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Summary 

In industrialized countries, prostate cancer (PCa) is the most common malignancy 

in men, but mortality rates are much lower than those recorded in developing countries, 

reflecting benefits from advances in early diagnosis and effective treatment. However, 

the metastatic disease rather than the primary tumour is responsible for much of the 

resulting morbidity and mortality. Skeletal metastases occur in more than 70% of cases 

of late-stage of PCa and they confer a high level of morbidity, a 5-year survival rate of 

25% and median survival of approximately 40 months. Though fractures and spinal cord 

compression are potential complications, the most common symptom of bone 

metastases is pain. Bone metastases from PCa lead to an accelerated bone turnover 

state that features pathological activation of both osteoblasts and osteoclasts. Raised 

activation of osteoclasts is directly correlated with an increased incidence of skeletal 

complications, cancer progression and death. Further, once tumour metastasizes to 

bone, the metastatic disease become incurable and current therapies are palliative and 

mostly target either tumour cells or osteoclasts. 

Thus, to better understand the biology of PCa bone metastasis and to investigate 

new therapy options it is crucial to develop new animal models. 

In this thesis, we have established new experimental models of PCa bone 

metastasis by intraosseous (i.o.), intracardiac (i.c.) or intratibial (i.t.) inoculation of 

human PCa cells in immunodeficient mice. Extensive bone metastasis were monitored 

by in vivo bioluminescence imaging. Different strategies were performed to describe 

new molecular targets involved in the mechanisms of PCa bone metastasis and to make 

a suitable model for evaluating novel compounds as future therapeutic approaches. 

 

To conclude, these models provide a reliable reproduction of the clinical situation 

and allows characterization and design effective treatments by better understanding the 

molecular mechanisms of PCa bone metastasis. 





 

Resum 

En païssos industrialitzats, el càncer de pròstata (CP) és la neoplasia més 

comunment diagnosticada en homes i la segona causa de mort relacionada amb càncer, 

donat que els nivells de mortalitat en aquesta població són molt més baixos que els que 

es troben en els païssos en desenvolupament, es veu un clar benefici en els avenços tant 

en el diagnòstic precoç com el desenvolupament de teràpies eficients. No obstant, la 

disseminació metastàtica més que el tumour primari en sí és la responsable dels 

problemes de mortalitat i morbiditat associats al CP. Les metàstasis esquelètiques estan 

presents en més d’un 70% dels casos de CP avançat i confereixen alts nivells de 

morbiditat, un 25% de supervivència als 5 anys i una mitjana de supervivència de 40 

mesos després de ser diagnosticats. Tot i que les fractures patològiques i la compressió 

de la columna vertebral són les complicacions més probables pel pacient metastàtic, el 

major símptoma és el dolor. Les metàstasis òssies del CP comporten un estat 

d’acceleració de la remodelació òssia que es caracteritza per una activació patològica 

tant dels osteoblasts com dels osteoclasts. Aquesta elevada activació dels osteoclasts 

està directament correlacionada amb un increment en la incidència de les complicacions 

òssies, de la progressió tumoural i la mort. A més, una vegada el tumour metastatitza a 

os, la malaltia esdevé incurable i les teràpies actuals són solament pal·liatives i 

principalment es dirigeixen a les cèl·lules tumourals o als osteoclasts. 

Per tant, per entendre millor la biologia de les metàstasis òssies del PC i poder 

investigar noves teràpies és important desenvolupar nous models animals. 

En aquesta tesi, s’han establert nous models experimentals de metàstasis del CP 

mitjançant la inoculació de cèl·lules humanes en ratolins immunodeficients per diferents 

vies, intraòssia, intracardíaca o intratibial. Finalment, diferents estratègies s’han dut a 

terme per descriure noves dianes moleculars involucrades en el mecanisme de les 

metàstasis i poder desenvolupar un model adequat per la evaluació de possibles 

compostos candidats a ser futures aproximacions terapèutiques. 

Per concloure, aquests models proporcionen una fiable reproducció de la situació 

clínica i permeten tant la caracterització com el diseny de tractaments efectibles per 

compendre millor els mecanismes moleculars de les metàstasis òssies del CP. 
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Definitions 

Angiogenesis: The pathological growth of new blood vessels to support tumour growth. 

Chemokine: A group of small signaling proteins (cytokines) that are usually secreted by 

immune cells. 

Emboli: Clumped tumour cells that typically lodge in blood vessels. 

Epithelial-mesenchymal transition: The conversion from an epithelial to a mesenchymal 

phenotype, which is a normal component of embryonic development. In carcinomas,  

this transformation results in altered cell morphology, the expression of mesenchymal 

proteins and increased invasiveness.  

Extracellular matrix: A complex, three-dimensional network of very large 

macromolecules that provides contextual information and an architectural scaffold for 

cellular adhesion and migration.  

Extravasation: Exit of tumour cells out of capillary beds into the parenchyma of an organ. 

Gene ontology: is a major bioinformatics initiative to unify the representation of gene 

and gene product attributes across all species and databases. 

Gleason grade:  The ‘gold standard’ for grading prostate cancer, which is used by 

pathologists worldwide. This system involves assessing both the predominant and 

secondary pattern of gland formation within a prostate sample. The sample is scored to 

create a Gleason ‘sum’, ranging from 2 to 10, with the highest number indicating the 

most aggressive cancer. It is the most important prognostic marker. 

Haematogenous dissemination: The spread of cancer cells through the bloodstream. 

Histological grade: Morphologically identifiable steps of tumour progression that are 

used to classify disease stage. 

Immunodeficient: A condition in which the body's immune response is damaged, 

weakened, or is not functioning properly. 

Immunocompatible: Compatible with a targeted immune system.   

Immunocompromised: Having the immune response attenuated by administration of 

immunosuppressive drugs, by irradiation, by malnutrition, or by certain disease 

processes (e.g., cancer). 
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Integrins: A family of more than 20 heterodimeric cell-surface extracellular-matrix 

receptors. They connect the structure of the extracellular matrix with the cytoskeleton 

and can transmit signaling information bidirectionally.  

Intravasation: Entry of tumour cells into the bloodstream. 

Melanoma: Skin cancer that is initiated by the transformation of melanocytes. 

Metachronous seeding: multifocal development of cancers into other organs by cancer 

cell seeding. 

Metastasis assays: In spontaneous metastasis assays, the tumour cells are inoculated 

either subcutaneously or orthotopically in animals, and spontaneous metastases from 

this primary site to distant locations are monitored. In experimental metastasis assays, 

tumour cells are injected into the bloodstream (for example, intravenously for lung 

metastasis, into the left heart ventricle for bone metastases and into the portal vein for 

liver metastases), thereby circumventing the first steps in the metastatic process.  

Metastasis initiation genes: A gene that is engaged in the invasion and intravasation of 

metastatic cells. 

Metastasis progression gene: A gene that has dual functions in mediating primary 

tumourigenesis and metastatic colonization. 

Metastasis suppressor gene: A gene in which loss of function specifically enhances 

metastasis without affecting primary tumour growth. 

Metastasis virulence gene: A gene that is exclusively involved in distant organ 

colonization. 

Microarray: An array of polymerase chain reaction products (corresponding to either 

genomic or cDNA sequence) that is deposited onto solid glass slides. 

Organ tropism: A predilection of a primary tumour to spread to specific secondary 

organs. 

Orthotopic site: Transplant of tumour cells into the anatomical location of an animal that 

best recapitulates the original source of primary tumourigenesis. 

Osteoclastogenesis: The differentiation and activation of osteoclasts that mediates bone 

resorption. 

Paracrine factors: A form of bioregulation in which a secretion produced by one cell type 

in a tissue diffuses through the tissue and affects another cell type in the same tissue. 

Parenchyma: The main functional portion of an organ. 
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Primary tumour: Cancer that arises from the malignant conversion of cells from an initial 

organ site. 

Serial Analysis of Gene Expression (SAGE): A technique for the identification and 

quantitation of transcripts from two sources, including differentially expressed genes. 

SAGE is based  on the isolation of short tags from a defined location within a transcript, 

which are sequenced as concademers and quantitated.  

Subtractive hybridization: A technique that is used for identifying differentially 

expressed transcripts between two sources. cDNA from one source is hybridized to 

mRNA from another source to remove comparably expressed transcripts, and the 

resulting differentially expressed cDNAs are separated by chromatography.  

Synchronous seeding: cancer lesions that have arisen from the same primary tumour 

Syngeneic: means genetically identical, or sufficiently identical and immunologically 

compatible as to allow for transplantation. 

Stromal activation: Stimulation and mobilization of host cells in the microenvironment 

that surrounds a tumour. 

Xenogeneic: Originating outside the organism or from a foreign substance introduced 

into the organism. 

Xenograft: Implantation of human tumour cells into an immunocompromize animal.
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Abbreviations 

ADT – Androgen-deprivation therapy 

AS – Active surveillance 

AP – Acid phosphatase 

BC – Before Christ 

BLI – Bioluminescence imaging 

BMP – Bone morphogenetic protein 

BMPR – Bone morphogenetic protein 

receptor 

BPH – Benign prostatic hyperplasia 

BSP – Bone sialoprotein 

CRPC – Castration-resistant prostate 

cancer 

COX – Cyclooxygenase 

DKK – Dickkopf-related protein 1 

DRE – Digital rectal examination 

EBRT – External beam radiotherapy 

ECM – Extracellular matrix 

ET – Endothelin 

FGF – Fibroblast growth factor 

FFPE – Formalin-fixed paraffin-

embedded 

GO – Gene Ontology 

HT – Hormonal therapy 

i.c. – intracardiac 

IGF – Insuline-like growth factor 

IL – Interleukine 

i.o. – intraosseous 

i.p. – intraperitoneal 

it. – intratibial 

MBD – Metastatic bone disease 

M-CSF – Macrophage colony-stimulating 

factor 

MMP – Matrix metalloproteases 

MS – Mass spectrometry  

OPG – Osteoprotegerin 

OPN – OSteopontin 

PAGE – PolyAcrylamide Gel 

Electrophoresis 

PAP – Prostatic acid phosphatase 

PB – Prostate biopsy 

PCa – Prostate cancer  

PGE2 – Prostaglandina E2 

PSA – Prostate specific antigen 

PTHrP – Parathyroid hormone-related 

protein 

RANK – Receptor Activator of nuclear 

factor Kappa-beta 

RANKL – Receptor activator of nuclear 

factor kappa-beta ligand 

RP – Radical prostatectomy 

RT – Radiation therapy 

SCID – Severe combined 

immunodeficiency 

SDF-1 – Stromal-derived factor 1 

SDS – sodium dodecyl sulfate 

SILAC – Stable isotope labeling with 

amino acids in cell culture 

TGFβ – Transforming growth factor beta 
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uPA – Serine-type proteinase urokinase-

type plasminogen activator 

uPAR – Serine-type proteinase 

urokinase-type plasminogen activator 

receptor 

VEGF – Vascular endothelial growth 

factor 

WW – Watchful waiting 
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Introduction 

I. CANCER AND METASTASES 

a. Background 

According to Medicine World (http://medicineworld.org), the first records of 

cancer appeared thousands of years ago. Cancer was documented during the ancient 

Egyptian period at a time when surgery was practiced, with an extremely radical 

treatment. Indeed, there was no anesthesia or antisepsis available. The first description 

of cancer takes place in approximately 1600 BC At this time, a papyrus described cases 

of tumours in the breast. The document comments about the disease: “There is no 

treatment”. Nowadays, despite the technological advances, cancer diseases still 

constitute a major public health problem.  

Cancer is one of the most important health problems in our society, both in 

terms of morbidity and social impact. It affects the economy and quality of life of one in 

every four people throughout their lifetimes [1]. 

According to several agencies working in the cancer registries of Europe, such as  

EUROSTAT and WHO, there were an estimated 3.2 million new cases of cancer and 1.7 

million deaths from cancer in 2008. Prostate cancer is the most numerous cancer 

diagnosed in men (382,000, 22.2% of the total), followed by lung (291,000, 17.0%), 

colorectal (231,000, 13.5%), bladder (110,000, 6.4%) and stomach (89,000, 5.2%) 

cancers [2]. 

Despite recent advances in cancer research the understanding of the molecular 

mechanisms that allow for the initiation and the progression of cancer represent a major 

objective in oncology research. 

 

b. Cancer progression: general consensus 

Genetic instability and/or genomic lesions in a plethora of genes characterize 

cancer disease. Activation of oncogenes (responsible for proteins who promote the 
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growth of the tumour), coupled with inhibition of tumour suppressor genes contribute 

to the transformation of healthy into malignant cancer cells. If these modifications allow 

for a proliferative advantage of the malignant cells over their normal counterpart, the 

result is a net abnormal cell growth and tumour formation (Figure 1). However, 

sustained growth is not the only hallmark that a tumour cell must possess in order to 

establish itself. Once the growth brakes have been removed, the tumour cell needs to 

change its environment such that the resources needed to fuel its development are 

readily supplied. Therefore, cancer occurs through the acquisition of several pro-cancer 

characteristics and can take several years before it develops. Accordingly, cancer 

progression is generally depicted as a multistep transformation, and a general consensus 

has been reached to describe the different steps that are required for a successful 

malignant transformation [3].  

 

 

Figure 1. The hallmarks of cancer: properties required for a successful tumour malignancy. 

From REF [3]. 
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These steps were defined to simplify the high complexity of a neoplastic disease. The 

steps include (i) the sustaining of the proliferative signaling, (ii) the evasion of growth 

suppressors, (iii) the resistance to the cell death, (iv) the enabling of replicative 

immortality, (v) the induction of the angiogenesis, (vi) the activation of invasion and 

metastasis, (vii) the reprogramming of the energy metabolism, and (viii) the escape of 

immune destruction [3].  

In healthy cells, repair mechanisms exist to preserve the genomic integrity, 

keeping the probability that a critical mutation occurs during lifetime low. Even with 

these checks in place cancers are relatively frequent among the human population. This 

incidence can be explained by the emergence of a mutation in the DNA repair system 

itself (e.g. p53) that is responsible for the genome instability [4, 5]. However, genetic 

and epigenetic alterations in the cancer cells genome are not generally sufficient to 

allow the development of tumours and metastasis. Indeed, tumours are complex tissues 

composed by different cell types (cancerous but also surrounding normal cells) that 

interact with each other to promote tumour progression. Therefore, tumours cannot be 

simplified by the biology of cancer cells alone, but it is essential to consider the tumour 

as a whole [3, 4].  

 

c. Metastatic cascade 

An estimated 90% of cancer related deaths are attributed to the development of 

metastases, highlighting the urgent need for novel treatment strategies in this area [5, 

6]. Metastases occur following the spread of cancer cells from a primary site resulting in 

the formation of secondary tumours in distant organs. Metastasis is common faith 

amongst all malignant tumours, but its progress is specific to the cancer type. 

Determinant for the secondary site of novel tumour growth is the origin of the cancer 

cells, their affinity to a specific tissue, and the ability of cancer cells to adapt to the novel 

environment. Interestingly, in 1889 Stephen Paget already hypothesized that different 

types of cancer can develop metastases in specific secondary sites and proposed the 

“dependence of the seed (= cancer cells) on the soil (= the distant organ)” concept [7]. 

This idea was contested in the 1920s by James Ewing, who proposed that adaptations of 
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the circulating cells between the primary tumour and the metastatic site were enough 

to form metastasis. In fact, these theories are not mutually exclusive, and both concepts 

can contribute to a successful metastatic process (Figure 2).  

 

Figure 2. Founders who proposed the two major theories to explain organ selectivity of 

metastasis. Left, Stephen Paget (1889) with his “Seed and Soil” Hypothesis. Right, James Ewing 
(1929) with the “Mechanical-circulatory” Hypothesis 
 

Nowadays, the development of a metastasis is typically described as a multistep 

process (Figure 3) [5, 6, 8]. The process starts with an initial tumourigenic mutation with 

potential to induce proliferative signals and/or the ability to perform indefinite cell 

division [9]. Secondly, to form distant tumours, cancer cells must adapt their phenotype 

to become motile in order to migrate through the extracellular space. This mobility can 

be explained by the loss of cell adhesion and the increase in factors that allow the 

degradation of the extracellular matrix. Furthermore, motility of cells facilitates the 

intravasation process (movement of the cancer cells through the endothelial cells layers) 

via the secretion of vascular destabilizing factor produced by the cancer cells. 

