
Facing the Challenge of

Automated Negotiation with Humans

A dissertation submitted by
Angela Fabregues Vinent

at Universitat Autònoma de Barcelona
to fulfill the degree of PhD in Computer Science.

Bellaterra, September 18th, 2012

Director: Prof. Carles Sierra
Tutor: Dr. Josep Puyol

Elaborated at: Institut d’ Investigaci´o en Intel· ligència Artificial
Consejo Superior de Investigaciones Cient́ıficas (IIIA-CSIC)

Acknowledgements

Voldria agrair a molta gent el temps que ha compartit amb mi aquests darrers
anys corresponents a la realitzaci�o d'aquesta tesi doctoral. Especialment, voldria
donar les gr�acies a en Juan Carlos. Sempre m'has acompanyat. Sempre m'has
ajudat. Sempre has estat all�a quan t'he necessitat, ja fossis al meu costat o a
milles enfora. Ara que nos veim cada dia, esper no te cansis de jo. T'estim!

Molts coneixements previs he hagut de menester. Molts altres els he adquirit
pel cam��. L'escola, l'institut, la carrera i el m�aster a l'IIIA m'han aportat molts
d'ells. Tamb�e el meu pas per l'empresa privada, per tot arreu s'apr�en. Els
valors, en canvi, s'aprenen a casa. Els vaig aprendre a Menorca gr�acies als
meus pares i tamb�e als meus germans. Pap�a! Mam�a! Me vau donar una
inf�ancia impressionant, envoltada d'un entorn ple de coses per experimentar
sentint-me segura i protegida. Me vau deixar cr�eixer, que form�es sa meva pr�opia
personalitat, que an�es agafant responsabilitats, i que fos lliure de decidir per jo
mateixa lo que ning�u m�es podia decidir. Vau con�ar en jo i me vau �nan�car els
estudis a Barcelona. Casi res! Moltes gr�acies per tot. Bep, amb tu vaig aprendre
a enraonar, a donar mil voltes a ses coses i a poder veure-les des de diferents
punts de vista. Molt �util. Joan, company de mil perip�ecies i experiments. Mira
si nos duim b�e que anys despr�es hem tornat a viure junts. A veure quina ser�a
sa propera que nos passa. Esper sigui bona.

\Culpables" directes de la meva traject�oria acad�emica s�on en Joaquim Font,
en Cerquides, na Maite, na Noyda, en Francesc, n'Arcos, i com no, en Carles.
Tots heu inu•�t directament en decisions clau de la meva vida acad�emica i
professional. Com crec que m'han portat per un bon cam��, no vull deixar passar
l'ocasi�o d'agrair-vos-ho. Carles, gr�acies per deixar-me gaudir d'aquests anys de
doctorat. S�e que en alguns moments puc arribar a ser un corc, de vegades �es
imprescindible. Per les altres em disculpo i t'agraeixo la paci�encia. Diuen que
amb el temps els estudiants s'assemblen als seus directors. Tan de bo se m'hagin
enganxat algunes coses de tu.

Companys d'aventures, bromes, viatges, moments dif��cils i celebracions n'hi
ha molts. Vull esmentar principalment a en Dani i na Txell. Per�o tamb�e a
la resta de l'IIIA: n'Isaac, n'Amanda, na Patricia, en Nin, en Jordi, n'Anna,
en Tito, en Ram�on (dur�e qualque b�otil), en Pedro (traer�e queso), en Llu��s, na
Pilar, en Pablo, na Sandra, en JAR, en Felix, en Marco, n'Ana, na Montse,
n'Imma, na Carol, na Nuria, ... tots no hi cabeu. Segur que m'oblido de gent
important. Perdoneu. Una de les parts m�es interessants del doctorant �es la
realitzaci�o d'estades en altres centres de recerca. Voldria agrair l'oportunitat
de fer aquestes estades a Londres, Jerusalem i Tel Aviv a: Prof. Mike Luck,
Prof. Mark D'Inverno, Prof. Je� Rosenschein i Prof. Sarit Kraus. Tamb�e
vull agrair als seus estudiants i colaboradors, i a amics que he fet per aquests
indrets: Samhar, Sanjay, Matthew, Padmaja, Yato i Michelle, Yael, Reshef,
Noam, Roy, Roi, Kobi and Raz. Entranyables s�on tamb�e els nostres amics de
Val�encia: Maria, Elena, Jose, Natalia, Estela, Eva, Carlos i Vicent. Fem tanta
pinya que es pensen els de fora que som del mateix laboratori. Bon senyal.

Research supported by the Agreement Technologies CONSOLIDER project
under contract CSD2007-0022 and INGENIO 2010, and by the Agreement Tech-
nologies COST Action, IC0801.

iii

Abstract

The research �eld of negotiation has been studied from many di�erent perspec-
tives, among them: game theory, psychology, business, neuroeconomics, and
psychopharmacology. The computational study of negotiations is denoted by
automated negotiation. Most works on automated negotiation assume ratio-
nal agents and static negotiation problems. However, humans are rationally
bounded, and their negotiations are usually dynamic. It is often impossible to
explore the complete negotiation space due to time limitations and the dynamics
of the problem. By the time that an optimal solution is found, the solution is
not optimal any more. Currently available testbeds on automated negotiation
share the same shortcomings. Those testbeds that intend to involve humans
in experiments assume that humans are rational, or are de�ned over arti�cial
domains that require intense instruction of experiment participants. This thesis
contributes to automated negotiation de�ning an agent architecture suitable to
negotiate with humans, and a testbed that allows for an easy participation of
humans in experiments.

We denote the agent architecture by HANA. It allows multiple bilateral ne-
gotiations about actions, and deals with pre-negotiation looking for good enough
sets of actions and o�ers. It is a modular architecture based on an ecological
model of rationality. The mental state of the agent is represented as graded be-
liefs, dynamic desires and general intentions. We use a novel search&negotiation
technique where search and negotiation go hand in hand: the former providing
o�ers to propose, and the later providing commitments for pruning the search
space, and information for �ne-tuning the evaluation of o�ers. Several negotia-
tion strategies are provided that can be dynamically combined. The architecture
is extensible, allowing the incorporation of new behavioural models.

The name of the testbed is DipGame. It is based on a popular board game
where being a skilled negotiator is crucial for winning. DipGame allows the
study of relationships, emotions, and coalitions that take place during succes-
sive negotiations involving humans. There are many research opportunities in
di�erent topics all of them connected to negotiation. The study of a topic or
another is selected constraining the negotiation language used during the game.
The testbed provides a framework for agent development, and several nego-
tiation utilities for the representation of messages and communication among
agents. It assists the execution of experiments using a graphical software appli-
cation called GameManager. It facilitates the inclusion of humans with another
application called ChatApp. Moreover, the analysis of results is supported by a
di�erent application called DipTools.

This thesis is completed with a formal de�nition of the problem, a formal
speci�cation of the game, and the application of the work to the game industry.

v

Resum

El camp de recerca en negociaci�o ha estat estudiat des de diferents perspec-
tives. Entre elles: la teoria de jocs, la psicologia, els negocis, la neuro-economia,
i la psico-farmacologia. L'estudi computacional de la negociaci�o s'anomena
negociaci�o autom�atica. La majoria de les feines sobre negociaci�o autom�atica
assumeixen que els agents s�on racionals, i els problemes est�atics. En canvi,
els �essers humans s�on racionalment limitats, i els problemes acostumen a ser
din�amics. Sovint resulta impossible explorar l'espai de negociaci�o complet degut
a l'esgotament del temps i al dinamisme del problema. En el moment en qu�e es
troba una soluci�o �optima, aquesta ja ha deixat de ser �optima des de fa temps.
Els actuals bancs de proves disponibles sobre negociaci�o autom�atica es troben
amb els mateixos problemes. Els que pretenen ser compatibles amb agents hu-
mans assumeixen que aquests s�on racionals, o utilitzen dominis arti�cials que
requereixen una instrucci�o intensiva dels �essers humans per tal que puguin par-
ticipar en els experiments. Aquesta tesi contribueix a la negociaci�o autom�atica
de�nint una arquitectura d'agent adequada per a negociar amb els humans, i
un banc de proves que resol els problemes existents a l'hora d'incloure humans
en els experiments.

L'arquitectura d'agent s'anomena HANA, permet m�ultiples negociacions bi-
laterals sobre accions a realitzar, i s'ocupa de la pre-negociaci�o tot cercant bons
conjunts d'accions i ofertes. Es tracta d'una arquitectura modular basada en un
model ecol�ogic de la racionalitat. L'estat mental de l'agent es representa amb
graus de creences, desitjos din�amics i intencions generals. Utilitzem una nova
t�ecnica de cerca&negociaci�o on la cerca i la negociaci�o van de la m�a: una pro-
porcionant ofertes per a proposar, i l'altra compromisos per a podar l'espai de
cerca, i informaci�o per a a�nar l'avaluaci�o de les ofertes. Es de�neixen diverses
estrat�egies de negociaci�o que es poden combinar din�amicament. L'arquitectura
�es extensible permetent la incorporaci�o de nous models de comportament.

El banc de proves s'anomena DipGame i es basa en un joc de taula molt
popular on ser un bon negociador �es crucial per a guanyar. Aquest banc de
proves permet l'estudi de les relacions, les emocions i les coalicions que tenen lloc
durant successives negociacions entre �essers humans. Hi ha moltes oportunitats
d'estudi en diversos temes de recerca, tots ells vinculats a la negociaci�o. L'estudi
d'un tema o d'un altre es selecciona restringir el llenguatge utilitzat durant el joc.
El banc de proves proporciona un marc pel desenvolupament d'agents i diverses
eines de negociaci�o per a la representaci�o dels missatges i la comunicaci�o entre
ells. DipGame d�ona suport a l'execuci�o d'experiments utilitzant un programa
anomenat GameManager, i facilita la inclusi�o dels �essers humans amb un altre
programa anomenat ChatApp. A m�es, es d�ona suport a l'an�alisi dels resultats
amb un programa diferent anomenat DipTools.

Aquesta tesi es completa amb una de�nici�o formal del problema, una especi-
�caci�o formal del joc i l'aplicaci�o del treball a la ind�ustria dels jocs.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 6
1.3 Overview . 9

2 Background 13
2.1 Multiple bilateral negotiation . 13
2.2 Pre-Negotiation . 15
2.3 Testbeds . 16
2.4 The Diplomacy Game . 19

2.4.1 Description of the game 19
2.4.2 Player Community . 20

2.5 Agents playing Diplomacy . 21
2.6 Z-Notation . 25

3 Resource Negotiation Problem 27
3.1 Environment . 27
3.2 Negotiation protocol . 29
3.3 Painting hanging example . 30
3.4 Summary . 35

4 The Diplomacy Game 37
4.1 The Game . 38
4.2 The Game Dynamics . 43
4.3 The Game State . 44
4.4 Movements . 46

4.4.1 Order strength . 49
4.4.2 Avoiding loops . 52
4.4.3 Battles . 55
4.4.4 Updating the Game State 61

4.5 Retreatements . 62
4.6 Adjustments . 63
4.7 Complexity . 66
4.8 Diplomacy as an RNP . 68
4.9 Summary . 70

ix

x CONTENTS

5 HANA architecture 73
5.1 Agent architecture . 73
5.2 World model . 75
5.3 Plan search . 78
5.4 Negotiation . 82
5.5 Summary . 86

6 DipGame testbed 89
6.1 Diplomacy for research . 89
6.2 Infrastructure . 90
6.3 Negotiation language . 93
6.4 Creating a bot . 97

6.4.1 dip . 97
6.4.2 nego . 98
6.4.3 Methodology . 99

6.5 Running experiments . 101
6.5.1 Chat App . 102
6.5.2 Game Manager . 102
6.5.3 DipTools . 104
6.5.4 Methodology . 105

6.6 Experimentation . 106
6.6.1 Experiment settings . 106
6.6.2 Game strategy . 107
6.6.3 Negotiation strategy . 108
6.6.4 Execution . 108
6.6.5 Results . 109

6.7 Summary . 110

7 Application to the game industry 113
7.1 Motivation . 113
7.2 DipGame website . 114

7.2.1 Player section . 115
7.2.2 Researcher section . 117
7.2.3 Impact . 118

7.3 Droidippy integration . 119
7.3.1 Droidippy . 120
7.3.2 Integration . 122

7.4 Summary . 124

8 Discussion 127
8.1 Contributions of this thesis . 127
8.2 Future work . 130
8.3 Related publications . 131

A Quick start guide 133
A.1 Introduction . 133
A.2 Play your �rst game . 133
A.3 Create your �rst bot . 133
A.4 Play against your bot . 135
A.5 Add negotiation capabilities to your bot 135

CONTENTS xi

A.6 Template for a negotiating bot 136

B Notation summary 137

List of Figures

3.1 Negotiation protocol between two agents. Proposals are replied
by accepts and rejects. It is not possible to send a proposal when
a previous one is not yet replied. [tmax] represents the end of the
negotiation round. 30

3.2 Painting hanging example. 31
3.3 Horizontal positions. Points represent agents and the line is the

painting. This �gure corresponds to the horizontal positions of
Figure 3.2. 33

3.4 Some paths that Joan can follow towards the goal, Figure 3.3.
Joan is the dark dot, the other agents are the grey dots and
the painting is the strait line. Empty circles and the dotted line
represent the correct positions. In light grey we represent some
of Joan's possible paths. 34

3.5 Environment states corresponding to the history WH 35

4.1 Full map (left) and province types (right) that listed from left
right and top down are: sea, coastal, inland and bi-coastal provinces. 38

4.2 Unit hosting limitation per province type (left). Any province
can only host a unit (top right). Fleets moving to bi-coastal
provinces should indicate the coast they want to go to (bottom
right). 39

4.3 Example of correspondence between provinces and regions includ-
ing their names. 40

4.4 Adjacency graphs for a portion of the map. Province adjacency
(top left), region adjacency (bottom left) and disjoint region ad-
jacency graph (right). 41

4.5 Board of a standard version of Diplomacy with the units in their
starting positions. 43

4.6 Example of moves attacks and countryman attacks and supports. 49
4.7 Example of cycles of attack including a ring and a broken ring. . 52
4.8 Example of head to head battles. 53
4.9 Examples of attacking paths. 56
4.10 Abstract representation of the regions in the Diplomacy map.

Unit `x' is the given unit, units named `y' are its neighbours and
units `z' are the units that can receive supports to move from `x'. 68

4.11 Diplomacy ontology. 69
4.12 Two examples of plans. 69

xiii

xiv LIST OF FIGURES

5.1 Graphical representation of HANA. Arrows represent data ows.
Coloured boxes represent the modules that form part of the agent,
and white boxes are components of those modules. 74

6.1 Example of DAIDE's client-server communication model. 91
6.2 Example of player and observer distribution for a game. 91
6.3 Example of DAIDE clients that can be used for the distribution at

Figure 6.2. Three players are humans using AiClient, the other
human is an observer using the same software but in di�erent
mode. The rest are bots. 91

6.4 DipGame communication model. 92
6.5 Language hierarchy. Each language Li extends the languages in

lower levels, that is, if there is no re-writing rule for a term in Li

then it can be found in lower levels Lj , with j < i 93
6.6 Language hierarchy de�nition in Backus-Naur Form. Note that:

expression+ denotes a non-empty sequence of expression, non
terminal symbols are written in italic, and unde�ned symbols
(referring to terms in the ontology) appear in underlined italics. . 94

6.7 Diplomacy ontology and connexion to L. 95
6.8 UML 2.0 class diagram of the most important classes in the

framework. 98
6.9 Bot development framework. 98
6.10 UML 2.0 class diagram of the most important classes for L1 in

dipNego. 100
6.11 Message transformation. 100
6.12 A communication protocol for L3. 100
6.13 Screenshot of the human graphical interface, ChatApp. The chat

is on the right and the map on the left. 102
6.14 Screenshot of the GameManager. On the left side of the �gure

you can see the main window of the game manager where the
game can be set. When running the game, the window on the
right side of the �gure pops up providing real-time results of the
game execution. 103

6.15 Screenshot of DipTools. 104
6.16 Example of distribution of programs among computers. 106
6.17 Chart of the experiment. Percentage of games won per number of

negotiating agents. The dashed line represents the percentage of
victories of negotiating agents and the doted line the percentage
of victories of non negotiating agents. The continuous lines (in-
creasing and decreasing) represent the expected percentage of ne-
gotiating and non-negotiating agents in case they all were equal.
This particular graphic shows that negotiating agents perform
better in the experiment than what is probabilistically expected. 110

7.1 Screenshot of the DipGame website's main page. 115
7.2 Screenshot of the dipgame web application for playing Diplomacy. 116
7.3 Number of registered users per month. Note that, before Septem-

ber 2010, we had a total amount of 103 registered users. 118

LIST OF FIGURES xv

7.4 Unique visits per month. The tracking system was enabled in
May 2010, there are no previous data. The October 2011 lo-
cal minimum corresponds to a period of time with the tracking
system disabled. 119

7.5 Droidippy web application's map page with power list. 121
7.6 Droidippy web application's negotiation panel. 122
7.7 Screenshots of the Droidippy application. 123
7.8 Bot module structure for DAIDE and Droidippy. 124

Chapter 1

Introduction

Science is as diverse as the universe it aims to study, to model, to change. Arti�-
cial sciences concentrate on the art of design. This thesis belongs to engineering
as it focuses on the design, building and the use of a particular kind of machine:
a machine with arti�cial intelligence for negotiating with humans.

There is no standard de�nition for artificial intelligence, neither for intelli-
gence. We follow the de�nition in [Russell and Norvig, 2003], and classify the
research done in this area by its goal in two dimensions: (1) whether it concerns
thinking or behaving ; and (2) whether it is done rationally or as humans do.
Basically, works on robotics concentrate on the behaviour, and works with no
physical components focus on thinking. The distinction between being rational
or as humans imply that humans are not assumed to be completely rational.
In fact, they are bounded rational as it is not often the case of having all the
information and the necessary time for making rational decisions [Simon, 1996].
As stated in [Smith, 2003; Debenham and Sierra, 2009], humans do not follow a
constructivist sort of rationality. For instance, human decisions depend a lot on
e.g. the relationships with the other humans [Sierra and Debenham, 2007], on
emotions [Fessler and Haley, 2003], and on cultural inuences [Gal et al., 2010].
The correct classi�cation of this thesis is on thinking as humans. Thinking as
humans is necessary to understand them and, thus, succeed negotiating with
them.

We use the term agent to refer to an autonomous entity that observes and
acts upon an environment directing its activity towards achieving particular
goals. Some of those agents are denoted by intelligent agents and can be hu-
mans or software agents. In this thesis, we are specially interested in groups of
those agents interacting in the same environment, that is, we are interested in
MultiAgent Systems (MAS) research. The machines that we design are indeed
intelligent software agents with no physical components.

1.1 Motivation

Multiagent systems research studies problems involving multiple agents and
their environment. For instance: resource allocation, timetabling and team
planning. The most common industrial solutions to those problems are cen-
tralised, like [Alvarez-Valdes et al., 2002; Bardadym, 1996]. The application of

1

2 CHAPTER 1. INTRODUCTION

these solutions in domains that exclude human interaction is already a reality.
That is also the case in those domains where a human is the user of a decision
support system controlling all the process. The next step is to look for solutions
to problems that include several humans interacting. In those problems, we true
believe that negotiation can improve the outcome of agents allowing a better
usage of resources. And, mainly, it will let humans contribute providing missing
knowledge about their preferences, and it will let them feel more likely to accept
the �nal solution. Example 1 describes a problem of scheduling optimisation
where several humans try to adjust the scheduling to their own preferences.

Example 1 Juan Carlos is the head master deputy1 of a high school. He has a
chemistry degree, and he is not instructed on timetabling. However, he has to set
the timetables for all the teachers and students of his high school. Fortunately,
there are software applications that can deal with what seemed to be the big
problem. Now, the big problem is to deal with teacher’s change requests on the
timetable that is arbitrarily generated by the computer for them.

Being intransigent to change requests is the fastest and easiest solution.
However, faster and easier does not necessarily mean better. An imposed strict
solution can imply many unnecessary troubles in personal life. Big companies
often use as a slogan that they facilitate the reconciliation of family and working
life. Happy parents seem to mean happy workers. Being it one of the principles
of Juan Carlos' high school, he should facilitate parents to take their children to
school by accepting, as long as it is possible, requests from teachers with young
children about having their �rst time slot of the day empty. As this issue with
the �rst time slot, many other issues may arise. Letting humans to take part in
the process helps them also to take conscience, and facilitates the acceptance of
the �nal solution. Negotiating to exchange time slots with colleagues is a good
way to re�ne the solution provided by current industrial products.

What we propose is to study what we denote by Resource Negotiation Prob-
lem (RNP), that is a general multiagent problem where negotiation can be used
to reach a distributed solution, or to re�ne a poor centralised solution, without
reviling the agents' preferences. We de�ne the problem with the aim to be as
general as possible and facilitating, at the same time, to run experiments on
it with negotiations involving humans. For that reason, we took a look to the
most common human day life negotiation scenarios and avoided some features
that complicated too much the experiments. For instance, in RNP the physical
actions are fully observable whereas, in real life, humans can often observe only
some of them. Another simpli�cation is to constrain the execution of actions to
be executed only in concrete time instants.

Software agents in this setting can supplant humans using knowledge about
the human individual and its preferences to negotiate with the other agents.
Someone could prefer to delegate on a trusted software agent that will negotiate
on its behalf without loosing privateness of information. In this timetabling
example, imagine a teacher named Beth that does not want to teach the naughty
son of her friend. She would like to avoid having him as pupil although she does
not want to tell anybody why. A centralised solution of the problem cannot
satisfy Beth's need. Letting to re�ne timetabling solutions representing them as
RNPs would let her negotiate time slots keeping her privacy intact. The idea is

1In a high school, the head master deputy is a teacher that coordinates the rest of teachers.

1.1. MOTIVATION 3

that Beth could either negotiate by herself or use a software agent on her behalf
knowing all this information, and her willingness of never sharing it. She does
not need to tell Juan Carlos that she hates that boy or that she is worried about
having the son of a friend as pupil.

The �eld of negotiation is very broad. Why humans cooperate and how
they reach agreements has been since long a fascinating area of inquiry. It
has been studied from many di�erent perspectives: game theory [Rai�a, 2002;
Kraus, 2001], psychology [Adams, 1965; Sondak et al., 1995], business [Bazer-
man et al., 1992], neuroeconomics [Coricelli and Nagel, 2009], or psychophar-
macology [Eisenegger et al., 2010] just to mention a few. The computational
study of negotiation is denoted by automated negotiation and belongs to the
MAS research area. A very complete analysis of the challenges of negotiating
autonomous computational agents is included in [Lopes et al., 2008].

An approach to automated negotiation is to study communication protocols
with properties that promote a particular behaviour among the agents involved
in the negotiation [Rosenschein and Zlotkin, 1998]. These protocols are highly
restrictive and assume a rational behaviour of the agents that cannot be assumed
when humans can take part of the negotiation. Another approach focuses on the
negotiation strategies of the agents, [Sycara, 1989; Kraus, 1995b; Faratin et al.,
1998a; Sathi and Fox, 1989]. This allows the use of more exible protocols, and
the inclusion of humans as negotiation counterparts because, in this case, agents
are not assumed to be fully rational. The �rst approach guarantees optimality
exploring all possible deals, whereas the second approach takes into account
the cost of the deal exploration, and uses heuristics to look for good-enough
deals. A heuristic approach takes into account the complexity of algorithms,
and aims to provide a feasible solution instead of looking for a probably very
costly optimal solution. \Perfect is the enemy of the good", Voltaire. On one
hand, this approach is based on realistic assumptions facilitating its applica-
tion to real problems and providing more exibility for agent design. On the
other hand, it needs extensive evaluation through empirical analysis. In both
approaches, the negotiation consists of trading proposals. No other informa-
tion is exchanged between agents. No opinions, explanations or arguments pro
and against particular proposals. It is broadly accepted that argumentation
facilitates the signature of agreements. The problem is that the communication
protocols needed for argumentation are complex. Argumentation based works
are theoretical, and di�cult to apply [Pardo et al., 2011; Jennings et al., 2001].

We are particularly interested in the heuristic approach due to its suitability
for human agents, and its possible practical applications. However, facing the
challenge of automated negotiation with humans means a lot more than de�ning
a nice negotiation strategy. It means to build an agent that quickly reacts to
the observations of the environment, that can measure its utility and the utility
of the other agents, that can search for good enough proposals, understand
the relationships among agents, their reactions, ... Pre-negotiation is the term
used in works that deal with all what is necessary for negotiation. As stated in
[Munroe, 2005], many works on automated negotiation assume negotiation to be
an isolated endeavour not a�ected by the broader scope of an agent's activity and
scope. Contrarily, negotiation environments in real-world applications involving
humans do not use to be isolated. Humans use previous interactions to decide
whom to negotiate with and what o�ers to propose. For instance, if someone
never honoured an agreement in the past, we will not even start a negotiation

4 CHAPTER 1. INTRODUCTION

with him/her as we will not expect him/her to honour any new agreement in
the future. Trust is essential for negotiation to take place [Johnson and Luecke,
2005].

The majority of work on automated negotiation assume, for simplicity, that
during a whole negotiation session:

1. The negotiation domain establishes a �xed set of issues and ranges of
values per issue,

2. Negotiation outcomes and negotiation objects are mappings of values as-
signed to issues,

3. Agents are aware of their preferences on negotiation outcomes,

4. Preferences can be represented as a utility function that assigns a numer-
ical value to each negotiation outcome,

5. Preferences remain static.

It has been proved that humans have di�culties to represent their preferences
[Domshlak et al., 2011]. It is quite di�cult to imagine them having a utility func-
tion assigning a numerical value to each negotiation outcome. However, more
di�cult to achieve for them is keeping those preferences static during the whole
negotiation session. Humans may change their criteria a bit during the course
of the negotiation. This is specially the case if we understand negotiation as the
process towards the signature of agreements. If we consider that negotiation is
a crucial agreement technology [Luck and McBurney, 2008], we cannot intend
agents to remain indi�erent to the external changes in the environment and to
the changes given by the information provided by the negotiation. Assuming
�xed preferences would mean to assume that: every agent has the complete true
reality, and negotiation is a simple matter of coordination instead of a process
to reach agreements.

We think that negotiations must be seen as part of an agent's (execution) life
and not as the unique and ultimate goal of it. In fact, several negotiations may
take place during the life time of an agent while the internal state of the agent
would change according to the current situation and the previous experiences.
Thus, we follow Sierra and Debenham's work [Sierra and Debenham, 2007]
and take the context, the relationships with the other agents, the previous
interactions, and commitments all into account.

The design of an agent requires a lot of work in many di�erent aspects of
the agent. Several research topics are involved in such task starting with agent
architecture design and moving from search to negotiation maybe through trust
or emotions. The agent can be as complex as desired including results from
many di�erent areas. We think that a good way to proceed is to start with
a basic agent and to keep upgrading it, adding more capabilities to it. Thus,
the construction of an agent is done by the combination of capabilities. We
facilitate the design of a negotiating agent involved in an RNP providing the
HANA agent architecture specially designed to allocate all those capabilities
desired to negotiate with humans.

The evaluation of negotiation strategies is empirical and require the exe-
cution of intensive experiments. There is a chronic lack of shared application
domains to test advanced research models and agent negotiation architectures

1.1. MOTIVATION 5

in multiagent systems [Fabregues and Sierra, 2009]. Specially when the nego-
tiation domain and the agent preferences are not �xed during the negotiation
session as it is assumed by [Lin et al., 2011]. Moreover, there are recognised
di�culties of running experiments on negotiation involving both human agents
and software agents [Bosse and Jonker, 2005]. These di�culties are delaying
the production of automated negotiating agents. First, most research work on
negotiation techniques does not consider humans as counterparts of automated
negotiating agents. Second, enticing humans to participate in negotiation ex-
periments is di�cult because the negotiation environment use to be arti�cial
and not attractive, and because the language to use in interactions is unnat-
urally constrained. To test the performance of agents, following, for instance,
the HANA architecture, we need a common domain being a speci�c instance of
RNP. The domain must be deterministic, avoiding random elements that would
add noise to the results. It must permit several levels of di�culty, and it must
be able to be applied to the industry. But mainly, it has to be attractive for hu-
mans to take part in the experiments as, otherwise, congregating them would be
too di�cult. Gami�cation seems to be the solution [Deterding et al., 2011]. A
well known deterministic game satisfying the previously listed properties would
be a good domain. A game does also imply a direct application to the game
industry providing software agents as software players. Moreover, humans that
are fans of the game would be glad to take part in the experiments. We propose
to use The Diplomacy Game as the domain for experimentation.

In order to run experiments using a particular domain, it is necessary to
specify the domain formally, and analyse its complexity. The disposability of
strategic and tactic studies of the domain would be appreciated for the creation
of heuristics. The Diplomacy Game is quite popular, and there are several
works studying strategies and tactics speci�c for this domain. However, there
was no previous formal speci�cation of the game. In this thesis, we formalise
the game and provide a complexity analysis. We even go further and provide a
complete infrastructure with software for managing the game, collecting results,
supporting the analysis of those results, and we also provide a framework for
building software agents for playing the game. All those resources form the
DipGame testbed.

One of the purposes of this thesis is to empower technology transfer. Most
current work on MAS, and specially on automated negotiation, are rather the-
oretical, concerning arti�cial problems, and making strong assumptions that
make di�cult the application of their results to the industry. Even the most
practical work has no real applicability. Despite the fact that Diplomacy is
indeed a game, it is a realistic problem due to its complexity, the importance
of negotiation and relationships in it, and because humans are also part of the
problem. The Diplomacy Game can be seen as a speci�c instance of an RNP.
Being a popular game does simply aggregate bene�t as it is a well studied
problem, with many people interested in it, and with many people that can
potentially take part of the experiments. To congregate all those people and,
at the same time, to apply our work to the game industry, we developed a web
application for playing the game online against software players. Moreover, we
have collaborated with a mobile game company integrating our agents in their
system and, by this, allowing their users to play against our software agents
from mobile devices.

6 CHAPTER 1. INTRODUCTION

1.2 Contributions

This thesis contributes to the research area of MAS and concretely to automated
negotiation:

First - Designing an agent architecture Recently, an increasing interest
on the psychological and cultural aspects of negotiation has been observed in the
automated negotiation �eld. For instance, agent negotiation architectures in-
spired in human relationship building [Sierra and Debenham, 2007], or analysis
of cultural inuences in negotiation strategies [Gal et al., 2010]. The community
of social simulation has also studied negotiation models in as much as they help
in de�ning policies (e.g. [Hales, 2002] in an environmental setting) or norms
[Conte and Sichman, 1995]. These human-oriented approaches follow an ecolog-
ical model of rationality [Smith, 2003] based on two basic notions: everything
in the world is constantly changing and not all facts can be known by an agent.
This view on rationality is in line with an evolutionary approach: knowledge
evolves, individuals evolve and societies evolve. Ecological rationality, observed
in humans and human societies, seems also the right one when we face the de-
sign of software agents that aim to negotiate with humans. If knowledge is
dynamic and evolves along time, this will certainly be also the case for beliefs
or intentions of agents that will change constantly due to the interaction with
the environment and the other agents.

We have designed HANA as a modular agent architecture suitable for RNP
with a huge space of possible solutions and incomplete information. It is ca-
pable of multiple bilateral negotiation, and takes pre-negotiation into account
modelling other agents, and generating negotiation options on the y. The ar-
chitecture contains a world model with graded beliefs and desires that trigger
graded intentions. It is based on g-BDI where degrees are used to represent
the uncertainty on the world, [Casali et al., 2011]. In this architecture, desires
are not �xed, they change guided by the agent's emotions that respond to the
observation of the world represented as beliefs. The architecture is extensible
allowing behavioral models to be incorporated in the BDI providing, for in-
stance, trust evaluations or particular rules to generate intentions. Intentions
are general, and trigger the decision making of the agent that is included in the
negotiation module. What actions to perform and messages to send is decided
by the negotiation strategy taking into account the best found action plans and
the best found acceptable proposals.

The architecture relies on a bounded rationality, and it assumes that the
space of solutions is large enough, and the time for deciding is short enough,
that looking for optimality is practically unachievable. To cope with this lack
of time for searching we provide a new technique for search&negotiation that is
reected in the plan search module. The idea is to use an anytime algorithm
providing a ranking of good plans, and to use negotiation to �ne tune the
evaluation of those plans obtaining information from the negotiation of proposals
of actions included in those plans. Thus, search and negotiation go hand in hand:
the �rst providing interesting proposals from plans, and the second providing
information to improve the evaluation of those plans. We also provide a set
of negotiation strategies that can be combined in order to take advantage of
the whole diversity of information included in the world model. Notice that,
as behavioural models can be incorporated to the world module generating

1.2. CONTRIBUTIONS 7

intentions, and those intentions trigger the decision making of the agent, that is
located in the negotiation strategy; then the negotiation strategy can be enriched
with a huge diversity of information instead of being forced to work with a black
box utility measure. The architecture is suitable for dynamic environments that
change during the negotiation process. The constant update of the world module
given new observations, and the concurrent execution of the plan and proposal
search, allows the negotiation strategy to dispose of preprocessed up to date
information.

Second - Developing a testbed Negotiation models that have been de-
signed in the past were validated with simple toy environments arti�cially cre-
ated by the same researchers that design the models. The community requires
a more realistic scenario where negotiation models can be tested. The problem
with arti�cial scenarios is that the behaviour of humans is not necessarily the
same as in real life. It is not the same to decide on arti�cial money or on real
money. That is why areas like auctions have moved into more realistic scenarios
like the di�erent TAC competitions, or why areas like neuroeconomics [Sanfey
et al., 2003] or experimental economics in general have moved into real scenarios.
Current testbeds [Hindriks et al., 2009; Gal et al., 2005; Wellman and Wurman,
1999] are rather simple and we believe that the validation of negotiation models
that aim at human-agent interactions [Amgoud and Prade, 2009; Alsinet et al.,
2008; Sierra and Debenham, 2007] require more sophisticated testbeds.

We developed the DipGame testbed using The Diplomacy Game as the do-
main for experimentation. The scenarios produced by this game include the
interaction with several human agents that compete, but that can occasionally
cooperate. The negotiation is crucial in the game that checks the negotiation
capabilities of the players. This testbed allows the study of relationships, emo-
tions, and coalitions that take place during successive negotiations. There are
many opportunities in di�erent research topics all of them connected to negoti-
ation. The study of a topic or another is selected constraining the negotiation
language and protocol.

We have de�ned L, a language hierarchy with increasing levels of complex-
ity, to illustrate those opportunities, and establish a standard language for
DipGame. The hierarchy allows researchers to gradually progress in the task
of designing a negotiating agent. Levels correspond to increasing complexity.
Argumentation is included in L as the highest language level. The domain de-
pendent vocabulary is separated and represented as an ontology. One of the
aims of this testbed is to facilitate the posterior application of the work to the
industry. The separation of the Diplomacy vocabulary simpli�es the reuse of
code to that end.

The testbed infrastructure includes several negotiation utilities for the repre-
sentation of L messages and the communication among agents. It even includes
a software library that translates messages between L and (a restricted set of)
English. It analyses the dialogue to complete sentences. This library is called
dialogueAssistant, and it is very useful for human agents that, by this way, do
not need to be instructed in order to take part of the experiments.

For the development of agents to run on DipGame, the testbed provides a
framework that copes with the domain dependent issues like the map and game
state representation, the control of the dynamics of the game (years, phases,

8 CHAPTER 1. INTRODUCTION

orders required, end), the representation of moves (orders), and the negotiation
dynamics (received messages, messages allowed to be send). A methodology for
developing agents and a tutorial are included in this thesis.

DipGame assists the execution of experiments using a graphical software ap-
plication called GameManager. This application assists the setting and execu-
tion of experiments. It allows the loading of new software agents, the execution
of games with agents running in several machines, the gathering of execution
logs online, and its saving in a �le.

For humans to take part in the experiment, a graphical software application,
called ChatApp, has been developed. The application can run as an standalone
application or embedded into the GameManager. It represents the game state
over an interactive map that human users can use to indicate their movements.
A chat is included to allow the negotiation with the other players. The chat
uses the dialogueAssistant library to represent messages in English and translate
them to L. Several usability and aesthetic techniques have been used to please
the users.

The analysis of results is supported by a di�erent software application called
DipTools. This application reads the data from game logs stored in �les by the
GameManager. It provides intuitive graphical tools for the representation of
these data. The main tool is a chart representation of several variables (selected
by the user). They can be represented during the process of a game, compar-
atively between several games, and comparatively between several groups of
games. Aggregative operations, like the mean, can be used to simplify those
charts. DipTools facilitates the analysis work to be done by researchers after
running an experiment. A methodology for running experiments with DipGame
is also included in this thesis.

As part of the main contributions introduced above or completing them, there
are other contributions that we list below:

Third - Problem formalisation The formalisation of the problem is neces-
sary for the de�nition of the HANA architecture as it speci�es the environment
and the negotiation protocol that is assumed by the architecture. The problem,
denoted by Resource Negotiation Problem, is a resource allocation problem that
speci�es a negotiation protocol for agents to negotiate about the performance
of actions.

An environment is de�ned as a partition of resources among agents. Agents
controlling resources operate on them performing actions that drive the evolu-
tion of the environment. The negotiation is limited to sets of actions that can
be proposed, accepted, and rejected. The protocol allows for multiple bilateral
negotiations. An agent cannot send a proposal to someone that is waiting for
its reply. But it can send a proposal to someone else. The idea is that proposals
must be replied. However, several negotiation dialogues can take place simul-
taneously involving a given agent. Actions take place in speci�c time instants.
In those instants, all agents perform their actions at the same time. The ne-
gotiation proceeds between each pair of successive instants. All actions being
performed are observable, whereas negotiations remain private. We de�ne RNP
and provide a simple example.

1.3. OVERVIEW 9

Fourth - Specification of The Diplomacy Game The Diplomacy Game
is a quite popular board game.2 There are books about the strategy and tactics
of playing Diplomacy [Sharp, 1978b,a], an online magazine [zin], and many
clubs and tournaments [tou]. The rules of the game are described in the rule-
books included in the commercial versions of the game. In addition, there is a
guide for Diplomacy experts that describes an algorithm for resolving the moves
[Black et al., 1998]. The article [Kruijswijk, 2009] discusses the rules in terms of
mathematics, but still there was no formal speci�cation of the game previous to
this thesis. The use of this game in a research context requires the existence of
a formal speci�cation that gives a precise description of the system that is going
to be used. We specify The Diplomacy Game using the Z-Notation formalism.
The speci�cation describes the rules of the game that include its dynamics, and
the algorithm for resolving moves and generating the next turn. In addition, we
analyse the complexity of the game and represent it as an RNP.

Fifth - Application to the game industry Several online game solutions
appeared in the last years for playing Diplomacy: webDiplomacy, playDiplo-
macy. We decided to provide a new one where software agents could take part
of the game. We created the DipGame web application by which we join re-
search and entertainment together as it was previously successfully done in other
projects.3 Thus, we provide an online game industry product that allows Diplo-
macy players to take part of games facilitating the congregation of players, and
providing the option of including software players (bots) to complete the num-
ber of players necessary for a game. Therefore, players are happy to play, and
researchers are happy to test their software agents playing against humans. The
host of this web application is the DipGame website that we have created to
disseminate the testbed, and provide its documentation and software resources
online.

The recent implantation of smart phones and the increasing use of mobile
devices for entertainment have motivated the need to play Diplomacy using a
mobile device. The development time required for creating such application
stopped us for a while from doing it. Fortunately, Droidippy appeared, and the
mobile game company powering it agreed to collaborate with us. Droidippy is a
product that allows both to play online using a web browser, and to play from
a mobile device using an Android application.4 The collaboration consists in
integrating our work in their system letting DipGame agents to take part of
Diplomacy games running in Droidippy.

