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Welcome to the “Omics” era. Genomics — understanding an organism’s entire 

genome, transcriptomics — understanding every RNA in an organism’s genome, 

proteomics — understanding all the proteins in an organism, metabolomics, 

understanding all the metabolites in an organism, and of course, how all this 

layers interact with each other– This is the future of biology 
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SUMMARY 
 
This thesis provides insights about the evolutionary forces that have shaped the 

nucleotide variability patterns of pig genome. In the first Chapter, we used the 

traditional gene-centered approach to characterize in detail different regions of a 

gene putatively associated with meat quality in pigs (SERPINA6). In a wide 

diversity porcine panel, and although we found a putative causal non-

synonymous substitution at high frequencies in European breeds, we were not 

able to infer any conclusive signal of selection. 

  

Next, with the advent of high throughput sequencing technologies, we studied 

the genome-wide nucleotide variability and expression patterns in Iberian pig. 

Complementary methodological approaches were employed: whole genome 

shotgun sequencing, reduced representation libraries, sequencing a pool of 

individuals and transcriptome sequencing. Overall, the estimated autosomal 

nucleotide diversity of the Iberian pig (Guadyerbas strain) was ~0.7 kb-1 after 

correcting for low depth, a non-negligible variability considering the high 

inbreeding coefficient of this line. Telomeric regions presented consistently 

higher levels of nucleotide variability than centromers, likely a result of 

increased recombination rates. Further, chromosome X was much less variable 

than expected under a neutral scenario, relative to autosomes, which may be 

explained by selection or other demographic effects. 

 

To study putative regions which may have undergone selection during 

domestication or modern breeding practices, we divided the genome is non-

overlapping windows and calculated different selection tests in a pool of Iberians 

and in a single individual. Regions with an excess of polymorphisms were 

enriched in olfactory receptors and swine leukocyte antigens (SLA) genes, 

suggesting that they are under balancing selection. In contrast, regions with an 

excess of differentiation and low variability contained genes involved in oxygen 

transport, keratinization, hair follicle morphogenesis, feeding behavior and lipid 

transport, biological processes which may be under positive selection.  



 

We also characterized the Iberian genome in terms of structural variants. For 

this purpose, we used a read depth approach and detected many multi-copy 

regions gains with respect to the reference assembly. About 5% of annotated 

genes were totally comprised inside those regions and the majority belonged to 

gene superfamilies.  

 

In a comparison of the gonad transcriptome of two pigs with extremes 

phenotypes, an Iberian pig and a Large White pig, we detected differentially 

expressed genes involved in spermatogenesis and lipid metabolism. This agrees 

with phenotypic differences between both breeds. To improve the annotation of 

the pig genome, we also developed a pipeline to detect long-non-coding RNAs 

and novel protein coding genes expressed in the male gonad tissue.  
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1.1 General overview of next generation sequencing applications  

The advent of the next generation sequencing (NGS) technologies has 

revolutionized biology, making it possible the thorough investigation of the 

genome and transcriptome in multiple species. With these new technologies, not 

only human or model organisms (e.g., mouse) can be studied in detail, but also 

non-model organisms. Compared with standard Sanger sequencing, they provide 

a marked improvement in sequencing speed and throughput at a reasonable 

cost. At the biological level, the advantages are many. Genome-wide variants 

catalogues, and genome-wide expression patterns in different tissues are being 

available for many species, which will pave the way for a new biomedicine and 

agricultural research. For example, in the near future, we expect to pay a few 

hundred euros to have our genome sequenced, which would fuel the 

personalized medicine. Whole-genome sequence association studies will 

overcome the SNP ascertainment biases inherent in the current SNP chips, since 

they will uncover all variants genome-wide, including population, individual or 

region specific variants. In cancer genomics, there are many ongoing projects 

(The International Cancer Genome Consortium), which aim to explore different 

cancer types to detect somatic mutations and chromosomal rearrangements 

sequencing specific tumor tissues (http://www.icgc.org/icgc).  

 

In the area of agrigenomics, these techniques will help to detect causative 

variants or genotypes associated with economically important traits that 

humans have been ‘blindly’ selected throughout centuries. An illustrative 

example is the intron mutation located in the myostatin gene, which confers an 

extreme musculation phenotype in the cow (See Figure 1) (Grobet et al. 1997). 

Also important, is the impact that NGS would cause in evolutionary studies, 

which may help us to better understand population demographic events and 

evolutionary forces that have shaped nucleotide variability patterns in species’ 

genomes. These studies help to better understand human evolution (Tishkoff & 

Verrelli 2003) and the process of animal speciation and domestication (Diamond 

2002; Trut et al. 2009; Amaral et al. 2011; Wiener & Wilkinson 2011). 



 

Figure 1. A causative mutation in the MSTN gene 

confers an extreme musculation phenotype in cows 

 

There are a broad range of NGS applications in biological research; our challenge 

will be to intelligently integrate different data types to produce a coherent 

picture of the genetic bases of complex phenotypic traits (economical production 

traits in agrigenomics, complex diseases in biomedicine, morphological traits in 

forensics or tameness in domestication). These complex traits are quantitative 

traits; the genetic background and the environment explain the observed 

variance. The genetic bases are either caused by multiple single mutations in the 

DNA (SNPs), structural variants (inversions, insertions, deletions, duplications 

and translocations affecting stretches of the DNA) or epigenetic factors that 

change gene expression levels (e.g., modifications in histone conformation). NGS 

technologies make possible to study all these genetic variants genome-wide at a 

very high-resolution. Genome sequencing (DNA-seq) allows detecting SNPs, 

small indels, chromosome rearrangements and copy number variants (CNVs). 

transcriptome sequencing (RNA-seq) measures gene and isoforms expressions, 

chromatin immunoprecipitation sequencing (Chip-Seq) identifies DNA and 

transcription binding factor interactions and methylome sequencing (Meth-seq) 

detects methylated DNA regions along the genome, high-order chromatin 

architecture (Hi-C) determines chromatin interactions in 3D. Therefore 

sequencing the genome, transcriptome and epigenome of an organism, and then 

integrating all these data in gene networks and biological pathways may help to 

elucidate the complex genetic mechanisms that result in the observed phenotype 

diversity.  

 

 



1.2 The technology and its drawbacks 

Technology for biological applications has exponentially improved in a very 

short period of time. As a result, terabytes of biological data have been generated 

and the challenge would be to develop new computational infrastructures, 

statistical and bioinformatical tools to analyze and store such a vast amount of 

data. Now we can easily sequence the whole genome or transcriptome. The basis 

of this revolutionary technique consists in fragmenting the DNA from an 

organism into small pieces, sequence them in a high-throughput parallel 

machine obtaining millions of short sequences (reads) which then must be 

aligned and assembled in larger sequences using computational methods, e.g., 

Burrows-Wheeler algorithm (Li & Durbin 2009), until the genome sequence is 

fully reconstructed. If a reference genome of the target organism is available, the 

reads obtained can be mapped against it, facilitating the work. Otherwise, we 

must assemble the genome de novo; the drawback will be a dramatic increase in 

computational resources needed, since we need more efficient algorithms.  

 

One major problem of the current draft or finished genomes used as reference 

sequences is miss-assembly (Salzberg & Yorke 2005). The fact that a high 

percentage of the high eukaryote genomes is composed of repetitive elements (a 

recent study reported 66-69% in the human genome (de Koning et al. 2011)), 

and some of them could be very long, makes it particularly difficult to know their 

exact location and the number of copies in the genome. The scientific community 

must take into consideration that if the reference genome is not well assembled, 

these include regions where a genome is incorrectly re-arranged as well as 

places where large chunks of DNA are absent; this could lead to erroneous 

conclusions in subsequent genome analysis, e.g., synteny comparisons or 

structural variants detection. Some other not fully resolved problems that we 

have to deal with next generation sequencing techniques are sequencing errors, 

read miss-alignments and due to a miss-assembled reference genome, some of 

the reads generated may not map to it. Sequencing errors are produced during 

the PCR amplification step or the sequencing process itself and tend to be 1-2%, 

which means that for a read of 100bp, on average there will be 2 mistakes. These 

mistakes can be indistinguishable from a real polymorphism and for that we 



have to take into account base qualities and if possible to have high depth. 

Alignment errors tend to occur due to the short nature of the reads, which may 

align in different locations if there are repetitive stretches in the reference 

genome. Mate-pair reads can resolve the correct genome assignment for some 

repetitive regions as long as one read in the pair is unique to the genome. For 

SNP calling, it is important to avoid wrongly mapped reads, otherwise the rate of 

false positives will increase, and for that reason uniquely mapped reads or 

mapping quality must be taken into consideration. Finally, those unmapped 

reads can be clustered together to try to get more data from them, but the 

logically option will be to improve the reference assembly.  

 

1.3 Genomes available and current sequencing projects 

A HiSeq 2500 Illumina machine produces nowadays 6 billion (6x109) of 2x100 

bp paired-end short reads with a throughput of 600 Gb in 11 days. A human 

genome needs just 1 day to be fully sequenced at depth 30X. Craig Venter and 

James Watson were the first human genomes sequenced with next generation 

sequencing technologies to be publicly available (Levy et al. 2007; Wheeler et al. 

2008). In livestock, many specie genomes have been also fully sequenced like 

chicken (International Chicken Genome Sequencing Consortium (2004)), cow 

(Elsik et al. 2009) and pig (Groenen 2012). In plants, we have the complete 

genome of rice (International Rice Genome Sequencing Project (2005)), potato 

(Xu et al. 2011) and melon (USDA 2010; Garcia-Mas 2012) among others. 

Regarding human infectious diseases, HIV and the malaria parasite Plasmodium 

falciparum genomes have also been sequenced (Gardner et al. 2002; Watts et al. 

2009). Every year, the number of species sequenced increases. Many 

international projects are currently funded to take advantage of the speed and 

efficiency of next generation sequencing to sequence large amount of organisms. 

The 1000 Genomes Project (http://www.1000genomes.org/) had the objective 

of sequencing full genomes of different human populations (Asians, Europeans, 

Americans and Africans) and to have a resource of human genetic variation, 

whereas The 1001 Plant Genomes Project (http://www.1001genomes.org/) 

provides a broad catalog of Arabidopsis thaliana genetic variation. Also 

interesting is the Human Microbiome Project (http://www.hmpdacc.org/), 



which aims at sequencing the entire DNA that conform human microbiota 

(intestines, mouth, skin), which will certainly discover new microorganisms and 

help to interpret host-pathogen interactions in human diseases. For the fruit fly, 

we have the The Drosophila Genetic Reference Panel 

(http://dgrp.gnets.ncsu.edu/), a living library of common polymorphisms 

affecting complex traits, and a community resource for whole genome 

association mapping of quantitative trait loci. 

 

1.4 Cost-effective strategies for SNP discovery 

In a resequencing project, the goal is normally to identify variants, and a 

reference genome is assumed to exist to carry out the alignment. Whole-genome 

sequencing of many individuals is not currently affordable for small laboratories 

and alternative approaches are used to have a cost effective way to generate 

SNPs, e.g.,. sequencing fewer parts of the genome (less coverage) but at a higher 

depth. For this, reduced representation libraries (RRL) are a good choice. This 

method can be applied to either a single individual or pools of individuals. It 

consists of fragmenting the genomic DNA with a restriction enzyme and then 

sequencing only fragments of a certain size. In general, the percentage of genome 

sequenced varies between 1-5%, but the ratio can be adjusted approximately 

using in silico digestion of the assembled genome. The RRL pooling approach has 

been successfully employed in several animal species, like cow (Van Tassell et al. 

2008), turkey (Kerstens et al. 2009) and pig (Wiedmann et al. 2008; Amaral et al. 

2011).  However, DNA pooling of different individuals results in a number of 

uncertainties: the exact number of chromosomes sequenced is not known and a 

given chromosome may be under or over-represented (Perez-Enciso & Ferretti 

2010). This fact is more pronounced as the number of individuals on the pool 

increases and the depth decreases. Moreover, singletons will be very difficult to 

spot, which means that the site frequency spectrum will be biased towards mid-

frequency alleles. In that way, as sequencing errors will also be more difficult to 

detect, the variance of the estimators will be higher than with individual 

sequencing (Perez-Enciso & Ferretti 2010). All these caveats have been 

addressed for the calculation of the Watterson estimator of nucleotide diversity 

in pools (Ferretti 2012). For organisms with large genomes (e.g., mammals), the 



trade-off of coverage versus cost may justify dealing with statistical complexities 

of low-coverage datasets at least until further sequencing improvements and 

cost reductions are achieved. 

 

1.5  Structural variants 

It has been reported that two human genomes can differ in 3,000,000 SNPs 

(Jorde & Wooding 2004; Tishkoff & Kidd 2004) and up to 300 Mb (Li et al. 2011) 

of sequence length, which highlights the high plasticity of the genome 

architecture, even within the same species. Note that more nucleotides are 

affected by structural variants than single point mutations, implying significant 

consequences of structural variants in phenotypic variation. Structural variants 

consist of many kinds of variation in the genome of one species, and usually 

include microscopic and submicroscopic types, such as deletions, duplications, 

copy-number variants, insertions, inversions and chromosomal translocations. 

Copy number variants are stretches of DNA ranging from 1kb to hundreds of kb 

that appear in multiple copies in the genome and the number of copies differs 

between individuals or populations. One of the consequences is different gene 

dosage, which could lead to more expression of a particular gene. On the other 

hand, segmental duplications refer to duplicated regions in the genome that are 

fixed in the population. This process of gene duplication originated many gene 

superfamilies like olfactory receptors, hemoglobins or the histocompatibility 

complex proteins. Over time, one of the duplicated regions has evolved 

conferring a different function from the original gene. Two main methods are 

suitable for a genome-wide detection of these paralogous and multi-copy regions 

using high-throughput sequencing, a read density approach (see Figure 2a) using 

depth information along the genome to detect if our sample has more or less 

copies than the reference genome (Alkan et al. 2011), or a paired-end distance 

information approach (Alkan et al. 2011) (see Figure 2b) , which uses aberrant 

distance or orientation between read pairs to detect novel insertions, deletions, 

inversions and translocations. Both methods can be conducted using whole-

genome sequencing, but the latter needs a high-quality assembled reference 

genome in order to minimize false positives.  

 



 

Figure 2a. Gains and losses detection with respect to the reference genome 

using a read depth approach. Reads are aligned against the reference (top) and 

then, after GC bias correction, read depth is computed to infer changes of copies 

(bottom). 

 

 

 

Figure 2b. Structural variants detection using aberrant paired-end distances. 

The first case the donor (top) has an insertion with respect to the reference 

(bottom), the second case a deletion and the third case an inversion. 

 

1.6 Sequencing the transcriptome with RNA-seq 

As mentioned, it is also possible to sequence the full transcriptome, which 

comprises the complete set of transcripts in a cell or tissue expressed under a 

certain physiological condition. RNA-seq, a recently deep-sequencing technology 

has already modified our view of the extant complexity of transcriptomes and 

provides us with the opportunity to characterize the functional elements of the 

genome including mRNAs, small non-coding RNAs and the newly discovered 

long-non-coding RNAs. Some RNA-seq studies have been performed in pig; for 

example several research groups (Huang et al. 2008; Li et al. 2010b; Xie et al. 

2011; Lian et al. 2012) discovered microRNAs in different tissues, others (Chen 

et al. 2011a; Zhao et al. 2011) sequenced divergent breeds in terms of growth 

and leanness. 

 



Regarding expression levels, this technique overcomes the hybridization-based 

approaches, e.g., microarrays, due to its wide dynamic range of expression 

detection (Wang et al. 2009). Microarrays lack sensitivity either at very low or 

high expression levels. Moreover, another limitation of microarrays is that only a 

portion of the transcript is analyzed and isoforms are generally indistinguishable 

from each other. In terms of sequence architecture, for instance, to detect 

alternative splicing at single-base resolution, RNA-seq is the best – although not 

perfect - technology. Another advantage is that RNA-seq is not limited to 

detecting transcripts that correspond to existing annotated genes; many new 

expressed regions are uncovered, which is very attractive for incomplete 

annotated genomes or non-model organisms. Another application is the 

detection of transcript chimeras (exon fusion from different genes). For example 

(Frenkel-Morgenstern et al. 2012) discovered hundreds of chimeric RNAs to be 

genuinely expressed in normal human cells. In addition, polymorphism (SNPs or 

SVs) and allele specific expression (ASE) can be revealed (Skelly et al. 2011; Li et 

al. 2012a). Nevertheless, some challenges need to be resolved, e.g., those related 

with bias in library preparation (RNA fragmentation, the GC bias amplification 

and PCR artifacts) or the sequencing process (sequencing errors). Also, during 

the mapping step one read could have multiple locations in the genome (e.g., 

paralogs), which could be alleviated either by assigning probabilistic approaches 

(Pasaniuc et al. 2011; Glaus et al. 2012), obtaining larger reads, or using paired-

end sequencing. In order to construct and assemble transcripts, sufficient depth 

is required, which can be difficult to achieve for low expressed genes. 

Furthermore, for genome annotation it would be necessary to analyze different 

tissues and developmental stages to fish the total amount of genes in a genome, 

increasing the costs of the experiments.  

 

1.7 Applications in livestock  

A broad goal of this thesis was to apply these new technologies to livestock, and 

to pigs in particular. Livestock populations form a unique genomics resource as a 

result of their remarkable phenotypic diversity and their population structures. 

Information from the genome, and the effect of its variation on phenotype will 

help to clarify basis of adaptation within populations under selection pressures 



since domestication, ca. 7-10 KYA. Due to artificial selection, a high variety of 

phenotypes emerged to fulfil different production objectives. This is the case for 

chicken broilers (meat producing) and chicken layers (egg producing), dairy 

cattle (milk producing) and beef cattle (meat producing), among others. 

Although not a livestock species, the dog is a good example, due to an intense 

modern breeding, its variability in size, color and shape is without parallel 

without any other species. There are many interesting agricultural traits that are 

relevant from an industry perspective, e.g., improved growth and development, 

wool production, disease resistance, reproductive performance or reduced 

environmental impact. Recently published studies used whole genome 

sequencing data to detect fingerprints of artificial selection. In pigs, (Amaral et al. 

2011) sequenced four domestic pig breeds genomes (Landrace, Large White, 

Duroc and Pietrain) and one wild boar and found signals of selection for 

behavior, coat color, growth and muscle development. Recently, the pig genome 

paper identified strong selection on genes related with RNA processing and 

regulation, since the split of the European and Asian wild boar populations 1M 

years ago (Groenen 2012). In chicken, Rubin et al. (Rubin et al. 2010) identified a 

selective sweep in domestic chickens at the locus for thyroid stimulating 

hormone receptor (TSHR), which has a pivotal role in metabolic regulation and 

photoperiod control of reproduction in vertebrates. In dairy cattle, eleven 

candidate genes were identified with functions related to milk-production, 

fertility, and disease-resistance traits (Larkin et al. 2012).  

 

In this thesis, we focused in the pig, which is an important livestock species for 

several reasons. With production and consumption of about 100 million metric 

tons per annum; pork is the most widely consumed meat globally (USDA 2010). 

China, USA, Germany and Spain are the top producing countries worldwide. In 

genetic terms, it would be helpful to target the genotypes associated with 

economical interesting traits, such as meat quality, disease resistance and 

growth, to perform breeding on selected animals. Due to its extreme phenotypic 

diversity for several traits of interest, and the fact that the wild ancestor is still 

available and other outgroup species as well (see Figure 3), scanning nucleotide 

patterns through their genomes, genes that underwent selection during 



 

 

 

Figure 3. In order of appearance: Bamei, Berkshire, British Lop, Diannan (small ears), 
Tamworth, Chenghua, Erhualian, Hampshire, Large White, Jinhua, Landrace, Meishan, 
Middle White, Paradise, Bearded pigs, Bentheim Black Pied, Vietnamese, Duroc, Huai, 

Tibetan pig,  Wild boar, Phacochero, Potamochero, Babyrousa. 



domestication can be revealed. Thus, causal mutations responsive for adaptive 

processes to a new environment can be detected and pig speciation process 

better understood (Groenen 2012). Third, the pig provides a uniquely relevant 

animal model for human disease (e.g., melanoma, obesity, diabetes, wound 

repair, atherosclerosis), surgical research and as a potential source of organs for 

xenotransplantation owing to the similarities in size, anatomy and physiology 

(Groenen 2012).  

  

Currently, there are about 7000 pig QTL representing almost 600 different traits 

at the Animal Quantitative Locus database (http://www.animalgenome.org/cgi-

bin/QTLdb/SS/index). Pig meat quality, lipid deposition, growth and prolificacy 

are some studied and economically interesting traits. Although many QTLs 

associated with economical traits have been identified in different livestock 

species, very few have been related to its causal mutation. Examples of causative 

mutations identified are the RYR1 is causative for malignant hyperthermia 

susceptibility in cattle (Fujii et al. 1991), MSTN with extreme muscular 

phenotype in cattle (Grobet et al. 1997), IGF2 is associated in muscle growth in 

pigs (Van Laere et al. 2003), PRKAG3 with excess glycogen content in pig skeletal 

muscle (Milan et al. 2000), DGAT1 with milk production in cattle (Grisart et al. 

2002), CLPG in sheep muscularity (Freking et al. 2002) and FecB (Boroola) with 

fecundity in sheep (Mulsant et al. 2001). Moreover, several CNVs have been 

found to be associated with phenotypic traits in livestock. In swine, dominant 

white color is associated with a duplication of the KIT gene (Giuffra et al. 2002), 

whereas in chicken a multi-copy of the SOX5 gene causes the pea-comb 

phenotype (Wright et al. 2009). But, in general, agricultural interesting traits are 

very complex and multifactorial, meaning that many genes with small effect and 

other environmental factors interact.  As a result only those QTL with big effect, 

explaining most of the variance of the phenotypic trait, have been discovered. 

Moreover, the interval of QTL regions tend to be large due to the methodology 

employed to detect them (classical QTL linkage mapping), although population-

based association studies (GWAS) increases the precision of the QTL position 

estimates and reduces their confidence intervals as it uses all recombination 

events since the mutations occurred (Meuwissen & Goddard 2000).  



However, with the availability of cost-effective whole-genome SNP panels (e.g., 

SNPchip arrays) for the major livestock species; one can follow the segregation 

of the entire genome and not merely a set of specific regions of interest, moving 

to the traditional marker-assisted selection (MAS) to genomic selection. The 

limitation of MAS for breeding programs is that it requires prior knowledge of 

gene alleles or markers associated with the traits of interest together with their 

quantitative estimates in a specific population; it must be therefore implemented 

within families (Eggen 2012). Furthermore, it explains only a limited part of the 

genetic variance. On the contrary, with tens of thousands of SNP distributed 

along the genome (or even better, using the whole genome sequence to avoid 

SNP ascertainment biases), it is not necessary to know where are specific genes 

located in the genome as it is expected to be one or several SNP in linkage 

disequilibrium with the causal mutation and, therefore, explaining a much 

greater variance than MAS. Finally, genomic selection can be implemented very 

early in life, and extended to traits with low heritability or difficult to measure 

(Eggen 2012). 

 

1.8 Introduction to pig domestication and breeding  

The first evidences of pig domestication trace back to 9,000 years ago, when the 

Neolithic farmers in the Old World and China began to tame wild boars to 

provide them with a source of food (meat), clothing (skin) and tools (bones). 

Around 1 million year ago, the ancestral South Eastern Asia wild boar population 

spread towards Europe, leaving behind two differentiated populations, Asian 

and European (Giuffra et al. 2000; Groenen 2012). After, multiple independent 

places across Eurasia originally domesticated the pig (Larson et al. 2005; Wu et 

al. 2007; Megens et al. 2008). It has been reported that pig domestication 

modified pig behavior, color and size (Price 1999; Diamond 2002; Fang et al. 

2009). Soon after, traditional breeding originated local breeds (Iberian) and two 

centuries ago, with the development of modern breeding practices emerged 

current commercial pig breeds for meat production, which have excellent 

performance in growth and very low amounts of fat (Hampshire, Duroc, 

Landrace, Large White and Pietrain). It is well documented that some of these 

commercial breeds have been extensively introgressed with Asian germplasm 



(Jones 1998) in order to achieve a higher prolificacy. But these practices have 

been less accentuated in China; traditional local breeding has predominated and 

therefore fewer local breeds have become extinct compared to Europe (Fang et 

al. 2005; Megens et al. 2008). As the genus Sus originated in Asia, the ancestral 

genetic pool of wild boars had higher diversity and therefore is where we can 

find more diverse pigs, which is corroborated with genetic studies (Larson et al. 

2005; Wu et al. 2007; Ramirez et al. 2009; Luetkemeier et al. 2010), whereas in 

Europe, due to a smaller population size of the founder wild boars, pig variability 

is lower. A paradigm emerges when European domesticated pigs genetic 

diversity is compared to its wild counterparts; they have same levels of 

nucleotide variability (Scandura et al. 2008; Ramirez et al. 2009). Several 

reasons could explain this phenomenon, a recent decrease in European wild boar 

populations due to hunting, genetic interchange between both sub-species 

(Porter 1993) and the recent introgression of Asian germplasm into the 

European domestic pool to create commercial improved breeds (Jones 1998). 

 

1.9 The Iberian pig  

The Iberian pig is one of the European traditional swine breeds that has not been 

subject to human modern intensive artificial selection of pig production (Lopez-

Bote 1998). Native from the Southwest Iberian Peninsula, it is a perfectly 

adapted breed to the Mediterranean ecosystem (Fabuel et al. 2004). It has been 

grown and maintained for centuries in large herds in Dehesa ecosystem, a sparse 

oak woodland with Mediterranean climate. Its distinctive look, small head, 

narrow snout, short and muscled neck, black and open hof, scarce and weak hair, 

dark skin and muscled legs, makes it resistant to hard climate temperatures and 

suitable for pasturing. It can be quickly fattened with available acorns, grass, 

small roots and bulbs (Lopez-Bote 1998). The Iberian pig breed is able to store a 

high proportion of intramuscular fat with high content of unsaturated fatty acid 

(oleic and linoleic) resulting from high acorn intake (Toro et al. 2000). These 

characteristics produce hams with unique and highly appreciated flavor. 

  

Although it has excellent maternal skills, it has low prolificacy and small number 

of functional teats (Lopez-Bote 1998). They are typically black or red coloured or 



even black spotted, depending on their origin. The Torbiscal strain was 

generated in 1963 from four different crosses involving Negro Lampiño, Retinto 

and Dourado Alentejano pig varieties (Alves et al. 2003; Clop et al. 2004), 

whereas Guadyerbas is a highly inbred strain that was derived from a small 

number of Negro Lampiño pigs in 1945 (Toro 2008).  Other Iberian strains are 

Puebla, Campanario, Ervideira and Caldeira, the two latter ones originating from 

Portugal (Clop et al. 2004). In Figure 4 are depicted some of the most emblematic 

Iberian varieties.  

 

 

 

 
 

Figure 4. Guadyerbas, Dorado-Gaditano, Manchado de Jabugo, Mamellado, 
Retinto, Negro-Entrepelado, Torbiscal and  Negro-Lampiño. 