Subsequently, the vasculature is disrupted and cancer cells can move through the 

circulation, which is the major mode of cancer cell dissemination to distant organs. Once 

the metastatic cells reach the circulation, some properties of the vasculature system are 
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involved in the dissemination of metastatic cells. For example, metastatic cells can 

protect themselves from the immune system by interacting with the platelets. 

Moreover, the resulting aggregates can be responsible of the metastatic cells emboli 

playing a role during the extravasation [10, 11].  

 

 

Figure 3. Different stages of a metastasis process. From REF [5]. A metastasis occurs through 
the multistep acquisition of capabilities that allow malignant cells of a primary tumour to 
disseminate and colonize a distant organ. The specific steps of this sequence may vary between 
the tumour types and the primary tumour site. 
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Although the migration of cancer cells is well-orchestrated and not a random 

process, the identification of the basic cellular and molecular processes that regulate 

their movement and subsequent arrival and survival at distant sites remain elusive [12]; 

however, little doubt exists that modulation of both the local host and tumour 

microenvironments is critical for the completion of the complex, multistep metastatic 

cascade (Figure 4). 

 

Figure 4. Steps involved in tumour cell metastasis from a primary site to the skeleton. Adapted 
from REF [13]. A. The primary tumour. B. Once in the vasculature, tumour cells (shown in green) 
interact with resident host blood-borne cells, such as erythrocytes, T cells and neutrophils and 
with platelets, which facilitate survival in the circulation. In the bone marrow, the tumour cells 
escape from the vasculature (extravasation) into the bone marrow where they interact with 
resident bone marrow cells for subsequent survival and eventual activation of resident bone 
cells, such as osteoclasts (shown in red). C. As a result, a bone metastatic foci is formed.  

 

All the steps in the process of metastasis are sequential and depend both on the 

target organ as well as the primary tumour type. Therefore the process of metastatic 

tumour dissemination may take variable amounts of time and is usually characterized 

with a latency period during which no detection can be made in the clinics (Figure 5) 

[14]. For example, the 5-year recurrence-free rate in lung carcinoma patients is ~60 % in 

comparison with 98 % for breast cancer [15].  
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Figure 5. Hypothetic fates of cancer cells in the metastatic site, following the migration of 

circulating cancer cells in a distant organ. From REF [16]. 
 

 

Essentially it is still not know if the cancer cells are conditioned to metastasize in 

the primary tumour itself (deciding which tissue will/can be colonized) or they are first 

disseminated and then adapt their phenotype following the selective pressure of the 

novel microenvironment (Figure 6). 

 

 

 
Figure 6. Possible mechanisms for the development of a metastasis. From REF [17]. A. 
Metastasis comes from a distinct group of cells present in the primary tumour. B. Metastasis 
comes from the tumour mass and changes its phenotype as a result of a selective adaptation to 
the novel microenvironment. 
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Box 1. The metastasis process and its requirements. Adapted from REF [18] 

 

 

 

 

 

One of the most intriguing biological aspects of metastasis is the pattern of organ 

dissemination. The spread of tumour cells frequently includes invasion of local lymph 

nodes through the lymphatic system. However, aggressive tumour cells typically enter 

the bloodstream and reach distant tissues [18]. This dissemination has stereotypical 

patterns of organ tropism that reflects the heterogeneity of tumour cells and depends 

on the cancer type (Table 1).  

Prerequisites for metastasis 

To metastasize, malignant cells must fulfill certain tumourigenic functions that become 
prerequisites for metastasis. These include: unlimited proliferation, evasion of cell-intrinsic 
and environmental constraints, attraction of a blood supply, and the capacity to detach 
and move away from the original location. Tumour-initiating mutations, alterations that 
are secondary to genomic instability and epigenetic changes, underlie the acquisition of 
these functions in developing tumours. As tumours grow, they must selectively conquer 
environmental pressures including cytotoxic immunity, low oxygen tension and an acidic 
environment, such functions must remain active throughout malignant progression, as 
they favour the emergence of metastasis-prone tumour cells in the context of local and 
distant microenvironments. 

 

Metastatic initiation and dissemination 

Dissemination starts in earnest when aggressive tumour cells become invasive and readily 
enter the bloodstream through the vasculature that they have attracted. Intravasation is 
also enhanced by an epithelial-to-mesenchymal transition that endows carcinoma cells 
with embryonic plasticity and added motility. The rate of malignant cell shedding generally 
increases with tumour size, but dissemination can occur in the early stages of the primary 
tumour, to the point that some metastases have no known primary source.  

 

Metastatic colonization 

The dissemination of tumour cells to various organs is influenced by circulation patterns 
and the mechanical lodging of tumour cells in capillary beds. Adhesion molecules and 
chemokine sources also have important roles. Metastatic cells enter the parenchyma of a 
target organ by breaching the capillaries in which they are embedded. Active colonization 
can be achieved by the co-option of organ-specific components of the tumour 
microenvironments, such as the activation of bone-resorbing osteoclasts by breast cancer 
cells during osteolytic metastasis. Full metastatic colonization can occur by immediate 
growth of tumour cells upon their extravasation, or after a prolonged period of 
micrometastatic dormancy. The survival of dormant lesions, their eventual activation and 
outgrowth requires additional tumour-intrinsic or tumour-extrinsic factors. As each organ 
presents a highly specialized microenvironment, distinct sets of functions are thought to be 
required for colonizing different tissues. 
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Table 1. Stereotypical patterns of tumour metastasis to distant organs. From REF [18] 

 
 

Patients can harbor simultaneous metastases in different organs, and for each 

patient it is unknown if such lesions have arisen from the same primary tumour 

(synchronous seeding), or whether they result from a sequence of seeding events in 

which some metastases themselves subsequently colonize other organs (metachronous 

seeding) [19]. Moreover, disseminated tumour cells could theoretically also return to 

their original site (self-seeding), thereby accounting for the progressive accumulation of 

aggressive cells in primary tumours and local recurrences. [20] 

Along these lines several questions have to be answered. What are the 

phenotypic differences between primary tumour and corresponding metastasis? Do 

disseminated cancer cells develop the ability to colonize the host organ during the 

multistage process? Which genes/proteins enable metastatic cells dissemination, 

survival and growth?  

 

i. Models of metastasis 

The metastatic properties of tumour cells were extensively investigated in the 

late 1970s and early 1980s by means of ‘experimental metastasis’ assays. By studying 

the metastatic behaviour of cultured B16 melanoma cells that were injected 

intravenously into mice, researchers found that cells derived from outgrowths of these 

cells (metastases) have a higher metastatic potential than those derived from the 

original cell line [21]. These observations led to a metastasis model, which proposed that 
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most primary tumour cells have a low metastatic potential, and that during later stages 

of tumourigenesis rare cells acquire metastatic capacity through additional somatic 

mutations [22] (Figure 7.A). 

A number of contrasting theories have re-emerged that provide possible 

explanations for the metastatic selectivity of cancer. 

The ‘traditional metastasis model’ suggests that select subpopulations of 

tumour cells acquire metastatic capacity during the late stages of tumourigenesis. This 

concept seems improbable, as numerous investigators have demonstrated that the vast 

majority of tumour cells, independent of tumour stage, have the potential to develop 

into a metastasis [23, 24] (Figure 7.B). 

The ‘dynamic heterogeneity theory’ suggests that the metastatic potential of 

tumour cells is determined by the rate at which tumour variants with increased 

metastatic potential occur within the primary tumour site [25] (Figure 7.C). 

The ‘clonal selection theory’ proposes that all primary tumours evolve from the 

same cell, and development of a primary tumour is the consequence of a series of 

multiple molecular changes resulting in clonal selection. This complex process 

specifically alters the phenotype of the tumour cell, allowing acquisition of different 

tumour-specific characteristics, such as the ability for site-specific metastasis [26] 

(Figure 7.D).  

The ‘stem cell theory’ of cancer proposes that the site selectivity of metastasis is 

the result of the activation of the so-called cancer stem cell compartment within a 

specific organ, such as the breast [26]. 

 The ‘genometastasis hypothesis’ proposes that metastasis occurs through 

transfection of susceptible cells in distant organs with dominant, plasma-circulating 

oncogenes that are derived from the primary tumour [27, 28] (Figure 7.E). 

As these metastatic models are not mutually exclusive, it is reasonable to assume 

that a variety of as yet uncharacterized genetic, molecular, cellular and cell type-specific 

mechanisms regulate tumour initiation and metastasis to and survival within the 

skeleton, presumably involving features of all theories [26]. 
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Figure 7. Models of the metastatic process. From REF [23]. A. The traditional model of 
metastasis suggests that only subpopulations of tumour cells (red) acquire metastatic capacity 
late in tumourigenesis. B. Spontaneous metastasis assays indicate that all tumour cells have the 
capability to develop a metastasis. C. The ‘dynamic heterogeneity’ model proposes that the 
frequency with which metastatic variants arise within the primary tumour determines its 
metastatic potential. D. The ‘clonal dominance’ theory proposes that metastatic subclones 
within a primary tumour can overgrow and dominate the tumour mass itself. E. The 
‘genometastasis hypothesis’ proposes that metastasis occurs through transfection of susceptible 
cells in distant organs with circulating oncogenes.  

 

ii. New models of metastatic process 

 Findings from DNA-microarray studies have revived the discussion about the 

metastatic process. A study by Ramaswamy and colleagues shows that different types of 

human primary adenocarcinoma harbor the same gene-expression signature that is 

associated with metastasis [29]. Furthermore, it was reported that pairs of human 

primary breast carcinomas and their distant metastases, which developed years later, 
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are highly similar at their transcriptome level, as are pre-malignant, pre-invasive, and 

invasive breast cancers [30, 31].  

 A variation to this model was proposed by Massagué and colleagues, in which a 

human breast cancer cell line was shown to harbor, besides a poor-prognosis signature, 

an additional gene set that mediated osteolytic bone metastasis [32]. These findings 

were interpreted to bridge the gap between the subpopulation metastasis model and 

the one based on the microarray data of human tumours (Figure 8.A) [22, 29, 33]. The 

authors propose the intriguing model that primary tumours with metastatic capacity 

possess the poor-prognosis signature and, in addition, subpopulations of cells also have 

a ‘superimposed’ tissue-specific gene-expression profile that predicts the site of 

metastasis (Figure 8.B)[32].  

 

 

 

 

 

Figure 8. New models of the 

metastatic process in breast cancer. 

From REF [23]. A. Gene-expression 
profiling of human primary breast 
tumours can predict metastasis risk 
(‘poor-prognosis’ (red) versus ‘good-
prognosis’ (pink) signature), which 
indicates that the capacity to 
metastasize might be acquired early 
during tumourigenesis. B. Primary 
tumours with metastasizing capacity 
display the poor-prognosis signature 
and an additional tissue-specific 
expression profile predicting the site of 
metastasis. C. The parallel evolution 
model proposes that the dissemination 
of metastatic cancer cells occurs early 
in oncogenesis and independently from 
tumour cells at the primary site. D. 
Only breast cancer stem cells, not the 
nontumourigenic bulk of the tumour, 
have the ability to metastasize and 
form new tumours. 
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 The ‘parallel evolution model’ proposes that the dissemination of metastatic 

cancer cells occurs early in oncogenesis and independently from tumour cells at the 

primary site (Figure 8.C) [34]. This theory clearly challenges the paradigm that tumour 

progression to metastasis occurs through clonal genomic evolution.  

 An alternative, attractive model of metastasis is based on the finding that 

tumours might contain ‘cancer stem cells’ - rare cells with indefinite proliferative 

potential that drive the formation and growth of tumours [35]. Only breast cancer stem 

cells, not the non-tumourigenic bulk of the tumour, have the ability to metastasize and 

form new tumours (Figure 8.D) [36]. 

 

iii. Metastasis theories: seeds, soils and signatures  

 Already noted by the Egyptians of 1500 BC, malignant disease was described with 

remarkable coherence by Greek physicians in the time of Hippocrates (fifth century BC), 

who saw axillary swelling as a sign that breast tumours would be followed by secondary 

growths of fatal outcome. However, such lesions were considered as independent 

malignancies that arose from the spread of toxic humors. The humoral theory prevailed 

until the eighteenth century and beyond, when the discovery of the cell as the basic unit 

in live tissue stimulated new debate, with some viewing metastases as degenerate cell 

components arising from a primary tumour [18].  

 Congenial soils. Preference of various tumours to metastasize to certain organs 

must imply a hospitable environment in those tissues [7]. Building on this, Paget 

proposed that tumour cells (‘seeds’) must be predisposed to arrest and proliferate only 

in those anatomical sites (‘soil’) that provide a congenial ground - a basic tenet of his 

seed-and-soil hypothesis [7]. Ewing later postulated that the direction of circulation 

alone influences the distribution of metastasis. The importance of vasculature was 

further supported by mechanical distinctions between lymphatic and haematogenous 

dissemination [37]. Eventually, these disparate views were reconciled in the proposal 

that circulatory routes influence the distribution of cancer cells, but the eventual 

outgrowth of macrometastases depends on the seeding of compatible tissues [38].  

 Darwinian concepts. Inspired by evolutionary theory, neoplastic development 

started to be viewed as a process of natural selection, with genomic instability producing 
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variant cell populations from which aggressive clones emerge, suggesting that 

metastatic progression might require the acquisition of additional genetic alterations 

that confer a selective advantage to rare clones in the tumour cell population [22]. 

  Pre-determining gene-expression signatures. Technological advances derived 

from the sequencing of the human genome have recently enabled the genome-wide 

analysis of tumours. Bioinformatic analysis from primary tumour samples has uncovered 

complex gene-expression patterns, or ‘signatures’ that can predict the risk of metastatic 

recurrence. According to this model, metastasis would be largely pre-determined by the 

combined action of mutations that give rise to a locally aggressive primary tumour. In 

this case, the acquisition of further pro-metastatic changes by rare variant clones would 

have only a complementary role [39].  

 Towards an integrative view. Because genetic instability enables clonal 

evolution, this suggests that some cells acquire mutations and disseminate early on, 

after which they continue to evolve independently of primary tumour cells. Whether 

overt metastasis eventually emerges from a progenitor pool that is present in such early 

seeding, or from the later dissemination of cells that acquired their aggressiveness in the 

primary tumour, remains an open question. These diverse lines of evidence can be 

assembled into an integrative model in which the proclivity to disseminate can be 

acquired as a developing tumour becomes locally aggressive, whereas the outgrowth of 

distal colonizing cells necessitates further selection from subsequent genetic 

heterogeneity. The cell type of origin and the circulation pattern represent other 

important factors [40].  

 

iv. Classes of metastasis genes 

The terms ‘metastasis’ or ‘metastatic spread’ have been rather liberally used to 

describe individual features of an aggressive tumour. Genes that mediate the initial 

formation and progression of tumours can confer tumourigenic properties, but might 

not specifically mediate the steps of metastasis. Genetic alterations that drive 

tumourigenic functions remain indispensable in metastatic cells, as shown by the clinical 

success of drugs [18]. Several classes of genes can be distinguished that fulfill these 

criteria (Figure 9). 
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Metastasis initiation genes. Includes genes that provide an advantage in a 

primary tumour and, in so doing, pave the way for tumour cells to escape into the 

circulation. Most genes that underlie tumour cell motility, invasion or angiogenesis 

would fall into this class. Invasiveness and local angiogenesis are therefore important 

events for metastasis, although they are not in themselves sufficient. Formation of 

distant metastases depends on whether some circulating tumour cells - usually a tiny 

minority of them - manage to enter and eventually overtake the parenchyma of a target 

organ. Genes that mediate the local progression of a primary tumour are not selected in 

response to the pressures that exist in distant organs, and so they might not be 

expected to satisfy demands that are unique to particular organ microenvironments 

[18].  

Metastasis progression genes. Genes that fulfill certain rate-limiting functions in 

primary tumour growth and other specific functions in metastatic colonization. These 

genes are thus distinguished from oncogenes that carry out the same cell-autonomous 

transforming function throughout the course of a malignant disease. The specific 

advantage might be restricted to one particular target organ, in which case metastasis 

progression genes would mechanistically couple primary tumour progression and tissue-

specific spread. As such, these genes can be found within gene-expression signatures 

that correlate certain primary tumours with risk of organ-specific dissemination [18].  

 ‘Metastasis-virulence’ genes. Genes that provide a selective advantage in 

secondary sites but not in the primary tumour. These genes participate in metastatic 

colonization but not in primary tumour development. Consequently, metastasis 

virulence genes add to the aggressiveness of metastatic tumour cells in a secondary site. 

