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Abstract

The release of challenging datasets with a vast number of images, requires the development
of efficient image representations and algorithms which are able to manipulate these large-
scale datasets efficiently. Nowadays the Bag-of-Words (BoW) based image representation is
the most successful approach in the context of object and scene classification tasks. How-
ever, its main drawback is the absence of the important spatial information. Spatial pyramids
(SP) have been successfully applied to incorporate spatial information into BoW-based im-
age representation. The main SP approach, works by repeatedly sub-dividing the image into
increasingly finer sub-regions by doubling the number of divisions on each axis direction,
and further computing histograms of features over the resulting sub-regions. Observing the
remarkable performance of spatial pyramids, their growing number of applications to a broad
range of vision problems, and finally its geometry inclusion, a question can be asked what
are the limits of spatial pyramids.

Within the SP framework, the optimal way for obtaining an image spatial representation
which is able to cope with it’s most foremost shortcomings, concretely, it’s high dimension-
ality and the rigidity of the resulting image representation still remains an active research
domain. In summary, the main concern of this thesis is to search for the limits of spatial pyra-
mids and try to figure out solutions for them. This thesis explores the problem of obtaining
compact, adaptive, yet informative spatial image representations in the context of object and
scene classification tasks.

In the first part of this thesis, we first analyze the implications of directly applying the
state-of-the-art compression techniques for obtaining compact BoW-based image represen-
tation within the context of spatial pyramids. We then introduce a novel SP compression
technique that works on two levels; (i) compressing the least informative spatial pyramid
features, followed by, (ii) compressing the least informative SP regions for the purpose of
obtaining compact, and adaptable SP.

We then introduce a new texture descriptor that represents local image texture and its spa-
tial layout. Texture is represented as a compact vector descriptor suitable for use in standard
learning algorithms with kernels. Experimental results show that texture information has sim-
ilar classification performances and sometimes outperforms those methods using only shape
or appearance information. The resulting spatial pyramid representation demonstrates signif-

iii



v ABSTRACT

icantly improved performance on challenging scene classification tasks.

In the second part of this thesis, we present a novel technique for building adaptive spa-
tial pyramids. In particular, we investigate various approaches for learning adaptive spatial
pyramids, which are specially tailored for the task at hand. To this end, we analyze the use
of (i) standard generic 3D scene geometries; the geometry of a scene is measured based on
image statistics taken from a single image. (ii) discriminative spatial partitionings, which are
generated based on an information-theoretic approach. The proposed method is tested on sev-
eral challenging benchmark object classification datasets. The results clearly demonstrated
the effectiveness of using adaptive spatial representations, which are steered by the 3D scene
geometry present in images.

In the third part of this thesis, we investigate the problem of obtaining compact spatial
pyramid image representations for object and scene classification tasks. We present a novel
framework for obtaining compact spatial pyramid image representation up to an order of
magnitude without any significant reduction in accuracy. Moreover, we also investigate the
optimal combination of multiple features such as color and shape within the context of our
novel compact pyramid representation.

Finally, we investigate the importance of using the spatial knowledge within the context
of color constancy as an application. To this end, we present a novel framework for estimating
the image illuminant based on spatial 3D geometry for learning the most appropriate color
constancy algorithm to use for every image region. The final image illuminant is obtained
based on a weighted combination of each individual illuminant-estimate obtained per region.
We test and compare our performance to that of previous state-of-art methods. We will show
that the set of innovations introduced here lead to a significant increase on performance on
challenging color constancy datasets.
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Chapter 1

Introduction

Computer vision is a scientific discipline that focuses on theory and applications for obtaining
information from visual data. Due to the widespread availability of personal and professional
imaging devices, low cost of multimedia storage and ease of content transmission and shar-
ing, the need to automatically analyze and organize large amounts of visual data becomes
more and more prominent. To automatically search an image, search engines typically make
use of the text associated with it. This reliance on the meta-data and associated text, while
ignoring the semantics of an image, hampers the search performance. Contrary to modern
search engines, humans have an outstanding ability of classifying images based on their vi-
sual content. When asked about the content of an image, a person can tell whether there is a
car, a building or a coast, etc., in a fraction of a second [118, 130].

