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RESUM  

 

La neurotransmissió dopaminèrgica i serotonèrgica al còrtex preforntal 

i a les regions del sistema límbic són un dels principals substrats 

cerebrals de les funcions executives (implicades en l’organització i el 

control) i la regulació emocinal. Tant la MDMA com el cannabis alteren 

la funcionalitat d’aquests sistemes de neurotransmissió. Certs 

polimorfismes funcionals de la catecol-O-metiltransferasa (COMT) i del 

transportador de serotonina (hSERT) s’han associat a diferències 

individuals en el funcionament cognitiu. La interacció entre ambdós 

gens juntament amb factors ambientals poden explicar la major o 

menor susceptibilitat dels consumidors a els efectes deleteris de les 

substàncies psicoactives en les arees.  

L’objectiu és investigar la interacció de diversos polimorfismes 

relacionats amb els sistemes serotonergic i amb el rendiment d’una 

població de consumidors de MDMA i cannabis en la realització de 

diverses tasques neuropsicològiques (memòria i funcions executives 

pricipalment). 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Was it all worth it, giving all my heart and soul, 

Staying up all night, was it all worth it, 

Living breathing rock n'roll this never ending fight, 

Was it all worth it, was it all worth it, 

Yes, it was a worthwhile experience, 

 

It was worth it. 

 

 

Queen, The Miracle (1989)
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The use of MDMA has been associated to acute toxicity and long term-

term neurotoxicity. In animal models, neurotoxicity involves mainly an 

axonopathy of the serotonergic neurotransmission system. In humans, 

part of these neurotoxic effects is translated into cognitive 

impairments, particularly in the memory and executive functions 

domains. In this regard, several studies were undertaken by our 

research group in order to shed some light into these issues. 

 

The ENTE study (Ecstasy NeuroToxic Effects) recruited one hundred 

seventeen participants (37 MDMA polydrug users , 23 cannabis users, 

and 34 non drug users) followed during four years. Participants were 

evaluated in terms of immune system functionality (Pacifici et al., 

2007), cognitive performance (de Sola Llopis et al., 2008a;de Sola 

Llopis et al., 2008b) and prevalence of psychopathology (Martín-

Santos et al., 2010).  

 

Regarding cognitive performance, at baseline, ecstasy polydrug users 

showed significantly poorer performance than cannabis users and non 

drug using controls in a measure of semantic word fluency. When 

ecstasy users were classified according to lifetime use of ecstasy, the 

more severe users (more than 100 tablets) showed additional deficits 

on episodic memory. After two years, ecstasy users showed persistent 

deficits on verbal fluency, working memory and processing speed.  

 

With respect to psychopathology associated to ecstasy use, mood and 

anxiety disorders are the most prevalent psychiatric diagnoses. 

Dysfunction in the serotonergic system is the most widely accepted 

mechanism in the neurobiology of depression, and also one of the 

main targets of MDMA-induced neurotoxicity. In the 3-year follow-up, 

incident cases of depressive disorders were more primary than 

substance-induced and only observed in the ecstasy users group.  
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In the ENTE study, genomic DNA was collected and preliminarily the 

association of the serotonin transporter polymorphism (5-HTTLPR) 

with mood disorders was, assessed. The 5-HTTLPR polymorphism 

was associated with lifetime of primary mood disorders in the ecstasy 

group (p= 0.018). The prevalence was significantly higher among 

individuals with genotype S/S than among those with either genotype 

L/L or L/S. 

 

On the light of these preliminary results, further analyses in this 

population were undertaken, expanding the number of genes 

examined. Specifically, semantic fluency impairment in ecstasy users, 

one of the most robust findings in clinical studies, was examined more 

in depth, in terms of a better exploitation of neuropsychological results 

and expanding the number of gene polymorphisms evaluated (two 

polymorphisms in the 5-HTT and three polymorphisms in COMT). 

Positive associations were found between semantic fluency and the 

polymorphisms examined. 

 

These results on the ENTE population propelled the performance of 

more in depth study on the association of lifetime drug use and a 

comprehensive array of genes targeting the dopaminergic and the 

serotonergic neurotransmission systems among others, on cognitive 

performance in an expanded population of ecstasy users. 
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1.1. MDMA, A BRIEF HISTORY 

 

3, 4-methylenedioxymethamphetamine (ecstasy, MDMA) is one of the 

most popular illegal psychostimulants used by youth. MDMA belongs 

to the designer drugs group. According to their chemical structure, 

designer drugs can be classified into five categories: 

phenylethylamines, synthetic opiates, arylhexylamines, derivatives of 

methaqualone and others. MDMA is a phenylethylamine structurally 

related to amphetamine and mescaline.  

Ecstasy is consumed recreationally at dance clubs and “rave” or 

“techno” parties. Ecstasy is usually sold in the form of tablets of 

different colours decorated with a wide variety of designs and logos, it 

can also be found as crystals. The content in “ecstasy” tablets of 

MDMA varies greatly from batch to batch, but regularly it has been 

found to contain between 80 and 150 mg of MDMA. 

 

MDMA was first synthesized in 1912 by Anton Kollisch in the Merck 

laboratories as a chemical intermediate in the synthesis of 

hydrastinine, an astringent and clotting agent (Freudenmann et al., 

2006). It was patented two years later but it never became marketed. 

In 1953, the US Army Chemical Centre conducted pioneering 

toxicological studies in animals but results were not declassified and 

published until two decades later (Holsten and Schieser, 1986). In the 

1960’s and 1970’s the mental health community began to explore the 

use of MDMA in psychotherapy because of its properties to induce 

feelings of euphoria, friendliness, closeness to others, and empathy 

after its administration. The recreational use of MDMA began in the 

late seventies in certain cultural groups. In the United Kingdom MDMA 

was classified as a controlled substance in 1977. In 1985 MDMA was 

included in the Schedule I of illegal substances by the U.S. Drug 



Introduction 

24 

Enforcement Administration due to its abuse potential and its lack of 

medical application. Finally, in 1986 and after some debate between 

authorities and psychotherapists, MDMA was considered 

internationally illegal by the WHO (World Health Organization) Special 

Committee on Drug Dependencies. In Spain, the same year of the 

announcement of the WHO, the use, fabrication, importation, 

transportation and sale of MDMA was prohibited by ministerial order 

(Boletín Oficial del Estado, BOE, June 1986). Although the prohibition, 

its use did not stop in Europe and North America in the 1990’s. The 

popularity of ecstasy is due to its positive effects, which include 

increased energy feelings, confidence, elevated mood, euphoria and 

empathy (Cami et al., 2000).  

 

1.2. THE PHARMACOLOGY OF MDMA   

1.2.1. Mechanism of action 

 

The mechanism of action of MDMA is similar to that of amphetamine, 

causing the release of the monoamines serotonin (5-HT), dopamine 

(DA) and norepinephrine (NE) into the synaptic cleft. The main 

difference is that while amphetamine has a more prominent effect on 

dopaminergic and adrenergic activities, MDMA is more active in the 

serotonergic system. 

In the neurons containing monoamines, the neurotransmitters are 

stored in vesicles situated in the proximity of the membrane. In normal 

conditions, when a stimulus arrives, the content of the vesicles is 

released into the synaptic cleft in order to bind to the postsynaptic 

receptors and induce the signal transduction.  

MDMA binds to the plasma membrane monoamine transporters and is 

translocated into the cytoplasm. Once inside, it stimulates the 
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neurotransmitter release through the transporter, reversing its normal 

function. Besides, MDMA is a substrate for the vesicular monoamine 

transporter (VMAT) and possibly enters the vesicle through this 

transporter and depletes the vesicular neurotransmitter storage by 

reversing the normal function of the transporter (Partilla et al., 2006). In 

addition, MDMA is a mild inhibitor of monoamine oxidase A (MAOA) 

activity, which might increase the extracellular levels of monoamines 

(Green et al., 2003). 

Data obtained from animal studies, namely rats, proved that MDMA 

exerts an acute and rapid release of serotonin in the brain, as 

evidenced by in vitro studies using rat brain slices or synaptosomes 

(O'Loinsigh et al., 2001;Nichols et al., 1982;Johnson et al., 

1986b;Fitzgerald and Reid, 1990), followed by a depletion of brain 

serotonin and its main metabolite, 5-hydroxyindoleacetic acid (5-

HIAA). MDMA also inhibits the activity of tryptophan hydroxylase 

(TPH), the rate limiting enzyme in the synthesis of serotonin (Bonkale 

and Austin, 2008;Kovacs et al., 2007;Stone et al., 1989). This inhibition 

can last up to two weeks following a single dose of MDMA. Another 

neurotransmitter affected by the action of MDMA is dopamine, which is 

also rapidly released in brain after treatment with MDMA (Green et al., 

2003). MDMA is also known to inhibit the dopamine transporter (DAT), 

the norepinephrine transporter (NET), and the serotonin transporter (5-

HTT).  

In contrast to the effects of MDMA observed in rats, studies conducted 

in mice have demonstrated a very different action profile, specifically a 

neurotoxic damage to dopaminergic terminals, reflected by a decrease 

in the concentrations of dopamine and its metabolites, and a decrease 

in densities of dopamine transporter (Granado et al., 2008;Green et al., 

2003;Stone et al., 1987;O'Callaghan and Miller, 1994).  
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1.2.2. Pharmacokinetics and metabolism 

 

MDMA has a chiral centre being present in two optical isomers (figure 

1) that display different pharmacologic activities, metabolism and body 

disposition. The dextrorotatory form (S-(+)-MDMA) is the most active in 

the CNS and is responsible for psychostimulant and empathic effects.  

 

 

 

           (S)-(+)-MDMA           (R)-(-)-MDMA 

 

Figure 1: Chemical structures of the enantiomers of MDMA.  

 

MDMA metabolism has two main metabolic pathways: (1) O-

demethylenation followed by cathechol-O-methyltransferase-catalyzed 

(COMT) methylation and/or glucuronide/sulphate conjugation and (2) 

N-dealkylation, deamination, and oxidation to the corresponding 

benzoic acid derivatives conjugated with glycine (de la Torre et al., 

2004). Both pathways operate at the same time but at different rates, 

being the first one predominant in humans. Different CYP450 

isozymes are involved in the different metabolic pathways. In humans 

O-demethylenation is catalyzed by CYP2D6, CYP1A2, and CYP2B6 to 

form 3,4-dihydroxymethamphetamine (HHMA) while N-dealkylation of 

MDMA to 3,4-methylenedioxyamphetamine (MDA) is catalyzed by 

CYP1A2, CYP2D6 and CYP3A4 in humans (de la Torre and Farre, 

2004). The further O-demethylenation of MDA, gives rise to 3,4-

dihydroxyamphetamine (HHA). Catechol type metabolites HHMA and 

HHA are O-methylated by COMT to 3-methoxy-4-

hydroxymethamphetamine (HMMA) and 3-methoxy-4-

hydroxyamphetamine (HMA) (figure 2). The elimination half-life of 

MDMA after a single dose is about 8 to 9 h (de la Torre et al., 
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2000;Mas et al., 1999). MDMA presents a non-linear kinetics above 

certain doses in humans, with plasmatic concentrations of MDMA not 

proportional to those administered, due to the inhibition of its own 

metabolism (de la Torre et al., 2000;Farre et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: MDMA metabolism in humans, including the main enzymes involved. 

1.2.3. Desired effects 
 
MDMA and other designer drugs produce euphoria and 

psychostimulation, increased empathy and altered levels of perception. 

The reported desired effects are those referred to as entactogenic 

effects, which include tendencies to be intimate with those around 

them, a greater facility for communication and for interpersonal 

relation. Other sought effects are euphoria, the sensation of well-being 

and pleasure, along with the psychostimulant effects of an increased 
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energy, talkativeness, decrease in tiredness and appetite (de la Torre 

et al., 2004).  

 

1.2.4. Acute adverse effects 
 

The acute adverse physiological effects that occur after ingestion of 

ecstasy in humans include elevated blood pressure and heart rate, 

nausea, tremor, and hot and cold flushes, among others. Perhaps the 

most predominant and severe acute adverse effect is hyperthermia 

(with body temperatures of over 43ºC reported), which can lead to 

such problems as rhabdomyolysis, myoglobinuria and renal failure, 

liver damage and disseminated intravascular coagulopathy (Kalant, 

2001). At a cardiovascular level the following physiopathological states 

have been observed: arterial hypertension, tachycardia, arrhythmia, 

myocardial ischemia (angina) and acute myocardial infarction, 

subarachnoideal haemorrhage, cerebral infarction and thrombosis 

which may arise from short-term hypertension, the possible swelling of 

cranial blood vessels and dehydratation. 

Cephalea, trembling, muscular tension and chewing, vertigo, ataxia 

and dystonia can also be observed. The excess of serotonin in the 

central nervous system (CNS) can induce the serotonin syndrome. 

At the psychological level, dysphoria, insomnia, irritability, agitation, 

hostility and confusion are some of the effects that may follow the 

ingestion of MDMA. Some references to hallucinations and certain 

types of paranoia are also reported (Green et al., 2003).  
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1.2.5. Long-term effects 
 

There is a good body of evidence that MDMA causes long-lasting 

decreases in serotonin and 5-HIAA tissue levels in laboratory animals. 

Reduction in the activity of TPH and in the activity and density of the 

serotonin transporter are also observed (Colado et al., 1993;Perrine et 

al., 2010;Commins et al., 1987). In humans, ligand-binding imaging 

studies have reported lower specific binding to the 5-HT transporter in 

ecstasy users compared to controls (McCann et al., 2005;Kish et al., 

2010;Ricaurte et al., 2000;Obrocki et al., 1999), although some 

authors suggest some degree of recovery after cessation of drug use 

(Buchert et al., 2004;Selvaraj et al., 2009;Thomasius et al., 2006). 

These long-term changes suggest neurotoxicity, and more specifically 

a neurodegeneration of the serotonergic neurotransmission system. 

Long-term neuropsychological effects affecting cognitive performance 

and higher psychopathology prevalence resulting from recreational use 

of MDMA have been reported to persist long after cessation of drug 

use.  

 

1.3. NEUROTOXICITY OF MDMA 

1.3.1. Hypothesis and mechanisms 
 

There is still a great controversy regarding the neurotoxic effects of 

MDMA. It is clear that MDMA use induces serotonin terminals damage, 

but it is less clear whether these effects are transient or permanent. 

Regardless of whether the observed changes are consequence of a 

process of neuroadaptation or the result of the toxic effect of MDMA, 

the exact mechanisms underlying this process have not yet been 

elucidated.  
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Several factors and possible mechanisms have been proposed to 

explain the MDMA-induced damage to serotonergic terminals and will 

be discussed in some detail. 

 

 Hyperthermia 

A number of in vivo studies indicate that hyperthermia may play a 

major role in this process. Small changes in ambient temperature 

result in marked changes in the degree of serotonergic neurotoxicity in 

rats and also in the MDMA-induced release of DA and 5-HT (O'Shea et 

al., 2005;Malberg and Seiden, 1998). The administration of 

compounds that prevent hyperthermia has been shown to protect 

against the toxic effects of MDMA on serotonergic neurons, and drugs 

that enhance hyperthermic response therefore increase MDMA 

neurotoxicity. 

This is of relevance for MDMA abusers, since MDMA is often taken in 

hot overcrowded environments which may contribute to an increase in 

hyperthermic response and long-term toxicity. The last observation 

should be combined with the fact that MDMA administration in humans 

induces increases in core body temperature, less relevant in controlled 

laboratory settings but to be taken into consideration when combined 

with high ambient temperature (Freedman et al., 2005).  

Despite the evidences that hot environmental conditions can enhance 

MDMA induced neurotoxicity, hyperthermia itself is not sufficient to 

explain effects observed and it might interact with other known 

mediators of neurotoxicity as for example oxidative stress.  

  

Oxidative stress 

Animal studies have supported the involvement of oxidative stress and 

the formation of reactive oxygen species (ROS), reactive nitrogen 

species (RNS), and lipid peroxidation products after the administration 



 Introduction 

31 

of MDMA. Several studies reported elevated levels of markers of 

oxidative stress in rat brain after drug treatment. These neurotoxic 

effects were attenuated by free radical scavengers, antioxidants or 

overexpression of antioxidant enzymes in animal models (Franzese 

and Capasso, 2008;Shankaran et al., 2001;Jayanthi et al., 1999).  

Despite there is a good agreement on the role of oxidative stress in the 

toxic effects of MDMA, the source of these reactive species remains 

controversial. It is thought that DA-derived ROS generated in 5-HT 

terminals either after SERT-mediated uptake of released dopamine or 

by the synthesis of DA from tyrosine may have a role in this process, 

although another plausible mechanism is the action of toxic 

metabolites of MDMA itself (Puerta et al., 2009). 

   

Role of dopamine metabolism 

It is well known that MDMA produces an acute and rapid release of 

serotonin. Dopamine is also released by the action of MDMA by both a 

transporter-mediated action or by the increase in postsynaptic 

serotonin which activates the postsynaptic 5HT2A receptors which in 

turn enhance DA synthesis and release.  

There seems to be a close relationship between serotonin and 

dopamine in the long-lasting effects of MDMA. It has been suggested 

(Sprague et al., 1998) that dopamine may enter in the serotonergic 

terminals by interacting with SERT or it may also be formed within 

those terminals via hydroxylation of tyrosine to dihydroxyphenylalanine 

(DOPA) and subsequently to dopamine via aromatic L-amino acid 

decarboxylase (AADC) (Breier et al., 2006). 

Once inside the terminal, dopamine can be deaminated by MAO. MAO 

exists in two isoforms, MAO-A and MAO-B, being the later the 

predominant form in serotonergic terminals. This enzymatic process 

results in the production of hydrogen peroxides and other reactive 
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oxygen species, leading to an eventual serotonergic neurotoxicity 

(Alves et al., 2007;Alves et al., 2009;Hrometz et al., 2004). Consistent 

with this hypothesis there is the evidence that reduction of MAO-B 

activity results in protection against MDMA-induced toxicity to 

serotonergic neurons (Sprague and Nichols, 1995;Alves et al., 

2009;Falk et al., 2002;Fornai et al., 2001).  

   

Role of MDMA metabolism 

MDMA metabolism may be implicated in the process of long-term 

serotonin depletion by the generation of free radicals through a 

metabolic bioactivation. Metabolism of MDMA leads to the formation of 

HHMA and HHA (see chapter 1.2.2.) which are very unstable reactive 

catechols. These species can conjugate with either sulfate and 

glucuronic acid, be O-methylated by COMT or autooxidize to the 

orthoquinones and form adducts with glutathione (GSH) (de la Torre et 

al., 2004;Hiramatsu et al., 1990). Several studies have revealed that 

thioether metabolites, accumulate in rat brain after systemic 

administration of MDMA (Erives et al., 2008;Jones et al., 2005). The 

formation of neurotoxic thioether adducts of MDMA has also been 

demonstrated in humans (Perfetti et al., 2009). It has been postulated 

that these adducts can cross the blood-brain barrier through 

glutathione transporters (Bai et al., 2001) and once inside the brain, 

can generate free radicals. Interestingly, MDMA administered 

intracerebrally induces neurochemical changes but not neurotoxicity, 

the later is only observed after the peripheral administration (Esteban 

et al., 2001). This observation strongly suggests a role for MDMA 

metabolic disposition and bioactivation. Additionally, thioether adducts 

discussed previously administered intracerebrally, are able to produce 

neurotoxicity and neurochemical changes seen after MDMA 

administration in the periphery (Miller et al., 1996). 
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These findings support the hypothesis that the bioactivation of MDMA 

to neurotoxic metabolites might be a relevant pathway to neurotoxicity 

in humans. 

 Serotonin transporter 

The serotonin transporter is thought to play an important role in the 

long-term MDMA induced 5-HT depletion. This hypothesis is based in 

the fact that 5-HTT inhibitors such as fluoxetine and fluvoxamine 

prevent the 5-HT loss in rats without preventing hyperthermia (Li et al., 

2010;Sanchez et al., 2001). As mentioned previously, the serotonin 

transporter may be involved in the transport of dopamine and/or 

MDMA metabolites into the serotonergic terminals which may be an 

important step in the formation of free radicals and their subsequent 

toxicity (Jones et al., 2004;Monks et al., 2004).  

  

 Tryptophan hydroxylase (TPH) 

Another important factor involved in the long-term serotonin depletion 

induced by MDMA is tryptophan hydroxylase (TPH), the rate limiting 

enzyme for the synthesis of 5-HT. Some animal studies have shown 

that after MDMA administration there is a long term depletion of TPH 

activity, which starts to decline immediately after administration of the 

drug (Stone et al., 1989;Schmidt and Taylor, 1987). In addition, 

reduction of TPH-immunoreactive fibers and alterations in TPH mRNA 

expression have also been reported (Bonkale and Austin, 

2008;Kovacs et al., 2007).  

 

Others 

Other factors have been proposed to play some role in the MDMA-

induced neurotoxicity: impaired mitochondrial function (Puerta et al., 

2010;Darvesh and Gudelsky, 2005), and increase in permeability of 
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the blood-brain barrier (Sharma and Ali, 2008;Yamamoto and 

Bankson, 2005), to name a few, but their relevance have not yet been 

elucidated.  

 

1.3.2. Functional consequences of long-term neurotoxicity 
 

Besides the biochemical and physiological deficits produced by the 

action of MDMA (previously discussed), many behavioural changes 

are also observed after the administration of MDMA to rats. Some 

studies reported subtle functional disturbances such as increased 

anxiety (Gurtman et al., 2002;Morley et al., 2001), decreased social 

behaviour (Bull et al., 2004;Clemens et al., 2007), and poor memory 

performance (Taffe et al., 2002;Camarasa et al., 2008) in MDMA-

treated rodents and non-human primates.  

 

Regarding all the animal studies conducted to date, one might keep in 

mind the difficulty to extrapolate data from animal studies to humans. It 

is important to point out some particular pharmacological differences 

among humans and the animal models, such as metabolism, doses 

used, route of administration and genetic polymorphisms in enzymes 

involved in the metabolism of MDMA (e.g. CYP2D6, COMT) or target 

proteins/receptors (e.g. serotonin transporter). 

A further factor to consider is the fact that MDMA users are polydrug 

users, with cannabis, and alcohol being often substances of a 

concurrent use (Schifano et al., 1998).  

Since MDMA induces long-lasting decrements in serotonin levels, it 

can be hypothesized that those functions modulated by the 

serotonergic systems might be affected.  

In humans, several functional consequences of ecstasy use have been 

reported: feelings of lethargy, moodiness, irritability, insomnia, 
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aggressive behaviour, depression and paranoia are among the effects 

of ecstasy use observed on mood (Creighton et al., 1991;McCann et 

al., 1996;Parrott et al., 2000;Reid et al., 2007). MDMA abusers have 

also been reported to suffer from sleep disturbances (Parrott et al., 

2000;Randall et al., 2009;Fisk and Montgomery, 2009); to display 

learning and memory impairments (de Sola Llopis et al., 

2008a;Morgan, 1999;Quednow et al., 2006;Reneman et al., 

2006;Zakzanis et al., 2007). 

The most frequently reported cognitive deficit in ecstasy users is verbal 

memory (Schilt et al., 2008;Medina et al., 2005;Bedi and Redman, 

2008). Recall deficits among MDMA users are observed, while 

recognition memory seems to be preserved. Life-time MDMA 

consumption is clearly associated with greater impairments in cognitive 

functions, suggesting a dose-related effect. Memory decrements in 

MDMA users are more clearly observable when neuropsychological 

tests involve a greater degree of complexity in terms of demands 

(Brown et al., 2010;Quednow et al., 2006). These findings suggest that 

high-order cognitive processes involving frontal cortex systems (e.g. 

attention or executive control) may be more affected by the use of 

MDMA.  