Such genes would rarely be present in primary tumour ‘poor-prognosis’ gene-expression 

signatures, as their function would not provide a selective advantage in primary tumours 

[18].  
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Figure 9. Classes of genes participating in the metastasis process. From REF [18]. ‘Metastasis 

initiation’ genes are those that provide an advantage in primary tumours, paving the way for 
tumour cells to enter the circulation. ‘Metastasis progression’ genes are those that fulfill certain 
rate-limiting functions in primary tumour growth, and other specific functions in metastatic 
colonization. ‘Metastasis virulence’ genes are those that provide a selective advantage in 
secondary sites but not in the primary tumour, thus participating in metastatic colonization but 
not in primary tumour development. Metastasis genes might act from the tumour cells in the 
primary site (blue cells) or their metastatic derivatives in a distant organ (orange cells).  
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Box 2. Metastatic colonization. Adapted from REF [41] 

 

   

 

Metastatic colonization is the outgrowth of tumour cells after they have arrived at a distant 
site. The contribution of angiogenesis to the outgrowth of micrometastases, so that they 
form tumours unlimited by the diffusion range of oxygen, is well described, and inhibitors 
are in clinical trial.  

 

However, an incompletely understood component of metastatic colonization concerns the 
signal responsiveness of tumour cells in a distant location to the local microenvironment, 
paracrine signals and stress conditions. Devoid of the cell–cell, cell–extracellular-matrix and 
cell–local-growth factor interactions that are present at the primary tumour site, it can be 
hypothesized that the tumour cell that is resistant to apoptotic signals (or, conversely, 
sensitive to local survival factors), stimulated to proliferate by locally available cytokines 
and/or able to differentiate into a more independent and invasive form would have a 
survival advantage.  

 

As an example, the ability of bone-metastasizing prostatic carcinoma cells to preferentially 
adhere, spread and proliferate on type I collagen,which is found in the bone-marrow 
extracellular matrix.  

 

Data from this emerging field dictate that the responses of tumo cells that are grown as a 
primary tumour might be distinct from those at a metastatic site. As most primary tumours 
are removed by surgery and radiotherapy, the goal of most cancer chemotherapy is to 
eliminate metastatic cells or to halt metastatic colonization. Differences in signalling in 
tumour-cell colonization at a metastatic site might therefore affect the effectiveness of 
cancer therapies.  



Introduction 

41 | P a g e  

 

II. PROSTATE CANCER 

a. The prostate gland 

 Researchers do not know all the functions of the prostate gland. However, it is 

known that the prostate gland plays an important role in both sexual and urinary 

function. It is common for the prostate gland to become enlarged as a man ages, and 

many men experience some type of prostate problem in their lifetime. 

 The prostate gland surrounds the neck of both bladder and urethra in front of 

the rectum. It is partly muscular and partly glandular, with ducts opening into the 

prostatic portion of the urethra. It is made up of three lobes: a center lobe with one lobe 

on each side (Figure 10). 

 

Figure 10. The human prostate. Adapted from http://en.wikipedia.org. A. Localization of the 
prostate in humans, adapted from http://en.wikipedia.org/. B. Prostate zones: a, central zone 
(CZ); b, fibromuscular zone (AFZ); c, transitional zone (TZ); d, peripheral zone (PZ); e, periurethral 
region, adapted from [42] C. Prostate lobes; lateral lobes, anterior lobes, median lobe and 
posterior lobe. 
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The prostate gland can suffer some of the following benign prostate problems: 

 Benign prostatic hyperplasia (BPH): an age-related condition of the prostate that 

is not malignant. Although it is not cancer, BPH symptoms are often similar to those of 

prostate cancer. 

 Prostatitis: inflammation or infection of the prostate gland characterized by 

discomfort, pain, frequent or infrequent urination, and sometimes fever. 

 Prostatism: the symptom of decreased urinary force due to obstruction of flow 

through the prostate gland. The most common cause of prostatism is BPH.  

 Prostatalgia: pain in the prostate gland, also called prostatodynia. It 

is frequently a symptom of prostatitis. 

 

b. Epidemiology: incidence and mortality 

Prostate cancer (PCa) is the most commonly diagnosed cancer among European 

and American men (24.1% of all cases) [43], and it is the second most common cause of 

cancer death among men [2] (Figure 11). In 2012 in the United States, PCa alone will 

account for 29% (241,740) of incident cases and it is estimated that 28,170 (9%) men will 

die as a result of this disease [1].  

Even though the introduction of the PSA test in the late 1980s of the past century 

has led to a dramatic increase its detection [43], the risk of developing this type of 

cancer during a lifetime is estimated at 1 in 6 men in the US, and the risk of death due to 

this disease is 1 in 36 [44].  
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Figure 11. Cancer incidence. Adapted from REF [1]. A. Trends in incidence rates for selected 
cancers in males in United States from 1975 to 2008. B. Trends in death rates among males for 
selected Ccancers in United States from 1930 to 2008. 

 

PCa is a chronic and progressive disease frequently accompanied by irreversible 

and lethal metastasis. PCa is notorious for its varied geographic distribution across the 

world [45]; a rare disease in Asia and Africa, whereas it is frequently diagnosed in other 

regions, especially in the West, where PCa is viewed as an ageing-related malignancy 

preferentially occurring in certain ethnic groups [46]. 

 

c. Etiology and pathogenesis 

 Defining the etiology, so as to provide measures of prediction and prevention, is 

the most priority of PCa research. During the last 20 years a large number on studies 

focusing on the influence of different risk factors on PCa incidence were published. The 

most important risk factors are age, race, family history, genetic and hormonal factors 

among other factors such as infective agents or diet. Age is an essential factor in PCa 

debut; while in males under 45 years PCa is unusual, as males get older, the incidence is 

progressively increasing, with a peak around 65 - 70 years. About genetic factors, 

current theories consider that PCa has a complex etiopathogeny, being caused by a 

multitude of factors. There are 2 general types of PCa, familial and sporadic. Familial 

prostatic disease is chiefly recognized because the cancer appears at early ages (< 55 
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years old) in the affected members of the same family. However, in sporadic PCa, the 

genetic material is damaged by external ambient exposure during the life of the 

individual. Both types of cancers have different incidence rates; in familial or hereditary 

cancer, the rates reach 15%, whereas in sporadic carcinoma, the rates approach values 

of 80 or 90% [47].  

 The vast majority (95%) of the malignant prostate tumours are adenocarcinomas 

(Figure 12), with origin in the epithelial cells covering the prostatic acini and glandular 

ducts. Over 50% of diagnosed prostate adenocarcinomas are already multifocal, but the 

volume of the isolated tumours is small (less than 0.5 mL) [48].  

 

 

Figure 12. PCa features. From http://webpathology.com. A. Low grade adenocarcinoma where 
the majority of the glands are relatively uniform in size. B. Medium grade adenocarcinoma 
shows abundant amphophilic cytoplasm, enlarged nuclei with prominent nucleoli. C. High grade 
adenocarcinoma shows fused glands, no intervening stroma and disruption of the basal cell 
layer.  

  

Histological grading of PCa is very important, allowing to evaluate the tumour 

aggressivity and, especially, to assess the prognosis of the patients. The essential criteria 

of the various grading systems are the modifications of glandular architecture and/or 

cellular anaplasy. The most widely accepted number of grading systems is the Gleason 

score (Figure 13). The Gleason score evaluates the architecture of the prostate glands, 

the pattern of tumoural growth and the relationship between the tumour cells and the 

surrounding stromal tissue. It has five levels of progressive tumour aggressivity, grade 1 

being the least aggressive, while grade 5 is the most anaplasic. 
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Figure 13. The five Gleason grades. Adapted from REF [48]. 
 

 Because the majority of the prostate adenocarcinomas are not homogenous 

tumours, containing two or more different histological patterns in the tumour mass, 

Gleason score is established by the addition of the Gleason grades of the two most 

prominent tumour patterns. This allows for a more precise estimation of cancer 

prognosis. The assessment of Gleason score depends on pathologists’ experience, 

having unfortunately a subjective component that gives a degree of inconsistency. 

 

d. Tumour node metastasis classification  

Two main classification systems are used to stage tumours: the Jewett system 

(stages A through D) described in 1975 [49] and the TNM system adopted in 1997 by the 

American Joint Committee on Cancer (AJCC) and the International Union against Cancer. 

In 2002, the TNM classification system was further revised by the AJCC  [50]. These 

systems can reveal nonpalpable tumours by identifying an increase in serum prostate-

specific antigen (PSA) level or an aberrant transrectal ultrasound image. These systems 

can also categorize patients based on tumour detection technique and distinguish 

nonpalpable PCa (those detected during transurethral resection) from palpable ones 

(those detected by digital rectal examination) [51]. 

The tumour node metastasis (TNM) classification is based on the status of the 

primary tumour, ranging from organ-confined to fully invasive (T1 to T4), with or 

without lymph node involvement (N0 or 1) and the presence and degree of distant 

metastasis (M0 and 1a-c) [52]. It corresponds to one of five stages of the traditional 
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staging system (a progression of the cancer from Stage 0 to Stage IV), but it has the 

advantage of revealing more detail by separating designations for the primary tumour, 

regional nodes, and distant metastases via more specific alpha-numeric subcategories 

[50]. An added number or letter is used to specify the size or extent of the tumour and 

the extent of spread. The staging system is important and essential, however insufficient 

it is by itself. Other significant variables that may contribute to the evaluation include 

the grade; PSA level; DNA ploidy; nuclear morphometry; and a number of cellular, 

molecular, genetic, and environmental factors [50]. 

The TNM staging system provides a basis for survival prediction, initial treatment 

selection, patient stratification in clinical trials, accurate communication among 

healthcare providers, and a uniform method for reporting the end result of cancer 

management [53]. The 2009 TNM classification for PCa [54] is shown in Figure 14.   

The particular classification of bone metastases was described by Soloway et al. 

[55] in 1988, with a simple method to grade the extent of disease (EOD) observed on 

serial radionuclide bone scans. The study was done in patients with bone metastasis 

from PCa who received androgen deprivation therapy. They observed that EOD on the 

scan correlated with survival. On the basis of the number or extent of metastases the 

scans are divided into five EOD grades as shown in Table 2. 

 

Table 2. The five EOD grades from Soloway Classification. Adapted from [55] 
EOD Grade Number or extent of metastases 2-year survival 

rates 

0 normal or abnormal due to benign bone disease  

I number of bony metastases less than 6, each of which is less than 
50% the size of a vertebral body (one lesion about the size of a 
vertebral body would be counted as 2 lesions) 

94% 

II number of bone metastases between 6 and 20, size of lesions as 
described above 

74% 

III number of metastases more than 20 but less than a “super scan” 68% 

IV “superscan” or its equivalent, ie., more than 75% of the ribs, 
vertebrae and pelvic bones. 

40% 

 

Accordingly with the EOD on the bone scan, men with metastatic PCa that enter into 

trials designed to evaluate the impact of treatment on survival should be stratified based 
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upon the EOD. This classification also indicates that patients in the EOD IV category have 

a particularly poor prognosis and may be candidates for alternative treatments [55]. 

 

 

Figure 14. Tumour Node Metastasis (TNM) classification of PCa. Adapted from EAU guidelines 
2010 edition [56] and [55]. Upper panel, TNM classification of PCa. Lower panel, EOD category of 
different bone scans showing a large number of bone lesions in each grade.  
 

e. Therapeutic approaches in prostate cancer 

 The therapeutic management of PCa has become increasingly complex, due to 

the various therapeutic options available, even in cases of clinically localized disease, 

which have equal oncological efficacy but with different, treatment-related side effects. 

Treatment recommendations vary by disease severity and life expectancy, since the side 

effects of treatment may outweigh the potential benefits for men whose cancers are 

unlikely to progress in their lifetime (Table 3). Additionally, a multidisciplinary approach 

may be advisable from the beginning in patients with high risk PCa, because it is very 

likely that adjuvant treatment will be necessary for locally advanced disease.  

The main treatments for PCa from the Clinical Practice Guidelines in Oncology 

2009 [57] are summarized below: 



Introduction 

48 | P a g e  

 

Watchful waiting (WW): This term, which was coined in the pre-PSA screening 

era, refers to the conservative management of PCa until the development of local or 

systemic progression, at which point the patient is afforded palliative treatment. The 

rationale behind WW is the observation that PCa often progresses slowly and is often 

diagnosed in older men for whom there is a high incidence of death from other disease. 

Active surveillance (AS): AS is now an accepted management strategy for men 

with low-risk PCa who previously faced radical whole gland treatment (surgery, external 

beam radiotheraoy (EBRT) or brachytherapy) [58]. AS involves monitoring the course of 

the disease with the expectation of intervening if and when the cancer progresses. It is 

often offered to men who have a limited life expectancy. Monitoring under AS involves 

PSA testing every 3 to 6 months, digital rectal examinations (DREs) every 6 to 12 months 

and possible, additional prostate biopsy (PBs). 

Radical Prostatectomy (RP): This treatment involves the removal of the entire 

prostate gland between the urethra and the bladder and the resection of both seminal 

vesicles, along with sufficient surrounding tissue to obtain a negative margin. Regional 

lymph nodes may also be removed for examination to determine whether lymph node 

metastases are present. 

Radiation therapy (RT): Radiation therapy normally consists of EBRT or 

brachytherapy for localized PCa. In EBRT the patient receives radiation treatment from 

an external source over an 8 to 9 week period. Brachytherapy involves placing small 

radioactive pellets, sometimes referred to as seeds, into the prostate tissue. 

Hormonal therapy (HT): Androgen-deprivation therapy (ADT) alters the effects of 

male hormones on the prostate through medical or surgical castration (the elimination 

of the testicular function) and/or the administration of anti-androgen medications.   
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Table 3. PCa treatment recommendations, by disease characteristics and life expectancy. 
Adapted from REF [57]. 

 

 

Risk of progression 

and recurrence 

Clinical 

characteristics of 

PCa 

Life 

expectan

cy 

Recommended initial treatment options 

Low T1-T2a and Gleason 
score 2-6, serum PSA 
levels <10 ng/mL 

< 10 years Active surveillance 

  > 10 years Active surveillance or radical 
prostatectomy or radiation therapy 

Intermediate T2b-T2c, or Gleason 
score 7 or serum PSA 
level 10-20 ng/mL 

< 10 years Active surveillance or radical 
prostatectomy or radiation therapy 
(EBRT+/brachytherapy-) +/-ADT 

  > 10 years Radical prostatectomy or radiation 
therapy (EBRT+/brachytherapy-) +/-ADT 

High T3a, or Gleason score 
8-10 or serum PSA 
level >20 ng/mL 

All Radical prostatectomy (selected patients) 
or radiation therapy (EBRT) + long-term 
ADT 
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III. FROM PROSTATE CANCER TO BONE METASTASIS 

a. Epidemiology 

The incidence of bone metastasis is unknown [59] but of the estimated one million 

annual deaths associated with metastatic bone disease (MBD) in the USA, EU and Japan, 

approximately 20% are cases of advanced-stage PCa [59, 60]. The primary cancers that 

most frequently metastasize to bone are breast and prostate cancer, amongst many 

others (Table 4) [61]. Further, once tumour metastasizes to the bone, patients are 

incurable. For example, only 20% of patients with breast cancer is still alive 5 years after 

discovery of bone metastasis [62]. 

 

Table 4. Incidence of bone metastases at postmortem examination in different cancers. 
Adapted from REF [63] 

 

Primary tumour Incidence of bone metastases (%) 

Breast 73 

Prostate 68 

Thyroid 42 

Lung 36 

Kidney 35 

Gastrointestinal tract 5 

 

 

Skeletal metastases occur in more than 70% of cases of advanced-stage PCa and 

they confer a high level of morbidity, a 5-year survival rate of 25% and median survival 

of approximately 40 months. Scintigraphic studies have shown that the areas most 

commonly affected are the axial skeleton (especially the lumbar spine) (60%) followed 

by the ribs (50%), appendicular skeleton (38%) and skull (14%) [64]. 

Bone metastases are responsible for tremendous morbidity in patients with 

cancer, including severe bone pain, pathologic fractures, spinal cord and nerve 

compression syndromes, life-threatening hypercalcemia, and increased mortality [65]. 