1.3 Overview

This thesis is structured in several chapters. In general, we assign a chapter
per contribution, and introduce them in this thesis in a natural order. We start
with the background {introducing concepts and describing related work, and

2Diplomacy has a board game rank of 250 ranked by 6486 players at Board Bame Geek:
http://www.boardgamegeek.com/boardgame/483/diplomacy.

3In 2005, Luis von Ahn devised the ESP Game, an online game of image labelling that
Google is now using to improve its image search results.

4Web browsers for mobile devices enable the possibility to play using the web interface
on mobile devices. Those devices use to have small screens. The use of mobile dedicated
applications is recommended in order to use as much screen area as possible.

10 CHAPTER 1. INTRODUCTION

end with a discussion of the contributions of this thesis comparing them to the
related work. A summary is included at the end of each chapter. The structure
in chapters of this thesis is as follows:

Chapter 2: Background This chapter describes the previous work strongly
related to this thesis. We do not provide a survey on automated negotiation.
We consider that the whole research �eld is successfully described in [Lopes
et al., 2008]. We focus on multiple bilateral negotiation and pre-negotiation as
those are the most relevant aspects of our architecture. The testbeds related to
automated negotiation are described as well as the background on The Diplo-
macy Game, and the agents that succeeded negotiating to some extend while
playing Diplomacy. We conclude describing the Z-Notation formalism used to
specify the game.

Chapter 3: Resource Negotiation Problem In this chapter, we formalise
the general problem that is the purpose of study in this thesis. An RNP is a par-
ticular resource allocation problem where several agents control the resources of
the environment and perform actions on it. Those actions guide the evolution of
the environment. The environment is de�ned as well as the notion of plan, state
and the negotiation protocol. Then, the problem is illustrated in an example.

Chapter 4: The Diplomacy Game The Diplomacy Game is a popular
strategy board game played by seven players that perform moves concurrently,
it is not a turn taking game. As a consequence of the concurrency of moves,
conicts emerge. The rules of the game establish a method for resolving those
conicts, and proceeding generating the new game state for the next turn. This
algorithm is denoted by the adjudicator algorithm. We describe the game, its
players' community and the existing software agents. We also explain that turns
are identi�ed by a year and a phase corresponding to a particular season.

In this chapter, we provide a formal speci�cation of the game in Z-notation.
We start specifying the static part of the game. Then, we proceed with the
dynamic part, de�ning the game state and how to initialise the game. Next,
the adjudicator algorithm is speci�ed in parts corresponding to each season.
Finally, we analyse the complexity of The Diplomacy Game, and provide a
representation of the game as an RNP.

Chapter 5: HANA Architecture HANA is a software architecture for
agents that need to negotiate joint plans of action in realistic scenarios such
those in RNPs. These negotiations may involve humans and repeat along time.
The chapter describes the agent architecture, and its main modules that are:
the world model, the plan search, and the negotiation.

Chapter 6: DipGame testbed The DipGame testbed is the infrastructure
for software agents to be created and experiments to be executed using The
Diplomacy Game. The chapter starts motivating the use of Diplomacy for re-
search purposes. Then, we describe the infrastructure, and de�ne the language.
The infrastructure consists of several components to assist the creation of bots,

1.3. OVERVIEW 11

and others to assist the execution of experiments and their analysis. An exper-
iment proving the suitability of the testbed to test negotiating agents is also
included.

Chapter 7: Application to the game industry The selection of a game
as the domain for experimentation o�ers the possibility to apply our work to
the game industry building software agents capable to play. We have applied
our work to the online game industry providing a solution for playing Diplo-
macy online. Moreover, we have integrated our agents into Droidippy, a mobile
solution for playing Diplomacy. To disseminate the DipGame testbed, we have
created a website with all documentation and resources of the testbed. This
website is also the host of our solution for playing Diplomacy.

In this chapter, we start motivating the application of the work to The Diplo-
macy Game, and proceed describing the DipGame website and their sections:
the player section with the online game industry solution; the researcher section
with the testbed documentation and resources; and an analysis of the impact of
the website since its publication. Then, we describe the Droidippy integration
of DipGame.

Chapter 8: Discussion In this chapter, we discuss the thesis analysing the
contributions, and comparing them with the background. Then, we mention
some future work research, and conclude listing our publications that are related
to the work described in this thesis.

Annex A: Quick start guide This chapter contains a tutorial for the cre-
ation of software agents using DipGame.

Annex B: Notation summary This chapter contains a table summarising
symbols included in the de�nition of the RNP and HANA.

Chapter 2

Background

This chapter describes the previous work strongly related to this thesis. We do
not provide a survey on automated negotiation. We consider that the whole
research �eld is successfully described in [Lopes et al., 2008]. We focus on mul-
tiple bilateral negotiation (Section 2.1) and pre-negotiation (Section 2.2), as
those are the most relevant aspects of our architecture. The testbeds related to
automated negotiation are described in Section 2.3 as well as the background
on The Diplomacy Game (Section 2.4), and the agents that succeeded negoti-
ating to some extend while playing Diplomacy (Section 2.5). We conclude, in
Section 2.6, describing the Z-Notation formalism used to specify the game.

2.1 Multiple bilateral negotiation

The work on automated negotiation can be classi�ed by the type of negotiation
protocol being used. Common types are: multilateral protocols, typically or-
ganised as auctions among more than two agents; bilateral protocols, often with
alternating proposals between two agents; and multiple bilateral protocols that
are not as popular as the other two.

Multiple bilateral negotiation protocols allow the negotiation of agreements
among several, more than two, agents at the same time. The main di�erence
between multiple bilateral and multilateral protocols is that several agreements
can be negotiated in multiple bilateral protocols while only one can be negotiated
in multilateral protocols. The typical multilateral setting is an auction where
an item is auctioned among all the bidders. In this case, the agreement being
negotiated, that is the item and the price, is the same for all bidders. It changes
through the pass of time given by the auction dynamics, but it is always the
same price for all the bidders. Contrarily, in multiple bilateral negotiations, the
agent corresponding to the auctioneer can deploy di�erent strategies when bar-
gaining with di�erent types of bidders. This variability means negotiation can
be tailored to the individual opponents rather than derived implicitly through
the competition of the bidders, as happens in the traditional auctions, [Nguyen
and Jennings, 2005]. We think that progress in this research line opens a new
branch of possibilities for industrial applications. Specially those providing a
personalised attention to the client.

Multiple bilateral negotiations are common in business [Bichler et al., 2003],

13

14 CHAPTER 2. BACKGROUND

however automated negotiation research lacks of these kind of negotiations. The
main problem here is that many bilateral negotiations take place in an \indepen-
dent" manner, although the reached agreements a�ect a common agent. Thus,
controlling those bilateral negotiations is crucial to avoid inconsistent commit-
ments, and to reach the best possible outcome. Previous work on multiple
bilateral negotiation combine two protocols. They de�ne a negotiation process
with two phases: a bilateral phase, and a multilateral phase. An example is
Moai [Raisch, 2002], that allows a negotiator to switch from an auction protocol
to one or more bilateral negotiations, [Neumann et al., 2003]. Another example
is [Shakun, 2005], where multiple negotiators conduct bilateral multi-attribute
negotiations followed, optionally, by an auction. An alternative is to use sequen-
tial bilateral negotiations as an approximation to multiple bilateral negotiations
[Pinho et al., 2004]. This approach avoids the simultaneity of negotiations and
simpli�es the problem. It does not negotiate concurrently, however it takes into
account a scenario with several agents, and do not consider to be in an isolated
bilateral negotiation. The outcome of negotiating with an agent a�ect the sub-
sequent negotiations with that agent and others. This is, in fact, one of the
claims of pre-negotiation that is described in next section.

There are works that simplify the problem assuming that there is only one
agreement as an outcome of a negotiation with multiple opponents, [Van de
Walle et al., 2001; Nguyen and Jennings, 2004; Rahwan et al., 2002]. In [Van de
Walle et al., 2001], the authors propose a fuzzy set-theoretic approach to the
analysis of alternatives in multiple bilateral negotiations for the ranking of ne-
gotiation counterparts. The idea is to recommend some potential buyers to
negotiate with. They use a fuzzy-relational approach to obtain a partial rank-
order of the prospective buyers.

Our interest in HANA is in domains where multiple potential agreements
could be feasible. In [Vahidov, 2008], the authors share the same interest and
envisage a negotiation support systems solution combining human judgement
capabilities with autonomous agents. Agents are in charge of every negotiation
instance while the human manages the eet of the negotiation using a graphical
interface. Similarly, other works on automated negotiation use an agent per ne-
gotiation counterpart and a control or management mechanism (maybe another
agent) to control all those agents. For instance, in [Rahwan et al., 2002], an
agent is used to coordinate the negotiating agents that conduct reasoning by
using constraint-based techniques. They use two levels of strategies: the individ-
ual negotiation level, and the coordination level. After each negotiation cycle,
the individual agents report back to the coordinator that evaluates their perfor-
mance and issues new instructions accordingly. The idea of a MAS performing
as a single negotiator is not new. The design of The Diplomat, described in Sec-
tion 2.5, does already assume the existence of multiple agents. The authors do
not only assume one per negotiating counterpart and a controller, they assume
the existence of many other agents for several parts of the reasoning of the auto-
mated negotiator. Our approach skips this tendency of using several agents to
build an automated negotiator, and use a single one with a single mental state
and with the capability to perform concurrent tasks like, for instance, searching
for good possible agreements and sending proposals.

Our alternative to the use a MAS as an automated agent consists on execut-
ing those concurrent tasks using several threads sharing the same information
and reasoning mechanisms. This alternative can be seen also in [Nguyen and

2.2. PRE-NEGOTIATION 15

Jennings, 2005; Williams et al., 2012]. Those works use a negotiation protocol
completed by a normative system where, apart of proposing (offer), accept-
ing (accept) and rejecting (end) agreements, agents can confirm and decommit.
Con�rm is used to con�rm an acceptance. This is necessary in this work to avoid
the acceptance of inconsistent agreements by the negotiating threads. The delay
between accepting and con�rming an agreement can be used by the negotiation
counterpart to end the negotiation. However, when an acceptance is con�rmed,
any decommitment performed by the agents, meaning to break the agreement,
implies a penalty. Our approach uses a far simpler protocol where acceptances
do not need to be con�rmed, and decommitment is not announced. The penalty
of decommitment is not stipulated by the protocol, it is decided and performed
by the other agents, for instance, not relying any more on the given agent.

2.2 Pre-Negotiation

Most negotiation models address the issues associated with the design of nego-
tiation protocols and negotiation strategies. However, few of them deal with
the preparation and planning for negotiation. According to [Saunders, 1996]:
\Peace requires a process of building constructive relationships in a civil society
not just negotiating, signing, and ratifying a formal agreement.". As relevant is
the negotiation protocol or strategy, as it is the structure of relevant informa-
tion, the analysis of possible negotiating options, and the plan to follow. This
task is denoted by pre-negotiation and it is studied in other works like [Munroe,
2005; Nguyen and Jennings, 2005; Lopes et al., 2002; Li et al., 2004; Zeng and
Sycara, 1998]. We do pre-negotiation in this thesis with the de�nition of the
HANA architecture that generates negotiating options from joint possible plans.

As described in [Lopes et al., 2008], pre-negotiation addresses the operational
and strategic process of preparing and planning for negotiation. This concerns
the structuring of personal information, the analysis of the opponents, and the
de�nition of the protocol and selection of the initial strategy. For simplicity,
HANA assumes the use of a multiple bilateral protocol. Even though, the codi-
�cation of the protocol as a normative system incorporated in the world makes
it possible the use of other protocols. The main restriction in our architecture
is on the negotiating objects that are assumed to be sets of actions refusing the
possibility to argue about the suitability of a particular negotiation protocol.
However, the rest of pre-negotiation activities are present in our architecture.

De�nitively, the negotiation model that inspire our work is LOGIC. In [Sierra
and Debenham, 2007] the authors focus on bilateral negotiations and claim that
the data necessary in a negotiation process can be structured along �ve dimen-
sions: (L) Legitimacy, the relevant information that might be useful to the
other agent in the negotiation; (O) Options, the possible proposals that are
acceptable; (G) Goals, the objectives of the negotiation; (I) Independence,
what can we do if the negotiation fails; and (C) Commitments, the previ-
ously signed agreements. The data along the LOGIC dimensions are to be
prepared before every single negotiation process starts. The evaluation of those
dimensions is done based on the utility and the information provided by a given
negotiation dialogue. They de�ned the intimacy of a relationship between two
agents as the pair of 2×5 matrices evaluating how much utility and information
every agent has provided on any single dimension (a matrix per agent). Based

16 CHAPTER 2. BACKGROUND

on previous psychological studies, they assume that the fairness of a relation-
ship depends on the balance and on the social relationship between the agents
that is represented by the intimacy level. The LOGIC agent acts in respond
of needs preparing the LOGIC dimensions' data and generating a negotiation
target. Then, a relationship strategy determines who to negotiate with. The
relationship strategy generates the relationship targets expressed as the desired
level of intimacy to be achieved in the long term. Those targets are taken
into account for selecting the negotiation counterpart. Next, the negotiation
strategy determines the current set of Options computing the probability of an
option being acceptable based, among others, on the degree of altruism and the
strength of the need. If the option set is empty, the agent quits the negotiation
withdrawing. Negotiation tactics select options to be proposed. They specify
the steps to be followed towards a negotiation and a relationship target.

2.3 Testbeds

A testbed is a platform for experimentation. The existing testbeds for auto-
mated negotiation can be classi�ed given the communication protocol that they
use. There are two testbeds dealing with multi-lateral negotiations. One of
them is the Multi AGent NEgotiation Testbed (MAGNET) that, in spite of its
name, is rather a generalised market architecture for multiagent contract ne-
gotiation using auctions [Collins et al., 1998]. The other is the Trading Agent
Competition (TAC) [Wellman and Wurman, 1999] that is a testbed organised
as an annual competition. In its classical version, agents are travel assistants
that try to assemble the best travel package for their clients. To evaluate the
assembling of packages they use the summation of the utilities of the clients that
are in turn based on their preferences. It is a multi-issue negotiation process
organised as a multi-lateral negotiation by means of auctions on every single
issue. Bids take the form of pairs where a price per item and a number of items
are proposed. There are also other versions of TAC problems that are similar
to this: TAC/AA, CAT and TAC/SCM. TAC is a consolidated testbed, but
its multi-lateral nature and mainly the absence of human agents makes it not
appropriate for testing our agents.

Testbeds are often associated to competitions. That is the case of the above
mentioned TAC, but also of the following testbed:

ART The Agent Reputation and Trust Testbed, [Fullam et al., 2005], was
created with the aim of establishing a testbed for agent trust- and reputation-
related technologies. Several competitions were organised where appraiser agents
competed to get the higher reputation appraising paintings. The game is initial-
ized with varying levels of expertise per agent in di�erent artistic eras. Clients
request appraisals for paintings from di�erent eras. The agents should decide
whether to request help from other appraisals |paying an amount for informa-
tion, or to deal with the appraisals by themselves. The higher the reputation of
an agent, the easiest the other agents will accept to pay a lot.

The ART testbed is currently still very popular although the project is no
longer maintained. It is a good testbed for trust and reputation. We think that
trust is crucial for negotiation and thus, identifying what agents are trustworthy

2.3. TESTBEDS 17

or not is necessary for any negotiating agent. Nevertheless, the ART testbed is
too limited to trust and reputation.

CT The Colored Trails Game [Gal et al., 2005] is a research testbed for
decision-making in groups comprising people and agents. In every game, two
or more players may negotiate to exchange chips that allow them to move from
their source position to a target position over a coloured squared board. To
move through the board, a player must provide chips of the same colour of the
squares that it wants to pass over. The settings of the game have a huge im-
pact on the negotiation. Games may be made simple or complex along several
dimensions including: number of players, size of the board, board information
available to the di�erent players, scoring rules for agents, the types of communi-
cation possible, and the negotiation protocol. Agents negotiate during speci�c
communication phases exchanging messages that can be: chip exchange pro-
posals, commits to proposals, retracts to previous committed proposals, and
requests and suggests of plans towards the goal. The possible actions are: to
move to an adjacent square investing a chip of the same colour, and to send
chips to another player. The CT provides a graphical user interface for humans
to take part in the game. When it is allowed by the speci�c settings of the
given game, the interface provides a list of suggested paths to the goal. It is a
nice interface that simpli�es the work of the players making it easier for them
to take part in the game.

CT is a simple but abstract game designed in a lab for research purposes.
Humans taking part in the games need to be instructed beforehand. Monetary
motivation is essential for congregating those people. The setting of the games
a�ects a lot the negotiation and the outcome of the game. Special attention
needs to be given in order to avoid unbalanced games with some players being
initially in a better position than others. Contrarily, it is quite easy to create a
software agent with the tools provided by the testbed.

GENIUS is a Generic Environment for Negotiation with Intelligent multi-
purpose Usage Simulation that aims at facilitating the design of negotiation
strategies, [Lin et al., 2011]. It focuses on bilateral negotiation and it is domain
independent. It assumes that a given domain establishes a number of issues and
a range of possible values per issue. The domain is known by all negotiating
agents and �xed during a single negotiation session. A negotiation outcome is a
mapping between issues and values. Every agent is completely aware of its own
preferences and it is able to represent them as a normalised utility function.
Preferences, and thus utility functions [Domshlak et al., 2011], are private and
�xed. Interactions between negotiating parties are regulated by a negotiation
protocol that is part of the setting of the negotiation session. GENIUS provides
a repository of domains and utility functions as well as a toolbox for analysis
that calculates optimal solutions and represents the evolution of the negotiation
using it as a reference. This is possible thanks to assuming that preferences are
known and �xed, that is something di�cult to know in real world applications
involving humans. In addition to the di�culties for humans to represent their
preferences as an utility function, the required static fashion of those preferences
is contradictory to the normal evolution of agent's internal state during negoti-
ation interactions. Nevertheless, GENIUS provides a graphic user interface for

18 CHAPTER 2. BACKGROUND

human agents to negotiate among them or against software agents. With this
interface, the environment can be used to teach strategic negotiation to humans.

GENIUS is known as a domain independent environment. Its authors state
that negotiators must follow negotiation strategies that work well in several
negotiation domains, not just one. However, they de�ne a domain as a par-
ticular bilateral and multi-issue problem with �xed issues, �xed possible range
of values per issue, and private but known �xed preferences. Despite of the
variety of possible domains satisfying this requirements, they are all of the same
kind. With respect to the use of GENIUS by humans, notice that it implies the
teaching of humans to negotiate as software agents because they must be able
to represent their preferences and keep them �xed during the whole negotiation
session. Consequently, we think that using humans to evaluate agents in this
environment has no sense. We are skeptical about the relevance of being able
to teach humans to negotiate as software agents in GENIUS do. A good point
of this testbed is that creating agents is simple, and that the testbed is very
popular.

Since 2010, the Automated Negotiating Agent Competition (ANAC) has
been celebrated annually on the context of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS) and the Workshop
on Agent-based Complex Automated Negotiations (ACAN). It is now a pop-
ular competition among the automated negotiation research community. The
purpose of the competition is to facilitate the research in the area of bilateral
multi-issue closed negotiation, similar to what the TAC achieved for the trad-
ing agent problem. The idea is to compare software agents negotiating among
themselves by pairs. To that end, the agents' preferences and their associated
utility functions are set by the competition organisers. ANAC is designed fo-
cused on the development of negotiation strategies rather than other important
aspects of the negotiation. It uses GENIUS for the development and evaluation
of agents, thus, its advantages and limitations are present in the competition.
The competition sets an alternating-o�ers protocol in which negotiation parties
exchange o�ers in turns. It uses several domains of di�erent sizes and complex-
ities. The competition represents linearly additive utility functions, so there
are no dependencies between issues. This facilitates the modelling of the oppo-
nent's preferences. As the level of opposition of the utility functions a�ect the
negotiation, those functions with a good variety of opposition are recommended
allowing for a diversity of good outcomes. To come closer to realistic negotiation
environments, deadlines and discount factors are used. Those factors a�ect the
evaluation of the agents that are ranked at the end of the competition.

For the DipGame testbed, we rely on gami�cation and we use a well known
and studied deterministic game whose features make it very trendy for the study
of negotiation. The use of The Diplomacy Game as the domain for experimen-
tation allows to get results of experiments involving humans playing against our
software agents. Given the popularity of the game, users are motivated during
the whole experiment. They use to feel identi�ed by their role in the game and
are enthusiastic of being able to play against software agents. There are several
testbeds for negotiation described in this section, but none of them provides a
comfortable environment for humans to take part of the experimentation. How-
ever, among all the testbeds described above, the CT is the most compelling to
work with humans.

2.4. THE DIPLOMACY GAME 19

Basically, DipGame is more complex and requires more complete agents
that, therefore, are more di�cult to implement. The long duration of the game
allows the establishment of relationships among the agents, and the study of
the evolution of those relationships. The expressivity of the language is rich,
allowing the exchange of information, emotions. It even allows to argue. Hu-
mans require testbeds like DipGame. Previous testbeds are not appropriate for
bounded rational agents, that evolve, that are social, and that are motivated by
their emotions.

2.4 The Diplomacy Game

The Diplomacy Game is a popular board game created by Allan B. Calhamer
in 1954.1 As Calhamer explains in [Calhamer, January 1974]:
“In 1959 I had 500 sets manufactured at my own expense after major companies
had rejected the game. Manufacture was transferred to Games Research people
incorporated in 1960. Sales have increased in every single year since the game
has been on the market.”

The game was commercialized by various companies over the years and was
the �rst commercially published game to be played by mail. In 1983, the game
started to be played by e-mail allowing quicker games. In 1988, the adjudication
started to be done by computer. Adjudicating means to apply the rules of
the game to change its state given the orders decided by the players. Two
companies released in 1999 and 2005, a computer version of the game. Neither
of them had good reviews as the computer AI was considered too poor. In the
21th century, people started playing online using web interfaces with automated
adjudication. None of them included computer AI before DipGame that is
described in Chapter 6.

In this section, we describe the game (Section 2.4.1), and the current com-
munity of players (Section 2.4.2).

2.4.1 Description of the game

In Diplomacy, players negotiate with the aim of conquering Europe. The rules
of the game are unambiguous, and the available information about the game
is rather rich as it is a quite old game being enjoyed by several generations of
players: the game appeared in 1954. It is situated on Europe at the beginning
of the 20th century, before World War I. Each player is in charge of the armed
forces, organised in units, of a major European power and must decide, in each
turn, which movements the various units should execute. There is a maximum
of one unit per province. The game ends when someone has an army powerful
enough to control half of the special European `provinces' called supply centres.
This is achieved by defeating other players' units, conquering their provinces
and controlling an increasing number of supply centres that allow a player to
get more units.

One of the most interesting features of Diplomacy is the absence of random
movements: there are no cards and no dices. Also, this is not a turn-taking
game. That is, all players move their units simultaneously: there is no advantage
in a player being the �rst or last to move. All units are equally strong and

1Ranked 250 at http://boardgamegeek.com/ by 6486 players.

20 CHAPTER 2. BACKGROUND

consequently, when a unit attacks another, the winner of the battle is decided
by taking only into account the number of units helping the �ghting units. This
feature is what makes Diplomacy so compelling for our purposes: the most
relevant skills for a player are the negotiating ability, the intuition (knowing
whom to trust) and the persuasive power.

The game splits in several years with two movement turns per year. In
every movement turn, the players decide what movements their units should
perform. Possible movements are: to move, to hold or to help another unit
supporting its hold or move. When all players have decided their movements,
those are made public at the same time and the game state is updated following
the rules of the game.2 The rules describe how to resolve conicts that may
emerge because of the concurrent announcement of movements. At the end of
the year, if a player has a unit over a supply centre province, then the supply
centre becomes owned by him/her. It will be him/her supply centre until a unit
of another power conquers it at the end of a subsequent year period. At the end
of every year, the number of units of all players are made equal to the number
of owned supply centres by either building new units (when a player increased
the number of owned supply centres) or removing existing units (when a player
decreased the number of owned supply centres). Remember that owning half
of the supplier centres of the Continent allows you to win the game. Therefore,
the goal of the players is to increase the number of owned supply centres every
year quicker than other players do.

All units always have the same strength. When there is an attack, it is
resolved taking into account the number of supports that the attacking and
defending units got from other units. Players can support the movements of
other players' units. In fact, these are the basics of the game: the players
must convince other players to be their allies and to help them. This is done
by negotiations that take place in parallel among all the players. In those
negotiations, players ask others for help and sign deals on future plans of action
like together attacking a unit of a player that they agree is a common enemy.
From the point of view of a player, the most important aspect of the game is
the negotiation process: deciding allies, selecting whom to ask for help, arguing
with other players to get information about their objectives or to �nd out what
they know, building trust and reputation, deciding when to honour a deal,
maintaining relationships, and so on.

2.4.2 Player Community

Diplomacy is often played on the Internet. Interestingly, playing online makes
easier to arrange long games with enough players and secretly to meet with
other players to negotiate keeping conspiracies under wraps. There are several
communities of Diplomacy players and most of them meet around any of the
available options for playing the game. Maybe the oldest online community of
players meets around The Diplomatic Pounch, [the]. People there uses nJudge,
a software system developed in 1987 by Ken Lowe that allows players to play
Diplomacy by e-mail and provides an automatic adjudicator.3 This community

2Available at http://www.wizards.com/default.asp?x=ah/prod/diplomacy.
3The resolution of orders (i.e. actions performed by units) in Diplomacy is often called the

adjudication process.

2.5. AGENTS PLAYING DIPLOMACY 21

has an online magazine that contains articles analysing the strategy and tactics
of the game [zin]. It is populated by many senior Diplomacy players and experts.

A frequent option is to play using a web application with a friendly interface
for playing Diplomacy online. Playing online with a nice graphical interface
facilitates the incorporation of newbies to the community spreading the game
worldwide. There are basically two sites: webDiplomacy and playDiplomacy.
Both sites allow playing online and sharing information with other members
of the community. The community of webDiplomacy developed phpDiplomacy
as an open-source project that makes internal use of nJudge. It seems that
playDiplomacy took advantage of the source code of phpDiplomacy, and now it
has the larger social network with over 50,000 members worldwide.

Other Diplomacy players invest their e�ort in developing software projects
like phpDiplomacy or jDip. Some software applications try to help in either re-
solving the orders (adjudicators) or providing a nice interface for playing (map-
pers). An example is jDip that provide adjudication through a multi-platform
desktop application [jDi, 2004]. This software is currently used to study tac-
tics and analyse games. It is also an open-source project with a community of
developers around. Its adjudication module and its map are used by other ap-
plications. The most popular community of Diplomacy developers is subscribed
to the very active mailing list called dipai with more than 200 members. Some
of the founders of that list developed the Diplomacy Artificial Intelligence De-
velopment Environment (DAIDE). DAIDE is a standard environment for the
development of software programs, also software agents, to play The Diplomacy
Game. The environment is quite mature, and there are several programs using
the communication protocol [Rose, 2003] and message syntax [Norman, 2006].

A recent way of playing Diplomacy is using a mobile device. A company
named Oort Cloud is powering Droidippy (http://droidippy.oort.se/); that is
a platform that allows playing using both a web application and an Android
application. Currently available games only involve human players, and have
similar features to the previous mentioned web applications. Droidippy has also
a forum.

Besides all the games played on the net using the mentioned software tools, a
lot of tournaments of Diplomacy are being organised to play face-to-face games.
The list of the best face-to-face players since 1977 from the most important tour-
naments is published at http://en.wikipedia.org/wiki/International_prize_
list_of_Diplomacy. Those tournaments are mainly powered by the main
Diplomacy Associations that are: The North American Diplomacy Associa-
tion, The European Diplomacy Association, and The Diplomacy Association of
Australia and New Zealand.

As one of the main contributions of this thesis, we designed a testbed based
on The Diplomacy Game that makes use of DAIDE and jDip. Both are also
used for applying our work to the game industry as described in Chapter 7. In
addition, we collaborate with OOrt Cloud.

2.5 Agents playing Diplomacy

The idea of creating a Diplomacy software player (bot) emerged since the game
was able to be played by e-mail. To our knowledge, the �rst bot to appear was
The Diplomat, a bot created at Hebrew University in Israel. This bot is also

22 CHAPTER 2. BACKGROUND

called The Israeli Diplomat as later on some bot developers used the same name
for their bots. Diplomat is another term to denote a bot.4

The majority of bots built to play The Diplomacy Game play a no-press
version of it (i.e., without dialectic communication between players) [Loeb and
Hall, 1990; Shapiro et al., 2002; Ritchie, 2003; H�a�ard, 2004; Ribeiro et al., 2009].
The bots that are currently being developed run on DAIDE. Lamentably, not all
of those bots are published. It is sometimes di�cult to get documentation about
them or their code. Even though, executable versions of them use to be available
for running games in local competing against other bots or human players. As
this thesis is related to negotiation, we describe only the works that provide
some level of negotiation. Those are: The Diplomat [Kraus, 1995a; Kraus et al.,
1989], Shaheed’s Diplomat [Shaheed, 2004], The Diplominator [Webb et al.,
2008], and Stragotiator [Kemmerling et al., 2009, 2011, 2012]. We describe
them in the following after giving some details on Dumbbot, a very popular
no-press bot that has been used as a starting point for building some of the
existent press bots.

Dumbbot is quite popular because it is capable to beat newbie humans in
spite of using a very simple algorithm. We consider it a good bot for training
newbie players and teach them the rules of the game and simple tactics. It
was created by David Norman, one of the founders and most active members of
the dipai forum and developer of the infrastructure of DAIDE. The source code
of Dumbbot is available at his own Diplomacy page http://www.ellought.
demon.co.uk/dipai, and a good description of the bot is included in [de Jonge,
2010].

Dumbbot divides the map in regions5 belonging to the Diplomacy provinces.
Then, it assigns a destination value to some of them and spread that value
towards the neighboring provinces with a decreasing factor. The idea is to
provide paths towards the player's units should go in order to obtain a good
outcome. Then, for each unit it decides the order that it should perform taking
into account that destination value and the competence and strength of the order.
The competence is computed given the number of units from other powers that
are adjacent to a given region and the strength depends on the number of units
that are supporting the unit moving or holding in the given region. Based on
this, and using randomness to provide an indeterministic behaviour, it selects
the moves to perform. It does not support convoys |that is a type of move,
and it has no negotiating capability.

Our agent's game strategy is based on Dumbbot's strategy. In addition, it
distinguishes between not owned supply centres from proper provinces. And it
enforces attacks towards not owned supply centres rather than other provinces.
The competence and strength values are used only for negotiation. The spread-
ing parameters are also adjusted.

The Diplomat was created between 1984 and 1989 during Sarit Krauss' PhD
thesis supervised by Daniel Lehman [Kraus, 1995a]. Eithan Ephrati and Arie

4We use the term bot instead of AI, Diplomat, computer player character or agent as it
is nowadays the most used term and there could be a silly bot that is not using any artificial
intelligence technique.

5He denotes regions by nodes, but it is the same meaning.

2.5. AGENTS PLAYING DIPLOMACY 23

Schlesinger were MS students that assist this work providing game strategies
and a message editor respectively. The Diplomat is a bot that consists of �ve
modules implemented using several agents. Therefore, several agents were used
to perform the work that corresponds to a human playing Diplomacy. [Kraus,
1995a] describes the structure of agents as a general automated negotiating agent
evaluated in an environment that corresponds to The Diplomacy Game. The
general structure can be described as a government with: a Prime Minister, a
Minister of Defense, a Foreign Office, a Military Headquarters, and Intelligence.

The Prime Minister contains the personality traits of the bot that has the
following parameters: aggressiveness, willingness to changes, and loyalty. It
contains the bot knowledge and beliefs base in a module called Secretary. This
information includes the rules of the game, the current state, a history of mes-
sages, an agreements table, and information about the other powers, and their
relations, [Kraus et al., 1989]. The Ministry of defense is in charge of the plan-
ning and situation analysis using a module for Diplomacy strategy, [Ephrati,
1987]. It considers di�erent fronts and coalitions that are sets of players that
could be allied against others. The Foreign O�ce deals with the communica-
tion with other Diplomacy players. For that, they de�ned a Negotiation Lan-
guage with: declarations, questions, suggestions and answers. Messages were
translated either manually from natural English to the Negotiation Language,
or written using a special editor. It establishes for each negotiation partner
a Desk to deal with the bilateral negotiations with that partner. The Military
Headquarters are responsible for decision making on moves, and the Intelligence
models the other players behavior.

The structure assume two levels of distributed agents: a �rst level of au-
tonomous sel�sh agents (some of them humans) that incarnate powers, and a
second level of coordinated agents that work together as an automated sel�sh
agent. Therefore, it is a MAS of coordinated agents incarnating a power in The
Diplomacy Game that is, itself, another MAS of sel�sh agents. Those coordi-
nated agents are local agents that use an internal-mail system for bilaterally
communicating among themselves and a note board for broadcasting informa-
tion to all the local agents. Although several agents are being used, they all
run sequentially in the same processor. The priority for each agent (being a
processing task) to be executed, and its processing state is regulated by the bot
itself. The experiments were very limited and with no statistical signi�cance.
The source code is lost; there is no copy of it, and neither current machines
would be able to run it. The best description of it is presumably included in the
master thesis of Eithan [Ephrati, 1987] and Sarit Krauss' PhD thesis [Krauss,
1988]; neither of them being able to be read by the author of this thesis.6 This
is a very valuable work because as its novelty and the state of technology in
that decade. The Diplomat inspired the research of a lot of people included the
author of this PhD thesis that discovered The Diplomacy Game thanks to it.

Jaspreet Shaheed’s Diplomat is a bot that is also called Diplomat. It was
build in 2004 as the master thesis of Jaspreet Shaheed. It runs on DAIDE
and presents a novel approach to negotiation in Diplomacy using auctions, and
simple algorithms to determine when to lie or not. They recognised units as
resources, and thus, agreements on moves are allocation of resources.

6Although those works are available at Hebrew University, they are written in Hebrew.

24 CHAPTER 2. BACKGROUND

They assumed a rational behaviour of the agents. Despite of that, they as-
sume that other players' strategies cannot be guessed. This Diplomat is struc-
tured in three components: strategy and tactics |that generates the best pos-
sible plans7, the negotiation |�nds agreements extending some of those plans
including other agents' moves, and deceipt |that assess what agreements are
bene�cial if the agent lies and assess whether the other agents lie or not. The
bot execution consists of three processes that are in charge of: (i) represent-
ing the bot properly; (ii) listening for messages from DAIDE server; and (iii)
negotiating with the other players.

This bot uses a market based approach to negotiation consisting in biding
units as they were resources [Shaheed, 2004]. Trust on other agents is assessed
using Laplace's Rule of Succession based on the number of agreements kept
given the total number of agreements. The bot has an honesty parameter that
is used as a weight value when deciding whether to lie or not. The performance
of the bot is tested against several no-press bots including Dumbbot. It out-
performs a bot performing random moves and another that is only holding, but
it plays worse than Dumbbot. Playing against no-press bots implies that the
press bot cannot take advantage of its negotiation capability. Games with dif-
ferent number of Dumbbots and Diplomats were set, and the Diplomat at least
outperformed Dumbbot in what concerns to avoiding being eliminated. The
Diplomacy tactics of Dumbbot are better.

Stragotiator is a bot that realise a look-ahead planning. It is designed to be
used within DAIDE. The aim of this work is to provide \good negotiation ca-
pabilities in order to interact with other players and to appear mostly human",
[Kemmerling et al., 2012]. According to them, a human-like behaviour corre-
sponds to The Classicist player described by Windsor in [Windsor, 1999]. This
is a loyal team-player that tries to maintain alliances welfare and to win with
his allies. It does not break deals, either forgives betrayal. They implemented
the Stragotiator as a Classicist player and approved its performance in a Turing
test.

The Stragotiator main components are the strategy core, the negotiator and
the opponent model. The opponent model is based on [Loeb and Hall, 1990] tak-
ing only into account the previous moves and giving a particular interpretation
of them as intentions that increment positively or negatively a friendship model
of the players relations. They also assume that the Stragotiator's strategy is
the most intelligent and evaluate the other players' intelligence as de di�erence
between the decided moves and the moves that the Stragotiator would decide in
that particular situation. Trust on the other players is also computed based on
the execution of the previous deals. Positive and negative proposals do surpris-
ingly also a�ect the trust. Trust is represented as a fuzzy set of four elements
and defuzzi�cation is done according to maximum membership.

The strategy core looks for positive partial joint move sets including moves
for units of other players. A value is assigned to some province according to its
status that is determined by its type and current use. Then the value is spread
over the map to a maximum distance of four provinces similarly to Dumbbot.
The bot's units try to move to the highest adjacent province or hold in its
current province if this is the one with highest valued. Supports are preferred

7Those plans are sets of moves that do not include other agents’ moves

2.6. Z-NOTATION 25

than holds; thus the algorithm try to assign a support to each temporarily
holding unit. Some provinces receive negative values meaning that the units
must try to avoid them. Moving away when a unit is on a negative province.

An evolutionary algorithm is used to adjust several needed parameters like
weights |used to spread the value of the provinces, or the values that are
initially assigned to provinces |those are based on the province status. A
uniform recombination is used with mutation of a move set by means of picking
each unit with a given probability and changing its destination.

The negotiation is bilateral and allows for the exchange of move set proposals
as well as peace or alliance proposals. It decides whether to accept or reject
peace and alliances taking into account the opponent's model. After peace and
alliances are accepted, the Stragotiator calculates moves for allied powers' units
using the strategy core. Based on those calculations, moves would be proposed.
When receiving a move set proposal, it is accepted if the sender's trust is very
high. Otherwise, the move set is analysed by the strategy core and accepted
only if it is good enough.

The authors state that the Stragotiator is a believable Diplomacy bot and use
their own measure argued in [Kemmerling et al., 2012] to evaluate it. They op-
timised the weighting values of it and published the source code at http://www.
irf.tu-dortmund.de/cms/en/Institute/Staff/Scientific_Staff/Kemmerling.
html. It is one of the last created negotiating bots.

2.6 Z-Notation

Z-Notation is a typed speci�cation language based on set theory and �rst order
predicate logic that is ideal for the speci�cation of computer programs. It uses
standard mathematical operations and provides a schema notation to allow the
mathematical operations to be structured in a way that facilitates the posterior
implementation of the computer programs that are speci�ed with Z. A set of
schema operations, most of them equivalent to mathematical operations, is also
provided by Z to allow the combination of modules of equations [Bowen, 1996]
building complex programs as the combination of several simpler modules. Z-
Notation has been used to specify agent based systems before [d'Inverno et al.,
2004, 2012]. There are several versions of Z and tools like type checkers and
syntax-aware editors. We concretely use Mike Spivey's second version of Z-
Notation [Spivey, 1992] and a type-checker program called Fuzz [Spivey, 2008]
to ensure that the speci�cation is correct. A summary of the Z notation used
can be found in Table 2.1.

In this thesis, we provide a formal speci�cation of The Diplomacy Game
using the Z-Notation formalism. We also include in it textual explanations of
every single part of the speci�cation to help understanding the speci�cation.

26 CHAPTER 2. BACKGROUND

Definitions and declarations
a, b Identifiers
p, q Predicates
s, t Sequences
x , y Expressions
A,B Sets
R,S Relations
d; e Declarations
a == x Abbreviated definition
[A] Given set
A ::= b�B� | c�C� Free type declaration
let a == x Local variable definition

Logic
¬ p Logical negation
p ∧ q Logical conjunction
p ∨ q Logical disjunction
p ⇒ q Logical implication
p ⇔ q Logical equivalence
∀X • q Universal quantification
∃X • q Existential quantification

Sets
x ∈ y Set membership
{} Empty set
 Set of Natural Numbers
A ⊆ B Set inclusion
{x , y, . . .} Set of elements
(x , y, . . .) Ordered tuple
A× B × . . . Cartesian product
�A Power set
�1 A Non-empty power set
A ∩ B Set intersection
A ∪ B Set union
A \ B Set difference
#A Size of a finite set
{d; e . . . | p • x} Set comprehension
A disjoint B Disjoint sets
s partition A Partition

Functions
A� B Partial function
A" B Total function
A� B Surjection

Relations
A# B Relation
dom R Relation Domain
ran R Relation Range
R∼ Relational Inverse
A� R Domain restriction
A� R Range restriction
A� R Anti-domain restriction
A� R Anti-range restriction
R ⊕ S Relational overriding
R∗ Reflexive transitive closure
R�A� Relational image
R � S Relational composition
R ◦ S Backward relational composition
x 7→ y Maplet

Sequences
iseq A Injective sequence
〈〉 Empty
〈x , y, . . .〉 Sequence

Schema notation

S
d

p

Schema

d

p

Axiomatic definition

T
S
d

p

Schema Inclusion

∆S
S
S ′

Operation

a? Input to an operation
a State component before operation
a′ State component after operation
S State schema before operation
S ′ State schema after operation
ΞS No change of state

Table 2.1: Summary of Z notation used.

