
IIIA 

Inst i tut  d ’ Invest igació en
I n t e l · l i g è n c i a  A r t i f i c i a l

Trust Alignment and Adaptation:
Two Approaches for Talking about Trust

in Multi-Agent Systems

Andrew Koster

12th March 2012

Dissertation submitted to obtain the degree:
Doctor en Informàtica
(Ph.D. in Computer Science)

Advisors:
Dr. Jordi Sabater-Mir and

Dr. Marco Schorlemmer

Departament de Ciències de la Computació — Escola d’Enginyeria
Universitat Autònoma de Barcelona





Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Trust Alignment . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Trust Adaptation . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Overview and Structure of the Thesis . . . . . . . . . . . . . . . 9

II Trust Alignment 11

2 Trust Alignment: State of the Art 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Trust Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Computational trust models . . . . . . . . . . . . . . . . . 14
2.2.2 A brief survey of trust models . . . . . . . . . . . . . . . . 17

2.3 Processing Witness Information . . . . . . . . . . . . . . . . . . . 22
2.3.1 Dealing with deception . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Dealing with subjectivity directly . . . . . . . . . . . . . . 27

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Theoretical Framework 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Interaction-based Model of Trust Alignment . . . . . . . . . . . . 37

3.2.1 Trust models in Channel Theory . . . . . . . . . . . . . . 40
3.2.2 The trust channel . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Communicating trust constraints . . . . . . . . . . . . . . 46

3.3 Trust Alignment Through θ-subsumption . . . . . . . . . . . . . 47
3.3.1 Syntax and semantics of LDomain . . . . . . . . . . . . . . 48
3.3.2 Specific Rules for Alignment . . . . . . . . . . . . . . . . 50
3.3.3 Learning a prediction . . . . . . . . . . . . . . . . . . . . 51
3.3.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Describing Interactions . . . . . . . . . . . . . . . . . . . . . . . . 57

iii



3.4.1 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Galois connection . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Alignment in Practice 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Using ILP to Learn a Trust Alignment . . . . . . . . . . . . . . . 72

4.2.1 First-Order Regression . . . . . . . . . . . . . . . . . . . . 73
4.2.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 76
4.2.3 Trust models . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.4 Estimating the difficulty of alignment . . . . . . . . . . . 79
4.2.5 Experiment: evaluating First-Order Regression . . . . . . 82
4.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Comparing Trust Alignment Methods . . . . . . . . . . . . . . . 87
4.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . 88
4.3.2 Alignment methods . . . . . . . . . . . . . . . . . . . . . 90
4.3.3 Comparing alignment methods . . . . . . . . . . . . . . . 93
4.3.4 Simulating lying agents . . . . . . . . . . . . . . . . . . . 98
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

III Trust Adaptation 105

5 Trust Adaptation: State of the Art 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Cognitive Integration of Trust Models . . . . . . . . . . . . . . . 108

5.2.1 Cognitive computational trust models . . . . . . . . . . . 109
5.2.2 Logics for reasoning about trust . . . . . . . . . . . . . . 110

5.3 Argumentation and Trust . . . . . . . . . . . . . . . . . . . . . . 111
5.3.1 Trusted arguments . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2 Argument-supported trust . . . . . . . . . . . . . . . . . . 112
5.3.3 Arguments about trust . . . . . . . . . . . . . . . . . . . . 113

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 AdapTrust 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Multi-context systems . . . . . . . . . . . . . . . . . . . . 121
6.2.2 Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.3 Multi-context representation of a BDI-agent . . . . . . . . 123

6.3 Specifying Trust Models . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 An illustrative trust model . . . . . . . . . . . . . . . . . 128

iv



6.3.2 A priority system . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.3 Socially-dependent goals . . . . . . . . . . . . . . . . . . . 132

6.4 Goal-based Instantiation of Trust Models . . . . . . . . . . . . . 133
6.4.1 Reasoning about the priority system . . . . . . . . . . . . 134
6.4.2 Instantiating trust models . . . . . . . . . . . . . . . . . . 137

6.5 Integrating Trust Models . . . . . . . . . . . . . . . . . . . . . . 138
6.5.1 BRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5.2 ForTrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.5.3 ReGReT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7 Arguing about Trust 155
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2 Pinyol’s Argumentation Method . . . . . . . . . . . . . . . . . . 156

7.2.1 An ontology of reputation . . . . . . . . . . . . . . . . . . 157
7.2.2 Trust as an inferential process . . . . . . . . . . . . . . . . 157
7.2.3 Arguing about trust . . . . . . . . . . . . . . . . . . . . . 159

7.3 Extending the Argumentation Language . . . . . . . . . . . . . . 163
7.4 Dialogue Protocol for Personalising Trust . . . . . . . . . . . . . 166

7.4.1 A formal dialogue protocol . . . . . . . . . . . . . . . . . 166
7.4.2 A dialogue for recommending trust . . . . . . . . . . . . . 169

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.1 The simulation environment . . . . . . . . . . . . . . . . . 176
7.5.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . 177

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

IV Comparison and Conclusions 181

8 Conclusions, Comparison and Future Work 183
8.1 Conclusions and Contributions . . . . . . . . . . . . . . . . . . . 183

8.1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . 184
8.1.2 Additional findings . . . . . . . . . . . . . . . . . . . . . . 185

8.2 Comparing Adaptation to Alignment . . . . . . . . . . . . . . . . 186
8.2.1 Environmental considerations . . . . . . . . . . . . . . . . 188
8.2.2 Complexity of the agents . . . . . . . . . . . . . . . . . . 189
8.2.3 The cost of communication . . . . . . . . . . . . . . . . . 190
8.2.4 Prototype applications . . . . . . . . . . . . . . . . . . . . 192

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.3.1 Trust Alignment . . . . . . . . . . . . . . . . . . . . . . . 195
8.3.2 Trust Adaptation . . . . . . . . . . . . . . . . . . . . . . . 196
8.3.3 Combining Trust Alignment and Adaptation . . . . . . . 197

v





List of Figures

3.1 Schematic overview of the Trust Alignment process . . . . . . . . 36
3.2 A trust channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 A UML-like representation of LDomain . . . . . . . . . . . . . . . 49

4.1 An example of a decision tree for translating the other’s trust
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Matrices for possible combinations of trust values for the least and
most complex case, with on the rows the own trust evaluation and
columns the other’s. . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Average accuracy of trust evaluations, using the different meth-
ods for processing witness information. When no information is
available about the target, the evaluator uses the corresponding
baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 The random strategy for partner selection . . . . . . . . . . . . . 97
4.5 Slow degradation from a domain with no lying agents to a domain

with all lying agents . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 The MCS specification of a BDI-agent, without the contexts re-
quired for reasoning about trust. Nodes are contexts and (hy-
per)edges are bridge rules, with the labels corresponding to those
in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 The MCS specification of a BDI-agent that can reason about
trust. This is an extension of Figure 6.1 (on page 126), whose
bridge rules are colored grey. The bridge rules added for reason-
ing about trust are black, with labels corresponding to those in
the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Taxonomy of social evaluations in the LRep ontology for talking
about trust. Copied from Pinyol [2011]. . . . . . . . . . . . . . . 158

7.2 An example of an argument. The rectangular nodes are bdus. . . 165
7.3 Diagram of the choices the seeker can make during a dialogue for

trust recommendations . . . . . . . . . . . . . . . . . . . . . . . . 172
7.4 Experimental results. The x-axis represents the knowledge in the

system and the y-axis the quality of the evaluation. . . . . . . . . 178

vii





Abstract

In open multi-agent systems, trust models are an important tool for agents to
achieve effective interactions; however, trust is an inherently subjective concept,
and thus for the agents to communicate about trust meaningfully, additional
information is required. This thesis focuses on Trust Alignment and Trust Ad-
aptation, two approaches for communicating about trust.

The first approach is to model the problem of communicating trust as a
problem of alignment. We show that currently proposed solutions, such as com-
mon ontologies or ontology alignment methods, lead to additional problems, and
propose trust alignment as an alternative. We propose to use the interactions
that two agents share as a basis for learning an alignment. We model this using
the mathematical framework of Channel Theory, which allows us to formalise
how two agents’ subjective trust evaluations are related through the interactions
that support them. Because the agents do not have access to each other’s trust
evaluations, they must communicate; we specify relevance and consistency, two
necessary properties for this communication. The receiver of the communicated
trust evaluations can generalise the messages using θ-subsumption, leading to a
predictive model that allows an agent to translate future communications from
the same sender.

We demonstrate this alignment process in practice, using Tilde, a first-order
regression algorithm, to learn an alignment and demonstrate its functioning in
an example scenario. We find empirically that: (1) the difficulty of learning an
alignment depends on the relative complexity of different trust models; (2) our
method outperforms other methods for trust alignment; and (3) our alignment
method deals well with deception.

The second approach to communicating about trust is to allow agents to
reason about their trust model and personalise communications to better suit the
other agent’s needs. Contemporary models do not allow for enough introspection
into — or adaptation of — the trust model, so we present AdapTrust, a method
for incorporating a computational trust model into the cognitive architecture of
the agent. In AdapTrust, the agent’s beliefs and goals influence the priorities
between factors that are important to the trust calculation. These, in turn, define
the values for parameters of the trust model, and the agent can effect changes
in its computational trust model, by reasoning about its beliefs and goals. This
way it can proactively change its model to produce trust evaluations that are

ix



better suited to its current needs. We give a declarative formalisation of this
system by integrating it into a multi-context system representation of a beliefs-
desires-intentions (BDI) agent architecture. We show that three contemporary
trust models can be incorporated into an agent’s reasoning system using our
framework.

Subsequently, we use AdapTrust in an argumentation framework that allows
agents to create a justification for their trust evaluations. Agents justify their
evaluations in terms of priorities between factors, which in turn are justified by
their beliefs and goals. These justifications can be communicated to other agents
in a formal dialogue, and by arguing and reasoning about other agents’ priorities,
goals and beliefs, the agent may adapt its trust model to provide a personalised
trust recommendation for another agent. We test this system empirically and
see that it performs better than the current state-of-the-art system for arguing
about trust evaluations.

x



Acknowledgements

I have been told that, despite the effort that goes into writing a doctoral thesis,
nobody ever reads one. I would therefore like to start by thanking you, the
reader, for proving that statement wrong! However, it is a fact that you would
not be reading this thesis, if not for the help and support of a great many people.

The first and foremost of these are, of course, my Ph.D. supervisors, Jordi
Sabater-Mir and Marco Schorlemmer. Despite only having met me in a Skype
meeting, they gave me the opportunity to start the adventure that was doing
my Ph.D. in Barcelona. Upon my arrival I was greeted with two topics I knew
nothing about: trust on the one hand, and channel theory on the other. My
task? To use the latter to enable communication about the former. How? Read
this thesis and see. Marco and Jordi’s enthusiasm for the research we set out to
do, their inspiration and advice made this work possible.

Equally important has been the support of my lovely girlfriend, Safae Jabri,
who put up with my endless, unintelligible, attempts to explain what I was
doing and why it was, or was not working. She has been at my side through
the highs and lows of this project, with her comfort when I was frustrated and
her enthusiasm when I was excited. For that (and for doing the dishes) I am
eternally grateful.

I would also like to thank my parents and brother in Holland. My parents
have always encouraged and stimulated my interest in science, and supported
my decision to pick up and move to Spain when the opportunity arose. I am
thankful to my Dutch friends, who are always up for a beer or a board game
when I’m back for a visit.

I do not know how I would have survived my thesis without the opportunity
to blow off some steam from time to time. Sailing almost every weekend has been
fantastic and I thank Francesc “Kiko” Pares, his son Marc, and everybody else
with whom we crewed the Tete in the many regattas we won, or lost, but always
had fun in. Aside from great crew mates they are also great drinking buddies
and the late nights with gin-tonics, caipirinhas and laughs are equally as memor-
able as the sailing race before. Of course, for winding down after a day of work,
my friends and colleagues at the IIIA have been amazing. My thanks to Tomáš
Treščák, Marc Pujol, Norman Salazar, Toni Penya, Juan-Antonio Rodríguez,
Jesús Cerquides, Pablo Almajano, Pere Pardo, Marco Cerami, José-Luis Fernán-
dez, Mertitxell Vinyals, Isaac Pinyol, Mari-Carmen Delgado, Angela Fabregues

xi



and Jesús Giráldez for being great colleagues and friends, and whether at the
Vila or elsewhere, always good for a party. A special shout-out to Marc Esteva,
who left us too early. May he rest in peace.

My 3-month stay at the KU Leuven in Belgium was a great success thanks
to the hospitality of all the people there. Obviously a huge thanks to Hendrik
Blockeel for accepting my stay, supervising my work there, and helping me get
started. Thanks to Jan Ramon, Leander Schietgat and Kurt de Grave for sharing
their office with me, Daan Fierens for his help and troubleshooting with Tilde
and Celine Vens for assisting remotely with the same. Finally thanks to Bogdan
Moldovan, the many bars in Leuven and the hundreds of Oranje supporters for
making my stay fun, as well as productive!

This thesis would not have been possible without the Spanish government’s
generous funding through the Agreement Technologies project (CONSOLIDER
CSD2007-0022, INGENIO 2010) and I am grateful to Carles Sierra for his lead-
ership of this project, giving me the opportunity to write this thesis and present
parts of it at various conferences and workshops. I am also grateful for the
funding provided by the Generalitat de Catalunya grant 2009-SGR-1434, the
European Union’s COST Action on Agreement Technologies (ICO801) and the
Spanish project CBIT (TIN2010-16306). My visit to Belgium was funded by the
Spanish government’s grant for mobility (EDU/2933/2009).

Finally, I would like to thank everybody who I have forgotten to thank. If I
have forgotten to acknowledge you, I am in remiss. I want you to know that I
am terribly sorry and will be sure to rectify this oversight in any future thesis I
write.

–Andrew Koster

xii



Part I

Introduction





Chapter 1

Introduction

Trussst in me, jussst in me
Shhhut your eyes and trussst in me
You can sssleep, sssafe and sssound
Knowing I am around

–Kaa, in Disney’s The Jungle Book

The philosopher and statesman Francis Bacon said that “the greatest trust
between man and man is the trust of giving counsel” [1625]. When we rely on
someone’s advice, we trust them to know not only what is best for them, but also
what is best for us. We expect them to counsel us, taking into account our wishes
and goals. This is equally true for counsel about trust. We trust an adviser to
recommend people who are trustworthy for accomplishing our purposes.

Trust is rapidly being recognised as an essential mechanism for computational
agents in social multi-agent systems [Luck et al., 2005], but computational trust
is still a young field of research. The main focus has so far been to discover,
and improve upon, mechanisms for the modelling of trust, whereas the commu-
nication of that trust has received less attention; however, as more, and better,
computational trust models have been designed, an important observation must
be made: trust for computational agents is equally subjective as trust is for
humans. Agents, human or computational, must trust other agents in a certain
environment, and for a specific purpose. It is, therefore, important that, even if
an agent is a trusted adviser, his advice cannot simply be taken at face value.
We must, additionally, have an assurance that the advice is applicable to our
specific environment and purpose.

In this thesis we describe two different ways of providing a computational
agent with this assurance. The first is Trust Alignment, which gives the receiver
of a trust evaluation a way of translating from the recommender’s frame of
reference into the receiver’s own. The second is Trust Adaptation, which allows
the receiver and recommender to argue about both the environment, and purpose
for which the trust evaluation is necessary. This allows the recommender to
personalise its trust evaluation to the seeker’s frame of reference.

3



4 Chapter 1. Introduction

1.1 Motivation

Trust is, without doubt, an indispensable attribute of a healthy society. Recent
history is an important reminder of this fact: while the financial crisis of the
late-2000s was the culmination of various different factors, many economists
blame it, at least partly, on a lack of trust among the major financial entities
involved [Guiso et al., 2008]. This is an impactful example of how trust, or the
lack of it, can influence our lives, but we do not need to look at such global
examples alone to see the necessity for trust in our society. We trust that cars
will stop for a pedestrian crossing, that the plumber will fix our kitchen sink
(and will not steal our television) and that, if my girlfriend comes home late,
I will have done the cooking. Trust permeates our everyday life, and there is
strong indication that trust is a fundamental concept, not just in human society,
but in many animal societies as well [Bekoff and Pierce, 2009].

In this discussion we have so far left out one very important aspect, and
that is why we trust, or do not trust, someone. This question will return in
many different forms throughout this thesis, but in this case we are simply
interested in its most direct interpretation: we trust someone based on some
amount of information that we have about his (or her) behaviour. In the simplest
case this is information obtained from direct experiences, or past interactions
with that person; however, in our modern society, social groups are far too
large for direct experiences alone to provide enough information about all the
people we must choose to trust, or not. In all of the animal kingdom, it seems
to be a unique characteristic of humans, that we form complex relationships
with so many people, and there is considerable evidence that this is due to
our use of language [Dunbar, 1993] and the ability to spread reputation [Fehr
and Fischbacher, 2003; Conte and Paolucci, 2002]. Especially interesting is the
simulation by Conte and Paolucci. This simulation shows that a society’s overall
utility is improved far more if the agents have the ability to spread reputation,
than if they merely have the ability to evaluate trust based on direct experiences.
It thus demonstrates that the ability to communicate about trust is an essential
part of forming effective trust evaluations.

Why we trust, however, is not just based on information about someone’s
behaviour. Another influence is the beliefs, goals and disposition that we have,
or, simply put, our frame of reference. A central assumption in this thesis is
that everybody trusts differently, with which we mean that, given the exact same
information about someone’s behaviour, it is entirely possible that one person
decides to trust that person, and another person decides not to. Trust is thus
inherently subjective, which greatly complicates the communication we discussed
above. In communication between humans we can easily solve this. We have
no problems asking why someone is trustworthy, and subsequently, interpreting
this information within our own frame of reference. The question we set out to
answer in this thesis is:

How can computational agents communicate their subjective trust
evaluations in a meaningful manner?



1.1. Motivation 5

An obvious prior to the central question of this thesis is, obviously, why we
should care about computational agents trusting in the first place, and secondary
to that, why we should care about them communicating their evaluations. First
off, we need to state that we take the concept of a computational agent in
the sense that it is an intelligent agent. It is a piece of software “whose simplest
consistent description requires the intentional stance” [Wooldridge and Jennings,
1995]. The intentional stance is a term in folk psychology, popularised and
properly defined by Dennett [1987, page 17]:

Here is how it works: first you decide to treat the object whose
behaviour is to be predicted as a rational agent; then you figure out
what beliefs that agent ought to have, given its place in the world
and its purpose. Then you figure out what desires it ought to have,
on the same considerations, and finally you predict that this rational
agent will act to further its goals in the light of its beliefs. A little
practical reasoning from the chosen set of beliefs and desires will in
most instances yield a decision about what the agent ought to do;
that is what you predict the agent will do.

In other words, an intelligent agent is a piece of software, whose simplest de-
scription requires it to be described in terms of a rational entity that reasons
based upon its personal beliefs and desires. This, in contrast to other pieces of
software, whose simplest description is given in terms of states and reactions, an
algorithmic description of its function or any other way to describe the program
without endowing it with intentions.

We are specifically interested in those computational agents that form part of
a multi-agent system. Agents in such a system must interact with one another;
however, trust is still unnecessary if all agents are programmed with the same
beliefs and desires, as is often the case in swarm computing [Fernandez-Marquez,
2011]. Things start to get interesting if there are multiple agents with conflicting
goals and the agents are required to cooperate, coordinate and negotiate with
each other. Multi-agent systems with these characteristics are being designed
for application in, among other domains, e-commerce, autonomous vehicles, se-
mantic web services, sensor networks and the smart electricity grid. In these
environments, the agents are required to make choices about whom to cooper-
ate, coordinate or negotiate with, and as in human (and animal) societies, trust
is an indispensable tool for aiding in this choice [Luck et al., 2005].

Communication about trust is important for a similar reason. When it is ne-
cessary for an agent to interact with agents that it has had no prior experience
with, communication about trust allows it to gather valuable information, al-
lowing it to choose whom to interact with. Furthermore, because we are talking
about intelligent agents, each with its own beliefs and desires, these trust eval-
uations may be equally subjective as they are to humans, and therefore agents
must also be able to communicate why they evaluate another as trustworthy.
Little work has been done in allowing agents to, on the one hand, communicate
such descriptions, and on the other hand, interpret them. With the methods we



6 Chapter 1. Introduction

provide, we aim to extend both the theoretical and experimental work in this
interesting and important field of research.

1.2 Main Contributions

This thesis contributes to the field of computational trust for multi-agent systems
by answering the question posed in the previous section in two different ways,
and uncovering interesting concepts along the way.

1.2.1 Trust Alignment

The first approach to answering how agents can communicate subjective trust
evaluations is given through what we call Trust Alignment. As the name im-
plies, this approach is heavily influenced by approaches to semantic alignment
and allows us to crisply define the problem of communicating subjective trust
evaluations, as well as a solution. We show that our computational solution,
FORTAM, improves upon the state of the art. The contributions of Trust Align-
ment are thus:

• We give a mathematical model of the problem of aligning sets of subjective
trust evaluations. Specifically, we assume computational trust models are
algorithms for calculating a trust evaluation, based upon a set of interac-
tions. The subjectivity of trust can then be identified by understanding
that, given a set of interactions that are shared between two different
agents, the trust evaluations each agent’s algorithm calculates are differ-
ent. By modelling this in Channel Theory [Barwise and Seligman, 1997],
a mathematical framework of information, we gain a deeper understand-
ing of the problem, its relation to other alignment problems, and most
importantly, possible solutions.

• By placing some restrictions on the language used for describing inter-
actions, we can move from the mathematical model of the problem to a
theoretical description of a solution, using machine learning techniques
to allow an agent to automatically learn an alignment between another
agent’s subjective trust evaluations, and its own. By using the description
of the interactions, this alignment is sensitive to the context in which a
trust evaluation is made.

• We analyse the requirements for communication in this framework and
identify the relevance and consistency as necessary, if not sufficient, prop-
erties that the sender must adhere to for the receiver to be able to learn an
alignment. We show that, if the sender’s translation, between its internal
description of the shared interactions and the shared language for describ-
ing these, forms a Galois connection, then this translation is guaranteed
to maintain relevance and consistency.



1.2. Main Contributions 7

• We introduce the First-Order Regression Trust Alignment Method, or
FORTAM. This method uses Tilde [Blockeel and De Raedt, 1998], a
machine-learning algorithm, to perform Trust Alignment. We analyse
its properties empirically with regards to the number of shared interac-
tions, and especially, the complexity of the trust models. We introduce a
novel method for measuring the difference between two computational trust
models and postulate that this corresponds to the difficulty of learning an
alignment between the two agents’ evaluations. FORTAM, in addition to
providing an alignment of subjective trust evaluations, is also capable of
dealing with a significant amount of deception on the part of the sender.

1.2.2 Trust Adaptation

The second approach we take in this thesis is to consider the problem from the
perspective of argumentation, rather than alignment. Whereas an alignment is
the process of finding correspondences, and differences, between concepts, an
argumentation dialogue allows agents to attempt to reach a consensus through
logical reasoning. We use argumentation in Trust Adaptation to discover where
two agents’ trust models differ, and more importantly, why they differ. Such
argumentation may result in one, or both agents, adapting its trust model, pos-
sibly temporarily, so that the sender can better personalise its trust evaluation
to the beliefs and desires of the receiver. We identified the lack of integra-
tion between computational trust models and intelligent agent models, and con-
sequently rectify this with the introduction of AdapTrust, a cognitive framework
for integrating a computational trust model into an intelligent agent. The main
characteristics of AdapTrust are:

• AdapTrust introduces a mechanism for reasoning about the agent’s trust
model, thereby adapting this trust model to new goals or changes in the
environment. This is done by providing the tools to integrate a com-
putational trust model into the beliefs-desires-intentions (BDI) architec-
ture [Rao and Georgeff, 1991]. Our framework is unique in that it places
very few constraints on the computational trust model used, as opposed
to most cognitive trust models, which are designed with a specific method
for computing trust in mind.

• We use a multi-context system [Giunchiglia and Serafini, 1994] to formalise
an extension of the classical BDI logic for intelligent agents. Multi-context
systems have the distinct advantage of supporting modular architectures
and encapsulation, making them easy to implement. This also holds for
AdapTrust, in which we incorporate the logics for reasoning about the trust
model in separate contexts. An additional advantage of the formalisation
in a multi-context system is that the logic is easily extensible, if required.

• We analyse the applicability of AdapTrust by demonstrating how to in-
corporate three, very different, trust models into AdapTrust and we show



8 Chapter 1. Introduction

how reasoning about, and adaptation of, the model adds additional func-
tionality.

We use AdapTrust as the mechanism for adapting the trust model in the
argumentation dialogue for Trust Adaptation. The main features of Trust Ad-
aptation are:

• We improve upon Pinyol’s argumentation framework [2011], an existing ar-
gumentation dialogue for trust, by extending the argumentation language
down to the beliefs and desires of an agent. This allows an agent to build
a coherent justification for a trust evaluation all the way up from its basic
cognitive concepts.

• We provide a dialogue protocol for a structured dialogue, in which a
recommendation-seeker can ask a recommendation-supplier exactly why
it has sent a specific trust evaluation. Furthermore, we show how the
recommendation-seeker can compare the choices the supplier has made in
its trust model to the choices in its own trust model and decide on a course
of action. Such an action may be to adapt its own model, to ask, or per-
suade, the supplier to adapt its trust model, or even to enter into a separate
persuasion dialogue about the beliefs underlying the trust models.

1.3 Related Publications

The work presented in this thesis has generated the following publications, in
reverse chronological order:

• Andrew Koster, Marco Schorlemmer, and Jordi Sabater-Mir. Opening
the Black Box of Trust: Reasoning about Trust Models in a BDI Agent.
Journal of Logic and Computation, In Press, doi:10.1093/logcom/EXS003.

• Andrew Koster, Marco Schorlemmer, and Jordi Sabater-Mir. En-
gineering Trust Alignment: Theory, Method and Experimenta-
tion. Journal of Human-Computer Studies(2012), Forthcoming 2012,
doi:10.1016/j.ijhcs.2012.02.007.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Personalizing
Communication about Trust. In Proceedings of the Eleventh International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’12),
Valencia, Spain, Forthcoming 2012. IFAAMAS.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Trust Align-
ment: a Sine Qua Non of Open Multi-Agent Systems. In Robert Meers-
man, Tharam Dillon, and Pilar Herrero, editors, Proceedings of Cooper-
ative Information Systems (CoopIS 2011), volume 7044 of LNCS, pages
182–199, Hersonissos, Greece, 2011. Springer.

http://dx.doi.org/10.1093/logcom/EXS003
http://dx.doi.org/10.1016/j.ijhcs.2012.02.007


1.4. Overview and Structure of the Thesis 9

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Talking
about Trust in Heterogeneous Multi-Agent System. In Proceedings of the
Doctoral Consortium of the Twenty-Second International Joint Conference
on Artificial Intelligence (IJCAI’11), pages 2820–2821, Barcelona, Spain,
2011. AAAI Press.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Induct-
ively Generated Trust Alignments Based on Shared Interactions (Exten-
ded Abstract). In Proceedings of the Ninth International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’10), pages 1571–
1572, Toronto, Canada, 2010. IFAAMAS.

• Andrew Koster. Why does trust need aligning? In Proceedings of the
Thirteenth Workshop “Trust in Agent Societies” at AAMAS’10, pages 125–
136, Toronto, Canada, 2010. IFAAMAS.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Engineer-
ing Trust Alignment: a First Approach. In Proceedings of the Thir-
teenth Workshop “Trust in Agent Societies” at AAMAS’10, pages 111–122,
Toronto, Canada, 2010. IFAAMAS.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. A Formaliz-
ation of Trust Alignment. In Sandra Sandri, Miquel Sánchez-Marré, and
Ulises Cortes, editors, AI Research and Development, volume 202 of Fron-
tiers in Artificial Intelligence and Applications, pages 169–178, 2009. IOS
Press.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. An
Interaction-oriented Model of Trust Alignment. In Proc. of the 13th
Conference of the Spanish Association for Artificial Intelligence (CAEPIA
2009), pages 655–664, Sevilla, Spain, 2009.

• Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Towards an
Inductive Algorithm for Learning Trust Alignment. In Tina Balke, Serena
Villata, and Daniel Villatoro, editors, Proceedings of the 11th European
Agent Systems Summer School Student Session (SS-EASSS’09), volume
47 of Bayreuth Reports on Information Systems Management, pages 5–11,
Turin, Italy, 2009. Universität Bayreuth.

1.4 Overview and Structure of the Thesis

This thesis is structured into four parts.

Part I: This part contains this introductory chapter and motivates our research.
We have summarised our main contributions and provided an overview of
the publications that the work has generated.



10 Chapter 1. Introduction

Part II: The second part of this thesis deals with Trust Alignment. In
Chapter 2 we lay the groundwork, giving a complete description of what
a computational trust model is, and surveying the state-of-the-art work in
communicating about trust. Next, in Chapter 3 we describe Trust Align-
ment formally, using the mathematical framework of Channel Theory [Bar-
wise and Seligman, 1997] to describe the problem, and inductive logic pro-
gramming (ILP) [De Raedt, 2008] as a basis for providing a solution. Also
in Chapter 3, we discuss the concepts of relevance and consistency and
their necessity in order to learn an alignment. We then move on to the
practical method, FORTAM, that is an implementation of the method de-
scribed in the theory. We demonstrate its viability and compare it to other
state-of-the-art methods for communicating about trust in Chapter 4.

Part III: The chapters in this part describe the second approach to communic-
ating about trust: Trust Adaptation. In Chapter 5 we discuss the state of
the art in cognitive trust models and discuss the budding field of research
that combines argumentation and trust. We then present AdapTrust, our
own integration of computational trust with a cognitive agent framework,
in Chapter 6. AdapTrust uses a multi-context system [Giunchiglia and Ser-
afini, 1994] to specify an extension of the beliefs-desires-intentions (BDI)
logic for intelligent agents [Rao and Georgeff, 1991]. We demonstrate Ad-
apTrust’s applicability by showing how three contemporary trust models
can be incorporated into it and how this allows an agent to proactively
adapt its trust model to the changing environment, and the goals it is
trying to achieve. Subsequently, in Chapter 7, we use this ability to adapt
the trust model in an argumentation framework. This allows agents to
justify their trust evaluations and communicate about these justifications.
We describe a dialogue protocol for performing this communication and
demonstrate empirically that agents that can adapt and provide personal-
ised trust recommendations perform better than agents that do not have
this capability.

Part IV: We conclude with a comparison between Trust Alignment and Ad-
aptation. We discuss the strengths and weaknesses of both approaches
and discuss the types of situations in which either, or both, can be ap-
plied. Finally we present our conclusions and discuss some future lines of
research.



Part II

Trust Alignment





Chapter 2

Trust Alignment: State of the
Art

You can know the name of a bird in all the languages of the world, but when
you’re finished, you’ll know absolutely nothing whatever about the bird...
So let’s look at the bird and see what it’s doing – that’s what counts.

–Richard Feynman

2.1 Introduction

This part of the thesis bears upon what we call Trust Alignment. Trust Align-
ment deals with the problem of communicating trust by finding correspondences
between two agents’ conceptualisations of trust. These correspondences can then
be used to translate the other’s communications into the own frame of reference.
We give a formal description of this in Chapter 3; and in Chapter 4 we describe
FORTAM, a practical implementation of trust alignment, and we evaluate it
empirically. Before diving into the details, however, we review state-of-the-art
methods for dealing with the problem of communicating trust. We treat compu-
tational trust models in a very abstract manner, because we are more interested
in communication than in the computation of trust itself. Consequently, we
do not give a complete overview of contemporary computational trust models.
Nevertheless, because of the large number of definitions of what trust is, and
what a computational trust model should do, it is necessary to describe our own
take on the matter and give a brief review of computational trust models. We
do this in the next section and in Section 2.3 we discuss the various approaches
to communicating trust.

13



14 Chapter 2. Trust Alignment: State of the Art

2.2 Trust Models

Trust has many different definitions, and its use is studied in, among others,
philosophy, economy, psychology and sociology, both in classical works [Plato,
370BC; Locke, 1689; Hume, 1737] and in more recent works [Gambetta, 1988;
Dasgupta, 1988/2000; Bromley, 1993; Celentani et al., 1996]. One thing all these
studies agree on is that trust is subjective. Whether a target is trustworthy is
a subjective, personal, consideration on the part of the evaluator. In this thesis
we rely heavily on the theory of trust as described by Castelfranchi and Falcone
[2010], who state that “trust is (conscious and free, deliberated) reliance based
on a judgement, on an evaluation of Y’s virtues, and some explicit or entailed
prediction/expectation”. In other words, trust is a deliberated decision to rely
on another agent to perform some action, after evaluating the probability of the
result being satisfactory. In contrast to this socio-cognitive model, computational
trust models do not often deal with the decision to trust, but are rather methods
for equipping an agent with the tools for performing the evaluation [Pinyol and
Sabater-Mir, In Press].

Seen in the light of Castelfranchi and Falcone’s definition of trust, it is un-
surprising that communication about trust is problematic. Even if we ignore the
cognitive processes involved in making a conscious decision based upon an eval-
uation, Castelfranchi and Falcone say that the evaluation itself is a subjective
judgement that takes into account the criteria upon which an agent will base
its decision. In Section 2.3 we shall discuss why the communication of such
personal, subjective evaluations is problematic, but first it remains to be shown
that computational trust models fit the role we have assigned them: methods
for computing such subjective and personal judgements. In the continuation
of this section we give our own, abstract definition of what a computational
trust model is and what its principal components are, and describe a number of
state-of-the-art trust models in the light of this definition.

There are already a number of surveys of trust models in the literature
[Sabater and Sierra, 2005; Jøsang et al., 2007; Ramchurn et al., 2004; Pinyol
and Sabater-Mir, In Press] that give a good overview of computational trust
models. These surveys do a good job of describing the differences, both concep-
tual and computational, among the various models and are helpful for choosing
among the models for a specific purpose; however, we are more interested in
considering, from an algorithmic perspective, what all these trust models do.
This perspective also allows us to explain how and where an agent’s subjective
viewpoint plays a role in the computation of a trust evaluation.

2.2.1 Computational trust models

When talking about trust in a multi-agent system, the first thing to note is
that we are talking about trust in computational entities and not humans. As a
result, any model of trust we take under consideration should be a computational
model. With this we mean that the description of the trust model must define an
algorithm for obtaining a trust evaluation from a set of inputs. An algorithm is a



2.2. Trust Models 15

computational method for computing the output of a partial function: given an
input in the function’s domain for which the function is defined, the algorithm
computes a unique output in the function’s range. In the most abstract sense,
a trust model is thus a Turing computable function, or, put in another way,
a computational trust model is a computational process defined by a Turing
machine, and as such, is a method for calculating the output of a function.

This function has as input the different pieces of evidence that an agent con-
siders pertinent for evaluating trust, such as direct experiences, communicated
evaluations or reputation. As output it produces an evaluation of a target, based
on the evidence provided. This is an agent’s evaluation of the target’s virtues,
and based upon it, the evaluator can decide whether or not to delegate some
task to the target, in order to achieve some goal. For the moment we disregard
the context-sensitive nature of trust. In the general case an agent’s evaluation
of a target is dependent upon the task the target should perform and the goal
an evaluator wants to achieve; furthermore, the beliefs an agent has about the
environment can also influence how an agent’s trust model computes a trust
evaluation. We return to these aspects of trust in Chapter 5, when we discuss
cognitive trust models, but for the purpose of Alignment it is sufficient to regard
trust as independent of these issues.

The majority of computational trust models can be considered as monolithic
“black boxes” by the agent using them: the input is provided and the output
is generated, ready for the agent to use, without the agent needing to know
anything about how its model actually works. This makes it necessary for the
designer to customise the trust model, in order to incorporate an agent’s pref-
erences. We view trust as a personal, subjective, evaluation, and for it to be
personalised it must take the agent’s own criteria for evaluating the trustworthi-
ness of a target into account.

Most computational trust models can be split into two separate parts. The
first processes single pieces of evidence. This evidence can be an agent’s direct
experience, another agent’s communicated evaluation, reputation, or any other
evidence an agent might consider pertinent for evaluating trust. Each piece of
evidence is evaluated in such a way that it can be used as input in the second
part of the algorithm, that aggregates the various different types of evidence in
order to best predict whether the target will behave in a trustworthy manner
in a future interaction. This second part is the focus of most descriptions of
trust models in the literature. The different trust models give a different im-
portance to the various sources of evidence, make different assumptions about
their representation, and use different theoretical foundations for aggregating
the evidence; nevertheless, in essence, they all perform the same function —
they try to provide the most accurate evaluation of a target, given the evidence
available.

Sabater and Sierra [2005] survey existing trust models and classify them along
a number of dimensions. Among other dimensions, they classify trust models
according to the sources of information that a model uses as evidence, and they
identify the following sources:



16 Chapter 2. Trust Alignment: State of the Art

• Direct experiences. These are subdivided into interactions, in which the
evaluator itself was an active participant, and observations, in which other
agents in the environment participated, but which the evaluator observed
in some way. Either way, these are normally the most reliable source of
information, although it may not always be easy to obtain direct experi-
ences.

• Witness information. These are communicated evaluations from other
agents in the system. As Sabater and Sierra point out, such communicated
information suffers from the obvious problem that witnesses, possibly de-
liberately, manipulate or hide pieces of information; however, in this thesis
we argue that it also suffers from the inherent subjectivity of trust, and
we focus on methods for solving this.

• Sociological information. This is information that can be learnt from ana-
lysing the network of social relations that the agents have with one another.

We would like to add that some trust models also take ontological information
into account, which provides information on whether two agents are similar to
one another, regardless of the network structure. We would also consider repu-
tation as separate from witness information, because the problem of subjectivity
plays a far smaller role in using reputation. Reputation is an aggregation of what
many different agents say about a target, and the problem of trust evaluations
being subjective must, therefore, be dealt with when determining the reputation.
It is often defined as “what a group of agents say about a target”, or, in other
words, what a group of heterogeneous agents have agreed on to such an extent
that they all say the same thing, although they might not actually believe what
they say. Reputation, therefore, does not suffer from the same problem as direct
communication. Instead, it has the problem that it is a very general estimate of
trustworthiness, while agents require an evaluation for a specific situation.

The four sources of information that Sabater and Sierra mention, plus onto-
logical information and reputation, are not exclusive, but we identify these as
the most important types in the current literature. Using this information, a
trust model computes a single output: the expected trustworthiness of a target.
Trust models can, very generally, be captured by the schema of Algorithm 1.

The function calctrust is the main focus of most of the literature on com-
putational trust models. Additionally, there are works that have a secondary
focus on one, or more, of the functions in the first part. For instance, ReGreT
[Sabater and Sierra, 2001] and the model proposed by Rehák and Pěchouček
[2007] describe different ways of dealing with the ontological aspects of trust.
In this thesis we focus on the process_witness function. Other models that
give a detailed account of this function are, for instance, TRAVOS [Teacy et al.,
2006], BLADE [Regan et al., 2006] and Abdul-Rahman and Hailes’ model [2000],
which we will describe in more detail in Section 2.3. First, we show how the sub-
jectivity of trust is expressed in computational trust models, using the schema
in Algorithm 1 as our guide.



2.2. Trust Models 17

Algorithm 1: Trust Model Schema
Input: T , the target to be evaluated
Input: DI, a set of direct interactions
Input: DO, a set of direct observations
Input: WI, a set of communicated evaluations
Input: SI, sociological information
Input: OI, ontological information
Input: Rep, the reputation of target T
Outcomes := process_experiences(DI,DO)
Recommends := process_witness(WI)
Network_vals := process_network(SI)
Role_vals := process_roles(OI)

trust := calctrust(T,Outcomes,Recommends,Network_vals,Role_vals,Rep)

Output: trust, the trust evaluation of target T

2.2.2 A brief survey of trust models

Subjectivity of trust evaluations is caused by two different factors. The first
is that all agents have different evidence for their trust evaluations. In other
words, if we look at Algorithm 1, the sets DI, DO andWI will differ from agent
to agent, and in some models, the same holds for SI, OI and Rep; although
there are also models in which these are treated as shared information. We do
not consider this factor as problematic, in fact, we argue that this is a desired
property: agents can provide each other with new information precisely because
they have different evidence; however, the second factor that causes subjectivity
does create problems when communicating about trust. The second factor is
that each agent uses a different way of evaluating the evidence. In other words,
the functions process_experiences, process_witness, process_network, pro-
cess_roles and calctrust can be different from agent to agent. Let us start with
subjectivity in the easiest place to identify it: the processing of an agent’s own
direct experiences.

Direct experiences

Most trust models ignore how the process_experiences function works and
simply assume that it provides evaluations of direct experiences, using a repres-
entation that the calctrust function can use. There are some notable exceptions.
Sierra and Debenham [2005] describe an information-based trust model, in which
they describe precisely how an agent can evaluate a target based on a single in-
teraction. In their model any interaction is accompanied by a contract (although
such a contract can simply be considered as the expected outcome of an inter-
action). They use a probability distribution over the possible outcomes of an
interaction, and use, as evaluation of an interaction, one minus the normalised



18 Chapter 2. Trust Alignment: State of the Art

negative entropy of this probability distribution. The evaluation of a single dir-
ect experience is thus a measure of how trustworthy the target is based on that
experience, because, as Sierra and Debenham state, “the more trust the less dis-
persion of the expected observations and therefore the closer to 1 [the measure
gets]”.

It is immediately obvious that the outcome of this model depends very heavily
on the contract, or expectations, of the evaluating agent. If the agent considers
certain aspects of an interaction unimportant, it will not include these in the
contract. Two agents who consider different aspects of an interaction important
will thus have different contracts, and resultingly, different evaluations of the
interaction, even if the interaction partner acts in exactly the same manner.

A very similar model is used by FORTrust [Hübner et al., 2009]. This is a
cognitive model of trust, in which the link is made explicit between, on the one
hand, an interaction, and on the other hand, the goal that the delegating agent
wishes to achieve with this interaction. The outcome of an interaction results in
the delegating agent updating its beliefs about the state of the environment, and
the evaluation of the interaction is a comparison between the goal state and the
actual resulting state. Thus the evaluation of an interaction is very dependent
on the specific goal an agent was trying to accomplish by interacting, similar to
Sierra and Debenham’s contract. ReGreT [Sabater and Sierra, 2001] introduces
the term outcome, which is used to indicate the evaluation of a pairing of an
initial contract and the result of an interaction. The same approach is used
in Repage [Sabater et al., 2006]. Similar to FORTrust, the specifics of this
evaluation are left to the designer.

In general, the descriptions of trust models in the literature assume that
some process_experiences function exists that is similar to the ones described
above. Yu and Singh state, in the description of their highly influential repu-
tation model, that the outcome of an interaction can be considered in terms of
Quality of Service, measured in a real value between 0 and 1 [Yu and Singh,
2002]. This also implies an expected service, even if they do not mention it
outright, and some measurable difference between the expected and provided
service. This way of dealing with direct experiences seems to be a widely adop-
ted approach. Abdul-Rahman and Hailes [2000] use a discrete representation,
in which an agent is evaluated as being “very untrustworthy”, “untrustworthy”,
“trustworthy” or “very trustworthy”, based on a single interaction, and while they
do not explain how such an evaluation is reached, the description implies a sim-
ilar method to the one above. The same can be said for BRS [Jøsang and Ismail,
2002], TRAVOS [Teacy et al., 2006] and Vogiatzis et al.’s model [2010], which
use an even more rudimentary representation: a binary value to indicate whether
the interaction was satisfactory or not. While such a coarse representation of
an outcome leaves little room for subjectivity, the process of evaluating will still
follow the same principle, and with enough differences between two agents’ ex-
pectations the problem will still arise. Because evaluations of interactions form
the foundations of all trust models, they all result in subjective evaluations.

Note that we are not claiming this is a bad thing. In fact, we think it is an



2.2. Trust Models 19

absolute necessity that agents evaluate others according to their own, personal,
criteria. This notwithstanding, if agents try to use witness information, this is
something that needs to be taken into account.

Witness information and reputation

Most trust models use direct experiences if they are available, and fall back
on the other sources of information if they are not. Using witness information
and reputation is the most common method of obtaining information that al-
lows the evaluator to estimate the trustworthiness of the target. Reputation, if
available at all, is considered in two different manners. The first is to consider
reputation using a centralised environment, where all agents can access a service
that provides reputation information, such as BRS [Jøsang and Ismail, 2002].
Considered like this, reputation is a generally available evaluation of any target
in the system. This is a practical implementation of the concept of reputation
described by Conte and Paolucci [2002], where information about reputation
spreads very rapidly throughout the system, and the agents, while having their
own evaluation (or in Conte and Paolucci’s words, image) of a target, share a
global reputation value for each target.

The second, and possibly more prominent, use of reputation is as an aggreg-
ated evaluation of witness information: each agent calculates its own “reputa-
tion” of a target, based on the communicated evaluations it receives. In this way,
reputation is more an implementation of the process_witness function than a
use of reputation, as it is understood in sociological sources. The computational
model that best distinguishes between the two different concepts of reputation
and witness information is Repage [Sabater et al., 2006], in which reputation is
clearly defined as the aggregation of what agents say about a target, whereas
a “communicated image” is what another agent claims it actually believes. The
difference between the two is that in the latter case the agent is taking respons-
ibility for the evaluation, while in the former it is communicating it, possibly in
the hope that it is useful to the receiver. In BDI+Repage [Pinyol et al., 2012]
this difference is modelled with a separate modality S for “say” in the logic for
an agent’s belief base, allowing Pinyol et al. to formalise the difference between
a communicated reputation and communicated image.

We maintain this distinction and consider the second use of the word reputa-
tion as a method for incorporating witness information, rather than a proper use
of reputation: the trust models clearly assume that the communicating agent
takes responsibility for the communicated evaluation. Moreover, some models,
such as LIAR [Vercouter and Muller, 2010], rely on this in order to “punish” the
communicator in case this information is erroneous. Regardless of whether the
computational trust model has mechanisms for detecting misleading agents, it
is generally acknowledged that there may be such deceptive agents in the envir-
onment. Consequently witness information is considered to be less reliable than
direct experiences. In addition to deception, the subjectivity of trust is prob-
lematic: even information from a completely honest witness is not as reliable
as direct observations, simply because the witness has different preferences and



20 Chapter 2. Trust Alignment: State of the Art

priorities for evaluating trust. This subjective bias is necessarily reflected in the
witness’ communication. As a result, there are a number of ways for processing
witness information in order to deal with deception and subjectivity, which we
discuss in Section 2.3 and we consider how our work, as described in this thesis,
improves on the state of the art in this area. Even though these methods may
also differ from trust model to trust model, and thus cause witness information
to have different effects in different models, we do not really consider the pro-
cessing of witness information as a source of subjectivity. Many of the models
for processing witness information do so in order to deal with the subjectivity
of trust evaluations, but because there are different ways of processing witness
information, once again taking preferences of the agent into account, these meth-
ods themselves add subjectivity. In other words, the fact that trust is subjective
in the first place leads to different ways for incorporating witness information be-
ing used, which in its turn adds further subjectivity to agents’ trust evaluations.
Despite this, we do not think this problem is very serious: the subjectivity ad-
ded by evaluating direct experiences differently, and using different aggregation
methods, is far greater.

Network and role information

Information about the underlying social network can be another valuable source
of information, although it is dependent on the environment whether such in-
formation is available and usable. With this type of information we mean, ex-
plicitly, that information about the social network is used as a separate source
of information in the trust model. Another, different, use of the social network
is for aggregating witness information. Yu and Singh [2002] take this approach
by simply filtering out any witnesses who are more than a certain, configurable,
number of hops away. Advogato [Levien and Aiken, 1998] and TidalTrust [Gol-
beck, 2006] use the social network in a similar, but more sophisticated manner:
the structure and paths to the source are taken into account in order to process
witness information. They do not take agents’ location in the network, number
of friends, or other such dimensions into account as a separate source of informa-
tion, unlike ReGreT [Sabater and Sierra, 2001]. ReGreT explicitly models what
Sabater and Sierra call “neighbourhood reputation” and this is calculated by
using a rule-based system that evaluates targets based on their position in the
network. For instance, if the evaluator trusts an agent A, and agent B has a
cooperative relationship with A, a rule in the neighbourhood reputation model
can give a positive evaluation to B, despite the agent having no direct interac-
tions or witness information about B. This can, once again, lead to different
evaluations between agents. Assuming the social network is fixed and shared,
there is still no reason to assume different agents have similar rules for this
neighbourhood reputation. If they don’t, their process_network functions will
result in different outputs given the same inputs.

Ontological information is used in a variety of different ways in trust models.
ReGreT, for instance, uses the ontology to define roles that agents can perform,
and if nothing at all is known about an agent, then ReGreT evaluates that agent



2.2. Trust Models 21

based on the role it performs. Osman et al. [2010] and Schläfli [2011] use the
ontology in a slightly different manner: by defining a distance metric over an
ontology, they propagate evaluations among different nodes (or roles) in the on-
tology. While Osman et al. and Schläfli use this propagated trust in very different
ways, the basic idea is the same. From a communication perspective Osman et
al.’s model is quite straightforward: they define it as a reputation model, and
its inherent function is to aggregate diverse opinions from many different agents.
Schläfli assumes the ontology is shared among agents and they can use this on-
tology to avoid privacy issues in discussing agents’ trustworthiness in sensitive
contexts. This seems like a promising approach, although they still must deal
with the inherent subjectivity from evaluating direct experiences differently.

Another way of using ontological information is to define roles dynamically.
Specifically, Rehák and Pěchouček [2007] use an approach that deals with the
context-dependency of trust by clustering similar interactions together based
on an ontology for describing interactions. This, however, creates a separate
problem for the communication. The trust model uses a clustering algorithm to
dynamically assign different roles, but due to agents having different experiences,
they will cluster their experiences differently, and thus have different reference
contexts. This creates a problem when communicating, because two agents may
cluster a single experience into different contexts. Insofar as we know, nobody
deals with this problem: context-dependent models that use witness informa-
tion, refer to a shared role taxonomy, such as in Schläfli’s work [2011]. The
second problem is that even if agents agree on the role, they may use different
criteria to evaluate trust. It might be argued that if this is the case, the clusters
are too large, and they conceptually encompass multiple roles. We, in contrast,
argue that, due to agents using their own personal criteria for evaluating direct
experiences, attempting to fit evaluations into a fixed role taxonomy is counter-
productive. Instead we need to find ways for translating trust from one agent’s
subjective frame of reference into another.

Aggregation methods

Finally, after having processed the different types of input a trust model might
use, the function calctrust in Algorithm 1 computes a trust evaluation of a tar-
get, using the available input. While most models describe this algorithm as
being virtually independent of the evaluator agent (except for the inputs), this
is not necessarily the case. Many trust models use parameters in this computa-
tion process, and deciding on the optimal parameters depends partially on the
environment and partially on individual preferences. We return to this in more
detail in Chapter 6, but now we just wish to mention this additional source
of subjectivity in trust models. Examples of such parameters are factors for
discounting older evidence in many models, including BRS [Jøsang and Ismail,
2002] and FIRE [Huynh et al., 2006], biases for (or against) the different types of
input, as in ReGreT [Sabater and Sierra, 2001] and Castelfranchi and Falcone’s
socio-cognitive model of trust [2010] and thresholds for discarding information,
such as ignoring witness information if the distance to the witness in a social



22 Chapter 2. Trust Alignment: State of the Art

network is above the threshold, as described in Yu and Singh’s model [2002].
These parameters of the aggregation model, combined with the subjectivity

introduced in the processing of the various inputs, can cause individual agents’
trust evaluations to be very different, even if the actual inputs are the same
and the agents use the same aggregation method. If agents, therefore, attempt
to use witness information without processing it correctly, they will, in general,
not obtain useful information, and it may even be counterproductive. In the
next section we discuss the methods that are used for processing communicated
information from witnesses.

2.3 Processing Witness Information

In the previous section, we explained that computational trust models receive
objective evidence about the world as input. Each agent’s trust model processes
and aggregates this input differently, resulting in a subjective evaluation of a
target, for a specific task. Moreover we showed how, even if two agents use what
seems to be the same trust model, their inherent preferences can still cause
similar evidence to result in different trust evaluations. We now focus on the
communication of these subjective evaluations, and specifically on the methods
proposed for processing witness information.

Witness information is an important source of evidence for most trust models.
While direct experiences are almost always a more reliable source, they are also
harder to obtain, and if they are unsatisfactory they generally imply a cost to
the evaluator. In most environments, communication with other agents has a
very low cost, and because these agents have had their own direct experiences in
the environment, they can prove to be cheap sources of evidence about a large
number of targets. Because of this, almost all computational trust models use
witness information to some extent. Nevertheless, the reliability of this evidence
is problematic; both because of the subjectivity of trust evaluations, and because
witnesses might have reason to provide false information. There are a variety of
approaches to deal with these problems and we discuss them below. We divide
these approaches into two different categories: those whose focus is mainly on
detecting deceptive agents (and incidentally deal with subjectivity of trust),
and those that try to deal with subjectivity directly (and incidentally deal with
deceptive agents).

2.3.1 Dealing with deception

Problems with deceptive agents have played a prominent role in the literature.
Bromley [1993], in one of the first studies to explore the sociological aspects of
reputation, devotes a chapter to “impression management”, with which he means
the ways an individual can change how others perceive him. Moreover, he deals
with other people attempting to influence how an agent is perceived. Specifically,
in the chapter on corporate reputation [Bromley, 1993, page 162], he says:



2.3. Processing Witness Information 23

“The performance of a person or firm is not the only source of in-
formation that contributes to reputation. The behaviour of other
people or other firms also provides information. Deliberately spread-
ing false information to enhance or diminish a reputation is a direct
intervention.”

Since Bromley’s book, most of the literature on trust and reputation recog-
nises the role that deception plays in manipulating agents’ evaluations. Addi-
tionally, collusion and deception are large problems in the most prominent com-
putational reputation system to date, eBay [Dellarocas, 2000; Hoffman et al.,
2009]. It is, therefore, unsurprising that many methods have been developed
to detect and deal with individuals and groups providing deliberately deceptive
trust evaluations. Most approaches deal with this in the computational trust
or reputation model itself, and we discuss the most common approaches below.
Another approach is to cleverly design the environment so that deception is not
profitable. If, through mechanism design, the incentives to deceive are removed,
or a larger incentive is provided to tell the truth, then agents are more likely to
provide truthful information [Witkowski, 2010; Jurca and Faltings, 2007]. This
type of mechanism requires a centralised approach. Witkowski, for instance,
focuses his incentive mechanism on online auction houses, such as eBay, where
a central authority can provide the incentives. Note that this only aims to deal
with deceptive agents, and not with the problem of communicating subjective
trust evaluations. The agent-centric approaches do allow an agent to deal with
subjectivity to a certain extent. The advantage of a mechanism-based approach,
however, is that it can be used in combination with any of the agent-centric
approaches.

The agent-centric approaches that we focus on attempt to distinguish
between lying and truthful witnesses, and use this distinction to filter out in-
formation from the liars. Sometimes they also actively spread their findings,
warning other agents of potential liars. There are a number of mechanisms for
distinguishing between liars and honest agents, and we discuss the ones most
relevant to our work here.

Using the trust model

The very first computational trust model described by Marsh [1994] did not
mention deception explicitly, but did provide a very simple mechanism for pro-
cessing witness information. In this model, the value of a trust evaluation is
considered as a quantification of the trust that the evaluator agent has in the
target. Marsh states that, to an agent A, the trustworthiness of a target T , based
on witness W ’s communication is: TrustA(T ) = TrustA(W ) × TrustW (T ), or
the product of A’s trust in the witness W and the witness’ trust in the target T .
This has a number of very strange properties. Intuitively, if the trustworthiness
in the witness is low, the reliability of its communication should decrease, not
the trust in the target. This is especially obvious if trust evaluations from vari-
ous witnesses are combined. An additional oddity is that if the two values for



24 Chapter 2. Trust Alignment: State of the Art

TrustA(W ) and TrustW (T ) are negative (which is possible in Marsh’s model),
TrustA(T ) becomes positive. This can be explained in the sense that “the enemy
of my enemy is my friend”, but we feel it is strange to treat trust in such a black
and white manner — especially as, even for enmity, the validity of the maxim
is, at best, situational. Despite these computational discrepancies, the idea of
using the trustworthiness of the witness to process its communications is a very
intuitive one.

Vercouter and Muller [2010] follow the same intuition, and LIAR uses the
trust model to process recommendations. In LIAR, trust is considered in a multi-
faceted manner. As such, trust in an agent as, for example, a seller is completely
separate from the trust in that same agent as a recommender. The latter role
is the one used to evaluate witness information. Witness information is aggreg-
ated using a weighted average, in which the trustworthiness of each witness as
a recommender is used as the weight. This means that recommendations from
untrustworthy recommenders are given less importance than recommendations
from trustworthy ones; however, this approach still suffers from some irregular-
ities.

The first is that, while they use the trustworthiness of each witness as a
weight in the aggregation, this is not reflected in the final result: this is a single
numerical evaluation of the target. The information that this numerical evalu-
ation is based on the information provided by, for example, a few untrustworthy
witnesses is lost and thus cannot be taken into account in the remaining com-
putation of a trust evaluation.

More important to us is the fact that Vercouter and Muller do not make
it clear how the trustworthiness of an agent in its role as a recommender is
evaluated. They state that LIAR is used recursively to decide whether a recom-
mendation is trustworthy or not, but the model proposed for evaluating direct
experiences is not immediately applicable to trust recommendations. Whereas
a direct experience has immediate feedback because the difference between the
expected outcome and the actual outcome of an interaction can be evaluated,
a recommendation is not as easily evaluated. At best, an agent can evaluate
an agent’s recommendation of a target, if it chooses to interact with it. In this
case it measures the difference between the expected outcome, based on the re-
commendation, and the actual outcome. If, however, the agent decides not to
interact with the target of the recommendation, then it is entirely unclear how
to evaluate a witness’ recommendation using LIAR.

If LIAR were to have an effective method for assessing the trustworthiness of
recommenders, then this method would, in addition to filtering out information
from liars, also filter out recommendations from witnesses whose subjective cri-
teria for evaluating trust are substantially different from the agent’s own criteria.