Further, bone metastasis results in impaired mobility, increased medical costs, a 

diminished quality of life, and as noted above, a negative impact on survival [66]. 
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b. Mechanism of prostate cancer bone metastasis 

The mode of dissemination to the skeleton is haematogenous and their 

distribution correlates closely wiht the distribution of the red marrow in bone [64]. Bone 

is a common site for metastasis owing to high blood flow in the red marrow; the 

presence of adhesive molecules on tumour cells that bind them to stromal cells in the 

bone marrow; and the production of angiogenic factors and bone-resorbing factors that 

enhance tumour growth, thereby providing access to the resorbed bone matrix for 

subsequent tumour adhesion and proliferation [13]. Cancer cells that survive the rigors 

of the systemic circulation invade sinusoids in the bone marrow cavity in preparation for 

progression to a bone metastasis. Thus, the affinity for the red marrow is the most likely 

factor determining the distribution of the metastatic spread correlating to the Batson’s 

theory of “valveless” venous spread [64, 67].  However, the high incidence of metastases 

in the lumbar spine and pelvis is likely to be a consequence of the anatomical proximity 

and the pattern of venous drainage which dictates that this area of the skeleton has a 

higher exposure to cells released from the prostate and therefore has a higher number 

of epithelial cellular “hits” on the bone marrow endothelium itself [64]. 

Bone is a metabolic active tissue, it is a reservoir of growth factors, calcium and 

phosphor, which are liberated during the bone remodelling (Figure 15). The skeleton is 

continually remodelling, and the normal process of “bone turn-over” (resorption - 

formation) is extremely well equilibrated [68]. In normal conditions, micro-fractures, 

hormones, calcium levels and inflammation can initiate the remodelling of the bone. 

Bone turn-over is classically described by starting its cycle with bone degradation and 

ending with bone deposition [68]. However, the presence of cancer cells disturbs the 

equilibrium that exist between bone matrix depositing cells, osteoblasts, and bone 

degradating cells, osteoclasts.  

 



Introduction 

52 | P a g e  

 

 

Figure 15. Bone remodelling. From REF [69].  

 

Osteoblasts derive from mesenchymal stem cells in the bone marrow under the 

control of Runx2, a key osteoblastic transcription factor. Osteoclasts come from 

hematopoietic stem cells. Cells of this monocyte-macrophage lineage are stimulated to 

form by fusion the non-functional pre-osteoclasts (multinucleate cells). Osteoblasts 

produce macrophage colony stimulating factor (M-CSF) and receptor activator of NFkB 

ligand (RANKL), which both bind to pre-osteoclasts via their receptor c-fms and RANK, 

leading to their osteoclasts differentiation and activation. Osteoblasts also secrete 

osteoprotegrin (OPG), a trap receptor of RANKL that blocks its action. Therefore, balance 

between OPG and RANKL is crucial for the osteoclasts activity. Active osteoclasts bind 

the bone surface creating the ‘sealed zone’ where acid and proteolytic enzymes (e.g. 

cathepsin K) are secreted, resulting in bone matrix degradation [68]. Following the bone 

degradation, pre-osteoblasts are recruited from the mesenchymal stem cells and 

differentiated into active osteoblasts, which will repair the bone matrix. Once 

osteoblasts terminate bone deposition, they go through apoptosis, reside in the matrix 

or revert to mesenchymal cells [68]. 

The entry of cancer cells into the microenvironment of the bone will modify the 

cell-cell interaction (Figure 16). The initial site of tumour cell seeding is in areas of bone 

that are highly vascularized, and in agreement with this the majority of tumour models 

show that metastatic foci predominantly appear in areas of trabecular bone [70]. It has 
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been shown that tumour cells preferentially home to areas of high turn-over, attracted 

by the increased levels of bone-derived growth factors and cytokines generated by 

active bone resorption [70].  

Following the arrival of tumour cells in bone, interactions with the bone 

microenvironment support their survival. Once localized in this niche, the tumour cells 

may be under the same microenvironmental control that ensures the quiescence of 

hematopoietic stem cell (HSC) in adult bone explaining the prolonged periods of tumour 

cell dormancy that often precedes the appearance of overt bone metastases [70].  

 

Figure 16. Cross-section of bone depicting stages of bone metastases. From REF [69]. Schematic 
representation of tumour cell interactions within the bone microenvironment during stages of 
tumour metastasis to bone: tumour cell homing, dormancy, colonization and expansion. Tumour 
cells home to and enter the bone marrow cavity and either remain quiescent or dormant or 
begin growth and colonization. Tumour-mediated recruitment and modulation of bone-residing 
cells and bone matrix modifications alter the bone environment thus favouring tumour growth 
and invasion and resulting in pain, fracture and further tumour dissemination. 

 

It has been proposed that cancer cells metastasize into bone owing their gene 

expression that is considered to be “bone-related” [71]. With the expression of such 

proteins, cancer cells are able to colonize, survive and show persistent growth into the 

bone microenvironment [68]. Osteomimetic factors include osteopontin (OPN), bone 

sialoprotein (BSP) or PTHrP [72] and two chemo-attractants are particularly relevant: the 

expression of RANK by the metastatic cells that bind RANKL [73], and chemokine 
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receptor CXCR4 that bind stromal-derived factor 1 (SDF-1 or CXCL12) [74]. Both RANKL 

and SDF-1 are expressed by osteoblasts that are situated at the vascular surface of the 

bone, suggesting an important role of the osteoblast in guiding the metastatic cells to 

the bone. 

Conventional wisdom has led many to propose that bone metastases are either 

osteolytic (bone destructive) or osteoblastic (bone forming, sclerotic) [59]. In this light, 

osteolytic bone metastases are presumed to be caused by the release of 

osteoclastogenic agents by tumour cells in the bone microenvironment [75, 76], 

whereas osteoblastic metastases are the result of the release of factors that stimulate 

osteoblast proliferation, differentiation and subsequently uncontrolled bone formation 

by metastatic cancer cells [77, 78]. Purely lytic or sclerotic bone lesions are, however, 

but two extremes of a spectrum of activity that drives tumour destruction of bone, and 

both processes are typically present in any skeletal site affected by metastases [13]. 

Accordingly, bone metastases are typically characterized as ‘lytic’, ‘sclerotic’ or ‘mixed’, 

according to the radiographic and/or pathologic appearance of the lesions [79]. 

In PCa, bone metastases are primarily osteoblastic [80]. In these metastatic sites, 

local stimulation of osteoblast activity results in bone formation directly adjacent to the 

metastatic tumour. Nevertheless, many patients with PCa will also exhibit osteolytic 

components in bone lesions [13]. Whereas in breast cancer, it has been described that 

either bone degradation or deposition occurs in the early metastatic process, but the 

great majority (~90%) ultimately cause bone loss [81]. It was originally noted that it was 

tumour cells that caused the bone degradation, but it is now widely accepted that 

healthy cell osteoclasts are largely responsible for the osteolysis of the bone metastatic 

lesions [68]. 

The presence of metastatic cells has been referred to as “vicious cycle of bone 

metastasis” (Figure 17) [82]. Tumours cells produce growth factors, such as parathyroid 

hormone-related protein (PTHrP), causing the production of RANKL and the down-

regulation of OPG by the osteoblasts, and consequently activate the osteoclasts [83]. 

Bone degradation will release growth factors and others factors stored in the matrix 

such as transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), 

insulin-like growth factors (IGFs) and calcium. These factors can stimulate the tumour 
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cells, inducing their proliferation and their production of more growth factors and more 

PTHrP. Moreover, the cytokines (e.g. interleukin-6, -8, -11) secreted by metastatic cells 

also promote osteoclasts activation. Additionally, secretion of the cytokines is increased 

in the presence of TGF-β [32]. All these activations and secretions will supply and amplify 

the “vicious cycle”. 

Osteolytic metastasis of tumour cells involves a ‘vicious cycle’ between tumour 

cells and the skeleton that is propagated by tumour cells, bone-forming osteoblasts, 

bone resorbing osteoclasts and stored factors within bone matrix. Tumour cells release 

certain factors including interleukines, PTHrP and TNF that stimulate osteoclastic bone 

resorption. These factors enhance the expression of RANKL over OPG by osteoblasts, 

tipping the balance toward osteoclast activation thus causing bone resorption. This bone 

lysis stimulates the release of BMPs, TGFb, IGFs and FGFs for stimulating the growth of 

metastatic cancer cells to bone.  

 

 

Figure 17. Regulatory mechanisms underlying metastasis to bone reflecting complex interplay 

of molecules. From REF [84]. Bone metastasis results from imbalance of normal bone 
remodelling process involving osteolytic (leading to bone destruction) and osteoblastic (leading 
to aberrant bone formation) mechanisms.  
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In Osteoblastic metastasis, factors released by osetoblastic cells, such as ET-1, 

Wnt, ERBB3, VEGF play an important role by increasing cancer cell proliferation and 

enhance the effect of other growth factors including PDGF, FGFs, IGF-1. Urokinase 

Plasminogen Activator (uPA), a protease, also acts as mediator for osteoblastic bone 

metastasis by cleaving osteoclast-mediated bone resorption factors responsible for 

regulation of osteoclast differentiation; thereby blocking the bone resorption. 

In comparison the mechanisms of bone formation, the osteoblastic lesions are 

less understood [59]. One of the most well studied mediators is the ubiquitous growth 

factor endothelin-1 or TGF-β2, which stimulate osteoblasts formation and proliferation. 

Proteases can also playing a role in osteoblastic lesions by cleaving proteins such as 

PTHrP, reducing RANKL secretion, resulting in its inability to activate osteoclasts. 

Still, little is known regarding the mechanism(s) of Pca metastasis to, and 

establishment of lesions in bone. Yet, how a tumour arrives at a metastatic site does not 

explain how a metastasis is established. Indeed, the favorable interaction of PCa cells 

with the bone microenvironment appears a critical determinant for the establishment 

and prevalence of PCa metastases in bone (Figure 18) [85]. 

 

 

 

Figure 18. Radiograph of a 63 year old man and bone biopsy from a bone metastasis with 

hormone refractory PCa. Adapted from REF [64]. Left, the radiograph is illustrating the problem 

of long bone fracture. Right, in the bone biopsy, the trabeculae of the cancellous bone frame 
the marrow space containing normal red bone marrow (centre to upper left) and 
encroaching PCa cells (lower central and upper right). The PCa cells are displacing the red 
bone marrow progressively. 



Introduction 

57 | P a g e  

 

c. Molecular mediators of bone metastasis 

Tumour cells disrupt a normal physiological process, redirecting the cells of the 

bone microenvironment towards increased activity to support tumour cell proliferation 

and expansion. This generates the physical space for tumour expansion as bone is 

resorbed, as well as increased supply of tumour growth factors and cytokines supporting 

further tumour growth [70]. 

 

i. Osteolytic mediators 

Malignant cells secrete factors that stimulate osteoclastic activity both directly and 

indirectly. 

Transforming growth factor beta 

Once resident in bone, tumour cells, as well as factors released by the primary 

tumour, activate bone resorption and release transforming growth factor beta (TGF-β) 

from stores in the bone (Figure 19). TGF-β signaling occurs after specific ligand binding 

to the type II receptor serine kinase (TGFβRII) on diverse target cells [86]. TGFβRII 

activation results in phosphorylation of the type I receptor (TGFβRI) and signal 

transduction via phosphorylation of the downstream, regulatory Smad substrates Smad2 

and Smad3 [86]. Subsequent binding of Smad2 or Smad3 to Smad4 results in nuclear 

translocation and increased transcription of target genes. 

In addition TGF-β released from the mineralized bone matrix during osteoclastic 

bone resorption has direct effects on tumour progression in bone. Thus, both tumour 

cell-derived and bone-derived TGF-β stimulates local cell proliferation in the bone 

marrow microenvironment [78]. As many tumour types secrete TGF-β and respond to it 

by enhanced invasion and metastasis, targeting of TGF-β signaling pathways via direct 

antitumour actions or immunomodulation of the tumour microenvironment and/or 

effects on bone is a valid approach for the treatment of bone metastasis. In support of 

this concept, small molecule TGFβRI inhibitors have been shown to induce a variety of 

skeletal changes, including increased bone mass and improved bone material properties; 

results of current ongoing clinical trials are eagerly awaited [13]. 
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Figure 19. Bone turn-over [68]. A. In normal conditions. B. In osteolytic bone metastases. 

 

In addition, the enhanced release of tumour-secreted factors such as parathyroid 

hormone related peptide (PTHrP) and IL-8 can activate T cells, thereby increasing the 

process of bone resorption, while suppressing T-cell function. As a result, antibody-

producing B cells upregulate expression of CXC-chemokine receptor 4 (CXCR4) upon 

completion of differentiation. Both cancer and stromal cells commonly express the 

CXCR4 ligand stromal-derived factor-1 (SDF-1; also known as CXCL12). This ligand-

receptor interaction has been suggested to facilitate cancer-cell migration throughout 

the bone microenvironment [13]. 

PTHrP and RANKL 

PTHrP stimulates osteoclast activity via the cytokine RANKL, which causes 

osteoclast formation and activation by binding to its receptor RANK on osteoclasts and 

their precursors [87]. RANKL is the primary physiologic mediator of osteoclast formation, 
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function and survival, and the vast majority of pro-osteoclastogenic agents work via 

upregulation of RANKL [13, 88]. 

However, although strong evidence from numerous preclinical studies supports 

the concept that PTHrP is an important local mediator of osteolytic bone lesions [59, 89], 

clinical data from an antihuman PTHrP antibody trial in the treatment of bone 

metastases from breast cancer are currently lacking [13]. By contrast, a large 

prospective clinical trial demonstrated that the role of PTHrP is not in mediating 

metastasis but in other stages of cancer progression. PTHrP expression by primary 

breast cancers was associated with improved prognosis and decreased metastasis to all 

sites, including bone [90]. This result implicated an activity that remains unknown but is 

distinct from the well-characterized and widely accepted osteolytic action of tumour-

derived PTHrP in bone [59]. In other words, the phenotype of metastatic breast cancer 

cells in bone, including the expression of PTHrP, is distinct from the phenotype of the 

tumour cells at the primary tumour site in the breast. Conceivably, the expression of 

PTHrP at sites of bone metastasis is the result of the tumour cells’ successful completion 

of the metastatic cascade (Figure 2) and the influence of the bone microenvironment 

[13]. 

RANKL-independent mediators 

Based on the complex interactions that mediate all aspects of tumour metastasis, 

the notion that RANKL activation and the TGF-β–PTHrP axis are the sole mediator of 

tumour osteolysis is naive. The most compelling evidence that supports RANKL-

independent effects on tumour-induced osteoclastogenesis and osteolysis come from 

clinical trials of the fully human RANKL antibody (denosumab) in patients with bone 

metastases and elevated bone resorption [91]. Recent data [92-94] demonstrate the 

efficacy of the RANKL antibody for the inhibition of osteolysis in patients with cancer, 

but also reveal that in individuals with elevated bone resorption, tumour-derived factors 

other than RANKL probably contribute to the increased osteoclast activity [13]. 

Cyclooxygenase-2 

Cyclooxygenase-2 (COX-2) expression by breast cancer cells is suggested to 

support development and progression of bone metastases through the generation of 
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the prostaglandin (PGE2), which in turn increases expression of RANKL in osteoblasts 

and stromal cells. Osteoclastic bone resorption releases TGFb from the bone matrix, 

leading to increased COX-2 expression by cancer cells and consequently PGE2 

production, promoting further bone destrcution. COX-2 also induces production of IL-8 

and IL-11, cytokines associated with bone metastases [95]. 

IL-8 and IL-11 

Elevated IL-8 levels in the serum of breast cancer patients predict early 

metastatic spread, and human breast cancer cell lines expressing IL-8 induce higher 

levels of bone metastases compared to IL-8-negative cell lines. IL-8 increases bone 

resorption through binding to the CXCR1 receptor present on osteoclasts and their 

precursors, in a mechanism that is independent of RANKL pathway. In breast cancer 

cells, expression of IL-8 and IL-11 is induced by COX-2 in a PGE-depedent manner. 

 

ii. Osteoblastic mediators 

An accumulating data implicate a variety of factors in the stimulation of bone formation 

associated with metastatic PCa (Figure 20). 

Growth factors 

A major challenge in PCa biology is the lack of understanding of the mechanisms 

of PCa progression and the development of bone metastases. PCa cells express a large 

variety of growth factors capable of activating resident bone and bone marrow cells, 

such as acidic and basic fibroblast growth factors (FGFs) and bone morphogenetic 

proteins (BMPs) [96, 97].  