One of the main tasks of computer vision is the recognition task, where the goal is to
determine whether or not the image data contains some specific property or object or ac-
tivity. Applications for visual recognition range from automated organization of personal
multimedia to large-scale surveillance and security systems. Visual recognition receives a
lot of attention from both the scientific community and the industry, but the general problem
still remains challenging due to the large variations between images belonging to the same
category. Several other factors such as significant fluctuations in viewpoint and scale, illumi-
nation changes, partial occlusions and multiple instances also have a significant influence on
the final results and that make the problem even more complicated [19, 39, 47].

Different varieties of the recognition problem are described in the literature. An impor-
tant recognition problem is classification problem, where one has to assign unknown data to
a set of predefined categories. In a generic classification setup, the typical visual classifica-
tion problem is texture classification (see the top row of fig. 1.1), where a system provided
with texture exemplars learns to classify unseen samples. Such a visual classification setup
can be extended to objects, where systems should predict labels for items depicted in images
(see the middle row of fig. 1.1). Even though the problem setup remains the same, in a
real-world scenario object classification becomes substantially more difficult due to possi-
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ble presence of intra-class variations, background clutter, occlusions and object articulations.
Finally, the same setup can be used to name activities and events in videos (see the bottom
row of fig. 1.1). This brings new challenges like temporal variability of an action or presence
of camera motion and shot boundaries. Furthermore, the amount of data to process might
require specialized techniques and further complicates the classification problem.

In this dissertation we mainly focus on scene and object classification in images, which
is currently one of the most rapidly developing research directions in computer vision. But
since we develop generic methods, we also can apply our research to other domains and in-
vestigate related problems.

COrange Pes| Mo el Crumpled Paper

Answer Phone Shalos Hand  Hug Person

Figure 1.1: Various types of data in the scope of visual recognition: texture samples (top),
images with objects (middle), action videos (bottom).

1.1 Motivation

Describing images by their contents can be very useful for organizing and accessing the huge
amount of image data generated every day. Moreover there are lots of applications that can
benefit from content-based image classification:

Image search. Image search is one of the direct application when people talk about content-
based image classification, where the goal is to find all images in a given dataset which
have a specific content. For instance, we can think about searching images in the largest
database in the world, Internet image search engines, or simply provide applications to
search images in a personal computer. Nowadays the poor performance when search-
ing images in Internet is due to their use of the image filename or surrounding HTML
rather than the actual image content. However, the natural way to find images is to
search visually -as humans do- using computer vision methods. Moreover, many com-
panies have large archives of images which they wish to search them in a more rapid
and efficient manner that is similar to what the humans do.
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Video search. Lots of adverts and video data have been generated during last years. People
working in marketing is often interested in looking for coffee adverts televised in the
past years, or adverts filmed in the mountains. Nowadays all these adverts are manually
annotated and stored in databases using meta-data information. It would be very useful
to provide techniques to access them automatically, by their content. Also producers
or film directors would be interested in recovering by an automatic way those shots of
movies filmed near a lake, or those shots where a certain actor/actress appears in the
middle of the ocean.

Surveillance. Fundamental systems remain relatively unintelligent requiring a person screen-
ing the image sequences, looking for suspicious people and unusual events. Advanced
systems try to automatically detect these unusual events. A subject of relative im-
portance is that related to understand crowded environments (e.g. a football stadium)
and/or detecting risk situations (e.g. fights).

Robotics. Provide eyes to a robot is maybe one of the most ambitious things in the computer
vision field. In this way a completely autonomous robot specialized to recognize cer-
tain objects of interest will be able to substitute humans in dangerous situations such
as underwater exploration, fireman help etc.

Video compression. Due to the very limited bandwidth of a number of important commu-
nication channels (e.g. wireless, underwater, low-power camera networks, etc.), video
communication over such channels requires substantial compression of the video sig-
nal. One of the most promising answers to this challenge is to adopt a new compression
paradigm that relies heavily in scene understanding. It would allow the compression of
different objects in a 