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Abstract

The search for compositeness is a paramount goal in particle physics. Since the
discovery of the atom, more and more fundamental structures have been discovered
in nature in which matter is compound. The Standard Model of particle physics
assumes the existence of a set of fundamental particles, including the Higgs boson,
that possess no structure. Nevertheless there are strong motivations to believe that
at least some of them could be composite and indeed its nature could be unraveled
at the LHC. The main di culty of theories of composite particles is that, in certain
regimes, their constituents are strongly coupled. Dealing with strongly coupled
theories is a major puzzle in theoretical physics since they can not be understood in
the usual framework of Quantum Field Theories, which is the main tool available
in theoretical high energy physics. Fortunately, the study of extra dimensional
theories has allowed us to gain deeper insights on this issue since these models can
be viewed as ‘holographic’ theories exhibiting strong dynamics. The purpose of this
thesis is the study of different composite systems which exhibit strong dynamics.
We focus on the development and study of extra dimensional models which can be
interpreted as analogs of some strongly interacting systems present in nature, these
are Quantum Chromodynamics and superconducting systems. Moreover we also
analyze the case of quark compositeness in a model independent way by studying
the effects of explicit models at energies below the cut-off scale of New Physics.



Resum

La recerca dels components fonamentals de la natura es l'objectiu primordial de
la fsica de part cules. Des del descobriment de I'atom, estructures mes i mes
fonamentals s’han descobert, les quals componen la materia. El Model Estandar
de la fsica de part cules assumeix l'existencia d’una serie de part cules consider-
ades fonamentals, incloent el boso de Higgs. No obstant, hi ha fortes motivacions
per creure que almenys algunes d’aquestes part cules son compostes i, de fet, la
seva naturalesa es podria revelar a 'LHC. El principal problema de les teories que
descriuen part cules compostes es el fet de que, en certs regims, els constituents
d’aquestes estan fortament acoblats. El tractament de teories fortament acoblades
es un dels reptes mes importants en la f sica de part cules actual ja que aquest tipus
de teories no poden esser tractades en el marc de la Teoria Quantica de Camps,
que es l'eina principal en la f sica teorica d’altes energies. L’estudi de models en
dimensions extra ha aportat una visio mes profunda d’aquest problema, ja que
aquests models es poden entendre com teories “holografiques’ que exhibeixen una
dinamica d’acoblament fort. El proposit d’aquesta tesis es I'estudi de diferents
sistemes de part cules compostes. Ens centrem en el desenvolupament de models
en dimensions extra que es poden considerar com analegs a sistemes fortament
acoblats presents a la natura, aquests son la Cromodinamica Quantica y els sis-
temes superconductors. A mes tambe analitzem el cas de la naturalesa composta
dels quarks de manera generica a traves de 'estudi dels efectes de models expl cits
a energies inferiors a ’escala de nova f sica.
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Preface

Theoretical Particle Physics is at the frontier of our knowledge of nature. What
could be branded as an speculative branch of science turns out to be the fascinating
quest of the margin in which nature can operate. Pushing this margin to the limit,
in all senses, is both challenging and exciting and leads to the proliferation of
revolutionary ideas and pioneering technology that not only serve to gain deeper
insights on nature but also have strong impact in other areas of knowledge. A clear
example are the theories with Extra Dimensions (ED) that constitute possible
completions of our present understanding of nature and, moreover, they can be
used as a tool to progress towards the issue of calculability in strongly coupled
systems, in which our current understanding of Quantum Field Theories (QFT)
does not apply.

The novel idea of ED models pionereed by Kaluza and Klein in the twenties
[1] as an attempt to unify all fundamental forces known at that time has been
revisited in the recent past and indeed has received a strong boost in the last 15
years mainly due to the appearance of revolutionary work done by several authors
among which we cite Maldacena, Witten, Randall, Arkani-Hamed, Dvali and a
long etc. these has led to a vast amount of literature in this subject, trying to
exploit the idea of ED to its last consequences.

The first part of this thesis mainly focuses on the construction of theories with
ED as an attempt to effectively describe quantum field theories that exhibit strong
dynamics. We will will be able to find 5D analogs of certain strongly coupled
theories and relate them via the celebrated AdS/CFT correspondence, that we
will explain below.

The second part of this thesis is devoted to the study of the feasibility of a class
of models inspired by ED theories and intended to describe the quarks, the most
fundamental particles we know in nature, as composite objects with an underlying
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structure.

The contents of this thesis are based on the work done during four years (from
2008 to 2012) at the Institut de Fisica d’Altes Energies (IFAE) under the super-
vision of Professor Alex Pomarol. This is the fruit of collaborations with several
researchers; Marc Montull (IFAE), Giuliano Panico (Zurich U.), Alex Pomarol
(IFAE), Alberto Salvio (Scuola Normale Superiore di Pisa), Javi Serra (Cornell
U.), Pedro J. Silva (IFAE) and Andrea Wulzer (Padova U.) that have materialized
in published articles corresponding to Refs. [2 4].
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Chapter

Introduction

Our deepest understanding of the laws that govern nature is based on symmetry
principles. This beautiful and illuminating formulation give rise to the most fun-
damental and successful theories we can nowadays handle. Just to give a flavor of
the power of this tool let us enumerate two basic examples. The Standard Model
of particle physics (SM) is the paradigm of a theory based on symmetries and
behind its simplicity it hides one of the most successful theories in the history of
science, being the anomalous magnetic moment of the electron its standard bearer,
observable that has been proven to an unprecedented level of accuracy. The sec-
ond example of theory that pushes the idea of symmetry to its limits is General
Relativity (GR) in which the Lorenz group of transformations plays a central role.

These two examples involve theories that are at the basis of our most funda-
mental knowledge of the laws of nature and they are both based on symmetry
principles. Therefore it is natural to try to push this idea further and it is actually
what it has been done in the last years where theories beyond the SM (BSM)
have been constructed in an attempt to address inconsistencies and naturalness
problems of the SM. Examples of BSM models based on symmetry principles are
Grand Unified Theories (GUT), Supersymmetry and Composite Higgs Models.

The framework in which the SM and its completions are constructed is based on
Quantum Field Theories (QFT). This theoretical framework allows us to describe
quantum mechanical systems parametrized by an infinte number of degrees of free-
dom. The combination of this powerful technology with the deep insight provided
by symmetries leads us to an amazingly successful description of the weak, stong
and Electromagnetic (EM) interactions, three of the four fundamental forces we
know in nature so far. The key point for our understanding of QFT is the notion
of perturbativity. The fact that the interactions in a quantum mechanical system

15
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Figure 1.1: Running of ; and the appearence of Agcp.

of fields can be treated as small perturbations is crucial for expanding their effects
around the free theory (without interactions) in order to determine the dynamics
that govern the system, this is known as Perturbation Theory (PT). In order for
the interactions to be small we need the value of the associated coupling constant
to have a small value and in this way we can consider the coupling constant it-
self as a sensible parameter expansion. Unfortunately this is not always the case.
We do know many systems in nature that become strongly coupled under certain
circumstances. A paradigmatic example is QCD where the running of the strong
coupling constant gs due to quantum effects leads to the loss of a sensible pertur-
bative expansion below a certain energy scale Agcp, as can be seen in Fig. 1.1.1

Dealing with strongly coupled systems is a major puzzle in theoretical physics.
The lack of perturbativity makes impossible to understand a quantum dynamical
system of fields in terms of standard QFT tools. Luckily, the study of models
involving Extra Dimensions (ED) has led us to gain deeper insights into this sub-
ject. These models are predicted by models of quantum gravity like String Theory
and, moreover, constitute sensible Ultra-Violet (UV) completions of the SM in the
sense that the scale of quantum gravity is reduced down to the Tera-electronVolt
(TeV) thus getting rid of the large hierarchy between the EW scale and the Planck
scale. But the interest on ED models goes far beyond these considerations, since
the advent of the String/Gauge duality conjectured by Maldacena in 1997 that
has allowed us to gain deeper insights towards the calculability issue of strongly
coupled theories [6]. The original Maldacena conjecture relates type I1IB String
Theory in an AdS; S° background and N' = 4 SU(N) 4D gauge theory, what
has been called the AdS/CFT correspondence, where AdS stands for Anti-de-
Sitter and CFT for Conformal Field Theory. However, a more phenomenological

LA perturbative expansion in these enrgy regimes is indeed possible by taking the number of
colors N, as the expansion parameter. This will be explained in more detail in Sec 2.1.1
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approach is still possible by considering 5D models of AdS space. This more mod-
est attempt is clearly inspired in the AdS/CFT correspondence and from it we
can still capture the essential features of the more involved string models. In
this context, one of the motivations of the thesis is the construction of predictive
frameworks for different strongly coupled systems that exhibit certain symmetry
breaking patterns through the elaboration of 5D models and exploiting the ideas
of the AdS/CFT correspondence. The generality of this holographic prescriptions
will allow us to implement this framework in completely independent systems in-
volving very different physics like Condensed Matter Systems exhibiting properties
of Superconductivity or models of low energy QCD with spontaneous and explicit
breaking of the chiral symmetry. The first part of the thesis is devoted to the con-
struction of explicit 5D warped models with the aim of addressing the calculability
issue on the aforementioned systems.

The common point in the two systems enumerated previously, apart from its
strongly coupled nature, is the fact that the constituent fields of these theories are
composite, in the sense that they possess an underlying structure that determine
their properties. The search for underlying structure and the fundamental particles
in nature is a major goal of particle physics. From atoms to quarks we have always
found new structures and at this point in the SM of particle physics it is assumed
that nature is composed by a set of elementary particles: quarks, leptons, gauge
bosons and the Higgs. The question then is obvious; why stopping here in our
search for compositeness? Could it be that the story does not end at this point?

Not just because of these naive arguments but, moreover, naturalness problems
on the mass of the Higgs boson suggest that indeed this particle could have a
composite nature, arising from a strongly coupled sector very much in the same
way as the pion is made of quarks and gluons in the context of QCD. Also the
heaviness of the Top quark in comparison to the other particles in the SM suggests
that these particle could have an underlying structure related to the same strong
sector. At this point it seems fair to look for compositeness in all the fundamental
particles we know so far, i.e. , quarks, leptons and gauge bosons. Nevertheless,
the fact that the sector of New Physics (NP) is strongly coupled makes di cult
its study from a theoretical point of view. To overcome this problem explicit
realizations of Composite models have been constructed in the context of the
AdS/CFT correspondence. The expectation that the physics associated to this
new composite sector should arise at the TeV scale makes feasible its search at the
LHC. Luckily, when we probe NP at energies much less than the mass of the new
heavy resonances that could arise from the strong sector we can parametrize all
the effects and deviations from the SM predictions by a set of higher dimensional
operators involving SM fields. Therefore it is not necessary to go to the full extra
dimensional theory to compute these deviations but just to its simpler low energy
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realization in terms of higher dimensional operators, where the heavy resonances
have been integrated out.

The second part of the thesis is devoted to the study of NP effects parametrized
through higher dimensional operators in a model independent way. We will see
that these operators can be studied and constrained with the LHC data. More-
over, these operators arise in many completions of the SM and specifically they
parametrize models of compositeness of the SM particles. Through their analysis
we will be able to study the feasibiltity of different composite scenarios of the SM
particles inspired in ED models.

The thesis is organized as follows, in Chap. 2 we introduce the models with
warped Extra Dimensions and the AdS/CFT correspondence. We also look at
three particular systems where this correspondence can be applied, they are Quan-
tum Chromodynamics, the theory of Superconductivity and models of Higgs as a
pseudo-Nambu-Goldstone boson. For each of these systems we make a brief in-
troduction and discuss the necessity of an extra dimensional point of view. in
Chap. ?? we introduce a 5D model that will allow us to describe both the me-
son and the baryon sector. In this holographic analog of QCD we will be able
to derive properties of hadrons and find that they are in very good agreement
with present experimental data. In Chap. 7?7 we will study an Extra Dimensional
theory of Superconductivity in 24+1 and 3+1 dimensions in which a dynamical
gauge field is present in the system. This fact will allow us to study some very
important phenomenology associated to the gauge field and its interaction with
the superconducting system. Finally, in Chap. 3 we will study the feasibility of the
compositeness of the SM particles arising from a strongly coupled sector responsi-
ble of the Electro-Weak symmetry breaking, through the study of dijet events at
the LHC. This analysis will allow us to put constraints on some higher dimensional
operators that typically parametrize quark compositeness. Moreover, we will be
able to study and constrain other BSM models in the same context.
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Chapter 2

Warped Extra Dimensions and
Holography

In the last fifteen years Extra Dimensional theories have been proven to be very
useful in the context of particle physics and even beyond. There exist many models
in the literature that, based on ED, are able to address the Hierarchy problem
of the SM [7 10], that is the fact that the natural mass of the Higgs boson is
much above its expected value. Therefore, these models can be considered as
sensible candidates for completing the SM at the TeV scale. But the interest on
ED models goes far beyond that since the advent of the AdS/CFT correspondence
(see Ref. [5] for a nice comprehensive on this subject). The first to realize about
the correspondence between gravity and gauge theories was Maldacena in 1997 [6].
He conjectured that,

type IIB string theory  puyaL B
on AdSs S5 =" N =4 SU(N) 4D gauge theory
where N is the number of supersymmetry generators and S° is the five-dimensional
sphere. In the context of this duality the parameters of both theories are related

by,
Rigs = 4mgy\ NI, (2.1)

where R 445 is the curvature radius of the AdSs space, [, the string length and gy s
is the coupling constant for the Yang-Mills theory. Of course this is a very particu-
lar example that is relating a specific type of string theory with a Supersymmetric
SU(N) Yang-Mills theory. Actually, due to its high degree of Supersymmetry the
dual theory presents Conformal invariance, that is associated to the isometries of
the AdSs space in the gravity side.

21
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Figure 2.1: AdS; space in the Randall-Sundrum type 1 model.

This correspondence can be generalized to encompass a wider class of theories.
The first thing to note is that the string modes are not crucial for the duality to
take place. They can actually be decoupled by taking the limit

Rags >l = gy N> 1, (2.2)

which means that we are working at distances much larger than the string length
and because of this reason the string modes can be decoupled and we end up
getting a purely gravitational theory. This automatically implies that the 't Hooft
coupling of the dual theory is much larger than one.

After decoupling the string modes and remaining with the low energy effective
theory we end up with the more generic correspondence

5D AdS gravity DUAL 4D CFT
weakly coupled — strongly coupled

or more generically

nD AdS gravity puaL (n-1)D CFT
weakly coupled — strongly coupled

This is precisely what we are going to use throughout this Chapter in order to
relate ED models with AdS geometry to their strongly coupled duals. Because
the CFT is defined in one less dimension respect to the AdS space this theory is
usually called “holographic”.

Up to this point we have been very qualitative when describing the correspon-
dence between these two classes of theories. One can actually be more quantitative
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and get predictions from one theory to the other by relating the generating func-
tionals of both theories. The idea is that every field we put in the AdS background
when defining the 5D theory will be associated to some operator, O, in the 4D
side, that will specify the CFT [11, 12]. Let us define ¢ as the UV boundary value
of some bulk field

(ZE ’Z) z=zyv O(x ) (23)

When taking the limit zy 0 we can formally state the AdS/CFEFT correspon-
dence at the quantitative level as,

Z[ 0] _ /'D OFT e~ Sorr| crr]—[diz 0O :/ D e Seurl ] giSessl o] : (2'4)
0

where Scpr is the CFT action with ¢pp generically denoting the CF'T fields and
Spur 18 the bulk 5D action. Note that, as stated above, g acts as a source for
the operator O. The on-shell gravity action, S.f; is obtained by integrating out
the bulk degrees of freedom for suitably chosen IR boundary conditions. This is
formally done by solving the 5D Equations of Motion (EOM) with fixed values for
the source fields ( and then substituting back into the action to obtain L.y.

Basically this equation relates the generating fuctional of the 4D CF'T sourced
by ¢ with the 5D AdS theory when integrating out the bulk dynamics. This
relation allows us to make calculations in one theory and relate them to the other.
n-point functions can be calculated as in the usual path integral formalism, by
considering ¢ as a source

0.0 =—"24 (2.5)

So far we have just considered a general AdSs space and found that its prop-
erties can be related to a 4D CFT. It is interesting to focus on a slice of AdS
space, where the presence of a UV and an IR brane chomp the space along the z
direction. The metric in this particular case is given by,

ds* =e % dr dx + dy?, (2.6)

where the parameter k is the curvature scale of the warped extra dimension. We
can also write this solution for the metric in conformal coordinates

ds* =a(z)*( =z —d?*) gune™a™, (2.7)

being a(z) = 1/kz is the warp factor. How the AdS/CFT picture changes in this
slice of AdS? This question has been extensively studied in the literature [13 15].
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The first thing to realize is that, because of the fact that the AdS; geometry is
associated with conformal invariance in the 4D side, the abrupt cut in the ED
due to the presence of the two branes will introduce two scales in the 4D theory
related with a breaking of the conformal invariance. The presence of the UV brane
will reflect in the CFT as an explicit breaking at some UV scale, Ayy, while the
IR brane will generate a spontaneous breaking of the conformal invariance at the
scale Arr. Because of the spontaneous breaking a Nambu-Goldstone boson has to
be present in the spectrum of particles, this is the dilaton, which is dual to the
radion in the gravity side.

Finally, another consequence of placing a UV brane in the AdS5 background is
that the source ( will become dynamical because the bulk dynamics will generate
a kinetic term for this field when the 5D fields are integrated over. In this case |
cannot just be considered as an external source but a truly dynamical field that is
coupled to some operator in the CFT through the mixing term (O. Therefore the
mass eigenstates will be mixtures of ‘elementary’ ( and ‘composite’ CFT states.
The fact that this kinetic term is generated for the source field ( is a consequence
of placing the UV brane at a finite position in the extra dimension. This term
could actually be sent to zero if we place the UV brane at ypyy  —

In the following sections of this chapter we will study two specific examples
that will serve us to exploit the virtues of the AdS/CFT correspondence and extra
dimensional models in order to address the issue of calculability in strongly coupled
systems. In Sec. 2.1 we study the case of QCD at energies in which the theory
exhibits strong dynamics, while in Sec. 2.2 we analyze the superconducting and
the superfluid systems through an extra dimensional point of view.
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Figure 2.2: Vacuum polarization diagram for the gluon at the one-loop level.

2.1 Holographic QCD

The strong interaction is one of the fundamental forces we know in nature and
the theory which describes it is QCD. Due to its non-abelian nature this theory
is just known at high energy scales, this is a consequence of the fact that QCD
is asymptotically free, which means that its coupling constant, when considering
quantum effects, runs towards small values at high energies. For the very same
reason this coupling gets bigger as we go to lower energies until a point in which
the theory can not be considered perturbative anymore. We then reach the region
in which QCD is strongly coupled (g5  4m). This automatically generates a
scale in the theory which is precisely the energy scale at which PT brakes down,
Agep ~ 1 GeV. This is a dynamical mechanism for generating scales in quantum
field theories, known as dimensional transmutation. Below this scale the strong
interaction seems to be well described in terms of baryons and mesons, what
suggests a duality between these composite particles and the fundamental’ degrees
of freedom in QCD, i.e. the quarks and the gluons. This consideration seems to
point out that a successful theory of strong interactions at low energies have to
describe hadron physics in some way.

2.1.1 Low Energy QCD and the large N, limit

Though QCD reaches a scale below which the theory exhibits strong dynamics
a perturbative expansion in this regime is still possible by considering a “hidden’
parameter of the theory: the number of colors, N., [16]. Troughout this section
we will see that by taking the limit of large number of colors (N, ) we will
be able to qualitatively derive many properties of hadron physics in a purely QCD
framework, suggesting that this limit could lead to a successful description of low
energy QCD.

Let us very briefly review the main properties of Large N. QCD. A complete
discussion about this topic can be found in Ref. [17].
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Figure 2.3: One-loop quark contribution to the gluon propagator.

First of all let us consider the one loop gluon vacuum polarization amplitude,
Fig. 2.2. A naive estimate tells us that this diagram will scales as g?/N, where the
N, factor comes from the number of possible colors running in the loop. If we want
this diagram to have a smooth value when taking the limit of large N, we should
impose that g2N, approaches a constant value as N, , what implies that

g~ N (2.8)
where is known as the 't Hooft coupling. The lesson we learn from the scaling
property of the coupling constant is that just diagrams with large enough N, com-
binatoric factors will survive in the large N, limit. Actually, by a naive counting
of powers of N. we can see that only planar diagrams survive while non-planar
diagrams are always suppressed respect to the former. What we mean here by
planar is a kind of diagrams that can be written in the plane without line cross-
ing at points where there are not interaction vertices. This criterium defines a
class of topologies called planar. The fact that only this kind of diagrams survives
simplifies very much this approach.

Another important consideration is the fact that loops of quarks are also sup-
pressed by powers of N.. Again, this can be seen by a simple N, power counting.
Consider the diagram in Fig. 2.3, since quarks and gluons are coupled with cou-
pling constant ¢ this diagram has to scale like ~ 1/N,. The main difference with
respect to the gluon self energy is basically the fact that the color of the quarks
inside the loop is fixed by the external gluon legs and therefore there is no N,
combinatoric factor in the numerator in this case.