Evidences for visual memory problems are less robust, with studies 

showing visuospatial memory deficits in ecstasy users (Verkes et al., 

2001;Wareing et al., 2004), while others find opposite results (Medina 

et al., 2005).  

Executive functions are also negatively affected in ecstasy users (Fisk 

et al., 2004;Montgomery and Fisk, 2008). Deficits in spatial working 

memory performance (Wareing et al., 2005) and poorer verbal fluency 

(Bhattachary and Powell, 2001;de Sola Llopis et al., 2008a;Heffernan 

et al., 2001) are described for MDMA users in comparison to control 

subjects  although some exceptions are reported (Back-Madruga et al., 

2003). 
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1.4. A BRIEFF APPROACH TO HUMAN COGNITION  
 
In this chapter, basic aspects regarding the concept of learning and 

memory and its formation will be reviewed in order to set down the 

basis for a further discussion on the effects of MDMA on cognition.   

 

Learning is defined as the process by which new information is 

acquired, while memory refers to the encoding, storage and retrieval of 

learned information.  

 

1.4.1. Human memory categories 
 
Human memory can be qualitatively divided in two different categories, 

declarative, or nondeclarative memory (figure 3). Declarative memory 

refers to the retrieval (and storage) of information which is available to 

consciousness. Some examples are the ability to remember a 

telephone number or some events from the past. Non declarative 

memory refers to skills and associations that are not available 

consciously (e.g. how to ride a bike).  

 

 

 

 

 

 

 

 

Figure 3: Major qualitative types of human memory. Adapted from (Purves, 2004a). 
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Human memory can also be classified in three major temporal classes 

(figure 4). The first class is the immediate memory, which is the ability 

to hold ongoing experiences in mind for seconds. Each sensory 

modality (verbal, visual, etc) appears to have its own register. The 

ability to hold information in mind for seconds or minutes once it has 

passed is known as working memory and represents the second 

group. Finally, the third temporal category is the long-term memory 

which is the retention of information in a more permanent form of 

storage for days, weeks, or years (Purves, 2004a).  

 

 

 

 

 

 

 

Figure 4: Temporal categories of human memory (adapted from (Purves, 2004a)).  

 

The learning process includes several changes at molecular and 

cellular level that facilitates the communication among neurons. The 

persistence of these changes leads to memory consolidation. Neural 

plasticity represents the basis of higher cognitive functions such as 

learning and memory (Lombroso and Ogren, 2009). 

Short-term or immediate memory is thought to involve only functional 

changes in pre-existing neuronal networks which can further undergo 

two processes: fade out with time (forgetting process), or be reinforced 

and transformed in long-term memory (memory consolidation) 

(Benfenati, 2007). 

In order to be consolidated, the functional changes that occurred in the 

learning process have to be followed by gene transcription and protein 
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synthesis in order to promote permanent changes in the neuron as 

well as structural rearrangements in neuronal networks to make 

possible a final change in the efficiency of synaptic transmission 

(Benfenati, 2007). 

 

1.4.2. Brain systems involved in learning and memory  
 

The clinical study of the effects of different diseases or brain damages 

from many patients has been revealing about the brain systems 

responsible for the formation of memories. Medial temporal lobe 

structures and specifically the hippocampus are of great importance for 

the establishment of new declarative memories. Besides this, different 

lines of evidence have pointed out that this long-term storage is related 

to the cerebral cortex (figure 5).  

Nondeclarative memories involve the basal ganglia, prefrontal cortex, 

amygdale, sensory association cortex, and cerebellum, but not the 

temporal lobe.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Schematic diagram of the memory systems of the brain.  
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1.5. GENETIC POLYMORPHISMS OF THE 

SEROTONERGIC AND DOMPAMINERGIC SYSTEMS 

AND THEIR CONTRIBUTION TO MDMA INDUCED 

COGNITIVE IMPAIRMENT 

 

1.5.1. Genetic polymorphisms 
 

Differences in DNA sequence are found among individuals or 

populations. Such differences can be the result of chance or can be 

induced by external factors (e.g., viruses or radiation) and include 

sequence repeats, insertions, deletions, recombinations or single 

nucleotide polymorphisms (SNPs). The most abundant type of genetic 

variation are SNPs, which account for more than 90% of all sequence 

variation (Twyman, 2004). A single nucleotide polymorphism is defined 

as a single nucleotide variation at a specific location that is found in 

more than 1% of the population (Brookes, 1999). In general, they 

occur more frequently in the noncoding regions of genes than in the 

coding regions. Although SNPs in the noncoding regions of genes do 

not alter protein sequence, can alter regulatory regions of genes. 

SNPs in the coding regions can lead to alterations of protein structure 

and function and result in the development of disease (Kim and Misra, 

2007). Apart from their importance in disease genetics studies, the 

study of these variations is also important for pharmacogenomic 

studies to understand the interindividual differences in response to 

drugs.   
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1.5.2. Genetic polymorphisms within the serotonergic and 
dopaminergic systems 

 

Although there are a number of reports describing numerous genetic 

variants within the serotonergic and dopaminergic systems and their 

relationship with MDMA use, or cognitive impairments, only the most 

relevant polymorphisms for the objectives of this work will be 

discussed.  

 
Serotonin  (5-

hydroxytryptamine, 5-

HT) (figure 6) is 

synthesized and stored 

mainly in the 

enterochromaffin cells of 

the intestinal tract and 

only a small fraction of 

the total body serotonin 

is produced in the 

central nervous system. 

As mentioned 

previously, serotonin is 

synthesized by the 

tryptophan hydroxylase 

enzyme (TPH) from the 

essential amino acid 

tryptophan.  

 

 

 

Figure 6: Serotonin 

biosynthesis. 
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Serotonin released from the gastrointestinal tract is rapidly taken by 

platelets via the serotonin transporter and stored in granules. In the 

central nervous system serotonin is stored in secretion granules into 

the serotonergic neurons which emanate from the cell bodies 

concentrated in the raphe nuclei. Once released, its action is 

terminated by uptake via the serotonin transporter located in the 

membrane of the presynaptic terminals and further metabolized by the  

 

monoamine oxidase (MAO) enzyme. Serotonin produces its multiple 

effects by its interaction to serotonin receptors (for a review see 

(Jonnakuty and Gragnoli, 2008)). There are several families and 

subtypes of receptors and are found all across the human body. All the 

known receptors are G-protein coupled receptors that activate an 

intracellular cascade of second-messengers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Representation of a serotoninergic neuron. 

 

Serotonin has a wide range of physiological functions. It has a role in 

platelet aggregation and in regulation of smooth muscle in the 

cardiovascular and gastrointestinal system. As a neurotransmitter in 
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the central nervous system it is implicated in a variety of behavioural 

disorders such as depression, obsessive-compulsive disorder, and 

anxiety (Jonnakuty and Gragnoli, 2008).  

The functions and the roles of the polymorphisms within the genes 

related to the serotonergic system will be discussed later on this 

chapter. 

 

Dopamine  (4-(2-aminoethyl)-benzene-1,2-diol, DA) (figure 8) is 

synthesised from the amino acid tyrosine. It is converted into L-DOPA 

by tyrosine hydroxylase (TH), which is later transformed to dopamine 

by the DOPA decarboxylase enzyme. Once released DA acts on 

dopamine 

receptors starting 

a cascade of 

intracellular 

processes 

leading to the 

transmission of 

the stimulus. 

Dopamine action 

in the synaptic 

cleft is 

terminated by its 

reuptake into the 

presynaptic 

terminals through 

the dopamine 

transporter 

(DAT).  

 

Figure 8: Dopamine biosynthesis  
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Once inside the cell, dopamine is further metabolized by monoamine 

oxidase (MAO) and catechol O-methyltransferase (COMT). 

Dopaminergic neurons are projected from the substantia nigra and 

spread to several regions of the brain, the basal ganglia and the 

striatum among others (Purves, 2004b). Dopamine plays an important 

role in numerous processes such as movement, attention, learning, 

and some disorders (e.g., Parkinson’s disease, Tourette’s disorder, 

schizophrenia or obsessive compulsive disorder).  

 

1.5.3. Monoamine transporters: the serotonin transporter (SERT) 

and its polymorphisms.  

 

The serotonin transporter (5-HTT) is found in the brain and many 

peripheral tissues and is responsible of the transport of serotonin to 

different cells such as neurons, enterochromaffin cells, or platelets. In 

the brain, the serotonin transporter can be found in the perisynaptic 

membranes (away from the synaptic area) of neurons arising from the 

raphe nuclei (Torres et al., 2003).  

The serotonin reuptake inhibitors (SRI) are the most frequently 

prescribed psychoactive drugs for the treatment of depression, 

obsessive-compulsive disorder, or anxiety disorders. These 

compounds, as well as some drugs of abuse such as MDMA or 

cocaine, primarily target the serotonin transporter.  

 

The human serotonin transporter gene (SCL6A4) is located in the 

chromosome 17 (17q11) which contains 13 exons (Ramamoorthy et 

al., 1993) and encodes a protein of 630 amino acids. The SCL6A4 

gene comprises several domains which selectively controls the 

expression of the transporter in the serotonergic neurons. In humans, 

the transcriptional activity is modulated by a repetitive element of 

variant length found in the 5’ flanking region. This region is termed as 
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the 5HTT gene linked polymorphic region or 5-HTTLPR (for a review, 

(Murphy et al., 2004)). The functional polymorphism of an 

insertion/deletion of 43 base pairs (bp) in this promoter region give rise 

the long (L) or short (S) variants (Heils et al., 1996) and alters the 

transcriptional activity of the gene. The short variant of the 

polymorphism reduces the transcriptional efficiency of the 5-HTT gene 

promoter, resulting in decreased 5-HTT expression and therefore 5HT 

uptake activity (Lesch et al., 1996). Genotype distributions vary among 

different populations, but it has been reported that in European 

population the genotype distribution is 32% LL, 49% LS, and 19% SS 

(Lesch et al., 1996).  

An additional functional SNP (A/G) (rs25531) within the promoter 

region has been recently detected in humans (Hu et al., 

2006;Wendland et al., 2006). This A to G substitution generates a 

binding site for AP2, a nuclear factor that functions as transcriptional 

activator or repressor (Hu et al., 2006). In that way, the la variant is 

associated with high levels of in vitro 5-HTT expression, whereas lg is 

low expressing and more similar to s allele (Praschak-Rieder et al., 

2007). The G allele has been also reported within the s allele but in a 

very low frequency (Kraft et al., 2005). The existence of this variant 

within the insertion/deletion polymorphism in the promoter region can 

underestimate the effect of the 5-HTTLPR polymorphism and can 

explain the inconsistency of some of the results that can be found in 

the literature.  

The 5-HTTLPR polymorphism, and in particular the long form (l) has 

been related to better antidepressant treatment, while the s allele has 

been associated with increased risk of depression and poorer 

response to antidepressants (for a review (Lesch and Gutknecht, 

2005)).  
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Figure 9: Human SERT gene representation. Protein structure of the serotonin 

transporter. Adapted from Murphy et al.,( 2008).  

 

Several studies have recently shown that the s allele is associated with 

improved cognitive functions (e.g., decision making, risk aversion, or 

response inhibition), and enhanced sensitivity to environmental stimuli 

(for review (Homberg and Lesch, 2010)). 

The 5-HTTLPR polymorphism has also been related to abnormal 

emotional processing and cognitive impairments in both healthy 

subjects and ecstasy users.  

Deficits in verbal memory were observed in current and former (one 

year of abstinence) MDMA users, with higher lifetime use associated 

with greater decrements in this function (Reneman et al., 2001). Roiser 

et al., (Roiser et al., 2005) found that MDMA use may enhance 

impulsive tendencies as a function of 5-HTTLPR genotype. MDMA 

users carrying the S/S genotype failed to reduce impulse errors in 

response to emotional cues. Furthermore, a later study with the same 

sample (Roiser et al., 2006) pointed out that ecstasy users with the 

S/S genotype were also less efficient in decision-making than controls 

with the same genotype.  
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Another study from Reneman et al., (Reneman et al., 2006) 

established significant impairments in memory function in heavy 

ecstasy users but did not find any effect of the serotonin transporter 

polymorphism on their cognitive performance.  

Furthermore, imaging studies in humans have reported lower 

decreased specific binding to the 5-HT transporter in ecstasy users 

compared to controls (Kish et al., 2010;McCann et al., 2005;Obrocki et 

al., 1999;Ricaurte et al., 2000), while some others have found either an 

increase of SERT availability in former MDMA users or no differences 

compared to controls (Buchert et al., 2004;Selvaraj et al., 

2009;Thomasius et al., 2006).  

 

Another polymorphism described within the human serotonin 

transporter gene is a variable number tandem repeat (VNTR) within 

the intron 2 (5-HTTVNTR). This VNTR contains nine, ten, or twelve 

copies of a 17 bp repeat (Hranilovic et al., 2004). This polymorphism 

alters the transcriptional activity of the gene, with enhanced expression 

for the 12 repeats allele compared to the 10 repeats (Fiskerstrand et 

al., 1999). These effects seem to be dependent upon the individual 

repeat elements within the VNTR region (Lovejoy et al., 2003). 

 

1.5.4. Serotonin receptors: serotonin receptor 2A (5HT2A) 
 

As previously mentioned, a large number of serotonin receptors have 

been identified. Among them, 5-HT2A receptors are located in the 

medial prefrontal cortex and hippocampus of rats (Pazos et al., 

1985;Xu and Pandey, 2000) and humans (Hoyer et al., 1986;Wong et 

al., 1987;Barnes and Sharp, 1999;Leysen, 2004) and play an 

important role in the serotoninergic neurotransmission in the brain. 
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These receptors belong to the 5-HT2 family of serotonin receptors G 

protein-coupled (among with the 2B and 2C subtypes).  

The activation of the 5-HT2A receptor has been shown to couple G 

protein leading to the activation of either phospholipase C (PLC) or 

phospholipase D (PLD) (Parrish and Nichols, 2006) an thus increasing 

the inositol triphosphate (IP3) concentrations.  

 
In humans, the HTR2A gene is located in chromosome 13 (position 

q14-q21) (Sparkes et al., 1991) and consists of 3 exons and 2 introns 

(Chen et al., 1992). 

 

A nonsynonymous polymorphism at position 1354 (C/T) occurs in the 

HTR2A gene leading to an amino acid substitution histidine (His) to 

tyrosine (Tyr) at codon 452 (His452Tyr) (rs6314). This amino acid 

change lies in the cytoplasmatic C-terminal tail of the receptor which is 

implicated in the G protein coupling.  

As a consequence, cells containing the 452tyr variant of the receptor 

show reduced ability to activate phospholipases, suggesting reduced 

intracellular signalling capacity (Hazelwood and Sanders-Bush, 2004).  

It has been also postulated that this polymorphism may also affect 

brain morphology with reduced grey matter concentrations in the left 

hippocampus for the tyr carriers which to some extent explained the 

poorer memory performances observed in these individuals(Filippini et 

al., 2006).  

 

Another polymorphism within the gene is the T to C transition at 

position 102 (T102C, rs6313) that does not alter the amino acid 

composition and, therefore, has no influence on the receptor protein 

(Bondy et al., 1999). It has been hypothesized that this polymorphism 

may be associated with lower levels of gene expression and protein in 

healthy individuals with the C/C genotype compared to those with the 
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T/T genotype (Polesskaya and Sokolov, 2002). This polymorphism has 

been associated with panic disorders, schizophrenia, suicidal 

behaviour, and affective disorders (Maron et al., 2005;Golimbet et al., 

2007;Vaquero-Lorenzo et al., 2008), although some of these results 

have not been replicated in other studies (Martinez-Barrondo et al., 

2005;Correa et al., 2007). 

 

Results from different studies suggest a role of this receptor in memory 

functioning. Specifically, De Quervain et al., (de Quervain et al., 2003) 

showed that individuals with the his/tyr genotype of the His452Tyr 

polymorphism performed poorer on memory recall tests than 

individuals with the his/his genotype. In the same direction, Wagner et 

al., (Wagner et al., 2008) found that the rare tyr allele of was 

associated with poorer delayed recall performance in the AVLT task 

while the immediate memory was not affected.  

MDMA use has been related to reductions of serotonin receptor 2A 

levels in both rats and humans. Reneman et al., (Reneman et al., 

2002), showed that 5HT2A receptor densities were significantly 

reduced in all cortical brain regions of MDMA users compared to 

controls, while ex-MDMA users exhibited higher receptor densities in 

the occipital cortex. In the same line were the results form rats studies, 

with decrements in the density of receptors after treatment but a time-

dependent recovery was also observed after the discontinuation of 

MDMA administration. In addition, Kindlundh-Hoberg et al., 

(Kindlundh-Hogberg et al., 2006) found decrements in 5HT2A receptor 

mRNA and increments in 5HT2C receptor mRNA expressions in rat 

brain four weeks after MDMA treatment (one dose every 7 days), 

which would reflect neuroadaptive forces to counteract the MDMA-

induced depletion of 5-HT. 
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1.5.5. Catechol-O-methyltransferase (COMT) 
 

Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is an enzyme 

involved in both, the clearance of dopamine from the synaptic cleft in 

the prefrontal cortex and also in the MDMA phase II metabolism in the 

transformation of HHMA to HMMA.  

The COMT gene is located in the chromosome 22 at position 11 

(22q11) and in humans encodes two known transcripts from two 

different promoters, P1 and P2 (Tenhunen et al., 1994) (figure 10). A 

longer mRNA from P2 promoter encodes mainly a membrane-bound 

COMT (MB-COMT) and a shorter mRNA from the P1 promoter 

encodes the soluble COMT (S-COMT). Most human tissues encode 

both COMT mRNA transcripts but the S-COMT is mainly found in other 

tissues such as liver, blood and kidney while the MB-COMT is 

predominantly expressed in neurons, mainly in the prefrontal cortex 

and at lower levels in the striatum, cerebellum, amygdala and at very 

low levels in the ventral tegmental area and substantia nigra 

(Tenhunen et al., 1994;Bertocci et al., 1991;Matsumoto et al., 2003). 

Despite their high sequence similarity the MB-COMT has higher affinity 

for dopamine (10-fold greater) than S-COMT (Lotta et al., 1995). 

A functional polymorphism (rs4680) consisting in a valine (val) to 

methionine (met) substitution at codon 158 of the MB-COMT (codon 

108 for the S-COMT variant), results in a thermolabile protein with 

decreased enzymatic activity (one third less activity for the met 

homozygotes compared to the val homozygotes) at physiologic 

temperatures (Mannisto and Kaakkola, 1999). Because these alleles 

are codominant, heterozygotes have intermediate levels of COMT 

activity.  

A single nucleotide polymorphism (G to A) in the 3’ untranslated region 

of the COMT gene (rs165599) has been associated with cognitive 

dysfunction in schizophrenia (Chan et al., 2005;Chien et al., 2009) and 
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bipolar disorder (Burdick et al., 2007). Little is known about the 

molecular function of this polymorphism but it has been proposed that 

this polymorphism or another nearby in linkage disequilibrium may be 

involved in COMT regulation (Chan et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : Diagram of the COMT gene showing the locations of the SNPs genotyped 

in this work (adapted from Palmatier 2004). Structure of human S-COMT modified 

from (Rutherford et al., 2008) using Jmol software http://www.jmol.org/ 
 

 

Another polymorphism within a noncoding region of the COMT gene is 

found in the promoter P2 (A to G) (rs2097603, later on rs2075507). 

This SNP shows association with schizophrenia (Funke et al., 2005). 

Recently, this polymorphism has been suggested to interact with the 

COMT val158met variation predicting changes in the hippocampal 

gray matter volume (Honea et al., 2009).  

 

Differences in COMT enzymatic activity due to genetic variations can 

explain to some extent the inter-individual variability in the 

susceptibility to MDMA-induced neurotoxicity as consequence of 



 Introduction 

51 

MDMA metabolism and the formation of reactive species (de la Torre 

et al., 2004;Perfetti et al., 2009).  

 

In addition, COMT regulated dopamine levels are critical for prefrontal-

dependent cognitive functions such as working memory. Evidences 

suggest an inverted-U shape relationship between dopamine activity in 

the prefrontal cortex (PFC) and working memory performance 

(Goldman-Rakic et al., 2000) (figure 11). In this model, intermediate 

levels of dopamine appear as optimal for working memory processes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Inverted U-shape relationship between dopaminergic activity in the 

prefrontal cortex and cognitive performance. Adapted from Goldman-Rakic, 2000. 

 

In this regard, the role of COMT and its polymorphisms in the 

metabolism of dopamine in brain have been extensively investigated.  

Some studies have identified an association between working memory 

and the COMT val158met polymorphism (Egan et al., 2001;Goldberg 

et al., 2003). The val allele has been related to inferior working 

memory but higher flexibility in healthy subjects as compared to 

individuals with the met allele. In that case, a more stable prefrontal 
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activation was observed which facilitates working memory processes, 

but gives less flexibility to shift and update (Durstewitz and Seamans, 

2008;Colzato et al., 2010;Schilt et al., 2009). Some studies have also 

pointed out a possible role (although not a main effect) of this 

polymorphism on verbal fluency (Alfimova et al., 2007).  

 
As mentioned previously, the possible involvement of the COMT 

enzyme in the effects of MDMA on cognitive impairment can be 

explained either by its role in the breaking down of MDMA or its role in 

the metabolism of dopamine. In a recent study, Schilt et al., (Schilt et 

al., 2009) found an interaction between ecstasy use and the COMT 

genotype on verbal learning (assessed through the RAVLT test). They 

showed that ecstasy users with the met allele of the val158met 

polymorphism were particularly susceptible to the negative effects of 

the drug on verbal learning. Such observation can be explained by 

means of the relatively high levels of dopamine in those individuals 

making them more sensitive to the ecstasy effects regarding the role of 

dopamine on ecstasy-induced neurotoxicity. 

 

1.5.6. Neurotrophins 
 
Neurotrophins are a unique family of polypeptide growth factors initially 

identified as survival factors for some neurons but later it has been 

shown to play an important role in the functioning of the adult central 

nervous system (CNS) where they control synaptic function and 

plasticity, and sustain neuronal cell survival, morphology and 

differentiation (Poo, 2001). 

Neurotrophins are synthesized as precursors (proneurotrophins) that 

are proteolytically cleaved to mature, biologically active neurotrophins.  

Four neurotrophins are expressed in mammals: nerve growth factor 



 Introduction 

53 

(NGF), brain-derived neurotrophin (BDNF), neurotrophin-3 (NT-3) and 

neurotrophin-4 (NT-4) (Reichardt, 2006). 

The efficacy of neurotrophins action is, besides their binding affinity to 

the transmembrane receptors, is also dependent on their packaging, 

transport, secretion and processing. Neurotrophins can be stored into 

granules and their exocytosis is regulated either in a “constitutive” 

secretion mediated by a calcium-regulated secretion or in a “regulated” 

activity-dependent manner (Lee et al., 2001).  

Two types of receptors have been identified: the first receptor to be 

discovered was the low-affinity p75 neurotrophin receptor (p75NTR) 

(Johnson et al., 1986a) which is a member of the tumour necrosis 

factor superfamily. The second major class of neurotrophin receptors 

consists of three members of the high-affinity membrane-bound 

tyrosine kinase receptor (Trk). Each neurotrophin exhibit specificity in 

their interactions with the three members of this receptor family with 

BDNF activating (Ultsch et al., 1999). Trk receptor function is 

modulated by p75NTR on several levels (Reichardt, 2006).  