Chapter 3

Resource Negotiation
Problem

In this chapter, we formalise the general problem that is the purpose of study
in this thesis. The problem is denoted by Resource Negotiation Problem (RNP)
and is a particular resource allocation problem where several agents control the
resources of the environment and perform actions on it. Those actions guide
the evolution of the environment. In Section 3.1, the environment is de�ned
as well as the notion of plan and state. Section 3.2 contains the de�nition of
the negotiation protocol of an RNP. Then, the problem is illustrated with an
example in Section 3.3. The chapter ends in Section 3.4 with a summary.

3.1 Environment

We consider environments that are fully observable and regulated by a set of
rules (physical or otherwise) that determine their evolution. Environments are
populated by agents A that control resources R and are always in one of several
possible states.

Definition 1 Given a set A of agents and a set R of resources, an environment
state ω ⊆ A×R is a set of agent-resource pairs. We denote by W the set of all
possible environment states, that is W = 2A×R

〈α, r〉 ∈ ω means that agent α controls resource r , and thus, it is the only agent
that can act upon it.1 We assume the existence of a �nite set of operators Op
that agents can apply to the resources they control. For instance, consuming
the resource or transforming it. We thus de�ne the set of possible actions as
follows.

Definition 2 The set of actions is the set A = A×Op × R.

We restrict the model to environments where no more than one operator can
be applied to a resource simultaneously. This naturally leads to the de�nition
of compatibility between actions.

1We will use the notation 〈·〉 to denote elements of cartesian products.

27

28 CHAPTER 3. RESOURCE NEGOTIATION PROBLEM

Definition 3 Two actions a, b ∈ A such that a = 〈α, opa , ra〉 and b = 〈β, opb , rb〉,
are compatible, denoted by comp(a, b), if and only if opa = opb implies ra 6= rb.

Controlling a resource means that only the agent that controls the resource
can act upon it. This is our notion of action feasibility.

Definition 4 An action a = 〈α, op, r〉 ∈ A is feasible in state ω ∈W , denoted
by feasible(a, ω), if and only if 〈α, r〉 ∈ ω.

Actions are naturally grouped in sets, that we call plans, that without losing
generality we can assume are executed at a given instant of time. Note that an
agent can control more than one resource.

Definition 5 A plan p ⊆ A is a set of actions. The set of all possible plans is
denoted by P = 2A.

We extend the notion of feasibility to plans in a natural way.

Definition 6 Given a state ω ∈ W we say that plan p ∈ P is feasible in
state ω, denoted feasible(p, ω), if and only if for all a, b ∈ p, feasible(a, ω) and
comp(a, b) hold. The set of all feasible plans in state ω is denoted by Pω.

Two feasible plans are compatible if their actions are pair-wise compatible.
That is, if its union is feasible.

Definition 7 Given a state ω ∈ W and plans p, q ∈ P, we say that plans p
and q are compatible, denoted comp(p, q), if and only if their union is feasible,
that is, comp(p, q)⇔ p ∪ q ∈ Pω.

When an action is selected for each resource the plan is complete.

Definition 8 Given a state ω ∈ W and a plan p ∈ P, we say that plan p is
a complete plan for ω if and only if feasible(ω, p) holds and for all 〈α, r〉 ∈ ω
then 〈α, op, r〉 ∈ p for some op ∈ Op. We denote the set of all complete plans
for state ω by �Pω ⊆ Pω and by �Pω

α the projection of complete plans for α.

Now we have all the ingredients to de�ne environments as a type of determin-
istic transition system. That is, as a �nite state machine with an initial state,
with a set of �nal states, and with complete plans labeling the arcs between
states.

Definition 9 A state transition system is a tuple

 = 〈A,R,Op,W ,P ,T, ω0,Wf 〉

where:

- A is a set of agents

- R is a set of resources

- Op is a set of operators

- W = 2A×R is a set of states

3.2. NEGOTIATION PROTOCOL 29

- P = 2A×Op×R is a set of plans

- T : W × P →W is a transition function such that T(ω, p) is defined for
all p ∈ �Pω

- ω0 ∈W is the initial state

- Wf ⊆W is the set of final states.

The evolution of such a transition system is determined by a history of
complete plans2 being executed moving the state of the system away from the
initial state, and eventually reaching a �nal state.

Definition 10 Given a transition system
 = 〈A,R,Op,W ,P ,T, ω0,Wf 〉, a
history is a sequence of complete plans H = 〈p0, p1, . . . , pn〉 such that for all
0 < i < n, T(. . . (T(ω0, p0), . . .), pi−1) = ωi and pi ∈ �Pωi . A history then
implicitly defines an environment state history that is a sequence of states WH =
〈ω0,T(ω0, p0),T(T(ω0, p0), p1), . . . 〉 that we refer to as WH = 〈ω0, ω1, ω2, . . . 〉.

3.2 Negotiation protocol

We de�ne the negotiation in an RNP to be bilateral and satisfy a particular
protocol. As an environment contains many agents, multiple bilateral negotia-
tions can take place even simultaneously. The set of plans over which two agents
negotiate is the set of feasible plans containing just actions performed by them.
The plans involving up to two agents are called negotiation options, or options
to simplify.

Definition 11 A feasible plan δ ∈ Pω is called a negotiation option if and only
if

0 <| {α ∈ A | 〈α, op, r〉 ∈ δ} |≤ 2

We denote by Oω ⊆ Pω the set of negotiating options in state ω and by Oωα,β ⊆
Pω the negotiation options involving α and β.

When two agents enact a negotiation protocol, they propose options that
involve the two agents. Agents alternate on sending proposals and accepting or
rejecting them until time expires. The possible messages exchanged betweewn
two agents are called negotiation utterances.

Definition 12 Given a transition system
 = 〈A,R,Op,W ,P ,T, ω0,Wf 〉, a
negotiation utterance in a state ω ∈ W is a tuple µ = 〈θ, α, β, δ〉 where θ ∈
{propose, accept, reject}, α ∈ A is the source, β ∈ A is the receiver of the
utterance, and δ ∈ Oωα,β. We denote by M ω

α,β the set of all possible negotiation
utterances between α and β in state ω.

2Notice that in some application domains, there are default actions that do not need to be
explicitly executed by agents as they are assumed. For example, in The Diplomacy Game (see
Section 4.8) units are assumed to hold as default. Or in time tabling, agents are assumed to
continue with the current scheduling of its events. The default actions are part of the problem
definition and thus they are known by all the agents.

30 CHAPTER 3. RESOURCE NEGOTIATION PROBLEM

s1s2 s3

propose(α, β, δ) propose(β, α, δ)

accept(β, α, δ), reject(β, α, δ) accept(α, β, δ), reject(α, β, δ)

[tmax][tmax]

Figure 3.1: Negotiation protocol between two agents. Proposals are replied by
accepts and rejects. It is not possible to send a proposal when a previous one
is not yet replied. [tmax] represents the end of the negotiation round.

In the following, we indistinctively represent utterances as tuples or predi-
cates, e.g. 〈propose, α, β, δ〉 ≡ propose(α, β, δ). We de�ne negotiation dialogues
as sequences of utterances sorted by time.

Definition 13 Given a transition system
, a negotiation dialogue 	 in state
ω between α and β is a sequence 	 = 〈µ0, µ1, . . . , µn〉 such that µi ∈ M ω

α,β for
all 0 ≤ i ≤ n.

The negotiation protocol illustrated in Figure 6.12 determines what can be
said and in which order. Dialogues are formed as utterance sequences so that
each one is feasible with respect to the protocol. The next de�nition determines
what utterances are feasible given a partial dialogue.

Definition 14 Given a state ω ∈ W , a dialogue 	 = 〈µ0, µ1, . . . , µn−1〉 and
an utterance µn = 〈θ, α, β, δ〉 we say that µn is feasible for dialogue 	, denoted
by feasible(, µn), if and only if:

• 	 = 〈〉 ⇒ θ = propose

• µn−1 = 〈propose, β, α, δ〉 ⇒ θ 6= propose

• µn−1 6= 〈propose, , , 〉 ⇒ θ = propose

The outcome of a successful negotiation that ended with an accept is a set
of commitments on future actions to be performed by the negotiating agents.
When an option being o�ered by agent α is accepted by agent β, it means that
agents α and β commit to perform their actions in the option.

Definition 15 Given a negotiation dialogue 	 = 〈µ0, µ1, . . . , µn〉 we say that
an action a ∈ A is a commitment if µi = 〈accept , , , δ〉 ∈ 	 and a ∈ δ. We
denote by C Ψ the set of commitments in 	.

3.3 Painting hanging example

In this section, we illustrate the use of RNPs by providing a simple example
consisting on hanging a painting. This problem domain is not the most suitable

3.3. PAINTING HANGING EXAMPLE 31

to be studied as an RNP given the complexity of using humanoid robots to
replace some of the human participants. Even though, we thought that it is
the simplest and more broadly known example we can use. We refused to use
Example 1 due to the huge diversity that exists of educational organisation
timetables all around the world. Example 2 is a lot simpler, international and
easy to understand.

Example 2 Tònia wants to hang a heavy painting on a wall. To this aim, she
requests the help of her sons Bep and Joan that will carry the painting. Tònia
will be looking at the painting and giving advise on the correct position of it. At
this moment, Bep and Joan are a meter away from the wall holding the painting
and Tònia is more meters away in front of the painting looking at it.

a) b) c)

Figure 3.2: Painting hanging example.

Figure 3.2 illustrates the environment described in Example 2. It consists of
three agents — Tònia, Bep and Joan, and a set of resources controlled by them.
All agents have legs that can use to move around. Therefore, each agent has
a resource that is its horizontal mobility, that has a value that is its horizontal
position — a two dimensional space position. In addition, Bep and Joan have
another resource that is the vertical mobility that can apply to their arms. They
can rise and descend their arms. Contrarily, Tònia has no other resource than
horizontal mobility because the other capabilities that Tònia, as a human, has
are not used in her task, or are assumed to be used in a specific way that is
invariant and known by all the agents. The total amount of resources is thus
five.

The environment changes because of the agent’ s actions. The initial environ-
ment state is illustrated in Figure 3.2 a). There are several final states, those
with the painting broken (see Figure 3.2 b)), and the one with the painting
hanged in the correct position (see Figure 3.2 c)). At every non final state,
agents decide what actions to perform, that is, what operator to apply to each
of their resources. The set of operators that can be applied is limited, fully
observable, and constrained by the environment. Thus, everybody knows at
any time the resources controlled by every agent, and the operators that can
be applied to them. In the painting hanging example, there are five operators
that can be applied to the horizontal mobility resources: keeping horizontal
position, stepping forward, stepping backward, stepping left and stepping right.
And three operators applicable to vertical mobility resources: keeping vertical

32 CHAPTER 3. RESOURCE NEGOTIATION PROBLEM

Simbol Action
a0 Joan holds his horizontal position
a1 Joan steps forward
a2 Joan steps backward
a3 Joan steps left
a4 Joan steps right
a5 Joan holds his vertical position
a6 Joan rise his arms a bit
a7 Joan descend his arms a bit
a8 Bep holds his horizontal position
a9 Bep steps forward

a10 Bep steps backward
a11 Bep steps left
a12 Bep steps right
a13 Bep holds his vertical position
a14 Bep rise his arms a bit
a15 Bep descend his arms a bit
a16 T�onia holds his horizontal position
a17 T�onia steps forward
a18 T�onia steps backward
a19 T�onia steps left
a20 T�onia steps right

Table 3.1: Feasible actions.

position, raising arms a bit, and descending arms a bit. As Bep and Joan are
carrying the painting, when they both raise their arms, they raise the painting.
An example of action is Joan using his vertical mobility to rise arms a bit.

In general, we say that an action is feasible in an environment state if the
resource being used is controlled by the agent acting on it. Table 3.1 lists
the actions that are feasible in every non �nal environment state of the painting
hanging RNP example. Then, two feasible actions are compatible if they concern
operations on di�erent resources. For instance, although T�onia strongly desire
it, she cannot move her sons arms up and down. She can only request them to
do that. T�onia rising Joan's arms is not a feasible action in any environment
state of this RNP. It could be feasible in other RNPs where it were possible
to reach an environment state with Joan's arms resource being controlled by
T�onia. An example of two compatible actions is Joan rising arms a bit and
Joan stepping right. He can do both things at the same time. Another example
is Bep stepping backward and Joan stepping backward. These two actions are
feasible and compatible, but undesirable |the painting would fall and perhaps
broke3 (see Figure 3.2 b)).

We denote by a plan a set of actions to be performed. We say that a plan
is feasible when its actions are feasible and pairwise compatible. The before

3Bep and Joan are looking at each other and they are holding the painting together: every
one is holding one of the lower corners of the painting. Thus, the painting is situated between
them. If both step backward, they step in opposite direction. The same happens when they
both step right or left. If both try to step forward, their actions will not be executed because
the painting is in between. In that case, they both remain in the same horizontal position.

3.3. PAINTING HANGING EXAMPLE 33

examples of compatible actions do also form feasible plans containing only two
actions. Two feasible plans are compatible when their union is a feasible plan.
That is, if every action in the �rst plan is compatible with each action of the
second plan. The plan containing the actions Tònia keeping horizontal position,
Joan stepping backward, Joan keeping vertical position, Bep stepping forward
and Bep keeping vertical position is a feasible plan. This feasible plan is also
a complete plan as it has an action assigned to each resource. The projection
for an agent, for instance Joan, is denoted by a complete plan for Joan. Thus,
Joan keeping horizontal position and Joan rising arms a bit is a complete plan
for Joan.

The environment evolves as the result of the execution of complete plans.
The environment is regulated by a set of rules that determine its evolution given
the actions executed by the agents. Rules can be physical as for instance gravity.
An example of rule in the painting hanging environment is that the painting
will fall if Joan and Bep both step backward, step left or step right at the same
time, as the distance between them would be longer than the painting. The
horizontal position of the agents in the environment states illustrated in Figure
3.2 is represented in Figure 3.3. We use this representation of the environment
as it is simpler than the previous. Even thought, we should take into account
that in order to reach the desired �nal state of Figure 3.2 c), Bep and Joan must
have their arms raised in addition to having the horizontal position represented
in Figure 3.3 c).

a) Init b) Crush c) Goal

Figure 3.3: Horizontal positions. Points represent agents and the line is the
painting. This �gure corresponds to the horizontal positions of Figure 3.2.

In this simple example, the number of possible complete plans at each non
�nal environment state is 53 × 32 = 1125.4 The transition function T (ω, �p)
contains the physical rules that determine changes on the environment as the
result of the execution of a given complete plan �p ∈ �Pω. In this example, T
is quite obvious. It applies the mobility changes and the painting crashes only
when the resulting positions imply a distance between Bep and Joan longer
than the length of the painting. For example, when both step right or when the
vertical position is not the same5 (see Figure 3.2 b)).

The agents are autonomous. They can arbitrarily decide to move in any
particular direction. We assume that agents do also have some sort of knowledge
and motivations that drive their actions towards the achievement of their goals.

4Each one of the 3 agents can perform 5 different operations on its horizontal mobility
resource, and 2 of them (Bep and Joan) can also perform 3 different operation on their
vertical mobility resources.

5The painting is heavy and no one is capable to hold the entire weight of the painting by
himself.

34 CHAPTER 3. RESOURCE NEGOTIATION PROBLEM

Thus, assuming that the agents know the correct place to hang the painting and
that they all want it to happen, several paths can be followed in order to achieve
the goal. In Figure 3.4, we illustrate some of the paths that Joan can follow
towards the desired position. The achievement of the goals, and the path being
used, will depend then on the decisions taken by the agents in each environment
state.

a) b)

e) f)

Figure 3.4: Some paths that Joan can follow towards the goal, Figure 3.3. Joan
is the dark dot, the other agents are the grey dots and the painting is the strait
line. Empty circles and the dotted line represent the correct positions. In light
grey we represent some of Joan's possible paths.

In Figure 3.5, we represent the horizontal positions of some of the envi-
ronment states of a hypothetical history WH = 〈ω0, ω1, . . . ω7〉. Given the en-
vironment state ω2 the number of complete plans that allow the agents: to
achieve the goal is 0,6 to do not crash the painting is 52× 3 = 75,7 and to crash
the painting is 53 × 32 − 52 × 3 = 1050.8 Thus, the probability of crashing
is 1050/1125 = 93.

_
3 %. Even assuming that agents use the shortest paths

to the goal, the number of complete plans that allow the agents: to achieve
the goal is 0, to do not crash the painting is 2 × 3 = 6,9 and to crash the
painting is 22 × 32 − 2 × 3 = 30. That corresponds to a probability of crash
of 30/36 = 83.

_
3 %. That is too high for risking. Agents need to coordinate

between themselves in order to achieve the correct position.
6It is not possible to achieve the goal from the current environment state. Agents can only

approach to it.
7In order to protect the painting, the movements of one of the guys are determined by the

movements of the other guy. The horizontal mobility of Tònia is independent to the painting
being crashed.

8It is the set of remaining complete plans.
9There are several shortest paths to the goal and all of them require the holding agents to

move in one of 2 directions. The horizontal movement of Tònia, assuming that she takes the
shortest path is determined: she will step left. The vertical position is currently independent
to the achievement of the goal.

3.4. SUMMARY 35

ω0 ω1 ω2

ω3 ω6 ω7

Figure 3.5: Environment states corresponding to the history WH .

For the agents to be able to cooperate on, an RNP allows them to negoti-
ate. Although in the painting hanging example the communication could be by
broadcast, an RNP limits the communication to be bilateral. Thus, the mes-
sages exchanged between agents are private. Despite it sounds strange, when
T�onia proposes to Bep to step right, Joan does not listen anything. He will
receive only the messages sent by T�onia or Bep to him. Proposals can include
more than an action, a plan. In spite of that, actions proposed can only refer
to resources controlled by the two communicating agents. This special type of
plan is denoted by negotiation option. Options can be proposed, accepted or
rejected. For instance, T�onia would like to perform a joint plan where Joan
steps left, Bep steps right and Tònia steps forward. This joint plan cannot be
completely sent to any agent as it involves three agents. In order to negotiate
the agreements on performing this plan T�onia would have to negotiate with Bep
using options that are subsets of the desired joint plan. T�onia could propose to
Bep the option including only the action Bep steps left. And then, propose to
Joan the option including only the action Joan step right. Other options could
be proposed including more actions.

For this toy example, the number of available options is small. The appli-
cation domains that can be modeled with RNP use to be much more complex
and provide, at any time, a huge number of possible plans and options. The
negotiation protocol in RNP establishes that all proposals must be replied be-
fore proposing any other option to the same agent. Consequently, T�onia cannot
propose anything else to Joan until she receives a reply from him.

The painting hanging example problem seems trivial, but it is not. It is
small because the number of possible plans and rules is small. Even though, it
requires a high level of coordination between the agents in order to ful�ll T�onia's
desire of hanging the painting.

3.4 Summary

A Resource Negotiation Problem (RNP) is a particular resource allocation prob-
lem with negotiating agents. An RNP is a MAS problem with several agents

36 CHAPTER 3. RESOURCE NEGOTIATION PROBLEM

controlling the resources of a common environment. Agents individually act
applying particular operators to their resources, and negotiate to agree on par-
ticular combinations of actions to be performed at the same time. Those com-
binations are denoted by plans. A plan contains a set of actions. A plan is
complete if it contains an action for every resource in the environment. It is
complete for a given agent if it contains an action for every resource in the
environment controlled by that agent. An environment is a deterministic state
transition system where the state is represented by the partition of resources
among agents, and the transition function determines the next state given a
complete plan. Thus, the evolution of the environment is given by the actions
that agents execute.

The negotiation in RNPs is bilateral. The negotiation objects are denoted
by negotiation options and are plans with actions involving only two agents. A
negotiation utterance represents a message containing a negotiation option, a
sender, a receiver, and an illocutionary particle that can be: propose, accept or
reject. All agents controlling resources with actions included in the negotiation
option must participate in the communication: either as sender or receiver.
Therefore, it is not possible to negotiate about actions to be performed by
a third party. The negotiation protocol establishes that all proposals must be
replied. It enforces this forbidding to send a proposal to an agent that is waiting
for our reply. Nevertheless, the agent is allowed to send a proposal to someone
else. Therefore, the protocol permits concurrent negotiations among agents.
When a negotiation option is accepted, the agents involved in the negotiation
commit to perform the actions included in the negotiation option.

A simple example of an RNP is the problem of hanging a large and heavy
painting. This task can be performed by three agents: an agent checking the
correct position of the painting, and two agents carrying the painting. In this
case, the resources that every agent control are their legs and arms. The �nal
states of the state transition system representing this environment consist on
crashing the painting {that is an undesired �nal state, and having the painting
hanged in the correct position {that is the desired �nal state. The common
goal of the agens is to reach the desired �nal state. To that end, the agents
carrying the painting must be coordinated. And the third agent must inform
about the position of the painting. Many possible sequences of complete plans
can be executed to reach the goal. Many complete plans are available at each
single environment state. Every agent may have their own criteria for choosing
one of them; but they need to agree, on every single step, to avoid crashing the
painting.

Chapter 4

The Diplomacy Game

The Diplomacy Game is a popular strategy board game played by seven players
that perform moves concurrently, it is not a turn taking game. As a consequence
of the concurrency of moves, conicts emerge. The rules of the game establish
a method for resolving those conicts and proceeding generating the new game
state for the next turn. This algorithm is denoted by the adjudicator algorithm.
In Section 2.4, we described the game and its players' community. We also
explain that turns are identi�ed by a year and a season. The names of the
possible seasons are: movement, retreatement, and adjustment.

The speci�cation included in this chapter corresponds to the standard ver-
sion of The Diplomacy Game, but it is valid for every non-convoying1 version
of the game. The standard version uses a map of Europe similar to the po-
litical map of the Continent previous to the World War I. The game starts in
1901 and there are seven players incarnating the great powers of the decade
that were intended to be: England, France, Italy, Germany, Austria, Russia
and Turkey. During the game, players can negotiate in an unrestricted way and
are not bounded by anything they say. The negotiation does not appear in the
speci�cation as there is no limitation on it and there is no control on whether or
not commitments are honoured. The game is sometimes played with deadlines
for turns and for the whole game that establish that the power with a better
position to win when the deadline expires is the winner. Those deadlines are
neither included in the standard version of Diplomacy and thus are not included
in the speci�cation.

In this chapter, we provide a formal speci�cation of the game in Z-notation.
Section 4.1 speci�es the static part of the game, and Section 4.2 introduces the
dynamic part. Then, the game state is formalized in Section 4.3. The initial-
ization of the game is also described in this section. Next, the game proceeds
applying the adjudicator algorithm to resolve conicts and generate next game
state. This algorithm is speci�ed in parts corresponding to seasons: Section 4.4
describes the movement season, Section 4.5 describes the retreatement season,
and Section 4.6 describes the adjustment season. Finally, we analyse the com-
plexity of The Diplomacy Game in Section 4.7, and provide a representation
of the game as a Resource Negotiation Problem in Section 4.8. The chapter
concludes with a summary in Section 4.9.

1Convoys allow armies to browse the sea but we reject convoys, ignoring their rules, because
they add unnecessary complexity to the game.

37

38 CHAPTER 4. THE DIPLOMACY GAME

4.1 The Game

The game of Diplomacy situates each player in Europe at the beginning of the
20th century, before World War I. The board represents a map of that decade
with some minimum variations, see Figure 4.1 (left). The map is composed by
four di�erent types of provinces that are sea, coastal, inland and bi-coastal. Fig-
ure 4.1 (right) illustrates those province types. The chips of the game represent
military units that are either armies or fleets. Every unit is situated in the map
hosted by a speci�c province. There is only one unit allowed per province at a
time, see Figure 4.2 (top right), and the units that a province can host depend
on the following limitations:

Armies: can be only in coastal, inland and bi-coastal provinces.

Fleets: can be only in sea, coastal and whatever coast of a bi-coastal
province.

Figure 4.1: Full map (left) and province types (right) that listed from left right
and top down are: sea, coastal, inland and bi-coastal provinces.

Notice that those limitations correspond to the natural fact that armies would
sink into the sea and eets cannot sail inland. Figure 4.2 (left) illustrates those
limitations.

A unit can move from one province to another only if the provinces are
adjacent, and both can host this type of unit. In the special case of a eet
moving to a bi-coastal province, the coast destination of the movement must
be declared in advance. In fact, the eet would only be able to move to a
coast if it is adjacent along the coastline2 to the province that is hosting it.
Figure 4.2 (bottom right) illustrates the case of a eet in Portugal |that is a
coastal province, moving to Spain |that is a bi-coastal province. As Portugal
is adjacent along the coastline to both coasts of Spain, the eet can move to
anyone of them. That is not always the case, sometimes there is only one coast
adjacent along the coastline.

2Two costal provinces are adjacent along the coastline when their provinces are adjacent
and there is a common adjacent sea province.

4.1. THE GAME 39

province allowing any unit type

province allowing fleets only

province allowing armies only

or

Figure 4.2: Unit hosting limitation per province type (left). Any province can
only host a unit (top right). Fleets moving to bi-coastal provinces should indi-
cate the coast they want to go to (bottom right).

To simplify notation and avoid to constantly verify province and unit types,
we introduce the abstract concept of region. We de�ne a region as the capability
of a province to host a unit. That is, every region belongs to a province, and
somehow it represents the diversity of units that can be placed in the province,
and its location into the province.3 Figure 4.3 shows the correspondence between
provinces and regions in a portion of the map. See there that, by introducing
the concept of region we can say that:

sea and inland provinces: have only one region.

coastal provinces: have two regions, one for armies and another for
eets.

bicoastal provinces: have three regions, one for armies and the other
two for eets.

As can be seen in Figure 4.3 b), we label the regions with the name of their
provinces followed by the word:

Army: if it can host an army.

Fleet: if it can host a eet.

NorthCoast, EastCoast, SouthCoast or WestCoast: if it can host a
eet and it belongs to a bi-coastal province. This word speci�es the coast.

3Remember that bi-coastal provinces allow fleets to be placed in one of their two coasts.
The coast must be specified, Figure 4.2 (bottom right).

40 CHAPTER 4. THE DIPLOMACY GAME

(a) Provinces (b) Regions

Figure 4.3: Example of correspondence between provinces and regions including
their names.

For instance, the province of Portugal has two regions that are PortugalArmy
and PortugalFleet while the province of Spain has three regions: SpainArmy,
SpainNorthCoast and SpainSouthCoast.

Given the concept of region, we de�ne the adjacency relation between two
regions as the one that relates every two regions if (i) they can host the same
type of unit; and (ii) they belong to adjacent provinces. See Figure 4.4 (left)
for a graphical representation of the province and the region adjacency graphs.
Then, the set of regions and the adjacency function form together a region
adjacency graph with a special feature: the graph contains two disconnected
subgraphs, one for eets and another for armies. This feature guarantees that
units moving between adjacent regions will never go to a region where it is not
allowed to be placed just because there will be no path allowing it to happen.
Figure 4.4 (right) illustrates the disconnected graph of regions for a portion of
the map.

In Diplomacy, the players incarnate great powers. In the case of the stan-
dard version of the game, they are the following seven: France, England, Italy,
Germany, Austria, Russia and Turkey. When playing, the identity of the players
is often hidden under the powers, and it is only revealed when the game is over.
From now on, we refer to the players as powers. Every power has a number
of units under its control. Units have no identity. They only have a location
and a controlling power. We refer to a unit as a region being controlled by a
particular power. We de�ne the type POWER as the set of the seven powers of
the standard version, the type REGION as the set of all regions in the standard
map of Diplomacy, and then we de�ne the type UNIT as the cartesian product
of powers and regions.

POWER ::= France | England | Italy | Germany | Austria | Russia | Turkey

REGION ::= SpainArmy | SpainNorthCoast | SpainSouthCoast | PortugalFleet | ...

UNIT == POWER × REGION

Some of the provinces that are not sea provinces are supply centres. A
supply centre is a special province that can be owned by a power. We de�ne the
type SUPPLY CENTRE as the set of all provinces in the map that are supply
centres, and the type GENERAL PROVINCE as the set of all provinces that

4.1. THE GAME 41

for armiesfor fleets

Figure 4.4: Adjacency graphs for a portion of the map. Province adjacency
(top left), region adjacency (bottom left) and disjoint region adjacency graph
(right).

are not supply centres. Then, we de�ne the free type PROVINCE as the set of
supply centres and general provinces. This free type declaration allows to use
sc and gp to check whether a province is a supply centre or a general province.

SUPPLY CENTRE ::= Spain | Portugal | Marseilles | Brest | ...

GENERAL PROVINCE ::= Gascony | Burgundy | York | ...

PROVINCE ::= sc�SUPPLY CENTRE� | gp�GENERAL PROVINCE�

The game is divided in years and seasons. Years are natural numbers that
are incremented one by one. The standard version of Diplomacy starts in 1901
and continues with 1902, 1903, ..., and so on until the end of the game. We
de�ne the type YEAR as the set of natural numbers that are greater or equal
to 1901.

YEAR == {n : | n ≥ 1901}

Every turn in a year receives the name of a season. The original rules of
Diplomacy mention only two di�erent seasons per year: spring and fall. Even
though, paying attention to the rulebook content we can identify up to �ve
di�erent seasons per year: spring movements, spring retreats, fall movements,
fall retreats and adjustments. We follow [Norman, 2006] and distinguish those
�ve di�erent seasons that we denote by (same order than previous �ve season
list): Spring, Summer, Fall, Autumn, and Winter. Therefore, we de�ne the type
SEASON as the set of those �ve seasons.

42 CHAPTER 4. THE DIPLOMACY GAME

SEASON ::= Spring | Summer | Fall | Autumn |Winter

Once types are de�ned, we continue de�ning the structure of the game
that does not change through out the course of the game. This axiomatic
de�nition includes the belonging relation between regions and provinces |
province, the adjacency relation of regions |adj, the total number of supply
centres |numOfSC, and also the starting positions of the units over the map
|startingUnits. At the beginning of the game, some units are spread all over
the map. They are initially hosted by supply centre provinces. Indeed, the
set of supply centres where a power has units at the beginning of the game is
denoted by the homeland of the power.

province : REGION � PROVINCE

adj : REGION # REGION

homeland : POWER # SUPPLY CENTRE

startingUnits : POWER # REGION

numberOfSC : 1

dom adj = REGION

adj∼ = adj

∀ r : REGION • ¬ r adj r

∀ ri , rj : REGION | ri adj rj • province(ri) 6= province(rj)

homeland = {po : POWER; p : PROVINCE |
po 7→ p ∈ province ◦ startingUnits • po 7→ sc∼(p)}

∀ po : POWER • #(startingUnits�{po}�) < (numberOfSC div 2)

The constraints that must be always satis�ed are (in the same order that they
appear in the axiomatic de�nition):

1. Every region must be adjacent to another one. There is no isolated node
in the adjacency graph.

2. The adjacency relation is symmetric.

3. The adjacency relation is anti-reexive.

4. Two adjacent regions cannot belong to the same province.

5. A supply centre is homeland of a power if it has a starting unit on it.

6. All powers have less starting units than half the total number of supply
centres.

The values of the previous variables depend on the Diplomacy version being
played. The standard version of the Game assigns three starting units per power
and four for Russia. Some units are armies and others are eets. As can be
seen in Figure 4.5, they are all hosted in regions belonging to the supply centre
provinces that are historically related to those powers. In this way, the homeland
of a power corresponds to the historical reality in Europe at the beginning of
the 20th Century.

4.2. THE GAME DYNAMICS 43

Figure 4.5: Board of a standard version of Diplomacy with the units in their
starting positions.

4.2 The Game Dynamics

According to the rules of the game, all players reveal their moves at the same
time. They incarnate great powers that decide what to order to their units to
do. When they all have decided those orders, they make them public at the
same time. Indeed, in Diplomacy, general moves are denoted by orders as they
refer to what the powers ordering the units must do. There are several types of
orders, among them to move and to hold. Using the term order we also avoid
confusion between the speci�c order type to move and a general move that could
be, in fact, to hold.

As introduced before, a year splits in �ve seasons. Those are of three di�erent
types: the movement, the retreatement, and the adjudication seasons. The
movement seasons |that are Spring and Fall, are used by players to move their
units on the map. The retreatement seasons |that are Summer and Autumn,
let them retreat the units that were defeated and dislodged in the previous
movement season, if there is any. Finally, the adjustment season |that is
Winter, is used to build and remove units whenever it is possible or needed.
Therefore, every season type specify a di�erent set of allowed order types.

The dynamics of the game establish the cycle of seasons: Spring, Summer,
Fall, Autumn and Winter. That means that every year has two movement
seasons followed by their respective retreatement season, and that the year ends
with an adjustment season. To illustrate the season cycle we list the �rst turns
of the standard version of Diplomacy: Spring 1901, Summer 1901, Fall 1901,
Autumn 1901, Winter 1901, Spring 1902, Summer 1902, Fall 1902, Autumn

44 CHAPTER 4. THE DIPLOMACY GAME

1902, Winter 1902 and Spring 1903. For each turn, the players decide what
orders their units should perform and then the game state is updated to the
next turn.

The players' goal in a Diplomacy game is to take control of Europe. This is
achieved when at least half of the supply centres belong to a player. The player
that takes control of Europe wins and the game is over. Notice that only one
player can win the game and that the powers' goal will always be to own as
many supply centres as possible.

A supply centre is owned by the last power that hosted a unit in it at the
end of a year, that is in the adjustment season: Winter. Therefore, powers try
to take control of the regions belonging to supply centre provinces and keep the
unit in that position at least until the end of the year. As any supply centre
is useful for a power, it is often the case of two powers wanting to own the
same supply centre and moving their units towards it. This fact, together with
the fact that moves are announced concurrently, promotes the emergence of
conflicts.

A conict takes place when more than one unit tries to be in the same
province at the same time. This may happen either when more than one unit
tries to move to the same province, or when one tries to hold in a province where
others try to move towards. Conicts represent battles between the conicted
units. The result of a battle can be as diverse as the battle itself. Sometimes the
defeated unit gets dislodged and needs to be retreated in the next retreatement
season.

Diplomacy is an easy game to play. The orders are quite simple and intuitive.
The complex part of the game is the resolution of conicts. The algorithm
to resolve those conicts and update the game state accordingly is called the
adjudicator algorithm. This algorithm is normally executed by master players
or computer programs. Many Diplomacy players do not completely understand
the resolution process and, even though, they can play quite well. That is so
because they focus only on the units that are near their units and pay more
attention to the negotiation and deciding whether to trust others or not than to
the rational probability of every possible order. In Section 4.7, we argue about
this. To specify the adjudicator algorithm, we divide the algorithm in four parts:
one for the game state and another one per season type. We describe those parts
in the next sections 4.3, 4.4, 4.5 and 4.6. In those sections, several operations
are de�ned as the combination of simpler ones. Finally, they are combined to
form the adjudicator algorithm as described at the end of Section 4.6.

4.3 The Game State

A game consists of a sequence of turns. Those turns are identi�ed by a year
and a season. We represent the dynamic data of the game that corresponds
to a particular turn with the game state concept. Thus, a game state contains
among other data, its current year and season. We use a schema to formalise
a game state. As you can see in the block below, the name of the schema
is in the header (GameState), then some declarations are included in the top,
and some constraints for them in the bottom. Those declarations correspond
to the current year |denoted by currentYear, the current season |denoted
by currentSeason, the relation of regions controlled by powers that represent

4.3. THE GAME STATE 45

the current units |denoted by control, the relation containing the owned sup-
ply centres per power |denoted by own, and the retreatement information
|denoted by retreatement. The retreatement information contains the relation
of units dislodged in the previous turn and the possible unit destinations dur-
ing a retreatement season. This means that the retreatement information will
remain empty for turns that are not of the retreatement season type.

GameState
currentYear : YEAR

currentSeason : SEASON

control : POWER # REGION

own : POWER # SUPPLY CENTRE

retreatement : POWER × REGION # REGION

∀ ri , rj : REGION | ri 6= rj ∧ province(ri) = province(rj) •
ri ∈ ran control ⇒ rj /∈ ran control

∀ pi , pj : POWER | pi 6= pj •
disjoint 〈own�{pi}�, own�{pj}�〉 ∧
disjoint 〈control�{pi}�, control�{pj}�〉

∀ p : POWER; r : REGION | (p, r) ∈ dom retreatement •
retreatement�{(p, r)}� ⊆ adj �{r}�

The constraints that a game state must satisfy are the following:

1. A province can only host a unit, meaning that only one of its regions can
be controlled.

2. A supply centre cannot be own by more than a power at a time, and a
region can neither be controlled by more than a power at a time.

3. A unit can only retreat to adjacent regions.

The game starts in Spring of the �rst year with the powers controlling the
starting units and owning the homelands, the retreatement information is ini-
tially empty as there is no previous turn. Remember that in the standard version
of Diplomacy, the �rst year is 1901.

The following schema denoted by Init is an operation that initialises the
game. Operations in Z Notation are special schemas that can de�ne changes,
input and output variables. In this case, the operation declares in the top that
it updates the GameState schema as indicated by the � symbol. The way to
update the schema is included in the bottom. Dashed variables represent the
�nal value of the variables once the schema is updated. Thus, the new value of
GameState's currentYear variable would be always 1901 after executing the op-
eration. Similarly happens with currentSeason, control, own, and retreatement.

46 CHAPTER 4. THE DIPLOMACY GAME

Init
�GameState

currentYear ′ = 1901

currentSeason ′ = Spring

control ′ = startingUnits

own ′ = homeland

retreatement ′ = {}

4.4 Movements

The movement seasons are Spring and Fall. These seasons are used by powers
to move their units all over the board. In fact, all units must receive an order
that must be of one of the following types: (1) hold |that is to remain in the
same region; (2) move |that is to leave the current position in order to stay
in an adjacent region; (3) support a hold order |that is to remain in the same
position increasing the strength of another unit that is holding; and (4) support
a move order |that is to remain in the same position increasing the strength
of another unit that is moving to a speci�c adjacent province.4

In the following schema denoted by InputOrders we de�ne the type of orders
that the players can perform in a movement season and the constraints that they
must satisfy. At the top of the schema we see that it contains the GameState.
Remember from previous de�nitions that the game state contains the current
units represented by the control relation between powers and regions. Thus,
given a game state we can refer to a unit by the region that is hosting it. Four
input variables are also declared in the schema: hold?, move?, supHold?, and
supMove?. They refer to the type of orders available in movement seasons. In
Z Notation, input variables are followed by a question mark. To represent hold
orders we use a set of regions containing all the regions hosting units that are
ordered to hold. Move orders are represented by pairs of regions where the �rst
element represents the unit that is ordered to move and the second element is the
destination of the move. Similarly, supports to hold are pairs of regions where
the �rst element represents the unit being ordered to perform the support and
the second represents the unit that is receiving the support. Finally, supports
to move are represented by 3-tuples where the �rst element is the region of the
unit being ordered to perform the support, the second is the region of the unit
receiving the support, and the third is the destination province of the supported
move.

4Remember that convoys are excluded from this specification.