Let us consider another important case that is the one current-current correla-
tor JJ of quark bilinears like qq or ¢ ¢. In this case we will unavoidably have
a quark loop running in the diagram. Similarly to the previous cases, only some
particular diagrams will survive in the large N, limit. It is easy to see by NDA
arguments that they will be the planar ones in which the quark loop is placed at
the edge of the diagram.

The above considerations about the type of diagrams that survive in the large
N, limit define a set of selection rules that, in the case of two point functions, can



2.1. Holographic QCD 27

Figure 2.4: Leading contribution to quark bilinears in powers of N,.
be summarized with the following statement

The dominant contributions to matriz elements of quark bilinears will come
from planar diagrams with quarks placed only at the edge.

A general diagram giving a leading contribution in the parameter N, is shown
in Fig. 2.4.

The fact that quarks can only be placed at the edge of the diagram has a very
important consequence, that is; the intermediate states in the current-current
matrix element J.J involve always just one ¢ and one ¢ fields. Since mesons
are qq bound states we can a rm that the intermediate states are always meson
resonances. Moreover we can quantify this statement in the following way

fa

2 27
pT—my

J(p)J(—p) =>_

n

(2.9)

where f, = 0 J a, is the decay constant for the n’th resonance and m,, its mass
and the sum runs over mesons.

Many important properties of the meson sector can be derived from the above
equation. First of all, the large energy behavior of JJ is known to be logarithmic.
This can only match with Eq. (2.9) if the sum is infinite, which means that there
is an infinite tower of meson resonances in this limit. We can also see from Fig. 2.4
that the dominant contributions to the current-current correlator are of order
N., JJ ~ N.. This leads to the conclusion that the decay constant of meson
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resonances scales like f,, ~ N,. Finally, the smooth dependence on N, in both
sides also implies that the mass of the meson resonances should be independent of
N, m, ~ N, g.

So far we have just talked about mesons in the large N, approach. How baryons
look like in this limit? To answer this question first note that for a SU(N) theory
of strong interactions we can construct singlets of quark fields by taking a qq pair
or considering N, (anti-)quark bound states. The first option would correspond
to a meson resonance while the second would be associated with a baryon in the
large N, limit. The fact that the baryon is composed by N. quarks leads us to
the conclusion that the baryon mass scales like Mg ~ N, ~ 1/g*. This particular
scaling of Mp with the coupling very much resembles the one of solitons, what
suggests that in the large N, expansion, baryons could arise as topological solutions
of the theory, in a similar way as postulated by T.H.R. Skyrme in the 60’s [18].

Many other interesting properties can be derived in the context of the large N,
limit, but let us just summarize what we found so far:

The large N, expansion describes a theory of infinite, stable and narrow
meson resonances which moreover are non-interacting.

Baryons arise as topological solutions of the theory.

The physical properties of baryons and mesons present a definite scaling with
N, (m, ~ N°, Mg ~ N,, f, ~ N, etc.).

my, ~ N?
Mg ~ N,
Jn ~

N.
g ~ N.

2.1.2 Large N, realization in Extra Dimensions

So far we have just derived qualitative features of then large N, expansion that we
can relate to hadron physics. Though they are very encouraging, we do not posses
a quantitative insight on this framework. This leads us to wonder if an explicit
realization of this limit can be constructed. In order to guess if this is possible let
us look more closely to the properties of large N, theories described above.
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A set of infinite, stable and non-interacting resonances appears naturally in
the large N, approach.

This very much resembles the behavior of a 5D theory when integrating out
the extra dimension. The result is the appearance of a KK tower of stable
resonances. Moreover, from Eq. (2.2) we can see that in the large N, limit
of the 4D CFT we can obtain a coupling ¢ 1.

Baryons arise as solitons in the large N, limit.

Recently, it has been seen that ED models can accommodate for stable topo-
logical solutions [19 21] and therefore they could be candidates for describing
baryon physics.

From these considerations we can see that ED models very much resemble large
N, QCD. It would be nice if, in addition, we could mimic the NN, scalings of meson
and baryon properties. let us try to do this exercise in a simple way. We consider
a simple 5D model with a chiral SU(2);, SU(2)g symmetry in the bulk

Lsp = / dz® “gMsTe[—LMN Lyw — RMY Ry, (2.10)
where M, N = (,5) refer to the five coordinates. We can also define

Vu = Ly + Ry,
Ay = Ly — Ry, (2.11)

associated to vector and axial fields.

Let us very briefly flash the properties of this model and try to relate them
with large N. QCD. When integrating out the extra dimension this model leads
to resonances with the same quantum numbers as the QCD mesons ( , al,
etc.). Moreover, the holographic 4D theory possesses a global SU(2);, SU(2)g
symmetry analogously to the QCD chiral one. Now, we can wonder if from this
simple Lagrangian we can mimic the N, scalings of masses and decay constants of
hadron resonances.

The first thing to note is that we have factored out a M; factor in front of
the Lagrangian, which plays the role of 1/¢* If we assume that Mj; scales like,
M5 ~ N, in order for the coupling to mimic the behaviour of the large N. QCD
case, Eq. (2.8), we will be able to deduce the scalings of the other hadron properties.

From the holographic description stated above, Eq. (2.4), we see that we can
calculate properties of the holographic theory by integrating out the bulk dynamics
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keeping the source term fixed. For this reason we are going to impose the following
boundary conditions in the UV brane

Vo = v, (2.12)
A = a,

2UV

It can be seen that, when solving the EOM’s keeping these boundary values fixed
(and choosing suitable boundary conditions to cancel the IR boundary terms), we
formally obtain an effective Lagrangian of the form [22]:

Logp=MsP Trl v(p*)v +a  ap®)a ], (2.13)

where P = —p p /p? is a projector. The explicit form of the 1y 4 can be
obtained in the case of an AdS; space [22, 23]. It is not our goal to derive the
exact value for these functions but just to sketch the properties of this solution. Is

for this reason that we have factored out the Mj5 factor in front of the Lagrangian,
Eq. (2.10).

In view of Eq. (2.5) we can relate 4 with the two point correlation functions
of the quark currents Jy 4Jy 4 . In the large N, limit these functions are expected
to be expressed as a sum over narrow resonances as in Eq. (2.9), which means that
the poles of these correlators can be interpreted as the mass of the resonances in
the 4D theory, while the residues of the poles would correspond to their decay con-
stants. Since the functions 4 come purely from solving the 5D EOM and they
are independent of M; since this parameter is factored in front of the Lagrangian,
we conclude that the poles of these functions should also be independent of Ms,
which means that m,, ~ N?.

On the other hand the residues of these poles have to absorbe the Mj5 factor in
front of the effective Lagrangian, Eq. (2.13) and for this reason f,, ~ Ms~ N,.

Finally, if we believe that topological solutions can be found stable in this
AdSs5 background we could associate them with baryon, in the spirit of [18], and
therefore, baryons could be accommodated in this set up' . Moreover let us guess
how the mass of a baryon would scale in this ED approach. Since topological
solutions at the classical level are associated to non-trivial configurations of the
5D fields, their energy would be calculated as the integral of the energy density,
i.e. the Hamiltonian density H, of this particular configuration of fields over all
the space. For static field configurations the baryonic energy would correspond
exactly to its mass and, therefore

My = / drdH = / dr’dz —gMsTe[LMVLyy + RMVRyn].  (2.14)

IThis is what it has been actually found in Ref. [19] for the same Lagrangian, Eq. (2.10).
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As we can see, the mass of the baryon will scale like Mg ~ N, ~ 1/g?. The
particular scaling of the mass with the coupling constant is also a feature of solitons
so, in some sense, this behavior was already expected.

So far we have seen that with a simple 5D model we are able to reproduce
many of the properties of the large N, limit of QCD. Of course, we could add more
elements in this framework in order to make more contact with the real theory of
QCD like the spontaneous and the explicit breaking of the chiral symmetry. All
these features suggest that we should be able to find a dual theory of low energy
QCD based on extra dimensions by making an appropriate matching between the
hadron properties and the parameters of the 5D model. This is precisely the aim of
the next Section, where we study the possibility of obtaining a unified description
of baryons and mesons by making use of a 5D model analog to QCD where chiral
symmetry is spontaneously and explicitly broken.

2.1.3 Hadron physics in Holographic QCD with Chiral Sym-
metry Breaking

5D approach to QCD

Throughout the previous Section we have discussed the virtues of 5d models and
specifically their resemblance to the large-N,. expansion of QCD, what suggests
that we could be able to find an analog version of this theory based on Extra Di-
mensions. This possibility has been widely discussed in the literature [19 22, 34
37] and can be briefly summarized as follows. From the theoretical point of view,
these models resemble large-N. QCD in that they contain infinite towers of weakly
interacting mesons while the baryons are solitons, similar to the Skyrmions of the
non-linear -model. Differently from ordinary Skyrmions, however, the 5d soliton
size remains finite in the weak coupling (large-N..) limit and is therefore parametri-
cally larger than the length scale at which the 5d model enters the strongly coupled
regime. The 5d Skyrmions are genuinely macroscopic objects, whose physics is per-
fectly within the reach of the effective theory as it must also be the case for the
baryons in the true theory of large- N, hadrons [17].

For what concerns phenomenology, it is already quite remarkable that the
holographic implementation of the QCD chiral symmetry and of its breaking au-
tomatically leads to towers of vector and scalar mesons with the quantum numbers
of the observed , a1, f1, ao, fo, 7(1300) and (1295), but even more remarkable
is that, when extrapolating the model to the physically relevant case of N. = 3, an
agreement at less than 10% with observations is found. This success is non-trivial
because the model contains an extremely limited number of free parameters that
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can be adjusted to reproduce many observed meson couplings and masses, and is
mainly due to a set of phenomenologically successful “sum rule” relations among
the predictions. The latter originate from the 5d structure of the theory and are
independent of many details of the model, such as the background 5d metric,
whose choice is therefore unessential for phenomenology as discussed in [38]. The
overall agreement is less good in the baryonic sector, but still compatible with the
expected 1/N, ~ 30% deviations. Furthermore, one recovers in a non-trivial way
several features of the large- N, QCD baryons such as the scaling of the currents
form factors with N., the fact that the isovector electric and magnetic radii di-
verge in the chiral limit (as in QCD [39]) and other large-distance behaviors [40].
In holographic QCD an important role is played by the Chern Simons (CS) term
of the 5d action whose presence is required, with a fixed coe cient, by the need
of reproducing the QCD global anomalies. The CS is therefore the 5d analog of
the gauged Wess Zumino Witten (WZW) term of the standard 4d chiral theory
and, like the WZW, it is responsible for the 7 decay and for “naive parity”
breaking in the Goldstone interactions [41]. The CS actually contains the WZW,
in the sense that it reduces to it in the low-energy description of the Goldstones
obtained from the 5d theory, but it also contains other interactions such as the
well-measured “anomalous parity” couplings ¢ , g and g . As a result of
the 5d structure of the theory, these couplings are predicted and are found to be
in good agreement with the observations. In the case of exact chiral symmetry
(and only in that case, as we will show) the CS term is also crucial for the physics
of the baryons because it stabilizes the bd Skyrmion solution and makes its size
scale like a constant for large ..

Many of the above-mentioned results, and in particular the ones related with
the CS term and with the baryons, have however been only established in the min-
imal holographic QCD model with exact chiral symmetry; the aim of this article
is to generalize them to the more realistic case of explicit chiral breaking (and
therefore non-vanishing mass for the Goldstones) and to check if the previously
outlined general picture survives. In order to complete this program we first of
all need a model with explicit breaking, but we cannot simply employ the original
one of [22, 35, 36]. A very simple variation is needed in order to incorporate the
CS term and the 5d Skyrmions that were not considered in the original literature.
Like in [22, 35, 36], our model will be a 5d U(2);, U(2)r gauge theory with a 5d
scalar field  in the bifundamental of the group, whose presence is necessary to
parametrize the breaking of the chiral symmetry due to the quark mass term. The
only difference with [22, 35, 36| is in the boundary conditions for the gauge fields
at the IR brane, where we break the chiral group to vector (as in [37]) instead of
preserving it and making the spontaneous chiral symmetry breaking arise exclu-
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sively from the VEV of . 2 This choice of boundary conditions would be a priori
equivalent to the original one from the model-building perspective, and costs no
more parameters, but is necessary if willing to incorporate the CS term. As we
will discuss in more details in the following section (see also [42]), the reason is
that the CS gauge variation is an integral on the boundaries of the 5d space and
therefore receives contribution from both the UV and the IR brane. While the
UV term is welcome because it reproduces the QCD global anomalies, the IR one
must cancel because the IR group is gauged and a non-vanishing variation would
have on the model the same effects of a gauge anomaly. The symmetry-breaking
boundary conditions, which are actually equivalent to gauging only the vector sub-
group at the IR, enforce this cancellation. On top of this, symmetry-preserving IR
boundary conditions could make the 5d Skyrmion unstable or even the classical
5d Skyrmion solution not to exist at all because the baryonic charge 3

1 g [
B :3%2/dede TL L -R R |
[ 1= a0+ [ [a0= a0, (2.15)

would not be quantized and therefore not topologically conserved. It is indeed
possible to change continuously the IR contribution to B (the last term in the
equation above) without affecting the rest by a local variation of the fields at the
IR boundary. This is impossible with symmetry-breaking boundary conditions be-
cause the IR contribution vanishes identically and the baryonic charge is quantized
as shown in [19 21].

Troughout this chapter we will study the implications of chiral symmetry break-
ing for hadron physics in Holographic QCD. In Section 2.1.4 we first of all describe
the model which is the first one containing at the same time the explicit chiral
breaking, the QCD anomalies (i.e. the CS term) and the 5d Skyrmion. We also dis-
cuss its phenomenological implications for the physics of vector and scalar mesons,
which because of the change in the boundary conditions are a priori different from
the ones derived in [22, 35, 36]. We actually find a quite similar phenomenology,
the only remarkable difference being in the mass of the 7(1300) pseudoscalar meson
that was impossible to fit in the original model [36] while it is easily accommodated
in our case. We obviously also take into account the processes mediated by the CS
term that were absent in the original model, and eventually perform a complete fit
of the meson observables which allows us to fix the parameters and to quantify the
level of agreement with observations. In Section 2.1.5 we study the physics of the

2 Actually, another di erence with [22, 35, 36] is that the gauge group was taken there to be
the chiral SU(2) while our model is based on U(2).
3For the notation, see [19 21] or the following Section.
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baryons, generalizing the analysis of [19 21] where the chiral case was considered.
In that section we check that the existence and calculability of the 5d Skyrmion is
maintained in the non-chiral case, and see how much the predictions change after
the deformations required to incorporate the chiral breaking in the holographic
model. The latter deformation is not mild because the newly introduced 5d scalar
does not decouple from the vector mesons, and therefore from the 5d Skyrmion so-
lution, even when the chiral symmetry is restored. We also compute the isovector
form factor radii which were divergent in the chiral case and become now finite, as
expected in QCD, due to the chiral breaking. Finally, in Section 2.1.6, we present
our conclusions.

2.1.4 Meson sector in Holographic QCD

As a starting point for the description of the model, let us consider the QCD
partition function Zgep(l,r, M] in the presence of sources for the left and right
global currents and for the quark mass operator. The latter reads

Zocp [Lr, M] = /D exp

iSocp| | +i/d4:vTr<l Jjp+r jp—Ms—s M )} ,

(2.16)
where  collectively indicates the QCD fundamental fields, Sgcp is the massless
QCD action, (jL R) = » q. p are the currents of the U(2), U(2)g chiral

ij
group and s;; = q1.¢k is the quark bilinear. Due to anomalies, the partition
function changes under local chiral transformations as *

ZQC’D {I(EL), T(ER), Z]\LM Q\R} == eiAZQCD [la r, M] ) (217)

where the vector sources transform as gauge fields (i.e., 1092) = gl +1¢ ]g, and
analogously for r ) and A stands for the QCD global anomaly which, as discussed
in appendix C, can be put in the form

B 22:?2 / i@ ) - Ti(an )] (2.18)

by the addition of suitable local counterterms. In words, what eqs. (2.16) and
(2.17) mean is that 2-flavor (large-N.) QCD is a theory endowed with an U(2),

4The equation which follows is only valid in the large-N, limit in which the U(1)4 SU(N,)?
anomaly can be neglected and the ' only gets its mass from the explicit chiral symmetry breaking.
Given that the expansion parameter of the 5d theory is interpreted as 1 N, it is completely
correct to stick to eq. (2.17) at the leading order, though it would be interesting to see what kind
of next-to-leading order corrections the inclusion of the U(1)4 anomaly leads to. The problem
of incorporating the ’ mass in holographic QCD has already been addressed in [43], though its
connection with the anomalies and the 1 N, expansion has not been outlined.
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U(2)r anomalous global symmetry and with a non-dynamical spurion field M,
associated with the quark mass operator, in the bifundamental of the group. This
symmetry, with its explicit breaking parameter M, must obviously be present in
any phenomenological description of hadrons such as the one we want to construct.

Following the holographic method, we incorporate the chiral symmetry and
the spurion by introducing 5d fields with appropriate quantum numbers (Ly;, Ry,
and ) associated respectively to the sources 1 , r and M, and identify the latter
with the values of these fields at the UV-boundary. For the gauge fields the model
is exactly as in [20], and all what we have to add is the scalar ~ which, according
to the holographic prescription, transforms as

(9z 9r) 9L 9r, (2.19)

under the local 5d U(2), U(2)g group and is subject to the following UV bound-
ary conditions

B (ZUV) M, (2.20)

ZIR

with  ~ defined in eq. (2.33). The need for the rescaling in M is a technicality
associated with our choice of the AdSs geometry, and will be explained in the
following. For simplicity, and since we are considering the two-flavor case in which
the vector symmetry breaking is negligible, we take the spurion VEV to be of the
form

M= M,1,

which respects U(2)y.

The partition function of the 5d model, which we would like to identify with
the QCD one in eq. (2.16), is defined as

Z[Lr, M] /DLMDRMD exp iSs[L,R, ] | (2.21)

where the dependence of the r.h.s. on the sources arises from the boundary condi-
tions on the allowed field configurations. The gauge part of the 5d action is given
by a kinetic part

M, P
Sy== [d'a [T dza(z) {Tr LI + S + L R } ,

(2.22)
and a Chern Simons part

N, 1 ~ 1 o~
= /dsx{4 MNOPQLMTr [LNOLPQ] + 274 MNOPQLMLNOLPQ — L
(2.23)

Scs =
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having parametrized the fields as L = L* %/2 + L 1/2 and analogously for R .
As discussed before, the UV boundary conditions for the gauge fields are

L ._..=1, R .—..=r1. (2.24)
The action for the scalar is
S = M5/d4x /f dza’(z) {Tr {(DM ) DM } — a(z)ZM%ulkTr[ H , (2.25)
where we defined the covariant derivative
Dy v —iLy +i Ry (2.26)

If a local 4d chiral transformation is performed on the sources, as in eq. (2.17),
the UV boundary conditions get modified but this change can be reabsorbed in a
change of variable in the path integral of the form of a local 5d gauge transfor-
mation gr g = exp(i 1 ) which does not reduce to the identity at the UV brane.
The kinetic part of the gauge action S, and the scalar action S are invariant
under this transformation, while the CS part (as discussed in appendix C) gives
the variation

NC J— J— J— _
Sos = 51 ([ Haw) = Hann)] - [ [Hew L) - HanR)])
(2.27)
The UV contribution in the above expression is welcome, because it coincides
with the anomalous variation in eq. (2.17). On the other hand, the IR terms in
Scs have no counterpart in 4d QCD and must be cancelled. The chiral-breaking
conditions

(L o R ) Z=zm 0 ’ (L 5 + R 5) Z=zm 0 (228)

enforce this cancellation, which, on the contrary, would not occur in the case
of the symmetry-preserving Neumann conditions considered in [22, 35, 36]. The
choice (2.28) of boundary conditions is motivated not only by the need of correctly
reproducing the QCD anomaly, as the previous discussion shows, but also by the
consistency of the theory in the presence of the CS term. We can introduce a
term in the action only if it respects all the symmetries which are gauged. As
can be seen from es. (2.27), the CS term in eq. (2.23) is not invariant under local
axial transformations which do not vanish at the IR boundary, thus it can be
consistently introduced only if the local axial symmetry at the IR boundary is not
gauged, as implied by the conditions in eq. (2.28).

For the scalar we impose the IR boundary condition

ey = 1, (2.29)
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where is a positive parameter and fields satisfying eq. (2.29) with both signs,
associated to two disconnected sectors, coexist in the theory. These boundary
conditions (with their sign ambiguity) can be thought to originate (as in L22,
35, 36]) from an IR localized potential of the form V = ((ReTr[ ])? —4 %)" +
(2Tr[ ] — (Re Tr] ])2) The latter would enforce eq. (2.29) in the
limit. When dealing with small field fluctuations around the vacuum, the subtle
sign ambiguity is irrelevant, because only one of the two sectors contains a stable
stationary point and the dynamics entirely takes place around it. This is because
of the — symmetry of the lagrangian, which implies that a simultaneous
sign change of M, and of the boundary condition (2.29) is unobservable. The pion
mass squared is therefore m* ~ M, f(zr )+ O(M?) which, depending on the
sign of M,, can be positive or negative implying that only one of the two sectors
can be tachyon-free. For M, > 0 the vacuum is in the “plus-sign” sector and the
physics of mesons, described by small fluctuations around the vacuum, is totally
insensitive to the presence of the other (minus-sign) sector. We will show in the
following section that the baryons live, on the contrary, in the minus-sign sectors
so that the sign ambiguity in eq. (2.29) has to be maintained.