 

The high levels of expression of BDNF in the adult central nervous 

system and TrkB in cortical and hippocampal structures demonstrate 

their critical role in the maintenance of synaptic connections, synaptic 

plasticity, and cognitive functions such as learning and memory (Lu, 

2003). 

 

Brain-derived neurotrophin (BDNF) 

 

Brain-derived neurotrophin (BDNF) is the most widely distributed 

neurotrophin in the central nervous system, including hippocampus, 

neocortex, amygdala, cerebellum, and hypothalamus (Bath and Lee, 

2006), key regions in the regulation of mood and behaviour. 

Furthermore, BDNF gives trophic support to cholinergic, dopaminergic 
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and 5-hydroxytryptamine containing neurons (Gratacos et al., 2007). 

And interaction between serotonin and BDNF has been reported, since 

the activation of 5-HT receptors can stimulate BDNF gene expression 

(Mattson et al., 2004). 

  

As mentioned above, BDNF is secreted through two different 

pathways: constitutively, at low basal level, and in a regulated manner 

based on the level of synaptic activity. This activity-dependent 

secretion has been observed to be critical in the control of synaptic 

transmission and long-term synaptic plasticity (Lu, 2003) suggesting 

an important role in activity-induced long term potentiation (LTP) and 

long term depression (LTD). 

BDNF gene is located in the chromosome 11 at position 13 (11p13). It 

is organized in 13 exons and due to alternative splicing it encodes two 

BDNF protein variants. A long form with 247 amino acids with a 5’ pro-

BDNF sequence which is later cleaved to form the mature protein, and 

a short form which is 153 amino acids long and lacks the 5’ pro-BDNF 

region (Seidah et al., 1996). 

One frequent non conservative polymorphism occurs in the human 

BDNF gene (rs6265). A single nucleotide polymorphism (SNP) at 

nucleotide 196 (G/A) produces an amino acid substitution (valine to 

methionine) at codon 66 (val66met). This polymorphism does not 

affect mature BDNF protein function but it has been shown to alter the 

intracellular trafficking and packaging of pro-BDNF and the regulated 

secretion of the mature protein when the val66 is replaced with met 

(Egan et al., 2003). 

Egan et al., (Egan et al., 2003) also assessed the effect of this 

polymorphism in the measure of n-acetyl-aspartate (NAA), an 

intracellular marker of neuronal function which appears to be an 

indirect measure of neuronal integrity and synaptic abundance. Their 

results showed that met-carriers had lower levels of NAA compared to 
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val homozygotes and there was a significant linear reduction of NAA 

levels with increasing number of met alleles, suggesting a specific 

effect of the val66met polymorphism in the hippocampal neuronal 

integrity or synaptic activity. 

Recently, it has been shown that the presence of the G196A mutation 

may block the dendritic trafficking of the BDNF mRNA by disrupting its 

interaction with the translin/trax complex (an RNA-binding protein 

complex implicated in RNA trafficking) (Chiaruttini et al., 2009). This 

finding can to some extent explain the phenotypic changes induced by 

the mutation but it is important to emphasize that the deficits in the 

BDNF mRNA sorting can not explain all the changes observed and 

that it is also plausible that this mutation can also affect the trafficking 

of the BDNF protein itself. 

The val66met polymorphism is involved in impairments in different 

forms of hippocampal-dependant memory such as episodic memory 

(Egan et al., 2003;Hariri et al., 2003), mood disorders (Hong et al., 

2003a) and personality (Sen et al., 2003). It has also been associated 

both positively and negatively with neuropsychiatric disorders such as 

Alzheimer’s disease (Feher et al., 2009), Parkinson’s disease 

(Hakansson et al., 2003;Hong et al., 2003b;Momose et al., 2002), 

depression (Tsai et al., 2003), and substance abuse (Liu et al., 2005) 

among others.  

Cognitive and behavioural effects associated to the met allele have 

been shown to produce more robust effects on Caucasians than other 

ethnicities and it is possible that in other populations a compensatory 

mechanism may exist to compensate or eliminate the negative effects 

of the met change (Bath and Lee, 2006). 

Using imaging techniques, bilateral reductions in hippocampal grey 

matter volume of healthy volunteers with met-BDNF were observed 

(Pezawas et al., 2004). In the same direction, Szeszko et al., (Szeszko 

et al., 2005) obtained similar results but also demonstrated that val/val 
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individuals did not differ significantly from the other subjects in total 

intracranial volume suggesting that the effect of this polymorphism 

does not affect the global brain morphology. 

 

BDNF polymorphism has been associated with impairment in some 

forms of learning and memory. Individuals carrying the met allele 

performed poorly than val homozygotes on memory tasks that rely on 

the hippocampus such as recalling places or events but there were no 

differences in less-hippocampal demanding tasks such as word 

learning or planning (Egan et al., 2003). At the same time, Hariri et al. 

(Hariri et al., 2003) using imaging techniques showed that in the 

execution of a simple declarative memory task, highly dependant on 

hippocampal formation, individuals carrying the met allele had lower 

levels of hippocampal activation compared with val/val subjects, in 

both the encoding and retrieval processes. These results are in 

agreement with the already known role of BDNF in activity-dependent 

plasticity and hippocampal long term potentiation (LTP) that underlay 

the formation of learning and memory. 

Finally, a most recent study (Hashimoto et al., 2008) found a dose-

dependent effect of the val66met polymorphism in the hippocampal 

activity during the encoding process but not during the retrieval 

process. They showed a negative correlation between the number of 

met allele and the degree of activation in the bilateral hippocampi. 

In animal studies, rats treated with MDMA showed an increase in 

BDNF gene transcription in the frontal cortex and a decrement in the 

hippocampus 24h after treatment (Martinez-Turrillas et al., 2006). In 

this study, authors suggested that the effects observed in the 

hippocampus is due to a higher vulnerability of this brain region to the 

neurotoxic effects of MDMA and that the increments observed in the 

prefrontal cortex could be a compensatory mechanism to minimize the 

effects of the drug. 
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A recent study (Angelucci et al., 2010) has revealed increased BDNF 

concentrations in ecstasy users compared to healthy volunteers. 

Authors suggest two possible explanations: increased BDNF levels 

could be a compensatory response to MDMA neurotoxicity or might be 

also due to a direct effect on immune cells, which are said to be 

affected by MDMA use (Pacifici et al., 2002).  

 

1.6. OTHER ENZYME/TRASNPORTER SYSTEMS 

CONTRIBUTING TO MDMA INDUCED COGNITIVE 

IMPAIRMENT   

 

In the literature there are a number of studies involving additional 

enzymes, transporters, receptors and many other molecules in both 

the neurotoxic effects of MDMA and human cognitive performance.  

The aim of this later part of the chapter is to summarize the most 

relevant findings related to genes that selected to fulfil the aims of this 

work.   

 

1.6.1. Glutamate and its receptors 
 

Glutamate is the main excitatory neurotransmitter within the central 

nervous system, and plays a crucial role in cognitive functions such as 

learning and memory.  

It has been shown that the NR2B subunit of the NMDA receptor 

contributes to human memory performance by regulating aspects of 

synaptic plasticity (de Quervain and Papassotiropoulos, 2006). Its 

distribution along the human brain, with high expression levels in the 

frontal cortex and hippocampal pyramidal cells (Schito et al., 1997) 

suggests that this receptor is involved is specific cognitive processes. 

The activation of NMDA receptors initiates an intracellular signalling 
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cascade which leads to long-term potentiation (LTP) and memory 

consolidation.    

 

Two main glutamate receptor families are known: the ionotropic 

receptors (with three subtypes, NMDA receptors, AMPA receptors, and 

kainite receptors), and the metabotropic receptors. 

The metabotropic receptors (mGluRs) modulate postsynaptic ion 

channels indirectly and are coupled to different intracellular signal 

pathways hence producing either excitatory or inhibitory responses.  

The ionotropic receptors are nonselective cation channels which 

always produce excitatory postsynaptic responses. These receptors 

are formed from the association of several protein subunits which can 

combine in many ways to produce different receptor isoforms (Purves, 

2004b). Among them, the N-methyl-D-aspartate receptors (NMDARs) 

are of special interest. The NR2B subunit, encoded by the glutamate 

receptor, ionotropic, NMDA subunit 2B gene (GRIN2B) is specially 

involved in the stabilization of synaptic connections, long term 

increase/decrease of synaptic strength, necrotic/apoptotic neuronal 

death, and learning processes (Seripa et al., 2008;Rosenblum et al., 

1996;Loftis and Janowsky, 2003).  

 

The GRIN2B gene is located in chromosome 12 (12p13) (Mandich et 

al., 1994). A polymorphism within this subunit leads to the substitution 

of C to T (rs1806210) which is a silent polymorphism and has no effect 

on the amino acid sequence of the receptor (Thr888Thr) (Nishiguchi et 

al., 2000). Despite being synonymous, this SNP may have functional 

effects by altering the mRNA stability or translation, as the C/T and T/T 

genotypes might be related to increased glutamatergic 

neurotransmission because these genotypes are associated with early 

manifestations of Huntington’s disease attributable to glutamate 

excitotocixity (Arning et al., 2007). Increases in glutamatergic neural 
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transmission have been associated with reduced dopaminergic 

function (Seamans and Yang, 2004). 

 

1.6.2. Monoamine oxidase (MAO) enzyme 
 

As mentioned previously in this introduction, monoamine oxidase is 

involved in the termination of monoamine neurotransmitters action.  

MAO enzyme is located at the outer membrane of mitochondria and is 

found as two isoforms, MAO-A being expressed mainly in 

chatecholaminergic neurons, and MAO-B predominantly in 

serotonergic neurons as well as astrocytes and glia (Alves et al., 

2007). 

The oxidative deamination of these neurotransmitters produces 

hydrogen peroxide which can undergo to the formation of hydroxyl 

radicals and oxidative stress damage can occur. This process has 

been proposed as a possible mechanism of MDMA-induced 

neurotoxicity (as discussed in chapter 1.3). 

Animal studies reported the important contribution of MAO-B to 

MDMA-induced mitochondrial damage (Alves et al., 2007;Sprague and 

Nichols, 1995).   

 

1.6.3. Enzymes involved in the synthesis of dopamine and 
serotonin. 

 

Serotonin synthesis is a two-step process catalyzed by the tryptophan 

hydroxylase (TPH) and the aromatic amino acid decarboxylase (DDC 

or AADC), being the former the rate limiting enzyme (Purves, 2004b). 

Tryptophan hydroxylase exists in two isoforms, TPH1 and TPH2 

encoded by two different genes. Both enzymes are differentially 

expressed, with TPH1 found mainly in the pineal gland and gut 
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whereas TPH2 is selectively expressed in the brain (Patel et al., 

2004;Bach-Mizrachi et al., 2006). 

It has been reported that the TPH activity (Stone et al., 1989) and 

mRNA expression in rat brain are altered after MDMA administration 

(Bonkale and Austin, 2008;Kovacs et al., 2007).  

The aromatic amino acid decarboxylase (DDC or AACD) is thought to 

play some role in the MDMA-induced toxicity to serotonergic terminals. 

The importance of this enzyme is twofold, due to its role in the 

metabolism of both serotonin and dopamine. MDMA-neurotoxicity may 

be in part due to oxidative damage induced by DA into serotonergic 

terminals. The synthesis of DA into these terminals can be explained 

by means of de novo synthesis from its precursor tyrosine by tyrosine 

hydroxylase (TH) and AADC endogenous in 5-HT neurons. 

Accordingly, Breier et al., (Breier et al., 2006) reported that systemic 

administration of MDMA to rats resulted in selective long-term 

depletions of serotonin in an AACD-dependent manner.  

Tyrosine hydroxylase (TH) is the enzyme responsible of the 

transformation of the amino acid tyrosine into DOPA, which is further 

transformed into DA (see figure 8). Four different types of TH are 

expressed in the human brain, specifically at the substantia nigra and 

locus coeruleus (Nagatsu and Ichinose, 1991). 

 

1.6.4. The vesicular monoamine transporter (SLC18A2) 
 

The vesicular monoamine transporter (VMAT-2, SLC18A2) mediates 

the uptake of monoamines into presynaptic storage vesicles. VMAT-2 

is the site of action of some pshychostimulants, such as 

methamphetamine and MDMA which promote the release of the 

intravesicular neurotransmitters ((Wimalasena, 2010) for a review). ). 

Recent animal studies have revealed a reduction in VMAT-2 mRNA 
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expression in rat brain two weeks after MDMA administration but no 

reduction in VMAT-2 protein density was observed (Biezonski and 

Meyer, 2010). 

 

1.7. GENETIC POLYMORPHISMS WITHIN THE 

CYP2D6 METABOLIZING ENZYME AND THEIR 

CONTRIBUTION TO THE PHARMACOLOGY AND 

THE NEUROTOXICITY OF MDMA. 

 

As mentioned previously, in humans the CYP2D6 enzyme is supposed 

to be responsible for 30% of the O-demethylenation of MDMA to 

HHMA (Farre et al., 2004).  

Interindividual differences in CYP2D6 activity can affect the MDMA 

pharmacology and susceptibility to toxicology. Preliminary data have 

shown that MDMA pharmacology differs according to CYP2D6 

genotype (de la Torre et al., 2005).  

Over 70 different alleles of CYP2D6 have been described. Allelic 

variants of CYP2D6 functionally result in abolished, decreased, 

normal, increased or qualitatively altered catalytic activity. Among the 

most important variants are CYP2D6*2, CYP2D6*4, CYP2D6*5, 

CYP2D6*10, CYP2D6*17 and CYP2D6*41 and gene duplications. The 

frequency of CYP2D6 alleles also varies ethnically. All variant alleles 

are presented at the home page of the human CYP allele 

nomenclature committee 

(http://www.imm.ki.se/cypalleles/cyp2d6.htm). 

Phenotypically, individuals can be divided into four categories: poor 

metabolisers (PM) which show a deficient enzymatic activity, 

intermediate metabolisers (IM), extensive metabolisers (EM) and ultra-

rapid metabolisers (UM) according to increasing CYP2D6 activity. In 
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the Caucasian population, approximately 7 % of individuals are PM, 

and up to 90% are termed extensive metabolizers (EM) (Bertilsson et 

al., 2002). 

However, it is important to point out that the non-linear 

pharmacokinetics of MDMA in humans is related to the inhibition of its 

own metabolism and independent of the genetic variability of the 

individuals, with PM and EM displaying a similar metabolic profile after 

the first dose.  

 
A recent study has shown differences in cognitive impairment related 

to methamphetamine use linked to CYP2D6 genotype. Extensive 

metabolisers (EM) showed poorer cognitive performance than other 

participants, possibly due to greater neurotoxicity of the metabolic 

products than the parent compound (Cherner et al., 2010).  

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. HYPOTHESIS AND AIMS 



 

 



Hypothesis and Aims 

65 

 
There are cumulating data suggesting that MDMA induces 

neurotoxicity in animal models and more specifically a 

neurodegeneration of the serotonergic neurotransmission system.  

 

Humans  

There is still debate on the question if MDMA use in humans is reliably 

associated with substantial neuropsychological impairment, regardless 

of the effects of concomitant use of other substances (e.g., cannabis, 

alcohol or other stimulants).   

One of the main factors that may contribute to clarify MDMA-related 

neuropsychological findings is variation in the distribution of a number 

of gene polymorphisms associated with the functioning of the 5-HT 

system, as well as others involved in MDMA pharmacodynamics and 

potential neural toxicity (e.g., COMT and CYP2D6) and in neural 

signaling cascades involved in learning and memory processes (e.g., 

BDNF and glutamate genes).  

 

In humans, it is hypothesized:  

(i) that heavier MDMA use would be correlated with poorer 

neuropsychological performance in a dose-dependent 

fashion;  

(ii) that heavy MDMA users would perform poorer than 

cannabis users and healthy individuals on 

neuropsychological tests of processing speed, memory and 

fluency (indicating robust effects of MDMA on cognition 

regardless of co-abuse of cannabis); and 

(iii) that MDMA use would exacerbate cognitive performance 

decrements in individuals carrying genotypes associated 

with lower functionality of the serotonin, glutamate and 

dopamine systems (drug x gene interaction effects). 
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The primary aim of this work is to evaluate the combined effects of 

ecstasy use and several polymorphisms in the serotonergic and 

dopaminergic systems and its relationship to cognitive impairments 

related to the drug use in a cross-sectional study of drug users and 

healthy controls. 

 

Animal model  

In animal models there are still controversies concerning long-term 

brain damage induced by MDMA. While some authors support that 

MDMA at high doses induces an axonopathy of serotonergic neurons, 

others content this hypothesis and support the view that MDMA 

induces a decrease in gene expression of the serotonin transporter. 

This discussion is of relevance as depending on the correct hypothesis 

genetic polymorphisms are still (changes in gene expression) or less 

(axonopathy) relevant.  

 

In animal model, it is hypothesized:  

(iv) That the expression of genes related to serotoninergic 

system would show greater affectation than those of the 

dopamine neurotransmission system. 

(v) That the negative effects of MDMA treatment on the 

serotonin transporter gene expression will be also 

observable in genes encoding proteins that are directly 

modulating the transporter and the serotonergic function. 

The second aim of this work was to examine the MDMA-induced long-

term effects on expression levels of genes related to the serotonin and 

dopamine biosynthesis and function in an animal model (Wistar rats) of 

MDMA induced neurotoxicity. 
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To achieve the objectives of this thesis, the experimental work has 

been divided in two major blocks: human studies and animal model 

studies. 

3.1. HUMAN STUDIES 

 

In human studies, protocols required a quick genotyping of subjects. In 

this context it was decided to use a DNA microarray targeting most 

genes under study. Prior to the application of the DNA microarray, it 

was necessary to validate it clinically (Cuyàs et al., 2010;Fagundo et 

al., 2010). 

Human studies include a psychiatric and neuropsychological 

evaluation that was carried out by a psychologist or a psychiatrist. 

 

3.1.1. Evaluation of PHARMAchip TM DNA array for the 
genotyping of drug metabolizing enzymes, transporters 
and protein effectors. 
 

According to the study requirements, volunteers were included in the 

study following a given stratification of combined genotypes for COMT 

and 5HTTLPR genes. In order to genotype volunteers, as genotypes 

were inclusion criteria in the study, there was a need for a tool which 

allowed a rapid and effective screening for the polymorphisms of 

interest.  

 

For sometime, our group had used the services of Jurilab Ltd., 

(Kuopio, Finland), and their DrugMEt® test to genotype the CYP2D6 

gene. Due to the discontinuation of the product, a new test had to be 

used. The selected test was the PHARMAchipTM DNA array, 

developed by Progenika Biopharma S.A. (Derio, Vizcaya, Spain). 

Several reasons led us to the need to assess the performance 
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characteristics of the new DNA array in order to ensure the results 

obtained. 

 

The evaluation of the PHARMAchipTM included a single-blind 

comparison of genotypes obtained from 100 DNA selected samples 

from individuals of Spanish origin, previously analyzed with the 

Jurilab’s Ltd DrugMEt® Test or in-house in our laboratory for those 

genes  that were not included in this test (COMT and 5-HTT).   

The DNA samples selected to be re-analyzed by the PHARMAchipTM 

DNA array were selected for the purpose of obtaining a wide range of 

different genotypes to cover a maximum of common allelic variants of 

genes investigated. 

 

Validation of the PHARMAchip TM DNA array 

Several measures of quality were evaluated in order to determine the 

suitability of the new DNA array for the objectives of the study. 

 

 Accuracy  

In order to assess the accuracy of PHARMAchipTM, the selected 

samples were sent to Progenika Biopharma S.A. and were analyzed 

blindly.  

The genotype results obtained by Progenika Biopharma S.A. were 

compared with those previously provided by DrugMEt®. The core set 

of genetic variants selected for the validation were those in common 

between both chips.  

If the genotype call was equal in both methods for one gene, results for 

the whole set of individual SNPs combined/used by PHARMAchipTM 

software for its determination were considered correct (match). When 

genotype calls differed between the two methods, the putative SNPs 

identified as causing the discrepancy among the corresponding set of 

SNPs were referred to as mismatch results. 
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The DNA of samples with discrepant results was again sent to 

Progenika Biopharma S.A. and sequenced (see Materials and 

Methods in publication I, for further details). 

Successful genotyping rate and accuracy of PHARMAchipTM were 

calculated as the percentage of matched genotypes among the total 

number of evaluable genotypes and among the called genotypes, 

respectively.  

 

Reproducibility and limit of detection 

Reproducibility and limit of detection of the PHARMAchipTM were 

assessed by Progenika Biopharma S.A.  

Briefly, genomic DNA control samples (from a Progenika Biopharma 

S.A. proprietary cell line), were used. Three DNA controls were 

processed with PHARMAchipTM in the same run over 5 consecutive 

days to evaluate within-day and between-day variability. The limit of 

detection was determined using serial dilutions (500 to 5 ng) of a DNA 

control (accuracy was compromised below this concentration). The 

limit of detection was set at the minimum DNA concentration where the 

signal intensity was strong enough to still give a correct genotype call. 

 

Genotype calls in the repeated runs, and at the different DNA 

concentrations, were compared to the reference data obtained through 

sequencing. In addition, the global array fluorescence signal and that 

obtained in each probe set were also analyzed. The signal intensity 

was normalized against the background and the calculated variance 

on a signal level was given as a coefficient of variation for the ratio 

intensity/background.  
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3.1.2. Sample preparation 
 

Blood samples for DNA extraction included in this study were obtained 

from participants in different clinical trials approved by the local Ethics 

Committee (CEIC-IMAS). Each volunteer gave a written informed 

consent before participating. 

 

Genomic DNA was extracted from blood samples enriched with white 

cells (buffy coat) using FlexiGene DNA kit, according to the 

manufacturer’s instructions (Qiagen, Hilden, Germany).  

 

3.1.3. Genotyping of variants not included in the DrugMEt® 
test 

  

COMT val108/158met genotyping 

The COMT val108/158met (rs4680) single nucleotide polymorphism 

(SNP) allelic variant was determined using the 5’ exonuclease 

TaqMan® assay with ABI 7900HT Sequence Detection System (Real 

Time PCR) supplied by Applied Biosystems (Applied Biosystems, 

Foster City, CA, USA). Primers and fluorescent probes were obtained 

from Applied Biosystems with TaqMan® SNP Genotyping assays 

(assay ID C_2255335_10). Reaction conditions were those described 

in the ABI PRISM 7900HT user’s guide. Endpoint fluorescent signals 

were detected on the ABI 7900, and the data were analyzed using 

Sequence Detector System software, version 2.3 (Applied 

Biosystems). 
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  5-HTTLPR genotyping 

The 5-HTTLPR genotyping was performed using polymerase chain 

reaction (PCR). Each reaction mixture contained: 1x PCR Amplification 

buffer and 1x PCR Enhancer solution (Invitrogen, Carlsbad, CA), 1.5 

mM MgSO4, 300 µM dNTPs, 0.5 pmol of each primer, 0.5U of Taq 

DNA polymerase (Invitrogen) and 50 ng of genomic DNA as template. 

Primers used are described in table 1. Amplification conditions were 35 

cycles of 30 s at 95ºC, 30 s at 58ºC and 1 min at 68ºC with an initial 

denaturation step of 3 min at 95ºC. 

A 10 µl total reaction volume was used and, after PCR, the products of 

allelic-specific amplifications (allele L, 528 bp; allele S, 484 bp) were 

detected on an automatic ABI 3730XL capillary sequencer and 

analyzed by GeneMapper Software v3.5 (Applied Biosystems). 

GeneScan™-1000 [ROX]™(Applied Biosystems) was used as size 

standard. The analysis was performed at the Serveis Científico-

Tècnics, Universitat Pompeu Fabra (UPF) premises. 