4.4. MOVEMENTS 47

InputOrders
GameState

hold? : �REGION

move? : REGION � REGION

supHold? : REGION � REGION

supMove? : REGION � REGION × PROVINCE

currentSeason = Spring ∨ currentSeason = Fall

move? ⊂ adj

province ◦ supHold? ⊂ province ◦ adj

ran supMove? ⊂ province ◦ adj

∀ ri , rj : REGION ; p : PROVINCE | supMove?(ri) = (rj , p) •
p ∈ (province ◦ adj)�{ri}�

〈hold?,dom move?, dom supHold?,dom supMove?〉 partition ran control

The input orders must satisfy the following constraints included in the bot-
tom of the previous schema:

1. The current season must be a movement season.

2. A unit can only move to adjacent regions.

3. A unit can only support holding in neighbouring provinces.

4. A unit can only support correct movements.

5. A unit can only support movements towards neighbouring provinces.

6. Powers should assign only one order per controlled unit.

Conicts appear often in movement seasons, its resolution is a bit complex
and requires several steps to be undertaken. We de�ne an operation for each of
those steps and combine them at the end of this section to form the Resolve-
Movements operation. To wrap the data that is common to those operations
we use the movements state concept.

The MovementsState schema contains the InputOrderes and a set of variables
used to keep track of the changes provided by the movements resolution steps.
During those steps we asses the orders as either feasible or unfeasible. Feasible
orders are successfully executed. Contrarily, unfeasible units are not. We use
the partial function assessedOrders to be able to assign boolean values to the
regions representing the units in order to assign them as feasible or unfeasible.
The feasible and unfeasible sets of regions are also included as derived variables
from the assessedOrders partial function.

Some unfeasible units may be dislodged as a consequence of a battle. Those
are represented by the partial function dislodged that relates two pairs of regions
where the �rst element represents the dislodging unit winner of the battle, and
the second represents the dislodged unit. Sometimes, a battle consists of several

48 CHAPTER 4. THE DIPLOMACY GAME

units trying to move towards regions of the same empty province. In those cases
if there is no unit winning the battle, the province remains stando� meaning
that no unit can be retreated there in the next turn. Stando� provinces are
represented by the set standoff. The orders being winning and defeated in
a battle are decided depending on the strength of their orders. In the next
section we compute the strength of all orders that is represented by the partial
function strength that assigns a natural number to each region hosting a unit.

MovementsState
InputOrders

assessedOrders : REGION � Bool

feasible, unfeasible : �REGION

dislodged : REGION � REGION

standoff : �PROVINCE

strength : REGION �

dom assessedOrders ⊆ ran control

feasible = dom(assessedOrders � {True})

unfeasible = dom(assessedOrders � {False})

ran dislodged ⊆ ran control

dislodged ⊆ move?

standoff ⊆ ran(province ◦move?)

dom strength ⊆ ran control

A movement season state must verify the following constraints:

1. All assessed orders refer to controlled regions, that is to units.

2. The feasible regions are those that were assessed a true value.

3. The unfeasible regions are those that were assessed a false value.

4. Only controlled regions can be dislodged.

5. The dislodging units' regions move towards dislodged units' regions.

6. A stando� province is always the province destination of a move.

7. Only controlled regions can have a strength value.

The MovementsState schema contains input orders that do contain the game
state. They both remain intact until the end of the movements resolution de-
scribed in Section 4.4.4. The following �MovementsState operation protects
the GameState and the InputOrders from being updated when updating the
MovementsState. This is done by the use of the � symbol.

4.4. MOVEMENTS 49

(a) The green fleet performs a coun-
tryman attack, the blue army an at-
tack and the white army a move.

(b) The green fleet performs a coun-
tryman attack support to the blue
army towards the green army.

Figure 4.6: Example of moves attacks and countryman attacks and supports.

�MovementsState
MovementsState

MovementsState ′

�GameState

�InputOrders

4.4.1 Order strength

Conicts between orders in movement seasons represent battles. The outcome of
those battles basically depend on the strength of the orders that are in conict.
The strength of an order is computed from feasible supports. The more feasible
supports received by an order the more strength it has.

Moves towards non empty destinations are called attacks. Figure 4.6 a)
show two moves. The one performed by the army is a simple move. The one
performed by the eet is an attack as it is moving towards a province hosting
another unit. The destination of an attack is called a target.

When the attacked unit is controlled by the power that controls the attacking
unit, the attack is called a countryman attack. This is also the case of the eet
in 4.6 a). Countryman attacks cannot dislodge their targets. Similarly happen
when the unit that is supporting an attack is controlled by the same power that
is controlling the unit that is being attacked. This is the case illustrated in 4.6
b). The supporting unit is performing a countryman attack support and, thus,
the support order is unfeasible. It does not matter who is the power controlling
the attacking unit in order to say that there is a countryman attack support.

By default, all supports are feasible. For a support to be unfeasible and
thus, be assessed as false, it must violate one of the following rules:

1. A unit cannot support a second unit to hold when the second unit is
moving.

2. A unit cannot support a move that is not ordered.

50 CHAPTER 4. THE DIPLOMACY GAME

3. A power cannot support an attack against itself. Countryman attack
supports are unfeasible.

4. A �rst unit cannot support a second one to hold when the �rst unit is
being attacked.

5. A �rst unit cannot support a second one to move when the �rst unit is
being attacked.

The DetectUnfeasibleSupports operation checks the previous rules for all sup-
port orders and assesses to false all supports that do not satisfy those rules. The
rest of the variables of the MovementsState remain the same.

DetectUnfeasibleSupports
�MovementsState

assessedOrders ′ =
{ri , rj : REGION | ri 7→ rj ∈ supHold? ∧ rj ∈ dom move? •
ri 7→ False}
∪
{ri , rj : REGION ; p : PROVINCE | ri 7→ (rj , p) ∈ supMove? ∧
rj 7→ p /∈ (province ◦move?) •
ri 7→ False}

∪
{ri , rj : REGION ; p : PROVINCE | ri 7→ (rj , p) ∈ supMove? ∧
(province ◦ control)∼�{p}� = control∼�{ri}� •
ri 7→ False}

∪
{ri , rj , rk : REGION | ri 7→ rj ∈ supHold? ∧ rk 7→ ri ∈ move? ∧
control∼�{ri}� 6= control∼�{rk}� •
ri 7→ False}

∪
{ri , rj , rk : REGION ; p : PROVINCE | ri 7→ (rj , p) ∈ supMove? ∧
rk 6= rj ∧ rk 7→ ri ∈ move? ∧ control∼�{rk}� 6= control∼�{ri}� •
ri 7→ False}

standoff ′ = standoff

dislodged ′ = dislodged

strength ′ = strength

The next operation denoted by SetFesibleSupports assesses to feasible all the
remaining support orders as they satisfy the previous rules.

4.4. MOVEMENTS 51

SetFesibleSupports
�MovementsState

assessedOrders ′ = assessedOrders ∪ {r : REGION |
r /∈ dom assessedOrders ∧
(r ∈ dom supHold? ∨ r ∈ dom supMove?)
• r 7→ True}

standoff ′ = standoff

dislodged ′ = dislodged

strength ′ = strength

Finally, we compute the strength of each order taking only into account the
feasible supports. The strength of an order is equal to the number of feasible
supports that it receives plus one. The operation ComputeStrength updates
the strength function assigning to each controlled region a value computed as
follows:

• The controlled regions that are not ordered to move have a strength equal
to 1 plus the number of feasible supports to hold that they receive. That
is, the strength of region r is 1 plus the number of regions ri belonging to
feasible such that the pair ri 7→ r belongs to supHold?. In short this is:

1 + #(feasible � supHold?� {r})

• The controlled regions that are ordered to move have a strength equal to
1 plus the number of feasible supports to move that they receive. That is,
the strength of region r that is being ordered to move to a region belonging
to province pr is 1 plus the number of regions ri belonging to feasible such
that ri 7→ (r , pr) belongs to supMov?. And in short:

1 + #(feasible � supMove?� {(r , province(move?(r)))})

ComputeStrength
�MovementsState

strength ′ =
{r : REGION | r ∈ ran control \ dom move? •
r 7→ 1 + #(feasible � supHold?� {r})}∪
{r : REGION | r ∈ dom move? •
r 7→ 1 + #(feasible � supMove?� {(r , province(move?(r)))})}

standoff ′ = standoff

dislodged ′ = dislodged

assessedOrders ′ = assessedOrders

We conclude this section combining the previous operations as the following
sequence of operations denoted by ComputeOrderStrength:
ComputeOrderStrength =̂ DetectUnfeasibleSupports�SetFeasibleSupports�ComputeStrength

52 CHAPTER 4. THE DIPLOMACY GAME

4.4.2 Avoiding loops

This step of the movements resolution consists in avoiding loops that could
appear resolving battles. This is done by detecting cycles of attacking units.
Those cycles are called rings of attack when there is no external attack breaking
the ring. Otherwise we call it a broken ring. A cycle consists of a sequence of
units attacking each one to the next, and the last unit attacking the �rst. Figure
4.7 a) represents a ring of attack. When the cycle contains only two units, it is
called a head to head battle instead of a ring.

(a) The moving units are performing
a ring or attack. There is no exter-
nal attack as strong as the internal
attacks.

(b) This ring is broken by the grey
army from the north and by the red
fleet and the red army from the south.

Figure 4.7: Example of cycles of attack including a ring and a broken ring.

An external attack is an attack performed by a unit that is not included
in the cycle but that it is moving towards a region hosting one of the units
forming part of the cycle. Similarly we denote by internal attacks those attacks
performed by the units of the cycle. If there is at least a unit receiving an
external non countryman attack at least as strong as the internal attack, then
the ring is broken and the loop does not indeed exist. Figure 4.7 b) represents
a broken ring.

The next operation ResolveRings de�ne the local variable R and assigns to
it the set of cycles that are rings of attack. In Z Notation, a local variable is
declared using the word let . Injective sequences are declared using the word
iseq. We de�ne a ring of attack as an injective sequence of regions where every
region attacks the next region in the sequence and the last region attacks the
�rst one. #σ is used to get the number of elements in the sequence σ and mod
to compute the arithmetic modulus.
σ : iseq REGION | (∀ i : ; rk : REGION | i ≥ 1 ∧ i ≤ #σ •
move?(σ(i)) = σ(((i + 1) mod #σ) + 1)

For the cycle to be a ring of attack, it must also verify that for every region
rk representing an external attack, the strength of this attack must be lower
than the strength of the internal attacker.
rk /∈ ranσ ∧ move?(rk) = σ(((i + 1) mod #σ) + 1) ∧

strength(σ(i)) > strength(rk)) ∧
And the number of elements of the sequence must be greater than 2: #σ > 2

4.4. MOVEMENTS 53

All regions involved in a ring of attack are assessed as feasible and their
external attackers are assessed as unfeasible.

ResolveRings
�MovementsState

(let R == {σ : iseq REGION | (∀ i : ; rk : REGION | i ≥ 1 ∧ i ≤ #σ •
move?(σ(i)) = σ(((i + 1) mod #σ) + 1) ∧
rk /∈ ranσ ∧ move?(rk) = σ(((i + 1) mod #σ) + 1) ∧
strength(σ(i)) > strength(rk)) ∧ #σ > 2 • σ} •

assessedOrders ′ = assessedOrders⊕
{rj : REGION ; σ : iseq REGION |
σ ∈ R ∧ rj ∈ ranσ • rj 7→ True}
∪
{rj : REGION ; σ : iseq REGION |
σ ∈ R ∧ rj /∈ ranσ ∧ move?(rj) ∈ ranσ • rj 7→ False})

standoff ′ = standoff

dislodged ′ = dislodged

strength ′ = strength

A head to head battle consists of two units attacking each other. The resolu-
tion of a head to head battle depends on whether it is balanced or unbalanced.
It is balanced if both units have the same strength to move or if they perform
countryman attacks, meaning that both units are controlled by the same power.
Otherwise, the battle is unbalanced. Figure 4.8 illustrates both types of head
to head battles.

(a) Head to head battle between the
blue and the white armies that is bal-
anced by the green attack.

(b) Unbalanced head to head battle.
Both attacks are equally strong and
no external attacker found.

Figure 4.8: Example of head to head battles.

We represent the set of head to head battles as the symmetric relation of
regions hosting a pair of units that take part of a balanced head to head battle.
They have either the same strength or are controlled by the same power. We
assign that relation to the local variable B :

54 CHAPTER 4. THE DIPLOMACY GAME

B == {ri , rj : REGION | {ri 7→ rj , rj 7→ ri} ⊆ move? ∧
(strength(ri) = strength(rj) ∨ control∼�{ri}� = control∼�{rj}�) • ri 7→ rj}

The ResolveBBattles operation detects balanced head to head battles, assess
them to unfeasible and looks for a single strongest external attacker. If there is
only one external attack with the highest strength and it is strongest than the
internal attack, then this single strongest external attack is assessed to feasible.

ResolveBBattles
�MovementsState

(let B == {ri , rj : REGION | {ri 7→ rj , rj 7→ ri} ⊆ move? ∧
(strength(ri) = strength(rj) ∨ control∼�{ri}� = control∼�{rj}�) • ri 7→ rj} •
assessedOrders ′ = assessedOrders⊕
{r : REGION | r ∈ dom B • r 7→ False}
∪
{ri , rj : REGION | rj 7→ ri ∈ move? ∧ ri ∈ dom B ∧ rj /∈ dom B ∧
(∀ rk : REGION | rk 6= rj ∧ rk 7→ ri ∈ move? •
strength(rk) < strength(rj)) • rj 7→ True})

standoff ′ = standoff

dislodged ′ = dislodged

strength ′ = strength

The SetDislodgements operation detects the set of balanced head to head
battles and assesses as unfeasible all regions that are attacking a unit in a
balanced head to head battle that are not assessed as feasible. Thus, only the
strongest external attacker, if there is any, will be feasible. This operation also
sets as dislodged all regions whose units took part of a balanced head to head
battle and that are receiving a feasible attack; the attack is indeed performed
by a strongest external attacker.

SetDislodgements
�MovementsState

(let B == {ri , rj : REGION | {ri 7→ rj , rj 7→ ri} ⊆ move? ∧
(strength(ri) = strength(rj) ∨ control∼�{ri}� = control∼�{rj}�) • ri 7→ rj} •
assessedOrders ′ = assessedOrders ⊕ {ri , rj : REGION | ri ∈ dom B ∧

rj 7→ ri ∈ move? ∧ rj 7→ True /∈ assessedOrders • rj 7→ False} ∧
dislodged ′ = dislodged ∪ {ri , rj : REGION | rj ∈ dom B ∧

ri ∈ dom(feasible �move?� {rj}) • ri 7→ rj})

standoff ′ = standoff

strength ′ = strength

Resolving an unbalanced head to head battle consists simply in assessing
the weaker unit of the battle to unfeasible. This way the loop is broken and
the battle can be resolved in the ordinary way that is described in next section.
ResolveUBattles operation detects unbalanced head to head battles, identi�es
the attack with less strength and assesses it to unfeasible. Remember that for

4.4. MOVEMENTS 55

the battle to be unbalanced, an attack must be stronger than the other and the
units must be controlled by di�erent powers. If they performed countryman
attacks, the battle would be balanced.

ResolveUBattles
�MovementsState

assessedOrders ′ = assessedOrders ⊕ {ri , rj : REGION |
{ri 7→ rj , rj 7→ ri} ⊆ move? ∧ strength(ri) > strength(rj) ∧
control∼�{ri}� 6= control∼�{rj}� • rj 7→ False}

standoff ′ = standoff

dislodged ′ = dislodged

strength ′ = strength

Finally, we de�ne the AvoidLoops operation as the sequence of all the pre-
vious operations de�ned in this section:
AvoidLoops =̂ ResolveRings�ResolveBBatles�SetDislodgements�ResolveUBattles

4.4.3 Battles

Once loops are avoided we can proceed resolving the ordinary battles iteratively
knowing that the process will reach an end. Ordinary battles are those conicts
that are still not resolved. Those ordinary battles can be simple moves towards
empty regions or attacks towards occupied regions. In both cases, the region
is denoted by the target. If the destination of the move is empty, the single
strongest move towards that target is feasible and the rest are unfeasible. Notice
that there can only be one strongest move. When several moves that are equally
strong are the strongest, all the moves are unfeasible. As a consequence of the
battle involving all those moves towards the target, the province of the target
is set to stando�. This means that, although the province will remain empty, it
cannot be used in next turn as the destination of a retreatement.

When the target is occupied, we �rst check whether there is a single strongest
attacker. Again, the strongest attacker towards tha target must be unique.
Otherwise all attacks are unfeasible. When there is a single strongest attacker,
the rest of attacks are set as unfeasible and the strength of the strongest is
compared to the strength of the defender, that is the unit occupying the target.
The defender is defeated only when the attacker is stronger than it. Otherwise,
the attack is unfeasible. When the strongest is stronger than the defence, it is
set as feasible and the defender is dislodged. That means that the attacker's
new position will be the target and the defender should be retreated during the
next turn.

Notice that although loops are avoided, there could still exist paths of attacks
where a unit is attacking another unit that is moving towards another region.
See an example in Figure 4.9. In order to let moving units to try to move before
being attacked, we must start resolving the moves towards unoccupied targets
and then proceed iteratively with the attacks towards those occupied targets
that had already been resolved and so on until all movements are set to either
feasible or unfeasible.

56 CHAPTER 4. THE DIPLOMACY GAME

(a) Three unfeasible attacks against
the green army that is feasibly mov-
ing. Its region remains standoff and
the rest of units remain in their orig-
inal position.

(b) Feasible attack of the red fleet
that can move and dislodge the green
army. The rest of moves are unfeasi-
ble and remain in their original posi-
tion.

Figure 4.9: Examples of attacking paths.

When comparing the single strongest attacker strength with the defender
strength we must take into account that there could be defenders that where
ordered tomove but they are holding in the original position because they did
not succeed performing the move. For those regions, the computed strength was
intended to be used to attack not to defend. Thus, the strength of those de-
fenders would be 1 independently of the number of units that where supporting
its unfeasible move.

The ResolveBattles operation resolves ordinary battles iteratively using the
ResolveAttacks operation to identify unresolved attacks and resolve them, and
the ApplyChanges operation to update the MovementsState with new assess-
ments, dislodgments and stando� provinces. To resolve battles, we start with
those movements towards targets that:

1. are empty,

2. are not ordered to move, or

3. have their move order already assessed.

Then, we update the MovementsState and continue with those new movements
that verify the previous constraints. And thus until no more movements satisfy
them. This way we resolve moves before being attacked. As loops were already
avoided, there is a �nite number of iterations needed. Iterating this way, we
can resolve attacks towards moving units knowing whether the attacked unit is
indeed moving or not.

The set of movements that are not yet assessed is computed as follows:
dom assessedOrders �move?

Therefore, we can declare the local variable M with the not yet resolved
moves towards targets that are not performing not yet resolved moves:
M == dom assessedOrders �move?� dom(dom assessedOrders �move?)

Then, we proceed analysing every single move ri 7→ t ∈ M and resolving it
as either feasible or unfeasible in the following way:

4.4. MOVEMENTS 57

1. Movements towards targets that are not the single strongest are unfeasible.
Those are detected with this line:
¬(∀ rj : REGION | rj 6= ri ∧ rj 7→ t ∈ move? • strength(rj) < strength(ri))

2. Single strongest moves towards targets are detected by:
∀ rj : REGION | rj 6= ri ∧ rj 7→ t ∈ move? • strength(rj) < strength(ri)

their resolution depend on whether the target is occupied or not.

• Target empty or occupied with a unit performing a feasible move:
t /∈ ran control ∨ t ∈ dom(feasible � move?)

Those single strongest moves towards targets that are empty or will
be empty are feasible.

• Target occupied with a unit that is not performing a feasible move:
t ∈ ran control ∧ t /∈ dom(feasible � move?)

The resolution of those movements depend on whether:

– it is a countryman attack:
control∼�{ri}� = control∼�{t}�
A countryman attack cannot dislodge a unit. Countryman at-
tacks are unfeasible.

– it is not a countryman attack:
control∼�{ri}� 6= control∼�{t}�
Then we should compare the strength of the attack and the de-
fence:

∗ if the attack is stronger than the defence:
strength(ri) > strength(t)

The move is feasible and the defender is dislodged.

∗ if the attack is less or equal strong than the defence.
strength(ri) ≤ strength(t)

The move is unfeasible.

We formalise this complex operation using four simpler operations, one rep-
resenting every single possibility. Thus, we de�ne four operations with regions
ri?, t? : REGION as inputs and the boolean value a! : Bool as output. Those
input values must verify that:

• ri? moves towards t?, that is: ri? 7→ t? ∈ move?, and

• t? is not performing a non yet assessed move, that is:

t? /∈ dom(dom assessedOrders �move?)

The output stands for either feasible a! = True, or unfeasible a! = False. When
introducing the operators below, we do not provide detailed explanation because
that explanation was already given in the previous paragraphs.

Non single strongest moves are unfeasible. This is set by ResolveNonSingle-
Strongest operation.

58 CHAPTER 4. THE DIPLOMACY GAME

ResolveNonSingleStrongest
�MovementsState

ri? : REGION

t? : REGION

a! : Bool

ri? 7→ t? ∈ move?

t? /∈ dom(dom assessedOrders �move?)

¬ (∀ rj : REGION | rj 6= ri? ∧ rj 7→ t? ∈ move? • strength(rj) < strength(ri?))

a! = False

Single strongest moves towards empty targets or targets occupied by units
that are feasibly moving are feasible as de�ned in ResolveMove operation.

ResolveMove
�MovementsState

ri? : REGION

t? : REGION

a! : Bool

ri? 7→ t? ∈ move?

t? /∈ dom(dom assessedOrders �move?)

∀ rj : REGION | rj 6= ri? ∧ rj 7→ t? ∈ move? • strength(rj) < strength(ri?)

t? /∈ ran control ∨ t? ∈ dom(feasible �move?)

a! = True

When the target of a single strongest move is occupied by a unit that is
not feasibly moving but that is controlled by the same power, the attack is a
countryman attack and thus it is unfeasible. The ResolveCountrymanAttack
operation deals with those countryman attacks.

4.4. MOVEMENTS 59

ResolveCountrymanAttack
�MovementsState

ri? : REGION

t? : REGION

a! : Bool

ri? 7→ t? ∈ move?

t? /∈ dom(dom assessedOrders �move?)

∀ rj : REGION | rj 6= ri? ∧ rj 7→ t? ∈ move? • strength(rj) < strength(ri?)

t? ∈ ran control ∧ t? /∈ dom(feasible �move?)

control∼�{ri?}� = control∼�{t?}�

a! = False

Contrarily, when the single strongest attack is not a countryman attack, it
is resolved comparing the attacking and defensive strength. As de�ned in the
ResolveNonCountrymanAttack operation, the attack is feasible if the attacker
is stronger than the defence. Otherwise, the attack is unfeasible.

ResolveNonCountrymanAttack
�MovementsState

ri? : REGION

t? : REGION

a! : Bool

ri? 7→ t? ∈ move?

t? /∈ dom(dom assessedOrders �move?)

∀ rj : REGION | rj 6= ri? ∧ rj 7→ t? ∈ move? • strength(rj) < strength(ri?)

t? ∈ ran control ∧ t? /∈ dom(feasible �move?)

control∼�{ri?}� 6= control∼�{t?}�

strength(ri?) > strength(t?)⇒ a! = True

strength(ri?) ≤ strength(t?)⇒ a! = False

Finally, we combine those four operations to form the ResolveAttack opera-
tion de�ned as:

ResolveAttack =̂ ResolveNonSingleStrongest ∨ ResolveMove ∨
ResolveCountrymanAttack ∨ ResolveNonCountrymanAttack

ResolveAttack : REGION × REGION � Bool

As this operation must be executed for any single movement r 7→ t ∈ M ,
we de�ne the ResolveAttacks operation that does it and outputs the currently
being proceed movements M ! and their assessments as the partial function A!.

60 CHAPTER 4. THE DIPLOMACY GAME

ResolveAttacks
�MovementsState

M ! : REGION � REGION

A! : REGION � Bool

let M == dom assessedOrders �move?� dom(dom assessedOrders �move?) •
#M > 0 ∧
M ! = M ∧
A! = {r , t : REGION | r 7→ t ∈ M • r 7→ ResolveAttack(r , t)}

Once the new assessments are computed, we can update the MovementsState
aggregating the content of A to assessedOrders and computing the dislodgments
and stando� provinces. The stando� provinces are those with regions that are
targets remaining empty. That is, a target that:

• is empty or has a unit performing a feasible movement,
t /∈ ran control ∨ t ∈ dom(dom(A � {True})� move?)

and,

• there is no feasible movement towards it.
t /∈ ran(dom(A � {True})� move?)

Dislodgments are computed as those movements with a unit in the target
that is not performing a feasible move but that receive a feasible attack:
dislodged ′ = {t , r : REGION | t ∈ T ∧ t ∈ dom control ∧ t /∈ dom(dom(A � {True}) �
move?) ∧ r 7→ t ∈ (dom(A � {True})� move?) • r 7→ t})

The operation that updates the MovementsState is the ApplyChanges oper-
ation that has as inputs the currently being proceed movements M ? and their
assessments as the partial function A?.

ApplyChanges
�MovementsState

M ? : REGION � REGION

A? : REGION � Bool

dislodged ′ = dislodged ⊕ {r , t : REGION |
t ∈ ran control ∧
r 7→ t ∈ dom(A?� {True})�M ? ∧
t /∈ dom(feasible �move?) • r 7→ t}

standoff ′ = standoff ∪ {t : REGION |
t ∈ ran M ? ∧
(t /∈ ran control ∨ t ∈ dom(feasible �move?)) ∧
(∀ r : REGION | r 7→ t ∈ M ? • A?(r) = False) • province(t)}

assessedOrders ′ = assessedOrders ⊕A?

As the output variables if ResolveAttacks matches the input variables of
ApplyChanges, we can combine those operations using a pipe and obtain the
ResolveBattles operation:

ResolveBattles =̂ ResolveAttacks >> ApplyChanges

4.4. MOVEMENTS 61

4.4.4 Updating the Game State

When the steps described in previous sections are done, all controlled regions
have been assessed and the stando� provinces and dislodged units are computed.
The last operation to perform in order to resolve movements is to update the
game state. This is done by the GameStateUpdate operation using the feasibility
and the dislodgment information to update the controlled regions. The current
season changes either from Spring to Summer or from Fall to Autumn. Owned
supply centres remain intact and the retreatement function is populated given
the dislodged units and the stando� provinces.

Feasible moves advance letting the power control the destination of the move
instead of the source. Unfeasible moves do not advance. If they are not dis-
lodged, those units remains in the original positions that are the sources of the
moves. The power will still control the unit in the same position. Other units
that are not dislodged remain in the same region allowing the power to keep
controlling the unit in the same position. Retreatements are calculated for each
dislodged unit. Dislodged units will be able to retreat to any adjacent region
that is not belonging to a province that:

• is a stando�,

• contains a controlled region, or

• contains the region source of the attack that dislodged the unit.

GameStateUpdate
�MovementsState

let M == dom assessedOrders �move?� dom(dom assessedOrders �move?) •
#M = 0

control ′ =
{p : POWER; r : REGION | p 7→ r ∈ control ∧ r ∈ dom move? ∧
r ∈ feasible • p 7→ move?(r)}∪
{p : POWER; r : REGION | p 7→ r ∈ control ∧ r ∈ dom move? ∧
r ∈ unfeasible ∧ r /∈ ran dislodged • p 7→ r}∪
{p : POWER; r : REGION | p 7→ r ∈ control ∧
r /∈ dom move? ∧ r /∈ ran dislodged • p 7→ r}

own ′ = own

(currentSeason = Spring)⇒ (currentSeason ′ = Summer)

(currentSeason = Fall)⇒ (currentSeason ′ = Autumn)

retreatement ′ = {ri , rj , rk : REGION ; p : POWER |
ri 7→ rj ∈ dislodged ∧ rk 6= ri ∧ rj 7→ rk ∈ adj ∧
province(rk) /∈ standoff ∧ p 7→ rj ∈ control • (p, rj) 7→ rk}

Finally, the ResolveMovements operation combines all the operations that
have to be done in a movement season to resolve the orders:
ResolveMovements =̂ (InitOrders ∧ �MovementsState)�ComputeOrderStrength�
AvoidLoops � ResolveBattles ∗ �GameStateUpdate

62 CHAPTER 4. THE DIPLOMACY GAME

4.5 Retreatements

The retreatement seasons are Summer and Autumn. These seasons are used by
powers to retreat those units that have been dislodged in the previous move-
ment season. In fact, all dislodged units must be ordered. The types of orders
available at these seasons are: (1) retreat |that is to move the unit to one of
the available destinations, and (2) disband |that is to remove the unit. The
dislodged units can only be retreated to an adjacent empty region that was
not stando� in previous movement season neither the original position of the
dislodging unit. Alternatively, they can be ordered to disband. Thus disband
is only mandatory when retreat is not possible.

The regions where a dislodged unit can retreat to are computed at the end
of the movement season resolution and are included in the GameState. The
resolution of the retreatement season consists in updating the controlled regions
according to the retreat or disband input orders. There is only one kind of
possible conict that is when two units are ordered to retreat to the same
region. In that case, they are both disbanded.

The ResolveRetreatements operation checks wether the current season is
Summer or Autumn. It also veri�es that all dislodged units are being ordered
either to retreat or disband:

dom retreateTo? ∪ disband? = {p : POWER; r : REGION |
(p, r) ∈ dom retreatement • r}

And no one is ordered to do both:

disjoint 〈dom retreateTo?, disband?〉

Then it updates the control relation adding the units that have been succes-
fully retreated. A retreat succed when no other unit is retreating to the same
position, that is:

dom(retreateTo?� {rj}) = 1

Failed retreats are disbanded, thus those units are not controlled any more.
They are removed from the board.

Finally the current season is updated to Fall or Winter depending on wether
the current season was Summer o Autumn respectively. The owned supply
centers and the year do not change, and the retreatement info is reset.

4.6. ADJUSTMENTS 63

ResolveRetreatements
�GameState

retreateTo? : REGION � REGION

disband? : �REGION

currentSeason = Summer ∨ currentSeason = Autumn

dom retreateTo? ∪ disband? = {p : POWER; r : REGION |
(p, r) ∈ dom retreatement • r}

disjoint 〈dom retreateTo?, disband?〉

control ′ = control ⊕ {p : POWER; ri , rj : REGION |
ri 7→ rj ∈ retreateTo? ∧ #(dom(retreateTo?� {rj})) = 1 ∧
(p, ri) ∈ dom retreatement • p 7→ rj}

(currentSeason = Summer)⇒ (currentSeason ′ = Fall)

(currentSeason = Autumn)⇒ (currentSeason ′ = Winter)

own ′ = own

currentYear ′ = currentYear

retreatement ′ = {}

4.6 Adjustments

There is only one adjustment season that is Winter. It is the last season of a
year. In Winter, the ownership of supply centres is updated giving the ownership
of every controlled supply centres to the power that is currently controlling it.
By controlling a supply centre we mean that the power controls the unit that is
hosted in one of the regions of a supply centre province.

The UpdateOwnership operation checks whether the current season is Win-
ter. It declares the local variable O that relates every power with the provinces
that it controls, province ◦ control , that are supply centres, sc(s) = pr . The
resulting relation is:

O == {p : POWER; pr : PROVINCE ; s : SUPPLY CENTRE |
p 7→ pr ∈ province ◦ control ∧ sc(s) = pr • p 7→ s}

Then, it updates the own relation changing the ownership of the controlled
supply centres to the controller:

own ′ = (own � ran O) ∪O

The control relation, the current season, and the current year do not change.
Neither the retreatement info.

64 CHAPTER 4. THE DIPLOMACY GAME

UpdateOwnership
�GameState

currentSeason = Winter

let O == {p : POWER; pr : PROVINCE ; s : SUPPLY CENTRE |
p 7→ pr ∈ province ◦ control ∧ sc(s) = pr • p 7→ s} •
own ′ = (own � ran O) ∪O

control ′ = control

currentSeason ′ = currentSeason

currentYear ′ = currentYear

retreatement ′ = retreatement

As a consequence of updating the supply centres' ownership, the number of
owned supply centres for some powers increase and for some others decrease.
If there is a power owning half or more of the supply centres, that power wins
and the game is over. The WinnerFound operation checks whether there is a
winner and outputs it.

WinnerFound
�GameState

winner ! : POWER

currentSeason = Winter

∃ p : POWER | #(own�{p}�) ≥ (numberOfSC div 2) • winner ! = p

If there is no winner yet, the game continues letting the powers adjust their
number of supply centres with the number of units that they control. Those
powers with more supply centres than units should be able to build more units
until there will be as many units as owned supply centres. Those with more
units than supply centres must remove as many units as necessary until there
will be as many units as owned supply centres. Therefore, the orders available
are: (1) build |that is to create a new unit; (2) remove |that is to remove a
unit, and (3) waive |that means not to create any more units.

Units must be created in empty owned homelands. That is, for a power to
be able to create a unit in a given province:

• it has to be part of its homeland,

• it has to be owned by itself, and

• it cannot be hosting any other unit.

If that is the case, the power can create the unit in whatever region belonging to
that province, or order a waive meaning that it is not going to create all units.
It is often the case of powers that have more supply centres than units but that
cannot build units because of missing empty owned homelands. In those cases,
the power must order a waive order if it has the right to build units but not
enough space for all them to be built.

4.6. ADJUSTMENTS 65

The operation ApplyAdjustments receives as input the orders that the powers
made public. Build orders are represented by the build? relation that assigns
the region hosting the new unit to the power that is building it. Removes are
represented by the set of regions remove? that contains the regions hosting the
units that are being removed. And waive orders are represented by the set of
powers waive? performing waives.

The operation starts checking whether the current season is Winter and
whether the game is not over. If all powers have less than half of the supply
centres owned, then the game is not over:
∀ p : POWER • #(own�{p}�) < (numberOfSC div 2)

If that is the case, it continues verifying the input orders that must satisfy
the following constraints:

• A power p can only build a unit in a region r belonging to a supply centre
that is one of its homelands, sc∼(province(r)) ∈ homeland�{p}�, and that
is currently owned by the same power, sc∼(province(r)) ∈ own�{p}�, and
not controlled, province(r) /∈ ran province ◦ control . That is, every build
order p 7→ r ∈ build? must satisfy the following:

sc∼(province(r)) ∈ homeland�{p}� ∩ own�{p}� ∧
province(r) /∈ ran province ◦ control

• A power p can build as many units as necessary to make the number of
controlled units to be equal to the number of owned supply centres:

#(build?�{p}�) = (#(own�{p}�)−#(control�{p}�))

Otherwise, it can build less than those necessary units and perform a
waive:

#(build?�{p}�) < (#(own�{p}�)−#(control�{p}�) ∧ p ∈ waive?)

We compact this constrain and say that for every power p that has less con-
trolled regions than owned supply centres, (control�{p}�) < #(own�{p}�):

#(build?�{p}�) = (#(own�{p}�)−#(control�{p}�)) ∨
#(build?�{p}�) < (#(own�{p}�)−#(control�{p}�) ∧ p ∈ waive?)

• A power p must remove as many units as necessary to make the number
of controlled units to be equal to the number of owned supply centres.
This is veri�ed requiring for every power with less owned supply centres
than units, #(own�{p}�) < #(control�{p}�) to satisfy that the controlled
regions removed must be the same needed to make that equal:

#(control�{p}� ∩ remove?) = #(control�{p}�)−#(own�{p}�)

Finally, the operation updates the control relation removing the units being
ordered to remove and adding the new built units. Then, it also updates the
current season to Spring and increment the year.

66 CHAPTER 4. THE DIPLOMACY GAME

ApplyAdjustments
�GameState

build? : POWER # REGION

remove? : �REGION

waive? : �POWER

currentSeason = Winter

∀ p : POWER • #(own�{p}�) < (numberOfSC div 2)

remove? ⊆ ran control

∀ p : POWER; r : REGION | p 7→ r ∈ build? •
sc∼(province(r)) ∈ homeland�{p}� ∩ own�{p}� ∧
province(r) /∈ ran(province ◦ control)

∀ p : POWER | #(control�{p}�) < #(own�{p}�) •
#(build?�{p}�) = #(own�{p}�)−#(control�{p}�) ∨
(#(build?�{p}�) < #(own�{p}�)−#(control�{p}�) ∧ p ∈ waive?)

∀ p : POWER | #(own�{p}�) < #(control�{p}�) •
#(control�{p}� ∩ remove?) = #(control�{p}�)−#(own�{p}�)

control ′ = (control � remove?) ∪ build?

currentSeason ′ = Spring

currentYear ′ = currentYear + 1

The following ResolveAdjustments operation combines the three previous
operations as follows:
ResolveAdjustments =̂ UpdateOwnership �WinnerFound ∨ ApplyAdjustments

Once all the operations for resolving every single part of the adjudication
are de�ned, we can combine them to form the AdjudicatorAlgorithm operation:
AdjudicatorAlgorithm =̂

(Init ∧ �GameState) � (ResolveMovements � ResolveRetreatements�
ResolveMovements � ResolveRetreatements � ResolveAdjustments)∗

4.7 Complexity

To analyse the complexity of The Diplomacy Game we focus on the movement
seasons of the standard version of the game without convoys. We compute the
complexity of the game as the branching factor of its extensive form represen-
tation. Even omitting the negotiation, we can see that the branching factor
of The Diplomacy Game compared to the branching factor of Chess and Go is
enormous.

In The Diplomacy Game, all players perform their movements at the same
time. Any player has several units and has to select an order for each of them.
The game starts with 7 players and a total number of 22 units. As turns go by,
some players lose all their units and thus are eliminated. Others enlarge their
power controlling more and more units. The number of units on the board is
limited by the number of supply centres as it is necessary to own one supply

4.7. COMPLEXITY 67

centre in order to control a unit. The standard map contains 34 supply centres,
thus 34 is the maximum number of units that can be over the map. As there
are rules to be satis�ed in order to build a unit |that is having own but empty
homeland provinces available, we computed the average number of units per
turn in a large bunch of games and obtained a number of units per turn in
average equal to 30. Therefore, an order has to be assigned to each of the 30
units that are on the board in average per turn.

The movements that a unit can perform include a hold, several moves, some
supports to hold and supports to move. The number of moves that a unit can
perform depend on the number of adjacent regions that its hosting region has.
We use the terms hosting region and hosting province to refer to the region and
the province where a given unit is located. We computed the average number
of adjacency regions that a region in the standard Diplomacy map has and it
is a number near to 4. Remember that not all provinces that are adjacent to
the hosting province have a region that is adjacent to the hosting region. This
is so because, for example, an army in a coast cannot move towards the sea.
Curiously, some provinces that are adjacent to the hosting province contain more
than one region that is adjacent to the hosting region. This is the case when a
unit can move to both of the coastal regions of a bi-coastal province. As there
are only 3 bi-coastal provinces compared to the total number of 75 provinces,
we ignore the case of bi-coastal provinces in the subsequent calculations. In
conclusion, we assume that the number of regions adjacent to a particular region
is 4 and thus, the number of moves that a unit can perform is in average 4.

For a unit to be able to support other units holding, it must have neighbours
that are units situated in regions belonging to provinces that contain a region
adjacent to the hosting region. We analysed a large number of games and
calculated that in average the number of neighbours is 2. Therefore, the number
of supports to hold that a unit can perform is 2. The case of supports to move
is more complicated to compute as a unit can support to move any unit moving
towards every region belonging to the provinces with adjacent regions to the
hosting region. We use a simpli�ed abstract version of the map only with
regions to illustrate the problem and show how we computed the number of
possible supports to move, see Figure 4.10. Notice that in this map every region
has 4 adjacent regions and every unit has 2 neighbours. `x' can support units
`y' and `z' to move towards itself or its adjacent regions.5 Therefore, every unit
`y' can be supported to move towards 3 di�erent regions, and every unit `z' can
only be supported to move towards 1 region. In overall we have that `x' can
support 2× 3 + 2 = 8 moves.