Having described the model, we can now study its phenomenological implica-
tions for the physics of mesons, with the aim of comparing it with the observations
and of fixing its parameters. With respect to the massless case of [20], three new
parameters (M,, and Mp,;) have been introduced, but also new predictions can
be extracted from the model. The scalar  describes scalars and pseudo-scalars
with the isospin quantum numbers of, respectively, the ay(980), the f;(980), the
7(1300) and the (1295); we will use their masses, plus of course the pion mass,
to fit the new parameters. °

To study the meson spectrum, we have first of all to find the vacuum con-
figuration, which is given by the solution of the bulk equation of motion for

Dy (a*(2)DM ) = —a®(2) M}y, (2.30)

for vanishing 4d momenta and with the boundary conditions in egs. (2.20) and
(2.29). The result is

+

=cy (Z) +c_ <Z> 7 v(2)1, (2.31)

ZIR ZIR

5In our model the axial field A; gives rise to towers of resonances with the quantum numbers
of the f; and of the mesons. These states are predicted to be degenerate in mass with the
corresponding mesons of the a; and the tower. Although the masses predicted for the f;(1285)
and for the (1295) are close to the experimental ones, we decided not to include these predictions
in the fit because, in principle, they could receive sizable corrections when a proper treatment of
the U(1)4 anomaly is included (see footnote 4).



38 Chapter 2. Warped Extra Dimensions and Holography

with
52

IR
cp= (M
Z?R_Z%V !
1
= (R M, -2 )1,

2 _ .2
zIR ZUV

(2.32)

where we normalized the warp factor as a(z) = zz/z and we defined

=2 Ji+M2=2 | (2.33)

with M?  z2M3,.- To obtain a real value for and to avoid a singular
behavior of the z  piece in eq. (2.31) at the UV boundary in the z,, 0 limit,
we must impose the constraint —4  M? 0. Notice that it is only because of
the rescaling in eq. (2.20) that we obtain a finite VEV in the z,, 0 limit while
keeping all the other parameters finite. The rescaling has allowed us to define a
finite quantity, M,, which controls the departure from the chiral limit.

The Mesons Wavefunctions

In order to study the properties of the mesonic sector, it is useful to rewrite the
scalar field as '
=@wl+8)el", (2.34)

where S and P are Hermitian matrices of respectively scalar and pseudoscalar

fields. Under the unbroken U(2)y symmetry S and P can both be decomposed as

1+ 3. Form the boundary conditions on the field in egs. (2.20) and (2.29) we
immediately find the boundary conditions for the S and the P fields

S o = S =P .. =P, =0. (2.35)

A convenient gauge fixing choice for studying the properties of the mesons is

the R gauge which eliminates the mixing between the gauge bosons A , V' and

the scalars As, P. This gauge is obtained by introducing in the Lagrangian the
terms

Ly, = _2M5:/‘(2)Trl 1% —W‘;) z(a(z)‘/},)} : (2.36)
Ly = —Mj(z)Trl A —aé) 2(a(z)As) — Aa2(2)U(Z)P] . (2.37)

where Vi = (Ly + Ryy)/2 and Ay = (Ly — Ryy)/2. The wavefunctions and
the masses of the mesons can be determined by solving the quadratic equations of



2.1. Holographic QCD 39

motion for the 5d fields and imposing the appropriate boundary conditions. The
computation is analogous to the one described in [22, 36], so we will skip here
most of the details. The physical degrees of freedom are easily identified using the
unitary gauge, which corresponds to the limit 4 . In this gauge the fields
As, V5 and P satisfy the constraints

1

ad(z)v ©

z(a(’Z)‘/E)) =0, P=-

(a(z)As), (2.38)

and the pion field can be identified with the lightest KK mode of As.

The vector mesons, namely the and the mesons and their resonances, are
described by the KK modes of the vector gauge field V' . In the unitary gauge the
Vs component of the vector gauge field is forced to vanish due to the boundary
condition V5 _ = 0, while the 4d components V' satisfy the bulk equation of
motion

V- V-——.(az) .V)=0, (2.39)
and the boundary conditions

=0, Vo =0. (2.40)

Zuv ZIR

As expected, the equation of motion for the vector mesons is independent of the
VEV of the 5d scalar , and the masses and the wavefunctions for these states are
exactly the same as in [20].

The equation of motion for the scalar field S is independent of v as well

N
a’(2)

. (ag(z) ZS) +a*(2)Mp,;.8 =0, (2.41)

and the corresponding boundary conditions are given in eq. (2.35). The KK modes
of the S field are interpreted as the parity-even scalar mesons, whose lightest states
are the a¢(980) and the f,(980).

On the other hand the axial fields, which are interpreted as the a;(1260) and
f1(1285) mesons and their heavier resonances, are sensitive to the symmetry break-
ing induced by the VEV of | as can be seen from the equation of motion

A — A — a2 (a(z) LA ) +2a*(2)v*(2)A =0. (2.42)

The boundary conditions are

=A  =0. (2.43)

Zuv ZIR
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Finally, the pion and the other pseudoscalar mesons are described, for finite 4,
by the fields A5 and P. These fields mix in the quadratic Lagrangian and it is not
totally straightforward to obtain their equations of motion in the unitary gauge
limit 4 . If one simply removes the P field from the Lagrangian through the
constraint in eq. (2.38) and then varies the action with respect to As, one obtains
indeed the bulk equation of motion

D [ As + 2a2(z)v2(z)DA5} =0, (2.44)
which is of fourth order in the z derivatives, having defined the differential operator

D 1 (M Za(z)) | (2.45)

From the boundary conditions on P and from the gauge fixing constraint one also
gets the boundary conditions

(a(2)45) ., = -(a(2)45) ,, =0, (2.46)

which however are only two while four conditions would be needed for the fourth
order bulk equation (2.44) to have a unique solution. The two remaining boundary
conditions cannot be obtained directly in the unitary gauge, they arise from the
equations of motion at finite 4 by carefully taking the 4 limit. From this
procedure we recover the bulk equation (2.44) and the boundary conditions in
(2.46), plus the additional constraints

Aaz)| +2a%(20?(2)D] A5}

=0. (2.47)
By the above equation one can prove that the bulk equation (2.44) can be replaced
by the reduced second-order one

As + 2a*(2)v*(2)DAs = 0, (2.48)

with the boundary conditions given in eq. (2.46). The pseudoscalar spectrum, and
in particular the pion, its lighter state, obviously depends on v(z) and therefore
on M, and . We have checked that for positive M, (and ) all the squared masses
are strictly positive, while for M, < 0 the lightest state is tachyonic as anticipated
in the discussion below eq. (2.29).

Fit on the Meson Observables

Before performing the complete fit, an estimate of the five parameters of our model
(L zim—2zuy, M5, Mpug, and M,) can be obtained as follows. The length of the
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Figure 2.5: Mass of the (1300) meson (left) and a;(1260) meson (right) as a function of L
for L7! = 320 MeV and L?M3 ;. ~ —3.8. The shaded band shows the experimental values
m (1300) = (1300 100) MeV and mal(lz(;()) = (1230 40) MeV.

compact dimension is fixed by the meson mass through the relation m =~ 2.4/L,
from which we derive L™! ~ 320 MeV [22]. The bulk mass parameter is determined
by the mass of the a((980) meson. The relation between these two quantities can be
derived by solving analytically the equation of motion for S (eq. (2.41)) and then
imposing the corresponding boundary conditions. This leads to an approximate

relation
+

ma0(980) ~ 137, (249)

which gives T ~ 2.4 or, equivalently, L?M3 ;. ~ —3.8. An estimate of the value
of the parameter can be obtained from the values of the masses of the 7(1300)
and of the a1(1260) mesons, which we determine numerically using the previously
determined values for L and Mp,;. As can be seen from the plots in fig. 2.5, fitting
the value of the a;(1260) mass points towards the region of small , L 2, while
reconstructing the 7(1300) mass favours larger value of the parameter 2 L 3.
Combining the two regions we get as a rough estimate L ~ 2. The values of Mj
and M, can be extracted respectively from the pion decay constant f and the pion
mass m . These two quantities can be determined by computing the holographic
Lagrangian for the pion field as explained in appendix A. We find that the series
expansion for small L is given by

f2:4]\§5 <1++((f3_1>> : m* ~2( T—-2) M,. (2.50)

Using the experimental values ¢ 2 = 92 MeV and m = 135 MeV, we get MsL ~
0.015 and M, ~ 35 MeV.

6We did not include the electroweak correction in the determination of the observables. For
this reason we compare the predictions of our model with the experimental value for pion decay
constant with subtracted electroweak contributions [44] and with the mass of the ©, whose
electroweak corrections are negligible [45].
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Experiment AdSs Deviat. Experiment AdSs Deviat.
m 135 MeV 134 MeV  0.6% m 135 MeV 133 MeV  1.2%
m (1300) 1300 MeV 1230 MeV  5.6%  m (1300) 1300 MeV 1207 MeV  7.7%
m 775 MeV 783 MeV  1.0% m 775 MeV 842 MeV  8.6%
m 782 MeV 783 MeV  0.1% m 782 MeV 842 MeV  7.7%

ma1(1260) 1230 MeV 1320 MeV 76% ma1(1260) 1230 MeV 1387 MeV 127%
Magoso) 980 MeV 1040 MeV 6.5%  mgpos0) 930 MeV 1099 MeV 12.1%
M £4(980) 980 MeV 1040 MeV 65% M £4(980) 980 MeV 1099 MeV 121%

f 92 MeV 89 MeV  3.6% f 92 MeV 89 MeV  3.1%
f 153 MeV 149 MeV ~ 2.7%  f 153 MeV 158 MeV ~ 3.1%
f 140 MeV 149 MV~ 6.4%  f 140 MeV 158 MeV  12.7%
g 6.0 4.89 2.7% g 6.0 5.33 12.5%
g 0.72 0.71 11% g 0.72 0.74 3.2%
g 0.22 0.24 7.9% g 0.22 0.25 12.6%
g 15.0 15.6 37% g 15.0 16.8 11.8%
RMSE 7.7% RMSE 9.6%
2

Table 2.1: Meson observables used for the fit of the microscopic parameters. The table on the
left shows the results of a fit which minimizes the overall root mean square error (shown in the
last line). The values of the parameters obtained in this way are L~! = 325 MeV, M5L = 0.014,
L*M3 . = —3.7, L =21 and M, = 31 MeV. The table on the right gives the list of results
obtained by minimizing the largest deviation from the experiments. With this procedure we get
L' =350 MeV, M5L = 0.014, L>?M3, ;. = —3.8, L =1.5and M, = 40 MeV.

A more precise determination of the microscopic parameters can be obtained
by performing a fit on a larger set of well measured mesonic observables. This
procedure provides also a way to estimate the level of agreement of the model with
the experimental results. As a simple fitting procedure, we chose to minimize the
root mean square error (RMSE) of our predictions with respect to the experimental
data (see [38] for details on the fitting procedure). We remark that for our analysis
we take into account only the deviation of the theoretical predictions of our model
from the central value of the experimental results. A more refined procedure, which
however would be beyond the scope of our work, should also take into account the
experimental error with which the various observables have been measured.

The list of observables used in the fit includes the masses of the lightest mesonic
resonances as well as some of their decay constants and couplings. The predictions
of the model and the experimental values are shown in the list on the left of
table 2.1. We found that the best agreement with the data is obtained for the
following values of the parameters L™ = 325 MeV, MsL = 0.014, L*M3, .. = —3.7,

L = 2.1 and M, = 31 MeV, which are close to the previously estimated ones.
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The overall agreement with the experimental data is quite good and almost all
the observables show a deviation from the experimental values smaller than 8%,
resulting in a RMSE of 7.7%. A somewhat surprising result of the fit is the fact
that only one observable, namely the ¢ coupling seems to have a large deviation
from the experiments. This deviation is however not completely unexpected. In
the class of models we are considering one gets an approximate tree-level relation
22]

m? ~3f%¢* | (2.51)

which differ by a factor 2/3 form the experimentally well satisfied KSRF relation
m? ~ 2f2¢®> . In our fit the predictions for the pion decay constant and for the
meson mass are in excellent agreement with the data, thus the ¢  coupling

must necessarily deviate from the experiments in order for the relation (2.51) to
be valid.

It is interesting to notice that the change in the IR boundary conditions for
the gauge fields with respect to the original model of [36] has some relevant con-
sequences on the predictions of the theory. In the original set-up the mass of the
m(1300) resonance could not be reproduced and the first resonance of the axial
gauge field was identified with the m(1800) state. In the present model, on the
contrary, the 7(1300) meson can be naturally accomodated.

To check the stability of our predictions, we can compare the previous results
with the ones obtained by using an alternative fitting procedure. For this purpose,
we chose to minimize the largest deviation of our predictions from the experiments.
In this way we obtained the list of result shown in the right panel of table 2.1. The
deviations from the experiments are now more uniformly spread among the various
observables, with a maximal deviation of ~ 13%. The overall RMSE is 9.6%, which
is still reasonable and only slightly higher than the one found in the previous fit.
The corresponding values of the microscopic parameters are L=! = 350 MeV,
ML = 0.014, L*M3,,, = —3.8, L = 1.5 and M, = 40 MeV, which are in good
agreement with the previous determination.

The heavier resonances, which have not been included in the fits, show larger
deviations from the experimental values. For example the predicted mass for the
m(1800) is 2140 MeV with an 18% deviation and for the ag(1450) it is 2070 MeV
with a 40% deviation. We remark, however, that the heavy resonances, being close
to the cut-off of the theory, are expected to have larger theoretical uncertainties.

Other quantities that we can extract from the model are the coe cients of the
O(p*) terms in the PT Lagrangian, which describe the interactions of the pions
with the left and right sources and with the spurion field related to the quark
masses. The computation can be performed by following the holographic proce-
dure outlined in appendix A. Due to the non negligible experimental uncertainty,
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Experiment AdSs Experiment AdSs
Ly 04 0.3 0.47 Ly 04 0.3 0.43
Lo 1.4 0.3 0.95 Loy 1.4 0.3 0.87
Ls =35 1.1 —2.8 Ls —-3.5 1.1 —24
Ly —-0.3 0.5 0.0 Ly —-0.3 0.5 0.0
Ly 14 0.5 0.72 Ls 1.4 0.5 0.68
Lg —-0.2 0.3 0.0 Lg —0.2 0.3 0.0
Lg 09 0.3 0.45 Lg 0.9 0.3 0.39
Ly 6.9 0.7 6.0 Ly 6.9 0.7 5.6
Lqo —-5.5 0.7 —6.0 Ly —-5.5 0.7 —5.6

Table 2.2: Predictions for the coe cients of the O(p*) terms in the PT Lagrangian compared
with the experimental values [46]. The values are given in units of 1073. The microscopic
parameters are fixed by the fits on the observables in table 2.1 (RMSE fit for the left table and
maximal deviation fit for the right table).

we decided not to include these observables in the fit for the microscopic parame-
ters. We also excluded from the computation the L; coe cient which arises from
integrating out the Goldstone boson singlet related to the U(1)4 anomaly, whose
complete treatment is not included in the present model (see footnote 4). In ta-
ble 2.2 we listed the predictions of the model for two sets of microscopic parameters
found with the RMSE and the ‘maximal deviation’ fit. The numerical results in
the two cases are quite similar and show a good agreement with the experimental
data. The reduced 2 for the RMSE fit is 1.0, while for the ‘maximal deviation’ fit
it is 1.2, and the deviations from the experimental data are always below ~ 1.5

In the chiral-symmetric models without a bulk scalar field some phenomenolog-

ically successful relations were found among the coe cients of the PT Lagrangian
7.

LQ - 2L1 5 Lg = —ng y L4 - LG = 0, Lg - —6L1 . (252)

In our set-up all these relations remain valid, except for the last one L3 = —6L1,
which receives some corrections but is still well satisfied (compare [22, 36]). Notice
that the first and third relations in eq. (2.52), which are implied by the large N.
limit of QCD [47], are not modified in our model.

"See for example [37].
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2.1.5 Baryon sector from 5d Skyrmions
The Static Solution

In the present model, baryons arise as 5d Skyrmions and studying their properties
requires a slight modification of the methods of [19 21], where the massless case has
been considered. As a first step we will consider the static soliton configuration. A
convenient and automatically consistent 2d ansatz is obtained, as in the massless
case, by imposing the solution to be invariant under a certain set of symmetry
transformations. These are cylindrical symmetry (i.e., the simultaneous action of
3-space and SU(2)y rotations), 3d parity and time-inversion, defined as a change
of sign of all the temporal components combined with L —L and R ~R.
This leads to the following ansatz for the gauge fields

N

—u o 1 R . A
R (x,2) = Ai(r, 2)2,2; + ~ okl — % (@y) Waj

)39, (2.53)

where 72 = Y, 2'2’, 7' = 2'/r, @Y is the antisymmetric tensor with 02 =1
and the “doublet” tensors (12 are

abc e
(@) ab = [ Aa’\ab: ab ‘| . (254)

T r —

Because of parity, eq. (2.53) also determines the ansatz for the L fields which are
given by Li(x,2) = —Ri(—x,2), Lso(x,2) = Rs0(—x, 2) and analogously for L,
R.

The ansatz for  is obviously obtained by imposing the same symmetries:
cylindrical symmetry implies

_ 1 a

(x,2) = ofr, z)§ +i or, z)? , (2.55)
where
O(T’ Z) = Q(Tv Z)’
(2.56)
o z) = 1(r,2)Z,.
It is easy to check that parity acts on as (x,z,t) (—x, z,t), while under
time-inversion we have (X, z,t) o (x,2z,—t) 9. Imposing to be invariant

under these transformations simply implies that ;5 are real. It is useful to note
that our ansatz preserves, again as in the massless case, a local U(1) subgroup of
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the original 5d chiral group corresponding to gauge transformations of the form
gr = g and gy = g with

g=-expli (r,2)z* ./(2r)]. (2.57)

Under this residual U(1) the fields = 1+ 2, s and A- in eq. (2.53) are
respectively one charged and one neutral scalar and a gauge field. It is easy to
check that the field = 1+ 5 in eq. (2.55) also transforms as a charge-one
scalar; it will be convenient to define its 2d covariant derivative as

D —iA . (2.58)

It is straightforward to plug the ansatz in the 5d lagrangian and to obtain the
energy of the Skyrmion. From the gauge part in eq. (2.22) and (2.23) we obtain,
as in [20, 21],

ZIR 1 1 2 1
Eq = 87TM5/0 dr /ZUv dz {a(z) [D 24+ ZTQAQ + 53 (1 - 2) — 5 ( 5)2}
Ls

— [ (=i D +he)+A H

2 r
(2.59)
where
N (2.60)
16m2M5L "’ '
while the new contribution coming from the scalar part in eq. (2.25) is
3 r? 1 2 5 T2
B =snMs [dr [d:{a':) | (D ) (D ) =5 = P|+a¥(2) M,
(2.61)

Notice that the total energy F = Egz + E does not yet give the Skyrmion mass
because the infinite energy of the vacuum needs to be subtracted in order to get an
observable quantity. This zero-point energy is obtained from eq. (2.61) by plugging
in the vacuum field configuration which is given by

= vV = 27,’1}(2)7 = vV = —’i, (262)

all other fields vanishing.

The 2d EOM for the Skyrmion are easily derived, at this point, by varying the
energy in eq. (2.59,2.61), but in order for them to be solved suitable boundary
conditions need to be specified at the four boundaries (z = 2z, 2 = zyy, 7 = 0 and
r ) of our 2d space. At z = zyy and z = 2, the boundary conditions are given,
up to the sign ambiguity in eq. (2.29) that we will now fix, by the ones discussed
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in the previous section. The presence of the r = 0 boundary merely results from
a choice of coordinates, the physical 5d space being completely regular at r = 0.
The boundary conditions will therefore result from just imposing regularity of the
5d fields, with no need for extra assumptions. At r we must require that the
solution will have a finite mass, and this is ensured by imposing it to reduce, up
to a symmetry transformation, to the vacuum configuration in eq. (2.62). We also
want a B = 1 solution, where the baryon charge B is defined in eq. (2.15) and is
given by
1 i ,
B 7/0 ar [ d- [ (—i D +he)+F |, (2.63)

:27T

in terms of the 2d fields. The above equation can be easily rewritten (as it must,
being the topological charge) as a 1d integral on the boundaries of the 2d space,
and in order to get B = 1 from the r boundary we must have, as in the
massless case, the following boundary conditions

Z*ZU\W) (ZIszUV)
™

D T 2.64
T 2 (ZIR o ZUV) ( )

s=0

= —je’

which are obtained from the vacuum (2.62) by means of a residual U(1) transfor-
mation in the form of eq. (2.57), with = 7(z — zyv) /(2 — 2uv)-

Consistently, the boundary conditions for —are obtained in the same way and
read .
r : = jeb T (m=zaw) 94 (5) | (2.65)

At z = zj, the above equation implies (r = 0,z = z3) = —27 , because the
“twist” ¢! (#=2wv) (2m—2v) reduces to —1 at the IR while the vacuum respects the
boundary condition (2.29) with the plus sign. This resolves the ambiguity and
enforces the 5d Skyrmion to live in the minus-sign sector, with IR boundary con-
ditions given by

Z=Zg : = —2i . (2.66)

We stress, as mentioned in the discussion below eq. (2.29), that the sign ambi-
guity in the IR boundary conditions results from our choice of giving generalized
Dirichlet conditions on , instead of treating it as a Neumann field and making
its boundary conditions originate from a localized potential that would cost us
more new parameters. If we had made the other choice, we would have had no
ambiguity, and consequently no separated sectors in the field space. If studying
this different setup in the limit of infinite strength for the coupling in the localized
potential we expect that, while the vacuum and the meson’s wave function will
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be found to fulfill eq. (2.29) with the plus sign, the other boundary condition will
be enforced on the Skyrmion solution and the results of the present paper will be
recovered. Coming back to the boundary conditions, we must still specify the ones
at r =0 and at z = z,y. These are

ZIR

=0 e B
r0: { j2:0 Z=zyy : = 21 (UV) M, (2.67)

where the ones for » = 0 arise, respectively, from asking the 5d field  and its
3-space derivative to be regular and single-valued. For all the other fields the
boundary conditions are the same of the massless case and are reported in ap-
pendix B.