 

Table 1: Primers and probes used 

variant  Primers used  

5HTTLPR 
Forward: FAM-5’-GGCGTTGCCGCTCTGAATGC-3’ 

Reverse: 5’-GAGGACTGAGCTGGACAACAACCAC-3’ 

5HTTVNTR 
Forward: FAM-5´-GTCAGTATCACAGG-CTGCGAG-3´ 

Reverse: 5´-TGTTCCTAGTCTTACGCCAGT-3´ 

COMT P2 promoter 

(rs2097603) 

Forward: 5’-GCCGTGTCTGGACTGTGAGT-3’ 

Reverse: 5’-GGGTTCAGAATCACGGATGTG-3’ 

Reporter probes for Real-Time PCR: 

Forward: FAM-AACAGACAGAAAAGTTTCCCCTTCCCA-3’ 

Reverse: VIC-CAGACAGAAAAGCTTCCCCTTCCCATA-3’ 
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3.1.4. Genotyping of additional SNPs not included in the 
PHARMAchip DNA array  

 

Some other SNPs not included in the PHARMAchip DNA array were 

considered useful for human studies and were genotyped in-house. 

Different genotyping approximations were used. 

 

Fragment analyses were performed at the Serveis Científico-Tècnics, 

Universitat Pompeu Fabra (UPF) premises.  

 

For the 5-HTT gene, a variation number tandem repeat (VNTR)  

within intron 2 (5-HTTVNTR) was also genotyped. 

The reaction mixture contained 1 x PCR Amplification buffer and 1x 

PCR Enhancer solution, 1.5 mM MgSO4, 300 µM dNTPs, 0.5 pmol of 

each primer, 0.5U of Taq DNA polymerase, and 50 ng of genomic 

DNA as template. Primer sequences are those detailed in table 1. The 

amplification conditions include an initial denaturation step of 3 min at 

95ºC and 35 cycles of 30 s at 95ºC, 30 s at 60ºC and 30 s at 72ºC.  

A 10 µl total reaction volume was used and, after PCR, the products of 

allelic specific amplifications (allele 9, 250 bp; allele 10, 267 bp; and 

allele 12, 300 bp) were detected on automatic ABI 3730XL capillary 

sequencer and analyzed by GeneMapper Software v3.5. GeneScan™-

500 [ROX]™ was used as size standard. 

 

An additional polymorphism within the serotonin transporter 

promoter (5-HTTLPR (A/G) polymorphism, rs25531)  was also 

genotyped using restriction enzyme digestion and the subsequent 

fragment analysis.  

The protocol used was originally described by De Luca et al., 2005,  

(De Luca et al., 2005) with minor modifications. Briefly, 1 µl of the 5-

HTTLPR PCR (as described in the previous section see  5-HTTLPR 
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genotyping) was digested  in a 10 µl reaction assay containing 1x 

NEBuffer 2, and 3U MspI (New England Biolabs Ipswich, MA) at 37ºC 

for 3 h and a final inactivation step of 20 minutes at 65ºC. The resulting 

fragments were detected on an automatic ABI 3730XL capillary 

sequencer and analyzed by GeneMapper Software v3.5. Product sizes 

for the digest were: long A (LA)= 337 bp, short A (SA)= 292 bp, long G 

(LG)= 162 bp, and short G (Sg)=162 bp. 

In some cases, where MspI digestion gave unclear results the samples 

were sequenced to assign the correct genotype. Sequencing was 

performed in both, the sense and antisense orientations. The excess 

primers and deoxynucleotides in the polymerase chain reaction (PCR) 

products were then degraded by adding a 2 µl of a solution of 0.8U of 

shrimp alkaline phosphatase (New England Biolabs), 4U of 

Escherichia coli Exonuclease I (New England Biolabs) and 0.64x 

shrimp alkaline phosphatase buffer. The mixture was incubated at 

37°C for 15 min, followed by deactivation for 15 mi n at 80°C. 

Sequencing reactions were performed with BigDye v3.1 (Applied 

Biosystems) in 10 µl total volume containing 1 µl template 

(approximately 25 ng), 3.2 pmol primer, 1 µl 5x DNA sequencing buffer 

(Applied Biosystems), 2 µl BigDye v3.1, and water. The reactions were 

cycled at 94°C for 3 min, followed by 30 cycles at 96°C for 10 sec, 

50°C for 5 sec, and 60°C for 4 min. Reactions were then purified with 

PureLink Quick Gel extraction kit (Invitrogen) according to 

manufacturer’s instructions. Samples were analyzed on a Prism 3730xl 

DNA Analyzer (Applied Biosystems). GeneScan™-500 [ROX]™ was 

used as size standard. 

 

The COMT 3’ flanking region SNP (rs165599) , the COMT P2 

promoter (rs2097603, later on rs2075507) , and the BDNF val66met 

(rs6265)  allelic variants were determined using an ABI 7900HT 
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Sequence Detection System (Real Time PCR) supplied by Applied 

Biosystems.  

Primers and fluorescent probes for the assays were obtained from 

Applied Biosystems TaqMan® SNP Genotyping assays (assay ID 

C_2255335_10 and C_11592758_10 for rs165599 and rs6265 

respectively). For the rs2097603, primers and probes used were 

described previously by Meyer-Lindenberg et al., 2006 (Meyer-

Lindenberg et al., 2006) (see table 1). Reaction conditions were those 

explained in the ABI PRISM 7900HT user’s guide. Endpoint 

fluorescent signals were detected on the ABI 7900, and the data were 

analyzed using Sequence Detector System software, version 2.1.  

3.1.5. Recruitment of the subjects 
 
Volunteers were recruited through an internet platform 

http://estudiardrogas.imim.es. In the website, participants were 

informed preliminarily about the scope and procedures of the study, 

and then asked to provide some administrative data and fill a 

questionnaire on status and intensity of toxic habits if they were 

interested in enrolling the study.  

Those candidates meeting preliminarily inclusion criteria (see table 2, 

and the FIS-MDMA study protocol, Appendices) were contacted and 

interviewed. The purpose of the interview was: (i) to inform more in 

depth on the scope and procedures of the study, (ii) to obtain an 

informed consent, (iii) to confirm the questionnaire on toxic habits.  

If they agreed in participating in the study, candidates provided a blood 

sample for genotyping and were subjected to a health and psychiatric 

examination.  

Upon arrival to the research centre (IMIM, Hospital del Mar Research 

Institute), subjects were informed of the ensuing protocol and gave 

their written informed consent before participating in the study. 
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Once genotyped, individuals meeting inclusion criteria were contacted 

back and subjected to a neuropsychological evaluation. Previous to 

the evaluation, candidates were invited to provide urine and a hair 

sample for drug testing. 

 

After the selection process, two hundred sixty-three participants 

(n=263) were recruited, of whom 60 were ecstasy polydrug users, 110 

were cannabis users and 93 were non users.  

In the ecstasy group, subjects were classified into heavy ecstasy users 

or light ecstasy users according to their lifetime consumption in order 

to evaluate the dose effect. The threshold was set at 100 ecstasy 

tablets.  

 

Table 2: Inclusion and exclusion criteria to fulfil for all the candidates 

 

Inclusion Criteria  

1. Male or female volunteers age range 18 to 30. 

2. Minimal education: secondary education or equivalent.   

3. A history or results from a medical exam that demonstrated that volunteers 

do not present physical or psychiatric problems. 

4. The ECG, general blood and urine analyses taken before the trial should be 

normal. Small variations within the limits of the norm were admitted, those that 

the investigators consider to be without clinical relevance. 

5. Toxic habits: 

� Cannabis users group: Daily or almost daily cannabis consumption, 

with a weekly consumption of 14-28 joints (hashish + tobacco or 

marihuana). Minimum lifetime use of three years and at least one 

year of daily consumption meeting criteria of abuse and/or 

dependence. Consumption of less than five times of any other illicit 

drug, none in the last year and non meeting criteria of abuse and 

dependence of these drugs. 

�  
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3.1.6. Psychiatric and neuropsychological evaluation 
Prior to the inclusion in the study, subjects were examined for their 

health status with the SF-36 questionnaire (Vilagut et al., 2005) and for 

psychopathology using the Spanish versions of the Psychiatric 

Research Interview for Substance and Mental Disorders (PRISM) 

(Torrens et al., 2004).  

� MDMA consumers group: Lifetime consumption of at least five 

occasions and at least one consumption in the last year, being MDMA 

the main psychostimulant abused. Daily or almost daily cannabis 

consumption, with a weekly consumption of 14-28 joints (hashish + 

tobacco or marihuana).  

� Drug Free control group: Not meeting abuse and dependence criteria 

for any psychoactive drug except for nicotine. Lifetime cannabis 

consumption in less than 25 occasions and in five occasions for any 

other psychoactive drug. No consumption of any illicit drug in the last 

year. Less than 5 alcohol units/day for males and 2 units/day for 

females. 

� MDMA and Cannabis groups: the consumption of two alcoholic 

beverages during meals, isolated episodes of acute intoxication (a 

maximum drunkenness once every three months) and spirits 

consumption during week-ends (2-3 per week) were tolerated. 

6. The acceptance of trial procedures and signature of the consent form. 

 

Exclusion Criteria  

 

1. Previous history of brain damage with loss of consciousness (e.g. epilepsy, 

head injury, stroke) that may alter cognitive performance. 

2. Current use or in the previous weeks of psychotropic drugs. 

3. Active (last year) Axis I mental disorder following DSM-IV criteria. 

4. Intelligence Quotient (IQ) <90, following the vocabulary sub-test WAIS III.   

5. Subjects not able of understand study objectives and procedures.  
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Neuropsychological evaluation (by a psychiatrist or psychologist) was 

organized into three main domains: (i) measures of memory and 

attention, (ii) measures of emotion processing, and (iii) measures of 

cold and hot executive functions. Tests were selected to cover the 

study aims, including a comprehensive assessment of key aspects of 

impulse control and decision-making, along with more general 

cognitive processes.  

The neuropsychological protocol administered included the following 

tests:  vocabulary subtest (from the WAIS-III, Spanish version, 

(Wechsler, 1997)); California Computerized Assessment Package 

CALCAP (Miller, 1990); Tower of London (Shallice, 1982); word 

fluency (Benton and Hamsher, 1983); semantic fluency(Benton and 

Hamsher, 1983); Symbol Digit Modalities Test (Smith, 1982); California 

Verbal Learning Test II (Delis et al., 2000); Rey complex figure test 

(Rey, 1941); Corsi block tapping subtest (from the WAIS-III, (Wechsler, 

1997)); and letter number sequencing subtest (from the Wechsler 

Memory Scale III,(Wechsler, 1997)).  

 

For the purpose of this thesis, only a subset of cognitive measures was 

selected and will be explained in more detail.  

 

Memory and attention : 

o Episodic memory, California Verbal Learning Test (Spanish 

adaptation: Test de Aprendizaje Verbal España-Complutense). 

The test consists on a list of 16 words that the participant must 

learn across five learning trials and then reproduce after 

presentation of an interference list (immediate recall) and after 

20-minutes lapse (delayed recall). The dependent measures 

were CVLT standard indices of learning (trials 1 to 5), 

immediate recall, delayed recall and recognition. 
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o Processing Speed, Symbol Digits Modalities Test (from the 

Wechsler Adult Intelligence Scale –WAIS III). A brief measure 

of perceptual-motor speed. Participants have to rapidly convert 

geometric designs into Arabic numbers following a visual key. 

Answers must follow the correspondence shown in a visual 

key. The dependent measure is the total number of hits 

produced in 90 seconds. 

 

o Visual Episodic Memory, Rey-Osterrieth Complex Figure Test 

(ROCFT): Participants have to (i) copy and (ii) reproduce (after 

3- and 30-minutes delays) a complex visual figure. The 

dependent measures were ROCFT standard indices of 

immediate recall, delayed recall, and accuracy of the copy. 

 

Executive functions : 

o Verbal and Semantic Fluency, FAS and Animals. It evaluates 

the ability to access, to retrieve, and produce targeted 

information in response to a novel order (e.g., words starting 

with the letters F, A, and S, or words belonging to the category 

“animals”).  

Two types of measures were obtained from these tests:  

 (1) Total words generated:  

 Total number of correct words generated in 60 seconds. 

All intrusions (words not pertaining to this semantic 

category), perseverations (same words), and repetitions 

(same words with different endings) were treated as 

mistakes.  

 (2) Clustering and switching measures: 

 Mean Cluster Size was the main dependent variable for 

clustering, whereas Number of Switches was the main 
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dependent variable for switching. A cluster was defined 

as any series of two or more successively produced 

words belonging to the same semantic or phonemic 

subcategory. Cluster size was computed adding up series 

of words from the same subcategory starting from the 

second word within each cluster (i.e., a 3-word cluster has 

a size of 2). The Mean Cluster Size was obtained by 

adding the size of all the clusters and dividing it by the 

total number of clusters. The Number of Switches was 

defined and computed as the number of times the 

participant changed from one cluster to another within the 

same task. The computation of Number of Switches 

included single-word clusters (cluster size= 0). Intrusions, 

repetitions, and perseverations were excluded from the 

calculation of both Mean Cluster Size and Number of 

Switches. 

 

3.1.7. Statistical analysis 
 

Statistical analyses regarding human studies were performed by Dr. 

Klaus Langohr (statistician).  

Details on the analysis performed in each case are described within 

the material and methods section of the different publications (included 

in the appendices section). 
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3.2. ANIMAL MODEL STUDIES 

All animal handling, treatment, and biochemical measures (5-HT, 5-

HIAA, and temperature) were carried out at the Departamento de 

Farmacología, Facultad de Farmacia de la Unversidad de Navarra 

(Pamplona), under the supervision of Dr. Norberto Aguirre. 

Procedures were approved by the local ethical committee following 

standards established in the Council of Europe Directive of the 

24/Nov/1986, published on DOCE 18/Dec/1986. All the procedures 

will be described briefly. 

3.2.1. Animals and treatment groups 
 
In all cases, the doses of MDMA used refer to the hydrochloride salt. 

All the procedures applied in the present work were in compliance with 

the European Community Council Directive (86/609/EEC) and were 

approved by the Ethical Committee of the Universidad de Navarra.   

Twelve male Wistar rats weighting 260-280 g were used for these 

experiments (six in each group, control and treated). Rats received 

three intraperitoneal injections (i.p.) (every 2 hours) of saline or MDMA 

5 mg/kg. Seven days after treatment, rats were killed by decapitation 

(figure 12). 

Rats were housed in constant conditions of humidity and temperature 

(22 ± 1ºC) with a 12-h/12-h light-dark cycle (lights on at 7:00 hours). 

Food and water were available ad libitum. 
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Figure 12: Scheme of the animal model study design, showing MDMA dose intervals 
and sample obtaining. 
 

3.2.2. Samples  
 
Blood  

Blood samples were obtained before and after the treatment from the 

retro-orbital sinus with a glass capillary and immediately mixed with 

RNAlater® Solution (Ambion Inc., Austin TX, USA) at 4°C overnight 

and then stored at -20°C until RNA extraction.  

 

Tissue  

After decapitation, brains were rapidly removed and the different brain 

regions were dissected and submerged on RNAlater® Solution at 4ºC 

overnight and then stored at -80ºC until tissue homogenization and 

RNA extraction. 

The brain regions selected were the hippocampus, the frontal cortex, 

the striatum and the dorsal raphe nucleus + substantia nigra 

(DRN+SN).   
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3.2.3. Temperature measurements 
 
Rectal temperature of the rats was measured at an ambient 

temperature of 21.5±1 °C with a lubricated digital thermometer probe 

(pb 0331, Panlab, Barcelona) inserted approximately 3 cm into the 

rectum, the rat being lightly restrained by holding in the hand. 

Temperature was recorded before the first MDMA injection and 

thereafter every 60 min up to 8 hours. Probes were re-inserted from 

time to time until the temperature stabilized. 

3.2.4. Biochemical measurements 
 
Concentrations of 5-HT, 5-HIAA, in striatum, hippocampus, and cortex, 

were determined by high performance liquid chromatography with 

electrochemical detection. Briefly, samples were injected using an 

automatic sample injector (Waters 717 plus) onto a Spherisorb ODS-2 

reverse phase C18 column (5 lm, 150 · 4.6 mm; Teknokroma, San 

Cugat del Vallès, Spain) connected to a DECADE amperometric 

detector (Antec Leyden, Zoeterwoude, The Netherlands), with a glassy 

carbon electrode maintained at 0.7 V with respect to an Ag/AgCl 

reference electrode.  

The mobile phase consisted of citric acid 0.1 mol/L, Na2HPO4 0.1 

mol/L, octanesulphonic acid 0.74 mmol/L, EDTA 1 mmol/L and 

methanol 16% (pH 3.4), pumped at a flow rate of 1mL/min. 

3.2.5. Total RNA extraction  
 
Total RNA refer to the whole pool of RNA molecules obtained from the 

extraction procedure from samples. It can contain different classes of 

RNA such as ribosomal RNA (rRNA), transport RNA (tRNA), 

messenger RNA (mRNA), etc. From all these different types, only 

mRNA molecules are used in gene expression analysis, as they 

represent the transcriptome activity of genome.  
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Total RNA was extracted from the different homogenized tissues or 

blood  using the RiboPure Kit or RiboPure Blood Kit (Ambion Inc., 

Austin TX, USA) respectively, according to manufacturer’s instructions. 

RNA samples were stored at -20ºC prior to its use. 

3.2.6. Evaluation of total RNA integrity and purity 
 
RNA qualities were assessed using the Bioanalyzer 2100 (Agilent 

Technologies, Palo Alto, CA, USA), and concentrations were 

determined using a ND-1000 spectrophotometer (NanoDrop® ND-

1000, NanoDrop Technologies, DE). RNA samples were stored in 

aliquots at -80ºC prior to use.  

Gene expression analysis results may be influenced by different 

parameters related to RNA quality (purity and integrity) and quantity 

(concentration) (Khymenets et al., 2005). 

 

1- Purity: 

Total RNA purity is evaluated by the presence of protein or salts and 

other products of the RNA extraction procedure (e.g. ethanol). 

Elevated concentrations of impurities may compromise further 

downstream applications of the sample. The most common method for 

the assessment of RNA purity is based on the spectrophotometric 

estimation of absorbance at 260 nm (specific for nucleic acids), at 230 

nm (ethanol and salts) and 280 nm (proteins). The A260/A230 and 

A260/A280 ratios are used as a representation of the relative abundance 

of the different impurities in the RNA sample. The accepted ranges of 

these ratios are within 1.6 and 2.0 for most of the commonly used 

applications, although in some cases, more restrictive conditions 

should be necessary.  
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2- Concentration: 

Calculated on the basis of absorbance at 260 nm (specific for nucleic 

acids) and using the Lambert-Beer law, which predicts a linear change 

in absorbance versus concentration.  

Some application requires high amounts or concentrations of RNA 

(e.g. microarrays) whereas others (e.g. TaqMan® Low Density Array) 

can be performed with quite diluted samples.  

 

3- Total RNA integrity: 

Typically, RNA integrity is evaluated by the estimation of the integrity 

of ribosomal RNA subunits bands (ratio between 28s and 18s rRNA 

bands) which must be around 2:1. Although useful, this ratio has been 

claimed to be imprecise regarding the integrity of mRNA in the 

samples of total RNA (Imbeaud et al., 2005;Schroeder et al., 2006). 

The commercial automated capillary-electrophoresis system software 

used for the assessment of the RNA purity in this work (Agilent 

Bioanalyzer 2100) allow calculation of the RNA integrity number (RIN), 

which is a measure of integrity determined for the entire 

electrophoretic trace of the sample. This RIN is said to be independent 

of sample concentration, instrument and analyst, becoming a good 

measure of RNA integrity. 

 

3.2.7. Reverse Transcription  
 
The reverse transcription reaction was performed using a High-

Capacity cDNA Reverse Transcription Kit with RNase inhibitor (Applied 

Biosystems) according to manufacturer’s instructions. 

 

In these experiments, cDNA synthesis was performed using random 

primers to prime the reverse transcription reaction. Random primers 

consist of a mixture of short oligonucleotides representative of all 
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possible short sequences in the RNA molecules, so that, virtually all 

types of RNA molecules are reverse transcribed. Another frequently 

used method for cDNA synthesis is oligo dT primers. In that case, the 

primer hybridizes to the poly(A) tail of the mRNA, therefore, 

transcribing all mRNAs in the sample.  

 

3.2.8. Real-Time PCR 
 
Gene expression was assessed by quantitative TaqMan Real-Time 

PCR (TaqMan® Low Density Array (TLDA), Applied Biosystems). 

Reaction conditions were those explained in the ABI PRISM 7900HT 

user’s guide.  

β-actin and 18s rRNA were used as a reference genes. Data obtained 

were analysed by the Relative Quantity Manager 1.2 software (Applied 

Biosystems). 

 

The TaqMan® Low Density Array is a 384-well micro fluidic card that 

allows the performance of 384 simultaneous real-time PCR reactions.   

This is a medium-throughput array which requires lower amounts of 

sample and is less time-consuming than other approaches such as 

individual TaqMan® Gene expression assays.    

 

Fourteen genes and two reference genes were selected for its 

inclusion in our study (table 3), so that 8 different samples (in triplicate) 

can be run in parallel in each card.  
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Table 3. List of selected genes. 

 
Gene 

symbol 
Name 

Assay ID 

(TaqMan® Gene expression assays) 

 

Slc6a4 serotonin transporter Rn00564737_m1  

Slc6a3 dopamine transporter Rn00562224_m1  

Slc6a2 norepinephrine transporter Rn00580207_m1  

Slc18a2 
vesicular monoamine 

transporter  
Rn00564688_m1  

Maoa monoamine oxidase A  Rn01430955_m1  

Maob monoamine oxidase B Rn00566203_m1  

Ddc 
aromatic amino acid 
decarboxylase 

Rn00561113_m1  
 

Tph1 tryptophan hydroxylase 1 Rn01476869_m1  

Tph2 tryptophan hydroxylase 2 Rn00598017_m1  

Th tyrosine hydroxylase Rn00562500_m1  

Snca synuclein α Rn00569821_m1  

Sncg synuclein γ Rn00581652_m1  

Gfap glial fibrillary acidic protein Rn00566603_m1  

Hspa1a heat shock 70kD protein 1A Rn00583013_s1  

Actb β-actin Rn00667869_m1 Reference gene 

18s rRNA 18S ribosomal RNA - Reference gene 

 

 

Reference genes are used for normalization of data obtained in gene 

expression experiments. Typically, reference genes are constitutive 

genes transcribed at a relative constant level and that are unaffected 

by the experimental conditions.  

3.2.9. Statistical analysis 
 
Shapiro-Wilk test was used to test samples normality. Statistical 

comparisons between saline and MDMA treated groups were 

performed by independent samples Student’s t-test. Differences were 

considered statistical significant at p<0.05. Data analyses were 



Methodological Approaches 

89 

performed using the Statistical Program for the Social Sciences (SPSS 

12 for Windows).  
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This chapter includes the results of four different conducted to achieve 

the aims and objectives of this work. 

Study 1  includes the results of the validation of the PHARMAchipTM 

DNA array as part of the methodology used for the subsequent human 

studies conducted. Most of the results were described in an original 

publication (publication I ), but some results were not included and 

therefore will be discussed in this work. 

Results of the second study (Study 2 ) were used for an original 

publication (publication II ) and examine the influence of serotonin 

transporter and COMT genotypes on verbal fluency in ecstasy users. 

The third study (Study 3 ) sought to identify the influence of a larger 

number of genetic polymorphisms within the serotonergic and 

dopaminergic systems in relation to the impact on cognitive 

performance in ecstasy users (submitted publication III ). 