Counting together all possible movements of a unit we have 1 hold, 4 moves,
2 supports to hold and 8 supports to move that sum 1 + 4 + 2 + 8 = 15 possible
movements. Having 30 units per turn to be ordered and an average of 15 possible
orders per unit means that the branching factor is 1530 = 1.43 · 1022 that is just
huge.6 Remember that the branching factor for Chess is around 35 and Go is
around 200.

5Supporting a unit to move towards the supporting unit is a possible order although it is
not feasible. It is possible to order such a support but it has no effect as the rules of the game
say that this is a countryman attack support and those supports must be cancelled during
the resolution of orders performed with by the adjudicator algorithm.

6[Kemmerling et al., 2011] provides a different complexity analysis with similar branching
factor results although we differ computing the number of available orders per unit.

68 CHAPTER 4. THE DIPLOMACY GAME

x
y

y

z

z

x, y, and z are unitsis a region

 are possible destinations of
support movements
performed by unit x

 are adjacent regions

 are not adjacent regions

Figure 4.10: Abstract representation of the regions in the Diplomacy map. Unit
`x' is the given unit, units named `y' are its neighbours and units `z' are the
units that can receive supports to move from `x'.

Fortunately, not all possible orders are equiprobable. Some of them are
more likely to be used than others and it is possible to analyse the behaviour of
the other players during the game and negotiate with them in order to obtain
more information that help us to guess what the other players are going to
order to their units. The Diplomacy Game is not a game to be solved using
computational power. This game would be solved when a program, a software
agent, would be able to understand human relationships, their reaction and
would be able to take advantage of this information in order to pro�ciency
negotiate with them. Negotiating is just crucial to cope with the huge space of
solutions and the uncertainty on the other players next orders.

4.8 Diplomacy as an RNP

Diplomacy is an example of Resource Negotiation Problem (RNP). It involves
several players that repeatedly negotiate. All players perform their actions at
the same time. And the actions are made public so anyone can check whether its
negotiating counterparts honour the commitments reached at negotiation time.

To represent Diplomacy as an RNP we just need to use the players (powers)
as agents, and the units as the resources that they control. The operators that
can be applied to resources are the di�erent order types, and unit orders are the
actions. This is specially obvious during a movement season when the agents
concurrently negotiate to reach agreements over the movements that they may
jointly perform (e.g. getting the support of another player's unit to strengthen
one of our units that will most probably get into battle in exchange of moving
another of our units away from a certain province).

The negotiation that takes place during the movement seasons is usually
performed in a natural language, for instance in English, as it is a game that is
normally played by humans. Now, as an RNP, the negotiation has to be limited
to plans of action. To illustrate the notion of plan we use a simple ontology
illustrated in Figure 4.11 that allows to represent orders.

In Figure 4.12 we graphically represent two plans, on 4.12a an individual
plan for France (in blue) and on 4.12b a joint plan between Italy (in green) and
Austria (in brown).

The plan for France is to move from Paris to Burgandy, from Brest to Mid-
Atlantic Ocean and from Marseilles to Spain. Thus, the plan p = {a1, a2, a3} is

4.8. DIPLOMACY AS AN RNP 69

year ::= integer

season ::= spr | sum | fal | aut | win
power ::= fra | eng | tur | rus | ita | aus | ger
coast ::= ncs | scs | ecs | wcs
regionType ::= amy | sea | coast
supplyCenter ::= spa | mar | par | stp | ...
province ::= supplyCenter | gas | bur | sil | tus | ...
region ::= Region(province, regionType)
unit ::= Unit(power , region)
order ::= hld(unit) | mto(unit, region) | sup(unit, hld(unit)) | sup(unit, mto(unit, region)) |
rto(unit, region) | dsb(unit) | bld(unit) | rem(unit) | wve(power)

offer ::= pce(power+) | aly(power+, power+)

Figure 4.11: Diplomacy ontology.

(a) Plan (b) Joint plan

Figure 4.12: Two examples of plans.

a set of movements.7

a1 = mto(Unit(fra, Region(par, amy)), Region(bur, amy))
a2 = mto(Unit(fra, Region(bre, flt)), Region(mao, sea))
a3 = mto(Unit(fra, Region(mar, amy)), Region(spa, amy))

In Diplomacy we cannot move the same unit to two di�erent regions at the
same time. This is an example of non compatibility actions. Thus, given the
action a4 below, comp(a1, a4) does not hold and therefore neither feasible(p)
holds if p contains a1 and a4 nor comp({a1}, {a4}) holds.

a4 = mto(Unit(fra, Region(par, amy)), Region(gas, amy))

Assuming that Austria controls only two units, Figure 4.12b illustrates an
example of joint plan for Austria p = {a5, a6, a7, a8} where actions are repre-
sented as:

a5 = mto(Unit(ita, Region(tyr, amy)), Region(ven, amy))
a6 = sup(Unit(aus, Region(tri, flt)),

mto(Unit(ita, Region(tyr, amy)), Region(ven, amy)))
a7 = mto(Unit(aus, Region(vie, amy)), Region(tyr, amy))
a8 = sup(Unit(ita, Region(mar, amy)),

mto(Unit(aus, Region(vie, amy)),Region(tyr, amy)))

7To simplify notation we represent the names of powers and provinces in a compressed
way. For instance, France is “fra”, Paris is “par” and Mid-Atlantic Ocean is “mao”.

70 CHAPTER 4. THE DIPLOMACY GAME

Given this plan, Italy could propose Austria di�erent options:

• propose(ita, aus, [Commit(aus,ita, Do(a6))]). Italy proposes Austria
a deal where Austria commits to support the Italian move from Tyrol
to Venice. As Italy does not give anything in exchange it may not be
e�ective.

• propose(ita, aus, [Commit(ita,aus, Do(a5)), Commit(aus,ita, Do(a6))]).
This looks fairer, but Italy is actually not providing anything bene�cial to
Austria.

• propose(ita, aus, [Commit(ita,aus, Do(a5)), Commit(aus,ita, Do(a6)),
Commit(aus,ita, Do(a7)), Commit(ita,aus, Do(a8))]). This proposal is
more fair as Italy is also helping Austria.

Which one of these options should Italy actually send to Austria is what the
negotiation strategy determine.

4.9 Summary

The board of The Diplomacy Game represents a map of Europe with four kinds
of provinces: sea, inland, coast and bicoastal provinces. There are seven players
that are denoted by powers. Each power has several chips representing military
units that can be armies or eets. Those units are spread along the map having
no more than a unit per province. Armies cannot be located in sea provinces
and neither eets in inland provinces. We specify the map using a new concept,
a region, that represents a potential location of a type of units in a province.
The adjacency relation between neighbouring provinces is exported to regions
corresponding to the same type of units in adjacent provinces. The correspond-
ing region adjacency map describes the allowed unit moves between regions,
i.e. between provinces. Some non sea provinces are special and denoted supply
centres. A subset of the supply centres is partitioned between the powers and
correspond to the homeland of those powers. Supply centres can be owned by
the powers. All the previous information and the starting units describing the
starting position of the game represent the static part of the game.

The dynamics of the game stablishes a sequence of turns divided in years
and seasons that can be of three di�erent types: movement, retreatement and
adjustment. The game starts with the starting units placed on the homelands
of the powers. Then, all powers decide what moves to perform and, next,
the game proceeds resolving possible conicts and generating the next turn.
The information of the game corresponding to a particular turn is denoted
by the game state. It contains the current year and season, the location of
units on the map, the owned supply centres per power, and information about
previous retreatments. The moves that powers can order to their units are
denoted by orders. Several types of orders are allowed per season type. We
specify the adjudicator algorithm responsible of the resolution of conicts and
the generation of the next game state from the set of orders selected by the
powers in parts, a part per season type.

The orders allowed in movement seasons are to hold, to move, to support
another unit holding and to support another unit moving to a given destina-
tion. The resolution of this season use to generate multiple conicts and requires

4.9. SUMMARY 71

special attention. Several kinds of battles can be detected and, although their
resolution is deterministic, it requires of several steps including the computa-
tion of unit strengths. The strength of a unit is computed as the number of
supports that the unit receives in each moment. After a movement season, a
retreatement season takes place. Units dislodged in the previous movement sea-
son are included in the retreatements. Those must be retreated or disbanded
in this season. Next, either another movement season or the adjustment season
takes place. There are two movement and retreatement seasons per year, but
only an adjustment season. The adjustments consist in updating the assigna-
tion of owned supply centres and creating or removing units according to the
di�erence between owned supply centres and controlled units per power. After
adjustments, those numbers should be equal. Even thought, other rules apply
for building units that limit this equilibrium between supply centres and units
per power. The game ends when a power has a number of supply centre equal
or larger than half the number of supply centres in the map. Only one player
can win the game.

The computational complexity of the game is huge. The branching factor is
1530 that is astronomical compared to Chess and Go (35 and 200 respectively).
The Diplomacy Game requires a di�erent kind of approximations that take into
account the study of the other players movements and, mainly, their negotia-
tions. Taking every single negotiation step into account, the branching factor
would be overwhelming. Interestingly, the complex negotiations of Diplomacy
are the key for success. A good understanding of the negotiations and the other
players provides the formula for solving this game.

The Diplomacy Game can be seen as an RNP. If we focus on the movement
season, we can see units as resources and orders as actions to be applied on
those resources. Then, the negotiation is constrained to trading o�ers of sets of
orders to perform jointly. For instance, we can request the help in performing a
particular move, and even provide some interesting move for the other agent.

Chapter 5

HANA architecture

HANA is a software architecture for agents that need to negotiate joint plans of
action in realistic scenarios such those in RNPs. These negotiations may involve
humans and repeat along time. The chapter describes the agent architecture
(Section 5.1), and its main modules that are: the world model (Section 5.2), the
plan search (Section 5.3), and negotiation (Section 5.4). The chapter terminates
with a summary (Section 5.5).

5.1 Agent architecture

In this section, we describe a software architecture to build agents capable of
participating in RNPs. We introduce here its main modules and then we give
details for each of them in subsequent sections. We refer to the architecture as
HANA and to the agents designed according to HANA as HANA agents.1 The
architecture is graphically represented in Figure 5.1.

In Chapter 3, we de�ne RNPs and explain that they happen in fully ob-
servable environments that agents can perceive and where agents can execute
actions whose (deterministic) consequences are also observable. Furthermore,
the environment allows agents to exchange private messages. Thus, the �rst
component of HANA is an interface module that situates the agents in their
environment, that is: it allows to observe the environment state, observe and
execute actions, and exchange messages with other agents. In other words,
this module contains the sensors and actuators of the agent. Which actions to
execute and which messages to send is decided by the negotiation module.

The design philosophy behind HANA is to provide some means to negotiate
as humans do, as the negotiation counterparts could be humans. In particular,
there are two capabilities that we think realistic agents should show: dealing
with emotions, and dealing with uncertainty [Minsky, 1999]. The architecture
incorporates emotions as this is an important part of the non-constructivist
rationality approach, we need to understand emotional reactions of the other
negotiators. Although the environment is fully observable, the actions to be
executed by the other agents can only be guessed analysing the other agents'

1HANA is an acronym for Human-Aware Negotiation Architecture. We call the architec-
ture this way to stress the aim of negotiating with humans in realistic scenarios that motivated
the design of this agent architecture.

73

74 CHAPTER 5. HANA ARCHITECTURE

Interface

Environment Agents

MessagesActionsState Time

World model

DesiresBeliefs

Intentions

Emotions

Other incorporated models:
 - Personality
 - Relationship
 - Trust
 - Normative
 - ...

Plan search

Plan
evaluator

Plan
generator

Plan
ranking

Negotiation

Option
evaluator

Option
generator

Option
ranking

Negotiation
strategy

Figure 5.1: Graphical representation of HANA. Arrows represent data ows.
Coloured boxes represent the modules that form part of the agent, and white
boxes are components of those modules.

previous behaviour. To cope with this uncertainty, we decided to represent the
world as a graded BDI model, that is with graded beliefs, desires and intentions
following the g-BDI model [Casali et al., 2011]. In Section 5.2 we provide a
more in-depth description of the world model module that is the one containing
emotions and BDI components.

The space of plans and negotiation options that an agent can execute and
propose, respectively, is potentially huge, as for example in The Diplomacy
Game. Thus, we assume that the space is large enough and the negotiation
time short enough to preclude obtaining the optimal. That means that any
architecture for this type of negotiation needs to give the means to look for
good enough solutions. Moreover, the longer it takes to decide what to pro-
pose, the less probable it is the proposal to be accepted. As time goes by, the
agents reach agreements that increase the amount of commitments and reduce
the set of options compatible with those commitments. Increasing acquired
commitments increases, in turn, the probability that our desired plans will not
be compatible any longer. Consequently, the architecture must allow to start
negotiating from the very beginning of a negotiation round. Dealing with huge
solution spaces is not an inconvenient for human agents, e.g. in playing Chess or
Go. Humans do work with good enough solutions in their everyday lives. Time
constraints, boredom, or tiredness make humans accept good enough solutions.
To start negotiating from the very beginning, HANA proposes to perform a
search&negotiation technique that assumes the plan search to go hand in hand
with the negotiation. The plan search module executes an anytime algorithm
that provides a periodically updated ranking of good enough plans. The ranking
takes into account the commitments obtained by the negotiation module. And
the negotiation module proposes options generated from the previously found
good enough plans that contain actions to be executed by other agents. In this
way, HANA agents can start the negotiation from the very beginning proposing
options that, once negotiated, will provide new information |because the op-
tion will be accepted or rejected| to focus the search on the generation of new

5.2. WORLD MODEL 75

and better evaluated plans. As can be seen in Figure 5.1, the plan and option
evaluators depend not only on the commitments but on the whole world mod-
ule. Thus, those evaluation functions are also updated taking into account the
intentions generated from new observations. The intentions trigger the decisions
of the agent. In the following sections we provide a more in-depth description
of the modules, their components and the decisions to be taken by the agent.

The execution of HANA consists of several concurrent processes for: the
interface (to receive messages and observe the results of actions and the envi-
ronment state), the world model (to update the world model given the perceived
changes), the plan search (to continuously update the ranking of plans), and the
negotiation (to generate options from plans and determine what to do next).

5.2 World model

For negotiation decisions to be e�ective, they need to be based on an accurate
assessment of the state of the environment, and on the preferences of the other
agents. Although the environment may be precisely known in certain domains,
the preferences of others may be unknown, or may be uncertain. Moreover,
specially in competitive scenarios, agents may lie about their preferences. This
imposes the requirement that the world model has to be based on some un-
certainty reasoning mechanism. During the last decade, many successful rep-
resentation models have been based on BDI representations. Most work on
BDI models has concentrated on providing agent-oriented programming frame-
works and languages such as Jason [Bordini et al., 2007], Jack [Winiko�, 2005],
AgentSpeak [Rao, 1996; d'Inverno and Luck, 1998], 3APL [Hindriks et al., 2000]
or 2APL [Dastani, 2008]; and on logical approaches to the BDI model such as
modal logic [Rao and George�, 1991], �rst-order logic [Rao, 1996], or belief de-
grees [Parsons and Giorgini, 1999; Pilotti et al., 2011]. BDI is based on the
theory of human practical reasoning [Bratman, 1999] and has well-founded log-
ical semantics [Rao and George�, 1998]. The work of Casali et al. [Casali et al.,
2011] on what they denoted by g-BDI, gives a powerful generic representation
for degrees of belief, degrees of desire (preferences) and degrees of intention
(active goals). We adapt this work to our problem and incorporate the beliefs,
desires and intentions as the main components of the world model.

We consider that desires and intentions are derived from beliefs. What hap-
pens in the world determines whether we desire it to change into a di�erent
world, and whether we intend to make that happen. In this section, we concen-
trate on how HANA agents represent their beliefs about the next environment
state. The most important aspect of the evolution of the world is what an agent
expects to happen in the environment due to the decisions of other agents. This
is so because the natural evolution of environments is subject to shared knowl-
edge on physical laws, and thus known by every agent. Therefore, the evolution
of the world can be due to either actions, A, or utterances, M , of other agents.
We denote those events (actions and utterances) by � = M ∪A. The agent has
at all time a belief degree assigned to every element of � meaning how certain
is the agent that that event will happen. We decided to model these degrees
as probabilities because the data for them comes from the previous interactions
with the other agents and thus those data can be statistically processed. Ax-
iomatics on how to represent probabilities are provided in [Casali et al., 2011].

76 CHAPTER 5. HANA ARCHITECTURE

Definition 16 Given � = M ∪ A, a belief is a tuple 〈α,ϕ, ϑ〉 ∈ A × �× [0, 1]
where ϑ is α’s belief degree on ϕ happening. We denote by B the set of all
possible beliefs and by Bα ⊆ B the set of possible beliefs of α.2

We de�ne the feasibility of ϕ ∈ � as an extension of the feasibility on utter-
ances and actions.

Definition 17 Given the current state ω ∈W and the current dialogue 	, we
define feasibility for ϕ ∈ � as:

feasible(ϕ) =
{

feasible(ω, ϕ) if ϕ ∈ A
feasible(, ϕ) if ϕ ∈ M

The particular type of problem studied here gives some restrictions on over
what it is feasible to happen. All agents know the physical laws of the world,
thus they all know that non feasible events will not happen. The degree of
belief on a non feasible event would be then the minimum, 0. Also for plans:
non feasible plans will not happen as those plans contain non feasible or non
compatible actions. In the following we show two constraints for values of the
belief model that are derived from the notion of feasibility and compatibility. In
particular, only one operator can be applied to a resource. Two feasible actions
operating on the same resource are non compatible and, thus, they cannot both
happen at the same time. As we decided to represent degrees as probabilities,
the summation of probabilities on all those actions to be operated on the same
resource must be 1:

∀ω.∀〈α, r〉 ∈ ω.
∑

{ai=〈α,opi ,r〉|feasible(ai ,ω) and opi∈Op}

Bα(ai) = 1 (5.1)

Moreover, the negotiation protocol proposed in this work imposes that only
feasible utterances are possible.

∀	.
∑

{µi |feasible(Ψ,µi)}

Bα(µi) = 1 (5.2)

For a given environment state ω, the belief degree of α on an action a
happening is Bα(a). Recall that plans are considered sets of actions that are
to be executed at the same time. The belief on the execution of a feasible plan
p = {a1, a2, . . . , an} ∈ Pω is thus naturally modelled according to HANA as the
belief on the conjunction of the execution of each action that is then modelled
as the product.

Bα(p) = Bα(a1 ∧ a2 ∧ · · · ∧ an) = �ai∈pBα(ai) (5.3)

When new observations of the environment are made, HANA agents update
their beliefs. From the many possible belief review functions available in the
literature [Alchourr�on et al., 1985; Hansson, 2001; Pilotti et al., 2011] HANA
uses a recency based belief revision de�ned as follows.

2We will note 〈α,ϕ, ϑ〉 ∈ B as Bα(ϕ) = ϑ when useful.

5.2. WORLD MODEL 77

Definition 18 Given an agent α ∈ A, a belief review function, denoted by
σ : 2Bα × 2Bα → 2Bα , is any function satisfying:

• σ(B′,B′′) = B′′′

• B′ is the original belief set

• B′′ is a new belief set

• If 〈ϕ, ϑ〉 ∈ B′, 〈ϕ, ϑ′〉 ∈ B′′ and ϑ 6= ϑ′ then 〈ϕ, ϑ′〉 ∈ B∗

• If 〈ϕ, ϑ〉 ∈ B′ and 〈ϕ, 〉 /∈ B′′ then 〈ϕ, ϑ〉 ∈ B∗

• Nothing else belongs to B∗

• B′′′ is the normalization3 of B∗

Desires, intentions and emotions4 are also updated via a similar simple up-
date method that we omit here. Arrows in Figure 5.1 show the inuence between
the di�erent motives: changes in the environment provoke updates in the belief
set, that generates emotional updates, that update the desires. The new set of
beliefs and desires determines new intentions.

The world model internal structure allows to represent complex behaviours
as next example show.

Example 3 The HANA agent Revenger plays Diplomacy and is configured to
have a sensitive and aggressive personality. It comes to believe that the agent
Jaume is an enemy as he executed a movement that attacks one of Revenger’s
units, and he never accepted any proposal in the past three negotiation rounds.
Its personality rules for revenge trigger a desire (with a high degree) to damage
Jaume, that will in turn give an intention (again with high degree) to attack
one of Jaume’s units although it is a very difficult task, and there are other
alternative plans that would be easier to reach, and would give Revenger a higher
rational utility.

Although only a few components in Figure 5.1 are interconnected to build
up the world model of HANA agents (beliefs, desires, intentions and emotions),
other models might be incorporated. The world model is based on multicontext
systems [Casali et al., 2011] that are modular structures that allow for an easy
interconnection of di�erent (logical) models, using transition functions between
them, to build even more complex agents. For instance, a trust model may
impact on intentions, as the intention degree to satisfy a desire via a plan with
an untrustworthy agent should be low. Also, a social model might impact on
intentions, as we might want to have a higher intention degree on plans involving

3To normalise, we follow the work done in [Fabregues et al., 2009], and compute the
minimum relative entropy probability distributions with respect to the distributions in B′
that consider the new beliefs in B′′ as constraints to satisfy, and that satisfy equations 5.1
and 5.2.

4To model emotions we follow [Revelle and Scherer, 2010] and represent emotional states
or moods. The personality of the agent is part of the emotional model, and determines how
to update the mood of the agent according to the beliefs about the environment. Personality
may connect, for instance, frustration (a belief on a failed negotiation) with retaliation (a
desire of a non-rational future negotiation).

78 CHAPTER 5. HANA ARCHITECTURE

an agent with whom we would like to increase the level of intimacy [Sierra and
Debenham, 2007] than otherwise.

As de�ned in Section 3.2, the agents must ful�l a negotiation protocol in
order to be able to negotiate with other agents. The rules or constraints that
the protocol provides can be incorporated in the agent as internal norms to
follow. This is done, according to HANA with a high desire degree on ful�lling
the negotiation protocol, and some transition functions between this desire, and
several beliefs that modify the degree of what we call basic intentions: reply δ
(when the agent beliefs that it received proposal δ), propose (when there is time
left in the negotiation round) and executeActions (when we are approaching the
end of the negotiation round).

5.3 Plan search

The interplay between search and negotiation is the most important contribu-
tion of HANA. In most multi-issue negotiation problems the space of potential
solutions is determined by the admissible values of issues. That is: potential
solutions are elements of the cartesian product of the admissible values for each
issue [Faratin et al., 1998b]. Di�erently, in RNPs the space of potential solu-
tions is de�ned as the combination of feasible actions that are compatible. Only
certain subsets of the space of actions constitute feasible solutions, and �nding
which ones are feasible is not straightforward. Good and bad solutions are not
placed together nicely as in continuously valued attributes (e.g. if a certain
low price is good, nearby low prices will be similarly good). Sometimes a small
change in a plan makes it go from excellent to catastrophic. Moreover, the space
of potential solutions in real domains is frequently huge. What HANA brings in
to address this type of negotiation problem is a search&negotiation technique
that enables the negotiation to start as soon as possible over reasonably good
solutions. We explain the details of how solutions are sought in this section.

The outcome of the search process is a continuously refreshed ranking of
candidate plans. The plan ranking is made by the plan generator thanks to
a utility function that represents the preferences of the agent and that is im-
plemented within a component of the architecture called plan evaluator, see
Figure 5.1. Preferences are determined by the world model, and thus, they
for instance take into consideration personality traits and relationships between
agents. They do not evaluate only the individual position improvement.

Every agent α in a state transition system
 must decide what actions to
perform, that is, what complete plan �pα to perform. Remember that given a
state ω, next state ω′ is computed by a state transition function T : W × P →
W . T(ω, �p) is de�ned for complete plans, �p ∈ �Pω, that are those that can be
obtained from the union of complete plans for every agent controlling resources
in the current state: �p = ∪

β∈A
�pβ . To decide what plan to perform, α must know

what is the utility that every plan would provide. If α knew the plans of the
other agents, Q = ∪

β∈A\{α}
�pβ , it could compute the utility of α performing the

complete plan �pα using its utility function, Uα : W → [0, 1], as:

Uα(ω, �pα) = Uα(T(ω,Q ∪ �pα))

However, whilst agents may have a clear idea of their preferences, and hence

5.3. PLAN SEARCH 79

can build up a utility function, it is usually impossible to know what other
agents' plans will be. Therefore, instead of using the deterministic transition
function, T : W ×P →W , α has to use a probabilistic state transition function.

Definition 19 Given a transition system
 = 〈A,R,Op,W ,P ,T, ω0,Wf 〉, a
probabilistic transition function, denoted by T(ω′ | ω, p) ∈ P(W) is any condi-
tional probability distribution over W given ω ∈ W and p ∈ P, such that for
every complete plan �p ∈ �Pω then T(T(ω, �p) | ω, �p) = 1 and T(ω′ | ω, �p) = 0 for
all ω′ 6= T(ω, �p).

In RNPs, the state transition function T : W ×P →W is �xed and common
to all the agents. Instead, a probabilistic transition function has to be particular
for each agent as it necessarily depends on the interpretation of other agents'
past behaviour. Therefore, we will denote by Tα(ω′ | ω, p) the probabilistic
transition function of agent α. Then, the utility of a plan, complete or not, for
an agent can be estimated as follows:

E [Uα(ω, p)] =
∑
ωi∈W

Tα(ωi | ω, p)× Uα(ωi) (5.4)

The complexity here relies on the evaluation of Tα(ω′ | ω, p).
We can identify the problem of learning the probabilistic state transition

function for all complete plans for a given agent α ∈ A as a Markov Decision
Process (MDP), [Kaelbling et al., 1998]. A MDP is a tuple 〈S ,A,L : A ×
S × S → [0, 1],R : A × S × S → [0, 1]〉, where S is a �nite set of states, A
is a �nite set of actions, L(a, s, s ′) is the probability that action a in state
s will lead to state s ′, and R(a, s, s ′) is the immediate reward received after
transition to state s ′ from state s with transition probability L(a, s, s ′). The
interpretation as an MDP is based on having S = W , A = P , L = T and
R(p, ω, ω′) = Uα(ω′) − Uα(ω). Learning T requires a wealth of data that is
usually not available, and an initially random behaviour that may produce very
negative outcomes in RNPs. Moreover, there is a required feature for any MDP
problem that is not veri�ed in our case: the Markov property. The transition
function could depend on the past as other agents could learn from previous
states and modify their decision function.

We propose an alternative to model the problem as an MDP that is to infer
the probability state transition function from beliefs on the execution of plans as
de�ned in Section 5.2. From belief degrees on particular actions happening, we
can compute the belief degree of complete plans. Also, beliefs easily integrate
other sources of information that are missing in a MDP, such as emotions or
previous commitments. That is, the belief degree on an action happening may
be determined, for instance, by knowing that the other agent is of a revenge
type or that the other agent reached an agreement with another agent whom
we trust and told us so. Moreover, as new sources of information can be easily
incorporated into the world model this makes the architecture highly exible
and modular. For all those reasons we de�ne the expected utility not for a plan
in particular, but for a set of beliefs hold in a particular state as follows:

Definition 20 We define the expected utility for α ∈ A holding the set of

80 CHAPTER 5. HANA ARCHITECTURE

beliefs B′ ⊆ Bα in state ω ∈W as:

E [Uα(ω,B′)] =
∑
ωi∈W

∑

p̄∈P̄ω

T(ω,p̄)=ωi

B ′(�p)∑
p̄∈P̄ω B ′(�p)

× Uα(ωi)

 (5.5)

The previous de�nition does not require that α has made up his decision of
what actions to perform. That is, the equation can be used at the beginning of
the negotiation process |when α is still uncertain on what to do, and also when
all the bilateral negotiation processes have been �nished and α knows what to
do. The expected utility of a plan p is computed at any time assuming that the
plan will be executed: E [Uα(ω, σ(B′, {〈α, a, 1〉 | a ∈ p}))]5. Actually, the richer
the world model the more accurate the utility functions can be. We measure the
level of information in a belief set as the average of Shannon's entropy among
the probability distributions of actions to be operated on resources. Notice that,
the higher the uncertainty the higher the entropy and thus, the less information.

Definition 21 The uncertainty on a set of beliefs B′ ⊆ Bα given the set of
predicates � that partition it, is measured as:

H(B′) = − 1
| � |

∑
φ∈Φ

 1
ln | φ |

∑
〈α,ϕi ,ϑi〉∈φ

ϑi lnϑi

 (5.6)

The uncertainty on actions to be executed is usually high at the beginning of
a negotiation round, as an agent does not have enough information about each
agent decisions, to 0 when the complete plan is actually performed and observed
by all agents. Negotiation is the means to reduce the uncertainty on the belief
model. By reaching agreements on negotiation options, agents commit to the
execution of their actions in the negotiating option, and thus they reduce the
uncertainty by making equal to zero the probability of executing incompatible
actions on the same resource.6

The task of the plan search module is to �nd good enough plans to be
executed by the agent, but also to provide good enough plans to negotiate with
other agents. Plans to be executed are complete plans for the agent, that is,
plans containing actions involving all the resources controlled by the agent in
the current environment state. The plans to negotiate with other agents are
extensions of those complete plans containing actions to be performed by other
agents.

Definition 22 Given a transition system
 = 〈A,R,Op,W ,P ,T, ω0,Wf 〉 and
the current state ω ∈ W , a joint plan in state ω is a plan p ∈ Pω involving at
least two agents, | {α | 〈α, op, r〉 ∈ p} |≥ 2, and complete for one of them, that
is, there is �p ∈ ∪α∈A �Pω

α such that �p ⊆ p We denote the set of joint plans in ω
by P̂ω and the set of joint plans with a complete plan for α by P̂ω

α .

5Plans are executed at the end of the negotiation round when the certainty on the actions
to be executed use to be high.

6If a trust model is used, and the trust in the opponent is not complete, then the belief on
that agent executing an action incompatible with its commitment may not be zero. Similarly,
low trust values on an agent increase the intention of not negotiating with it.

5.3. PLAN SEARCH 81

The bilateral nature of the interactions force options to contain actions to
be done by, at least, two agents. In HANA, joint plans involving more than two
agents can be negotiated (either concurrently or sequentially) proposing several
options generated from the joint plan. In Section 5.4 we explain how options
are generated from joint plans. In this section, we focus on the plan search.
As introduced before, plans can be evaluated by their expected utility. Notice
that this measure assumes that the plan will be executed. When joint plans
are evaluated, we can also assume that the HANA agent will execute its part
of the plan. Even though, we must be cautious about the actual execution of
the actions in the plan assigned to other agents. We de�ne the confidence of a
plan in order to measure the degree of belief on the execution of a joint plan
assuming that the HANA agent will perform its part of the plan.

Definition 23 Given a set of beliefs B′ ⊂ Bα hold by agent α ∈ A, and a
feasible plan p ∈ Pω, α’s con�dence on p is defined as:

Cα(B′, p) = B({〈β, op, r〉 | 〈β, op, r〉 ∈ p and β 6= α})

Note that for all �pα ∈ �Pω
α , Cα(B′, �pα) = 1.7

The output of the plan search is a plan ranking. The con�dence measure can
be used by HANA agents to rank joint plans. HANA agents can rank the joint
plans by their utility (how good are they for the agent) �ltering out those joint
plans that do not reach a minimum level of con�dence (the agent does not think
that other agents will perform their actions in the plan). This minimum level
of con�dence may increase as time goes by and the negotiation round deadline
approximates in order to focus on joint plans which con�dence is high.

To generate plans we need a search algorithm that is: (i) capable to search
in a huge space of solutions |as required by most real scenarios, (ii) anytime
|as required by the time bounds, (iii) capable to generate several solutions
instead of just one |we are looking for several plans, and (iv) guided by a
dynamic heuristic |as the set of beliefs evolves with the agent interaction. We
decided to implement HANA's plan generator with an evolutionary algorithm
that constantly optimise the set of plans in the ranking. Concretely, we use
a genetic algorithm (GA) as these algorithms allow to e�ciently explore large
spaces of solutions and produce successive populations of solutions that are
increasingly better adapted to the environment even when it is changing along
the search process. For us, each single solution, a chromosome in the GA,
represents a complete or joint plan for the agent. The idea is to generate the
plan ranking from the current population of solutions taking all or a subset of
the best ones, preferably the latter. This population is updated generation after
generation by the crossover, mutation and selection operators. It is important
to guarantee the feasibility of the generated plans when applying crossover and
mutation. The evaluation of a chromosome is done by the �tness function
that computes the expected utility of the plan represented by the chromosome.
Fitness proportionate selection is used to give more chances to good plans to
take part of crossovers. HANA's genetic search allows to set the probability of
genes being mutated. We use this to focus the search on the joint plans looking
for other agent actions that can nicely extend the best complete plans. In fact,
to represent plans of diverse size, we use chromosomes with size equal to the

7This is so because B(�) = B(true) = 1.

82 CHAPTER 5. HANA ARCHITECTURE

size of complete plans, and let some genes to have a void value meaning that the
resource corresponding to that gene has no assigned action. The probability of
void values per gene can also be adjusted. The initial population does not need
to be randomised. We set the initial population and stop the search at any time
saving the current population. In this way, we can resume the computation
later on. It is possible to use elitism to keep the best plans alive generation
after generation. Elitism in the plan generation provides a minimum of stability
needed to avoid an erratic performance of the agent during negotiation. The
idea is to keep the plan search running all the time, however it can be stopped
and restarted if it is necessary.

Concluding, in this section we have argued the need of using data from the
world model to evaluate plans. We described how plans are evaluated, and how
the evaluation functions change as new observations update the world model,
usually reducing the agent's uncertainty. And �nally, we explained the necessary
features that a plan generation should have, and how we implemented the plan
generation in HANA agents to generate the ranking of plans.

5.4 Negotiation

The negotiation module uses the ranking of plans and the world model to decide
how to negotiate, and what actions to perform. That is, what messages to send
to other agents, and what actions to execute over the environment. The world
model and the plan search have independent processes that make the world
model data and the plan ranking evolve along time. The negotiation module is
controlled by another process that periodically takes a snapshot of both previous
modules' data structure. We de�ne this snapshot as a negotiation state.

Definition 24 A negotiation state is a tuple

s = 〈α, ω, t ,Bt
α,Dt

α, It
α,P

t
α〉

where:

- α ∈ A is an agent

- ω ∈W is an environment state

- t is a time instant

- Bt
α, Dt

α, and It
α are the beliefs, desires and intentions of α at time t

- P t
α : Pω 7→ [0, 1] is a plan ranking

We denote the set of all possible negotiation states by S . Taking a snapshot the
negotiation process can use the data from the world model and the plan ranking
and perform a negotiation step while the plan search is looking for even better
plans8. The workow of the negotiation process is as follows:

1. Takes a snapshot of the current negotiation state.

2. Generates a ranking of negotiation options.
8Note that the changes in the world model and the plan ranking that are done after taking

the snapshot are considered in the next iteration of the negotiation process.

5.4. NEGOTIATION 83

3. Executes the agent's intentions included in the world model.

4. Goes to (1) to continue with a new negotiation state.

The negotiation process uses the option generator to build a ranking of
negotiating options satisfying the De�nition 11. Options are generated from
the plan ranking P t

α as combinations of actions in joint plans p̂ ∈ P̂ω
α that

are included in the plan ranking P t
α(p̂) 6= ⊥. Options are evaluated by the

option evaluator that computes the next expected negotiation state assuming
the acceptance of a given option δ ∈ Oωα . The simplest way to generate the
ranking of options, Ot

α : Oωα 7→ [0, 1] is as follows:

Ot
α(δ) = f (next(s, δ))

where s ∈ S is the current negotiation state, f : S 7→ [0, 1] is a negotiation state
evaluation function, next : S ×Oωα 7→ S computes the next expected negotiation
state, and ∃ p̂ ∈ P̂ω

α such that δ ⊆ p̂ and P t
α(p̂) 6= ⊥.

An alternative is to apply a �lter and generate the option ranking using only
the joint plans with value over a threshold ν > 0. That is, using every plan
p̂ ∈ P̂ω

α such that P t
α(p̂) > ν.

Given the negotiation state s = 〈α, ω, t ,Bt
α,Dt

α, It
α,P

t
α〉 and the option δ, an

example of next expected negotiation state next(s, δ), for a HANA agent that al-
ways honours its commitments and fully trust the other agents, could be the ne-
gotiation state s ′ = 〈α, ω, t ′,Bt′

α ,Dt′

α , It′

α ,P
t′

α 〉 such that Bt′

α = σ(Bt
α, {〈α, a, 1〉 |

a ∈ δ}) and P t′

α = {p | p ∈ P t
α and comp(p, δ)}. The desires and intentions

would be updated according to this new set of beliefs.
HANA provides several evaluation functions for negotiation states. Other

functions can be used. In general, the richer the world model the more sophisti-
cated the evaluation functions can be. The following functions assume the basic
world model with beliefs on actions.

• Quality of information. The higher the quality of the information that we
can reach in a negotiation state the better. A well informed state contains
joint plans that can reduce the uncertainty about the other agents' actions.
The higher the uncertainty reduction the better. A natural way to evaluate
the quality of information is to de�ne it as 1 minus the average uncertainty
of De�nition 21.

fH (s) = max
p∈P t

α

(1−H(σ(Bt
α, {〈α, a, 1〉 | a ∈ p}))) (5.7)

• Independence. The more independent an agent is the better. If an agent
can reach a high utility by its own means the better the negotiation state
is. This measure depends on the complete plans for the agent that have
been found so far, �P t

α = {p | p ∈ �Pα and P t
α(p) 6= ⊥}. A state is as

good as the best state the agent can reach by its own means, this is the
maximum expected utility to be obtained by assuming we choose one of
the complete plans for agent α:

fUC (s) = max
p̄∈P̄ t

α

E [Uα(ω, σ(Bt
α, {〈α, a, 1〉 | a ∈ �p}))] (5.8)

84 CHAPTER 5. HANA ARCHITECTURE

• Opportunity. The more utility to be obtained with joint plans the better.
Finding joint plans that give high utility is actually the reason of the whole
negotiation process. Any state that has joint plans with high expected
utility is a good state. This measure is similar to the previous one but
using joint plans P̂ t

α = {p | p ∈ P̂α and P t
α(p) 6= ⊥}:

fUJ (s) = max
p̂∈P̂ t

α

E [Uα(ω, σ(Bt
α, {〈α, a, 1〉 | a ∈ p̂}))] (5.9)

• Confidence. The more con�dence in the available plans the better. Having
a high con�dence in the plans found during the search the less uncertainty
on what will happen.

fC(s) = max
p∈P t

α

{Cα(Bt
α, p) | p ∈ Pω,P t

α(p) 6= ⊥} (5.10)

Each of these di�erent measures, or a combination of them, allows to eval-
uate negotiation states and thus rank the available options. When to use each
measure, and how to combine them is what determines an agent's negotiation
strategy. HANA allows to de�ne strategies combining these measures. The
other key element of the negotiation strategy is the aspiration level, i.e. the
minimum evaluation value that the agent has for options to be acceptable. The
options above the aspiration level should be accepted. Otherwise, rejected. At
the beginning of a negotiation round, agents would usually request a high as-
piration value. As time goes by and the deadline approaches, agents become
less demanding, and they decrease their expectations in order to reach some
agreements that improve, even in a low amount, their negotiation state. HANA
allows to de�ne the way the aspiration level decreases as the next de�nition
shows.

Definition 25 Given a negotiation state s, a deadline tmax , and current time
t, the aspiration level, denoted A(s, t), is defined as:

A(s, t) = gmin(s, t) +
(

tmax − t
tmax

)τ
· (1− gmin(s, t))

where τ ∈ [0, 1] is the aspiration decay rate and gmin(s, t) is the minimum value
that can be guaranteed.