Statistical filtering

Schillo et al. [1999] provide the first computational method for evaluating witness
information in a statistical manner. They assume witnesses do not lie outright
because the chance of getting caught is too high. Instead, they deceive the



2.3. Processing Witness Information 25

receiver by withholding information with a certain, unknown, probability. The
receiver thus only receives the information that was not withheld. By considering
this as a Bernoulli process in which only one of the two outcomes can be observed
they can use statistical methods to estimate how much information was left out.
They then use this estimate to obtain an approximation of what the witness’
recommendation would have been if it had not withheld information. In other
words, they attempt to reconstruct the witness’ actual evaluation, given some
assumptions about a witness’ behaviour. While the assumptions are somewhat
unrealistic, the approach is of special interest to us because it attempts to find
a way for using a witness’ information under the assumption that the witness
is deliberately deceptive. Our work focuses on how to use witness’ information,
despite differences in the subjective frames of reference of the evaluator and
witness. In this sense, Schillo et al.’s work is historically relevant to us, although
their approach is completely different to ours and is unable to deal with the
subjectivity of trust evaluations. Later examples of statistical approaches to
detecting liars do make more realistic assumptions than Schillo et al. do, but
they do not attempt to use deceiving witnesses’ evaluations. Instead they focus
on filtering out the influence of deceptive agents on the computation of a target’s
trustworthiness.

TRAVOS [Teacy et al., 2006] provides one such a method for filtering out
deceiving witnesses. In contrast to LIAR, they specify exactly how the accur-
acy of a witness’ recommendation is estimated. Teacy et al. take the Bayesian
view on statistics, and they model trust as the probability a target will fulfil
its contract, given the evidence available. If the agent has low confidence in its
evaluation based on direct experiences (for instance, it has interacted too little
with the target), then TRAVOS uses witness information and uses the same
Bayesian principles for processing this. The accuracy of a witness’ recommend-
ation is the probability that it is accurate, given a probabilistic estimate of that
witness’ accuracy in the past. Because trust evaluations are probabilities, they
are easily comparable and the past accuracy is given by comparing past recom-
mendations from the witness to the agent’s own evaluations of the target. If
these are similar the accuracy is considered high and otherwise it is low. Based
on this comparison, Teacy et al. give a formula for calculating the accuracy of
a new recommendation. This accuracy is used to modify the importance in the
aggregation of different witnesses’ opinions. Because they do not take the aver-
age, but calculate this in terms of conditional probabilities, this formula is quite
complex, but has the desired effect of filtering out inaccurate witness’ opinions.
A similar approach is taken by Vogiatzis et al. [2010], who take into account
that agent behaviours can change over time.

POYRAZ [Şensoy et al., 2009] also filters out witness information, but Şensoy
et al. realise that agents may not deceive consistently, but rather the decision
whether or not to deceive is context-dependent. They therefore take the context
into account when comparing the accuracy of witness’ recommendations to the
actual evaluation.

These methods can all filter out information from witnesses who are lying,



26 Chapter 2. Trust Alignment: State of the Art

and just as LIAR, also filter out recommendations from agents with very different
subjective criteria.

Other approaches

There are a multitude of other methods for attempting to deal with deception.
Fullam and Barber [2007] use Q-learning to learn when to use direct experiences
and when to use witness information. They do not distinguish among witnesses,
but treat all witnesses the same. Obviously if witnesses are generally unreliable
the algorithm will learn not to use witness information. This approach does not
distinguish between deceiving agents and agents whose subjective criteria are
different, but it should learn to disregard witness information if agents of either
kind are prevalent.

Another approach is to use the underlying social network. As mentioned in
Section 2.2.2, Yu and Singh [2002] simply consider the path length to a witness
as a measure of reliability. This does not explicitly take deception into account,
but assumes any agent too far away is unreliable. ReGreT [Sabater and Si-
erra, 2001], in addition to using the social network for assessing “neighbourhood
reputation”, uses the network to assess the credibility of a witness. The same
rule-based approach they use for neighbourhood reputation applies, but this
time the witness is evaluated, rather than the target. ReGreT uses this not as
the primary method for evaluating the credibility of a witness but rather as part
of a hybrid system. It primarily uses the trust model recursively to evaluate the
trustworthiness of the witness, in a manner similar to LIAR. If this cannot be
reliably calculated it uses the “social credibility” based on the social network.
These methods allow ReGreT to decide whether or not to believe the witness’
communication, or filter it out.

BDI+Repage [Pinyol et al., 2012] also uses a hybrid approach, but combines
the trustworthiness of a witness with Q-learning. The Q-learning is used in
a similar manner to the way that Fullam and Barber use it, namely to learn
the optimal mix of using direct experiences and witness information. However,
they also use the trustworthiness of witnesses to decide whether to just outright
discard information from certain witnesses. Any communication is thus prepro-
cessed into a “valued communication” which attaches a weight to it, before it is
aggregated.

We do not suppose this is a complete overview of the methods for dealing
with deceptive agents, but neither do we mean it to be. We aimed to distinguish
the most prominent approaches and show that deception is dealt with in a variety
of manners; however, none of the approaches mentioned can distinguish between
witnesses that intentionally deceive another agent and those that simply use
different criteria for evaluating trust. All of the approaches mentioned use some
measure of the reliability of a witness in order to decide whether or not to discard
that witness’ information. The only method that attempts to translate deceptive
information is Schillo et al.’s model [1999]; however, it makes some rather strong
assumptions about the environment in order to function. Distinguishing between
intentionally deceiving agents and innocent agents with different methods for



2.3. Processing Witness Information 27

evaluating trust can prevent a number of problems, both for the agent and for
the wellbeing of the society.

Disadvantages of filtering approaches

The first and foremost problem with filtering out any witness information based
on some criteria for detecting deceptive agents is that the methods described
also filter out information from agents with different subjective criteria. In an
open multi-agent system, such a method will filter out recommendations from
so many witnesses that the agent searching for a recommendation will be hard-
pressed to find any recommendations that do pass its criteria. The experiments
in Sections 4.3 and 7.5 corroborate this, although these are simulated environ-
ments and may not model real situations. A bit of introspection also seems to
indicate that we, as humans, deal with the two situations in very different man-
ners. We do indeed attempt to detect, and avoid, witnesses who are likely to
deceive us, but if a friend’s recommendation does not coincide with our own ex-
perience we are far more likely to attempt to find out why we disagree and learn
at least something from his recommendation than just dismiss it as an attempt
to deceive. Thus it seems that finding some way of using witness’ subjective
evaluations is preferable to filtering them all out. Deception and subjectivity in
witness information are two separate problems, that both require treatment in
a computational trust model.

The problem of dealing with both together is exacerbated if consequences are
attached to the detection of a deceptive agent, whether through the mechanism,
as in [Jurca and Faltings, 2007], or by individual agents, as in LIAR [Vercouter
and Muller, 2010]. If a witness runs the risk of being punished for giving recom-
mendations that are different from the receiving agent’s expectations, merely
because they use different criteria for evaluating trust, the mechanism runs the
risk of failing. The mechanism of sanctioning deception goes beyond its purpose,
and in the worst case causes agents to no longer offer recommendations for fear
of being punished. Even in the best case it is likely that some agents will be
unjustly marked as a liar, with all the consequences that entails. Thus if agents
want to sanction deceptive witnesses, it is essential that they distinguish between
genuine deception and other causes of different, subjective, trust evaluations.

2.3.2 Dealing with subjectivity directly

Having explained why it is necessary to deal with deception and subjectivity
separately, it is only logical that we now discuss the state of the art in methods
for dealing with subjectivity in trust. Staab and Engel [2008] give a theoret-
ical treatment of the problem of integrating subjective witness information into
the trust computation. They consider this as a layered problem: an agent has
objective observations of the environment, which it evaluates as subjective ex-
periences. These are aggregated into trust evaluations. This is quite similar to
our abstract treatment of a trust model in Algorithm 1 (page 17). The main
difference is that Staab and Engel consider the initial evidence that serves as



28 Chapter 2. Trust Alignment: State of the Art

input for the trust model as being objective, while we do not make this as-
sumption. What they describe as “experiences” corresponds with what we call
outcomes, the output of process_experiences, and they do not discuss other
types of evidence, although their model is abstract enough to consider all in-
termediate evaluations (Outcomes, Recommends, Network_vals and Role_vals
in Algorithm 1) as experiences and not just those based on direct interactions.
The output of the trust model in Staab and Engel’s abstraction is the same as
in ours: an aggregation of subjective evaluations of evidence.

The main principle of Staab and Engel’s work is that at each subsequent
level it becomes harder to exchange information. They state that, by commu-
nicating at the lowest level (that of objective descriptions of the environment),
the problem of subjectivity is removed; the receiving agent can use the object-
ive information to simulate the situation as if it were its own experience. In
our abstract view of a trust model, this corresponds to the sender communic-
ating the sets DI and DO (although Staab and Engel do not discuss the other
sources of information, the agent could communicate the other inputs, WI, SI,
OI and Rep, as well), rather than communicating the output of the trust model.
The receiving agent then uses its own trust model with the received input and
computes its own subjective trust evaluation, using its own algorithm, thereby
obviating the need for communication of the higher level elements.

This approach is used by Şensoy and Yolum [2007], but has some important
drawbacks. The first is that it restricts agents’ autonomy: agents must “store” all
information that might possibly be related to any other agent’s trust evaluation.
For instance if, in an e-commerce environment, an agent finds the colour of
an item irrelevant, then it can function perfectly well if it does not remember
the colour of items it has bought; however, if we expect other agents to be
able to recreate their own evaluations from such low level information, it must
be available. The agent must be able to communicate the colour of items to
other agents. Colour of the item for sale is merely one of many properties
of interactions that might be considered evidence for the trustworthiness of a
target. Any of these properties, however trivial it may seem to the agent in
question, might be relevant to other agents, and it must thus be stored — just in
case some agent somewhere requires that information. Our approach, discussed
in Chapter 3, does not require this: agents can choose what properties of an
interaction they want to remember and communicate about. This ties into the
second disadvantage of communicating the evidence directly, which is that agents
are limited to the use of a shared ontology — Şensoy and Yolum [2007] make
the implicit assumption that all relevant aspects of an interaction for all possible
agents are communicable in a shared ontology. It is not clear that this is always
the case; real interactions might include details that are not included in the
ontology. On top of this, there may be privacy issues because agents may be
willing to tell each other that an interaction was successful, or not, without
wanting to discuss the exact details of that interaction; especially, if these details
contain sensitive information (such as in financial transactions).

Our approach does not make these assumptions. While we do require a shared



2.3. Processing Witness Information 29

language in which to communicate about the interactions, agents may choose
themselves what properties of an interaction to communicate. This means that
their internal representation of such an interaction can be much richer than the
one in the common ontology. In our approach we learn an alignment that is
based on a set of shared interactions: an agent can learn relationships using a
limited amount of communication about these interactions by additionally taking
the information at the second level, that of the subjective evaluations of these
interactions, into account. How this works exactly is described in Chapter 3.

A straightforward approach to tackling subjectivity of trust might be to pro-
pose to communicate the trust model itself; however, this approach has a number
of practical problems. The first is that it requires agents to be introspective re-
garding their trust model: they must not only be able to use it, but know how
it works, in order to tell other agents how it works. In practice very few trust
models are designed with this property in mind, and most are simply treated
as black boxes: information from a variety of sources is given as input and the
calculated trust evaluations are returned as output. In Chapter 6 we propose a
model that allows more introspection, and in fact allows agents a limited amount
of communication about the trust model itself, which we discuss in Chapter 7.
Regardless, if agents can explain how their trust model works and they share
a language in which to express this explanation, there remains a problem with
the interpretation. It is unclear how the receiving agent can compare its own
trust model to the received trust model. Automatically finding similarities and
dissimilarities between two complex programs is itself a complex problem.

Dealing with subjectivity, at least in practice, thus requires something more
than the straightforward approaches offer. A number of different methods have
been proposed, using a range of different technologies. We discuss all of them
separately.

Ontologies for trust and reputation

One natural approach is to consider the problem of communicating trust eval-
uations as a problem of ontology alignment. As such, it seems logical to define
a comprehensive ontology for trust. LRep [Pinyol and Sabater-Mir, 2007] and
FORe [Casare and Sichman, 2005] are two prominent examples of such ontolo-
gies; however, in practice these ontologies are unsupported by most of the dif-
ferent computational trust models in development. Furthermore, even if these
ontologies were generally accepted, the subjective nature of trust would still not
be captured by them. The problem is not one of defining what concept is cap-
tured by the terminology, but how an evaluation comes to be, and how it is used.
Euzenat and Shvaiko [2007] call this type of heterogeneity in use “pragmatic het-
erogeneity”. In their book they describe three levels of heterogeneity. The first,
the level of syntactic heterogeneity, is quite straightforward: two agents use a
different syntax to describe the same domain. An example in the real world
would be a Chinese and an English speaking agent trying to communicate. At
the semantic level the problem of syntax is presumed solved, but two agents
use a different semantic for the same words. For instance, two agents who are



30 Chapter 2. Trust Alignment: State of the Art

discussing a minivan. One categorises a minivan as a small bus, while the other
categorises it as a large car, so the meaning they assign to the word minivan is
slightly different. This is the level at which most research into ontology align-
ment falls. Problems of syntactic and semantic heterogeneity can be solved by
having a well defined and shared ontology, such as the ones defined by Pinyol
and Sabater-Mir, or Casare and Sichman.

There are, however, problems of heterogeneity that fall into neither of these
two categories, but must be described at the third level of heterogeneity, that
of pragmatics. At this level two agents agree on the syntax and the conceptual
meaning of the word, but there is heterogeneity in how the word is used; this
is almost always the problem when two agents try to talk about subjective
concepts, such as “taste”, but also trust. Problems of pragmatic heterogeneity
have received little attention, although the problem has long been recognised in
the field of semiotics [Chandler, 2002]. Semiotics studies the meaning of signs,
and Morris [1938] proposed that the pragmatic aspect is an integral part of
the meaning of signs. He specifically distinguishes pragmatics from syntax and
semantics as follows:

“Since most, if not all, signs have as their interpreters living organ-
isms, it is a sufficiently accurate characterisation of pragmatics to
say that it deals with the biotic aspects of semiosis, that is, with
all the psychological, biological, and sociological phenomena which
occur in the functioning of signs. . . . The unique elements within
pragmatics would be found in those terms which, while not strictly
semiotical, cannot be defined in syntactics or semantics; in the clari-
fication of the pragmatical aspect of various semiotical terms; and in
the statement of what psychologically, biologically and sociologically
is involved in the occurrence of signs.” [Morris, 1938, pages 108, 111]

Trust, as we understand it, is defined as a psychological and sociological phe-
nomenon, and thus any communication about trust must take the pragmatic
aspect into account. Any miscommunication about trust is almost invariably
due to pragmatic heterogeneity, regardless of whether this is due to psycholo-
gical underpinnings in humans, or because we represent such human preferences
in a computational trust model. A more modern description of pragmatics in
semiotics is given by Bianchi [2004, page 1]:

“Pragmatics, however, studies how speakers use context and shared
information to convey information that is supplementary to the se-
mantic content of what they say, and how hearers make inferences
on the basis of this information.”

Accordingly, any attempt to bridge the gap of pragmatic heterogeneity should
attempt to take the “context and shared information” between the agents into
account; however, in the study of alignment, the context has played a marginal
role. Atencia and Schorlemmer [2012] perform semantic alignment in a man-
ner that also deals with pragmatic heterogeneity in multi-agent communication.



2.3. Processing Witness Information 31

They learn the conceptual meaning of messages within the context of the way
they are used. Insofar as we know this is the only approach that deals with
pragmatic heterogeneity. In the next chapter we discuss the problem of Trust
Alignment in a theoretical manner, building upon the same concepts that Aten-
cia and Schorlemmer build upon for aligning ontologies.

We would be remiss if we did not also mention the work done by Nardin
et al. [2008]. They recognise the problem of heterogeneity of trust, but treat it
as a problem of semantic heterogeneity. They thus propose an ontology mapping
service from an agent’s own ontology to a shared ontology, for which they use
FORe [Casare and Sichman, 2005]. By establishing such a mapping for each
trust model, when communicating about trust, an agent can use the service to
translate its own evaluation into the FORe ontology, and the receiving agent can
translate it from FORe into its own personal framework. Nevertheless, the model
is problematic for a number of reasons. The first is that the mapping cannot be
established automatically: Nardin et al. established the mapping manually for
the Repage [Sabater et al., 2006] and LIAR [Vercouter and Muller, 2010] trust
models. They showed that it works in a simple environment, but to establish
a mapping for each model manually is tedious. The second problem with this
ontology mapping is that it still treats trust alignment as a problem of semantic
heterogeneity, and as a consequence the agents’ subjective criteria for evaluating
trust are disregarded. This subjectivity cannot be mapped into FORe and thus
a lot of the meaning of an agent’s trust evaluation is lost in translation.

We resolve the latter problem by treating the agent’s subjective evaluations
in the context of the evidence that supports them, thus offering a solution to
the problem of the pragmatic heterogeity of trust.

Learning a translation

Another approach to dealing with the subjectivity of trust is by attempting to
translate the subjective witness information to the own model. The first to take
this approach are, to our knowledge, Abdul-Rahman and Hailes [2000]. Their
work describes a trust model that evaluates a target with an integer between 1
and 4, where 1 stands for very untrustworthy and 4 for very trustworthy. The
alignment process uses the recommendations from another agent about known
targets to calculate four separate biases: one for each possible trust value. First
the alignment method calculates the own trust evaluations of the corresponding
target for each incoming recommendation. The semantic distance between the
own and other’s trust is simply the numerical difference between the values of the
trust evaluations. The semantic distances are then grouped by the value of the
corresponding received trust value, resulting in four separate groups. Finally, the
bias for each group is calculated by taking the mode of the semantic distances
in the group. This results in four integers between -3 and 3, which can be used
when the agent receives recommendations about unknown targets. An agent
can simply subtract the corresponding bias from the incoming trust evaluation
to translate the message. While this is a very simple approach it seems to work
surprisingly well and we will discuss its functioning in more detail in Section 4.3.



32 Chapter 2. Trust Alignment: State of the Art

Insofar as we know the only other method that learns a translation between
the witness information and the own trust model is BLADE [Regan et al., 2006].
This work builds upon a statistical trust model that, similar to TRAVOS [Teacy
et al., 2006], uses a Bayesian approach to modelling trust; however, unlike TRA-
VOS, BLADE attempts to translate subjective (and, incidentally, deceptive)
witness information by modelling trust in a Bayesian network. The priors of
a trust evaluation are a number of variables that represent aspects of the en-
vironment, such as, in the example they give, the delivery time of items in
an e-commerce interaction. BLADE then uses a Bayesian inference learner to
learn the probability that the evaluator will consider the target trustworthy,
given a prior set of interactions in which the target was labelled as trustworthy,
or untrustworthy. The same Bayesian inference learner is employed to learn a
translation of a witness’ communicated evaluation. It receives a similar set of
labelled interactions from the witness and simply uses what the witness says as
the priors for its learner, rather than its own knowledge of the interactions.

This method shows many similarities to the approach we take; however, it
suffers from a number of limitations. Firstly Regan et al. limit their experiment-
ation to an environment with interactions that have a single variable property.
While Bayesian networks are known to scale fairly well, it is unclear how tract-
able the approach is in situations where interactions have multiple properties. A
more serious issue is that their choice of Bayesian inference learner limits their
description of interactions to a propositional language. Such a language cannot
adequately represent domains involving multiple entities and the relationships
among them [De Raedt, 2008]. In Section 4.3 we discuss the differences between
BLADE and our approach in more detail. One major difference is in the the-
oretical foundations of the work. BLADE is, first and foremost, a statistical
learning method for computing trust evaluations with a specific focus on dealing
with witness information. Our work gives a theoretical framework for dealing
with subjective witness information, which can also be used to describe BLADE;
based on this framework, we give a practical implementation that uses a similar
learning method, although we improve upon BLADE in practice as well.

Finally, Serrano et al. [Forthcoming 2012] present a method for the sender of
a trust evaluation to perform the learning. Rather than the receiver attempting
to translate received messages, the sender learns in what situations the receiver
would evaluate an interaction as having been successful. When communicating
new trust evaluations, the sender uses this learnt model, rather than its own
model. This means that the recommendation-seeking agent, rather than the
witness, must communicate about their prior interactions. This aleviates some
of the privacy issues because it is the agent who is requesting help (in the form of
an evaluation of a target) who has to disclose information about previous inter-
actions to the witness. The witness, however, has a different obligation: it must
learn the translation from its own evaluations to the recommendation-seeker’s.
This can be computationally intensive. More problematic is if the witness is de-
ceptive. Serrano et al. must therefore assume the witness is benevolent. In this,
the approach is more similar to Trust Adaptation (see Part III) than Alignment.



2.3. Processing Witness Information 33

Nevertheless, its basic approach is to learn a translation, using a propositional
tree learner, so the method it uses is similar to the one we describe in this part of
the thesis. As the method uses a propositional learner, it has similar limitations
to BLADE.

Arguing about trust

The final approach for dealing with subjective witness information is to use
argumentation. We discuss this in detail in Chapter 5, but for the sake of com-
pleteness, we give a brief description of Pinyol and Sabater-Mir’s method [2010]
for deciding whether or not to accept a witness’ communication.

A downside of most of the methods described so far, including our own
approach, is that statistical, or learning, methods require a large number of
prior interactions to obtain an adequate sample. TRAVOS, for instance, needs
approximately 50 interactions between the evaluator and the witness in order to
estimate the witness’ trustworthiness, and Vogiatzis et al. [2010] runs simulations
with each witness providing 100 evaluations in order to learn whether the witness
is a liar or not. Learning a translation that takes the context into account, as in
BLADE or our approach, requires more shared interactions still, although how
many depends on the complexity of the problem.

Pinyol and Sabater-Mir [2010] take a completely different approach and allow
agents to enter a dialogue in order to argue about the witness’ reasons for hav-
ing the evaluation it communicated. By arguing about the trust evaluation, the
receiver can decide whether or not the witness’ subjective frame of reference is
similar enough to its own, and thus whether or not to accept the communicated
evaluation. In this way its aim is similar to the other filtering techniques and
therefore suffers from similar drawbacks. With any filtering approach the agent
must make a binary decision to either accept, or reject, the witness’ communic-
ation, while a better approach may be to learn how to use the communication
even if it is not an ideal match with the own subjective frame of reference. By
filtering out all subjective communications, an agent runs the risk of being too
restrictive and filtering out communications from too many witnesses, resulting
in a lack of information. Unlike the other filtering techniques, however, Pinyol
and Sabater-Mir assume the differences between a witness’ recommendation and
the own trust evaluation are because of subjective differences between agents’
trust models, and the argumentation method they propose tests, for each re-
ceived piece of information, whether it is acceptable or not. This may mitigate
the problem of filtering out too much information at the cost of having to build
an argument to support a trust evaluation: this requires some form of introspec-
tion in the trust model and is generally unavailable. Even so, argumentation
about trust seems like a promising approach and we explore it in great detail in
the second part of this thesis.



34 Chapter 2. Trust Alignment: State of the Art

2.4 Summary
In this chapter we have provided our own definition of a computational trust
model, and we have shown how this definition fits in with the existing literature.
This abstract definition of computational trust models serves to show how agents’
subjective, personal criteria come into play in the computation. We then showed
how the subjectivity of trust is problematic in the communication of witness
information, one of the primary sources of evidence for trust models. We are
not the first to make this observation, and in Section 2.3, we discuss the large
variety of methods for processing witness’ recommendations, in order to deal
with its subjectivity. Despite this variety, none of the methods described deal
with the problem in an entirely satisfactory manner. In the following chapters
we detail our approach, which differs from previous approaches in a number of
ways. We provide a theoretical description of the problem that uses a framework
similar to those used in other problems of alignment. This framework provides a
theoretically sound basis for dealing with communication of trust evaluations as a
problem of pragmatic heterogeneity, and based upon this framework, we describe
a solution to the problem of trust alignment. We show how this approach works
in practice and compare it to some of the methods described in this chapter.

Our view of trust follows the socio-cognitive theory of Castelfranchi and
Falcone and the computational process described by Algorithm 1 does not cover
all that the concept of trust, according to this theory, encompasses. However,
it does provide a concise explanation of how a trust evaluation is calculated
in a subjective manner. In Chapter 6 we propose a method for integrating
trust models into a cognitive agent, which deals with other aspects of trust,
such as how the output of a trust model is used. The details of such a model are
unnecessary for learning a translation of a witness’ communication, which is what
this part of the thesis discusses. In the next chapter we provide a theoretical
framework in which to view the problem of communicating subjective witness
information and search for solutions.



Chapter 3

Theoretical Framework

‘When I use a word,’ Humpty Dumpty said in rather a scornful tone,
‘it means just what I choose it to mean – neither more nor less.’
‘The question is,’ said Alice, ‘whether you can make words mean so
many different things.’

–Lewis Carroll (in Through the Looking Glass)

3.1 Introduction
In the previous chapter we saw how communicating trust is a problem of prag-
matic heterogeneity. We discussed the state-of-the-art mechanisms for dealing
with this heterogeneity in trust, the most advanced of which is BLADE [Regan
et al., 2006]. It uses machine-learning to translate a trust evaluation, using the
evidence that the trust evaluations are based on; however, while they base their
understanding of trust in a statistical foundation, their treatment of subjectiv-
ity in communication is quite ad-hoc. In this chapter we provide a theoretically
sound approach to the problem of communicating subjective trust evaluations,
which provides the foundations for understanding it as a problem of pragmatic
heterogeneity. We propose a novel solution to the problem and show how this
ties in to the theoretical model.

We call the process of finding an interpretation of a witness’ communicated
trust evaluations the process of Trust Alignment. Ontology alignment is the
process of determining correspondences between ontologies, and in accordance,
trust alignment is the process of finding correspondences between agents’ con-
ceptualisations of trust. The entire process is summarised in Figure 3.1, and
in this chapter we provide a formalisation of the entire process using Channel
Theory [Barwise and Seligman, 1997] and Relational Learning [De Raedt, 2008].

In Figure 3.1, agent Alice is the agent performing trust alignment with Bob,
who sends the required messages. Ellipses represent objects or sets of objects
in the alignment process, and rectangles represent action or computation by the

35



36 Chapter 3. Theoretical Framework

Bob

Alice

New trust 
evaluation

Specific 
Rules for 
Alignment

General 
Rules for 
Alignment

Set of 
alignment 
messages

Translate 
received trust 

evaluation

6

Make decision 
about targetTrust Model

7

1

53Form Specific 
Rules for 
Alignment

2
Perform 
inductive 
learning

4

Translated 
Trust 

Evaluation

89

Send alignment messages Send trust evaluation
based on unknown interactions

Figure 3.1: Schematic overview of the Trust Alignment process

agent. The alignment process starts with item (1), the reception of a set of align-
ment messages that are based on a set of shared interactions between Alice and
Bob. In step (2) of Figure 3.1 the receiving agent forms a set of Specific Rules for
Alignment (SRAs), or item (3). These SRAs represent the relation between the
sender’s and the receiver’s trust evaluations in specific cases. To have predictive
value these SRAs need to be generalised, which is done through induction in
step (4) of Figure 3.1. This results in the General Rules for Alignment (GRAs),
or item (5). These GRAs form the alignment between two agents’ trust evalu-
ations and can be seen as the output of the trust alignment mechanism.

We also describe how to apply the alignment. When the same agent, Bob,
sends a new trust evaluation based on interactions that are not shared, item (6),
Alice can use the alignment to find a translation of this communicated evaluation.
This is represented in step (7) of Figure 3.1 and results in a trust evaluation
that is translated into the agent’s own frame of reference, which is represented
in item (8) of the figure. Finally, this translated evaluation can serve as input
in the trust model and be used, possibly together with other information about
the target, to make a decision regarding the trustworthiness of the target, in
step (9).

Section 3.2 describes what we understand as shared interactions. We start
in Section 3.2.1 by specifying our abstraction of a trust model. Sections 3.2.2
and 3.2.3 describe the formation of alignment messages and how these relate to
the agent’s own trust evaluations. In Section 3.3 we discuss how we can learn



3.2. Interaction-based Model of Trust Alignment 37

an alignment based on the communication. The communication language for
discussing interactions is detailed in Section 3.3.1, and we describe the SRAs in
Section 3.3.2. In Section 3.3.3 we describe how a set of GRAs are learnt from
these SRAs, and at the end of that section, we demonstrate how the alignment
can be applied to translate a trust evaluation. To aid in each part of this
explanation, we illustrate the main definitions with an example.

Scenario: Alice is writing a book and wants a guest author to write an
introduction for it. She is unsure which author would be good at this and asks
Bob for his advice. Bob has read some of Zack’s articles and was impressed by
their clarity and technical quality, so he recommends Zack.

In the above situation it seems like Alice should accept this information;
however, it is not that straightforward. Alice only evaluates the first author of
any article, thinking that the other authors are not truly involved with writing
the article. Bob considers an article as the collective work of all the authors and
evaluates all the authors equally. On the other hand, he considers all articles
older than two years to be outdated, while Alice takes older articles into account
when evaluating an author. If Bob’s evaluation was based on articles in which
Zack was a second author maybe Alice should reject his opinion. Rather than
search for an author herself, Alice instructs her personal computational agent to
do this. Alice’s agent asks Bob’s agent which author it should entrust with this
task. Because these agents have not exchanged trust information before, they
need to align first.

3.2 Interaction-based Model of Trust Alignment

In Section 2.2 we detailed our perspective on the functionality of computational
trust models: they are computational processes that take evidence from a variety
of sources as input and perform some computation in order to generate a trust
evaluation of a specific target as output. In this chapter we formally describe
Trust Alignment, or how to communicate these trust evaluations. We are not
interested in the actual computation performed and will use a notation that
abstracts away from the algorithmic representation entirely. To simplify matters,
we also only consider trust evaluations based on direct experiences, which are the
most interesting evaluations to communicate about. In other words, we consider
a trust model that only takes direct experiences into account, processes these and
aggregates them into a trust evaluation of a target. Even so, the processing of
direct experiences, as well as the aggregation of these, leads to each agent having
its own, subjective trust evaluations based on the same interactions. Agents have
different viewpoints and different interests in observing an interaction and thus,
even before the trust model adds subjectivity, the agents already differ in their
beliefs about an interaction.

In order to start any alignment, agents must be able to communicate. For
this purpose, we assume there is a shared language in which agents can commu-
nicate about the interactions. This language may not allow agents to express
all their observations of an interaction. For instance, if their observations are



38 Chapter 3. Theoretical Framework

internally represented in a language that is richer than the shared language; nev-
ertheless, we assume that, at the very least, the shared language allows agents to
communicate some of their observations. What is considered an interaction and
what can be expressed about them in the shared language is domain depend-
ent, and we do not want to restrict this. We will also not distinguish between
participants in an interaction and the observers of the interaction: these are all
considered to be observers, although they all observe different information. In
Section 3.3.1 we will go into details about interactions and the shared language
for representing them, but for now we simply use a unique identifier as a rep-
resentation of an interaction. We assume the environment is populated by a set
Agents of agents and the set I is the set of all interactions among these agents
in the environment.

Definition 3.1 (Observing interactions). The observations of an agent A ∈
Agents are given by the partial function observeA : I → P(OA), which asso-
ciates an interaction with a set of observations. The set OA is the entire set
of observations of agent A and is a set of sentences in LOA , agent A’s internal
representation language. We use P(X) as notation for the power set of X.

Because trust evaluations are generally supported by observations of multiple
interactions, we define another function, ObserveA, in the following manner. Let
I ⊆ I be a set of interactions, then ObserveA(I) =

⋃
i∈I observeA(i). We denote

the subset of interactions an agent A observes with I|A ⊆ I. The | denotes that
this is the set of interactions limited to those observed by agent A. The partial
functions observeA and ObserveA are total on the set I|A.

Example 3.1. In our example scenario we can consider an article as the rep-
resentation of an interaction. Strictly speaking, an article is only an outcome
of a more complex interaction of several researchers collaborating on a research
topic, but in this example it is the only aspect of the interaction that can be
observed. There are different observers: the authors perceive the interaction in a
very different manner from the readers. For our example we focus on the readers.
The act of reading an article can be considered as the act of observing the in-
teraction. The reader observes all sorts of properties of an interaction: whether
it is well written, whether it is relevant for his, or her, own line of work, how
original the work is, etc. If we assume this type of knowledge is available to a
computerised agent, this agent can also be said to have observed the interaction:
it has access to the observations.

An agent A’s observations support some trust evaluation. This is the essence
of the trust model. As we stated in Section 2.2 there are many different com-
putational trust models, but all incorporate the concept of direct experiences.
We model these experiences as observations of interactions in the environment,
which serve as input for the trust model. We say these observations, and by
extension the interactions, support the trust evaluation and assume these trust
evaluations are statements in a language LTrust. The agents share the syntax of
this language, but the way each agent computes its trust evaluations from the
different observations can vary and is defined by the agent’s trust model. We



3.2. Interaction-based Model of Trust Alignment 39

do not strictly need the agents to share the syntax of LTrust, but it makes the
framework more comprehensible. Eventually each agent’s trust evaluations will
be considered entirely separately in any case, and the framework would work
equally well if agents A and B had two entirely different trust languages. Nev-
ertheless, for the sake of system design, and for understanding the framework,
it is useful to assume a single, shared syntax in LTrust.

Example 3.2. In our scenario, we use a simple LTrust, with only one predicate:
trust(target, value), with value ∈ [−5, 5]∩Z and target an agent in the system.

We require sentences in LTrust to be ground atoms of a first-order logic
(FOL). This is necessary in Section 3.2.2, where we define the constraints on the
alignment using LTrust. We also need sentences in LTrust to be ground atoms
to learn a predictive model, as we will see in Section 3.3. Furthermore, because
trust is always about some target agent (all trust predicates have an object),
we only consider those predicates which give an evaluation of exactly one such
target T ∈ Agents:

LTrust[T ] ≡ {ϕ ∈ LTrust | the target of ϕ is T}

Thus the communicated trust evaluations must always be about a specific target
agent. This split of targets allows us an easy way to partition LTrust:

• ⋃
T∈Agents

LTrust[T ] = LTrust

• For all T, T ′ ∈ Agents such that T 6= T ′, we have that:
LTrust[T ] ∩ LTrust[T ′] = ∅

We can now give a very abstract model of trust, which we can use as a basis for
communication. We ground this framework in a mathematical model of inform-
ation flow, called Channel Theory [Barwise and Seligman, 1997]. This theory
gives a way to model the flow of information within a distributed system and has
proven to be useful for modelling a variety of different ontology alignment and
semantic integration scenarios [Kalfoglou and Schorlemmer, 2003; Schorlemmer
et al., 2007; Schorlemmer and Kalfoglou, 2008; Atencia and Schorlemmer, 2012].
Modelling the problem in this manner allows us to formulate a representation-
independent definition and theory of what trust alignment is — against which
we can define and check concrete realisations of alignments (see, e.g., Theorem 1
on page 55).

Channel Theory, rather than being a quantitative theory of information flow
as with Shannon’s classical theory of communication [1948], is a qualitative the-
ory, better suited for semantic or trust alignment scenarios. In the following we
will introduce the main concepts of Channel Theory as we proceed in formal-
ising our trust alignment framework; however, we refer to Barwise and Seligman
[1997] for a comprehensive understanding of Channel Theory, which is outside
the scope of this thesis.



40 Chapter 3. Theoretical Framework

3.2.1 Trust models in Channel Theory
In Channel Theory, systems that hold information are modelled as classifica-
tions, while the exchange of information among systems is modelled through
the use of a channel. In our situation we consider trust models as systems that
hold information. This information is considered in a very abstract manner: in
Channel Theory it is the act of classifying an object, or token, as being of a
specific type that causes the system to carry information. Such a classification
is defined as follows:

Definition 3.2 (Classification [Barwise and Seligman, 1997, page 69]). A clas-
sification A = 〈tok(A), typ(A), |=A〉 consists of:
• A set, tok(A), of objects to be classified, called tokens

• A set, typ(A), of objects used to classify the tokens, called types

• A binary relation |=A⊆ tok(A)×typ(A), giving the classification relation.

If a |=A α, then a is said to be of type α in A.

We define a trust model as a classification to make explicit our intuition that
trust in a target is supported by some set of observations of interactions in the
environment. The abstract representation, provided by Channel Theory, allows
the definition to be independent of the inner workings of the trust model. An
important feature of this representation is that, despite abstracting away from
the computational trust model that an agent uses, it captures the idea that a
trust evaluation is supported by a set of evidence.

Definition 3.3 (Targeted trust model). A trust modelMI
A[T ] of agent A with

regards to target T , given interactions I, is the classification with:

• tok(MI
A) = P(OA)

• typ(MI
A) = LTrust[T ]

• |=A ⊆ P(OA) × LTrust[T ], such that if O ⊆ OA (in other words, O ∈
P(OA)) and ϕ ∈ LTrust[T ], then O |=A ϕ represents that, for agent A, the
set of observations O supports the trust evaluation ϕ

Example 3.3. In the example we could see this as follows. Let us assume there
are two articles, with identifiers article1 and article2, which support Alice’s trust
in an author Dave. Alice has programmed a trust model into her agent based on
her own opinions and thus her agent can compute how to evaluate Dave based
on these two articles. Formally:

ObserveAlice({article1, article2}) |=Alice trust(Dave, 4)

Where trust(Dave, 4) is a targeted predicate in LTrust. Bob has observed the
same articles, but observes different properties and evaluates these differently.
His trust evaluation is, formally:

ObserveBob({article1, article2}) |=Bob trust(Dave, 3)



3.2. Interaction-based Model of Trust Alignment 41

In addition to having a target, trust is often considered to be multifa-
ceted [Castelfranchi and Falcone, 2010; Sabater and Sierra, 2002]: a target is
evaluated with regards to a specific role or action that he or she is expected to
perform. For instance, an agent may trust another to write an introduction to
his book, but not to fix his car. We do not consider this aspect of trust in detail
until Chapter 6, but a possible method for dealing with the multifaceted aspect
of trust is to consider the target in our framework as not simply a target agent,
but rather an agent performing a specific role. For actually calculating the trust,
this multifaceted aspect of trust may be more important, but this is not directly
a concern when performing trust alignment.

A targeted trust model computes trust evaluations for one specific target, but
there are multiple agents in the system. We say an agent’s entire trust model is
an indexed family of such targeted modelsMI

A = {MI
A[T ]}T∈Agents.

There is a further remark to make: while Channel Theory does not put
any restrictions on the binary relation |=A, we are discussing a specific type of
classification; it is a trust model of an agent, and its output should, therefore,
make sense for that agent. We assume trust models are deterministic and always
give the most accurate trust evaluation that an agent is able to compute. Con-
sequently, any observation O is of at most one type and we can consider the trust
model as a partial function between sets of observations and single trust eval-
uations. This ensures that the Channel Theoretic view of a trust model agrees
with our explanation of computational trust models in Section 2.2; additionally,
it simplifies the theory we take into consideration in the next section.

3.2.2 The trust channel
Now that we have described trust models algebraically, we can focus on the
formal model of how to assess each others’ communications about trust. To do so,
the agents should form an alignment, and to do this, the agents A and B establish
some set of shared interactions I|AB = I|A∩I|B , the set of interactions they have
both observed. In this theoretical section we assume that I|AB can be established
as the intersection of the sets of interactions that each individual agent observed;
however, in practice establishing this set may not be so straightforward. Luckily,
any subset of I|AB may serve the same purpose: a set of shared interactions that
both agents have observed and forms the basis of an alignment. Nevertheless,
we will see that the larger this set, the more accurate the alignment. Each
agent’s observations of the shared interactions are a subset of all its observations:
OA|B ⊆ OA are A’s observations of the interactions shared with B (and similarly
OB|A for agent B’s observations). These are observations of interactions that
both agents know they have shared.

In the introduction of this chapter, we stated that trust alignment provides
a way to align different agents’ subjective trust evaluations based on shared
interactions. These shared interactions are the set I|AB , and by considering
only the observations of these interactions we restrict what trust evaluations can
be supported. In each agent’s model there may be trust evaluations that are
supported by interactions which are not in this shared set of interactions. From



42 Chapter 3. Theoretical Framework

now on we will no longer refer to an agent’s entire trust model, but we will only
discuss the trust modelsMI|AB

i that is limited to the shared set of interactions
for agents i ∈ {A,B}. We will generally omit the superscript and just writeMi.

Example 3.4. Because both Alice and Bob have observed the interactions
article1 and article2, these are in the set of shared interactions of Alice and
Bob: {article1, article2} ⊆ I|Alice,Bob. One thing we should note is that it is
not obvious in our scenario why interactions are shared among observers at all.
It means that everybody who has read an article knows who else has read an
article. This is, however, easily sidestepped by having a prior communication in
which the agents exchange information about which articles the agents’ owners
have read, thus forming the set of shared interactions.

In addition to classifications representing each of the agents’ trust models, we
follow Channel Theory and represent the system itself with a classification. This
allows us to define how the information flows between the different entities. The
classification representing the distributed system itself is the core of a so called
information channel in Channel Theory. In contrast to the classifications that
represent each individual trust model, the core of a channel should be seen as
the connection between the agents’ trust models. While an information channel
can be defined among any number of entities of a network, we are interested in
a binary channel betweenMA[T ] andMB [T ]. We call this a trust channel and
define its core as follows:

Definition 3.4 (Core of the trust channel). Given two agents A and B, the
core of their trust channel with regards to target T is a classification C[T ] given
as follows:

• The tokens are subsets of shared interactions:
tok(C[T ]) = P(I|AB)

• The types are trust evaluations represented in LTrust, but distinguishing
between those from agent A and agent B by taking the disjoint set union:

typ(C[T ]) = typ(MA[T ]) ] typ(MB [T ])

= ({A} × LTrust[T ]) ∪ ({B} × LTrust[T ])

• The classification relation |=C[T ] such that a subset of interactions I sup-
port a trust evaluation of agent A if this trust evaluation is supported in
A’s trust model by A’s observations of I or analogically for B.
I |= 〈i, ϕ〉 iff

– either i = A and ObserveA(I) |=A ϕ

– or i = B and ObserveB(I) |=B ϕ

We are now ready to define how the information flows between the different
entities of the distributed system. For this we need a way to model the rela-
tionship between the system as a whole (or the core of the channel) and the



3.2. Interaction-based Model of Trust Alignment 43

individual entities (trust models). This relationship is given by an infomorph-
ism: a contravariant pair of functions that define how information may move
between two different systems, or in other words, how two classifications are
connected.

Definition 3.5 (Infomorphism [Barwise and Seligman, 1997, page 72]). An
infomorphism f : A � B from classification A to classification B is a con-
travariant pair of functions f = 〈f̂ , f̌〉, with f̂ : typ(A) → typ(B) and
f̌ : tok(B) → tok(A) and satisfying the fundamental property of infomorph-
isms, namely that classification is preserved under mapping of types and tokens:

f̌(b) |=A α⇔ b |=B f̂(α)

for each token b ∈ tok(B) and type α ∈ typ(A).

In the trust channel, these infomorphisms are defined as contravariant func-
tions between Mi[T ] and C[T ] for i ∈ {A,B}: f̌i(I) = Observei(I) and
f̂i(ϕ) = 〈i, ϕ〉. It is easy to check that these functions satisfy the fundamental
property of infomorphisms. With the trust models, the core and the infomorph-
isms defined, we have the components needed to describe the flow of information
within the system. This flow is defined by an information channel. The con-
nections in such an information channel capture Barwise and Seligman’s basic
insight that the flow of information, expressed at the level of types, occurs be-
cause of particular connections at the level of tokens.

Definition 3.6 (An information channel [Barwise and Seligman, 1997, page
76]). A channel C is an indexed family [with indices I] {fi : Ai � C}i∈I of
infomorphisms with a common codomain C, called the core of C. The tokens of
C are called connections; a connection c is said to connect the tokens fi(c) for
i ∈ I. A channel with index set {0, . . . , n− 1} is called an n-ary channel.

This definition can be applied to trust alignment: the agents’ trust evalu-
ations, despite being subjective, are connected through the interactions which
support them. We are thus interested in the binary channel, describing the flow
of information betweenMA[T ] andMB [T ]:

Definition 3.7 (Trust channel). We define an information channel C[T ] between
trust models with target T as follows. Let A and B be agents and I a set of
interactions, then:

• The two agents’ trust modelsMA[T ] andMB [T ] as in Definition 3.3.

• The core of the trust channel C[T ] as in Definition 3.4.

• The trust infomorphisms fA : MA � C[T ] and fB : MB � C[T ] as
defined above.

We call this information channel the trust channel between agents A and B
with regards to T and give a graphical representation of this channel in Fig-
ure 3.2. In the centre is the core of the channel: the classification with as tokens



44 Chapter 3. Theoretical Framework

({A} × LTrust[T ]) ∪ ({B} × LTrust[T ])

|=CLTrust[T ]

|=A

f̂A

44

LTrust[T ]

|=B

f̂B

jj

P(I|AB)

ObserveAtt
ObserveB **

P(OA|B) P(OB|A)

Figure 3.2: A trust channel

the sets of interactions and the disjunct union of both agents’ possible trust eval-
uations as its types. To either side, the individual agents’ trust models and the
infomorphisms connecting the whole. The channel C[T ] describes the informa-
tion flow between agents A and B by relating a set of interactions I ⊆ I|AB to
each agent’s trust evaluation of some target T , that is supported by the agent’s
observations of I. The relationship between A’s and B’s trust evaluations, at
the level of the types of the classifications, is supported by tokens, the sets of
shared interactions. This relation, however, is implicit in the trust channel. To
make the regularities in the distributed system explicit we need to consider the
theory generated by the core classification.

Definition 3.8 (Theory [Barwise and Seligman, 1997, pages 117, 119]). Given
a set Σ, a sequent is a pair 〈Γ,∆〉 of subsets of Σ. A binary relation ` between
subsets of Σ is called a (Gentzen consequence relation on Σ. A theory is a pair
T = 〈Σ,`〉. A sequent 〈Γ,∆〉 such that Γ ` ∆ is called a constraint on the theory
T . T is regular1 if, for all α ∈ Σ and Γ,∆,Γ′,∆′,Π0,Π1,Σ

′ ⊆ Σ, it satisfies the
following conditions:

Identity: α ` α

Weakening: if Γ ` ∆ then Γ,Γ′ ` ∆,∆′

Global cut: if Γ,Π0 ` ∆,Π1 for each partition 〈Π0,Π1〉 of any subset Σ′ of Σ
then Γ ` ∆

Definition 3.9 (Theory generated by a classification [Barwise and Seligman,
1997, page 118]). Let A be a classification. A token a ∈ tok(A) satisfies a
sequent 〈Γ,∆〉 of typ(A) if and only if (∀γ ∈ Γ : a |=A γ) → ∃δ ∈ ∆ : a |=A δ.
The theory generated by A, written Th(A), is the theory 〈typ(A),`A〉 where
Γ `A ∆ if all tokens of A satisfy 〈Γ,∆〉.

1The property of regularity is well-known in algebraic logic when dealing with a multicon-
clusional consequence relation as in our case [see Dunn and Hardegree, 2001]. Notice that any
theory generated by a classification (Definition 3.9) is always regular.



3.2. Interaction-based Model of Trust Alignment 45

A theory in Channel Theory is a generalisation of the notion of consequence in
logic: if a classification has models as its tokens and logical sentences as its types,
the consequence relation of Definition 3.8 is equivalent to logical consequence.
The definition, however, captures a more general notion of consequence, where
tokens are not restricted only to models as understood in mathematical logic,
such as the ones we describe in this thesis. Such a broader notion makes explicit
the regularities of a system of classifications if we consider the theory generated
by the core of a channel. In our trust channel this is Th(C[T ]) and it is this
theory that ultimately captures, in the form of sequents, the logical relation
between trust evaluations of separate agents.

Theoretically, this would be the theory we are aiming for when aligning trust
evaluations, but it may be very large; moreover, in practice, the agents do not
have the means to instantly construct the channel and the corresponding theory,
but must do so by communicating each constraint of the theory separately. We
are therefore interested in finding a smaller set of constraints which serves our
overall purpose of alignment. We are looking for those constraints that relate
single trust evaluations of two different agents. The theory which satisfies our
needs is the subtheory X[T ] = 〈typ(C[T ]),`X[T ]〉, with `X[T ]⊆`Th(C[T ]) such
that 〈i, γ〉 `X[T ] 〈j, δ〉 if and only if i 6= j and 〈i, γ〉 `Th(C[T ]) 〈j, δ〉. We see
that this theory contains precisely those constraints we require, because its con-
sequence relation has trust evaluations from different agents on the left and right
hand side. Furthermore, each set of interactions supports at most one trust eval-
uation for each agent, and thus we have single elements — the theory fulfils the
purpose of alignment.

Example 3.5. We continue the same scenario and recall Alice and Bob support
their own trust evaluations of Dave upon observing interactions article1 and
article2. Given just these interactions and the target Dave, we see we have the
channel whose core is:

• tok(C) = {{}, {article1}, {article2}, {article1, article2}}

• typ(C) ⊃ {〈Alice, trust(Dave, 4)〉, 〈Bob, trust(Dave, 3)〉}

• |=C= {({article1, article2}, 〈Alice, trust(Dave, 4)〉),
({article1, article2}, 〈Bob, trust(Dave, 3)〉)}

This generates a theory and we are interested in the subtheory X[Dave] of this
theory. X[Dave] has the following constraints:

• 〈Bob, trust(Dave, 3)〉 `X[Dave] 〈Alice, trust(Dave, 4)〉

• 〈Alice, trust(Dave, 4)〉 `X[Dave] 〈Bob, trust(Dave, 3)〉

Both of these are satisfied by the token {article1, article2}.

We have so far considered the channel with regards to a single target.
Alignment, however, should happen with regards to all targets in the envir-
onment. As with the trust models, the partitioning of LTrust gives us an in-



46 Chapter 3. Theoretical Framework

dexed family of trust channels {C[T ]}T∈Agents. We are interested in the theory
X =

⋃
T∈Agents

X[T ].

3.2.3 Communicating trust constraints

Because the agents do not have access to the channel, they need to communicate
their trust evaluations to construct it. This communication is a set of alignment
messages. Each alignment message contains an agent’s trust evaluation and iden-
tifies the set of interactions that supports the evaluation. This is the communic-
ation we refer to in Figure 3.1, resulting in the set of received alignment messages
in item (1). The actual communication requires a language in which sets of inter-
actions can be specified, and the formal definition of alignment messages is given
in Definition 3.11 (page 50), but we can informally define an alignment message
from agent B to agent A as a tuple 〈β, I〉 with β ∈ LTrust[T ] and I ⊆ I|AB ,
such that ObserveB(I) |=B β. In other words, agent B explains the intended
meaning of a trust evaluation β, by pinpointing the set of shared interactions I
that it observed to support β. Using I, agent A can then use its own trust model
to find its own corresponding trust evaluation α, such that ObserveA(I) |=A α.
The set I, therefore, satisfies the constraint 〈B, β〉 `X[T ] 〈A,α〉: this constraint
specifies the semantic relationship of α and β, coordinated through the shared
interactions I.

This way of specifying the communication shows large similarities with the
work described by Schorlemmer et al. [2007], which also builds on Channel The-
ory, but with the purpose of defining a framework of meaning coordination for
ontology alignment. The intuitions behind both models are very similar as they
draw from Channel Theory, although the technical details of the actual channel,
the generated theory and the use of the messages is very different.

Repeated exchange of alignment messages, about all targets, allows the
agents to approximate the theories {X[T ]}T∈Agents from the family of trust
channels between the two agents’ trust models. Communication, however, is
asymmetric. When agent B sends a message, it allows agent A to find the
constraint 〈B, β〉 `X[T ] 〈A,α〉, while agent B does not have this information.
Communication, therefore, leads to a partition of X, with XA consisting of the
constraints generated through alignment messages from agent B and XB vice
versa.

Example 3.6. Dave is not the only author who has written an article. Edward
and Frank are other target agents of whom Alice and Bob both have trust
evaluations, supported by interactions in I|Alice,Bob. The resulting theory XAlice
is:

1. 〈Bob, trust(Dave, 3)〉 `XAlice[Dave] 〈Alice, trust(Dave, 4)〉

2. 〈Bob, trust(Edward,−1)〉 `XAlice[Edward] 〈Alice, trust(Edward,−4)〉

3. 〈Bob, trust(Frank, 5)〉 `XAlice[Frank] 〈Alice, trust(Frank, 5)〉



3.3. Trust Alignment Through θ-subsumption 47

4. 〈Bob, trust(Frank,−2)〉 `XAlice[Frank] 〈Alice, trust(Frank, 3)〉

With each of these constraints satisfied by a different token, or subset of
I|Alice,Bob. Note that the last two constraints both concern target Frank, but
because different subsets of I|Alice,Bob support them, these two constraints are
very different. In constraint (3), both Alice and Bob’s observations of the in-
teractions lead to a very positive evaluation of Frank. In constraint (4), Bob’s
evaluation of Frank, based on this different set of interactions is negative, while
Alice’s is still positive. We reiterate that when either agent actually needs to
evaluate Frank for its own use, it will use all the information available to it, but
in alignment it can be very useful to generate multiple constraints based on dif-
ferent subsets of the full set of interactions, thus giving a greater understanding
of the semantic relationship between the agents’ trust evaluations.

We will see that the partition XA allows an agent A to find a predictive model,
such that, given a trust evaluation β′ from agent B, based on interactions I ′,
that might not be shared, the agent A can find a corresponding α′. Because
the interactions may not have been observed by agent A, the alignment needs
some way of deriving α′ from β′, using XA. There are various ways of doing this
and our work focuses on using a machine learning approach. In Chapter 4 we
compare our approach to some other methods. In the next section we detail the
theory underlying this approach and show how it resolves the problem of trust
alignment.

3.3 Trust Alignment Through θ-subsumption
In general, the agents may have observed different properties of the interactions,
and the trust models may use these different observations in different manners.
To learn a generalisation which allows an agent to translate the other’s trust
evaluations based on interactions it has not observed, the agents will have to
communicate more than just their trust evaluations. Specifically, they must
communicate some information about the interactions which support their trust
evaluation. In the previous section we specified alignment messages as a tuple
〈ϕ, I〉, with ϕ a trust evaluation and I a set of interactions; however, we did
not specify the manner in which these interactions are communicated. We now
clarify that this is done using a language for discussing the properties of the
agent’s environment, which we call LDomain.

The minimal requirement that LDomain must fulfil is to uniquely identify in-
teractions and thus communicate between agents the precise set I that supports
a trust evaluation; however, merely pinpointing this set of interactions leads to
two problems. First, an interaction may contain a lot of information, and thus
for an agent to obtain a predictive model, it may be very hard to discern what
information is relevant to the other agent. Secondly, if the interactions are not
shared, then merely an identifier of an interaction is meaningless: the receiving
agent has not observed the interaction and the identifier is useless to it. Thus we
need something more from LDomain: it must not just pinpoint the interactions,



48 Chapter 3. Theoretical Framework

but also allow agents to communicate the properties of the interactions that are
relevant to the computation of the trust evaluation. Using LDomain, the agents
can communicate what properties of the specified interactions led to the com-
municated trust evaluation. That information can be seen as a justification for
the trust evaluation and can be used to find a predictive model for translating
future trust evaluations.

In this section, the examples follow a more Prolog-like syntax than we have
used before: any term that starts with a capital letter is a variable, while con-
stants either start with a lower case letter or are quoted. We do this because the
logical notation used in this section is reminiscent of Prolog, and we thus follow
suit with the specification of variables and constants.

3.3.1 Syntax and semantics of LDomain
LDomain is a shared language, and most MAS environments have such a language
to describe the environment. If there is no shared language to describe the
domain readily available, we will assume the agents have used other techniques,
such as ontology matching methods [Euzenat and Shvaiko, 2007], to settle on
a joint language to describe the environment, allowing them to communicate
about the interactions using some such LDomain.

We will use LDomain in two different ways: the first is as mentioned, for
agents to communicate about the interactions; however, it also serves to describe
the background information about the environment. For both uses we assume
LDomain is an FOL language. For the definition of background information this
is sufficient, and we will discuss its use as such later; however, the communication
should provide descriptions of the interactions to be generalised over. In order
to learn such a generalisation, we require a specific format, namely Horn clauses.
See further below for their construction and use, but for now it is sufficient to
know that we require the communication in LDomain to be restricted in order
to achieve this, by taking the existential-conjunctive (EC) fragment of FOL
that underlies most assertional languages in Knowledge Representation. We
emphasise that we do not wish to restrict all common knowledge among agents
in this manner. The background information is also described in LDomain, but
we do not restrict the syntax to this fragment, and it may contain other full
first-order sentences.

Example 3.7. The agents need a language in which to describe articles, com-
plying with the restrictions above. This language uses the ontology defined in
Figure 3.3, using a UML-like notation. It is kept deliberately small and describes
only objective properties of the articles. An agent can describe an article with a
unique identifier, which, in this example we assume to be the title (in reality this
assumption does not hold and we need, for instance, the DOI to uniquely identify
articles). For instance, we can identify and refer to article1 using the atomic
sentence title(‘ArticleOne’) and describe that article’s attributes, such as its
authors, with predicates for the relations, such as author(‘ArticleOne’, ‘Dave’).
This is the EC fragment of FOL used for descriptions of single interactions. The



3.3. Trust Alignment Through θ-subsumption 49

Publication

Topic

title: String
Article

name: String
Author

authors

name: String
language: String
prestige: int

Institute
1

+

worksAt

*

1

hasTopics
*

+

*

+
name: String
core_rating: String

Conference name: String
ACMKeyword

name: String
ACMSubject

name: String
ACMSubcategory

keywordOf

inSubcategory

name: String
ACMSubcategory

inCategory

name: String
eigenfactor: float

Journal
publishedIn

hasTopics
+

*

1

1

1

*

*

*

Figure 3.3: A UML-like representation of LDomain

background information uses this same ontology, but is not limited to the EC
fragment: it may contain such formulae as ∀X : title(X)→ ∃Y : author(X,Y ),
stating that all articles have at least one author. Strictly that sentence says that
all items that have a title have at least one author; however, because we use the
title as the identifier, we already know that all articles have titles.

LDomain is a shared language of all agents in the system, and we define
the satisfiability of sentences in LDomain based on Herbrand logic, by using
the interactions as Herbrand models. We deliberately left the definition of the
interactions vague at the start of Section 3.2, and now consider the interactions
as the Herbrand universe for LDomain. Let ULDomain be the set of all ground
atoms in LDomain, also known as its Herbrand base. Each interaction ι should
be considered as a set {p1, p2, . . . , pn}, where each pi ∈ ULDomain . In this manner
we can see each interaction ι as a Herbrand structure and can consider all atoms
pi ∈ ι as true for the interaction ι and all other elements in ULDomain as being
false. This leads to standard Herbrand satisfiability for formulae in which we
consider interactions as Herbrand models; however, if a formula ψ describes not
a single interaction, but rather identifies the properties of a set of interactions
that support a trust evaluation, then such a semantics is not sufficient. For
instance, if I = {i1, i2} and we use the formula ψ = p1 ∧ p2 to describe I, then
we want I to model ψ, but not necessarily i1 or i2 to model ψ, because the
individual atoms p1 and p2 may refer to different interactions. We therefore
define satisfiability as follows:

Definition 3.10 (Interaction-based satisfiability of LDomain). Let I be a set of
interactions, ϕ,ψ be formulae in LDomainand p an atom of LDomain, then:

I p iff there is a ι ∈ I such that p ∈ ι
I ¬ψ iff I 6 ψ

I ϕ ∧ ψ iff I ϕ and I ψ

I ∃x : ψ(x) iff I ψ(a) for some ground term a

This is equivalent to normal Herbrand semantics after flattening I. Let |=H

stand for standard Herbrand semantics, then I ψ ⇔ flatten(I) |=H ψ.