Finally, the Study 4  comprises the results from animal model studies, 

specifically the long-term effects of MDMA treatment on gene 

expression and serotonin metabolites in the rat brain.  

 
 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Study 1 
 

Errors and reproducibility of DNA array-based detection of allelic 

variants in ADME genes: PHARMAchip. 

Cuyàs E, Olano-Martín E, Khymenets O, Hernández L, Jofre-Monseny 

L, Grandoso L, Tejedor D, Martínez A, Farré M, de la Torre R. 

Pharmacogenomics. 2010 Feb;11(2):257-66
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Study 2 

 

The influence of 5-HTT and COMT genotypes on verbal fluency in 

ecstasy users. 

Fagundo AB, Cuyàs E, Verdejo-Garcia A, Khymenets O, Langohr K, 
Martín-Santos R, Farré M, de la Torre R. 

J Psychopharmacol. 2010 Sep;24(9):1381-93. Epub 2010 Jan 15. 
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Study 3 
 

The influence of genetic and environmental factors among MDMA 

users in cognitive performance 

Cuyàs E, Verdejo-García A, Fagundo AB, Rodríguez J, Cuenca AM, 

de Solà S, Langohr K, Peña-Casanova J, Torrens M, Martín-Santos R, 

Farré M, de la Torre R.  

(submitted to Biological Psychiatry) 
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Introduction 

3,4-methylenedioxymethamphetamine (ecstasy, MDMA) is one of the 

most popular illegal psychostimulants abused among youth. Ecstasy 

tablets are consumed recreationally at dance clubs and are associated 

with acute pleasant effects including increased energy, euphoria and 

empathy (Cami, Farre, Mas, Roset, Poudevida, Mas, San, and de la 

Torre 2000) and also unpleasant effects such as tachycardia, fatigue, 

anhedonia, irritability, low mood, and concentration difficulties (Morgan 

2000). 

There is compelling evidence that MDMA can induce long-lasting 

decrements in serotonin and 5-HIAA tissue levels in laboratory animals 

(Capela, Carmo, Remiao, Bastos, Meisel, and Carvalho 2009). A 

number of studies have demonstrated reductions in the activity of 

enzyme tryptophan hydroxylase (TPH) and in the activity and density 

of the serotonin transporter in MDMA-treated rats (Colado, Murray, 

and Green 1993;Perrine, Ghoddoussi, Michaels, Hyde, Kuhn, and 

Galloway 2010;Commins, Vosmer, Virus, Woolverton, Schuster, and 

Seiden 1987). In humans, ligand-binding imaging studies have 

reported decreased specific binding to the 5-HT transporter in ecstasy 

users compared to controls (Kish, Lerch, Furukawa, Tong, McCluskey, 

Wilkins, Houle, Meyer, Mundo, Wilson, Rusjan, Saint-Cyr, Guttman, 

Collins, Shapiro, Warsh, and Boileau 2010;McCann, Szabo, Seckin, 

Rosenblatt, Mathews, Ravert, Dannals, and Ricaurte 2005;Obrocki, 

Buchert, Vaterlein, Thomasius, Beyer, and Schiemann 1999;Ricaurte, 

McCann, Szabo, and Scheffel 2000). Although some studies have 

found significant increases of SERT availability in the midbrain and 

thalamus linked to protracted abstinence (Buchert, Thomasius, Wilke, 

Petersen, Nebeling, Obrocki, Schulze, Schmidt, and Clausen 

2004;Thomasius, Zapletalova, Petersen, Buchert, Andresen, 

Wartberg, Nebeling, and Schmoldt 2006) there is no data about SERT 

recovery in the cortex and post-mortem evidence indicates that cortical 
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SERT protein reductions can be more robust and durable than 

indicated by neuroimaging studies (Kish, Fitzmaurice, Chang, 

Furukawa, and Tong 2010). Overall these data may suggest MDMA-

induced neurotoxicity, and more specifically a neurodegeneration of 

the serotonergic neurotransmission system.  

Despite these relatively neat findings about MDMA induced serotonin 

neuroadaptations, there is still debate on the question if MDMA use is 

reliably associated with substantial neuropsychological impairment, 

regardless of the effects of concomitant use of other substances (e.g., 

cannabis, alcohol or other stimulants). A related fundamental issue is 

which neuropsychological domains become more significantly impaired 

by the use of MDMA, and to what extent they would impact related 

aspects of adaptive functioning in MDMA users. The literature on this 

topic is characterized by considerable heterogeneity of results, which 

is attributable to the large amount of confounding variables inherent to 

research on the potential deleterious effects of MDMA use. These 

confounding variables include variation in patterns of MDMA 

consumption (e.g., purity of tablets consumed, dose-related effects, 

binge effects, effects of co-abuse, types of settings), potential 

differences in demographic background and lifestyles between users 

and controls, dispositional differences related to personality traits or 

sleep patterns, psychiatric background and status, or differences on 

genetic makeup (especially those related to serotonin genes) (Kish, 

Lerch, Furukawa, Tong, McCluskey, Wilkins, Houle, Meyer, Mundo, 

Wilson, Rusjan, Saint-Cyr, Guttman, Collins, Shapiro, Warsh, and 

Boileau 2010;Krebs, Johansen, Jerome, and Halpern 2009). In 

addition, neuropsychological research in MDMA users is hindered by 

considerable variability in the performance measures and research 

designs employed, making difficult to draw strong conclusions from 

comparison across studies (Fernandez-Serrano, Perez-Garcia, and 

Verdejo-Garcia 2010). 
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Two recent meta-analyses of neuropsychological studies in MDMA 

users have concluded that MDMA use is robustly associated with 

learning and memory impairments, yielding effect sizes ranging from 

0.5 to 0.7 (Kalechstein, De La Garza, Mahoney, Fantegrossi, and 

Newton 2007;Zakzanis, Campbell, and Jovanovski 2007). This 

conclusion is substantiated by evidence from studies employing 

regression models (controlling for the co-abuse of other drugs) that 

demonstrate specific lifetime dose-related effects of MDMA use on 

learning and memory performance, particularly for verbal episodic 

memory tests (Bedi and Redman 2008a;Medina, Shear, and Corcoran 

2005;Schilt, de Win, Jager, Koeter, Ramsey, Schmand, and van den 

2008). Nonetheless, the size of this impact was modest (range of 6-

11% of total explained variance –(Schilt, de Win, Jager, Koeter, 

Ramsey, Schmand 2008)) and some of the well-known potential 

confounding variables (e.g., psychiatric status) were not fully controlled 

in these studies (Krebs, Johansen, Jerome, and Halpern 2009). There 

is also evidence that memory decrements in MDMA users are more 

neatly observable when neuropsychological probes involve a greater 

degree of complexity in terms of encoding/organization demands 

(Brown, McKone, and Ward 2010;Quednow, Jessen, Kuhn, Maier, 

Daum, and Wagner 2006) –both studies using the California Verbal 

Learning Test). These findings suggest that other higher-order 

cognitive processes related to frontal cortex systems (e.g., attention or 

executive control) may be impacted by the use of MDMA and thus 

contribute to decreased memory performance in MDMA users. 

One of the main factors that may contribute to clarify MDMA-related 

neuropsychological findings (once demographic and 

psychopathological variables are controlled) is variation in the 

distribution of a number of gene polymorphisms associated with the 

functioning of the 5-HT system. In addition, gene polymorphisms 

involved in MDMA pharmacodynamics and potential neural toxicity 
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(e.g., COMT and CYP2D6) and those supporting neural signaling 

cascades involved in learning and memory processes –the key 

cognitive processes linked to MDMA use cumulative effects (e.g., 

BDNF and glutamate genes) should also contribute to explain MDMA-

induced neuropsychological deficits in humans. Some of these 

polymorphisms are equally interesting for MDMA-related 

neurocognitive effects based on their well-recognized role in 

modulating prefrontal cortex functioning and selective executive skills 

(speed, updating and performance monitoring), which have been 

linked both to MDMA use (de Sola, Miguelez-Pan, Pena-Casanova, 

Poudevida, Farre, Pacifici, Bohm, Abanades, Verdejo-Garcia, Langohr, 

Zuccaro, and de la Torre 2008;Fisk and Montgomery 2009) and to 

COMT and 5-HTT genes (see reviews in Tunbridge, Harrison, and 

Weinberger 2006;Ullsperger 2010). This study seeks to investigate the 

relevance of all these genes for MDMA use-induced 

neuropsychological deficits. 

Functional polymorphisms within the serotonin system, including 

serotonin transporter (5-HTT) and 5HT2A receptor genes, are thought 

to have substantial influence on drug-related neurocognitive effects 

(Verdejo-Garcia, Lawrence, and Clark 2008). A functional 

polymorphism involving an insertion/deletion of 43 base pairs (bp) in 

the promoter region (5-HTTLPR) of the human serotonin transporter 

gene (Slc6a4, 5-HTT) give rise to the long (l) or short (s) variants 

(Heils, Teufel, Petri, Stober, Riederer, Bengel, and Lesch 1996) which 

alter the transcriptional activity of the gene. The short variant of the 

polymorphism reduces the transcriptional efficiency of the 5-HTT gene 

promoter, resulting in decreased 5-HTT expression (Lesch, Bengel, 

Heils, Sabol, Greenberg, Petri, Benjamin, Muller, Hamer, and Murphy 

1996) and lower 5-HTT protein availability in the human brain (Heinz 

and Goldman 2000). This polymorphism has been associated with 

altered emotional processing and poorer cognitive performance in 
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ecstasy users; individuals carrying the s/s genotype have greater 

depression levels and poorer inhibitory control when performing an 

affective go/no-go task (Roiser, Cook, Cooper, Rubinsztein, and 

Sahakian 2005; Roiser, Rogers, Cook, and Sahakian 2006).  

An additional functional single nucleotide variant (A/G) within the 

promoter (rs25531) has to be considered in order to interpret 

genotyping results of 5-HTTLPR (Hu, Lipsky, Zhu, Akhtar, Taubman, 

Greenberg, Xu, Arnold, Richter, Kennedy, Murphy, and Goldman 

2006;Wendland, Martin, Kruse, Lesch, and Murphy 2006). The la 

variant is associated with high levels of in vitro 5-HTT expression, 

whereas lg is low expressing and more similar to s allele (Praschak-

Rieder, Kennedy, Wilson, Hussey, Boovariwala, Willeit, Ginovart, 

Tharmalingam, Masellis, Houle, and Meyer 2007). Reimold et al., 

(Reimold, Smolka, Schumann, Zimmer, Wrase, Mann, Hu, Goldman, 

Reischl, Solbach, Machulla, Bares, and Heinz 2007) reported an 

increased binding of PET ligands to 5HTT for subjects homozygous 

la/la in the putamen and midbrain. Conversely other studies found no 

effects of this polymorphism on 5-HTT binding in healthy volunteers 

(Murthy, Selvaraj, Cowen, Bhagwagar, Riedel, Peers, Kennedy, 

Sahakian, Laruelle, Rabiner, and Grasby 2010;Parsey, Hastings, 

Oquendo, Hu, Goldman, Huang, Simpson, Arcement, Huang, Ogden, 

Van Heertum, Arango, and Mann 2006) and postulate that lower 

binding is directly related to lower amounts of protein in discrete brain 

regions possibly associated to neurodegenerative MDMA induced 

effects (Kish, Lerch, Furukawa, Tong, McCluskey, Wilkins, Houle, 

Meyer, Mundo, Wilson, Rusjan, Saint-Cyr, Guttman, Collins, Shapiro, 

Warsh, and Boileau 2010;Kish, Fitzmaurice, Chang, Furukawa, and 

Tong 2010).  

MDMA use has also been related to reductions of serotonin receptor 

2A levels in rats and humans. The 5-HT2A receptors are located in the 

medial prefrontal cortex and hippocampus of rats (Pazos, Cortes, and 
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Palacios 1985;Xu and Pandey 2000) and humans (Hoyer, Pazos, 

Probst, and Palacios 1986;Wong, Lever, Hartig, Dannals, Villemagne, 

Hoffman, Wilson, Ravert, Links, Scheffel, and . 1987;Barnes and 

Sharp 1999;Leysen 2004) indicating that these receptors may play an 

important role in modulating learning and memory. Cortical 5-HT2A 

receptor densities in rats were decreased after MDMA treatment 

(Kindlundh-Hogberg, Svenningsson, and Schioth 2006). In humans, 

recent MDMA users display significant low cortical 5-HT2A densities 

while ex-MDMA users exhibited significantly higher receptor densities 

in the cortical areas studied (Reneman, Endert, de Bruin, Lavalaye, 

Feenstra, de Wolff, and Booij 2002).  

A nonsynonymous polymorphism at position 1354 (C/T) occurs in the 

receptor gene leading to an amino acid substitution histidine (His) to 

tyrosine (Tyr) at codon 452 (His452Tyr) (rs6314). The rare tyr allele 

has been associated with poorer delayed but not immediate recall 

performance in verbal memory tasks (Wagner, Schuhmacher, Schwab, 

Zobel, and Maier 2008). In agreement with neuropsychological data, 

tyr carriers also have reduced hippocampal gray matter densities 

(Filippini, Scassellati, Boccardi, Pievani, Testa, Bocchio-Chiavetto, 

Frisoni, and Gennarelli 2006). Another polymorphism within the gene 

is the T to C transition at position 102 (T102C, rs6313) that does not 

alter the amino acid composition and, therefore, has no influence on 

the receptor protein (Bondy, Spaeth, Offenbaecher, Glatzeder, Stratz, 

Schwarz, de Jonge, Kruger, Engel, Farber, Pongratz, and Ackenheil 

1999). Anyhow, several studies have associated this polymorphism 

with panic disorders, schizophrenia, suicidal behaviour, and affective 

disorders (Maron, Nikopensius, Koks, Altmae, Heinaste, Vabrit, 

Tammekivi, Hallast, Koido, Kurg, Metspalu, Vasar, Vasar, and Shlik 

2005;Golimbet, Lavrushina, Kaleda, Abramova, and Lezheiko 2007; 

Vaquero-Lorenzo, Baca-Garcia, Diaz-Hernandez, Perez-Rodriguez, 

Fernandez-Navarro, Giner, Carballo, Saiz-Ruiz, Fernandez-Piqueras, 
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Baldomero, de Leon, and Oquendo 2008), although some of these 

results have not been replicated in other studies (Martinez-Barrondo, 

Saiz, Morales, Garcia-Portilla, Coto, Alvarez, and Bobes 2005;Correa, 

De Marco, Boson, Nicolato, Teixeira, Campo, and Romano-Silva 

2007).   

 

There are other genes involved in neural cascades underlying 

processes of synaptic plasticity (including long-term potentiation) that 

also play a role in the modulation of the serotonergic system. For 

example, genetic variation in BDNF influences 5-HTT availability 

(Henningsson, Borg, Lundberg, Bah, Lindstrom, Ryding, Jovanovic, 

Saijo, Inoue, Rosen, Traskman-Bendz, Farde, and Eriksson 2009). A 

single nucleotide polymorphism (SNP) at nucleotide 196 (G/A) 

(rs6265) within the BDNF gene, produces an amino acid substitution 

(valine to methionine) at codon 66 (val66met). This polymorphism 

does not affect mature BDNF protein function but it has been shown to 

alter the intracellular trafficking and packaging of pro-BDNF and the 

regulated secretion of the mature protein when the val66 is replaced 

with met (Egan, Kojima, Callicott, Goldberg, Kolachana, Bertolino, 

Zaitsev, Gold, Goldman, Dean, Lu, and Weinberger 2003). One of the 

main effects observed by imaging studies in carriers of the met allele is 

a significant bilateral reduction of hippocampal and cortical volume 

(Pezawas, Verchinski, Mattay, Callicott, Kolachana, Straub, Egan, 

Meyer-Lindenberg, and Weinberger 2004;Szeszko, Lipsky, Mentschel, 

Robinson, Gunduz-Bruce, Sevy, Ashtari, Napolitano, Bilder, Kane, 

Goldman, and Malhotra 2005). BDNF polymorphism has also been 

associated with impairment in some forms of learning and memory. 

Individuals carrying the met allele perform worse than val 

homozygotes on memory tasks that rely on hippocampal functioning 

(Egan, Kojima, Callicott, Goldberg, Kolachana, Bertolino, Zaitsev, 

Gold, Goldman, Dean, Lu, and Weinberger 2003). However, recent 
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evidence indicates that val carriers may outperform met carrier 

counterparts when performing executive control tests (Beste, Baune, 

Domschke, Falkenstein, and Konrad 2010).  

Other receptors strongly involved in the neural signalling processes 

underlying learning and memory processes are the N-methyl-D-

aspartate receptors (NMDARs). The NR2B subunit, encoded by the 

glutamate receptor, ionotropic, NMDA subunit 2B gene (GRIN2B) is 

specially involved in the stabilization of synaptic connections, long term 

increase/decrease of synaptic strength, necrotic/apoptotic neuronal 

death, and learning processes (Seripa, Matera, Franceschi, Bizzarro, 

Paris, Cascavilla, Rinaldi, Panza, Solfrizzi, Daniele, Masullo, 

Dallapiccola, and Pilotto 2008;Rosenblum, Dudai, and Richter-Levin 

1996;Loftis and Janowsky 2003). A polymorphism within this subunit 

leads to the substitution of C to T (rs1806210) which is a silent 

polymorphism and has no effect on the amino acid sequence of the 

receptor (Thr888Thr) (Nishiguchi, Shirakawa, Ono, Hashimoto, and 

Maeda 2000). Despite being synonymous, this SNP may have 

functional effects by altering the mRNA stability or translation, as the 

C/T and T/T genotypes might be related to increased glutamatergic 

neurotransmission because these genotypes are associated with early 

manifestations of Huntington’s disease attributable to glutamate 

excitotocixity (Arning, Saft, Wieczorek, Andrich, Kraus, and Epplen 

2007). Increases in glutamatergic neural transmission have been 

associated with reduced dopaminergic function (Seamans and Yang 

2004).  

Two additional genes will be examined based on their involvement in 

dopamine (COMT) and MDMA (CYP2D6 and COMT) metabolism, as 

well as in modulating prefrontal cortex functioning (COMT).Different 

isoenzymes of the COMT enzyme are involved in both the clearance of 

dopamine from the synaptic cleft in the prefrontal cortex and in the 

MDMA phase II metabolism (i.e., transformation of 3,4-
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dihydroxymethamphetamine (HHMA) to 3-methoxy-4-

hydroxymethamphetamine (HMMA) (de la Torre, Farre, Roset, Pizarro, 

Abanades, Segura, Segura, and Cami 2004)). A functional 

polymorphism (rs4680) consisting in a valine (val) to methionine (met) 

substitution at codon 158 of the MB-COMT (codon 108 for the S-

COMT variant), results in a thermolabile protein with decreased 

enzymatic activity (one third less activity for the met homozygotes 

compared to the val homozygotes) at physiologic temperatures 

(Mannisto and Kaakkola 1999). Because these alleles are codominant, 

heterozygotes have intermediate levels of COMT activity. Inter-

individual variability in the susceptibility to MDMA-induced 

neurotoxicity may in part be explained by the different enzymatic 

activity of these COMT variants and the reactive metabolic species 

formed as consequence of MDMA metabolism (de la Torre, Farre, 

Roset, Pizarro, Abanades, Segura, Segura, and Cami 2004;Perfetti, 

O'Mathuna, Pizarro, Cuyàs, Khymenets, Almeida, Pellegrini, Pichini, 

Lau, Monks, Farre, Pascual, Joglar, and de la Torre 2009). In addition, 

the COMT gene is involved in prefrontal cortex dopamine break-up 

and thus may influence the speed and quality of operations of 

executive control skills (Frank and Fossella 2011). The val allele of the 

COMT polymorphism has been associated with inferior working 

memory (Egan, Goldberg, Kolachana, Callicott, Mazzanti, Straub, 

Goldman, and Weinberger 2001;Goldberg, Egan, Gscheidle, Coppola, 

Weickert, Kolachana, Goldman, and Weinberger 2003) but greater 

cognitive flexibility in healthy subjects and psychotic patients (Colzato, 

Waszak, Nieuwenhuis, Posthuma, and Hommel 2010;Durstewitz and 

Seamans 2008). 

Finally, the CYP2D6 enzyme is responsible for 30% of the conversion 

of MDMA to HHMA in humans (Farre, de la Torre, Mathuna, Roset, 

Peiro, Torrens, Ortuno, Pujadas, and Cami 2004). Interindividual 

differences in CYP2D6 activity may affect the MDMA pharmacology 
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and susceptibility to toxicity. Preliminary data have shown that MDMA 

pharmacology differs according to CYP2D6 genotype (de la Torre, 

Farre, Mathuna, Roset, Pizarro, Segura, Torrens, Ortuno, Pujadas, 

and Cami 2005). In agreement with this notion, a very recent study has 

shown that CYP2D6 involved in methamphetamine metabolic 

disposition modulates neuropsychological performance users 

(Cherner, Bousman, Everall, Barron, Letendre, Vaida, Atkinson, 

Heaton, and Grant 2010). 

The current study seeks to clarify several open questions of the MDMA 

neuropsychological literature by investigating the neuropsychological 

performance (as a function of relevant genotype profiles) of a large 

sample of MDMA users recruited over 10 years in the city of 

Barcelona, being representative of the typical users of this substance 

in a homogeneous recruitment context. This sample includes 

considerable variability of drug use patterns, which have allowed us to 

carefully characterize dose-related effects of cumulative MDMA use on 

neuropsychological performance. Neuropsychological testing was 

focused on those cognitive domains that have been consistently linked 

to MDMA use across studies: verbal and visual memory, 

attention/processing speed and executive functions. Furthermore, we 

have investigated the effects of a number of key functional 

polymorphisms, previously discussed, which may importantly affect 

neuropsychological profiles in MDMA users. We hypothesized: (i) that 

heavier MDMA use would be correlated with poorer 

neuropsychological performance in a dose-dependent fashion; (ii) that 

heavy MDMA users would perform poorer than cannabis and healthy 

comparison individuals on neuropsychological tests of processing 

speed, memory and fluency (indicating robust effects of MDMA on 

cognition regardless of co-abuse of cannabis); and (iii) that MDMA use 

would exacerbate cognitive performance decrements in individuals 
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carrying genotypes associated with lower functionality of the serotonin, 

glutamate and dopamine systems (drug x gene interaction effects). 

 

Methods 

Participants 

Two hundred sixty-three participants (n=263) were recruited, of whom 

60 were ecstasy polydrug users, 110 were cannabis users and 93 

were non users. The ecstasy users were further classified into two 

subgroups according to lifetime use of the substance applying a cut-off 

of more or less than 100 tablets (heavy vs. light users) (de Win, Jager, 

Booij, Reneman, Schilt, Lavini, Olabarriaga, Ramsey, Heeten, and van 

den 2008). All participants were healthy, self-reporting an adequate 

functioning within their social and professional context. Participants 

were recruited through several sources: `word of mouth´ notices in the 

local area, advertisement in the local university, and advertisement in a 

local NGO (Energy Control) specialized in providing harm reduction 

guidelines among drug users. As for the different groups, the following 

exclusion criteria were applied: for cannabis group, current history of 

regular use of other illegal psychotropic drugs with the exception of 

cannabis during last year, as well as past use of illegal drugs for more 

than 5 occasions during lifetime; and for non users current history of 

use of any illegal drugs during the past year, and past use of any 

illegal drugs in more than 5 occasions. Alcohol and nicotine use (but 

not abuse or dependence) was permitted. As for the ecstasy group, 

because it was impossible to recruit exclusive ecstasy users, it was 

decided to include ecstasy consumers with moderate use of other illicit 

drugs (not meeting abuse or dependence criteria), being ecstasy the 

main psychostimulant drug abused.  
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Test procedure 

This study was approved by and conducted in accordance with the 

local ethics committee (CEIC-IMAS). Upon arrival to the research 

centre (IMIM, Hospital del Mar Research Institute), participants were 

informed of the ensuing protocol and gave their written informed 

consent before participating in the study.   