 

In this way, these Iberian strains have emerged as a result of the mixture of 

ancestral autochthonous pig populations from the Iberian Peninsula. They have 

not been significantly introgressed with other Chinese or European breeds, 

probably due to the fact that remained geographically isolated for a long time 

span (Clop et al. 2004). At the end of the 15th century, Spanish and Portuguese 

colonizers exported the Iberian pig to South America originating the current 

Creole pig breeds (Alves et al. 2009). Red Iberian pigs imported from Portugal 

and Spain in the XIX century also contributed to the origin of the Duroc-Jersey 

breed in the United States (Alves et al. 2009). 

 



Iberian pigs suffered a strong bottleneck in 1960’s due to the outbreak of the 

African swine fever, the lowered value of animal fat and the massive introduction 

of international improved pig breeds (Fabuel et al. 2004). The old breed 

structure with differentiated varieties locally distributed is disappearing; some 

ancient varieties are either extinct or endangered (Fabuel et al. 2004). In the 

recent years, however, Iberian pig populations increased to fulfill new demand of 

its high quality curated products like Iberian ham, a true and expensive 

gourmandize. 

 

1.10 Genome-wide approaches to study selective fingerprints  

Evolutionary forces leave a characteristic fingerprint in nucleotide patterns. 

Mutation and recombination are the two main forces that generate genetic 

variability and tend to be higher in telomeres than centromeres (Nachman 2002; 

Jensen-Seaman et al. 2004). Genetic drift is accentuated when a population 

suffers a bottleneck, causing a decrease in genetic diversity. Historical events 

where the effective population size of pigs decreased are: the domestication 

process, the formation of modern breeds 200 hundred years ago, the last 

glaciation (Scandura et al. 2008), and reduction of local breeds’ production (e.g., 

Iberian pig). Migration occurs when there is a gene flow between two 

differentiated populations; it is the case of the American pig breeds formation 

(admixture of Asian and European breeds is reported in (Porter 1993; Ramirez 

et al. 2009; Souza et al. 2009) or the putative ancient gene flow between 

European wild boar and domestic pigs (Giuffra et al. 2000; Megens et al. 2008; 

Ramirez et al. 2009). But selection (natural or artificial) is the only pressure that 

leads to an adaptive change at the phenotypic level. Directional selection takes 

place when an advantageous mutation increases in frequency in a population 

removing variability with linked loci in the neighborhood (genetic hitchhiking). 

Purifying selection occurs when a deleterious mutation is removed in a 

populations leading to a loss of variability in linked loci (background selection). 

In contrast, balancing selection favors diversity maintaining heterozygote 

genotypes. 

 



Traditionally, most tests for selection have compared a specific set of 

polymorphisms within a gene region against neutral expectations. Recently, tests 

have been applied to newly available genome-wide polymorphisms data, 

representing a turning point in the study of positive selection in many species. 

Genome-wide scans for evidence of selection events use either resequencing 

data from one or more species or populations. Generally, between-species 

comparisons are used to identify older events, while population-based methods 

reveal more recent episodes of selection. In contrast to the demographic 

processes acting upon the entire ensemble of genomic diversity, natural 

selection targets primarily functional elements in specific gene regions.  

There are many different tests to detect selective pressures that act shaping 

nucleotide variability at specific regions of the genome. These methods assume 

that the selected regions display different patterns of variability than neutral 

regions. Tajima’s D (Tajima 1989), Fu&Li’s D (Fu & Li 1993), Fay&Wu’ H (Fay & 

Wu 2000) neutrality tests are based on the frequency spectrum of 

polymorphisms.  Under the neutral model, for a population at constant size at 

equilibrium, both moments estimates of the population genetic parameter theta, 

θS and θП, are expected to be equal: 

 

Where S is the number of segregating sites, n is the number of samples, i is the 

index of summation, Ne is the effective population size and μ is the mutation rate. 

But selection, demographic fluctuations and other violations of the neutral model 

will change the expected values of θS and θП, so that they are no longer expected 

to be equal. The difference in the expectations for these two variables (which can 

be positive or negative) is the crux of Tajima's D test statistic. Tajima proposed: 

D = (θП – θS) / s 

Where θS is the number of segregating sites in a sample of n sequences and θП is 

the mean pairwise difference between the sequences in the sample and s is the 

standard deviation. A significant D > 0 suggests either a recent population 

bottleneck or some form of balancing selection (excess of intermediate 



frequency alleles), whereas D < 0 suggests either population expansion or 

purifying selection (excess of low frequency alleles).  

In a similar way, Fu & Li also proposed: 

D = (θs>1 – θS1) / s’ 

Where S>1 are all segregating sites that affect more than one individual and S1 is 

the number of segregating sites that affect i individuals in the sample. Thus it 

makes a distinction between old and new mutations. In many ways it shares much 

information with Tajima’s D statistic, a negative value indicates an excess of 

singletons (which would also give a negative Tajima’s D), and a positive value 

indicates a lack of singletons (which would typically, though not necessarily, give 

a positive Tajima D). However, certain population genetic scenarios, particularly 

selective sweeps, tend to generate an excess of singletons, to which this test is 

more sensitive than Tajima’s D. 

 

Finally, Fay & Wu proposed a test, which is heavily influenced by high frequency 

derived mutations: 

H = (θП – θH) / s 

Where П is the mean pairwise difference between the sequences in the sample 

and H is sensitive to high frequency derived alleles. In this case, knowledge of the 

ancestral allele is needed, which can be facilitated by the availability of a close-

related specie. H measures departures from neutrality that are reflected in the 

difference between high-frequency and intermediate-frequency alleles. In 

contrast, D measures departures from neutrality that are reflected in the 

difference between low-frequency and intermediate frequency alleles. Thus, 

while D is sensitive to population expansion because the number of segregating 

sites responds more rapidly to changes in population size than the nucleotide 

heterozygosity, whereas population subdivision is more of a problem for H 

(Holsinger 2001-2010). As a result, combining both tests (Zeng et al. 2006) may 

allow you to distinguish population expansion/ positive selection from purifying 

selection (Holsinger 2001-2010). 

 

The HKA test (Hudson et al. 1987) uses polymorphism and divergence data from 

two or more loci. Under neutrality, the same ratio between polymorphism within 



and divergence between species in the loci under observation is expected, as 

they are proportional to mutation and drift. Otherwise, there is an indication of 

selection. The HKA test is a quite robust test to departures of the stationary 

model (e.g., demography). This model assumes there is free recombination 

between loci and no recombination within loci. Many deviations from the model, 

for example linkage between the loci or a population bottleneck in the past, 

generate correlations between the genealogies at the two loci and therefore 

reduce the variance of the test statistic, making the test conservative. 

 

McDonald & Kreitman test (McDonald & Kreitman 1991) is similar to the HKA 

test in that it compares the levels of polymorphism and divergence at two sets of 

sites. Whereas for the HKA test the two sets of sites are two different loci, the 

McDonald-Kreitman test examines sites that are interspersed: synonymous and 

nonsynonymous sites in the same locus. Because the sites are interspersed, it is 

safe to assume that the genealogies for the two are the same. The test therefore 

has four statistics; Ds, Dn, Ps and Pn, corresponding to synonymous and 

nonsynonymous divergent and polymorphic sites. The McDonald-Kreitman test 

is a very robust test, because no assumption about the shape of the genealogy is 

made. It is therefore less sensitive to the demographic histories, geographic 

structuring and non-equilibrium statuses of the populations sampled. If 

synonymous mutations are considered neutral on a priori basis, then a 

significant departure from independence in the test is an indicator of selection at 

nonsynonymous sites. An excess of substitutions can be interpreted as evidence 

of adaptive evolution, and an excess of polymorphism can be interpreted as 

evidence of purifying selection since deleterious alleles contribute to 

polymorphism but rarely contribute to divergence. 

 

Similarly, tests based on the substitution rates between nonsynonymous and 

synonymous sites consider the dN/dS ratio (number of nonsynonymous 

substitutions per nonsynonimous site divided by the number of synonymous 

substitutions per synonymous site) (Messier & Stewart 1997). dN/dS =1 is 

observed under the neutral model, dN/dS > 1 when positive selection is acting 

and dN/dS < 1 for purifying selection. Genetic variants that alter protein function 



are usually deleterious and are thus less likely to reach fixation than mutations 

that have no functional effect on the protein. Positive selection over a prolonged 

period however can increase the fixation rate of beneficial function-altering 

mutations. 

 

When geographically separate populations are subject to distinct environmental 

pressures, positive selection may change the frequency of an allele in one 

population but not in another. Relatively large differences in allele frequencies 

between populations may therefore signal a locus that has suffered selection. 

Commonly used statistics for population differentiation is the Fst (Nei 1973). 

Nevertheless, distinguishing between genuine selection and the effect of 

demographic history, especially population bottlenecks, is difficult.   

 

Both selection and population demographic history have important influences 

on the amount and patterns of genetic variation, and sometimes they act in the 

same way. Population subdivision leads an increment of intermediate frequency 

alleles, mimicking balancing selection, whereas population expansion mimics 

positive selection, since both scenarios lead to an excess of low–frequency 

alleles. This presents an important challenge in the analysis of population 

genomic data, since studies of selection should ideally incorporate the 

confounding effects of demographic history and viceversa. The standard neutral 

model assumes no population structure, constant population size and random 

mating, assumptions that are not always fulfilled and therefore, the mere 

rejection of neutrality tests does not point unambiguously to an effect of 

selection. The problem is therefore to generate the distribution of the statistic of 

interest (e.g., Tajimas’ D) under a demographic model congruent with the 

observed data. Modern approaches make intensive use of simulations methods 

and can be applied to large amounts of data generated by NGS technologies (e.g., 

ABC methods) (Li & Jakobsson 2012). These methods can easily accommodate 

different demographic scenarios like population expansions, bottlenecks or 

migration and estimate population parameters (e.g., time of divergence, effective 

population size) that best fit the hypothesized model. Then outliers in DNA 



sequence data are detected comparing the distribution of the statistic under the 

standard neutral model against the new distribution under the simulated model.  

 

In this way, genome-wide patterns of genetic variation will capture the effect of 

demography and the extreme tails of the distribution will be suggestive of 

regions under selection. But, as a recent genome resequencing data in 

Drosophila (Sella et al. 2009) argued, the aforementioned approach is not 

adequate if selection is common in the genome, which seems to be the case in 

Drosophila, a genus with large effective population sizes. Another difficulty in 

distinguishing the effects of selection and demography deals with the different 

population sizes and recombination rate in autosomes and sex chromosomes. 

The Ne for X chromosome is expected to be ¾ of that of the autosomes, and 

therefore the neutral prediction is that there is a reduced diversity in X 

chromosome. Nevertheless, under polygamy systems with biased reproductive 

skews, the X/A diversity ratio is expected to increase if just few males reproduce, 

whereas the contrary is expected if just few females reproduce (Hammer et al. 

2008). Sex-specific demographic patterns as dispersal and philopatry also 

influence this ratio, for instance if males disperse more frequently than females, 

X genetic diversity will be reduced. Also important, are population bottlenecks or 

expansions. The former lead to disproportionally reduced sex-linked variation, 

whereas the latter have the opposite effect, leading to more equal levels of sex 

chromosome and autosomal diversity (Ellegren 2009). Finally, both positive and 

purifying selection have the effect of reducing nucleotide diversity at linked sites, 

and the strength of this effect is dependent of the recombination rate. Given that 

X chromosome do not recombine in males, with the exception of the pseudo-

autosomal regions, the effect of selection becomes more pronounced because of 

linkage disequilibrium of adjacent loci. Therefore, X chromosome is expected to 

show reduced variation owing to a stronger role of selection at linked sites. The 

fact that the X chromosome is hemizygous in males means that recessive 

mutations will be exposed directly to selection, leading to a more frequent 

hitchhiking on the X chromosome (Vicoso & Charlesworth 2006). 
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The broad objective of this thesis was to characterize patterns of genetic 

variation in the Iberian pig genome in terms of SNPs and structural variants, as 

well as to characterize the pig transcriptome in terms of transcript composition 

and gene expression using parallel massive sequencing technologies (NGS). To 

do so, we used different bioinformatic tools and methodological approaches. 

More specifically, the objectives were: 

 

1. To characterize the nucleotide diversity of a putative causative gene for 

meat quality (SERPINA6) in different pig breeds and to ascertain whether 

there is evidence of a selective sweep (Chapter 3). 

 

2. To study the genome-wide patterns of nucleotide diversity in the Iberian 

breed strain, combining different methodological approaches: sequencing 

a reduced representation library, whole genome shotgun sequencing of a 

highly inbred strain (Guadyerbas) and sequencing a pool of individuals 

(Chapters 4 and 5).  

 

3. To characterize in detail the Iberian pig gonad transcriptome using RNA-

seq, and to compare it with that from Large White breed (Chapter 6).  
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Summary 

Serpin peptidase inhibitor, clade A, member 6 (SERPINA6), also known as 

corticosteroid binding globulin or CBG, is involved in obesity and stress sensitivity. 

Previous studies have reported putatively causal mutations within that gene in the 

porcine species. In order to characterize a hypothetical selective footprint, we have 

resequenced ~ 6 kb of coding and non coding fragments in 20 pigs comprising 

domestic breeds and wild boars from Asia and Europe. Nucleotide variability was 

found to be far greater within Asian pig breeds than Europe (π = 1% vs. 0.05%, 

respectively), which is consistent with the pig evolution history. The putatively causal 

amino acid substitution Gly307Arg (SNP c.919G>A) associated with meat quality (drip 

loss) was only detected in European domestic pig breeds, suggesting a very recent 

mutation that appeared after domestication in Europe. No support for positive 

selection was detected, as no reduction in levels of diversity surrounding the mutation 

was found in lean breeds with respect to wild boar. 

 

Keywords: domestication, SERPINA6, nucleotide variability, candidate gene, pig 

 

Introduction 

Understanding the forces that shape patterns of DNA variability is a major goal of 

animal population genetics. The ascertainment of these patterns is not only of 

academic interest, they are needed, e.g., to design optimum association studies for fine 

mapping or to predict the consequences of ongoing and future genomic selection 

schemes. However, and despite recent advances, this knowledge is to date relatively 

scarce except in non livestock species such as the dog. Generally speaking, livestock 

species must have undergone at least two bottlenecks (Bruford et al. 2003). The first 

one would correspond to the domestication process, circa 5 – 10 thousand years ago; 

the second major bottleneck occurred as a consequence of modern breeding and 

ensuing intense artificial selection. These two phenomena are very recent from an 

evolutive perspective, i.e., almost all extant DNA variability should predate 

domestication. Therefore, it is noticeable that the very few causal mutations that have 

been convincingly reported in the literature have appeared after domestication: RYR1, 

IGF2 and PRKAG3 in pigs (Fujii et al. 1991; Milan et al. 2000; Van Laere et al. 2003), 

Boorola in sheep (Mulsant et al. 2001) or myostatin in cattle (Grobet et al. 1997). This 



illustrates how effective artificial selection can be to increase the frequency of a 

favored allele. The resulting selection footprint must have been strong and clearly 

detectable, especially when compared to the wild ancestor or to local ‘unimproved’ 

breeds. We have indeed found such a pattern around the IGF2 mutation in the pig 

(Ojeda et al. 2008b). 

 

Among all phenotypic changes brought about by artificial selection in the pig, an 

increase in leanness is probably one of the most dramatic modifications. Among 

candidate genes in SSC7, a chromosome that has been consistently associated with 

large effect QTL, the corticosteroid binding globulin or SERPINA6 has been studied in 

detail (Ousova et al. 2004; Geverink et al. 2006; Guyonnet-Duperat et al. 2006). This 

gene is a key regulator of cortisol levels and is likely associated with obesity 

susceptibility. It belongs to the serine protease inhibitors family (van Gent et al. 

2003). In previous reports, Ousova et al (2004) and Guyonnat-Dupérat et al. (2006) 

postulated SERPINA6 as an important positional candidate for obesity in the pig and 

described a non synonymous amino acid substitution (Gly307Arg), corresponding to 

the SNP c.919G>A in exon 4, which was associated with meat quality (drip loss) and 

cortisol binding capacity in Meishan x Large White intercross population. Here, we 

characterize the nucleotide variability of SERPINA6 in a sample of pigs and wild boar 

from Asia and Europe, in order to identify putative signals of directional selection. 

 

Materials and methods 

 

Pig samples 

The SERPINA6 gene was partially resequenced in twenty pigs: three Duroc 

(DUES0304, DUUS0602, DUES0998) from Spain and USA, one Finnish Large White 

(LWFI0343), one Landrace (LRES0520) from Spain, one Tamworth from UK 

(TWGB0372), one British Lop from UK (BLGB0373), one Iberian from Guadyerbas 

strain (IBES0415), one unknown pig breed from Cabo Verde (NACV0908), one 

Vietnamese potbelly (VTES0104), one Minzhu from China (MICN0530), one Meishan 

from USA (MSUS0620), one Jianxin Black from China (JBCN0688), one Jinhua 

(JHCN0688) from China, one Huai (HUCN0692) from China, four western wild boars 

(WBES0007, WBIT0761, WBIT0781, WBTN0966) from Spain, Italy and Tunisia, and 



one from China (WBCN0698). As outgroup, we employed a Babyrousa from Madrid’s 

zoo (BBES0280).  

 

Sequencing 

All serpina genes consist of five exons and porcine SERPINA6 spans for 20 kb 

approximately (GenBank Accession: NC_010449, based on reference assembly 5). The 

regions resequenced were chosen after using Repeatmasker 

(http://www.repeatmasker.org) to avoid highly repetitive segments. Three regions 

were sequenced in six PCR reactions (Figure 1). The first region (975 bp) was 

amplified in one PCR and it covers the 5’ upstream region of the gene, containing a cis-

regulatory promoter, (Underhill & Hammond 1995; Zhao et al. 1997), exon 1 and part 

of intron 1. The second region (1021 bp) was amplified in one PCR and it covers part 

of intron 2, exon 3 and part of intron 3. The last region (3923 bp) was amplified in 4 

overlapping PCRs and it spans part of intron 3, exon 4, intron 4, exon 5 and the 3’ 

upstream region of the gene. Primers were designed using the porcine BAC of 

chromosome 7 (Sus_scrofa.Sscrofa2.43.dna.chromosome.7.fa.gz) available at 

http://www.sanger.ac.uk/Projects/S_scrofa/ . The specific coordinates of SERPINA6 

gene in assembly 9 are 123932180-123951199 

(ftp://ftp.sanger.ac.uk/pub/S_scrofa/assemblies/Ensembl_Sscrofa9/). Primers and PCR 

conditions are in supplemental Table 1. The amplified products were sequenced using 

BigDye Terminator v3.1 Ready Reaction Cycle Sequencing Kit using ABI PRISM 3730 

(Applied Biosystems).  

 

 
Figure 1 Scheme of the SERPINA6 gene and the regions resequenced. 5’UTR and 3’UTR regions are in 

white. 

 

Data analysis 

Analysis of sequences and polymorphism identification were performed with 

SeqScape v2.5 (Applied Biosystems). The nucleotide diversity index (π), Tajima’s D 



test, Fu and Li’s test, differentiation statistics Snn,  HKA test and McDonald-Kreitman 

test were obtained with DnaSP v5 (Rozas et al. 2003). To test for population 

structuring, we used the Snn test (i.e. nearest neighbour statistic) is a measure of how 

often the nearest neighbours of sequences are found in the same group (Hudson 

2000). In principle, Snn has better properties than other tests, as it performs well at 

all levels of haplotype diversity. The McDonald-Kreitman test compares the amount of 

variation within a species to the divergence between species at two types of sites, one 

of which is putatively neutral  and used as the reference (synonymous sites) to detect 

selection at the other types of sites (nonsynonymous sites). Under the null hypothesis, 

all nonsynonymous mutations are expected to be neutral and then the ratio of 

nonsynonymous to synonymous variation within species  is expected to equal the 

ratio of nonsynonymous to synonymous variation between species. However, these 

ratios will not be equal if some nonsynonymous variation is under either positive or 

negative selection (McDonald & Kreitman 1991). Phase reconstruction was 

performed using Phase v2.1.1 (Li & Stephens 2003) with default options, except that 

the program ran five times and the last iteration was 10 times longer, as the authors 

recommend. We only retained phases with posterior probability larger than 0.90. NJ 

phylogenetic trees were performed with the Kimura model of two parameters using 

Mega4.1 (Kumar et al. 2004).  

 

Results and discussion 

 

Nucleotide variability 

A total of 163 polymorphisms were detected in the 5919 bp region resequenced, i.e., 

one every 36 bp. These comprised 146 SNP (including 17 singletons) and 17 indels. 

Two SNPs were triallelic, although the third allele was found only in the outgroup. No 

polymorphisms were found at the 5’ upstream region of the gene, 20 were localized at 

exons, 135 within introns and eight at the 3’ downstream region of the gene. Five out 

of 20 coding SNP caused a non synonymous amino acid substitution (supplementary 

Table 2). The SNP c.622C>T and c.832G>A, not yet reported, correspond to the amino 

acid substitutions His208Tyr and  Gly278Arg, respectively, whereas the SNP 

c.770C>T, c.793G>A and c.919G>A were previously described by Guyonnat-Dupérat et 

al. 2006 and they cause the aminoacid changes Thr257Met, Val265Ile and Gly307Arg. 



(The last two mutations were annotated as Ile265Val and Arg307Gly by Guyonnat-

Dupérat et al. 2006; in this study, the notation was changed to Val265Ile and 

Gly307Arg following the IUPAC nomenclature recommendations in order to 

distinguish the ancestral and derived alleles). Interestingly, among the samples tested 

in this study, only domestic pigs with a European origin carried the putative causal 

mutation (c.919G>A) associated with a higher cortisol binding capacity, low cortisol 

binding affinity and drip loss (Guyonnet-Duperat et al. 2006). Moreover, the SNP 

c.793G>A related with a decrease of SERPINA6 affinity was observed only in European 

wild boars and in European domestic pigs, suggesting that this mutation appeared 

before European pig domestication but after the Asian – European lineages split. 

Nevertheless, the presence of these alleles in other populations cannot be ruled out 

given the limited number of individuals sequenced.  

 

In addition to the high number of SNP, 17 structural variants were also detected. Most 

of these variants are large indels and long homopolymer fragments located within 

intronic sequences, which complicated the sequence analysis when the sample was 

heterozygous. New sequencing primers were designed to deal with these situations. 

The LRES0520 sample, a Landrace carrying both Asian and European haplotypes, was 

the most heterozygous animal both for SNP and indels, an illustration of the Asian 

germplasm introgression to western breeds. The MICN0530 sample, a Minzhu from 

China, was also highly heterozygous, carrying specific indels found only in this breed. 

Interestingly, a 37 nucleotide long indel was found within intron 2, which in turn 

carries two SNP within the insertion. 

 

But interpreting the high number of SNP for SERPINA6 can be misleading because the 

variability is primarily found in the Asian populations (Table 1). Nucleotide diversities 

were 0.96 vs. 0.055 % for Asian and European pigs, respectively, when the highly 

heterozygous Landrace animal is excluded. Interestingly, but coherent with previous 

results (Ojeda et al. 2006; Ojeda et al. 2008a; Ojeda et al. 2008b), the European wild 

boars are extremely uniform (π = 0.036%). Variability was also very dissimilar 

according to region. The first region, containing the 5’UTR, the first exon and a short 

part of intron 1, was almost devoid of variability even in Asia (Table 2) whereas the 

remaining two regions were considerably more diverse. Although intronic nucleotide 



diversity was higher than in exons, 0.91% and 0.48%, respectively; both values are 

higher than reported in the literature (Amaral et al. 2008). In contrast, no 

polymorphism was found in the 5’UTR and π was only 0.18% at the 3’UTR.  

 

Table 1 Nucleotide variability, Tajima’s D and FuLiD statistics per population 

 

*: 0.01<P<0.05, **: 0.001<P<0.01 

         LR: sample LRES0520 

Population π (%) Tajima’s D FuLi’s D 

Asian animals 0.96 1.10    1.78** 

European animals 
0.14 (with LR) 

 
0.055 (without  LR) 

 
-2.27** 

 
         -1.05 

 

 
  -2.65* 

 
-1.7 

 

European wild boars 0.036          -1.04 -0.75 

European domestic pigs 

 
0.17(with LR) 

 
0.05 (without  LR) 

 

-2.11* 
 

          -0.88 

-2.02* 
 

-1.3 



Table 2 Nucleotide variability, Tajima’s D and Fu-Li’s D statistics per region 

 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

Population and haplotype structure 

In the light of the highly unbalanced distribution of polymorphism between Asia and 

Europe, it is not unexpected that we found significant values of Snn statistics (Table 

3). It is worth noticing that the differentiation between wild and domestic pigs was 

much smaller than between Asia and Europe, which is in agreement with mtDNA and 

microsatellite data (Scandura et al. 2008; Ramirez et al. 2009). This observation might 

be explained by either gene flow or a very recent split between populations. Although 

contributions from wild boar into European pigs appear to have occured in early 

European farming during prehistory (Larson et al. 2007), cytogenetic studies have 

shown little evidence of recent wild boar introgression into domestic pigs or vice 

versa (Ducos et al. 2008), although in the earlier stages of domestication introgression 

of wild boar seems to have been more common (Larson et al. 2007). The latter 

hypothesis may be a more plausible explanation, as domestication occurred much 

later than the European / Asia divergence, ca. 9000 years ago (Bökönyi et al. 1974) 

versus over 100,000 years (Giuffra et al. 2000; Kijas & Andersson 2001; Fang & 

Andersson 2006).  

 

Domain Length (bp) π (%) TajimaD FuLiD 

Region 1 975 0.06 -1.22 0.19 

Region 2 1021 1.3 0.68 0.87 

Region 3 3923 0.7 -0.05 1.14 

5’upstream 428 0 n.d. n.d. 