50 Chapter 3. Theoretical Framework

Example 3.8. An agent can use LDomain to describe the articles on which
its trust is based. For instance, it could describe the article article1 using the
formula title(‘ArticleOne’). We then consider each interaction, or article, as
a Herbrand model of such formulae. Each article is a set of all the predicates
related to it, e.g. article1 = {title(‘ArticleOne’), author(‘ArticleOne’, ‘Dave’),
publication(‘ArticleOne’, ‘ConferenceA’)}. As such we have:
{article1} title(‘ArticleOne’), because title(‘ArticleOne’) ∈ article1.

3.3.2 Specific Rules for Alignment
In Section 3.2.3, we informally defined alignment messages as a tuple 〈α, I〉,
with α a trust evaluation and I a set of interactions. In the previous section we
specified LDomain, a language for communicating properties of the interactions.
This allows us to give a formal definition of alignment messages.

Definition 3.11 (Alignment Message). An alignment message from agent B
is a tuple 〈β, ψ〉, with β ∈ LTrust[T ] for some target T and ψ ∈ LDomain.
Additionally, there is a set of interactions I ⊂ I|AB such that:

• I ψ and ObserveB(I) |=B β

• I is the unique set for which this holds: for all I ′ ⊂ I|AB , if I ′ ψ and
ObserveB(I ′) |=B β, then I = I ′.

An alignment message thus contains a trust evaluation and a description in
LDomain of a unique set of interactions, whose observation supports the commu-
nicated trust evaluation. Agents are free to choose what they communicate in
the LDomain part of the message, as long as it uniquely identifies the interactions
supporting the trust evaluation.

Because LDomain is an FOL language, any ψ ∈ LDomain can be Skolemised
by replacing the existentially quantified variables with a new constant. We will
call this formula skolem(ψ). We now define a Specific Rule for Alignment (SRA)
in a straightforward manner from the alignment message.

Definition 3.12 (Specific Rule for Alignment (SRA)). Let 〈β, ψ〉 be an align-
ment message from agent B to agent A, and let I be the unique set of interactions
that supports β and is also a Herbrand model of ψ. Furthermore, let α ∈ LTrust
such that ObserveA(I) |=A α, and α and β have the same target. We then define
an SRA as the rule α← β, skolem(ψ).

The SRA as defined above is nothing more than the constraint 〈B, β〉 `XA
〈A,α〉, of the theory XA, rewritten and annotated with the description ψ in
LDomain of the token that supports this constraint in the core of the channel.
Given the restrictions on LTrust and LDomain, we see that an SRA is a definite
Horn clause. We write E for the set of all SRAs constructed by the agent and
we see that E is a representation of a subset of XA.

In the last section we have discussed the semantics of LDomain in terms of
Herbrand models; however, the SRAs in E are a combination of sentences in



3.3. Trust Alignment Through θ-subsumption 51

LDomain and LTrust. The semantics of LTrust is given by the agents’ trust mod-
els, not by Herbrand semantics. We therefore need to extend the relationship
between interactions and our languages as follows:

Definition 3.13 (A model for SRAs). Let ε = α ← β, ψ ∈ E and I ⊆ I, then
I ε iff: if ObserveB(I) |=B β and I ψ then ObserveA(I) |=A α.

In other words: if I is a Herbrand model of ε, then either the observations
of I support A’s trust evaluation α, I is not a Herbrand model of ψ, or B’s
observations of I do not support trust evaluation β.

Example 3.9. We recall from Example 3.6 that we had the constraint of
a theory X[Dave]: 〈Bob, trust(Dave, 3)〉 `XAlice[Dave] 〈Alice, trust(Dave, 4)〉.
Now we know how an agent can obtain the knowledge of such a constraint
through communication. For instance, Bob could send a message with evalu-
ation trust(Dave, 3) and the justification in LDomain:
author(‘ArticleOne’, Dave) ∧ publication(‘ArticleOne’, ‘ConferenceA’) ∧
author(‘ArticleTwo’, ‘Dave’) ∧ topic(‘ArticleTwo’, ‘TopicX’)

This would allow Alice to construct the SRA:
ε1 = trust(‘Dave’, 4)← trust(‘Dave’, 3), author(‘ArticleOne’, ‘Dave’),

publication(‘ArticleOne’, ‘ConferenceA’),
author(‘ArticleTwo’, ‘Dave’), topic(‘ArticleTwo’, ‘TopicX’)

Because {article1, article2} is the token that supports both agents’ trust
evaluations, and it is a Herbrand model for the LDomain part, we have
{article1, article2} ε1.

By constructing SRAs from each alignment message, an agent forms a set of
SRAs as step (2) of the process in Figure 3.1 (page 36).

3.3.3 Learning a prediction

Viewing the alignment messages in this way leads to a natural way of considering
predictive models: the representation of SRAs as Horn clauses, and the fact
that we have a set of examples from which we need to induce a more general
model, leads naturally to considering this as a problem of inductive learning.
Inductive Logic Programming (ILP) is a Machine Learning technique that is
concerned with learning in expressive logical or relational representations. We
follow De Raedt [2008] and formalise an ILP problem as follows:

Definition 3.14 (An ILP Problem [De Raedt, 2008, page 71]). An ILP problem
consists of:

• A language of examples Le, whose elements are descriptions of examples,
observations or data

• A language of hypotheses Lh, whose elements describe hypotheses about
(or regularities within) the examples, observations or data



52 Chapter 3. Theoretical Framework

• A covers relation c ⊆ Lh × Le to determine whether a hypothesis covers
an example.

Most notably this can be applied to problems of classification, in which the
examples are divided into labelled classes, and the task is to discover generally
applicable rules in the language of hypotheses. The rules should cover as many
examples as possible belonging to one class, and as few as possible belonging
to any other class. Regression is another form of this, in which the classes
are not predefined, but all examples are labelled numerically. The task is then
to find generally applicable rules that group the examples together, such that
the average internal deviation of each group is minimal. How a rule divides
the example set is defined by coverage. By viewing hypotheses as a general
set of clauses that entail the examples they cover, we represent trust alignment
as a problem of “learning from entailment” and use the corresponding coverage
relation:

Definition 3.15 (Coverage for entailment [De Raedt, 2008, page 72]). For a
hypothesis H ∈ LH and an example e ∈ Le, c(H, e) iff H |= e.

In other words, a hypothesis covers an example if and only if it entails it.
To properly consider our problem as an ILP problem we need to define an

example language Le and a hypothesis language Lh, such that the coverage
operator works. We use the set E of SRAs as Le, and we see each SRA as an
example. For our hypothesis language we use Horn logic with the non-logical
parameters from LTrust and LDomain. A hypothesis H is a conjunction of Horn
clauses in this language. The task at hand is to find a hypothesis H, which
covers all of our examples, or more formally, the hypothesis H, such that for all
SRAs ε ∈ E we have H e.
E , however, is not the only information available to the agent for finding

H: it can also use background information. LDomainis a language in which to
represent facts about the interactions, but some of these facts may be related
in a known manner. Such extra information can be considered background
information, which can be used when learning an alignment. We assume such
background information is available to all agents in the system, or that it can
be disseminated in prior rounds of communication.

This background information could, for example, contain taxonomy inform-
ation, such as that all cars are motor vehicles. If we find a hypothesis which
covers all examples about motor vehicles, then with the background information,
this hypothesis covers all examples about cars. The definition of coverage using
background information is as follows:

Definition 3.16 (Coverage for entailment with background information
[De Raedt, 2008, page 92]). Given background information B, hypothesis H
covers an example e iff H ∪ B |= e. In other words, if e is entailed by
the conjunction of the hypothesis and the background information, we say the
hypothesis covers it.

Using this definition of coverage, we define when one hypothesis is more
general than another.



3.3. Trust Alignment Through θ-subsumption 53

Definition 3.17 (Generality [De Raedt, 2008, page 48]). Let H1 and H2 be
hypotheses. We say H1 is more general than H2, notated H1 � H2, iff all
the examples covered by H2 are also covered by H1, that is {e | c(H1, e)} ⊇
{e | c(H2, e)}. Conversely, we say that H2 is more specific than H1 in this
situation.

Because we limit our language of hypotheses to conjunctions of Horn clauses,
we can simplify the definition of generality and use instead:

Definition 3.18 (Generality of Horn clauses). If the hypotheses H1 and H2 are
Horn clauses, we can view these as sets of literals. We say H1 � H2 iff H1 ⊆ H2.
This is equivalent to the above definition.

Our task is to find the most specific hypothesis H∗ that entails all examples
in E given the background information B ⊆ LDomain. This hypothesis should
therefore satisfy the criteria: H∗ ∈ LH such that H∗ ∪ B E , and for all
H′ ∈ LH , if H′ ∪ B E , then H′ ∪ B H∗. In other words: H∗ covers all
examples in E , and if any other hypothesis covers E , then it is more general than
H∗.

Another way of defining this is by sayingH∗ is the least general generalisation
of E . Defined in this way, we can start looking for thisH∗ by considering different
generalisation operators. As our examples are ground definite Horn clauses, we
must use a generalisation operator which can deal with this expressivity. θ-sub-
sumption [Plotkin, 1970] is the most important framework for this, and virtually
all ILP algorithms use it. Briefly summarised, we say a clause C θ-subsumes
another clause C if there is a substitution θ such that Cθ ⊆ D (i.e., every literal
in Cθ also appears in D)2. This definition does not take background information
into account, and we give the full method below.

The hypothesis H∗ we are searching for, is a formula such that for all e ∈ E
there is an H ∈ H∗ such that H `B,θ e, with `B,θ the consequence relation given
by θ-subsumption using background information. This hypothesis is found by
iteratively finding the least general generalisation of two clauses, starting from
the SRAs themselves. The least general generalisation of clauses, lgg(c1, c2), is
defined as:

Definition 3.19 (Least general generalisation [De Raedt, 2008, page 134]).
lgg(c1, c2) = {lgg(a1, a2) | a1 ∈ c1∧a2 ∈ c2∧ lgg(a1, a2) 6= >}, where lgg(a1, a2)
is the least general generalisation of two atoms and > is the most general clause:
it is satisfied by all models.

The least general generalisation of two atoms is defined as:

Definition 3.20 (Least general generalisation for atoms [De Raedt, 2008, page
120]). The least general generalisation of two atoms a1, a2 is a generalisation a
of a1 and a2 such that for any other generalisation a′ of a1, a2 there is a non-
trivial substitution θ (in other words, it does not only rename variables) such

2We use juxtaposition to denote substitution.



54 Chapter 3. Theoretical Framework

that a′θ = a. A generalisation of two atoms can be defined more precisely than
in Definition 3.17, namely: if the atoms a1 and a2 start with different predicate
symbols, their generalisation is >, otherwise it is an atom a, such that there are
substitutions θ1, θ2 such that aθ1 = a1 and aθ2 = a2

Because θ-subsumption makes no distinction between LTrust and LDomain
we need to extend our definition of interactions as Herbrand models: we must
define for the LTrust part of the message with substitutions. Let ε = α← β,ψ
be a generalisation through θ-subsumption of n SRAs αi ← βi, ψi with i ∈ [1, n]
and I ⊆ I, then I ε if and only if the following condition holds: Whenever

• there is a substitution θB , such that ObserveB(I) |=B βθB

• there is a substitution θ, such that I ψθ

then there is a substitution θA, such that ObserveA(I) |=A αθA. This is a
straightforward extension of Definition 3.13.

Our definition of lgg(c1, c2) does not take background information into ac-
count. We therefore need to define lggB(c1, c2), the least general generalisation
relative to background information B. For this we use the bottom clause ⊥(c)
of a clause c.

Definition 3.21 (Bottom clause [De Raedt, 2008, page 139–141]). For a ground
Horn clause c and background information B, the bottom clause ⊥(c) is defined
as the most specific ground Horn clause, such that B ∪ {⊥(c)} |= c, in other
words there is no clause c′ ⊃ ⊥(c) such that B ∪ {c′} |= c. This is also called
the saturated clause, because we can see this as the process of adding ground
literals to c until it is saturated; there are no more literals we can add without
invalidating the premise B ∪ {⊥(c)} |= c.

Example 3.10. The background information, presumed to be known by all
agents in the system, is the set of sentences {rating(‘ConferenceA’, ‘TierA’)3,
rating(‘ConferenceB’, ‘TierA’), subtopic(‘TopicX’, ‘TopicY ’)4}. This allows
us to construct the bottom clause of the SRA ε1 (from Example 3.9):

⊥(ε1) = trust(‘Dave’, 4)← trust(‘Dave’, 3), author(‘ArticleOne’, ‘Dave’),
publication(‘ArticleOne’, ‘ConferenceA’),
author(‘ArticleTwo’, ‘Dave’),
topic(‘ArticleTwo’, ‘TopicX’),
rating(‘ConferenceA’, ‘TierA’),
subtopic(‘TopicX’, ‘TopicY ’)

Using the bottom clause we define lggB(c1, c2) = lgg(⊥(c1),⊥(c2)). All
of these operations have workable algorithms to achieve them, described by
De Raedt [2008] and Nienhuys-Cheng and de Wolf [1997].

3according to, for instance, the CORE ranking system for conferences
4where the topics might be from the ACM taxonomy



3.3. Trust Alignment Through θ-subsumption 55

To summarise: starting from a set of SRAs, communicated through the chan-
nel, each agent can compute a generalisation H∗, which covers all the SRAs.
lggB(E) computes the bottom clauses of all the SRAs and then keeps computing
pairwise least general generalisations until there are none left. The resulting
conjunction of clauses is our hypothesis H∗. This process is the induction pro-
cess of step (4) in Figure 3.1 (page 36). Its result, the clauses in H∗, are General
Rules for Alignment (GRAs), and the outcome of Trust Alignment is a set of
GRAs, depicted in item (5) of Figure 3.1.

Example 3.11. After more communication, Alice constructs a second SRA:

ε2 = trust(‘Greg’, 4)←trust(‘Greg’, 3), author(‘ArticleThree’, ‘Greg’),
publication(‘ArticleThree’, ‘ConferenceB’)

She can construct ⊥(ε2) and as such can calculate the lggB(ε1, ε2):

lgg(⊥(ε1),⊥(ε2)) = trust(X, 4)←trust(X, 3), author(A,X), publication(A,B),

rating(B, ‘TierA’)

This is a GRA. It says that for any agent X that Bob evaluates with value
3, based on an article published at a venue rated TierA, Alice should interpret
that as an evaluation of agent X with value 4.

As we see in this example, GRAs are predictive rules that allow an agent to
translate a trust evaluation, even if the agent has not observed the interactions
that the evaluation is based on. The trust model can then use this information,
in the way it would normally integrate witness information, to decide whether
or not to interact with the target, as in items (7) – (9) of Figure 3.1.

Example 3.12. Using the GRA in Example 3.11, Alice can translate a new
message from Bob, which states:

〈trust(‘Zack’, 3), author(‘NewArticle’, ‘Zack’)
∧ publication(‘NewArticle’, ‘ConferenceZ’)〉

Alice has the additional background information rating(‘ConferenceZ’,
‘TierA’). With this information she can translate the message from Bob into her
own frame of reference, obtaining trust(‘Zack’, 4); however, we do not assume
this is her own trust evaluation. Alice’s trust evaluation now uses this translated
message, together with any other information she can obtain about Zack, and
calculates her actual evaluation of Zack. This she can use to decide whether or
not Zack is a trustworthy author for the introduction of her book.

We end this section with a theorem relating the method of generalisation
back to our formation of the trust channel of Definition 3.7:
Theorem 1:
For a set of agents Agents, aligning agents A and B and the family of trust chan-
nels {C[T ]}T∈Agents, the pairwise union of the SRAs generated by the theories



56 Chapter 3. Theoretical Framework

X[T ] of these channels forms a complete lattice under θ-subsumption. Further-
more, if we consider the indexed family of partitions XA[T ] and XB [T ] for all
targets T then the union of these also forms a complete lattice under θ-subsump-
tion.

Proof. Let T and T ′ be target agents, andX and Y be the sets of SRAs generated
from X[T ] and X[T ′], respectively. To show that X ∪ Y forms a lattice under
θ-subsumption, we need to show that for any two elements x, y ∈ X∪Y , there is
an element that θ-subsumes both x and y. We can show this, by demonstrating
that the top element of such a lattice exists: in other words, there is an element
z ∈ LH , such that z θ-subsumes any element in X ∪ Y .

Let z = lgg(lgg(X), lgg(Y )). We must now show that z exists and that z
θ-subsumes all elements in X∪Y . According to Definition 3.12, the sets of SRAs
X and Y , are sets of definite clauses. We distinguish two cases:

1. All the clauses in X have the same predicate in the head and sim-
ilar for Y . In this case the lgg(X) and lgg(Y ) are themselves definite
clauses. If lgg(X) and lgg(Y ) have the same predicate in the head, then
z = lgg(lgg(X), lgg(Y )) is also a definite clause. If they do not have the
same predicate in the head, then z = >, the most general clause. In either
case z exists, and z � lgg(X) and z � lgg(Y ). Therefore, for any two
elements x, y ∈ X ∪ Y , we know that z � x and z � y.

2. The clauses in X or Y have different predicates in the head. We show this
case for X, but the proof for Y is analog. In this case the lgg(X) = >.
Thus the lgg(X) is already the top element in the lattice, because there is
no clause more general than >. Furthermore, if lgg(X) = > then z = >
and therefore, for any two elements x, y ∈ X∪Y , we have z � x and z � y.

Because we have made no assumptions about X[T ] or X[T ′], we can see that this
applies to any combination of theories in the family X and we have a complete
lattice.

The proof of the second part of the theorem, referring to the partition XA
and XB is analog.

This proof also shows that if LTrust contains more than one predicate, it is
interesting to first partition the SRAs by predicate in the head and learn these
generalisations separately: while the final generalisation will still be >, along
the way useful predictive models will be found.

This theorem has some important implications. Firstly, it means that we do
not lose predictive power by considering each targeted channel separately: the
generalisation through θ-subsumption of the union of the theories is the same as
the generalisation of the union of the generalisations. Secondly it means there is
also no predictive power lost when each agent learns its own generalisation sep-
arately. They could together find the generalisation of their combined predictive
models. Note, however, that this would not be very interesting: it would give
only those rules for which both their trust models coincide exactly, whereas the



3.4. Describing Interactions 57

individual generalisations have more predictive power, giving the translation of
the other’s trust evaluation in a certain situation, described in LDomain.

3.3.4 Computation

The method described in the previous sections is a formal framework. To allow
for actual computation based on it, quite some restrictions need to be made.
First off, there are privacy issues in constructing the channel. The next section
will somewhat alleviate these issues, by giving a way in order to choose what to
communicate, although we still assume that the agents must disclose information
about the interactions. Additionally, there are restrictions on the computation
itself. The computation of the least general generalisation of two clauses is
exponential in the number of clauses [Nienhuys-Cheng and de Wolf, 1997]. If
that weren’t enough, proving a clause θ-subsumes another clause is also proven to
be NP-complete [Garey and Johnson, 1979]. Finally any generalisation operator
that actually computes the lgg of two clauses may run into the problem that
there may be infinite reductions [De Raedt, 2008].

These problems are solved by placing large restrictions on the space in which
a computational algorithm searches for a hypothesis. This is done in two ways:
the first is by imposing a language bias on the practical implementation of the
learning algorithm. This limits which types of hypotheses can be considered. The
second is by ensuring that the communicated information is truly relevant in the
learning process. The sending agent must therefore choose the description of the
interactions in LDomain carefully. In the next section we formalise the concept of
relevant observations and how such relevance is transferred to a communication
in LDomain.

3.4 Describing Interactions

In Section 3.2 we formalised how trust evaluations depend on the observations of
specific interactions, and in Section 3.3 we specified how the combination of these
trust evaluations, and some information about the interactions, can be used to
learn an alignment. There is, however, an important issue which has so far been
left undiscussed: how an agent can choose what properties of a set of interactions
it should communicate when sending alignment messages. Specifically, there are
two reasons why this is an important choice.

First, information that is not actually used in the trust model can be con-
sidered noise. While learning methods, such as ILP, distinguish between inform-
ative and non-informative items, the more there are of the latter, the higher
the chance that the algorithm accidentally overfits, based on them. Even if this
does not happen, it makes the learning process take longer than necessary. The
problem is hard enough without adding extraneous information.

Secondly, and possibly more importantly, the aim is for the receiving agent
to use the alignment to translate messages based on interactions that the agents
have not shared. So far we have not really discussed what is important to



58 Chapter 3. Theoretical Framework

communicate in the LDomain language because alignment is performed using a
set of shared interactions. Both agents have their own observations of the set
of interactions, and if need be, can draw upon this knowledge to learn a good
alignment. In contrast, if the interaction is not shared, the receiving agent has
to make do with only the information that is communicated by the witness. Our
best chance of learning a useful alignment is thus to use only the information
in the alignment messages, because if a GRA is learnt using information that is
never communicated, this GRA can never be used to translate evaluations based
on interactions that are not shared.

In the alignment process, it is unlikely that the receiver learns anything new
about the interactions, but rather it should be able to learn something about
the sender, by analysing what properties the sender chooses to communicate.
For this to be possible, and thus for the receiver to learn as accurate as possible
an alignment, it depends in a large part on the sender communicating only
relevant aspects of the interactions and doing this consistently. In this section,
we investigate what these concepts mean in the context of trust alignment.

3.4.1 Relevance
While Section 3.3 focused on the receiver of alignment messages and we analysed
how these could be used to learn an alignment, this section focuses on what
the sender can do to help the receiver. We are thus assuming that this agent
is benevolent : it will act in the best interest of the receiver. However, our
method specifically deals with some of the privacy issues a sender might have.
Within the bounds of what information is relevant, the sender is free to choose
to omit some of this, as long as it does this consistently. We now formalise the
intuitive meaning of relevance and consistency. Before we define relevance in the
communications, however, we need to define what it means within an agent’s
trust model.

Let |=A be agent A’s trust model with regards to target T , as in Definition 3.3,
and let α ∈ LTrust[T ] be a trust evaluation. We recall that a set of observations
O ⊆ OA is said to support α, if O |=A α. This however, is not quite specific
enough because all this states is that there are elements in O that support α.
What we really want to find is a smallest set that still supports α. More formally,
we say that a set O is relevant to α iff O |=A α and for all sets O′ ⊂ O, we have
O′ 6|=A α.

This condition captures our intuition in a fairly straightforward manner: we
want to work with a smallest set of observations that supports a trust evalu-
ation. Because OA is a set of logical sentences in a logical language LOA (as we
mentioned in Definition 3.1 on page 38), we can generalise the definition of a
relevant set to use the entailment relation rather than the subset relation. We
interpret O ⊆ OA as a conjunction of the observations. The intuition behind
this is that we want a set O to hold if and only if all sentences o ∈ O hold. With
LOA a logical language, we use entailment to give us a broader interpretation of
relevance. We say that a set of observations O is relevant to a trust evaluation
α, if O |=A α, and for any set O′ such that O |= O′, we have O′ 6|=A α. We can



3.4. Describing Interactions 59

give the same definition using a generalisation operator (see Definition 3.24 be-
low), which will prove useful throughout this section. A generalisation operator
is defined as follows:

Definition 3.22 (Generalisation operator [De Raedt, 2008, page 56]). For a
language LOA , a generalisation operator ρg : LOA → P(LOA) is defined as a
function such that for all o ∈ LOA we have ρg(o) = {o′ ∈ LOA | o |= o′}, with |=
the entailment relation of LOA . We say that for any o′ ∈ ρ(o), o′ is more general
than o, with notation: o′ � o. Using this definition we will define the meet of
two observations: o1 u o2 = ρg(o1) ∩ ρg(o2).

Note that this operator works in essentially the reverse manner from the gen-
eralisation of SRAs to GRAs. Whereas a GRA entails the SRAs it generalises,
in this case it is the other way round: the specific observation that is general-
ised now entails the more general one. In an ILP setting this corresponds with
learning from satisfiability rather than learning from entailment. The intuition
behind this switch is that in the former case, a GRA is a descriptor for a class of
objects: it specifies the sufficient properties to distinguish among classes. In the
latter case we do not want to distinguish among sets of observations, but rather
find necessary properties for a set of observations to support a trust evaluations.
Thus for generalising SRAs we find universally quantified disjunctions of sen-
tences, whereas generalisation of observations results in existentially quantified
conjunctions of sentences. For a detailed account of the relation between the
two logical settings, we refer to De Raedt et al. [1997].

θ-subsumption provides us with a way of generating a generalisation op-
erator as follows: let ϕ be a sentence in a Horn language then ρ(ϕ) =
{ϕ′ | ϕ′ θ-subsumes ϕ} is a generalisation operator. As an example of this
operator in practice, assume o = title(a) ∧ author(a, b), then we obtain:

ρ(o) = { >, author(X,Y ), title(X), author(a,X), author(X, b),

title(a), author(a, b), title(X) ∧ author(Y, Z),

title(X) ∧ author(X,Y ), title(a) ∧ author(X,Y ),

title(X) ∧ author(a, Y ), title(X) ∧ author(Y, b),
title(X) ∧ author(X, b), title(X) ∧ author(a, b),
title(a) ∧ author(X, b), title(a) ∧ author(a,X),

title(a) ∧ author(a, b) }

with all variables existentially quantified. This set is not exhaustive, and all
sentences that are logically equivalent (such as author(a, b) ∧ title(a)) to those
in the set are also in the generalisation. As we see, the number of generalisations
of a single conjunction is large. Luckily, we are not interested in all of the
generalisations, but only the relevant generalisations. Relevance is defined for
sets of observations, so we similarly need to define the generalisation operator
for sets of observations. We extend the generalisation operator ρ to generalise
sets of sentences as follows:



60 Chapter 3. Theoretical Framework

Definition 3.23 (Generalisation operator for sets). Let O ⊆ OA, then if we
enumerate all elements in O with o1, . . . , on, we define the generalisation operator
ρ(O) = {{p1, . . . , pn} | pi ∈ ρ(oi) for i ∈ [1, n]}, with variable substitution to
ensure each pi uses a unique set of variables. Intuitively, it means that every
possible generalisation of O contains one possible generalisation for each o ∈ O,
and the set ρ(O) is all possible combinations of the generalisations of the elements
of O.

This operator allows us to also extend the definition of the meet: O1 uO2 =
{o | ∃o1 ∈ ρ(O1), o2 ∈ ρ(O2) : o ≡ o1 ∧ o ≡ o2}. We need to define it in
this manner, rather than simply taking the intersection of ρ(O1) and ρ(O2),
because if O1 and O2 have different cardinalities, there might still be logical
generalisations; we need to interpret each set O as an existentially quantified
conjunction of sentences in LOA and consider the equivalence classes in the
meet.

We use this generalisation operator to define a relevant set of observations.

Definition 3.24 (Relevant observations). Let O ⊆ OA be a set of observations,
and |=A be the trust model of A. Furthermore let α ∈ LTrust[T ] be a trust
evaluation with target T . We say the set of observations O is relevant to trust
evaluation α iff:

• O |=A α.

• For any set O′ ∈ ρ(O), we have that O′ 6|=A α or O = O′.

Note that this new definition of a relevant set is a generalisation of the original
description. The subset relation in OA can be used to generate a generalisation
operator, and by using this generalisation operator in Definition 3.24, we have
the original description back. The difference is that we can now also use other
generalisation operators, such as the generalisation operator generated by θ-sub-
sumption that we discussed earlier. We leave the choice of which generalisation
operator to use to the designer because we do not want to limit agents with
regards to the internal representation language they use. We only make the
following assumption: for any agent A, LOA is a logic in which a generalisation
operator can be defined. We continue our running example of Alice search-
ing for a trustworthy author, and show how relevance can be defined in Alice’s
observation language.

Example 3.13. We recall from Example 3.3 (page 40) that the following holds
for Alice:

ObserveAlice({article1, article2}) |=Alice trust(Dave, 4)

So far we have not talked about the internal representation language LOA

that Alice’s agent has for observations. Let us assume this is a first-order
language in the agent’s belief base. Alice can have the following representation
of {article1, article2}:



3.4. Describing Interactions 61

ObserveAlice({article1, article2}) = observeAlice(article1) ∪ observeAlice(article2)

={author(‘ArticleOne’, ‘Dave’) ∧ publication(‘ArticleOne’, ‘ConferenceA’)
∧ readable(‘ArticleOne’) ∧ original(‘ArticleOne’),
author(‘ArticleTwo’, ‘Dave’) ∧ topic(‘ArticleTwo’, ‘TopicX’) ∧
¬readable(‘ArticleTwo’) ∧ original(‘ArticleTwo’)}

While this set supports trust(Dave, 4), there is a lot of information that
is probably not necessary. For instance, if we assume that Alice’s trust model
evaluates Dave the same based on any two articles written by him, as long as
they are original, then a relevant set does not need to include statements about,
for example, readability. We use θ-subsumption to define our generalisation
operator ρ. This results in the following set of relevant observations:

Orel = {author(‘ArticleOne’, ‘Dave’) ∧ original(‘ArticleOne’),
author(‘ArticleTwo’, ‘Dave’) ∧ original(‘ArticleTwo’)}

This set still supports trust(Dave, 4) in Alice’s trust model, but any generalisa-
tion does not: any generalisation removes some essential information. Either the
information that there are two different articles, that Dave is the author of both
articles, or the information that both articles are original. If, however, the trust
model were only to require a single original article to support the trust evalu-
ation for Dave, we would obtain {author(X, ‘Dave’) ∧ original(X), >} as the
relevant set of observations from ObserveAlice({article1, article2}). While this
also matches with just Observe({article1}) or Observe({article2}) as well, the
fact that there are two articles would, in this latter case, actually be irrelevant
information.

Now that we have defined relevance for observations, we can define relevance
for messages. The translation between observations and the description of the
interactions in LDomain should, in some way, maintain relevance. Relevance,
however, is defined with regards to an agent’s trust evaluation: relevance is
agent-specific. We should thus define it in terms of how an agent translates its
observations into LDomain. We define a translation between an agent’s observa-
tion language LOA and LDomain as a pair of functions:

Definition 3.25 (Translation between languages). A translation between two
languages, in our case LDomain and LOA consists of two binary relations ηup
and ηdown, such that for a formula ϕ ∈ LDomain, ηup(ϕ) ⊆ LOA and for an
o ∈ LOA , η

down(o) ⊆ LDomain.5
A desirable property of a translation is for both ηup and ηdown to be func-

tional; in other words, they associate at most a single element with each element
in their domain. If both are functional we speak of a functional translation.

Because we are mainly interested in translations of sets of observations, we
define Hup and Hdown as the extension of translation η to sets: for a set of

5We use functional notation for a relation R ⊆ S1 × S2 to mean that, for a ∈ S1, we write
R(a) = {b ∈ S2 | aRb}.



62 Chapter 3. Theoretical Framework

observations O, we have Hdown(O) =
∏
o∈O η

down(o) and similarly for Hup.
It is trivial to check that if η is functional, then the corresponding H is also
functional.

Example 3.14. Alice could use the following function ηdown to translate her
observations of the interactions {article1, article2}:

ηdown(author(‘ArticleOne’, ‘Dave’)) = {author(‘ArticleOne’, ‘Dave’)}
ηdown(publication(‘ArticleOne’, ‘ConferenceA’)) =

{publication(‘ArticleOne’, ‘ConferenceA’)}
ηdown(readable(‘ArticleOne’)) = {}
ηdown(original(‘ArticleOne’)) = {}
ηdown(author(‘ArticleTwo’, ‘Dave’)) = {author(‘ArticleTwo’, ‘Dave’)}
ηdown(topic(‘ArticleTwo’, ‘TopicX’)) = {topic(‘ArticleTwo’, ‘TopicX’)}
ηdown(¬readable(‘ArticleTwo’)) = {}
ηdown(original(‘ArticleTwo’)) = {}

This is a function, so if we have ηup functional as well, then this forms a functional
translation between LOAlice and LDomain.

We can use such a translation to define the relevance of messages in LDomain:
Definition 3.26 (Relevance maintaining translation). Let O ⊆ LOA be a set of
relevant observations for agent A’s trust evaluation α and let H be a functional
translation between LOA and LDomain. The message Ψ = Hdown(O) is relevant
to agent A’s trust evaluation α iff the set Hup(Ψ) ∈ ρ(O). In other words,
the translation does not add any irrelevant properties. A translation maintains
relevance if and only if for all relevant observations O, with respect to all of
agent A’s trust evaluations α, (Hup ◦Hdown)(O) ∈ ρ(O).

A special case is if (Hup ◦ Hdown)(O) = O for all O ⊆ LOA , in which case
there is a subset X ⊆ LDomain such that LOA

∼= X.

Note that this definition means that in the general case, if O |=A α, then
(Hup ◦ Hdown)(O) 6|=A α. This is consistent with our initial thoughts. Due to
privacy and incomplete translation functions it isn’t always possible to translate
all the relevant observations to LDomain, but at least those properties which are
communicated should be a generalisation of those which were used for calculating
the trust evaluation.

In Section 3.4.3 we will return to the concept of relevance, and specifically,
the translation function η, but first we move on to the second desirable property
of the communicated information regarding a trust evaluation: that an agent is
consistent in its information given similar situations.

3.4.2 Consistency
To define consistency between similar situations, we first need a method for de-
ciding when situations are similar. We start with a very broad definition that



3.4. Describing Interactions 63

focuses on trust evaluations. Trust evaluations are normally quite easily com-
pared. If they are numerical, we can simply use the absolute difference between
the two numerical values as the distance between two values. Other evaluations
require other distance metrics, but these are generally not problematic. For
instance, Sabater-Mir and Paolucci [2007] give a distance metric for trust eval-
uations represented by probability distributions and Abdul-Rahman and Hailes
[2000] use a discrete representation and translate this to corresponding numbers
in order to use a distance metric.

We use such a distance metric to define equivalence classes of trust evalu-
ations: two trust evaluations α1[T ] and α2[T ′] are equivalent if, given a distance
metric d, d(α1, α2) = 0. Note that this states nothing about the equality of the
targets of α1 and α2. In fact, the point of this is mainly to allow us to abstract
away from the target: in most cases the distance metric d will work only with
the actual trust value and disregard the target. Thus, in our example LTrust
we can use Euclidean distance on the values and therefore trust(Jimmy, 4) and
trust(Dave, 4) are equivalent. We use this as a first step in defining when an
agent is consistent by defining when two sets of observations are comparable:

Definition 3.27 (Comparable observations). Let O1, O2 ⊆ OA be two sets of
observations of an agent A and d a distance metric on LTrust, then O1 and O2

are comparable for agent A iff O1 |=A α1, O2 |=A α2 and d(α1, α2) = 0.

This, however, is just the first criterion. Two sets of observations are com-
parable if they support equivalent trust evaluations, but two wildly different sets
of observations might satisfy this condition. In addition, we thus need some kind
of similarity measure on observations.

This similarity measure is defined as follows, using the generalisation operator
as in Definition 3.23 (page 60).

Definition 3.28 (Similar observations). Let O1, O2 ⊆ OA be two sets of ob-
servations of an agent A and ρ a generalisation operator in OA, then these
observations are similar iff there is an O∗ ∈ O1uO2 such that O∗ 6≡ >. In other
words there is a non-trivial generalisation of both O1 and O2.

Example 3.15. We assumed in Example 3.13 that Alice uses first-order
logic in her belief base and a generalisation operator based on θ-subsumption.
We recall the observations of interactions {article1, article2} from Example 3.13:

O1 =ObserveAlice({article1, article2}) = observeAlice(article1) ∪ observeAlice(article2)

={author(‘ArticleOne’, ‘Dave’), publication(‘ArticleOne’, ‘ConferenceA’),
readable(‘ArticleOne’), original(‘ArticleOne’),
author(‘ArticleTwo’, ‘Dave’), topic(‘ArticleTwo’, ‘TopicX’),
¬readable(‘ArticleTwo’), original(‘ArticleTwo’)}

Now if Alice observes another set of articles, {article3} with the following
observations:



64 Chapter 3. Theoretical Framework

O2 = ObserveAlice({article3}) = {author(‘ArticleThree’, ‘Jimmy’),
publication(‘ArticleThree’, ‘JournalAlpha’),
topic(‘ArticleThree’, ‘TopicX’), original(‘ArticleThree’)}

We see that these two sets are similar because there is an

O∗ = {author(X,A), publication(X,B), topic(Y, ‘TopicX’), original(X)}

that θ-subsumes both sets with:

θ1 ={X/‘ArticleOne’, A/‘Dave’, B/‘ConferenceA’, Y/‘ArticleTwo’}
θ2 ={X/‘ArticleThree’, A/‘Jimmy’, B/‘JournalAlpha’, Y/‘ArticleThree’}.

Furthermore, if ObserveA({article3}) |=A trust(‘Jimmy’, 4) then the sets of
observations are comparable as well as similar.

An obvious example of dissimilar observations is if the interaction
is completely unrelated, such as Alice’s observations of a tennis match:
ObserveAlice({match1}) = {players(‘Jimmy’, ‘Dave’)∧score(‘2–1’)}. The only
sentence that θ-subsumes Alice’s observations of the initial two articles on the
one hand, and her observations of the tennis match on the other, is >. All
the same, these observations might be comparable, because based on the tennis
match, Alice might compute that trust(‘Jimmy’, 4).

The combination of comparable and similar observations allows us to define
consistency for a translation.

Definition 3.29 (Consistency). Translation H is consistent iff for all O1, O2 ⊆
OA that are similar and comparable observations of an agent A and all non-
trivial O∗ ∈ O1 uO2 we have that Hdown(O∗) generalises both Hdown(O1) and
Hdown(O2) in LDomain.

For this definition we do not strictly need O1 and O2 to be comparable,
only similar. Nevertheless, given that our aim is to give desirable properties
of a translation for similar trust evaluations we give the broadest definition of
consistency that allows us to do this. If O1 and O2 support dissimilar trust
evaluations we are not interested in what their translation is.

Example 3.16. Alice’s translation function η from Example 3.14 is also able
to translate her observations O2 of {article3}:

ηdown(author(‘ArticleThree’, ‘Jimmy’)) = {author(‘ArticleThree’, ‘Jimmy’)}
ηdown(publication(‘ArticleThree’, ‘JournalAlpha’))

= {publication(‘ArticleThree’, ‘JournalAlpha’)}
ηdown(topic(‘ArticleThree’, ‘TopicX’)) = {topic(‘ArticleThree’, ‘TopicX’)}
ηdown(original(‘ArticleThree’)) = {}



3.4. Describing Interactions 65

and also translates O∗ as follows:

ηdown(author(X,A)) = {author(X,A)}
ηdown(publication(X,B)) = {publication(X,B)}
ηdown(topic(Y, ‘TopicX’)) = {topic(Y, ‘TopicX’)}
ηdown(original(X)) = {}

This is a consistent translation: the only similar and comparable sets of obser-
vations in OAlice are O1 and O2 and Hdown(O∗) clearly θ-subsumes Hdown(O1)
and Hdown(O2). We can change this to an inconsistent translation by using,
for instance ηdown(topic(‘ArticleThree’, ‘TopicX’)) = {}. This way Hdown(O∗)
does not θ-subsume Hdown(O2). This is also the type of inconsistent commu-
nication we wish to avoid: if the agent chooses to communicate the topic of an
article, it should do so consistently when the articles are similar and comparable.

We are interested in translations that maintain relevance (Definition 3.26)
and are consistent (Definition 3.29). A further desirable property of agents
in general is that they are coherent. With this we mean that observations are
similar if and only if the underlying interactions are similar: this is useful so that
the receiving agent, when identifying the interactions and its own observations
of those interactions is guaranteed to observe similarly coherent properties. We
do not formalise this property as we have the other two, because it depends on
a similarity measure for the interactions, which is not always available. One
way to do it, is in terms of interactions as Herbrand models of LDomain and use
θ-subsumption as a generalisation operator, but that does not seem in the spirit
of what interactions really are. We therefore leave this as an open question, that
depends on the domain and how interactions are actually defined in it.

3.4.3 Galois connection
Now that we have specified the desirable properties that the sending agent and
its translation functions should have, let us look at properties of pairs of binary
relations. Specifically, if the translation relations form a Galois connection, then
the properties of consistency and relevance are guaranteed. A Galois connec-
tion is defined as a correspondence relation between two partially ordered sets
(posets). We start by giving the definition of a Galois connection, then prove
the properties hold, and finally describe why the fact that the translation can
be any Galois connection is a useful property to know.

Definition 3.30 (Galois connection). Let (A,≤) and (B,≤) be two partially
ordered sets (posets). Let F : A → B and G : B → A be two monotone
functions. We call these functions a (monotone) Galois connection between A
and B iff for all a ∈ A and b ∈ B: F (a) ≤ b ⇔ a ≤ G(b). In this connection
F is called the lower and G the upper adjoint and we will use the notation
(F,G) : A

Galois
====⇒ B

This same definition holds for preordered sets (prosets) as well as for posets.



66 Chapter 3. Theoretical Framework

A useful property of Galois connections, that we will use later, is the follow-
ing:

Property 3.4.1. Let (A,≤) and (B,≤), and functions F,G such that (F,G) :

A
Galois

====⇒ B. Then for any a ∈ A and b ∈ B: a ≤ (G◦F )(a) and (F ◦G)(b) ≤ b.

To even start showing that a Galois connection fulfils the properties of main-
taining relevance and being consistent, we need to show that the observations
and LDomain are prosets with the right ordering. Because we want to talk about
sets of observations and descriptions in LDomain, we will give the result directly
for the power sets.

Lemma 3.4.1. (P(OA),�), with � defined as O1 � O2 iff O1 ∈ ρ(O2), is a
proset.

Proof. We need to prove reflexivity and transitivity of �.

• Reflexivity is trivial. Let O ⊆ OA then O ∈ ρ(O) and thus O � O

• Transitivity is also straightforward. Let O1, O2 and O3 ⊆ OA such that
O1 � O2 and O2 � O3. Then we know that O1 ∈ ρ(O2) and thus, from
Definition 3.23, O2 |= O1. Analogously we know that O3 |= O2. From the
transitivity of entailment we know thatO3 |= O1 and thus that O1 ∈ ρ(O3).
Therefore O1 � O3.

Lemma 3.4.2. (P(LDomain),�θ) is a proset.

Proof. The proof is given by De Raedt [2008] and is very similar to that of
Lemma 3.4.1.

We can now prove that a translation H is both relevance maintaining and
consistent if it is a Galois connection. ForH to be a Galois connection, bothHup

and Hdown must be monotone with regards to the ordering we use. This needs
to be checked for any translation function. For the relevance-maintaining and
consistent translation of Examples 3.14 and 3.16 the translation is monotone.
Theorem 2:
Let (Hdown, Hup) : P(OA)

Galois
====⇒ P(LDomain), then, given O, a set of relevant

observations for agent A’s trust evaluation α, Hdown(O) is a relevant message
as in Definition 3.26 and therefore the translation H maintains relevance.

Proof. The proof follows trivially from Property 3.4.1.

Theorem 3:
Let (Hdown, Hup : P(OA)

Galois
====⇒ P(LDomain), then H is consistent.

Proof. Let O1, O2 ⊆ OA be similar and comparable observations of an agent A
and ρ a generalisation operator inOA. We prove the theorem from contradiction.



3.4. Describing Interactions 67

1. Assume there is no O∗ ∈ O1 uO2 such that Hdown(O∗) �θ Hdown(O1).

2. We rewrite (1): for all O∗ ∈ O1 uO2 we have Hdown(O∗) 6�θ Hdown(O1).

3. From the fact that O1 and O2 are similar, we know that there is an
O∗ ∈ O1 u O2. This means that O∗ � O1.

4. With H a Galois connection and Property 3.4.1 we also know that
(Hup ◦ Hdown)(O∗) � O∗

5. From transitivity of � and (4) we know that (Hup ◦Hdown)(O∗) � O1.

6. Now from Definition 3.30 we know Hdown(O∗) �θ Hdown(O1). However,
this contradicts (2) and thus our assumption. From contradiction follows
that there is an O∗ ∈ O1 uO2 such that Hdown(O∗) �θ Hdown(O1).

For O2 the proof is analogous and we obtain that H is consistent.

Therefore, if the translation an agent uses between its own representation
language and LDomain is a Galois connection, then it satisfies these two proper-
ties. This is a useful result, because Galois connections are a commonly used tool
when trying to find useful representations of concepts. For instance, they form
an integral part of the theory of Formal Concept Analysis [Ganter and Wille,
1999]. This means that, in general, the existing tools for finding translations
between an internal representation and LDomain will satisfy these properties.

Furthermore, there are relevance-maintaining and consistent translations
that are not Galois connections; specifically, if Hdown is not surjective. Let, for
instance, o ∈ LOA and ϕ,ψ ∈ LDomain such that ψ 6�θ ϕ. Also let η be a trans-
lation such that ηdown(o) = ϕ, ηup(ϕ) = o, ηup(ψ) = o, and there is no o′ ∈ LOA

such that ηdown(o′) = ψ. Then this translation is relevance-maintaining and
consistent, but not a Galois connection.

Example 3.17. An example of a relevant and consistent translation that is
not a Galois connection is obtained, for instance, if the LDomain of our ex-
ample were to, in addition to having the author predicate, allow further dis-
tinction between first_author and other_author as different classes of au-
thor. If an agent does not care for this distinction and its internal represent-
ation thus only uses the predicate author then we might run into problems.
For instance, let us use the translation function η defined as follows: for any
termsX,Y it has ηdown(author(X,Y )) = {author(X,Y )}, ηup(author(X,Y )) =
{author(X,Y )} and ηup(first_author(X,Y )) = {author(X,Y )}, then it is im-
mediately obvious that η does not form a Galois connection, despite maintain-
ing relevance. We have {author(X,Y )} � Hup(first_author(X,Y )), but not
Hdown({author(X,Y )}) �θ {first_author(X,Y )}. To be able to conclude that
{author(X,Y )} is more general than {first_author(X,Y )} we need an extra
rule, first_author(X,Y ) → author(X,Y ), from the background information
in LDomain, which is not used in θ-subsumption. In this case we can make the
translation a Galois connection by using θ-subsumption with background in-
formation to consider generality in LDomain, but as shown above, in the general



68 Chapter 3. Theoretical Framework

case a relevance-maintaining and consistent translation is not always a Galois
connection.

Nevertheless, the condition for relevance clearly does hold (on this fragment
of the language): (Hup ◦ Hdown)({author(X,Y )}) ∈ ρ({author(X,Y )}). Note
that the lack of surjectivity alone is not sufficient to say that a relevant and
consistent translation is not a Galois connection. Consider the same case, but
ηup(first_author(X,Y )) = ⊥, and of course, ηdown(⊥) = ⊥ (where ⊥ = ¬>).
Now it clearly is a Galois connection.

In the normal case, if we use the LDomain from Figure 3.3 (page 49), then the
translation function in Example 3.14 is, in fact, a Galois connection; however,
it also makes it clear that the properties so far are not the only desirable prop-
erties. For instance we have that ηdown(original(X)) = ∅. This is problematic,
because, given the description of Alice’s trust model in Example 3.13, original-
ity of an article is the main criterion she uses for evaluating it. The distinction
between important and unimportant concepts is dependent on the agent and
the trust model, and whether these can be translated into LDomain also depends
on the expressiveness of this language. The designer of the system thus has
an important task in deciding which Galois connection to use for the transla-
tion, but in order to not add extraneous irrelevant information to a message and
to maintain consistency between messages describing similar observations, this
translation should be a Galois connection.

Finally, we return to another important property that we require of the
translation. We talked about the LDomain message needing to uniquely identify
the set of interactions used to calculate the trust evaluations in Section 3.3
(page 47). An agent receiving an alignment message must be able to identify
the interactions in order to use its own observations of these interactions and
calculate the trust evaluation they support. The translation must thus maintain
the identity of the observations.

Definition 3.31 (Invariance with regards to interactions). To define invariance
for a translation we must first define what it means for a set of observations
to uniquely identify a set of interactions: let A be an agent and O ⊆ OA a
set of observations, then O uniquely identifies a set of interactions I ⊆ I iff
O � Observe(I) and for all I ′ ⊆ I we have that if O � Observe(I ′) then I = I ′.

We can now define invariance as follows: let A be an agent and I ⊆ I then
a translation H is invariant with regards to I iff for all O ⊆ Observe(I) that
uniquely identify I we have that (Hup ◦ Hdown)(O) uniquely identifies I. A
translation is said to be invariant with regards to interactions if it is invariant
with regards to all I ⊆ I|A.

An agent with a translation that is invariant to interactions translates its ob-
servations into LDomain in such a way that the interactions can still be identified.
It also translates LDomain messages that identify interactions into its internal
representation language in such a way that the interactions can be identified.
This is essential for the translating of alignment messages, because agents need
to identify the sets of interactions to be able to calculate their trust evaluations.



3.5. Summary 69

Invariance with regards to interactions is not automatically satisfied by a
Galois connection, and in fact, creates problems for a translation. On the one
hand we do not want to communicate irrelevant information, and on the other
hand we need to identify interactions, usually using predicates that are irrel-
evant to the trust model. A possible solution is to extend the definition of
alignment messages to have two parts in LDomain, one for communicating relev-
ant information and the other for specifying what set of interactions was used.
We do not take this approach in this thesis: in the next chapter we allow agents
to communicate translations of supersets of the relevant set of observations, so
the interactions can be uniquely specified. We allow agents to communicate
somewhat irrelevant information so the translation is invariant with regards to
interactions.

Example 3.18. We recall from Example 3.13 (page 60) that Orel is the following
set:

{author(‘ArticleOne’, ‘Dave’), original(‘ArticleOne’),
author(‘ArticleTwo’, ‘Dave’), original(‘ArticleTwo’)}

This set identifies {article1, article2}. If Alice’s translation H is invari-
ant with regards to interactions, then her translation into LDomain must also
uniquely identify this set. A message sent, using this translation, thus allows
any agent to identify the interactions {article1, article2} and calculate its own
trust evaluation based on these interactions.

Nevertheless, there is still the problem that there is no translation for the
predicate original into LDomain, and Alice can therefore not communicate this,
most relevant, aspect of her observations. Alice suspects that the venue an article
was published at, is correlated with the originality of the work. Because this is
the best information she can give, using the LDomain ontology in Figure 3.3,
she disregards the actual relevant information original(‘ArticleOne’) and uses
instead publication(‘ArticleOne’, ‘ConferenceA’), that is not strictly relevant
to her. Because she suspects the correlation, she hopes the receiver can use it to
learn a relation between certain publication venues and her trust evaluations.

This example makes it clear that it is neither easy to decide what needs
communicating, nor to learn based on this. In this section we have given some
useful properties to aid in this process, but it remains a hard problem.

3.5 Summary
In this chapter we have described a formal framework in which we define what
the problem of trust alignment is and give a formal description of a possible solu-
tion. Furthermore, we address the problem of deciding what content to include
in the alignment messages. The definition of trust alignment is based on Channel
Theory, which gives a way to model the flow of information within a distributed
system, and forms a solid foundation for trust alignment. The method for align-
ing uses θ-subsumption in order to generalise from the exchanged messages and



70 Chapter 3. Theoretical Framework

results in an alignment that can be used to translate the other agent’s evalu-
ations based on non-shared interactions. Finally, we show that if the translation
function that an agent uses to generate messages in the domain language, based
on its own internal representation, is a Galois connection, then some desirable
properties for the communication hold.

For our framework to work we assume the agents and domain meet some basic
properties. The first is that for any type of alignment, agents need a set of shared
information from which they can start to find the alignment (this is formalised
in Section 3.2.2). In our framework we assume this set of shared information are
interactions that both agents can observe. The environment must provide the
opportunity for such shared interactions to occur. Secondly, agents must be able
to identify these interactions to each other and describe some relevant objective
properties of these interactions in a shared language. Similarly, we assume there
is some knowledge about the environment that all agents share. Finally, we
assume agents are truthful about the interactions they have observed and their
properties. Moreover, learning a successful alignment is dependent on the sender
being in some way benevolent: it must attempt to communicate the properties
of interactions that are relevant to the trust evaluation, and additionally, be
consistent among similar sets of interactions. If the agents and domain meet
these criteria, then agents can align using our framework.



Chapter 4

Alignment in Practice

The true method of discovery is like the flight of an aeroplane. It
starts from the ground of particular observation; it makes a flight
in the thin air of imaginative generalisation; and it again lands for
renewed observation rendered acute by rational interpretation.

–Alfred North Whitehead

4.1 Introduction
The framework described in the previous chapter gives an abstract, theoret-
ical description of the solution we are searching for; however, as pointed out
in Section 3.3.4, an implementation has to overcome the various computational
limitations of calculating least general generalisations and the θ-subsumption of
formulae. Additionally, whether an actual implementation can learn a general-
isation at all depends on LDomain and what the sender chooses to communicate
using it, as described in Section 3.4. In this chapter we will look at these prob-
lems in more detail, with the actual implementation of a trust alignment method
in mind.

In Section 4.2, we present FORTAM, our solution to the problem. It uses
a First-Order Regression algorithm to learn an alignment. We analyse it em-
pirically, using a simulated environment that is based on the case study of the
previous chapter. We are particularly interested in the number of interactions
required to learn an alignment, and this depends on how hard the problem is. In
Section 4.2.4, we define the relative complexity between different trust models
and use this as a measure of the hardness of the alignment problem.

In Section 4.3 we compare our solution to some of the other methods for
solving the trust alignment problem. Most notably, we compare FORTAM to
Abdul-Rahman and Hailes’ method [2000] and POYRAZ [Şensoy et al., 2009].
The former learns an alignment without taking the context into account and the
latter is one of the filtering methods we described in Section 2.3.1. We see that
FORTAM performs significantly better than any of the other methods.

71



72 Chapter 4. Alignment in Practice

4.2 Using ILP to Learn a Trust Alignment

The aim of a trust alignment method is to, briefly summarised, use the underly-
ing evidence that the agents share to translate the other agent’s subjective trust
evaluation, so that it may be used accurately. In Section 3.3 we formulated this
problem as a machine learning problem using the ILP paradigm. The problem,
thus formulated, is to find a hypothesis that best describes the set of Specific
Rules for Alignment (SRAs). To narrow it down, though, we have some spe-
cific knowledge about the intended output of an alignment: given an alignment
message, we want to find a corresponding trust evaluation in our own frame of
reference.

The learning algorithm that best corresponds to this is a (multiclass) classi-
fication algorithm. We consider the own trust evaluations as labels for classes
and the alignment messages as the descriptions of the cases in the classes. An
ILP classification algorithm learns a generalisation of these descriptions, which
can be used to classify future alignment messages and find the corresponding
own trust evaluation. If, however, the representation space for trust evaluations
is large, we run the risk that each individual class is very small. A better rep-
resentation is to cluster similar trust evaluations together and consider them as
cases of same class. Given that trust evaluations are represented using LTrust,
we need a way of describing similarity between concepts in this language.

In a first approach we make no assumptions about LTrust, except that there
is an adequate distance measure on it, which we can then use to cluster the
SRAs. This groups similar trust evaluations together and we can then find a
prototype trust evaluation for each cluster as the representative label of the
class. Finally, we use an ILP algorithm to learn a generalised description of the
alignment messages corresponding to each class. If this ILP learner fails for any
of the clusters, then we make this cluster larger and try again. This results in
a set of Generalised Rules for Alignment (GRAs): the head of a GRA is the
prototype of the cluster and the body is the generalised description learnt by
the ILP algorithm. Furthermore, these GRAs can be ranked from specific to
general, and for translation of any new incoming communication we simply find
the most specific GRA that covers it and use the prototype of the cluster as the
translation.

Previous work by Koster et al. [2010a,b] presented this method in detail.
In this thesis, we choose not to go into further details, focusing rather on an
improvement of this algorithm. By assuming we learn separate alignments for
any predicate in LTrust that we are interested in, and furthermore, that the
values are represented numerically, we can learn far superior alignments. This
assumption is justified by the fact that the majority of computational trust
models (discussed in Section 2.2) do use some form of numerical representation;
additionally, Pinyol et al. [2007] show how other representation methods for trust
can be converted into a numerical value. Regardless, we include the clustering-
based alignment method in our experimental comparison of Section 4.3, where
we show how much First-Order Regression improves on it and go into more detail
on the reasons for this.



4.2. Using ILP to Learn a Trust Alignment 73

4.2.1 First-Order Regression

First-Order Regression is a combination of ILP and numerical regression [Karalič
and Bratko, 1997]. ILP was discussed in the previous chapter and numerical re-
gression is a method for function approximation [Bishop, 2006]. The goal is to
learn the (functional) relationship between the dependent and independent vari-
ables. In numerical regression (or regression analysis), the independent variables
are assumed to be numerical, whereas First-Order Regression allows the inde-
pendent variables to be sentences in a first-order logic. The dependent variable
is, in both first-order and numerical regression, a numerical value [Russel and
Norvig, 2010].

By assuming the trust evaluations use numerical values for the evaluation,
we can use First-Order Regression, a form of supervised learning, rather than
clustering, which is a form of unsupervised learning. Specifically, the assumption
allows us to consider the SRAs as sample values for a function, with as domain
the alignment messages and as range the own trust evaluations. For instance,
consider the general form of an SRA α→ β, ψ and let a = value(α) with value
a function that extracts the numerical value of a literal in LTrust (for instance,
value(trust(‘Dave’, 4)) = 4). We can interpret such an SRA as a sample from
the unknown function F : LTrust × P(LDomain) → R, such that F (β, ψ) = a.
Both LDomain and LTrust are first-order languages, so we can use First-Order
Regression to learn an approximation of this function F , which allows us to
translate alignment messages into the own frame of reference. There are two
ways in which algorithms for First-Order Regression approach the problem, a
top-down and bottom-up approach. We chose to use Tilde [Blockeel et al.,
2002], which uses the top-down approach, because it shows impressive results
and has a good interface, both for defining the examples and hypothesis language,
as well as to interpret the results.

In Algorithm 2 we give the overview of Tilde-RT, the algorithm for learning
a regression decision tree. The way it works is that it learns a (binary) decision
tree, starting with just the root. A binary decision tree is a representation of
a function that, given a new message, finds the corresponding own trust value
by providing a sequence of binary tests. These tests are the tree’s inner nodes,
that consist of a sentence in the hypothesis language. If the sentence covers the
new message, then the decision is to go down the left subtree and if it fails, go
down the right subtree. This process is repeated until the node is a leaf. The
leaf contains the result of the function, or the translation of the message: a
numerical value that is the expected own trust value. Tilde represents this tree
in a Prolog program and this program is the output of the learning algorithm.
The Prolog program can be used with new messages to automatically translate
them.