Zero-Mode Fluctuations

In order to describe the baryons we need to consider the time-dependent deforma-
tions of the static soliton solution. The analysis proceeds exactly as in the massless
case, we will therefore skip most of the details and refer the interested reader to
ref. [21].

The single-baryon states can be identified with the zero-mode fluctuations,
thus an analysis of the infinitesimal deformations will be su cient for our pur-
poses. The relevant configurations are the ones which describe a slowly-rotating
solution, whose degrees of freedom can be parametrized by three collective coor-
dinates encoded in an SU(2) matrix U(t).

To describe the solution we need to generalize the ansatze given in eqs. (2.53)
and (2.55). The ansatz for the gauge fields is analogous to the one for the massless
pion case:

R (x,zU) = UR (x,2)U | Ro(x, 2, U) = Ro(x, 2), (2.68)
and
Ro(x,2;U) = URy(x,2; K)U + iU U , R (x,2U) = R (x,2;K),
(2.69)
where

Ro(x, 2, K) = (my(r,2)ky @ +w(r,2)(k 7)3°,
B 5 K) = 23 (B = (6 93 + Bi(r o)k 57 +Q(r,2) ki,

(2.70)
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The ansatz for the scalar field is given by
(x,2;,U0) =U (x,2)U , (2.71)
where  is as in eq. (2.55) with the new definitions

{ o(r,2) =exp[—i(k Z) (r,2)]( 2(r,2) +i(k Z) o(r,2)),

a(ryz) =exp[—i(k Z) (r,2)][( 1(r,2) +i(k Z) 1(r,2)2* —i((k 2)2°—k*) (r,2)] .
(2.72)
In the above equation, the 3-vector k, denotes the Skyrmion rotational velocity

K=k, “/2=—iU dU/dt,

and the field is the same that appears in the ansatz for the gauge fields in
eq. (2.70). The above ansatz can be obtained, similarly to the one for the static
solution, by imposing time-inversion, parity, and cylindrical symmetry.

Plugging the ansatz in the 5d lagrangian one obtains the collective coordinates
lagrangian

L= M+ 5 kK, (2.73)

where M is the Skyrmion mass and is its moment of inertia. The latter receives
a contribution from the gauge Lagrangian

1 ZIR 2
c = 167TM5§/ dr/ dz {a(z)l_u) )2—7"2( Q)2—2Q2—%B B
0 Zuv
2 r?

2
+r2(D ) +5( w) +( () (x>+w2) (1+ () <x>)—4w () (m)]
+q_2D @D Jmt2 Q) @ (D )

_w<; B (@ w-1)+rQ 4 )+2r@ D (j)]}@j@

and a contribution from the scalar, which is given by

7"2 r T

— 13671\45/0 dr/zj:tdz{ag(Z) l—4 (D )(D )_Z<D ) (D )—5( ) )

I NI IR TS S R e
A B (R | e 1Y WAL R (275)
where we defined
— i4io, D A . (2.76)

while the other notations are defined in appendix B.
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Numerical Results

The soliton solution can not be determined analytically, however, it can be studied
numerically by using the techniques described in [21]. In the massless case it was
found that, due to the peculiarity of the 5d gauge action, the soliton solution
is stabilized thanks to the presence of the CS term [20]. This peculiar feature
disappears once we modify the action by the introduction of the bulk scalar field
and, in the present model, we checked in our numerical analysis that the Skyrmion
size is stable even if the CS term is not present.

From the soliton solution we can extract the electromagnetic and axial proper-
ties of the nucleons, which are encoded in a set of form factors which parametrize
the matrix element of the currents on two nucleon states.

The chiral currents can be determined by computing the variation of the action
with respect to the sources1 and r . It is simple to show that the action describing
the scalar field  does not contribute to the currents, which are exactly the same
as in the massless pion case:

~

Jpo= Ms(a(x)L%5) =y, Jo = Ms(a(2)L 5) amay (2.77)
and analogously for R.

The isoscalar and isovector form factors are defined through the relations

Nya/2) J90) Ni-a/2) = Gia®) ; o

Nilaf2) o) N-af2) = 1S gy

Ny(af2) JEO) Ni-a/2) = GYa®) ;@17 .,

Nya/2) JEO) Ni—a2) = iS5 gy L (2g)

2My

where the currents are given by J& = J& + J¢ and Jg = 1/3(Jg + J1.), and we
used the notation ;¢ for the nucleon spin/isospin vectors of state (normalized

to = 1) and the definition (S  g)° WkSigk. From the axial current
J4 = Ji — Ji, we define the axial form factors

E 2

NG IO N0/ = | spGala?)sh +(Gale?) - Gl st 210

Ny(q/2) J3(0) Ni(=q/2) = 0

where S S —q S qand S ¢S ¢ are the transverse and the longitudinal
components of the spin operator.

(2.80)
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Experiment AdSs Deviat. Experiment AdSs Deviat.

My 940 MeV 1090 MeV  16% My 940 MeV 1104 MeV  17%
s 0.44 0.43 2% S 0.44 0.43 3%
v 2.35 1.18 100% v 2.35 1.15 100%
ga 1.25 0.58 100%  ga 1.25 0.59 100%
V 5s 0.79 fm 0.82 fm 4% /) r% g 0.79 fm 0.84 fm 6%
r2y 093 fm  0.97 fm 4% r%y 0.93 fm 1.02 fm 9%
r3 s 0.82 fm 0.84 fm 2% r3 s 0.82 fm 0.86 fm 5%

/3y 0.87 fm 0.87 fm 0.5% / r3;, 0.87 fm 0.86 fm 1%

v 4 0.68fm  0.65 fm 5% 4/ r%y 0.68fm  0.68 fm 0.2%

Table 2.3: Prediction for the static nucleon observables with the parameter values fixed by the
fit on the mesonic observables (RMSE fit for the left table and maximal deviation fit for the
right table).

To find the explicit expressions for the form factors we need to plug the ansatze
for the soliton solution into the definitions of the currents (2.77) and then perform
the quantization of the soliton solution as explained in [21]. The result is the same
as in the massless pion case:

GE =~ [ drriulan) @(2) )y
Gy = Al /d”“2j0<q7”) {a(z)( 2w —2(D: )(2))}UV
63, = M gy ﬁ;ff) (a(2) Q)
y MNN
GY, = /dr?“ e (2) (D, )( ))UV

\_/

GA:

E o /drr [a

where j, are spherical Bessel functions.

((D )y =7 Azr) — a(z) (D: )y do(af381)

By employing suitable numerical techniques, the 2d EOM ® obtained by varying
the soliton mass M and its moment of inertia can be solved, and both the static
and slowly-rotating Skyrmion solution computed. The numerical predictions for
the static nucleon observables are listed in table 2.3. In the analysis we used
the values of the microscopic parameters obtained from the fits on the mesonic
observables presented in section 2.1.4.

8The EOM for the 2d fields are reported in appendix B.
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The numerical results for the two sets of microscopic parameters considered
show very similar deviation patterns from the data. Many of the numerical pre-
dictions are very close to the experimental results, although the magnetic vector
moment y and the axial coupling g4 present a deviation of order 100%. We
notice, however, that the overall agreement with the data (root mean square error
45%) is still compatible with the possibility of having sizable 1/N, corrections,
which can not be excluded given that N. = 3. ® By comparing the present results
with the ones found in the simplified model without a pion mass [21], we see that
all the observables show an improved agreement with the data except for the
and g4, whose deviations become significantly larger.

Form the qualitative point of view, we remark that an important check of the
validity of the description of baryons as solitons is the behavior of the electric and
magnetic vector radii, namely rgy and rj;y. These two quantities are expected
to be divergent in the chiral limit, as explicitly verified in [21], while they should
become finite once a pion mass is introduced, as we find in the present model.

2.1.6 Conclusions

We have shown that it is rather easy to construct a model of holographic QCD
which describes at the same time the pion mass, the QCD anomalies and the
baryons as topological solitons. After introducing an explicit minimal model we
have studied its phenomenology in both the mesonic and baryonic sector and
found a significant level of agreement. In extreme synthesis, our result is that
the general picture on the holographic QCD models outlined in the Introduction
survives unchanged to the inclusion of the pion mass.

Few unexpected results have been found, however, that is worth discussing. In
Sect. 2.1.4 we saw that our model easily reproduces the mass of the 7(1300) meson,
a task that was impossible to achieve in the original scenario [36]. This came
because of the change in the IR boundary conditions and gives a phenomenological
support to this modification, that we had instead motivated on purely theoretical
grounds. It is also remarkable that the other predictions are almost unaffected
so that all the valid phenomenology of the original construction is retained. The
“new” observables that were absent in the original model, 7.e. the anomalous

9Tt is interesting to notice that using a di erent approach to the quantization of the collective
coordinates, as suggested in [48], one gets much better predictions for  and g4. With this
procedure, the predictions for y and g4 are rescaled by a factor 5 3, thus agreeing with the data
at the 20% level, while all the other observables are unchanged. We have no reason to believe
that the modified quantization procedure correctly captures the 1 NN, corrections, nevertheless,
this result seems to point out that large corrections could indeed be responsible for the deviations
of v and g4.



2.1. Holographic QCD 53

parity couplings originating from the CS term, also show a good agreement with
the observations. Our results in the baryonic sector, shown in table 2.3, are also
surprising, especially if compared with the ones obtained in the chiral-symmetric
case [19 21]. For all the observables except y and ga, a significant improvement
is found in the agreement with observations. The isovector radii, that have became
finite due to the presence of the pion mass, are also extremely well predicted. The
situation has got significantly worst, on the contrary, for  and g4 that have
became a factor of 2 smaller than the observations. '° This failure persists in both
the best fit points that we have used as input parameters in table 2.3, so that it
is probably a robust feature. It might signal that the model is incomplete, but it
might also be attributed to anomalously large 1/N, corrections.

Some final comments on the theoretical implications of our results. The micro-
scopic origin of holographic QCD models is basically unknown, even though the
holographic implementation of the chiral symmetry provides a robust (but purely
technical) connection with AdS/CFT. The success of the Regge phenomenology
suggests, independently of AdS/CFT, the dual of large-N. QCD being a string
model and the validity of the holographic QCD approach suggests that this string
model should contain a sector that is well described by a 5d field theory similar
to the one we have considered. In the case of exact chiral symmetry, the Sakai
Sugimoto model [49, 50] provides a partial realization of this idea because it is
equivalent to holographic QCD for what the physics of the light meson is con-
cerned. ! It is on the contrary different, and problematic, in the baryonic sector
[19 21, 40] and its phenomenology in the sector of higher spin states (where it
genuinely differs from holographic QCD and shows its stringy nature) seems not
very promising [50]. The inclusion of the explicit chiral breaking considered in the
present paper provides an additional piece of information. The chiral symmetry
is not explicitly broken in Sakai Sugimoto, and even though it was possible to
include the explicit breaking by some deformation, the resulting model could not
reduce to a field-theoretical model such as the one we have considered. The reason
for this is that the Left and Right global groups are localized, in Sakai Sugimoto,
at two different boundaries of the 5d space and the quark mass spurion M is un-
avoidably a non local object which is impossible to describe in a field theoretical
language. Therefore, any string model that incorporated ours, inheriting its phe-
nomenology, would be deeply different from Sakai Sugimoto; it might be worth
trying to construct one following a bottom up approach.

10 Actually, the discrepancy is almost exactly given by a factor of 2. By looking at table 2.3
one could imagine a factor 2 mistake in the problematic predictions, we are however confident of
our calculations.

HSee [38] for a precise justification of this equivalence.
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2.2 Holographic Superconductors

2.2.1 Introduction

At the beginning of the 20" century it was noticed that some metals exhibit perfect
diamagnetism at temperatures below some critical point 7., what implies that
the magnetic field is expelled from this material. This is known as the Meissner
effect. Moreover, it was shown that these metals also present a null electrical
resistivity below T, and therefore the Electric current flows inside the material
without opposition. For this reason these materials were called Superconductors.

The first phenomenologically successful description of superconductivity came
out from the London brothers in 1935 [24]. Assuming the simple relation J;  A;
and using the Maxwell equations they were able to describe both perfect diamag-
netism and zero electrical resistivity. Nevertheless, the transition between normal
and superconducting phases was not clear in this approach.

In 1959 Ginzburg and Landau went one step further and described supercon-
ductivity as a second order phase transition whose order parameter was a scalar
field associated with the density of superconducting particles (x)? = ng [25].
The free energy at temperatures, T' ~ T, was assumed to take the form

F:/d;ﬁ( (T-T) 2+ 4, (2.82)

where and are positive constants. At temperatures T' < T, the scalar field
develops a vacuum expectation value (vev) breaking therefore the U(1) symmetry
of the system. This is exactly analogous to the Higgs mechanism of spontaneous
symmetry breaking.

In principle more terms respecting the U(1) global invariance could be added
to the free energy, is for this reason that the Ginzburg-Landau (GL) equation is
only valid at T' ~ T,, where the scalar field still has a small value.

We can couple this scalar to a dynamical EM field in such a way as gauging
the global U(1) symmetry

1 a |1 2
F:?/d x[462}" + D +Ver( )], (2.83)

where Vg, is the potential for the scalar field of the form of the one given in
Eq. (2.82), e the coupling of the gauge and scalar fields, D = —da and
F = ja;— ja; the usual covariant derivative and field strength for the EM field.
At temperatures below the critical temperature, T' < T, the scalar field gets a
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vacuum expectation value (vev) giving then mass to the EM field. Therefore, inside
the superconductor, where ny, = 0, the EM field gets a mass and its propagation
is therefore suppressed, describing then the Meissner effect.

As explained above, the successful description of superconductivity given by
Ginzburg and Landau in terms of a condensed scalar field is only useful at T' ~ T
making this theory only valid in a narrow region below the critical temperature.
Luckily, a deeper insight on this phenomenon came out in 1957 with the advent
of the BCS theory due to Bardeen, Cooper and Schrieffer [26]. They showed that
interactions with phonons can cause pairs of electrons of opposite spin to bind and
form a charged boson called Copper pair. The BCS theory explains all phenomena
related with superconductivity in terms of the condensation of Cooper pairs for
low T, superconductors, i.e. metals in wich the transition from the normal to the
superconducting phases happens at low temperatures, 7., 30 K. Nevertheless,
in metals with a high 7, the pairing mechanism is not well understood, since
it involves strong coupling. Therefore, high T, superconductors seem a suitable
ground for applying the Gravity /Gauge correspondence.

2.2.2 E ective theories of super uids and superconductors

We are interested in the effective theory for time-independent configurations of a
U(1) gauge field a = (ag, a;), where i,7 = 1,...,d — 1, and a scalar field . whose
non-zero value will be responsible for the U(1) breaking. The effective action at
finite temperature 7T for a; and the order parameter ), obtained after integrating
out all the other fields of the theory, depends on an effective Lagrange density
constructed from gauge-invariant operators:

_ /dd_lxﬁe L Lo =Le (F2 D g’ a.). (2.84)

YR
where D; = ; —iaj and = 1/T. Eq. (2.84) is defined in some renormalization

scheme. We will be assuming that this theory depends only on two mass-scales,
(that later we will associate with a chemical potential) and the temperature 7.

The generic effective theory given by Eq. (2.84) simplifies in two limits. In the
limit of small fields (as compared to and T'), this theory approximates to the GL
theory

1
aQL = /dd_lx{w‘/_‘?j + Dl GL 2 + VGL( GL )} . (285)
0
The GL field ¢, is defined to be canonically normalized, g1, = ho o, Where

ho is a positive constant, and

VoL = — oL 2+ ban aL (2.86)

[\
)

GL
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This approximation becomes reliable, for example, close to the critical temperature
T  T. ) where the “condensate” . has a small value. The other useful limit
corresponds to slowly varying fields, which implies that D; o and F;; are small
and

~ /dd_lx h( a ){4@(161)-7:12]4' Di a’+W( a )}7 (2.87)

where h, W and e are generic functions of 2. In the limit of small fields,
we obtain the GL theory: h( o)  h(0) = ho, W( a)  Ver( cL)/ho and
e2( a)  €*0) = hoel. When Eq. (2.85) and/or Eq. (2.87) are applicable
they can be used to extract model independent features of superconductors and
superfluids.

Consider first the case where we are at large temperatures 7' > T.( ); here
the condensate  is zero, corresponding to the “normal” phase. By decreasing
the temperature, 7' < T.( ) at zero magnetic field, the modulus of the scalar
field o = o will get a nonzero constant value . For this homogeneous
configuration the effective action in Eq. (2.87) is obviously a good approximation
of the theory '2, and the value of is determined by the minimum of the potential

V =hW:

( )=0. (2.88)

This configuration corresponds to the superfluid/superconductor phase. Two im-
portant parameters describing these systems are and , defined as

1 1 2y 1
ERE 7 I AR A = wat 259

These quantities exactly correspond to the inverse mass of the scalar . and a;
respectively.

In this work we will be considering time-independent vortex configurations with
cylindrical symmetry as the main example of our theoretical framework. We define

(r, ) as the polar coordinates restricted to0 r R, 0 < 2m. We will always
consider the case R and, in the superconductor case, also R. We take
the Ansatz

a =a (r), a=¢e" a(r), (2.90)

where n is an integer, and all other gauge components are set to zero. For n = 0,
the fields a (r) and o(r), satisfying the equations of motion from the Lagrangian

12Notice however that, generically, this is not the case for the GL theory in Eq. (2.85).
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in (2.84), describe a straight vortex line centered at r = 0. If we insert the Ansatz
(2.90) into the action in (2.87) we obtain

1
2e2( )12

~ o/ 4=3 /ORdrrh( Cl){ (ra )2+( , C1)2—|—7112(n—a )2 A+ ( cl)},

(2.91)
where V473 is the volume of the space orthogonal to the plane (r, ). Here the
current is given by '3

1 2 h( Cl)
J = ——7 = 2h( Cl)(n —a ) cl +r ., (62((ﬂ)’[“ ra . (292)
In the vortex case (n =0) ¢ goes to far away from the vortex center; this cor-

responds to the physical fact that a vortex line destroys superfluidity /superconductivity
only in a region close to its center. The details of the vortex configurations de-
pend on whether the field a is dynamical as in the superconductor case, or just a
non-dynamical background as in a superfluid system. We consider the two cases

in turn.

Super uid vortex

For superfluids the modulus and phase of | are respectively associated with the
density ngs and velocity v; of the superfluid. In the limit of slowly varying fields,
Eq. (2.87), we define them as '*

ne( a)=2 a’h( a), v;= ;Arg[ al. (2.93)

The field a is not dynamical; it just represents an external angular velocity per-
formed on the superfluid. This is implemented by working in a rotating frame with

a constant angular velocity = a /r?. In going from the static to the rotating
frame the angular velocity of the superfluid is changed accordingly: v v — 1
The current is then given by J =n,(v — r?).

Superfluid dynamics coincides with those of a superconductor in the limit in
which the EM field is frozen to certain values. This is achieved by taking the limit
e 0 while keeping the external magnetic field B = ,.a /r constant. In this
limit the correspondence between the superfluid and the superconductor systems
is given by

B/2, L 2M | (2.94)

IBNotice that we have defined the current to include the kinetic term of the gauge field. This
is done in order to facilitate our treatment for both, dynamical and non-dynamical gauge fields.

14Right dimensions are obtained by putting appropriate powers of the boson mass causing
the super uidity.
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where L is the angular momentum and M the magnetization of the system in
the direction perpendicular to the (r, ) plane. In the rest of this section we will
use the superconductor notation.