3’downstream 742 0.18 -0.82 0.63 

Exons 933 0.48 -0.33 0.68 

Introns 3816 0.91 0.25 1.11 

Total 5919 0.68 0.11 1.08 



 Table 3 Snn tests were performed comparing Asian vs European populations and 

European domestic pigs vs. European wild boars 

 

Population Region1 Region2 Region3 Total 

Asian vs European 0.5 1*** 1*** 0.96*** 

European domestic vs. European wild 0.5 0.6 0.84*** 0.96*** 

                                                                     ***: P< 0.001 

 

Using reconstructed phases, NJ trees were drawn to gain a visual appraisal of how the 

different haplotypes are arranged in regions 2 and 3 (Figure 2). Both trees were rather 

similar, and display a profound Asia / Europe split; the higher Asian variability is clearly 

apparent, although pigs from the same breed tend to cluster together. Therefore, the 

within Asian breed variability is not necessarily high, although more data is needed to 

confirm this (Megens et al. 2008). Although this conclusion is tentative, it would be 

supported by large scale genotyping using a 60k SNP in the porcine hapmap population 

(Groenen et al. 2010). Note that the Landrace individual (LRES0520) is a hybrid made up 

of an European and an Asian haplotype explained by the introgression of Asian pigs to 

Europa. Therefore, including this animal has a considerable impact on European domestic 

pig variability. As for the two non synonymous SNP described previously (Guyonnet-

Duperat et al 2006) c.793G>A (Region 2) and c.919G>A (Region 3), both are of European 

origin, although the former predates domestication and the latter was found only in 

domestic pigs, although its presence in European wild boar cannot be ruled out given the 

few animals sequenced. This second mutation (c.919G>A), associated with cortisol levels  



 
Figure 2a NJ tree of Region 2. Haplotypes carrying the nonsynonymous aminoacid change Val265Ile 

(SNP c.793G>A) are marked with a solid circle. Figure 2b NJ tree for Region 3. Haplotypes carrying the 

nonsynonimous aminoacid change Gly307Arg (SNP c.919G>A) are marked with a solid circle. Note that 

one of the LRES0520 haplotypes clusters with Asian samples. 



and meat quality, seems to be at high frequency in modern domestic pigs; interestingly, 

the only Iberian pig sequenced (IBES0415) was homozygous for the wild type allele, 

whereas a Cape Verde animal of unknown breed (NACV0908) was heterozygous. Finally, 

note that wild boar and European domestic pigs cluster tightly, particularly for region 3.  

 

Evidence for selection 

Is there any evidence for a selection footprint on porcine SERPINA6? Although 

selection operates on the genome in many ways, animal breeding practitioners are 

predominantly interested in positive selection, i.e., in finding causal mutations with a 

beneficial effect on target selection traits. These mutations are therefore expected to 

be at high frequencies in animals selected for these traits as a result of a selective 

sweep. A distinctive selection footprint is therefore a region with low variability 

surrounding the causal mutation. This pattern results typically in negative Tajima’s 

(Tajima 1989) and Fu – Li’s Ds (Fu & Li 1993). In the gene analyzed here, for the 

whole region, these tests were only negative for the European pigs (Table 1). 

However, this value is primarily caused by including the highly divergent Asian 

haplotype of the Landrace pig. Otherwise, the tests were not significant. As for region 

3, where SNP c.919G>A is located, the presence of the derived allele in the 

international breeds (Large White, Duroc and Landrace), but not in Iberian, is 

compatible with a mutation selected for in lean breeds. However, there is no evident 

decrease in variability, simply because the nucleotide variability was already very 

low, as seen by the high similarity of wild boar and domestic pig haplotypes (Figure 

2). 

 

To study whether the differences can be explained by variation under the neutral 

model, we used the HKA test (Hudson et al. 1987). We compared different regions of 

the resequenced gene (Table 4): Region 1, Region 2, Region 3, exons, introns and 3’ 

downstream region of the gene. The only cases that can not be explained by the 

neutral model are those involving Region 1 vs. the rest: Region 1 versus Region 2 (χ 2 

= 4.22, P = 0.04), Region 1 versus Region 3 (χ2 = 4.32, P = 0.04) and Region 1 versus 

introns (χ 2 = 4.24, P=0.04). Moreover, the maximum significance was found when 

comparing the promoter vs. the coding regions (P<0.01). It should be recalled that the 

HKA test assumes unlinked regions; when they are linked, as here, the test becomes 



over conservative. A significant test in the case of linkage becomes more credible than 

when unlinked regions are tested. Although all evolutionary tests have caveats, it is 

also relevant to mention that the identity percentage in the promoter between pig vs 

human and pig vs rat was 77% and 75%, respectively. In contrast, the identities 

between proteins were 65% and 56% between pig and human, and pig and rat. It 

seems plausible therefore that the promoter has been more evolutionarily 

constrained than the aminoacid sequence.  

 

Table 4. Results of the HKA test 

 

 
Region 

 
χ2 (Pvalue) 

Region 1 vs Region 2 4.22 (0.04)* 

Region 1 vs Region 3 4.32 (0.04)* 

Region 2 vs Region 3 0.06 (0.81) 

Promoter vs. Coding region   6.83 (<0.01)** 

Exons vs. Introns 1.82 (0.18) 

3’downstream vs. Introns 0.62 (0.62) 

                                                      *: 0.01<P<0.05, **:0.001<P<0.01 

The comparison between the number of synonymous  and nonsynonymous mutations 

can suggest whether, at the molecular level, natural selection is acting to promote the 

fixation of advantageous mutations (positive selection) or to remove deleterious 

mutations (purifying selection). We found 8 synonymous mutations and 5 

nonsynonymous mutations; the corresponding πa/πs ratio was 0.16. A ratio lower than 1 

is in agreement with the fact that most protein-coding genes are considered to be under 

the effect of purifying selection. Indeed, the majority of observed mutations are 

synonymous and do not affect the integrity of the encoded proteins. As a result, the 

number of synonymous mutations generally exceeds the number of nonsynonymous 

mutations. A MacDonald and Kreitman test was performed between the Sus scrofa 

samples and Babyrousa and was no significant.  



Conclusion  

Porcine SERPINA6 is a highly polymorphic gene in the porcine species, except for exon 1 

and the 5’upstream region. A majority of this variability is harbored by the Asian rather 

than the European populations (Table 1), which is agreement with other loci such as 

mtDNA (Larson et al. 2005; Fang and Andersson 2006). Occasionally, a highly 

heterozygous European animal like Landrace LRES0520 pig here has two highly 

divergent haplotypes as a result of Asian germplasm introgression. Also in agreement 

with an old divergence between Asian and European wild boars, a deep split is evident 

between Asian and European haplotypes (Figure 2).   

 

Prior work (Ousova et al. 2004; Guyonnet-Duperat et al. 2006) suggested that 

SERPINA6 contained causal mutations for obesity and growth related traits, 

specifically the SNP c.919G>A in exon 4. Our work aimed at detecting a selection 

footprint, i.e., a selective sweep signature.  We found that the derived allele, which 

results in the Arg codon, is present only in European haplotypes and seemingly at 

high frequency. We did not find the mutation neither in Iberian nor in wild boar, 

although we cannot rule out that its presence in these populations because only one 

Iberian and a few wild boars were sequenced.  None of the classical tests (Tajima’s D 

or Fu-Li’s D) were significant and overall there is not a clear evidence of a selective 

sweep. It is possible that the strong associated effect reported by Guyonnet-Dupérat 

et al. could be due to stratification because the association was reported in a synthetic 

Sino European line. As the Asian animals have the ancestral allele and are obese 

whereas the European animals have the derived allele and are lean, it is possible that 

the significant effect is spuriously caused by strong linkage disequilibrium between a 

nearby mutation(s) and the mixed background. Our data provide support instead for a 

constraint on proximal 5’ regulatory motifs in SERPINA6 (Table 4), a constraint that 

appears also when comparing sequences between pig, human and mouse. 
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Abstract 

Despite dramatic reduction in sequencing costs with the advent of next generation 

sequencing technologies, obtaining a complete mammalian genome sequence at 

sufficient depth is still costly. An alternative is partial sequencing. Here we have 

sequenced a reduced representation library of an Iberian sow from the Guadyerbas 

strain, a highly inbred strain that has been used in numerous QTL studies because of 

its extreme phenotypic characteristics. Using the Illumina Genome Analyzer II, we 

resequenced ~ 1% of the genome with average 4× depth, identifying 68,778 

polymorphisms. Of these, 55,457 were putative fixed differences with respect to the 

assembly, based on the genome of a Duroc pig, and 13,321 were heterozygous 

positions within Guadyerbas. Despite being highly inbred, the estimate of 

heterozygosity within Guadyerbas was ~ 0.78 / kb in autosomes, after correcting for 

low depth. Nucleotide variability was consistently higher at the telomeric regions 

than on the rest of the chromosome, likely a result of increased recombination rates. 

Further, variability was 50% lower in the X-chromosome than in autosomes, which 

may be explained by a recent bottleneck or by selection. We divided the whole 

genome in 500 kb windows and we analyzed over represented gene ontology terms 

in regions of low and high variability. Multi organism process, pigmentation and cell 

killing were overrepresented in high variability regions and metabolic process 

ontology, within low variability regions. Further, a genome wide Hudson-Kreitman-

Aguadé test was carried out per window; overall, variability was in agreement with 

neutral expectations. Data accession: SRP005367. 

Keywords: Iberian Pig, Next Generation Sequencing, Nucleotide Diversity, Pig.  

 

Introduction  

By slashing the sequence costs with respect to Sanger sequencing, recent massive 

parallel sequencing technologies (NGS) have democratized genomics research 

(Metzker, 2010). With an increasing portfolio of applications ranging from complete 



genome sequencing to transcriptome sequencing (RNAseq) or metagenomics, NGS 

has revolutionized biology.  

Nevertheless, sequencing a complete mammalian genome at reasonable depth is still 

expensive. As an alternative, a genome may be sequenced partially. Ideally, a 

targeted partial resequencing, e.g., exome resequencing, would be the preferred 

choice (Ng et al. 2009); yet, sequence capture is also very expensive and not 100% 

effective; their overall cost effectiveness is therefore questionable. A feasible 

alternative is partial shotgun sequencing. In this spirit, resequencing reduced 

representation libraries (RRL) is a proven cost effective strategy (Van Tassell et al. 

2008). Initially, this approach was proposed to identify massively single nucleotide 

polymorphisms (SNPs) when applied to pool resequencing (Van Tassell et al. 2008). 

Several groups have already shown in livestock, including pigs, how several 

hundreds of thousands of SNPs can be identified using that approach (Ramos et al. 

2009).  

Nevertheless, sequencing pools has a number of disadvantages for inferring genetic 

parameters like nucleotide diversity – it is biased against singletons – or linkage 

disequilibrium, the haplotype is basically lost (Cutler & Jensen 2010). Here, we 

decided to sequence a RRL of a single individual rather than a pool in order to gain 

more in depth knowledge on a very peculiar Iberian pig strain and to complement 

the extant RRL pools in porcine (Ramos et al. 2009). To facilitate comparison with 

current data, we used one of the protocols employed previously in the pig (Ramos et 

al. 2009).  

The sequenced pig was a sow from the Iberian strain Guadyerbas. This is an obese, 

black, hairless and early-maturing Iberian strain. It represents one of the most 

ancient surviving Iberian lines, with no evidence of introgression of Asian genes, 

that has remained isolated since 1945 in a closed herd, El Dehesón del Encinar, 

located in Toledo, central Spain (Toro et al. 2000). A relevant aspect is that the 

complete pedigree since the founding of the herd is known, including that of the 

individual sequenced. Furthermore it has been used in several QTL experiments, 



including F2 crosses with Landrace (Pérez-Enciso et al. 2000) and Meishan (Noguera 

et al. 2009). Performance characteristics compared to a lean international breed, 

Landrace, have been also reported (Serra et al. 1998).  

Here, we present the analysis of a single Guadyerbas sow RRL sequence dataset 

obtained with short read technology (Genome Analyzer II, Illumina). Despite the fact 

that only about 1% of the genome was sequenced, we present results that are 

relevant from the species perspective and that can have important implications for 

animal breeding. 

Material and Methods 

Material 

The Guadyerbas herd was founded with four boars and ten sows in 1945, and has 

been maintained with controlled pedigree and minimum co-ancestry mating 

practices in order to minimize increase in inbreeding (Odriozola 1976). Despite this, 

and because of isolation and small number of breeding animals, average inbreeding 

coefficient F is very high for all surviving pigs. In the specific female sequenced, 

autosomal F was ~ 0.39 and ~ 0.46 for sex chromosome X. These inbreeding 

coefficients were obtained via a forward simulation program taking into account the 

whole pedigree since 1945. A comprehensive genealogical study of this herd has 

been presented elsewhere (Toro et al. 2000). 

 

RRL preparation and sequencing 

To generate the sequencing library, we used 3.4 μg of genomic pig dsDNA, 

quantified with PicoGreen, and digested with 10U of the blunt cutting restriction 

endonuclease HaeIII. The DNA was processed with the Illumina genomic sample 

preparation kit. Briefly, blunt-ended fragments were A-tailed using the Klenow exo 

enzyme provided in the Illumina kit, followed by ligation of double-stranded 

adapters. The adapters were generated by annealing of oligonucleotides A 5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T -

3’ where * denotes a phosphorothioate bond and oligonucleotide B 5’ P-



GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG

-3’ (Sigma). A 5 x adapter mix in water with a final concentration of 20 M of each 

oligonucleotide was prepared in a thermocycler by heating to 65ºC for 5 min and 

cooling to 20ºC with a ramp of 0.1ºC/sec. According to the Illumina protocol, 

adapter ligation is followed by size selection of the ligation products and a PCR step, 

which results in library enrichment and at the same time introduces sequences 

required for the in situ bridge PCR amplification in the Illumina flow cell. We 

modified the procedure such that we used adapters that already included the 

sequences necessary for amplification in the flow cell, as well as for sequencing 

primer binding, and skipped the enrichment PCR step. Such a strategy is 

advantageous, because errors introduced in the enrichment PCR step can confound 

SNP identification, in cases where molecules with the same PCR error are sequenced 

multiple times. Also, omission of enrichment PCR minimizes coverage biases that 

result from GC content imbalances of the sequenced target (Dohm et al. 2008; 

Kozarewa et al. 2009). We carried out the adapter ligation as described in the 

Illumina genomic sample preparation kit protocol, i.e. in a volume of 50 ul with 

10,000 units of T4 DNA ligase (New England Biolabs) in 1 x quick ligation buffer (66 

mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol, 1 mM ATP, 7.5% polyethylene 

glycol, pH 7.6) at 25°C for 15 min. Thereafter, we purified the sample with a 

QIAquick column (Qiagen), eluted in 30 μl of 1 x TE and performed size selection on 

a 6% polyacrylamide gel.  The gel area corresponding to the final size of the library 

including adapters (300-325 bp; library insert size of 200 +/- 10 bp) was excised. 

The DNA was eluted by crushing the gel slice and incubation in 1 x elution buffer 

(500 mM ammonium acetate, 0.1% SDS, 0.1 mM EDTA) for 2 hours at room 

temperature with gentle agitation. We separated the crushed polyacrylamide from 

the eluted DNA by using a cellulose acetate column (SpinX) and then precipitated 

the DNA by addition of 0.1 volumes of 3M sodium acetate pH 5.2 and 2.5 volumes of 

ice-cold absolute ethanol and spinning at 13200 rpm for 20 min. After washing with 

70% ethanol and drying in a SpeedVac centrifuge for 5 min, we resuspended the 

DNA pellet in 15 μl 1 x TE. The concentration of the library was determined by 

TaqMan PCR (Quail et al. 2008). 



We loaded the library into three Illumina flow cell lanes at a concentration of 5 pM 

(one lane) and 8 pM (two lanes), and sequencing on the Illumina Genome Analyzer 

II was carried out with 50 and 40 cycle recipes, respectively. The image data were 

processed using the Illumina pipeline 1.3.2. From the three runs, a total of 25.3 

million base called reads were obtained. Sequences have been deposited in 

sequence read archive (SRA accession SRP005367). 

 

Bioinformatic analysis 

Reads were trimmed to 40 bp due to low 3’ end quality. We discarded reads 

containing Ns, homopolymers longer than 17 nucleotides, an average minimum 

phred quality smaller than 20 and reads that did not start with a CC motif (HaeIII 

cuts at ‘GGCC’ motif). Reads were filtered using custom Perl scripts. We aligned the 

remaining sequences against the reference porcine genome assembly 9 

(ftp://ftp.sanger.ac.uk/pub/S_scrofa/assemblies/Ensembl_Sscrofa9/) with GEM 

(http://sourceforge.net/apps/mediawiki/gemlibrary/index.php?title=The_GEM_lib

rary), MAQ (Li et al. 2008) and Mosaik 

(http://bioinformatics.bc.edu/marthlab/Mosaik) retaining for variant calling only 

those reads that mapped unambiguously. We identified SNPs with GEM, MAQ and 

GigaBayes (Quinlan et al. 2008). Data were visualized with Eagleview (Huang & 

Marth 2008).  

 

When mapping the filtered reads with GEM, we used default options except for the 

mismatches allowed in each read to the reference genome (4 mismatches were 

allowed). In the MAQ assembly, we also allowed a maximum of 4 mismatches for a 

read to be used in consensus calling and the minimum mapping quality was set to 

10. When filtering the SNPs, the minimum consensus quality and adjacent consensus 

quality was 10. In all softwares, the minimum depth to call a SNP was 3× and the 

maximum, 20×.  In MosaikAligner we used a hash size of 20, with 4 mismatches 

allowed, the alignment candidate threshold was 20, the maximum number of hash 

positions to be used per seed was 100, the alignment mode was set to unique and 

the alignment algorithm was ‘all’. The minimum posterior probability threshold for 



reporting a polymorphism candidate was set to 0.9 in Gigabayes. We classified the 

SNPs into two classes, fixed (F) when the differences were between the assembly 

and the Iberian reads, and segregating (S) when the Iberian pig was heterozygous. 

For a heterozygous SNPs to be called, the minimum non reference allele count 

should be > 20% with a minimum count of 2.   

 

Statistical and genetics analysis 

As emphasized by several authors (Hellmann et al. 2008; Lynch 2008; Jiang et al. 

2009), estimating nucleotide diversity from NGS data requires specific methods to 

account for unequal depth along the genome and sequencing and assembly errors. 

Here, we are interested in estimating the heterozygosity h for each window. For 

multiple individuals, two different estimators have been proposed by Hellmann et 

al. (2008) and by Jiang et al. (2009). However, in the case of a single individual, both 

estimators coincide with the estimator of Lynch (2008) and correspond to the 

Maximum Composite Likelihood Estimator (MCLE) for h. If the mating is random 

and the population is in Hardy-Weinberg equilibrium, this is also a MCLE for the 

variability θ of the population. In the absence of sequencing and mapping errors, the 

formula for the unbiased MCLE for h is: 
 

∞         (1) 

 

where S is the number of heterozygous sites detected in the window, L(nr) is the 

number of bases with depth nr in the window and P*(S|nr) is the probability that a 

heterozygous site is detected when the read depth at that site is nr. The analytical 

expression is P*(S|nr) = 1 – 2-(nr-1) (Hellmann et al. 2008; Lynch 2008; Jiang et al. 

2009). In case of sequencing errors, if the error rate or the SNP qualities are known 

and the error rate is not too large, the estimator can be corrected simply by 

subtracting the average number of false SNPs from S. Although sequencing errors 

can in principle be estimated from the data at hand (Lynch, 2008), this could induce 

some extra noise in the estimator and, more importantly, it is difficult to allow for 



errors in the assembly, a potentially much larger distortion factor than sequencing 

errors.  

 

Here, we decided to follow a compromise to minimize assembly errors but not being 

too strict in order not to discard many potentially true SNPs: we considered only the 

SNPs that had been called by at least two softwares, MAQ, Gigabayes or Gem, and 

only with depth between 3 and 20. A similar approach has been recently followed in 

the 1000 genomes project, where the SNPs called were a consensus between 

different algorithms (Durbin et al. 2010). In addition, we requested that the non 

reference allele is present in at least two reads and a minimum allele count ≥ 20% 

among all reads covering that position. Therefore, we applied eq. (1) using those 

SNPs called by two of the three softwares and summing between nr = 3 and 20. 

Therefore, equation (1) needs to be modified: 

 

 ,        (2) 

 

where  

 

,                                         (3) 

 

with na = max(2, 0.2 nr) being the minimum number of non reference allele reads 

requested and nb, the minimum number of reference allele reads. The above 

formulae stems from the restriction we set, for instance, for nr = 3, the only way a 

true SNP is called is the probability that exactly two reads belong to the alternative 

allele and one, to the reference allele, i.e., a binomial with p = 0.5, n = 3 and two 

successes or  = 0.375. Note as well that Lynch’s and similar corrections do 

differ from (3) when nr is small, P*(S|nr=3) = 0.75 vs. P(S|nr=3) = 0.375, whereas 

P*(S|nr=10) = 0.998 vs. P(S|nr=10) = 0.988.  

 



As is clear from eq. (3), the raw number of true heterozygous sites is 

underestimated from simply counting S. The contrary occurs with the number of 

fixed differences (F) because a fixed difference can actually be a segregating SNP, 

and because in the assembly no heterozygous positions are allowed: only one of the 

two alleles is reported. Here, we estimated  

 

,         (4) 

 

and,  

 

      (5) 

 

In (4) the estimate is negative when no fixed difference has been observed, in those 

cases the estimator was truncated to 0. We computed the average number of SNPs, 

 and , along non - overlapping contiguous 500 kb windows.  

 

We also obtained Hudson – Kreitman – Aguadé (HKA) diversity (θHKA) estimates 

(Hudson et al. 1987). Briefly, HKA method tests whether there is a deviation 

between observed and expected number of polymorphisms, where the expected 

polymorphism is obtained from the divergence between an outgroup and the 

population studied. The HKA statistic for locus (i.e., window) i is:  

 

       

                     (6)  

 

and the multilocus HKA test is 
i

2   iH ,  with degrees of freedom equal to the 

number of loci and where the sum is across the i-th loci (here, the windows of 0.5 

Mb length). We applied the test separately for autosomes and chromosome X. The 

expected values are 
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with approximate variances Var(•) = E(•)  [1 + E(•)]. The HKA procedure is 

primarily devised to compare two species, whereas here we considered the 

reference assembly (a Duroc pig) as outgroup. Therefore, the power of HKA should 

be relatively low but can provide a rule of thumb as to which are the most extreme 

windows in terms of variability. 

 

We also developed a Monte Carlo procedure to infer genetic parameters in a more 

general framework. Given that a single individual was sequenced, we do not intend 

to provide accurate inferences but rather to show, as a proof of principle, how 

genome wide data of the kind obtained here can be used to make inferences on 

demographic history. Suppose the simplest possible model to characterize the 

Iberian – Duroc breed history, i.e., an ancestral population of size N that τ 

generations ago split into the two breeds, which may have occasionally 

interchanged individuals from Iberian into Duroc at a rate m (Figure 1). The 

procedure consisted of simulating the number of fixed and segregating SNPs 

according to this model and choosing the set of parameters that produced the best 

fit with the observed data. For given values of NIB (Iberian Ne), NDU (Duroc Ne), m, 

and τ , we simulated 500 kb windows by coalescence using MaCS (Chen et al. 2009) 

of one Duroc individual and 14 Iberian animals, 30 sequences in total. Next, as the 



complete pedigree from the 14 founder individuals of the herd is known, we 

simulated by gene dropping the genome window of the Iberian pig sequenced, 

according to the known pedigree. Finally, we extracted the same number of 

fragments and number of base pairs as actually sequenced from the simulated 

window. We counted the number of fixed and segregating SNPs per window, and we 

repeated the process for each of the 4363 windows obtained in the real data. For the 

Duroc assembly, we randomly sampled an allele in the simulated Duroc sequences. 

Finally, we obtained the observed and simulated HKA theta estimator described 

above ( î ) for each i-th window; as measure of goodness of fit we used the Wilcoxon 

ranked signed test across windows. We did a grid search using this procedure for 

different values of NIB, NDU, m, and τ; assuming a true θ = 0.0013 for the autosomes 

and θ = 0.0005 for the X chromosome, and ρ, scaled recombination rate, 0.001. 

These values are taken from the literature (Ojeda et al. 2006; Amaral et al. 2009b). 

The whole procedure was implemented in a Perl script with calls to MaCS and R. 

 

 

Figure 1: Simulated isolation with migration model that represents the Iberian / Duroc history (the 

public assembly pertains to a Duroc sow). The Duroc and Iberian populations descend from an 

ancestral population harboring a nucleotide diversity θ = 4Neμ; after the split τ generations ago, both 

breeds of effective sizes NDU and NIB may have interchanged individuals with rate m. A mixed 

coalescence and gene dropping procedure was employed.  

 



Gene ontologies (GO) 

We ranked the 500 kb windows according to estimated heterozygosity and we 

selected the most extreme windows to test whether genes within the windows were 

enriched in particular ontologies. GO were downloaded using Biomart 

(www.biomart.org). Our Goslim (http://www.geneontology.org/GO.slims.shtml) 

was composed of twenty three parental pig GO extracted from 

http://amigo.geneontology.org/cgi-bin/amigo/go.cgi. After filtering for biological 

process, we selected the following GO: biological regulation, cellular process, 

metabolic process, multicellular organismal process, developmental process, 

signaling, localization, response to stimulus, immune system process, cellular 

component organization, reproduction, biological adhesion, cellular component 

biogenesis, death, locomotion, multi-organism process, growth, pigmentation, 

rhythmic process, viral reproduction and cell killing. Gene ontologies statistics were 

calculated using the GOquick browser (www.ebi.ac.uk/QuickGO/). Expected and 

observed GO percentages were contrasted with a Fisher’s exact test as implemented 

in R. To test enrichment of specific ontologies, we simply computed a two sided t-

test assuming a normal distribution for number of counts. 

 

Results 

Alignment and polymorphism detection 

Out of three Genome Analyzer II lanes, we obtained ~ 25.3 million reads. After 

filtering and removing ambiguous matching reads, i.e., reads matching the reference 

more than once, we retained five million reads for further analysis (Figure 2).  

 



 

 

Figure 2. Bioinformatics pipeline. 

 

The total length assembled was approximately 2.3 Gb. The reads spanned 83.1 Mb of 

the porcine assembly v. 9 with at least one read, and 25.1 Mb with at least three 

reads and a maximum depth of 20. The average depth, counting only regions with 

read depth between 3 and 20 was 4 . All chromosomes were uniformly covered and 

we did not notice biases regarding read distribution within chromosomes 

(Supplementary File S1). Only four out of the 4363 windows were not covered by 

any read. The RRL was also unbiased with respect to depth of coding vs. non coding 

regions, 4.08  and 4.07  respectively. Table 1 shows relevant statistics per 

chromosome. 

 

 

 

 

 

 



Table 1: Statistics per chromosome 
 
 
Chrom. 

Total 
assembled 
≥3× (Mb) 

Average 
coverage 
(3-20×) 

S1 F2 
 
3 

 
 

SSC1 2.45 3.97 842 5,023 0.48 1.51 
SSC2 1.95 4.00 1,334 4,363 1.11 1.88 
SSC3 1.90 4.01 1,517 3,519 1.15 1.48 
SSC4 1.34 3.98 971 3,027 0.95 1.73 
SSC5 1.05 3.96 639 2,685 1.09 2.11 
SSC6 2.21 4.01 895 4,890 0.58 1.85 
SSC7 1.68 3.97 471 4,509 0.60 2.49 
SSC8 0.91 3.96 485 2,197 0.73 2.15 
SSC9 1.33 3.96 823 3,142 0.77 1.85 
SSC10 0.69 3.97 438 1,822 1.08 2.42 
SSC11 0.66 3.95 406 1,770 0.95 2.44 
SSC12 1.16 3.99 782 2,520 1.06 1.67 
SSC13 1.40 3.96 614 2,618 0.63 1.58 
SSC14 2.06 3.98 837 4,512 0.57 2.10 
SSC15 1.05 4.01 653 2,607 0.67 1.77 
SSC16 0.67 3.97 419 1,636 0.81 2.27 
SSC17 0.87 3.99 528 1,960 0.99 2.38 
SSC18 0.66 3.96 370 1,396 1.10 1.57 
SSCX 1.03 4.01 297 1,261 0.37 0.92 
Total 
autosomes 24.02 3.98 13.024 54.196 0.78 1.89 

 
1 Number of heterozygous sites, raw numbers 
2 Number of fixed differences, raw numbers 
3 Average estimated heterozygosity within Iberian per kb 
4 Average estimated number of differences between Iberian and assembly per kb 
 
SNPs were called with three different programs. The number of variants called by 

each software differed: MAQ was the most conservative and GEM, the most liberal. 