A very simple example of a decision tree is sketched in Figure 4.1. This
decision tree has tests about the received message. For instance, if the trust
evaluation in the received message has a value greater than three, then we go
to the left branch of the tree, otherwise we go right. Eventually we end up in a
leaf: this is the translation of the message into the own frame of reference.



74 Chapter 4. Alignment in Practice

Algorithm 2: The Tilde-RT algorithm (see Blockeel and De Raedt
[1998])

Tilde-RT:
begin

Input: E , the set of SRAs to be generalised
Input: LH , the hypothesis language
Input: t, a target predicate
V alue := Predict(t, E)
Basic_tree := inode(>,leaf(t(V alue)), leaf(⊥))
T ′ := Grow_Tree(E, Basic_tree, t, LH)
T := Prune(T ′)
Output: T , the decision tree that best fits the data E

end

Grow_Tree:
begin

Input: E, a set of examples
Input: T , an inner node of a decision tree
Input: t, the target predicate
Input: LH , the hypothesis language
candidates := Generate_tests(T,E,LH)
Tbest := Optimal_split(candidates, E, t)
if Stop_crit(Tbest, t, E) then

V alue := Predict(t, E)
result_tree := leaf(t(V alue))

end
else

Tnode := T − Tbest
Eleft := {e ∈ E|Tbest e}
Eright := {e ∈ E|Tbest 6 e}
left_tree := Grow_Tree(E1, Tbest, t, LH)
right_tree := Grow_Tree(E2, T , t, LH)
result_tree := inode(Tnode, left_tree, right_tree)

end
Output: result_tree, the subtree starting in the current node

end

Algorithm 2 constructs such a decision tree by starting with a single node,
with >, the test that always succeeds, and thus all the examples are in the left
child with as value the “predictor” of the set of SRAs E , as calculated by Predict.
In the standard implementation of Tilde this function simply calculates the
mean of the target variable, in our case the own trust evaluations. In each
subsequent step the tree is grown with a binary decision: the method Grow_Tree
finds the test, using Generate_tests, that optimally splits the examples covered



4.2. Using ILP to Learn a Trust Alignment 75

other_trust(A, X), X > 3 

worksAt(A, I), 
prestige(I, 8)

other_trust(A, X), 
X < -1 

yes no

trust(A, 3.3)

yes

speaks(A, German)

no

trust(A, 2)

yes

trust(A, 4.5)

no trust(A, -3)

yes

author(P, A), 
publishedIn(P, C), 
core_rating(C, 'A')

no

trust(A, 3)

yes

trust(A, -1)

no

Figure 4.1: An example of a decision tree for translating the other’s trust eval-
uation.

so far in that branch and extends the tree in this manner. The examples are
then split according to whether they are covered or not by the new test and so it
continues. Optimal_split uses the heuristic for regression as given by Blockeel
et al. [1998], namely an F-test:

F =
SS/(n− 1)

(SSL + SSR)/(n− 2)

with SS the squared error of the examples in the node: SS(E) =∑
e∈E

(
target_value(e)−Predict(E)

)2 and in our case target_value of course
returns the value of the own trust evaluation of the example SRA. SSL and
SSR is the same error for the left and right children in the test. Optimal_split
chooses the test that gives the maximum F -value. Stop_crit also uses the F -
value: if this is under a certain threshold it is not worth expanding the tree.
Additionally, there is another stop criterion: if a split results in two children
that cover a single example each, it is not worth expanding the tree.

The process continues until there are no more leaves to expand. After this
Tilde-RT has the option to prune the resulting tree to reduce overfitting to the
training data. Blockeel et al. [1998] describes how to do this using a validation
set.

Decision trees and θ-subsumption

Learning a decision tree is a form of generalisation. Specifically the initial tree
can be written as the most general generalisation trust(Target, x) ← >, with
x the mean value of all own trust evaluations. Each subsequent tree results in
more specific generalisations. At any time we can represent the tree as a con-
junction of Horn clauses, which is, in fact, what Tilde does when it generates
the output as a Prolog program. While in the previous chapter we generally
used a bottom-up approach to explain how ILP could find a trust alignment, it



76 Chapter 4. Alignment in Practice

turns out that in practice top-down is often a more suitable approach, because
it is easier to find good heuristics for guiding the search. This is especially so,
if there are only positive examples available, as is the case in regression. In
classification it is usually the case that we have positive and negative examples
for each class, but in regression we are learning a numerical function and thus
any example should be interpreted as the result of the function for some ele-
ment in its domain. Despite performing refinement, rather than generalisation,
θ-subsumption still forms an integral part of the algorithm. It is used, together
with the user-imposed language bias to generate the set of possible tests in the
function Generate_tests.

Two alternative algorithms can be used to perform First-Order Regression,
FORS [Karalič and Bratko, 1997] and S-CART [Kramer and Widmer, 2001]. S-
CART is very similar to Tilde and in the literature performs similarly [Blockeel
et al., 2004], although we did not test it for learning a trust alignment. FORS
works differently and learns the rules directly, rather than finding a decision tree.
In order to do this they use a different heuristic (coverage instead of splitting)
for deciding how to search, which does not suit our specific problem description
quite as well.

The language bias

One of the ways in which an ILP algorithm reduces the computational complexity
of θ-subsumption is by not considering the entire search space. The type of tests
it considers for adding to the tree are defined by a language bias; however, one
has to be very careful in implementing such a bias: if we restrict the search
space too much, then the algorithm might not find certain tests that could have
improved the decision tree. For the example scenario we use in this section, we
know what types of tests can lead to good choices, and in such cases, specifying
the parameters in order to encompass interesting parts of the search space for
good tests is relatively straightforward. In the general case, very good care must
be taken to design the language bias correctly.

As briefly mentioned above, Generate_tests does not only use the user-
defined bias to generate the set of possible tests. It also considers what tests
could even be a generalisation of the examples in the first place. The information
in LDomain that the examples contain depends entirely on what the sender has
communicated. This is why it is so important for the sender to communicate
relevant information consistently, as we pointed out in Section 3.4.

In the continuation of this section we describe the experimental setup and
give some results of the learning algorithm, under the assumption that the send-
ing agent does its best to send relevant and consistent information, and using a
well-designed language for learning.

4.2.2 Experimental setup

We demonstrate how Tilde learns an alignment, using the same scenario that we
used as a running example in Chapter 3. An agent, Alice, is writing a book and is



4.2. Using ILP to Learn a Trust Alignment 77

searching for a guest author to write the introduction. The agent asks for Bob’s
help, but Bob might evaluate authors differently from Alice. The agents need to
align before Bob’s advice is useful. In this experiment our aim is only to show
that a regression algorithm learns a useful alignment. In Section 4.3 we address
the question of whether alignment is useful and what alternative algorithms can
be used. For the experimentation, we use the LTrust and LDomain from the
example: LDomain uses the ontology of Figure 3.3 and LTrust contains a single
predicate trust(Target, V alue) with Target an agent and V alue ∈ [−5, 5] ∪ Z.

In order to prepare the experimental scenario, we use the ontology of LDomain
to automatically generate articles written by authors in the system. The back-
ground information about conferences, journals and authors is assumed to be
known by all evaluating agents in the system. By generating the interac-
tions from the LDomain ontology we are simplifying the problem discussed in
Chapter 3. In the theory we work under the assumption that there is a cor-
relation between the properties of interactions described in LDomain and the
subjective observations of the agents. This correlation is what we try to capture
using a suitable translation that captures the properties of an interaction that
are relevant to a trust evaluation. We recall Example 3.18, in which we realised
that the agent’s observation that an article is original could not be represented
in LDomain, so we used the publication venue instead. In the experimentation we
flip this around: we generate articles using LDomainand the agents’ observations
that these are readable and original are then deduced from properties in LDomain
(although each agent does this differently and has different internal names for
these properties). That way, when the agents communicate in LDomain we are
guaranteed that the subjective observations of agents are correlated with some
sentence in LDomain. We emphasise again that all agents use different properties
and evaluate these differently, so they still have to learn the alignment.

We run the experiments with a finite set of randomly generated articles. We
then apply hold-out validation, using 60% of these interactions for the alignment
process and 40% to evaluate it [Snee, 1977].

4.2.3 Trust models
In the experiments, we initially use four different agents, each with its own trust
model. All these models use the same general structure, given in Algorithm 3. It
is easy to see that this is an instance of the abstract trust model of Algorithm 1
on page 17: lines 2–5 perform the process_experiences function, while the rest
corresponds with calctrust. The process_witness function is simply the identity
function, as we assume we have already translated witness information using the
trust alignment method.

The models distinguish between direct trust and communicated trust. If the
agent has observed any articles written by the author T , it uses direct trust. This
depends on the evaluate and aggregate functions to calculate a trust evaluation.
If no articles have been observed, then communicated trust is used: each com-
municated evaluation has an uncertainty associated with it, which is dependent
on the alignment method used. The agent selects the single communication with



78 Chapter 4. Alignment in Practice

Algorithm 3: Abstract Trust Model
Input: t ∈ Authors, the target author to be evaluated
Input: Articles, a set of articles, written by t
Input: Communicated_Evaluations, a set of communicated evaluations

from other evaluator agents in the system
Input: default_eval, a default trust evaluation, used in case no articles

have been observed and no communicated evaluations have been
received

1 if Articles 6= ∅ then
2 article_ratings := ∅
3 foreach Article a ∈ Articles do
4 article_ratings := article_ratings ∪ evaluate(t, a)
5 end
6 trust_eval := aggregate(article_ratings)
7 end
8 else if Communicated_Evaluations 6= ∅ then
9 certainty := 0

10 foreach Evaluation e ∈ Communicated_Evaluations do
11 if certainty(e) ≥ certainty then
12 certainty := certainty(e)
13 trust_eval := value(e)

14 end
15 end
16 end
17 else
18 trust_eval := default_eval
19 end

Output: trust(t, trust_eval)

the highest certainty to use. If there are also no communicated evaluations avail-
able, then a default trust evaluation is used. This is a very basic trust model and
most models in the literature use a more sophisticated method of aggregating
information from different sources (e.g. direct trust, reputation, communicated
evaluations). Nevertheless, this model is sufficient to show the problems that
arise if the agents do not align and to evaluate the different alignment methods.
Sophisticated aggregation methods have large advantages at the individual level,
because they allow for richer models and more predictive methods; however, if
two agents use different aggregation methods, it is hard to distinguish whether
the difference in trust evaluation is because the agents use a different aggregation
method, or because they use different aspects of the interactions.

Work has been done on learning aggregated values [Uwents and Blockeel,
2008]. Unfortunately, this work is not yet applicable to the more complicated ag-
gregation methods used in modern trust models. We avoid this issue by aligning
the ratings of individual interactions. The agents can then use their own aggreg-



4.2. Using ILP to Learn a Trust Alignment 79

ation method, thereby obviating the need to solve the more complex problem of
finding an alignment after aggregation. For the aggregate we take the average
of the article ratings, although as we just explained, an agent could equally well
use a probabilistic method such as BRS [Jøsang and Ismail, 2002] or a more
social network orientated approach, such as Yu and Singh’s model [2002].

The evaluate function is where each of the reader’s trust models differs. As
described in the previous section, each agent uses the objective description of an
interaction in LDomain to calculate some subjective properties of an interaction,
such as readability or originality. Based on these, the agent calculates the rating
of the author, using a list of “if-then-else” rules in Prolog, such as the following:

evaluation(Target, Article, 5) :- authors(Article, Authors), member(Target, Agents),
significance(Article, Sig), Sig > 0.7, originality(Article, Ori),
Ori > 0.7, readability(Article, Read), Read > 0.7, !.

This rule states that if the target agent is an author of the article and the
observations of significance, originality and readability are all greater than 0.7
then the evaluation of the author, based on that article has value 5. All five of
the readers’ trust models are comprised of such rules, but they only coincide in
the structure. The trust models differ in the actual content of the rules, such
as the values attributed to different combinations of the subjective properties.
Furthermore, the way in which the subjective properties, such as readability, are
calculated, is different.

We call the two different parts of the evaluate function, the “observation”-
module and “trust”-module. These perform the different functions in the the-
ory: the “observation”-module is the implementation of the observe function (see
Definition 3.1) and calculates the values for the subjective properties, such as
readability or originality. The “trust”-module is the implementation of the trust
classification (see Definition 3.3) using the Prolog rules above. Note that this
implementation limits the sets of interactions whose observations can support
trust evaluations to singleton sets for the reasons described above.

We combine the “observation”- and “trust”-modules to have a couple of dif-
ferent models for both Alice, the agent requesting a trust evaluation, and Bob,
the witness supplying the trust evaluation. We can use this for two different
things: the first is to verify that regression actually learns a useful alignment
and secondly, to see if we can find a useful predictor of whether alignment will
succeed, based on the aligning agents’ prior knowledge of their trust models.

4.2.4 Estimating the difficulty of alignment

For Trust Alignment using regression to have any hope of succeeding, it requires
that the agents communicate about many shared interactions, and additionally,
execute a computationally intensive learning algorithm. It would, therefore, be
nice if two agents could predict whether alignment can be expected to succeed
for their different trust models, and additionally, how many shared interactions
are necessary for a successful alignment. Such a predictor is what we describe



80 Chapter 4. Alignment in Practice



0 5 0 0 0 0 0 0 0 0 0
0 0 17 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0
0 0 0 9 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0 0
0 0 0 0 0 15 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 2 0


(a) A simplest case for two trust models
with 11 discrete values



1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1


(b) and a hardest case

Figure 4.2: Matrices for possible combinations of trust values for the least and
most complex case, with on the rows the own trust evaluation and columns the
other’s.

in this section and part of the aim of the experimentation in Section 4.2.5 is to
verify that the predictor works as intended.

If two agents use the same trust models, then we should expect the alignment
to be very simple and the communicated trust evaluations can be used imme-
diately; however, if the models are different, the agents’ trust evaluations based
on the same interactions may be different: in this case alignment is necessary.
How hard this alignment task is depends for a large part on how different these
trust models are.

Theoretically, the simplest case is if there is a function, which completely
independent of the LDomain part of the SRAs, can translate the other’s commu-
nicated trust evaluation into the own trust evaluation. In this case, the alignment
is simply to apply this function, which is an easy task to learn: we do not have
to take the information about the interactions into account.

Similarly, the hardest case is if any value the other agent communicates, can
result in any value for our own trust evaluation: in this case the pairs of trust
evaluations in the SRAs can be seen as a uniform distribution over all the trust
values. In this case the other’s trust evaluation gives no real information at all
and the only useful part of an alignment message is the domain information.

Example 4.1. In our trust models each agent evaluates the target with an
integer value between −5 and 5. This gives us an 11×11 matrix for the possible
combinations of trust values. The simplest case corresponds to any matrix in
which there is exactly one non-zero value in each row and column, such as the
matrix in Figure 4.2a. In this case there is a one-to-one correspondence between
the trust models without even considering LDomain.

The hardest case, however, corresponds to maximum entropy, given by, for
instance, the matrix in Figure 4.2b. Given a matrix like this, we can say nothing
about the own trust evaluation when given the other’s: the probability distribu-
tions are completely uniform, and we must hope the LDomain information allows
us to learn an alignment.



4.2. Using ILP to Learn a Trust Alignment 81

While these two cases are theoretical boundaries for the complexity of the
problem, they do give us a way of measuring how hard we expect it to be to
align two trust models. We can measure the entropy in the distribution defined
by counting how often an own trust evaluation coincides with any of the other’s
trust evaluations. The nearer this entropy is to 0, the more the problem looks
like the simple case (for instance, the matrix in Figure 4.2a has an entropy of 0 in
each row and column). The nearer this is to the maximum entropy distribution,
the more the problem looks like the hardest case (the matrix in Figure 4.2b has a
maximal entropy in each row and column). This complexity measure is inspired
by Shannon’s use of entropy [1948], in which the higher the entropy the more
information a message contains. It reflects the cases that Nardin et al. [2009]
found when attempting to align ontologies for different trust models — they
found that it is often not possible to match a single concept from one ontology
to a single concept from another ontology. We feel the problem goes deeper:
not just is it impossible to always match concepts, but it is impossible to match
concept-value pairs, which we call trust evaluations. The complexity measure
gives an estimate of how hard the problem of finding a matching is expected to
be.

We define the complexity measure for the case in which trust evaluations
have a finite number of discrete trust evaluations (for instance, in our case the
integers between -5 and 5).

Definition 4.1 (Problem complexity measure). Given a set E of SRAs, we
construct a matrixM , with in the rows the possible values of the own trust eval-
uations and in the columns the possible values of the other’s trust evaluations.
Each element in the matrix is the count of that specific combination of trust
evaluations in E . Let Z be a set with all the different possible values for the
trust evaluation, with size z. M will then be a grid of size z× z and we use this
to calculate the complexity as follows:

complexity(E) =∑
i∈Z

(
(
∑
j∈Z mij) · entropy(mi∗)

)
+
∑
i∈Z

(
(
∑
j∈Z mji) · entropy(m∗i)

)
2 · |E| ·max_entropy(z)

Where mij is the value of the element of matrix M with row index i and
column index j, mi∗ is the ith row of matrix M and m∗j the jth column.
max_entropy(z) is the entropy of the uniform distribution with z values, also
known as the maximum entropy distribution. entropy is the Shannon entropy
function [1948]. Let X = {x1, . . . , xn} be a discrete random variable with n
possible values, then entropy(X) = −∑n

i=1 prob(xi) · log(prob(xi)) and for any
xi ∈ X: prob(xi) = xi∑n

j=1 xj

The first summation in the numerator sums the entropy in the rows, mul-
tiplied by a weight: the number of times the other’s evaluations correspond to
the own evaluation identified by the row. The entropy is a measure of the un-
certainty about what the other’s trust evaluation is, given that the own trust



82 Chapter 4. Alignment in Practice

evaluation is fixed. The second summation in the numerator does the reverse,
it calculates a weighted sum of the entropy of the columns. This corresponds to
the uncertainty about the own trust evaluation if the other’s evaluation is fixed.
The reason for adding the two is because we want the measure to be symmetric.
Finally we normalise the numerator, to obtain a value between 0 and 1, where 0
corresponds with the least possible complexity between two models and 1 with
the hardest: it is the maximum entropy distribution. One of the aims of our
experimentation is to show that this measure can be used to estimate how hard
a problem of alignment will be. We hypothesise that a complex problem requires
more SRAs to learn an alignment.

Example 4.2. We end this section with an example explanation of the com-
plexity calculation for a matrix between trust models E and F below, using 1000
interactions: 

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 172 274 299 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 42 23 259 155 0
0 0 0 0 0 0 0 185 223 157 8
0 0 0 0 0 0 0 0 14 87 18
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 212 112 66 66
0 0 0 0 0 0 0 0 0 0 0


The complexity given by this matrix is 2628+2883

2·2372·2.39 = 0.48. We go through the
calculation a bit slower. First we calculate the numerator and start with the
first row. Because this is a zero vector. Technically this should result in the
maximum entropy, but the weight is zero in any case, so the entropy calculation
does not matter. The same for the second and third row. The fourth row is
more interesting. When the own trust model evaluates an agent with value
−2, the other agent evaluates sometimes with value 1, sometimes with 2 and
sometimes with 3. We thus have three non-zero values in this row. In total the
own model has evaluated an agent with −2 745 times in our set of SRAs. We
interpret this row as a probability distribution over the other’s trust evaluations
for the conditional probability P (Other_V alue = X|Own_V alue = −2). This
probability is clearly 0 for all other trust values except X = 1, X = 2 and X = 3,
for which it is 172

745 ,
274
745 and 299

745 , respectively. We therefore see that this row’s
contribution to the numerator is: −172· 172

745 ·log( 172
745 )−274· 274

745 ·log( 274
745 )−299· 299

745 ·
log( 299

745 ) = 799. We do the same for rows six, seven, eight and ten, and sum these
together for a total of 2628. This process is repeated for the columns, obtaining
2883. This is normalised by dividing by 2 · |E| ·max_entropy = 2 · 2372 · 2.39
and the final result for the complexity between the two trust models is 0.48.

4.2.5 Experiment: evaluating First-Order Regression

As stated in Section 4.2.1, we choose Tilde [Blockeel et al., 2002] to perform
First Order Regression. The result of the algorithm is an alignment and we



4.2. Using ILP to Learn a Trust Alignment 83

need to evaluate whether this alignment is useful or not. We perform hold-out
validation and we can use our test set of 40% of the interactions to calculate
the correlation between the outputs of the alignment from an alignment message
and the trust evaluations as calculated by the own trust model. The higher this
correlation, the better the alignment.

This measure, however, doesn’t give an indication of how much the alignment
improves the utility of communicated information. For this, we need another
measure. We can use the Mean Square Error (MSE)1 of the trust alignment,
rather than the correlation. The advantage is that this value can give an indica-
tion of how much of an improvement the alignment is, by comparing it with the
MSE of two “null” methods of alignment:

• do no alignment and simply use the other’s communicated trust evaluation

• always take the mean of the own trust evaluations

The goal of this experiment is to show, firstly that First-Order Regression
learns a good alignment, and secondly that the more different two trust models
are, the more interactions are required for alignment. This seems like a straight-
forward experiment, but in actual fact it does three things:

• validates First-Order Regression as a way of learning an alignment

• validates the complexity measure of Definition 4.1

• gives practical knowledge of how many interactions are needed to learn an
alignment

We use four different trust models of the kind we described in Section 4.2.3,
calculate complexity of the alignment problem between them and learn an align-
ment using 10, 25, 50, 100, 200, 500 and 1000 shared interactions. Models A
and B use both a different “observation”-module and a different “trust”-module
from each other, while model C is designed as an intermediate model, using A’s
“observation”- and B’s “trust”-module. Model D is designed to be an example of
the simplest case when aligning with model A: it uses the same “observation”-
and “trust”-modules as A, but we replaced the values of the trust evaluations in
the “trust”-module, thus in any situation model A has evaluation trust(agent,
5), for instance, model D has trust(agent, -1).

Each experiment is run 50 times to get a statistically significant estimate of
how good the alignment is, and the results can be found in Table 4.1. Each value
is the statistical mean over the 50 experiments with the corresponding settings,
and we also give the standard error for each set of 50 experiments.

1Given a set of authors A and for each, the set of articles they wrote, interactions Ia, the

MSE is calculated as : MSE =

∑
a∈A

∑
i∈Ia (estimate(a,i)−trust(a,i))

2∑
a∈A |Ia|

, where estimate(a, i)
is the estimated trust evaluation of the target author a, based on interaction i, using the
alignment, and trust(a, i) is the agent’s true trust evaluation of a, based on i.



84 Chapter 4. Alignment in Practice

Trust

models

Num.

Inters

Complexity Corr. training Corr. control MSE control MSE null

other

MSE null avg

A-B 10 0.13±0.06 0.83±0.25 0.73±0.29 1.38±1.36 2.96±0.61 2.37±0.9
A-B 25 0.15±0.04 0.88±0.16 0.57±0.27 1.57±0.83 3.23±0.4 2.76±0.85
A-B 50 0.16±0.03 0.82±0.17 0.60±0.27 1.82±0.97 3.21±0.38 2.89±0.72
A-B 100 0.17±0.03 0.87±0.09 0.72±0.18 1.34±0.76 3.18±0.3 2.87±0.64
A-B 200 0.17±0.03 0.88±0.11 0.79±0.17 0.96±0.74 3.12±0.22 2.68±0.46
A-B 500 0.17±0.02 0.98±0.01 0.96±0.02 0.24±0.11 3.13±0.2 2.84±0.46
A-B 1000 0.17±0.02 0.98±0.01 0.96±0.01 0.19±0.07 3.10±0.17 2.75±0.47
A-C 10 0.04±0.04 0.85±0.25 0.76±0.44 0.81±1.08 1.29±0.73 2.37±0.9
A-C 25 0.05±0.03 0.98±0.02 0.97±0.03 0.27±0.31 1.32±0.6 2.76±0.85
A-C 50 0.06±0.03 0.98±0.02 0.96±0.03 0.32±0.27 1.34±0.4 2.89±0.72
A-C 100 0.07±0.03 0.98±0.01 0.96±0.03 0.26±0.2 1.32±0.41 2.87±0.64
A-C 200 0.06±0.02 0.98±0.01 0.97±0.01 0.18±0.1 1.23±0.28 2.68±0.46
A-C 500 0.07±0.02 0.98±0.01 0.96±0.02 0.23±0.12 1.29±0.28 2.84±0.46
A-C 1000 0.07±0.02 0.98±0.01 0.97±0.01 0.19±0.11 1.27±0.27 2.75±0.47
A-D 10 0±0 0.91±0.21 0.87±0.34 0.67±1 3.00±0.64 2.37±0.9
A-D 25 0±0 0.99±0.02 0.99±0.02 0.06±0.14 3.07±0.31 2.76±0.85
A-D 50 0±0 1±0 0.99±0.02 0.09±0.13 3.01±0.34 2.89±0.72
A-D 100 0±0 1±0 0.99±0.01 0.04±0.07 2.99±0.29 2.87±0.64
A-D 200 0±0 1±0 1±0 0.01±0.02 3.03±0.22 2.68±0.46
A-D 500 0±0 1±0 1±0 0±0 2.99±0.21 2.84±0.46
A-D 1000 0±0 1±0 1±0 0±0 3.00±0.21 2.75±0.47

Table 4.1: Results with different trust models

Results: number of interactions

The first thing to note is that even at 10 interactions, which is often too few to
give a good alignment of even simple trust models (A and C), using the alignment
still performs significantly better than either of the baseline methods. There is
a risk involved, though, because due to the very low number of samples, there
are a couple of experiments which gave a higher error than using either of the
baselines. In these cases the regression algorithm learnt to overfit on a bad set of
SRAs, leading to a high error on the test set. This happened at 10 interactions
for alignments between all models, even the simplest case, and at 25 for the
hardest setting we tested (models A and B). On the positive side, these negative
outliers can be detected: the correlation between the learnt values and the actual
values in the training set is a good indicator of whether the alignment is good
or not. Simply by disregarding all results with a correlation on the training set
of less than 0.8 we throw out all negative outliers. An agent can calculate this
correlation after the alignment process, and if it finds such a low value it can
conclude the alignment failed. However, even with such outliers, on average the
alignment performs far better than either baseline method for all trust models
and all numbers of interactions, as Table 4.1 indicates.

10 interactions is also too few to accurately calculate the complexity. In fact,
at low numbers of interactions, the estimate of the complexity is lower than
the actual complexity. This is expected and we can see this by revisiting the



4.2. Using ILP to Learn a Trust Alignment 85

definition of the complexity measure. Let us consider, for instance, the case
where we only have a single SRA. In this case the entropy will be 0 regardless of
the trust values and therefore the complexity will also be 0. If we have two SRAs,
then, given completely random trust evaluations, there is a 20

121 probability that
the two SRAs are different, but either in the same row, or the same column2,
resulting in a complexity of 0.07 and a probability of 81

121 that the complexity is
0. However, the more samples we have, the higher we can expect the complexity
to get until it converges on the true complexity. Luckily, our method seems
to converge fairly quickly and at just 25 interactions it already gives a fairly
accurate estimate of the complexity, which is a lot less interactions than are
required to learn an alignment between most models.

We see that the learning algorithm starts working better with more than 50
interactions, although to always find the 100% correct alignment of the simplest
models (aligning A and D) we still require 500 interactions. Note that we are
using 40% of these to test the alignment, so the learning is done with 300 in-
teractions. We also see that at 50 interactions the algorithm learns a perfect
alignment on the training set. Nevertheless, there are cases that simply have
not arisen in the training data, and thus correlation drops on the test data.
Luckily, also in the test set such situations only arise rarely, so at 50 interactions
the alignment is already very functional and gives far better results than using
either of the baseline methods.

Aligning models A and B requires the largest number of interactions, but
with 200 interactions the MSE drops below 1.

Results: complexity

Note that our most complex alignment problem still only has a complexity of
0.17±0.02. To properly verify that complexity is a good measure of how many
interactions will be required for alignment, we designed another two trust mod-
els, with a higher complexity for aligning. Model E has model A’s observation
module, but has a more complicated trust module. It first checks whether the
target for evaluation is the first author of an article, or a different author, and
evaluates the first authors with more exaggerated values than the other authors
(in other words, if the article is evaluated badly then the first author gets a very
bad evaluation, while other authors have an evaluation nearer to 0). Model F
uses model B’s observation module and its trust module makes a similar distinc-
tion to model E’s, but rather than distinguishing between the first and other
authors, it distinguishes between articles published in journals or conferences.
We run the same experiment with these models, and the results can be found
in Table 4.2. We have a complexity of 0.48±0.02 and can still learn quite a
good alignment (with an MSE under 1) in 500 interactions. It does not quite

2Given an SRA with own evaluation a and other’s evaluation b, if we take another SRA
with their values in the random distribution, there is a 1

11
chance that the own evaluation is

equal to a. There is also a 10
11

chance that the other’s evaluation is unequal to b: there is a 10
121

chance of having the two SRAs end up in the same column, but in different rows. The same
calculation holds for the same row, but different columns, for a total probability of 20

121
.



86 Chapter 4. Alignment in Practice

Trust

models

Num.

Inters

Complexity Corr. training Corr. control MSE control MSE null

other

MSE null avg

E-F 10 0.31±0.06 0.86±0.24 0.59±0.38 2.03±2.54 4.78±1.98 ±1.22
E-F 25 0.40±0.04 0.93±0.07 0.57±0.31 2.19±2.24 4.95±1.99 2.60±1.56
E-F 50 0.44±0.04 0.92±0.07 0.62±0.23 1.90±1.19 5.12±1.23 2.77±1.14
E-F 100 0.46±0.03 0.93±0.05 0.71±0.17 1.41±0.75 5.19±1.21 2.76±1
E-F 200 0.47±0.02 0.93±0.06 0.76±0.18 1.03±0.8 4.75±0.73 2.40±0.67
E-F 500 0.48±0.02 0.98±0.01 0.93±0.02 0.36±0.15 5.01±0.72 2.63±0.69
E-F 1000 0.48±0.02 0.98±0.01 0.95±0.02 0.27±0.13 4.99±0.7 2.48±0.67

Table 4.2: Results for more complex trust models

achieve the results of the alignment between A and B, but it is very near. This
is remarkable, given the other results and will require future testing. A possible
explanation is that there is a complexity “threshold” in the scenario we have de-
signed: above a certain level of complexity, the learning algorithm must take all
information in LDomain into account. In this case it is to be expected that the
number of interactions required to learn the alignment will not vary. Above this
threshold we need a fairly large sample of interactions covering all situations,
regardless of the complexity of the problem. To test this properly, experimenta-
tion is required in a different scenario with a different LDomain, which is outside
the scope of this work.

4.2.6 Discussion

The experiment demonstrates the functioning of the alignment and evaluates
the measure we propose for estimating the complexity of the problem. We can
draw two conclusions from this experiment:

• If agents can accurately communicate using a numerical value for their
trust and represent the underlying interactions used in LDomain, then the
regression algorithm can learn a trust alignment. Even with few interac-
tions, there is less error in the communication than the best we can achieve
if we do not align. While our trust models use discrete values for trust, the
regression algorithm used does not require this, and any numerical repres-
entation of trust could be used. Furthermore, the different representation
methods for trust can be converted into a numerical value [Pinyol et al.,
2007], although in such cases other learning methods may perform better.

• The complexity measure in Definition 4.1 is a measure of how many in-
teractions are needed to achieve the quality of alignment required. The
number of interactions required for a given complexity is also dependent
on the environment, namely on the expressivity of LDomain and the lan-
guage bias in the learning algorithm. Normally these are fairly static in an
environment and the system designer could make a lookup table available
to the agents, giving the expected quality of the alignment at a certain
complexity level using a specific number of interactions.



4.3. Comparing Trust Alignment Methods 87

A limiting factor, which we have already discussed in Section 4.2.3, is that
our approach only considers the evaluation based on a single interaction at a
time, while the majority of research into trust models focuses on methods for
aggregating the evidence from a large number of interactions. Uwents and Block-
eel [2008] present a model for learning aggregated values, but even if this were
capable of dealing with the complex aggregation methods of contemporary trust
models, there is a further complication. The problem would not be to learn
an aggregated value, using different aggregation methods, from the same data,
but rather to learn the relation between two aggregated trust evaluations from
underlying evidence (or interactions). Firstly the single values derived from this
evidence are different, because each agent takes different criteria into account
and secondly the aggregation technique used is different. This presents too many
unknown variables to be learnt at once. The method we present can therefore
either be seen as a necessary first step for the solution of this problem, or as an
alternative solution to the problem in the situations that communication about
evaluations of single interactions is possible.

4.2.7 Summary

In this section we discussed some of the practical issues we encounter when im-
plementing a method for performing trust alignment. Specifically we dealt with
the large search space of θ-subsumption, the relative complexity between trust
models and the problem of learning aggregated values. We described our use of
Tilde, a state-of-the-art ILP algorithm, to address these issues and provided
evidence that this learns a trust alignment that can translate new incoming
messages in a useful manner.

However, we have not tested how useful this alignment is, nor whether it is
worthwhile having to address the problems inherent in using a machine learning
approach that takes the context into account. In the next section we will compare
our method with some of the other solutions out there and show that, firstly,
trust alignment is a real problem and it must necessarily be solved in some way or
another, and secondly, that the method we propose is a useful way of addressing
it.

4.3 Comparing Trust Alignment Methods

So far in this chapter we have presented our own method for trust alignment,
using a First-Order Regression algorithm. However, we have not given empirical
evidence that trust alignment is a problem that needs solving. We hypothesised
that the problem of trust being subjective hampers the communication thereof,
and thus the accuracy of trust models, in any situation where an agent can only
obtain information about the trustworthiness of potential partners by commu-
nicating. Nevertheless, neither we, nor anybody else, have provided empirical
evidence supporting this hypothesis. In this section we aim to do two things:
firstly, we show that some form of trust alignment is a necessity for communic-



88 Chapter 4. Alignment in Practice

ating about trust; and secondly, we compare our method to a number of other
solutions to the problem.

This section is organised as follows: first we give an overview of the experi-
mental setup we use. In Section 4.3.2 we briefly recap the alignment methods we
described in Section 2.3 and describe the implementation of the ones we compare
here. Sections 4.3.3 and 4.3.4 detail the empirical evaluation.

4.3.1 Experimental setup
The aim of the experiments is to measure the effect of communication about
trust on the accuracy of agents’ trust evaluations. We are explicitly not inter-
ested in evaluating trust models and whether they choose the correct target. For
this there are other methods, such as the ART testbed [Fullam et al., 2006]. To
measure the effect of communication we need to compare two situations: (1) an
agent’s estimated trust evaluations, initially given incomplete information about
the environment, but allowing communication about trust; and (2) that same
agent’s most accurate trust evaluations, given perfect and complete information
about an environment. This allows for the comparison between the two evalu-
ations and gives a measure for the accuracy of the estimated trust evaluation.
By varying the amount of communication allowed and the type of alignment
used we can measure the influence that alignment has upon the accuracy of the
agents’ trust evaluations.

The scenario is, once again, based on the running example in Chapter 3 and
is largely the same as described in the previous section. However, rather than
just Alice needing to find a guest author, we evaluate multiple “reader agents”
simultaneously: they have to recommend authors to each other, basing these
recommendations on the articles they have written. These articles are generated
in the same manner as described in Section 4.2.2: we generate synthetic articles
written by between one and five authors each, using the description of the article
in LDomain as given in Figure 3.3 (see page 49). Each of these articles represents
a shared interaction, upon which a reader can base a trust evaluation about its
authors.

In an initialisation phase, the articles are divided over the reader agents, such
that each reader only receives articles written by a configurable percentage of
the author agents. The goal is to give each reader only partial information, so
that each of them has incomplete information about only some of the authors in
the system, thus creating the need for communication. For this communication
we use the same LTrust and LDomain languages as in Chapter 3 and Section 4.2.

After the initialisation the experiment runs for n rounds, in which each round
represents the opportunity for the readers to communicate. In each round the
agents may pick one other reader agent to communicate with. A communication
act may be: a request to either align, or to get the other’s trust evaluation of
a single author. After n rounds of communication a measure of each agent’s
individual accuracy is calculated, and averaging these individual measures, the
score of the entire run is determined. This score can then be compared to runs
with a different value for n or using different methods of alignment.



4.3. Comparing Trust Alignment Methods 89

The reader agents have the same trust models we used in the previous section,
described in detail in Section 4.2.3; however, this experiment no longer compares
them pairwise, but all together. We thus have 5 different reader agents, using
models A, B, C, E and F (we omit D, for obvious reasons). We realise that there
are big differences in complexity between some of these models; as we described
in the previous section, the complexity between models influences the results of
the alignment. We feel that evaluating all these models at once is an interesting
reflection of reality, in which we may very well encounter diverse trust models.
Nevertheless, as discussed in Section 4.2.6, in real encounters, agents might want
to exchange some trust evaluations first to discover the relative complexity of
their trust models, and given a choice, only align in those situations where the
complexity is low. In this experiment we do not give the agents such an option
and all reader agents simply align with all other agents, thereby giving an average
accuracy of the alignment methods over a range of different complexities.

Strategy

In addition to the trust model, each agent must have a strategy to choose what
to do in each round. While we cannot focus too much on this in the scope of
this thesis, we realise that this choice may have a large influence on the outcome
of the experiment. We therefore implement two strategies for comparison. The
first is a simple random strategy. Each agent chooses an author at random. It
then chooses a reader agent at random to ask about that author. If it has not
previously aligned with that reader, rather than asking for the agent’s evaluation,
it asks to align. If it has already aligned, it asks for the other agent’s evaluation
of the chosen author.

The second strategy is a non-random strategy in which each agent first
chooses the author it has the least certain evaluation of. We use a very simple
notion of certainty: an agent’s certainty is equal to the percentage of the author’s
articles that the agent has observed. This notion may not be particularly accur-
ate (for instance, if the author has written only very few articles3), but it is only
a heuristic for selecting which author to obtain more information about. It does
not affect the trust evaluation. After choosing the target author, it picks the
reader agent that has the most observations of that target and whose opinion has
not yet been asked. After choosing the author and evaluator agent, this strategy
behaves the same as the random strategy: if the agent has already aligned with
the chosen evaluator it asks for a trust evaluation and otherwise it asks to align.
While there are many optimisations possible, they are also further distractions
from the main tenet of this research. We do not doubt that there are ways of
improving the strategy of choosing when to align or with whom to communicate;
however, the main idea is that if we can show that the trust evaluations are more
accurate with alignment than without, performance should only improve if the
strategy is optimised.

3Because we generate articles artificially, we can guarantee that this does not occur in our
simulation.



90 Chapter 4. Alignment in Practice

4.3.2 Alignment methods

Before discussing the experiments in detail we need to introduce the trust align-
ment methods we compare. In Section 2.3 we discussed the state-of-the-art
methods that can be considered as methods for trust alignment, whether they
were intended that way or not. We distinguished between roughly three different
types: filtering mechanisms, translation mechanisms using just the trust evalu-
ations and translation mechanisms that take the context into account. In the
first experiment we evaluate some of these methods.

Filtering

We test one filtering method, which we base on POYRAZ [Şensoy et al., 2009].
POYRAZ uses something they call “private credit” to evaluate whether or not an
adviser is offering useful advice. They do this by finding past experiences that
were similar for both agents. Similarity in their model is based on time: they
assume that a target behaves similar if the time of two interactions is sufficiently
close together. An experience, in POYRAZ, is a description of both the promised
and the provided service, using a domain language. This language is shared,
so the sender communicates its experiences rather than its trust evaluations,
and they use the similarity in time to specify when one of these experiences
is similar to one of the receiving agent’s own experiences (or if we consider it
in our framework, when two experiences can be considered as the same token).
The method then calculates the receiving agent’s satisfaction (that we have
called a trust evaluation) of both experiences: its own and the received, similar,
experience. If these are the same (either the receiver would be satisfied in both
situations, or the receiver would be dissatisfied), then the pair is classified as a
positive example and otherwise as a negative example. They then use the beta
probability distribution to calculate the probability that, given the received past
experiences, a future communication from the same will be useful. Working out
their formula is equal to performing Maximum Likelihood Estimation (MLE)
with a Laplacian smoothing factor of 14.

As argued in Section 2.3, there are a number of reasons for not being able
to communicate the entire experience: firstly there may be subjective concepts
that cannot be communicated (such as originality of an article in our example)
and secondly agents might have private reasons for not wanting to communicate
an experience fully. We therefore relax the communication condition of commu-
nicating an entire experience, but, instead, work with our own concept of shared
interactions. We use the SRAs and a distance measure: if, given an SRA, the
distance between the own and other’s trust evaluation is under a threshold, we
classify the SRA as positive and otherwise as negative. We then continue on in
the same manner as POYRAZ does, by using maximum likelihood estimation.
If the probability of the other agent’s information being useful is above a certain

4The formula is given as follows: let Nall be the total number of samples and N+ the
number that were positive, thenMLEk=1(N) =

N++1

Nall+2
, where k = 1 stands for the Laplacian

smoothing factor [Russel and Norvig, 2010].



4.3. Comparing Trust Alignment Methods 91

threshold we accept communications from it. POYRAZ uses a threshold of 0.5,
so we follow suit. The distance measure we use for trust evaluations is simply
Euclidean distance and we set the threshold to 1 (in other words, two trust eval-
uations are similar if they are neighbouring integers). We call this POYRAZ
filtering method.

In addition to using this filtering method we will use two baselines, which can
be seen as the extreme ranges of the filtering method: the first is to filter out no
communication at all, or simply to accept all recommendations from all agents
(called no alignment). The second baseline is to filter out all communication, or
simply put, not communicate at all (called no communication).

For both the standard filtering and especially for filtering out everything,
there will be authors the agent knows nothing about. In this case we have to use
a default trust evaluation, which can be seen as the agent’s initial evaluation of
any author, before learning anything about it. We identify four options for this
default evaluation:

A mistrusting agent always gives its most negative evaluation to any agent
it has no knowledge of.

A trusting agent always gives its most positive evaluation to any agent it has
no knowledge of.

A neutral agent always gives a middle evaluation to any agent it has no know-
ledge of.

A reflective agent calculates the mean of all its previous trust evaluations of
other agents and uses this for any agent it has no knowledge of.

The first three options give a fixed value, independent of the agent’s evalu-
ations of other targets in the system, whereas the last option allows the agent
some type of adaptability, depending on what trust evaluations it has so far
given to other targets. If the targets it has knowledge of are all bad agents, then
it will be more similar to the first option, whereas if they are all good it will be
more similar to the second. Of all options for no communication we expect this
will be the best choice for an agent, although it is also the only option which
requires extra computation. Any comparison of trust alignment methods will
use the same default evaluation for all methods.

Numerical translations

In Section 2.3 we discussed Abdul-Rahman and Hailes’ alignment method as
the first method to deal with trust alignment. This method uses a numerical
translation and in the experiment we compare two such methods.

Average Distance Bias Our first numerical translation method is a very
simple method, which does not take the context into account. When aligning,
it calculates the mean difference between the other’s recommendations and the



92 Chapter 4. Alignment in Practice

own trust evaluations and use this as a single bias. We will call this method the
alignment using an average distance bias.

Abdul-Rahman and Hailes’ Method (AR&H) AR&H’s method cannot
be applied directly, because it requires discrete values to calculate the bias. In
our models the trust evaluation is the average of an author’s ratings and is there-
fore not a discrete value. We can, however, apply AR&H’s alignment method
at the level of the ratings of individual articles, which are discrete: specifically,
in our experiment they are natural numbers between -5 and 5. The method
applied is almost the same as that already described in Section 2.3. Instead of
first-order regression it performs numerical regression and finds a function of the
form F (x) = x + bx, where bx is a bias. The main difference between AR&H’s
method and the average distance bias is that in AR&H’s method the bias is
dependent on the other’s trust evaluation: for each possible value a different
bias is learnt. We thus end up with 11 different biases: we group the SRAs by
the value of the other’s trust evaluation and for each group calculate the average
distance bias separately.

The only difference with the method originally proposed by Abdul-Rahman
and Hailes [2000], is that we use the mean to calculate the bias, rather than the
mode. We can do this, because we take the average of these values afterwards
in any case, whereas Abdul-Rahman and Hailes needed to keep evaluations in
their discrete categories and used the mode.

Machine learning using contextual information

The last two methods that we compare are ones that use the information
in LDomain. The first uses clustering and classification to learn an align-
ment [Koster et al., 2010a] and the second is the one that we have presented
in this thesis, using First-Order Regression to learn an alignment.

We do not compare our method to the other approach that uses a machine
learning algorithm to learn an alignment, BLADE [Regan et al., 2006]. This ap-
proach uses a propositional Bayesian Inference Learner. Comparing a first-order
approach and a propositional one is not straightforward, because of the differ-
ence in representation. Friedman et al. [1997] demonstrate empirically that pro-
positional logic decision tree learners (which are propositional ILP algorithms)
and Bayesian Inference Learners perform approximately equally, although ILP
algorithms perform computationally better in large problems. Unfortunately
BLADE is not equipped to deal with the more complex problem we consider
here, in which a first-order — rather than a propositional — logic is used to
describe articles. To learn relations in this language would require a different,
first-order Bayesian network, which falls outside the scope of this thesis.

The implementation of the clustering-based approach uses a bottom-up in-
cremental clustering algorithm to cluster based on the trust evaluations. For
learning classifications of each cluster, we use Tilde [Blockeel et al., 2002], but
we set it to learn a binary classification, rather than a regression tree. We call
this method Koster Clustering.



4.3. Comparing Trust Alignment Methods 93

The First-Order Regression method is the exact same one we described in
Section 4.2.1 and we call it First-Order Regression Trust Alignment Method, or
FORTAM.

4.3.3 Comparing alignment methods

The first experiment aims to compare the alignment methods with each other as
well as with the two default modes: no communication at all and communication
without alignment. As described above, if an agent has no knowledge of an
author, it uses a default trust evaluation. Because the agents have incomplete
information about the environment, this case will occur when no, or too little,
communication is allowed.

Setting up the experiment.

We start by running a number of experiments to ascertain which parameters
should be used for a fair comparison between the alignment models. By changing
the total number of articles and the percentage of articles observed by each agent
we can change the average number of articles shared by the agents. This mainly
influences the functioning of AR&H’s method and our own learners, Koster
Clustering and FORTAM. At low numbers of shared articles AR&H’s method
outperforms FORTAM; however, with around 100 articles shared between any
two agents, FORTAM starts to outperform AR&H’s. This difference in perform-
ance increases until approximately 500 articles are shared, on average. Running
the experiment at higher numbers of shared interactions is unnecessary, because
all algorithms have reached peak performance. We opt to run our experiments
with 500 shared articles, thus achieving the optimal results obtainable with each
of the alignment methods. The goal of the experiment is to measure the influ-
ence the different alignment methods have on the accuracy of an agent’s trust
evaluations. Therefore we require each agent’s information about the environ-
ment to be incomplete. We achieve this by only allowing each reader agent to
observe articles by 40% of the author agents. This means that to find out about
the other 60% of the authors, communication is required. By having a total of
1000 articles written by different combinations of 50 authors, we can measure
the influence of communication while still allowing agents to, on average, share
500 articles. We run each experiment 50 times with different articles to have
a decent statistical sample. In this first experiment we vary two parameters:
the number of rounds in which agents may communicate and the baseline trust
evaluation an agent uses to evaluate targets it has no information of. The results
are plotted in Figure 4.3. The y-axis represents the error with respect to the
most accurate evaluation: what would be the agent’s evaluation if it were to
have perfect information about all articles. Given the probability distribution of
a trust model’s evaluations, the error is the probability of the agent’s evaluation
of a target being between the estimated and most accurate evaluation5. It is a

5calculated as the cumulative probability between the two values



94 Chapter 4. Alignment in Practice

measure of the inaccuracy of the alignment method, because the percentage on
the y-axis is not the chance that an agent’s evaluation is wrong, but rather a
measure of how wrong an agent is on average.

Results.

We firstly see in Figure 4.3a that if we use the neutral baseline (using 0 as the
default evaluation), then all communication is preferable over no communica-
tion. The same is not true if we use the reflective baseline (taking the average of
past evaluations of other targets), as seen in Figure 4.3b. In this case commu-
nication without alignment gives worse results than not communicating at all.
This is easily explained: if the observed articles are a representative sample of
the population then the mean of trust evaluations based on these will be near
the mean of the most accurate trust evaluations. Consequently, always using the
default will be quite good. On the other hand, the other evaluators’ trust eval-
uations are based on different properties of the articles and may thus be further
from the most accurate trust evaluation. The more of these unaligned commu-
nicated evaluations an agent incorporates, the less accurate its evaluations will
become. We allocate articles at random and therefore each agent does observe a
representative sample of them. This same would not be true if the network were
not a random network or the location of an agent in the network influenced its
trustworthiness: the targets observed would not be a representative sample of
the other agents in the network and the error from using the default would be
larger. If this error becomes large enough it would resemble the situation with
the neutral baseline, in which case the error from using unaligned communic-
ations results in an improvement. We have omitted the experiments using the
trusting and distrusting baselines, because their results are very similar to those
of the experiment with the neutral baseline and thus add very little information.

Another interesting observation is that filtering out deceptive agents does
not deal particularly well with subjective trust evaluations and its performance
is worse than even for average distance bias, the simplest of the alignment meth-
ods. Specifically we see that one of two cases can occur when filtering. Either
the witness’ prior evaluations are sufficiently similar for its communications to
be accepted, in which case they are used without translation, similar to the situ-
ation with communication but no alignment. Alternatively, the witness’ prior
evaluations are not sufficiently similar for its communications to be accepted, in
which case they are discarded. Given these two possibilities we expect the filter-
ing method to perform between “no communication” and “no alignment”, which
is exactly what we see: it stays near to the baseline, indicating that most of the
time witnesses are deemed deceptive and their communications are ignored. In
this experiment no agents are deliberately lying about their trust evaluation and
this seems to indicate that a filtering method, such as POYRAZ, is not adequate
for dealing with subjectivity in trust.

The main result of this experiment is that communication with alignment al-
ways gives significantly better results than either no communication or commu-
nication without alignment. In Figure 4.3b we have plotted the average accuracy



4.3. Comparing Trust Alignment Methods 95

(a) Using the neutral baseline (always evaluating the target with value 0)

0 10 20 30 40 50
Rounds of communication

0%

10%

20%

30%

40%

50%

A
v
e
ra

g
e
 e

rr
o
r

No communication

No alignment

Alignment using FORTAM

Alignment using the average distance bias

Alignment with AR&H's method

Alignment using Koster Clustering

Filtering with POYRAZ

(b) Using the reflective baseline (taking the average of its previous evaluations of
other targets)

Figure 4.3: Average accuracy of trust evaluations, using the different methods
for processing witness information. When no information is available about the
target, the evaluator uses the corresponding baseline.



96 Chapter 4. Alignment in Practice

for all five of the agents. However, as discussed in Section 4.2.3, the individual
trust models play a large role in this performance. The different alignment
methods give different returns for the individual agents, but always significantly
outperform the situations without alignment. Furthermore the differences seen
in the graphs are significant. Because the accuracy measure is not normally
distributed we evaluated this by using a Kruskal-Wallis test for analysis of vari-
ance [Corder and Foreman, 2009]. The pair-wise difference is also significant,
as tested using Mann-Whitney U-tests6. We included our initial approach to
trust alignment, described by Koster et al. [2010a], but we see that it does not
perform particularly well. Clustering based on the evaluator’s trust evaluation
groups together many of the witness’ evaluations that are unrelated. It clusters
SRAs together based on the agent’s own evaluations, which, if it manages to
learn a classification of the alignment messages, is accurate, but unfortunately
fails to learn a classification in most cases. This is due to the relative complex-
ity between the various trust models. By clustering SRAs together based on
the own trust evaluation, a cluster usually contains SRAs with the other’s trust
evaluations being very different from each other. Moreover, the algorithm can-
not even learn a classification using only the information in LDomain, because
we have limited alignment messages to descriptions of the interaction that are
relevant to the sender: similar descriptions in LDomain are therefore similarly
distributed over the various clusters as the trust evaluations. This, specifically,
explains the difference in performance between our experiment and the results
of Koster et al. [2010b]. In that experiment, the entire description of an in-
teraction was communicated, using a similar approach to that of Şensoy et al.
[2009]. While this method might be a good solution if trust evaluations are not
numerical (and thus none of the other alignment methods can be used), it does
not perform as well as even the simplest numerical method and we shall omit
it from the rest of the experiments. FORTAM, on the other hand, seems to
take advantage of the contextual information in a useful manner, allowing it to
perform better than any of the other methods tested. The experiment, however,
was designed to allow agents to take advantage of the information in LDomain.
It remains to be seen whether real scenarios provide equally useful information
about the interactions.

The first variation on this experiment we explore is to change the strategy
for selecting a communication action. The first experiment uses the non-random
strategy and we compare these results to the exact same experiment, but using
the random strategy. For this experiment we use the reflective baseline and
the results up to 300 rounds of communication are plotted in Figure 4.4. As
is to be expected, we see that in the short term picking the communication at
random does quite significantly worse than using a heuristic to choose whom
to communicate with: after 50 rounds of using the non-random strategy (see
Figure 4.3b) all alignment methods are doing significantly better than after 50
rounds of using the random strategy (Figure 4.4). Nevertheless, in the long run

6for all tests we obtain p� 0.01: the probability that the different data sets were obtained
from the same population is very small



4.3. Comparing Trust Alignment Methods 97

Figure 4.4: The random strategy for partner selection

the effect is flattened out and eventually the random strategy achieves the same
optimum alignment as the non-random strategy. This implies that, after enough
rounds of communication, the optimum is fixed by the alignment method and
the strategy does not influence it. To show that the value they converge on
really is the lowest average error an agent can achieve using the given alignment
method, we run the non-random strategy for 150 rounds, which is enough rounds
for all possible communications to take place. For all the methods tested we
compare this with the outcome after 50 rounds for the non-random strategy and
300 rounds for the random strategy: the values are mutually indistinguishable7,
showing that even after exhausting all possible communication the alignment is
not further improved and truly is an optimum.

The strategy, however, does have a strong influence on how fast this optimum
is reached. Using a different strategy will change the speed of convergence.

This means that from an agent designer’s viewpoint the strategy and align-
ment method can be completely separated: if an evaluator agent requires inform-
ation about a target agent, the alignment method defines an optimal accuracy
for this information while the strategy defines how many agents on average the
evaluator agent must communicate with before it has communicated with the
agent giving the most accurate information.

7obtaining p� 0.05 for all Mann-Whitney U-Tests



98 Chapter 4. Alignment in Practice

4.3.4 Simulating lying agents

In the first experiment we tacitly assumed all agents are truthful and willing to
cooperate. If they do not cooperate with the alignment process there is obviously
nothing we can do, but assuming other agents are truthful is a rather strong
assumption. This experiment is therefore set up to see what happens with the
accuracy of the communication if we simulate the other agents passing incorrect
information. Note that if the agents are entirely consistent in their lies, the
AR&H and FORTAM methods will be able to deal with this perfectly, as they
learn a translation from the other’s trust evaluation. Additionally, FORTAM can
even deal with lying if it is not always consistent, but based on some specifics
of the underlying article (such as: always lie if the author works at a certain
institute). The problem for all alignment algorithms appears if agents just invent
a random value. It is illuminating to compare the alignment methods with the
filtering method in this situation, and we run another round of experiments, this
time increasingly replacing truthful agents by lying ones. A lying agent, rather
than giving an actual trust evaluation, communicates random ratings of articles.
The results can be seen in Figure 4.5. The agents use the reflective baseline as
their default evaluation in the case they do not have other information available.

Results

We focus first on graph (e) in Figure 4.5 and see that if all agents are lying then
communication with no alignment converges to the neutral baseline. We can
explain this convergence by seeing that the mean of all possible trust evaluations
is also the mean value of a random distribution over the possible trust values.
A similar thing happens using AR&H’s method, which calculates what its own
trust evaluation should be if the other agent communicates a certain value, but
it converges on the reflective baseline. Because the other’s trust evaluations are
random, choosing all those at a certain value will give a random sample of the
own trust evaluations, the mean of which will, on average, be the mean of all the
own trust evaluations, so AR&H’s model stays approximately flat on the default
baseline (using the average of all the agent’s own trust evaluations). For similar
reasons the average bias does slightly worse, converging to a value between the
two baselines. FORTAM, on the other hand, appears to hardly be affected by
the noisy trust evaluations. This shows a large advantage of taking the context
into account: FORTAM maintains its performance, because the communications
in the domain language can be used for the alignment method to compensate for
the noisy trust evaluations. It ignores the noisy trust evaluations and learns by
using only the information about the underlying articles. If we were to add noise
to this part of the communication as well, FORTAM would collapse to AR&H’s
and thus stay flat as well.

With this explanation of what happens when all agents lie we can see that by
slowly adding more liars to the system, the performance of the various algorithms
morphs from the system with no liars to the system with all liars (Figure 4.5(a)-
(e) progressively). To prevent this from happening a further refinement would



4.3. Comparing Trust Alignment Methods 99

Figure 4.5: Slow degradation from a domain with no lying agents to a domain
with all lying agents

be necessary: detecting which agents are the liars and disregarding their com-
munications.

POYRAZ, as expected from a method designed to deal with deception, deals
correctly with lying agents. It identifies the liars and filters out their communic-
ations. Because the liars give random evaluations this is an easy task and is done
with 100% accuracy and thus, with 100% liars in the system (Figure 4.5(e)), it
filters out all information and stays exactly flat, always using the baseline eval-
uation. However, FORTAM is, despite the agents lying, able to make good use
of the contextual information to still obtain a fairly accurate alignment. Once
again, if the agents were to deceive each other about the context as well, it would



100 Chapter 4. Alignment in Practice

not perform as well. In such a case it could be beneficial to use POYRAZ to
filter out the liars, rather than try to learn an alignment with them.

4.3.5 Discussion

The experimentation in the previous section demonstrates that trust alignment
improves the accuracy of agents’ trust evaluations. FORTAM even works in
situations where the communicated evaluations are 100% noise. All the same,
we must take care when interpreting these experiments. The first thing to note
is that the trust models used, as described in Section 4.2.3, are simplifications
of those used in the literature. Agents only communicate the evaluations based
on their own direct experiences, rather than having an evaluation which is ag-
gregated from a number of different sources. This, however, only strengthens
the point we are trying to make: the more complex an agent’s trust evaluation
can be, the greater the probability that two agents, despite using the same on-
tology for their trust evaluations, mean different things, because the actual way
they calculate the evaluations are completely different. The use of more complex
trust models thus leads to an even greater need for alignment. Unfortunately,
the more complex the trust models, the more information will be required to
apply a method such as FORTAM, which requires numerous samples of different
types of evidence supporting the trust evaluations. Luckily, the worst case for
FORTAM is that the domain information is too complex to use, in which case
it will perform similarly to AR&H’s method. In such cases there may be other
machine learning techniques, such as Case-Based Reasoning [Aamodt and Plaza,
1994], which is designed to handle large sets of complex data, which could offer
a solution.

