [6.16] we present the I-V curves of the simulated system for four different sce-
narios under an applied source-drain bias: without correlation (square black line), with
exchange correlation (circle red line),with Coulomb correlation (up triangle blue line) and
with Coulomb plus exchange correlations (down triangle green line).
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Figure 6.16: We present the I-V curves for the simulated system in four different situations: without
correlation (square black line), with exchange correlation (circle red line), with Coulomb correlation (up
triangle blue line) and Coulomb plus exchange correlations(down triangle green line). In this figure, we
consider the importance of exchange correlations in the prediction of the I-V characteristic of a typical
nano-resistor.
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The differences between the current values in the different plots of Fig. [6.16] are conse-
quence of the Coulomb and exchange interactions. We can explain this fact with the next
two figures centering our explanation in the effect of the exchange interaction. The first one
is the Fig. [6.17, where we plot the time-average (mean) number of electrons that travels
from drain to source (square black line, red circle blue line, up triangle blue line and down
triangle green line) and from source to drain (square black dotted line Circle red dotted line,
up triangle blue dotted line and down triangle green dotted line). These electrons crossing
the system are responsables of the DC current.
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Figure 6.17:  Square black line, red circle blue line, up triangle blue line and down triangle green line:
we plot the main number of electrons from drain to source for the different situations showed in Fig. [6.16]
Square black dotted line, circle red dotted line, up triangle blue dotted line and down triangle green dotted
line: we plot the main number of electrons from source to drain for the different situations showed in Fig.
0.10l

The second is the Fig. |6.18, where we plot the time-average number of electrons injected
from the drain that have been bounced (square black line, circle red line, up triangle blue
line and down triangle green line) and the time-average number of electrons injected from
the source that have been finally reflected (square black dotted line, circle red dotted line,
up triangle blue dotted line and down triangle green dotted line).
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Figure 6.18: Square black line,circle red line, up triangle blue line and down triangle green line: we plot
the main number of electrons injected from drain that have been bounced for the different situations showed
in Fig. Square black dotted line, circle red dotted line, up triangle blue dotted line and down triangle
green dotted line: we plot the main number of electrons injected from source that have been bounced for the
different situations showed in Fig. [6.16]

These electrons are reflected and do not cross the device active region. Therefore, these
electrons do not contribute to the DC current only to the AC current.

The more interesting effect that appears in Figs. [6.17 and [6.18] is at low bias. When
exchange interaction is not considered, electrons injected from the source and drain are
finally transmitted. However, when exchange interaction is considered these electrons will
try to occupy the same positions and the electrons will be reflected. This has been explained
in the last paragraphs of Sec. |4.3.2. This explains the differences in the low bias of Fig.
0. 17

At high bias, we see that electrons are mainly coming from the source. Then, an ex-
change interaction with the same sign of the velocity appears. We do also see that Coulomb
interaction is very strong and the effect of the exchange interaction is not appreciated when
the strong Coulomb interaction is present.

6.6.2 Computation of the noise characteristic in a nano-resistor
with exchange interaction

As commented in Sec. one of the most relevant advantage of Bohmian mechanics is
its use to compute current fluctuations. In the following example, from the time-dependent
current provided by the BITLLES simulator, we compute noise characteristics of the nano-
resistor. We design BITLLES simulator with the same general parameters of the nano-
resistor presented in Sec. The fluctuations of the current can be easily obtained from
the autocorrelation function R(7) of the current I, () (see Sec. from Eq. (5.38). As
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in Sec. we define the Fano factor as the ratio v = S(0)/Sschot With Ssenor given by Eq.
(15.40)).

In a system without correlations among electrons the noise are produced only by the
injection of electrons from contacts into de device active region. In this case, the computation
of the noise does only need the knowledge of the injection probability P(N, 7) defined in Sec.
5.3.1.3] The fluctuations of the injection produces basically a Poissonian noise. Deviations
from this Poissonian value are due to the Coulomb and exchange correlations that we include
inside the device active region.