The latter can be explained by the fact that it does not use sequence qualities to 

filter the alignments and the SNP calls. Overall, the discrepancy between the 

programs decreased with depth. The average depth of the SNPs detected with at 

least two programs was 4.5  and of those detected with the three programs, 6.5 . 

Using the SNPs called by at least two programs, a total of 68,778 SNPs were 

identified, equivalent to an average 2.7 SNPs / kb sequenced. Main variability 



statistics by window are in Supplementary File S2, together with a summary of 

variability within intergenic, intronic, CDS and UTR regions. 

Variability distribution and population genetics inference 

To gain further insight into the variability distribution, using equations 4 and 5, we 

plotted the Iberian average heterozygosity ( ) and average fixed differences 

between the assembly and Iberian  in non-overlapping 

contiguous windows of 500 kb. Genome wide results are in supplementary Figure 

S3, whereas Figure 3 shows the lowess adjusted curves results in chromosomes 

SSC4 and SSCX. A trend of increasing variability in  toward the telomeres is clearly 

visible in SSC4; this pattern also exists in but is less apparent because the scale is 

too coarse. This can also be seen in the sex chromosome, although less markedly 

than in autosomes because of an overall lower level of variability. Note that this is 

not caused by differences in depth, which is fairly uniform along the chromosome 

(Supplementary figure S1).  The average nucleotide diversity θHKA was 1.7 × 10-3 in 

the 5% most extreme telomeric windows, much higher than the value found in the 

10% of windows surrounding the centromere: 5.4 × 10-4. These figures correspond 

to the average over all chromosomes, except acrocentric chromosomes, i.e., SSC13 – 

SSC18. Excluding SSC7, which harbors the highly polymorphic SLA region near the 

centromere, the statistics are 1.7 × 10-3 vs. 4.9 × 10-4 for telomeric and centromeric 

regions, respectively.  

 



 

 

Figure 3:  Lowess adjusted curves of variability in chromosomes 4, 7, 14 and X. An increased 

variability is observed towards the telomeres in metacentric chromosomes 4 and X, whereas the 

ratio is distorted in SSC7 because of high SLA variability near window 50; SSC14 is acrocentric. Solid 

red line, Iberian heterozygosity ( ); dashed black line, Iberian – Duroc heterozygosity ( ). Position 

refers to window number.  

 

The average SNP rates per base pair for chromosome X were  = 9.2 × 10-4 and  = 

3.7 × 10-4. Interestingly, these values are ~ 50% lower than those of the autosomes 

1.9 × 10-3 ( ) and 7.8 × 10-4 ( ), whereas the expected ratio is 75% under a 

stationary neutral model, because the effective population size of the X chromosome 

is ¾ that of the autosomes. 

 

Next, we computed the HKA test to examine whether the observed pattern departs 

from what is expected under the stationary neutral model. The estimated 

divergence, when measured in twice effective size (2Ne) units, was ~ 1.3 both for 

autosomes and the X-chromosome. In contrast, the weighted nucleotide diversity 

θHKA was 8.0×10-4 and 3.8×10-4 in autosomes and in X-chromosome, respectively 

(Table 2). These values are in complete agreement with those from the simple 

heterozygosity estimates  (Table 1). Again, the HKA estimate also indicates a much 



lower variability at the X chromosome than expected, relative to the autosomes. The 

plot in Supplementary File S4 shows that, genomewide, there were no wide 

departures from neutrality, neither for autosomes nor for X chromosome, according 

to this test.  

 

Table 2: HKA statistics 

 Divergence 
(2N units) θHKA per kb 

Autosomes 1.32 0.80 

SSCX 1.45 0.38 

 
We applied the model in Figure 1 to adjust demographic parameters in the Iberian 

lineage using the stochastic method described above. We estimated the set of 

parameters by minimizing the distance, in a signed rank test, between simulated 

and observed HKA statistics for each 500 kb window. We did that separately for 

autosomes and the sex chromosome. The analyses discarded a migration (m = 0) 

between breeds and suggested an effective size of Iberian ~ 20% that of the 

ancestral population, assuming an initial θ = 0.0013 and θ = 0.0005 for autosomes 

and sex chromosome, respectively. As shown in Figure 4, the fitted parameters 

adjusted the observed values for the Chi-2 statistics quite well for the autosomal 

windows, whereas fit was less good for SSCX windows. 

 

 

 



  
Figure 4. Histograms comparing observed (black bars) and simulated (grey bars) HKA statistics 

across autosomal and sex chromosome windows. The simulated results correspond to parameter 

values that minimized the Wilcoxon statistics. 

 

Outlier regions and their annotation 

As results in Supplementary File S4 suggest, the genome-wide pattern of nucleotide 

variability was approximately neutral, according to the HKA test. Certainly, not the 

whole genome evolves according to the standard neutral model and the apparent 

neutrality may simply mean lack of power or too large windows that may mask 

highly local selective events. To complement the analyses, we next focused on 

extreme windows for low or high heterozygosity ( ). A large number of windows 

(1820) turned out to be devoid of any heterozygous SNP. Therefore, we selected 

those 81 windows with at least 10.1 kb assembled and having at least one fixed 

difference; 19 and 17 of the windows were located in chromosomes 6 and 7, 

respectively (Supplementary File S2). The expected number of windows for those 

chromosomes, according to its size, is about five and the over representation is 

highly significant (P < 10-7). In SSC6 in particular, 10 windows were almost 

contiguous, spanning windows 92 – 115, the average heterozygosity of this whole 

interval was 10-4 or six times lower than average genome wide. Further, although 

chromosomes 6 and 7 present lower than average heterozygosities, they are not 

outliers: chromosomes 1, 13 or 14 have comparable heterozygosities (Table 1). Also 



in contrast to what would be predicted, only three windows were located in 

chromosome X (five are expected).  

 

We also considered the most extreme windows in terms of heterozygosity. A 

problem with the interpretation of these windows is that a large variability can be 

distorted by possible misalignments. Although we minimized this risk by 

considering SNPs called by several aligners, we retained, from the 100 windows 

with maximum heterozygosity, those with over a kb assembled and whose  was 

below the median. Therefore we ensured that, whereas  was extreme, was not. 

We found 31 such windows (Supplementary File S2). In this case, no dramatic 

departures in the number of windows by chromosome were observed. 

 

To gain further biological insight, we studied Gene Ontology enrichment of genes 

located in the windows with extreme values of nucleotide diversity. We looked for 

over-represented gene ontologies of genes in these windows with respect to overall 

GO frequencies among all sequenced genes. The observed and expected results are 

in Figure 5. Among the high variability windows we found that GO categories multi 

organism process (P = 10-5), pigmentation (P < 10-12) and cell killing (P < 10-13) were 

overrepresented. In general, genes related with defense (RAB27A, NCF1) and 

olfactory receptors were among the high variability windows, as could be expected. 

We only found the generic metabolic process (P < 10-10) and apoptosis (P = 0.05) GO 

as over represented among genes located within low variability windows. In 

chromosome 6, several of the genes are involved in carbohydrate metabolism 

(FUT1, FUT2, BAX, GYS1, CA11), oxidoreductase activity (DHDH, PGD, MTHFR). 

Among those in SSC7, protein folding (HSP90AB1, HSP90AA1, DNAJA4). All in all, 

there was not a clear metabolic route over represented. The results simply suggest 

that these genes exhibit lower than expected variability, be it because of specific 

selection in livestock or because other biological constraints. More data is required 

to ascertain the precise cause. 



 
Figure 5: Expected and observed gene ontology counts among genes located in high and low 

variability windows. Bars with asterisk * are significant (P < 0.001) overrepresented gene ontologies. 

Discussion  

We have presented the first re-sequencing effort of the Iberian pig breed, the most 

emblematic pig breed in the Mediterranean area and one of the most important 

porcine local varieties in economic terms worldwide. The pig sequenced belongs to 



a peculiar Iberian strain with unique phenotypic characteristics that has been used 

in multiple QTL experiments (Pérez-Enciso et al. 2000; Noguera et al. 2009). For 

reasons stated in the introduction, we chose to use RRL in a single individual. 

Although the RRL is a cost effective alternative to targeted sequencing, it has 

drawbacks also. It is basically a shotgun approach where potential regions of 

interest may not be covered.  The easiest way to improve RRL would be to digest in 

silico with different enzymes and compare different band lengths such that the 

coverage of targeted regions is maximized. In the case of porcine species, this 

strategy is risky because the sequence is incomplete and even assembly is still under 

development. Besides,(Amaral et al. 2009b) found that the correspondence between 

theoretical and observed sequences is not perfect, likely because band excision is 

not absolutely precise.  

 

In this work, we have primarily focused on the distribution of nucleotide diversity. 

We found a global autosomal Iberian heterozygosity rate of  = 0.78 × 10-3 per 

nucleotide (Table 1). This value is much larger than the naïve estimator of simply 

dividing the number of SNPs by the length assembled, and illustrates the need of 

applying specific statistic tools with genome wide NGS data, especially at low depth 

(Lynch 2008; Haubold et al. 2010). Assuming a mutation rate μ of 10-8, this results in 

an estimate of effective size Ne =  / 4 μ ~ 2×104. This value is quite high, especially 

considering that this is a highly inbred animal. It suggests that the actual effective 

size in the founder herd might be actually double, given that inbreeding coefficient 

of the sequenced animal is 0.39 approximately. When correcting for inbreeding, this 

diversity is comparable to that reported in other porcine species (Amaral et al. 

2009a; Amaral et al. 2009b) or in humans.  

 

Both chromosomes 6 and 7 were enriched in windows of low variability 

(Supplementary File 2). The case of SSC6 is noticeable because a long stretch of ~ 12 

Mb (windows 92 – 115) was almost devoid of any SNP within Guadyerbas  = 1.4 × 

10-4, the average number of differences was, nonetheless, close to the genome wide 



mean (  = 1.7 × 10-3). Certainly, a reason for long stretches without polymorphisms 

is the high inbreeding of the sequenced animal. To test that, we ran a forward 

simulation algorithm using the true pedigree of the animal since the founder herd. 

Assuming an equivalence of 1 cM ~ 1 Mb, the expected size of an identical by 

descent fragment (IBD) is ~ 2.6 Mb (SD, 3.2), the probability of having an IBD 

fragment is the inbreeding coefficient (0.39 for autosomes). The probability of a 

fragment of 12 Mb being IBD in the sequenced animal is 6×10-3 or 0.02 if 

recombination rate is lower, 1 cM ~ 1.5 Mb. Therefore, although the event is 

unlikely, it is not impossible when the whole genome is considered. But, given that 

this region is the lowest extreme in nucleotide variability, we can speculate that a 

selective sweep, if occurred, was previous to the herd founding. In a previous 

intercross between Guadyerbas and Landrace we found that SSC6 harbors a large 

effect QTL for intramuscular and fat deposition (Ovilo et al. 2000); however, the 

most likely candidate gene, the leptin receptor, is far away from windows 92 – 115: 

its predicted position is window 206. 

 

Two interesting remarks can be made about the distribution of nucleotide 

variability: an increased variability in telomeric regions and lower than expected 

diversity on the X chromosome. Increased variability in telomeric regions is likely 

explained by larger recombination rates as compared to centromeres, where 

recombination is rare. A positive correlation between variability and recombination 

is a well known observation in many species (Hedrick 2010). Traditionally, different 

hypotheses have been proposed to explain this observation: increased mutation 

rate, hitchhiking and background selection. The latter two seem to explain better 

experimental results overall (Hudson 1994; Hedrick 2010). Our data, in principle, 

would favor background selection because generalized hitchhiking events in all 

telomeric regions are unlikely, although recent work (Hellmann et al. 2008) suggest 

that hitch hiking fit the data better in humans than a simplistic background selection 

model. These authors also report that an elevated mutation rate also accounts for 

increased variability in sub telomeric regions. 



Reduced variability on SSCX merits some additional discussion. Theory dictates that 

expected nucleotide diversity of the X chromosome is ¾ times that in autosomes, 

but we find a much lower value πSSCX / πSSCA ~ 50% (Table 1). This observation is 

unlikely to be an artifact because we found identical ratio both for  and ; further, 

an even lower ratio 36%, has been reported in the literature (Amaral et al. 2009b). 

The relative levels of variability between autosomes and sex chromosomes has been 

debated for quite some time, but the recent availability of NGS has renewed the 

interest and promised to deliver new insights. All demographic, mutational and 

selective events can alter the theoretical ¾ ratio. In the literature, both higher and 

lower ratios have been observed, even within the same species (Ellegren 2009). A 

decreased nucleotide diversity πSSCX / πSSCA can be produced by a larger number of 

reproducing females than males (Ellegren 2009), but the opposite is rather the 

norm in livestock; therefore female polygamy is not an explanation. Alternative 

explanations are increased male than female dispersal (this can happen in livestock 

if we assume that males sire different herds than their mother’s whereas females 

stay in the same herd), or strong bottlenecks (Pool & Nielsen 2007). Finally, 

selection either background or directional, can also reduce sex to autosomal 

variability. It should be noted that the sow’s inbreeding coefficient, inferred from 

the pedigree, is ~ 0.46 in chromosome X and 0.39 for the autosomes. Therefore, the 

expected ratio of diversity πSSCX / πSSCA after the herd was founded is approximately 

(1 - 0.46) / (1 - 0.39) ~ 0.88. This value is much higher than what is expected under 

a random mating scheme. The reason is that matings in this herd were carefully 

designed to minimize increase in inbreeding (Toro et al., 2000). But this figure also 

means that, if a bottleneck is to be responsible of the low variability in SSCX, it must 

have occurred prior to the herd foundation ca. mid 20th century. 

 

Logically, a final aim of all this flood of sequencing data in livestock species is to be 

able to uncover the causal mutations that underlie complex traits in domestic 

species. Here, genome-wide, we found no strong departures of expectations under a 

neutral model neither with the HKA test (Supplementary File S4) nor with the 



demographic model described in Figure 1. This can be due to the length of window 

chosen (500 kb), which may be too large to identify selective events, but also to the 

fact that a single animal has been sequenced. Also, the HKA test is primarily 

designed for species divergence, whereas divergence between Duroc (the assembly) 

against Iberian breeds is examined here. Nevertheless, detection of more subtle 

signals may require complete genome resequencing and a larger number of animals, 

as illustrated recently by Andersson and coworkers (Rubin et al. 2010). Also 

importantly, the complex interaction between demographic events and moving 

selection targets cannot be forgotten when looking for selection footprints (Pool et 

al. 2010). Despite these drawbacks, we have characterized outlier regions and 

looked for gene ontology enrichment as a tool to gain biological insight. We find high 

heterozygosity within Guadyerbas for pigmentation and cell killing, particularly the 

cellular response to antigens. These genes could be candidates for balancing 

selection within the Iberian lineage, a topic that should be further explored when 

more data is available. 

Conclusions 

Although we have sequenced a single individual, our data yield some interesting 

conclusions regarding the genetic architecture of the pig and of the Iberian pig in 

particular. More specifically, we have observed that i) the estimated heterozygosity 

is 0.78 × 10-3 per site, a non negligible variability considering the inbreeding 

coefficient of the sow was ~ 39%; ii) variability tends to be higher in telomeric than 

in centromeric regions, plausibly a symptom of prevalent background selection due 

to increased recombination in those regions; iii) the X chromosome is much less 

variable than expected relative to autosomal variability; although more work is 

required, this fact could be partly explained by a strong bottleneck; iv) overall, 

variability is in agreement with expectations from the HKA test. Probably due to the 

sparse coverage and the fact that a single individual was sequenced, we did not 

observe clear signals of directional selection in QTL regions like the leptin receptor 

in SSC6. 

 



For the future, the next logical step will be to sequence more animals, either in pools 

or individually. Fortunately, recent works have shown that sequencing at very high 

depth may not be necessary to infer genetic parameters with confidence (Sackton et 

al. 2009; Durbin et al. 2010). This will allow us to refine our model for the 

demographic history of the Iberian pig and to extend and confirm the catalog of 

genetic variants, including indels and other structural variants, e.g., copy number 

variants. But, in addition to more experimental data, we shall also pursue the 

development of new statistical approaches that allows us to interpret the flood of 

data produced by the new sequencing technologies (Pool et al. 2010). The method 

proposed here (Figure 1) is but a first attempt in this direction. 
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Supplementary File S1: Genome wide read depth obtained from Mosaik alignment; each 

chromosome in a different color. 

 

Supplementary File S2: Variability by category and by chromosome; detailed statistics by 

window and list of extreme windows. 

 

Supplementary File S3: Genome-wide Iberian heterozygosity  (top) and Iberian – Duroc 

heterozygosity  (bottom); each chromosome in a different color. The highest  window on 

SSC7 corresponds to SLA complex. 

 

Supplementary File S4: Observed (solid line) vs. expected (dashed) P-values from the Chi-

squared HKA test (eq. 6) for autosomes and X-chromosome. 
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Abstract 

Background 

In contrast to international pig breeds, the Iberian breed has not been admixed 

with Asian germplasm. This makes it an important model to study both 

domestication and relevance of Asian genes in the pig. Besides, Iberian pigs 

exhibit high meat quality and appetite and propensity to obesity. Here we 

provide a genome wide analysis of nucleotide and structural diversity in a 

reduced representation library from a pool (n=9 sows) and shotgun genomic 

sequence from a single sow of the highly inbred Guadyerbas strain. In the pool, 

we applied newly developed tools to account for the peculiarities of these data. 

 

Results 

A total of 254,106 SNPs in the pool (79.6 Mb covered) and 643,783 in the 

Guadyerbas sow (1.47 Gb covered) were called. The nucleotide diversity 

(1.31x10-3 per bp in autosomes) is very similar to that reported in wild boar. A 

much lower than expected diversity in the X chromosome was confirmed 

(1.79x10-4 per bp in the individual and 5.83x10-4 per bp in the pool). A strong 

(0.70) correlation between recombination and variability was observed, but not 

with gene density or GC content. Multi copy regions affected about 4% of 

annotated pig genes in their entirety, and 2% of the genes partially. Genes within 

the lowest variability windows comprised interferon genes and, in chromosome 

X, genes involved in behavior like HTR2C or MCEP2. A modified Hudson-

Kreitman-Aguadé test for pools also indicated an accelerated evolution in genes 

involved in behavior, as well as in spermatogenesis and in lipid metabolism. 

 

Conclusions 

This work illustrates how current sequencing technologies can picture a 

comprehensive landscape of variability in livestock species, and to pinpoint 

regions containing genes potentially under selection. Among genes that may 

have been subject to selection, we report genes involved in behavior, including 

feeding behavior, and lipid metabolism. The pig X chromosome is an outlier 

chromosome in terms of nucleotide diversity, which suggests selective 



constraints. Our data further confirm the importance of structural variation in 

the species, including Iberian pigs, and allows us to identify new paralogs from 

known gene families. 
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Background 

The pig is one of the most important sources of meat worldwide, as well as a 

relevant biomedical model for some diseases like metabolic syndrome or obesity. 

Current high throughput sequencing technologies, together with the recent 

completion of porcine’s genome and its annotation (Groenen 2012), makes it 

possible to study the genomic variability of specific breeds with a detail that was 

not possible until now. Here, we present a thorough genome-wide analysis of the 

Iberian breed. Commercial pig breeds that are today exploited internationally, 

e.g., Landrace, Large White or Duroc, are the result of introgressing local 

primigenious European breeds with Asian germplasm, a process that is now well 

documented (Giuffra et al. 2000). In contrast, European wild boar, but also local 

Mediterranean breeds like the Iberian breed, was not affected by this admixture 

process. Given the high divergence between Asian and primigenious European 

pigs (ca. 1 MYA) (Groenen 2012) and the extent and intensity of modern 

selection methods, the study of Iberian pigs can illuminate both the 

domestication process and the influence of Asian germplasm in the shaping of 

current international pig breeds. Besides, Iberian pigs are important 

economically because of their high meat quality and resilience to endure harsh 

environmental conditions (Lopez-Bote 1998). They are very fat pigs, markedly 

different from modern lean pigs, and are interesting from a human biomedical 

perspective because they present high feed intake and tendency to obesity, 

compatible with high values of serum leptin (Fernandez-Figares et al. 2007).  

 

Here, we carried out a genomic analysis of the Iberian breed using a mixed 

approach: a reduced representation library (RRL) sequencing of a pool of nine 



sows, and a shotgun complete genome sequencing of a highly inbred Iberian 

strain (Guadyerbas). The latter strain has been used in numerous QTL 

experiments and has been maintained in isolation for over 68 years and 25 

generations. in a closed herd, El Dehesón del Encinar, located in Toledo, central 

Spain (Toro et al. 2000). In a previous work (Esteve-Codina et al. 2011), we 

reported a partial RRL sequencing of the same sow, 1 % of the genome 

approximately. The pool is made up of Iberian pigs from farms with strict 

pedigree control and that represent the extant diversity of Iberian varieties. The 

pool included as well the Guadyerbas sow that was individually sequenced. 

 

Results 

Nucleotide variability 

Out of two paired-end (PE) lanes from a reduced representation library in the 

pool, about 3% of the current pig assembly v 10.2 was covered with depth 

between 3× and 30×. From one PE and one single end (SE) lanes in the 

Guadyerbas sow, ~ 60% of the genome was covered with depths 3× – 20×. 

Average depths were, respectively, 14× and 7× in the pool and in the individual.  

 

A matter of concern in pools is the percentage of genetic variability that is 

actually discovered. To resolve this matter, we ran a simulation study mimicking 

as much as possible the pool process and the bioinformatics pipeline we used in 

the analyses of real data (see methods). Simulations suggested that we should 

detect ~ 47% of all SNPs actually segregating in the nine individuals - for the 

regions covered within at least 3-20× and with a low false discovery rate (0.02). 

Figure 1 shows expected results by minimum allele frequency (MAF) and depth. 

Note that most of SNPs missed are due to their low frequency: while 80% of 

SNPs at MAF < 10% are likely undetected, power for SNPs with MAF 0.3 is 60% 

and approaches one at higher MAFs. Importantly, the statistics used here to infer 

nucleotide variability were developed to account for the bias towards 

intermediate allele frequency in the pooling process (see methods). It should be 

noted as well that SNPs discovered in a single individual are also biased towards 

intermediate allele frequency SNPs, simply because the likelihood of a single 

individual being heterozygous for a rare allele is very low.  



 

 
Figure 1. Top: Simulated power against depth. Power was computed as the number of SNP called 

by SNAPE software divided by the total number of real SNPs in the pool. Depth corresponds to the 

average depth in the pooled data. Bottom: Power against MAF (minimum allele frequency in the 

pool). 

 

In all, the raw numbers of SNPs called (only segregating sites) were 254,106 in 

the pool (79.6 Mb covered) and 643,783 in the Guadyerbas sow (1.47 Gb 

covered). A total of 17.7 Mb of the current assembly was covered in both the pool 

and the individual, and 10,324 SNPs were called in both designs. The raw 

number of fixed differences between the assembly, primarily a Duroc female, and 

the Iberian pool was 152,225, and 2,503,645 for the Guadyerbas. We also 

detected 49,105 heterozygous indels and 316,189 fixed indels in the individual 

sow. We did not call indels in the pool because indel calling algorithms are not 



specific for pools and can be misleading. SNP annotation by autosomes, 

pseudoautosomal region (PAR) and non-pseudoautosomal region (NPAR) of X 

chromosome (SSCX) is detailed in Table 1. SNP classes are ranked in decreasing 

order of severity, according to ensembl pipeline (www.ensembl.org). Note that 

these raw numbers are not directly comparable between pool and individual 

because of different number of chromosomes, read depth and alignment lengths. 

A more meaningful observation, though, is the ratio between non – synonymous 

and synonymous mutations (dN/dS) within pool or individual. Interestingly, 

dN/dS was higher in the individual than in the pool (0.99 vs. 0.76), and this trend 

accentuates for chromosome X NPAR (1.21 vs. 0.82). 

 

We computed Watterson’s estimates of diversity, corrected for pooling and low 

depth (see methods). In general, there was a moderate correlation between both 

pool and individual variabilities (Pearson correlation = 0.45, Figure 2) when 

windows with no SNP in the Guadyerbas are removed. Nevertheless, it should be 

reminded that the Guadyerbas strain is highly inbred, e.g., we found that ~ 10% 

of the 200 kb windows were devoid of any SNP. Another factor of bias is that, 

while an RRL was sequenced in the pool (3% of the genome), the Guadyerbas 

sow was shotgun sequenced (60% genome aligned). Given that only 17.7 Mb 

were covered in both the pool and the individual, Figure 2 suggests then that 

there is a positive correlation in nucleotide diversity among nearby genome 

regions.  



Table 1 - SNP annotation 

 

Terms shown are in decreasing order of severity, as estimated by Ensembl. 

 

Consequence 
Autosomes 

Guadyerbas 

Autosomes 

Iberian pool 

NPAR 

Guadyerbas 

NPAR 

Iberian pool 

PAR 

Guadyerbas 

PAR 

Iberian pool 

ESSENTIAL_SPLICE_SITE 30 30 1 1 0 0 

STOP_GAINED 44 11 2 0 0 0 

STOP_GAINED,SPLICE_SITE 1 0 0 0 0 0 

STOP_LOST 4 15 0 0 0 0 

NON_SYNONYMOUS_CODING 2650 1222 40 28 1 0 

NON_SYNONYMOUS_CODING,SPLICE_SITE 51 31 0 1 0 0 

SYNONYMOUS_CODING,SPLICE_SITE 49 24 3 0 0 0 

SPLICE_SITE,INTRONIC 282 254 10 8 0 1 

5PRIME_UTR,SPLICE_SITE 1 1 0 0 0 0 

3PRIME_UTR,SPLICE_SITE 2 0 0 0 0 0 

WITHIN_NON_CODING_GENE,SPLICE_SITE 7 1 0 0 0 0 

SYNONYMOUS_CODING 2676 1611 33 34 0 1 

CODING_UNKNOWN 8 4 0 0 0 0 

WITHIN_MATURE_miRNA 1 1 0 2 0 0 

5PRIME_UTR 193 418 0 7 0 0 

3PRIME_UTR 2103 1357 23 19 0 0 

INTRONIC 148468 78279 1867 1204 133 147 

WITHIN_NON_CODING_GENE 286 99 12 3 0 0 

WITHIN_NON_CODING_GENE,INTRONIC 6 3 0 0 0 0 

UPSTREAM 34314 15216 426 346 20 16 

DOWNSTREAM 34395 15737 628 346 24 14 

INTERGENIC 433720 150572 7161 3620 3087 1214 

Total 659291 264886 10206 5619 3265 1393 

dN / dS 0.99 0.76 1.21 0.82 NA NA 



 
Figure 2. Correlation of Watterson’s theta estimates between the individual (Guadyerbas) and 

the Iberian pool. 