Additionally, the alignment is required to take place before aggregation. This
means that regardless of how complex the aggregation method is, as long as what
is being aggregated is not too complex, the alignment can work. It also means,
however, that a large amount of information needs to be communicated. There
may be scenarios in which this communication is prohibitive and a simpler form
of alignment, such as AR&H’s method, or even the average bias, must be used.
Luckily, in domains such as e-commerce, a lot of data is readily made available:
on eBay8 for example, for any transaction it is public knowledge what item was
sold and how much it cost. Similarly in social recommender systems, which is
how we would classify the example scenario in this chapter, people are often
willing to explain their evaluation of an experience in great detail (such as on
Tripadvisor9). This is exactly the type of information that is needed for aligning.
If necessary this could be combined with a method of incentivising truthful
feedback, such as described by Witkowski [2010]. This could also be helped to
mitigate the harm from deception, which is the final point for discussion.

In our experimentation we only generate noise in the trust evaluation, not in
the description of the evidence. Furthermore, if a hostile agent has knowledge of

8www.ebay.com
9www.tripadvisor.com

www.ebay.com
www.tripadvisor.com


4.3. Comparing Trust Alignment Methods 101

the aligning agent’s trust model, it could tailor its alignment messages so that
it can send false evaluations undetected. Luckily a lot of work has been done in
detecting fraudulent, or inconsistent information, as described in the discussion
of the state of the art (see Section 2.3.1). While our experimentation with
a filtering method shows that it is not able to deal with subjective evaluations
very well, it is designed to deal with deception. By combining a filtering method,
such as POYRAZ, with an alignment method, such as FORTAM, the agent
should be able to reap the rewards from both methods: using alignment to learn
a translation from most agents, but, if the alignment fails according to some
criteria (for instance, the coverage of the training set of the learning method
drops below a certain percentage), the agent uses the filtering method to test
whether the witness with whom alignment failed should be marked as deceptive.

Applications

While the experimental setup is limited, it shows that agents using trust align-
ment improve the utility of the communication, under the assumptions required
for performing alignment. As stated in Section 3.2, these assumptions are:

• The agents aligning both observe a single, sufficiently large, set of interac-
tions, which we call the set of shared interactions.

• Agents are willing and able to communicate their evaluations based on a
single interaction.

• There is a domain ontology in which to describe objective properties of
interactions.

• If background knowledge about the domain is used in evaluating trust, this
background knowledge is shared between the agents in the system.

While at first these assumptions seem restrictive, we give a number of examples
of real world applications in which these assumptions hold.

P2P routeing: One of the problems encountered in P2P networks is that of
routeing information. Deciding which peer can be trusted to transfer the required
information does not have a trivial answer, especially if the network is used for
diverse purposes, such as streaming different types of media, for which different
agents have different requirements. Current trust and reputation models offer
a possible solution [Perreau de Pinninck Bas et al., 2010], but because the sys-
tem is very dynamic, it is often impossible to have enough direct information
about agents for calculating an agent’s trustworthiness. Due to the decentralised
nature of P2P protocols, there is no trusted authority that can store reputation
and it is up to agents to communicate between each other about trust. Many
P2P protocols allow for the tracking of the path along the various peers, with
additional information available, such as time between hops or the physical loc-
ation of the peers [Vu et al., 2010]. This information is freely available and we
can consider such a path as the interaction that is shared among the peers. This



102 Chapter 4. Alignment in Practice

does require more information to be shared than current P2P protocols do: for
agents earlier in the path to know about agents later in the path, this informa-
tion needs to be made public, or at least shared among all the peers in a path.
After this, however, all agents in the path share the entire interaction and can
use such interactions to align. Trust evaluations may be based on a number
of criteria, such as timeliness in forwarding a packet, sending the packet in the
correct physical direction and not compromising the packet’s contents. Different
agents may evaluate this differently and thus to communicate about trust, they
need to align. Because of the sheer amount of packets, it is reasonable to ex-
pect that two peers share enough interactions to perform alignment. Moreover,
many P2P protocols provide an RDF-based language for the description of such
interactions.

E-commerce: Trust and reputation mechanisms are often linked with
e-commerce systems, with eBay’s reputation system as the most famous ex-
ample. Nevertheless, communication is problematic in this domain as well as
people evaluate sales interactions differently: there are different attributes such
as price, delivery time or, especially, the quality of the product, which can have
different interpretations for each agent. However, the assumption of two agents
observing the same interaction is probably too strong for this domain. Instead,
we could relax this condition and work with similar interactions. For this, the
agents must use some kind of similarity measure between their interactions.
The problem of finding an adequate similarity measure for semantic data has
been studied extensively for ontology matching and similar problems of the se-
mantic web [Resnik, 1999; Rodríguez and Egenhofer, 2003]. If two interactions
are sufficiently similar it is a trivial extension of the theoretical framework of
Chapter 3 to consider these as the same token and we can continue to use our
alignment methods in these cases. Each agent observes its own interaction, but
the alignment between agents is based on similar interactions, rather than shared
interactions. Note, however, that this requires extra communication about these
interactions before aligning to establish the set of similar interactions. Further-
more, we add more uncertainty by using such a similarity measure, because there
may be hidden factors that are very dissimilar in interactions that the agents
think are similar. Despite this, the potential financial gain from choosing in-
teraction partners more effectively in an e-commerce environment offsets these
disadvantages.

4.3.6 Summary
The experimentation shows clearly that communication without alignment may
have a negative influence on the accuracy of an agent’s trust evaluations and
thus that alignment is a necessary step when talking about trust. In our ex-
periments all agents were sufficiently different from each other that the best a
filtering method (POYRAZ) could achieve in the scenario was to filter out out
all other agents’ communication, resulting in a situation similar to no commu-
nication at all. In contrast, all alignment methods improve on this. We see that



4.4. Summary 103

even a simple alignment method such as calculating an average bias, can give a
significant boost to the trust model’s accuracy. AR&H’s method and FORTAM
function at least as well as not communicating even if all other agents are liars.
FORTAM outperforms all other methods tested, by taking the context in which
a trust evaluation was made into account.

FORTAM is especially effective, in comparison to other methods, when there
are deceptive agents, who lie about their trust evaluations. Because it takes the
contextual information into account, it can still learn an accurate alignment and
thus maintain performance. The best other methods can hope to do is correctly
filter out the lies, which both POYRAZ and AR&H’s method manage to do. If
the information provided about the context is also degraded FORTAM can no
longer learn good alignments and it might be beneficial to use a hybrid approach
with POYRAZ or another filtering method.

4.4 Summary
The contributions of this chapter are threefold:

• We present the FORTAM alignment method, a practical method for gen-
eralising SRAs using the Tilde ILP algorithm for performing First-Order
Regression.

• We give a measure of the complexity of an alignment problem, that calcu-
lates the entropy between two different models. The higher the entropy the
harder we expect the alignment to be. Although results seem to indicate
that this could be true, the experiments are not conclusive. Specifically it
seems that there is a threshold above which an increase in entropy does
not make the problem harder. This could be due to the use of the LDomain
language, but further experimentation is necessary.

• We compare FORTAM to a number of other methods to deal with com-
munication of trust evaluations. This experimentation shows that some
form of alignment or filtering is necessary for communication about trust
to be useful. Moreover, even a very basic alignment method that uses an
average bias, is better at dealing with subjectivity in trust than a filtering
method, although this changes if agents can be deceptive. FORTAM sig-
nificantly outperforms the other methods, mainly because it can make use
of the contextual information.

One additional note about FORTAM seems necessary: the learning method
it uses is quite computationally intensive, compared to the other methods we
tested. Additionally it requires communication about not only ratings of in-
dividual interactions, but also an objective description of the interaction it is
based on. The functioning of this alignment method may very well depend on
the expressiveness of the language for describing interactions. If such a language
is very basic, then alignment may not be possible and a simpler method must
be used. Similarly, privacy issues may arise in scenarios where agents are willing



104 Chapter 4. Alignment in Practice

to exchange trust evaluations, but not anything more. In such cases the best we
can do is the method taking an average bias. Whether the increased complexity
and communication load is worth the added performance should be evaluated
per domain.



Part III

Trust Adaptation





Chapter 5

Trust Adaptation: State of
the Art

In the sciences, we are now uniquely privileged to sit side-by-side with
the giants on whose shoulders we stand.

–Gerald Holton

5.1 Introduction
In Part II of this thesis we presented Trust Alignment; a method for dealing
with communicated witness information by finding a translation of the witness’
evaluation into the receiver’s frame of reference. A drawback, however, is that, in
order to learn an alignment, a large number of shared interactions are necessary.
If these are not available, then other solutions are necessary. Additionally, while
Trust Alignment addresses the problem of a trust evaluation depending on the
interactions, we have so far not considered how an agent’s beliefs, and possibly
more importantly, the task for which a trust evaluation is needed, affect the trust
model. This is especially important, because this makes a trust model dynamic:
it changes in accordance with the agent’s beliefs, and with the goal for which
an agent needs to interact. If trust models are dynamic, then alignments may
be outdated, requiring agents to perform the alignment process multiple times
with the same agent.

These two drawbacks of Trust Alignment can both be addressed with the
method we present in this part of the thesis: Trust Adaptation. Rather than
the receiver of a trust evaluation trying to learn a translation, the aim is for
the sender of a trust evaluation to adapt the evaluation to the receiver’s needs.
For this, both agents must know, to a certain extent, how their beliefs and
goals influence their trust model. Each agent’s computational trust model must
thus be fully integrated into its cognitive reasoning process: the agent must have
knowledge about, and control over, the factors that influence the way it computes

107



108 Chapter 5. Trust Adaptation: State of the Art

a trust evaluation. In Section 5.2 we discuss the state-of-the-art methods that
integrate trust into the reasoning process and distinguish AdapTrust from them.
We present AdapTrust, an extension to the BDI framework for reasoning about
trust, in Chapter 6.

In addition to trust being fully incorporated into the reasoning process,
agents must communicate what beliefs and goals influence their trust evalu-
ations, and in what manner. Furthermore, they must convince each other to
adapt their model to their own needs. Argumentation is the usual approach to
this type of communication, and the combination of argumentation with trust
has recently received quite a lot of attention. We discuss the various approaches
to combining trust and argumentation in Section 5.3, and in Chapter 7 we de-
scribe our argumentation framework and dialogue protocol for Trust Adaptation.

5.2 Cognitive Integration of Trust Models

The idea of integrating the trust model into the cognitive process of an agent is
not new. There are various different methods for representing this cognitive pro-
cess, but the integration of trust into this process is done mainly for BDI agents.
BDI stands for Beliefs-Desires-Intentions and is a logical model for designing
intelligent agents [Rao and Georgeff, 1991]. The beliefs represent the agent’s
knowledge about its environment, the desires the state of the environment the
agent desires to achieve and the intentions represent the plans it intends to per-
form to achieve its desires. The BDI model has met with considerable success,
and many systems for implementing intelligent agents follow this model to some
degree or another [Bordini et al., 2007; Dastani, 2008]. From the point of view
of trust, it offers clear advantages: by providing a crisp definition of the agent’s
beliefs and its goals, the role trust plays can be made explicit, incorporating it
into the logical framework. There are different ways of doing so, and thus trust
is treated differently by different models.

We focus on how an individual agent can reason about its trust model and we
therefore require the agent to have introspection into its own trust model. We
emphasise that computational trust models are for obtaining a trust evaluation
from a set of inputs, as we stated in Section 2.2 (page 14). When given a
finite set of inputs, such as beliefs about direct experiences or reputation, the
trust model calculates a trust evaluation for a target. This can be represented
mathematically as a function; however, the output of this function is dependent
on, not just the inputs, but also the criteria an agent has for evaluating trust
(we also briefly discussed this in Section 2.2).

In order for an intelligent agent to take full advantage of trust evaluations,
the trust model needs to be integrated into the reasoning system, and the work
that deals with an integration of trust into a BDI-agent can be divided roughly
into two different approaches. The first approach is to consider computational
trust models that, for the most part, take a belief-centric approach to trust.
Work that takes this approach focuses mainly on how a trust model can be
integrated into a BDI-agent and we discuss such work in Section 5.2.1. The



5.2. Cognitive Integration of Trust Models 109

second approach is a more logic-orientated approach, and works along this line
to provide formal logics for reasoning about trust. Such work is less focused
on the computational aspects of trust, but focuses more on proving interesting
properties of trust from an information-theoretic perspective. We describe such
logics for trust in Section 5.2.2.

5.2.1 Cognitive computational trust models
Falcone et al. [2005] describe the socio-cognitive underpinnings of trust and show
its functioning through experimentation using a computational model. They
use a Fuzzy Cognitive Map (FCM) to model trust. An FCM is a graphical
representation of the knowledge in a system. The nodes are concepts, and edges
are causal conditions between the concepts. The value of an edge represents the
strength with which one concept influences another. The values of the nodes can
be interpreted as strengths and are subject to change, because each node’s value
depends on the strength of its neighbouring nodes and the influence these nodes
have upon it. There are computational methods to calculate an equilibrium of
an FCM. In Falcone et al.’s trust model the beliefs an agent has are nodes in
an FCM, as is the trustworthiness of a target. Although they explicitly mention
cycles and feedback being a possibility in FCMs, their computational model relies
heavily on the fact that the FCM is a tree with trustworthiness as its root. This
greatly facilitates the computation, because in the general case convergence of
FCMs is not guaranteed [Zhou et al., 2006], and in order for an FCM to compute
a trust evaluation convergence to a stable value is necessary. The difference
between the theoretical, cyclical model, and the limitations on a practical use
of it is important, because in the former beliefs can reinforce each other, thus
causing a stronger influence on the trust evaluation depending on the values
of other beliefs: the trust model could adapt to a changing environment. In
the latter, however, the weights of the edges and aggregation functions within
nodes, which are fixed, are the only factors that influence the effect any belief
has upon the trust evaluation. It is thus unclear how an agent could adapt its
trust model to different goals. Despite this, Falcone et al.’s model is a very
interesting approach to tying the trust model into the cognitive structure of the
agent (in this case only the belief base) and should be largely compatible with the
AdapTrust model we describe in Chapter 6: Falcone et al.’s model could serve
as an adaptive trust model, while AdapTrust provides a method for proactively
adapting it to changing situations.

Burnett et al. [2011] take a very different approach and emphasise trust as a
tool in fulfilling plans. They assume agents need to delegate tasks and discuss
the role trust and reputation play in deciding whom an agent should optimally
delegate tasks to. They assume different agents will perform differently at the
various tasks and thus agents’ trustworthiness depends partially on what task
they need to perform. This is quite similar to the idea of role-based trust, but
is integrated into the decision-making process of the agent. This is somewhat
similar to the approach we take, in which the goal and plan of the agent can
influence the computation of the trustworthiness of an agent, but their approach



110 Chapter 5. Trust Adaptation: State of the Art

focuses purely on the decision of delegating and does not deal with other cog-
nitive aspects of trust. Specifically they do not use the beliefs of an agent.

BDI+Repage [Pinyol and Sabater-Mir, 2009a] attempts to take a more com-
prehensive approach, by integrating the Repage reputation model [Sabater et al.,
2006] into the cognitive process of a BDI agent. While this is an interesting ap-
proach, it leaves the Repage model as a black box; specifying only how Repage
should be connected to the various inputs and how the outputs of the calculation
should be dealt with in the belief base. As such, it does not allow for reasoning
about how to evaluate reputation, just about what to do with the evaluations
after Repage has calculated them. This system presents the basic idea we build
upon: it uses a multi-context system [Giunchiglia and Serafini, 1994] to represent
the BDI agent and reputation model, which provides a clear way of integrating
a trust or reputation model into the cognitive agent architecture. It does not,
however, provide the mechanism needed to actually reason about the trust model
and represents the trust computation in a single, monolithic context. We pro-
pose a more sophisticated method of representing the trust model in a BDI-agent
that allows an agent to reason about and adapt its trust model.

5.2.2 Logics for reasoning about trust

Liau [2003] presented a modal logic for explicitly reasoning about trust. The
modal logic used is specifically intended for reasoning about beliefs and inform-
ation and shows how interesting and desirable properties of trust emerge from
basic axioms about the logic. Dastani et al. [2004] extend the logic to deal with
topical trust, leading to the logic being able to infer trust evaluations about
specific topics, or tasks. This notwithstanding, these logical models do not give
a definition of the computational process. Trust is an abstract concept, and
if certain axioms about it are true, then other properties can be proved. This
makes it possible to show the consequences of specific types of trust, such as if
trust is transitive, or symmetric. It says nothing, however, about whether actual
methods of computing trust fulfil such properties. An approach that attempts
to rectify this somewhat is ForTrust [Lorini and Demolombe, 2008]. This lo-
gic integrates trust into a BDI logic and also allows for the proving of certain
properties of trust from the basic axioms of the logic. However, in this case, the
logic is conceptually nearer to a practical trust model, and there are implement-
ations of ForTrust [Hübner et al., 2009; Krupa et al., 2009]. We show that these
implementations can also be modelled within our framework in Section 6.5.2.

The logic-based approaches we have discussed differ significantly from our
approach, in which we assume that a computational trust model is given, and
provide a methodology for adapting this computational method. Specifically
our aim is to give a declarative description of a computational trust model and
allow the agent to reason about this: we take a bottom-up approach, starting
with a computational trust model, rather than a top-down approach in which
desirable properties are derived, regardless of whether these are based on realistic
assumptions or not.



5.3. Argumentation and Trust 111

5.3 Argumentation and Trust
In the previous section we discussed how trust models are incorporated into
BDI agent models, in order to reason about trust. In this section we discuss how
trust can be combined with another important method for reasoning, namely
argumentation. Trust and argumentation have been combined in a number of
different manners. In Chapter 7 we present a new way for doing this, focusing
on argumentation between two different agents in order to adapt the trust model
to each other. Most work on argumentation and trust focuses on a single agent
and how to incorporate information from different sources. We distinguish three
manners for combining trust and argumentation in the current literature. The
first is to use the trustworthiness of a source of information within an argument
to decide whether it is acceptable or not and we discuss this in Section 5.3.1. The
second is to incorporate information from the argumentation into the computa-
tion of a trust evaluation, highlighted in Section 5.3.2. Finally, argumentation
has been used as a method for communicating more accurately about trust, just
as we propose to do, and we discuss the state of the art in Section 5.3.3.

5.3.1 Trusted arguments
One of the problems encountered in a multi-agent society is that agents use in-
formation from a variety of sources in their reasoning process. Such sources may
be more, or less, reliable. Argumentation frameworks [Rahwan and Simari, 2009]
provide a way of reasoning using such information, by giving a formal method
for dealing with conflicting information, often with degrees of uncertainty. If we
consider the sources’ trustworthiness as a measure of confidence in the inform-
ation they provide, then the link between argumentation and trust is obvious.
This is precisely the approach taken by Tang et al. [2010]. Their work uses the
trustworthiness of the information’s sources as a measure of the probability that
information is true.

Parsons et al. [2011] generalise this work and give a formal account of the
properties of an argumentation framework, when considering different ways of
calculating trust and combining arguments. Specifically, they try to satisfy the
condition [Parsons et al., 2011, Property 9]:

If an agent has two arguments A1 and A2 where the supports have
corresponding sets of agents Ag1 and Ag2 then A1 is stronger than
A2 only if the agent considers Ag1 to be more trustworthy than Ag2.

This condition states that arguments grounded in information from less trust-
worthy sources cannot defeat arguments with grounds from more trustworthy
sources. The work then describes some computational methods for treating trust
and argumentation that satisfy this condition. Unfortunately, these methods
have very strict properties. The most troublesome is the assumption that trust
is transitive, while current sociological research indicates that this is only true in
very specific situations [Castelfranchi and Falcone, 2010]. Despite this, the work
lays a solid theoretical foundation for incorporating trust into argumentation.



112 Chapter 5. Trust Adaptation: State of the Art

Another approach to incorporating trust into argumentation is taken by Vi-
llata et al. [2011]. Their work takes a similar approach to Tang et al.’s work
and explicitly represents the sources providing the different arguments. The
major contribution is in allowing argumentation about sources’ trustworthiness.
It allows meta-arguments to support and attack statements about the trust-
worthiness of sources. The effect of this meta-argumentation is to change the
confidence agents have in the sources providing different arguments, which, in
turn, changes the strength of the various arguments. This is thus a combina-
tion of two different forms of combining trust and argumentation. On the one
hand, the meta-argumentation is used to evaluate sources. On the other hand,
the trustworthiness of these sources is used as the strength of a different set of
arguments. This combination seems very powerful, but in relying purely on ar-
gumentation for evaluating sources’ trustworthiness, the complexity inherent in
a trusting relationship is lost. As Villata et al. [2011, page 81] state themselves:

Trust is represented by default as the absence of an attack towards
the sources, or towards the information items and as the presence of
evidence in favour of pieces of information.

Most contemporary trust models take a more fine-grained approach to rep-
resenting trust (such as a probability that the target will act in a trustworthy
manner), that more accurately reflects the view that trust is a decision based
on, often conflicting, pieces of information. In the next section we discuss some
methods for incorporating argumentation into such models of trust.

5.3.2 Argument-supported trust
Prade [2007] was, insofar as we know, the first to present a model for incorpor-
ating argumentation into a trust model. In this work, trust is considered along
a variety of dimensions. Specifically, trust is split into trust categories, which
represent different behavioural aspects of the target. Each behavioural aspect
may be qualified as good, or not good, for a target agent. The trust model con-
sists principally of a rule-base in which levels of trust are related to the target’s
behaviours. The trust model then uses the target’s actual behaviour to perform
abduction and find the range in which the trust evaluations must fall. This range
is the trust evaluation of a target.

The arguments in Prade’s work thus constitute the trust model itself. By
performing the abduction with the rules in the trust model, the agent constructs
arguments for its observations. The arguments are thus not part of the input of
the trust model, but an inherent part of the calculation process.

Matt et al. [2010] do consider arguments as a separate source of informa-
tion for calculating the trustworthiness of a target. They propose a method
for combining justified claims about a target with statistical evidence for that
target’s behaviour. These justified claims provide context-specific information
about an agent’s behaviour. The basis for their trust model is Yu and Singh’s
model [2002], which uses a Dempster-Shafer belief function to provide an estim-
ate of whether an agent will fulfil its obligations, given some evidence about that



5.3. Argumentation and Trust 113

agent’s past behaviour. Matt et al. propose to extend this model with a method
for evaluating arguments about the contracts, in which an agent’s obligations
are fixed and guarantees are provided about the quality of interactions. Spe-
cifically these contracts specify the requirements along a number of dimensions.
These dimensions are aspects of an interaction, such as availability, security or
reliability. For each dimension an agent wishes to take into account when eval-
uating trust, it can construct an argument forecasting the target’s behaviour
with regards to that dimension, given the specification of a contract. For each
dimension d, Matt et al. can construct the following arguments:

• An argument forecasting untrustworthy behaviour, based on the fact that
the contract does not provide any guarantee regarding d.

• An argument forecasting trustworthy behaviour, based on the fact that
there is a contract guaranteeing a suitable quality of service along dimen-
sion d.

• An argument that mitigates a forecasting argument of the second type,
on the grounds that the target has, in the past, “most often” violated its
contract clauses concerning d.

They then integrate these arguments into Yu and Singh’s trust model, by
providing new argumentation-based belief functions that combine the informa-
tion from forecast arguments with evidence. By incorporating more information,
the agent should be able to obtain more accurate trust evaluations, and Matt et
al. show this empirically.

All the methods discussed so far highlight the different aspects of argument-
ation and trust for dealing with uncertain information. Either by applying trust
to argumentation in order to get more accurate arguments, or by applying ar-
gumentation to trust to obtain more accurate trust evaluations. There is, how-
ever, another useful way to combine trust and argumentation that has not been
discussed so far. Evaluating trust often requires communication, but this com-
munication may be unreliable, simply because trust is a subjective concept. By
having agents argue about the trust evaluations themselves and seek information
about why an agent has a specific trust evaluation, one may discover whether
the other’s communicated trust evaluation is useful to it, or whether its inter-
pretation of the various criteria for evaluating trustworthiness are too different
from the own criteria [Pinyol and Sabater-Mir, 2009b].

5.3.3 Arguments about trust

We recall our adaptation of Castelfranchi and Falcone’s definition of trust as a
choice, in a certain context, to rely on a target agent to perform a task, in order
for a specific goal to be achieved (see Section 2.2 on page 14). The context in
which an agent trusts, is represented by an agent’s beliefs about the environ-
ment, and the goal is something the trustor wishes to achieve. Therefore trust is
an agent’s personal and subjective evaluation of a target. When communicating



114 Chapter 5. Trust Adaptation: State of the Art

such a subjective evaluation it is often unclear how useful this evaluation is to
the receiving agent: it needs to discover whether the context, in which the com-
municated evaluation was made, is similar to the context in which the receiver
needs to evaluate the target.

Pinyol [2011] proposes a framework to argue about trust evaluations and
decide whether another agent’s communicated evaluations can be accepted or
not. In Chapter 7 we discuss this framework in detail because we extend this
framework in our own work. Pinyol’s decision of whether a communicated eval-
uation should be accepted or not can be considered as a method for filtering
out unreliable witness information and it thus has the disadvantages associated
with these methods that we discussed previously: if many agents in the system
are too different, filtering out all their communications results in a sparsity of
information; furthermore, if sanctions are applied to sources of “unreliable” in-
formation, agents might stop providing evaluations entirely (see Section 2.3.1,
page 27).

Our solution is to allow agents to extend their argumentation, and on the
one hand convince each other of the beliefs they have about the environment,
and on the other hand adapt their trust models to each other’s needs, thereby
computing a trust evaluation that is personalised to the other agent. In the
next chapter we present AdapTrust, an extension of a BDI-logic that allows
computational trust models to be integrated into a cognitive reasoning process,
and in Chapter 7 we present the communication model that uses AdapTrust and
an argumentation framework to enable this personalised communication about
trust.

5.4 Summary

In this chapter we have given an overview of the ways in which trust can be
integrated — and used — in agent reasoning. We started with a discussion of
the methods that integrate trust into a cognitive model for agent reasoning, most
prominently the BDI agent model. The aim is to allow pre-existing reasoning
mechanics, mainly in the belief base of an agent, to deal with trust evaluations.
Nevertheless, the approaches discussed do not describe how the beliefs and goals
an agent has affecth the trust computation. Approaches that describe trust using
formal logics abstract away from the actual agent model, and thus the problem
of how goals and beliefs affect the computation, but at the cost of not giving a
clear methodology for how the formalisation can be applied in a computational
agent. The approach we propose in the next chapter falls somewhere between
the two approaches. AdapTrust provides a methodology for integrating an agent
designer’s choice of computational trust models into an abstract model of a BDI
agent.

Argumentation provides another way of reasoning about trust. Firstly, trust
information can aid in the reasoning process. This approach is similar to the
integration of trust models into a BDI model for reasoning, but discusses its
implementation using argumentation, a form of defeasible reasoning, as the spe-



5.4. Summary 115

cific method for reasoning in the belief base. Other works discuss the use of
arguments in the computation of the trustworthiness of targets and finally we
discussed Pinyol’s work on using arguments about trust to decide whether wit-
ness information is reliable or not. In Chapter 7 we return to this work and
extend it, using AdapTrust to allow an agent to adapt its trust model, based on
an argumentation dialogue about trust with another agent.





Chapter 6

AdapTrust

If you try and take a cat apart to see how it works, the first thing you have
on your hands is a non-working cat.

–Douglas Adams

6.1 Introduction

In Section 2.2 we described computational trust models as algorithmic methods
for calculating an agent’s trust in a target based on the agent’s own interactions
with the target, and information about the target that is available in the envir-
onment. The inputs for this model may be direct interactions with the target or
direct communications from other agents in the system, giving their own trust
evaluations of the target; it may be reputation information; or it may be any
other source of information available in the system. The trust model evaluates
the various inputs and then aggregates the intermediate evaluations to calculate
the evaluation of the target.

The problem with this way of approaching trust models, and thus the way
they have been discussed so far in the literature, is that an agent is unable to
change its trust model if it notices a change in the environment. From the agent’s
perspective, the trust model would appear to be a “black box” with as input the
various information sources and as output an evaluation of how trustworthy the
target is. In contrast, the definition of trust that we use, adopted from Castel-
franchi and Falcone [2010], is that “trust is a (conscious and free, deliberated)
reliance based on a judgement, on an evaluation of the target’s virtues, and
some explicit or entailed prediction/expectation”, and trust is thus not just an
evaluation of a target, but an integral part of the decision making process of
an agent in a social environment. For a trust evaluation to be meaningful, the
evaluation process must take the environment and the reason why the evaluation
is being made into account. This is especially so in an open MAS, where the
environment may change.

117



118 Chapter 6. AdapTrust

As an example, consider the following situation. An agent has the task of
routinely buying items on an electronic marketplace and to decide, by using
its trust model, which seller to interact with. In general the agent’s owner
requires the agent to buy items as cheaply as possible and does not mind if, to
achieve this, the item is delivered late. One day, however, the agent is assigned
specifically to buy an item prioritising speedy delivery. This is problematic if the
agent’s trust model is hard coded to disregard delivery speed when evaluating
salesmen. This is an example for evaluating direct experiences, but in other
parts of the trust model the same thing can happen. For instance, at the level
of aggregation, if the agent’s environment contains mostly truthful agents, then
it can use reputation information. If the environment changes, however, and
most agents are liars, the agent using reputation information is misguided. Some
models are equipped to deal with these changes, but they do so reactively [Teacy
et al., 2006; Vogiatzis et al., 2010]. If the agent knows the environment has
changed it cannot proactively adapt its trust model. Such issues arise at all
levels during trust computation and can be triggered by changes in the beliefs
and the goals of an agent. Contemporary trust models are not equipped to deal
with this type of proactive adaptation, in which the agent’s goals and beliefs
can precipitate a change in the way an agent calculates its trust evaluations.
Furthermore, because trust models are treated as a black box, their integration
into a cognitive agent also does not allow for proactive adaptation.

Another important aspect of trust, which few computational models deal
with, is that trust is inherently multifaceted. An agent is evaluated with respect
to some role, or action, which it is expected to perform. The evaluating agent
requires this action to be performed to achieve a specific goal, which is why it
requires the trust evaluation in the first place. This goal, and the action the
target is required to perform to achieve it, can change the parameters of the
trust model: an agent selling an item in an auction may be evaluated differently
to an agent buying an item.

In this chapter we present AdapTrust, an agent model capable of reasoning
about trust and proactively changing the trust model to reflect this reasoning.
We do not present a new trust model, but rather propose an extended BDI
framework designed to work with existing models. We provide a method for
integrating computational trust models into a cognitive agent model. We do
this by considering the trust model in as declarative a way as possible, while
still relying on the underlying computational process for calculating trust evalu-
ations. While this does not provide the agent with introspection into the actual
computational mechanism its trust model uses, it opens the black box of trust
sufficiently to allow the agent to proactively adapt its model. Because of the
way that trust is fitted into the agent model, it is possible to plug in different
trust models quite easily.

First, however, we take a closer look at how computational trust models
function. We stated above that computational trust models are functions that
calculate a trust evaluation of a target, based on a number of inputs. Never-
theless, the output may depend on more than just these inputs: there may be



6.1. Introduction 119

constants that play a role in the actual calculation. Let us consider a trivial
example in which the trust model computes an evaluation as a linear transform-
ation of a single input value. The computational trust model therefore computes
the function f(x) = ax + b and the output depends, not just on x, but on the
precise values of a and b. Actual trust models obviously compute very different
functions with different, generally non-numerical, input. The principle, however,
is the same and different values for the constants in the functions can lead to
very different outputs. In general, we are not interested in the actual algebraic
operations the functions use and abstract away from these. Nevertheless, we are
interested in the constants that are used in the functions and how these can be
adapted, within the limitations of the algebraic operations. For example, if the
agent uses the linear transformation above, our idea is to allow for change in the
values for a and b, but not to replace the formula with, for example, a quadratic
equation. These changeable constants are what we call the parameters of the
trust model.

The parameters available for adaptation, and the effects they have on the
actual computation, depend entirely on the computational trust model an agent
uses. In order to use the computational trust model in AdapTrust, we require it
to have at least one parameter. Such parameters are, for instance, the weights
in a weighted average, the decay rate at which older evidence is discarded, or
the distance in a social network at which point to disregard opinions.

Many trust models use a number of different parameters. By considering
these trust models as functions, we see that each of these parameters has a
different effect on how the input variables are used to compute the output.
Specifically, each parameter makes the influence of input variables more or less
important and thus the value of a parameter should be “governed” by the import-
ance the agent wants to assign to the variables it affects: the more important the
variable, the larger its influence should be upon the output of the trust model.
For instance, consider a trust model that has a parameter which governs the
relative importance of direct experiences and witness information, such as is the
case in ReGreT [Sabater et al., 2002]. If the agent believes it is surrounded
by liars it should give little importance to witness’ communications. The value
assigned to the parameter should reflect this, ensuring that direct experiences
are given more importance in the trust calculation than communicated ones.
In general, we require that the agent is capable of instantiating a trust model
with different values for its parameters, which reflect the importance the agent
assigns to the different variables that play a role in calculating trust evaluations.
In the continuation we call these variables factors, because they are the factors
that contribute to a trust evaluation.

A further requirement is that the function is valid for any combination of val-
ues for the parameters: the parameters are linked to the importance of different
factors taken into account in calculating trust. Thus if some factor becomes more
important this can cause a change in the parameters. Any such change should
result in a valid trust model. If, for instance, we have f(x) = log(ax) as the
function that the trust model computes, and we know x ∈ R+, then we cannot



120 Chapter 6. AdapTrust

choose the parameter a <= 0, because then the trust model is no longer valid:
the function is no longer defined on its domain. We are thus not completely free
in the choice of parameters and must be especially careful if multiple parameters
can be changed to make sure any combination of possible values results in a valid
trust model.

AdapTrust is designed in such a manner that a large number of current
computational trust models can be incorporated into a BDI reasoning system by
considering the parameters they take into account and specifying what factors
can influence these parameters. It allows these factors to influence the trust
model automatically, thus integrating the trust model into the reasoning system
of the agent. Furthermore AdapTrust is inherently multifaceted, as the entire
cognitive stance of the agent can influence the trust model. In Section 6.2
we present the various logics we use and the basic BDI framework we extend.
Section 6.3 describes the first part of this extension: a manner of specifying
a trust model to allow the agent to reason about it, using priorities over the
factors that influence its parameters. Section 6.4 introduces the mechanics for
performing this reasoning. This is done with rules that link the goals and beliefs
of an agent to the priorities that specify its trust model. Finally we demonstrate
how AdapTrust allows an agent to reason about its trust model, using BRS
[Jøsang and Ismail, 2002], ForTrust [Lorini and Demolombe, 2008] and ReGreT
[Sabater, 2003], three well known contemporary trust models, in Section 6.5.

6.2 Preliminaries

AdapTrust provides a way to integrate computational trust models into a cog-
nitive model of an agent. We use a multi-context representation of a BDI-agent
as the cognitive model, and in this section, present all the logics and formalisms
needed for this. Accordingly, we start by introducing the multi-context repres-
entation of a BDI-agent. The specification of an agent using a multi-context
system (MCS) has several advantages for both the logical specification and the
modelling of the agent architecture [Parsons et al., 1998]. From a software engin-
eering perspective, an MCS supports modular architectures and encapsulation.
From a logical modelling perspective, it allows the construction of agents with
different and well-defined logics, and keeps all formulae of the same logic in
their corresponding context. This increases the representational power of logical
agents considerably, and at the same time, simplifies their conceptualisation.
The MCS paradigm is therefore a popular formalism for extending the basic
BDI logic. For instance, Criado et al. [2010] and Joseph et al. [2010] use an
MCS to allow a BDI agent to reason about norms, and Pinyol and Sabater-Mir
[2009a] use an MCS to incorporate trust into a BDI agent. We follow a sim-
ilar approach to this last work, but as explained in Section 5.2, Pinyol et al.’s
approach firstly only deals with Repage, and secondly does not allow for the
adaptation of the model: their integration focuses on making decisions to inter-
act, based on trust. Finally, Sabater et al. [2002] show how the specification of
BDI-agents using an MCS corresponds directly with the concept of modules in



6.2. Preliminaries 121

software engineering, and allows for the rapid and easy design of an executable
agent architecture.

6.2.1 Multi-context systems

Multi-context Systems (MCS) provide a framework that allows several distinct
theoretical components to be specified together, with a mechanism to relate
these components [Giunchiglia and Serafini, 1994]. An MCS consists of a family
of contexts, which are logically connected by a set of bridge rules. Each context
contains a formal language and a theory of that language. We say a sentence is
in a context if it is a logical consequence of the theory in that context. Bridge
rules serve to relate theories between contexts. They can be seen as inference
rules, but rather than inferring conclusions within a context, the premises and
conclusion are in different contexts. Bridge rules have the form:

C1 : X;C2 : Y

C3 : Z

where X,Y and Z are schemas for sentences in their respective contexts. The
meaning of a bridge rule is that if a sentence complying with schema X holds
in context C1, and a sentence with schema Y holds in context C2, then the
corresponding sentence with schema Z holds in context C3. This is true in
the logical sense, but the bridge rules have a second use: they represent the
operational procedures in the system. The schema in the conclusion might be
the outcome of some operation. In such cases we will give an abstract description
of the function that performs this operation.

Let I be the set of context names, then an MCS is formalised as:
〈{Ci}i∈I ,∆br〉 with contexts Ci and ∆br a set of bridge rules. In Section 6.2.3
we show how to represent a BDI-agent as an MCS, but first we introduce the
logics that we require in our integration of a trust model into a BDI system.

6.2.2 Logics

In an MCS, each context is specified using a logic. In this section we present the
various different logics that we use in the contexts.

First-Order Logic (FOL)

While we stick to the standard definition of first-order predicate logic, we need
to introduce the notation, which is used throughout this chapter. The syntax
of FOL is defined using a set of constants C, a set of function symbols F , and
a set of predicate symbols P. Each function and predicate symbol has a fixed
arity, greater than one. Terms and formulae are given in the usual manner, using
quantifiers ∀,∃ and connectives ¬,∧,∨,→.



122 Chapter 6. AdapTrust

First-Order Dynamic Logic (FODL)

We use first-order dynamic logic (FODL), as first proposed by Harel [1979].
FODL is first-order logic that is extended by adding action modalities to it. We
use FOL as defined above, and any FOL-wff is a program-free FODL-wff. We
now define the set RG of first-order regular programs and the set of FODL-wffs
by simultaneous induction as follows:

• For any variable x and term e, x := e is in RG.

• For any program-free FODL-wff ϕ, ϕ? is in RG.

• For any α and β in RG, (α;β), (α ∪ β) and α∗ are in RG.

• Any FOL-wff is an FODL-wff.

• For any FODL-wffs ϕ and ψ, α in RG and variable x the following are
FODL-wffs:

– ¬ϕ
– ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ

– ∀x : ϕ, ∃x : ϕ

– [α]ϕ

Programs formed by the application of the first and second rule are called as-
signments and tests, respectively. We will refer to both of these as basic actions,
while any other type of program is a composite program. For the formal se-
mantics of FODL we refer to Harel [1979], but for this chapter it is sufficient
to have an intuitive understanding. The semantics of program-free formulae is
the same as for standard FOL. The semantics of [α]ϕ can be summarised as:
after performing α, ϕ holds. α;β is sequential composition: [α;β]ϕ means that
after first performing α and then performing β, ϕ holds. Similarly, α∪β is non-
deterministic choice: [α∪β]ϕ means that after either performing α or performing
β, ϕ holds; and α∗ is repetition: [α∗]ϕ means that ϕ holds after performing α
any finite number of times (including none).

Priority Logic (PL)

In our specification of the trust model we will require a logic to formalise a
structure of priorities among predicates in our MCS. We call this logic Priority
Logic (PL)1. It is a subset of first-order logic, following the system defined by
Schorlemmer [1998] for a logic of binary relations. In PL we admit only two
predicate symbols: the predicate symbols of order, denoted � and =. As is
customary, we use infix notation for such predicates. For any two constants a
and b, a � b and a = b are PL-atoms. Using this we define PL-wffs as:

• Any PL-atom π is a PL-wff.
1Note that this logic is unrelated to Wang et al.’s logic [1997] with the same name.



6.2. Preliminaries 123

• For any PL-atom π, ¬π is a PL-wff.

• For any PL-wffs π and ξ, π ∧ ξ is a PL-wff.

The semantics are given by standard FOL-semantics, but with the following
axiom schemas for the predicates, for any constants a and b:

�-irreflexivity: ¬(a � a)

�-transitivity: (a � b) ∧ (b � c)→ (a � c)

=-reflexivity: a = a

=-symmetry: (a = b)→ (b = a)

=-transitivity: (a = b) ∧ (b = c)→ (a = c)

incompatibility of � and =: a = b→ ¬(a � b)

6.2.3 Multi-context representation of a BDI-agent

With all the logics described, it is time to present our specification of a
BDI-agent using an MCS. We will not yet define the contexts used for reas-
oning about the trust model: in this section we present the contexts and
bridge rules for a BDI-agent, whereas Sections 6.3 and 6.4 extend this frame-
work to include reasoning about trust. A BDI-agent is defined as an MCS:
A = 〈{BC,DC, IC, PC,XC},∆br〉.

We first describe the contexts, before defining the bridge rules. The first three
contexts correspond to the classical notions of beliefs, desires and intentions as
specified by Rao and Georgeff [1991]. The first, the Belief Context (BC) contains
the belief base of the agent. We use an FODL language, as described in the
previous section, to represent beliefs. Let PBel, FBel and CBel be the predicates,
functions and constants required to describe the agent and its environment, then
LBel is the FODL language generated from them. If ϕ ∈ LBel is in the belief
context, this means the agent believes ϕ holds.

In the Desire Context (DC) we use an FOL language LDes to represent the
agent’s desire base, generated from the same set of predicates, functions and
constants as the belief base. The agent’s desires are thus represented in the
program-free segment of the logic for the belief base. If ψ ∈ LDes is in the desire
context, then the agent desires ψ.

The Intention Context (IC) holds the intention base of the agent and uses
the FODL language LInt, a subset of the language that the belief context uses:
let α ∈ RG and ψ an FOL-wff, then [α]ψ ∈ LInt. In other words, an intention
is a sentence in an FODL language consisting only of program-free formulae
preceded by a program. Intuitively, the meaning is that if [α]ψ is in the intention
context, then the agent has the intention to achieve ψ ∈ LDes by acting on plan
α ∈ RG. We will use goal and intention interchangeably and write the symbol
γ as shorthand for such a goal.



124 Chapter 6. AdapTrust

In addition to these mental contexts, we follow Casali’s lead [2008], and define
two functional contexts: the Planner Context (PC) and the Interaction Context
(XC). The former is in charge of finding plans to achieve an agent’s desires, while
the latter is an agent’s way of interacting with the world: it controls an agent’s
sensors, performs basic actions and sends and receives messages. To connect
these contexts to the mental contexts of beliefs, desires and intentions, we use
an additional notational device: quoting.

Definition 6.1 (Quotation operator). The quote-operator ‘.’ transforms pro-
grams, PL-wffs, FODL-wffs and sets of FODL-wffs into first-order terms.

The Planner Context uses a first-order language restricted to Horn clauses,
and a theory of planning uses some special predicates for representing plans:

• basic_action(‘α’, ‘ΦPre’, ‘ΦPost’), where α is a basic action in RG, and
ΦPre and ΦPost are program-free subsets of LBel. This allows for the
definition of basic capabilities of the agent, together with their pre- and
post-conditions: for α to be executable, ΦPre must hold (or in other words,
be in the agent’s belief base). ΦPost is guaranteed to hold on successful
completion.

• plan(‘α’, ‘ΦPre’, ‘ΦPost’), where α is any program in RG, and ΦPre and
ΦPost are program-free subsets of LBel. The meaning of this is the same
as above, but allows for composite plans.

• bestplan(‘ψ’, ‘α’, ‘ΦPre’, ‘ΦPost’) corresponds to the agent’s notion of the
best instance of a plan to achieve desire ψ. At the very least we require
ψ ∈ ΦPost.

In addition, the planner context contains two special predicates to choose plans
based on the agent’s beliefs and desires:

• belief (‘Φ’), with Φ ⊆ LBel.
• desire(‘ψ’), with ψ ∈ LDes.
This context is more operational than the other contexts described thus far:

its internal logic is unimportant, and its function in the reasoning is to select
a specific plan for the agent to execute in order to achieve a goal ψ, given the
current beliefs about the world. The agent has some method of selecting the
best plan to achieve a desire ψ, and this is the plan returned. How formulae of
the form belief (‘Φ’) and desire(‘ψ’) are introduced into the PC is described in
the next section about bridge rules. This is the only context presented in this
section that requires modification to allow for reasoning about trust because,
being orientated towards single agents, it does not accommodate actions that
require other agents’ participation. We will revisit this context in Section 6.3.3
to add this possibility.

The Interaction Context is also a functional context, but in a different sense
from the planner context, as it encapsulates the sensors and actuators of an
agent. It contains the following special predicates:



6.2. Preliminaries 125

• do(‘α’), where α ∈ RG. This has the meaning that α is performed by the
agent, although at this abstract level we do not deal with the possibility of
failure. Note that if α is a composite action, the Interaction Context has
some way of decomposing this into a sequence of basic actions which can
be executed.

• sense(‘ϕ’), with ϕ an FOL-wff. This has the meaning that ϕ is observed
in the agent’s environment.

Bridge rules

One of the main advantages of using an MCS to represent an agent is that
it separates the deduction mechanism inside the context from the deduction
between different contexts. Reasoning internal to the contexts is defined in terms
of the deduction rules of the logic used within a context, while bridge rules allow
for inference between the contexts. The former corresponds to reasoning about
beliefs, or desires, individually, while the latter corresponds to the BDI notion
of a deliberation cycle: inference between the contexts. In the definition of the
bridge rules below, and throughout the remainder of this chapter, we use symbols
Φ,ΦPre,ΦPost ⊆ LBel, ψ ∈ LDes and α ∈ RG. We start with the two bridge
rules to add the beliefs and desires into the planning context, so that the beliefs
can be used to find plans to achieve the desires:

BC : Φ

PC : belief (‘Φ’)
DC : ψ

PC : desire(‘ψ’)
(6.1)

With this information the planning context deduces formulae, with predicate
bestplan for any desire ψ the agent wishes to fulfil and any belief base Φ, such
that ΦPre ⊆ Φ:

PC : bestplan(‘ψ’, ‘α’, ‘ΦPre’, ‘ΦPost’) DC : ψ

IC : [α]ψ
(6.2)

Similarly an agent has a bridge rule to allow for the execution of an intention:

DC : ψ IC : [α]ψ

XC : do(‘α’)
(6.3)

Upon execution, the effect of the agent’s actions are added back into the
belief base:

PC : basic_action(‘α’, ‘ΦPre’, ‘ΦPost’) XC : do(‘α’)
BC : ΦPost

(6.4)

Note that none of these bridge rules take temporal considerations into ac-
count, or the possibility of failure: ΦPost is instantly added to the belief base.
We also require some form of belief revision to keep the agent’s beliefs consistent
and up-to-date. Here we just give the minimal specification to allow for reason-
ing about trust, but one could think of extending the model to deal with such



126 Chapter 6. AdapTrust

(6.2)

(6.1)

BC XCIC

DC

PC

(6.3)

(6.4)

(6.5)(6.1)

Figure 6.1: The MCS specification of a BDI-agent, without the contexts required
for reasoning about trust. Nodes are contexts and (hyper)edges are bridge rules,
with the labels corresponding to those in the text.

issues. The last bridge rule we define now is a simple rule for receiving sensory
input:

XC : sense(‘Φ’)
BC : Φ

(6.5)

For the correct specification of a BDI-agent further bridge rules are necessary.
Most notably those to allow for a chosen level of realism. Rao and Georgeff
[1995] specify three different levels of realism: strong realism (if an agent desires
a formula to hold, it will believe the formula to be an option), realism (if an
agent believes a formula, it will desire it) and weak realism (if an agent desires a
formula to hold, it will not believe the negation of that formula to be inevitable).
These each correspond to a different set of bridge rules between the belief base,
desire base and intention base [Parsons et al., 1998]. Luckily, none of this affects
our specification of trust, and we leave the choice of the level of realism open.
The MCS as specified thus far is summarised in Figure 6.1.

6.3 Specifying Trust Models

The MCS described in the previous section lays the groundwork for an agent that
can reason about trust. We assume a trust model is an algorithm to calculate a
trust evaluation based on a number of inputs. These inputs are formulae in one
of the contexts of the agent, and we distinguish different types of input:

1. the target agent to be evaluated

2. beliefs about direct experiences

3. communicated trust evaluations

4. the desire the agent wishes to fulfil, for which it needs the target agent to
perform some action

We will assume that the agent has a specific unary predicate agent ∈ PBel,
which is used to identify the agents in the system. We will use the shorthand



6.3. Specifying Trust Models 127

Agents = {X ∈ CBel | BC : agent(X)}, the set of identifiers of agents in the
system. The first input of the trust model, the target agent to be evaluated, is
thus an agent a ∈ Agents. The second and third inputs, the beliefs about direct
experience and communicated trust evaluations, are also formulae in the belief
context. While we did not model communication in our MCS, we can consider
it as part of the interaction context. Sending a message is simply a basic action
of the agent and do performs that basic action, sending the specified message.
Similarly, sense also receives communications from other agents. We therefore
have two subsets of the belief base ΦDE and ΦComm representing the agent’s
beliefs about direct experiences and communications respectively. Furthermore,
we assume that such beliefs form a distinguished subset in the language of beliefs.
We take PDE ⊂ PBel, the set of predicates about direct experiences and LDE ,
the set of FODL-wffs generated in the same way we described in Section 6.2.2.
It is easy to see LDE ⊂ LBel. The same holds for PComm and LComm. The last
input corresponds to the reason why the agent is evaluating the trustworthiness
of the target in the first place: trustworthiness is a tool used to help the agent
in choosing a partner to achieve some goal. Depending on the goal the agent
wishes to achieve, the way the trust evaluation is computed changes. As such,
the goal γ that the agent is attempting to achieve is the fourth input for the
trust model.

Some trust models, such as the one described by Hermoso et al. [2009], also
consider norms as input for the trust model, and Pinyol and Sabater-Mir [2010]
present a method of incorporating this into an MCS. A discussion about norms
is outside the scope of this thesis. We will assume the agent’s background know-
ledge is affected by norms and that this may affect how the agent specifies its
trust model; however, we will disregard norms in the use of the trust model: pos-
sible norm violations could already be encoded in the agent’s direct experiences
and received communications.

The output of the trust calculation is a trust evaluation: a predicate in a
domain-specific language for describing trust. This predicate is an element of
PBel, and the set of all possible trust evaluations LTrust is a program-free subset
of LBel.

This abstract description of a trust model, in terms of its in- and out-
put, corresponds with the abstract algorithmic view of a trust model in Sec-
tion 2.2: a trust model is a Turing computable function. We call this function
trust_calculation , and regardless of the actual computational trust model,
we see that the domain of this function is the set of the agent’s beliefs, goals
and agents under evaluation, and its range is the set of possible trust eval-
uations. For example, if an agent wants to evaluate a salesman s for the
goal of having a bicycle by performing the basic action buy_bicycle, then it
can evaluate s using its beliefs about interactions ΦDE ⊆ LDE and commu-
nications ΦComm ⊆ LDE using its trust model. This may result in a trust
evaluation of agent s with regards to the goal [buy_bicycle]have_bicycle(me)
with, for example, value trustworthy. We can represent this in a func-
tional form as the function trust_calculation , with the inputs ΦDE , ΦComm,



128 Chapter 6. AdapTrust

[buy_bicycle]have_bicycle(me), and the agent s as described above:

trust_calculation(ΦDE ,ΦComm, [buy_bicycle]have_bicycle(me), s) =

trust(s, ‘[buy_bicycle]have_bicycle(me)’, trustworthy)

In Section 6.1 we stipulated that, for reasoning about the trust model to have
any effect, this model must have parameters that can be adapted to the agent’s
needs. In other words, trust_calculation is a parametric function.

Definition 6.2 (Parameters of a trust model). Let trust_calculation be a
trust function, then we define the set Paramstrust_calculation as the set of para-
meters of trust_calculation .

We also define the function labels : Paramstrust_calculation → 2CPL that
associates subsets of constants CPL in a priority logic (PL) with the parameters
of trust_calculation .

These constants are the factors that are of importance to the agent in calcu-
lating the trust evaluation. This will be formalised in Section 6.3.2, but first we
give an example of a trust_calculation function.

6.3.1 An illustrative trust model

We illustrate the parametrisation of a trust model with the following small model
to evaluate agents in an auction environment. The model calculates a trust
evaluation of a target agent t with respect to a goal γ, by using a weighted average
to aggregate information from three different sources: the agent’s own direct
experiences as a buyer and as a seller with the target, specified in Salest and
Purchasest, respectively, and the communicated trust evaluations from other
agents in the system, specified in ΦCommt . The trust_calculation function of
this example is therefore as follows:

trust_calculation(Salest ∪ Purchasest,ΦCommt , γ, t) =

trust(t, ‘γ’,
wbuyer ·DEBuyer(Salest) + wseller ·DESeller(Purchasest) + wreputation · Comm_Trust(ΦCommt)

wbuyer + wseller + wreputation

wbuyer, wseller and wreputation are the three weights, and the functions
DEBuyer, DESeller and Comm_Trust calculate intermediate values for direct
experiences with buyers, sellers and communicated evaluations, defined as
follows:

Comm_Trust(ΦCommt) =
∑

C∈ΦCommt

value(C)

|ΦCommt |

DEBuyer(Salest) =
∑

S∈Salest

wprofit · eval_profit(S) + wtime · eval_paytime(S)

|Salest| · (wprofit + wtime)

DESeller(Purchasest) =
∑

P∈Purchasest

wcost · eval_cost(P ) + wdelivery · eval_delivery(P )

|Purchasest| · (wcost + wdelivery)

Comm_Trust aggregates the communicated trust evaluations in a straight-
forward manner: it simply takes the communicated values as they are, and



6.3. Specifying Trust Models 129

averages these over all the received communicated evaluations. DEBuyer and
DESeller both use a straight up average over all interactions in which a sale, or a
purchase, was made. Each interaction is evaluated by taking a weighted average
of the evaluation of two aspects of the interaction. For sales interactions this
is the profit made and whether the payment was on time. For purchases this
is the cost incurred and whether the delivery was on time. The weights wprofit

and wtime determine the importance of these two factors for DEBuyer, while
wcost and wdelivery do the same for DESeller. Each individual sales interaction
is evaluated using the following functions:

eval_profit(Sale) = max(−1,min(1,
profit(Sale)− expected_profit(Sale)

profit_threshold
))

eval_paytime(Sale) =

{
−1 if date_payed(Sale) > payment_deadline(Sale)
1 otherwise

eval_profit calculates the normalised value of profit. The profit_threshold
is a constant: if the difference between the actual profit and expected profit is
greater than the threshold, then the output of the function is capped at 1, or
−1, depending on whether the difference is positive or negative. eval_paytime
is a binary function: it is 1 if the price of the item was paid on time, and −1 if
it was not. Two very similar functions, eval_cost and eval_delivery, perform
the same task for evaluating purchase interactions:

eval_cost(Purchase) = max(−1,min(1,
expected_price(Purchase)− price(Purchase)

cost_threshold
))

eval_delivery(Purchase) =

{
−1 if delivery_date(Purchase) > expected_delivery(Purchase)

1 otherwise

This trust model serves as a first example of a model that can be incorporated
into the agent’s reasoning system. The key points of this demonstration are
twofold: the first is to stress the intuition described so far that a trust model
can be seen as a function that takes inputs from the agent’s mental contexts and
calculates a trust evaluation. Obviously the actual calculation of this example
is quite simple; however, we demonstrate this in a similar manner for actual
computational trust models in Section 6.5.

The second point is to demonstrate that the designer of the system has a
choice in what to consider as parameters. In the above system it would be
intuitive to take the weights as parameters. Such a choice, however, does not
fit our model: the value of a single weight in a weighted average is meaningless
because it is the ratio between weights that defines their relative importance
within a weighted average. We thus take these ratios as our parameters. The
actual value of the weights can follow trivially from these.

Note that fixing the values for all possible ratios between all weights may
lead to unsatisfiable equations. We stated in Section 6.1 (on page 119) that any
combination of values for the parameters should yield a valid trust model, and
in our example, having parameters representing all ratios between all weights
violates this requirement: the parameters would be interdependent. This prob-



130 Chapter 6. AdapTrust

lem is easily solved in our example by choosing a mutually independent set of
ratios on which the remaining ratios are dependent. We thus choose the set
of parameters Paramstrust_calculation = {wprofit

wtime
, wcost
wdelivery

,
wbuyer
wseller

,
wbuyer

wreputation
} for

the trust_calculation function. It is easy to see that any value in the range
of the parameters can be chosen. While profit_threshold and cost_threshold
could technically also be parameters of the calculation, they serve no purpose
in adapting the trust model to the agent’s behaviour. Rather they need to be
chosen correctly for the trust model to be of use in any domain.

Adapting the trust model

The parameters above can take any number of values, which result in different
behaviours of the trust model. The behaviour of the trust model should be
linked to the agent’s beliefs and goals, allowing it to adapt the model to the
current situation. To do this, the values of the parameters should depend on
certain factors – the labels of the parameters – that the agent can prioritise over.
For instance, if in the example the agent regards the delivery time of an item
as more important than its cost, then the parameter wcost

wdelivery
should be smaller

than 1, resulting in the corresponding weights wdelivery and wcost in the trust
calculation reflecting that delivery time is more important than cost.

We define this more generally, with the set of constants CPL, which can be
used in a priority logic (PL), as defined in Section 6.2.2. In the above example we
choose: CPL = {delivery_time, cost, payment_time, profit , outcome_buying,
outcome_selling, reputation}, which corresponds exactly with the variables in
the equations of the trust model. These are the factors that the agent uses to
describe interactions in which it buys and sells items in an auction, as well as the
factors describing the intermediate stages of the trust calculation. Consequently,
changes in the relative importance between these factors should cause the trust
model to change. In a real scenario far more factors can influence the parameters,
but we aim to keep the example simple.

The different parameters of the trust model are not all influenced by the
same factors. As specified in Definition 6.2, the labels function defines which
factors influence which parameter. In our example we have:

• labels(wprofit

wtime
) = {payment_time, profit}

• labels( wcost
wdelivery

) = {delivery_time, cost}

• labels(wbuyerwseller
) = {outcome_buying, outcome_selling}

• labels( wbuyer
wreputation

) = {outcome_buying, reputation}

In the continuation of this chapter, we describe a method that allows an
agent to reason about the labels affecting its trust model. Viewing the trust
model as a function allows us to abstract away from the actual computation and
give this specification in more general terms than would be the case if we had
to consider each method of computation separately.