In Fig. [6.19|we plot the Fano factor evaluated in four different scenarios under an applied
source-drain bias: without correlation (square black line), exchange correlation (circle red
line), Coulomb correlation (up triangle blue line) and Coulomb plus exchange correlations
(down triangle green line). In this figure it is show that for low bias the system is super-
Poissonian (7 > 1). We can explain this results from Eq. where if the mean value
of the current, that we show in Fig. [6.16] is small then the value of Fano factor is high. In
detail, the value of the current is the result of the rest of drain and source components. On
the contrary the Fano factor is the result of the sum of drain and source components of the
noise. For high bias the injection of electrons is carried out principally from source and the
Fano factor tends to a Poissonian value (y = 1). For more details see reference [91].
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Figure 6.19: Fano factor evaluated in a nano-resistor using the current fluctuations computed from different
bias computed using BITLLES simulator.

If we make a Fourier transform of the autocorrelation function R(7), we obtain the current
power spectrum S(w) of Eq. . We can complete the explanation of noise characteristic
of the nano-resistor computing the current power spectrum selecting three different values
of V', in particular, 0,06V, 0,10V and 0,20V as we show in Fig. [6.19] In detail, in each of
the following figures we present the next simulations: without correlations (black solid line),
with exchange correlation (dashed red line), with Coulomb correlation (dotted blue line) and
with Coulomb plus exchange correlation (dash dotted green line).
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Figure 6.20: We present the current power spectrum for V' = 0,06V . The noise has almost a Poissonian
value for all cases but still super-Poissonian. The fluctuation of the current power spectrum around 1THz is
because of the number of electrons bounded for low bias.

In Fig. the fluctuations of the current has almost Poissonian value for all cases
but still super-Poissonian. The fluctuation of the current power spectrum around 1THz is
because of the number of electrons bounded for low bias as we can see in figure Fig. [6.18|
The fluctuation is more relevant especially for exchange correlations for the reason that we
have mentioned in the previous subsection: The reflected electrons do not affect the DC
current, but they affect the AC value.
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Figure 6.21: We present the current power spectrum for V = 0, 10V. the noise is Poissonian for simulations
without correlations and with exchange correlation but is sub-Poissonian ( 0 < v < 1) for simulations with
Coulomb and Coulomb plus exchange correlations.

In Fig. the system is Poissonian for simulations without correlations and with
exchange correlation but is sub-Poissonian ( 0 < v < 1) for simulations with Coulomb and
Coulomb plus exchange correlations.
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Figure 6.22: We present the current power spectrum for V = 0,20V. From high bias, we realize that the
electrons are not have bounced so we do not have any perturbation of the spectrum for 1THz.

In Fig. from high bias, we realize that the electrons are not have bounced so we do
not have any perturbation of the spectrum for 1THz as we have shown in Fig. [6.18|
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In summary, the present results are still unpublished and more simulations are still needed
to discuss as for example some differences found in Fig. that are not mentioned here. In
any case, the ability of the BITLLES simulator to compute higher moments and the utility
of noise to characterize correlations is clearly manifested with these preliminary results.
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Chapter 7

Conclusions

Nowadays, the present status of Bohmian mechanics among the scientific community is quite
marginal. Most researchers do not know nothing about it or believe that is not fully correct.
There are many others that know that quantum phenomena can become interpreted in terms
of trajectories, but they think that this formalism cannot be useful in their daily research
activity. In my opinion, the Bohmian mechanics can only leave its current marginal status
and be a recognized theory, when a relevant application build from Bohmian mechanics is
successfully recognized among the scientific community, see chapter 3. In particular, the
most significative goal of this thesis is the collaboration in the development of the BITLLES
simulator. We believe that this simulator can be, perhaps, the first revelent contribution of
Bohmian theory to the field of quantum electron transport.
The two relevant features of BITLLES simulator are:

1. Its ability to deal with many-particle problem with Coulomb and exchange
correlations: The many-particle Schrodinger equation can only be solved for very
few degrees of freedom. This issue is at the heart of most of the unsolved problems
in quantum transport (the so-called many-particle problem). Following [I], we have
presented a new approximation to solve the many-particle problem based on Bohmian
mechanics. This quantum electron transport model take into account the Coulomb and
exchange correlations using Bohmian trajectories, see chapter 2. In fact, the BITLLES
solves the many-particle correlations solving the time-dependent Poisson equation self-
consistently with the time-dependent many-particle schrodinger equation.