Multiple BMPs and their cognate receptors (BMPRs) are expressed in normal 

prostate and PCa cells [98, 99]. Altered expression and function of BMPs and BMPRs has 

been reported during prostate development and PCa progression [100]. However, at 

present, the effects of specific BMPs on osteoblastic tumour progression are 

inconclusive, given the inconsistency of published results [97]. Expression of FGFs is 

elevated in PCa, and these factors can potentially act in either a paracrine or autocrine 

manner [101]. Similarly, FGFs also seem to regulate the osteoblastic response to bone 
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metastases from PCa. Both acidic and basic FGFs (FGF1 and FGF2) cause the profound 

stimulation of bone formation in vivo [102]. FGF2 was also shown to stimulate the 

proliferation and differentiation of osteoblasts via the concomitant upregulation of both 

RUNX2 and BMP2 [103]. Whether this regulation of bone formation via FGF2 also has a 

role in the formation of bone formation during bone metastasis from PCa remains 

undetermined [13]. 

 

 

Figure 20. Molecular interactions in bone metastatic sites. From REF [70]. 

 

Endothelin-1 

The potent vasoconstrictor endothelin-1 (ET-1) stimulates osteoblast and inhibits 

osteoclast activity, and has been demonstrated to mediate the formation of osteoblastic 

metastases. PCa cells express ET-1, which can potentiate the mitogenic effects of 

platelet-like growth factor (PDGF), EGF and FGF, thereby stimulating tumour cell 

proliferation and driving the development of osteoblastic bone metastases. High levels 

of plasma ET-1 correlate with the presence of bone metastases in PCa patients [70]. 
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Breast cancer cells also express ET-1, potentially contributing to the development of the 

mixed bone lesions frequently observed in advanced disease [70]. 

Wnt signaling 

In the past years, canonical Wnt signaling has been shown to play a central part 

in normal osteoblast development and bone formation [104]. This idea has been 

extended of late to suggest that Wnts also have a paracrine activity to regulate bone 

formation in bone metastasis from PCa [105]. PCa cells that metastasize to bone have 

been reported to secrete dickkopf-related protein 1 (DKK1), a secreted Wnt antagonist, 

early in the development of the skeletal metastasis. As the bone metastasis progresses, 

DKK1 expression decreases, leading to a Wnt-mediated increase in osteoblastic activity, 

which causes the well-described secondary osteoblastic lesions of PCa [106]. In addition, 

the effects of endothelin-1 to increase osteoblast proliferation and new bone formation 

also seem to be associated with activation of the Wnt signaling pathway via suppression 

of the Wnt pathway inhibitor DKK1 [107]. 

 

iii. Factors modulating the extracellular matrix 

Matrix metalloproteinases (MMPs) 

Proteolytic enzymes are implicated in processes involved in both bone metastasis 

and in normal bone turn-over, including matrix degradation, cell migration, 

angiogenesis, tumour promotion and growth factors. Secreted and cell surface-

associated proteolytic enzymes are implicated in tumour induced bone disease, 

including MMP-2 and MMP-9, lysosomal cysteine proteinases and plasminogen 

activators, but their specific contribution to bone metastases has not been  clarified due 

to lack of specificity of available inhibitors [70]. 

Cathepsin K 

Cathepsin K is the major proteolytic enzyme secreted by osteoclasts contributing 

to degradation of extracellular matrix (ECM) proteins during bone resorption, 

responsible for breaking down type I collagen present in the bone matrix. Tumour-



Introduction 

63 | P a g e  

 

derived cathepsin K has been suggested to play a role in cancer-induced bone disease in 

breast and prostate cancer [70]. 

uPA/uPAR 

The serine-type proteinase urokinase-type plasminogen activator (uPA) and its 

receptor (uPAR) are involved in the conversion of plasminogen to plasmin, followed by a 

further cascade of proteolytic enzymes resulting in degradation of fibrin, vitronectin, 

proteoglycans and the major basement membrane components laminin and collagen 

type IV. A role for uPA in the mobilization of dormant tumour cells in bone marrow has 

been suggested, where uPA is proposed to regulate mitogenic signaling of the switching 

of tumour cells between active cell proliferation and dormancy [70]. 

 

d. Clinical outcome of metastatic bone disease 

The growth of disseminated tumour metastases is a major cause of mortality in 

patients with cancer. In patients with aggressive tumour growth at the primary site, 

bone metastases are relatively uncommon. This finding does not mean that, in these 

particular instances, the tumour cells do not have the ability to grow avidly in bone, but 

that they may not have had the opportunity to do so. Invasion of the lymph nodes 

should be considered as an early step in the metastatic cascade and one that can lead to 

bone metastasis by drainage of tumour cells back into the systemic circulation [13]. PCa 

frequently metastasizes to bone, as approximately 90% of men with high-grade PCa 

show evidence of skeletal lesions. Even if localized to the prostate, a 15–20% incidence 

of subsequent metastatic disease has been reported [108]. 

 

e. Bone metastasis disease therapy 

For patients with overt bone metastases, current treatment objectives are 

designed to decrease tumour burden, prevent further progression and metastasis and 

inhibit tumour-associated bone pathology, such as pathologic fracture, pain or 

hypercalcemia [76]. Several local bone metastasis treatment strategies are primarily 

palliative in nature; individual lesions are surgically excised and the tumour ‘bed’ 
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irradiated, either before or after surgery. The decision for or against surgery and/or 

radiation, alone or in combination with select bone-targeted agents, is profoundly 

influenced by the extent of systemic disease at the time of treatment (Table 5) [76]. 

The concept that bone resorption and bone formation are critical for the 

progression of bone metastasis suggests that, if osteolysis is disrupted, then not only a 

decrease in bone resorption but also a decrease in tumour burden in bone, and thus 

potentially an increase in bone mass and strength, will occur. As the bone 

microenvironment is essential for the growth and aggressive behavior of metastatic 

cancers in the skeleton, the clinical rationale for the development of specific inhibitors 

of bone resorption and activators of osteoblastic activity is obvious. To date, other 

therapeutic regimens, which include but are not limited to bisphosphonates, are 

available for the treatment of cancer patients with bone metastases [92, 109].  

Similarly, the increased understanding of the role of the bone-tumour 

microenvironment has been translated into the development of additional bone-

targeted therapies, such as denosumab. This agent is FDA-approved for the prevention 

of fractures and skeletal problems in patients with bone metastases from solid tumours. 

Denosumab treatment (at higher and more frequent doses than those used in patients 

with osteoporosis) delayed the time to a first skeletal-related event compared with the 

bisphosphonate zoledronic acid in patients with bone metastases from breast or 

prostate cancer [13]. 

Treatment-naive metastatic PCa is largely sensitive to androgen-deprivation therapy 

(ADT) but progression to castration-resistant PCa (CRPC) occurs 18–20 months after 

starting treatment [110]. Metastatic bone diseases (MBD) causes some of the most 

distressing symptoms of advanced-stage cancer; estimates indicate that treatment of 

bone pain is required in approximately 30% of men with CRPC and associated MBD; with 

22% requiring treatment for singular or multiple pathological skeletal fractures; 7% for 

spinal-cord compression; and 3-4% for hemiparesis or paresis [60]. Despite the 

complexities involved in the management of MBD, a number of guidelines for treatment 

have been recommended (Figure 21). At first diagnosis therapeutic intervention will 

usually involve systemic chemotherapy, hormonal therapy and bisphosphonates, which 

are mostly palliative options with the intention of reducing pain [111].  Once the disease 
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progresses and symptoms reoccur, or there is significant risk of skeletal fracture or 

spinal-cord compression, the use of localized radiotherapy, for solitary bone lesions, or 

radiopharmaceuticals, for widespread multiple lesions, will be considered [111]. Until 

recently, no drug had been shown to delay the development of bone metastases [70]. 

 

 

Figure 21.  Bone-targeted therapy in metastatic lesions. From REF [60]. Therapeutic approaches 
to target the osteolytic and osteosclerotic microenvironment of metastatic bone disease in PCa 
include bisphosphonates, radionuclides and targeted inhibition of: RANKL, cathepsin K, SRC, EAR, 
TGF-β and uPA. Collagen remodelling is a proposed target. Abbreviations: ET-1, endothelin-1; 
EAR, ET-1 receptor; OPG, osteoprotegerin; RANK, receptor activator of nuclear factor-κB; RANKL, 
RANK ligand; TGF-β, transforming growth factor β; uPA urokinase-type plasminogen activator.  

 

i. The current approach: bisphosphonates  

Treatment with bisphosphonates has emerged as an effective measure for 

limiting osteolytic complications in patients with CRPC [112, 113]. Bisphosphonates are 

chemically stable derivatives of inorganic pyrophosphate that inhibit calcification by 

binding to hydroxyapatite (also known as bone mineral), preventing its breakdown by 
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osteoclasts. The second-generation of nitrogen-containing bisphosphonates have an 

added effect of inhibiting mevalonate pathway enzymes, which directly suppresses 

osteoclast function, and also have a direct effect on osteoblasts and tumour cells. These 

compounds can block apoptosis and promote differentiation in osteoblasts and can also 

promote apoptosis and inhibit growth-factor production, adhesion to bone matrix and 

the invasion of tumour cells [60]. 

 

ii. The new option: RANKL - RANK inhibition 

Denosumab is a humanized RANKL monoclonal antibody that received FDA 

approval for subcutaneous administration for the treatment of osteoporosis. In 

November 2010, denosumab was also approved for the treatment of patients with MBD 

derived from solid tumours following the positive results of a randomized trial where its 

efficacy as an anti-osteolytic agent was compared with zoledronate in breast cancer 

patients with MBD [114]. An improved efficacy of denosumab compared with 

bisphosphonates was also reported in a phase II trial of patients with multiple tumour 

types-PCa (45%), breast cancer (40%) and other tumours (15%) [115].  

 

iii. Some future approaches: SRC kinase inhibition  

The tyrosine kinase SRC promotes cell proliferation and survival and has several 

pro-metastatic functions in PCa cells, including the promotion of cell adhesion, 

migration, invasion and dissemination to distant organs [116-118].  

One clinical trial in a phase III will report on the impact of dasatinib, a SRC and 

BCR-ABL tyrosine kinase inhibitor, on the incidence of SREs and overall survival in men 

with CRPC and MBD. Saracatinib, another SRC and BCR-ABL tyrosine kinase inhibitor, 

which can limit RANKL-induced osteoclastogenesis and protect the bone architecture in 

the presence of PCa cells, is also under evaluation in a phase II trial for the treatment of 

men with CRPC and MBD.  
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iv. Inhibition of the TGF-β signaling axis 

A critical role for TGF-β1 in normal bone homeostasis is to coordinate the 

temporal, spatial and quantitative coupling of new bone formation to sites where old 

bone degradation is occurring [119, 120] but it is also a critical regulator of several other 

key stages in bone formation [121]. Two critical findings have been that the TGF-β-

signaling axis promotes the development of bone metastasis by regulating a gene-

expression signature [32] and by promoting tumour cell homing to bone [122]. Studies 

have also confirmed the presence of high levels of TGF-β in osteolytic bone lesions, 

rendering TGF-β as a therapeutic target for limiting MBD progression [123]. 

 

Table 5. Novel targeted therapies against bone metastases. Adapted from REF [70] 

MoA NAME TARGET CLASS ROUTE 

RANKL Denosumab OC mAB SC 

Cathepsin K Odanacatib OC Inhibitor PO 

Src Saracatinib 

Dasatinib 

OC/OB Inhibitor PO 

DKK-1 BHQ-880 OB mAB SC 

ET-A receptor Atrasentan 

Zibotentan 

OB Receptor 

anatgonist 

PO 

Activin receptor ACE-011 OC/OB Fusion protein SC/IV 

Abbreviations: IV, intravenous; mAB, monoclonal antibody; MoA, mode of action; OB, 
osteoblast; OC, osteoclast; PO, per os.  
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IV. ANIMAL MODELS OF PROSTATE CANCER BONE 

METASTASES 

a. In vitro approaches 

Considerable experimental work has been conducted on the standard PCa cell 

lines as an attempt to analyse metastasis. The PC3 cell line was originally isolated from a 

bone marrow metastasis [124], LNCaP is derived from a lymph node metastasis and 

DU145 from a brain metastasis (an extremely rare occurrence for PCa) [64]. 

Comparisons between these cell lines have been made, in attempts to define both site-

specific changes, and androgen sensitivity of genes up-regulated in metastasis. After 

many years in culture, they have become grossly aneuploid and also heterogeneous. 

Unless cross-related to the tissue arrays (or similar), these simple models only offer a 

small fragment of the metastasis story [64]. A better approach would be to use 

malignant variants of the same cell type. Most cell lines do throw off variants in both 

culture and in vivo selection. Comparisons of non-malignant cells “progressed” by 

treatment with chemical and viral carcinogens offer the controlled baseline for 

comprehensive analysis of metastatic changes [64].  

Certain fundamental properties of metastatic cells, including migration and 

invasiveness, have been the subject of many studies using a variety of in vitro model 

systems. Technological advances such as fluorescent or bioluminescent reporter 

molecules and sophisticated microscopy have allowed sensitive and accurate analysis of 

these processes and their molecular underpinnings at the single-cell or cell-cluster levels 

[125]. In vitro model systems have contributed to define the role of candidate 

metastasis genes in particular steps of the metastatic cascade [125, 126]. However, 

these models can provide surrogate systems for the analysis of only a limited set of 

events in the metastatic cascade, which in vivo involves multiple steps within specific 

tissue contexts. 
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b. Animal models 

The ideal animal model for bone metastasis would be a reproduction of the 

genetic and phenotypic adaptations that occurs in human cancer. These include 

invasion, spread to the bone via the vasculature, and proliferation and survival in the 

bone microenvironment that lead to bone matrix modifications. PCa occurs naturally in 

dogs and in some strains of rats [127].  

 

b.1. Dog model 

The dog most closely resembles humans in terms of PCa characteristics [128]. 

Canine PCa is also age dependent, tumour cells metastasizes to bone in an osteoblastic 

manner in 24% of cases [129]. While dogs may seem an ideal model for studying PCa, 

there are limitations to their use. The instances of PCa do not diminish in castrated dogs 

indicates that tumour growth is not androgen dependent [129]. There is also a relatively 

long latency in dogs being an unrealistic experimental model [130]. 

 

b.2. Rat model 

Several strains of rats, including the Dunning, Copenhagen, and Wistar rats, have 

been well characterized, and they also develop a wide range of cancer phenotypes in the 

prostate [131, 132]. However, due to the rarity of tumours, variability in phenotypes, 

long latency periods, and lack of metastases, the realistic probability of using them as 

models is low [130].  

 

b.3. Mouse Prostate model 

Naturally occurring PCa is uncommon in the mouse [133] and additionally, the 

histopathology and time-frame of prostatic disease development in these animals can 

be different [133]. Despite these several concerns, the mouse is still one of the best 

animals in which to model human cancer. First, mice are as susceptible to cancer as 

humans [134]. Second, the mouse and human genomes are approximately 95% 

identical, and mice have many structurally similar genes and genomic alterations that 

have been implicated in cancer [135]. Third, mice are relatively easy to genetically 

modify. And finally, because mice have a relatively short gestation time and are small, 
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they are reasonably easy and affordable to house and breed to generate large 

populations. The goal of every mouse model is to accurately imitate human disease so 

that molecular mechanisms can be found and new therapies can be tested [130].  

 

b.4. Transgenic Mouse Models 

To produce PCa in mice requires tissue specific expression of a strong oncogene 

from a tissue-specific promoter. Not all of the models however produce metastatic 

disease [64]. The TRAMP model (probasin promoter driven SV40 T antigen [136]) results 

in tumours in the dorsolateral lobe (murine equivalent of the peripheral zone) which 

metastasize to lymph node, lung and (in the correct genetic background) to bone [64]. 

However, the probasin promoter is active in luminal cells of the murine prostate, and 

most human PCa probably arise from the basal epithelium. The genetic changes 

observed are however similar if not identical to human disease, including the loss of E-

cadherin expression.  

 

b.5 Xenograft in nude/Scid Mice 

Immunodeficient rodent models generally used for PCa studies are the nude 

mice model described in 1966 by Flanagan [137] and the Scid mice model (Severe 

Combined ImmunoDeficiency) described in 1983 by Bosma et al. [138]. The nude 

mutation results in thymus aplasy with quantitative and functional T-lymphocyte 

defects. The Scid mutation results in a lack of T- and B-lymphocyte function. However, 

normal NK cell and myeloid functions are present that may influence initial tumour 

growth and metastatic spread after implantation [139]. 