6.3. Specifying Trust Models 131

6.3.2 A priority system
Our language must allow for the specification of the importance of the different
factors that are taken into account in a trust calculation. Another thing to
note is that these factors may be both the initial inputs, such as communicated
information or direct experiences, as well as internal predicates, such as the
concepts of image and reputation in the case of Repage [Sabater et al., 2006].
Some comparisons, however, make no sense. For example, in the case of Repage
it is senseless to specify that direct experiences are more important than image,
because nowhere in the algorithmic process do the two concepts occur together.
In fact, image is considered as the output of an aggregation of, among other
things, direct experiences. We see that we do not need to specify the importance
ordering over all possible factors due to the algorithmic design of the trust model
making some comparisons are pointless.

This notwithstanding, we do need a way of identifying those factors that
require ordering. For this we turn to the parameters of the trust model. We
only need to define the importance between any factors that appear together in
the labels related to a parameter. In our example, for instance, there is no need
to define the importance between the factors payment_time and reputation,
because there is no parameter that is influenced by the relative importance
between these two factors.

The parameters and their labels give us a natural way to specify what is
important in the calculation of trust. How each of these labels influences the
trust evaluation is dependent on the calculation itself. Take for instance, our
example of a weighted average: the higher the ratio wprofit

wtime
, the more weight

is given to the profit made in a sale, in comparison to the punctuality of the
payment. This is a natural translation from the relative importance of profit
as opposed to punctuality. We do not elaborate on how exactly this translation
is implemented. For instance, as long as the parameter wprofit

wtime
is given a value

greater than 1, it complies with the idea that profit is more important than
delivery time, independent of the actual value it has. Nevertheless, the actual
value may still be important: the values for this parameter influence the trust
model in very different ways.

We will assume the agent has a way of translating the relative importance
into actual values for the parameters in a reasonable manner. One way to choose
the values is through the relative importance of the priority rules, which we will
discuss in Section 6.4, but first we need to finish formalising the idea of relative
importance between the various factors. We do this with our priority logic (see
Section 6.2.2), which allows us to specify a set of priorities, for each of the
parameters, over the labels which influence that parameter’s value. Such a set
of priorities is called a priority system.

Definition 6.3 (Priority System).
The priority system context PSC contains a set of priorities for each para-
meter of the trust model. We recall that a set of priorities is a theory in a
PL-language LPL. Let trust_calculation be a trust model with parameters
Paramstrust_calculation , then for each parameter p ∈ Paramstrust_calculation



132 Chapter 6. AdapTrust

we define the PL-language LPLp with predicates � and = and constants
CPLp = labels(p). A theory in LPLp is denoted as Πp. The PSC therefore
contains the indexed family {Πp}p∈Paramstrust_calculation .

For instance, in our auction example, we could have the following PSC:

{cost � delivery_time} wcost
wdelivery

{profit � payment_delay} wprofit
wtime

{outcome_buying = outcome_selling}wbuyer
wseller

{outcome_buying � reputation} wbuyer
wreputation

Using these priorities means that any actual instantiation, of the example
trust model in Section 6.3.1, must give more importance to cost than delivery
time, profit to payment delays, and outcomes from either type of direct experi-
ence to reputation, when evaluating an agent.

Now we recall that trust is multifaceted: the priority system is dependent
on what goal the trust evaluation serves. For instance the priorities may differ,
depending on whether the agent intends to buy or sell an item. As such the
priorities must be dependent on the goal. We call any goal, whose achievement
depends on other agents, a socially-dependent goal.

6.3.3 Socially-dependent goals

We recall from Section 6.2 that a goal of an agent is an FODL sentence that
combines a desired outcome with a plan. Some goals cannot be achieved by the
agent working in isolation. We call a goal which requires interaction with another
agent a socially-dependent goal. Different plans, however, may require different
interactions to fulfil the same desire, so the need to interact must come from
the specific manner in which to achieve the goal. Some desires may be fulfilled
in strict isolation, but have alternative methods for fulfilment if interaction is
considered. Other desires may inherently require interaction. Either way, it
is the plan in which the interaction is defined. Such a plan is formed in the
Planner Context and is a sequence of actions. We should, therefore, specify in
the actions, whether there is a need for interaction. Furthermore, we should
define the type of action, or set of actions, we expect the other agent to perform
(such as buying or selling an item). For this we will use an abstraction, so
that rather than specifying the actual actions, we specify which role the agent
should fulfil. We will assume such roles are defined in the MAS itself [Odell
et al., 2003; Hermoso et al., 2009], and the agent knows what can be expected
from an agent performing any given role. The agent, therefore, has knowledge
about a set of roles which can be performed in the system, using the special
unary predicate role ∈ PBel. We define the set Roles analogously to Agents:
Roles = {r | BC : role(r)}. These roles are used in the definition of a social
action:



6.4. Goal-based Instantiation of Trust Models 133

Definition 6.4 (Social action). We define the planning predicate
social_action(‘α’, ‘ΦPre’, ‘ΦPost’, r) in an analog manner to how we defined
basic_action in Section 6.2.3 (on page 124). Thus α ∈ RG is a basic action, and
ΦPre,ΦPost ⊆ LBel are the pre- and post-condition, respectively. The distinc-
tion between a basic_action and a social_action is that the latter requires that
some other agent, performing role r ∈ Roles, participates in the action. With
this extension of the syntax of the planning context’s internal logic, we also need
to extend the definition of the planning predicate: plan(‘α’, ‘ΦPre’, ‘ΦPost’, R),
where R ⊆ Roles is the set of roles required by social actions in the program α.

Note that this is a simplified version of a more general definition, in which
an action might require the participation of multiple agents performing multiple
roles. This entire framework can be extended in a trivial manner to such multi-
agent social actions, but to keep the notation clean we limit the actions to
two agents and thus a single other agent performing a single role. A socially-
dependent goal is defined as any goal [α]ψ where α is a plan in which at least one
social action is involved. For convenience we explicitly write the roles involved
in the goal as [α]ψ〈R〉, as shorthand for PC : plan(α, Pre, Post,R) ∧ IC : [α]ψ.
In other words R is the set of roles required by the social actions in the plan. We
also write [α]ψ〈r〉 to denote any role r ∈ R with the above condition. Whether an
agent performs a certain role adequately is directly linked to its trustworthiness.

From an organisational perspective of the MAS we consider all agents inher-
ently capable of performing any role. Whether they perform this role adequately
is a matter for the individual agents to decide. It is also in this aspect that our
multifaceted view of trustworthiness comes into play, as trust is based not just
on agents’ willingness to perform an action, but also their capability in per-
forming this action [Castelfranchi and Falcone, 2010]. When an agent wishes
to accomplish some socially-dependent goal, it must attempt to find the agents
best able to fulfil the required roles, using the corresponding priority system to
instantiate the trust model to perform this evaluation.

6.4 Goal-based Instantiation of Trust Models

In the previous section we showed how to abstract away from a computational
model and specify the factors that influence the trust computation. We can now
tie this together with the BDI-reasoning of an agent. Particularly, we specify how
the beliefs and goals affect the trust model. The factors that influence the trust
model are defined in the priority system, but which PL-theory is used depends
on the agent’s reasoning system. The socially-dependent goal the agent wants
to accomplish, the set of roles required to achieve this goal, and the beliefs
an agent has about its environment may all influence the importance of the
different factors, and thus the trust model itself. A priority system, as described
in Definition 6.3, is thus not a static set of rules, but is defined dynamically for
each goal an agent intends to achieve: given a set of beliefs Φ, for each goal γ for
which role r ∈ R is required, the agent has a PL-theory PSr,γ,Φ describing the



134 Chapter 6. AdapTrust

priorities at that moment. We need to specify how priorities come into existence
and how they are used in instantiating a trust model for a specific goal. We
also need to specify how inconsistencies in a PL-theory are resolved, so that the
parameters of the trust model can be instantiated. We return to the question
of resolving inconsistencies at the end of Section 6.4.1. First, we show how the
trust model and priorities are involved in the reasoning system of the agent and
how the agent’s beliefs and desires can cause the adaptation of the trust model.
We use the MCS described in Section 6.2 and specify the bridge rules required.

6.4.1 Reasoning about the priority system
We work from the intuition that an agent’s beliefs, and the goal it is attempting
to achieve, justify the priorities. We illustrate this by taking another look at
the example of Section 6.3.1: if an agent believes it is beneficial to be frugal, it
could choose to prioritise cost over delivery time and profit over payment delay.
Nevertheless, there might be a specific goal, such as if an agent needs to buy
an item urgently, that could change these priorities: if the agent wants the item
delivered quickly, it could prioritise delivery time over cost. Notice that such
a change possibly has the effect of changing the agent’s decision to select one
provider or another: this decision is based on the trust model, which in turn is
dependent on the prioritisation of the aforementioned criteria.

To allow an agent to adapt its priorities — and thus its trust model — in
such a manner, we specify rules encoding causal relationships between cognitive
elements and the priority system, formalised using a first-order logic restricted
to Horn clauses. These rules are deduced in the priority rule context (PRC); a
functional context similar to the planner context. We have three special priority
rule predicates: belief _rule, role_rule and goal_rule. These predicates specify
that a set of beliefs, a role or a goal support a certain ordering of priorities.
Additionally, these predicates have a third argument, specifying the preference
value for that rule. This is a numerical indicator of how important that rule is,
which is used in the resolve function below. Let Φ ⊂ LBel, r ∈ Roles and γ ∈
LInt. Additionally let v ∈ N and π ∈ LPLp for some p ∈ Paramstrust_calculation ,
then the following are priority rule predicates:

• belief _rule(‘Φ’, ‘π’, v). This allows for the definition of priority rules stat-
ing that the set of beliefs Φ supports the priority π with preference v.

• role_rule(r, ‘π’, v). The use is similar to the previous rule, but with a role,
rather than beliefs, supporting a priority.

• goal_rule(‘γ’, ‘π’, v). A priority rule stating that goal γ supports priority
π with preference v.

Additionally, we have the predicates belief , role and goal to represent the
agent’s mental attitudes in the PRC, which are needed in the deductions. To see
how this works in practice, we once again consider the example and formalise the
scenario from the start of this section: the agent has the belief that it is frugal.



6.4. Goal-based Instantiation of Trust Models 135

This belief supports prioritising cost over delivery time. The formalisation of this
is with the priority rule belief _rule(‘frugal(me)’, ‘cost � delivery_time’, 1).

How an agent obtains such priority rules is dependent on the implementation.
Similar to the planning context, such rules can be predefined by the programmer,
or the agent can be equipped with some reasoning system to deduce them. We
use Υ to denote the set of all priority rules an agent has. The rules are triggered
by a specific set of beliefs, a goal or a role, for which the agent needs to evaluate
other agents’ trust. As such, we need bridge rules to connect the priority rule
context to the belief and intention contexts:

BC : Φ

PRC : belief (‘Φ’)
BC : role(ρ)

PRC : role(ρ)

IC : [α]ψ

PRC : goal(‘[α]ψ’)
(6.6)

Let p ∈ Paramstrust_calculation be a parameter of the trust calculation, with
its corresponding set of labels. Given a set of beliefs Φ, a role r and a goal γ we
can now use the PRC to find a set of priorities Πp,r,γ,Φ over the set labels(p):

Πp,r,γ,Φ =
⋃

Φ′⊆Φ

{π|belief _rule(‘Φ′’, ‘π’, v) ∈ Υ ∧ terms(π) ⊆ labels(p)}

∪ {π|role_rule(r, ‘π’, v) ∈ Υ ∧ terms(π) ⊆ labels(p)}
∪ {π|goal_rule(‘γ’, ‘π’, v) ∈ Υ ∧ terms(π) ⊆ labels(p)}

Note that while Πp,r,γ,Φ is a wff in PL, it may be inconsistent. We illustrate
this by continuing the formalisation of the example. The agent in the scenario
has the goal to buy an item, for instance a book, urgently. This can be formalised
in the rule goal_rule(‘[buy_book]have_book(tomorrow)’, (delivery_time �
cost), 2). The set generated with the singleton set of beliefs {frugal(me)} and
goal [buy_book]have_book(tomorrow) contains both delivery_time � cost as
well as cost � delivery_time and is thus inconsistent.

We see that, to obtain usable sets of priorities, the agent must perform some
form of conflict resolution that guarantees a consistent PL-theory. This is done
using resolve: a function that, when given a set of priority rules, a set of beliefs,
a goal, a role and a trust model, returns a consistent PL-theory. It is immediately
obvious that there are many different ways of obtaining a consistent PL-theory
from an inconsistent set of priorities and there are intuitively better, and worse,
ways of doing this. For instance, ∅ is a consistent PL-theory, but it is a thor-
oughly useless one. To maximise the utility of the obtained PL-theory we use the
preference factors for each of the rules in Υ. The output of the resolve function
must fulfil the following two conditions: (1) it is a consistent PL-theory and (2)
the total preference value of the rules used is maximal. This allows the agent
designer a lot of freedom in defining how to resolve the priorities. For instance,
one way would be to guarantee that resolve returns a maximal subset of Πp,r,γ,Φ

that is a consistent PL-theory. Another possibility ties in with the idea that the
trust model should be goal-orientated. In such a case the priorities supported
by the goal should supersede the priorities supported by the role, which in their



136 Chapter 6. AdapTrust

PSCPRC

(6.6)(6.6)

(6.7)

(6.8)

BC XCIC

DC

PC
(6.2)

(6.3)

(6.4)

(6.5)

(6.1)

(6.1)

Figure 6.2: The MCS specification of a BDI-agent that can reason about trust.
This is an extension of Figure 6.1 (on page 126), whose bridge rules are colored
grey. The bridge rules added for reasoning about trust are black, with labels
corresponding to those in the text.

turn should supersede those supported by the beliefs. Both of these methods
can be expressed by choosing adequate preference factors for the rules: if we just
want the maximal subset, all preferences can be 1, but if the implementation
calls for some distinction among the rules, this can be implemented using the
preferences of the rules. In our example we have chosen to distinguish among
rules. Specifically, we have chosen to make the goal rule more important than
the belief rule. In Section 6.5.1 we will give more examples of priority rules and
the preference values. Note that, while we have not placed an upper bound on
the preference values, in practice such a limitation is useful. Especially if, as we
will explore in Chapter 7, priority rules can be exchanged between agents, the
preference values must have a similar range to be acceptable. In Chapter 7 we
propose to use [1, 10], but a designer of a MAS is free to decide differently.

We have now defined all the individual parts of the extended BDI model and
can define the first bridge rule related to reasoning about trust, namely the one
for generating a priority system:

BC : Φ IC : γ = [α]ψ〈r〉 PRC : Υ

PSC : PSr,γ,Φ
(6.7)

with PSr,γ,Φ = {resolve(Πp,r,γ,Φ,Φ, γ, r, trust_calculation)}p∈Paramstrust_calculation

being the outcome of an operational procedure, as alluded to in Section 6.2.1.

It is up to the implementation of the agent to define resolve as well as the
rules in Υ (or a method for generating them).



6.4. Goal-based Instantiation of Trust Models 137

6.4.2 Instantiating trust models

A socially-dependent goal γ is not immediately executable, unlike a goal with a
plan which contains no social actions. To achieve a social action it is insufficient
to define which role an agent must fulfil, but the agent must actually choose
another agent to fulfil that role. For this, the trust evaluation of other agents in
the system must be calculated, so that a decision can be made whom to interact
with. As stipulated earlier, we require that there is a method to obtain an in-
stantiation of a trust model that complies with a priority system. Accordingly,
the agent can use such an instantiation to calculate its trust evaluations. A
system implementing our model has to provide a definition of the instantiate
function that, when given a priority system PSr,γ,Φ and a trust function
trust_calculation , outputs another trust function trust_calculationr,γ,Φ,
such that instantiate(PSr,γ,Φ, trust_calculation) complies with the priority
system PSr,γ,Φ. A trust model complies with a priority system if the value of
each of its parameters complies with the priorities over its labels, as explained
in Section 6.3.2. Both instantiate and how the compliance of the resulting trust
function is checked depend heavily on the actual trust model used, and we will
demonstrate this in an example in Section 6.5.1.

Now this trust_calculationr,γ,Φ can be used to aid the agent in selecting
a partner for the required role. Trust, however, may not be the only thing an
agent uses to select a partner. In a BDI-based agent architecture all reasons
an agent may have to select a partner are usually inferred from the belief base.
Therefore, trust evaluations should be added to the belief base, allowing them
to be incorporated in this reasoning process. Once a partner has been selected,
a social action may be executed just as a basic action can be executed by the
agent. The details of how this happens is outside the scope of a high-level
specification, but we do need to specify how trust evaluations get added to
the belief base. trust_calculationr,γ,Φ is a functional representation of an
underlying computational trust model. This trust model can calculate the trust
evaluation of prospective partners for the achievement of the goal γ. These
calculations need to be added in the belief base, and accordingly, we require a
bridge rule for this:

IC : γ = [α]ψ〈r〉 BC : Φ PSC : PSr,γ,Φ
BC : ϕγ,r,a

(6.8)

where ϕγ,r,a = trust_calculation
r,γ,Φ

(ΦDE ,ΦComm, γ, a) with ΦDE ,
ΦComm ⊂ Φ and a ∈ Agents.

Finally, this trust evaluation can be used in the execution of a plan, by
selecting the best partner for interaction. The MCS with the two new contexts
and the additional bridge rules is represented schematically in Figure 6.2.



138 Chapter 6. AdapTrust

6.5 Integrating Trust Models
With the extended BDI-framework in place we can now show how this allows an
agent to reason about its trust model. We will demonstrate how to incorporate
three different trust models into AdapTrust: BRS [Jøsang and Ismail, 2002],
ForTrust [Lorini and Demolombe, 2008] and ReGReT [Sabater, 2003]. We show
how incorporating a trust model into AdapTrust allows the agent to proactively
change its trust evaluation, in addition to allowing an easy and intuitive way of
allowing any model to deal with the multifaceted aspect of trust by use of the
agent’s goals and the roles other agents may perform. We only demonstrate the
entire reasoning model for BRS, while presenting a detailed discussion of the
algorithmic representation of the other models and their parameters.

6.5.1 BRS
The Beta Reputation System (BRS) is a statistical method for calculating repu-
tation: the aggregation of other agents’ trust evaluations. The approach de-
scribed by Jøsang and Ismail [2002] is a centralised approach and can thus be
seen as a model which does not take individuals’ own direct experiences into
account separately. They explicitly mention, however, that this same method
can be used in a decentralised approach, and newer extensions of this model,
such as TRAVOS [Teacy et al., 2006], are distributed. Nevertheless, their basis
is the same statistical model as BRS uses. In BRS, an agent’s own direct exper-
iences are aggregated in just the same way as any other agent’s communicated
experiences — with no special preference. BRS is based on the beta-family of
probability distributions of binary events. This family is expressed by the fol-
lowing probability density function, where p is a probability conditioned by the
shape parameters α and β and Γ is the Gamma function2:

f(p|α, β) =
Γ(α+ β)

Γ(α) · Γ(β)
· pα−1 · (1− p)β−1, where 0 ≤ p ≤ 1, α > 0, β > 0

The expected value, given such a probability density function is:

E(p) =
α

α+ β

The expected outcome is thus a real value in the range (0, 1). BRS uses this
expectation as the reputation, but converts it to a value in (−1, 1), which they
state is more intuitive to human users. The α and β are determined by the
number of “good” and “bad” evaluations of interactions with a certain target.
Jøsang and Ismail add further refinements by discounting opinions from agents
who are uncertain and discounting experiences over time. Additionally, they
provide a method for using non-binary evaluations of an interaction by treating
a single interaction as a number of interactions with a mix of “good” and “bad”.
A numerical evaluation of a single interaction can be represented as a pair (r, s)

2Γ(x) =
∫∞
0 tx−1 · e−tdt



6.5. Integrating Trust Models 139

where r is the value of “good” and s the value of “bad” in that single interaction.
It is necessary to keep r + s constant, but in this way we can add r good and
s bad evaluations for each interaction, representing non-binary evaluations. By
using a weight w it is further possible to give important interactions a higher
value for r and s and thus more importance in the determination of α and β,
although this is not explored further by Jøsang and Ismail [2002]. Algorithm 4
describes the entire process.

Algorithm 4: Centralised BRS
Input: Evals = {(v, a, t)}, a set of evaluations. Each evaluation with

value v ∈ [−1, 1], evaluator agent a and time t
Input: j ∈ Agents, the agent to be evaluated
Input: w, the weight parameter
Input: λ, a parameter for decay over time
s := 0
r := 0
foreach (v, a, t) ∈ Evals do

r := r + λnow−t · w · (1 + v)/2
s := s+ λnow−t · w · (1− v)/2

end
reputation := r−s

r+s+2
Output: Reputation(j, reputation, now)

Parametrisation of centralised BRS

When looking at the algorithm we see that there are two explicit parameters,
w and λ. λ can be interpreted as defining the balance between new and old
evidence: if λ = 1 then the time since the evidence was observed is irrelevant;
if λ < 1 then historical evidence is given less importance; and the unusual situ-
ation of λ > 1 would mean that the longer ago the evidence was observed, the
more importance it is given. However, w in the formula given by Jøsang and
Ismail only influences the convergence rate. We feel the weight w can be put to
better use: as they themselves describe, it can be used to define the importance
of an interaction to the final calculation. This ties in directly to another issue
with the algorithm: it starts off with a set of evaluations without describing
how these are calculated from an agent’s beliefs. Thus the algorithm above only
describes the aggregation method used for calculating trust based on individual
evaluations, but not the evaluation method itself, which forms an important
part of the evaluation. This is mainly because the article describes a centralised
method in which it uses communicated information: the computational entity
that performs the aggregation is not the same one that performs the evalu-
ation of individual interactions. We thus propose a decentralised version of BRS
defined in Algorithm 5, which is a procedure for calculating the outcome of the



140 Chapter 6. AdapTrust

trust_calculation function for an agent, using BRS as its trust and reputation
model. This uses three secondary functions: eval, weight and time_stamp
to calculate the value of a direct experience, the weight assigned to this value by
the agent, and the time the direct experience took place, respectively. Because
the agent’s knowledge of its direct experiences and received communications are
collected in its belief base, we make the link to the belief context BC explicit in
the algorithm.

Algorithm 5: Decentralised BRS
Input: j ∈ Agents, the agent to be evaluated
Input: BC : Ij , a set of direct experiences with agent j
Input: BC : Rj = {received(reputation, i, j, v, t)}, a set of messages with

sender i, communicating that agent j has reputation value v at
time t

Input: λ, a parameter for decay over time
s := 0
r := 0
foreach i ∈ Ij do

v := eval(i)
w := weight(i)
t := time_stamp(i)
r := r + λnow−t · w · v
s := s+ λnow−t · w · (1− v)

end
foreach received(reputation, i, j, v, t) ∈ Rj do

Repi := (1 + rv)/2, where BC : Reputation(i, rv, now − 1)
r := r + λnow−t ·Repi · v
s := s+ λnow−t ·Repi · (1− v)

end
reputation := r−s

r+s+2
Output: Reputation(j, reputation, now)

This algorithm does not strictly follow the description of BRS [Jøsang and
Ismail, 2002]. To make sense in a decentralised setting a distinction must be
made between the own and others’ experiences. This distinction need not be
made in a centralised system, and therefore we propose to discount incoming
communications based on the reputation of the sender. This discounting is not
done in the original article, but we feel it represents an accurate extension of
BRS to a decentralised model. The own experiences are evaluated using the
functions eval and weight. These can easily be parametrised to be dependent
on the goal the agent is attempting to achieve.

As mentioned earlier, TRAVOS [Teacy et al., 2006] is an example of a newer
trust model that extends BRS, and it makes a similar distinction between own
direct experiences and incoming communications as in Algorithm 5. Neverthe-



6.5. Integrating Trust Models 141

less, it extends the BRS model significantly, mainly in how it chooses what
information to take into account when it calculates a trust evaluation. BRS uses
all information available, although weights can influence this. TRAVOS, how-
ever, uses further calculations of the confidence in different sources to possibly
disregard information.

Parametrisation of decentralised BRS

The only explicit parameter is the same one as in the centralised model, the
decay factor for time. There is, however, also an implicit one: while the com-
municated evaluations always have a weight of at most 1, the weight of own
experiences may be arbitrarily high. This leads to an implicit weighing of
the own experiences as compared to the communicated evaluations with ra-
tio wdirect = maxi∈Ij (weight(i)). This implict weight can be made explicit
by adding the constant wreputation, that is multiplied with all the communic-
ated evaluations (in addition to the reputation of the sender). The parameter
wdirect

wreputation
describes the relative influence of direct experiences and communic-

ated evaluations, thereby allowing the agent to modify this parameter and change
this balance. The eval function may also be parametrised, similar to the other
models. Next, we explain this parametrisation in more detail.

An e-commerce agent using decentralised BRS

We will now show how this system allows an agent to proactively change its
trust model, using Algorithm 5 as the procedure for calculating trust. The
implementation depends on the domain in which the agent is operating, so
to keep our example compact, we use the same domain as in the example of
Section 6.3.1: an agent in an e-commerce environment. The environment has
two roles an agent may play, buyer or seller, corresponding to the actions an
agent can perform, buying an item or selling an item. To evaluate agents’
direct interactions we use evaluation functions similar to those described in
Section 6.3.1, but returning the outcome in a format that BRS can handle.
BRS performs the aggregation, so we just need to provide a definition for
the functions eval and weight. BRS does not give any description of how
these should be defined and it is up to the designer. We choose the following
definitions, for the different types of interactions, because they are simple
calculations with parameters that we can adjust using AdapTrust:

eval(DESale) = round(wprofit · eval_profit(DESale) + wtime · eval_paytime(DESale))
eval(DEPurchase) = round(wcost · eval_cost(DEPurchase) + wdelivery · eval_delivery(DEPurchase))

weight(DESale) = wsale

weight(DEPurchase) = wpurchase

which use the functions:



142 Chapter 6. AdapTrust

eval_profit(Sale) = max(−1,min(1,
profit(Sale)− expected_profit(Sale)

profit_threshold
))

eval_paytime(Sale) =

{
−1 if date_payed(Sale) > payment_deadline(Sale)
1 otherwise

eval_cost(Purchase) = max(−1,min(1,
expected_price(Purchase)− price(Purchase)

cost_threshold
))

eval_delivery(Purchase) =

{
−1 if delivery_date(Purchase) > expected_delivery(Purchase)

1 otherwise

Having now specified all the calculations of the trust_calculation func-
tion, we choose the following set of parameters: Paramstrust_calculation =

{λ, wprofit

wtime
, wcost
wdelivery

, wsale
wpurchase

, wsale
wreputation

}, giving a full parametrisation of BRS.
The last four parameters are described in Section 6.3.1, while λ is a parameter
from Algorithm 5. We demonstrate the agent’s reasoning using a simple set of
labels. These labels are constants that allow us to capture the meaning of the
parameter. The numerical value of a parameter is thus symbolically represented
as an ordering of factors that influence the parameters:

• labels(λ) = {old, new}

• labels(wprofit

wtime
) = {payment_time, price}

• labels( wcost
wdelivery

) = {delivery_time, cost}

• labels( wsale
wpurchase

) = {sale_experience, purchase_experience}

• labels( wsale
wreputation

) = {sale_experience, reputation}

The ordering of these labels are defined in a priority system, which is deduced
in the PRC. The following are a sample of rules an agent may use to reason in
this example.

The rules for deducing the PL for parameter λ are:

• belief _rule(‘dynamism(environment, high)’, ‘new � old’, 1)

• belief _rule(‘dynamism(environment, none)’, ‘new = old’, 1)

These state that if the environment is very dynamic, old information should be
given less importance than new, whereas if the environment is not dynamic, all
information should be treated equally.

For wprofit

wtime
the rules are:

• belief _rule(‘frugal(me)’, ‘price � payment_time’, 1)

• belief _rule(‘[pay(rent, landlord)]have(home, next_month) ∧ ¬have(rent, now)’,
‘payment_time � price’, 5)

• goal_rule(‘[sell(item)]have(money, future)’, ‘price � payment_time’, 1)



6.5. Integrating Trust Models 143

With the meaning that if the agent is frugal, price is given more importance
than the deadline for payment. A similar rule applies if the agent does not have
a goal to sell an item urgently. On the other hand, if the agent needs money
urgently, for instance to pay the rent, then it should give a high importance to
the time the payment is made, rather than the profit made.

For wcost
wdelivery

:

• belief _rule(‘frugal(me)’, ‘cost � delivery_time’, 1)

• goal_rule(‘[buy(item)]have(item, tomorrow)’, ‘delivery_time � cost’, 2)

Similar to the rules for wprofit

wtime
, a frugal agent should prioritise the cost over

timeliness of the delivery. If, however, the item is needed urgently, for instance
the next day, then the delivery time is more important than the cost.

For wsale
wpurchase

:

• role_rule(seller, ‘purchase_experience � sale_experience’, 2)

• role_rule(buyer, ‘sale_experience � purchase_experience’, 2)

These rules define the importance in the aggregation process for direct experi-
ences of different types. If the agent is searching for a seller, then it should give
more importance to direct experiences in which it was buying items than those
in which it was selling. Vice versa if the agent is searching for a buyer.

Finally for wsale
wreputation

:

• belief _rule(>, ‘sale_experience � reputation’, 1)

• belief _rule(‘∀x ∈ Agents : good_reputation_source(x)’,
‘sale_experience = reputation’, 2)

The first rule states that the default is for sale experiences to be more important
than reputation. Nevertheless, if all agents in the system are good reputation
sources then the two types of information should be given equal importance.

These rules are triggered by the first parameter (the antecedent) being true
in its respective context. The bridge rules (6.6) cause these true sentences to be
added in the PRC, where the internal reasoning checks which priority rules hold
true at any one time. For bridge rule (6.7) to be of any effect, we need to define
a resolve function. An example of a resolve function that resolves possible
conflicts in the priority system could be to perform a best first search for each
parameter, which removes rules from the set of applicable rules recursively, based
on their preference value (removing the lowest values first) until the set of rules
results in a consistent PL-theory. The priority system to be used is the family
of the PL-theories for each individual parameter.

In our example case we can use a simpler algorithm for resolve because each
parameter is only influenced by two factors. We thus have that, for any two
factors a, b a consistent set of priorities states that either a � b, b � a or a = b
(or none of them, but then there is no inconsistency). We sum the preference



144 Chapter 6. AdapTrust

values for the priority rules supporting any of the three consistent cases, and the
one with the highest total value wins. If all three cases are tied, then a = b. In
the case of a tie between any two cases, we need to break the tie in some manner.
For instance, we could choose at random, or use the number of rules supporting
each case. Our choice is to use the priority supported by the single rule with the
highest preference as a tiebreaker, with as rationale that the weights accurately
reflect the importance for having the priority, and one important rule should be
chosen over multiple less important ones. If it is still tied, we choose one of the
tied cases at random.

To obtain a trust model complying with these parameters, we also need
to define the instantiate function. We give an example of a straightforward
manner for obtaining such a function, although this, once again, depends on
parameters being influenced by only two factors. For the first parameter, λ, the
value is determined simply by discerning the two cases: if new = old then λ = 1,
otherwise λ = 0.9 (which we use as a default decay rate).

For the other parameters, we use the preference values of the prior-
ity rules that are triggered by the agent’s requirements. We demonstrate
the function for the parameter wprofit

wtime
. Let us assume the agent requires

trust evaluations for a role r, goal γ and beliefs Φ, and that we have
π = resolve(Π wprofit

wtime

,Φ, γ, r, trust_calculation).

We define instantiate in the following manner: if π ≡ (price =
payment_time) then wprofit

wtime
= 1, otherwise we depend on the preference val-

ues of the priority rules. We define Sprofit as the sum of the preference values of
the priority rules in Υ, whose conclusion is price � payment_time and that are
triggered by role r, goal γ, or a subset of the beliefs Φ. We define Stime analog-
ously, but for the priority rules with payment_time � price in the conclusion.
We now calculate the ratio wprofit

wtime
= 1+Sprofit

1+Stime , where the 1 is added in both the
numerator and denominator to avoid division by 0.

There is a particular case in which this calculation does not reflect the priority
π, which corresponds to when we need to use a tiebreaker in the resolve function:
if Sprice = Sprofit , but π 6≡ (price = payment_time), then we want wprofit

wtime
near

1, but still reflecting the priority π. In this case we choose an ε > 0 and use
wprofit

wtime
= 1+ε

1 if price � payment_time, or wprofit

wtime
= 1

1+ε otherwise.
A similar function exists for the other weight ratios. Note that the trust

model does not use the weight ratios, but needs to be instantiated with actual
weights. We choose a simple algorithm for instantiating these weights, using the
ratios. The algorithm starts by assigning the value 1 to each weight. Then, for
each parameter, it adjusts one of the weights so that the ratio in the parameter
is correct (in other words, if wprofit

wtime
has value 1/2 it could adjust wprofit to 0.5 or

wtime to 2). The algorithm always starts by adjusting a weight that has value
1, before adjusting other weights. This loop continues until all parameters are
satisfied.

Now we see that this allows the agent to instantiate different trust models
with different weights, depending on the role the other agent plays in the interac-
tion, if there is urgency in selling off stock, or the agent believes all other agents



6.5. Integrating Trust Models 145

to be truthful in their reputation assessments. The agent designer could create
more priority rules (or implement a system in which the agent learns priority
rules) to cover more cases, similar to how agent’s plans are required to allow an
agent more flexibility in fulfilling its desires.

We will not discuss the integration of ForTrust or ReGReT in such a detailed
example, but rather show how those algorithms can be parametrised. The fur-
ther steps to full integration into the extended BDI model are left to the engaged
reader.

6.5.2 ForTrust

ForTrust is a logical framework for describing properties of trust: it provides a
definition of trust in the target’s action [Lorini and Demolombe, 2008] and states
that an agent trusts a target agent to perform an action α, which will fulfil a
desire ϕ, if the following conditions hold:

Power: the target agent can ensure ϕ, by doing α

Capability: the target agent is able to perform action α

Intention: the target agent intends to do α

Trust is then defined in a multimodal logic, with trust defined as a mod-
ality that is equivalent to an agent both desiring ϕ (in their logic this is an
achievement goal) and believing that the target has the power, the capability
and intention to achieve ϕ through action α. Their formalisation of trust thus
incorporates those aspects of trust that we have mentioned earlier: an agent
trusts another agent with regards to a specific goal. The role an agent plays is
directly dependent on the social action that it is required to perform. As such
this formalisation fits exactly with our own one. Lorini and Demolombe [2008]
also present a graded version of the multimodal logic, which allows trust to have
a strength, rather than be binary as in classical logic. This graded version of
ForTrust is implemented [Hübner et al., 2009] using Jason [Bordini et al., 2007].
This implementation is very specific for the ART Testbed [Fullam et al., 2006]. In
it, it is clear that certain assumptions need to be made regarding how the form-
alisation is actually calculated. In Algorithm 6 we give a more general version of
the implemented algorithm, which is not limited to application in only the ART
Testbed. We assume the existence of the predicates request(a, α, contract) and
performed(contract, a, ψ, time) in LBel to model the requests to perform action
α from an agent a and the result ψ of a’s performance of α, respectively.

The first thing to notice is that the formalisation of Lorini and Demolombe
[2008] is very abstract. Given a direct experience in which the target agent
performed α and the result was a world in which ϕ′ held, how likely is it that
next time the agent performs α, the desire ϕ is fulfilled? This is just one of
the issues that the formalisation stays away from, but any implementation must
necessarily solve. We specify this with eval, which compares the outcome of a
previous interaction with the requirement ϕ and returns a numerical value. It



146 Chapter 6. AdapTrust

Algorithm 6: ForTrust
Input: BC : B, the set of the agent’s beliefs
Input: IC : [α]ϕ, the goal to be achieved
Input: a ∈ Agents, the agent to be evaluated
Input: ε, a parameter defining the cut-off rate for capability of

performing α
Input: δ, a parameter defining the cut-off rate for the power of achieving

ϕ by performing α
Input: γ, a parameter defining the decay factor for evidence over time
Input: c0, a default value for the capability
Input: p0, a default value for the power
performed := 0
contracts := 0
outcome := 0
denominator := 0
foreach request(a, α, contract) ∈ B do

contracts := contracts + 1
if performed(contract, a, ψ, t) ∈ B then

performed := performed + 1
modifier := γnow−t

outcome := outcome + modifier · eval(ϕ,ψ)
denominator := denominator + modifier

end
end
if contracts = 0 then

capability := c0
end
else

capability := performed
contracts

end
if capability ≤ ε then

capability := 0
end
if performed = 0 then

power := p0

end
else

power := outcome
denominator

end
if power ≤ δ then

power := 0
end
x := min(capability, power)
Output: trust(a, ‘[α]ϕ’, x)



6.5. Integrating Trust Models 147

is easy to fill in a formula here so the same result is obtained as in Hübner et
al.’s implementation for the ART Testbed [2009]. Another implementation of
ForTrust is similar [Krupa et al., 2009]; however, it also adds the possibility of
evaluating the trust in an agent to not perform a malicious action. While this
requires a different type of logical reasoning, from a trust perspective it is rather
similar. An agent simply trusts another agent regarding the fictitious action
α′: the action of not performing α. By considering the absence of an action as
performing a different action and reasoning about that instead, Algorithm 6 is
also a generalisation of Krupa et al.’s implementation of ForTrust.

A second remark is that while the ART Testbed provides the possibility of
asking for reputation information from other agents, the implementation does
not use this. We have therefore not included it either, but, just as the integration
of reputation is considered as future work by Hübner et al. [2009], this algorithm
can be extended to include reputation as a source of information for estimating
both the power and capability of other agents.

Parametrisation of ForTrust

Looking at Algorithm 6 we see there are three parameters explicitly specified.
Of these, γ is the easiest to interpret: it has the exact same effect as λ in BRS
(see Section 6.5.1). The parameters δ and ε can be considered independently or
together. Independently they describe the cut-off rates for power and capability,
respectively. As such, a high ε means we do not wish to consider agents who do
not perform α when asked, independent of the degree of success at achieving ϕ.
We see ε thus directly specifies the importance of being capable, as we would
expect from the algorithm. Similarly, δ specifies the importance of actually
achieving ϕ if the agent performs α. However, the interplay between the two
variables is complicated because if one of these two cut-off rates is unrealistically
high, then it does not make any difference what the other value is at, and the
trust will be 0, based on this unrealistic expectation. In other words, it depends
on the probability distributions of power and capability, what influence δ and ε
have. When both are above the cut-off rate, whether capability or power is the
deciding factor also depends on their probability distributions: because we take
the minimum, the smallest of the two is the deciding factor, given they are both
larger than the cut-off rate. We thus see that capability is the deciding factor
in the following two situations:

• capability ≤ ε and power > δ

• capability > ε, power > δ and capability < power

The situations that power is the deciding factor are analogous. Note that we
disregard the situations where both power and capability are smaller than δ and
ε, respectively, because in such situations both are 0. We need to choose the
values for δ and ε before calculating the agent’s capability and power, and thus
the best we can do is use an estimation: we can influence the probability that
capability (or power) is the deciding factor. The probability that capability is



148 Chapter 6. AdapTrust

the deciding factor is thus the sum of the probabilities for either case above.
This works out to the following formula:
Pr(cap_decides) = Prcap(c ≤ ε) · Prpower(p > δ)

+ Prcap(c > ε) · Prpower(p > δ) · Prcap(c < p | p > δ)

= Fcap(ε) · (1 − Fpower(δ))

+ (1 − Fcap(ε)) · (1 − Fpower(δ)) ·
∫ ∞
δ

(Fcap(x)− Fcap(ε)) · Prpower(p = x)dx

Where Prcap(c > ε) calculates the probability that c is greater than ε given the
probability distribution of the capability of the target. Prpower does the same
for power, Fcap is the cumulative probability function for capability, and Fpower
the cumulative probability for power.

A similar equation can be found for deciding when power defines the trust
value, which, because we are not discounting those situations where both p ≤ δ
and c ≤ ε, will not simply be the inverse probability of the above formula. All
of this is needed in order to say something about how the values for δ and ε
influence the relation between Pr(cap_decides) and Pr(power_decides). Nev-
ertheless, as we can see, the equations are rather complex, and additionally, the
probability distributions for power and capability are generally unknown, and
thus the influence cannot be calculated exactly. As a rule of thumb we can
assume that power and capability are distributed equally. In this case the prob-
ability that the capability is the deciding factor is greater than the probability
that power is the deciding factor when ε is greater than δ. For this, we need to
show that, if ε > δ, Pr(cap_decides) − Pr(power_decides) ≥ 0. The proof is
straightforward and hinges on two realisations: the first is that the two probab-
ility distributions for power and capability are the same, so Prcap and Prpower
represent the same probabilities. The second is that if ε > δ the same holds for
cumulative probabilities: Pr(x ≤ ε) ≥ Pr(x ≤ δ). With these two realisations,
we can simplify the algebraic expression as follows:

Pr(cap_decides)−Pr(power_decides) ≥ Pr(x ≤ ε)+Pr(x > ε)·Pr(x > δ) ≥ 0

The reverse is also true and Pr(power_decides) ≥ Pr(cap_decides) if δ > ε.
We simplify this further and say, under the assumption that power and capability
are equally distributed: if δ > ε then power is more important than capability
and vice versa if ε > δ.

Even if the assumption of equal distributions does not hold, it is clear that
the relations between power and capability are influenced by δ and ε, and thus
we see that all three parameters γ, δ and ε can be instantiated with different
values, depending on what importance the agent wants to give to the different
factors. As in BRS, and as we shall see, also in ReGReT, the eval function may
also be parametric, in which case there are even more options available for the
agent to adapt its trust model to the situation.



6.5. Integrating Trust Models 149

6.5.3 ReGReT
ReGReT [Sabater, 2003] attempts to define a comprehensive trust and reputa-
tion model, which takes many different types of information into account. The
first two are direct trust and information from other agents, or reputation. How-
ever, it is the first model to consider the multifaceted aspect of trust by linking
a trust evaluation to a behaviour (or role). An agent is not simply evaluated,
but rather a trust evaluation is an evaluation of an agent performing a specific
behaviour. To achieve this, ReGReT adds ontological information to the cal-
culation. Finally, ReGReT considers the structure of the social network as a
source of information about the relations between agents. While other models
might use these different types of information, at the time ReGReT was presen-
ted it was the first system to incorporate all these different aspects into a single
comprehensive trust model. As such it is one of the most influential trust and
reputation models in existence.

Roles and the ontology

The ontological dimension is considered for both the calculation of direct trust
and reputation. These values are calculated specifically for a single role. These
roles are related through a role taxonomy. The calculation of direct trust and
reputation is only done for so-called “atomic roles”, which take a single aspect
of an interaction into account, such as, for instance, the price of an item in an
auction. These coincide with the leaves of the role taxonomy. For any interior
role, the trust in an agent fulfilling that role is the weighted mean of the trust
in that agent for each of the child nodes. For instance, in an electronic auction,
a seller is evaluated based on the cost of an item and the delivery time. Thus,
the trust in an agent based only on cost is calculated and similarly for delivery
time. These are then aggregated using a weighted average to obtain the trust
in that agent as a seller. The direct trust and reputation calculations below are
thus the calculations for leaves of the role taxonomy.

Direct trust

ReGReT gives a clear description on how an agent can evaluate its own direct
experiences with the target. It does this in terms of an outcome, which consists
of two things: a contract between two agents and the resulting actions. It is
represented as a tuple o = 〈i, j, I,Xc, Xf , t〉, where i is the evaluating agent, j
is the target, t is the time when the contract was formed and I is a set of terms
in an ontology that the contract is about. Xc is a vector with the agreed values
of the contract for each issue in I. Xf is a similar vector, but with the actual
values, after the contract is deemed “fulfilled”. An agent’s outcomes are stored
in a part of the belief base, called the outcome database (ODB). The direct
trust an agent has in the target is calculated directly from this ODB.

To perform this calculation, the outcomes need to be evaluated. For each
atomic role there is a function gr : Rn × Rn → [−1, 1], where n is the length
of the vectors Xc and Xf . This function is used to evaluate an outcome and



150 Chapter 6. AdapTrust

returns an impression in the range [−1, 1]. The impressions from all outcomes
are aggregated and this is the direct trust of agent i in j concerning role r:

DTi→j(r) =
∑

o∈ODB
f(now, time(o)) · gr(contract(o), fulfilment(o))

with time(o) = t, contract(o) = Xc and fulfillment(o) = Xf if we let
o = 〈i, j, I,Xc, Xf , t〉. Moreover, f(now, t) = f ′(now,t)∑

j∈ODB f
′(now,time(j)) , where

f ′ : R2 → [0, 1] is a function to calculate the decay factor for outcomes over
time. Examples are f ′(x, y) = 0.5x−y or f ′(x, y) = y/x. We see the aggreg-
ation method is a weighted average, with the weight dependent on the time an
interaction took place.

This gives the value of the direct trust, but ReGReT also uses the reliability
of the calculation. For direct trust this is defined by two factors: the number of
outcomes factor and the outcome reputation deviation. These encode the uncer-
tainty from possibly having too few interactions to reliably predict the other’s
behaviour, and the uncertainty from the variability in the outcomes, respect-
ively. The reliability of direct trust, DTRLi→j(r), is simply the multiplication
of the reliability calculated from either factor.

Reputation

In addition to direct trust, information from other agents is taken into account.
This is calculated in a number of manners, resulting in three different types of
reputation: the witness reputation, a value giving the reputation according to
information received from other agents, the neighbourhood reputation, calculated
by considering the neighbours of the target in a social network and the system
reputation: a default reputation based on the role played by the target.

Witness reputation is calculated in two steps: the first of these is to decide
which witnesses’ opinions to consider. ReGReT uses the topology of the social
network to find the witnesses. The details of this analysis are not important
to the further explanation of the model and we refer the reader to Sabater’s
work for these [2003]. The output of the social network analysis is a set of
witnesses who are asked for their opinion. To decide how reliable a witness is,
ReGReT uses two systems. The first of these is simply the individual reputation
of the witness. If the reliability of this reputation is too low (according to a
threshold), then another metric is used, once again based on the structure of the
social network, which they call socialTrust. ReGReT has a set of conditional
rules. The antecedent specifies properties that can hold in the social network
and the conclusion is a statement about the reliability of an agent’s opinion. If
the witness’ position in the social network coincides with the condition in the
antecedent, the conclusion prescribes the reliability of the witness’ opinion.

Neighbourhood reputation is calculated in a similar way to the socialTrust
metric. System reputation is used in case neither witness reputation nor neigh-
bourhood reputation can be used and is a type of default reputation, which is
specified for any agent with certain properties, such as the role it plays in a



6.5. Integrating Trust Models 151

system or other information generally available. If no information is available at
all, a default value is used.

As such, ReGReT has a list of reputation metrics, each considered less re-
liable than the next. Individual reputation is considered before witness repu-
tation, which in its turn is considered before neighbourhood reputation or sys-
tem reputation. This is achieved by considering the final metric reputation
Ri→j(r) =

∑
x∈W,N,S,D ξx · Ri x→j(r), where Ri x→j(r) is the reputation type x,

with W,N, S and D being shorthand for Witness, Neighbourhood, System and
Default. The ξx are weights for this system which depend on the reliability of
each metric, as defined by the functions RL

i
W→j
, RL

i
N→j

and RL
i
S→j

. For the
definition of these reliability functions we refer to Sabater [2003]. The weights
for the types of reputation are then defined as follows:

• ξW = RL
i
W→j

(r)

• ξN = RL
i
N→j

(r) · (1− ξW )

• ξS = RL
i
S→j

(r) · (1− ξW − ξN )

• ξD = 1− ξW − ξN − ξS
It is easy to see that if the reliability of the witness reputation is high (near 1),

then the weight for the aggregation of the other reputation types is low.

Combining direct trust and reputation

The final calculation step is to combine direct trust with reputation. This is
done using the following formula:

Trusti→j(r) = DTRLi→j(r) ·DTi→j(r) + (1−DTRLi→j(r)) ·Ri→j(r)

Trust is a weighted sum of direct trust and reputation, with the reliability
of the direct trust defining the weights. This calculation can be performed for
any of the atomic roles defined in the role taxonomy. For an internal node,
representing a non-atomic role, the trust in its children must be calculated first.
The trust in an agent performing a non-atomic role is then the weighted mean
as described in Section 6.5.3.

We refer to Sabater’s work [2003] for a full description of the algorithm.

Parametrisation of ReGReT

ReGReT is the most comprehensive trust model we consider and it has many
different parts about which an agent could reason. The first and most obvious
of these, are the weights used to calculate trust for non-atomic roles. ReGReT
considers roles in a similar manner to the way we have incorporated them into our
system. The roles thus have a double function. Firstly the role taxonomy defines
the structure for aggregating atomic roles into non-atomic roles. Our reasoning



152 Chapter 6. AdapTrust

system, however, allows for rules to be set up defining the importance of these
child roles in the aggregation and thus influence the weight of the aggregation,
which in ReGReT is defined statically. An additional improvement is that for a
specific goal, or set of beliefs, the importance of the child roles might be changed
and thus the weights can be defined dynamically, dependent on the situation of
the agent.

The second place the agent may incorporate reasoning is in the weight func-
tions of direct trust. Both the time-dependent weight and the role-dependent
evaluation functions are undefined in the model and left for the implementa-
tion. The time-dependent weight may be parametrised similarly to the decay
factor in either BRS or ForTrust. The role-dependent evaluation functions are
more interesting, though: the definition in ReGReT is in terms of a single issue
of an interaction and thus a one-dimensional comparison. We have taken the
liberty of extending this to an arbitrary function gr for any atomic role r that
calculates the evaluation of an outcome. If, as in the original description, gr is
a one-dimensional comparison it is obvious that this single issue is the only im-
portant factor in the calculation of trust for role r. Nevertheless, by converting
this into a multi-dimensional comparison it should be possible, if the function gr
is parametric, to specify dynamically which issues of an outcome are important
for role r dynamically.

Finally, in the social network analysis used for witness reputation and neigh-
bourhood reputation, ReGReT defines a set of fuzzy conditional rules. Sabater
explicitly states that these rules are hand-coded, but a better approach would
be to automate the process. While our reasoning system does not allow for full
automation, it does allow for a mechanism to adapt these rules.

6.6 Summary

In this chapter we have proposed AdapTrust, a method for integrating trust
models into a cognitive agent. By making the parameters of a trust model
explicit, an agent can proactively adapt these parameters’ values and thus the
trust model itself. The values of these parameters are expressions of the relative
importance of different factors on the trust calculation. We introduce an explicit
representation of these factors and a priority logic for representing their relative
importance to each other. Priority rules link the agent’s cognitive aspect (its
goals and beliefs) and the social aspect (roles) with particular orderings of these
factors. These, in turn, determine the value of the parameters. In this manner
the trust calculation can be adapted to the cognitive and social dimensions of
the agent system.

The formalisation of AdapTrust is presented, using a multi-context system
representation of the BDI framework to incorporate the trust model. In addition
to the formal definition of AdapTrust, we illustrate how it can be applied to
particular trust models (BRS, ForTrust and ReGReT). This illustration serves
two purposes: the first is to demonstrate our method and the formalisation we
provide. The second is to provide a guide to perform this incorporation for other



6.6. Summary 153

trust models.
We intentionally left out the details of the implementation of the resolve

and instantiate functions, and left the design of the trust priority rules deliber-
ately vague. The details of their implementation depends on the specific agent
architecture and trust model the agent designer uses, as well as the domain in
which the agent should function. Filling in such details is an important step,
but in this chapter we describe the first step: an abstract, declarative frame-
work, describing a new way to integrate an agent’s trust model into its reasoning
system.

In the next chapter we show how the specification of the priorities can be
used, not just for reasoning about trust, but rather to allow agents to argue
about trust. The idea of arguing about the validity of trust evaluations was
presented by Pinyol and Sabater-Mir [2010], who use BDI+Repage to generate
the arguments, which are used to achieve more reliable communication about
trust evaluations. The argument serves to make the trust evaluation more con-
vincing, by linking it to an agent’s knowledge about the environment. While
this is an exemplary tool for the communication of trust, a similar argument
needs to be constructed for every communicated trust evaluation. Furthermore,
as we mentioned in Chapter 5, Pinyol’s method only allows the agent to filter
out unreliable witness information. We propose an alternative. By allowing
agents to adapt their trust model, they could use argumentation to reach an
agreement of what should form the support for a trust evaluation and change
their trust models to coincide with this. In this way, future communicated evalu-
ations could be accepted simply by virtue of the agents having agreed on what a
trust evaluation means. Furthermore, the BDI+Repage model does not provide
a method for such adaptation. The AdapTrust model we present in this chapter
does, and we focus on the argumentation framework in the next chapter.





Chapter 7

Arguing about Trust

You remind me of a man!
What man?
The man with the power!
What power?
The power of hoodoo.
Who do?
You do!
What do I do?
You remind me of a man!

–Rudi Koster, quoting The Bachelor and the Bobby-Soxer (1947)

7.1 Introduction

As we have argued throughout this thesis, trust is a personal and subjective
evaluation of a target for the fulfilment of a specific goal. Moreover, to compute a
trust evaluation of a target, an agent needs information about that target. When
no direct experiences are available, most models turn to witness information.
Such information is subjective and requires some form of processing, before an
agent can use it. In Part II we presented one such form of processing, Trust
Alignment, but that requires the agent to have had a large number of interactions
with other agents in the system. This is problematic in the case that agents have
not (yet) established a large network of interactions. We are now ready to present
Trust Adaptation, the second approach for processing witness’ communications,
which does not rely on a large number of interactions. Instead, agents need to
share more information about their beliefs and goals, and how these influence
their trust calculations. In this way, the agents can adapt their trust models to
provide each other with personalised trust recommendations.

In Chapter 6 we presented AdapTrust, a BDI-framework for adapting the
trust model to the agent’s changing beliefs and goals. We now use AdapTrust

155



156 Chapter 7. Arguing about Trust

for two purposes: firstly, it allows an agent some introspection into the working
of its trust model, and allows it to communicate its reasons for a particular trust
evaluation. Secondly, it allows for adaptation: a witness can incorporate the goal
of the requesting agent, in order to provide a personalised trust evaluation for it.
Additionally, the agents can argue about their beliefs and reach an agreement,
thereby also adapting their trust models to be more similar to each other’s. These
uses of AdapTrust in an argumentation dialogue allow agents to personalise trust
evaluations to the requesting agent’s requirements.

We build our communication model as an extension of Pinyol’s framework for
arguing about trust evaluations. This model already assumes a certain amount
of introspection, but as discussed in Section 5.3, uses the argumentation to filter
out witness’ recommendations that are too dissimilar from the own point of
view. We extend this to not simply make a binary decision to accept or reject,
but accept more recommendations by allowing adaptation and persuasion. We
start this chapter with an explanation of Pinyol’s framework in Section 7.2,
before describing our own extension in Section 7.3. In Section 7.4 we present
a dialogue protocol for personalising trust evaluations, and in Section 7.5 we
describe the empirical evaluation of our model. Section 7.6 discusses the results
and presents possible scenarios for the model’s application.

7.2 Pinyol’s Argumentation Method
Our method for enabling personalised communication about trust is based on
three capabilities an agent must have:

1. An agent must be able to adapt its trust model in order to personalise its
evaluations to the other agent’s needs.

2. An agent must be capable of communicating its criteria for evaluating
trust, as well as the underlying beliefs and goals leading to these criteria.

3. An agent must be willing and able to change its trust model, if it is per-
suaded that its beliefs about the environment and thus its criteria for
calculating trust are wrong.

We assume that agents are willing to adapt their model if they are convinced
that it is inaccurate, thereby addressing point (3). For the ability to do this,
as well as the possibility of adapting the model to another agent’s needs, we
use AdapTrust, as described in Chapter 6. This addresses point (1), leaving
the problem that the agent must be capable of communicating its criteria for
evaluating trust. The criteria for evaluating trust are given by an agent’s beliefs
and goals. What we need is thus a communication language that allows agents
to talk about trust evaluations, the beliefs and goals these depend on, and the
causal relationship between the two. We propose to extend Pinyol’s framework
for arguing about trust [2011], in order to allow for adaptation. Pinyol pro-
poses an information-seeking dialogue for communicating about trust as a way
for the receiver of a trust recommendation to decide whether or not to accept



7.2. Pinyol’s Argumentation Method 157

the recommendation. The argumentation framework creates an argument that
abstracts away from the computational process of the trust model, thereby allow-
ing agents to discover what the original sources for evaluating a trust evaluation
are. Nevertheless, it cannot answer why an aggregation of sources resulted in a
specific evaluation. Our proposal extends Pinyol’s framework and allows agents
to answer such questions and we present it in Section 7.3, but first we summarise
Pinyol’s argumentation framework.

7.2.1 An ontology of reputation

Pinyol uses the LRep language to build the arguments, first introduced by Pinyol
et al. [2007]. This language is based on a comprehensive ontology for discussing
concepts of trust and reputation. This ontology defines a social evaluation with
three compulsory elements: a target, a context and a value. The context is spe-
cified using a second language LContext, which is a first-order dynamic language
(FODL-language, as described in Section 6.2.2) for describing the domain. The
target is the agent under evaluation and the value is a quantification of the social
evaluation. We will not go into details of this quantification, but the original
description of the LRep language gives different alternatives for the representa-
tion of this quantification, encompassing most, if not all, representations used
in modern computational trust and reputation models [Pinyol et al., 2007]. We
define functions target, context and value that, when given a ground atom in
LRep, return its target, context and value, respectively. These functions will be
used later in this chapter.

The taxonomy of social evaluations is given in Figure 7.1. Here we see how
social evaluations are split into the different types of evaluations related to trust
and reputation. This taxonomy is based on a sociological model of trust and
reputation [Conte and Paolucci, 2002], which splits trust into a direct compon-
ent, image, and a generalised concept of what the society thinks, reputation.
These, in turn, are aggregations of direct experiences, shared voices and shared
evaluations. In this way the ontology allows for the discussion of not just the
final trust evaluation, but also the intermediate evaluations that are used in
its calculation. The LRep language is a first-order language with the vocabu-
lary from the ontology described above and operators ∧,¬ and →. A special
subset of sentences in LRep are ground atoms with either the predicate symbol
DExperience or Comm. These are the basic elements in the ontology, which
specify the evaluations of either direct experiences the agent has observed or
communications it has received.

7.2.2 Trust as an inferential process

Pinyol [2011] starts by modelling the trust model as an inference relation between
sentences in LRep. A trust model is considered as a computational process: given
a finite set of inputs, such as beliefs about direct experiences or reputation, it
calculates a trust evaluation for a target. The semantics of a computational
process can be given by the application of a set of inference rules [Jones, 1997].