The negotiation strategy is then determined by �xing values for gmin(s, t).
HANA allows to de�ne these functions as linear combinations of the measures
de�ned before. That is,

gmin(s, t) = w1(t) · g1(s) + w2(t) · g2(s) + ...+ wn(t) · gn(s)

where every gi(s) ∈ [0, 1] is a measure over the state s and
∑

i<n wi(t) = 1.
Next we discuss a few negotiation strategies:

• Conservative. An agent can guarantee a minimum utilitarian value with
its own actions that corresponds to gmin(s) = fUC (s). This strategy is
convenient at the end of a negotiation round as it concedes maximally
towards the guaranteed minimum.

5.4. NEGOTIATION 85

• Informative. A convenient strategy at the beginning of a negotiation round
is to increase the agent's information quality. This facilitates to explore
the space of options and reduce uncertainty in the negotiation. The more
information an agent has the more probable its future proposals will be
accepted. This can be achieved by gmin(s) = fH (s).

• Dynamic. A combination of the previous two strategies starting with
informative and ending with conservative.

gmin(s, t) = w1(t) · fH (s) + w2(t) · fUC (s)

where w1(t) = tmax−t
tmax

and w2(t) = 1− w1(t).

As introduced in Section 5.2, the HANA agents have three basic intentions that
are: reply δ, propose and executeActions. Desires and intentions are graded and
are represented similarly to how beliefs are represented. The basic intentions
are mutually incompatible, thus the aggregation of their degrees is always 1.
HANA agents satisfy the negotiation protocol de�ned in Section 3.2 providing
transition functions from beliefs and desires to intentions. Those transition
functions update the degrees of the basic intentions whenever a message is sent,
or the deadline is reached. The negotiation process executes the current basic
intention with the highest degree.

At the beginning of the negotiation round, the highest basic intention is al-
ways to propose: It

α(propose) > It
α(reply δ) ∧ It

α(propose) > It
α(executeActions).

That is also the case when there is no proposal received, and there is time left
before the timeout. Whenever the highest basic intention is propose, the nego-
tiation process executes the following sentences proposing the best option only
when it overcomes the current aspiration of the agent:

Ensure: s is the current negotiation state
δ ← arg maxδ∈Oωα O

t
α(δ) {selects the best ranked option}

if Ot
α(δ) > A(s, t) then

propose(δ) {the interface module sends a message proposing δ}
end if

When a proposal is received, the highest basic intention becomes to be reply
δ, that is to reply the received proposal on the negotiating option δ. Then,
the negotiation process accepts the proposal only when the next expected state
provided by δ has a better evaluation than the current aspiration of the agent:

Ensure: f : S 7→ [0, 1] is the negotiation state evaluation function
Ensure: s is the current negotiation state

s ′ ← next(s, δ) {computes the next expected state}
if f (s ′) > A(s, t) then

accept(δ) {the interface module sends a message accepting δ}
else

reject(δ) {the interface module sends a message rejecting δ}
end if

86 CHAPTER 5. HANA ARCHITECTURE

Finally, when the timeout is reached, the highest basic intention is to ex-
ecuteActions. Then, the negotiation protocol automatically cancel all ongoing
negotiations and the HANA negotiation process selects the best complete plan
from the plan ranking, and executes it:

�P t
α ← {p | p ∈ �Pω

α and P t
α(p) 6= ⊥}

�p ← arg maxp̄∈P̄ t
α

E [Uα(ω, σ(Bt
α, {〈α, a, 1〉 | a ∈ �p}) {available complete plan

with highest utility}
execute(�p) {the interface module executes all actions in �p}

Other intentions can be used by the negotiation strategy when desired. For
example, a HANA agent with a trust model incorporated can generate the
intention to not negotiate with agent β. In that case, the previous algorithm
should be modi�ed to reject any proposal from β. And the plan evaluation of
the plan search module should be modi�ed to poorly evaluate joint plans with
plans including β. The HANA architecture is designed to be able to incorporate
new models in the world module and adjust the rest of the components. The
architecture is exible and allows to create a high diversity of di�erent agents.

5.5 Summary

The HANA agent architecture is composed by four modules: the interface, the
world model, the plan search and the negotiation. The interface contains the
sensors and actuators of HANA agents. It perceives the environment state,
performed actions, and received messages. It also perceives the time. The agent
actuators can send messages and perform actions, however, the decision making
is not included in the interface module.

Everything that is observed is stored as beliefs in the world model. Beliefs
are graded as well as desires and intentions. The degree represents the level
of con�dence that the agent has on each belief, desire or intention. We model
those degrees as probabilities because the data comes from the previous inter-
actions with the agents and thus, can be statistically processed. Therefore, the
conjunction of beliefs is computed as the product of their degrees. Beliefs and
desires generate intentions together. Intentions are not necessarily actions or
plans to perform. They use to be general instructions like the level of trust to
use for a given agent, or the level of gain requested for deals to be accepted.
The nature of the beliefs, desires and intentions is given by the behavioural
models that can be plugged into the world model. The architecture has been
designed in order to be extensible incorporating other models compatible with
a BDI architecture like HANA. Another peculiarity of this world model is that
desires are not �xed. They evolve triggered by the agent's emotion that change
due to observations processed as beliefs.

To cope with the huge space of possible solutions, HANA uses a plan search
that consists of an anytime algorithm that generates and upgrades a ranking
of complete and joint plans for the agent. This generator generates plans for
a given environment state, and includes into the ranking only those that are
good enough according to a plan evaluator that makes use of the information
stored in the world model. This evaluator is a �rst level �lter. A measure of

5.5. SUMMARY 87

the expected utility, the con�dence and the uncertainty that it can provide are
used to evaluate those plans.

Joint plans included in the plan ranking are used to generate the ranking
of negotiation options. Options are evaluated taking into account the world
model. Several measures can be used to evaluate those options. Even though,
the �nal decision about what actions to perform, what options to propose or
accept is taken by the negotiation strategy. The negotiation strategy has access
to the ranking of complete plans, the ranking of options and the time. The
strategy is guided by the intentions of the agent adjusting its parameters to
the current intentions. We provide a branch of possible strategies that can be
combined taking into account the current negotiation state and the time. The
idea is that every HANA agent has its own negotiation strategy and evaluation
functions. And that they could make use of extra information provided by
incorporated behavioral models without having to deal with the search, the
communication or any model that was previously incorporated. The creation
of agents is thus done as a combination of pieces improving the previous agents
with new capabilities.

Chapter 6

DipGame testbed

The DipGame testbed is the infrastructure for software agents to be created,
and experiments to be executed using The Diplomacy Game as speci�c domain
for RNP and similar problems. The chapter starts in Section 6.1 motivating
the use of Diplomacy for research purposes. In Section 6.2, we describe the
infrastructure, and in Section 6.3 the language. The infrastructure consists of
several components to assist the creation of bots, described in Section 6.4, and
others to assist the execution of experiments and their analysis, described in
Section 6.5. An experiment proving the suitability of the testbed for evaluating
negotiating agents is included in Section 6.6. We conclude the chapter with a
summary of the content, Section 6.7.

6.1 Diplomacy for research

The Diplomacy Game is a strategically simple game for humans to play in
comparison to other classic games like Chess or Go. This is because the true
complexity of the game lies in the management of the relationships among play-
ers. Relationships are subtle, constantly changing and may appear at �rst sight
di�cult to analyse. However, humans often negotiate in their everyday life,
and they are used to manage relationships. They are very used to do it and
thus use to see it as a quite trivial task. Diplomacy is thus not perceived by
humans as a di�cult game to play, but it is really di�cult for a computer as the
search space is huge, and the key for success relies on the information obtained
from negotiation rounds, the ability of agents to build relationships and on the
persuasive capability of the player. Chess and Go are solved. There are pro-
grams capable to defeat experts of those games. However, games that involve
inter-player relationships are not.

Focusing just on the possible moves that the units can perform, the combi-
nations are very large. We studied the complexity of the game in Section 4.7
and ended up with a branching factor of 1530 = 1.43 · 1022 for a standard no-
press (without negotiation) game without convoys. This complexity cannot be
treated by standard search mechanisms. Think that the branching factor for
Chess and Go are around 35 and 200 respectively [Burmeister and Wiles, 1995].
Therefore, we cannot take advantage of the kinds of massive parallel computa-
tion that are available in algorithms for playing them. To solve The Diplomacy

89

90 CHAPTER 6. DIPGAME TESTBED

Game problem, we must understand the relationships between players, their
reaction and take advantage of all information gathered from negotiation. All
this makes The Diplomacy Game a very interesting game for research.

6.2 Infrastructure

The Diplomacy Game is very popular and, as introduced in Section 2.4, there is
previous work on creating software agents capable to play Diplomacy. The �rst
bots had few in common [Kraus et al., 1989; Loeb and Hall, 1990] but since the
emergence of DAIDE, see Section 2.4.2, it has been used in most of the works.
DipGame is not an exception. In fact, DipGame can be seen as the adaptation
of DAIDE to the MAS research community and AI in general.

DAIDE establishes a Client-Server communication model, see Figure 6.1.
The server is the game manager, that is, the software that takes all the orders
and runs the adjudicator algorithm, see Chapter 4, to generate the next turn.
All clients are connected directly to the server. They can never communicate
directly with other clients. All communications go through the server. Clients
are any piece of software that is observing the game. Clients can be classi�ed as
players and observers. The obvious di�erence between them is that players can
play while observers do only observe the game, that is: to receive information
on the game progress. Players, in addition, must send their orders to the server
for the game to proceed with the next turn. Figure 6.2 illustrates a possible
distribution of players and observers for a given game. Remember that seven
players are required for a Diplomacy game to start.

The communication between clients and the server is done via TCP/IP fol-
lowing the protocol de�ned in [Rose, 2003]. This allows to set games where the
server and the clients do not need to be running on the same computer. They
can run on di�erent computers connected to the same network, e.g. Internet.
In fact, they do not even need to use the same programming language. They
just need to follow the protocol that speci�es how data must be transferred.
The messages that client and server can exchange follow the language de�ned
in [Norman, 2006] as a hierarchy. There are fourteen language levels denoted
by Level X where X can be one of the following numbers: 0, 10, 20, 30, 40,
..., and 130. The �rst level, Level 0, is the no-press level. It contains all the
terms needed to run a game without negotiation. This level is used by many
bots. Contrarily, the upper levels, 10{130, are used only by a couple of bots that
are those that can negotiate to some extend [Kemmerling et al., 2012; van Hal].
They achieve only level 20 and even with some missing terms. The language was
de�ned speci�cally for The Diplomacy Game and do not contemplate some of
the features necessary for using the game in research. For instance, the domain
dependent terms are coupled to the language itself. We de�ne a new language
denoted by L that separates the Diplomacy vocabulary from the language and
provides a division in several levels of complexity that go in line with the MAS
research topics. If the no-press part of the game is formalised in Chapter 4, the
negotiation part is formally de�ned in Section 6.3.

In addition to the communication standard, DAIDE provides two software
tools developed by David Norman: those are the AiServer1 |a DAIDE server,
and AiMapper |a DAIDE client for humans to play and observe games where

1http://www.ellought.demon.co.uk/dipai/.

6.2. INFRASTRUCTURE 91

server

client

client

client

client

client

client
client

client

Figure 6.1: Example of DAIDE's client-server communication model.

server

player3

player2

player5

player4

player1

player7
player6

observer1

Figure 6.2: Example of player and observer distribution for a game.

AiServer

Albert

AiClient

AiClient

DumbBot

AiClient

HoldBot
Stragotiator

AiClient

Figure 6.3: Example of DAIDE clients that can be used for the distribution at
Figure 6.2. Three players are humans using AiClient, the other human is an
observer using the same software but in di�erent mode. The rest are bots.

92 CHAPTER 6. DIPGAME TESTBED

server

client
client client

client

client
client

client

negoServer

Figure 6.4: DipGame communication model.

orders are illustrated on a map. These clients with a map are called mappers.
Both tools are very useful, unfortunately they run only on Windows. An alterna-
tive multi-platform server is Parlance,2 developed by Eric Wald. Although there
are no many servers and mappers, there are several bot development frameworks
for C/C++ and .Net, and a communication API for Java. All of them provide
a library for the TCP/IP communication following the communication proto-
col. But only the frameworks provide a bot skeleton and a representation of the
game state including the current unit positions and performed orders. The most
known bots implemented using these frameworks or the Java API are: Hold-
Bot, Randbot, DumbBot, BlabBot, HaAI, KissMyBot, Albert, Diplominator,
Brutus, and Stragotiator. Figure 6.3 illustrate an example of game with several
human players and some of these bots.

In DipGame we refuse to reinvent the wheel and use the AiServer, AiMapper
and Parlance for running experiments, see sections 6.5.2 and 6.5.1. And we build
a bot development framework (dip) that makes use of a reviewed version of the
Java communication API as being multi-platform is a recommended feature for
our testbed. See Section 6.4.1 for a detailed description of dip.

In addition, it provides a parallel server for negotiation and a negotiation
library to allow negotiation processes to pass through this server using L instead
of the DAIDE server. Figure 6.4 illustrates the DipGame communication mod-
ule where all clients are also connected to the negoServer and it is connected to
the DAIDE server as an observer.

As many programs must be executed in order to run a simple game, we
provide the GameManager that is a software that co-ordinates all of them,
allows to configure the games and collects all data. This data can be analysed
with DipTools that is the last component of our testbed. Sections 6.5.2 and
6.5.3 describe these two components of DipGame.

The infrastructure is multi-platform and modular. It is freely available at
http://www.dipgame.org together with examples of clients and more docu-
mentation.

2http://pypi.python.org/pypi/Parlance.

6.3. NEGOTIATION LANGUAGE 93

Level 8: ArguingLe el 8:el 8: el 8: el 8: ArguingLevel 8:

Level 7: ExplainingLevel 7: Explainingel 7: Explainingel 7:

Level 6: Taking into account the passage of timeLevel 6: el 6: el 6: Taking into account the passage of timeTaking into account the passage of timeT

Level 5: Sharing feelingsLevel 5: Sharing fel 5: Sharing fel 5: eelings Sharing feelings Sharing f

Level 4: Asking for indirect informationLevel 4: el 4: el 4: Asking for indirAsking for indirAsking f ect informationect informationect inf

Level 3: Asking for direct informationLevel 3: el 3: el 3: Asking for dirAsking for dirAsking f ect informationect informationect inf

Level 2: Sharing informationLevel 2: Sharing infel 2: Sharing infel 2: ormation Sharing information Sharing inf

Level 1: Negotiating a deal ne
go

tia
tio

n
co

m
pl

ex
ity

Diplomacy terms expressed in an ontology

Figure 6.5: Language hierarchy. Each language Li extends the languages in
lower levels, that is, if there is no re-writing rule for a term in Li then it can be
found in lower levels Lj , with j < i .

6.3 Negotiation language

The complexity of building an agent capable to negotiate is correlated to the
complexity of the language that the agent must be able to understand. The
higher the language complexity the higher the richness of the models under-
pinning agent architectures. In this section we structure the expressions of
increasing levels of complexity via a modular, flexible and reusable language
hierarchy L. We propose it as a standard for the dialogical communication be-
tween the agents that use the testbed. Nonetheless, other languages could be
used as the testbed is quite modular and the language tools (i.e. parsers) are
separated from the game engine.

Figure 6.5 graphically represents the language hierarchy L that is defined as
an eight level hierarchy; starting from L1 and increasing the expressiveness as
the language level increases. Check the definition of L in Figure 6.6. The higher
the language level that we use, the more complex the actions and the predicates,
and thus the expressivity. If it is desired, some of the levels could be skiped,
such as for instance Level 5 of sharing feelings. By this way, you can reach level
8 corresponding to argumentation without expressing any feelings. We kept
a linear approach for two reasons. One for simplicity, as it gives you a clear
roadmap to building ever more complex negotiation agents. Second, to follow
the familiar level ordering in the languages proposed by the DAIDE community.
Researchers set their experiments on DipGame selecting the language level to
use.

L is a generic language that could be used for many other applications. It
defines the illocutions that the agents can use to communicate and the basic
concepts like Agree, Desire, Feel, etc. The language is parametric on the vocab-
ulary for a specific application domain, described as an ontology. The undefined

94 CHAPTER 6. DIPGAME TESTBED

Level 1: Negotiating a deal
L1 ::= propose(α, β, deal1) | accept(α, β, deal1) | reject(α, β, deal1) | withdraw(α, β)
deal1 ::= Commit(α, β, ϕ)+ | Agree(β, ϕ)
ϕ ::= predicate | Do(action) | ϕ ∧ ϕ | ¬ϕ
β ::= α+

α ::= agent

Level 2: Sharing information
L2 ::= L1 | inform(α, β, info2)
info2 ::= deal1 | Obs(α, β, ϕ) | Belief(α,ϕ) | Desire(α,ϕ) | info2 ∧ info2 | ¬info2

Level 3: Asking for direct information
L3 ::= L2 | inform(α, β, info3) | query(α, β, info3) | answer(α, β, info3)
info3 ::= info2 | Unknown(α, info3) | info3 ∧ info3 | ¬info3

Level 4: Asking for indirect information
L4 ::= L3 | inform(α, β, info4) | query(α, β, info4) | answer(α, β, info4) | inform(α, β,L4) |
query(α, β,L4) | answer(α, β,L4)
info4 ::= info3 | Unknown(α, info4) | Unknown(α,L4) | info4 ∧ info4 | ¬info4

Level 5: Sharing feelings
L5 ::= L4 | inform(α, β, info5) | query(α, β, info5) | answer(α, β, info5) | inform(α, β,L5) |
query(α, β,L5) | answer(α, β,L5)
info5 ::= info4 | Unknown(α, info5) | Unknown(α,L5) | Feel(α, feeling) | info5 ∧ info5 |
¬info5

feeling ::= VeryHappy | Happy | Sad | Angry

Level 6: Taking into account the passage of time
L6 ::= L5 | propose(α, β, deal6, t) | accept(α, β, deal6, t) | reject(α, β, deal6, t) |
withdraw(α, β, t) | inform(α, β, info6 , t) | query(α, β, info6 , t) | answer(α, β, info6 , t) |
inform(α, β,L6, t) | query(α, β,L6, t) | answer(α, β,L6, t)
info6 ::= info5 | deal6 | Obs(α, β, ϕ6, t) | Belief(α,ϕ6, t) | Desire(α,ϕ6, t) |
Unknown(α, info6 , t) | Unknown(α,L6 , t) | Feel(α, feeling, t) | info6 ∧ info6 | ¬info6

deal6 ::= deal5 | Commit(α, β, ϕ6, t)+ | Agree(β, ϕ6, t)
ϕ6 ::= predicate | Do(action, t) | ϕ6 ∧ ϕ6 | ¬ϕ6 | ϕ6; ϕ6

t ::= time

Level 7: Explaining
L7 ::= L6 | inform(α, β, info7 , t) | query(α, β, info7 , t) | answer(α, β, info7 , t) |
inform(α, β,L7, t) | query(α, β,L7, t) | answer(α, β,L7, t)
info7 ::= info6 | Unknown(α, info7 , t) | Unknown(α,L7 , t) | Explain(info7 , t) |
Explain(L7 , t) | info7 ∧ info7 | ¬info7

Level 8: Arguing
L8 ::= L7 | inform(α, β, info8 , t) | query(α, β, info8 , t) |
answer(α, β, info8 , t) | inform(α, β,L8, t) | query(α, β,L8, t) |
answer(α, β,L8, t)
info8 ::= info7 | Unknown(α, info8 , t) | Unknown(α,L8 , t) |
Explain(info8 , t) | Explain(L8 , t) | Attack(info7 , info7) |
Support(info7 , info7) | info8 ∧ info8 | ¬info8

Figure 6.6: Language hierarchy de�nition in Backus-Naur Form. Note that:
expression+ denotes a non-empty sequence of expression, non terminal symbols
are written in italic, and unde�ned symbols (referring to terms in the ontology)
appear in underlined italics.

6.3. NEGOTIATION LANGUAGE 95

non terminal symbols that appear in L should be speci�cally de�ned for each
application domain. These symbols are: time, agent, action and predicate. Fig-
ure 6.7 a) represents the ontology for the Diplomacy game and Figure 6.7 b)
contains the connexion between the ontology and L. In this way, we allow re-
searchers to reuse as much code as possible when applying their work to real
world applications after testing it with DipGame.

year ::= integer
season ::= spr | sum | fal | aut | win
power ::= fra | eng | tur | rus | ita | aus | ger
coast ::= ncs | scs | ecs | wcs
regionType ::= amy | sea | coast
supplyCenter ::= spa | mar | par | stp | ...
province ::= supplyCenter | gas | bur | sil | tus | ...
region ::= Region(province, regionType)
unit ::= Unit(power , region)
order ::= hld(unit) | mto(unit , region) | sup(unit ,
hld(unit)) | sup(unit , mto(unit , region)) | rto(unit , region) |
dsb(unit) | bld(unit) | rem(unit) | wve(power)
offer ::= pce(power+) | aly(power+, power+)

a) Ontology

agent ::= power
action ::= order
predicate ::= offer
time ::= 〈season, year〉

b) Connexion

Figure 6.7: Diplomacy ontology and connexion to L.

In the rest of this section, we describe and illustrate the expressivity of each
language level in Diplomacy. For instance, Unit(rus, Region(stp, scs)) is a
term meaning that `There is a unit from Russia in the south coast of Saint Pe-
tersburg', pce([ita rus]) is a predicate meaning `Peace between Italy and Rus-
sia', and sup(Unit(rus, Region(spa, ecs)), mto(Unit(ita, Region(mar, amy)),
Region(par, amy))) is an example of action where `The unit of Russia in the east
coast of Spain supports the movement of the Italian army in Marseilles to Paris'.

L1: Negotiating a deal. This is the �rst language level. It allows agents
to negotiate deals. The deals can be either a sequence of commitments, one
for every agent involved in the deal, or a global agreement in which a set of
agents agree on something, usually the truth of a predicate. Here you have
two examples of sentences in L1: E.g. `Italy proposes to Russia a deal by which
Italy commits to do a movement from its army in Marseilles to Paris and Russia
commits to support the Marseilles italian army's movement with the unit in the
east coast of Spain':3

propose(ita, rus,
[Commit(ita,rus,

Do(mto(Unit(ita, Region(mar, amy)),
Region(par, amy))))

Commit(rus, ita,
Do(sup(Unit(rus, Region(spa, ecs)),

mto(Unit(ita, Region(mar, amy)),
Region(par, amy)))))])

E.g. `Italy accepts to Agree with Russia that they are allied against England':
3We abuse notation and represent sets of agents containing just one agent by the agent

name itself. e.g. Commit(ita, [rus], deal) will be represented as Commit(ita, rus, deal).

96 CHAPTER 6. DIPGAME TESTBED

accept(ita, rus, Agree([ita rus], aly([ita rus], eng)))

L2: Sharing information. This language level adds the ability of sharing
information with other agents. It can be information about previous commit-
ments, observed actions, beliefs, desires or deals. E.g. `Italy informs England
that Italy keeps a peace agreement with Russia':

inform(ita, eng, Agree([ita rus], pce([ita rus])))

L3: Asking for direct information. At level three, agents can request
other agents for information. Answers to queries are similar to informs. E.g.
`England asks Italy whether Italy and Russia have a peace agreement':

query(eng, ita, Agree([ita rus], pce([ita rus])))

E.g. `Italy answers England that Italy and Russia do have a peace agreement':

answer(ita, eng, Agree([ita rus], pce([ita rus])))

L4: Asking for indirect information. Level four allows to inform about
dialogical moves between agents. E.g. `Russia asks Italy whether Italy answered
to England that Italy and Russia had a peace agreement':

query(rus, ita,
answer(ita, eng,

Agree([ita rus], pce([ita rus]))))

L5: Sharing feelings. This level is the emotional one. Feelings can be
exchanged between agents. E.g. `Italy asks Russia whether Italy's answer to
England that Italy and Russia had a peace agreement made Russia feel sad':

query(ita, rus,
answer(ita, eng,

Agree([ita rus], pce([ita rus]))) →
Feel(rus, Sad))

L6: Taking into account the passage of time. L6 adds time to L5.
Within L6 we can speak about the past and make promises about the future.
Time is added as an extra argument to predicates and illocutions. Time vari-
ables are considered universally quanti�ed. In subsequent levels, L7 and L8, we
omit time to simplify notation. E.g. `Russia informs Italy that if Italy informs
in the future to any power that Italy and Russia have a peace agreement, then
Russia will feel Angry':

inform(rus, ita,
(inform(ita, power,

Agree([ita rus],
pce([ita rus])), t1) ∧ t1 > t0)→

(Feel(rus, Angry, t2) ∧ t2 > t1),
t0)

L7: Explaining. Dialogues often include explanations and explanation
requests. This level adds that possibility to allow agents to explain why things
are like they are. E.g. `Italy asks Russia for an explanation of why the fact
that Turkey believes that there is a peace agreement between Russia and Italy
makes Russia feel Angry':

6.4. CREATING A BOT 97

query(ita, rus,
Explain(

Belief(tur,
Agree([ita rus], pce([ita rus]))) →

Feel(rus, Angry)))

L8: Arguing. And �nally, level 8 allows agents to express rebuttals and
supports between arguments. E.g. `Russia informs England that its alliance
with Italy against England and Italy's desire to conquer Paris together support
the imminent Italian attack from Marseilles to Paris':

inform(rus, eng, Support(
Agree([ita rus],aly([ita rus],eng)) ∧ Desire(ita, par),
Do(mto(Unit(ita, Region(mar, amy)), Region(par, amy)))))

6.4 Creating a bot

In this section we describe our bot development framework and the negotiation
utilities that we provide in nego. Then, we de�ne a methodology for building
bots using DipGame and we exemplify the usage of the testbed with Random-
NegoBot in Section 6.4.3.

6.4.1 dip

Developing a client from scratch is tedious. That is why we provide dip, a java
framework that copes with the communication with the game manager and the
representation of the game state and the movements (referred in the game as
orders to send to the units). The dip framework is designed with a separate
module to deal with DAIDE's communication protocol. This module is called
daideComm and uses the Java Communication API (jac) to encode messages
and connect to DAIDE servers. The separation of this module is recommended
in order to be able to easily adapt the testbed to run using other communication
protocols. For example, to run on Droidippy, see Chapter 7.

dip is very easy to use, for instance, creating a player means just to imple-
ment a new class extending the abstract class Player (see Figure 6.8) and adding
the extra functionality to decide what movements to do next, as explained in
Figure 6.9. The rest of the work is done by the framework itself. To illustrate
how to use dip we provide ConsoleObserver and ConsolePlayer that are console
applications that allow a user to observe a game and play respectively. Those
applications have no graphical user interface.

Deciding what movement to do next usually requires to search the space of
possible actions to perform. For those researchers that want to test their work
and are not interested in the search process, we provide an extension of dip,
called bot, that calculates the potential actions that the bot may choose based
on an action evaluation function that the researcher de�nes. This simpli�es even
more the implementation of a player because it then consists basically in de�ning
an evaluation function. This function can be de�ned as a combination of the
implementation of three class interfaces: RegionEvaluator, OrderEvaluator and
OptionEvaluator.4 Each class interface is in fact an evaluation function itself

4An option in this context is the set of all orders to be performed by the bot.

98 CHAPTER 6. DIPGAME TESTBED

<< use >>

<< use >>

<< use >>

Bot

Client

Player ConsoleObserver

ConsolePlayer

RandomBot

RegionEvaluator
<<interface>>

OrderEvaluator
<<interface>>

OptionEvaluator
<<interface>>

RandomRegionEvaluator RandomOrderEvaluator RandomOptionEvaluator

comm

board

orders

Figure 6.8: UML 2.0 class diagram of the most important classes in the frame-
work.

Client
type

Plays?
Provided

funct.
Required

funct.
Required
library

Objects to
implement

Implement.
example

observer no game state nothing dip Observer ConsoleObserver

player yes game state
action

selection
dip Player ConsolePlayer

player yes
game state,
best action

action
evaluation

dip+bot

Bot
RegionEvaluator
OrderEvaluator
OptionEvaluator

RandomBot

Figure 6.9: Bot development framework.

over a different dimension (region, order and option). The combination of them
is thus not optimal (as it considers them in isolation) but is a good trade-off
between memory usage and solution quality. The trade-off level is fixed by the
programer: the more memory the higher the solution quality. An example of bot
implemented using bot is RandomBot5 whose evaluation function always returns
0. Figures 6.8 and 6.9 summarize the content and use of the infrastructure.

6.4.2 nego

The nego package provides support for the negotiation between players. We
take the language L as a standard for this testbed and provide a parsing utility
called dipNego that checks the syntax of messages and represents them in a
structure of objects. In Figure 6.10 we illustrate a class diagram with the most
relevant classes of dipNego that are necessary to represent the messages in L1.
We can parse all L language levels and the Diplomacy ontology. In the figure
we represent the language and the ontology classes together, e.g. Peace and
Alliance. Nonetheless, as L is domain independent, dipNego can be used for

5http://www.dipgame.org/browse/examples

6.4. CREATING A BOT 99

other application domains. The Message class is the wrapper for an illocution
to be communicated between two or more agents. DealIllocutions refer to
o�ers and Do allows to specify actions. In the context of Diplomacy an action
is an order.

The negotiation dialogues between players are handled independently from
the game engine. Negotiating messages do not use DAIDE's protocol and do not
pass through the DAIDE server. Instead, players negotiate using negoServer,
an instant messaging program specially created for this testbed. The negoClient
library implements the functionality required to connect a client with the nego-
tiation server. Therefore, to add negotiation capability to an existing bot, we
may use negoClient in addition to the dipNego library.

In order to be able to play against human agents DipGame provides a library
that translates human messages about Diplomacy from (a restricted set of)
English into the formal language that dipNego supports. This library is called
dialogueAssistant and makes use of previous exchanged messages, the dialogues,
to interpret the new ones. Figure 6.11 illustrates the use of the library.

DipGame do not constrain the negotiation to a speci�c protocol. Even
though a protocol can be imposed like for example the one illustrated in Fig-
ure 6.12 where every proposal must be replied and information can be shared
and queries can be formulated at any time during a negotiation process. As the
negotiation goes in parallel to the game and through the negoServer, we can
control the language and protocol and set it to the needs of the given experi-
ment.

6.4.3 Methodology

Building agents capable to negotiate playing Diplomacy is quite easy with the
framework and the tools introduced above because the communication problems
are �xed and the developer can focus on the negotiation model of its agents.
We suggest a methodology for creating agents with DipGame and exemplify it
describing how can we create a very simple agent: a random negotiator, that is,
a player that performs random moves and negotiates also randomly. We base
it on RandomBot 's code.6

The methodology is quite simple. It consists of six steps that end with the
analysis of the results and the optional improvement of the agent:

1. Download all the required resources. They will depend on the type of
client that you want to create and the implementation options that you
decide to use, see Figure 6.9.

For our example we need the game manager called Parlance, negoServer,
RandomBot 's code and the libraries that it requires, that are dip and bot.7

2. Create a client extending the corresponding classes. Remember that to
be able to negotiate you should use negoClient and dipNego in addition
to the libraries speci�ed in Figure 6.9. As this client is a bot, it is not
necessary to use dialogueAssistant to translate messages to a human.

We extend RandomBot 's functionality adding the capability to negotiate
randomly thus we also need the language parsing utility, dipNego, and the

6RandomBot is the player that performs random moves introduced in Section 6.4.1.
7dip and bot libraries are available at http://www.dipgame.org/browse/dip.

100 CHAPTER 6. DIPGAME TESTBED

Withdraw

IIlocution

DealIllocution

Propose Accept Reject

Message

Offer

Peace Alliance Do

Figure 6.10: UML 2.0 class diagram of the most important classes for L1 in
dipNego.

dialogueAssistant

dipNego

I propose you peace

propose(ITA,TUR,agree(peace([ITA TUR])))

Figure 6.11: Message transformation.

s1s0

s2

propose(α,β, deal1)

accept(α,β, deal1), reject(α,β, deal1)

withdraw(α,β), [tmax]

inform(α,β, info3), query(α,β, info3)
inform(α,β, info3), query(α,β, info3)

withdraw(α,β), [tmax]

Figure 6.12: A communication protocol for L3.

6.5. RUNNING EXPERIMENTS 101

library that provides the connection with negoServer that is negoClient.
From negoClient we must implement the handleMessage method indicat-
ing what to do when a message is received. Our random negotiator agent
would throw a coin to decide whether to accept or reject the received pro-
posal. And if the message is already an accept or a reject, it would do
nothing. negoClient also allows us to send proposals. Our random nego-
tiator agent would throw a coin at every new turn to decide whether to
propose something or not. And the same method would be used to decide
whom to propose it and the concrete o�er to make, for instance, a peace
agreement.

3. Complete your client adding the negotiation model functionality to be
tested. This is the step where you integrate your work with the testbed.

In the example we take decisions randomly therefore the negotiation model
simply de�nes a negotiation strategy based on throwing coins.

4. Set the experiments choosing the language level, the duration of the game
and the deadlines in the given servers. Fixed game duration and deadlines
for turns are optional but recommended specially when humans take part
in the experiments.

Our example experiment might be composed of games with 7 instances
of our random agent. The duration of the game and turns are unde�ned
as this is a simple example where agents make just one proposal per turn
before deciding their actions.

5. Run the experiment. This means launching �rst the game manager and
negoServer with the desired settings and then running the clients that you
want to connect to them.

6. Analyze the results and extract your conclusions. At the end of each
game you get the results as a complete log of movements, state updates
and exchanged messages.

From the log �les generated we check whether our agent played well and
question whether there is a way to improve its performance changing the
internal model of the agent.

7. Optionally make the adjustments necessary in your code to improve the
performance of your agent.

The code of this random negotiator agent can be found at http://www.
dipgame.org/browse/examples. More sophisticated agents take advantage of
the messages exchanged, the actions performed and the state of the world ob-
served in order to perform smart negotiations.

6.5 Running experiments

To simplify the execution of experiments we developed three software tools that
we describe in this section. The �rst tool is a negotiation client for human
players to play negotiating. The second is a game manager that runs a DAIDE
server, the negoServer and collects the data. Finally, we describe dipTools that
is a software application for analysing the experimental data.

102 CHAPTER 6. DIPGAME TESTBED

6.5.1 Chat App

The graphical interface for humans to play on DipGame is called ChatApp and
can be seen in Figure 6.13. This is a multi-platform interface released as an
standalone application. ChatApp provides a chat functionality similar to most
instant messaging software available in the market.

The chat translates the natural language messages into the formal language
that automated agents understand and vice-versa. This translation is done by
the dialogueAssistant library in such a way that players do not necessary know
whether the opponent is a human or an agent. They must guess that given the
behaviour of the players, not the syntax of the messages.

Figure 6.13: Screenshot of the human graphical interface, ChatApp. The chat
is on the right and the map on the left.

On Windows, ChatApp renders a map used to select the movements to
perform. This map is an AiMapper connected to the chat. In other operating
systems a ConsolePlayer is used to send the orders.

In order to play, the ChatApp must be connected to a DAIDE server indi-
cating the IP address and port of it and its negoServer. Then, if it is supported,
it launches the map. Notice that although ChatApp makes use of AiMapper, it
controls the mapper and the turns are updated at the same time. Nice graph-
ical and sound e�ects are included in the application to alert the player about
un-read messages and turn update. It also alerts when a message cannot be
understood by the dialogueAssistant or do not satisfy a requested protocol. Re-
member that although the DipGame do not constrain the negotiation to follow
a particular protocol, if it is necessary, it can be constrained.

6.5.2 Game Manager

The DipGame GameManager, provides a graphical user interface where games
can be set up. The application is multi-platform and makes use of AiServer or

6.5. RUNNING EXPERIMENTS 103

Parlance depending on the operating system in use. It launches also negoServer
and it controls their execution and collects their results. The application allows
you to: (1) select the players you want to take part in the game and (2) run
games observing the resulting output log. Thus, each player can be either a
provided bot (currently four bots are included in the software release), a bot
programmed by the experimenter, or a human interacting through a graphical
interface. Figure 6.14 shows an screenshot of the application during a game
execution. New bots can be incorporated to the manager being able to be
launched by the GameManager. In addition, the manager allows to set a player
to empty. This means that the game can be launched even though there are
players missing. Once launched, the game will wait for those missing players to
connect using the IP address and port indicated by the manager. Missing players
can be standalone applications running in the same computer for |for instance
a bot that is not yet incorporated to the manager, or in other computers in the
same network. ChatApp is another example of such standalone application.

Figure 6.14: Screenshot of the GameManager. On the left side of the �gure
you can see the main window of the game manager where the game can be set.
When running the game, the window on the right side of the �gure pops up
providing real-time results of the game execution.

When running a game using only a computer, only a human player can play
as the screen cannot be shared among several users. When this is the case, the
GameManager launches ChatApp and connects it to the game.

Games can be cancelled and the output log stored in a �le. The graphical
interface facilitates the use of the testbed and provides an attractive and simple
way to use the DipGame testbed.

104 CHAPTER 6. DIPGAME TESTBED

6.5.3 DipTools

The analysis of the data produced by negotiation experiments, consisting of
several game executions, can be made with the help of DipTools [Fabregues
et al., 2011]. This tool allows the experimenter to group the results of sets
of game executions in order to compare and analyse them in a intuitive and
graphical way. See Figure 6.15 for an screenshot of the application.

Figure 6.15: Screenshot of DipTools.

An experiment is de�ned as a set of sessions each one containing a set of
games. Sessions are used in DipTools to allow the experimenter to group to-
gether the data from games ran using the same settings, it is usually useful to
compare results obtained from di�erent settings. Several experiments can be
stored but only one can be visualised at any time.

There are three families of charts: (i) for a single game, (ii) for a game session
and (iii) for the whole experiment. The chart of a single game represents on the
x-axis the phases of the game. On the y-axis it permits to display a numerical
variable. For example, the amount of deals reached by an agent.

Given a game session, the tool allows to plot variable values over the games
of the sessions. This chart can be used to check whether the performance of
a bot was similar or not in all session games. We can plot, for instance, the
degree of interaction with other agents or the ranking of the bot at the end of
each game.

Finally, given the overall experiment, the tool allows to chart the average
of a selected variable over all the games of each session. This option is used to
illustrate the results of the experiment described in Section 6.6 and illustrated
in Figure 6.17. It is a quick way to visualise the overall performance of our
agents.

There are many useful variables that can be displayed and that are related

6.5. RUNNING EXPERIMENTS 105

to a player (e.g. the number of successful movements8) or to the interaction of
two players (e.g. the number of attacks between them). The experimenter just
needs to select the observable variables and the involved agents (one or two).
An observable variable can be complex as, for instance, the number of times
that a given bot has attacked Germany or the number of attacks that it has
performed. The tool allows the experimenter to easily de�ne such observable
variables, as well as chart several of them at the same time.

In addition to point chart displays, DipTools provides pie charts that are
ideal to represent exclusive variable values as, for example, what percentage of
victories were obtained by a particular agent depending on what power it was
representing. The tool also provides text reports where the data is provided in
tabular form.

A video demonstration of the DipTools software is available at http://www.
dipgame.org/media/AAMAS2011demo.

6.5.4 Methodology

The typical users of the DipGame testbed are researchers that are developing
their own software agents (bots). To run an experiment you have to �rst down-
load the GameManager and incorporate your agent into it. The instructions for
incorporating agents are available at Annex A. Next, you can run the manager
and set the experiment selecting the players you like to take part in it. Among
the available players you will �nd those software agents that you incorporated.
Finally, run the experiment and save the results into a �le.

In the previous section we described how to analyse the results of an exper-
iment involving several game executions. To run an experiment involving, for
instance, four copies of your bot (each one with possibly di�erent parameter
values) and three human agents, you will need at least three machines to in-
terface with the three humans. Three machines would be enough as one might
run the GameManager and the other two the ChatApp standalone application.
Thus, the GameManager would have four players set to be instances of your bot,
one player set to human and the last two players set to empty. When running
the experiment, the manager launches the game with two players missing and
launches also a ChatApp integrated with the manager. This human interface
can be used by one of the humans. For the game to be able to start, the other
two humans should connect to the manager by introducing in their graphical
interface the IP of the gameManager that is shown in its main window. Fig-
ure 6.16 illustrates the distribution of software applications per computer and
the human players taking part of the game.