 

Watterson’s thetas are plotted in Figure 3 in 200 kb windows for both the pool 

and the individual. In agreement with results from (Amaral et al. 2009; Amaral et 

al. 2011) and (Esteve-Codina et al. 2011), variability increased towards 

telomeric regions. This suggests a marked effect of recombination in variability. 

To explore this issue further, we plotted variability vs. recombination rate 

(obtained from) in 5Mb, 10Mb and 20Mb window sizes (Figure 4), observing a 

correlation of 0.53, 0.62 and 0.70, respectively. Correlation increased with 

window size, probably because the genetic maps were obtained from a pedigree 

with few generations and therefore small genetic distances are subject to large 

sampling errors (Muñoz 2011). We also correlated variability with other factors 

that have been reported to affect variability, namely GC content and gene density 

(Table 2). Recombination rate was still the main factor affecting variability. 

Although GC content was also significant, its conditional effect was slightly 

negative, likely because of colinearity. If a model was fitted with only GC content, 

the effect was positive although the model explained much lower variability than 

a model with only recombination rate (results not presented). 



 
Figure 3. Watterson’s theta distribution by chromosome (SSC1-SSC18, SSCX) in the pool (top) 

and the individual (bottom).  

 

Also as in (Esteve-Codina et al. 2011), we observed a marked reduced variability 

in chromosome X NPAR (Table 3). Note that the SSCX is divided in PAR and NPAR 

regions, which exhibit quite distinct patterns of variability. The high variability 

regions in the telomeres correspond to the PAR. In fact, variability in PAR was 

over 10 times higher than in NPAR for the Guadyerbas sow.  Although porcine 

PAR is small (~7Mb) and diversity estimates are subject to larger errors, the 

difference between PAR and NPAR variabilities is dramatic.  

 

 

 



Table 2. Multiple regression estimates of recombination rate, gene and GC 

contents on variability estimates (20 Mb windows). 

 

Factor Estimate SD P-value 

Recombination rate 4.32x10-4 4.11x10-5 2.00x10-16 

Average gene length -2.17x10-9 3.77x10-9 0.57 

GC content -3.97x10-3 1.12x10-3 0.64x10-3 

 

 

 

 
Figure 4. Correlation of Watterson’s theta estimates in the pool and the recombination rate 

(cM/Mb) in windows of 5 Mb, 10 Mb and 20 Mb. 

 



 

Table 3. Nucleotide diversity in autosomes and X chromosome. 

 

 Guadyerbas individual Iberian pool 

Autosomes 6.55x10-4 1.31x10-3 

Pseudo-autosomal 
chromosome X (PAR) 3.02x10-3 2.22x10-3 

Nonpseudo-autosomal 
chromosome X (NPAR) 1.79x10-4 5.83x10-4 

 

 

Multi-copy regions (MCR) 

Given the increasing awareness of the importance of structural variants in the 

genome, we also sought to uncover these in the Iberian pigs. In fact, one of the 

advantages of resequencing vs. genotyping is that the former allows a much 

more reliable detection of structural variants in the genome than the latter 

approach. Here, employed a read density method to uncover multi copy regions 

(MCRs) because the current porcine assembly is still not completely reliable to 

ascertain other kind of variants (e.g., inversions, novel insertions, translocations) 

using aberrant paired-end distance methods. MCRs detection is based on read 

density and is therefore less sensitive to mis-assemblies in the reference 

genome. (We refer to MCRs rather than copy number variants because we 

analyzed a single individual and we do not have information on whether that 

multi-copy region is fixed or segregating in the population). We analyzed only 

the individual sow because of the uncertainty in the number of chromosomes 

actually sequenced for the pool in any given region. Due to limited read depth, 

we considered only gains with respect to reference genome rather than gains 

and losses.  

 

We found 3,082 outlier regions potentially caused by MCRs in the Guadyerbas 

genome. They were distributed among 1,653 windows and spanned 30.5 Mb. As 

shown in Figure 5, the majority of the MCR are short (less than 20 kb) and only 

two are longer than 100 kb. 



 
Figure 5. Distribution of MCR lengths (in kb). 

 

These MCRs affect 4% of the annotated pig genes in their entirety (100% of the 

gene length) and 2% of the genes partially (>50% of their gene length). Barring 

for errors in the reference assembly, therefore, MCRs seem to be an important 

source of variability in the pig, as also observed in other species (Clop et al. 

2012). Distribution of the MCRs along the chromosomes is represented in Figure 

6. We observed a positive correlation between variability inside the MCRs and 

the variability within those windows (200 kb size) containing MCRs but outside 

MCR boundaries (Pearson correlation = 0.6, Additional File 1). Average 

variability inside MCRs was 1.51×10-3, somewhat higher than MCR windows but 

outside MCRs boundaries (9.09×10-4), whereas windows devoid of MCRs had the 

lowest average diversity (8.42×10-5), suggesting that high variability windows 

are enriched in MCRs (Summary statistics in Table 4). On the other hand, we 

detected no correlation between the number of copies of a MCR and variability 

within MCRs. 



 
Figure 6.  MCR gains with respect to the reference genome found in the Iberian genome. Each red 

line corresponds to a MCR location and the length of the line is proportional to the number of 

copies.  

 

Table 4. Variabilities within and outside multi copy regions (MCRs) 

 

 Median Mean SD 

Within MCRs 1.67x10-4 1.52x10-3 3.46x10-3 

Outside MCRs, within 
windows containing MCRs 1.83x10-4 9.10x10-4 1.82x10-3 

Windows without MCRs 8.43x10-5 3.92x10-4 6.11x10-4 

  



 

A total of 696 annotated genes fully fell inside MCRs and are therefore more 

likely to be functional than partially duplicated genes. Our study allowed us 

discovering novel paralogs of annotated genes, which either are absent in the 

Duroc reference assembly due to a miss-assembled genome, or are Iberian 

specific copies. These genes primarily belonged to well known multi-genic 

superfamilies. By far, the most over-represented gene family was olfactory 

receptors, comprising a total of 476 genes. The chromosomes containing the 

largest number of olfactory genes were SSC2 and SSC7 (Figure 7). These results 

agree with data from the international consortium, who found that the pig is one 

of the species with the largest repertoire of olfactory receptors, likely a result of 

the importance of smelling in this scavenging species (Groenen 2012).  

 

 
Figure 7 - Kb spent in MCRs divided by chromosome length. 

 

Similarly, large gene families involved in defense and immune response were 

over-represented within MCRs; we found 8 new paralogs of annotated 

interferons (IFN- 8, IFN- 10, IFN -11, IFN 14, IFN 2, IFN 6, IFNω2 and IFNω4 

family under expansion genome paper), 2 interleukines (IL1- , IL1B) and five 

SLA genes (SLA-3, SLA-9, SLA-10, SLA-P1, SLA-DRB1). Several tumor necrosis 

factor receptors (TNFR) and T-cell receptors (TR) were found as well. Others 

were involved in lipid (ACOT4, GPAT2) and carbohydrate metabolism, like 5 new 



paralogs of the UGT2B family and 8 salivary and pancreatic amylases, also in 

detoxification (CYP2C33 and CYP4A21), pheromone binding (PHEROA and 

PHEROC), viral infectious cycle (Gag protein and ENV), perception of taste 

(VN1R2), fertilization (SPM1) and retinol dehydrogenase (RDH16). Two genes 

from the serpin-like clade (Serpina 3-1 and Serpina 3-2), the myostatin gene 

(MSTN) and a lactase gene (LCT) also seem to be present in multiple copies in the 

pig genome. Not surprisingly, several small RNAs were also detected: two rRNAs 

(5S ribosomal RNA and 5.8S ribosomal RNA), one snoRNA (SCARNA6), one 

snRNA (U1) and two miRNAs. A complete list of genes entirely inside MCRs is 

shown in Additional File 3. Not surprisingly, a gene ontology (GO) enrichment 

analysis of biological processes (see methods) found an over-representation of 

sensory perception of smell (adjusted P value = 2.06×10-117), response to virus 

(adjusted P value = 2.99×10-06) and xenobiotic metabolism process (adjusted P 

value = 1.55×10-02) (Additional File 2). 

 

Outlier regions and potential selection targets  

A matter of intense research is the study of patterns of nucleotide variability in 

domestic species. Outliers in these patterns with respect to the standard neutral 

model can be due to selection and then reveal genes of socio – economic interest, 

as well as helping to understand the effects of domestication and of artificial 

selection in the genome (Groenen 2012). A serious problem is that selection does 

not result in a single obvious signal (e.g., a selective sweep) but rather in a 

diversity of manifestations that depend on intensity and age of selective process 

as well as on the demographic history of the population (Li et al. 2012). Here, we 

employed a battery of tests that pinpointed a series of genome regions, hopefully 

enriched in non-neutral genes. We also took advantage, when possible, of the 

simultaneous availability of pool and individual data. Despite the fact the 

Guadyerbas strain only represents one of the Iberian varieties, it is conjectured 

that the most relevant selective sweeps will be shared across all Iberian pigs.  

 

First, we examined extreme windows in terms of low and high variability for the 

Guadyerbas and the pooled data (see methods). A total of 132 genes were 

annotated within the lowest variability windows (Additional File 3). A window in 



SSC1, was specifically enriched in interferon genes (IFNE, IFN- 10, IFNω1, IFNω3 

and IFNω4), which are involved in response to virus (adjusted enrichment GO 

P=1.3×10-04). Note that IFN- 10 and IFNω4 are within MCRs, suggesting that 

those genes have un-annotated paralogs and putatively under positive selection. 

Genes within the lowest variability windows in NPAR included genes from the 

Ras oncogene family (RAB33A, RAB39B, RAB39B and RAP2C), the SOX3 gene 

(SRY-box3), involved in sex determination, face development and pituitary gland 

development, the serotonin receptor HTR2C, involved in anxiety, reproductive 

and feeding behavior, the MECP2, with a role in behavioral fear response, as well 

as genes involved in lipid metabolism (e.g., ACSL4, ALG13, ABCD1, PLP1), in hair 

follicle development (NSDGL) and other genes related to immune response 

(IL13Ra1, IL1RAPL2). A complete list of these genes is in Additional File 3.  

 

The majority (~80%) of the high variability windows contained MCRs. To ensure 

that the high variability found is not influenced by MCR, we removed the SNPs 

inside MCRs. The result was that those windows still conserved high variability 

levels, in agreement with results in Table 4. The majority of genes in those 

windows were hundreds of olfactory receptors present in gene clusters 

distributed among almost all chromosomes. In addition, other gene families were 

represented, e.g., ATP-binding cassette family, zing finger genes, T-cell receptors 

and SLA genes (mainly located in chromosome 7), transmembrane proteins 

(TMEM family), several small nucleolar RNAs, solute carrier family genes, 

protocadherin family genes involved in homophilic cell adhesion and 

cytochrome family p450 genes (CYP). (See Supplementary File 3 for a complete 

list of genes).  Note that IL1B and other gene families are present in MCRs and 

also in high variability regions. 

 

Next, we computed Tajima’s D and Fay-Wu’s H statistics, modified to account for 

the idiosyncrasy of pool data (methods). In principle, Tajima’s D and Fay-Wu’s H 

negative values can be produced by positive selection, although Tajima’s D is 

particularly sensitive also to demographic effects and prone to false positives. 

The correlation between both statistics was positive, although moderate r = 0.28 

(Figure 8). There is also an apparent number of windows with negative Tajima’s 



D and zero or even positive Fay-Wu’s H. Although the interpretation of this is not 

clear, it might be caused by recurrent hitch hiking events (Przeworski 2002) or 

simply an artifact.  

 
Figure 8. Correlation between Tajima’s D and Fay - Wu’s H statistics in pooled data. 

 

We selected the 1% most extreme windows with combined negative Tajima’s D, 

Fay-Wu’s H and low variability (see Methods). No over-representation of GO 

were detected after correcting by multiple testing. Interesting candidate genes 

inside those windows are involved in axonogenesis and synapsis (FOXP1, LRRK2, 

EHMT2, RAB11A, TEKT5, IGF1R, UNC13C, CNTN1, COL9A2, AXIN2, CADPS2, HTR6, 

KCND1, NOVA1, PTEN), circadian rhythm (HEBP1, ALB), epithelial cell 

differentiation, keratinization and hair follicle formation (FOXP1, IGF1R, HNF1B, 

PTEN, AXIN2, KRT81, KRT83, KRT84, KRT85, KTR86, PRKD1, AC0210066.1), blood 

vessel morphogenesis (PPAP2B, PRKD1), lipid metabolism (PPAP2B, VEPH1, 

RASA4B, ATP10B, NEU1, PTEN, SMPD4, ALB), exploratory, locomotory, grooming 

and feeding behavior (LRRK2, NMUR2, APBA2),  response to starvation (GAS6, 

ALB), spermatogenesis, ovulation, sex determination (EHMT2, AFP, IGF1R), 

visual/odor perception (OR5P2, LRRK2, VSX1, GRK1), immune response and 

inflammatory response (CIITA,  PRKD1, FOXP1, IGF1R, PTX3). 

 



Finally, we performed a genomewide Hudson-Kreitman-Aguadé (HKA) test in 

the pool data. The NPAR was analyzed separately from autosomes and PAR. After 

correcting for multiple testing, only 25 (0.23%) windows with an excess of 

differentiation were significant (adjusted Bonferroni-Hochberg P < 0.05). 

Although there was no over representation of any GO category, some genes are 

still worth mentioning. These comprise genes involved in feeding behavior 

(NPW), social behavior (HTT, DVL1), locomotory behavior (HTT, SLCGA3), 

pigmentation (MC1R), hair follicle morphogenesis (PDGFA), sensory perception 

of taste (TAS1R3, GNG13), male gonad development and spermatogenesis (GFER, 

BOK), lipid metabolism (DECR2), circadian rhythm (PRKAA2, ADCY1), tumor 

necrosis factors (TNFSF12A, TNFRSF18, TNFRSF4), fat cell differentiation (SDF4) 

and several genes involved in lipid transport, e.g., ABCA3. This gene was also 

reported by the pig sequencing project as being under selection. The 

neuropeptide AXIN1 is also interesting as has been found differentially expressed 

between in brains of two extreme groups of junglefow in terms of fearfulness 

(Jongren et al. 2010).The complete gene list is in Additional File 3.   

 

Only 39 (0.36%) windows with an excess of polymorphism vs. differentiation 

were significant (HKA test adjusted P < 0.05). Genes inside those windows 

belonged to the ABC superfamily (ABCC4), were complement activation genes 

(C8A, C8B), antigen processing and presentation (SLA-DQA1, SLA-DQB*G01, SLA-

DRA1, SLA-DRB, SLA-DRB1), feeding behavior and synapsis (HCRTR2), visual, 

sound perception and pigment granule transport (MYO7A), lipid metabolism 

(PPAP2A, PRKAA2), viral infectious cycle (RPS21), defense response (SPACA3) 

and many genes from the olfactory receptor, zinc finger and TRIM families (full 

gene list in Additional File 3). Within the NPAR region of the X, only one window 

was significant. This window contains the SHROOM2, a gene involved in brain, 

eye and ear morphogenesis and pigment accumulation among others (Additional 

File 3).  

 

Discussion 

This study presents a novel combined analysis of pool and individual sequencing. 

Although pools biases the SNP discovery process towards common variants and 



have lower power than individual sequencing (Cutler & Jensen 2010), our 

simulation indicates that we should expect to detect almost half (47%) of all 

SNPs. Given that there are  = 3.4 times more SNPs in 18 chromosomes 

than in a single individual, the pool process uncovers about 60% more SNPs than 

individual sequencing – for any given region sequenced in common and 

assuming an average depth 14×. Both designs, it should be noted, are biased 

towards common variants so they are not appropriate to detect rare mutations. 

Rare variants are likely to be very young and, a priori, should contribute little to 

total genetic variability in phenotypes of interest. 

 

Genome-wide variability in the Guadyerbas sow was actually much lower than 

that in the Iberian pool, 50% and 70% lower for autosomes and NPAR, 

respectively (Table 3). Estimates are corrected for pooling process so the large 

disparity is not due to SNP calling in pools vs. individuals but, rather, to the high 

inbreeding of the Guadyerbas strain. Because the pedigree of the Guadyerbas is 

known since the foundation of the herd in 1944 (Toro et al. 2000), inbreeding 

coefficient F for the specific sow sequenced was estimated as FA = 0.39 and FX = 

0.46 for autosomes and NPAR, respectively. This results in estimates corrected 

by inbreeding A* = 6.55×10-4 / (1-0.39) = 1.07×10-3 and X* = 1.79×10-4 / (1-

0.49) = 3.51×10-4. These values are close to those obtained from the pool in 

autosomes but, intriguingly, for NPAR are still 40% lower in the Guadyerbas 

(Table 3). Therefore, inbreeding explains the loss in variability in the whole 

Iberian pig breed for autosomes but not in NPAR.  

 

Remarkably, heterozygosities in the Iberian pool are comparable to those 

reported in the two European wild boars sequenced by the International Pig 

Genome Sequencing Consortium: 0.0012 and 0.0010 (Groenen 2012). In contrast, 

heterozygosity in international domestic breeds is higher (> 0.0016) because of 

introgression with Asian pigs. The fact that Iberian pigs and European wild boar 

diversities are comparable reinforces previous evidence showing that Iberian 

pigs have not been intercrossed with Asian germplasm (Alves et al. 2003). It also 

stresses the relevance of Iberian pig as a model of native Mediterranean 



domestic pig that should help to disentangle the effects of Asian introgression 

and domestication on response to selection by modern breeding.  

 

An intriguing observation was the high dN/dS ratios that we observed, especially 

in the Guadyerbas sow (Table 1). Although a positive ratio is normally taken as a 

symptom of positive selection, this is unlikely, i.e., it is unlikely that the whole 

PAR is under directional selection. We believe, instead, that the most likely 

explanation is that the very low effective population size in the Guadyerbas 

strain, but also in the Iberian breed as a whole, attenuates the effect of natural 

selection (Charlesworth 2010). These results in more deleterious alleles found at 

intermediate frequencies than if the population size were very large. This effect 

should be more pronounced, as observed, in sex chromosomes than in 

autosomes.  

 

Our data further confirm the much lower observed than expected variability in 

SSCX (3/4 that of autosomes) as was previously reported in the partial 

resequencing of the same Guadyerbas sow (Esteve-Codina et al. 2011). Here, 

because we were able to distinguish between PAR and NPAR regions, the X/A 

ratio is even lower than reported before: 0.27 in Guadyerbas and 0.44 in the 

pool. In contrast, diversity in the PAR was comparable, or even higher, than in 

autosomes. Although demographic effects can reduce X/A variability, the effect 

observed here is quite unusual, and seems to be a pervasive property of all 

porcine populations. Selection can be argued as an alternative explanation. Genes 

within the lowest variability NPAR windows included ACSL4 (lipid metabolism), 

HTR2C (behavior), SRY-box3 (sex determination), MECP2 (fear response), NSDG2 

(hair follicle formation) and interleukines (immune response). Interestingly, fear 

response is a distinctive biological feature between wild animals and its 

domesticated descendants. Hair follicule formation has also evolved during 

domestication process, as wild pigs are furrier than domestic pigs. It should be 

noted that the black varieties of Iberian breed are hairless (as the Guadyerbas 

strain) and the red varieties present sparse hair. As for ACSL4, we have reported 

a QTL nearby this gene that affects fatty acid composition in the Iberian pig 

(Mercade et al. 2006; Corominas et al. 2012). 



 

The discovery of thousands of new MCRs (>4 kb) with respect to the reference 

genome suggests either a mis-assembled reference genome or real copy number 

variants between the Iberian pig and the Duroc reference assembly. In 

agreement with our results, the Pig Genome Consortium also discovered many 

new paralogs of existing genes in the reference Duroc assembly. The fact that 

some MCRs have high values of nucleotide diversity might be caused by an 

artifact of the mapping (the Iberian pig presents more copies than the reference 

and therefore ambiguous reads map to the same locus, causing false positive 

SNPs). Nevertheless, the fact that variability in regions outside the MCR with 

respect to the assembly but within windows containing MCRs is higher than 

average genome-wide (Table 4) may be an indirect consequence of increased 

recombination, which causes MCRs as well as increased variability.   

 

In this sense, it is not surprising that many MCRs contain genes belonging to well 

known gene super-families (SLA, OR, CYP, IFN, IL, TNF, TR), which are known to 

be originated by duplication events. Several studies have reported that MCRs are 

enriched in segmental duplications (Sudmant et al. 2010; van Binsbergen 2011). 

Besides, other genes like pheromone receptors; amylases or taste receptors 

seem to be new paralogs of existing genes not yet annotated. Virion assembly 

proteins like gag, pol and env belong to retroviruses inserted in the genome, 

whose function still needs to be characterized in detail, although some are 

described to be involved in gene transcription and resistance to exogenous 

infections. The international pig genome sequencing consortium has reported 

the INF and OR super-families to be under expansion (Groenen 2012), and our 

results support this hypothesis as many putatively functional INF and OR genes 

were detected inside MCRs. Many genes inside MCR overlapped with extreme 

high variability regions, most of them are olfactory receptors, but we also found 

SLA genes and other immunity genes. Those genes are reported to be under 

balancing selection in many species, since being heterozygous confer advantage 

in terms of distinct related odors and pathogens detection. Interestingly, 

common low variability regions between the individual and the pool show also 



over-representation of defense response, but the genes involved are different 

from those in high variability windows. 

 

Extreme Tajima’s D - Fay-Wu’s H – variability combined test (D-H-θw) and HKA 

excess of differentiation detected some interesting genes, putatively under 

positive selection but at different time scales. The combined D-H-θw test traces 

selective events that happened no more than 80.000 years ago, whereas the HKA 

test is useful to trace very old events up to 250.000 years (Sabeti et al. 2006). 

Genes related with keratinization (D-H-θw test), epidermis formation (D-H-θw 

test) and hair follicle morphogenesis (D-H-θw test and HKA), as described by 

George et al (George et al. 2011), may be important for setting up physical 

barriers between the body and the outside world and could evolve rapidly in 

response to changing environment. Some studies in humans and primates also 

found adaptive signals in keratinization genes (Tennessen et al. 2010; Tong et al. 

2010; George et al. 2011). Genes belonging to the TNF family (HKA test) play a 

role in defense response, specifically in response to wounding. They are 

cytokines secreted by activated macrophages and lymphocytes and exert several 

tumor suppressor as well as antiviral activities. Many studies found positive 

selection in immunity-related-responses (Zelus et al. 2000; Zhang & Nei 2000; 

O'Connell & McInerney 2005; Jiggins & Kim 2007; Carnero-Montoro et al. 2011; 

Manry et al. 2011), so it is not surprising to find IL and INF in low diversity 

regions. Considering the speed at which many pathogens, such as viruses, evolve, 

a coevolutionary molecular arms race between pathogens and host cells might 

explain the presence of strong selection favoring new mutations in these genes.  

 

Several genes involved in feeding behavior, fear response and social behavior 

were inside significant windows in both D-H-θw test and HKA excess of 

differentiation. Behavior has been reported as one of the biological functions 

subject to selection during the process of pig domestication (Chen et al. 2007; 

Amaral et al. 2011; Kittawornrat & Zimmerman 2011) and feeding behavior and 

response to starvation are, logically, most relevant traits in domestication and 

breeding. The LRRK2 gene, identified with the D-H-θw test, would merit special 

attention in future works: it is involved in exploratory behavior, odor detection 



and is a positive regulator of the dopamine receptor signalling pathway. 

Circadian rhythm (D-H-θw test and HKA) are additional functions that may have 

been affected by selection, which could be explained by a distinct biological clock 

between the wild ancestors and domestic pigs, due to human interference in 

their life habits. Perception of taste is another function that might have evolved 

due to novel food resources and, effectively, some genes with this GO were inside 

significant windows according to the HKA test. The MCR1 gene (present in HKA 

test), involved in pigmentation, has been reported to be under positive selection 

due to human interest to cherry-pick different coat colors that would otherwise 

be quickly eliminated in the wild (Fang et al. 2009). Lipid metabolism genes 

(present in both combined D-H-θw test and HKA) might also have changed, 

specifically in the Iberian breed, conferring its distinctive lipid composition and 

deposition in the meat. Spermatogenesis genes, identified by both tests, have 

been reported to be rapidly evolving genes in other species (Jiang & 

Ramachandran 2006; Haerty et al. 2007; Hutter 2007). Finally, we found 

neurological genes involved in synapsis and axon guidance, both related to brain 

development and function. 

 

Conclusion 

The recent completion of the porcine sequencing project has allowed digging 

deeper into the complexities of the Iberian pig genomes than was possible until 

now. This breed is important because it represents a primigenious European 

breed that, while being domestic, has not been introgressed with Asian 

germplasm. Our data confirm the importance of structural variation in the 

porcine species as also observed in other species. The battery of tests we applied 

suggests that many and diverse selective processes have occurred, among them 

changes in feeding behavior. New bioinformatics tools, e.g., to deal with 

structural variants as well as complete annotation of the pig genome (ENCODE) 

projects are badly needed to improve interpretation of results.  

 

 

 



Material and Methods 

Samples and sequencing  

The genome of a highly inbred Iberian pig, pertaining to the Guadyerbas strain, 

which has been partially sequenced (1% of the genome) in a previous study 

(Esteve-Codina et al. 2011), was shotgun sequenced using Illumina Hiseq2000, 

We run one 100 bp paired-end lane and one 100 bp single-end lane. In addition, 

we also sequenced a reduced representation library (RRL) of a pool comprising 

nine sows (equal concentrations of each) from the most representative Iberian 

varieties in Spain: Retinto, Mamellado, Torbiscal, Guadyerbas, Entrepelado and 

Lampiño. All sequenced sows are registered in the Iberian Herd Book and were 

sampled from well accredited farms that have kept purebred Iberian pigs 

without intercrossing with ‘foreign’ breeds. The method to construct the reduced 

representation library is described elsewhere (Esteve-Codina et al. 2011). For 

the pool, Illumina GAIIx technology of 50 bp was employed, and 2 PE lanes were 

available. As outgroup, we shotgun sequenced a Potamocherus porcus male using 

Hiseq2000 (three PE lanes, 100 bp long) in order to measure divergence and 

then gain in power to detect selection. 

 

We were able to delineate the boundaries between PAR and NPAR because of 

read depth differences in males along the SSCX (unpublished data). The SSCX 

PAR occupies the first 6.7 Mb and the last 400 kb of SSCX, approximately. 