158 Chapter 7. Arguing about Trust
CHAPTER 3. AN ONTOLOGY OF REPUTATION 53

Figure 3.2: The taxonomy of social evaluations

Figure 3.3: The components of a communicated social evaluation

Figure 7.1: Taxonomy of social evaluations in the LRep ontology for talking
about trust. Copied from Pinyol [2011].

In the case of trust models, we use this to specify the operational process of a
trust model:

Definition 7.1 (Rule-based specification of a trust model). Let I be a set of
inference rules, and ∆ ⊆ LRep and δ ∈ LRep sentences in LRep. We say I
specifies a trust model, if ∆ supports a trust evaluation δ and ∆ `I δ. I.e., there
exists a finite number of applications of inference rules ι ∈ I by which we may
infer δ from ∆.

Example 7.1. The inference rules themselves depend on the specifics of the
computational process and thus the actual trust model being used, but for any
computational trust model, such an inference relation exists. For instance, a
trust model might have a rule:

img(T,X), rep(T, Y )

trust(T, X+Y
2 )

With img, rep and trust predicate symbols in LRep and T,X and Y variables.
For a specific target Jim, an agent knows {img(Jim, 3), rep(Jim, 5)}. It can
thus infer trust(Jim, 4) using the rule above. For a full example of representing
a trust model as a set of inference rules, we refer to Pinyol and Sabater-Mir
[2009b].



7.2. Pinyol’s Argumentation Method 159

7.2.3 Arguing about trust

Arguments are sentences in the LArg language. This language is defined over an-
other language LKR, that represents object-level knowledge. In Pinyol’s frame-
work LKR = LRep, but in Section 7.3 we will supplement this language in
order to extend the argumentation. A sentence in LArg is a formula (Φ : ϕ) with
Φ ⊆ LKR and ϕ ∈ LKR. This definition is based on the framework for defeasible
reasoning through argumentation, given by Chesñevar and Simari [2007]. This
framework of argumentation provides a clear manner for constructing arguments
from an underlying language, rather than just providing a way for resolving what
set of arguments fulfil certain criteria, which is the usual role of an argumentation
framework [Dung, 1995; Bench-Capon, 2003]. An alternative could be to model
the trust model using a bipolar argumentation framework [Amgoud and Prade,
2009]. In most argumentation frameworks only one relation between different
arguments is specified, the “attacks” relation. Bipolar arguments, however, also
allow “support” relationships. Rather than using the deduction rules we describe
below, we could model the trust inference using such support relationships. The
advantage of this is that this allows the dialogue to be more straightforward:
agents can ask each other what arguments “support” a specific argument, rather
than trying to unravel the other’s inference process. Nevertheless, represent-
ing the trust inference in a proof-theoretic manner in Chesñevar and Simari’s
framework makes more intuitive sense from the point of view of modelling the
inferential process of a computational trust model.

Pinyol chooses to use Chesñevar and Simari’s model, laying much of the
groundwork for arguing about trust, so we choose to follow his approach. For a
sentence (Φ : ϕ) in LArg, intuitively Φ is the defeasible information required to
deduce ϕ. Defeasible information is information that is rationally compelling,
but not deductively valid. For instance, the propositional sentence “it is raining”
→ “it is cloudy” is an example of commonsense reasoning encoded as defeasible
information: it is rationally compelling, because most of the time it is, in fact,
cloudy if it is raining; however, there are rare instances when we would not call
the weather cloudy, despite it raining. In LArg we write this as follows:

({“it is raining” → “it is cloudy”} : “it is raining” → “it is cloudy”)

The structure of a sentence (Φ : ϕ) in LArg explicitly distinguishes between
the defeasible information Φ and the conclusion ϕ that can be deduced from it,
using a number of deduction rules, which we define below. If Φ is the empty set,
then we say ϕ is non-defeasible, or strict, information.

Continuing the example above, if we know for a fact that it is raining, this
could be modelled as the sentence (∅ : “it is raining”) in LArg and by using the
defeasible information above, we could deduce ({“it is raining” → “it is cloudy”} :
“it is cloudy”) using the Elim-IMP rule below. We can conclude that it is cloudy,
if we know it is raining and we accept the information that if it is raining then
it is cloudy. We will use defeasible information to represent the trust model in
LArg, as we show below.



160 Chapter 7. Arguing about Trust

The argumentation language

Information is introduced into LArg using a set of elementary argumentative
formulas. These are called basic declarative units.

Definition 7.2 (Basic Declarative Units). A basic declarative unit (bdu) is a
formula ({ϕ} : ϕ) ∈ LArg. A finite set of bdus is an argumentative theory.

In the full framework of Chesñevar and Simari [2007], there are two types
of bdus. The second is of the form (∅ : ϕ), but, in our argumentation about
trust, we do not use strict information, so omit it from the definition of bdus.
Arguments are constructed using an argumentative theory Γ ⊆ LArg and the
inference relation `Arg, characterised by the deduction rules Intro-BDU, Intro-
AND and Elim-IMP.

Definition 7.3 (Deduction rules of LArg [Figure 1 of Chesñevar and Simari,
2007]).

Intro-BDU:
({ϕ} : ϕ)

Intro-AND:
(Φ1 : ϕ1), . . . , (Φn : ϕn)

(
⋃n
i=1 Φi : ϕ1 ∧ · · · ∧ ϕn)

Elim-IMP:
(Φ1 : ϕ1 ∧ · · · ∧ ϕn → β), (Φ2 : ϕ1 ∧ · · · ∧ ϕn)

(Φ1 ∪ Φ2 : β)

An argument (Φ : ϕ) is valid on the basis of argumentative theory Γ if and
only if Γ `Arg (Φ : ϕ). Because the deduction rules, and thus `Arg, are the same
for all agents, they can all agree on the validity of such a deduction; however,
each agent builds its own argumentative theory, using its own trust model. Let
I be the set of inference rules that specify an agent’s trust model. Its bdus are
generated from a set of LRep sentences ∆ as follows:

• For any element δ in ∆, there is a corresponding bdu ({δ} : δ) in LArg.

• For all δ1, . . . , δn such that ∆ ` δk for all k ∈ [1, n], if there exists an
application of an inference rule ι ∈ I, such that δ1,...,δn

β , then there is a
bdu ({δ1 ∧ · · · ∧ δn → β} : δ1 ∧ · · · ∧ δn → β), i.e., there is a bdu for every
instantiated inference rule for the trust model specified by I.

LArg is a non-monotonic logic and the consequence relation is, in the words
of Chesñevar and Simari, “oriented towards a logic programming setting, where
typically SLD resolution is used to model which literals follow from a given
logic program” [2007]. For more details on the semantics of LArg, we refer the
interested reader to Chesñevar and Simari’s work.



7.2. Pinyol’s Argumentation Method 161

Example 7.2. Continuing Example 7.1, our agent might have the following
argumentative theory:

Γ = {({img(Jim, 3)} : img(Jim, 3))

({rep(Jim, 5)} : rep(Jim, 5)

({img(Jim, 3) ∧ rep(Jim, 5)→ trust(Jim, 4)} :

img(Jim, 3) ∧ rep(Jim, 5)→ trust(Jim, 4))}

From these bdus (Φ : trust(Jim, 4)) can be inferred, with Φ the union of
all the defeasible information in the sentences of argumentative theory Γ. This
argument contains various subarguments. An argument (Ψ1 : ψ1) is a subargu-
ment of a second argument (Ψ2 : ψ2) if Ψ1 ⊆ Ψ2. In our example, it is easy
to see that, for instance, ({img(Jim, 3)} : img(Jim, 3)) is a subargument of
(Φ : trust(Jim, 4)).

So far, we have discussed the bottom-up construction of arguments, but in
practice it will be used in the other direction. An agent will have a trust eval-
uation, for instance trust(Jim, 4), and will work backwards to build a valid
argument supporting that trust evaluation. Moreover, it can communicate this
argument to another agent. This is where argumentation really comes into its
own, because the other agent may have a different trust evaluation of target Jim,
supported by a different argument. Because there is no consistency requirement
on the argumentative theory Γ, such different arguments can be supported by
the same argumentative theory, despite being inconsistent. Pinyol allows agents
to communicate back and forth with arguments attacking each other, before an
agent decides whether it can accept, or should reject the other agent’s recom-
mendation.

Attacks between arguments

In Chesñevar and Simari’s work, attacks between arguments follow in a straight-
forward manner from the logic. They use the inconsistency between two sen-
tences. Pinyol modifies this in order to deal with attacks between different trust
evaluations. By adding a number of axioms to the LRep language, we can ob-
tain the same result, but maintain the elegance of attacks following from logical
inconsistency.

Definition 7.4 (Axioms for LRep). In order to have attacks between trust
evaluations follow from the logic, we need to define when two trust evaluations
are inconsistent. We define the following additional axioms for LRep. For each
predicate symbol p in the ontology of social evaluations of LRep, we add the
axiom:

∀t ∈ Agents, v, w ∈ V alues, c ∈ LContext : p(t, ‘c’, v) ∧ p(t, ‘c’, w)→ (v 	 w < τ)

Where Agents is the set of agents in the system, V alues the range of values
for evaluations in LRep and LContext the language for specifying contexts, as



162 Chapter 7. Arguing about Trust

discussed in Section 7.2.1. Additionally, 	 is a metric on V alues, and τ ∈ R is
a threshold, under which we consider trust evaluations to be similar.

With the addition of these axioms to LRep we include Pinyol’s definition of
attack [2011, page 123] as a special case of the attack relation that is defined by
Chesñevar and Simari (see Definition 7.5). Specifically we obtain Pinyol’s attack
relationship for the threshold τ = 0.

Example 7.3. In Example 7.2, the values of the trust predicates, such as
rep, img and trust, are integers, so an example of 	 in this situation could
be x	 y def= |x− y|, the Euclidean distance between real values. With threshold
τ = 1, for instance, we see that trust(Jim, 4) and trust(Jim, 3) are consist-
ent. However, trust(Jim, 4) and trust(Jim, 2) are inconsistent. Similarly, we
see that img(Jim, 1) and rep(Jim, 5) are consistent, as are trust(Jim, 4) and
trust(Dave, 0): the axioms in Definition 7.4 only limit those trust evaluations
where the predicate symbol and target are the same. We have omitted the con-
text of the trust evaluations in this example, and simply assume that we are
talking about one single context.

In contrast to most argumentation frameworks, Chesñevar and Simari’s
framework does not require the explicit definition of an attack relation. This
relation follows directly from the logic by defining attacks in terms of logical
inconsistencies.

Definition 7.5 (Attacks between arguments [adapted from Definition 3.4 of
Chesñevar and Simari, 2007]). Let Γ be an argumentative theory and (Φ1 :
ϕ1), (Φ2 : ϕ2) ∈ LArg be arguments based on Γ. Then (Φ1 : ϕ1) attacks (Φ2 :
ϕ2) if there exists a subargument (Φ′2 : ϕ′2) of (Φ2 : ϕ2) such that {ϕ1, ϕ

′
2} is

inconsistent in LKR.

Given an attack relationship as above, there are still many choices regarding
what set of arguments is accepted, thus giving different semantics to the reasoning
system defined by an argumentation framework. The most common semantics
are “credulous” and “skeptical” acceptance of arguments, as defined by Dung
[1995]. Pinyol adopts a credulous acceptability semantics for his argumentation.
After all the communication has completed and all the different arguments (for
and against the trust recommendation) have been presented, the agent uses the
acceptability semantics to decide whether or not to accept that recommendation.
We will return to the acceptability of a trust recommendation in Section 7.4, but
it will not be in terms of the arguments themselves, so we omit a discussion on
the acceptability of arguments.

Pinyol’s framework, as described above, allows for agents to construct ar-
guments about trust using predicates from LRep; however, this is only part of
the full language needed for being able to build arguments for personalised trust
recommendations. The problem with the framework so far is that the trust
model’s functioning is introduced into the argumentation language in the form
of bdus (see above). This means agents cannot explain why their trust model



7.3. Extending the Argumentation Language 163

performs a specific calculation, because this is treated as defeasible information.
In the next section we present our extension to this framework, which allows
agents to explain the reasons for their trust model’s functioning.

7.3 Extending the Argumentation Language

In this section we present our extension of the argumentation language presented
in Section 7.2. The extension allows agents to fully express the importance of
criteria in their trust model. Because Pinyol’s argumentation works with a trust
model that does not allow for introspection into the cognitive underpinnings
of its calculations, it cannot connect the trust evaluation to underlying beliefs
and goals. In Chapter 6 we presented AdapTrust, an agent model that makes
this connection between the trust model and the beliefs and goals explicit, but
so far we have not provided a language in which agents can communicate such
relations. We now extend the argumentation framework presented in Section 7.2
with concepts from AdapTrust. In AdapTrust the reason an agent performs this
computation (and not some other one) is twofold: firstly the trust model follows
an algorithmic method for aggregating the input. Secondly, the agent’s beliefs
and goals fix the parameters of this algorithm.

We do not propose to explain the algorithmic processes in the trust model,
but the criteria, given by beliefs and goals, that define the trust model’s para-
meters can be incorporated into the argumentative theory. For this, we need
to represent the dependency of the trust model on the beliefs and goal of an
agent in LArg. In Definition 7.1 we used the observation that the semantics of a
computer program can be given in terms of inference rules. The inference rules I
specify how a trust evaluation can be deduced from a set of inputs ∆. However,
in AdapTrust the algorithm has parameters that depend on the agent’s beliefs
and goal. The inference rules should reflect this.

Let trust_calculation be a trust model that is compatible with AdapTrust
(see Section 6.3), that is represented by the inference rules I. Furthermore
let ∆ ⊆ LRep and δ ∈ LRep, such that ∆ ` δ for trust_calculation . From
Definition 7.1 we know there is a proof applying a finite number of inference
rules ι ∈ I for deducing δ from ∆. However, this deduction in AdapTrust
depends on a set of parameters, Paramstrust_calculation . Therefore, the infer-
ence rules must also depend on these parameters. For each ι ∈ I, we have
Paramsι ⊆ Paramstrust_calculation , the (possibly empty) subset of parameters
corresponding to the inference rule. The set of parameters corresponding to a
proof ∆ ` δ is simply the union of all parameters of the inference rules used in the
deduction. Let the beliefs Ψ, goal γ and role r determine the values for all these
parameters, as described in Section 6.4.2. We denote this as ∆ `Ψ,γ,r δ, which
states that the trust model infers δ from ∆, given beliefs Ψ, goal γ and role r.
Similarly we have ιΨ,γ,r ∈ IΨ,γ,r to denote an inference rule with the parameters
Paramsι instantiated in AdapTrust using beliefs Ψ, goal γ and role r.

This allows us to redefine the set of bdus and thus the argumentative theory
so that the argumentation supporting a trust evaluation can be followed all the



164 Chapter 7. Arguing about Trust

way down to the agent’s beliefs, the goal it is attempting to achieve and the role
the target must perform. We recall from Section 7.2.1 that the context in LRep
is specified using a FODL. This is expressive enough to represent the socially-
dependent goals of AdapTrust, that we described in Section 6.3.3 (page 132).
We defined a socially-dependent goal as [α]ψ〈R〉, which states that the agent
wants to fulfil ψ with program α, requiring agents performing roles R. This
can be used in LContext as a representation of the context in which the trust
evaluation is made. Nevertheless, the representation in the context of LRep
is insufficient for arguing about how the socially-dependent goal and beliefs of
an agent influence the calculation of a trust evaluation and we must extend
LKR to encompass the various languages in AdapTrust. We define LKR =
LRep ∪LPL ∪LRules ∪LBel ∪LGoal, where LPL is the language of priorities (see
Section 6.3.2), LRules the language describing Priority Rules (see Section 6.4.1),
LBel the language of the agent’s beliefs (see Section 6.2.3) and LGoal that of
the agent’s goals (also see Section 6.2.3). Using this LKR, the argumentation
language can be extended to encompass more of the agent’s reasoning process,
with the bdus for LArg defined as follows:

Definition 7.6 (Basic Declarative Units for LArg). Let δ ∈ LRep be an agent’s
trust evaluation based on inference rules IΨ,γ,r, such that ∆ `Ψ,γ,r δ with ∆ ⊆
LRep, Ψ ⊆ LBel, γ ∈ LGoal and r ∈ LBel. For each ι ∈ IΨ,γ,r, let Paramsι
be the corresponding set of parameters. Furthermore, we recall from Definition
6.2 (on page 128) that labels is a function that, given a set of parameters,
returns a set of constants in LPL, the language of the priority system. Finally
let Ξ ⊆ LRules be the agent’s set of trust priority rules and Π ⊆ LPL be its
priority system based on Ψ, γ and r, then:

1. For any sentence ψ ∈ Ψ, there is a corresponding bdu ({ψ} : ψ) in LArg.
2. The goal γ has a corresponding bdu ({γ} : γ) in LArg.
3. The role r has a corresponding bdu ({r} : r) in LArg.
4. For all priorities π ∈ Π and all the rules ξ ∈ Ξ the following bdus are

generated:

• if ξ has the form belief_rule(‘Φ’, ‘π’, v) and Φ ⊆ Ψ then({
(
∧
ϕ∈Φ ϕ)→π} : (

∧
ϕ∈Φ ϕ)→π

)
is a bdu in LArg

• if ξ has the form goal_rule(‘γ’, ‘π’, v) then ({γ→π} : γ→π) is a bdu
in LArg

• if ξ has the form role_rule(‘r’, ‘π’, v) then ({r→π} : r→π) is a bdu
in LArg

5. For all α1, . . . , αn such that ∆`Φ,γ,rαk for all k ∈ [1,n], if there exists
an application of an inference rule ιΨ,γ,r ∈ IΨ,γ,r, such that α1,...,αn

β

and labels(ParamsιΨ,γ,r ) = L then
(
{(∧π∈ΠL

π)→(α1 ∧· · ·∧ αn → β)} :

(
∧
π∈ΠL

π)→(α1 ∧· · ·∧ αn→β)
)
is a bdu of LArg. With ΠL ⊆ Π the set of

priorities corresponding to labels L (as specified in Definition 6.3).



7.3. Extending the Argumentation Language 165

R1 E2 ∧ E3 → E1E2 img(Jim, 5) E3 rep(Jim, 1)

E1 trust(Jim, 5)

P1 img ! rep R2

P1→
(E2∧E3→E1)

T1 B1 ∧B2 → P1B1
based on(rep,
hearsay)

B2
∀x : agent(x)
→ liar(x)

Figure 7.2: An example of an argument. The rectangular nodes are bdus.

In items 1, 2 and 3 the relevant elements of the agent’s reasoning are added
to the argumentation language. In items 4 and 5 the implements for reasoning
about trust are added: in 4 the trust priority rules of AdapTrust, which link
beliefs, goals and roles to priorities, and in 5 the rules of the trust model. The
bdus added in 5 contain a double implication: they state that if an agent has the
priorities in ΠL then a trust rule (which was a bdu in Pinyol’s argumentative
theory) holds. In practice what this accomplishes, is to allow the argumentation
to go a level deeper: agents can now argue about why a trust rule, representing
an application of an inference rule in the trust model, holds.

An argument for a trust evaluation can be represented in a tree. We call this
an argumentation tree and give an example of one in Figure 7.2. The argument-
ation tree can be followed by applying the deduction rules of LArg at each level.
In order to be succinct we have omitted the defeasible information part of the
sentences, as well as the quotation marks in each node. Furthermore, we use
shorthand in the tree by referring to nodes, rather than repeating the content of
a node. For instance, in node R1 we can expand E2 ∧ E3 → E1 to its meaning:
img(Jim, 5) ∧ rep(Jim, 1) → trust(Jim, 5). An argumentation tree, such as
this one, is used in a dialogue to communicate personalised trust evaluations.

We must also redefine attacks in this framework because LKR is now a com-
bination of many different underlying logics, and merely dealing with inconsist-
ency in LRep is insufficient. Luckily, our dialogue does not allow for attacks
between some of the basic arguments, and specifically conflicts of beliefs and
priority rules are resolved in a different manner. Inconsistency in LKR can thus
be limited to inconsistency among sentences in one of either LRep or LPL. We
say two sentences ϕ,ψ ∈ LKR are inconsistent if and only if one of the following
conditions holds:

• ϕ,ψ ∈ LPL and {ϕ,ψ} ` ⊥

• ϕ,ψ ∈ LRep and A ∪ {ϕ,ψ} ` ⊥, with A the axioms as in Definition 7.4

This definition of inconsistency in LKR allows us to use the original definition
of attack from Definition 7.5.



166 Chapter 7. Arguing about Trust

7.4 Dialogue Protocol for Personalising Trust
The argumentation in the previous section can be used by an individual agent
to justify its trust evaluation in a language that the other agents understand.
We now specify a protocol that allows agents to argue back and forth in order
for the requesting agent to receive a personalised trust recommendation from
the witness. We start with the formal dialogue rules before showing informally
how the protocol works and the choices an agent must make, using the example
of Figure 7.2 to guide us in Section 7.4.2.

7.4.1 A formal dialogue protocol
We start our description of how the argument framework of the previous section
is used by defining a formal dialogue system for communication about person-
alised trust recommendations in which all the agents’ options mentioned above
are available. The system we need is, for a large part an information-seeking
dialogue system, according to the classification by Walton and Krabbe [1995],
and it thus stands to reason that we use a protocol similar to the one presen-
ted by Parsons et al. [2003]. However, while our dialogue is for a large part
information-seeking, it also incorporates some aspects of persuasion dialogues.
We thus present the formal system in a similar structure to the dialogue sys-
tem presented by Prakken [2005] for persuasion dialogues, in order to allow for
some locutions in addition to the “question”, “assert” and “challenge” locutions
proposed by Parsons et al.

Definition 7.7 (Dialogue System for Personalised Trust [adapted from Defin-
ition 3 of Prakken, 2005]). A dialogue system for personalised trust is a tuple
D = 〈LC , P, CR〉 where LC (the communication language) is a set of locutions, P
is a protocol for LC , and CR is a set of effect rules of locutions in LC , specifying
the effects of the locutions on the participants’ commitments.

The three parts are described below, but first we must define some of the
basic elements of a dialogue. The first of these is the set of participants them-
selves. The agent that wishes to obtain a trust evaluation of a target is seek-
ing a recommendation from a witness, who supplies a recommendation. These
agents are the participants of the dialogue and we denote them with Q for the
recommendation-seeker and R for the recommendation-supplier. Both of these
agents have a commitment store, a set of sentences in LArg that they have com-
mitted themselves to [Walton and Krabbe, 1995]. Commitment is a complicated
concept, but we use it in a very specific way: an agent’s commitment store
contains beliefs it has voiced during the dialogue and is committed to justify
and defend. Because the dialogue is essentially an information-seeking dialogue,
the recommendation-supplying agent R will mainly be the one committing itself
to sentences in the dialogue. As the dialogue progresses, the recommendation-
supplier will justify, in increasing detail, why the initially communicated trust
evaluation holds. Every justification of this kind adds to the recommendation-
supplier’s commitment store. The agents’ commitment stores are denoted CQ



7.4. Dialogue Protocol for Personalising Trust 167

and CR for agents Q and R, respectively. Initially both agents’ commitment
stores are empty.

With these concepts in place we can move on to the definition of the locutions
and protocol of a dialogue system. We start with the locutions.

Definition 7.8 (Locutions for Personalised trust). The locutions allowed in the
dialogue for personalised trust are specified by LC and include the basic locutions
for information-seeking, specified by Parsons et al. [2003]. The locutions are ex-
plained in Table 7.1 and the locutions request_recommendation, assert and
challenge correspond directly to “question”, “assert” and “challenge” in Parsons
et al.’s system. Moreover, justify also corresponds to “assert” in Parsons et al.’s
framework, but because they do not allow agents to backtrack, the sentence be-
ing justified is always immediately clear from the previous dialogue steps. The
locutions counter and argue are not present in regular information-seeking
dialogues. We add these so that agents can propose alternative priority systems
for AdapTrust or attempt to persuade each other about their beliefs — thereby
facilitating the adaptation of the agents’ trust models.

Some of the locutions have an effect on an agent’s commitment store. We
usually denote the agent (either Q or R) that is sending a message, also called
making a move, with s and the other agent with s. We take C ′s to be the
new commitment store of agent s after sending the locution, and Cs is the old
commitment store prior to sending. The way the commitment store is updated
for each locution is detailed in Table 7.2, which thus defines the rules CR of the
dialogue.

Not all locutions can be uttered at any moment, there are rules to the dia-
logue. These are defined by the protocol P in terms of the moves allowed.

Definition 7.9 (Moves and dialogues [adapted from Definition 5 of Prakken,
2005]). The set M of moves in a dialogue is defined as N×{R,Q}×LC , where
the three elements of a move m are denoted by, respectively:

• id(m), the numerical identifier of the move

• player(m), the agent performing in the move

• speech(m), the speech act performed in the move

The set of dialogues, denoted by M≤∞, is the set of all sequences m1, . . . from
M , such that each ith element in the sequence has identifier i and for any i > 1,
player(mi) 6= player(mi−1)1. The set of finite dialogues is denoted by M<∞.
For any dialogue d = m1, . . . ,mi, . . . , the sequence m1, . . . , mi is denoted by di,
where d0 denotes the empty dialogue. When d is a dialogue and m a move, then
d;m denotes the continuation of d with m.

1Note that this is a specific implementation of the turn-taking function in Prakken’s dialogue
system [2005].



168 Chapter 7. Arguing about Trust

Locution Use
request_recommendation(t, γ, r) The initial request for a recommenda-

tion, with t ∈ Agents, γ the goal and r
the role that Q wants the recommend-
ation for.

assert(p) Assert that p is true, where p ∈ LArg.
justify(p, S) Assert that S ⊂ LArg is the (direct)

support for p in LArg.
challenge(p) Challenge a sentence p ∈ LArg in the

other agent’s commitment store. An
agent may challenge a sentence p if it
wants the other agent to justify p.

counter(πR, πQ) Propose an alternative priority πQ to
priority πR with πQ, πR ∈ LPL. Note
that this switches roles: counter is
similar in use to assert, so the agent
Q, that has thus far only been challen-
ging assertions, now proposes its own
priority, that R can now challenge.

argue(ψ) Propose to enter into a separate persua-
sion dialogue about beliefs ψ ⊂ LBel.
The details of this dialogue are outside
the scope of this thesis, but we propose
to use the dialogue system proposed by
Prakken [2009].

end Indicate that the dialogue has con-
cluded.

Table 7.1: Locutions in LC , the communication language for personalised trust
recommendation dialogues

Locution Effect on commitment store
request_recommendation(t, γ, r) CQ = ∅, CR = ∅
assert(p) C ′s = Cs ∪ {p}
justify(p, S) C ′s = Cs ∪ S
challenge(p) C ′s = Cs
counter(π1, π2) C ′s = Cs ∪ {π2}
argue(ψ) C ′s = Cs
end C ′s = Cs

Table 7.2: The effect that the various locutions in LC have on the sender’s
commitment store



7.4. Dialogue Protocol for Personalising Trust 169

A protocol P on a set of movesM is a set P ⊆M<∞ satisfying the condition
that whenever d ∈ P , so are all initial sequences of d. We define a partial function
Pr : M<∞ → P(M) for personalised trust dialogues, that allows us to derive
the protocol P . Prakken [2005] defines this in the opposite manner: with the
protocol defining the function. In practice, however, it is easier to define the
function than all possible sequences of legal moves.

Definition 7.10 (Protocol function for Dialogues for Recommending Trust).
Pr : M<∞ → P(M) defines the set of legal moves in a dialogue, and thus by
induction defines the protocol P of a dialogue. We do this, by first defining the
preconditions for each of the possible speech acts. These are listed in Table 7.3
and use the functions on LRep that we defined in Section 7.2.1. We define the
function pre that, given a speech act, a player and a dialogue, returns whether
the preconditions are true or false. This allows us to define a function that
returns all legal moves, given the dialogue so far:

• Pr(d0) = {(1, Q, request_recommendation(t, γ, r))}

• Pr(d;mi) = {(i+1, s, lm)| s = player(mi) ∧ lm ∈ LC ∧ pre(lm, s, d;mi)}
If the persuasion dialogue about argumentation is guaranteed to terminate,

then the dialogue for recommending trust is guaranteed to terminate. The proof
of this is trivial, given that LArg contains a finite number of elements and the
protocol guarantees no steps are repeated. It depends, however, on the agents’
choices of the legal moves how fast it reaches a desirable outcome. A desirable
outcome is furthermore dependent on the agents actually adapting their trust
models when necessary. This is not treated in the actual dialogue: if either agent
receives a trust priority rule as the justification for a priority, it may choose to
add this to its own rule base. This is a choice made outside of the dialogue, and
if this happens then the argumentative theories change. This means the logic for
the current dialogue no longer represents the agents’ stances, and therefore the
agent should choose to end the current dialogue. The seeker should restart with
a new request for recommendations. In the next section we discuss the choices an
agent can make in more detail, whereas this section provided the formal model
of the possible choices an agent may make.

7.4.2 A dialogue for recommending trust
The protocol of the previous section defines a dialogue for two agents: a recom-
mendation-seeker and a recommendation-supplier. If we look at the rules for the
end locution in Table 7.3, we see that either agent may, if it does not want to
continue conversing, end the dialogue at any point. The ending of a dialogue
gives no formal guarantees about whether the trust evaluations communicated
are personalised to the seeker’s criteria for calculating trust, but the more in-
formation exchanged, the higher the chance that the seeker can obtain useful
information. In the rest of this section, we describe the options both parti-
cipants have at each point in the dialogue and how they can decide on what to
communicate. The decisions an agent can make are summarised in Figure 7.3.



170 Chapter 7. Arguing about Trust

Locution Precondition. d is the dialogue so far and s the player
request_recom-
mendation(t, γ, r)

A recommendation-seeker may only request a recom-
mendation in the first move, t must be a target, γ a goal
and r a role. Formally: d = d0, t ∈ Agents, γ ∈ LInt
and r ∈ Roles

assert(p) A recommendation-supplier may only assert a trust
evaluation in the second move, and the context of the
recommended trust evaluation must be equal to the
goal for which it was requested. Formally: d = m1,
player(m1) = s, p ∈ LRep and context(p) = γ, with γ
the goal in speech(m1).

justify(p, S) A sentence p can be justified, if it is in the current
player’s commitment store and the other player chal-
lenged it in a previous move. Formally: let d = di−1;mi

and s = player(mi), then there is a move m in d, such
that player(m) = s and speech(m) = challenge(p).
Furthermore p ∈ Cs, S `Arg p and S 6⊆ Cs.

challenge(p) A sentence p can be challenged, if it is in the other
player’s commitment store and the current player has
not previously challenged it. Formally: let d = di−1;mi

and s = player(mi), then there is no move m in d such
that player(m) = s and speech(m) = challenge(p).
Furthermore p ∈ Cs.

counter(π1, π2) A priority π1 can be countered by priority π2, if it is in
the other player’s commitment store and π2 is not yet
in the current player’s commitment store. Formally:
let d = di−1;mi and s = player(mi), then π1 ∈ Cs,
π2 6∈ Cs and π1, π2 ∈ LPL.

argue(ψ) The current player may propose to argue about belief
ψ if ψ is in the other player’s commitment store and
the player has not previously proposed to argue about
ψ. Formally: let d = di−1;mi and s = player(mi),
then there is no move m in d such that speech(m) =
argue(ψ). Furthermore ψ ∈ Cs and ψ ∈ LBel.

end A player may always choose to end the dialogue after
the first move. Formally: d 6= d0

Table 7.3: The preconditions, in terms of the dialogue, for the various locutions
in LC



7.4. Dialogue Protocol for Personalising Trust 171

The dialogue starts with the seeker contacting the supplier to request its
recommendation of a partner, performing a specific role, in order to achieve the
seeker’s goal. The supplier provides a recommendation, at which point the dia-
logue begins in earnest. The guiding principle in the dialogue is that the seeker
agent is trying to decide whether the recommendation is acceptable or what
further information and adaptation is required for this. Thus, in the diagram
of Figure 7.3 the first decision is whether or not to accept the argument. If
the argument is accepted, or rejected, then the seeker simply ends the dialogue.
If the argument is not immediately accepted, or rejected, the next step is to
decide which of the nodes of the argumentation tree is most likely to expedite
this decision. This choice is made in the “Select node in argument” action of the
diagram. In the description of the protocol below, we also describe this selection
process. After selecting a node, the protocol determines what courses of action
are available to the agent, based on the type of the node.

The example we use to describe the dialogue is the same as in Section 7.3,
with the argumentation tree in Figure 7.2. As in the figure, we will use the
identifier of the arguments in the tree as shorthand for the content of the node
and write, for instance, E1 for trust(Jim, 5). The supplier does not reveal the
entire argumentation tree at once. It only discloses information when the seeker
asks for it.

After the seeker performs the first move, communicating the speech act re-
quest_recommendation(Jim, γ, r) for some goal γ and role r, the supplier
provides its evaluation E1. We thus see that the commitment store of agent R
is {trust(Jim, 5)} at this point, or to be precise {(Φ : trust(Jim, 5)} with Φ
all the defeasible information it needs to deduce trust(Jim, 5). This defeasible
information, however, is not included in the communication: all the bdus can be
found by exploring the argumentation tree.

The seeker can respond to the move (2, R, assert(trust(Jim, 5)) by either
ending the dialogue, or challenging that single evaluation. In most cases the first
step will be to challenge the initial recommendation; however, if the seeker Q can
calculate its own trust evaluation of Jim it may build an argument that supports
this evaluation using its own trust model. If this argument does not attack
the argument E1 then it might want to accept it outright, especially if it has
previously entered trust recommendation dialogues with the same recommender;
previous recommendation dialogues could already have resulted in one of the
agents adapting its model.

Throughout most of the dialogue, challenging those arguments for which
the agent can build an attacker is a way of quickly discovering where the
trust model can be adapted; thus finding those nodes that can be attacked
is an effective heuristic for the “Select node in argument” action in the de-
cision process of Figure 7.3. Let us assume that agent Q challenges the eval-
uation and the move (3, Q,challenge(E1)) is made in the dialogue. The sup-
plier R then has the option again to end the dialogue, or perform the only
other legal move, respond with a justification. It thus responds with the move
(4, R, justify(E1, {E2, E3, R1})), and correspondingly its commitment store is



172 Chapter 7. Arguing about Trust

Content
type

Accept

Select node in 
argument

no
Trust 

evaluation

Trust rule

Priority

Priority rule Add to 
system

Offer 
alternative

yes

Belief

Argue

Receive 
argument

Successyes

Request 
argumentation

Send alternative 
priority with 
argument

Restart

Failure

no

yes

Start persuasion 
dialogue

yes

Try other 
node

yes no

Reject Failureyes
no

no

no

Figure 7.3: Diagram of the choices the seeker can make during a dialogue for
trust recommendations

updated to contain the justification. After this dialogue move, we thus have
CR = {trust(Jim, 5), img(Jim, 5), rep(Jim, 1), img(Jim, 5) ∧ rep(Jim, 1) →
trust(Jim, 5)} and CQ is still the empty set. It is now the seeker’s turn again
and it must make a choice which of the three new sentences to challenge. It can,
at a later stage, always return to challenge any of the others.

In LArg, a trust evaluation is deduced from a trust rule and a number of
inputs for the trust model using Elim−IMP (see Definition 7.3). In the example
these are trust rule R1 and the trust evaluations E2 and E3. To decide whether
or not to accept a trust rule, such as R1 in our example, the seeker can compare
it to the output of its own trust model, by using this with the inputs in the
argument. We illustrate this first in our example before giving the general case.
In our example, the seeker can find attacking arguments by assuming E2 and E3

hold and finding the evaluations E∗ = {E′ | {E2, E3} ` E′} in the seeker’s trust



7.4. Dialogue Protocol for Personalising Trust 173

model. Now if, for any E′ ∈ E∗ we have that {E′, E1} is inconsistent, then the
agent has found an attack on R1. Simply by considering all the elements in CR as
bdus in an argumentative theory Γ and adding ({E2∧E3 → E′} : E2∧E3 → E′),
it has an argumentative theory that allows for conflicting arguments. This gives
it motivation to challenge R1.

In general, for any argument of the form ϕ1 ∧ · · · ∧ ϕn → ψ with
ϕ1, . . . , ϕn, ψ ∈ LRep, which we call a trust rule, the receiving agent can
try to find an attacker, or counterargument, by finding the set Ψ∗ =
{ψ′ |{ϕ1, . . . , ϕn} ` ψ′} and testing whether ψ′ ∈ Ψ∗ such that {ψ′, ψ} is incon-
sistent. If there is, then construction of the argument is trivial (and unneces-
sary) and the agent has a good reason to challenge that trust rule. If it cannot
construct such an argument that attacks the trust rule, it can still decide to
challenge it (the protocol does not limit this, after all), but the agent might be
better served challenging any one of the evaluations ϕ1, . . . , ϕn to find where the
trust model needs adapting.

In our example we omit the expansions of nodes E2 and E3 because the
resulting subtrees are similar to the argumentation for the root, E1. Instead we
focus on the expansion of rule R1. The seeker challenges R1 and the supplier
responds with its justification: {P1, R2}. Upon receiving this argument the
seeker starts the decision process in Figure 7.3 again.

The reasons for a trust rule are clearly defined in LArg. They are priorities
over the criteria and a bdu that represents the dependency of the trust rule on
these priorities. In the example there is only one priority, P1, that influences the
calculation of a trust evaluation from reputation and image. The first step in
the protocol is once again to decide whether to accept or reject the argumenta-
tion, this time supporting node R1. The seeker’s trust model provides a way of
deciding to reject the argument: if instantiating its trust model with priority P1

does not allow it to compute E1 from E2 and E3, then the agents’ underlying
algorithmic methods are too dissimilar for the supplier to provide a personalised
recommendation. Despite both agents using the same priorities to instantiate
the parameters of their trust models, they compute different evaluations from
the same input. In this case the dialogue ends in failure: the seeker should reject
recommendations from the supplier and try another agent. Just as in Pinyol’s
framework, this is still useful information: the agents know that they disagree
and that, in this situation, agreement is impossible.

If, in contrast, the seeker can emulate the supplier’s trust calculation by
using its priorities, then the only possible reason to not accept the trust rule
outright is because the seeker disagrees with at least one of the priorities in the
argumentation. The seeker can select such a priority and choose what to do.
The protocol offers two options. The first is to challenge any of the priorities in
the supplier’s commitment store. The second is to counter and propose using
its own priority instead. Note that the protocol of Section 7.4.1 allows an agent
to explore both possibilities. This is also the case in the diagram of the decision
process of the agent: if at a later stage in the dialogue the agent reaches “Try
other node” it can try the alternative approach. The example of Figure 7.2



174 Chapter 7. Arguing about Trust

continues as if the seeker chooses to challenge P1, but the approach of countering
is equally valid and is described in Section 7.4.2.

Reasoning about the supplier’s priorities

The dialogue continues with the supplier providing the justification for the pri-
ority that was challenged. In the example, the reasons for the supplier having
priority P1 are in the 4th level of the argumentation tree of Figure 7.2.

The reasons for prioritising one criterion over another, are given by the prior-
ity rules of AdapTrust, which are adopted as bdus in LArg. These priority rules
are supported by the agent’s beliefs or goal, or the role it requires the target to
perform. If the priority is supported by beliefs, as in the example, the protocol
defines four possibilities:

1. The seeker chooses not to add the priority rule to its system. In this
case its trust model will continue to be based on different criteria from
the supplier’s. It can try backing up in the dialogue and countering the
supplier’s priorities and proposing its own alternatives.

2. The seeker agent tries to add the priority rule to its system. This rule does
not conflict with the rules it already knows. In this case it can be seen as
a gap in the seeker’s knowledge and it can choose to adopt this rule.

3. The seeker agent tries to add the priority rule to its system and this rule
does conflict with the rules it holds. In this case the agents have found a
context in which agreement is impossible: the cognitive underpinnings of
their trust models are different in this situation. The seeker agent should
reject recommendations from the supplier in this context.

4. The agents enter a separate persuasion dialogue in order to convince each
other about the validity of their beliefs. This can be done using a state-of-
the-art argumentation framework for persuasion, such as the one proposed
by Prakken [2009].

Priority rules can also have a goal or role in the antecedent, which are treated
similarly, although the option for a persuasion dialogue is then not present.
Conflicts among priority rules are defined as follows:

Definition 7.11 (Conflict of Priority Rules). Let U ⊆ LRules be a set of priority
rules such that:

1. Π = {π′|(belief_rule(‘Φ′’, ‘π′’, v) ∈ U} is satisfiable in LPL
2. the set Φ is satisfiable in LBel, with Φ defined as the union of all Φ′, such

that belief_rule(‘Φ′’, ‘π′’, v) ∈ U
Then a priority rule belief_rule(‘Ψ’, ‘π’, v) conflicts directly with U if and only
if Π ∪ {π} is unsatisfiable and either Φ |= Ψ or Ψ |= Φ.

A set of priority rules Ξ ⊆ LRules conflicts with a rule ξ if there is a set
U ⊆ Ξ that conflicts directly with ξ.



7.5. Experiments 175

This definition states that a priority rule ξ conflicts with a set of priority
rules Ξ, if ξ is in direct conflict with any subset of Ξ. For direct conflict we only
consider subsets U of Ξ whose conclusions result in a satisfiable LPL-theory.
Direct conflict occurs between U and ξ, if the antecedent of ξ is entailed by the
antecedents of U (or vice versa) and the addition of the conclusion of ξ to the
conclusions of U results in an unsatisfiable LPL-theory.

Note especially that rules do not conflict with a set of rules if their antecedents
are merely consistent with those of the set, but only if the former’s antecedent is
entailed by the latter’s, or vice versa. This is because two consistent antecedents
with different conclusions might be designed to trigger in different situations,
which is, after all, dependent on the beliefs and goals an agent has. In the
case of two rules with conflicting conclusions triggering, AdapTrust contains a
mechanism for choosing a consistent set of priorities (see Section 6.4.1 on page
135). Definition 7.11 only defines conflicts for priority rules over beliefs. For
goals and roles it is the same, but then it is simply that a single goal, or role,
leads to a conflicting set of priorities.

Reasoning about the seeker’s priorities

If, instead of continuing the argument about the supplier’s priority, the seeker
proposes an alternative priority, the roles in the dialogue are switched. Now the
supplier needs to discover why it should accept the seeker’s priority. The same
decision tree, in Figure 7.3, is used, but now the supplier performs the choices
on what arguments, put forward by the seeker, to challenge. Note that there
are always less options because, using our LArg, the reason for having a priority
cannot be a trust evaluation or a trust rule. Note that the supplier also has
the possibility to accept a priority rule into its knowledge base, but, unlike the
seeker, can do this only temporarily: it may do this with the sole purpose of
calculating a personalised trust evaluation for the seeker and its goal.

If at any point in the dialogue, either agent has adapted its trust model, they
should restart the dialogue in order to verify that they have reached agreement
and the supplier is able to provide personalised recommendations.

7.5 Experiments

In Section 7.3 we described a new argumentation framework for discussing per-
sonalised trust evaluations and in the previous section presented a dialogue
protocol for communicating such arguments. We now compare this model of
communication to Pinyol’s argumentation framework [Pinyol, 2011]. We have
implemented AdapTrust using Jason [Bordini et al., 2007]. In order to make
a fair comparison, we keep everything as similar as possible to Pinyol’s experi-
mental evaluation, so we use the trust model Repage [Sabater et al., 2006] and
run the experiment in a simulated e-commerce environment, in which we evalu-
ate the accuracy of buyers’ trust evaluations of the sellers by using three methods
of communication: (1) accepting other agents’ trust evaluations directly (no ar-



176 Chapter 7. Arguing about Trust

gumentation), (2) filtering out mismatched communication with argumentation
(Pinyol’s system) and (3) our model for communicating personalised trust eval-
uations. Just as in Pinyol’s experimentation, agents always respond truthfully
and we do not consider scenarios in which deception is possible.

7.5.1 The simulation environment
The simulation environment initially runs 20 agents who need to buy an item
from any one of the 40 sellers in the environment, as in Pinyol’s simulation. The
sellers in this environment offer products with a constant price, quality and deliv-
ery time. These aspects of the product are used to evaluate the trustworthiness
of the seller. A buyer can be “frugal”, in which case it gives more importance
to the quality of the product than to the price or delivery time. A buyer can
also be “stingy”, in which case it evaluates price as being more important than
delivery time or quality. Finally, a buyer can be “impatient”, in which case the
delivery time is the most important. The buyer profiles are implemented using
AdapTrust’s priority rules, based on the beliefs of the agent.

In addition to these basic profiles, the buyers can have different goals. We
have implemented the goal to buy a bicycle, which is not associated with any
priority rules, and the goal to buy milk, which must be delivered quickly and
thus has an associated priority rule to prioritise delivery time over both quality
and price.

These two types of priority rules and the different profiles and goals of the
agents allow them to benefit from the full dialogue of Section 7.4. Agents can
attempt to persuade each other to switch their basic profile. Because we rely
on pre-existing persuasion dialogues for this, we have simply hard-coded the
outcome. A frugal agent can persuade a stingy agent to change its profile (and
thus become frugal as well): a good quality item allows one to save money in
the longer term by not needing to replace it as soon. This serves both agents’
underlying motivation of saving money. Furthermore, the different goals, and
associated priority rules allow recommendation-suppliers to personalise their re-
commendation to the seeker’s goal, as well as have the agents exchange priority
rules for their goal.

The simulation environment runs for 40 rounds to initialise the environment.
In each round the buyers buy an item from a random seller. To ensure that
no single buyer can obtain full knowledge, by interacting with all the sellers,
each buyer can only interact with a configurable percentage of the sellers. This
percentage is thus a control on the amount of knowledge each individual buyer
can obtain about the set of sellers. After buying, the buyers can communicate
their trust evaluations to exactly one other buyer. Depending on the type of
communication we wish to evaluate, they use no argumentation, Pinyol’s argu-
mentation, or personalised trust evaluations to perform this communication.

After this initialisation, we create a new agent, which is the one to be eval-
uated. This agent knows nothing about the environment. It is a frugal agent
with a 50/50 chance to have either goal, to buy a bicycle or milk, the same as
the other buyer agents in the system. However, this agent does not explore by



7.5. Experiments 177

interacting with random sellers, but rather needs to discover the sellers’ trust-
worthiness through communication with the established buyers. For this, it uses
the configured communication model, no argumentation, Pinyol’s model, or ours.

The results are plotted in Figure 7.4. The experiments were run with an equal
distribution of sellers offering one of either good quality, price or delivery time.
Similarly the buyers were equally distributed over frugal, stingy and impatient
agents. The experiment agent was always frugal and had a 50/50 chance of
having the goal to buy a bicycle or milk. On the x-axis is plotted the percentage
of sellers each buyer can interact with directly during the initialisation. As
explained above this is a measure of the knowledge each agent can obtain about
the environment. With 20 buyers, 5% is the minimum to have all the sellers
covered by at least one buyer. In this case, to obtain information about all sellers,
information from all the buyers is needed. As the percentage of sellers each buyer
can interact with increases, it becomes easier to obtain an accurate evaluation
through communication, because the experiment agent needs to communicate
with less of the established buyers to cover all the sellers.

The y-axis plots the average accuracy of the experiment agent’s evaluation of
all the sellers in the system. First it calculates the error of the experiment agent
for each seller. The error is the difference between the agent’s evaluation at the
end of the experiment and the evaluation it would have had if it had been able
to interact with the seller (and thus obtain perfect information). We convert
these errors into percentages by comparing them to the “worst expected error”.
The accuracy of an evaluation is the percentual difference between its error and
this worst expected error. The worst expected error is the expected error if
both the estimated and most accurate evaluation were random. This is equal
to the expected value of the difference two random variables from two standard
uniform distributions, which is equal to the expected value of the standard left
triangular distribution, or 1

3 [Johnson and Kotz, 1999]. This error value is also
assigned for any seller that the experiment agent has no information about. The
accuracy of the experiment agent that is plotted on the y-axis, is the average
accuracy for all the sellers Sellers in the environment:∑

s∈Sellers 100% · 1/3−error(s)
1/3

|Sellers|

Each point in the graph is the average of 100 experiments with the error bar
being 1.96 standard deviations (representing an expected 95% of the population).

7.5.2 Simulation results

The first thing we see when we look at Figure 7.4 is that both Pinyol’s method
and Argumentation + Adaptation converge to almost perfect results when the
knowledge in the system is high. Without any kind of argumentation, however,
the communication does not add anything to the accuracy. It does not filter
out any communication, so even at 5% knowledge it is obtaining an evaluation
for each of the sellers in the system. Nevertheless, because the communicating



178 Chapter 7. Arguing about Trust

Figure 7.4: Experimental results. The x-axis represents the knowledge in the
system and the y-axis the quality of the evaluation.

agent uses its own goal, and there is no opportunity to argue about underlying
beliefs, these communications are inaccurate and it does not improve upon the
baseline, the worst expected error.

In contrast, both Pinyol’s method and Argumentation + Adaptation filter out
information and obtain near-perfect results when the knowledge in the system
is high both methods. When buyers, however, cannot interact with many of the
sellers, and the knowledge in the system is low, then we see that Argumentation
+ Adaptation outperforms Pinyol’s method. When a buyer can interact with
20% of the sellers, our method is still slightly over 20% more accurate than
Pinyol’s method in the experiment scenario.

7.6 Discussion
The experiment in the previous section is a proof-of-concept demonstration of the
presented method for personalising communication about trust. Despite being a
prototypical implementation, the experiment displays some interesting features
of this method. Firstly, we once again confirm that some form of processing
of the received communication is necessary. Without argumentation, the error
introduced by communication is approximately equal to the worst expected error.

When arguing about the communication, whether through Pinyol’s method
or our own, the results immediately improve. Our method displays the greatest



7.6. Discussion 179

gains over Pinyol’s argumentation in scenarios where each buyer agent only has
information about a few of the sellers, but Pinyol’s method performs equally well
as our own when buyers have information about a large number of sellers. This
is to be expected, because in the latter case the experiment agent only needs
to accept communications from a few of the buyers to get accurate information
about all the sellers. This is very clear in the graph, where both Pinyol’s method
and our own converge on near-perfect accuracy.

We see, however, that our method performs better when buyers have little
information, and we consider the situations when buyers can interact with less
than 20% of the sellers. In these cases we feel that the increase in performance
that our method offers over Pinyol’s justifies its greater complexity and com-
munication; the agents clearly benefit from being able to communicate, not just
about trust evaluations, but about their goal and beliefs as well. By adapting
their models, the buyers personalise their trust recommendation to the exper-
iment agent, which accepts trust evaluations from a greater number of buyers
and obtains significantly more accurate results.

Note that agents having had direct interactions with 20% of the providers of a
service is already on the high side for many application scenarios for multi-agent
systems, such as e-commerce, P2P or grid computing scenarios. Despite this, we
do not claim that the results from this experiment carry over to other scenarios.
We run the experiment with a uniform distribution of both sellers’ qualities and
buyers’ criteria in a simplified representation of an e-commerce environment.
Even in this simple environment, if we change the parameters, we see different
results. Specifically, the less likely it is that the experiment agent finds agents
who are like-minded, the more important it becomes for it to obtain personalised
trust recommendations from agents whose evaluation would otherwise need to
be discarded.

More experimentation is needed in more diverse scenarios to decide when
personalised communication about trust offers useful benefits to the agents. This
experiment’s purpose is to demonstrate the method’s functional viability and
sketch the general domain in which we expect agents could use it.

Despite the experiment being based on a small and simulated scenario, it
shows that even with just three parameters for the agents and two different
goals, a filtering method will be left with too little information to work with,
necessitating the use of a method such as the one proposed in this chapter. This
simple scenario serves as a proof of concept for its application in more realistic
scenarios, such as the following:

Automated e-commerce agents: the scenario we presented in the experi-
mentation was a simplified e-commerce environment, but as the scenario
is extended with more items and more properties of these items, the prob-
ability of coinciding with another agent decreases correspondingly. There-
fore, despite there also being a far larger number of agents in the system,
those with similar backgrounds to the own will still be sparse, necessitat-
ing a communication model such as the one we describe. If the community
of sellers and buyers is relatively stable, then Trust Alignment can be a



180 Chapter 7. Arguing about Trust

possible approach, as we stated in Section 4.3.5, but if this is not the case
then we provide Trust Adaptation as an alternative solution.

Helpful community assistance: the uHelp scenario of the CBIT project2
proposes an automated, distributed, algorithm to help delegate human
tasks, such as picking up children from school, within a community. Such
tasks should only be delegated to trusted members of the community, but
as in the scenarios above, the criteria on which the different members base
their trust may vary greatly. In this case the argumentation does not serve
as much to enable the communication about trust, but is rather a vehicle
to find the criteria the community has in common for deciding whether
someone is a trustworthy performer of a certain task. In this sense the
argumentation about trust can be used to converge the community’s dis-
parate models of trust and strengthen the bonds within such a virtual
community. We intend to explore the possibilities of convergence of trust
through argumentation in future work.

7.7 Summary
In this chapter we presented an argumentation framework for acquiring person-
alised and more accurate communication about trust evaluations. The work
extends the argumentation framework presented by Pinyol [2011] and uses Ad-
apTrust (see Chapter 6) to build a justification for a trust evaluation. An
agent asked to supply a trust recommendation builds such a justification up
from its beliefs and goals, and can communicate this to the recommendation-
seeker. We presented a formal dialogue protocol and discussed how to use this
for communicating trust. This dialogue allows the two agents to argue about
why their model calculates a trust evaluation, and using AdapTrust, they can
adapt their models. This adaptation has two effects. The first is that both
agents can accept new information that fill gaps in their knowledge. The second
is that the recommendation-supplier can (temporarily) adapt its model to the
recommendation-seeker’s and personalise its trust recommendation. Such per-
sonalised recommendations can be used, in addition to reputation information,
recommender systems, or other sources of information in the environment, to
help agents choose partners in social environments.

We compare our method for personalising communication about trust to
Pinyol’s method. This is a state-of-the-art method for communicating about
trust, but it relies on filtering out mismatched information using argumentation,
rather than trying to personalise it. We demonstrate that, if the interests of
the agents are diverse enough, and the number of different criteria that can be
used to evaluate an agent is large enough, then, for direct communication about
trust, the method presented in this chapter results in a more accurate estimate
of an agent’s behaviour than the filtering technique we compare it with.

2www.iiia.csic.es/en/project/cbit

www.iiia.csic.es/en/project/cbit


Part IV

Comparison and Conclusions





Chapter 8

Conclusions, Comparison and
Future Work

Let us think the unthinkable, let us do the undoable, let us prepare to
grapple with the ineffable itself, and see if we may not eff it after all.

–Douglas Adams

8.1 Conclusions and Contributions

In the introduction, we asked ourselves how computational agents can commu-
nicate their subjective trust evaluations in a meaningful manner. In this thesis
we have provided two different approaches to answer this question. The first way
of communicating about trust in a meaningful manner is by performing Trust
Alignment. By relating the trust evaluations back to the set of shared evidence
that supports it, the receiving agent can learn the meaning of a communicated
trust evaluation, in the context it was made. This allows the receiver to translate
received evaluations into its own frame of reference.

The second way in which we answer the question is based on very different
assumptions from the first. Whereas Trust Alignment requires a set of shared
evidence, Trust Adaptation requires more reflection on the part of the agents.
They need to be able to reconstruct the justification for having a trust evaluation.
By communicating about these justifications, the agents can achieve personalised
communication about trust.

These two different approaches answer the same question, in very different
manners. In the next section we will discuss these differences in greater detail,
but first we summarise the main contributions of this thesis.

183



184 Chapter 8. Conclusions, Comparison and Future Work

8.1.1 Main Contributions

In the Trust Alignment approach, we consider the problem of communicating
about trust as a problem of pragmatic heterogeneity. By formalising the prob-
lem using Channel Theory, a qualitative theory of information flow, we see that
if two agents share knowledge of some evidence that supports their individual
trust evaluations, they can align these evaluations. An alignment is a general-
isation of so-called Specific Rules for Alignment (SRAs), which are Horn clauses
containing an agent’s own trust evaluation as the head, and the other agent’s
trust evaluation, together with a description of the shared evidence that sup-
ports both trust evaluations, in the body. To generalise from these SRAs to
a predictive alignment, the description of the shared evidence should only use
information that the other agent has communicated. To align, the sender can
help the receiver by only comunicating relevant properties of the evidence, in a
consistent manner.

We have implemented this solution, called FORTAM, and use the machine-
learning algorithm Tilde, to learn an alignment. FORTAM performs well in the
simulated scenario that we use to test it, and we compare it to a number of other
alignment methods. A particular strength of FORTAM is that, in addition to
translating subjective trust evaluations into the receiver’s frame of reference, it
works when the sender is intentionally deceptive. If the sender attempts to de-
ceive, giving false trust evaluations based on the shared evidence, the alignment
using FORTAM is not significantly affected. In contrast, if the description of
the shared evidence is tampered with (for instance, by communicating irrelevant
properties of the evidence), then FORTAM may not perform as well.

One of the drawbacks of FORTAM, or any alignment method, is that it
requires a large amount of shared evidence to be able to learn. To communicate
trust evaluations effectively in scenarios with little or no shared evidence, we
propose Trust Adaptation. Whereas Alignment relies on external properties, the
shared evidence in the environment, to talk about trust, Trust Adaptation uses
the internal properties of agents. Trust Adaptation requires agents to explain
how their beliefs and goals influence their trust evaluations.

To make this possible, agents must reason about their trust model: the
computational trust model must be integrated into the cognitive process of the
intelligent agent, and we present AdapTrust for this purpose. AdapTrust is an
extension of the BDI-agent architecture, formalised in a multi-context system.
We add contexts for reasoning about the trust model, using the beliefs and goals
an agent has. Furthermore, we do this in a manner that allows an agent to
reason about its trust evaluations and justify why it holds a specific evaluation.

We propose an argumentation language, extending the work done by Pinyol,
to formalise the justifications of a trust evaluation, and to allow agents to com-
municate them. Specifically, the language allows agents to communicate about
the priorities in their trust model, and what beliefs and goals caused them to
have these priorities. We describe a formal dialogue protocol for this communic-
ation and demonstrate experimentally that if both agents use AdapTrust, and
can communicate in a shared argumentation language, then a sender can per-



8.1. Conclusions and Contributions 185

sonalise its communication to the receiver’s needs. This, in turn, improves the
accuracy of agents’ trust evaluations.

8.1.2 Additional findings

Additional findings related to Trust Alignment

• By modelling the problem of Trust Alignment in Channel Theory [Barwise
and Seligman, 1997], we can draw some parallels between Trust Alignment
and other forms of alignment that are formalised using Channel Theory.
Specifically, our model of Trust Alignment complies with the “Semantic-
Alignment Hypotheses” of Schorlemmer et al. [2007]; however, the way
both works describe the problem is the only similarity between them, and
the actual methods of alignment proposed are different. Schorlemmer et
al. show how ontology alignment can be seen as a form of refining the
information channel1, which aims at finding a shared meaning of the con-
cepts involved. In contrast, we are not interested in a shared meaning:
both agents should maintain their own, subjective, trust models, but find
a translation between the two different models. For this we are better
served using a machine-learning approach than following traditional meth-
ods for achieving semantic alignment.