All subjects were subjected to an exploration that included a detailed 

medical history, biochemical analyses, physical examination, urine and 

hair toxicology screens, a brief neurological examination, and a 

structured psychiatric interview (PRISM, (Torrens, Serrano, Astals, 

Perez-Dominguez, and Martin-Santos 2004)) by a psychiatrist or 

psychologist. Subjects with neurological, relevant medical disease and 

active psychiatric disorders (or active in the previous year of the 

exploration) were excluded.  Abstinence period was not strictly 

delimitated, although all participants were requested to observe a 72 h 

abstinence period. Due to this fact, urine drug screens were carried out 

by immunoassay (CEDIA, Thermo-Fisher) in all subjects prior to 

neuropsychological testing in order to avoid acute effects. Drug 

classes screened for included: cannabis, ecstasy, cocaine and 

amphetamine/methamphetamine. Drug screens were performed also 

in hair samples by segmental analysis (last month, previous 6 months 

and last year) for the same drug classes in order to verify self-reported 

drug consumption history. This procedure allowed us to reliably 

classify participants into the different subgroups according to the 

pattern of drug use (ecstasy/cannabis vs. cannabis). All participants 

meeting inclusion criteria underwent a neuropsychological assessment 

session of 90 minutes, although here we only report analyses from a 

subset of these measures. After completing testing, all subjects were 

economically compensated for their participation.  
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Neuropsychological tests 

The neuropsychological tests administered are briefly described below 

and a more thorough description of the protocol can be found in de 

Sola Llopis et al. (2008): 

 

- Verbal Episodic Memory, California Verbal Learning Test (CVLT II). 

The test consists on a list of 16 words that the participant must learn 

across five learning trials and then reproduce after presentation of an 

interference list (immediate recall) and after 20-minutes lapse (delayed 

recall). The dependent measures were CVLT standard indices of 

learning (trials 1 to 5), immediate recall, delayed recall and recognition.  

 

- Visual Episodic Memory, Rey-Osterrieth Complex Figure Test 

(ROCFT): Participants have to (i) copy and (ii) reproduce (after 3- and 

30-minutes delays) a complex visual figure. The dependent measures 

were ROCF standard indices of accuracy of the copy, immediate 

recall, and delayed recall. 

 

- Semantic Word Fluency, Animals. It evaluates the ability to access to, 

retrieve, and produce targeted information in response to words 

belonging to the category (e.g. “animals”). Two types of measures 

were obtained from these tests: (1) Total words generated: the total 

number of correctly generated words in 60 seconds. All intrusions 

(words not pertaining to this semantic category), perseverations (same 

words), and repetitions (same words with different endings) were 

treated as errors and not computed; and (2) Clustering and switching 

measures as explained previously in Fagundo et al. 2010 (Fagundo, 

Cuyàs, Verdejo-García, Khymenets, Langohr, Martín-Santos, Farre, 

and de la Torre 2010). A cluster was defined as any series of two or 

more successively produced words belonging to the same semantic or 

phonemic subcategory. Cluster size was computed adding up series of 
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words from the same subcategory starting from the second word within 

each cluster (i.e., a 3-word cluster has a size of 2). The Mean Cluster 

Size was obtained by adding the size of all the clusters and dividing it 

by the total number of clusters. The Number of Switches was defined 

and computed as the number of times the participant changed from 

one cluster to another within the same task. The computation of 

Number of Switches included single-word clusters (cluster size= 0). 

Intrusions, repetitions, and perseverations were excluded from the 

calculation of both Mean Cluster Size and Number of Switches. 

 

- Attention/Processing Speed, Symbol Digit Modalities Test (SDMT) 

(from the Wechsler Adult Intelligence Scale –WAIS III): participants 

have to rapidly convert geometric designs into Arabic numbers 

following a visual key. Responses must follow the correspondence 

shown in a visual key. The dependent measure was the total number 

of hits produced in 90 seconds. 

 

Genotyping 

Genomic DNA was extracted from the peripheral blood leukocytes of 

all the participants using Flexi Gene DNA kit (Qiagen Iberia, S.L., 

Spain) according to the manufacturer’s instructions. 

5-HTTLPR genotyping was performed using polymerase chain 

reaction (PCR) as described previously in (Fagundo, Cuyàs, Verdejo-

García, Khymenets, Langohr, Martín-Santos, Farre, and de la Torre 

2010). 

The 5HTTLPR (A/G) polymorphism (rs25531) was detected by MspI 

restriction enzyme digestion (De Luca, Tharmalingam, King, Strauss, 

Bulgin, and Kennedy 2005). Briefly, 1 µl of PCR was digested  in a 10 

µl reaction assay containing 1x NEBuffer 2 and 3U MspI at 37ºC for 3 

h and a final inactivation step of 20 minutes at 65ºC. The resulting 

fragments were detected on an automatic ABI 3730XL capillary 
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sequencer and analyzed by GeneMapper Software v3.5 (Applied 

Biosystems, Foster City, CA, USA). Product sizes for the digest were: 

long A (LA)= 337 bp, short A (SA)= 292 bp, long G (LG)= 162 bp, and 

short G (Sg)=162 bp. 

In some cases, were MspI digestion gave unclear results the samples 

were sequenced to assign the correct genotype. Sequencing was 

performed in both, the sense and antisense orientations. The excess 

primers and deoxynucleotides in the polymerase chain reaction (PCR) 

products were then degraded by adding a 2 µl of a solution of 0.8 U of 

shrimp alkaline phosphatase (New England Biolabs, Ipswich, MA), 4 U 

of Escherichia coli Exonuclease I (New England Biolabs, Ipswich, MA) 

and 0.64x shrimp alkaline phosphatase buffer. The mixture was 

incubated at 37°C for 15 min, followed by deactivat ion for 15 min at 

80°C. Sequencing reactions were performed with BigD ye v3.1 (Applied 

Biosystems, Foster City, California) in 10 µl total volume containing      

1 µl template (approximately 25 ng), 3.2 pmol primer, 1 µl 5x DNA 

sequencing buffer (Applied Biosystems), 2 µl BigDye v3.1 (Applied 

Biosystems), and water. The reactions were cycled at 94°C for 3 min, 

followed by 30 cycles at 96°C for 10 sec, 50°C for 5 sec, and 60°C for 

4 min. Reactions were then purified with PureLink Quick Gel extraction 

kit (Invitrogen) according to manufacturer’s instructions. Samples were 

analyzed on a Prism 3730xl DNA Analyzer (Applied Biosystems). 

The COMT val108/158met (rs4680) and BDNF val66met (rs6265) 

single nucleotide polymorphism (SNP) allelic variants were determined 

using the 5’ exonuclease TaqMan assay with ABI 7900HT Sequence 

Detection System (Real Time PCR) supplied by Applied Biosystems. 

Primers and fluorescent probes were obtained from Applied 

Biosystems with TaqMan SNP Genotyping assays (assay ID 

C_2255335_10 and C_11592758_10 for rs4680 and rs6265, 

respectively). Reaction conditions were those described in the ABI 
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PRISM 7900HT user’s guide. Endpoint fluorescent signals were 

detected on the ABI 7900, and the data were analyzed using 

Sequence Detector System software, version 2.3 (Applied 

Biosystems).  

The CYP2D6, GRIN2B C2664T (rs1806201), the 5HT2A His452Tyr 

(rs6314) and T102C (rs6313) genotypes were performed using the 

PHARMAchipTM DNA array (Progenika Biopharma, Derio, Spain) 

(Cuyàs, Olano-Martin, Khymenets, Hernandez, Jofre-Monseny, 

Grandoso, Tejedor, Martinez, Farre, and de la Torre 2010). This DNA 

microarray allows the screening of genetic variants for phase I and 

phase II drug metabolism enzymes (DME), drug transporters, and drug 

protein effectors. It is based on the allele-specific oligonucleotide 

hybridization (ASO), where no enzyme is involved and the allelic 

discrimination is dependent on the design of the probes. 

 

Statistical Analyses 

Baseline characteristics, including drug consumption, are described by 

means of either mean and standard deviation (numerical variables) or 

absolute and relative frequencies (categorical variables). The chi-

square test was applied to study the association between drug 

consumption (ecstasy consumption, cannabis consumption or control 

group) and each of the genotypes studied. In addition, it was used to 

check whether the Hardy-Weinberg equilibrium holds among each of 

the three populations under study.  

At a univariate level, the correlation between the cognitive 

performance and both lifetime ecstasy and lifetime cannabis 

consumption was quantified by Pearson’s correlation coefficient 

among those individuals consuming ecstasy and those consuming 

cannabis, respectively. These correlation coefficients were also 

computed for the subgroups defined by the COMT val158met 

genotype, on one hand, and the 5-HTTLPR genotype, on the other.  
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Since the principal interest was to study the association between 

cognitive performance and both drug consumption and each of the 

genotypes of interest, ANCOVA models were fitted for all 

neuropsychological variables and each genotype separately. These 

models included drug consumption and the respective genotype as 

predictive variables of interest as well as gender and the WAIS-III 

Vocabulary index score (as a well-accepted proxy of IQ). Both latter 

variables were included in all regression models in order to rule out the 

possible confusion due to baseline differences observed among the 

drug consumption groups with respect to sex and IQ (because of the 

high correlations between education and IQ the former variable was 

not included in these analyses). Initially, all models did also include the 

two-way interaction between genotype and drug consumption. 

Whenever the interaction could be discarded, both factors were 

studied separately using the ANCOVA model excluding interaction. If a 

significant effect was observed of either factor, post-hoc multiple 

comparisons were carried out in the framework of the corresponding 

model using the Tukey test. If, by contrast, the interaction was 

significant, the effect of drug consumption was studied separately for 

each genotype expression and, vice versa. Again, the Tukey test for 

multiple comparisons was applied for these analyses in the framework 

of the ANCOVA models including interaction.   

Statistical significance was set at 0.05 with one exception. The two-

way genotype-drug consumption interaction within all ANCOVA 

models was only eliminated in case of p>0.1 in order to reduce the 

probability of a possible type-II error. The statistical software package 

R (The R Foundation for Statistical Computing), version 2.11.1, was 

used for all analyses. In particular, R package multcomp (Hothorn, 

Bretz, and Westfall 2008) was used for the multiple pairwise 

comparisons. 
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Results 

Demographic variables, drug use characteristics and genotype 

distributions are presented in Table 1.  

Concerning sociodemographic variables, the three samples showed 

several differences: mean ages were similar in the three groups 

though somewhat higher in the ecstasy group (23.2 years) than in the 

other two groups (21.6 and 22.8 years for cannabis and controls 

respectively). The proportion of individuals with a university degree or 

studying at university was lower in the ecstasy (68.3%) and cannabis 

(68.2%) groups than among controls (90.2%). On average, scores on 

the Vocabulary test (WAIS-III index score) were worse in the ecstasy 

(mean: 11.4) and cannabis groups (11.5) compared to the control 

group (12.6). Among each group, individuals with a university degree 

obtained higher WAIS-III index scores (data not shown). Regarding 

gender, the proportion of males was higher in the cannabis group 

(62.7%) with respect to the ecstasy (55%) and the control (52.7%) 

groups. The distribution of the employment categories among the three 

samples was fairly the same.  
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Table 1: Demographic variables, drug consumption characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genotype distributions 

Genotype distributions for all groups are presented in table 2.  

The tests of Hardy-Weinberg equilibrium among the three different 

groups of this study showed that genotypes in all the populations were 

in equilibrium with exception of the COMT val158met polymorphism in 

the cannabis group (p=0.004).  

In some cases, genotypes for the different genes were combined for 

several reasons. For the serotonin transporter, most of the 

comparisons were performed with the three possible genotypes, and 

only when the combinations with COMT, BDNF, or the serotonin 

receptor polymorphisms were assessed, the three serotonin 

transporter genotypes were split in order to have enough individuals in 

each category to have enough statistical power. In those cases, 

individuals were classified into L-allele carriers or those with the S/S 

 M D M A  (n = 6 0 )  C a n n a b is  (n = 1 1 0 )  C o n tro l  (n = 9 3 )  

 n  (% )  n  (% ) n  (% ) 

A g e a  2 3 .2  (3 .1 )  2 1 .6  (2 .7 )  2 2 .8  (4 .1 )  

V o c a b u la ry  W A IS -I IIa  1 1 .4  (2 .4 )  1 1 .5  (2 .1 )  1 2 .6  (2 )  

G e n d e r     

M a le  3 3  (5 5 .0 )  6 9  (6 2 .7 )  4 9  (5 2 .7 )  

F e m a le  2 7  (4 5 .0 )  4 1  (3 7 .3 )  4 4  (4 7 .3 )  

U n iv e r s i t y  d e g re e b     

Y e s  4 1  (6 8 .3 )  7 5  (6 8 .2 )  8 3  (9 0 .2 )  

N o  1 9  (3 1 .7 )  3 5  (3 1 .8 )  9  (9 .8 )  

E m p lo y m e n t  S ta tu s     

E m p lo y e d  1 7  (2 8 .3 )  2 9  (2 6 .6 )  2 6  (2 8 .3 )  

U n e m p lo y e d  1 3  (2 1 .7 )  2 4  (2 2 .0 )  1 3  (1 4 .1 )  

S tu d e n t 3 0  (5 0 .0 )  5 6  (5 1 .4 )  5 3  (5 7 .6 )  

S m o k e r     

C u rre n t S m o k e r 4 6  (7 6 .7 )  7 0  (6 3 .6 )  1 7  (1 8 .7 )  

N o n  s m o k e r /E x -s m o k e r 1 4  (2 3 .3 )  4 0  (3 6 .4 )  7 4  (8 1 .3 )  

A g e  a t  f i r s t  t o b a c c o  u s e a  1 6 .4  (3 .4 )  1 8 .5  (3 .1 )  1 8 .1  (3 .3 )  

Y e a rs  o f  to b a c c o  c o n s u m p t io n a  6 .3  (3 .9 )  3 .1  (2 .6 )  5 .2  (4 .9 )  

C ig a re t te s  p e r  d a y a  1 1 .1  (5 .9 )  8 .9  (6 .3 )  6 .8  (5 .3 )  

A g e  a t  f i r s t  a lc o h o l u s e a  1 4 .5  (1 .8 )  1 4 .8  (1 .4 )  1 5 .9  (1 .4 )  

Y e a rs  o f  a lc o h o l c o n s u m p t io n a  8 .7  (3 .0 )  3 .1  (2 .8 )  6 .8  (4 .4 )  

A g e  a t  f i r s t  c a n n a b is  u s e a  1 5 .6  (2 .0 )  1 5 .5  (1 .6 )   

Y e a r s  o f  c a n n a b is  c o n s u m p t io n a  7 .7  (2 .9 )  6 .1  (2 .8 )   

A g e  a t  f i r s t  M D M A  u s e a  1 8  (2 .9 )    

Y e a r s  o f  M D M A  c o n s u m p t io n a  5 .2  (3 .2 )    
a M e a n  (S D ) 
b In c lu d in g  S tu d e n ts  
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genotype due to the hypothesis that MDMA users with the later 

genotype are said to show greater impairments in the cognitive 

functions assessed. For the combination of the two polymorphisms 

within the serotonin transporter (5-HTTLPR and rs25531), the 

combinations used were the same as described elsewhere. That is, 

high expression genotypes (La/La), medium (La/Lg, La/S), and low 

(Lg/Lg, Lg/S, S/S). Regarding the COMT val158met polymorphism, 

most analyses were performed using the three genotypes, but in some 

cases (e.g. when making comparisons with genotype combinations), it 

was necessary to group them into met-carriers or val-carriers in order 

to fulfil the groups to test different hypothesis. As for the CYP2D6, 

there were two groups, the Poor/Intermediate (if individuals carried one 

o more non-functional alleles), and the Ultra-rapid/Extensive (if one or 

more functional alleles). Finally, for the BDNF, GRIN2B C2664T, 

serotonin receptor His452Tyr, and the rs25531 alone, the rare 

genotypes (met/met, T/T, Tyr/Tyr, and G/G, respectively) were 

grouped with the heterozygous genotypes.  
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Table 2: Genotype distributions of the participants. 

 MDMA 
heavy 

MDMA 
light 

MDMA Cannabis Control 
 

 n (%) n (%) n (%) n (%) n (%) p-value 

5-HTTLPR   

L/L 7 (25.0) 9 (28.1) 16 (26.7) 31 (28.2) 29 (31.2) 
0.121 
*0.280 

L/S 12 (42.9) 12 (37.5) 24 (40.0) 58 (52.7) 49 (52.7) 
S/S 9 (32.1) 11 (34.4) 20 (33.3) 21 (19.1) 15 (16.1) 

5-HTTLPR+rs25531 (n=259)  

High (La/La) 5 (17.9) 9 (29.0) 14 (23.7) 25 (23.4) 21 (22.6) 
0.478 
*0.605 

Medium (La/Lg + La/S) 13 (46.4) 12 (38.7) 25 (42.4) 55 (51.4) 52 (55.9) 
Low (Lg/Lg + Lg/S + S/S) 10 (35.7) 10 (32.3) 20 (33.9) 27 (25.2) 20 (21.5) 

rs25531 (n=259)  

A/A - - 53 (89.8) 93 (86.1) 77 (83.7) 
0.568 

G - - 6 (10.2) 15 (13.9) 15 (16.3) 

5HT2A receptor his452tyr (n=259)     

His/His 21 (77.8) 21 (65.6) 42 (71.2) 59 (54.1) 59 (63.4) 0.598 
*0.529 His/Tyr 6 (22.2) 11 (34.4) 17 (28.8) 50 (45.9) 34 (36.6) 

5HT2A receptor T102C    

T/T - - 9 (15.3) 25 (22.9) 17 (18.7) 
0.448 T/C - - 28 (47.5) 45 (41.3) 48 (52.7) 

C/C - - 22 (37.3) 39 (35.8) 26 (28.6) 

BDNF val66met (n=262)  

val/val 22 (78.6) 20 (62.5) 42 (70.0) 59 (54.1) 59 (63.4) 0.109 
*0.109 met 6 (21.4) 12 (37.5) 18 (30.0) 50 (45.9) 34 (36.6) 

GRIN2B C2664T (n=259)       

C/C 19 (70.4) 19 (59.4) 38 (64.4) 57 (52.3) 54 (59.3) 0.288 
*0.360 T 8 (29.6) 13 (40.6) 21 (35.6) 52 (47.7) 37 (40.7) 

COMT val158met      

val/val 12 (42.9) 9 (28.1) 21 (35.0) 26 (23.6) 27 (29.0) 
0.069 
*0.037 

val/met 13 (46.4) 13 (40.6) 26 (43.3) 70 (63.6) 45 (48.4) 
met/met 3 (10.7) 10 (31.2) 13 (21.7) 14 (12.7) 21 (22.6) 

CYP2D6   

Poor/Intermediate - - 9 (16.4) 14 (14.4) 13 (16.2) 0.928 
 Extensive/ultra-rapid - - 46 (83.6) 83 (85.6) 67 (83.8) 

Genotype Combinations       

5HTTLPR + COMT val158met       

L +met - - 24 (40.0) 68 (61.8) 57 (61.3) 

0.075 
L + val/val - - 16 (26.7) 21 (19.1) 21 (22.6) 

S/S +met - - 15 (25.0) 16 (14.5) 9 (9.7) 

S/S + val/val - - 5 (8.3) 5 (4.5) 6 (6.5) 
5HTTLPR + BDNF val66met (n=262)       

L +met - - 13 (21.7) 41 (37.6) 27 (29.0) 

0.042 
L + val/val - - 27 (45.0) 47 (43.1) 51 (22.6) 

S/S +met - - 5 (8.3) 9 (8.3) 7 (7.5) 

S/S + val/val - - 15 (25.0) 12 (11.0) 8 (8.6) 
5HTTLPR + 5HT2A his452Tyr (n=259)        

L + His/His - - 27 (45.8) 70 (64.2) 56 (61.5) 
0.070 L + Tyr - - 21 (20.3) 18 (16.5) 20 (22.0) 

S/S  - - 20 (33.9) 21 (19.3) 15 (16.5) 

* p-values for comparisons between ectasy heavy, ecstasy light, cannabis and control groups. 
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No significant differences were observed in the genotype distributions 

among the different groups, except for the 5-HTTLPR and the COMT 

val158met polymorphisms. Significant differences were observed 

regarding the genotype distributions for the COMT val158met 

polymorphism (p=0.037) when the distinction between heavy and light 

ecstasy users was taken into account. There are a higher number of 

individuals with the val/val genotype in the heavy ecstasy users group 

(42.9%) compared to the control group (29.0%). The val/met genotype 

is also overrepresented in the cannabis group (63.6%) compared to 

the control group (48.4%).   

 

Correlations between neuropsychological variables and 

ecstasy/cannabis lifetime consumption 

Pearson’s correlation coefficient revealed negative significant 

associations between cannabis lifetime consumption and CVLT total 

A1-A5 (r= -0.155, IC95%: [-0.298, -0.004]). For the ROFCT accuracy 

of copy, MDMA lifetime consumption showed a negative significant 

association (r= -0.604, IC95%: [-0.744, -0.413]), while it was 

significantly positive for cannabis lifetime consumption (r= 0.266, 

IC95%: [0.12, 0.401]). MDMA lifetime consumption showed negative 

significant associations with the ROFCT immediate recall (r= -0.391, 

IC95%: [-0.587, -0.152]), ROFCT delayed recall (r= -0.464, IC95%: [-

0.642, -0.238]), and SDMT total correct (r= -0.269, IC95%: [-0.489, -

0.016]).  

An analysis of the results, taking into account the COMT val158met or 

the 5-HTTLPR genotypes and the drug lifetime consumption was 

performed. Results showed a negative significant correlation between 

ROFCT immediate recall and MDMA lifetime consumption among 

individuals with the val/val genotype (r= -0.52, IC95%: [-0.587,-0.152]) 

and those carrying the met allele (r= -0.335, IC95%: [-0.588,-0.022]) 

(figure 1).  
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In the same direction are the results for the ROFCT delayed recall. 

Negative correlation was observed for MDMA users with the val/val 

genotype (r= -0.572, IC95%: [-0.805,-0.187]) (figure 1) and for those 

with the met allele (r= -0.418, IC95%: [-0.648,-0.118]) (figure 1). None 

of the other correlations analyzed reached statistical significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 1: Ecstasy lifetime consumption and COMT val158met, 5-HTTLPR 
genotypes correlations for ROCT immediate and delayed recall. 
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Analysis of neuropsychological performance by group 
genotypes: 
 

Symbol Digit Modalities Test (SDMT) 

We found no significant main effect of group on performance in this 

test.  

We found a significant Group x 5-HTTLPR Genotype 

interaction (p=0.016), with heavy ecstasy users carrying the S/S 

genotype performing poorer than S/S controls (p=0.0152).  

In addition, we found a significant Group x genotype interaction 

for the combination of the serotonin transporter (5-HTTLPR) and the 

COMT val158met genotypes (p<0.001). In the control group, 

individuals with the S/S+val/val genotype scored higher than those 

carrying the L+met combination (p=0.0219). In contrast, ecstasy users 

carrying the S/S+val/val combination performed significantly more 

poorly than ecstasy L+val/val carriers (p=0.0127).  

 
Rey-Osterrieth Complex Figure Test (ROCFT)  

Accuracy of the copy:  

We found a main effect of Group and paired contrasts indicated that 

heavy ecstasy users had lower scores than light ecstasy users 

(p<0.001), cannabis users, and control group (p<0.0001, in both 

cases).  