Vortices correspond to configurations with n = 0 where  varies from zero (at
r=10) to at large r. The exact solution depends on the specific effective action
and therefore it is very model dependent. Nevertheless, we can obtain the behavior
of ¢ in the limit » 0 and for large r. Indeed, for » 0, the condensate goes
to zero and the GL action can be applied to obtain

a . (2.95)

For large r, we can use Eq. (2.91) to obtain, in the absence of rotation (B = 0),

. [1—712;(14—2]1()};( ))] (2.96)

showing that ~  gives the size of the vortex core radius. For B = 0 the free
energy per unit of volume V473, F,, is dominated by the third term of Eq. (2.91):

R‘if"h( a)n? 2y )nQ/R‘ff’:ms( yn’In(R/ ).
(2.97)

that depends logarithmically on the size of the superfluid sample R. This shows

that superfluid vortices are not finite-energy configurations in the limit R

For B = 0, we have to consider the free energy as a function of the angular velocity,

obtaining !°

Fn—F0:27r/
0

F.(B) = F,(0) /0 M, (B)dB, (2.98)

where M, (B) is the magnetization (angular momentum from Eq. (2.94)) of the
n-vortex configuration:

M, = 7r/d7°7"J . (2.99)
The value of M, is approximately given by

M, ~ mn,( )/Rdrr (n - 23) ~mng( ) (”5 - 23) . (2.100)
that leads to
Fu(B) = Fy(B) + 7ns( ) <n2 In(R/ ) — ;nt) | (2.101)

15Tn the super uid case, this is the correct expression for the energy calculated in the co-
rotating system with respect to the container.
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From this formula we can easily calculate the critical angular velocity B.; above
which the vortex configuration is energetically favorable. This is given by the B
field at which F| = Fy: )

B ~ ﬁln (R/ ) . (2.102)
We observe that B, 0 when the size of the sample goes to infinity, that is
R

By increasing B, more and more vortices are formed up to a critical value B
at which the normal phase is favorable. In the limit B B the condensate goes
to zero, and the GL theory can be applied. One obtains, with a standard textbook

derivation,
1
By =—5. (2.103)
2 aL

Superconductor vortex

For superconductors, a;, and correspondingly the magnetic field B, are dynamical
fields 6. Superconductor vortex configurations are therefore described by two
fields, o and a . The value of a varies from zero (at » = 0) to n at infinity,
canceling the logarithmic divergence in Eq. (2.97) and making the vortex energy
finite in the limit R

Like in the superfluid case, we can obtain the behavior of the fields at small
and large r in a model independent way. At small r, the condensate drops to zero
and the GL action can be used; in this limit one can derive

a ", a 1 (2.104)

At large r the situation is more complicated. If one uses Eq. (2.91) it is possible
to show that the fields have the following large r behavior

o +—e¢" ', a4 ~n+a re (2.105)
r
with = , = and ; and a; being constants. Nevertheless, Eq. (2.105)

shows that higher derivatives are not negligible with respect to the first and second
derivatives that we included in Eq. (2.91). Indeed, we have
"a 1 ra ra

R T (2.106)

16Tn this case we call the dynamical magnetic field B, while we keep H for the external magnetic
field.




2.2. Holographic Superconductors 61

where we have assumed, based on dimensional grounds, that the scale suppresses
the higher-dimensional operators, and that is of order 1/ . A similar situation
happens for . We are therefore led to the conclusion that we cannot neglect
higher-derivative terms to describe the large r behavior of the fields. Including
them, the equations of motion can (formally) be written as

M( ) Cl’:%( a— ), N()a ’:%(a -n), (2.107)

where M and N are unknown functions and the box operator acts on  and a
as

1 1
a=- (. a), —r (= ,a ). 2.108
: r (7” 1) “ " <7" “ > ( )

Fortunately, the solutions to the equations above are also of the form of Eq. (2.105)
but with  and  generically different from and . In other words, the effect
of the higher-derivative terms is just to change the values of and . From this
large r behavior we can see that the radius size of the vortex core and the radius
size of the magnetic tube passing through the vortex (the penetration length) are,
respectively, characterized by  and

To calculate the external magnetic field H at which the vortex configuration
is energetically favorable we must obtain the Gibbs free energy. This is given in
terms of the free energy F' by
(2.109)

ClJud] = F — / Al a i,
where J! . is an external current coupled to the gauge field a;. We can relate J..;
to the external magnetic field H that it produces, through 7

H =€y - (2.110)

Then we end up with the following Gibbs free energy per unit of volume V943 of
the vortex configuration

1 2
Go[H] :Fn——Q/rdrd BH=F,—'H, (2.111)

€0 €0

where we have used the magnetic flux condition [rdrd B = 2mn and assumed
that H is constant. The critical H,; is defined as the value of H at which G; = G|

that corresponds to

2

(&
H,=2(F - F). 2.112
1 271'( 1 0) ( )

17Tn this Maxwell equation of the external field we use ey, defined as the electric charge in the
normal phase ( ¢ = 0), to guarantee that when T' T, the magnetic field B approaches H.
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The exact value of F; — Fjy depends strongly on the model and therefore H.; can
only be calculated once the model is specified.

The minimum value of H for which the energetically favorable phase is the nor-
mal phase is also, as in the superfluid case, Ho = 1/(2 &;). The superconductors
that have energetically favorable vortex solutions, that is H, < H., are called
Type II superconductors, while the others are called Type I. When the external
field is slightly smaller than H., the condensate has a small value and the GL the-
ory can be applied to predict that Type II superconductors present a triangular
lattice of vortices [60]. Superfluids can be considered as deep Type II supercon-
ductors and therefore they also present a triangular lattice of vortices. We will
show that holographic superconductors are of Type II.

2.2.3 Holographic approach to Superconductivity and Su-
per uidity

As we have seen in the previous section the temperature plays a central role in a
superconducting system. Nevertheless we have said nothing about temperature in
the framework of AdS/CFT correspondence so far. Therefore, the first task is to
introduce its analog in the gravity side. It was found that the notion of tempera-
ture can be introduced through stationary black-holes in ED. Due to its Hawking
radiation, black holes have a temperature T' related to its surface gravity via
T = /27 in the framework of the gravity/gauge correspondence we associate the
hawking temperature of a given black hole to the temperature in the holographic
theory. Since this duality requires an asymptotically AdS space at the UV we will
place the black hole in a background geometry that will approach AdS at the UV
brane.

Another important feature is that we must be able to reproduce the phase
transition of the material from the normal to the superconducting phase around
some critical temperature 7.. This is done by placing a field in the bulk of the
AdS space coupled to the black hole, what is called black hole hair. This field will
be associated to some operator O in the dual CFT that will play the role of the
condensate and therefore this operator will be the analog of the scalar field in
the GL theory. In order to reproduce the phase transition we must require an AdS
black hole that is hired at low temperatures but has no hire at high temperatures.
This can actually be accomplished by placing a charged black hole in the AdS
background.

Taking these considerations into account we can write a general Lagrangian in
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d dimensions as an ED analog of a superconducting system in d — 1 dimensions

__(R-A 11
_ d — _ - _ 2
S—i/dx g{MhGN f[4F F - D ]}. (2.113)

We have considered an Einstein-Hilbert action with bulk cosmological constant

A = —3/L? coupled to a U(1) gauge field and a charged scalar. F and D are

the usual field strength and covariant derivative for the U(1) gauge field A and
, =1(0,1...d).

For simplicity we will always work in the limit in which Gy Oand g O
taken in such a way as to decouple the gravity from the matter actions, i.e. gravitational
effects due to the backreaction of the matter fields A and  with the background
metric can be neglected, this is called the probe limit. The decoupling of matter
and gravitational effects simplifies very much the problem and, in addition, still
describes the physics we are interested in, since non linear interactions between
the scalar and the gauge fields are retained in this limit.

In the probe limit the black hole solution for the metric in a d dimensional AdS

space is,
L? L?
2 L 2 2
ds® = —[—f(z)dt* + dy°] + 27

52
where z is the holographic direction, y stands for the d — 1 dimensional flat metric
and

dz?, (2.114)

d
f&)=1—<z> (2.115)

Zh

being z, the position of the black hole horizon, which is related with the temper-
ature of the dual F'T through

d
T =
42y,

(2.116)

So far we have described a d dimensional gravitational theory with a local
U(1) gauge invariance under which  is charged and A is the associated gauge
field. The holographic theory will look like a CFT at a finite temperature 1" =
d/Anz, with an external gauge field @ = A ,,, and an operator O =
that will condense below some critical temperature 7. thus breaking the U(1)
invariance of the CFT. This picture resembles the previously mentioned GL theory.
This kind of theories have been extensively studied in the literature and shown
to describe the main properties of superconductors [27]. Moreover, in the limit
of small fields, i.e. at temperatures T' ~ T, GL theory is recovered. Nevertheless
in all these studies a non-dynamical gauge field was considered in the dual CFT,
what means that, strictly speaking, the dual theory can not be interpreted as
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a superconductor system but as a superfluid, since a dynamical gauge field is
needed in order to describe its interactions with the superconducting system and
see phenomena associated with it such as the Meissner effect. In the next Section
we explore the possibility of giving dynamics to the gauge field in the ED boundary
and its consequences on the dual CFT.

As discussed in Sec 2.2.1 it is possible to construct holographic models of su-
perconductivity [51]. Their properties have been widely studied in the literature
and found to be in good agreement with properties of real superconductors [27].
Nevertheless, the absence of a dynamical gauge field in these models makes im-
possible to study some properties of superconductivity like the Meissner effect and
besides, strictly speaking, these models just describe either a superfluid [52] or a
superconductor in the gauge-less limit.

The reason for the absence of a dynamical gauge field in previously studied
holographic superconductors is the chosen AdS-boundary condition for the U(1)
gauge field. In most of these studies the gauge field was chosen to be frozen at the
AdS-boundary by imposing a Dirichlet boundary condition. One can make, how-
ever, the gauge field dynamical if one instead imposes a Neumann-type boundary
condition at the AdS-boundary. In this article we will make use of this option to

study the role of dynamical gauge fields in holographic superconductors 8.

In a 3 4+ 1 dimensional AdS space it is known that we can impose either a
Dirichlet or a Neumann AdS-boundary condition to quantize a gauge theory, be-
ing both related by an S-duality [53]. In the Neumann case, one finds a massless
gauge field in the spectrum that, by means of the AdS/CFT correspondence, can
be considered to arise from a 2 4+ 1 dimensional CF'T. It is therefore an emergent
phenomenon. In 4 + 1 dimensions, however, a Neumann AdS-boundary condition
for the gauge field is not well-defined since it leads to a non-finite Hamiltonian.
This will require, as we will show, to regularize the theory and absorb the diver-
gencies in local counterterms. In this case, the gauge field will not be an emergent
phenomenon but just an external dynamical gauge field coupled to a 3 + 1 CFT
[13].

An alternative way to understand the distinction between a gauge field in a
2+ 1 and 3+ 1 CFT is to look at the zero mode of the Kaluza-Klein expansion of
the gauge field in the holographic superconductor model at temperatures T bigger
than the critical temperature T,.. For a stationary vector potential a; we find,
after integrating over the extra dimension, a kinetic term given by [ d*zF7 /(4€),

18 Neumann boundary conditions have been previously considered in holographic supercon-
ductors to study systems at fixed charge density. In these cases, however, the studied systems
are homogeneous and therefore the dynamical electric field vanishes.
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where Ej = it; — 44 and

%:ZM;T ford=2+1, ;%:—QLZIH(ZWT)ZO ford=3+1. (2.117)
Here ¢ is the gauge coupling in the AdS model and L is the AdS radius. In
2 + 1 dimensions this massless gauge boson mode has a finite norm and therefore
remains in the spectrum, while for d = 3 4 1 this is a non-normalizable mode and
disappears from the set of dynamical degrees of freedom. To keep this mode in
3 4+ 1 dimensions we must then make its norm finite, for example by adding local
counterterms.

The impact of a dynamical gauge field in superconductors is expected to be
important in inhomogeneous configurations. For this reason we will concentrate
here on the vortex configurations of the holographic models. We will explicitly an-
alyze the cases d =2+ 1 and d = 3+ 1, introducing, when studying the d = 3+ 1
holographic superconductor, local counterterms to render the norm of a; finite.
This will allow us to explicitly see that the dynamical magnetic field B plays
an important role in reproducing some of the known features of superconductor
vortices, such as the exponential damping of B inside the superconductor. We
will also show that the dynamical gauge field changes the vortex configurations
of the holographic models, making the energy and, correspondingly, the first crit-
ical magnetic field H.; independent of the sample size, as expected from a true
Abrikosov vortex. The properties of the new configurations are qualitatively sim-
ilar to those arising from a Ginzburg-Landau (GL) theory [25], although we find
important quantitative differences in the size of the vortex core, the profile of B
flowing through the vortex and H,;.

The effect of an external magnetic field on holographic superconductors has
been considered in [54, 55] and vortex solutions have been studied before for d =
24 1 in Refs. [56, 57]. In all these cases there was no dynamical electromagnetic
(EM) field, and therefore the vortices were not true Abrikosov configurations but
just superfluid vortices. Only Ref. [58] showed, for d = 2 + 1, a non trivial profile
for the magnetic field of the form of a vortex magnetic tube; it is however unclear
the origin of this magnetic field and its relation with Abrikosov configurations.

The organization of this chapter is as follows. In Section 2 we describe, simi-
larly in spirit to Ref. [59], effective field theories from which we can obtain model-
independent properties of superconductors and superfluids, and their vortex con-
figurations. This will also help us to make contact with the GL predictions . In
Section 3 we present the holographic model and explain how to introduce dynam-
ical gauge fields. We then focus on the holographic superfluid and superconductor

19What we mean with GL theory in the case of super uids is the limit of frozen magnetic fields
in the GL theory for superconductors.
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(Abrikosov) vortex in d = 2+ 1 and d = 3 + 1 dimensions, comparing them with
those of the GL theory. We calculate the energy of these configurations to find the
critical magnetic fields H.; and H., and show that the holographic superconduc-
tors are always of Type II. In Section 4 we present a summary of the results and
other concluding remarks.

The holographic theory that we want to study is defined [51, 61] by a charged
scalar  coupled to a U(1) gauge field A in d + 1 dimensions ( , =0,1,...,d)
and an action given by

— 1 1 1 1
S:/W“x—ﬁ{wﬂmU%dU+fﬁ},mm czﬁﬂﬂ—iﬁp 2
(2.118)
Gy is the gravitational Newton constant and the cosmological constant A defines
the asymptotic AdS radius L via the relation A = —d(d — 1)/L?*, moreover we
introduced ¥ = A — A and D = — 1A . For simplicity, we have
not added any potential for the scalar. We will later discuss the implications of
including these terms. We will work in the probe limit, i.e. Gy Oandg O
taken such that the gravitational effect of £/g* can be neglected. In this limit the

metric is given by an AdS-Schwarzschild black hole (BH):

L2
2f(2)

where t is time, z is the holographic direction such that the AdS-boundary occurs at
2 = 0, while the BH horizon is at z = 2, and dy? stands for the d—1 dimensional flat
metric. Since we are interested in the theory at finite temperature, we will perform
the Euclidean continuation with compact time it [0,1/7] where T' = d/(47zp).

ds® = L

z

dz*, f(z)=1- ()d : (2.119)

Zh

[~ f(2)d? + dy?| +

22

The AdS/CFT correspondence and dynamical gauge elds

This d+ 1 dimensional theory has a dual interpretation in terms of a d dimensional
CFT at nonzero temperature. The AdS/CFT dictionary relates the properties of
the AdS gravitational theory with those of the CFT. In particular, the fields A
and  evaluated on the AdS-boundary correspond to fields external to the CFT:

a =A .0, S= .. (2.120)

They are coupled to CFT operators through the interaction terms a J + sO.
The operator J corresponds to the U(1) current of the CFT theory, while O is a
CFT operator charged under the U(1) with Dim[O] = 3(4) for d = 3(4). Having
chosen a nonzero mass for the scalar  in Eq. (2.118), would have corresponded
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to take another dimensionality for @. We do not expect however any important
qualitative difference for other choices of the mass. The dual CFT theory, if it
exists, is supposed to be strongly coupled and the limit ¢ 0 in the AdS theory
corresponds to be working at the planar level in the CF'T.

Integrating over the CFT fields, one can obtain the free energy Fla ,s] from
which the vacuum expectation values (VEV) of the CFT operators can be ex-
tracted. In the gravity side, Fla ,s] is obtained from the d + 1 dimensional
AdS Euclidean action Sgla ,s] evaluated with all bulk fields on-shell restricted
to Eq. (2.120):

Fla ,s] =T Sgla ,s], (2.121)
from which we obtain the VEVs of the currents
Ld—3 Ld—S
J =—572"F ., O =—"2""D. .. (2.122)
g g

The matching with the effective theory of Section 2 is straightforward: the gauge
field a; of Eq. (2.120) is identified with that in Eq. (2.84), while J; and O of
Eq. (2.122) are identified respectively with — '/ a’and . when renormalized
in the same scheme.

In the AdS/CFT correspondence, the external fields in Eq. (2.121) are consid-
ered to be frozen background fields. This is suited for holographic superfluids, but
not for superconductors that require the presence of dynamical gauge fields cou-
pled to the CFT. It is easy however to promote the external a field to a dynamical
field. This corresponds to integrating over it in the path integral:

B F[CL# S]+fddx |:4512‘7:I%u+a#<]5a:t:|
G[S, Jeact] = —Tln/Da@ 5 7 (2'123)

where, for generality, we have added to Fla ,s] a “bare” kinetic term for a (e,
denotes the bare electric charge), and have coupled it to a background external cur-
rent J,,, to define a Gibbs energy. Working in the semiclassical approximation?,

Eq. (2.123) leads to the Maxwell equation for the gauge field a :

1
J +=5 F +Jwm=0, (2.124)
€
where we have used that J = — F/ a . Let us see how the above procedure can

be implemented in the gravity side. Using Eq. (2.122), we can write Eq. (2.124)
as the following AdS-boundary condition:

L3 1
——F, +— F + Jow = 0. (2.125)
g? =0 € 2=0

29The semiclassical approximation is valid in the limit ¢ 0 and e, O.
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This is a boundary condition of Neumann type that, in order to be consistent with
the variational principle, requires the AdS model to include the following extra
terms on the AdS-boundary:

1
/ddx [—462?2 +A J . (2.126)
b z=0

Therefore the Gibbs free energy is given by the AdS Euclidean action Sg including
the additional terms Eq. (2.126) evaluated on-shell with the bulk fields restricted
to the AdS-boundary condition Eq. (2.125).

In the particular case of d = 241, and in the limit where ¢;/¢ (not adding
a kinetic term for the gauge field on the AdS-boundary), one can show that the
theory defined by Eq. (2.123) preserves conformal symmetry. In this case the
original CF'T and the a can be considered as part of a new CFT. Another way to
understand this result is given in Ref. [53]. There it was shown that there are two
ways to quantize a gauge field in the four dimensional AdS. We can either impose
a Dirichlet or a Neumann boundary condition at z = 0. Each option is associated
with a different CF'T, S-dual to each other, with different global U(1). While in the
first option (Dirichlet boundary condition) the gauge field a is a background field,
in the second one (Neumann boundary condition) the gauge field is truly dynamical
[53]. In this latter case the gauge field arises from the CFT as a composite state, as
shows the fact that its kinetic term is induced by the AdS bulk dynamics. In other
words, this local U(1) appears as an emerging phenomenon. As emphasized in
Ref. [53], this CFT, which includes a dynamical gauge field, has also a global U(1)
with an associated conserved current given by J = a , and should not be
confused with the emerging local U(1). Here we also observe that the emergence of
the dynamical U(1) can be understood without using conformal invariance. Even
for a warped space different from AdS, the massless zero-mode of a gauge field in
3 4+ 1 dimensions has finite norm, corresponding then to a composite state in the
dual d = 2 4 1 theory. This is related to the fact that the gauge interaction in
d = 2+ 1 is a relevant operator and therefore is dominated by IR physics. It is
thus possible to send e,/g to infinity in this case.

For d = 3 4 1, the situation is different. The current J contains a logarith-
mically divergent piece given by (in the gauge A, = 0)
1
- A =— F Inz +... (2.127)
z

The appearance of the logarithmic divergence was already expected from the cal-
culation of the kinetic term of a; in Eq. (2.117). This can also be understood
by looking at the dual CFT interpretation of the gravitational theory. Indeed, at
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short distances (smaller than 1/7") this dual theory is a 3 + 1 dimensional rela-
tivistic theory charged under a U(1). At the quantum level an external a gauging
this U(1) receives corrections to its self-energy that in momentum space go as

(P*) = p*In (p*/A7) , (2.128)

where p? is the 4-dimensional momentum of the gauge field and A is a momentum
cut-off that regularizes a logarithmic divergence. Therefore a is a state of infinite
norm. If our intention is to keep the external gauge field in the theory we must
renormalize it. A possible way to do so is to place a UV-brane at finite z > 0 as in
Randall-Sundrum models [9]. Alternatively, we can absorb the divergence in the
local counterterm of Eq. (2.126), i.e., defining the bare coupling e, as

L L L 1 nite t 2.129

ei_e%+g2 nz ,—o+ finite terms, (2.129)
where ey denotes here and thereafter our renormalized (physical) electric charge
at the normal phase ( o = 0). Contrary to the d = 2 + 1 case, the presence of
the gauge field a breaks conformal invariance; therefore the gauge field cannot be
considered an emerging phenomenon but just a new external state coupled to the
CFT [13]. The same is true for any d > 4.