Although assembly 10.2 separates two telomeric PARs, linkage analyses using 

genotyping data from the 60k SNP chip in an Iberian x Landrace cross and results 

from Burgos-Paz (Burgos-Paz et al. 2012) suggest that a single PAR exists – as in 

most mammals. We therefore pooled the results from the two annotated PARs in 

the analyses reported here.  

 

Alignment and SNP calling 

Reads were mapped against the latest reference genome (assembly 10.2) using 

bwa (Li & Durbin 2009), allowing 8 mismatches and filtering by mapping quality 

of 20. P. porcus reads were aligned disregarding the paired end structure, i.e., 

they were aligned as SE. This was done to minimize the possibility that structural 

changes between the two species prevent alignment. A total of 345M reads were 



aligned, resulting in an average depth of 20× (3-50×) and 1.6 GB of the S. scrofa 

genome assembled.  

 

SNP calling for the Guadyerbas individual was performed using Samtools 

mpileup option (Li et al. 2009) filtering by minimum depth of 3×, maximum 

depth of 20× and SNP quality of 20. SNP calling in the Iberian pool was done 

using SNAPE (http://code.google.com/p/snape-pooled/), setting divergence to 

0.01, prior nucleotide diversity 0.001, folded spectrum and filtering by a 

posterior probability of segregation > 0.90. The SNAPE approach consists in 

computing the posterior probability of SNP frequency being distinct from 0 or 1, 

given that we observed nA alternative alleles and C-nA reference alleles, and given 

prior frequency in the population being P(f):  

 

 

 

where  

  

 , 

 

with p being the probability that an allele A is read and n, the number of 

chromosomes in the pool. This probability in turn depends on n, k and on 

whether there is a true A in the genome or whether it is the result of a 

sequencing error. The algorithm considers the geometric mean of sequence 

qualities for every allele read to compute this probability (Raineri 2012). In the 

equation above, we take into account the probability that k counts of the allele 

are present in the pool, given that its true frequency is f and that, given k, how 

many reads A out of  n are expected. Because some quantities, notably k, is 

unknown, this is integrated out. For prior p(f), we considered the standard 

neutral model expected frequency, i.e., f α 1/f.  

 

 

 



Simulation of pooling process 

Although pools are a highly cost-effective strategy, the variability uncovered is 

only a fraction of the true one in the population. We sought to evaluate the power 

and false discovery rate of our experimental design by simulation. We simulated 

18 chromosomes of 1 Mb of sequence using coalescence with ms (Hudson 2002) 

under a standard neutral model with nucleotide diversity  and scaled 

recombination rate  per site = 0.001. For each resulting chromosome, the 

program ART (Huang et al. 2011) was used to generate reads with the built-in 

profile for Illumina paired-end technology of 75 bp-long reads. To simulate the 

pooling process, reads were randomly selected from each sequence using an 

equal proportion from each individual. An average depth of 14× was simulated 

for the whole pool in all and reads were aligned with BWA (Li & Durbin 2009). 

Next, SNPs were called with SNAPE, restricting minimum and maximum depths 

to do the calling between 3× and 30× as in our real data analyses. Power was 

computed as the proportion of true SNPs in the population (i.e., before pooling) 

located within regions of appropriate depth that were correctly recovered. False 

Discovery Rate (FDR) was the proportion of SNP calls that were incorrect. A total 

of 100 replicates were simulated. 

 

Multi-copy region detection 

Read depth method (Sudmant et al., 2010; Alkan et al. 2011) was applied to 

identify copy number of a region; mrsFAST (Hach et al. 2010) is an exhaustive 

mapping tool that allows paralog detection and was used to align reads (allowing 

6 mismatches) against the repeat masked reference genome; repeat mask 

information was obtained from NCBI. Average read depth for each non-

overlapping 1kb bin was calculated across the genome and copy number (CN) of 

each unit was predicted based on the average read depth across the diploid 

region. 1:1 orthologous genes between human, cow and pig was used to obtain 

read depth across diploid region. Since these regions have the same number of 

copies in 3 relatively distant species, we assumed these were conserved in a copy 

number neutral stage. Finally, chained regions in the genomes which are ≥ 4kb in 

length having copy number ≥3 (each bin should have CN ≥ 3 and 1 kb gap was 

allowed), were extracted and declared MCRs. Next generation sequencing 



methods introduce bias in the read depth, which is caused by the dissimilar GC 

content of different segments of DNA. To correct this bias, we used GC intervals 

and the average read depth across the diploid region to find out the correction 

factor and used that factor to correct depth of each 1 kb bins (Sudmant et al., 

2010).    

 

Nucleotide variability estimation and selection tests 

Note that, with NGS data at low depth, nucleotide diversity cannot be simply 

computed dividing the number of SNPs called by the length of sequence 

assembled. This is because, with shallow depth, the two alleles of the same SNP 

may not be read and because of errors in calling SNPs. For the individual, we 

corrected for low coverage as detailed in (Esteve-Codina et al. 2011): 

 

 

 

where S is the raw number of SNPs, L(i) is the length in bp of depth i for that 

window, and P(S|i) is the probability of reading both alleles for depth i (Esteve-

Codina et al. 2011). In the case of pools, Watterson’s theta was computed as in 

Amaral et al. Briefly, we correct by the expected number of chromosomes 

sampled for each read depth along the window: 

 

     (1) 

 

(Amaral et al. 2011), where L(i) is the length in bp of depth i for that window, 

and Pc( j | nr(i), nc) is the probability that a set of nr sequences randomly 

extracted from nc  possible chromosomes contains sequences coming from 

precisely j different chromosomes. Finally, aj is Ewens constant  . 

 

Definition of low and high variability windows 

Given that over 10% of Guadyerbas windows had no SNP, we defined extreme 

low variability regions for the Guadyerbas as those windows devoid of variability 

and with > 10kb assembled. Among these windows, we selected those of 5% 



lowest variability in the pool as well, with a minimum of 3 kb aligned. In that 

way, we avoid choosing fixed regions in the Guadyerbas strain due to drift. We 

defined extreme high variability regions as the 5% most variable windows in 

Guadyerbas and in the pool where at least 10 kb (Guadyerbas) and 3 kb (pool) 

were aligned. 

 

Tajima’s D and Fay-Wu’s H tests 

Tajima’s D test (Tajima 1989) were computed as the normalized difference 

between the average pairwise nucleotide difference  and the Watterson 

estimator, divided by the theoretical variance of the same difference in the 

standard neutral model without recombination in pools (Ferretti 2012). The 

estimator of  based on  was computed as the average pairwise nucleotide 

diversity across all reads for a given position, averaged over all positions and 

corrected by a multiplicative factor 2n/(2n-1) (Futschik & Schlotterer, 2010). 

This estimator is unbiased under the neutral model. The normalized Fay and 

Wu’s H test (Fay & Wu 2000) was computed similarly from the standardized 

difference between  and the estimator H based on high frequency derived 

alleles. For the estimator H, only sites with known outgroup bases were used, 

and the estimator was obtained by summing all segregating sites with k derived 

alleles in r reads weighted by the factor k2/r(r-1) and divided by a factor 

correcting for the bias (Ferretti 2012). The variances in the denominators are 

evaluated exactly in the limit of short read for the standard neutral model 

without recombination following the results of (Fu 1995) and accounting for the 

random extraction of reads from individuals (Ferretti 2012). 

 

In order to minimize confounding demographic effects with selection 

fingerprints, we calculated the empirical joint distribution combining Tajima's D, 

Fay and Wu's H and Watterson’s  as in (Ramos-Onsins et al. 2008). To do so, we 

sorted the normalized statistics D, H and , the empirical test was obtained 

simply by multiplying the inverse of the ranks 1/n, 2/n,… 1 of each statistic for 

each window 1…n, and normalizing. A GO enrichment analysis was performed 

with genes within the 1% most extreme windows. 



 

Hudson-Kreitman-Aguadé test 

Multilocus Hudson-Kreitman-Aguadé (HKA) tests were calculated in the pool 

using the P. porcus alignment as outgroup and following the original algorithm 

(Hudson et al. 1987). We applied the test dividing the genome in 200 kb 

windows. Then, M+1 equations were solved using a bisection algorithm to 

calculate the estimates of the M+1 parameters (M theta values, one per window, 

plus the time of split between species measured in 2Ne generations). Thus, a 

partial HKA test per window was obtained plus the total sum of values, where 

the null hypothesis (stationary neutral model) is contrasted using M-1 d.f. The 

approach assumes unlinked windows and it is, therefore, conservative because 

nearby windows are linked. The original HKA formulae require an =  

and bn =  constants, which in the case of pooling are unknown. 

Instead we used the equivalent correction to infer Watterson’s theta from pools 

(denominator in eq. 1), whereas bn was obtained by interpolation from an. The 

HKA function can be downloaded from 

http://bioinformatics.cragenomica.es/numgenomics/people/sebas. In order to 

identify outlier windows we performed a Bonferroni-Hochberg multiple test 

correction over the value of the partial Chi-square per window using a 5% 

nominal significance.  

 

Annotation and Gene Ontology enrichment analysis 

SNP annotation was performed using the Variant Effect Predictor perl script 

from Ensembl (McLaren et al. 2010) and the Sus scrofa gtf annotation file was 

from Ensembl release 67, the latest version and that used in the pig genome 

publication. Gene ontology enrichment analysis was performed using FatiGO, a 

module of Babelomics (Medina et al. 2010) using the human genome as 

background and converting Ensembl pig IDs to Ensembl human IDs.  
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Abstract 
 
Background 
 
Although RNA-seq greatly advances our understanding of complex 

transcriptome landscapes, such as those found in mammals, complete RNA-seq 

studies in livestock and in particular in the pig are still lacking. Here, we used 

high-throughput RNA sequencing to gain insight into the characterization of the 

poly-A RNA fraction expressed in pig male gonads. An expression analysis 

comparing different mapping approaches and detection of allele specific 

expression is also discussed in this study.  

 

Results 
 
By sequencing testicle mRNA of two phenotypically extreme pigs, one Iberian 

and one Large White, we identified hundreds of unannotated protein-coding 

genes (PcGs) in intergenic regions, some of them presenting orthology with 

closely related species. Interestingly, we also detected 2047 putative long non-

coding RNA (lncRNA), including 469 with human homologues. Two methods, 

DEGseq and Cufflinks, were used for analyzing expression. DEGseq identified 

15% less expressed genes than Cufflinks, because DEGseq utilizes only 

unambiguously mapped reads. Moreover, a large fraction of the transcriptome is 

made up of transposable elements (14500 elements encountered), as has been 

reported in previous studies. Gene expression results between microarray and 

RNA-seq technologies were relatively well correlated (r = 0.71 across 

individuals). Differentially expressed genes between Large White and Iberian 

showed a significant overrepresentation of gamete production and lipid 

metabolism gene ontology categories. Finally, allelic imbalance was detected in ~ 

4% of heterozygous sites.  

 

 

 

 



Conclusions 
 
RNA-seq is a powerful tool to gain insight into complex transcriptomes. In 

addition to uncovering many unnanotated genes, our study allowed us to 

determine that a considerable fraction is made up of long non-coding transcripts 

and transposable elements. Their biological roles remain to be determined in 

future studies. In terms of differences in expression between Large White and 

Iberian pigs, these were largest for genes involved in spermatogenesis and lipid 

metabolism, which is consistent with phenotypic extreme differences in 

prolificacy and fat deposition between these two breeds.  

 

Background 
 
Understanding the mammal transcriptome architecture has proven to be a 

complex task (Gustincich et al. 2006; Jacquier 2009; Guttman et al. 2010; 

Lindberg & Lundeberg 2010). The advent of high throughput sequencing 

technologies, such as RNA-seq, has, yet, substantially improved our 

comprehension of its structure and expression patterns. By deep sequencing the 

poly-A RNA fraction, it is possible not only to better characterize isoforms from 

known genes (e.g., identifying novel exons, new transcription start sites and 

alternative polyadenylation sites), but also to improve the annotation by 

discovering novel predicted coding genes and polyadenylated processed 

transcripts such as long intergenic non-coding RNAs (Mortazavi et al. 2008). 

Although several surveys of the transcriptome from different tissues have been 

conducted in humans and model species (Ferraz et al. 2008; Wang et al. 2008; 

Trapnell et al. 2009; Gan et al. 2010; McManus et al. 2010a; Wang et al. 2010b; 

Wen et al. 2010; Bottomly et al. 2011; Daines et al. 2011; Graveley et al. 2011; 

Nicolae et al. 2011; Toung et al. 2011), our knowledge of livestock species 

remains limited. For instance, the relation between extreme phenotypic 

differences and their transcriptome patterns is poorly studied. The 

transcriptome of livestock species is, by comparison to model species, much less 

known despite its economic and social interest.  



In this study, we used high-throughput transcriptome sequencing in two pigs 

from extreme breeds. Our aim was to discover and characterize novel expressed 

transcripts and to identify differentially expressed genes that may explain some 

of the phenotypic variation. We sequenced the male gonad transcriptome of a 

Large White and an Iberian pig, two highly divergent phenotypic breeds in terms 

of production traits, e.g., growth, fatness and reproductive performance. To limit 

the effect of enviromental influences on gene expression pattern, both pigs were 

housed and fed with the same conditions and were prepubescent at slaughter 

time. Furthermore we compared the results obtained with RNA-seq with 

microarray data published in a previous study (Herai & Yamagishi 2010). Finally, 

we also identified polymorphic sites and genes that potentially showed allele 

specific expression.  

 

Results and Discussion 
 
Mapping 
 
We obtained about 60 M of 50 bp paired-end reads from one lane of an Illumina 

GAIIx machine, about 30 M was derived from each sample (Data are archived at 

NCBI Sequence Read Archive (SRA) under Accession SRP008516). After 

ambiguous mapping (allowing for multi-hits) with Tophat [17] a total of 20 M 

reads for each sample were mapped against the reference pig genome (assembly 

9), although only 10 M were classified as proper pairs. The rest (4 M) fell into 

either one of these categories: reads without a mapped mate pair, mate is 

mapped on the same strand or mates overlap. The most likely explanations of the 

large amount of improperly mapped reads are the poor quality of the current pig 

genome assembly and the stringency of the version of Tophat used here, as this 

version does not allow gaps for the mapping. In addition, any situation where the 

distance between the mates is larger than the confidence interval of the insert 

size distribution could be interpreted as trans-splicing events (McManus et al. 

2010b), structural variants or simply mapping artifacts (Trapnell et al. 2010). 

The total number fragments mapped with unambiguous mapping (1 hit per 



read) were 14 M for each sample; out of these, 7 M were classified as proper 

pairs. A comparison between ambiguous versus unambiguous mapping results 

obtained with Tophat is shown in Additional file 1.  

 

Annotation of reads and transcripts assembly 
 
To calculate the proportion of reads mapping to annotated exons, we run S-

MART (see methods). Surprisingly, with a minimum overlapping of 1 nucleotide, 

less than half of the reads (44.1%) mapped to annotated exons; a figure that 

drops even further (32.9%) when considering a minimum overlapping of 50 bp 

(the total read length). The rest of reads mapped to annotated introns (18.7%), 

or either 1 kb 5'upstream or 3'downstream of the annotated gene (26.6%) 

(Table 1). The poor quality of the annotation of the pig genome probably 

explains why a majority of the mapped reads (55.9%) do not overlap with any 

known exons.  

Table 1. Summary of reads’ annotation 
 

 Large White Iberian 

Exons 9238572 9141162 

Introns 3833320 3943866 

5’ Upstream or 
3’Downstream 5383546 5708057 

 

Number of reads with at least one overlapping nucleotide mapping 

 to either exons, introns or within 1kb of gene boundaries. 

 
Moreover, after assembling the short reads into transcripts by Cufflinks (Stanke 

et al. 2008), only 1.2% of them matched exactly with annotated exons. The 

remaining reads were classified as intergenic transcripts (36.1%), intron 

retention events (35.6%), contained in known isoforms (12.5%), pre-mRNA 

molecules (6.2%), polymerase run-on fragments (3.6%), putative novel isoforms 

of known genes (2.9%) and others (Table 2). These results unfortunately 

underline the incompleteness of the current annotation of the pig transcriptome 

and of its complexity.  



Table 2. Transcripts assembly 
 
 = c e i j o p u Total 

Large White 2178 22243 11328 67989 5557 3866 6775 72288 192224 

(%) 1.13 11.57 5.89 35.37 2.89 2.01 3.52 37.61 100 

Iberian 2000 21580 10349 57623 4530 3341 5752 55617 160792 

(%) 1.24 13.42 6.44 35.84 2.82 2.08 3.58 34.59 100 

 

The number of transcripts assembled with Cufflinks and the percentage they represent in each 

sample. The high number of assembled transcripts is probably an artifact due to truncated 

Cufflinks assemblies. Class codes described by Cuffcompare: “=” Exactly equal to the reference 

annotation, “c “ Contained in the reference, annotation, “e” possible pre-mRNA molecule, “i “ An 

exon falling into a intron of the reference, “j “ New isoforms, “o” Unknown, generic overlap with 

reference, “p” Possible polymerase run-on fragment, “u” Unknown, intergenic transcript. 

 
 
Annotating orthologs 
 
A total of 4,124 novel transcripts (the real number of transcript units may be 

smaller, as less abundant transcripts receive less complete sequencing coverage 

resulting in numerous transfrags) were identified in intergenic regions (see 

methods). To investigate which of these transcripts actually encode a protein, we 

used Augustus (Cooper et al. 2003) and found 714 novel putative proteins. We 

identified homologous DNA sequences (see methods) in Bos taurus and Homo 

sapiens genomes for most (413) of these novel proteins: 362 were orthologs with 

both cow and human, 20 with human only and 31 with the cow genome only. 

This result is consistent with Bos taurus being closer to Sus scrofa than human 

(Shi et al. 2007). Interestingly, when we looked for homologous DNA regions 

within the Sus scrofa genome, 53 paralogous regions were detected (51 

duplications and 2 present in three copies).  

 

To find out whether the predicted proteins from the homologous regions were 

already annotated, we ran BLASTP against the Homo sapiens, Bos taurus and Sus 

scrofa protein databases (http://www.ensembl.org/info/data/ftp/index.html). 

Overall, we identified 38 novel computationally predicted and 344 known 



proteins for the human, 15 novel predicted and 378 known proteins for the cow 

and 653 novel predicted and 89 known proteins for the pig. The novel 

computationally predicted proteins found in the pig are now experimentally 

confirmed by RNA-seq. See Additional file 2 for the coordinates of orthologous 

and paralogous genes.  

 

Transposable elements 
 
As many previous studies reported high activity of transposable elements (TE) in 

germlines (Branciforte & Martin 1994; Garcia-Perez et al. 2007; Zamudio & 

Bourc'his 2010), we ran RepeatMasker to identify repetitive elements in the pig 

genome and in the transcriptome of the testicles. The fraction of transposable 

elements expressed in male gonads (SINEs, LINEs, LTR and DNA elements), 

compared to the total number detected in the pig genome, is less than 3%. 

However, approximately 20% of the expressed transcripts units harbor at least 1 

transposable element (8% of the bp sequenced). The type of TE being more 

active in both breeds, in terms of number of elements expressed divided by the 

total number present in the genome, is DNA transposons, but accounting just for 

the number of elements expressed is SINE family for Large White and the LINE 

family for Iberian. LINE1 elements also have been reported to contribute to the 

transcriptome in human somatic cells (Rangwala et al. 2009). It is interesting to 

mention that 16% of protein-coding transcripts contain transposable elements 

in their sequence and they are transcribed in the same transcript unit. Apart 

from these interspersed repeats, hundreds of small RNA (tRNA, snRNA and 

rRNA) and thousands of simple and low complexity repeats were also identified 

in the transcriptome. The presence of non-polyadenylated RNA could be a 

remaining contamination as they are highly expressed molecules and difficult to 

remove completely. Another possible explanation is the presence of small 

functional RNAs embedded in the introns of polyadenylated molecules of pre-

mRNA (Zamboni et al. 2009; Donath 2010). Detailed results of the repetitive 

elements detection with Repeatmasker are shown in Additional file 3a and 3b.  

 



LncRNA annotation 
 
In order to define a set of putative lncRNAs in the pig transcriptome, we applied 

several filtering criteria. Using the procedure in (Orom et al. 2010) for the 

definition of lncRNA in humans, we excluded all transcripts mapping within 1 kb 

of an annotated protein-coding gene in the pig genome. This makes it less likely 

to consider the 5' or the 3' UTR of a protein-coding gene as a non-coding RNA. 

Yet, this filtering may not be stringent enough when dealing with insufficiently 

annotated genomes. For that reason, we further refined our analysis by 

excluding all transcripts coding for a complete proteins (according to Augustus). 

A third filter was applied by removing all transcripts having a hit against NR 

(BlastX), against Pfam (RPS-Blast) or against Rfam (Gardner et al. 2009) (web-

site batch search). The final filter was applied mapping all the resulting 

transcripts onto the human genome (the best annotated mammalian genome), 

and removing any transcript strongly overlapping with a protein-coding gene. 

The result is a dataset made of 2047 transcripts and referred in the rest of this 

text as the lncRNAs.  

 

The main problem when dealing with ncRNAs is to distinguish between spurious 

transcripts resulting from promoter leakiness and biologically functional 

transcripts. In order to do so, we assessed the level of evolutionary conservation 

of each lncRNA across the 18 available mammalian genomes. As shown in 

previous work, this conservation cannot be directly inferred from reference 

multiple genome alignment (Orom et al. 2011). We therefore used a standard 

gene discovery strategy that relies on a combination of BlastN (version 2.0 MP, 

Gish, unpublished) and exonerate (Slater & Birney 2005). BlastN allows a rough 

identification of the location of each transcript in the considered genome while 

exonerate is used to precisely delineate the corresponding gene structure. We 

only considered as potential homologues hits for which exonerate alignments 

yield more than 70% coverage with the pig transcript. The results of this 

extensive homology based analysis are displayed on a heatmap (Figure 1).  



 

Figure 1. LncRNAs mammal conservation. The heatmap recapitulates the screening result of 

the new discovered 2047 pig lncRNAs versus eighteen mammal genomes. The columns represent 

the mammal genomes while the rows indicate the query lncRNAs. The spots indicate the result of 

the search of each pig lncRNA versus the different genomes. Green spots represent hits having 

high similarity scores. Black spots indicate low similarity scores. Red spots indicate that no 

homolog was detected.  

 
In the context of this analysis, we managed to map 986 transcripts in at least one 

other mammal species. A sizeable number of transcripts (391) were excluded 

because they contain pig repeats (red block in the pig column on Figure 1). The 

rest of the transcripts roughly fall in three categories. The first one is made up of 

genes apparently conserved across most tested mammals, including human. 

These make up a group of 469 genes (Figure 2). In this group, 131 transcripts 



map onto human genomic regions with no annotation. The rest either overlap 

with protein-coding genes (316), with known lncRNAs (15) or pseudogenes (7). 

It is important to note that an overlap with a PcG is not incompatible with a 

transcript being a lncRNA. The second category is made up of a group of 322 

transcripts conserved among Artiodactyla (pig and cow) but not found in human. 

The last group encompasses all the putative lncRNAs for which no homologue 

was found in other species. While these may be pig specific, further analysis 

would be needed to confirm their biological relevance (for instance by testing 

their differential expression across tissues).  

 

Figure 2. Ven diagrams of the predicted homologues in human and cow. a) 469 pig lncRNA 

presented homology with human. 15 pig lncRNA overlap with human lncRNA, 316 overlap with 

human PcGs annotations and 131 lncRNA presented homology with unannotated human DNA 

regions. b) Comparison of lncRNAs having a homolog in human and in cow.  

 

It is worth mentioning that the transcripts thus identified have a gene structure 

significantly different from their human counterparts. 97% are single exon genes 

and 2.5% bi-exonic, a figure significantly different from human where a much 

higher portion is bi-exonic. This finding may simply reflect insufficient coverage 

in the RNA-seq experiment resulting in truncated cufflinks models and thus 

should not be taken, so far, as strong evidence of distinct lncRNA organization 

between species.  



It is in agreement with our observation that the lncRNA we observe in pig are 

roughly half the size of those reported in human (456 vs 925). As a consequence, 

the number of independent transcripts reported here is quite likely to be an over 

estimation.  

 

Gene expression analysis 
 
In total, 12,816 annotated genes were expressed in gonads. Less than 1% of 

these genes were expressed more than 10000 FPKM; around 5% were expressed 

between 1000 -10000 FPKM, 50% between 10-1000 FPKM, 40% between 10-

100 FPKM and 3% between 1-10 FPKM (Additional file 4). The rest were 

expressed below 1 FPKM. The maximum expression level of an annotated gene 

was 61,000 and 73,000 FPKM in Large White and Iberian, respectively. The gene 

ontologies of the 100 most expressed genes (mainly ribosomal proteins and 

heat-shock proteins) in both samples were related with transcription and 

translation, protein folding, lipid and cholesterol metabolism (apoproteins), 

induction of apoptosis and response to stress. These results are consistent with 

those observed in other mammalian species with RNA-seq (Ramskold et al. 

2009).  

 
The correlation of gene expression levels between both samples (Large White vs. 

Iberian) was very high (r = 0.85), which suggests that a large fraction of the 

transcriptome is conserved across individuals. This is consistent with our 

previous results which showed that the largest source of variability was tissue 

rather than sex or breed (Ferraz et al. 2008).  

 

Gene expression was quantified using two different approaches: DEGseq (Wang 

et al. 2010a), which uses raw fragment counts per gene as a measure of 

expression, and Cufflinks (Trapnell et al. 2010), that uses an estimation of 

fragments per kilobase of exon per million reads mapped (FPKM). DEGseq's 

protocol recommends working only with the uniquely mapped fragments, 

whereas Cufflinks can deal with multiple mappable fragments. In this study, the 



correlation of the log2 of the fold change between both methods was 0.96 when 

discarding infinite values and taking expressed genes in both methods into 

account (see Figure 3a). Nevertheless, fragments mapping to homologous genes, 

which constitute 15%-20% of the expressed genes, are lost when considering 

fragments that map only once in the transcriptome, so it is arguable how to 

actually compare expression levels measured with these two programs.

 

 
 

Figure 3. Measuring gene expression. a) DEGseq vs. Cufflinks estimates of log2 fold changes 

between Large White and Iberian expressed genes. Blue and red points correspond to not 

expressed genes in microarrays and Cufflinks, respectively. Light blue and light red points 

correspond to microarray and Cufflinks infinite values. b) Microrray vs. RNA-Seq individual 

measurements. The microarray data correspond to signal intensity difference between Large 



White and Iberian, whereas the RNA-Seq measurement is the log2 fold change as obtained from 

Cufflinks. c) Microarray breed z-score values vs. RNA-Seq log2 fold change. The Pearson's 

correlations (r) were significant in each case (Pv < 2.2 × 10-16) and calculated considering only 

expressed genes and no infinite values.  