We found a significant Group x Genotype interaction for the 

COMT val158met (p=0.020). In the control group, individuals with the 

met/met genotype had lower scores than those carrying the val/met 

genotype (p=0.0312), or the val/val genotype (p=0.0133). However, 

heavy ecstasy users with the val/val genotype showed significantly 

lower scores than control individuals carrying the same genotype 

(p=0.016). When the val/met genotype was examined, heavy ecstasy 

users with this genotype had lower scores than light ecstasy users 
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(p<0.001), cannabis users or controls with the same genotype 

(p<0.001 for both groups).  

In addition, we found a significant Group x rs25531 (serotonin 

transporter) Genotype interaction (p=0.028). MDMA users with the A/A 

genotype had lower scores for the accuracy of copy than cannabis 

users (p=0.013), and than control individuals (p=0.001). Furthermore, 

individuals in the ecstasy group with the G allele, scored lower than 

cannabis users (p=0.004) with the same genotype. 

When considering the combination of the COMT val158met and 

5-HTTLPR genotypes, we also found an effect of the Group x 

Genotype interaction (p=0.014). Individuals with the S/S+val/val 

genotype using MDMA scored poorer than those with the same 

genotype in the control group (p=0.014) or the cannabis users 

(p=0.039).  

 

Immediate recall:  

We found a main effect of Group, with heavy ecstasy users having 

significant lower scores than the light ecstasy users (p=0.009), the 

cannabis group (p<0.001), and the control group (p=0.002).  

In addition, we found a significant main effect of the COMT 

val158met Genotype, with met-carriers performing significantly poorer 

than val/val individuals (p=0.039).  

When examining the combination of the COMT val158met and 

5-HTTLPR genotypes, we found a Group x Genotype effect (p=0.015); 

MDMA individuals with the S/S+val/val genotype had significantly 

lower scores than those with the same genotype in the control group 

(p=0.002). 
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Delayed recall:  

We found a main effect of Group (p=0.002), with heavy ecstasy users 

having significantly lower scores than light ecstasy users (p=0.022), 

cannabis users (p<0.001), and controls (p=0.008). We also found a 

main effect of 5HT2A Genotype, indicating that individuals carrying the 

His/Tyr variant had significantly poorer performance than those with 

the His/His genotype (p=0.015).  

The study of the interaction between the COMT val158met and 5-

HTTLPR genotypes showed a main effect of the Group x Genotype 

interaction (p=0.001). In the control group, individuals with the 

S/S+met genotype performed worse than those with the L + val/val 

genotype (p=0.036), and those with the S/S+val/val genotype 

(p=0.038). However, within the L + val/val genotype, MDMA users had 

significantly lower scores than controls (p=0.004).  

 
California Verbal learning test (CVLT) 

We found no effects of Group, Genotype or the Group x Genotype 

interaction on the learning (trials 1 to 5), immediate recall, and total 

recognition indices from this test. However, for delayed recall we found 

a main effect of the GRIN2B genotype, with individuals carrying the T 

allele recalling more words than those with the C/C genotype 

(p=0.023). 

 

Semantic Word Fluency  

The semantic word fluency was unaffected by group. However, there 

was a significant effect of the Group x GRIN2B genotype interaction 

(p=0.033). Post hoc analysis showed that participants with the C/C 

genotype had significantly lower scores than those with carrying the T 

allele (p=0.0326).  

In addition, we found a significant effect of the Group x 

CYP2D6 phenotype interaction (p=0.047). In the control group, 
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individuals who were intermediate/poor for the CYP2D6 performed 

worse than those who were ultra-rapid/extensive (p=0.0069). In 

contrast, MDMA users with the ultra-rapid/extensive phenotype had 

significantly lower scores than those with the same phenotype in the 

control group (p=0.0146).  

 

Number of switches:  

We found a significant effect of the Group x GRIN2B genotype 

(p=0.021), indicating that both heavy ecstasy and cannabis users 

carrying the C/C genotype achieved a significantly lower number of 

switches than light ecstasy users (p=0.0057 and p=0.0133, 

respectively).  

We also observed a significant effect of the Group x 5HT2A 

T102C Genotype interaction, with MDMA users homozygous for the 

T/T genotype generating a significantly lower number of switches than 

those with the C/C genotype (p=0.023).  

We additionally found a significant effect of the Group x COMT 

val158met genotype (p=0.026), with light ecstasy users homozygous 

for the val allele producing a higher number of switches than cannabis 

users with the same genotype. 

 

Mean Cluster Size:  

We observed a main effect of the COMT val158met genotype. 

Participants carrying the met allele displayed a significant reduction in 

the number of words generated in each subcategory compared with 

participants homozygous for the val allele (p=0.029). 

 

Discussion  

Our findings showed detrimental effects of both MDMA lifetime use 

and variations in candidate genes on a number of performance 

measures, with particular relevance of visuospatial attention and 
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episodic memory (taxed by the ROCFT). With respect to dose-related 

effects, we found that greater lifetime use of MDMA is negatively 

correlated with performance on visuospatial memory and visuospatial 

attention/speed tests. These results were further supported by group 

comparisons, which showed that heavy MDMA users (lifetime use>100 

tablets) have significantly poorer visuospatial memory performance 

than light MDMA users, cannabis users and controls. Importantly, we 

found a number of gene x MDMA interaction effects. Results for COMT 

and SERT genes showed that heavy MDMA users carrying the SERT 

s/s and COMT val/val genotypes have poorer performance on tests of 

speed/attentional control (Digit Symbol) and visual attention and 

planning (ROCF Copy). Moreover, for ROCFT immediate recall, 

MDMA users carrying the COMT val/val and SERT s/s genotype 

(irrespective of MDMA use) perform more poorly than healthy 

individuals carrying the same genotype. In the case of delayed recall, 

MDMA users carrying the COMT val/val + SERT L genotype also 

perform poorer than controls carrying identical combination of genes. 

In addition, we found an interaction between MDMA use and both 

CYP2D6 extra-high metabolic activity phenotype and GRIN2b low 

glutamate activity genotype (C/C) associated with lower performance 

on verbal fluency. Finally, we also found a number of main effects of 

genotype (irrespective of group). The GRIN2b genotype is associated 

with verbal episodic memory, being C/C carriers poorer performers; 

the 5HT2a Tyr allele is linked to poorer visual delayed recall; and the 

COMT met allele is associated with lower visual memory and reduced 

size of clusters produced during the fluency test. 

The main MDMA dose-related findings and MDMA x gene 

interactions were found in the ROCFT visuospatial memory test. This 

is a complex task involving visuospatial attention and 

planning/organization skills during the copy, and planning and episodic 

memory skills during immediate and delayed recall (Shin, Park, Park, 
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Seol, and Kwon 2006). Copy performance is associated with 

dorsolateral prefrontal cortex (DLPFC) and parietal cortex functioning 

(Antshel, Peebles, AbdulSabur, Higgins, Roizen, Shprintzen, Fremont, 

Nastasi, and Kates 2008), whereas immediate and delayed recall are 

associated with the functioning of the DLPFC (Haroon, Watari, 

Thomas, Ajilore, Mintz, Elderkin-Thompson, Darwin, Kumaran, and 

Kumar 2009) and the hippocampus (Carlesimo, Cherubini, 

Caltagirone, and Spalletta 2010). The robust dose-related negative 

correlations with visuospatial memory are consistent with our previous 

results in a subsample of the MDMA users included in this study (De 

Sola et al., 2008). However, they are at odds with results from recent 

meta-analyses indicating low effect sizes for decrements on visual 

memory probes in MDMA users (Laws and Kokkalis 2007;Nulsen, Fox, 

and Hammond 2010), and with evidence from well-controlled 

regression-based studies showing greater effects of MDMA lifetime 

use on verbal rather than visual memory (Bedi and Redman 

2008b;Schilt, de Win, Jager, Koeter, Ramsey, Schmand, and van den 

2008;Schilt, Koeter, Smal, Gouwetor, van den, and Schmand 2010). 

However, a number of factors may contribute to explain this apparent 

discrepancy. First, the fact that the larger dose-related correlations are 

found with the Copy index indicates that MDMA cumulative use may 

have greater detrimental effects on visuospatial attention and planning 

skills than actual visuospatial memory; this is consistent with the 

finding that MDMA cumulative use is also negatively associated with 

Digit Symbol-indexed visuospatial attention. In addition, this dose-

related association seems to be modulated by COMT and to lesser 

extent SERT genotypes. In fact, heavy MDMA users carrying the 

COMT val/val and SERT s/s genotypes performed significantly more 

poorly than all other groups on the ROCFT Copy index. Furthermore, 

the val/val genotype was associated with poorer performance of 

MDMA users, compared to controls, on both immediate and delayed 



Results 

153 

recall indices. This interpretation is in agreement with recent evidence 

showing that the COMT gene is significantly associated with 

visuospatial planning ability –high enzymatic functioning gene-carriers 

display poorer performance (Roussos, Giakoumaki, Pavlakis, and 

Bitsios 2008) and DLPFC and parietal activation during planning tasks 

(Williams-Gray, Hampshire, Robbins, Owen, and Barker 2007). 

Interestingly, fMRI data has revealed that continued MDMA use across 

18 months is selectively associated with abnormally increased parietal 

activation during an executive attention test (Daumann, Jr., 

Fischermann, Heekeren, Thron, and Gouzoulis-Mayfrank 2004). There 

is also evidence of the influence of the SERT genotype on visuospatial 

attention/planning performance (Roiser, Muller, Clark, and Sahakian 

2007). Similar to our findings, Roiser et al. found superior performance 

in healthy adults carrying the s/s genotype using a mental rotation 

task. However, in our sample (but not in Roiser’s) heavy MDMA use 

modified this profile, and heavy MDMA s/s carriers –especially in 

combination with COMT val/val genotype performed significantly 

poorer than all the other comparison groups in the Copy index, and 

poorer than control individuals with similar genotypes in the Digit 

Symbol. Overall, we argue that heavy MDMA use and COMT val/val 

and SERT s/s genotypes interact to confer greater detrimental effects 

on visuospatial attention and planning skills, ultimately affecting visual 

memory performance.  

In the last years there has been intense controversy about the 

“real” significance of the COMT gene for cognitive performance. 

Results from a recent meta-analysis indicated that the putative effects 

of the COMT gene on verbal memory, fluency, working memory or 

flexibility performance are negligible (Barnett, Scoriels, and Munafo 

2008). However, the effects of the COMT gene on visuospatial 

attention and memory, as reported here, are rather less explored. A 

link between the COMT gene and these phenotypes arises from 
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neuropsychological research on individuals with microdeletion of 

chromosome 22q11.2. Individuals with this genetic disorder, in which 

the COMT is one of the genes in the deleted region, present quite 

prominent deficits in visuospatial memory tests, coupled with relative 

strength of verbal recall (Campbell, Azuma, Ambery, Stevens, Smith, 

Morris, Murphy, and Murphy 2010). In addition, neuroimaging studies 

keep on indicating that COMT polymorphisms are associated with 

distinct patterns of connectivity between the prefrontal cortex and the 

hippocampus, with val/val carriers having reduced coupling between 

both regions ((Dennis, Need, LaBar, Waters-Metenier, Cirulli, Kragel, 

Goldstein, and Cabeza 2010); previously (Bertolino, Rubino, 

Sambataro, Blasi, Latorre, Fazio, Caforio, Petruzzella, Kolachana, 

Hariri, Meyer-Lindenberg, Nardini, Weinberger, and Scarabino 2006)). 

These connections are critical for executive manipulation of memory 

contents (e.g., successful encoding, organization and strategic 

retrieval), and this skill is substantially affected by MDMA use 

(Quednow, Jessen, Kuhn, Maier, Daum, and Wagner 2006). 

Therefore, it is both biologically and neurocognitively plausible that 

MDMA use can further deteriorate prefrontal-hippocampal coupling in 

the case of val/val individuals, conferring them higher risk of impaired 

visuospatial memory deficits. This selective effect on val/val carriers 

may also contribute to explain our findings on ROCFT immediate and 

delayed recall. This effect should have been parallel for verbal 

memory. However, as compared to typical measures of verbal 

learning, the ROCFT requires deeper organization demands, both 

visually and conceptually (because figure items are much harder to 

categorize than verbal items). These deeper organization demands 

may need additional fine-tuning of DLPFC-hippocampal connectivity, 

and be therefore more susceptible to MDMA neuroadaptive effects. 

Another variable to take into account is interaction between different 

polymorphisms, which is rarely reported in the gene-cognition 
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literature. In our results, the combination of COMT and SERT genes 

contributed to explain variation in visuospatial attention and memory 

performance in MDMA users. On the other hand, visual delayed recall 

is more clearly linked with the 5HT2A His/Tyr polymorphism in the 

whole group, and verbal delayed recall and verbal fluency are only 

associated with GRIN2B variations irrespective of MDMA use. These 

results are in accordance with previous literature indicating that the 

rare 5HT2A Tyr allele may be specifically associated with hippocampal 

integrity and memory consolidation (Filippini, Scassellati, Boccardi, 

Pievani, Testa, Bocchio-Chiavetto, Frisoni, and Gennarelli 

2006;Wagner, Schuhmacher, Schwab, Zobel, and Maier 2008). 

Similarly, they are consistent with a purported role of GRIN2B on 

verbal memory performance and temporal cortex volume across 

development (Ludwig, Roeske, Herms, Schumacher, Warnke, Plume, 

Neuhoff, Bruder, Remschmidt, Schulte-Korne, Muller-Myhsok, Nothen, 

and Hoffmann 2010;Stein, Luppa, Brahler, Konig, and Riedel-Heller 

2010). 

A final worth noting finding was that of significant interaction between 

MDMA use and the CYP2D6 phenotype on semantic fluency 

performance. The CYP2D6 enzyme is one of the main products 

involved in MDMA metabolism (de la Torre, Farre, Roset, Pizarro, 

Abanades, Segura, Segura, and Cami 2004) and variations in this 

gene are thought to play a key role on MDMA-induced neurotoxicity 

due to their effects on the formation of neurotoxic thioether adducts 

(Perfetti, O'Mathuna, Pizarro, Cuyàs, Khymenets, Almeida, Pellegrini, 

Pichini, Lau, Monks, Farre, Pascual, Joglar, and de la Torre 2009). 

According to our initial hypothesis, MDMA users with extremely high 

metabolic activity phenotypes produced a significantly lower number of 

words in response to a semantic prompt. These results are in 

agreement with recent findings about the link between higher CYP2D6 

activity and impaired executive performance –including semantic 
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fluency in methamphetamine users (Cherner, Bousman, Everall, 

Barron, Letendre, Vaida, Atkinson, Heaton, and Grant 2010). However, 

we extend their findings by showing significant specific effects of the 

rare ultra-rapid/extensive phenotype on executive performance in 

MDMA users, a drug-using group in which greater cognitive 

dysfunction was expected based on specific pharmacodynamic 

mechanisms. Furthermore, fluency is one of the executive skills more 

consistently impaired in MDMA users (Fernandez-Serrano, Perez-

Garcia, and Verdejo-Garcia 2010), conferring clinical significance to 

this gene x drug interaction effect. This finding supports the proposal 

that CYP2D6 genotype polymorphisms modulate MDMA-induced 

neurotoxic effects and subsequent decrements in executive 

performance. More research including additional executive phenotypes 

and larger sample sizes are warranted to further substantiate these 

promising findings. 
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  Study 4 

 

Gene expression study in an animal model of MDMA induced 

neurotoxicity  
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Gene expression experiments were carried out in order to study the 

long-term effects of MDMA treatment in different rat brain areas.  

A second objective of this study was to investigate a possible 

correlation between differences in gene expression observed in brain 

and differences in expression levels for the same genes in blood, as 

the existence of this relationship between changes observable in brain 

and blood could be very important for studies with human volunteers 

as we have only access to blood cells.  

 

Quality parameters for RNA samples 

Purity and integrity  

The purity of RNA samples is evaluated by the presence of protein, 

salts or remaining products from the extraction procedure. As 

described previously, the most common method for the assessment of 

RNA purity is based on the A260/A230 and A260/A280 ratios (UV ratios), 

which are used as a representation of the relative abundance of the 

different impurities in the RNA sample. Acceptable values for these 

ratios are within 1.6 and 2.0 for most of the applications. 

RNA integrity was evaluated by two different approximations: by the 

typical estimation of the integrity of ribosomal RNA subunits bands 

(28s/18s ratio), and by the RNA integrity number (RIN), as described 

previously in the methodological approaches chapter. 

Blood and brain samples included in this study had ratio values within 

the accepted range for both ratios, A260/A230 and A260/A280, except for 

one hippocampal control sample, which had A260/A230= 0.9. For that 

sample, all qPCR reactions were examined to ensure that 

contamination did not affect the reaction. 

Regarding integrity values, RNA samples extracted from blood had 

higher 28s/18s ratio values than RNA extracted from brain samples. 

For brain samples, all ratios values were under 1.0 (except for one 

cortex sample which was 1.1). RNA samples extracted from blood, had 
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higher 28s/18s ratios, although were under the desired value of 2.0 

(except for one sample). Besides, RIN values for all the samples 

(extracted from both brain and blood) were considered as indicative of 

acceptable RNA integrity. 

RNA samples were frozen at -20ºC prior to its use for reverse 

transcription. Random samples (six) were selected after thawing in 

order to check their integrity before its further use. All samples 

selected had similar values of integrity as those obtained before 

freezing, suggesting that the freeze and thaw cycle did not affect their 

integrity. 

Therefore, we considered that all the samples were suitable for their 

inclusion in the gene expression assay. 

 

Gene expression assays in rat brain. 

Four different brain regions [hippocampus, striatum, cortex, and dorsal 

raphe nuclei + substantia nigra (DRN+SN)] were selected to carry out 

the gene expression studies. The DRN+SN were studied as a single 

brain region due to the difficulties to remove only the DRN. 

 

Initially two reference genes (18s rRNA, and β-actin) were selected for 

data normalization. However, amplification of 18s rRNA started 

approximately at cycle 5 whereas most of the genes of interest (and 

also β-actin) started between cycles 20-30. Accordingly, β-actin was 

selected as the most suitable reference gene for all the analyses. 

Dorsal Raphe Nuclei and Substantia Nigra (DRN+SN) 

 

All genes except Slc6a3 (dopamine transporter) were amplified. 
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Significant expression levels changes were observed for serotonin 

transporter gene (Slc6a4) (p=0.016), vesicular monoamine transporter 

2 (Scl18a2) (p=0.008), and aromatic amino acid decarboxylase (Ddc) 

(p=0.041). In all the cases, treated animals showed decreased 

expression (figure 13). However, a trend to significance was observed 

for Tph2 (tryptophan hydroxylase 2) (p=0.059), γ synuclein (sncg) 

(p=0.054), and Slc6a2 (NET) (p=0.051). For the later, great dispersion 

was observed for the RQ values of the non treated animals, and thus, 

this has to be kept in mind when considering this result.  

 

Figure 13. Relative quantification values for individual samples of the DRN+ SN brain 
area. Empty or filled diamonds represent individual RQ values for control and MDMA-
treated rats individually. Lines show the mean value. Asterisks represents significant 
changes in gene expression (at level p<0.05). ∆RQ values respect control samples (in 
percentage) are given for samples reaching statistically significant differences. 
 

Hippocampus 

Results for relative quantification (RQ) in the hippocampus are shown 

in figure 14.  

No amplification was observed for Slc6a2 (DAT). For Slc6a3 (NET) 

and Tph1, amplification started later than cycle 35, and although data 
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is shown in figure 2, differences observed for these genes are not 

considered.  

When the relative quantification data were analysed, significant 

differences were observed for Maob (p=0.009), and Tph2 (p=0.008). In 

both cases, levels of expression for MDMA-treated animals were 

increased respect to the controls (variations of around 9% and 42%, 

respectively).  

 
Figure 14. Relative quantification values for hippocampal individual samples. Empty 
or filled diamonds represent individual RQ values for control and MDMA-treated rats 
individually. Lines show the mean value. Asterisks represents significant changes in 
gene expression (at level p<0.05). ∆RQ values respect control samples (in 
percentage) are given for samples reaching statistically significant differences. 
 

Cortex 

Quantitative real-time PCRs results showed no amplification for Slc6a2 

(NET), Slc6a3 (DAT) and Tph1 genes.  

Significant differences in levels of expression were observed for Snca 

(p=0.003) (figure 15), with treated animals displaying lower expression 

(variation of -20% on RQ) than control animals.  
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Figure 15. Relative quantification values for cortical  individual samples. Empty or filled 
diamonds represent individual RQ values for control and MDMA-treated rats 
individually. Lines show the mean value. Asterisks represents significant changes in 
gene expression (at level p<0.05). ∆RQ values respect control samples (in 
percentage) are given for samples reaching statistically significant differences. 
 
 

Striatum 

When examining results for the striatum brain region, we observed that 

real-time PCRs failed to amplify Tph1, and Slc6a2 (NET) genes. 

Levels of expression were significantly different between control and 

treated animals only for TH (tyrosine hydroxylase) (p=0.032), with 

decrement in the expression (around 20%) for MDMA-treated rats 

(figure 16). 
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Figure 16. Relative quantification values for striatal  individual samples. Empty or filled 
diamonds represent individual RQ values for control and MDMA-treated rats 
individually. Lines show the mean value. Asterisks represents significant changes in 
gene expression (at level p<0.05). ∆RQ values respect control samples (in 
percentage) are given for samples reaching statistically significant differences. 
 
 

Gene expression assays in blood samples. 

 

Two different types of blood samples were obtained for each animal: 

the day before treatment (D-1), and at the moment of the decapitation 

(D7).  

The initial idea to study gene expression in blood samples was to carry 

out two different comparisons for gene expression in blood samples 

a) between control and treated animals for D-1 samples, in 

order to ensure that gene expression prior to treatment 

was the same for all the animals (it would have been a 

good reference level of “basal” gene expression)  

b) assessment of gene expression for samples obtained 

on day D7, analysing differences between treated and 

non treated animals.  
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In general, data from real time PCR showed weak amplification for all 

the samples and genes selected and most of the amplifications started 

at cycle 30 or later.  

Comparisons performed among samples at D-1 (saline vs. treated 

groups) showed no differences in gene expression between both 

groups. 

When performing comparisons among saline and treated groups of 

samples obtained at D7, no significant differences were observed for 

all genes analysed. The same results were obtained when the analysis 

was conducted comparing paired blood samples obtained at the day of 

decapitation and at time  D-1.  

 

Biochemical measurements 

 
Determinations of amine concentrations in striatum, hippocampus, and 

cortex showed statistically significant differences in contents of 5-HT 

and its metabolite 5-HIAA in cortex, striatum, and hippocampus of 

treated animals compared to controls (table 4). Levels of dopamine 

and its metabolites were determined ion the striatum, significant 

differences in DOPAC concentrations were found (table 4). 
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Table 4. Amine concentrations (pg/ mg tissue) for the different brain regions (killed at 7 
days). 

 
 Striatum Hippocampus Cortex 

 
Contro
l 

MDM
A 

p-
value 

Control MDMA 
p-
value 

Control MDMA p-value 

5-HT 
452 
(63) 

263 
(106) 

0.013 
352 
(33) 

118 (52) 0.000 
304  
(55) 

139  
(49) 

0.000 

5-HIAA 
793 
(146) 

733 
(93) 

0.004 
311 
(54) 

108 (58) 0.000 
281  
(70) 

167  
(62) 

0.015 

DA 
93929 
(2570) 

93024 
(1216) 

0.454       

DOPA
C 

12627 
(1046) 

10121 
(1276) 

0.004       

HVA 
413 
(95) 

248 
(93) 

0.420       

Results are presented as mean (SD) 
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Discussion of the Study 1, methodological validation of the DNA 

array PHARMAchip TM. 