The human interface integrated with the GameManager should be used only
for testing purposes as the human using it would have access to private messages
sent between the other players as the log includes them. When the game ends,
or when the game is cancelled,9 the results can be stored in a �le. Then, we can
take one or several game result �les, load them into DipTools and visualise the
results with DipTools.

8Sometimes the players do not succeed in performing their movements because of collisions
with the movements of other players.

9The experiment execution can be canceled at any time from the experiment manager
window showing the real time results.

106 CHAPTER 6. DIPGAME TESTBED

computer1

computer3

computer2

GameManager

bot1ChatApp2

ChatApp1

bot2

ChatApp3 bot3
bot4

Figure 6.16: Example of distribution of programs among computers.

At http://www.dipgame.org/media/AAMAS2012demo you can �nd a video
demonstration of the methodology for running experiments on DipGame. Next
section illustrates this with an example.

6.6 Experimentation

To test the correct performance of the testbed we have run many experiments.
Most of them were used to check that the functionality included work well. After
upgrading the infrastructure many times, �xing bugs and reducing defects, we
can now ensure that the infrastructure is completely operative and free of errors.
In fact, it has been used by other research groups and students that corroborated
this fact. After that, we decided to run an experiment to empirically enforce our
claim of being The Diplomacy Game a suitable domain for testing negotiating
agents. We prove it running an experiment including several negotiating agents
playing against non negotiating agents. In the following we describe the details
of the experiment and the results.

6.6.1 Experiment settings

The experiment was set to use the standard version of The Diplomacy Game
without convoys, that is used by the testbed. This version is speci�ed in Chap-
ter 4. Negotiation was allowed only during movement seasons and with a du-
ration of 5 minutes. This deadline is necessary to establish the end of the
negotiation session between negotiating agents. The game had also a maximum
duration of 30 min. Almost all games ended before that time. Those that were
still in process were cancelled, and then excluded.

The experiment contained 8 sessions where the games in each session had
0, 1, ..., or 7 instances of a negotiating agent and the rest of the players were
instances of a non negotiating agent, e.g. session 4 has 4 instances of the nego-
tiating agent and 3 instances of the non negotiating agent. Both types of agents
shared the same game strategy module in order to avoid any possible noise pro-
vided by matters that have nothing to do with the negotiation capability of the

6.6. EXPERIMENTATION 107

agent. To obtain a statistically signi�cant result, we executed 100 games per
session. The distribution of powers among agents per session was uniform.

6.6.2 Game strategy

The game strategy module of the agents is based on DumbBot, Section 2.5, that
has no memory. The inputs of the game strategy are the power that the agent
is representing, and the game state, Section 4.3. The output is a complete plan
for the power containing all the orders that are recommended to be executed.
The game strategy generates the plan assigning an order to each unit. Those
orders are selected trying to obtain the maximum possible utility measured as
the aggregation of the utility obtained per unit. The utility of a unit is related
to the destination value of the region were the unit will be at in next turn
assuming that the order assigned to it is successfully executed.10

The destination value of the regions are computed in several steps. The
�rst step is to assign to each region the initial value given its type and current
state. Note that, from the point of view of a power, regions can belong to:
general provinces, general supply centres, other powers homelands, or the power
homelands. Moreover, given a game state, a region can belong to a: empty
province, occupied province, not owned supply centre, supply centre owned by
an other power, or supply centre owned by the power. A di�erent initial value
corresponds to every single combination of region state and type. Subsequent
steps are to iteratively spread those values along the map aggregating for each
region a proportional part of the destination values of the neighbouring regions.
By this way, destination values show paths towards highly valued regions. The
farthest the region, the fewer it is a�ected. For instance, the highest initial
destination value corresponds to a region belonging to one of the homeland
supply centres of the power, that it is owned by someone else, and it is not
occupied. This is so because owning oneself homelands is one of the basic
strategies to play well the game.

The game strategy selects the orders to be performed by each unit trying
to maximise the resulting destination value assuming the successful execution
of the order. If the highest destination value among the region hosting the unit
and its neighbouring regions is the hosting one, then a hold order is assigned to
that unit. Otherwise, the strategy assigns a move towards the highest valued
neighbouring region. In case of having more than a highest valued neighbouring
region, one of them is randomly selected. When all orders are already assigned,
hold orders are reviewed checking whether there is an interesting support order
for them. This is done using the competence and strength values.

The strength value is computed as de�ned in the game speci�cation, Sec-
tion 4.4.1. The competence value of a province is the maximum number of
neighbouring and hosted11 units belonging to a power that is not the given
power. It is a measure of the strongest enemy capable to get the province.
Then, hold orders are set to support other orders with less or equal strength
than the competence of the destination province. This is also done iteratively
until no more hold orders are set to support.

10Notice that movements in Diplomacy are concurrently announced often provoking conflicts
among them. Those conflicts may end with the cancellation of an order execution.

11Note that there can not be more than a hosted unit per province.

108 CHAPTER 6. DIPGAME TESTBED

The basic distinction between Dumbbot and this game strategy is the dis-
tinction between homelands and supply centres, and not owned supply centres
and proper provinces. The initial destination values are also adjusted. The
use of random variables in this game strategy has been limited to the selection
between equally valued regions. Dumbbot use an iterative coin ipping method
to avoid a deterministic behaviour. In this experiment, the agents do not model
other agents' behaviour. Therefore, it is not necessary to avoid a deterministic
behaviour. Contrarily, it is bene�cial to reduce noise in the experiment results.
The number of steps for spreading destination values along the map is reduced
to 5 instead of 10.

The game strategy has an optional plan input. In that case, the game
strategy outputs a plan completing the input plan with orders assigned to the
rest of units controlled by the input power. The process is the same described
before. However, the assignation of orders starts with those from the input plan.

6.6.3 Negotiation strategy

The negotiation strategy module generates possible proposals (negotiating op-
tions) that improve a given complete plan for a power increasing its utility and
reducing the risk of conicts among orders. The negotiation strategy receives
as inputs the power, the game state, and a compete plan for that power. The
output is a ranking of negotiating options. Strength and competence values are
computed and support orders are assigned to other powers that bene�t the in-
put power. No assessment of the other powers' utility is done. The agent using
this negotiation strategy is assumed to propose the best ranked option. For a
received proposal to be accepted, it must provide a plan as good or better than
the plan initially proposed by the game strategy. To generate the best possible
plan including the received proposal, the negotiation strategy uses the game
strategy with the optional input plan set to the received proposal. Then plans
are compared based on their utility and risk of conicts that are measured as
described before. If the received proposal is not good enough, then the proposal
is rejected.

6.6.4 Execution

Both agents are developed using the dip framework and the game strategy mod-
ule. In addition, the negotiating agent uses nego and the negotiation strategy
module. We can execute a game in a machine using the GameManager. To that
end, we need to incorporate our two new agents and then start the GameMan-
ager. Some players will be set to the negotiating agent and some others to the
non negotiating agent. Then, the game can be executed. Notice that when we
execute a game on a single computer, we have more processes to execute than
processors available, and the process dispatcher is controlled by the operating
system. This is usually the case as there is a process per player and current
development computers use to have only one or two processors. In this setting,
we cannot be sure of all processes (players) being in equal opportunities to ne-
gotiate. Moreover, the execution of 800 games in such computer would take 17
days. We decided to run the experiment in a supercomputing centre.

The execution of the experiment has been done in the super-computing facil-
ities of the Barcelona Computing Center (http://www.bsc.es). Concretely, we

6.6. EXPERIMENTATION 109

used Marenostrum that is a machine with 2554 JS21 blades PowerPC 970MP of
4 Cores 8 GBytes memory that provide a �nal calculation capacity of 94.21 Ter-
aops. Every blade is a node that allow the concurrent execution of 4 processes
sharing the same memory. Access to the machine was subject to disposability.
Execution tasks are de�ned as jobs and are queued to be executed when decided
by the job dispatching system.

The execution of the experiment require 9 processes: one per player, one for
the game server, and another for the negotiation server. All of them use several
threads for communication and computation. For instance, a non negotiating
agent uses a thread for listening the game server and another for the general
agent execution that generates the orders to perform. A negotiating agent
has, in addition, a thread for listening the negotiation server and another for
negotiating. We require a node per player in order to have enough cores to
allocate all their threads. For the servers, we use a node only because they
are not needed at the same time. Negotiation server operates while the game
server is waiting for the phase deadline. This distribution of processes per nodes
guaranties the same communication speed for all of them as the Marenostrum
assigned nodes connected to the same switch.

The speci�cation of the job was specially di�cult to set because all processes
need to run at the same time, use the 4 cores of a node, and know the location
of the servers node. Players need to connect to the server node and it was
initially unknown. The speci�c node to allocate a process is decided by the job
dispatcher. To enable access to the servers node address, we used an special
feature of the SLURM resource manager that launch multiple programs at the
same time. This allowed us to specify what process must run in what ordinal
node from the list of nodes provided at loading time by the dispatcher. For
instance, the servers run in the �rst node of the list. Then, the players must
refer to the �rst node address as the servers address.

A job was de�ned per session involving the sequential execution of games.
Therefore, a job take a maximum of 2 executing days. And all jobs could be
executed at the same time. The log �les generated by players and servers was
stored in a temporal high speed memory and moved to a disk at the end of each
game. These log �les contain the results of the experiment. Notice that the
game server to use is Parlance as it can run on a unix system.

6.6.5 Results

After running the experiment, 800 games, we load the log �les containing the
results of the experiment into DipTools. We choose any session and any game
as source data in order to represent sessions at the X axis. We choose winner
and all bots as variables, and mark the single mean checkbox to represent the
percentage of games won by bot. The resulting chart is illustrated in Figure 6.17
were the percentage of games won by every agent is represented per session.

This experiment is set to have a di�erent number of players of each agent
type per session. Session 0 corresponds to the session with games containing 0
negotiating agents. Session 1 contains 1 negotiating agent, and correspondingly
the rest of sessions. We can say that the negotiating agent performs better than
the non negotiating one because its percentage of victories is larger than the
expected results in case all agents were of the same type.

110 CHAPTER 6. DIPGAME TESTBED

Figure 6.17: Chart of the experiment. Percentage of games won per number
of negotiating agents. The dashed line represents the percentage of victories
of negotiating agents and the doted line the percentage of victories of non ne-
gotiating agents. The continuous lines (increasing and decreasing) represent
the expected percentage of negotiating and non-negotiating agents in case they
all were equal. This particular graphic shows that negotiating agents perform
better in the experiment than what is probabilistically expected.

6.7 Summary

In the last decades, several software developers have build Diplomacy players.
Most of them use DAIDE and rely on its communication protocol and lan-
guage. DAIDE establishes a client-server protocol where all Diplomacy players
are clients and the server organises the communication and contains the adju-
dicator algorithm. DipGame can be seen as the adaptation of DAIDE to the
MAS research community. DipGame reuses as much content as possible from
DAIDE and provides extra resources desirable for MAS researchers. One of the
di�erences between DAIDE and DipGame is the negotiation language used in
them. DipGame's negotiation language is denoted by L and it is a language
hierarchy separating the Diplomacy vocabulary from the domain independent
terms and the grammar. This is made operative by the use of a negotiation
server connected to the DAIDE server and by forbiding the use of DAIDE
server for negotiation purposes. The DipGame negotiation server is denoted by
negoServer.

Several bot development frameworks and communication APIs exist around
DAIDE. Most of them are dependent of a particular operating system, Win-
dows. This dependence complicates the evaluation of agents because most of
the computing centers use other operating systems. We decided to build our
own bot development framework in a multiplatform fashion making use of an
already existing Java API for Diplomacy, the so called jac library. This frame-
work is denoted by dip and provides an object oriented representation of the
game and a player scheleton that simpli�es the development of a player a lot.
Complementing the framework, the nego package provides support for negoti-
ation connecting to negoServer, and dipNego provides an object representation

6.7. SUMMARY 111

of L that facilitates the generation of sentences. The same dip framework can
be used to create other DAIDE clients as, for example, an interface for human
players to take part in the games. We have developed a library to translate
from (a restricted set of) English into L. This library is denoted by dialogue-
Assistant. By default, the negotiation protocol is completely free. However,
it is possible to constrain communication forcing, for example, proposals to be
replied or communication to be bilateral.

Developing a player using the above mentioned framework and libraries con-
sist in extending a class completing it with the desired agent decision model.
Running experiments consists in executing several games with particular com-
binations of players and values for the bots. To facilitate the initial evaluation
of agents, we have created chatApp that is a DAIDE client with a mapper
and a chat that makes use of negoClient and, thus, connects to the DipGame
negoServer. This software has a nice graphical interphase and makes use of
dialogueAssistance to provide human like sentences to the users. In addition,
we created the GameManager that organize the execution of games running
a DAIDE server and a negoServer with the game settings decided by the user
that use a nice graphical interface to set those options. This program provides a
complete log of the game and the negotiations that take part in it. The content
of this log can be exported for future analysis of results. Finally, DipTools is the
program that we provide for analysing those results grouping similar games and
analysing their results comparatively providing tables and charts. This section
included the description of an experiment using a supercomputing facility and
this tool. The experiment proves that The Diplomacy Game is a suitable do-
main for testing negotiation and that, therefore, DipGame testbed is a suitable
one for testing negotiating agents.

Chapter 7

Application to the game
industry

The selection of a game as the domain for experimentation o�ers the possibil-
ity to apply our work to the game industry building software agents capable
to play. We have applied our work to the online game industry providing a
solution for playing Diplomacy online. Moreover, we have integrated our agents
into Droidippy, a mobile solution for playing Diplomacy. To disseminate the
DipGame testbed, we have created a website with all documentation and re-
sources of the testbed. This website is also the host of our solution for playing
Diplomacy.

In this chapter, we start motivating the application of the work to The
Diplomacy Game in Section 7.1, and proceed describing the DipGame website
in Section 7.2. The description includes the player section (Section 7.2.1) with
the online game industry solution, the researcher section (Section 7.2.2) with
the testbed documentation and resources, and an analysis of the impact of the
website since its publication (Section 7.2.3). Then, we describe the Droidippy
integration of DipGame in Section 7.3. The chapter ends with a summary in
Section 7.4.

7.1 Motivation

Diplomacy is a very popular game but its duration, up to 2 hours, makes quite
di�cult for a player physically to congregate another 6 people to play a game.
Even when that is possible, face-to-face1 games complicate the negotiation part
of the game as players need to take turns to negotiate, and others can see who
is meeting with whom. An additional problem is that players know who are
the rest, and could use knowledge from previous played games or take personal
relationships into consideration. E.g. Someone could be more motivated to
defeat a brother than a daughter. All those features related only to face-to-face
games can be seen as part of the game and accepted. Contrarily, most of the
players seem to prefer keeping a hidden identity, and being able to meet with

1A face-to-face game is a game where all players are physically in the same place using a
commercial board game edition and sitting around the board. Private negotiations can take
place by turns in a different room.

113

114 CHAPTER 7. APPLICATION TO THE GAME INDUSTRY

a player without being seen by the rest. All those players use to play a postal,
e-mail, or online version of the game. We assume that nowadays most of them
play online. Playing online facilitates the congregation of users hiding their
identity until the end, and keeping conspiracies undercover.

7.2 DipGame website

The DipGame website is the site of the DipGame testbed and contains all doc-
umentation and the software resources related to the testbed. In addition, it
provides access to a web application for playing Diplomacy games. The users of
the site are either players of Diplomacy or researchers seeking for information
to build agents that can be tested with the DipGame testbed. Those software
agents are bots that can play against human players from all around the world
through the DipGame website. The users are informed that, by playing, they
are participating in an experiment. This is done, at the very beginning, with a
description of DipGame at the main page of the site. Users are aware that some
of the adversaries will be bots and that all data is stored for research purposes.

Many of the new users know the game, are supporters of it and come to
DipGame looking for some training. They are aware of the di�culties of the
project and know the alternatives for playing the game. Other players are
newbies that are used to play other games online. We understand that we
cannot ignore those potential newbie users and must provide an attractive user
interface to keep them around. A short description of the Diplomacy game is
included in the main page of the site with a representation of the Diplomacy
map, and there is a section about Diplomacy accessible from the same main
page.

The other class of users is the researchers. They use DipGame at work and,
although they thank from having nice interfaces; they expect something serious.
The graphical design of the website intends to satisfy everybody using funny
but pastel colors, round corners, simple texts messages and slogans, and round
and very intuitive icons.

The Diplomacy Game situates the player in Europe at the beginning of the
20th century. Those are the years previous to the Cold War. Despite the fact
that chips represent military units and that the vocabulary is quite warlike; we
understand that this is a game that is more about negotiations than battles.
We reect this view in the site by the use of light colors, an ink pot as the
site's logo, and the following slogan: \In Diplomacy, your victory is not given
by swords, but by words. And it is your tongue what will have to be sharp,
not your weapon.". Figure 7.1 shows a screenshot of the main page of the
website containing all the previously mentioned graphical features. At the right
side of the image, we have at top the login form and access to the registration
form. Bellow it, the main menu panel with the buttons giving access to the main
sections of the site. Some of the sections require users to be logged in, concretely
the �rst two, the rest do not. In the following Section 7.2.1, we describe the
website's main sections for players, and in Section 7.2.2 those for researchers.

The last main section in the menu describes The Diplomacy Game providing
a video where we illustrate a particular game using 3D e�ects. The video con-
tains an intuitive narrative of a speci�c game scenario explaining the decisions
made by players, their expectations, and their emotions during that short part

7.2. DIPGAME WEBSITE 115

Figure 7.1: Screenshot of the DipGame website's main page.

of a game. At the bottom of the main page, we include contact info and access
to a page listing the people and research projects that support the website.

7.2.1 Player section

The sections specially designed for players are personalised. Users are required
to login in order to visit them. Non logged users are redirected to a di�erent
page to login or register. Registration requires only a valid email account, a
user name and a password. This authentication allows us to identify players
letting them login using the user name and password. The email address is
validated through a con�rmation mail, and it is used to change the password in
case of being it forgotten by the user. Several security techniques are used like
password encryption. Those sections for players include the web application for
playing games and a page that lists the ongoing and �nished games of the user.

The web application provides an interface similar to ChatApp, see Sec-
tion 6.5.1. The games are managed by a Parlance server2 connecting to it bots
and humans using the DipGame web interface. The web interface is composed
of an interactive map representing the state of the game: unit positions and
types, and supply centre ownership. The map is the main part of the interface
and allows players to indicate their orders clicking on the units and moving the

2Parlance is a DAIDE server available at http://pypi.python.org/pypi/Parlance/1.4.1.

116 CHAPTER 7. APPLICATION TO THE GAME INDUSTRY

mouse over it. The map is the standard version of jDip's SVG map3 thus, the
correct visualization of the map depends on whether the web browser can render
SVG images or not.4

The Figure 7.2 shows a screenshot of the application representing an ongoing

Figure 7.2: Screenshot of the dipgame web application for playing Diplomacy.

game where Italy is about to win. To the right side of the screen, we can see
the message instant tool (the chat). The interface is similar to the chatApp,
but in this case, the chat is embedded into the same page containing the map.
Below the chat, a status panel shows the year and season denoting the current
turn of the game. The original terminology is used for seasons meaning that
Summer and Autumn are denoted by Spring moves and Fall moves, and Winter
is now Adjudication.5 This panel also informs about the power that the player
is incarnating in the game. In addition, some help on how to indicate orders
is provided by the representation of the name of the province that the mouse
is currently hovering on, and a message indicating whether the order that the
user is indicating is writable or not. For instance, in Diplomacy armies are not
allowed to be over sea provinces. Thus, if the user tries to move an army into
the sea, the move is not set and a message reporting the problem is shown in
the status panel.

Above the chat there, is a panel with two tabs: Orders and State. The
Orders tab contains a list of all written orders and buttons for sending them,
save the game and cancel the game. By default, all games are saved. Initially,

3jDip is an adjudicator and mapper available at http://jdip.sourceforge.net/.
4The most popular web browsers are able to render SVG images with the exception of

Explorer that needs some additional software to do that.
5Section 4.1 describes the terminology used for Diplomacy seasons in DAIDE and in the

original rules of the game.

7.2. DIPGAME WEBSITE 117

the list of orders contains only the power's units with no order assigned to them.
By this way, we remember to the user that he/she must decide an order for each
of those units. The State tab contains a report of the current state of the game
including the number of supply centres owned by power. It also contains two
checkboxes enabling the printing of province names on the map. Short and
complete names can be represented.

The chat allows the player to negotiate with the rest of players using re-
stricted natural language. As introduced in Chapter 6, we provide a parser
for restricted natural language. It is called dialogueAssistant and it translates
written sentences into an equivalent sentence in L. When the interpreter is not
sure about the meaning of those inserted sentences, it displays a message to
the user requesting him/her to rephrase them. dialogueAssistant is available for
messages at level L1.

When orders are sent, and the new turn begins, the orders decided by all
the players are represented on the map indicating which of them were feasible
and the new positions of the units. If there is any, the dislodged units are also
represented. Players with no dislodged units go directly to the next turn with
no interaction required. For the players to be able to check previous turns, a
slider situated below the map can be used to set the desired turn. Then, the
turn is represented on the map.

As introduced before, there is a page where the logged users can see the list
of their games including those that did already end. Those ended games can
also be observed and studied being represented in the same interface but with
the chat and other buttons disabled. In that case, the slider is crucial to browse
through the turns.

DipGame is very attractive for former Diplomacy players and also for new-
bies. The Diplomacy Game is not di�cult to play in DipGame. The individual
plays are quite simple, and the interface is very friendly to use and intuitive.
It provides help facilities for newcomers to familiarise with the game. In our
experience, it is a very attractive game and people get addicted to it quickly.
Players even wait to observe the game after being eliminated, and they feel the
need to express their opinion on the game at the end. This is very important
because it makes easy to motivate them and it lets us get extra information in
a poll.

The motivation is another common problem. Current negotiation testbeds
(see Section 2.3) de�ne arti�cial environments where humans have to learn how
to behave. Usually, there is no simple story behind the task/game and the
actions/movements to perform. The negotiation between players uses to be
unreal and very restricted. In our case, Diplomacy is broadly known, and it
is also very easy to learn. The argument of the game does quickly involve the
players and keeps them motivated. Experiments in the economic �eld use money
to motivate the human participants, but we think that the game is motivating
enough, and the honour of winning it cannot be compared to earning money.
Even though, a monetary award can be o�ered to the winner if desired.

7.2.2 Researcher section

The sections designed for researchers do not require users to be registered.
Those sections include a page that lists the publications related to the DipGame
testbed and the bot development section. This section contains a description of

118 CHAPTER 7. APPLICATION TO THE GAME INDUSTRY

the testbed and gives access to several pages where the testbed components are
described. Those pages are called: dip, nego, gameManager and chatApp. All
documentation and the software resources of those components are included in
these pages. This section does also include the tutorial incorporated to this the-
sis as Annex A. A video demonstration was created to disseminate the testbed
on the multiagent systems community. It is included in this section. The video
introduces the game, motivates its use in research and describes the testbed.

Bots taking part of the online Diplomacy games must be previously tested
o�-line with the GameManager. This is crucial to ensure that software agents
perform well and do not crash while playing a game in the DipGame website.
Notice that execution errors demotivate the users. We desire human players to
feel comfortable using our site because we want them to continue taking part of
experiments. Keeping them motivated is crucial.

7.2.3 Impact

The DipGame website is in production as a beta version at http://www.dipgame.
org since December 2009. It gives access to humans to play Diplomacy on-line
against some of our bots. Although we did not make any advertisement to
the Diplomacy players community, the website gets requests to play from many
users. We have a total of 344 registered users in June 2012, and there are several
groups of researchers developing bots over the platform. Also, the testbed is be-
ing used for academic purposes in bachelor degrees and master degrees [de Jonge,
2010; Polberg et al., 2011] (e.g. http://www.cse.unr.edu/robotics/bekris/
cs483_s10/handouts).

Before September 2010, we store the registration date of new DipGame web-
site users. Until then, the site had 103 successful registrations.6 Figure 7.3
illustrates the rest of the posterior successful registrations in a histogram repre-

09
-2
01
0

10
-2
01
0

11
-2
01
0

12
-2
01
0

01
-2
01
1

02
-2
01
1

03
-2
01
1

04
-2
01
1

05
-2
01
1

06
-2
01
1

07
-2
01
1

08
-2
01
1

09
-2
01
1

10
-2
01
1

11
-2
01
1

12
-2
01
1

01
-2
01
2

02
-2
01
2

03
-2
01
2

04
-2
01
2

05
-2
01
2

06
-2
01
2

Figure 7.3: Number of registered users per month. Note that, before September
2010, we had a total amount of 103 registered users.

senting the number of registered users per month. Between September 2010 and
6Testing users and non confirmed registrations are not included in the statistics. All

registered users confirmed the registration mail sent from the site.

7.3. DROIDIPPY INTEGRATION 119

the end of 2011, we had in average one or two users registered per week. 2012
supposed a huge increment of registrations now having more than a registration
per day. We assume that this increment is related to the inclusion of DipGame
in the Wikipedia's page about The Diplomacy Game7. Since then, the DipGame
website was advertised only among the multiagent systems research community
giving talks at the following conferences and workshops: Autonomous Agent
and MultiAgent Systems (AAMAS) [Fabregues et al., 2010, 2011; Angela Fab-
regues, 2012], EUropean MultiAgent Systems (EUMAS) [Fabregues and Sierra,
2010] and Agreement Technologies COST ACTION workshops. The users of
DipGame website before 2012 were researchers or friends of researchers. Since
2012, some Diplomacy supporters are also part of the DipGame website.

Figure 7.3 shows the number of unique visits8 per month since May 2010.

Figure 7.4: Unique visits per month. The tracking system was enabled in May
2010, there are no previous data. The October 2011 local minimum corresponds
to a period of time with the tracking system disabled.

The unique visitor results go in line with the number of registered users per
month. This data are recorded by duplicate using two web analytical tools:
StatCounter and Piwik.9

7.3 Droidippy integration

Droidippy is the last solution appeared for playing Diplomacy. It provides the
same features than other solutions and an additional one that is very interesting
from our point of view. The main di�erence between DipGame and the rest is
the possibility to play against bots. In the case of Droidippy, what makes it
di�erent from the other solutions is that it is possible to play from a mobile
device using a dedicated mobile application. Droidippy provides a web and an
Android10 application letting games include players that play from a computer
or a mobile phone indistinctly. We appreciate that feature and contacted the
Oort Cloud company11 that is powering this system. They accepted to collabo-

7The Wikipedia’s page about Diplomacy: http://en.wikipedia.org/wiki/Diplomacy_

(game).
8A unique visitor is counted for all pages loaded in a given session.
9StatCounter and Piwik are web analytics software available at http://www.statcounter.

com and http://piwik.org respectively. We installed piwik in DipGame’s server and use
StatCounter on-line.

10Android is one of the most popular operating system for mobile device.
11The website of the Oort Cloud company is at http://www.oort.se.

120 CHAPTER 7. APPLICATION TO THE GAME INDUSTRY

rate with us allowing DipGame bots to take part in Droidippy games obtaining
from Droidippy all the data related to those games. This means that more users
would be able to take part of our experiments and we save the cost of devel-
oping a mobile application having only to develop the integration of DipGame
bots into Droidippy. Next Section 7.3.1 describes Droidippy and Section 7.3.2
describes the integration of the systems.

7.3.1 Droidippy

Droidippy is an online solution to play Diplomacy that allows users to play
long games involving humans only. The games can be set with di�erent time
deadlines for turns. The default and most popular setting is a turn per day.
Games, thus, take several weeks, maybe months. The dynamics of the games
are similar to those played by e-mail. Negotiating messages are in English.
In general, the game proceeds generating the new turn when all players have
submitted their orders. If the deadline is reached before that, the turn is also
resolved with not-yet-ordered units set to hold. The norms of the system impose
that when the missing orders are from powers that did not submit in time in the
previous turn, then the turn is resolved anyway. This norm let games proceed
when someone is missing.

During the progress of a game, players can connect to Droidippy either using
the web application or the mobile application. Players can connect several times
during a turn and with di�erent applications. They can even negotiate with one
of the applications and submit the orders with the other. Several games can be
played per player at the same time.

Droidippy does not use DAIDE. It uses jDip for the mapper and also for the
adjudication. jDip is an open source Java application that provides a graphical
user interface with a mapper. It allows to study previous played games, to check
adjudication rules, and it can also adjudicate face-to-face games facilitating the
work of master players. Droidippy uses its own game manager that communi-
cates with the web and it mobile applications, and resolves turns with jDip's
adjudicator.

Web application

Droidippy's web application allows users to play Diplomacy games. It has simi-
lar features to DipGame but with di�erent graphical design, di�erent chat rep-
resentation, and they connect to di�erent game managers. Its map is also the
jDip's SVG map. Thus, as DipGame, Droidippy's web application depends on
whether the web browser can render SVG images or not. The web application
is in production at http://droidippy.oort.se.

In Figure 7.5 , we can see a screenshot of the web application's map page.
The slider used by the DipGame web to allow users to check previous turns
is replaced here by the `←phase' link situated above the map. Every order
introduced is automatically saved. Despite of that, it is necessary to submit to
indicate that orders have already been selected, and that, therefore, the user is
waiting for the next turn. The representation of the chat is quite di�erent to
DipGame's one. Instead of using a tab per power, powers are listed, and a new
panel is shown when we select a power. In that new panel, the representation of
previous messages is the usual with new messages in the bottom and reporting

7.3. DROIDIPPY INTEGRATION 121

Figure 7.5: Droidippy web application's map page with power list.

122 CHAPTER 7. APPLICATION TO THE GAME INDUSTRY

new turns and message sending times. In Figure 7.6, the negotiation panel is

Figure 7.6: Droidippy web application's negotiation panel.

shown.

Mobile application

The Droidippy's mobile application allows users to play Diplomacy games from
mobile devices. It is similar to the web application but allows to set alerts and
event noti�cations. It is compatible with Android 2.2 onwards. The �rst time
that it is being used, it needs to be con�gured for a given user. Then, the �rst
panel that is shown is a list of the user's ongoing games. The user can select a
game, or go to the menu to join or create a new game. When playing a game,
three panels are enabled: the map, the power list and the orders. The map page
is illustrated in Figure 7.7 (left). The interaction with the map is similar to the
web application one, and powers are listed in the similarly. Two arrows situated
in the bottom of the panels allow the user to change the view from a panel to
another. When selecting a power from the power list, the typical chat view is
shown with the list of previous messages historically organised. A screenshot is
included in Figure 7.7 (right). The 'orders' panel contains all orders that were
indicated by the user on the map. The current turn orders are automatically
saved.

7.3.2 Integration

To integrate DipGame bots into Droidippy, we just need to use a new commu-
nication library. All software from the DipGame testbed uses the DipGame bot
development framework (dip) to communicate with the servers using DAIDE's

7.3. DROIDIPPY INTEGRATION 123

Figure 7.7: Screenshots of the Droidippy application.

protocol. As explained in Section 6.4.1, dip has a separated module called
daideComm to deal with DAIDE's communication protocol. This module uses
the Java Communication API (jac) to encode messages, and it connects to
DAIDE servers by TCP/IP. To communicate with Droidippy's manager, in-
stead of communicating with DAIDE servers, we need to use a new module
called droidippyComm instead of daideComm.

The droidippyComm module connects to Droidippy's manager by HTTP
requests. The manager can respond to those requests, but it cannot request
anything to the clients. In fact, if TCP/IP requires client and server to be
connected, HTTP establishes a connection every time it requests for informa-
tion. Therefore, clients must keep periodically requesting for new info. droidip-
pyComm does it, and parses all received info in order to represent it in an
object oriented structure compatible with DipGame. To negotiate, DipGame
clients use negoClient that connects to a negoServer. There is no DipGame's
negoServer in Droidippy's manager. It has its own embedded negotiation server.
Therefore, droidippyComm must act as a negoClient and send those messages
to Droidippy's manager instead to a negoServer.

All the above described functionality is already implemented. They still did
not release in production the play-against-bot feature that allow their users to
play against our bots. They released it in their pre-production site where we
have been testing it. Despite of that, the integration is done, and it is operative
in pre-production where it has been fully tested. Figure 7.8 represents the
module structure necessary for DAIDE and Droidippy to be used.

124 CHAPTER 7. APPLICATION TO THE GAME INDUSTRY

bot code

negoClient

dip

daideComm

jac

bot code

droidippyComm

negoServer DAIDE server Droidippy manager

TCP/IP
HTTP

dip

Figure 7.8: Bot module structure for DAIDE and Droidippy.

7.4 Summary

The website dedicated to the DipGame testbed is available at http://www.
dipgame.org. We have created this website to publish in it all the testbed
documentation and resources, including related publications and video demon-
strations. Moreover, the DipGame website provides access to a web application
that we have created with the aim of applying our work to the online game in-
dustry. This web application is similar to other solutions for playing Diplomacy
online: it contains a map, a chat, several games can be played by player at the
same time, ... What distinguishes this solution from others is that it allows to
play against software agents (bots). We have designed the web interface tak-
ing into account the diversity of potential players that could use it. Instead of
focusing our e�orts on congregating Diplomacy experts, we tried to build an
attractive solution for all audiences, including newbie players. All those players
take part of our experiments because we use the data obtained from games to
analyse the performance of the software agents and improve them. The impact
of the website is considerably high (1000 visits per month) taking into account
that we did not advertise the website in any Diplomacy player community. The
work was disseminated only as a testbed in research conferences and journals.

Droidippy, available at http://droidippy.oort.se, is the most recent so-
lution for playing Diplomacy online. It di�erentiates from DipGame and others
because it allows to play from a mobile devide. We have collaborated with Oort
Cloud, the mobile game company powering Droidippy, integrating our software
agents in their system. By this way, all software agents developed following
DipGame testbed can play Droidippy games. This collaboration bene�ts Oort
Cloud providing a new feature for their system: the feature of being able to

7.4. SUMMARY 125

play against software players. It also bene�ts DipGame providing more human
players for the experiments, and all the data related to those games. The integra-
tion of DipGame into Droidippy is fully tested using Droidippy's pre-production
site.

Chapter 8

Discussion

In this chapter, we discuss the thesis analysing the contributions, and comparing
them with the background. Then, we mention some future research work, and
we conclude listing our publications that are related to the work described in
this thesis.

8.1 Contributions of this thesis

In this thesis, we face the challenge of automated negotiation with humans fo-
cusing our attention in several aspects that were not studied in depth in the
past, like pre-negotiation and multiple bilateral negotiation. We de�ne a ne-
gotiation problem, RNP, with several potential applications that may bene�t
humans in their everyday life. The use of a negotiation protocol allowing multi-
ple bilateral negotiations is crucial to that end, as they are common in business
[Bichler et al., 2003]. Also the fact that negotiations in this problem are about
actions, and repeat along time facilitating the establishment and evolution of
relationships among the agents. Deadlines are assumed for negotiations as they
take place before actions are performed.

An architecture for agents to take part in RNP is de�ned. HANA follows a
heuristic approach and deals with pre-negotiation. The architecture de�nes how
observed information must be represented. It solves the problem of supplying
the negotiation strategy with plans and negotiating options assuming a huge
space of possible solutions. To that end, it uses an anytime algorithm that
runs in parallel to the negotiation strategy providing an up to date ranking of
plans and options. The architecture takes into account the cost of exploring
the space of possible solutions. Several negotiation strategies are proposed for
the HANA agents. These strategies can be combined resulting in a dynamic
negotiation strategy adjustable to the current available information and left
time until the deadline is reached. The evolutive nature of the architecture
is empowered by a search&negotiation technique. This technique corresponds
to the use of the best ranked plans found by the plan search to generate the
negotiation options being supplied to the negotiation strategy. And also, to the
use of the information obtained from the negotiation to prune the search space
and �ne tune the evaluation of plans. The architecture is extensible allowing the
incorporation of behavioural models that can trigger the agent intentions and

127

128 CHAPTER 8. DISCUSSION

a�ect the negotiation strategy that is guided by intentions. In fact, the world
model of the agent is based on a graded BDI to simplify the incorporation of
external models. Degrees are used to represent the uncertainty on the world that
is basically related to the future actions to be performed by the other agents.
A good usage of the search&negotiation technique reduces that uncertainty
facilitating a successful performance.

Testing an architecture like HANA is now possible thanks to the testbed
that we provide in this thesis. DipGame is based on The Diplomacy Game, a
popular board game. We have speci�ed the game in Z-Notation formalism, and
we provide a representation of it as an RNP. HANA agents can become software
players of this game, and compete against humans. The testbed consists of a
complete infrastructure for the development of software agents and the execution
of experiments. A language hierarchy has been de�ned with increasing levels of
complexity. The testbed also provides tools to assist the analysis of experimental
results. An experiment with negotiating and non negotiating agents is included
in this thesis.

Finally, we complete the thesis applying the testbed to the game industry.
We have developed and deployed a web application for playing Diplomacy online
against software agents. It provides a map representing the game state, and a
chat to allow the negotiation with the other players. A library for a (restricted
set of) English translation to the formal agent language has been created in
order to facilitate the communication among human and software agents. This
application is hosted by the DipGame website where all the documentation and
resources on the testbed are published. Moreover, the DipGame testbed has
been integrated with Droidippy, that is a mobile solution for playing Diplomacy.

In the following, we compare each of our contributions with the related work
included in Chapter 2.

First - Designing an agent architecture The principal di�erence between
HANA and other architectures is its extensibility |facilitating the incorporation
of other research models, and its applicability to the industry. This is not only
a theoretical work providing a new search&negotiation technique. It is also a
practical work, [Lopes et al., 2008], that takes into account the complexity of
searching for proposals, and the uncertainty in the environment. It includes pre-
negotiation that is necessary as refers to the study of negotiation opponents, the
generation of possible negotiating options, and the planning of a strategy for the
negotiation. Contrarily to other works allowing multiple bilateral negotiation,
HANA is designed as a single negotiating agent (in [Rahwan et al., 2002; Kraus,
1995a] a negotiator is itself a MAS), and it is able to �rmly commit to the
performance of actions. It does not use protocols including decommitment to
avoid possible agreement overlap like in [Nguyen and Jennings, 2005].

Comparing HANA with LOGIC, [Sierra and Debenham, 2007]: HANA is
simpler than LOGIC, more detailed, and computationally realistic. LOGIC
is general, it describes a theoretical approach to build very intelligent software
agents with negotiation capabilities suitable for taking part of a wide kind of ne-
gotiations, also those involving humans. Consequently, it does not give intuitive
details that could be easily followed to build a software agent with those capa-
bilities. HANA has been inspired by LOGIC, and it shares the same interest on
pre-negotiation. Due to the fact that the architecture is specially designed for

8.1. CONTRIBUTIONS OF THIS THESIS 129

the RNP, a description of how to formulate proposals can be included in HANA.
LOGIC, as most negotiation models, assumes that all possible negotiation part-
ners have similar capabilities, and thus, selecting a partner does not depend on
the concrete proposal to make. Here, instead, proposals determine which agents
we should interact with as the capabilities of the negotiation partners can be
di�erent.

Second - Developing a testbed The DipGame testbed allows the adjust-
ment of the negotiation language and protocol allowing to perform bilateral,
multiple bilateral, and multilateral negotiation. There is place for information
sharing, explanation, argumentation, and the enactment of emotions. DipGame
is richer than the testbeds described in Section 2.3. That is so, mainly, because
of the richness of the language being proposed, but also due to the possibility of
observing public (the moves) and private (the o�ers) behaviour of agents, and
due to the long duration of a game. None of the related testbeds is rich enough
to allow for the testing of those complex negotiation models that can be tested
in DipGame. For instance, those incorporating pre-negotiation. We encour-
age research on negotiating agents to be capable to interoperate with people,
and the other testbeds goal, mostly, follows a constructivist approach. [Collins
et al., 1998] and [Wellman and Wurman, 1999] focus on multilateral negotia-
tions, and the ART testbed [Fullam et al., 2005] on trust and reputation. The
Colored Trails Game, [Gal et al., 2005], uses an abstract game that requires the
instruction of human players before taking part of the experimentation. It also
requires of an initialisation that has a huge impact to the outcome of the exper-
imentation. The use of Diplomacy in DipGame establishes an initialisation, and
bene�ts from the popularity of the game in order to congregate human players
to take part in experiments. GENIUS, [Lin et al., 2011], that is the testbed
used by the Automated Negotiating Agent Competition (ANAC), assumes that
the negotiation domain is known by the agents and static. The negotiation is
bilateral using an alternating protocol. In the competition, the agent's prefer-
ences are known, represented as utility functions, and �xed during the whole
negotiation session. And the issues are independent. As a consequence, the
ANAC competition is quite limited to a particular negotiation domain, and ne-
gotiation strategies. DipGame provides more exibility for those strategies to
contemplate a more realistic problem.