A new immunodeficient mouse model was described in 1995 by Shultz et al. 

[140] obtained by crossing the Scid and Nod mouse strains, the Nod strain (non obese 

diabetic) that is characterized by a functional deficit in NK cells, an absence of circulating 

complement and defects in the differentiation and function of antigen-presenting cells 

(APCs). The Nod Scid model combines multiple functional defects of adaptive and innate 

immunity. It is very suitable for xenografts of human tumoural lines [139].  

However, it is rare to observe natural bone metastasis in these animals. This 

limitation has resulted in the use of a specific model representing specific stages of the 
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disease. Therefore, since animal models are still a representation of what occurs in 

patients, it was important to determine what can be considered as “bone metastasis”. 

The general consensus defined that cancer lesions can be considered as bone metastasis 

once the tumour cell proliferation in bone modifies bone structure [127].    

The use of immunodeficient and genetically engineered mouse models that 

mimic the human disease has been crucial in validating the importance of these genetic 

pathways in PCa. The production of metastases in immunodeficient mice is dependent 

on the site of implantation. Subcutaneous implantation rarely produces distant 

metastases, when orthotopic (intra-prostatic) implantation does allow metastatic 

spread. Orthotopic implantation in an immunodeficient rodent is a relevant model and 

the first description was made in 1992 by Stephenson et al. [141]. 

To better understand tumour development and progression in vivo, two general 

strategies have been pursued in mice: genetically engineered models (GEM) of cancer, 

and transplantable tumour model systems (Figure 22) [125]. In these models, cancer 

develops with high penetrance in a stepwise manner, enabling the study of tumour 

initiation and early steps of metastatic dissemination. Syngeneic and xenograft models 

in which mouse or human cancer cells are introduced into immunocompatible or 

immunocompromised mice provide at present methods of choice to experimentally 

address metastatic dissemination to, and colonization of relevant organs. Whereas 

syngeneic models the study of the complete microenvironmental interface in the mouse 

is limited to study the mouse cancer cell metastasis, xenograft models enable a superior 

alternative to the study of metastasis of human cancer cells in vivo [125]. 

However, both mouse model systems currently used for the study of metastasis 

have advantages and disadvantages (Table 6), but the combined use of these systems 

complemented with in vitro models is yielding an increasingly robust understanding of 

the multiple modes and steps of metastasis.  
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Figure 22. Contribution of different mouse models to the various steps of metastatic 

dissemination. From REF [125].  
Abbreviations. GEM: genetically engineered mouse models, GRAFTS: xenograft o allograft 
transplantation. 

  

Table 6. Advantages and disadvantages of genetically engineered and transplantable models 

for the study of metastasis. Adapted from REF [125].  

 

Tumour 

model 

Advantages Disadvantages 

GEM Immunocompetent host 

Defined genetic background 

Tumours arising in tissue of origin, 

usually from clinical relevant mutations 

Limited and/or atypical metastatic 

spread 

Laborious uncoupling of initiation 

from progression  

Long latency 

Requires validation in human 

Xenografts Wide range of human samples 

Range of orthologens metastatic sites 

Short latency or long latency 

Lack of adaptative immune 

interactions 

Some species-specific 

incompatibility 

Allografts Immunocompetent host 

Wide range of metastatic sites 

Short latency 

Limited range of useful mouse cell 

lines 

Requires validation in human 

samples 
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c. Metastatic dissemination and colonization 

Animals used to study human PCa are immunodeficient. They allow tumour 

growth after implantation of human xenografts or cell lines in different locations [139]. 

Mice xenograft models provide an effective system to investigate secondary organ 

colonization of human cells, and remain the model of choice for preclinical studies of 

human tumour-derived cells.  

Studies of the processes involved in metastasis of PCa cells to bone have been 

hampered by the limited availability of suitable in vivo models [142]. Compared to 

others metastasis, there is a very low incidence of bone metastasis development in 

transgenic model of prostate carcinoma in rodent. However, cancer cell lines can be 

selected in vivo to increase the frequency of bone metastasis development after 

orthotopic injection. Therefore the early steps in the metastatic process are often 

bypassed, and such models lack information on the complete metastatic process 

happening in humans. To get round these issues, models of prostate and breast cancer 

metastasis, in which both the cancer cells and the bone target of the osteotropic 

metastasis are of human origin, were developed [143]. In that model, orthotopic 

injection of human breast cancer cell lines later resulted in bone metastases, but only in 

the bones of human origin and not the mouse skeleton, indicating a “species-specific 

osteotropism” [142, 143].  

Intracardiac inoculation of cancer cells (xenogeneic; derived from different 

species) into the arterial circulation of mice allows the systemic distribution of these 

cells to all organs [142, 144] for the analysis of metastatic functions including organ-

specific extravasation, survival in the newly invaded parenchyma, retention of tumour- 

reinitiating capacity, and overt colonization [145]. The inoculation of human cancer cell 

lines into the left cardiac ventricle of immunodeficient mice has been a routinely used 

technique to induce bone metastasis in vivo [146, 147]. However, such models do not 

reflect the full process of metastasis occurring in patients and many of these metastases 

occur in the metaphyses of the long bones and it is the vascular arrangement that can 

favor the tumour cell arrest in young rodents and not the ability of the cancer cells 

themselves [148]. 
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In contrast, tail-vein inoculation forces cancer cells to lodge in lung capillaries, 

which allows an assessment of lung extravasation and colonization functions [149]. 

Carotid artery inoculation likewise targets cancer cells to the brain [150]. 

Intratibial and intrafemoral injections have been used to model the invasion and 

growth of PCa cells in bone, providing a platform for studying bone microenvironment 

and bone-tumour crosstalk [142], which is essential to understanding why PCa tumours 

so frequently metastasize to the skeleton. The reason these models are so valuable is 

because there is no mouse model that spontaneously metastasizes to bone [151]. 

Intratibial injections were first described for PCa in 2002, when cells from three PCa cell 

lines were injected into the tibia of nude mice to compare their relative ability to invade 

and grow in bone [152]. Cancer cells may also be genetically altered to study the effect 

of specific genes on the ability of cells to grow in bone [106]. Intrafemoral injections can 

also be used in the same context as intratibial injections. Femurs are larger than tibia in 

overall size and cavity size, so it depends on the situation as to which bone is chosen for 

injection [151]. Intrabone injections represent an important model for the elucidation of 

the importance of genetic pathways and other factors in PCa metastasis to bone. 

Although genetically engineered mouse models provide good systems for the 

preclinical evaluation of therapeutic agents [153], the response of human cancer cells to 

therapy in vivo requires the use of xenograft models. Of particular relevance is the 

xenografting of metastatic cell lines in orthotopic locations, followed by resection of the 

primary tumours and initiation of therapy. This setup approximates the situation 

observed in patients with advanced disease [154]. 

 

d. Visualizing metastasis 

Tracking cancer cells in real time in whole animals has provided a tremendous 

advantage in the dynamic monitoring of metastatic development.  

In order to improve the evaluation of experimental therapeutics in PCa 

metastasis, better models are needed to achieve two goals: (1) the ability to serially 

image tumour growth and colonization and (2) to produce pathologic features similar to 

those in patients. A new era of modeling cancer metastasis involves the use of optical 



Introduction 

75 | P a g e  

 

imaging technologies to assess tumour burden, and the effects of therapeutic 

interventions on tumour growth in bone [155-157] after introduction of cancer cells into 

the animal. The two predominant approaches involve using heterologous fluorescence- 

or bioluminescence-generating proteins expressed in cancer cells to monitor tumour 

growth [24, 25]. While fluorescent proteins are advantageous in that they do not require 

an exogenous substrate for signal emission, can be used for both in vivo and ex vivo 

microscopic analysis, and can be further analyzed by histological detection of the 

fluorescent molecule in frozen sections, or immunohistochemical detection of the 

reporter [158] this approach is generally 2-3 orders of magnitude less sensitive than 

bioluminescence imaging (BLI) [159]. This makes BLI a preferable optical imaging 

modality for monitoring small tumours and/or those growing deep beneath the surface 

of the animal [160].  

 

i. Bioluminiescence imaging 

Whole-body non-invasive BLI is applied for the detection of tumour growth and 

metastasis in small animals. The luciferase (luc) gene from the firefly Photinus pyralis is 

the most widely used bioluminescence reporter in life science research which can be 

inserted into tumour cells making the applicable for BLI. This technique is based on using 

a sensitive cooled charged coupled device camera (CCD) array to detect photons emitted 

from luciferase-expressing cells in tissues after conversion of the luciferin substrate in a 

reaction that requires ATP, O2 and Mn2+ [161]. The D-luciferin is either injected i.v. or 

i.p., distributes rapidly throughout the body of the animal and is quickly taken up by the 

cells. Since BLI only measures viable cells, it can be more informative about cytotoxic 

effects than other modalities [160]. 

BLI has been used previously to study animal models of PCa metastasis (Figure 

23) [127, 156, 162, 163]. Such models have aided in understanding the biology of cancer 

metastasis and evaluation of therapeutic interventions. However, BLI technology has 

limitations, such as the inability to absolutely define the size, shape and location of the 

signal source. Moreover, one must also consider how the pharmacodynamics, 

biodistribution and cellular uptake of luciferin as well as the disposition of other reaction 

components might affect light generation [160]. 
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Figure 23. Optical imaging. All images are from Xenogen Corporation®. A. IVIS® Imaging System 
200 Series components: thermoelectrically cooled CCD camera, imaging chamber, optics, single-
view 3D reconstruction, acquisition computer, integrated anesthesia system, and Living Image® 
software. B. Example of in vivo detection of SKOV3-luc tumour with Her2-AF680 conjugate 
(Alexa Fluor® 680nm fluorescence). C. Example of PCa bone metastasis using the PC-3M-luc-C6 
cell line injected intracardiacally into nude mice. D. Example of the orthotopic tumour growth of 
the PC-3M-luc-C6 cell line in nude mice. 

 

 

ii. Others whole-body imaging technologies for bone metastasis 

Computed tomography (CT) and radiography 

Both plain radiography and CT are X-ray based methods and provide information about 

bone structure in a two- and three-dimensional manner respectively. However, micro-CT 

more accurately reflects the morphological changes in bone and allows an easier 

characterization of lesions as osteolytic, osteoblastic or mixed. Its resolution is about ten 

times greater than radiography and additionally offers the ability to obtain axial images. 

However, the quantitation of bone volume from micro-CT data is very time-consuming 

[164, 165]. 
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Positron emission tomography (PET) 

PET is a nuclear medicine imaging modality making it possible to visualize the uptake 

and accumulation of positron-emitting radiopharmaceuticals by tissues. A widely used 

PET-tracer is 18F-fluorodeoxyglucose (18F-FDG) which is taken up by the cells like glucose 

but is then metabolically trapped in the cell after phosphorylation by hexokinase and 

accumulates due to an enhanced glucose metabolism in tumour cells. Thus, PET imaging 

is especially useful to detect metastases in soft tissues or bone. However, the 

disadvantages of PET are high costs and long scanning times [166]. For skeletal 

metastases, 18F-fluoride, a bone-imaging agent, can be employed which uptake is not 

specific for tumoural bone involvement but deposits at sites of high bone turnover and 

remodelling [167].  

 

Single-photon emission computed tomography (SPECT) 

SPECT is a nuclear medicine modality used because of its ability to image in 3 

dimensions. High energy emitting molecules are administered to the patient which 

differentially accumulate in tissue based on its cellular physiology. SPECT imaging is less 

sensitive than PET [168]. Respect to the detection of bone metastases, it could be shown 

that a 18F-fluoride bone scan by PET is more sensitive than SPECT [169]. 
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V. CANCER BIOMARKERS 

A biomarker is a characteristic that is objectively measured and evaluated as an 

indicator of normal biologic or pathogenic processes, or pharmacologic responses to a 

therapeutic intervention [50]. In medicine, and according to the United States National 

Cancer Institute (U.S. NCI), a biomarker is “a biological molecule found in blood or 

another body fluid (urine, saliva, etc.) or tissue that signals a normal or abnormal 

process or of a condition or disease”. In this context, biomarkers can help in early 

diagnosis, disease prevention, drug target identification, drug response and can further 

the development and evaluation of new therapies [50]. Biomarkers can be found using 

genomics, proteomics or imaging (Table 7) and are widely used as analytical tools to 

assess biological parameters for a rapid and comprehensive therapeutic analysis.  

 

Table 7. Methods of detection of tumour markers. Adapted from REF [170] 

Serology Enzyme assays 

Immunological Immuno histo chemistry 

 Radio immuno assay 

 Enzyme-linked immuno sorbent assay 

Flow cytometry  

Cytogenetic analysis Fluorescent in-situ hybridization 

 Spectral karyotyping 

 Comparative genomic hybridization 

Genetic analysis Sequencing (automated) 

 Reverse transcription 

 Gel electrophoresis 

 DNA micro-array analysis 

Proteomics Surface-enhanced laser desorption/Ionization 

 

It facilitates screening and detecting the cancer, monitoring the progression of 

the disease, and predicting the prognosis and survival after clinical intervention. 

Generally, tumour markers include a variety of substances like cell surface antigens, 

cytoplasmic proteins, enzymes, hormones, oncofetal antigens, receptors, oncogenes and 

their products [170]. There have been numerous attempts to broaden the definition to 

accommodate the rapidly expanding set of identified tumour markers and include the 

following: 



Introduction 

79 | P a g e  

 

1. Substances present in, or produced by, a tumour itself or produced by host in 

response to a tumour that can be used to differentiate a tumour from normal 

tissue or to determine the presence of a tumour based on measurements in 

blood or secretions. 

2. A molecule, a process or a substance that is altered quantitatively or qualitatively 

in precancerous or cancerous conditions, the alteration being detectable by an 

assay. 

3. Biochemical indicators of the presence of a tumour. However, in common clinical 

practice, the term usually refers to a molecule that can be detected in plasma or 

other body fluids. 

 

Box 3. Main types of cancer biomarkers. Adapted from REF [171] 

 

 

 

Cancer biomarkers are usually classified into three categories: prognostic, 

predictive, and pharmacodynamic. Prognostic biomarkers predict the natural course of 

the cancer and to distinguish the tumour's outcome. They also help determine whom to 

treat, how aggressively to treat, and which candidates will likely respond to a given drug 

Predisposition biomarkers: Identification of individuals at risk of developing cancer 

Screening biomarkers: Early detection of cancer in the general population or at risk 

population 

Diagnostic biomarkers: Definition of tumour type, stage and grade 

Prognostic biomarkers: Identification of the likely clinical disease course (good or poor 

outcome) and hence appropriate therapeutic approach 

Predictive biomarker: Patient enrichment to maximize likely benefit from individual 

therapies 

Pharmacological biomarkers: Demonstration of potentially active drug concentrations 

(pharmacokinetics), drug target interaction (pharmacodynamics - proof of mechanism) and 

phenotypic effects (pharmacodynamics - proof of concept) 

Surrogate biomarkers: Early prediction of ultimate clinical efficacy 
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and the most effective dose. Predictive biomarkers evaluate the probable benefit of a 

particular treatment. And pharmacodynamic biomarkers assess the imminent 

treatment effects of a drug on a tumour and can possibly determine the proper dosage 

in the early stages of clinical development of a new anticancer drug [170]. 

Conceptually, a single marker may be unable to contain sufficient information for 

clinical prognosis; alternatively, multiple markers may need to be measured 

simultaneously.  

 

a. Ideal tumour marker 

The three most important characteristics of an ideal tumour marker are: (a) it 

should be highly specific to a given tumour type, (b) it should provide a lead-time over 

clinical diagnosis and (c) it should be highly sensitive to avoid false positive results. 

Additionally, the levels of the marker should correlate reliably with the tumour burden, 

accurately reflecting any tumour progression or regression, along with a short half-life 

allowing frequent serial measurements. The test used for detection should be cheap for 

screening application at mass level and should be of such nature as to be acceptable to 

the target population (Table 8). In reality an ideal tumour marker does not exist (Figure 

24) [170]. 