 

In the last years, the development of DNA arrays technologies to 

genotype hundreds of SNPs simultaneously has marked the beginning 

of potential clinical and research applications of these tools. However, 

prior to the use of these tools, there is the need to ensure its suitability.  

Study 1  sought to assess the convenience of a new DNA array for its 

further use in clinical studies. Two experimental approaches were 

possible: (i) to select a number of DNA samples and genotype them 

using the DNA array under evaluation (PHARMAchipTM) and compare 

results to a sequencing of samples or (ii) to compare results of 

genotyping obtained with a previous commercially available DNA-array 

(DrugMEt®) with the new one under evaluation (PHARMAchipTM). Both 

approaches are not incompatible although the first one is the preferred, 

nevertheless costs associated are quite elevated. In our case as far as 

a number of patients were already genotyped with the previous DNA 

array, it was relevant to ensure the compatibility of results obtained 

with both devices. Because not all the genes of interest (in particular 

COMT and 5-HTT) in the clinical studies concerning the present PhD 

dissertation were included in the discontinued test, we decided to 

compare results obtained in our laboratory with those of the new array 

for these genes. 

Different parameters were determined in this work: the suitability of 

amplified DNA, the limit of detection, the reproducibility, the accuracy 

and the successful genotype rate. Discussion will be focused mainly in 

two aspects: the relevance of DNA amplification prior to DNA-array 

analysis and the accuracy of results obtained by both DNA-arrays 

under comparison and with in-house developed genotyping assays. 

The amplification of genomic DNA prior to its analysis can sometimes 

be useful when adequate amounts high-quality DNA are not easy to 
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obtain (e.g. clinical samples from children, oral swabs). The use of 

amplified DNA could be a solution to this problem. Although several 

methods for the amplification of whole genome DNA are commercially 

available (Park et al., 2005), only the DNA polymerase Phi29 was 

tested. Results showed the occurrence of false positives with the use 

of GenomiPhi-amplified DNA which may be explained by the 

generation of template-independent products (TIPs) during the pro-

cess, leading to unspecific hybridization in the array. Although the 

suitability of other products has not been tested, the use of non-

amplified DNA is recommended to avoid inaccurate assignment of 

results. 

The assessment of accuracy was carried out by comparing a set of 

samples previously genotyped by DrugMEt®, and also in some cases, 

the comparison of results was performed with the genotyping results 

obtained in-house.  

For those genes common in both tests were evaluated, 15 mismatch 

results were detected (out of 5000 available genotypes), and therefore 

samples were sequenced. In ten cases, the discrepancy was 

explained by the presence of alleles that were not included in the 

DrugMEt® test, so that the assigned genotype in this case was not 

accurate. For the other five mismatch results, in three cases it was 

impossible to perform sequencing as there was not enough DNA 

available, and for the other two, one was a mismatch in 

PHARMAchipTM and the other was a mismatch for DrugMEt®. 

For those genes that were not included in the DrugMEt® test (COMT 

val158met and 5-HTTLPR variants), accuracy was assessed by 

comparison with the results obtained after genotyping in our laboratory 

(data not published). Regarding the COMT variant, all the samples 

analysed (98 samples) gave concordant results with those obtained in-

house. As for the serotonin receptor genotype, three samples analysed 
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gave a mismatched result, so that 3 out of the 196 alleles were 

erroneous (1.5%). Unfortunately, further sequencing was not possible 

as there was no DNA available (data not published). 

 

 

 

 

 

 

 

 

Overall, the comparison study showed a high rate of agreement 

between both methods (DrugMEt® vs. PHARMAchipTM.) although 

there were technical differences. We consider the use of 

PHARMAchipTM suitable for genotyping DNA samples included in our 

studies. 
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Study 2, The influence of 5-HTT and COMT genotypes on verbal 

fluency in ecstasy users. 

 

As described in the background chapter, the ENTE study reported 

verbal fluency deficits in ecstasy users. Bearing in mind these results, 

we decided to go one step further and investigate a possible 

association between ecstasy use and verbal fluency performance in 

participants genotyped for some polymorphisms within the serotonin 

transporter and the catechol-O-methyltransferase genes. Besides, two 

components of verbal fluency (clustering and switching) were also 

examined.  

Traditionally, total number of correct words is the most common verbal 

fluency measure, but Troyer et al., (Troyer et al., 1997)  suggested that 

the optimal performance in verbal fluency tasks depends on two 

different strategies, clustering (ability to track words within the same 

subcategory), and switching (ability to change the subcategory). 

Clustering relies on the integrity of the semantic stores, whereas 

switching depends on flexibility.  

Ecstasy users showed poorer semantic fluency performance (but not 

phonemic) than non-ecstasy users group (controls and cannabis 

users) regarding total number of correct words.  

When results were analysed in more detail, the observed poorer 

semantic fluency of ecstasy users was associated to poorer clustering 

mechanisms. A modulatory effect of COMT rs165599 polymorphism 

on clustering mechanism was also observed, with individuals with the 

A/G genotype performing worse than the others (irrespective of group).   

We also found a specific effect of the 5-HTTLPR polymorphism on 

switching performance (for both, semantic and phonemic modalities), 

with S/S individuals performing significantly worse than L/S and L/L 

carriers (independent of group). A trend to significance regarding 
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switching measures was found for ecstasy users performing worse 

than non-ecstasy users. 

A main finding of this study is that semantic fluency deficits observed 

in ecstasy users are mainly associated with clustering alterations 

rather than to switching mechanisms. It has been proposed (Gleissner 

and Elger, 2001), that clustering is related to a search strategy based 

on the meaning of the words, where the first word automatically recalls 

the other semantically related words. The retrieval of related words 

requires an intact memory function and semantic network (Troster et 

al., 1998). These needs are demonstrated by the evidence that 

clustering is impaired in pathologies such as Alzheimer’s disease, 

characterized by memory deficits (Fagundo et al., 2008). Keeping this 

in mind, one can postulate that the observed effects can be explained 

in terms of disorganization of the semantic store. Two recent meta-

analyses of neuropsychological studies in MDMA users have 

concluded that MDMA use is robustly associated with memory 

impairments (Kalechstein et al., 2007;Zakzanis et al., 2007), which 

suggest that hippocampal function might be more affected by the 

neurotoxic effects of MDMA than other regions (Gouzoulis-Mayfrank et 

al., 2003). This hypothesis is also supported by brain imaging studies 

which showed functional alterations in brain regions related to this 

cognitive function (medial temporal lobe/hippocampus) (for review 

(Verdejo-Garcia et al., 2007)). 

Looking at the results, it may be surprising that ecstasy users showed 

similar performance in phonemic fluency in total number of words than 

non-users, and also performed better in phonemic mean cluster size. 

Once an additional analysis of the errors/perseverations was made, 

results revealed that ecstasy users committed more errors than non-

users in phonemic fluency (which explains the high number of words 

generated).  
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One of our initial hypotheses prior to the study was the existence of an 

association between verbal fluency performance and some 

polymorphisms within the COMT and/or 5-HTT genes. Our results 

showed a main effect of the 5-HTTLPR polymorphism (irrespective of 

group) on switching performance (phonemic and semantic), with S/S 

individuals performing poorer than individuals with the L/S or L/L 

genotypes. As mentioned previously, switching performance depends 

on flexibility.  

Low serotonin function has been related to impairments in cognitive 

flexibility ((Schmitt et al., 2006) for review), and the 5-HTTLPR 

polymorphism is linked to serotonin availability (with the S allele 

associated to less efficient serotonin neurotransmission). Therefore, 

the effects of the serotonin transporter polymorphism on the switching 

ability are not surprising. According to previous studies that associated 

ecstasy-related cognitive impairments with the S allele of the 5-

HTTLPR variation) (Roiser et al., 2006), we would have expected a 

poorer performance on switching mechanisms for the ecstasy users 

group. However, our results suggest that switching is more affected by 

the 5-HTTLPR polymorphism than by ecstasy use. 

 

 

 

 

 

 

 
 
 
 
 
 

- Ecstasy use is related to semantic fluency impairments regarding 

total number of correct words. Poorer performance on clustering 

processes indicates a disorganization of the semantic store is linked 

to MDMA-toxic effects on hippocampus.  

- Ecstasy users committed more errors than non-users in measures of 

phonemic fluency, indicating an inability to avoid perseverations.  

- The 5-HTTLPR polymorphism has a main effect on switching 

performance, with S/S individuals performing worse than those 

carrying the L allele.  
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Study 3, The influence of genetic and environmental factors 

among MDMA users in cognitive performance 

 
Two main findings arise from this study: a strong correlation between 

MDMA lifetime use and detrimental effects on cognition, and also an 

interaction between variations in candidate genes and performance on 

different neuropsychological measures related to visospatial attention 

and episodic memory. 

  

Greater lifetime use of MDMA is negatively correlated with 

performance on visuospatial memory and visuospatial attention/speed 

tests. Besides, such observations were further supported by group 

comparisons between MDMA heavy users (lifetime consumption 

greater than 100 pills) and MDMA light users, cannabis users, and 

controls, where the formers have significantly worse performance than 

the other groups. 

These negative correlations between lifetime use and visuospatial 

memory are consistent with previous results of our research group in a 

subsample of the MDMA users included in this study (de Sola Llopis et 

al., 2008a), but are in disagreement with recent publications that show 

lower effect of MDMA use on visual memory tasks but greater effects 

on verbal memory (Bedi and Redman, 2008;Schilt et al., 2008;Schilt et 

al., 2010). 

Regarding the interaction between genes and MDMA use, results 

showed that heavy ecstasy users carrying the COMT val/val and 

SERT s/s genotypes displayed poorer performance on tests of 

speed/attentional control (Digit Symbol) and visual attention and 

planning (ROCFT Copy) than individuals. Moreover, for the ROCFT 

immediate recall, the effect of these genotypes was irrespective of the 

degree of drug use, with ecstasy users performing worse than controls. 
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In addition, other interactions between MDMA use and genotype were 

found. Individuals with CYP2D6 high metabolic activity (ultra-rapid and 

extensive phenotypes) and GRIN2B C/C genotype (linked to lower 

glutamatergic activity) were associated with lower performance on 

verbal fluency. The modulation effects on speed/attention control and 

visual attention and planning of the COMT val/val observed in this 

study are in agreement with recent findings of the role of COMT gene 

and visuospatial planning skills (with poorer performance for val/val 

individuals) (Roussos et al., 2008). SERT genotype may also play a 

modulatory role (although to a lesser extent) on visuospatial 

attention/planning performance. Roiser et al., (Roiser et al., 2007) 

found that healthy volunteers carrying the S/S genotype displayed 

higher performance in a mental rotation task. In our sample, however, 

this profile has been changed by MDMA use, with heavy ecstasy users 

performed worse than control individuals with the same genotype. 

Overall, we can reason that SERT S/S genotype combined with COMT 

val/val genotype and heavy MDMA use confer greater detrimental 

effects on visuospatial attention, planning skills and visual memory 

performance.    

Moreover, significant interaction between MDMA use and the CYP2D6 

phenotype on semantic fluency performance is also reported from our 

results. The CYP2D6 enzyme is involved in MDMA metabolism (de la 

Torre et al., 2004), and variations in this gene are thought to play a key 

role on MDMA-induced neurotoxicity (Perfetti et al., 2009). These 

results are in agreement with recent findings about the link between 

higher CYP2D6 activity and impaired executive in methamphetamine 

users (Cherner et al., 2010). 

A number of other genotypes had effects on performance irrespective 

of group. These are the cases of the GRIN2B genotype (C/C 

individuals performing poorer on verbal episodic memory, CVLT 

delayed recall); the 5HT2A Tyr allele which is linked to poorer visual 
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delayed recall (ROCFT); and the COMT met allele, associated with 

lower visual memory and reduced size of clusters produced during the 

fluency test. Delayed recall is clearly linked with the 5HT2A His/Tyr 

polymorphism in the whole sample, and verbal delayed recall and 

verbal fluency are only associated with GRIN2B variations irrespective 

of MDMA use. These results are in accordance with previous studies 

indicating that the Tyr allele of the 5HT2A receptor is associated with 

memory consolidation (Filippini et al., 2006). Similarly, GRIN2B is 

associated to verbal memory performance (Ludwig et al., 2010).  

The main effects of MDMA use and gene interactions are related to the 

ROFCT test, which involves visuospatial attention and 

planning/organization skills for the copy, and planning and episodic 

memory skills for the immediate and delayed recalls (Shin et al., 2006). 

Copy performance has been associated to the prefrontal cortex 

functioning, whereas the immediate and delayed recall are also 

associated with the prefrontal cortex and the hippocampus ((Carlesimo 

et al., 2010). Neuroimaging studies indicate that COMT polymorphisms 

are associated with connectivity between the prefrontal cortex and the 

hippocampus, with val/val carriers having reduced coupling between 

both regions (Dennis et al., 2010). Such connections are critical for 

executive memory contents (successful encoding and retrieval). 

MDMA use has been related to detrimental effects on this process 

(Quednow et al., 2006), so it is plausible that both MDMA use and 

COMT genotype contributes to a further decline in the prefrontal-

hippocampal coupling. 

- Lifetime ecstasy correlates to greater detrimental effects on 

visuospatial attention and planning, and speed/attention control skills. 

-  COMT val/val and SERT S/S genotypes are associated to poorer 

performance attention and planning skills on heavy MDMA users.  
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Study 4, Gene expression study in an animal model of MDMA 

induced neurotoxicity  

 

Previous studies postulate that MDMA induces a neurodegeneration of 

the serotonergic neurotransmission system consistent in anatomical 

changes in axon terminals (axonopathy) (Green et al., 2003). However 

several authors administering lower MDMA doses, close to those used 

by humans, have not been able to demonstrate such neuroanatomical 

alterations (Baumann et al., 2007;Wang et al., 2005). Recent reports 

suggest that a lower availability of the serotonin transporter after 

MDMA may be related to decreased gene expression rather than to 

neuroanatomical alterations (Biezonski and Meyer, 2010).  The aim of 

the study in an animal model was to examine if the MDMA induced 

long-term effects were related to changes on brain gene expression of 

several genes related to serotonin and dopamine biosynthesis and 

function. Doses assayed are known to induce toxicity but are lower 

than those assayed up to now, known to induce a high rate of 

mortality, and therefore close to those used in humans. 

The effects of MDMA treatment on genes related to serotonergic and 

dopaminergic systems should be observed within brain regions 

involving these neurotransmission systems. Accordingly, dorsal raphe 

nuclei were selected as they are the largest brain region containing 

serotonergic cell bodies which project to other brain regions (Bonvento 

et al., 1991), whereas the substantia nigra is a region rich in 

dopaminergic neurons which projects to the striatum (Purves, 2004b). 

The hippocampus was chosen based on its extensive serotonergic 

innervations with sparse dopaminergic afferents, and its vulnerability to 

MDMA-induced neurotoxicity (Green et al., 2003).  

 

The main finding was that after one week, MDMA treatment produced 

decrements (of about 20% in relation to control animals) in the 
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expression levels of the serotonin transporter gene (Slc6a4) in the 

dorsal raphe nuclei and substantia nigra region. Genes known to 

regulate the serotonin transporter as synucleins displayed changes in 

expression in the same direction. Similarly, the vesicular monoamine 

transporter (VMAT-2, Slc18a2) expression levels are also decreased. 

These findings are in accordance to previous published studies which 

reported a marked reduction of both  gene expression and protein 

levels for the 5-HTT and only a less marked reduction in the level of 

expression for VMAT-2 (without alterations at the protein level) two 

weeks after MDMA treatment (Biezonski and Meyer, 2010). Although 

effects reported by these authors are significantly larger than those 

observed in our study, the differences observed might be attributable 

to the differences in MDMA doses used (4x10 mg/kg in their study 

compared to 3x5 mg/kg in ours). The MDMA dosage used in this study 

has already shown to be toxic to animals although with a lower 

mortality rate when compared to those reported with higher dosage 

regimens (Goni-Allo et al., 2008).    

However, these results do not agree with those reported by Kovacs et 

al., (Kovacs et al., 2007) who found an increment in the 5-HTT mRNA 

expression in the dorsal raphe nuclei seven days after the 

administration of a high neurotoxic MDMA  dose (15 mg/kg), 

suggesting a potential recovery of the serotonin system.  Differences in 

rat strains (Wistar vs. Dark Agouti) may be on the basis of different 

susceptibility to MDMA induced alterations in 5-HTT gene expression. 

 

Our results did not support this potential recovery in the seventh day 

after drug treatment, and results concerning decrements detected in 

the level of expression of the aromatic amino acid decarboxylase (Ddc) 

in this brain region further credit our findings. This enzyme is 

responsible for the synthesis of both dopamine and serotonin. 

Although we have not studied the effects of the MDMA treatment at the 
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level of the proteins, the decrements on the gene expression suggest 

that there should be lower levels of protein and therefore, lower 

synthesis of serotonin. Breier et al., (Breier et al., 2006) showed that 

infusion of tyrosine in the striatum or hippocampus enhanced the raise 

of DA and the long-term depletion of 5-HT, but the co-administration of 

an inhibitor of the aromatic amino acid decarboxylase attenuated these 

effects in the hippocampus and returned to basal the levels of DA in 

the striatum, suggesting some role of this enzyme in MDMA-induced 

neurotoxicity.  

Synucleins are proteins that primarily are localized in the presynaptic 

compartment of neurons. α-synuclein, and γ-synuclein regulate 

monoamine (DA, 5-HT, NE) transporter trafficking to or away from the 

cell (Wersinger et al., 2006). Moreover, α-synuclein is involved in 

synaptic plasticity and neurodegeneration (Mladenovic et al., 2007).   

γ-synuclein expression occurs mainly in limited areas such as 

serotonergic neurons of the raphe nuclei and recently, Wersinger et 

al., (Wersinger and Sidhu, 2009) have shown an important role of this 

protein in the regulation of the serotonin transporter. Regarding their 

role in the correct functioning of monoamine transporters, we expected 

that MDMA treatment would produce some alterations in synuclein 

mRNA levels. Significant decreased expression levels of α-synuclein 

were found in the cortex of MDMA-treated rats, and also for                 

γ-synuclein in the DRN+SN (although not reaching statistical 

significance).   

Our results show that the MDMA treatment decreases marginally the 

expression levels of other genes such as Tph2 in the DRN+SN region. 

Tryptophan hydroxylase is the rate limiting enzyme in the synthesis of 

serotonin, and several studies have stated that MDMA causes its 

inhibition (Stone et al., 1989), and according to these authors, the 

restoration of activity requires new enzyme synthesis after repeated 
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exposure to the drug. Our results are not in concordance with those 

reported by Bonkale et al., (Bonkale and Austin, 2008) that found 

decreases in TPH immunoreactivity but marked increases in TPH2 

mRNA expression in the dorsal raphe two weeks after a neurotoxic 

MDMA dosage regimen. Such discrepancies can be explained in terms 

of the different timing of the studies, as they performed their assays 

two weeks after treatment whereas our determinations were carried 

out one week after the drug administration. They may also account for 

the recovery and subsequent increment in mRNA expression.  

However, a large increase in the expression level of the TPH2 mRNA 

was observed in the hippocampus of MDMA-treated rats. Without data 

regarding the amount of enzyme, it is reasonable, to think in a 

mechanism of counterbalance the decreases of serotonin related to 

the effects of MDMA treatment. Levels of expression in the striatum 

were significantly different between control and treated animals only 

for TH (tyrosine hydroxylase).  

 

Slight increases in the expression level of monoamine oxidase 

(MAOB) are also observed in this brain region that could be related to 

MDMA induced inhibition of this enzyme.  

 

Other genes, such as Gfap or Hspa1a were assessed in this study as 

they are biomarkers of neural damage. No alterations in gene 

expression were observed as reported by other authors (Wang et al., 

2005).  

 

Overall, gene expression experiments carried out in blood samples 

gave negative results for all comparisons performed, but it is not clear 

whether these negative results are due to lack of expression of 

selected genes in blood, or that the methodology selected for the 

analysis of gene expression for blood samples in these conditions is 
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not suitable. Another possible cause is that although there may be 

some correlation between changes in brain and those observed in the 

blood, the relatively long time span of this study may be responsible of 

the negative results due to the renovation of blood cells.  

Further experiments should be carried out in order to establish a 

possible relationship between the effects of MDMA treatment in brain 

and peripheral tissues as blood. 

 

 

 

 

 

 

 

- MDMA treatment procudes decrements in the expression levels of 

several genes in different brain regions. 

 -  Genes related to serotonergic system function are mainly affected 

by MDMA treatment. 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

6. CONCLUDING REMARKS 





Concluding Remarks 

201 

Main achievements of the present work are summarized below: 
 

Use of DNA arrays for pharmacogenetics in clinical studies  

1. DNA arrays for pharmacogenetic studies require a validation 

with clinical samples obtained with a given DNA extraction 

protocol. Although the comparison study between both DNA 

arrays showed a high rate of agreement, it is important to 

check the suitability of a new tool prior to its use. It is 

recommendable the use of routine quality methods, as minimal 

changes in DNA extraction protocols may interfere in its quality, 

and consequently, in the results obtained from the arrays. 

   

2. DNA arrays from different manufacturers are not 

interchangeables. Combinations of nucleotide changes define 

different alleles. Shifts from one DNA array to another, must 

take into account which nucleotide variations define each of the 

alleles included in the array.  

 

3. Large amounts of high-quality DNA are necessary to perform 

the analyses. The use of whole-genome amplification methods 

is not advisable as they can bias the results. 

 

The effect of MDMA lifetime consumption a genetic polymorphisms in 

the cognitive performance of drug users 

4. Several studies have reported verbal fluency deficits in ecstasy 

users. These deficits are related to poorer semantic fluency 

performance (but not phonemic) on traditional measures of 

total number of words. Further analysis revealed that it is 

associated to clustering mechanisms, which can be explained 

in terms of disorganization of the semantic store. 
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5. A main effect of the 5-HTTLPR polymorphism was observed on 

switching performance (phonemic and semantic), with 

individuals with the S/S genotype performing poorer than the 

others (L/L or L/S) genotypes. 

 

6. There are dose-related detrimental effects of MDMA lifetime 

use. A greater lifetime use of MDMA is negatively correlated 

with performance on visuospatial memory and visuospatial 

attention/speed tests (ROFCT and SDMT tests). Group 

comparisons showed that heavy MDMA users (lifetime 

use>100 tablets) have significantly poorer visuospatial memory 

performance than light MDMA users, cannabis users and 

controls.  

 

7. Gene x group interactions showed that MDMA users carrying 

the SERT s/s and COMT val/val genotypes have poorer 

performance on tests of speed/attentional control (Digit 

Symbol) and visual attention and planning (ROCF Copy). This 

suggests an interactive effect of COMT and to lesser extent 

SERT genotypes to confer greater detrimental effects on 

visuospatial attention and planning skills. 

 

8. The CYP2D6 ultra-rapid/extensive phenotype is associated to 

lower verbal fluency performance. This enzyme is associated 

with the metabolism of MDMA and variations in its activity are 

associated to changes in MDMA-induced neurotoxicity. 
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Effects of MDMA on the expression of genes related to the 

derotonergic and dopaminergic neurotransmission systems. 

 
9. Animal model studies showed that MDMA treatment produced 

alterations in the level of expression on genes related to the 

serotonergic and dopaminergic systems. These effects are 

different depending on the brain region assessed. Alterations 

observed are consistent with the widely described damage to 

serotonergic neurons. 
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