2. Its ability to provide a full information of the all moments current distribu-
tion: Contrarily to the standard interpretation of quantum mechanics, the continuous
measurement, of the current is not a delicate issue with Bohmian mechanics because
of the measured quantities depend, ultimately, on the distribution of positions of a
set of Bohmian particles (i.e. no wavefunction collapse is invoked). Only a reasonable
approximation of the role of the ammeter on the dynamics of simulated electrons and
an ensemble averaging (or time averaging for ergodic systems) are needed. We have
shown that we can compute the probabilities of all available current values. From this
result, we can compute the average (first moment), the variance (second moment) and
any other higher moment of the distribution of the current.
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The main contributions of this thesis to the development of BITLLES simulator are:

1. FExchange interaction: We introduce the exchange interaction to treat many-particle
systems with spinless electrons. In this context, we show how exchange interaction is
the final responsible for determining the total current across the system. A new approx-
imation to study many-particle systems with spin of different orientations is present.
We have developed all this ideas in chapter 4. Some practical examples are studied
taking into account the exchange interaction.

2. The computation of the time-dependent total (conduction and displace-
ment) current: The practical implementation of the time-dependent total (conduc-
tion plus displacement) current in the BITLLES simulator is achieve by means of
the self-consistent time-dependent solution of the Poisson equation using the Ramo-
Shockley-Pellegrini theorems. Thus, the continuity of the total current is guarantied.
We have developed the main ideas in chapter 5. Finally, in chapter 6, different capa-
bilities of BITLLES simulator such as DC, AC and fluctuations are showed using RTD
and DTD devices.

3. The Driven Tunneling Device: We have presented a new type of nanoelectronic
device designed to process signals at THz regime. We have named this device Driven
Tunneling Device (DTD). It is a three terminal device where the drain-source conduc-
tance is controlled by a gate terminal that can oscillate at THz frequencies. We have
developed the mean ideas and different examples of this device in chapter 6.

4. Tight-binding: In order to improve the definition of the band-structure we have
developed a numerical approximation to solve the Schrodinger equation using tight-
binding model. Here, we develop the tight-binding Hamiltonian taking into account the
Coulomb interaction among electrons. We have developed this ideas in the appendiz.

An interesting initiative to recognize the important application of Bohmian mechanics
in different field of science is summarize in the book: Applied Bohmian Mechanics: From
Nanoscale Systems to Cosmology, [4], edited by X.Oriols and J.Mompart. We sincerely be-
lieve that the present Bohmian formulation of quantum transport has computational advan-
tages over previous orthodox simulation tools. Therefore, since electron devices are present
in almost every moment of our lives, we hope that the BITLLES simulator will be, perhaps,
one of the first examples where Bohmian mechanics do really help in improving our real life.
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Appendix A

Tight-binding model

Tight-binding model is based on to assume that at each lattice point of a crystalline structure
the total Hamiltonian of the system can be approximated by a Hamiltonian that depends of
the location of each atom. Fach of these atomic points are described by an atomic orbital
(wavefunction) [I38]. In this appendix we develop a numerical approximation to solve the
following Schrodinger equation:

zh8

521 Ve(8)) = H|Wy(2)), (A1)

where the wavefunction solution of Schrodinger equation can be written as:

[Wy(t)) = ZCg(ja )17, (A.2)

and where C, are coefficients and |j) is the orthonormal (discrete) basis that represents
each molecular orbital being j the index that determines the position of the orbital.

The Hamiltonian, H = H, of Eq. , is the tight-binding Hamiltonian without
Coulomb interaction under a simple first-neighbors:

Ho =Y [ld)esli] + u(li)(i + 1] + [i) (i = 1])], (A.3)

%

where ¢; is the on-site energy and u the hopping energy.