We are now ready to study models of holographic superconductors. We are
interested in vortex configurations where, as we said, the effects of dynamical
gauge fields are important. We will however present first the holographic superfluid
vortex configurations for both d = 241 and d = 3+1. This will be useful to clarify
previous results in the literature [56], showing that these holographic vortices fulfill
the expectations of Section 2 for configurations without dynamical gauge fields.
Then, we will present our main result: the Abrikosov superconducting vortex.

The vortex Ansatz

For both the superfluid and the superconductor we will demand
s=0, ap= |, (2.130)

where is a constant. We fix s = 0 since we are only interested in the case in which
the U(1) symmetry is broken dynamically by the VEV of O. The constant plays
the role of a chemical potential. As shown in Ref. [51, 61], a nonzero is necessary
in order to induce, at temperatures smaller than some critical temperature T.( ),
a nonzero value for O and to have the system in a superfluid/superconductor
phase. This critical temperature is given by [51, 61]

T, ~0.03(0.05)  for d = 3(4). (2.131)
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Notice that = 0 breaks the conformal symmetry of the system and, together
with 7', set the scales of the model.

To obtain vortex solutions we take the Ansatz [56, 58]
= (z,m)e™ |, Ag=Ao(z,r), A =A (z,7), (2.132)

and the other components of A set equal to zero. As in the previous section,
n is an integer and a vortex corresponds to n = 0. We will be working in polar
coordinates (dy* = dr* + r?d ?) for d = 2 + 1 and in cylindrical coordinates
(dy* = dr* + r?d ? + dy3) for d = 3 + 1. The equations of motion for the Ansatz
(2.132) are given by

Zd_1z<zl‘1f_1z>+17’(7"r)+<14(2)_(14_n)2> = 07

T f 72
d-3 f 1 2(A —n) 5 _
: ( ZA>+“(7~ AT =0,
A 1 2A
-3 =Ao 0 2 _
z 2 <zd3> +ﬁ 7»(7’ TAO)_W = 0. (2133)
We will impose regularity to our solutions. This requires at z = zj:
d 1 (A —n)?
- =z —r r - 5 = 07
Zh + r (r ) r2
d 1 2(A —
e (L) 2,
2n r 25
Ay = 0, (2.134)

while at » = 0 we must have
’I”AO - 0, A :0,
y, = 0forn=0, =0 forn=0. (2.135)

For a superfluid, as we explained before, the energy of the vortices is sensitive to
the size of the sample R. We will therefore limit » R, where R, as we commented
before, is taken much bigger than the vortex radius.

Holographic super uid vortices

For a vortex superfluid configuration a is fixed:

1
a =A .= §BT2, (2.136)
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where the constant B represents the external rotation (or, equivalently, the exter-
nal magnetic field for a superconductor in a situation in which the magnetic field

can be considered frozen). This corresponds to a Dirichlet boundary condition at
z=0.

Also we impose the following boundary conditions at r = R:
1
, =0, L,A;=0, A :533? (2.137)

These conditions are consistent with the variational principle which is used to
derive the equations of motion from the action. The first two conditions represent
the physical requirement that, far away from the vortex center, the solution should
reduce to the superconducting/superfluid phase, which is independent of r, while
the third one is a simple option compatible with (2.136).

We have solved numerically Eqgs. (2.133) with the boundary conditions Eqs. (2.134),
(2.135), (2.130), (2.136) and (2.137) by using the COMSOL 3.4 package [62]. In
Fig. 2.6 we present the order parameter and the current as functions of r for
the n = 1 vortex solution obtained from such numerical analysis. Our solutions
have the right behavior at r 0 and r as predicted in Egs. (2.95) and
(2.96) respectively. We notice however that, unexpectedly, the order parameter
O develops a small bump at around r ~ 12/ | especially for the d = 2+ 1 case.

It is interesting to know whether our results deviate from those of the simple
GL theory. For this purpose, we must first specify the input parameters, ¢, and
bar, of the GL model. We fit these two parameters from two predictions of the
holographic model: B., and J at large r. The value of B, is determined in the
holographic model as the value of B at which O reduces to zero everywhere in
space. With this value and Eq. (2.103) we can obtain ¢r,. From the value of J
at large r as given in Fig. 1 we match with the corresponding current in the GL
model, which, for B = 0, reads J(r )=2n qu(r ) %; this allows to
obtain bgr,. We find

e~ 1.1(0.9) 7' bar~33 (124), (2.138)

ford =3 (4) at T/T, = 0.3. Once ¢ and bgy, are determined, we can obtain the
prediction of the GL model for the condensate and the current as functions of r
in the n = 1 vortex configuration. We show these in Fig. 2.6. We can appreciate
that the holographic vortex differs significantly from that of the GL theory. In
particular, the radius size of the vortex core in the holographic model is consider-
ably bigger than that in the GL theory, namely > . For T' ~ T, however, the
holographic model, like any other model of superfluidity, should reduce to the GL
theory. We have checked numerically that the holographic prediction for O and
J approaches that of the GL theory when the temperature is very close to T..
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Figure 2.6: The modulus of O and J (up to a factor L3 ¢2) as functions of r from the

holographic model in the n = 1 super uid vortex solution for d = 2 + 1 (solid lines on the left)

and d = 3+1 (solid lines on the right). In this plot we chose T' T, = 0.3 and B = 0. The dashed
=1.

lines are the corresponding profiles in the GL model. Presented in units of

Next, we calculate the vortex free energy F), of the d dimensional superfluid.
It is then possible to verify that B.; behaves as predicted by the effective theory
approach, Eq. (2.102), and also that F), follows, to a very good approximation,

Eq. (2.101). Similarly, the results from the effective theory of Section 2, can explain
)=0.28  as

the results obtained in Ref. [56]. Indeed, taking the value of n(

in Ref. [56], we obtain, from Eqs. (2.100) and (2.101),
Fy — K
L0~ 09I (R/ ) — 0.4R’B,

(2.139)

M, ~04nR* ~—0.1R* "B,
that agrees 2!, as well as B, in Eq. (2.102), with the numerical values obtained

in Ref. [56].
2'Here we point out a missprint in the value of ,, given in Eq. (24) of Ref. [56]: the correct

oneis , ~0.1(0.2)R* ~.
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The value of By as a function of T, that, as explained before, coincides with
that of a superconductor (B., = H.), will be presented in Section 2.2.3. As
discussed in Section 2.2.2, any superfluid can be considered as a deep Type II
superconductor and therefore, when B is slightly smaller than B, presents a
triangular vortex lattice. This property has been checked in Ref. [63] for a holo-
graphic superfluid for d = 2 + 1. Here we stress that the same remains valid also
for bigger values of d as it uniquely comes from the fact that, when the condensate
is small, the theory is well approximated by a GL theory. In the next section
we will show that our holographic superconductor is a Type II superconductor
and therefore is also characterized by a triangular lattice of vortices for H slightly
smaller than H.,.

Holographic superconductor vortices

To model an Abrikosov vortex we consider stationary configurations that do not
possess a dynamical electric field but only a dynamical magnetic field. Therefore
at z = 0 we will impose the boundary condition Eq. (2.130) for Ay and Eq. (2.125)
for A; that, in polar coordinates, reads

Li=3 1 1
27 A + =7, ( A ) =0, (2.140)
g? =0 €} r 2=0
where we have taken J.,, = 0. At r =R we impose that
, =0, L,A=0, A =n. (2.141)

From the set of equations (2.133) and boundary conditions Eqs. (2.134), (2.135),
(2.130), (2.140) and (2.141), we can numerically obtain the superconductor vor-
tex configurations. The profile for the condensate (O and the magnetic field
B(r) = A .—o/r are given as functions of r in Fig. 2.7. We have chosen
T/T. = 0.3 and e,/g for d = 2 + 1, while, for d = 3 + 1, we have taken e,
to satisfy eg2(T = T.) ~ 1.7L/g*. We observed that the fields have the expected
behavior at small and large r given by Egs. (2.104) and (2.105) respectively. In-
deed, the vortex profile at large r has changed from the behavior of Eq. (2.96)
to that of Eq. (2.105) as expected in an Abrikosov vortex with dynamical EM
fields. Similar to the superfluid case, however, the order parameter (O shows an
unexpected slight increase at around r ~ 12/ . In Fig. 2.8 we show and , de-
fined respectively in Egs. (2.89) and (2.105), as functions of the temperature. For
T T, both quantities diverge as expected, since in this limit we have 0
and therefore . AsT 0, however, we observe that and  differ
considerably, with  increasing its value at 7//T, ~ 0.3 — 0.4. A priori, this would
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Figure 2.8: and ' as functions of T from our holographic model for d = 2+ 1 (on the left)
and d =3+ 1 (on the right). Presented in units of = 1.

indicate that the magnetic flux tube becomes broader as T goes to zero, since
the penetration length  grows. Nevertheless, we find that the situation is more
complex; as T 0 the magnetic flux develops two cores, one of size ~ 1/ while
the other ~ . This unexpected behavior deserves further studies.

In Fig. 2.7 we also provide the corresponding curves in the GL theory; the
parameters qr, and bgr, in the GL potential are fixed as in the superfluid case,
Eq. (2.138), while the electric charge ey appearing in the GL action is determined
by using the second definition in Eq. (2.89) applied to the GL case, that is g, =
1/( 2y qu(r ) ), and by requiring @, to be equal to the value of  of the
holographic superconductor. Again, as in the superfluid case, we observe that the
radius size of the vortex core is bigger in the holographic model than in the GL
theory. As expected, we find these differences disappear as T'  T..

The free energy per unit of volume V42 of the vortex configuration is, after
taking into account the kinetic term in Eq. (2.123), given by

L( ra )’

2 2
2ep 1

B T
- 1/d-3

F, Sp+ 27 / drr (2.142)

where Sg is calculated with the appropriated boundary conditions already stated.
Contrary to the superfluid case, we have checked that F} — Fj is finite for R
thanks to the presence of the gauge field.

To calculate the critical magnetic field H. we follow Eq. (2.112). We find
that H., < H. for any real value of ey. This implies that for these holographic
superconductors there is always a range of values of H for which vortex solutions
are energetically favorable; the superconductors are always of Type II. In Fig. 2.9
we show H. and H. as functions of the temperature for the same values of ¢,
as in Fig. 2.7. Notice that H. approaches zero as T 0. This is due to our
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Figure 2.9: H. and H. as functions of T from our holographic model for d = 2 + 1 (solid
lines on the left) and d = 34 1 (solid lines on the right). The dashed lines are the corresponding
predictions for H.; from the GL theory. Presented in units of =1.

normalization of H in Eq. (2.110) that makes H, €3, which goes to zero as
T 0. We can, however, derive H.o/H as T 0 independently of such
normalization. This is a generic prediction of superconducting CF'T. Finally, we
compare our results with those arising from the GL theory of superconductors. We
observe that H.; deviates from the GL prediction for temperatures smaller than
T..

From the discussion given in Section 2.2.2; and the fact that our superconduc-
tors are of Type II, we know that the energetically favorable configuration when
H is slightly smaller than H. is a triangular lattice of vortices.

2.2.4 Conclusions

We have shown how to introduce a dynamical gauge field in holographic supercon-
ductors to study vortex configurations. In d = 2 4 1 this gauge field is part of the
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CFT spectrum and therefore can be considered to be an emergent phenomenon,
instead of an external field. We have shown that vortex configurations, in the pres-
ence of this gauge field, follow the expected properties of finite-energy Abrikosov
vortices where the magnetic field drops exponentially at distances larger than the
vortex core. We have calculated the energy of the vortices and the critical magnetic
fields H.; and H., that determine the intermediate (Shubnikov) phase. In all cases
we have found that H.; < H., indicating that holographic superconductors are of
Type II. For comparison, we have also calculated the vortex configurations in the
absence of dynamical fields, corresponding to superfluid vortices, and described
their properties.

The vortex configurations found here differ considerably from those arising
from a GL theory. In particular, the vortex size comes out to be larger, H.; has
a different T" dependence, and, more importantly, the penetration length of the
magnetic field differs significantly as " 0.

We have extended the study to d = 3 + 1 where a dynamical gauge field has
to be introduced by a proper renormalization of the AdS-boundary terms. In this
case, the gauge field does not respect conformal symmetry and is external to the
CFT. In spite of this, the vortex properties are found to be very similar to the
d=2+1 case.

Although we have focused on vortex solutions, the method described here to
introduce a dynamical gauge field is general and can be used in other situations.
For example, one could study the behavior of the EM field near the surface of a
finite size superconductor or in the junction between two superconducting samples
in the presence of the Josephson effect [64]. Moreover, it would be interesting
to extend the present analysis to 341 dimensional gauge fields sourced by a 241
dimensional CF'T}; this would allow to study interactions between the EM field and
layered superconductors. Our studies can also be extended to p-wave holographic
superconductors [65] and to holographic models that are dual to non-relativistic
scale-invariant theories [66].
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Chapter

Quark Compositeness

3.1 Introduction

There are strong motivations to search for an underlying structure in some of the
SM particles mainly related to the large hierarchy between the two natural scales
in the SM: the EW and the Planck scales. Naturalness problems on the Higgs
mass due to this hierarchy can be addressed if the Higgs itself arise as a composite
particle of some strongly interacting sector. Moreover the heaviness of the Top
quark, the heaviest particle in the SM spectrum, also suggests that it could have a
composite nature, at least partially. Up to this point we could wonder if not just
the Higgs and the Top but the whole plethora of SM particles could be composite.

The main purpose of this chapter is to look for the feasibility of the composite-
ness of the different SM particles. We will specifically focus on quark compositeness
since, as we will see, this is the most poorly tested direction within the SM by ex-
periments previous to the LHC. We will also see that we can study the quark
sector through the analysis of dijet events at the LHC.

The dijet analysis will serve us to analyze not only the feasibility of explicit
extra dimensional models of quark compositeness but different BSM models and
even to constrain the Oblique parameters Y, W and Z, obtaining for the latter
the best bound up to date. Moreover, we will see that the range of applicability
of the dijet analysis is so broad that it will comprise any model in which quarks
are coupled to heavy resonances with mass above 2 TeV.

This chapter is organized as follows. We will start showing how well the dif-
ferent sectors of the SM have been tested in the pre-LHC era, and which type
of deformations from the SM, parametrized by dimension-six operators, can be

81
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Figure 3.1: Low energy picture of a heavy particle exchange in the limit of sAcy

f . F

much better bounded by the LHC. In section 3.3 we present the calculation of
the dijet angular distributions and the F' parameter that seems to be very well
suited to obtain limits on four-quark interactions. By using the LHC data we will
obtain bounds on all possible new four-quark interactions (see also Ref. [75]), and
translate these bounds into limits on the scale of compositeness of the quarks, on
possible new gauge sectors, on the scale of compositeness of the SM gauge bosons,
and finally on new physics scenarios responsible for explaining the present experi-
mental discrepancy in the forward-backward asymmetry App of the top [76, 77].

3.2 Tests of the SM sectors before LHC

Explicit realizations of Composite Higgs models are indeed di cult since they
involve strong dynamics and therefore a perturbative expansion is not possible.
However, its resemblance with QCD suggests that we can find extra dimensional
analogs for this class of theories in an analogous way as proposed for the case of
large-N. QCD in Sec 2.1.2. This has actually been done in the literature, where
explicit 5D theories involving certain symmetry breaking patterns has been used
to describe calculable models of composite pPNGB Higgs [32]. They predict the ex-
istence of heavier resonances and deviations from SM couplings that can be proved
at colliders. Nevertheless it is not always necessary to go to the full ED theory in
order to study the predictions of CHM. A simple parametrization of NP effects due
to the strong sector responsible for Electroweak Symmetry Breaking (EWSB) is
possible when the mass of the resonances M are larger than the energies involved
in collider experiments. In this case NP effects can be parametrized through the
addition of operators of dimension bigger than four. To illustrate this let us con-
sider the 2 2 scattering between fermions f in the SM. If a coupling between
the SM fermions and the heavy gauge resonances of the composite sector g exist
this 2 2 fermion scattering can receive corrections from the exchange of heavy
resonances. In the amplitude these corrections will be of the form,

M s ~ gPu(pr)  v(p2) v(ps)  u(pa), (3.1)

g
s — M?
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where M is the mass of the heavy gauge resonance mediating this scattering.
If we consider the limit in which s M? we can neglect the s invariant in the
denominator of the gauge boson propagator. In this limit we get

Mg~ =sulp) o()o(s) ulpr). (3.2

This looks exactly like the contribution of a higher dimensional operator involv-
ing four fermion fields multiplied by some factor, that in this particular case is
~ —g*/M?. Actually these proportionality factors can be exactly computed by
integrating out the heavy resonances. Therefore, at low energies compared to
M we can effectively parametrize the NP effects associated to a heavy resonance
exchange as a higher dimensional operator in the following way,

g2
M res ™~ _WM 4f - (33)

This is schematically represented in Fig. 3.1. This argument suggests that, in the
limit s M?, we can encode de deviation of SM predicitions from NP effects
with a set of higher dimensional operators consistent with Gsx¢ and involving SM

particles?
Ci

2
AC’H

where the ¢; coe cients are constants associated to each operator O;.

£d>4 = 0526 + ..., (34)

In Chap. 3 we will explore the effects of such higher dimensional operators
when arising from different completions of the SM and specifically we will focus
on their effects when these operators are generated from a strong sector based on
explicit 5D realizations of the Composite Higgs Model once the heavy resonances
have been integrated out. This will allow us to derive bounds on this kind of
models when comparing the deviations from the SM due to the presence of these
operators with present experimental data.

Let us consider a new sector beyond the SM (BSM) whose physical scale,
generically referred by A (that, for example, can be associated with the mass of
the new states), is assumed to be much larger than the momenta p at which we
are probing the SM, A > p. We can then parametrize the deviations from the SM
by higher dimensional operators added to the SM Lagrangian [33]:

Ci
A2

'We just consider operators with dimension 6 or bigger since it can be seen that the only

dimension 5 operator consistent with the SM symmetry group gives rise to a Majorana mass

term for the neutrino [33]. It is not the aim of this thesis to discuss such physics and therefore
we will neglect this operator.

Lepr = Ly + szﬁ + ) (3.5)
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where we only keep the dominant contributions corresponding to operators of
dimension six, assuming lepton and baryon number conservation. Among these
operators it is important to distinguish between two classes:

1. Operators involving extra powers of SM fields:
(0 a)®, (@ @)(H D H), .. (3.6)

2. Operators involving extra (covariant) derivatives:

qr, (]LD F s qLuRD D H, (37)

The coe cients ¢; in front of the first class of operators are parametrically propor-
tional to the square of a coupling of the SM fields to the BSM sector, and then they
can be as large as ¢; 162, On the other hand, the coe cients ¢; of the second
class of operators should not contain couplings and are expected to be of order
one ¢;  O(1). This distinction is important when considering strongly-coupled
BSM with part of the SM fields arising as composite states of this new sector. In
this case A corresponds to the mass of the heavy resonances of the new strong
sector whose couplings, referred as g , can be as large as ~ 4m. Hence operators
of the first class with ¢; ~ g? give generically more significant modifications to SM
physics than those of the second class [72, 73, 78].

At present we have important constraints on ¢;/A? coming from precision mea-
surements of SM observables. Let us start considering those involving SM fermions.
In the Appendix we give the full list of independent operators involving quarks.
Neglecting fermion masses (chiral limit), we have that the impact of the dimension-
six operators on SM physical processes can generically be parametrized by two new
types of interactions:

)2+ U—ZA , (3.8)

F( A2

where we denote collectively by A = W | Z ... the SM gauge bosons, by =
Uur, Ug, ... the SM fermions of a given chirality, v ~ 246 GeV is the Higgs vacuum
expectation value (VEV), and  and  measure the strength of the interactions.
Since both types of interactions in Eq. (3.8) can arise from operators of the first
class (Eq. (3.6)), one has 0 < : 1672. The first term of Eq. (3.8) gives
contributions to four-fermion processes that scale as p?/A? where p characterizes
the momenta of the process. The second term corresponds to deviations from the
SM gauge interactions at zero-momentum, and therefore these can only arise for
the W and Z gauge boson and must be proportional to the Higgs VEV.
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In principle, very stringent constraints on new interactions of the type of
Eq. (3.8) arise from flavor physics [79]. It is not our purpose here to discuss
them; they are very model dependent and can be avoided if a flavor symmetry is
imposed in the BSM sector. For example we can assume a flavor symmetry for the
three left-handed quarks ¢, the three right-handed down-quarks dg, and the two
lightest right-handed up-quarks ug, given by

Gr UB), UBl U\, (3.9)

and similarly for the lepton sector. Due to the absence of important constraints on
the flavor physics for the right-handed top tg, we can consider it a singlet of the
flavor symmetry. This allows us to treat the ¢z independently of the other quarks;
its physical implications, some of them already studied in Ref. [78], are left for
a future publication. Yukawa couplings break the Gr symmetry, but it can be
shown, by using a spurion’s power counting, that flavor constraints on dimension-
six operators can be easily satisfied for A slightly above the electroweak scale [79].
From now on, we will consider BSM that, up to Yukawa couplings, fulfill the flavor
symmetry Gp.