 

We also compared the RNA-seq expression results with Affymetrix microarray 

data obtained in a previous study (Ferraz et al. 2008). As many microarray 

probes may map to the same gene, the average probe value per gene was 

calculated. A total of 9,112 Ensembl ID genes could be retrieved from microarray 

probes data for RNA-seq comparisons. The correlation between the individual 

microarray signal intensity difference and the log2 of the fold change from 

RNAseq was quite high (r = 0.71, see Figure 3b). From the microarray study, we 

also had a Bayesian standardized breed score (z-score) available for each gene. 

When comparing the microarray breed z-score and the log2 of the fold change in 

RNA-seq, the correlation was also moderately high (Pearson correlation r = 0.46, 

see Figure 3c).  

 

Differential expression analysis 
 
We compared the performance of Cufflinks and DEGseq to detect differential 

expression between both samples (P < 0.001 and fold change > 2). Cufflinks 

identified 2,907 differentially expressed genes with multiple mappable 

fragments and DEGseq 2,330 with uniquely mapped fragments; there was a 

reasonable agreement between softwares, 1,830 genes (Figure 4, top). But, to be 

more conservative, and to try to get only differential expression due to breeds 

and not merely to stochastic reasons, we extracted differentially expressed genes 

from breed effects data, with absolute z score threshold > 1.65. Then we selected 

the intersection of RNA-Seq (Cufflinks) and microarrays reducing the number of 

differentially expressed genes to 256 (Figure 4, bottom). Out of these, 147 genes 

were over expressed in Large White and 109 in Iberian. Among differentially 

expressed genes, spermatogenesis, response to steroid hormone stimulus and 

sensory organ development were significantly over-represented children gene 

ontologies (P < 10-3). Doing the same analysis but considering the GOslim of the 



pig described in the methods section, we obtained an enrichment of 

reproduction, developmental process and fatty acid metabolic process parental 

gene ontologies (P < 10-3). Interestingly, among the significant KEGG-pathways 

represented, we found many differentially expressed genes in the PPAR signaling 

pathway, which is involved in lipid metabolism and, specifically, it has been 

shown to have a role in mice gonads fat deposition (Tsai et al. 2009).  

 

 

Figure 4. Overlapping of differentially expressed genes. Top: Differentially expressed genes 

identified by DEGseq and Cufflinks. Bottom: Differentially expressed genes identified by 

microarrays (breed z-scores) and RNA-Seq (Cufflinks).  

 
Expression differences of coding and non-coding genes 
 
We also compared the expression level of the annotated coding genes, novel 

coding genes, lncRNA and transcripts containing at least one transposable 

element (see Figure 5a). The median expression level of annotated coding genes 

(230.1 FPKM) was slightly lower than of the novel-coding genes (258.0 FPKM). 

The range of expression levels of the annotated coding genes is, however, 

broader than that of the novel coding. We were able to detect annotated coding 

genes with very low expression levels, which highlight that fact that providing 

the reference gene models; it is easier to detect genes even at low coverage. 

Simultaneously, the expression median of transcripts units with at least one TE 



(111.6 FPKM) and lncRNAs (107.8 FPKM) is more than 50% lower than those of 

coding regions. As non-coding transcripts are probably involved in gene 

regulation, less number of copies is needed (Orom et al. 2011). The annotated 

coding genes are on average longer than the novel coding (Figure 5b). This may 

be due to several reasons, first a higher coverage is needed to fully assemble a 

novel gene, but, it is has been also described than novel genes tend to be shorter 

than annotated ones. Overall we found that the average transcript length for 

protein-coding gene is 1578 bp, roughly half the size of transcripts in the human 

transcriptome (2982 bp). Interestingly, we observed a similar ratio when 

comparing the average size of lncRNAs in our experiment (456 bp) with that 

observed in human (925 bp). This fairly constant ratio suggests a homogenous 

bias, most likely the result of a lack of connecting paths between exons of the 

same transcript unit.  



 

Figure 5. Expression levels according to annotation. a) Boxplots of expression level (log10 

FKPM) for annotated coding genes, novel coding genes, lincRNA and transcripts with TE. The 

black line represents the median. b) Boxplots of the transcript unit length in base pairs (log10). 

c) Boxplots of the GC content (log10) using the reference annotation for transcriptome assembly. 

d) Boxplots of the GC content (log10) without using the reference annotation.  

 
The GC content median of the coding genes (annotated 0.46 and novel 0.47) was 

the same but higher than the lncRNA (0.42) and transcripts harboring at least 

one TE (0.42) because coding genes tend to be rich in GC (Arhondakis et al. 

2004). Important to notice is the fact that GC content of annotated genes differs 

depending on whether we provide to Cufflinks the reference gene annotations 

(Figure 5c) or not (Figure 5d). In the former, the GC content is much higher 

(0.53) than the latter (0.46), pointing to a possible bias towards AT during 

Illumina library preparation and sequencing workflow. Recently, a new 



amplification protocol has been published that solves this problem (Aird et al. 

2011).  

 

SNP identification 
 
We divided the SNPs in two classes, fixed, i.e. differences with respect to the 

assembly, a Duroc pig, and segregating when the individual was heterozygous. 

The number of SNPs found per bp sequenced is shown in Table 3. In autosomes, 

approximately the same amount of fixed SNP with respect to the Duroc genome 

reference is found in both breeds, but around 30% less divergence is found in 

Iberian on × chromosome. Regarding the segregating SNP, in autosomes, we 

found 30% less variability in Iberian than in Large White and almost 50% less 

variability in the × chromosome. This result is in agreement with the high 

inbreeding level of the Iberian strains. Fixed SNP and segregating SNP 

annotation is shown in Table 4 introns and 3' downstream regions of annotated 

genes were the most polymorphic, a result of less evolutive constrains than 

exonic and 5'upstream regions of the genome; 3'UTR was also more variable 

than 5'UTR regions. As expected, more SNP were synonymous than non-

synonymous in CDS.  

 

Table 3.  SNP statistics 

 Fixed Segregating Total 
 (SNP/kb) (SNP/kb) (SNP/kb) 

Large White 
29558 
(0.64) 

11230 
(0.24) 

40788 
(0.88) 

Iberian 
25668 
(0.59) 

7552 
(0.17) 

33220 
(0.76) 

 
Number of fixed SNP with respect to the reference genome and number of segregating SNP 

within each breed. Within brackets, the number of SNP per kb assembled. 

 
 
 



Table 4. SNP annotation 
 

  
Fixed Segregating 

Large White Iberian Large White Iberian 

Synonymous coding 2083 1727 1352 757 

Non synonymous coding 1073 910 852 494 

Synonymous coding 2083 1727 1352 757 

Non synonymous coding 1073 910 852 494 

5' UTR 150 77 73 39 

3' UTR 1187 1029 1004 622 

Stop lost 3 1 0 4 

Stop gained 1 3 7 9 

Intronic 15101 13020 3388 2515 

5'Upstream 2983 2588 1176 628 

3'Downstream 9440 8549 5579 3831 

Splice site 311 259 91 86 

Non synonymous coding 1073 910 852 494 

Within non coding gene 262 268 14 9 

Intergenic 5847 5042 1539 1076 

 
The number of SNP is degenerated; each SNP can have more than one annotation. 
 
 
Allele specific expression 
 
A beta binomial model was applied to detect allele specific expression ASE (see 

methods). A total of 428 SNP (3.8%) with average coverage of 55 × and 338 SNP 

(4.5%) with average coverage 121 × showed allelic imbalance in Large White 

and Iberian samples, respectively. Coordinates and annotation of SNPs with 

significant results are listed in Additional file 5. Figure 6 shows the relation 

between coverage and the posterior mean of allele specific expression p (see 

methods). Figure 6a indicates how, although very extreme values of p are always 

significant, intermediate values (p between 0.3 - 0.4 and 0.6 - 0.7 approximately) 

are significant only if enough coverage exists. This is a result of how the prior (p 

= 0.5) is dominated by empirical evidence as data increases. Figure 6b was 



plotted to show that an increased coverage does not result in an average higher 

ASE and therefore significance is not a statistical artifact. Further, we did not 

observe either any consistent higher expression of the reference vs. the 

alternative allele (results not shown) and therefore it is not an alignment artifact 

either.  

 
 
Figure 6. Allele specific expression. a) Coverage versus posterior mean of allele transcription 

rate (p); each point represents a SNP; red points are SNP showing significant ASE and black 

points are SNPs with no significant ASE. b) Barplot of coverage versus absolute value of p. It can 

be seen that there was not a consistent relation between ASE and coverage.  

 
Several SNP with significant ASE are located contiguously within intergenic 

regions, suggesting the presence of putative functional units not yet annotated in 

the pig genome. There were not many genes with ASE shared between the two 

samples, likely due to different genotypes at the regulatory motif of the two 

breeds. There were only 22 common SNPs exhibiting ASE in both animals, but in 

three of the SNPs we observed over expression of different alleles in each breed. 

Logically, these results should be taken as statistical evidence, genotyping or 

sequencing the cis-regulatory motives and linkage disequilibrium information 

are, however, needed to confirm whether these SNPs show genuine ASE.  

 

 

 

 



General Discussion 
 
We present the first, to our knowledge, comprehensive exploration of the pig 

gonad transcriptome carried out with RNA-seq, a technology that offers critical 

advantages over microarray. Importantly, RNA-seq allows us to improve 

dramatically the annotation of the species and the discovery of new splicing 

events. Here, we have confirmed that a large part of the transcription effort in 

the cell is spent on TE sequences. A recent RNA-seq study in human and primate 

brain transcriptomes also found high proportion of reads mapping to repetitive 

elements, mainly from the Alu family (Xu et al. 2010). Previous works in mice 

also indicated high expression of TE in germlines. The number of TE is probably 

an over-estimation as we did an ambiguous mapping reporting only the best 

alignments. On the other side, Cufflinks down weights the expression level taking 

into account mapping uncertainty (Trapnell et al. 2010).  

 

Unfortunately, we also confirm that current porcine annotation is incomplete, as 

evidenced by read mapping annotation: more than 50% of the fragments do not 

map to annotated exons. The fact that many reads map to introns could be 

explained either by intron retention (new isoforms) or pre-mRNA presence. 

Reads mapping outside the boundaries of annotated genes could be explained 

either by polymerase run-on fragments or a bad annotation of the gene endings. 

Many intergenic reads have been mapped to putative novel coding transcripts, 

some of them presenting orthology with related species. The poor status of the 

annotation is confirmed by the presence of 104 highly conserved transcripts, 

that would have been annotated as lncRNAs if we had only considered the pig 

annotation, but whose homologues in human show a perfect overlap with 

protein-coding genes.  

 

Given that we had previously analyzed the transcriptome of a wider collection of 

pig and tissues with Affymetrix microarrays (Ferraz et al. 2008), we were able to 

compare both technologies. The correlation within individuals was rather high (r 

= 0.71) and comparable to other reported studies (Marioni et al. 2008; Bloom et 



al. 2009; Fu et al. 2009; Bradford et al. 2010; Toung et al. 2011). Furthermore, 

the correlation of expression between Iberian and Large White obtained with 

microarray (employing all animals) and the individuals (obtained with RNAseq) 

was also moderately high (r = 0.46), suggesting that transcriptome patterns are 

relatively stable. Among the most differentially expressed genes, those involved 

in spermatogenesis and lipid metabolism are over-represented, which may be a 

result of targeted tissue selection. It is noteworthy that Large White and Iberian 

breeds are phenotypically extreme for both reproduction and fat deposition 

traits so these data would suggest a correlated effect on the regulation of genes 

involved in these traits.  

 

In general, Cufflinks has a better performance to map fragments to genes or 

isoforms that are physically overlapping or very similar in sequence, as it uses a 

statistical model to deal with multiply mapping fragments. DEGseq works with 

uniquely mapped reads, thus underestimating gene expression levels of 

homologous genes but also discarding those reads belonging to two overlapping 

genes; a bias in expression level is thus introduced in these cases. The algorithm 

behind Cufflinks is rather naïve, though. Recently, new approaches that 

implement improved algorithms to deal with ambiguously mapped reads data 

and avoid bias in downstream analysis have been published (Marioni et al. 2008; 

Pasaniuc et al. 2011).  

 

Although not the main purpose of the work, we also found a lower rate of 

heterozygosity in Iberian than in the Large White animal, in agreement with the 

fact that Iberian pigs are normally inbred. Finally, we also explored ASE, a topic 

that has received a renewed interest recently. In this study, ~ 4% of the 

segregating SNP presented allelic imbalance. From these, around 40% were 

located inside annotated genes, the rest were located in blocks in intergenic 

regions, pointing to putative functional transcripts. To be able to confirm ASE, 

more animals should be tested because the majority of the SNPs with ASE were 

not common between Large White and Iberian pigs.  



Conclusions 
 
We provide a complete survey of the pig male gonad transcriptome and 

identified many novel elements. However, to further improve the annotation of 

the pig genome, a large effort from the community will be necessary by 

sequencing more tissues at different developmental stages. In order to detect 

novel splicing events and to reconstruct novel isoforms, RNA-seq studies with 

very high coverage are required. Here, we also have shed some light on the dark 

matter of the transcriptome; in particular, we remark the discovery of novel long 

non-coding transcripts and the fact that TE expression seems to take a large 

fraction of the transcriptome. Their precise roles need to be elucidated in future 

studies. We also show that correlation between microarray and RNAseq 

expression data are reasonably high (linear correlation r = 0.71). Finally, Large 

White and Iberian pigs seem to have diverged most for genes involved in 

spermatogenesis and lipid metabolism, not only in terms of gene expression but 

also phenotypically. Interestingly, it is well known that genes related to 

gametogenesis are subject often to a positive selection rate (Jagadeeshan & Singh 

2005; Haerty et al. 2007). More work is required to investigate whether the 

differences in expression in these genes are adaptive.  

 

Methods 
 
Animal material 
 
Animal material is fully described in (Perez-Enciso et al. 2009). The two animals 

were housed and slaughtered simultaneously. Animals were prepubescent, three 

months of age, and weights were 45.0 and 30.1 kg for Large White and Iberian 

animals, respectively. 

 

Library preparation 
 
Total RNA from gonads was extracted as described in (Perez-Enciso et al. 2009). 

Briefly, Total RNA was extracted from 100 mg tissue using the RiboPure™ kit 

(Ambion, Austin, USA). RNA integrity was assessed by Agilent Bioanalyser 2100 



and RNA Nano 6000 Labchip kit (Agilent Technologies, Palo Alto, USA). Due to 

high variation in concentrations of the total RNA obtained in different tissues, all 

samples were concentrated and cleaned using the RNAeasy MiniElute Cleanup 

kit (Qiagen, Basel, Switzerland) obtaining final concentrations between 500 and 

1000 ng/μl. Sequencing libraries were produced using the Illumina mRNA-Seq 

sample preparation kit, following the manufacturer's instructions. Briefly, 4 μg of 

total RNA were used as input for poly-A+ selection, followed by metal-catalyzed 

fragmentation of the selected mRNA (peak of size distribution at approx. 240 nt). 

After reverse transcription to cDNA using random hexamer primers, we 

performed end-repair and A-tailing of the double stranded cDNA. Large White 

and Iberian cDNA were ligated to indexed pairs of adapters, see Additional file 6. 

The cDNA was size selected on a 2% agarose gel, and fragments corresponding 

to an insert size of 237 nucleotides were excised from the gel. The DNA was 

recovered from the gel slice using QIAquick gel extraction kit (Qiagen). Therafter, 

the libraries were amplified in 15 cycles of PCR using primers Illumina 1.0 and 

Illumina 2.0. The libraries were quantified using Taqman, and pooled at a 

concentration of 10 pM. We performed paired-end sequencing of the libraries on 

the Genome Analyzer IIx using Illumina v4 sequencing chemistry.  

 
Reads annotation 
 
S-MART (http://urgi.versailles.inra.fr/Tools/S-MART) was used to count the 

number of reads mapping to exons, introns and 1 kb upstream/downstream of 

the annotated genes. A minimum overlapping of 1 nucleotide was chosen to 

declare an overlap.  

 

Mapping, Assembling and Quantifying 
 
Reads were mapped against the pig reference genome (assembly9) with Tophat 

v.1.0.14 (Trapnell et al. 2009) using the following settings: maximum of 40 hits 

per read (reporting best alignments), expected mean inner distance between 

mate pairs of 137 and a standard deviation for the distribution on inner 

distances between mate pairs of 100. For unambiguous mapping of the reads, the 



maximum alignments per read were set to 1. Sequence statistics were analyzed 

with FASTQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). Base 

sequence qualities and proportion of bases per cycle are shown in Additional 

files 7a and 7b. A decrease in base quality is observed towards the end of the 

sequence and there is a bias in nucleotide content in the first 10 cycles of the 

reads due to the random hexamer primer library preparation approach (Hansen 

et al. 2010). Recently, a new statistical approach has been proposed to solve this 

bias (Roberts et al. 2011). Transcripts were assembled and quantified by 

Cufflinks v.0.9.0 (Trapnell et al. 2010). To improve the robustness of the 

differential expression estimates the quartile normalization was used and the 

contribution of the top 25 percent most highly expressed genes was excluded (-N 

option). The minimum alignment count per locus was set to 20 (-c option).  

 
Orthology detection 
 
Intergenic expressed regions not yet annotated in the pig genome were extracted 

with Cuffcompare (Trapnell et al. 2010) and custom Python and R scripts. Only 

those regions expressed in both samples were considered for a conservative 

approach. To identify putative coding transcripts, we run Augustus (Stanke et al. 

2008) providing exon boundaries and allowing only complete proteins 

translations from the forward strand.  

 

Transposable element analysis 
 
We run RepeatMasker (http://www.repeatmasker.org/) with options 'quick 

search' and species 'pig' to identify repetitive and transposable elements (TE) in 

pig genome and male gonads transcriptome. We used RepeatMasker version 

open-3.2.9, rmblastn version (1.2) 2.2.23 and RepBase update 20090604. 

 

LncRNA identification 
 
All the transcripts not overlapping with pig protein-coding genes and falling at 

least 1 kb away from the closest protein annotation were considered for our 



analysis. A series of filtering steps were then implemented. The first one 

consisted in selecting the transcripts for which Augustus returned no (or just 

partial) coding potential. BlastX (NCBI Package version 2.2.25) was then used to 

search all possible translational products (the six possible reading frames) of 

each transcript against the NCBI non-redundant protein database (last update 

05/29/2011). All the transcript queries that matched a known protein with an 

expectation value lower than 10-5 were discarded. Likewise, RPS-Blast (NCBI 

Package version 2.2.25) was used to search the possible translational products of 

each transcript against a database of Pfam profiles (Finn et al. 2008) and the 

transcripts returning an expectation value lower than 10-5 were removed. In 

order to filter the transcripts belonging to known classes of RNAs (snoRNAs, 

tRNAs, etc...), all the sequences were sought against Rfam (Release 10.0) using 

the Rfam searching facility available at: 

http://rfam.sanger.ac.uk/search#tabview=tab0.  

Finally the remaining transcripts were remapped against the human genome and 

the homologous positions were intersected with protein-coding gene 

annotations (GENCODE version 3c). The screening was performed using a 

combination of BlastN and exonerate (as described in the screening pipeline in 

the methods). The transcripts whose human homologue resulted to be fully 

included in protein-coding exons were removed.  

 

Screening pipeline 
 
The screening pipeline was composed by three phases. The first consisted in 

seeking each query against the target genomes with a version of BlastN 

optimized for ncRNAs discovery [53]. Secondly, using exonerate each query was 

realigned versus the genomic regions pointed by Blast. For each query and for 

each genome was kept just the best hit that was successfully realigned. The 

exonerate alignments spanning for at least the 70% of the pig queries were 

retained. Finally, each query was compared versus all the putative discovered 

homologs by realigning the transcripts sequences with T-Coffee (Notredame et 

al. 2000) and measuring the query/homolog pairwise similarity.  

 



Differential expression (DE) analysis 
 
To test DE with unambiguous mapping data DEGseq was used (Wang et al. 

2010a). MA plot-based method (where M is the log ratio of the counts between 

two experimental conditions for gene g, and A is the two group average of the log 

concentrations of the gene) with a random sampling method (MARS) was 

selected. To count the number of fragments that uniquely map to an exon, 

HTseq-count was used with 'union' as overlapping mode, 'gene' as feature and 

not strand-specific. A locus was considered as expressed if it had a minimum 

count of 40 fragments (summing the reads in both samples). From a total of 9 M 

unambiguously mapped reads for each library, 4.5 M of reads felt in the category 

of 'no_feature' (no annotation provided). The software discarded reads mapping 

to two overlapping genes (20,000 reads). Cuffdiff  (Trapnell et al. 2010) was used 

to test DE using same options as discussed above for ambiguous mapping data.  

 

In the microarray assay, we employed the GCRMA normalization method (Perez-

Enciso et al. 2009) and a Bayesian z-score measure as detailed in (Irizarry et al. 

2003). Briefly, normalized data were analyzed with model  

 

y=Tissue+Breed+Sex+Probeset+PT+PB+PS+Residual,  

 

where PT, PB and PS stand for the probeset × tissue, probeset × breed and 

probeset × sex interactions, respectively. The Bayesian breed z-score for the g-th 

probeset is defined as zg = E(PBg|y)/SD(PBg|y), where E(PBgj|y) and SD(PBgj|y) 

are the expected and SD values of the posterior distribution of PB, respectively 

(Irizarry et al. 2003).  

 

Gene ontology analysis 
 
Parental gene ontology enrichment analysis was performed with the QuickGO 

browser (http://www.ebi.ac.uk/QuickGO/) using a GOSlim extracted from the 

AmiGO browser (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi) and 

made up of 23 parental pig GO: biological regulation, cellular process, metabolic 

process, multicellular organismal process, developmental process, signaling, 



localization, response to stimulus, immune system process, cellular component 

organization, reproduction, biological adhesion, cellular component biogenesis, 

death, locomotion, multi-organism process, growth, pigmentation, rhythmic 

process, viral reproduction and cell killing. Expected and observed GO 

percentages were compared with a Fisher's exact test as implemented in R. To 

test for an enrichment of specific ontology categories, we simply computed a 

two-sided t-test assuming a normal distribution for number of counts. The 

children gene ontology enrichment and KEGG pathway analyses were performed 

with the DAVID database (http://david.abcc.ncifcrf.gov/). Prior to GO analysis, 

the pig gene IDs were converted to human gene IDs with Biomart 

(http://www.biomart.org/) as the database had poor pig Ensembl annotations. 

The list of differentially expressed genes (intersection of Cufflinks and 

microarray breed effects) was compared against total expressed genes in male 

gonads (background).  

 

SNP identification 
 
SNPs were identified from unambiguously mapped reads using Samtools 

(http://samtools.sourceforge.net/). The minimum SNP quality was 10 and the 

minimum read depth was set to 3 × for fixed SNP with respect to the reference 

and 4 × for segregating SNP. As many false SNP were located at the splice sites 

due to the difficulties of alignments near indels (splicing sites), they were 

removed from the final set. Annotation of the SNP was made with custom Perl 

scripts using the Ensembl APIs.  

 

Allele specific expression 
 
To test for allele specific expression heterozygous SNP were selected from both 

samples using uniquely mapped reads (SNP quality > 10, minimum depth of 4x, 

minimum allele count of 2). Allele specific expression can be inferred when, in a 

heterozygous site, one allele is transcribed at significantly higher or lower rate 

(p) than the other allele. We used a beta - binomial model within a Bayesian 

framework to infer whether p was significantly different from 0.5. The posterior 

probability of p is given by the distribution  



 

Be(α+na,β+n−na) B(na,n)×Be(α,β),  

 

where Be() is a beta distribution; B(), a binomial; n is the number of reads for 

that SNP; na , the number of reads pertaining to one arbitrary allele, and α and β 

are hyperparameters. The data was fitted using an empirical Bayesian approach 

such that the mean and variance of Be(α, β) were those observed in the real data. 

The obtained α and β were 4.99 and 3.84 in Large White and 6.38 and 6.20 in the 

Iberian data, respectively. ASE was considered when the 95% Highest Density 

Region (HDR) did not include p = 0.5. HDR was computed with function 

"HDIofICDF.R" in R (http:/ / www.indiana.edu/~kruschke/ 

DoingBayesianDataAnalysis/ Programs/ HDIofICDF.R).  
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In this Section, we discuss the different experimental approaches used, the 

estimated nucleotide variability in the Iberian strain, methodologies to detect 

structural variants and their potential phenotype effect, the different 

approximations to detect selective sweeps in the pig genome, provide new 

insights into the functional roles of the transposable elements and lncRNAs 

expressed in pig male gonads and, finally we refer to the problems related with 

mis-alignments and mis-assemblies. 

 

Experimental design: RRL and pools 

Although NGS have slashed prices, a few years ago sequencing complete 

genomes at high depth was costly, whereas now analyses are limited by 

computing costs. Here we opted for cost-effective methods to capture as many 

polymorphisms as possible but at a reasonable cost: sequencing a pool of 

individuals and / or sequencing a randomly selected fraction of the genome 

using reduced representation libraries. The use of a random RRL allowed 

performing a representative sampling of a single individual (Chapter 4) and also 

from a pool of individuals (Chapter 5). In doing so, the complexity of the genome 

is reduced and higher sequence redundancy is obtained than if whole genome 

sequencing was performed. But this method has some problems as described by 

Amaral et al (Amaral et al. 2009; Amaral et al. 2011), RRLs from different 

samples independently, could lead to distinct sequenced fragments between 

individuals due to an imprecise excision of the fragment size during library 

preparation, which causes that the animals share a small amount of sequenced 

coverage and therefore the usable data drops. Moreover, there is the possibility 

that some interesting region is not covered, since only a fraction of the genome is 

sequenced.  

 

Discovering variants at population level and low cost can be carried out 

sequencing pools of individuals. This strategy has been used and discussed in 

previous studies (Van Tassell et al. 2008; Cutler & Jensen 2010; Kim et al. 2010; 

Amaral et al. 2011; He et al. 2011; Zaboli et al. 2011; Boitard et al. 2012). In 

Chapter 5, single individual sequencing was combined with sequencing a pool of 

nine Iberian pig varieties. However the pooling methodology also has its 



drawbacks, since we have to account for the uncertainty that a certain 

chromosome is included when pooling the DNA from the different samples and 

the uncertainty that a certain chromosome is actually being sequenced, meaning 

that some individual sequences are over or under-represented. To account for 

these peculiarities, we applied new statistical approaches, e.g., modified the 

Watterson’ estimator for pools (Ferretti 2012) and developed a new Bayesian 

approach for SNP calling in pools (Raineri 2012). Another problem is that power 

to detect SNP is ~50%, which means that half of the SNP are lost when pooling. 

The majority of the variants in a population are at low frequencies (e.g., 

singletons) and they are lost during the process of pooling and SNP calling, 

simply because rare alleles are less likely to be sampled and difficult to 

distinguish from sequencing errors (Perez-Enciso & Ferretti 2010). All these 

caveats introduce uncertainty in the estimators that must be considered when 

interpreting the results. Yet, the advantage over individual sequencing is that 

although the power to detect SNPs in pools is lower, the total number of SNPs 

uncovered is much higher, since in pooled data there are more chromosomes.  