 

Table 8. Characteristics of an ideal tumour marker. Adapted from REF [170] 

 

Characteristics Remarks 

Highly specific Detectable only in one tumour type 

Highly sensitive Non-detectable in physiological or benign disease states 

Long lead-time Sufficient time for alteration of natural course of disease 

Levels correlate with 

tumour burden 

Prognostic and predictive utility of the tumour marker 

Short half-life Frequent serial monitoring of the marker levels after 5-6 half 
lives 

Simple and cheap test Applicability as screening test 

Easily obtainable specimens Acceptability by target population 
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Attempts to improve the sensitivity and/or specificity of tumour markers have 

led to combination of tumour markers with other procedures (e.g., combination of 

Carbohydrate antigen (CA) 125 with ultrasonography for early detection of ovarian 

malignancy) or to refining the evaluation criteria for tumour markers (e.g., PSA density 

or PSA velocity or age-specific PSA cut off ranges for early detection of PCa). However, 

these have either not stood the rigorous evaluation of randomized trials or have still not 

received widespread approval of professional clinical organizations [170].  

 

 

Figure 24. Characteristics of an Ideal Biomarker. From REF [50] 

 

Monitoring disease, perhaps, constitutes the most common clinical use of serum 

tumour markers. Markers usually increase with progressive disease, decrease with 

remission and do not change significantly with stable disease. Tumour marker kinetics is 

generally more important than individual values [172]. Rising tumour marker levels may 

detect recurrence of disease well before any clinical or radiological evidence of disease 

is apparent, which it is called "biochemical recurrence" [170]. 

Of the numerous tumour markers identified, described and extensively 

researched upon, only a handful of them are used in routine clinical practice; and even 

of these, only a few have established consensus guidelines for use in day- to-day care of 

patients [170]. 
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b. Prostate cancer biomarkers 

The form of the PCa biomarkers can vary from metabolites and chemical 

products present in body fluid to genes and proteins in the prostate tissues [50]. Current 

advances in molecular techniques have provided new tools facilitating the discovery of 

new biomarkers for PCa. These emerging biomarkers will be beneficial and critical in 

developing new and clinically reliable indicators that will have a high specificity for the 

diagnosis and prognosis of PCa [50]. Both genes and proteins that reveal loss, mutation, 

or variation in expression between normal prostate and cancerous prostate tissues 

could be proposed as PCa candidate markers.  

The management of PCa has undergone several dramatic changes as a result of 

the evolution of biomarkers used in screening, detecting, and predicting the disease 

[173, 174]. Human prostatic acid phosphatase (PAP) (or serum acid phosphatase (AP) 

was reportedly the first serum biomarker for PCa. Gutman and his colleagues [175] 

observed in the 1930s that patients with PCa metastasized to bone had elevated levels 

of PAP activity at the site of metastasis and high serum levels of the protein [176]. This 

finding effectively established the value of serum acid phosphatase activity as an aid in 

diagnosing metastatic prostate carcinoma and consequently as a biomarker for PCa 

progression and reaction to androgen deprivation therapy of PCa that had metastasized 

[50, 177]. Patients with localized cancer frequently display normal levels, and neither 

PAP nor AP show sufficient sensitivity to be used as a reliable biomarker for recurrence 

or response to systemic therapy. Furthermore, the use of AP has been reduced because 

of the development of PSA screening, which is a more sensitive and specific tumour 

marker [50]. 

PSA was later discovered as a biomarker for PCa following the discovery of serum 

PAP and was officially approved in 1994 for PCa screening by the FDA. The prostate 

gland produces PSA, and the test measures PSA levels in the blood (serum). Because PSA 

is from the body and can be used in disease detection, it is often referred to as a 

biological marker or a tumour marker. Both PCa and benign prostatic conditions (e.g., 

BPH) can increase PSA levels from a normally low level to an elevated state in the blood. 

PSA can be present in a free form or complexed with α1-antichymotrypsin or α2-

macroglobulin in circulation. Patients with cancer can be distinguished from those with 
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BPH based on the percentage of free to total PSA in the serum. For those with an 

elevated level of PSA, particularly with a PSA range between 4 and 10 ng/ml, patients 

are more likely to have PCa when the free PSA is less than 20-25% of the total serum PSA 

level. ProPSA, the precursor form of PSA, may serve as an additional indicator in 

differentiating cancers from benign processes [50]. 

Serum PSA was initially used for screening men with an existing diagnosis of PCa  

and was regarded as an ideal marker for identifying recurring disease subsequent to 

treatment [178]. PSA gradually replaced serum PAP, which was considered inferior to 

PSA, for PCa screening, staging, and prognostication. However, PAP is once again 

attracting some attention because of the fact that several studies have shown that it is a 

good prognostic marker for patients with aggressive disease who went through local 

therapy and are at high risk for distant relapse [179]; however, PAP has no role as a 

diagnostic screening tool. 

 

c. Candidate markers for prostate cancer 

The need for effective PCa biomarkers is therefore urgent and great, and the 

search for them has been a priority of researchers for years. In the last decade, PSA has 

been widely used as a useful tool for screening PCa. However, PSA and other established 

biomarkers are still not ideal, as they lack diagnostic specificity and prognostic value and 

lead to a high rate of false-positives. Consequently, the lack of specific and sensitive 

biomarkers for early detection of PCa calls for investigating novel and existing 

biomarkers and developing new approaches such as current advancements in 

proteomics, tissue microarray, DNA microarray, immunohistochemical staining and 

other biotechnologies, to identify and validate more accurate diagnostic and prognostic 

biomarkers [50]. Using these methodologies, researchers have reported several 

biomarkers with great potential, and they are currently undergoing further investigation 

for validation. A few of the recent candidates that have generated some excitement for 

their potential as serum biomarkers for PCa are summarized in Table 9.  
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Table 9. Description of the Biological Function of Selected Serum Markers. Adapted from REF 
[50] 

Serum Marker Description/Type Biological Function Purpose 

Chromogranin-A Pro-hormone peptide 
released by neuroendocrine 
cells 

Uncertain definite function. 
Possesses calcium-binding abilities 
and may act through paracrine and 
autocrine manners. 

Prognosis 

Neuron-specific 

enolase 

Isomer of the glycolytic 
enzyme 2-phospho-D-
glycerate hydrolase released 
by neuroendocrine cells 

Uncertain definite function. Possibly 
serves as paracrine and autocrine 
factor. 

Prognosis 

Human kallikrein 

2 

Serine protease with 
trypsin-like substrate 
specificity 

Splits pro-PSA to create PSA Diagnosis 

Urokinase-type 

plasminogen 

activator system 

Serine protease and 
transmembrane receptors 

Converts plasminogen to plasmin Diagnosis 
(fragments
) and 
prognosis 

Interleukin-6 Cytokine Implicated in hematopoiesis and the 
immune response through mediation 
of B-cell differentiation and the 
acute-phase inflammatory response 

Prognosis 

Transforming 

growth factor-β 

Cytokine Involved in cellular proliferation, 
cellular chemotaxis, cellular 
differentiation, angiogenesis, 
humoral immunity, cell-mediated 
immunity, and wound healing 

Prognosis 

Prostate 

membrane-

specific antigen 

Type II integral membrane 
glycoprotein with cell 
surface carboxypeptidase 
function 

Possesses folate hydrolase function. 
Also is involved in the cell stress 
reaction, signal transduction, cell 
migration, and nutrient uptake. May 
possess questionable receptor 
function. 

Diagnosis 

Prostate-specific 

cell antigen 

Glycosyl 
phosphatidylinositol-
anchored cell surface 
glycoprotein 

Known cell surface marker. Perhaps 
involved in several stem cell activities 
involving proliferation or signal 
transduction. 

Prognosis 

α-Methylacyl-

CoA racemase 

(autoantibodies) 

Peroxisomal and 
mitochondrial racemase 

Engaged in bile acid synthesis, 
stereoisomerization, and β-oxidation 
of branched-chain fatty acids 

Diagnosis 

Early prostate 

cell antigen-1, -2 

Nuclear matrix protein May be involved in early prostate 
carcinogenesis; however, has 
uncertain contribution to nuclear 
morphology 

Diagnosis 

GSTP1 

hypermethylatio

n 

CpG island 
hypermethylation of DNA 
encoding the protein, 
glutathione S-transferase π 

Hypermethylation of GSTP1 inhibits 
transcription. GSTP1 usually acts by 
conjugation of oxidant and 
electrophilic carcinogens to 
glutathione to inactivate them 

Diagnosis 

Testosterone Steroid hormone Acts in the natural growth and 
support of the prostate gland and 
seminal vesicles. Many actions on 
sexual development and anabolism. 
Also involved in endocrine signal 
transduction. 
 

Prognosis 
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Estrogen Steroid hormone Many effects on female sexual 
development. Also acts in the control 
of sperm development and in 
endocrine signal transduction. 

Prognosis 

Sex hormone-

binding globulin 

Serum glycoprotein-binding 
protein 

Adheres to and carries testosterone 
and estradiol. Also involved in 
endocrine signal transduction. 

Prognosis 

Caveolin-1 Integral membrane protein Works to regulate cholesterol 
metabolism and cellular 
transformation and is engaged in 
transducing cell-to-cell signals 

Prognosis 

E-cadherin Calcium-dependent cell 
adhesion protein 

Plays major role as a cellular 
adhesion molecule in cell-to-cell 
adhesion of secretory tissues 

Prognosis 

β-Catenin Adhesion protein (80-kDa 
fragment isolated in 
prostate cancer) 

Aggregates with cadherin to regulate 
the formation of adherent junctions 
between cells 

Prognosis 

MMP-9 Zinc-dependent 
endogenous protease 

Acts in cell migration through and 
degradation of the ECM and in cell-
cell adhesion. 

Prognosis 

Tissue inhibitor 

of MMPs (TIMP 

1, 2) 

Protease inhibitor Prevents synthesis of ECM Prognosis 

Hepatocyte 

growth factor 

Polypeptide growth factor 
(secretory protein of 
fibroblasts) 

A cellular growth, motility, and 
morphogenic factor. Also, involved in 
cell scattering and angiogenesis. 

Diagnosis/ 
prognosis 

MIC-1 Cytokine (TGF-β 
superfamily) 

Uncertain role, but may induce 
apoptosis 

Diagnosis/ 
prognosis 

Cytokine 

macrophage MIF 

Cytokine (secreted by 
lymphocytes) 

Modulates inflammation and the 
immune response. Activates cellular 
proliferation and angiogenesis, while 
inhibiting some tumour-suppressor 
genes. 

Diagnosis 

hK11 Serine protease (human 
kallikrein superfamily) 

Has an uncertain function. Acts like 
trypsin but, depending on the tissue 
or body compartment in which it is 
present, may possibly have many 
different functions. 

Diagnosis 

Progastrin-

releasing peptide 

(ProGRP 31-98) 

Neuropeptide Split to form GRP. GRP acts in the 
regulation of metabolism, behavior, 
smooth muscle activity, some 
exocrine and endocrine operations, 
and cellular chemotaxis. 

Prognosis 

Apolipoprotein 

A-II (8.9 kDa 

isoform) 

Lipoprotein (abundant in 
HDL) 

Effects plasma free fatty acid levels 
via operating in lipid metabolism and 
transport 

Diagnosis 

50.8-kDa protein Unknown, identified by 
mass spectrometry 

Uncertain function but possibly is 
parallel to the action of vitamin D-
binding protein 

Diagnosis 

ILGF-1, -2 Growth hormone-
dependent polypeptides 

In the prostate gland, both modulate 
cellular proliferation, differentiation, 
and apoptosis. Also, acts in 
endocrine signal transduction. 

Diagnosis 

Leptin Adipocyte-derived peptide In metabolism, modulates hunger, 
energy use, and fat metabolism and 
is also known to induce angiogenesis 

Diagnosis 
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Endoglin (CD105) Homodimeric 
transmembrane 
glycoprotein 

Controls TGF-β superfamily signaling 
pathway and therefore subsequently 
affects angiogenesis, cellular 
propagation, apoptosis, cell 
adhesion, and cell movement 

Prognosis 

EGFR family (c-

erbB-1 (EGFR), c-

erbB-2 

(HER2/neu), c-

erbB-3 (HER3) 

and c-erbB-4 

(HER4)) 

Transmembrane 
glycoprotein receptors 

Transduce signals for multiple 
growth factors 

Diagnosis 
and 
prognosis 

TSP-1 Homotrimeric extracellular 
matrix glycoprotein 

Inhibits angiogenesis by inhibiting 
cell development, movement, and 
propagation and is also an effector 
molecule for the tumour suppressor 
gene p53 

Diagnosis 

VEGF Dimeric, heparin-binding 
protein 

An important endothelial cell growth 
factor that controls angiogenesis and 
augments vascular permeability 

Prognosis 

Huntingtin-

interacting 

protein 1 

(autoantibodies) 

Cytoplasmic clathrin-binding 
protein 

Acts in growth factor receptor 
transport. Also, transforms 
fibroblasts by lengthening the half-
life of growth factor receptors. 

Diagnosis 

Prostasome 

(autoantibodies) 

Prostatic secretory granules 
and vesicles composed of a 
lipid bilayer membrane and 
composite protein content 

Consist of proteins that act in 
numerous enzymatic reactions, 
transport, structure, GTP activity, 
molecular chaperoning, and signal 
transduction 

Diagnosis 

ZAG Glycoprotein Induces lipid decline in adipocytes 
and therefore is implicated as 
possibly acting in cachexia 

Diagnosis 

CGRP Neuropeptide Vasodilatation and possibly 
regulation of protease secretion 

Prognosis 

PSP94 Nonglycosylated secretory 
peptide 

In all probability acts as a growth and 
calcium regulator, apoptosis inducer, 
and an inhibitor of FSH. 

Diagnosis 

Other 

methylated 

genes including 

RASSF1α, APC, 

RARB2 and CDH1 

Hypermethylated DNA 
encoding for various 
peptides 

Hypermethylation predictably 
inactivates gene transcription 

Diagnosis 

 

 

d. Cancer biomarkers identification 

 Work over the past three decades has identified many genes for which gain or 

loss of function confers autonomous proliferative activity, resistance to cell death cues, 

angiogenesis, altered cell adhesion and motility. In other words, genetic alterations that 

mediate the initiation and local progression of tumours, and that collectively confer the 
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prerequisites for metastasis, have been identified. However, the society is only 

beginning to learn about the genetic determinants of metastasis proper (Figure 9); that 

is, those that mediate tumour cell invasion, intravasation, survival in circulation, 

scattering to distant tissues, extravasation into parenchyma, and colonization of vital 

organs [18]. Cellular functions reflect the state of the cell as a function of an intricate 

web of interactions among large number of genes, metabolites, proteins and RNA 

molecules [84].  

By nature, PCa progresses slowly and can be treated effectively when it is 

detected early; however, the metastastatic disease presents a major challenge to 

improve survival rate and treatment efficacy. To overcome this problem, it is critical to 

identify predictors to distinguish those PCa that will progress and metastasize, from 

those that will not progress during the expected lifetime of the patient. Metastatic PCa 

proceeds through a series of distinct states such as transformation of normal prostatic 

epithelial cells to pre-invasive primary tumour, androgen-dependent invasive cancer, 

and androgen-independent metastatic disease these stages involve multiple molecular 

changes [180, 181] some of which can be implicated to alterations in gene expression 

[182].  

Genomic technologies offer the promise of comprehensive understanding of 

cancer. These technologies are being used to characterize tumours at the molecular 

level, and several clinical successes have shown that such information can guide the 

design of drugs targeted to a relevant molecule. One of the main barriers to further 

progress is identifying the biological indicators or biomarkers of cancer that predict who 

will benefit from a particular targeted therapy [171]. 

Changes in gene expression that occur during the development of PCa have been 

extensively studied using DNA microarrays [183, 184] coupled with bioinformatics tools 

that can detect with remarkable resolution transcriptional signatures, gene copy number 

abnormalities, SNPs, epigenetic changes, microRNA levels, proteomic alterations and 

somatic mutations [18]. With an increasing appreciation for their potential clinical 

usefulness, these tools are regularly applied to interrogate tumour samples from large 

patient cohorts, and retrospectively derive indicators of disease outcome [18]. 
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In many cases, however, gene expression levels do not accurately predict protein 

levels because additional control mechanisms exist, including post-transcriptional 

regulatory mechanisms [185]. Nevertheless, protein expression can only be determined 

by direct measurement of protein levels. Additionally, discovery of novel molecular 

markers, among which microRNAs (miRNAs), can be useful for improvement diagnosis, 

prognosis and classification of PCa [186]. miRNAs are attractive candidates as 

multifunctional regulators of metastatic progression because one miRNA can regulate an 

entire set of genes [187]. Such metastasis-associated miRNAs may serve as metastatic 

biomarkers and/or new targets for therapy of metastatic disease [188]. 