At LEP the properties of the leptons = [;,lr were very well measured,
putting bounds at the per-mille level on deviations from the SM predictions either
arising from vertex corrections or new four-lepton contact interactions. From [28],
one gets A/(\/ 1,5 ). A/(y/ 1,r) 3 —4 TeV. This implies, for example, that
the scale of compositeness of the leptons is larger than 40 — 50 TeV for 4, ,
g* ~ 1672, Thus, the leptonic sector has been very well tested at LEP and recent
LHC data, having only quarks in the initial state, cannot provide better bounds.

~Y

For the left-handed quark sector = g, there are very strong constraints on
interactions of the second type of Eq. (3.8). The most important ones arise from
Kaon and -decays [28] which have allowed to measure very precisely quark-lepton
universality of the W interactions. This leads to bounds on deviations from the W
coupling to left-handed quarks as strong as those for leptons, A/ (ﬁ ) 3—4
TeV, which we do not expect to be improved substantially at the LHC. Similar
limits are obtained from measurements at LEP of the Z decay to hadrons [28].
Bounds on four-q;, interactions are weaker, with the main constraint coming from
Tevatron and giving A/(y/ 4. ) 1 TeV [28]. Clearly, the LHC can increase
these bounds considerably as we will show later. While theories of composite
Higgs and composite g1, where one expects large ,, and ,, coe cients (since

w ™~ q~g> 167?) [72, 73, 78], are very constrained by present experimental
data, theories with only ¢, composite (and elementary Higgs, as those for example
in Ref. [74]) where only ,, is expected to grow with g2, are not so constrained.
LHC dijets can then, as we will see, probe these scenarios at an unprecedented
level.
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Regarding right-handed quarks wgr and dg, their couplings to gauge bosons
are still poorly measured, due to their small coupling to W and Z. For example,
one of the best bounds, arising from LEP, are on the Z coupling to bg which
reads 0 Gn/ 9, 0.2 [80]. Furthermore these vertices can be protected by
symmetries of the BSM sector [32]. The strongest constraints on ., 4, are again
coming from Tevatron and, as for the left-handed case, LHC can improve them
significantly. Similar conclusions have been recently reached in Ref. [81].

For completeness, we comment on chirality-flip processes that are sensitive to

fermion masses. For m =Y v = 0, two new types of interactions can be added
to Eq. (3.8):

m Y?

v + =0 ) (3.10)
where  and  are coe cients of order one. Concerning the first one, Re[ ] and

Im[ | give a contribution to the magnetic and electric dipole moment respectively.
Only electric dipole moments give important constraints on BSM sectors, but
they can be avoided by demanding CP-invariance in the BSM. Moreover, in most
of the BSM they arise at the one-loop level. The second interaction in Eq. (3.10)
corresponds to new four-fermion interactions, but suppressed with respect to those
of Eq. (3.8) by Yukawa couplings, hence we will not consider them in this work.

Let us also mention that bounds on the interactions Eq. (3.8) can also constrain
BSM contributions to the self-energies of the SM gauge bosons. These effects can
be parametrized by five quantities S, T, W, Y and Z [82]. The first two, S, T, are
proportional to v?/A? and find their best bound from LEP and Tevatron data. The
W and Y parameters, that measure the compositeness of the W | Z and photons,
are also bounded by LEP data at the per-mille level, but since these effects grow
with the momenta as p*/A?, we can expect LHC to improve the bounds. Also at
the LHC the best bound on the Z-parameter, that measures the compositeness of
the gluon, can be obtained.

We then conclude that BSM physics generating four-quark interactions are not
severely constrained by the pre-LHC data. Especially interesting BSM scenarios
that contribute to this type of interactions are theories of composite quarks, either
composite up and dg (and Higgs), composite ¢, (if the Higgs is elementary), or
composite gluons. Below we will show how dijets at the LHC constrain these
scenarios.
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3.3 Testing Quark Compositeness at the LHC

The study at the LHC of the angular distributions of dijets in the process pp  jj
has been shown to be a powerful tool to constrain the size of four-quark contact
interactions [68 71]. Here we will follow these analyses to put constraints on
all possible four-quark interactions. Out of the complete list of dimension-six
operators in D.1.1, only those involving the first family of quarks, up and down,
are relevant for our analysis. The reason is the following. In pp  jj the dominant
contributions at high dijet invariant-mass m,;; arise from valence-quarks initial
states, 7.e. , uu, dd, du, being uu or uc initial state processes very suppressed. For
example, in the SM we have

(uu uu) mj;>2TeV (UC UC) mj;>2TeV
G ~ 0.04 , _we  we) ~0.01. (3.11)

(uu  uu) ) g, (uu  uu) ) g,

Furthermore, processes with other families in the final states but having u,d in
the initial state, such as uu  ss, cc, do not arise from the four-quark operators
of D.1.1 due to the flavor symmetry Gr. We are then led to consider partonic
processes involving only first family quarks, uu  wu, dd  dd and ud  ud, that
allow us to reduce the set of operators of Eq. (D.1) to

on —

uu (ur  ur)(ur ug)
04 = (dr dg)(dr dg)
O = (ug ur)(dr dg)
0% = (up T up)(dp T*dg)
Oéé) = (¢ a)lar aqc)
0% = (¢ T'q)(q Tqr)
oL = (uw a)(ur ug)
OB = (qn Tqu)(ur T ug)
O((](lj) = (@& q)(dr dr)

(

qr T'qu)(dr T"dR) (3.12)

where here we do not sum over flavor indices and from now on q;, = (ur,dr). Apart
from Eq. (3.12), there are other dimension-six operators (see the lists of D.1.2,
D.2 and D.3) that can contribute to dijets. Nevertheless, these other operators are
either suppressed by v2/p? or Yukawa couplings with respect to those of Eq. (3.12),
or can be rewritten, by use of equations of motion, as four-quark operators plus
other operators not relevant for dijet physics. Therefore Eq. (3.12) exhausts the
list of all leading operators contributing to dijets.
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At the partonic level the SM differential cross section of pp

77 is dominated

by QCD interactions [83]:

s2 d

482 +u? 4s2+t2 8 2

- i i i = = = — a5 T — 7d
T Edt (Gia: i) 9 2 9 wu? 27 tu (4 = u,d)
s? d 452 4+ u?
wrag s = g
2 d . a1 41
TEE (9  99) = (s"+u”) (tz - 9.9u) )
icL( ) 9 5 tu  su st
w 2ar 0 IVsm T s 2w
s d 3 41 1
T 2dt (99  49)sy = g(tz +u?) <9tu - 32> (3.13)

where s, t and u are the partonic Mandelstam variables, and we are working in

the massless quark limit.

Contributions from the operators of Eq. (3.12) give

Clan aamen = —plart - ag(C e D) S e s T
C;t(ud ud) sy = ;AQ lAg + A, “2%36 < [33+B4 2], (3.14)
where

At = ;C§)+2(C$dd+f3§?),

Ayt = iy

Ay = (el + ).

Ay = ;(()+c(8))

By = (AT g el +3(cfy) — el aa) :

BYT = (e ()

B = A ) =l gl e el

By = A (el — e S P () -, @a5)

being the coe cients ¢; defined according to Eq. (3.5).
It is important to remark that in Eq. (3.14) we have included terms of

of [84].

This extends the results
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Figure 3.2: Dijet di erential cross section as a function of for m;; > 2 TeV at the LHC
with s =7 TeV. The QCD contribution is shown in solid red line, while the green dashed line

includes the contribution from the operator Ot(f]) with cg%) =—0.5and A =1 TeV.

order ¢?/A%; for ¢; > 1 these terms are enhanced by an extra ¢; factor with respect
to the interference terms (of order ¢;/A?), compensating for the s/A? suppression
factor. Therefore they should be considered in the calculations. Contributions
from operators of dimension eight or larger are always smaller. For example,
dimension-eight operators contributing to dijets involve at most four-fermions and
extra derivatives, e.g. , and therefore their coe cients in front are
not parametrically larger than those of dimension-six four-quark operators. They
are then always suppressed by an extra ~ s/A?.

As compared to the SM contribution Eq. (3.13), the BSM contribution Eq. (3.14)
is enhanced at large s and large CM scattering angle . or equivalently, for large
(negative) ¢ = —s(1 —cos )/2. It is convenient to define the angular variable

=(1+ cos )/(1— cos )=—(1+s/t) [1,+ ) that can also be written
as = eY7¥2 where y; o are the rapidity of the two jets. The QCD contribution
to the differential cross section d (pp  jj)/d is almost flat in | while that of
BSM grows for small values of | as can be appreciated in Fig. 3.2.

3.3.1 The F parameter

To put bounds on BSM four-quark operators, we will follow the method used by
the ATLAS collaboration [68, 69]. This is based on the variable F' defined as the
quotient of events with 1 < < . 3.32, the central region in the detector, over
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those with 1 < < 4z 30:

ij;“ _ N( < ey M5 > m%‘t)
N( < maz, Mjj; > mj}“)

, (3.16)

where m?j“ is the cut over the invariant mass of the two-jet pair. Many systematic

effects cancel in this ratio, providing an optimal test of QCD and a sensitive
probe of hard new physics. It is also useful to write the analytic expression for
this observable. Defining the integrated differential cross section over the angular
region from 1 to ¢ as

cut

mqut 0 d mjj
i / a o , (3.17)
1 pp jj
we have
55 ( 53‘”) + ?3‘”)
meut c o )SMm o )BSM

F JJ — mc_q,'Lt ~ mqut 5 (318)
73 JJ
max ( ma:c)SM

where we have split the contribution of the SM from that of the BSM, and consid-
ered that the SM contribution, being almost flat, dominates in the denominator.
By making this approximation the deviation from the exact value of F' is of order
10%. Using Egs. (3.13) and (3.14), and performing the integration over , we
obtain the result

cut cut ]_

1

F799 e (F™ Jsu =154 P+ 5B Q, (3.19)
where
A= (A}, A5, AL AS, Ay, Ad)
B = (BY, By, B¢, BY, Bs, By), (3.20)
and

P~ (0.36Puy,0.12P,,,0.36 Py, 0.12P;y, 0.17P,q, 0.074P, ) TeV?
Q ~ (0.013Quu,0.0069Q ., 0.013Quq, 0.0069Q 44, 0.0024Q uq, 0.00097Qq) TeV?

cut cut

where (F"% )gu is the SM value of F'* and the coe cients Py, and Qg.q,
encode the integration over the parton distribution functions (PDF):

Prgy = ml/ d [ dv fo @) fo,( /o) L8 i ori= @21
( 2.)sm v
QQin = mcg’f/d /dquz(x>qu( /JZ);S—}-(Z ijI“ [ :j)7 (3‘22)

( 2)sm
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where s = s is the center of mass energy of the partons ¢;g; that initiate the
collision, with s = 7 TeV the center of mass energy of the colliding protons. To
calculate these coe cients we use MadGraph/MadEvent 4.4.57 [85] and implement
the cuts taken in [69]. For this analysis we use the CTEQ6L1 PDF set and fix
both the renormalization and factorization scales to m;??t = 2TeV. We obtain:

P,.~023TeV?, Py ~0.038TeV?, P,;~0.28TeV?,
Que ~ 23TeV? | Qug ~ 3.8TeV? | Quq ~ 19 TeV*, (3.23)

and (F2™)gy ~ 0.067, ( 2™V)gp ~ 0.016 TeV~>. We have checked the con-
sistency of these results by numerically integrating over the MSTW2008 PDFs
[86] using our analytical formulae for the cross sections Egs. (3.13) and (3.14)
and implemeting the cuts in [69], which translate into the integration limits x

cut

[ TevE 1], [(mh?/s,e @ T and x [ 1], [e7%E", 1], where yf* = 1.1
is the cut on the rapidity boost of the partonic center of mass, yp = % Y1+ Y2

y#*. The variation of renormalization and factorization scales (by twice and half)
introduces a theoretical uncertainty of the order of 10 — 15%. We have not com-
puted the errors arising from the PDFs, and have not taken into account hadroniza-
tion or showering effects since it is reasonable to neglect them for high dijet in-

variant masses [87).

3.4 Bounds

ATLAS has reported angular distributions of dijets for several m;; [69]. We are
interested in those with the largest invariant masses that correspond to m;; >
2TeV and are given in Fig. 3.2. Using this data and Eq. (3.16), we obtain F'2T®V =
0.053  0.015, and therefore the 95% CL bound

0.023 < F2TV < 0.083. (3.24)

Using this value and the prediction Eq. (3.19) one can obtain bounds on the scales
suppressing the operators Eq. (3.12). We instead derive the bounds using the co-
e cients of Eq. (3.23) but without making any approximation on the denominator
of Eq. (3.18). The results are shown in Table 3.1. Few comments are in order.
These bounds are obtained by taking the coe cient in front of the correspond-
ing operator to be ¢; = 1. For other values we must rescale the bound by a
factor \E . Since we are working in the approximation in which the energy of
the physical process is assumed to be smaller than the masses of the BSM states
A, we must require A > m¢%. This implies that our bounds can only strictly be

27
applied if ¢; > (2 TeV/A )% We recall that large values of ¢; are in principle
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Operator A_(TeV) A, (TeV)

o) 3.2 2.1
o'l 1.8 1.5
o) 1.5 1.5
o® 1.3 0.8
oL 3.5 2.4
(93?) 2.5 1.3
O?}) 1.7 1.7
(9??) 1.4 1.0
O?? 1.3 1.3
ng‘} 1.0 0.8

Table 3.1: Bounds at 95% CL on the scale suppressing the four-quark interactions. We denote
by A4+ the bound on this scale obtained when taking the coe cient in front of the operator
¢; = 1, and considering the e ects of the operators one by one.

possible since ¢; 1672, Also, we notice that for ¢; < 0 the interference between
the BSM contribution and the QCD contribution is constructive (with the excep-
tion of Oq(jd) qu qa Where the interference is null), and as a consequence the bound is
stronger than for a positive c¢;.

These bounds are subject to a set of theoretical errors. The uncertainty in the
parameters Eq. (3.23) estimated by changing the factorization and renormalization
scales results in a ~ 5% uncertainty in the bounds. Also the NLO QCD correction
to (F2TV) psar/(F2TV)gp has shown to be as large as ~ 30% [88], what amounts
to a ~ 10% uncertainty in the bounds on A. Finally, it has been recently shown
in [89] that electroweak corrections reduce the SM prediction of F' by a ~ 2% for
large invariant masses m;; ~ 2TeV. We therefore expect that our calculations for
the bounds on A can be trusted within a ~ 10% margin of error.

3.4.1 Bounds on composite quarks

As we mentioned in section 3.2, previous experiments have not been able to probe
the compositeness of quarks beyond the TeV scale. Data from dijets at the LHC can
however improve this situation and put stronger constraints on their compositeness
scale.

We will focus on models in which quarks arise as composite states of a strong
sector whose global symmetry is G SU(3). SU(2), U(l)y Gp, where G is
given in Eq. (3.9). In these theories we expect to have massive vector resonances
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Composite c{l)/g? ciil /9% i /9% i) 1% &) /g% ) /% 1) /% ¢ [ ? i) /6% ) | 6
ugp  —37/72 0 0 0 0 0 0 0 0 0
dp 0 -7/18 0 0 0 0 0 0 0 0
up,dp  —37/72=7/18 2/9 -1 0 0 0 0 0 0
ar 0 0 0 0 —5/36 —1 0 0 0 0
q,up  —37/72 0 0 0 —5/36 -1 -1/9 -1 0 0
qr, dr 0 -7/18 0 0 -5/36 -1 0 0 1/18 -1
qr.up,dp —37/72 -7/18 2/9 -1 —5/36 -1 -—1/9 -1 1/18 -1

Table 3.2: Coe cients of the operators of Eq. (3.12) induced from integrating out heavy vector
resonances for di erent composite quark scenarios. We have taken A = m .

Composite States f (TeV)

dr 1.1

UR 2.3

UR,dR 2.6

qr, 2.7

QL;dR 2.9
qr,URr 3.5
qL,uR,dR 3.8

Table 3.3: 95% CL bounds on the scale f =m ¢ for di erent composite quark scenarios.

associated to the current operators of G, and then transforming in the adjoint
representation of G. This is in fact the case of the five-dimensional analogs based
on the AdS/CFT correspondence [29]. Following Ref. [73], we will assume that
all the vector resonances have equal masses and couplings, m and g respectively.
Let us first consider the case in which only the right-handed up-type quarks ug are
composite states, with charges under the global group G equal to (3,1,2/3,1,1, 2).
In this type of models, as we said before, the Higgs could also be composite without
affecting our conclusions. Now, integrating out the heavy vector resonances at
tree level (an approximation valid in the large-N limit or, equivalently, g 4),
we find that the four-quark operators of Eq. (3.12) are induced with coe cients
given in Table 3.2, where we have fixed A = m . Constraints from dijets give

f m/g 2 TeV. For ¢ > 1, we see that this bound is stronger than that
coming from the S-parameter that requires f  4mv/g in theories of composite
Higgs [73].

Similarly, we can assume a scenario where only the right-handed down-type
quarks dg are composite with quantum numbers under G equal to (3,1,—1/3,1,3,1).
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Again the coe cients of the four-quark operators induced are given in Table 3.2.
We obtain the bound f 1 TeV. In the case of both ur and dr composite the
bound goes up to f 2.5 TeV.

For composite left-handed quarks ¢ with G-charges (3,2,1/6,3,1,1), the
bound is f 3 TeV. Bounds on other composite quark scenarios are given in

Table 3.3.

: t
For weakly-coupled resonances (g 1) with masses close to m$i" stronger

bounds can be obtained from dijet resonance searches at the LHC [81]. This is
just a consequence of the resonant enhancement of the cross section for a narrow
region of invariant masses, where the resonances sit. This feature however is lost
when the resonances are too broad.

3.4.2 Bounds on heavy gauge bosons

Heavy gauge bosons at the TeV-scale coupled to first family quarks generate four-
quark operators that can be constrained by the dijet LHC data. Here we provide
some examples. For a gauge boson Z gauging baryon number or hypercharge we
obtain respectively

My, Mz,

1.2TeV ,
9B gy

1.6 TeV, (3.25)

while for the gauge bosons W of a SU(2)g symmetry, where qr = (ug,dg) is
assumed to transform as a doublet, we get
My

—— 1.6 TeV. (3.26)
dr

As mentioned before, the fact that we work within an effective theory Eq. (3.5),
implies that our bounds only apply to resonances with masses above m%“f
TeV. Gluonic resonances G coupled to first family quarks as

Loy =G4 [QLQLTA qr + grqrT* QR] , (3.27)

with Ty = 4/2 where 4 are the Gell-Mann matrices, can also be constrained.
This kind of resonances have been recently advocated (see for example Ref. [90]) to
accommodate the discrepancy in the top forward-backward asymmetry measured
at Tevatron. In Fig. 3.3 we show the excluded region of the parameter space. It
can be seen that, for a resonance of mass Mg = 2.5 TeV, the allowed range for
the couplings is —1.5  gr g 1.5 at 95% CL. Similar bounds have been also
obtained in Ref. [91].
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Figure 3.3: Excluded region in the gr — gr plane by the m;; > 2 TeV dijet analysis.

3.4.3 Bounds on oblique parameters Y, W and Z

The electroweak precision parameters Y, W and Z [82] can be regarded as a
measure of the compositeness of the transversal components of the SU(2), U(1)y,
and SU(3). gauge bosons respectively. They manifest themselves as deviations of
the self-energies of such vector bosons, and can be parametrized by the following
higher dimensional operators:

-Y
4m,

( B )% (D W' )2, 4;; (D G*)H2. (3.28)

2
dmyy,

At large momenta as compared to the masses of the gauge bosons, these operators
induce effective four-fermion operators, equivalent to those arising from integrating
out a very heavy copy of the corresponding gauge boson. Therefore our dijet
analysis can be conveniently used to put bounds on these parameters. We show
in Fig. 3.4 our results in the W-Y plane. Although bounds from LEP [82] are
still stronger, this analysis shows that LHC will be competitive when running at a
higher energy. Regarding the Z-parameter our analysis gives the strongest bound
up to date:

-3 10% Z 6 107% (3.29)
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Figure 3.4: Excluded region in the W-Y plane by the m;; > 2 TeV ATLAS dijet analysis.

3.4.4 Bounds on new interactions for the Arp of the top

The recent discrepancy between the measured Arp of the top and its SM prediction
[76, 77] has boosted the search for BSM that could explain it. Dijet angular
distributions can be useful to constrain these models. As an example, we consider
the proposal of Refs. [92, 93] where the measured value of the top asymmetry was
explained by the following new interaction:

(8) (8)
Legp =508 =L@t Pu@rt ). (3.30)

In terms of chirality eigenstates the operator Off) reads

01(48) :(UR TA’U,R)(tR TAtR> — (uL TAUL)(tR TAtR>
— (UR TAUR)(tL TAtL) + (uL TAUL)(tL TAtL) . (331)

If these operators arise from BSM that are invariant under the SM gauge group
and G (up to small effects v?/A% and Yukawa couplings), the presence of ¢, = 0
requires, in the basis D.1.1,

B = _Cg) = —® =& = O (3.32)

qu aq
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Figure 3.5: The red line shows the value of Cf) as a function of A that fits the App of the
top [93]. The shaded regions delimited by the solid and dashed blue lines show the excluded
region due to our dijet angular distribution analysis with cuts m%‘t = 2TeV and m%” =1.2TeV
respectively.