Such an approach may be useful in other situations where pragmatic het-
erogeneity is problematic. A specific area in which this might be useful is
in learning the semantics of folksonomies. Folksonomies are socially cre-
ated taxonomies, in which information and objects are tagged for one’s
own retrieval [Vander Wal, 2007]. According to Vander Wal, “the value
in this external tagging is derived from people using their own vocabulary
and adding explicit meaning, which may come from inferred understanding
of the information/object.” This may be so, but automating the retrieval
or use of such information is problematic. Semiotics has been proposed as
a way of understanding folksonomies and coupling them to semantic web
ontologies [Saab, 2011]. This problem could be considered in our frame-
work by viewing the information/objects as tokens and the tags as types.
The task in this problem of alignment is to learn the meaning of the tags,
with regards to their different uses in classifying information/objects.

• We introduce a complexity measure in order to decide whether an align-
ment can be learnt between two trust models; moreover, this measure
allows us to estimate how many shared interactions will be required to
learn it. This measure, essentially, quantifies the difference between two
trust models based on the trust evaluations they compute. This means
that we can measure the difference between two models without analysing
the computational models themselves, but can simply use their output.
This measure of the relative complexity of computational processes may

1For an explanation of refinement we refer to Schorlemmer et al.’s work, or, for a full
theoretical treatment, to Barwise and Seligman [1997].



186 Chapter 8. Conclusions, Comparison and Future Work

be useful in domains other than Trust Alignment, such as in matching
elements in a recommender system, or in a clustering algorithm.

Additional findings related to Trust Adaptation

• In order to formulate Trust Adaptation properly we designed a new agent
framework in which to integrate trust models. This framework is useful in
and of itself, even if the agent does not argue about its trust evaluations.
The priority rules cause the trust model to change, if the agent’s beliefs
about the environment change. Possibly more impactfully, the priority
rules allow for a fully goal-orientated model of trust; this is necessary for a
proper treatment of trust [Castelfranchi and Falcone, 2010]. As discussed
in Section 5.2, the incorporation of trust into cognitive agents has not
received much attention. Work on the computational trust models we
discussed in Section 2.2, for instance, do not go into details on how this
incorporation should happen. AdapTrust allows all kinds of computational
trust models to be incorporated into a cognitive agent, in a theoretically
sound manner.

• One aspect of trust that we have not focused on in this thesis, is that
trust is not merely an evaluation of a target, but a decision to trust,
or not to trust, the target. The justifications an agent has for its trust
evaluations may be useful in making this decision. The primary aim of
our argumentation framework for justifying trust evaluations is to allow
agents to communicate their trust evaluations, but a secondary effect may
be that the justification can be used in the decision process. AdapTrust
provides a way for the trust evaluation to be adapted to the needs of the
agent, and the justification, in a formal logic, allows the agent to verify
that its needs are indeed taken into account in the trust evaluation. This
allows the agent more control over the pragmatic aspect of trust. Justifying
trust in AdapTrust could serve in a similar fashion as the fuzzy cognitive
maps of Falcone et al.’s system [2005] or the BDI+Repage model [Pinyol
et al., 2012]: it provides a way of deliberating about trust evaluations in
the decision process.

8.2 Comparing Adaptation to Alignment
In this section we aim to compare the two different approaches we have de-
scribed in this thesis for communicating trust. We start with a brief overview
of the characteristics of the two approaches, their principal differences and their
similarities.

The first, and probably foremost, difference between Trust Alignment and
Trust Adaptation is that the latter is a form of pre-processing the trust eval-
uation, whereas the former is a form of post-processing. Both require some
communication prior to the witness providing its trust evaluation of a target;
however, what happens with this evaluation is entirely different in both methods.



8.2. Comparing Adaptation to Alignment 187

Trust Alignment Trust Adaptation
Quantity of interac-
tions required

High Low/None

Quantity of commu-
nication with witness

High: agents must commu-
nicate about all shared in-
teractions

Medium: agents must ar-
gue about all aspects of
the computation of a single
evaluation

Complexity of commu-
nication with witness

Low: witness simply com-
municates its trust evalu-
ation and the relevant as-
pects of the domain

High: witness must con-
struct an argument sup-
porting its trust evaluation

Complexity of agent
model

Low: trust model can be
treated as a black box

High: requires a cognitive
agent, both for introspec-
tion into the trust model
and for adaptation

Complexity of pro-
cessing a received
recommendation

High: must learn an align-
ment that can translate an
incoming recommendation

Low: just requires an
information-seeking dia-
logue to confirm the
adaptation has succeeded

Ability to deal with de-
ception

Excellent, as long as de-
ceptive agents communic-
ate truthful domain in-
formation

Dependent on how good
the witness is at inventing
a consistent support for its
trust evaluation

Ability to deal with
dynamic environments

Poor: the agent needs
to relearn an alignment
any time the environment
changes

Excellent: adaptation to a
changing environment fol-
lows naturally from the sys-
tem

Table 8.1: Comparison of the features of Trust Alignment and Trust Adaptation

In Trust Adaptation the communication serves for the recommendation-seeker
to tell the witness its goal and priorities, and argue about beliefs. If this has
succeeded, then upon receiving a recommendation, the seeker might enter an
information-seeking dialogue to ensure the trust evaluation can be accepted as
is, but this is merely a confirmation that the pre-processing has been performed
correctly. On the other hand, in Trust Alignment the recommendation-seeker has
to learn an alignment, based on prior communications, with regards to shared
information. The alignment then serves to post-process the recommendation-
supplier’s trust evaluation by translating it into the seeker’s frame of reference.

Other differences between the two approaches of Trust Alignment and Trust
Adaptation can, for a large part, be related back to this fundamental difference.
The main features of both approaches are summarised in Table 8.1. In Section
8.3.3 we discuss some ideas on how the two approaches can be combined, but
first we discuss the main features of both approaches, and their differences, in
detail.



188 Chapter 8. Conclusions, Comparison and Future Work

8.2.1 Environmental considerations

Pre-processing a trust evaluation has different requirements from post-
processing. In pre-processing, the witness must adapt its recommendation to the
requirements of the recommendation-seeker, whereas in post-processing there is
no such onus on the witness and the recommendation-seeker must find a way
to use the “raw” information provided by the witness. There is no clear-cut
way for deciding which method is better, but we can analyse the differences by
considering the environment the agents must function in and the type of agents
involved.

The first matter to consider is the number of shared interactions among
agents. We recall that FORTAM obtained its best results in our example scenario
when it had at least 500 examples. A scenario with a more expressive domain
language will need more examples, while a scenario with a simpler language
will require less. The reason for this is that increasing the expressivity of the
domain language increases the space in which we need to find a hypothesis, and
the number of samples required to learn an alignment is directly related to this
[Russel and Norvig, 2010, pages 668–670]. This is also the reason why using
no domain language, as, for instance, in AR&H’s method, requires less than
100 interactions to reach peak performance. Nevertheless, whichever method
for Trust Alignment is used will require some set of shared interactions. The
more expressive the language, the finer the distinction among different types
of interactions can be made, and thus the more examples a machine learning
algorithm requires to learn an alignment.

However, this is not the whole story: firstly, this should be seen in the light of
a probably approximately correct (PAC) alignment: the higher the complexity
of the hypothesis space, the more examples are required to obtain the same
probability that the alignment learnt is approximately correct (we refer to Russel
and Norvig [2010] for the formalisation). Secondly, the language may be far more
expressive than required to discuss relevant aspects of the trust model, in which
case the part of the hypothesis space that needs to be searched can be small,
despite the expressivity of the language. Finally, the relative complexity between
trust models (as discussed in Section 4.2.4) has a large impact on the number of
interactions required to learn an alignment.

Trust Adaptation, on the other hand requires no shared interactions at all.
Rather, it places more restrictions on the communication language. Trust Ad-
aptation requires that the agents share a language in which they can express
their beliefs and goals, as well as their trust priorities, and consequently their
priority rules. The language must, therefore, be more expressive than a language
for exchanging objective properties of interactions. Some languages may be ex-
pressive enough to communicate some goals and beliefs, but not all, allowing for
partial adaptation. Similar to the case for Alignment, this is a simplification of
reality: while a sufficiently expressive language is a prerequisite, it is not always
the case that a more expressive language allows agents to better express their
beliefs and goals. Sometimes, even a very expressive language may not cover
the specific needs of an agent, while a simple language might be sufficient for



8.2. Comparing Adaptation to Alignment 189

expressing some goals and beliefs that allow for at least a partial adaptation.
We have considered the environment along only two dimensions, the ex-

pressivity of the communication language and the number of shared interactions.
While this is a simplification, it allows us to distinguish, roughly, four different
cases:

• If there are too few interactions for Trust Alignment to succeed and the
language does not allow agents to express themselves sufficiently for Trust
Adaptation, then the methods we have presented in this thesis for com-
municating about trust are insufficient.

• If there are enough interactions to learn an alignment, given the complex-
ity of the language, but the language is not expressive enough for Trust
Adaptation, then Trust Alignment provides a solution for talking about
trust.

• In contrast, if the language is expressive enough for Adaptation, but there
are too few interactions for Alignment, then Trust Adaptation can be used
to talk about trust.

• Finally, in the, for us, most interesting situation, there are both enough
shared interactions for enabling Trust Alignment, and the language is ex-
pressive enough to use Trust Adaptation, then other criteria, such as the
specifics of the agents, can be used to decide what method to use. In Sec-
tion 8.3.3 we discuss how the two methods might be combined, but first
we discuss some of these other factors.

8.2.2 Complexity of the agents
Whether Trust Alignment or Trust Adaptation are viable depends for a large
part on the agents involved. Especially in the case of Trust Adaptation, this
is very clear: both agents involved must be able to examine their own trust
models and explain them to each other. Moreover, the recommendation-supplier
must be able to adapt its trust model, if necessary, to the priorities of the
recommendation-seeker. Finally, both agents must be able to argue about the
beliefs underlying the priorities in their trust models and adapt their models
to changed beliefs. In addition to the capabilities of the agents, we assume the
recommendation-supplier is not only truthful, but benevolent: it is not only able
to adapt its trust model, but willing to do so.

For Alignment the dependencies are less on the agent architecture, but more
on the ability to learn a translation from the alignment messages. This depends
firstly on the learning algorithm used, and secondly on what the sender chooses
to send. While we showed that FORTAM deals well with agents sending false
evaluations, we still require the description of the domain to be accurate. For
this we refer back to Section 3.4, in which we stated the requirements that the
descriptions of interactions be relevant and consistent. An additional limita-
tion of Alignment is that, in contrast to Adaptation, it focuses solely on the
evaluations of single interactions.



190 Chapter 8. Conclusions, Comparison and Future Work

If we consider this from the three-level approach by Staab and Engel [2008],
that we discussed in Section 2.3, we see that Trust Alignment provides a method
for communicating at the second level: the subjective evaluation of individual
pieces of evidence. In contrast, Adaptation provides a method for communic-
ating at the third level: trust-values based on the aggregation of the subjective
evaluations. Given the increase of complexity and subjectivity between these
levels of communication, it is not surprising that the requirements for Adapta-
tion are greater than for Alignment.

Despite this, we feel that any intelligent agent that functions in a social en-
vironment must naturally have a trust model; furthermore, it must be able to
explain to some extent or another why it trusts other agents. The integration
of a trust model into a framework for intelligent agents is thus not so much a
requirement of our method for Adaptation, but a requirement for acting intel-
ligently with regards to trust. We recall Castelfranchi and Falcone’s definition:
“trust is (conscious and free, deliberated) reliance based on a judgement, on an
evaluation of Y’s virtues, and some explicit or entailed prediction/expectation”.
Such deliberation is, in our opinion, a requisite of trust, and while we can create
computational trust models that give excellent estimates of the trustworthiness
of agents, it is not until such estimates are used in an agent’s decision process,
that we can say that an agent trusts.

Such, more philosophical, considerations aside, current agent technologies are
generally not equipped with the capabilities required for Trust Adaptation. This
means that, at least in the short term, Trust Alignment is easier to apply than
Trust Adaptation — if only because Alignment can be performed in a separate
module, whereas Adaptation requires a new agent model, such as the AdapTrust
model we presented in Chapter 6.

8.2.3 The cost of communication
The amount of communication between the recommendation-supplier and
recommendation-seeker is the last vector along which we compare Trust Align-
ment and Adaptation. The amount of communication in the alignment process
is dependent on two factors: the number of shared interactions and the amount
of relevant information about each interaction that is communicable in the do-
main language. This must be communicated every time an alignment needs to
be learnt, but, when this is done, further communication is simply an evaluation
and a description of the interactions that support it. In practice, however, we
recall that it is hard to learn an alignment from aggregated evaluations and both
FORTAM and BLADE, the only two alignment methods that take the context
into account, both learn at the level of individual interactions. Therefore, even
once the alignment is learnt, agents must communicate their evaluations of, pos-
sibly many, individual interactions, rather than the trust evaluation that is the
result of aggregating these evaluations.

For using Trust Adaptation, we expect that, on the whole, the communication
load is lower, although it is less easy to predict how much communication will
pass between the recommendation-seeker and recommendation-supplier. While



8.2. Comparing Adaptation to Alignment 191

all argumentation dialogues are guaranteed to end, it is dependent on the agents’
trust models and choices within the argumentation dialogue, how much will
be communicated every time a recommendation is required. Specifically if the
agents try to convince one another about their beliefs, the amount of commu-
nication may be quite large. On the whole, we need detailed information about
how large the argumentation tree is, and how much of it the agents actually
explore, to give an estimate of the amount of communication.

A major advantage of Adaptation over Alignment, however, is that if the
amount of communication possible is restricted, or bandwidth is costly, then
agents can make adjustments in their strategies in the argumentation in order
to restrict communication to a minimum, or make a trade-off between expected
gain from exploring part of the argumentation tree and the communication cost
of that exploration. In contrast, alignment methods require a minimum number
of examples to be communicated in order to learn anything, and if this com-
munication is prohibitively expensive, then learning a good alignment is flat-out
impossible.

In addition to the amount of communication, there can be risks involved
with communicating. The first is primarily to the recommendation-seeker. If
the recommendation-supplier is intentionally deceptive, then the seeker may be
misled into thinking that a communicated evaluation is acceptable, whereas the
agent is being deceived. In the case of Alignment, we have demonstrated that the
process is relatively safe to deception in and of itself: if the information about the
interactions is truthful, then deceptive trust evaluations are not really a problem.
Generating believable lies about shared interactions is far harder than lying
about trust evaluations, but, if this is also done, then the recommendation-seeker
can still rely on its trust model, as in a system such as LIAR [Vercouter and
Muller, 2010], to decide whether the communicated evaluation is reliable. Using
Adaptation, deception is a greater problem: we require the recommendation-
supplier to be benevolent and truthful, and we rely on the agent’s trust model
to find such a benevolent recommendation-supplier.

The second risk with communication is a risk to both agents involved. For
either alignment or adaptation the exchange of possibly privacy-sensitive inform-
ation is required. Agents may be unwilling to disclose such information. Here
again, the trust model itself can be of some help: if the agent trusts the commu-
nication partner to protect, and not misuse, such privacy-sensitive information,
then it will be more willing to disclose it. Additionally, even if agents do not
trust each other with privacy-sensitive information, both Trust Alignment and
Trust Adaptation allow the agents to limit the information exchanged. In Ad-
aptation, either agent can choose to end the dialogue at any point if it does
not want to disclose more information. In the worst case this leads to failure of
the adaptation process, but it may very well be that the agents are willing to
exchange enough information to succeed, even if they are unwilling to disclose
all information.

In Alignment a similar limitation to the information disclosed is allowed in
the domain description of interactions. We require the witness to provide a relev-



192 Chapter 8. Conclusions, Comparison and Future Work

ant and consistent description of the interaction, but, other than that, the agent
is free to decide what to communicate. In the worst case, the agent will choose
to communicate no, or not enough, domain information for the alignment al-
gorithm to improve on Abdul-Rahman and Hailes’ method [2000]. Similarly, the
best case, possibly resulting in a perfect alignment (dependent on the learning
algorithm used), is attainable only if the sending agent communicates all relevant
information consistently. Between these two cases there are many intermediate
alignments that can be learnt, if the sending agent is willing to communicate
some, but not all of its relevant information, and is possibly not always consist-
ent.

In closing, it is our opinion that both Adaptation and Alignment deal ad-
equately with deceptive agents and problems arising from privacy-sensitive data.
Especially because the trust model itself can be used as a tool to decide whether
to rely on the communication, if the agent is in doubt.

8.2.4 Prototype applications

In Sections 4.3.5 and 7.6 we discussed some possible applications of Trust Align-
ment and Trust Adaptation, respectively. Notably we mentioned e-commerce as
an application domain for both methods. With this we do not mean that both
methods can always be applied: there are many different types of e-commerce
applications and some may be better suited to Trust Alignment and others to
Adaptation. One thing, however, that e-commerce applications have in common,
is that communication is generally desirable, and agents in the environment are
willing to help each other. Moreover, the differences in e-commerce scenarios
cover many of the points we brought up in the previous sections. We will high-
light this in two different applications and briefly compare them below.

Trust Alignment: personalised reputation ratings

In the case of an open market, where thousands, if not millions, of people buy
and sell their goods, Trust Alignment is more likely to succeed. Generally, the
infrastructure is available for the, possibly limited, observation of other agents’
interactions, and by considering such, publicly available, information as shared
interactions agents could learn an alignment. Trust Alignment could be used to
to tailor reputation ratings, such as provided by online marketplaces, like eBay2

or Amazon3, to the user. Both eBay and Amazon have enormous databases
of binary or numerical feedback that has been provided by users — often with
detailed textual explanations, such as the following, which was left as feedback
for a seller on Amazon:

“Item damaged in transit, so it was returned.. but the seller was very
prompt about taking care of the problem. I appreciate their efforts

2http://www.ebay.com
3http://www.amazon.com

http://www.ebay.com
http://www.amazon.com


8.2. Comparing Adaptation to Alignment 193

to track the missing package down. and if have the opportunity, will
order from them again.”

If each user were to have a profile in which he or she could indicate the
importance of certain factors to a satisfactory trade, then this could be seen
as a rudimentary trust model. Such a rudimentary trust model could serve as
a basis for aligning with other users. by considering the textual feedback as a
description in the domain language, we could use natural language processing to
generate examples for a machine learning algorithm. The learnt General Rules
for Alignment could be used to translate other users’ reputation ratings, and
thus personalise them for the user. Note that this does not even have to be done
by eBay or Amazon; the alignment could be performed by an application on the
user’s computer. This also means that the user does not have to disclose his
preferences, even to the trading site.

Trust Adaptation: an automated financial adviser

Trust Adaptation may be more suited to situations in which agents are unwilling
to share any information about their past interactions, but due to the risks in-
volved with interacting, are willing to communicate about their goals and beliefs
about the environment. A potential domain is in financial markets: additional
features of such domains that match with the strengths of Trust Adaptation
are that there are generally trusted agents, but the number of possible factors
to be taken into account when interacting is high. While Adaptation is not as
directly applicable as Alignment, we identify automated investment advice as
a potential candidate. Investment advice is an expert job. The task is to help
with buying or selling a financial product, such as shares, bonds or equity. The
overall goal is usually to make money; however, there are different risks involved
with all possible products, and correspondingly different possible rewards. As-
sessing the right combination of financial products is thus an interplay between
a human expert, the financial adviser, who can correctly assess the risks and
rewards (possibly only for a subset of financial products) and the investor, who
has specific desires (such as a low-risk, long-term investment, a high-reward,
short-term investment, or even investments in anything that is not related to
the oil- or weapon-industry).

A personalised recommendation to buy a specific financial product is thus
the result of an expert taking the specific beliefs and goals of the investor into
account, and possibly, convincing the investor that his or her beliefs regarding
certain financial products are wrong. In reality, experts do not always agree,
because economics is a complex and chaotic subject, and an investor may benefit
from talking to various different financial advisers, and weighing their justified
opinions, before choosing how to invest.

An automated investment adviser, using Trust Adaptation, would be a per-
sonal agent that has knowledge of the user’s beliefs and goals with regards to
investments. We envision expert services providing financial advice, just as
banks’ websites do currently. Trust Adaptation could allow the personal agent



194 Chapter 8. Conclusions, Comparison and Future Work

to argue with the expert services, allowing these to adapt their recommendations
to the specific needs of the user, as represented by the personal agent. This com-
bination of a personal agent and expert services could thus automatically give
a user investment advice, obtained from multiple sources and tailored to his or
her specific needs.

A brief comparison

The application of Trust Alignment in personalising reputation ratings takes ad-
vantage of the availability of very many, publicly available, interactions. While
Adaptation, or even a collaborative filtering approach, as in contemporary re-
commender systems [Ricci et al., 2010], could be used to a similar end, such
approaches would require users’ profiles to be disclosed, and they do not take
advantage of the large amounts of data already available. Applying Trust Ad-
aptation to create an automated financial adviser, in contrast, would work in a
scenario in which users are more likely willing to discuss their beliefs and goals,
rather than details of past investments. As we mentioned in Section 8.2.2, the
technology required for Adaptation is more advanced than Alignment. Thus,
while the former application could be implemented using today’s technological
infrastructure, the latter depends on future advances.

Regardless of currently available technology, each application plays to the
strengths of the approach we distinguish in Table 8.1. Personalising reputa-
tion ratings takes advantage of the high number of interactions and the textual
feedback of them. Despite being written in natural language, such feedback is
generally not terribly complex. Moreover, if the alignment is performed while
the user is idle, then the complexity of the learning task does not bother him or
her. Finally, the ability to learn an alignment could deal with deceptive feed-
back, such as retaliatory negative ratings, a known problem of eBay’s reputation
system [Klein et al., 2009].

An automated financial adviser, however, would not have access to a large
number of other agent’s interactions, and would make up for that by communic-
ating with experts about why certain financial products can be trusted, given
a set of beliefs and goals. Because financial experts are considered trusted, de-
ception is not a problem, but the ability to deal with a dynamic environment is
essential to function in an environment as volatile as modern financial markets.

8.3 Future Work

Communication about trust is a new and exciting field to work in. The work
presented in this thesis can easily be extended in many different directions and
we describe a few of these here.



8.3. Future Work 195

8.3.1 Trust Alignment
Our work on Trust Alignment is divided into the theoretical description and the
practical implementation. There is plenty to be done in both areas. Here we
present a short list of topics that we feel deserve special attention.

Extending the theoretical framework

• An important extension of the theoretical framework is to allow the trust
classifications and the channel to model dynamic trust models. If agents
change their trust models over time to adapt to a changing environment
(such as is the case for AdapTrust), or a trust model calculates evaluations
based on more than just the agent’s observations of interactions, then in-
terpreting a trust model as a classification between observations and trust
evaluations is insufficient. The tokens for a classification representing such
a trust model must include something more than just the set of interac-
tions (or observations thereof). This extension of the classifications and
trust channel, in order to deal with dynamic trust models, can be done
in the scope of Channel Theory and we propose to extend the particular
instantiation of Channel Theory that we present in this thesis.

• We have identified relevance-maintaining and consistency as necessary
properties for the translation between an agent’s internal observation lan-
guage and LDomain. If the translation is a Galois connection then these
properties hold, but the reverse is not true. If we add what we tentatively
call “reverse relevance”4, then it does follow (trivially) that the translation
is a Galois connection; in fact, we do not even need consistency in this case.
It is interesting to discover uses for reverse relevance, or a different, min-
imal condition that, together with consistency and maintaining relevance,
ensures a Galois connection.

Future work in the practice of Trust Alignment

• The experimental analysis of FORTAM is far from complete. We expect
that the accuracy of the alignment possible with FORTAM depends, in
a large way, on the domain language used. In our opinion the first step
in a more thorough analysis of FORTAM should thus be to experiment
with different domains and their corresponding languages. Secondly, we
have shown in Section 4.2 that the trust models themselves have a large
influence on the accuracy of alignments. Analysing the interplay of some
different trust models, together with more — or less — descriptive domain
languages for describing the context, is an important concern for future
research. Perhaps, however, it is time to put FORTAM to use and analyse
its functioning in application scenarios. Especially interesting would be to
see how well it compares to BLADE [Regan et al., 2006] in such a scenario.

4using the same notation as in Definition 3.26 on page 62, reverse relevance is if
(Hdown ◦ Hup)(Ψ) ∈ ρθ(Ψ) holds.



196 Chapter 8. Conclusions, Comparison and Future Work

• One problem of FORTAM is that it requires a large number of shared inter-
actions and a lot of computation to learn every alignment. It would be very
useful if we could somehow reuse alignments with agents that are similar to
those we have already aligned with. Case-Based Reasoning [Aamodt and
Plaza, 1994] seems like an ideal candidate to perform such reuse of align-
ments. It may, however, be hard to decide what agents are “similar”. An
approach could be to use social-network analysis, but another alternative
might be to use our difference measure for trust models. If the complexity
between two agents’ trust models is low, the same alignment, possibly with
modification using AR&H’s method afterwards, can be applied.

8.3.2 Trust Adaptation

Improving AdapTrust

• AdapTrust is an abstract model and makes no commitment to the method
in which the priority rules are created. In our implementation for person-
alising trust recommendations, we designed these priority rules manually,
but ideally such rules are formed by some type of common-sense reason-
ing or machine learning. For instance, if the agent beliefs its environment
contains lots of liars it should clearly trigger a rule not to rely much on
communicated evaluations. A designer may include such common scen-
arios, but probably cannot think of all eventualities. The agent, therefore,
will adapt in an unsatisfactory manner. A learning module that recognises
that its trust model is badly adapted to the situation and tries to rectify
this by adding new rules may provide a solution.

• AdapTrust made a start in reasoning about the trust model. We focused on
using the trust model’s parameters to adapt the model; however, it can be
imagined that adapting the computational process itself might be desirable.
There is no reason why the priority system could not be connected to such
computational processes instead of parameters, although an appropriate
representation language for such a computational process must be found.
This adaptation is more complex than the adaptation we proposed in this
thesis, but it might be useful; especially if agents want to personalise their
trust evaluations for agents using very different trust models.

Future work in personalising trust recommendations

• The dialogue protocol that we propose does not allow agents to persuade
each other about the correctness of their priority rules. For this, an agent
should be able to recognise that its trust evaluations, based on the current
set of priority rules, are badly adapted to the environment and goal. As
opposed to above, however, the agent would not learn new priority rules by
itself, but could copy them from fellow agents. A persuasion dialogue that
allows agents to convince each other of their priority rules may improve the
adaptability, and thus the ability to further personalise trust evaluations.



8.3. Future Work 197

• We recognise that the method we presented for personalising trust recom-
mendation requires more extensive experimental evaluation. We regard
such an evaluation as future work and intend to use personalised trust
communication in different, realistic, scenarios. We intend to compare
Trust Adaptation to contemporary recommender systems or the use of
reputation, to give a more precise indication of what applications will truly
benefit from this model.

8.3.3 Combining Trust Alignment and Adaptation
In addition to work on improving Trust Alignment and Trust Adaptation in
isolation, we feel that an important track of future research is to combine the two
approaches. In the previous section we discussed the strengths and weaknesses
of both approaches and we see that they could very well complement each other.
We discuss some possible approaches.

• The most straightforward manner of combining Trust Alignment and Ad-
aptation, is by simply giving an agent the possibility to use both. The
agent then needs some decision support system for choosing when one ap-
proach is more appropriate than the other: for instance, by considering
the number of interactions that it shares with the other agent, the expec-
ted benevolence of that agent or other criteria for both systems that we
discussed in the previous section. After choosing an approach to commu-
nicating about trust, it executes it, and in the case of failure, can always
evaluate whether the other approach might be viable after all.

• A more intricate manner of combining the two is in a true hybrid system.
We propose two possible approaches.

– If the agent uses FORTAM as its primary method for communicat-
ing about trust, the output includes a confidence in each case for the
translation. If the agent wants to communicate with the witness re-
garding a target with many interactions that fall within a case of low
confidence, it could ask that witness to personalise its trust recom-
mendations and enter an argumentation dialogue. Alternatively, it
could, before even asking about a target, ask to enter an argumenta-
tion dialogue to discuss these cases and see if it can adapt its model,
or convince the witness to adapt its model. Such adaptation should
improve the alignment, by removing the “difficult cases”.

– Alternatively, the agent can function the other way round, using ad-
aptation as its primary method for communicating about trust. As
discussed in Section 7.4, there are situations in which the adaptation
dialogue simply fails; either because the agents refuse to adapt, or
because their underlying computational methods are too different. In
these cases, the agent might be able to fall back on Trust Alignment
as a secondary method for communicating.





Bibliography

Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Communications, 7(1):
39–59, 1994.

Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual com-
munities. Proceedings of the 33rd Hawaii International Conference on System
Sciences, 6:4–7, 2000.

Leila Amgoud and Henri Prade. Using arguments for making and explaining
decisions. Artificial Intelligence, 173(3–4):413–436, 2009.

Manuel Atencia and Marco Schorlemmer. An interaction-based ap-
proach to semantic alignment. Journal of Web Semantics, 12, 2012.
doi:10.1016/j.websem.2011.12.001.

Francis Bacon. Of counsel. In Brian Vickers, editor, The Essays – or Counsels,
Civil and Moral. Oxford University Press (1999), 1625.

Jon Barwise and Jerry Seligman. Information Flow: The Logic of Distributed
Systems. Cambridge University Press, 1997.

Marc Bekoff and Jessica Pierce. Wild Justice – The Moral Lives of Animals.
University of Chicago Press, 2009.

Trevor J. M. Bench-Capon. Persuasion in practical argument using value-based
argumentation frameworks. Journal of Logic and Computation, 13(3):429–448,
2003.

Claudia Bianchi. Semantics and pragmatics: The distinction reloaded. In
Claudia Bianchi, editor, The Semantics/Pragmatics Distinction, pages 1–12.
CSLI Publications, 2004.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical
decision trees. Artificial Intelligence, 101(1-2):285–297, 1998.

199

http://dx.doi.org/10.1016/j.websem.2011.12.001


200 BIBLIOGRAPHY

Hendrik Blockeel, Luc De Raedt, and Jan Ramon. Top-down induction of clus-
tering trees. In J. Shavlik, editor, Proceedings of the 15th International Con-
ference on Machine Learning, pages 55–63, 1998.

Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, and
Henk Vandecasteele. Improving the efficiency of inductive logic programming
through the use of query packs. Journal of Artificial Intelligence Research,
16:135–166, 2002.

Hendrik Blockeel, Sašo Džeroski, Boris Kompare, Stefan Kramer, Bernard
Pfahringer, and Wim van Laer. Experiments in predicting biodegradability.
Applied Artificial Intelligence, 18(2):157–181, 2004.

Rafael Bordini, Jomi Hübner, and Michael Wooldridge. Programming Multi-
Agent Systems in AgentSpeak using Jason. Wiley, 2007.

Dennis Basil Bromley. Reputation, Image and Impression Management. John
Wiley & Sons, 1993.

Chris Burnett, Timothy J. Norman, and Katia Sycara. Trust decision-making in
multi-agent systems. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence (IJCAI’11), pages 115–120, Barcelona,
Spain, 2011. AAAI Press.

Ana Casali. On Intentional and Social Agents with Graded Attitudes, volume 42
of Monografies de l’Institut d’Investigació en Intel·ligencia Artificial. Consell
Superior d’Investigacions Científiques, 2008.

Sara Casare and Jaime Sichman. Towards a functional ontology of reputation.
In Proceedings of the 4th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), pages 505–511, Utrecht, The Neth-
erlands, 2005. ACM.

Christiano Castelfranchi and Rino Falcone. Trust Theory: A Socio-cognitive and
Computational Model. Wiley, 2010.

M. Celentani, D. Fudenberg, D. K. Levine, and W. Psendorfer. Maintaining a
reputation against a long-lived opponent. Econometrica, 64(3):691–704, 1996.

Daniel Chandler. Semiotics: The Basics. Routledge, 2002.

Carlos Chesñevar and Guillermo Simari. Modelling inference in argumentation
through labelled deduction: Formalization and logical properties. Logica Uni-
versalis, 1(1):93–124, 2007.

Rosaria Conte and Mario Paolucci. Reputation in Artificial Societies: Social
beliefs for social order. Kluwer Academic Publishers, 2002.

Gregory W. Corder and Dale I. Foreman. Nonparametric Statistics for Non-
Statisticions: A Step-by-Step Approach. Wiley, 2009.



BIBLIOGRAPHY 201

Natalia Criado, Estefania Argente, and Vicent Botti. Normative deliberation in
graded BDI agents. In Jürgen Dix and Cees Witteveen, editors, Proceedings
of MATES’10, volume 6251 of LNAI, pages 52–63. Springer, 2010.

Partha Dasgupta. Trust as a commodity. In D. Gambetta, editor, Trust: Making
and Breaking Cooperative Relations, pages 49–72. Blackwell, 1988/2000.

Mehdi Dastani. 2APL: A Practical Agent Programming Language. Journal
on Autonomous Agents and Multi-Agent Systems, 16:214–248, 2008. ISSN
1387-2532.

Mehdi Dastani, Andreas Herzig, Joris Hulstijn, and Leendert van der Torre.
Inferring trust. In João Alexandre Leite and Paolo Torroni, editors, Pro-
ceedings of Fifth Workshop on Computational Logic in Multi-agent Systems
(CLIMA’04), volume 3487 of LNCS, pages 144–160, 2004.

Luc De Raedt. Logical and Relational Learning. Springer, 2008.

Luc De Raedt, Peter Idestam-Almquist, and Gunther Sablon. θ-subsumption
for structural matching. In Proceedings of the 9th European Conference on
Machine Learning (ECML’97), volume 1224 of LNCS, pages 73–84. Springer,
1997.

Chrysanthos Dellarocas. Immunizing online reputation reporting systems against
unfair ratings and discriminatory behavior. In Proceedings of the 2nd ACM
conference on Electronic commerce (EC’00), pages 150–157, New York, USA,
2000.

Daniel C. Dennett. The Intentional Stance. MIT Press, 1987.

Robin I. M. Dunbar. Coevolution of neocortical size, group size and language in
humans. Behavioral and Brain Sciences, 16:681–735, 1993.

Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 7(2):321–358, 1995.

J. Michael Dunn and Gary M. Hardegree. Algebraic Methods in Philosophical
Logic. Oxford University Press, 2001.

Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007.

Rino Falcone, Giovanni Pezzulo, and Cristiano Castelfranchi. A Fuzzy Approach
to a Belief-based Trust Computation, volume 3577 of LNAI, pages 43–58.
Springer, 2005.

Ernst Fehr and Urs Fischbacher. The nature of human altruism. Nature, 425:
785–791, 2003.

Jose-Luis Fernandez-Marquez. Bio-inspired Mechanisms for Self-organising Sys-
tems. PhD thesis, Universitat Autònoma de Barcelona, 2011.



202 BIBLIOGRAPHY

Nir Friedman, Dan Geiger, and Moiser Goldszmidt. Bayesian network classifiers.
Machine Learning, 29(2–3):131–163, 1997.

Karen K. Fullam and K. Suzanne Barber. Dynamically learning sources of trust
information: experience vs. reputation. In Proceedings of the 6th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007),
pages 1–8, Honolulu, Hawaii, USA, 2007. ACM.

Karen K. Fullam, Tomas B. Klos, Guillaume Muller, Jordi Sabater-Mir, K. Suz-
anne Barber, and Laurent Vercouter. The Agent Reputation and Trust (ART)
testbed. In Proc. of the 4th International Conference on Trust Management,
volume 3986 of Lecture Notes in Computer Science, pages 439–442. Springer,
2006.

Diego Gambetta. Can we trust trust. In Diego Gambetta, editor, Trust: Making
and Breaking Cooperative Relations, pages 213–237. Basil Blackwell, 1988.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis : Mathematical
Foundations. Springer, 1999.

Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

Fausto Giunchiglia and Luciano Serafini. Multilanguage hierarchical logics, or:
how we can do without modal logics. Artificial Intelligence, 65:29–70, 1994.

Jennifer Golbeck. Combining provenance with trust in social networks for se-
mantic web content filtering. In Luc Moreau and Ian Foster, editors, Proven-
ance and Annotation of Data (IPAW 2006), volume 4145 of LNCS, pages
101–108. Springer, 2006.

Luigi Guiso, Paolo Sapienza, and Luigi Zingales. Trusting the stock market.
Journal of Finance, 63(6):2557–2600, 2008.

David Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in Com-
puter Science. Springer, 1979.

Ramon Hermoso, Holger Billhardt, and Sascha Ossowski. Dynamic evolution
of role taxonomies through multidimensional clustering in multiagent organ-
izations. In Jung-Jin Yang, Makoto Yokoo, Takayuki Ito, Zhi Jin, and Paul
Scerri, editors, Principles of Practice in Multi-Agent Systems (Proceedings of
PRIMA’09), volume 5925 of LNCS, pages 587–594. Springer, Nagoya, Japan,
2009.

Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Computing Surveys (CSUR),
42(1):1–31, 2009.



BIBLIOGRAPHY 203

Jomi F. Hübner, Emiliano Lorini, Andreas Herzig, and Laurent Vercouter. From
cognitive trust theories to computational trust. In Proc. of the Twelfth Work-
shop “Trust in Agent Societies" at AAMAS ’09, pages 55–67, Budapest, Hun-
gary, 2009.

David Hume. A treatise of human nature. In David Fate Norton and Mary J.
Norton, editors, A Treatise of Human Nature (Oxford Philosophical Texts).
Oxford University Press (2000), 1737.

Trung Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. An integ-
rated trust and reputation model for open multi-agent systems. Journal of
Autonomous Agents and Multi-Agent Systems, 13:119–154, 2006.

Norman L. Johnson and Samuel Kotz. Non-smooth sailing or triangular distri-
butions revisited after 50 years. The Statistician, 48(2):179–187, 1999.

Neil D. Jones. Computability and Complexity: From a Programming Perspective.
Foundations of Computing. MIT Press, 1997.

Audung Jøsang and Roslan Ismail. The beta reputation system. In Proceedings
of the Fifteenth Bled Electronic Commerce Conference e-Reality: Constructing
the e-Economy, Bled, Slovenia, 2002.

Audung Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43(2):618–644,
2007.

Sindhu Joseph, Carles Sierra, Marco Schorlemmer, and Pilar Dellunde. Deduct-
ive coherence and norm adoption. Logic Journal of the IGPL, 18(1):118–156,
2010.

Radu Jurca and Boi Faltings. Obtaining reliable feedback for sanctioning repu-
tation mechanisms. Journal of Artificial Intelligence Research, 29(1):391–419,
August 2007.

Yannis Kalfoglou and Marco Schorlemmer. IF-Map: An ontology-mapping
method based on information-flow theory. In Stefano Spaccapietra, Sal March,
and Karl Aberer, editors, Journal on Data Semantics I, volume 2800 of Lecture
Notes in Computer Science, pages 98–127. Springer, 2003.

Aram Karalič and Ivan Bratko. First order regression. Machine Learning, 26:
147–176, 1997.

Tobias J. Klein, Christian Lambertz, Giancarlo Spagnolo, and Konrad O. Stahl.
The actual structure of eBay’s feedback mechanism and early evidence on the
effects of recent changes. International Journal of Electronic Business, 7(3):
301–320, 2009.



204 BIBLIOGRAPHY

Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Inductively gen-
erated trust alignments based on shared interactions (extended abstract).
In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2010), pages 1571–1572, Toronto, Canada,
2010a. IFAAMAS.

Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer. Engineering trust
alignment: a first approach. In Proc. of the Thirteenth Workshop “Trust in
Agent Societies" at AAMAS ’10, pages 111–122, Toronto, Canada, 2010b.
IFAAMAS.

Stefan Kramer and Gerhard Widmer. Inducing classification and regression trees
in first order logic. In Sašo Džeroski and Nada Lavrač, editors, Relational Data
Mining, pages 140–156. Springer, 2001.

Yann Krupa, Laurent Vercouter, Jomi Fred Hubner, and Andreas Herzig. Trust
based evaluation of wikipedia’s contributors. In Engineering Societies in the
Agents World X, volume 5881 of Lecture Notes in Computer Science, pages
148–161. Springer, 2009.

Ralph Levien and Alexander Aiken. Attack-resistant trust metrics for public
key certification. In Proceedings of the 7th USENIX Security Symposium, San
Antonio, Texas, USA, 1998.

Churn-Jung Liau. Belief, information acquisition, and trust in multi-agent sys-
tems – a modal logic formulation. Artificial Intelligence, 149(1):31–60, 2003.

John Locke. Two treatises of government. In Peter Laslett, editor, Locke’s Two
Treatises of Government. Cambridge University Press (1960), 1689.

Emiliano Lorini and Robert Demolombe. From binary trust to graded trust
in information sources: a logical perspective. In Rino Falcone, Suzanne K.
Barber, Jordi Sabater-Mir, and Munindar P. Singh, editors, Trust in Agent
Societies – 11th International Workshop, TRUST 2008, volume 5396 of LNAI,
pages 205–225. Springer, Estoril, Portugal, 2008.

M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Com-
puting as Interaction (A Roadmap for Agent Based Computing). AgentLink,
2005.

Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD
thesis, University of Stirling, Stirling, UK, 1994.

Paul-Amary Matt, Maxime Morge, and Francesca Toni. Combining statistics
and arguments to compute trust. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010),
pages 209–216, Toronto, Canada, 2010. IFAAMAS.



BIBLIOGRAPHY 205

Charles Morris. Foundations of the theory of signs. In Rudolf Carnap
Otto Neurath and Charles Morris, editors, Foundations of the Unity of Sci-
ence, volume 1, chapter 2, pages 77–137. University of Chicago Press, 1938.

Luis G. Nardin, Anarosa A. F. Brandão, Guillaume Muller, and Jaime S. Sich-
man. SOARI: A service-oriented architecture to support agent reputation
models interoperability. In Rino Falcone, Suzanne K. Barber, Jordi Sabater-
Mir, and Munindar P. Singh, editors, Trust in Agent Societies – 11th Interna-
tional Workshop, TRUST 2008, volume 5396 of LNAI, pages 292–307, Estoril,
Portugal, 2008. Springer.

Luis G. Nardin, Anarosa A. F. Brandão, Guillaume Muller, and Jaime S. Sich-
man. Effects of expressiveness and heterogeneity of reputation models in the
art-testbed: Some preliminar experiments using the soari architecture. In
Proc. of the Twelfth Workshop “Trust in Agent Societies" at AAMAS ’09,
Budapest, Hungary, 2009.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Foundations of Inductive Logic
Programming, volume 1228 of LNAI. Springer, 1997.

James J. Odell, Parunak Van Dyke, and Mitchell Fleischer. The role of roles in
designing effective agent organizations. In Alessandro Garcia, Carlos Lucena,
Franco Zambonelli, Andrea Omicini, and Jaelson Castro, editors, Software En-
gineering for Large-Scale Multi-Agent Systems, volume 2603 of Lecture Notes
in Computer Science, pages 27–38. Springer, 2003.

Nardine Osman, Carles Sierra, and Jordi Sabater-Mir. Propagation of opinions in
structural graphs. In Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI 2010), Lisbon, Portugal, 2010.

Simon Parsons, Carles Sierra, and Nick R. Jennings. Agents that reason and
negotiate by arguing. Journal of Logic and Computation, 8(3):261–292, 1998.

Simon Parsons, Michael Wooldridge, and Leila Amgoud. Properties and com-
plexity of some formal inter-agent dialogues. Journal of Logic and Computa-
tion, 13(3):347–376, 2003.

Simon Parsons, Yuqing Tang, Elizabeth Sklar, Peter McBurney, and Kai Cai.
Argumentation-basded reasoning in agents with varying degrees of trust. In
Kagan Tumer, Pinar Yolum, Liz Sonenberg, and Peter Stone, editors, Pro-
ceedings of the 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011), pages 879–886, Taipei, Taiwan, 2011.
IFAAMAS.

Adrián Perreau de Pinninck Bas, Marco Schorlemmer, Carles Sierra, and
Stephen Cranefield. A social-network defence against whitewashing. In Pro-
ceedings of the 9th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2010), pages 1563–1564, Toronto, Canada, 2010.
IFAAMAS.



206 BIBLIOGRAPHY

Isaac Pinyol. Milking the Reputation Cow: Argumentation, Reasoning and
Cognitive Agents, volume 44 of Monografies de l’Institut d’Investigació en
Intel·ligencia Artificial. Consell Superior d’Investigacions Científiques, 2011.

Isaac Pinyol and Jordi Sabater-Mir. Arguing about reputation. The LRep lan-
guage. In A. Artikis, G.M.P. O’Hare, K. Stathis, and G. Vouros, editors,
Engineering Societies in the Agents World VIII: 8th International Workshop,
ESAW 2007, volume 4995 of LNAI, pages 284–299. Springer, 2007.

Isaac Pinyol and Jordi Sabater-Mir. Pragmatic-strategic reputation-based de-
cisions in BDI agents. In Proceedings of the 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2009), pages 1001–
1008, Budapest, Hungary, 2009a.

Isaac Pinyol and Jordi Sabater-Mir. Towards the definition of an argumentation
framework using reputation information. In Proc. of the Twelfth Workshop
“Trust in Agent Societies" at AAMAS ’09, pages 92–103, 2009b.

Isaac Pinyol and Jordi Sabater-Mir. An argumentation-based protocol for social
evaluations exchange. In Proceedings of the 19th European Conference on
Artificial Intelligence (ECAI 2010), pages 997–998, Lisbon, Portugal, 2010.
IOS Press.

Isaac Pinyol and Jordi Sabater-Mir. Computational trust and reputation models
for open multi-agent systems: a review. Artificial Intelligence Review, In Press.
doi:10.1007/s10462-011-9277-z.

Isaac Pinyol, Jordi Sabater-Mir, and Guifre Cuni. How to talk about reputation
using a common ontology: From definition to implementation. In Proc. of
the Tenth Workshop “Trust in Agent Societies" at AAMAS ’07, pages 90–102,
Honolulu, Hawaii, USA, 2007.

Isaac Pinyol, Jordi Sabater-Mir, Pilar Dellunde, and Mario Paolucci.
Reputation-based decisions for logic-based cognitive agents. Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS), 24(1):175–216,
2012.

Plato. The republic. In The Republic: The Complete and Unabridged Jowett
Translation. Vintage Books (1991), 370BC. Translated by Benjamin Jowett
in 1871.

Gordon D. Plotkin. A note on inductive generalization. Machine Intelligence,
5, 1970.

Henri Prade. A qualitative bipolar argumentative view of trust. In V.S. Sub-
rahmnanian and Henri Prade, editors, International Conference on Scalable
Uncertainty Management (SUM 2007), volume 4772 of LNAI, pages 268–276.
Springer, 2007.

http://dx.doi.org/10.1007/s10462-011-9277-z


BIBLIOGRAPHY 207

Henry Prakken. Coherence and flexibility in dialogue games for argumentation.
Journal of Logic and Computation, 15(6):1009–1040, 2005.

Henry Prakken. Models of persuasion dialogue. In Iyad Rahwan and Guillermo
Simari, editors, Argumentation in Artificial Intelligence, chapter 14, pages
281–300. Springer, 2009.

Iyad Rahwan and Guillermo Simari. Argumentation in Artificial Intelligence.
Springer, 2009.

Sarvapali D. Ramchurn, Dong Huynh, and Nicholas R. Jennings. Trust in multi-
agent systems. The Knowledge Engineering Review, 19(1):1–25, 2004.

Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a
BDI-architecture. In R. Fikes and E. Sandewall, editors, Proceedings of the
2nd International Conference on Principles of Knowledge Representation and
Reasoning, pages 473–484, San Mateo, CA, USA, 1991. Morgan Kaufmann.

Anand S. Rao and Michael P. Georgeff. BDI agents: From theory to practice.
In Proceedings of the First International Congress on Multi-Agent Systems
(ICMAS’95), pages 312–319, San Francisco, USA, 1995. AAAI.

Kevin Regan, Pascal Poupart, and Robin Cohen. Bayesian reputation modeling
in e-marketplaces sensitive to subjectivity, deception and change. In Proceed-
ings of the 21st National Conference on Artificial Intelligence (AAAI), pages
1206–1212, Boston, MA, USA, 2006. AAAI Press.

Martin Rehák and Pěchouček. Trust modeling with context representation and
generalized identities. In Mathias Klusch, Koen Hindriks, Mike P. Papazoglou,
and Leon Sterling, editors, Cooperative Information Agents XI – Proceedings
of the 11th International Worshop, CIA 2007, volume 4676 of LNAI, pages
298–312. Springer, Delft, The Netherlands, 2007.

Philip Resnik. Semantic similarity in a taxonomy: An information-based meas-
ure and its application to problems of ambiguity in natural language. Journal
of Artificial Intelligence Research, 11:95–130, 1999.

Francesco Ricci, Rokach Lior, Bracha Shapira, and Paul B. Kantor. Recom-
mender Systems Handbook. Springer, 2010.

M. Andrea Rodríguez and Max J. Egenhofer. Determining semantic similarity
among entity classes from different ontologies. IEEE Transactions of Know-
ledge and Data Engineering, 15(2):442–456, 2003.

Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach,
3rd edition. Prentice Hall, 2010.

David J. Saab. An emergent culture model for discerning tag semantics in
folksonomies. In Proceedings of the 2011 iConference, ICPS, pages 552–560,
Seattle, USA, 2011. ACM.



208 BIBLIOGRAPHY

Jordi Sabater. Trust and Reputation for Agent Societies, volume 20 of Mono-
grafies de l’Institut d’Investigació en Intel·ligencia Artificial. Consell Superior
d’Investigacions Científiques, 2003.

Jordi Sabater and Carles Sierra. REGRET: A reputation model for gregarious
societies. In Proceedings of the Fourth Workshop on Deception, Fraud and
Trust in Agent Societies, pages 61–69, 2001.

Jordi Sabater and Carles Sierra. Social ReGreT, a reputation model based on
social relations. ACM, SIGecom Exchanges, 3.1:44–56, 2002.

Jordi Sabater and Carles Sierra. Review on computational trust and reputation
models. Artificial Intelligence Review, 24(1):33–60, 2005.

Jordi Sabater, Carles Sierra, Simon Parsons, and Nicholas R. Jennings. Engin-
eering executable agents using multi-context systems. Journal of Logic and
Computation, 12(3):413–442, 2002.

Jordi Sabater, Mario Paolucci, and Rosaria Conte. Repage: REPutation and
imAGE among limited autonomous partners. JASSS - Journal of Artificial So-
cieties and Social Simulation, 9(2):3, 2006. URL http://jasss.soc.surrey.
ac.uk/9/2/3.html.

Jordi Sabater-Mir and Mario Paolucci. On representation and aggregation of
social evaluations in computational trust and reputation models. International
Journal of Approximate Reasoning, 46(3):458–483, 2007.

Michael Schillo, Petra Funk, and Michael Rovatsos. Who can you trust: Dealing
with deception. In Proceedings of the 2nd Workshop on "Deception, Fraud and
Trust in Agent Societies" at Autonomous Agents ’99, pages 81–94, Seattle,
USA, 1999.

Michael Schläfli. Using context-dependant trust in team formation. In Proceed-
ings of EUMAS’11, Maastricht, The Netherlands, 2011.

Marco Schorlemmer. Term rewriting in a logic of special relations. In AMAST’98,
volume 1546 of Lecture Notes in Computer Science, pages 178–198, 1998.

Marco Schorlemmer and Yannis Kalfoglou. Institutionalising ontology-based
semantic integration. Applied Ontology, 3(3):131–150, 2008.

Marco Schorlemmer, Yannis Kalfoglou, and Manuel Atencia. A formal found-
ation for ontology-alignment interaction models. International Journal on
Semantic Web and Information Systems, 3(2):50–68, 2007.

Murat Şensoy and Pinar Yolum. Ontology-based service representation and
selection. IEEE Transactions on Knowledge and Data Engineering, 19(8):
1102–1115, 2007.

http://jasss.soc.surrey.ac.uk/9/2/3.html
http://jasss.soc.surrey.ac.uk/9/2/3.html


BIBLIOGRAPHY 209

Murat Şensoy, Jie Zhang, Pinar Yolum, and Robin Cohen. POYRAZ: Context-
aware service selection under deception. Computational Intelligence, 25(4):
335–366, 2009.

Emilio Serrano, Michael Rovatsos, and Juan Botia. A qualitative reputation
system for multiagent systems with protocol-based communication. In Pro-
ceedings of the Eleventh International Conference on Autonomous Agents and
Multiagent Systems (AAMAS’12), Valencia, Spain, Forthcoming 2012. IFAA-
MAS.

Claude Shannon. A mathematical theory of communication. Bell Systems Tech-
nical Journal, 27:379–423 and 623–656, 1948.

Carles Sierra and John Debenham. An information-based model for trust. In
Proceedings of the 4th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pages 497–504, Utrecht, The Nether-
lands, 2005. ACM.

Ronald D. Snee. Validation of regression models: Methods and examples. Tech-
nometrics, 19(4):415–428, 1977.

Eugen Staab and Thomas Engel. Combining cognitive with computational trust
reasoning. In Rino Falcone, Karen Barber, Jordi Sabater-Mir, and Munin-
dar P. Singh, editors, Trust in Agent Societies – 11th International Workshop,
TRUST 2008, volume 5396 of LNAI, pages 99–111. Springer, Estoril, Portugal,
2008.

Yuqing Tang, Kai Cai, Peter McBurney, and Simon Parsons. A system of ar-
gumentation for reasoning about trust. In Proceedings of EUMAS’10, Paris,
France, 2010.

W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck. TRA-
VOS: Trust and reputation in the context of inaccurate information sources.
Journal of Autonomous Agents and Multi-Agent Systems, 12(2):183–198, 2006.

Werner Uwents and Hendrik Blockeel. A comparison between neural network
methods for learning aggregate functions. In Proceedings of the 11th Interna-
tional Conference on Discovery Science, volume 5255 of LNCS, pages 88–99,
2008.

Thomas Vander Wal. Folksonomy: Coinage and definition. retrieved February
2, 2007. URL http://vanderwal.net/folksonomy.html.

Laurent Vercouter and Guillaume Muller. L.I.A.R.: Achieving social control in
open and decentralised multi-agent systems. Applied Artificial Intelligence, 24
(8):723–768, 2010.

Serena Villata, Guido Boella, Dov Gabbay, and Leendert van der Torre. Ar-
guing about the trustworthiness of information sources. In Weiru Liu, editor,
Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume
6717 of LNCS, pages 74–85. Springer, 2011.

http://vanderwal.net/folksonomy.html


210 BIBLIOGRAPHY

George Vogiatzis, Ian MacGillivray, and Maria Chli. A probabilistic model for
trust and reputation. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 225–232,
Toronto, Canada, 2010. IFAAMAS.

Quang Hieu Vu, Mihai Lupu, and Beng Chin Ooi. Peer-to-Peer Computing:
Principles and Applications. Springer, 2010.

Douglas N. Walton and Erik C. W. Krabbe. Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. State of University of New York Press,
Albany, NY, USA, 1995.

Xianchang Wang, Jia-huai You, and Li Yan Yuan. Nonmonotonic reasoning by
monotonic inferences with priority constraints. In Nonmonotonic Extensions
of Logic Programming, volume 1216 of LNAI, pages 91–109, 1997.

Jens Witkowski. Truthful feedback for sanctioning reputation mechanisms. In
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence
(UAI’10), pages 658–665, Corvallis, Oregon, 2010. AUAI Press.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and
practice. Knowledge Engineering Review, 10(2):115–152, 1995.

Bin Yu and Munindar P. Singh. An evidential model of distributed reputation
management. In Proceedings of the 1st International Conference on Autonom-
ous Agents and Multiagent Systems (AAMAS 2002), pages 294–301, Bologna,
Italy, 2002. ACM.

Sanming Zhou, Zhi-Qiang Liu, and Jian Ying Zhang. Fuzzy causal networks:
General model, inference, and convergence fuzzy causal networks: General
model, inference and convergence. IEEE Transactions on Fuzzy Systems, 14
(3):412–420, June 2006.






	I Introduction
	Introduction
	Motivation
	Main Contributions
	Trust Alignment
	Trust Adaptation

	Related Publications
	Overview and Structure of the Thesis


	II Trust Alignment
	Trust Alignment: State of the Art
	Introduction
	Trust Models
	Computational trust models
	A brief survey of trust models

	Processing Witness Information
	Dealing with deception
	Dealing with subjectivity directly

	Summary

	Theoretical Framework
	Introduction
	Interaction-based Model of Trust Alignment
	Trust models in Channel Theory
	The trust channel
	Communicating trust constraints

	Trust Alignment Through theta-subsumption
	Syntax and semantics of LDomain
	Specific Rules for Alignment
	Learning a prediction
	Computation

	Describing Interactions
	Relevance
	Consistency
	Galois connection

	Summary

	Alignment in Practice
	Introduction
	Using ILP to Learn a Trust Alignment
	First-Order Regression
	Experimental setup
	Trust models
	Estimating the difficulty of alignment
	Experiment: evaluating First-Order Regression
	Discussion
	Summary

	Comparing Trust Alignment Methods
	Experimental setup
	Alignment methods
	Comparing alignment methods
	Simulating lying agents
	Discussion
	Summary

	Summary


	III Trust Adaptation
	Trust Adaptation: State of the Art
	Introduction
	Cognitive Integration of Trust Models
	Cognitive computational trust models
	Logics for reasoning about trust

	Argumentation and Trust
	Trusted arguments
	Argument-supported trust
	Arguments about trust

	Summary

	AdapTrust
	Introduction
	Preliminaries
	Multi-context systems
	Logics
	Multi-context representation of a BDI-agent

	Specifying Trust Models
	An illustrative trust model
	A priority system
	Socially-dependent goals

	Goal-based Instantiation of Trust Models
	Reasoning about the priority system
	Instantiating trust models

	Integrating Trust Models
	BRS
	ForTrust
	ReGReT

	Summary

	Arguing about Trust
	Introduction
	Pinyol's Argumentation Method
	An ontology of reputation
	Trust as an inferential process
	Arguing about trust

	Extending the Argumentation Language
	Dialogue Protocol for Personalising Trust
	A formal dialogue protocol
	A dialogue for recommending trust

	Experiments
	The simulation environment
	Simulation results

	Discussion
	Summary


	IV Comparison and Conclusions
	Conclusions, Comparison and Future Work
	Conclusions and Contributions
	Main Contributions
	Additional findings

	Comparing Adaptation to Alignment
	Environmental considerations
	Complexity of the agents
	The cost of communication
	Prototype applications

	Future Work
	Trust Alignment
	Trust Adaptation
	Combining Trust Alignment and Adaptation