 

Nucleotide and structural diversity in the Iberian strain 

The recent completion of the pig genome has greatly facilitated the study of 

porcine genome variability (Groenen 2012). In this thesis, we centered our 

analysis in a highly inbred Iberian pig with extreme phenotypic characteristics 

and no evidence of introgression of Asian genes, the Guadyerbas strain. Genetic 

diversity was estimated using whole genome sequencing from a single individual 

using a modified Watterson’s theta estimator that corrects by low depth 

(Chapter 4 and 5). This correction takes into account that there is an 

underestimation of heterozygous sites in low depth sequenced samples. 

Estimated variability in autosomes was ~ 0.7 kb-1, a non-negligible value for a 

highly inbred line, but still 50% less variable than the pooled data containing 

distinct Iberian varieties. After correcting for inbreeding, however, both 

estimates are similar. In contrast, for the NPAR region of the X chromosome, still 

40% less variability was observed in the individual after correcting by 

inbreeding.  In fact, we also report that the Iberian nucleotide variability in X 

chromosome NPAR / autosome ratio is much lower than expected under a 



neutral scenario. This observation could be explained by several factors as 

described in the Introduction section. Nevertheless, given that this low 

variability has been observed in several pig populations (Amaral et al. 2009; 

Amaral et al. 2011), selection seems the most likely explanation. We studied in 

detail the NPARX low variability regions and found some interesting genes: 

MECP2 involved in fear response, NSDGL in hair follicle morphogenesis, the 

interleukines IL13Ra1 and IL1RAPL2 in immune response, the ACSL4 gene in 

lipid metabolism, and, interestingly, it has been reported as a positional 

candidate gene for the quantitative trait loci (QTL) related to growth and oleic 

fatty acid composition in pigs (Mercade et al. 2006) and liver expressions were 

studied in detail in (Corominas et al. 2012). Also important is the HTR2C, a 

serotonin receptor involved in anxiety and feeding behavior and maps to a 

region previously described to be potentially associated to maternal infanticide 

in pigs (Chen et al. 2011b; Quilter et al. 2012).  

 

In agreement with other species like rabbits (Carneiro et al. 2009), chicken (Fang 

et al. 2008), Drosophila (Begun & Aquadro 1992) and human (Hellmann et al. 

2005; Spencer et al. 2006) genetic diversity was higher in telomeric regions than 

centromeres, probably due to a higher recombination rates in telomeres. In fact, 

we observed a high correlation of variability and recombination rate in the pig 

genome (Chapter 5). This observation could be explained either by a higher 

mutagenic effect in recombination spots (Lercher & Hurst 2002; Hellmann et al. 

2003) or by selection (reviewed in (Eyre-Walker & Hurst 2001). Background 

selection removes all variants linked to a deleterious mutation and this effect is 

more pronounced in regions with low recombination (e.g., centromeres or NPAR 

regions of X chromosome) and the same pattern happens with positive selection. 

It has been postulated that the former option is more likely, since positive 

selection does not seem to be pervasive in the pig, (Groenen 2012), 

unpublished), reports that approximately 1 % of the pig genome to be under 

selective pressures. On the contrary, this is not true for some Drosophila species 

with big population sizes. Sella et al. (Sella et al. 2009) reported that the major 

part of the Drosophila genome underwent positive selection. It has been 

reported that GC content is positively correlated with recombination rates due to 



biased GC gene conversion in recombination hotspots (Marais 2003; Duret & 

Galtier 2009). Under this hypothesis, mismatch repair systems would 

preferentially insert G or C at sites where strand breakage occurs during meiosis 

and mitosis (Genereux 2002). Therefore, indirectly, GC content is expected to 

correlate with variability. Here, however, we did not find such a strong 

correlation with GC content and nucleotide diversity. 

 

Multi-copy regions 

In this thesis, we used a sequenced-based approach to identify multi-copy 

regions at a genome-wide scale. This technique, which is becoming more popular 

due to the ongoing algorithm improvements and cost decreases in NGS, 

overcomes the array comparative genome hybridization (aCGH) and SNP chip 

genotyping methods in terms of specificity, sensitivity and resolution. The read 

depth approach used in our study, determines the exact number of copies of each 

MCR and it has much better resolutions, thus not inflating the length of the MCR. 

A clear example is that CNVs detected by the pig SNPchip array (Ramayo-Caldas 

et al. 2010) had a median of 754.6 kb (minimum length of 44.7 kb and maximum 

of 10.7 Mb), whereas we report a median of 6 kb (minimum length of 4 kb and 

maximum of 117 kb). The advantage over aberrant paired-end distance 

approaches is that it does not require a very good quality genome build, but the 

drawback is that it can not detect inversions, translocations, novel insertions and 

other complex structural variants, just duplications or deletions with respect to 

the reference genome (e.g., new paralogs of annotated genes). Furthermore, it is 

difficult to spot the exact breakpoints of the SVs due to read depth fluctuations at 

fine scales. Therefore, the read depth approach is complementary to the paired-

end distance methods; in fact, there are some programs to detect CNV from NGS 

data integrating both approaches (Medvedev et al. 2010).  

 

As stated in the Introduction, structural variants (e.g., CNV), although being less 

frequent than SNPs, they affect a higher percentage of genomic sequence and 

potentially have greater impacts phenotype diversity changing gene structures 

and dosage, altering gene regulation and exposing recessive alleles (Zhang et al. 

2009). Remarkably, they have been associated with several diseases in human 



such as autism, intellectual disability, dyslexia and schizophrenia (Sebat et al. 

2007; Bassett et al. 2010; Girirajan & Eichler 2010; Vacic et al. 2011). In 

livestock, there has been recently a major interest, since CNV may contribute to 

evolutionary adaptation and to agriculturally important traits. A representative 

sample of phenotypes produced by structural variants in domestic animals is 

shown in Table 1. Most of the associations discovered in livestock are related to 

Mendelian traits, but the next challenge is to elucidate their implications in 

complex phenotypes, e.g., growth, prolificacy or disease resistance, to 

incorporate them into animal genomic selection systems. 

 

Table 1  

Species Phenotype Gene Reference 

Cow 

Anhidrotic ectodermaldysplasia EDA (Drogemuller et al. 2001)  
Renal tubular dysplasia CLDN16  (Ohba et al. 2000) 

Osteoporosis SLC4A2 (Meyers et al. 2010)  
Abortions and stillbirths MIMT1 (Flisikowski et al. 2010)  

Sheep White and grey coat color ASIP (Norris & Whan 2008)  

Goat 
Polled intersex syndrome PISRT1 (Pailhoux et al. 2001)  

White coat color ASIP (Fontanesi et al. 2009)  
Pig White coat color KIT (Giuffra et al. 1999)  

Horse Hair depigmentation and 
susceptibility to melanoma STX17 (Rosengren Pielberg et al. 

2008)  

Dog 

Copper toxicosis COMMD1 (van De Sluis et al. 2002)  
Cone degeneration CNGB3 (Sidjanin et al. 2002)  

Dorsal hair ridge and 
susceptibility to dermoid sinus ORAOV1 (Salmon Hillbertz et al. 

2007)  
Collie eye anomaly NHEJ1 (Parker et al. 2007)  

Cone-rod dystrophy 3 ADAM9  (Goldstein et al. 2010) 
Wrinkled skin and periodic 

fever HAS2 (Olsson et al. 2011)  

Startle disease SLC6A5 (Gill et al. 2011)  

Chicken 
Feather growth PRLR, 

SPEF2  (Elferink et al. 2008) 

Pea-comb phenotype SOX5 (Wright et al. 2009)  
Information extracted from (Clop et al. 2012) 

 

Interestingly, in our study, genes that fully overlapped with multi-copy regions 

(MCR) were enriched sensory perception of smell, virus response and xenobiotic 

metabolism. Similar results were found in cattle (Fadista et al. 2010; Liu et al. 

2010; Hou et al. 2011; Bickhart et al. 2012), horses (Doan et al. 2012a; Doan et al. 

2012b) goats and sheep (Fontanesi et al. 2010a; Fontanesi et al. 2010b). One 

step further in this MCR analysis would be to test more Iberian pigs or pigs from 



other breeds to see if these MCR are in fact, copy number variants (CNVs) or they 

are fixed in the population. The main goal would be to find breed-specific CNV 

associated with production traits. Moreover, as we were able to detect only MCR 

gains with respect to the reference Duroc genome due to a relatively low average 

read depth in our sample; it would be possible as well to detect deletions with 

confidence if the sequenced sample had higher average read depth.  

 

Selection fingerprints in the pig genome 

The traditional method to study adaptive evolution is to investigate a small 

number of loci that one hypothesizes priori to have been under selection. 

However, an inherent limitation to single locus approaches is that population 

demographic history confounds natural selection. But scanning the entire 

genome provides the opportunity to begin to disentangle demography and 

selection effects; the former affects the whole genome and the latter acts upon 

specific loci. Therefore, for the genome-wide approach, empirical distributions of 

tests statistics can be performed and genes under selective pressures can be 

identified as outlier loci. The drawback of this approximation is that it will 

depend on the strength of selection and the fraction of all loci subject to 

selection, parameters that are difficult to estimate (Kelley et al. 2006). 

 

To infer regions of the Iberian pig genome that might underwent selection 

during domestication or breeding, we applied different approaches: i) covering 

just a single target, ii) sequencing the whole genome and iii) investigating 

differentially expressed genes in a specific tissue. 

 

In Chapter 3, we used the classical Sanger sequencing, a high-resolution method 

to study in detail the nucleotide variability of unique putative target under 

selection. To date, several works have shown the usefulness of this approach in 

humans and other species. For example, Inomata et al. (Inomata & Yamazaki 

2002) studied nucleotide diversity of AMY gene, a digestive enzyme that breaks 

down starch in Drosophila, Ojeda et al 2008 (Ojeda et al. 2008b) focused the 

study at the causative gene IGF2 related to muscle growth and leanness in pigs, 

(Li et al. 2010a) detected positive selection at the MC1R gene in Chinese pig 



breeds, or (Gilad et al. 2002) who detected positive selection at the MAOA gene 

associated with aggressiveness in humans. We centered our attention to the 

SERPINA6 gene, which has been reported to be putatively associated with meat 

quality in pigs (Ousova et al. 2004; Guyonnet-Duperat et al. 2006). For that, we 

characterized the nucleotide variability patterns of this gene in different pig 

breeds originated in Asia and Europe. Although we detected a nonsynonymous 

mutation only present in European domestic pigs (except for the Iberian strain) 

we could not observe a clear selective sweep at the SERPINA6 gene because 

there was no indication of an overall reduction in genetic diversity compared to 

the European wild ancestors. In fact, the wild boars presented even lower levels 

of diversity than domestic pigs. This observation is corroborated by other 

studies (Ojeda et al. 2006; Ojeda et al. 2008a; Ojeda et al. 2008b) and might be 

explained either by a recent split European wild boar-domestic, small founder 

effects or gene flow. Conversely, in maize (Wright et al. 2005), the wild ancestors 

still maintain high amounts of variability compared to the domestic. On the other 

hand, Asian pigs posses very high levels of diversity in agreement with other 

studies (Zhang & Plastow; Larson et al. 2005; Fang & Andersson 2006). Not 

surprisingly, the hybrid Landrace European domestic pig presented both Asian 

and European haplotypes, which reinforces the evidence of recent Asian 

germplasm introgression among commercial lines (Jones 1998; Giuffra et al. 

2000).  The fact that none of the neutrality tests applied were not significant 

when testing the whole gene could be explained by a reduced number of 

samples, so further studies should screen more animals. However, we were able 

to detect an evolutionary constrain at the 5’ end of the gene (promoter region) 

compared to the coding sequence. 

 

In Chapter 4 and 5, we characterized genome-wide nucleotide diversity patterns 

in the Iberian genome to infer regions under selection. This method has less 

resolution than studying a single target region, e.g., SERPINA6 study, but 

provides a general overview of diversity patterns distribution. Moreover, it is a 

reasonable study to confine our search for positive selection to a small set of 

candidate genes. To carry out this study, we divided the genome in fixed window 

sizes and calculated different statistics, as reported in other studies (Hellmann et 



al. 2008; Amaral et al. 2011); . Watterson’s theta high variability outlier regions 

may indicate balancing selection, slightly deleterious mutations segregating in 

the population or mis-assemblies of the reads (Hellmann et al. 2008). We found 

an enrichment of sensory perception of smell (OR genes) and defense response 

(SLA genes) gene ontologies. These findings have been also previously reported 

in human and pig (Markow et al. 1993; Black & Hedrick 1997; Alonso et al. 2008; 

Hellmann et al. 2008; Luetkemeier et al. 2009; Tong et al. 2010; Amaral et al. 

2011; Cagliani et al. 2011). Conversely, extreme low variability regions may 

suggest directional selection or background selection (Hellmann et al. 2008). In 

agreement with Hellman et al., we also found an enrichment of genes related to 

the immune response; specifically we found many INF genes, which modulate B 

cells proliferation in response to virus.  

 

An approach to avoid the confounding effects of demography is to define test 

statistics sensitive only to selection (reviewed in (Li et al. 2012b)). For instance, 

in our case, Tajima’s D and Fay&Wu’ H tests were combined to capture 

departures from the expected SFS (Zeng et al. 2006). The joint test is more 

powerful because D and H are sensitive to different demographic factors. The 

sensitivity of D to population expansion may be counterbalanced by the 

insensitivty of H to the same factor. Grossman et al 2010 (Grossman et al. 2010) 

proposed another join test to detect positive selection, the composite of multiple 

signals (CMS), that takes into account long haplotypes, high-frequency derived 

alleles and high differentiation among population. In this way, this test captures 

a more extense temporal range. Nevertheless, for strong bottlenecks, both tests 

fail to identify the target of selection. The alternative is to estimate both 

demography and selection in a single analysis. As discussed in the Introduction, 

the ABC method (Tavare et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002) 

is a promising approach. Mainly it has been used to infer a variety of 

demographic parameters (Bertorelle et al. 2010; Csillery et al. 2010) and to a 

lesser extent to infer properties of selection (Jensen et al. 2008), but it has the 

potential to incorporate both at the same time. The most demanding need is to 

develop an ABC framework to be applied genome-wide.  

 



In Chapter 6, we restricted our study to a specific tissue. Previous studies in 

Drosophila reported sex-related genes to be rapidly evolving genes (Haerty et al. 

2007), so the male pig gonads is a good tissue to start with. In that case, we did 

not focus on nucleotide changes in the DNA to infer selection, but rather in gene 

expression patterns of two extreme breeds’ gonads. We selected a local fat non-

improved breed, the Iberian pig, and a commercial lean breed, a Large White pig. 

Both animals showed a very high and positive correlation in terms of genes 

expression, suggesting that tissue expression is conserved between the two 

distinct breeds. This is consistent with our previous results, which showed that 

the largest source of variability was tissue rather than breed (Ferraz et al. 2008). 

Interestingly, differentially expressed genes in gonads were enriched in 

spermatogenesis and lipid metabolism gene ontologies. This observation is in 

agreement with the extreme phenotype characteristics of the two breeds, the 

Iberian pig being very fat and not very prolific, and the Large White, a very lean 

and prolific pig. However, to confirm that changes in expression of these two 

biological processes are adaptive is not a trivial task. Phenotypic evolution can 

occur through changes in the coding sequence affecting the protein function or 

changes in regulation of expression altering the amount of protein produced 

(e.g., beak morphology in Darwin’s finches (Abzhanov et al. 2004)). In the first 

case, there exist many approaches to detect outlier regions that can not be 

explained by the neutral model, but in the second case, although the NGS 

revolution has facilitated the generation of large transcriptome datasets, still we 

do not have a consensus about the neutral model to use to disentangle if changes 

in gene expression are due to drift or positive selection (Harrison et al. 2012). 

 

In all the aforementioned approaches, once having identified candidate loci, it is 

important to confirm results on independent data, functionally characterize 

suspected candidates, and ultimately correlate adaptive genetic variation with 

phenotype variation (Kelley et al. 2006). 

 

Pig genome annotation 

The advantage of RNA-seq over microarrays, as mentioned in the Introduction 

section, is that it allows detecting novel genes not annotated in the reference 



genome. In this thesis (Chapter 6), we were able to detect novel isoforms from 

annotated genes and unnanotated protein coding genes with orthology in cow 

and human and to experimentally confirm novel computationally predicted 

proteins. Important to mention is the fact that an alternative splicing could not 

be performed due to many inaccurately constructed transcripts partially due to 

low coverage and partially due to transcript assembly algorithm artefacts. 

Moreover, we also detected many transposable elements (TE) expressed in male 

gonads and long-non-coding RNAs (lncRNAs). Up to 16% of the transcripts 

contained a TE in their sequence. The fact that these elements are still active in 

germ cells suggests that they might perform functional roles, e.g., generation of 

innovative ways to alter gene expression and genomic structures (Muotri et al. 

2007). Several studies reported that TE contribute to novel exon acquisition 

(Vaknin et al. 2009), formation of pseudo-genes and regulation of splicing and 

gene expression (Muotri et al. 2007). This shows that genomes are not static but 

rather dynamic. LncRNAs are strikingly similar to mRNAs: they are RNA 

polymerase II transcripts that are capped, spliced and polyadenylated, yet do not 

function as templates for protein synthesis (Moran et al. 2012). They seem to be 

involved also in many structural and functional roles, e.g., regulation of gene 

transcription, splicing, translation, imprinting, X-inactivation in females and also 

in cancer and neurological disorders (Rinn et al. 2007; Mercer et al. 2009; Gupta 

et al. 2010; Huarte et al. 2010; Orom et al. 2010; Guttman et al. 2011; Hung et al. 

2011). In this thesis, we develop a new pipeline to detect lncRNAs in the pig 

transcriptome. Noteworthy, some presented homology with human, others were 

found only in Artiodactyla order (even-toed ungulates) and other were pig 

specific. To complement our analysis and to confirm they are not artefacts 

differential expression analysis should be performed in distinct tissues. It is 

important to mention that, in a recent liver RNA-seq study that we performed 

with extreme phenotypic pigs in terms of fat deposition (Ramayo-Caldas et al, 

unpublished) we confirmed the expression of hundred lncRNAs already detected 

in our previous gonad RNA-seq analysis, suggesting that, at least some of them, 

are not tissue-specific. In future RNA-seq assays more read depth is needed, as 

our analysis showed that many lncRNAs were truncated due to lack of 

connectivity between exons. In addition, further analysis should be performed 



including lncRNA overlapping with protein-coding genes, as it seems really 

common that gene regulation is carried out by protein coding genes anti-sense 

transcription (Faghihi & Wahlestedt 2009). 

 

These findings in the pig transcriptome shed some light in the dark matter of the 

transcriptome, where many non-coding regions of the transcriptome seem to be 

pervasively expressed. Nevertheless, their precise function needs to be 

investigated further. A conservative study estimates 23,000 lncRNAs in the 

human genome, rivaling the 20,000 protein coding genes (Gibb et al. 2011). It is 

worth to mention, that nowadays, many tools for gene and functional annotation 

are emerging. It is the case of Blast2GO (Conesa et al. 2005; Aparicio et al. 2006; 

Conesa & Gotz 2008; Gotz et al. 2008; Gotz et al. 2011), which automatically 

annotates thousands of novel transcripts providing their sequences as input and 

doing an internal connection to the ncbi blast database. This tool not only 

reports the homologous sequences encountered in the database, but also 

retrieve the GO terms and the most reliable function of the target sequence. 

Another approach we applied in Chapter 6 is to use a gene predictor tool like 

Augustus (Stanke & Waack 2003; Stanke et al. 2004; Stanke & Morgenstern 

2005; Stanke et al. 2006a; Stanke et al. 2006b; Stanke et al. 2006c; Stanke et al. 

2008) to predict if novel discovered sequences encode proteins. In the near 

future it is also planned to develop non-coding RNA annotation tools, although 

the characterization of those might be more complex as the ncRNAs’ sequence is 

not as conserved as protein coding genes. All these bioinformatic tools may 

greatly help to better characterize poorly annotated genomes. Although there 

were major advances in the pig annotation last year, at the time that the RNA-seq 

study was performed only 40% of the reads generated were mapped to 

annotated exons, showing the incompleteness of the annotation in the pig 

genome.   

 

Alignment artefacts and reference mis-assemblies 

An important point to have in consideration, as discussed in Chapter 6, is the 

mapping strategy, unambiguous mapping discards reads aligning to several 

locations in the genome, thus not covering repetitive regions and paralog genes, 



whereas ambiguous mapping might be so liberal that the reads are incorrectly 

mapped. Derrien et al (Derrien et al. 2012) reported that ‘mappability’ is an 

important concept to be taken into account when one is trying, for instance, to 

re-sequence a particular genomic region, or to produce quantitative estimates of 

transcript abundance from RNA-seq experiments. They provide a method to 

calculate the ‘mappability’ of different parts of a genome a priori and broadly 

discuss its implication in SNP calling, Chip-Seq and RNA-seq analysis, gene 

families and pseudo-genes discovery and its relation to paired-end sequencing 

schemes. The short nature of the reads produced by NGS techniques and the 

repetitive complex structure of many eukaryote genomes hinder and limit the 

analysis and interpretation of the data. All these pitfalls might be solved in the 

forthcoming months with the arrival of next next generation sequencing 

techniques (e.g., Nanopore sequencing), larger reads will be produced (100 kb of 

length) and the mapping ambiguity problem resolved.  

 

In addition to the aforementioned caveats, the reference assembly must be seen 

with an skeptical eye. Multi-copy regions detected with read depth 

methodologies uncover many un-annotated gene paralogs belonging to large 

gene families, thus evidencing the difficulties to assembly those repetitive 

regions in reference genomes. These findings highlight the need to improve 

them; otherwise, the results must be interpreted with caution. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 



 

 

CHAPTER 8 

PERSPECTIVES IN THE GENOMICS ERA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



New miniaturized technologies producing longer reads at a cheaper price are 

about to emerge, so sequencing will be affordable and accessible to everyone. 

This will transform tomorrow’s society to the point that the classical blood 

analysis will be replaced by sequencing one’s genome or even, sequencing one’s 

RNA in vivo. For example, we will be able to sequence infectious virus and 

bacteria’s RNA in real time in a human’s body, detecting low numbers of 

circulating tumor cells, take personalized preventive disease measures, track 

novel nucleic acid therapeutics and gene therapies, discover new 

microorganisms living in extreme environments and apply novel enzymes to 

ameliorate problems of disease, pollution, energy production and industrial 

processes (Kahvejian et al. 2008). Sequencing everything is yet only the first 

step, as we then need to be able to manage this huge amount of data and process 

it into information that can be used broadly to benefit human health and 

productivity. 

 

8.1 Data processing and storage 

The rate of information coming from current-generation DNA sequencers is 

increasing exponentially, faster than the computational power and storage size 

(even faster than the Moore’s law, Eggen 2012). Thus, in this new scenario, data 

processing and analysis is becoming a bottleneck and demands more advance 

computer solutions. New faster and efficient software needs to be developed 

using new technologies like High Performance Computing clusters (HPC) or 

cloud-based applications. HPC are multi-processor computer architectures 

which work in parallel to solve complex problems in a very short period of time 

compared to serial computing. Similarly, cloud computing allows scientists to 

rent both storage and processing power virtually by accessing remote servers as 

they are needed. This technology is even more appealing to institutes without a 

vast computer infrastructure. NGS software for read alignment, assembly and 

variation detection, which are computationally intensive and time-consuming, 

can benefit from these ultra-fast computational resources. Basically, these new 

software must be written so that tasks can be fragmented and performed in 

parallel. In fact, some promising programs that work in the cloud have been 

recently developed, e.g., Crossbow (Langmead et al. 2009) for human 



resequencing and genotyping or Myrna (Langmead et al. 2010) to calculate 

differential gene expression from large RNA-seq datasets.  

 

8.2 Beyond next generation sequencing 

Newer technologies, the so called next next generation sequencing techniques, 

do not include any amplification step and are able to sequence a single molecule 

of DNA. A promising technology is to sequence a long single molecule of DNA 

using a protein nanopore (Oxford Nanopore technologies, 

http://www.nanoporetech.com/). The DNA passes through a nanoscale pore in a 

membrane and then each base is read off, using the ion current passing through 

the pore. As the length of the DNA molecule will be ultra long (hundreds of kb), 

much more than the conventional short read lengths, it would facilitate mapping 

repetitive regions, structural variants as well as resolving haplotypes.  At present 

this technology was able to sequence to whole genome of lambda phage at a 

stretch (~54 kb) with 4% of sequencing error rate. In the next months it is 

planned to sequence 100 kb and all the sequencing process will take part inside 

a USB memory stick with thousands of nanopores (just for a few hundred of 

euros); the user only needs to load directly the blood sample and connect to own 

computer.  

 

8.3  Systems biology: An integrative approach 

The traditional approach of isolating individual genes or proteins is being 

replaced by the interrogation of multiple components of a cell on a genome-wide 

scale. The ultimate goal of biology is to integrate ‘omics’ data: genomics 

(sequence and structural variation), transcriptomics (gene expression, allele 

specific expression, novel functional transcripts), epigenomics (chromatin 

conformation, regulatory elements), interactomics (protein-protein interactions, 

RNA/DNA-protein interactions) and functional annotation datasets (gene 

ontologies, signaling pathways) to be able to answer complex biological 

questions about the fundamental mechanisms of genome function and disease in 

a unified global view. In this sense, the aim of systems biology is to model life 

processes with this large amount of data from different sources and discover 

emergent properties, of cells, tissues and organisms functioning as a system. 



 

 

 

 

 

 

 

 

CHAPTER 9 

CONCLUSIONS 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



No clear patterns of a selective sweep could be detected for the Serpina6 gene 

putatively associated with meat quality using a diverse panel of pigs, but our 

data support instead a constraint on proximal 5’ regulatory region larger than 

the in coding sequence. 

 

We observed much less nucleotide variability that expected under neutrality in 

the NPAR region of chromosome X compared to autosomes in the Iberian pig, 

which could be explained by the action of selection. 

 

Strong correlations between recombination rates and variability were observed 

in the Iberian pig genome in agreement with other species. This finding could be 

explained by either a higher mutagenic effect in recombination hotspots or by 

selection. 

 

More than 36Mb of the Iberian pig genome were multi-copy regions gains with 

respect to the reference genome, which stress their importance in genome’s 

structures and phenotype diversity. 

 

We detected several regions putatively under positive selection in the Iberian pig 

genome and presented interesting candidates genes related with feeding 

behaviour, immune response, lipid metabolism, hair follicle morphogenesis, 

epidermis formation, circadian rhythm, which need to be further investigated. 

 

Differential expression analysis in male gonads of two extreme phenotypic pigs 

in terms of prolificacy and fat deposition, showed an enrichment of lipid 

metabolism and spermatogenesis gene ontologies, which may be a result of 

targeted tissue selection. 

 

A high fraction of the pig gonad transcriptome is made up of transposable 

elements and long-non-coding RNAs, their functional roles must still be 

elucidated. We also detected several unnanotated protein coding genes that 

presented homologies with human and cow genes.  
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