In other words, the flavor symmetry requires that if the operator 0518) is generated,
also operators involving four up-quarks must be present. Bounds from our dijet
analysis (mostly from the bounds on c((ﬁ) and CE;Z)) lead then to

®)
ca' < 0.4

— 3.33
A2 ™~ Tev?'’ (3.33)

excluding the possibility to fit the recent top asymmetry measurement which re-
quires ¢{) /A2 ~ 2 TeV~2 [93].

If we relax the assumption of flavor invariance of the BSM sector, an operator
involving four up-quarks can still be generated from (’)ff) at the one-loop level.
The one-loop contribution, involving tops, is divergent and therefore sensitive to
physics at the BSM scale A. We can get an estimate by regulating the divergence
with a hard cut-off taken to be A. We obtain

1 (C(S))2
8) _ L8 _ 8) ~, _\Ca
cgq) = gcgu) = —2cgu) = (3.34)

In Fig. 3.5 we show the region of the parameter space that fits the App of the
top with the region excluded by dijets using Eq. (3.34). One can see that dijets
with m;; > 2 TeV exclude a large region of the parameter space, although, as we
mentioned before, these results cannot be strictly applied if A < mj ;. For this
reason we also show the exclusion region arising from dijets with smaller invariant
masses, m;; > 1.2 TeV.
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3.5 Conclusions

We have shown that the present dijet LHC data is already testing all the quark
sector of the SM at almost the same level of accuracy as leptons were tested at LEP
after a decade of data collection. This is due to the very high-energy of the dijet
scattering at the LHC that enhances the effects from four-quark interactions. We
have used the F' parameter, defined in Eq. (3.16), to put bounds on all possible
four-quark operators. Our results, presented in Table 3.1, show bounds on the

scales suppressing these operators A// ¢; ranging between 1 — 3 TeV.

Among the most interesting BSM scenarios to be tested by dijet angular distri-
butions are theories in which strong dynamics are postulated to solve the hierarchy
problem. These theories demand a composite scale A around the TeV-scale. We
have seen that if the SM quarks are composite states arising from a new strong
sector, A 50 TeV (g /4m). Other possibilities are also significantly constrained,
as can be seen from Table 3.3. We also derive the best bounds on the Z-parameter,
Eq. (3.29), that measures the degree of compositeness of the gluons.

We also show that extra gauge bosons with sizable couplings to quarks are
constrained to lie above the TeV scale, limiting then their possible contribution to
the Arp of the top.

Finally, we would like to stress that these results are based on the 2010 LHC
data corresponding to 36 pb~! of integrated luminosity [69]. It is expected that
the 2011 LHC data set, containing more luminosity, will significantly improve all
the bounds derived throughout this analysis.
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Appendix A

The Effective Action for the Pion

In this appendix we will compute the effective action for the pion at O(p?). Given
that a complete treatment of the U(1)4 anomaly is not included in the model,
in the following we will neglect the Goldstone boson related to this symmetry,
namely the field, and we will only consider a model with a chiral symmetry

SU@),  SU2)g.

An e cient way to perform the computation is to use the holographic approach
presented in [42]. At tree-level, the holographic action for the pion is given by the
5d action for the gauge and the scalar fields (egs. (2.22) and (2.25)), where the
5d fields satisfy the bulk EOM’s with the usual IR boundary conditions given in
egs. (2.28) and (2.29). The UV conditions are modified as

L, =U@ +i )U(z)
ro =7 : (A.1)
e = U@) (2) 7 M1

ZIR

where U(x) represents the 4d Goldstone matrix, which transforms as

Ux)  grU(z)gy, (A.2)

under a chiral SU(2);, SU(2)g 4d transformation. Notice that we are not inter-
ested in possible terms involving the scalar and pseudoscalar sources, so we did
not include any source term in the UV condition for the scalar field in eq. (A.1).

To derive the complete effective action for the pion one would need to solve
the full bulk EOM for the 5d fields. However, due to the presence of interaction
terms, this can be done only perturbatively. As usually done in PT, we use an
expansion in powers of the momentum p and we treat the external sources [ and
r as O(p) terms, while M, will be treated as an O(p?) term.
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We expand the solutions of the EOM using a mixed momentum space repre-
sentation

V =)V (p) + VO (p,2,V,A U, M,),
A A (p)+ AP (p,2,V, AU M,), (A.3)
= O@)+ Oz, V,AUM)+ DpzV,AUM,),

where we denoted by V and A the values of the vector and axial gauge fields at the
UV boundary. Notice that, due to the tensorial structure, the gauge field solutions
start at O(p) and their next to leading terms are of O(p?), while the scalar field
can be expanded in terms of O(p**). All the terms in the expansion of the gauge
fields satisfy the same IR boundary conditions as the original fields:

Vilx, zg) =0,
(7, 7n) (A.4)
A (CC, ZIR) — O .
Instead, for the scalar field we have
(0) T,zm) = 1,
o) | (A.5)
O(z, 2) = 0 fori 2.

The UV boundary conditions for the gauge fields are chosen so that the higher
terms in the expansion vanish, while for the leading terms we have

foalzo) =1. (A.6)
For the scalar field we impose
O (z0y) =0,
@ (zy) =U (ZUV) M, (A.7)
2R

By using the bulk EOM’s and the boundary conditions for the fields, one can verify
that the terms of O(p?) in the expansion for the gauge fields and the ones of order
O(p*) in the expansion for the scalar field do not contribute to the effective action
for the pion at O(p?) (see the discussion in [42]).

As a first step of the derivation of the effective action, we will consider the
contributions coming from the 5d gauge action in eq. (2.22). It is convenient to
rewrite eq. (2.22) in the form

Sy = —2M; d*z a(ze) X[V LV +A _A]
uv

—M5/d4x /dza(z)Tr[L L +R R 1. (A.8)
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The leading terms in the expansion of the 5d fields satisfy the equations

(a() F2(2) =0,
(a(2) Lf4(2) — 204 (2)( O)2f3(2) =
(@) . O@) - @ @M O) =

z

z , (A.9)

0
0.
The solution for the (@ field can be obtained from eqgs. (2.31) and (2.32) by

setting M, = 0. The equation for the vector gauge field admits the simple solution
fU(2) = 1, while the equation for f§ in general can not be solved analytically.

By substituting the above expressions in the gauge action and using the relation

i

A =UDU) == (DU u, (A.10)

we find that the first line in eq. (A.8) gives the kinetic term for the pion, from
which we can extract the pion decay constant

f? = —2Msa(2) .f5(2) (A.11)

Z=Zzyv

From the second line in eq. (A.8) we get contributions to the O(p*) terms in the
pion effective Lagrangian. In the standard form of PT [47] we get the following
contributions

=M [dzaz) (1= (92) Ly = 2Ly
16 ; : LY = -6 . (A.12)
0 _ _Ms (02
L = =5 [aza(z) (1- (£3%) L9 — 1

Now we consider the contributions to the effective action coming from the
scalar action in eq. (2.25). To derive the action we need to compute the ) term
in the expansion of the 5d scalar field. This term satisfies the bulk EOM

1 , .
. (2) 2 M2 (2) - _9 (0) —9 0\2 . OD
a0 - (@@ = @) +de) 20f8)% u —iff u(i .
where we defined D u u — iV ,u]. The solution can be split into two
ts:
pars 2 _ @ (2)
= M7T 0 (A.14)

where 5\? is a solution of the homogeneous part of eq. (A.13) with boundary

conditions

L
@, )= U (V) M, Q) =0, (A.15)

ZIR
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while ) satisfies eq. (A.13) with boundary conditions

[()2)(ZUV> = 62)(2111) =0. (A.16)

The solution for 5\? is simply given by egs. (2.31) and (2.32) with the choice = 0.

The solution for (()0) can not be found analytically, and we will parametrize it as

V=@ + D (A17)

From the action for the scalar field we get an O(p?) contribution to the pion
effective action, which can be written as

SO =M [ dazdf()Tr| @ . ©4hel. (A.18)
uv

To obtain this expression we integrated by parts the terms containing derivatives
with respect to z and we used the bulk EOM and the boundary conditions for the
terms in the scalar field expansion. Eq. (A.18) corresponds to a mass term for the
pion, which in the limit z,, 0 becomes

M
s =22 /#ﬂkmw+MU] (A.19)

The expression for the pion mass and for the pion decay constant can be easily
computed as an expansion in the parameter . Some approximate expressions are
reported in eq. (2.50).

Computing the O(p?) terms in the action we get

gW ]\/[5/d x/dza {2T1“[ (O)f[(z)(z)fg(’Z)D uDwu }
4T [ O () |

—H'Tr{ <°>< @ - (2)> fa(z)D U}
+2Tr | © ( %24) (2)> ]}
Hf | ded @[ L@ u —if (D u) ]32+h-c@“-20>

The O(p*) action for the pion can be simplified by using the EOM for the pion field
coming from the O(p?) effective action. Using the standard notation of PT [47],
the kinetic and mass terms for the pion are written as

f2

L=

([pv)yDpUl+T( U+ U)}. (A.21)
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From this Lagrangian we get the EOM for U:
(DDUU -UDDU) +U — U =0, (A.22)
which can be rewritten as
4Dvw = U -U . (A.23)

Moreover, by comparing eq. (A.21) and eq. (A.19), we can extract the relation
between M, and , which, in the 2y, 0, limit reads

L 2
M I

=g (A.24)

By using these relations we get the scalar contributions to the coe cients of
the O(p*) effective pion action

£y =22 [a: @ m () fR )
Ly = 2@ @) SR, +2f de @ e (@),

Ly = 2 {2 @@ 20

(A.25)
where is defined by the relation M, =

[t U -2 e ()},






Appendix B

The Equations of Motion

In this appendix we report the EOM for the 2d fields which appear in the ansatz
for the zero-mode soliton fluctuations in eqgs. (2.53), (2.70) and (2.72), and we
summarize the notation used in the paper.

B.1 The Equations of Motion

Before writing the EOM’s for the 2d fields, it is useful to recall the residual sym-
metries which survive after we choose the ansatze for the Skyrmion solution. As
already discussed in Sec. 2.1.5, the ansatz preserves a U(1) local symmetry with
2d gauge field A , which corresponds to the 5d gauge transformations given in
eq. (2.57). The fields , , and are charged under this symmetry, thus it is
convenient to write the action and the EOM in terms of their covariant derivatives

D = —1A D = —1A

D = —iA , D = —iA (B.1)

There is also a second residual U(1) generated by the U(1),, g 5d transformations
of the form gr = g and g, = g with

g=expli (r,z)(k 2)], (B.2)

whose associated gauge boson is B (see [21]). The field transforms as a Gold-
stone boson under this symmetry, so we can define its covariant derivative as

D = -B. (B.3)
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The EOM’s for the 2d fields can be easily found by substituting the ansatz for
the Skyrmion solution into the 5d action. The EOM’s for the fields which appear
in the static soliton case

D (a(z)D )+arf) (1- 2 “3iz)( )4 L <i>D —0
(Pa()A4 ) —a(=)(i D +h.c.)—fla3(z)r2[ (D )= ) ]
+ L () 2=1=0 :
(a(z) s)—; | (=i D +he)+A [=0
D (2D )—d*z) ( — ) —d¥(2)r2Md,, =0

(B.4)
while the equations for the fields which are turned on for the rotating Skyrmion
are

(%a(z) w)-2a(x)[wl+ - - ]+ L [;( 2 1B +rQA | =0
D (Pa(=)D )+a() 2w —(1+ 2 ]+ia3(z)r2< ~ )
~ L (D )i rQ)+D ]=0
— (r*a(2) Q)—ia(Z)Q
—2L [:l(z'D (D )+hc)+;A Quw—- - )-=D (i)]:o
(@D )-3@H [+ )= - )
_2L [D (D ) +he)+sA (= )+ Q) (Tﬂ:
(Pa(2)B ) +2a(z)D +-r%a*(z)[2 D +((D ) - (D ) +hc)]

D (a3(z)r*D ) — (a®(z)r*D ) —2a*(2)r*(D (D )
—a’(z) 24+ H+a*(z) ( +4i)-—r?a(2)ME, =0
(Pa*(z) )—a*(z)| 1+ =i — )] -r%’(2)M3, =0.

(B.5)

In order to find suitable equations for the numerical analysis of the solutions,
the EOM’s must be rewritten as a system of elliptic partial differential equations.
For this purpose we need to choose a gauge fixing condition for the residual 2d
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U(1) gauge symmetries. A possible choice is a Lorentz gauge condition
A =0, B =0. (B.6)

With this condition the equations for A become J = (r?aA )=r%a A +
(r?a)A  which is an elliptic equation and a similar result is obtained for B .

B.2 The Boundary Conditions

The derivation of the boundary conditions for the 2d fields has been discussed in
section 2.1.5. Here we report the list of conditions we need to impose on the scalar
field components as well as the conditions for the gauge fields, which are analogous
to the ones for the massless case [21].

The IR and UV boundary conditions on the 2d fields follow from the boundary
conditions for the 5d fields (eqs. (2.28) and (2.24) with vanishing sources for the
gauge fields, egs. (2.29) and (2.20) for the scalar) and from the gauge choice in
eq. (B.6). They are given explicitly by

1=0

=0
ao
_ . 1= 2 2— _
Z = Zir - 2A2 _ O W = 0 2?20— 0 y (B?)
25 =0 20 =0 B 0
= -2 N
and
- =
Al =0 =1 Bl =0
Z = Zyy - 2A2:0 w:—l 2B2:0
s=0 Q=0 =
— 27/Mq (ZUV/ZIR) N - O
(B.8)
The boundary conditions at » =  are obtained by the requirement that the

energy of the solution minus the vacuum energy for the scalar field is finite. To
obtain a soliton solution with B = 1 one imposes

— _ie’i (Z*ZUV) (ZIR*ZUV) — 0
1A1 =0 = i@i (z=2uv) (2m—20v) 1Bl =0
r = : Ay =7/ (21 — 2uv) w=—1 By, =0
s=0 Q=0 =0
_ in(z)el ) (nm) 0

(B.9)
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On the » = 0 boundary of the domain we must require the 2d solution to give
rise to regular 5d fields and the gauge choice in eq. (B.6) to be fulfilled. These
conditions are fulfilled with the choice

1/7‘ Ay
(1+ 2)/7“ 0
AQIO

141 =0
s=0

I
I <
o

N

[\

Qe .
Il
S

/T’ Bl
131:()
B2:
1:

2 =0
1 =0
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Appendix C

The QCD Anomaly

In this appendix we describe different forms of the QCD anomaly and discuss the
relation with the CS term included in the 5d theory. Part of the material that
follows overlaps with appendix A of [38].

The CS term (2.23) can be written as

Ne 5 _
Sos = =55 [ & [5(L) = 5(R)] (€.1)
where —5 differs by a total differential from the standard text-book CS form:
J(A) — itr|A (dA)? + 2A3dA + ?Aﬂ

_ iiA(dﬁﬁ + igﬁtr 72 +id {ﬁ r [AF _ iA?’” —(A) + dX(A) (C.2)

The variation of the CS is given by eq. (2.27), where the 4-form

1 ~2 3
—1 . ~ ~ 2
o A) = 2 (a4)" + 5 7] (C.3)
is defined from the relation 5 = d ™} and it is related to the standard } by
where I
Yo, A) = tr [a d (AdA + 2A3>} . (C.5)

Provided the IR term in eq. (2.27) is cancelled, the CS variation gives the
anomaly of eq. (2.18), which however does not coincide with the standard text-
book QCD anomaly that is normally put in the “symmetric” form

Agym = 22;2/[ HCTR TR (C.6)
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The two forms of the anomaly (A and A,,,) are equivalent because they only
differ by a local counterterm

Ne

A= Awm = gL

X(L) — o X(R)] . (C.7)

R
Obviously we may equivalently have added the X local counterterm to the 5d
Lagrangian and kept the standard form of the QCD anomaly. This would have
not affected any of our results because X only depends on the 4d 1 and r sources,
whose physical value is zero.

Similarly, the QCD anomaly could be also put in the Adler Bardeen form.
Starting from the symmetric anomaly, this is achieved by the addition of the
Adler Bardeen counterterm, as explained in [42].
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Appendix D

Dimension six operators involving quarks

Here we list the set of independent higher-dimensional operators involving SM
quarks. As explained in section 3.2, we assume a flavor symmetry for the three
left-handed quarks qr,, the three right-handed down-quarks dg, and the two lightest
right-handed up-quarks ug, given by U(3), U(3)qs U(2),. The top right-handed
quark tgr will be considered a singlet of the flavor symmetry. We use the follow-
ing notation. We label with A, I and F' the color, electroweak and flavor index
respectively in the adjoint representation. The contraction of the indices in the
fundamental representation of these symmetries is understood within the fields in
parenthesis, and flavor indices can also be contracted with Yukawa matrices Y, 4.
We identify T4 = 4/2, being 4 the Gell-Mann matrices, and ;= ;/2, where
7 are the Pauli matrices.

We classify the operators according to their expected suppression. First, we
show the list of independent operators unsuppressed by Yukawa couplings (those
generated in the massless quark limit). Following the discussion of section 3.2,
we separate these operators as those of first class and second class, Eq. (3.6) and
Eq. (3.7) respectively. We finally show the list of independent operators suppressed
by Yuwaka couplings.
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Appendix D. Dimension six operators involving quarks

D.1 First class operators

D.1.1 Four-quark operators
0% = (dn dp)(dr dr)
O = (ur ur)(dr dp)
O = (ur ug)(ur ug)
oL = (a a)(ur ug)
Oé? = (@& qu)(dr dgr)
Oé? = (@ @) )
o8w) = (¢ Tar)lar  Tar)
o8 = (¢ T'qr)(a T qr)
08 = (up T%%g)(ur T"ug)
OF) = (drp TAdp)(dr T*dg)
0% = (up T ug)(dr Tdg)
Ofﬁf) = (o T'a)(a T%qr)
O((;i) = (¢ T'qr)(ur T ug)
O = (a T*q)(dn Tdp)

O = (tr tr)(dr dg)
O = (ur  ug)(tr tr)

O =(tr tr)tr tg)
o) =(q. qv)(tr tr)

qt —

Oz(fz) = (UR TAUR)(tR TAtR)

(8)
td

O = (tR TAtR)(dR TAdR)

O = (qr T*q)(tr T*tr)
(D.1)

For physics involving only the first family quarks, that as explained in section 3.3

mainly corresponds to the LHC dijet data pp
of four-quark operators to the set of Eq. (3.12)

1
)
c
3 uu
n 1
c&d) + gcfid)

1
i 3

)+

Ch

a _
“a T 19

aq

J7, we can reduce the above set

. In this reduction, we have

(1
Cun

1
c((:ld)

1
oo

8)
aq
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D.1.2 Higgs-quark operators

UR UR) OHt:l(H D H)(tR tR)

O = i(H "D H)q ‘ar) (D.3)

Notice that we just consider the antisymmetric part of the corresponding operators
in [33]. This is so because the symmetric part of the above operators can be put
in the form  ( H ?)( ), where = (q1,dg,ug,tg). It can be shown that this
kind of operators can be expressed in terms of operators appearing in D.3.

D.2 Second class operators

Ouws = (ugp ugr) B O =(tr tr) B

Osp = (dgr dr) B

O = (e qu) B

Ow = (@' qu)D W! (D.4)

As explained in [94] this kind of operators can be rewritten, by using the equations
of motion (EOM) for the field strengths, as four-fermion operators involving quarks
and leptons. Also notice that operators involving gluons are not included since
they can be rewritten as four-quark operators.

D.3 Yukawa-suppressed operators

The Yukawa couplings break the flavor symmetry and generate extra dimension-
six operators. Assigning to the 3 3 Yukawa matrices, Y; and Y, the following
quantum numbers under Gp: Yy (3,3,1),Y, (Yu), (3,1,2)(i=1,2,3; k=
L,2)andY;  (Yu)is  (3,1,1), we can write the following G p-invariant operators
(H =1 2H )2

(i)
Own = (H H)(q.Y,Hug) Oy = (H H)(q,Y,Htg)
OdH = (H H)(qLYdeR) <D5)
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Owen = (@wYu T up)HGA Own = (q.Ys  TAtr)HGA
Own = (@Y [UR)HWI Own = (LY: ItR)ﬁWI
Ousr = (qrYu UR)EB O = (q1Y; tR)ﬁB
Owen = (@wYa T dp)HG"
Oawn = (qYs  'dg)HW'
OdBH (qLYd dR)HB (D6)
(iii)
Ouwn = (qYour)D D H Owpn = (q1Yitr)D D H
OdDH = (QLYddR)D D H (D?)

By applying the EOM of H these operators could be rewritten as other
operators of the list plus four-fermion operators involving leptons.

(iv)

Ouwa = i(H D H)(ugY,Y; dg) (D.8)
Oma = i(H D H)(tgY, Y, dg)

O;Bd = (quYuur)(qrYadr)

0%, = (qrYitr)(qrYadr)

O = (qYu T ug)(qYaTdg) (D.9)
OF) = (quYiT tr)(quYaT"dp)
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