Third - Problem formalisation A Resource Negotiation Problem is a re-
source allocation problem that allows negotiation about actions to be performed
individually, but simultaneously, by a group of agents. We think that it is more
realistic than other problems proposed in the automated negotiation research
�eld, like those used in the ANAC competition. Negotiating about actions is
quite di�erent to negotiating about numerical values to assign to particular is-
sues. The utility provided by the actions is rarely independent. Moreover, their
bene�t for an agent depends a lot on the agent mental state and the current
situation. The agents' utilities cannot be �xed during the negotiation processes.

Fourth - Specification of The Diplomacy Game In this thesis, we provide
a formal speci�cation of The Diplomacy Game that was lacking before. Previous
work describing the adjudicator algorithm that resolves the game was not formal

130 CHAPTER 8. DISCUSSION

[Black et al., 1998]. The existing documentation on the game relates to the rules,
and the study of tactics and openings [Sharp, 1978b,a; Kruijswijk, 2009]. This
speci�cation and the complexity analysis of the game are necessary for the use
of The Diplomacy Game as a domain for experimentation.

Fifth - Application to online game industry To our knowledge there is
no previous negotiation testbed that was applied to the industry. The DipGame
application and the collaboration with Droidippy, corroborate our aim of doing
practical research with real potential applications. This work is a success thanks
to the multiple users logged in DipGame, and their activity playing against our
software agents.

8.2 Future work

In the future, we would like to study the use of a personality model, like the one
presented in [Pe~na et al., 2011], to select how agents should emotionally react to
observations by generating appropriate intentions. Analysing the personality of
other agents is specially challenging as our agent counterparts can be humans.
Another interesting model to incorporate is the relationship model described
in [Sierra and Debenham, 2007]. In it, intimacy levels are computed for each
other agent, and some strategies to reach a certain desired intimacy level are
provided. The next behaviour model we plan to extend the architecture with is
a trust model. The concept of trust is really important to perform negotiations.
In environments where there is no trust among agents, negotiation cannot take
place as the negotiators will not be able to belief on the actual execution of the
agreement. We plan to incorporate a version of Sierra and Debenhams' trust
model [Sierra and Debenham, 2006]: (i) to provide beliefs on the agent's trust
on other agents; (ii) to update the belief set from reached commitments; (iii)
to provide the intentions to negotiate or not with a given agent; and (iv) to
exclude from the plan ranking those joint plans with actions assigned to agents
whom the HANA agent distrusts.

Apart from that, the future work by contribution would be the following:

HANA Something that is lacking in the architecture and that we would like
to work further are the internal details of the world model that is represented
as a g-BDI with dynamic desires and emotions. The work done in [Casali et al.,
2011] and [Joseph, 2010] is crucial to this end. We would like to provide an
implementation of the architecture as a software framework where the world
model content, also the transition functions between beliefs, desires and inten-
tions, were input data. Such software would facilitate a lot the development of
HANA agents, specially those to run on DipGame thanks to the framework for
developing software agents that it already provides.

DipGame The testbed is in production, and available at the DipGame web-
site. There is a tutorial, and other documentation describing how to use it, and
it is being used by other students. The use of the testbed, as it is today, by
other research labs is proved to be possible. Despite of that, it seems that it
is not as simple as, for instance, GENIUS. By problem de�nition, the design
and implementation of an agent for DipGame must be more di�cult than an

8.3. RELATED PUBLICATIONS 131

agent for GENIUS is (more complex and richer problem implies more di�cult
agent design). A DipGame agent will always be more di�cult to create than
a GENIUS agent. However, some improvements can be done in DipGame to
simplify this task. The existence of the before mentioned implementation of
HANA would simplify the creation of agents. Another option is to provide a
set of implemented Diplomacy strategies. Those are currently described in the
Diplomacy communities, but there is no publicly available implementation of
them.

Application Another way to motivate players to engage in new games is the
incorporation of a global ranking of players in the web. In the future, we would
like to do this taking advantage of the work done in [Osman et al., 2010]. Human
players, as well as software players, would be ranked. A ranking of those players
would challenge their improvement. Other testbeds organise competitions that
take place in workshops and conferences, [Wellman and Wurman, 1999]. We
rather plan a continuous competition enforced by the ranking.

8.3 Related publications

The work described in this thesis has been published in several journals and in
the main MAS conference proceedings. It has also been presented in several
other conferences with proceedings and in several workshops. Some presenta-
tions included video and direct demonstrations of the testbed software. Next,
we list the publications indicating the url of the video demonstrations when
available:

Angela Fabregues and Carles Sierra. HANA: a Human-Aware Negotiation Ar-
chitecture. Decision Support Systems, In press.

Angela Fabregues, Santiago Biec and Carles Sierra. Running Experiments on
DipGame Testbed (Demonstration). In Proc. of the 11th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012)., pages {, Valencia,
04/06/2012 2012. http://www.dipgame.org/media/AAMAS2012demo

Angela Fabregues and Carles Sierra. DipGame: a challenging negotiation
testbed. Engineering Applications of Artificial Intelligence, Vol. 24(7), pages
1137{1146, 2011.

Angela Fabregues, David L�opez-Paz and Carles Sierra. DipTools: Experimental
Data Visualization Tool for the DipGame Testbed (Demonstration). In Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), pages 1315{1316. http://www.dipgame.org/media/AAMAS2011demo

Angela Fabregues and Carles Sierra. An Agent Architecture for Simultaneous
Bilateral Negotiations In Proc. of the 13è Congrés Int. de l’Associació Cata-
lana d’Intel.ligència Artificial (CCIA 2010), pages 29{38.

Angela Fabregues, David Navarro, Alejandro Serrano and Carles Sierra. DipGame:
a Testbed for Multiagent Systems (Demonstration) In Proc. of 9th Int. Conf.

132 CHAPTER 8. DISCUSSION

on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 1619{
1620. http://www.dipgame.org/media/AAMAS2010demo

Appendix A

Quick start guide

Learn the basics to develop your own software player (bot) with dipGame and
run Diplomacy games against it.

A.1 Introduction

Diplomacy is a game played by seven players. In dipGame we want to create
software players of this game and make them compete along them and against
human players. DAIDE was a pioneer doing it. We continue their work and we
made it more suitable for scienti�c researchers of areas like Multiagent Systems.

In the following we assume that you know the rules of the game and refer to
spring movements as SPR, spring retreates as SUM, fall movements as FAL, fall
retreates as AUT and adjustments as WIN. The available orders in each season
are (for movements:) to hold, move, support hold, support move, (for retreates:)
retreat, disband, (for adjustments:) build, remove and waive. Convoys are not
allowed in dipGame.

A.2 Play your first game

Every user can play Diplomacy on-line using our website (click on New Game).
If you intend to create your own bot, you should learn how to play o�-line,

on your own computer. To do so: download the Game Manager , install it and
run a game involving 6 bots and a human player.

A.3 Create your first bot

The complexity of creating a bot varies a lot depending on your requirements.
The simplest bot ever just holds its position, disbands and removes units or
waives depending on the season of the game. We call this bot HoldBot.

To implement HoldBot we can extend the es.csic.iiia.fabregues.dip.
Player class from the dip framework and implement its method play(). Other
method headers must be also in our HoldBot class (like receivedOrder(Orderarg0))
but it is not necessary to include any sentence into them. The method play()
for HoldBot should look like the following:

133

134 APPENDIX A. QUICK START GUIDE

@Override
pub l i c List<Order> play () {

List<Order> orde r s = new Vector<Order>() ;
switch (game . getPhase ()) {
case SPR:
case FAL:
// Holding a l l c o n t r o l l e d un i t s
f o r (Region uni t : me . getContro l l edReg ions ()){
HLDOrder hldOrder = new HLDOrder(me , un i t) ;
o rde r s . add (hldOrder) ;
}
break ;

case SUM:
case AUT:

// Disbanding a l l d i s l odged un i t s
f o r (Region d i s lodgedUni t : game . getDis lodgedRegions (me)){

DSBOrder dsbOrder = new DSBOrder (d is lodgedUnit , me) ;
o rde r s . add (dsbOrder) ;

}
break ;

d e f a u l t :
//That ’ s WIN
i n t nBui lds = me . getOwnedSCs () . s i z e ()−me. getContro l l edReg ions () .

s i z e () ;
i f (nBui lds > 0){

//Waiving nBui lds t imes
f o r (i n t i =0; i<nBui lds ; i++){

WVEOrder wveOrder = new WVEOrder(me) ;
o rde r s . add (wveOrder) ;

}
} e l s e i f (nBui lds < 0){

//Removing nBui lds un i t s
i n t nRemovals = −nBui lds ;
f o r (i n t i =0; i<nRemovals ; i++){

Region remUnit = me . getContro l l edReg ions () . get (i) ;
REMOrder remOrder = new REMOrder(me , remUnit) ;
o rde r s . add (remOrder) ;

}
}
break ;

}
re turn orde r s ;

}

The HoldBot as described before is not a program because it has no main
method. To complete it and be able to execute your bot you need to de�ne a
method like the following one:
pub l i c s t a t i c void main (St r ing [] a rgs){

t ry {
IComm comm = new DaideComm(InetAddress . getByName(” l o c a l h o s t ”) ,

16713 , ”HoldBot”) ;
HoldBot holdBot = new HoldBot () ;
holdBot . s t a r t (comm) ;

} catch (UnknownHostException e) {
System . e r r . p r i n t l n (”Unknown host name . ”) ;

} catch (CommException e) {
System . e r r . p r i n t l n (”Cannot connect to the s e r v e r . ”) ;

}
}

dip requires three libraries. Thus, your bot requires a total of four libraries to
be imported. Copy those libraries into a folder together with the HoldBot.java
�le. Run a terminal and locate yourself into the same folder. To compile your
bot you just need to type the following sentence:
javac −cp . : dip −1.6. j a r : tcpIpComm−0 .1 . 2 . j a r : jac −0 .8 . 1 . j a r : u t i l i t i e s

A.4. PLAY AGAINST YOUR BOT 135

−1 .0 . 3 . j a r HoldBot . java

If the compilation works �ne no output must apear. Now, your HoldBot is
ready to play games.

A.4 Play against your bot

To play a game against your new HoldBot you can run a game with gameMan-
ager setting as empty one of the players. Then, a game will be launched with
several players connected to it and you should run your HoldBot connecting to
the same server location. If you want to run HoldBot in the same computer
that you are running the gameManager, then the game server ip is 'localhost'
and the server port is '16713', that are the same values that we speci�ed in the
main method. Now you can execute your bot as follows:
java −cp . : dip −1.6. j a r : tcpIpComm−0 .1 . 2 . j a r : jac −0 .8 . 1 . j a r : u t i l i t i e s

−1 .0 . 3 . j a r HoldBot

You can also add your bot to gameManager as described at the gameManager
page. To do so it is recommended to generate an executable jar �le containing
your code and the required libraries. There are several ways to do so, the easiest
using Apache Ant.

A.5 Add negotiation capabilities to your bot

Adding negotiation capabilities means adding a new level of complexity to the
development of your bot. We recommend to exercise �rst developing bots with-
out negotiation capabilities.

The easiest negotiator bot is the one that talks about peace and alliance
without understanding at all what do they mean. This bot proposes randomly
peaces and alliances and accepts or rejects them also randomly. This bot is use-
less as a negotiator but it is probably the best way to exemplify the development
of a negotiating bot.

To negotiate in dipGame we use the nego negotiation framework. nego
provides the class org.dipgame.negoClient.simple.DipNegoClientImpl for
sending messages to other Diplomacy players and the class org.dipgame.negoClient.
simple.DipNegoClientHandler to indicate what to do whenever the bot re-
ceives a message.

In the following example we create a new class RandomNegotiator imple-
menting the org.dipgame.negoClient.Negotiator interface that creates and
runs the negotiation. Then, we create a new bot extending HoldBot and adding
the capability of negotiating with the previous random negotiator:
import java . net . InetAddress ;
import java . u t i l . L i s t ;

import org . dipgame . examples . n ego t i a t o r . Negot iator ;
import org . dipgame . examples . n ego t i a t o r . RandomNegotiator ;

import es . c s i c . i i i a . f abregues . dip . o rde r s . Order ;

136 APPENDIX A. QUICK START GUIDE

pub l i c c l a s s RandomNegotiatorHoldBot extends HoldBot{
pr i va t e i n t nego t i a t i onPor t ;
p r i va t e InetAddress n ego t i a t i onSe rv e r ;
p r i va t e Negot iator n ego t i a t o r ;

pub l i c RandomNegotiatorHoldBot (InetAddress negot i a t i on Ip , i n t
nego t i a t i onPor t){

super () ;
t h i s . n ego t i a t i onSe rv e r = nego t i a t i on Ip ;
t h i s . nego t i a t i onPor t = negot i a t i onPor t ;

}

@Override
pub l i c void i n i t () {}

@Override
pub l i c void s t a r t () {

super . s t a r t () ;
n ego t i a t o r = new RandomNegotiator (nego t i a t i onSe rve r , negot ia t ionPort

, t h i s) ;
n ego t i a t o r . i n i t () ;

}

@Override
/∗∗
∗ Negot ia te s be f o r e sending orde r s
∗/

pub l i c List<Order> play () {
nego t i a t o r . n ego t i a t e () ;
r e turn super . play () ;

}
}

RandomNegotiator negotiates only about peace and alliance but the nego-
tiation can include moves and other sort or o�ers.

A.6 Template for a negotiating bot

As a start point for developing a negotiating bot we recommed you to use the
following template of an Eclipse project.

Mybot-1.0.zip Mybot-1.0.tar
This template is useful also if you don't use Eclipse as its readme.txt �le

explains how to compile and execute it in both cases. It also explains how to
generate an executable jar �le from the code.

Appendix B

Notation summary

Chapters 3 and 5 contains a formalisation of the RNP and the HANA architec-
ture that requires the de�nition of many concepts. In Table B.1 we summarise
the notation symbols used by concept in order to assist the reader in case of
confusion.

concept set/function element/value
state transition system

negotiation illocutionary particles � θ
history H
state, �rst state W, WH ω, ω0

agents A α, β
operator Op op0, op1

action A a, b
plan P p, q
feasible plans Pω p, q
complete plans �Pω, �Pω

α p, q
option Oω, Oωα δ
compatibility compt(a, b) {true, false}
feasible feasible(a, ω), feasible(p, ω) {true, false}
state transition function T : W × P →W ω
expected state transition function Tt

α(ω′ | ω, p) [0, 1]
commitment C Ψ, Ciα = C Ψiα c
negotiation dialogue 	, 	H , 	α, 	αβ , 	i , 	iα, 	iαβ

utterance M , M ω µ
state utility U t

α : W → [0, 1]
plan utility U t

α : W × P → [0, 1]
plans and messages � = P ∪M ϕ
beliefs B, Bα, Bt

α, Bt
α : �→ [0, 1] 〈ϕ, ϑϕ〉

agent belief review function σα : Bα × Bα → Bα
con�dence Ct

α : P → [0, 1]
trust T t

α : A→ [0, 1], T t : A → [0, 1]

Table B.1: Symbols used in this document.

137

Bibliography

jdip, a diplomacy mapper and adjudicator, 2004. http://jdip.sourceforge.
net/.

The diplomatic pounch. http://www.diplom.org.

List of diplomacy turnaments. http://www.diplom.org/Face/cons.

The diplomatic pouch 'zine. http://devel.diplom.org/Zine/.

J. S. Adams. Inequity in social exchange. In L. Berkowitz, editor, Advances in
experimental social psychology, volume 2. New York: Academic Press, 1965.

C. E. Alchourr�on, P. G•ardenfors, and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic
Logic, 50:510{530, 1985.

Teresa Alsinet, Carlos Ches~nevar, Llu��s Godo, and G. Simari. A logic program-
ming framework for possibilistic argumentation: Formalization and logical
properties. Fuzzy Sets and Systems, 159(10):1208{1228, 2008.

Ramon Alvarez-Valdes, Enric Crespo, and Jose M Tamarit. Design and im-
plementation of a course scheduling system using tabu search. European
Journal of Operational Research, 137(3):512 { 523, 2002. ISSN 0377-2217.
doi: 10.1016/S0377-2217(01)00091-1. URL http://www.sciencedirect.
com/science/article/pii/S0377221701000911.

Leila Amgoud and Henri Prade. Using arguments for making and explaining
decisions. Artificial Intelligence, 173(3-4):413{436, 2009.

Carles Sierra Angela Fabregues, Santiago Biec. Running experiments on
dipgame testbed (demonstration). In Proc. of the 11th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2012), 2012. URL http:
//www.iiia.csic.es/files/pdfs/aamas2012demo-cameraReady.pdf.

Victor Bardadym. Computer-aided school and university timetabling: The new
wave. In Edmund Burke and Peter Ross, editors, Practice and Theory of
Automated Timetabling, volume 1153 of Lecture Notes in Computer Science,
pages 22{45. Springer Berlin / Heidelberg, 1996. ISBN 978-3-540-61794-5.
URL http://dx.doi.org/10.1007/3-540-61794-9_50.

M. H. Bazerman, G. F. Loewenstein, and S. B. White. Reversal of preference
in allocation decisions: judging an alternative versus choosing among alter-
natives. Administration Science Quarterly, (37):220{240, 1992.

139

140 BIBLIOGRAPHY

Martin Bichler, Gregory Kersten, and Stefan Strecker. Towards a structured
design of electronic negotiations. Group Decision and Negotiation, 12:311{
335, 2003. ISSN 0926-2644.

Kristie Black, Thaddeus Black, Brandon Clarke, Bob Dengler, Bogdan Florescu,
Cait Glasson, Manus Hand, David Lawler, Gary Pennington, Ray Setzer,
Simon Szykman, Tarzan, and Sandy Wible. The diplomacy player's technical
guide. 1998.

Rafael H. Bordini, Michael Wooldridge, and Jomi Fred H•ubner. Programming
Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Tech-
nology). John Wiley & Sons, 2007. ISBN 0470029005.

Tibor Bosse and Catholijn M. Jonker. Human vs. computer behaviour in
multi-issue negotiation. In Proceedings of the Rational, Robust, and Se-
cure Negotiation Mechanisms in Multi-Agent Systems (RRS’05) on Multi-
Agent Systems, pages 11{24, Washington, DC, USA, 2005. IEEE Com-
puter Society. ISBN 0-7695-2480-X. doi: 10.1109/RRS.2005.8. URL
http://dl.acm.org/citation.cfm?id=1114694.1115279.

Jonathan Bowen. Formal Specification and Documentation Using Z: A Case
Study Approach. International Thomson Computer Press, February 1996.
ISBN 1850322309. URL http://www.zuser.org/zbook/.

Michael E. Bratman. Intention, Plans, and Practical Reason. Cambridge Uni-
versity Press, March 1999. ISBN 1575861925.

Jay Burmeister and Janet Wiles. The challenge of go as a domain for ai research:
A comparison between go and chess. In Third Australian and New Zealand
Conference on Intelligent Information Systems (ANZIIS-95), pages 181{186,
1995.

Allan Calhamer. The invention of diplomacy. Games & Puzzles, 21,
January 1974. URL \url{http://www.diplom.org/~diparch/resources/
calhamer/invention.htm}.

Ana Casali, Llu��s Godo, and Carles Sierra. A graded bdi agent model to rep-
resent and reason about preferences. Artificial Intelligence, 175:1468{1478,
2011.

John Collins, Maksim Tsvetovat, Bamshad Mobasher, and Maria Gini. Magnet:
A multi-agent contracting system for plan execution. In Proc. of Artificial
Intelligence and Manufacturing Workshop, pages 63{68, 1998.

Rosaria Conte and Jaime Sichman. Depnet: How to bene�t from social depen-
dence. Journal of Mathematical Sociology, 20(2-3):161{177, 1995.

Giorgio Coricelli and Rosemarie Nagel. Neural correlates of depth of strate-
gic reasoning in medial prefrontal cortex. Proc. of the National Academy of
Sciences (PNAS): Economic Sciences, 106(23):9163{9168, 2009.

Mehdi Dastani. 2apl: a practical agent programming language. Autonomous
Agents and Multi-Agent Systems, 16(3):214{248, 2008.

BIBLIOGRAPHY 141

Dave de Jonge. Optimizing a diplomacy bot using genetic algorithms, 2010.

John Debenham and Carles Sierra. An agent supports constructivist and eco-
logical rationality. In Proc. 2009 IEEE/WIC/ACM Int. Conf. on Intelligent
Agent Technology, pages 255{258, Milano, 2009.

Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From game
design elements to gamefulness: de�ning "gami�cation". In Proc. of the
15th Int. Academic MindTrek Conf.: Envisioning Future Media Environments
(MindTrek ’11), pages 9{15, New York, NY, USA, 2011. ISBN 978-1-4503-
0816-8.

M. d'Inverno and M. Luck. Engineering agentspeak(l): A formal computational
model. Logic and Computation, 8(3):233{260, 1998.

Mark d'Inverno, Michael Luck, Michael George�, David Kinny, and Michael
Wooldridge. The dmars architecture: A speci�cation of the distributed multi-
agent reasoning system. Autonomous Agents and Multi-Agent Systems, 9:
5{53, 2004. ISSN 1387-2532. URL http://dx.doi.org/10.1023/B:AGNT.
0000019688.11109.19.

Mark d'Inverno, Michael Luck, Pablo Noriega, Juan A. Rodr��guez-Aguilar,
and Carles Sierra. Communicating open systems. Artificial Intelligence,
03/2012 2012. URL http://www.sciencedirect.com/science/article/
pii/S0004370212000252?v=s5.

Carmel Domshlak, Eyke H•ullermeier, Souhila Kaci, and Henri Prade.
Preferences in AI: An overview. Artificial Intelligence, 175(7-8):1037{
1052, 2011. URL http://www.sciencedirect.com/science/article/
B6TYF-52M9N6S-2/2/1b340448ead4f69710e0ccfc17ffd722.

C. Eisenegger, M. Naef, R. Snozzi, M. Hienrichs, and E. Fher. Sequence of
testosterone vs. placebo on ultimatum game behavior in women. Nature,
(463):356{359, 2010.

Eithan Ephrati. Strategy-planning an optimal strategy for a diplomacy player,
1987.

Angela Fabregues and Carles Sierra. An agent architecture for simultaneous
bilateral negotiations. In Proc. of the 8th European Workshop on Multi-Agent
Systems, Paris, 16/12/2010 2010.

Angela Fabregues and Carles Sierra. Diplomacy game: the test bed. PerAda
Magazine, 2009.

Angela Fabregues, Jordi Madrenas, Carles Sierra, and John Debenham. Supplier
performance in a digital ecosystem. In Proc. of the IEEE Int. Conf. on Digital
Ecosystems and Technologies (IEEE-DEST 2009), pages 466{471, Istanbul,
01/06/2009 2009.

Angela Fabregues, David Navarro, Alejandro Serrano, and Carles Sierra.
Dipgame: a testbed for multiagent systems (demonstration). In Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010),
pages 1619{1620, 2010.

142 BIBLIOGRAPHY

Angela Fabregues, David L�opez-Paz, and Carles Sierra. Diptools: Experi-
mental data visualization tool for the dipgame testbed (demonstration). In
10th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), pages 1315{1316, Taipei, Taiwan, 02/05/2011 2011.
URL http://www.dipgame.org.

P. Faratin, C. Sierra, and N. R. Jennings. Negotiation Decision Functions for Au-
tonomous Agents. Int. Journal of Robotics and Autonomous Systems, 24(3-4):
159{182, 1998a. URL http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.9.1585.

Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Negotiation decision
functions for autonomous agents. Robotics and Autonomous Systems, 24(3-4):
159{182, 1998b.

D. Fessler and K. J. Haley. Genetic and cultural evolution of cooperation, chapter
The strategy of a�ect: emotions in human cooperation, pages 7{36. 2003.

Karen K. Fullam, Tomas B. Klos, Guillaume Muller, Jordi Sabater, Andreas
Schlosser, Zvi Topol, K. Suzanne Barber, Je�rey S. Rosenschein, Laurent
Vercouter, and Marco Voss. A speci�cation of the agent reputation and trust
(art) testbed: experimentation and competition for trust in agent societies.
In Proc. of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 512{518, Utrecht, The Netherlands, 2005.

Ya'akov Gal, Barbara J. Grosz, Sarit Kraus, Avi Pfe�er, and Stuart Shieber.
Colored trails: A formalism for investigating decision-making in strategic en-
vironments. In IJCAI Workshop on Reasoning, Representation, and Learning
in Computer Games, pages 25{30, 2005.

Ya'akov Gal, Barbara Grosz, Sarit Kraus, Avi Pfe�er, and Stuart Shieber. Agent
decision-making in open mixed networks. Artificial Intelligence, 174:1460{
1480, December 2010.

Fredrik H�a�ard. Multi-agent diplomacy - tactical planning using cooperative
distributed problem solving. Master's thesis, Blekinge Institute of Technology,
2004.

David Hales. Cpm-03-109: Neg-o-net | a negotiation simulation test-bed.
Technical report, Center for Policy Modelling, 2002.

Sven Ove Hansson. A Textbook of Belief Dynamics: Solutions to Exercises.
Kluwer Academic Publishers, Norwell, MA, USA, 2001. ISBN 0792353269.

K. Hindriks, M. d'Inverno, and M. Luck. Architecture for agent programming
languages. In Proc. of the 14th European Conf. on Artificial Intelligence
(ECAI 2000), pages 363{367, 2000.

Koen Hindriks, Catholijn M. Jonker, Sarit Kraus, Raz Lin, and Dmytro
Tykhonov. Genius: negotiation environment for heterogeneous agents. In
Proc. of the Eighth International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 1397{1398, Richland, SC, 2009. IFAMAS.

BIBLIOGRAPHY 143

Nicholas R. Jennings, Peyman Faratin, A. R. Lomuscio, Simon Parsons, Michael
Wooldridge, and Carles Sierra. Automated negotiation : prospects, methods
and challenges. Group Decision and Negotiation, 10(2):199{215, 2001.

Lauren Keller Johnson and Richard Luecke, editors. The essentials
of negotiation. Business literacy for HR professionals series. Har-
vard Business School Press [u.a.], Boston, Mass. [u.a.], 2005. ISBN
1591395747. URL http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=
YOP&IKT=1016&TRM=ppn+392891115&sourceid=fbw_bibsonomy.

Sindhu Joseph. Coherence-based computational agency, April 2010.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artif. Intell., 101:
99{134, May 1998.

Markus Kemmerling, Niels Ackermann, Nicola Beume, Mike Preuss, Sebastian
Uellenbeck, and Wolfgang Walz. Is human-like and well playing contradictory
for diplomacy bots? In Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG 2009), pages 209{216, 2009.

Markus Kemmerling, Niels Ackermann, and Mike Preuss. Nested look-ahead
evolutionary algorithm based planning for a believable diplomacy bot. In
Applications of Evolutionary Computation - EvoApplications 2011, Part I,
Lecture Notes in Computer Science (LNCS), pages 83{92, 2011.

Markus Kemmerling, Niels Ackermann, and Mike Preuss. Individualizing plan-
ning diplomacy bots, 2012.

S. Kraus. Strategic Negotiation in Multiagent Environments. MIT Press, 2001.

Sarit Kraus. Designing and building a negotiating automated agent. Computa-
tional Intelligence, 11:132{171, 1995a.

Sarit Kraus. Designing and building a negotiating automated agent. Computa-
tional Intelligence, 11:132{171, 1995b.

Sarit Kraus, D. Lehmann, and E. Ephrati. An automated diplomacy player. In
D. Levy and D. Beal, editors, Heuristic Programming in Artificial Intelligence:
The 1st Computer Olympia, pages 134{153. Ellis Horwood Limited, 1989.

Sarit Krauss. Planning and communication in a multi-agent environment, 1988.

Lucas Kruijswijk. The math of adjudication. The Zine, Spring 2009 Movement,
2009. http://www.diplom.org/Zine/S2009M/Kruijswijk/DipMath_Chp1.
htm.

Cuihong Li, Joseph Giampapa, and Katia Sycara. Bilateral negotiation decisions
with uncertain dynamic outside options. In Proceedings of the First IEEE
International Workshop on Electronic Contracting, WEC '04, pages 54{61,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2184-3.

Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and
Catholijn M. Jonker. GENIUS: An Integrated Environment for Supporting
the Design of Generic Automated Negotiators. Computational Intelligence,
2011.

144 BIBLIOGRAPHY

Daniel E. Loeb and Michael R. Hall. Thoughts on programming a diplomat.
Technical Report 90-108, UNIVERSITE DE BORDEAUX 1. Talence, 1990.
URL http://opac.inria.fr/record=b1047926.

Fernando Lopes, Nuno Mamede, A. Q. Novais, and Helder Coelho. A negoti-
ation model for autonomous computational agents: Formal description and
empirical evaluation. J. Intell. Fuzzy Syst., 12(3,4):195{212, December 2002.
ISSN 1064-1246.

Fernando Lopes, Michael Wooldridge, and Augusto Q. Novais. Negotiation
among autonomous computational agents: principles, analysis and challenges.
Artif. Intell. Rev., 29(1):1{44, 2008. URL http://dblp.uni-trier.de/db/
journals/air/air29.html#LopesWN08.

Michael Luck and Peter McBurney. Computing as interaction: Agent and agree-
ment technologies. pages 1{6, 2008.

Marvin Minsky. The emotion machine: from pain to su�ering. In Proc. of the
3rd Conf. on Creativity & cognition (C&C ’99), pages 7{13. ACM, 1999.

Steve Munroe. Motivation and autonomy for pre-negotiation, September 2005.

Dirk Neumann, Morad Benyoucef, Sarita Bassil, and Julie Vachon. Applying the
montreal taxonomy to state of the art e-negotiation systems. Group Decision
and Negotiation, 12:287{310, 2003. ISSN 0926-2644.

T.D. Nguyen and N. R. Jennings. Managing commitments in multiple con-
current negotiations. International Journal Electronic Commerce Research
and Applications, 4(4):362{376, 2005. URL http://eprints.soton.ac.uk/
260817/.

Thuc Duong Nguyen and Nicholas R. Jennings. Coordinating multiple concur-
rent negotiations. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS
'04, pages 1064{1071, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 1-58113-864-4.

David Norman. Diplomacy ai development environment message syntax, 2006.
http://www.ellought.demon.co.uk/dipai/dpp_syntax.rtf.

Nardine Osman, Carles Sierra, and Angela Fabregues. A propagation and aggre-
gation algorithm for inferring opinions in structural graphs. In Thirteenth In-
ternational Workshop on: trust in agent societies, at AAMAS 2010, Toronto,
Canada, 10/05/2010 2010.

Pere Pardo, Pilar Dellunde, and Llu��s Godo. Argumentation-based negotiation
in t-delp-pop. volume 232, pages 177{186. IOS Press, IOS Press, 2011. ISBN
978-1-60750-841-0.

Simon Parsons and Paolo Giorgini. An approach to using degrees of belief in BDI
agents. In Proc. of the Int. Conf. on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, 1999.

BIBLIOGRAPHY 145

Luis Pe~na, Jose-Mar��a Pe~na, and Sascha Ossowski. Representing emotion and
mood states for virtual agents. In Proc. of the 9th German Conf. on Multia-
gent system technologies, pages 181{188, 2011.

Pablo Pilotti, Ana Casali, and Carlos Ches~nevar. An approach to automated
agent negotiation using belief revision. In Proc. of the12th Argentine Sym-
posium on Artificial Intelligence (40th JAIIO), pages 202 { 212, C�ordoba,
Argentina, 2011.

Jr. Pinho, Orlando, Geber Ramalho, Gustavo Paula, and Patr��cia Tedesco. Se-
quential bilateral negotiation. In AnaL.C. Bazzan and So�ane Labidi, editors,
Advances in Artificial Intelligence - SBIA 2004, volume 3171 of Lecture Notes
in Computer Science, pages 526{535. Springer Berlin Heidelberg, 2004. ISBN
978-3-540-23237-7.

Sylwia Polberg, Marcin Paprzycki, and Maria Ganzha. Developing intelligent
bots for the diplomacy game. In Federated Conference on Computer Science
and Information Systems (FedCSIS’11), pages 589{596, 2011.

Iyad Rahwan, Ryszard Kowalczyk, and Ha Hai Pham. Intelligent agents
for automated one-to-many e-commerce negotiation. In Proceedings of the
twenty-fifth Australasian conference on Computer science - Volume 4, ACSC
'02, pages 197{204, Darlinghurst, Australia, Australia, 2002. Australian
Computer Society, Inc. ISBN 0-909925-82-8. URL http://dl.acm.org/
citation.cfm?id=563801.563824.

H. Rai�a. Negotiation Analysis: The Science and Art of Collaborative Decision
Making. Harvard U.P., 2002.

Warren Raisch. The eMarketplace: Strategies for Success in B2B eCommerce.
McGraw-Hill, Inc., New York, NY, USA, 2002. ISBN 0071380124.

Anand S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable
language. In Proc. of the 7th European workshop on Modelling autonomous
agents in a multi-agent world (MAAMAW ’96), pages 42{55, 1996.

Anand S. Rao and Michael P. George�. Decision procedures for BDI logics.
Journal of Logic and Computation, 8(3):293{342, 1998.

Anand S. Rao and Michael P. George�. Modeling Rational Agents within a
BDI-Architecture. In Proc. of the 2nd Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’91), pages 473{484, 1991.

William Revelle and Klaus R. Scherer. Personality and emotion. In Oxford
Companion to the Affective Sciences. Oxford University Press, 2010.

Jo~ao Ribeiro, Pedro Mariano, and Lu��s Seabra Lopes. Darkblade: A program
that plays diplomacy. In Lu��s Lopes, Nuno Lau, Pedro Mariano, and Lu��s
Rocha, editors, Progress in Artificial Intelligence, volume 5816 of Lecture
Notes in Computer Science, pages 485{496. Springer Berlin / Heidelberg,
2009. ISBN 978-3-642-04685-8.

Alan Ritchie. Diplomacy|a.i. Master's thesis, The University of Glasgow, 2003.

146 BIBLIOGRAPHY

Andrew Rose. The diplomacy centralisation project client-server protocol, 2003.
http://www.daide.org.uk/external/comproto.html.

JS Rosenschein and G Zlotkin. Rules of Encounter. MIT Press, 1998.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003. ISBN 0137903952. URL http://portal.acm.org/
citation.cfm?id=773294.

Alan G. Sanfey, James K. Rilling, Jessica A. Aronson, Leigh E. Nystrom, and
Jonathan D. Cohen. The neural basis of economic decision-making in the
ultimatum game. Science, 300(5626):1755{1758, June 2003.

Arvind Sathi and Mark S. Fox. Distributed arti�cial intelligence (vol. 2). chap-
ter Constraint-directed negotiation of resource reallocations, pages 163{193.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1989. ISBN
0-273-08810-6. URL http://dl.acm.org/citation.cfm?id=94079.94089.

Harold Saunders. Prenegotiation and circum-negotiation: Arenas of the peace
process, 1996.

Jaspreet Shaheed. Creating a diplomat. Master's thesis, Department of Com-
puting, Imperial College Of Science, Technology and Medicine, 180 Queen's
Gate, London, SW7 2BZ, UK, June 2004.

Melvin Shakun. Multi-bilateral multi-issue e-negotiation in e-commerce with
a tit-for-tat computer agent. Group Decision and Negotiation, 14:383{392,
2005. ISSN 0926-2644.

Ari Shapiro, Gil Fuchs, and Robert Levinson. Learning a game strategy using
pattern-weights and self-play. In Computers and Games, pages 42{60, 2002.

R. Sharp. The Game of Diplomacy. A. Barker, 1978a. ISBN 9780213166762.

Richard Sharp. The Game of Diplomacy. 1978b. http://www.diplom.org/ di-
parch/god.htm.

Carles Sierra and John Debenham. The logic negotiation model. In Proc. of 6th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2007),
pages 1026{1033, 2007.

Carles Sierra and John K. Debenham. Trust and honour in information-based
agency. In Proc. of the 5th Int. Conf. on Autonomous Agents and Multi-agent
Systems (AAMAS 2006), pages 1225{1232, 2006.

Herbert A. Simon. The sciences of the artificial (3rd ed.). MIT Press, Cam-
bridge, MA, USA, 1996. ISBN 0-262-69191-4.

Vernon L Smith. Constructivist and ecological rationality in economics. The
American Economic Review, 93(3):465{508, 2003.

Harris Sondak, Margaret A. Neale, and Robin Pinkley. The negotiated alloca-
tions of bene�ts and burdens: The impact of outcome valence, contribution,
and relationship. Organizational Behaviour and Human Decision Processes,
(3):249{260, December 1995.

BIBLIOGRAPHY 147

J. Michael Spivey. The fuzz type-checker for z [computer software], November
2008. (Version 3.4.1) http://spivey.oriel.ox.ac.uk/mike/fuzz/.

J. Michael Spivey. The Z notation: a reference manual (second edition). Pren-
tice Hall International: Hemel Hempstead, England, 1992. http://spivey.
oriel.ox.ac.uk/mike/zrm.

Katia P. Sycara. Distributed arti�cial intelligence (vol. 2). chapter Multiagent
compromise via negotiation, pages 119{137. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1989. ISBN 0-273-08810-6. URL http://dl.
acm.org/citation.cfm?id=94079.94086.

Rustam Vahidov. Situated decision support approach for managing multiple
negotiations. In Henner Gimpel, Nicholas R. Jennings, Gregory E. Kersten,
Axel Ockenfels, Christof Weinhardt, Wil Aalst, John Mylopoulos, Michael
Rosemann, Michael J. Shaw, and Clemens Szyperski, editors, Negotiation,
Auctions, and Market Engineering, volume 2 of Lecture Notes in Business In-
formation Processing, pages 179{189. Springer Berlin Heidelberg, 2008. ISBN
978-3-540-77554-6.

B. Van de Walle, S. Heitsch, and P. Faratin. Coping with one-to-many multi-
criteria negotiations in electronic markets. In Database and Expert Systems
Applications, 2001. Proceedings. 12th International Workshop on, pages 747
{751, 2001.

Jason van Hal. Diplomacy ai - albert. URL \url{https://sites.google.com/
site/diplomacyai/albert}.

Adam Webb, Jason Chin, Thomas Wilkins, John Payce, and Vincent Dedoyard.
Automated negotiation in the game of diplomacy. Master's thesis, January
2008.

Michael P. Wellman and Peter R. Wurman. A trading agent competition for
the research community. In AMEC, IJCAI 1999 Workshop, 1999.

Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R. Jennings.
Negotiating concurrently with unknown opponents in complex, real-time do-
mains. In 20th European Conference on Artificial Intelligence, pages 834{839,
August 2012. URL http://eprints.soton.ac.uk/339064/.

Paul D. Windsor. What's your point. The Diplomatic Pounch Zine, 1999.
Spring 1999 Movement, http://www.diplom.org/Zine/S1999M/Windsor/
point.html.

Michael Winiko�. Jack intelligent agents: An industrial strength platform. In
Multi-Agent Programming, volume 15, pages 175{193. Springer, 2005.

Dajun Zeng and Katia Sycara. Bayesian learning in negotiation. Int. J. Hum.-
Comput. Stud., 48(1):125{141, January 1998. ISSN 1071-5819.