A.1 Orthogonal orbitals

In this subsection, we solve Eq. (A.1]) describing the Hamiltonian of crystalline structure
without Coulomb interaction.

A.1.1 Development of tight-binding Hamiltonian without Coulomb
interaction

We use Egs. (A.3) and (A.2)) to develop the right hand of Eq. (A.1):
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Ho|W,(t)) = Hy ch(j’ tlj) = Z[lz’>ez~<z‘| ZCgU, t)lj)
Fulli) i+ 113 Col1)13)

Hi) =113 GG (A4)

Now, we multiply the last equation by (i[:

(il Hol Wy (1)) = Y [(ili)elil ZCg(j, t)17)

+ul(ili) (i + 1) CylG, t)14)
J
+(ili) (i =11 ) Gy, D], (A.5)
J
In Eq. (A.5)), only when ¢ = j the scalar products will have as result equal a 1 (when
i=7j,14+1=jand i—1= 7). Therefore, we eliminate the summations of j:

(i[Ho[Wy(t)) = €iCy(J, 1) +uCy(j + 1,8) + uCy(j — 1,) (A.6)
Now, we develop the partial derivative of left hand of Eq. (A.1]). Here, we use Eq. (A.2)

and the definition of first derivative to obtain:

Cy(g t + A7) = D2 Cy(gt — At)]y
m!%@»:zh%ZCgu,t)m:mZa ot 80) — 3 Gyt = 200)

(A7)

As in the previous subsection we multiply both sides by (i|. Therefore, only i = j will
have the scalar products equal to 1:

) L C(iyt+ D) = Cyli, t — )
(i 1,(0) = h - . (A3)

Using Eq. (A.6) and Eq. (A.8) we obtain the definitive expression of Schréodinger equa-

tion:

S0 (1)) = G, (0)) = = [Cyli 4+ A1) = Cyfi t = A1) =

€iCy(1,t) +uCy(i + 1,t) + uCy(i — 1,t). (A.9)
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Finally the time evolution of the system without Coulomb interaction among electrons
are done by:

Cyli, t + At) = Cy(i, t — At) + QZ—f(sng(z',t) +uCy(i + 1,t) + uCy(i — 1,¢)).  (A.10)

Calculation of Cy(i,1)
In the basis |i) the ket |U,(¢)) must to be represented by a set of coefficients:

Cyli,t) = (i1, (x1,8)) = (] 3 Gy D). (A.11)
J
From previous equation we obtain the expression:
C,i,t) = / (i1 (1[0, (1, 1)) dry = / B (1), (21, £) s, (A.12)

where we have used 1 = [ |xy) (21 |dx;.
The function ®; is the spatial wavefunction of the i-orbital. We need the terms C,(i, t)
to find the wavepackets to be able to compute the Bohmian velocity.

A.1.2 Development of tight-binding Hamiltonian with Coulomb
interaction

When the Coulomb interaction is present we have to solve the next Schrodinger equation:

BN (1) = {Ho+ U} 40, (A13)

where, for example, U, = U(x, 25[t]) = -—-——— and Hj is the tight-binding Hamiltonian

~ 4meo s—zalt]
of Eq. (A.3). Here, we study only the part of equation corresponding to Coulomb interaction.
As we have made in the last subsection we multiply by (i| and also we use:

| :/_oo |x)<x|dm/_oo 2 (| (A.14)

o0 oo

Therefore:

(U, e, (1)) = (A.19
~ [ do [ @s'tila)alU @, walt)lo') (|, 1)

:/dx/dx’<i\x> ! x_;@m@wxxwg(m. (A.16)

471'8()

Now we apply the next property of Dirac’s delta:
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/OO dx' f(z)d(x — 2') = f(2)) (A.17)
/ df(i@»f%x_;w@wg(t» (A.18)

~ [awsia) %@mZong:

471'80

:ZCg(j,t)[ / 42/ (2! ) — %qﬁj(w’)],

dmeg x — xot]

where we use (2'[W,(t)) = (2’| >, Cy (4, 1)]7)-

The final expression for time evolution of the system with Coulomb interaction is:

2A
Cylist+ A1) = Cylist = A1) + 2= (G i, (A.19)
+uCy(i+1,t) + uCy(i — 1,t)
1 1

¢;(«)]).

dmeg x — xot]

+ 326,60 [ dr'oia)

A.2 Non-Orthogonal orbitals

Now we calculate the evolution equation taken into account that the orbitals are non-
orthogonal and without Coulomb interaction.

The tight-binding Hamiltonian is done by the equation Eq. and the dynamic of the
system by the Schrodinger equation of Eq. . The wavefunction solution of Schrédinger
equation is a Gaussian function, |W,(t)) = >, Cy(j,t)|7), where C, are the coefficients and
|7) is the orthonormal (discrete) basis que represents each molecular orbital. Finally we
define, (i]j) = S; ;.

We use Egs. and in the right hand of Schrédinger equation:

HI,(0) = H Y G015 = Y ll)elil 3 €yl 013)

+u(() (i + 1 Z Co(5,1)17)
+Hi) (i =1 ZCg(j’ t)]7))]- (A.20)

Now, we multiply the last equation by (I|:
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<l!H|‘Pg(t)>=Z (l|o)ei IZC J: t)]7)
w((13) z+1|ZC 715

+H(lH (=1 ZCg(J} 1)) =

Z(ll (e il ) ZC g )+ u({i + 115) ZC jst)
+(i = 1[7) ZC jit

_ZS,Z@S”ZO 4.t + u( HUZC Jit)
+Sz 1]20 J7

(| H|W,(t ZS“ZC’ 4, t)[€6Si; 4+ u(Sipr; + Si1,))-

i

101

(A.21)

(A.22)

(A.23)

Now, we develop the partial derlvatlve of left hand of Eq. (A.1] . If we use Eq. (A.2)) and

the definition of first derivative we obtain:

th|(t)) = th o ZC (., )15 mz Cy(J; t + At) AtC(,t—At)
Now we multiply the last equation by (l|:
-y Gl B2 G B
<|§t _ F‘Z C,(j.t + At) AtO( =t

The final expression for the time evolution of the system is:

Cy(j,t 4+ At) — Cy(j, t — At)
hy 2

Z S Z Cy(4, t)[€:Sij + u(Si15 + Si—14)]-
J

)

Siy =

1)

(A.24)

(A.25)

(A.26)

(A.27)
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Y Cylt+ At =) Cyliit — Ab) +
J J
20t 4 ,
Wsl’j Z SM Z Cg(j, t) [81'5’1‘7]' + U(Si+1,j + Si—l,j)]- (A28)
i J
Calculation of Cy(i,1)
If the orbitals are non-orthogonals, then we have to define the terms:
D,(i,t) = / (22 (210, (1, 1)) dry = / O (21)0, (21, ), (A.29)
where (i[Wy(x1, 1)) = (i| 32; Cy(4,£)]7) and Wy(x1,t) = 325 Cg(j, 1) @5 ().
So, we obtain the expression:
Dy(i.t) = [ @)Y Gyl 0, (A.30
o -
where >, Cy(j,t) is not dependant of z1, then:
Dy(i,t) = Cy(j, t)/ OF (21)®; (21 )day . (A.31)
J N v

Notice that, Dy(i,1t)
true for non-orthogonals orbitals. Finally:

Dy(i,t) =Y Cylj, 1)Si;.
J

We can write the last expression as matrix:

S11 S12
DQ(L t) 591 599
Dy(N,t) .

And finally C,(j,1) is:

S11 S12
S21 S22

SN1

= C,(1,1), for orthogonals orbitals. However, this identity is not

(A.32)
) (G
. : (A.33)
o C,y(N, 1)
-1
o D, (1,t)
. : (A.34)
o D,(N, 1)
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