 

Box 4. Technologies for characterizing tumours. Adapted from REF [171] 

 

 

e. Techniques to identify differentially expressed genes 

The search for novel metastasis genes in PCa is more difficult. Many of the results 

are technology dependent, providing interesting new candidates from in vitro studies, 

which are infrequently confirmed in larger scale studies of human tumour material. The 

Moleuclar alterations in tumours can be uncovered by using technologies that assess 
changes in the content or sequence of DNA, its transcription into messenger RNA or 
microRNA, the production of proteins or the synthesis of various metabolic products. 
Examples of technologies and information obtained about tumours are listed below: 
 
DNA copy-number assessment 

Comparative genome hybridization to DNA microarrays 
Mutation screening 

DNA screening 
Mass-spectrometry-based genotyping 
Mutation-specific PCR 

Gene-expression profiling 

DNA microarrays 
Multiplex PCR 

Proteomic profiling 

Mass spectrometry 
Phosphoproteomic profiling 

Mass-spectrometry after immunoprecipitacion with phosphotyrosine-specific 
antibodies 

Metabolomic profiling 

Mass spectrometry 
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ability to detect differences between populations of nucleic acids from metastatic and 

non-metastatic cellular populations has been exploited over many years. However many 

of the differences are subtle, and technology was unable to resolve these from 

background until the power of gene amplification was combined with the subtractive 

hybridization technologies. Also, most of the techniques require rather large starting 

quantities of RNA, which poses problems in heterogeneous metastatic lesions [64]. 

 

i. Subtractive Hybridization 

The easiest way to compare two nucleic acid populations is to selectively 

hybridise them together, to leave an under and over represented population in an 

unpaired state, where imbalances have occurred. The enduring problem with a sound 

methodology has always been the yield of unpaired molecules, which restricted the 

changes detected to those of great magnitude, or aberrant hybrid formation. However, 

by combination with gene amplification, the technology is able to analyse much smaller 

differences in expression levels [64].  

 

ii. DNA Microarray 

A meta analysis of the major studies was published [184], but like most studies of 

this type in PCa, obtaining sufficient material from genuine metastatic lesions to carry 

our the analysis remains a problem. For a analysis of genes over-expressed in metastasis, 

the best measurement has currently been obtained from 64 primary and 12 metastatic 

adenocarcinomas originating from prostate, lung, colon, breast, ovary and uterus [29]. 

The initial screen produced a set of 128 genes, which could distinguish the metastatic 

lesions from primary tumours. The authors raised the possibility that these organ-

confined tumours already contained cells pre-programmed to metastasize, particularly 

with lung tumours. This could equally apply in those “difficult” prostate tumours with a 

Gleason score of 5–7 where prognosis is a major diagnostic problem. Further refinement 

of the data set resulted in a minimal signature of genes over and under-expressed in 

metastases [64]. The power of microarray analysis may not be exploited to its fullest 
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extent, or in an extreme case, be providing misleading data. Most analyses reduce the 

differential expression to a ratio, relative to ‘normal’ tissues [64]. 

 

iii. Differential Display 

One of the earliest methods of comparative gene expression, differential display 

(DD) has been used to analyse differences in gene expression between normal and 

tumour cell from prostate [189], but the required amounts of RNA for the analysis are 

relatively large, which precludes use with small metastatic lesions. By selection and 

cloning of individual products, the DD technology can isolate individual genes based on 

different sequence and biological criteria, but the procedure can be time consuming. To 

accelerate gene discovery, it can be combined with cDNA microarrays to reveal multiple 

expression alterations between metastatic and non-metastatic cell lines. These 

candidates remain to be confirmed on tissues however. A number of candidate genes 

have emerged from DD analysis [64].  

 

iv. Serial Analysis of Gene Expression (SAGE) 

This technology was devised to overcome the laborious nature of DD, by amplifying 

differentially expressed sequence tags of 10 base pairs as concatamers with defined 

ends. The small sequence tags are finally used to screen sequence databases to identify 

specific products, whose expression changes are confirmed by other technologies in the 

target tissue. With PCa, SAGE analysis has identified a number of expression changes 

[190] from a total of 156 detected changes. However, links to metastasis have still to be 

confirmed [64].  

In summary therefore, the listing of the most common ‘metastasis associated’ genes, 

whose expression changes by the metastatic cell, is recorded in Table 10 although is 

unlikely to be complete given the technique (and clinical material) dependency of the 

analyses carried out.  
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Table 10. Multiple gene expression changes implicated in PCa metastasis. Adapted from REF 
[64] 

Gene Function Positive or 

negative 

effector 

Reference(s) 

Tazarotene-induced gene 1 

(TIG1) 

Retinoic acid responder gene        - [191] 

Hevin Extracellular matrix, antiadhesive 

acidic cystein-rich glycoprotein 

- [192] 

NF-kB Transcription factor + [193] 

VEGFC Cytokine (angiogenesis) + [194] 

Type XXIII collagen Transmembrane (type 11 collagen) + [195] 

Endothelin Cytokine + [196] 

Src-suppressed C Kinase 

substrate (SSeCKs/Gravin) 

Tumour suppressor - [118] 

Hepatocyte growth factor Multiple growth factor-like 

activities 

+ [197, 198] 

CAT-like Re-absorption of Ca++ + [199] 

c-erbB2/neu cytokine + [200] 

NKX3.1 Transcription factor - [201] 

Elongin C Multifunctional + [202] 

Urokinase-type 

plasminogen activator 

Protease +  

Cutaneous fatty acid 

binding protein 

Fatty acid binding + [203] 

Osteoprotegerin Cytokine (osteoblastic) + [204] 

Prostate stem cell antigen GPI anchored cell surface antigen + [205] 

Annexin I Calcium binding adhesion, 

membrane trafficking, cell signaling 

- [206] 

Parathyroid hormone-

related protein (PRHrP) 

Peptide hormone - [207] 

PHPrP receptor Hormone receptor +  

C13 Nuclear, glutamine and alpha helix 

rich 

- [208] 

Autocrine motility factor 

(AMF) 

Cytokine + [209] 

Progastrin-releasing 

peptide (ProGRP) 

Cytokine + [210] 

Maspin Serine protease inhibitor (adhesion 

to ECM) 

- [211] 

TGF-b family Cytokine - [212] 

CLAR1 Proline-rich with SH3 binding 

domains 

+ [213] 

Bone morphogenetic 

proteins 

Cytokine  + [214, 215] 

Matrix metalloproteinases Proteases (tissue and vascular 

escape) 

+ [216] 

connexins Intracellular communication +/- [217, 218] 
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VI. PROSTATE BONE METASTASIS SIGNATURE 

a. Genomic biomarker discovery 

Cancers are characterized by hallmark processes and shared mechanisms 

involved in expression of disease phenotype. It is a challenge to identify such genes 

involved in generic cancer mechanisms. Identification of such ‘generic cancer genes’ may 

help to focus on ‘disease specific cancer genes’ of potential therapeutic value. Due to 

complexity and subtle mechanisms involved in metastasis, it is difficult to identify their 

control mechanisms. Therefore it is important to have methods for identification of 

genes and regulatory mechanisms that are key to a complex pathogenic state such as 

secondary bone cancer [84]. 

Gene-expression profiling has been extensively used to classify cancers by gene-

expression signatures [219-221]. It has also been used for predicting response to 

treatment and prognosis [222]. The hypothesis that screening of the gene expressed in 

the primary tumour from individual patients may be used to direct future therapy is very 

attractive, as currently a large number of patients receive unnecessary treatment [70]. 

In particular, identifying which patients would go on to develop bone metastases is of 

great interest, as this group may then be treated with organ-specific therapies like 

bisphosphonates [70]. 

In vivo selection of organ-specific metastatic variants from human malignant 

samples and cell lines, coupled with analysis of mRNA and microRNA expression patters 

has allowed the identification of organ-specific metastasis genes and functions. By 

comparing the results of this type of analysis with clinical gene expression data sets, it is 

possible to identify metastasis-associated genes of clinical relevance [125]. Several gene 

sets have been identified that are associated with organ-specific relapse in breast cancer 

patients [223, 224]. 

Another approach is based on interrogating clinical gene expression data sets for 

associations between specific pathways and particular disease outcomes [125]. By 

combining this information with functional assays it has been recently shown that a 

hyperactive Wnt pathway in lung adenocarcinoma tumours supports aggressive multi-
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organ metastasis to brain and bones [225], whereas a high level of Src activity in breast 

tumours endows disseminating cancer cells with an enhanced capacity to survival in the 

bone marrow microenvironment and may contribute to late onset bone metastasis 

[226]. 

Gene signatures are useful tools to identify genes with functional roles in specific 

processes, as well to unravel new candidate prognostic or predictive genes, due to their 

specificity for a unique feature, like the target organ to metastasis [227]. In 2003, Kang 

et al. [32] demonstrated that only a fraction of the cells in a breast cancer population 

have the ability to exclusively spread into bone. Using the osteolytic breast cancer cell 

line MDA-MB-231 as a model, subpopulations with high metastatic ability either to bone 

or adrenal gland medulla were isolated and by transcriptomic profiling and comparison 

of these isolates, a gene set associated with the osteolytic bone metastatic ability was 

identified, denominated Kang’s BM signature. This signature was retained after cell 

passage in vitro and in vivo, sustaining that the tissue-specific metastatic ability preexists 

in a certain parental population, and bone metastasis results from the selection and 

enrichment of these specific cells in the bone microenvironment [227]. 

In PCa bone metastasis, recent studies were performed to uncover differences in 

gene expression by using cDNA microarrays in comparison to liver and lymph node 

metastases, which could influence the pathologies associated with PCa metastasis at 

these sites [228]. Moreover, changes in integrin expression or function in malignant 

disease was found to be implicated in tumour growth, angiogenessis, and metastasis of 

human PCa, which make these receptors promising targets for novel anticancer 

therapies [229]. Therefore, an exhaustive analysis of gene expression in metastatic PCa 

cells is critically needed to identify new candidate genes that may play important roles in 

acquisition of the metastatic phenotype [182].  

During the past year, three studies have been reported using genomic profiling to 

identify somatic copy number alterations specifically in clinical metastatic prostate 

tumours. In one study, a set of approximately 50 castration-resistant metastatic prostate 

tumours from 14 patients were analyzed using array-based comparative genomic 

hybridization (aCGH), gene expression profiling, and fluorescence in situ hybridization 

(FISH) [230]. This analysis implicated certain genes in metastatic PCa and associate 
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specific alterations with metastasis to specific distant sites [230]. In a more recent study, 

high-resolution single nucleotide polymorphism (SNP) arrays were used to assess copy 

number changes in a series of 94 metastatic tumours from 14 patients, where multiple 

lesions were studied from each patient [231]. They showed that most, if not all, lesions 

from each patient shared at least one somatic event, suggesting that metastatic tumours 

from any given patient were derived from a common progenitor tumour cell [231]. 

Furthermore, their data also suggested that there was no obvious relationship between 

specific lesions and specific systemic metastatic sites [231], contrary to results reported 

by Holcomb et al. (2009) [230]. More recently, a very comprehensive genomic study was 

published for 218 total primary and 5 metastatic tumours, including copy number 

analysis, gene expression, miRNA analysis, and mutational analysis of exons from more 

than 100 genes using Sanger sequencing methods [232]. The overall results of this study 

support a significant role for somatic alterations in the gene NCOA2 in PCa [232].  

Together these studies have shed significant light on gross copy number changes, 

have implicated specific regions in metastatic disease, and in a few cases have 

implicated specific genes that might be involved in metastatic PCa. A number of 

candidate genes have been reported that harbor somatic mutations in localized PCa, 

including AR, TP53, KLF6, EPHB2, CHEK2, ZFHX3 (known as ATBF1), and NCOA2 [232-

236]. However, there are limited reports of somatic coding mutations in metastatic 

tumours. One example is a study reported by Wong et al. (2007) [237], which describes 

mutations in the gene encoding plexin-B in metastatic PCa [237]; however, as of yet 

these results have not been replicated in the literature [238].  

Numerous transcriptome studies have defined general PCa signatures (see Table 

9), but, unlike breast cancer, these analyses have not identified robust subtypes of PCa 

with different prognoses [232]. 
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b.  Proteomic biomarker discovery 

Study of disease protein interactomes offer a better understanding of disease-

specific genes and processes involved and may offer better targets for drug 

development. It is increasingly evident that genes do not act as individual units but 

collaborate in a series of overlapping and interrelated networks, the deregulation of 

which is a classic hallmark of cancer [239]. These molecular interaction networks are 

characterized by the presence of a few highly connected nodes, often called ‘hubs’, 

suggesting a special role of these promiscuous interactors (Figure 25). Hubs of protein 

interactomes are more likely to be essential for the survival [240] and also reported to 

be important for cellular growth rate [241]. Proteins with high betweenness are 

reported to have much higher tendency to be essential genes [242]. Cancer proteins are 

reported to be more central in the protein interactome and are, on an average, involved 

in twice as many interactions as those of non-cancer proteins [84, 243].  

 

 

 

 

 

 

Figure 25. Example of 

organ-specific brain 

metastasis network as 

a model of breast 

cancer. From REF 
[244]. Proteins are 
represented by nodes 
and the edges between 
the nodes display 
interactions between 
the proteins. 

 

Proteomics is more than the identification of proteins that are altered in 

expression as a consequence of pathophysiology, it also encompasses the search for 

novel biomarkers, a critical tool for the detection, treatment, and monitoring of disease 

[239]. The necessity for new methods to identify and validate biomarkers is underscored 

by the increased survival of patients diagnosed at early stages of cancer [239]. 
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Proteomic biomarker discovery shares a lot of characteristics with genomic or 

transcriptomic profiling, including the analysis of biological samples within a complex 

matrix, and sophisticated statistical analysis, including large sets of variables. However, 

proteomic biomarker discovery is inherently more complex, mainly due to the vast range 

of analyte concentrations that must be detected and identified, as well as the fact that 

protein products cannot be amplified, since an equivalent PCR for proteins does not 

exist [245]. Innovative protein-based approaches to identify and quantify proteins in a 

high throughput manner have furthered our understanding of the molecular 

mechanisms involved in diseases [246]. Because of the inherent complexity of the 

proteome, all approaches to its examination are generally based on a separation step 

(gel-based or non-gel based) followed by ionization and a subsequent analysis by MS 

[247] (Table 11).  

 

Table 11. Advantages and disadvantages of each mass spectrometry-based proteomics 

technique for use in clinical applications. Adapted from REF [248] 

TECHNOLOGY ADVANTAGES DISADVANTAGES 

2DE-MS Detection of large molecules, enables 
estimation of their molecular weight. 
Sequencing of biomarkers easy to 
perform from 2D spots. 

Not applicable to molecules < 10 
KDa, no automation, time-
consuming, quantification difficult, 
medium throughput, moderate 
comparability. 

LC-MS Automation, high sensitivity, used for 
detection of large molecules (> 20 Kda) 
after tryptic digest, sequence 
determination of biomarkers provided 
by MS/MS. 

Time-consuming, relatively sensitive 
toward interfering compounds, 
restricted mass range, medium 
throughput. 

SELDI-TOF* Easy to use, high throughput, 
automation, low sample volume. 

Restricted to selected proteins, low 
resolution MS, lack of comparability, 
sensitive toward interfering 
compounds, low information 
compound. 

CE-MS
#
 Automation, high sensitivity, fast, low 

sample volume, multidimensional, low 
cost. 

Generally not suited for larger 
molecules (> 20 kDa). 

*Surface-enhanced Laser Desorption Ionization-Time-of-Flight (SELDI-TOF) 
#Capillary electrophoresis coupled to mass spectometry (CE-MS) 
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The recent explosion in proteomic technologies centering on MS and protein 

microarrays has provided great opportunities for researchers to use these “bridging 

technologies” for the clinical, proteomic investigation of disease-relevant changes in 

tissues and biofluids [246]. Common proteomic methodologies are categorized into two 

classes: those for differential proteomics in the discovery phase and those for 

quantitative proteomics.  

Differential proteomics is defined as the scientific principle that compares 

normal and diseased states for biomarker discovery without providing specific protein 

concentrations in the biological matrix.  

Quantitative proteomics is defined as the absolute quantification of proteins 

used in targeted biomarker verification and quantification studies. Selected Reaction 

Monitoring (SRM) is introduced as one of the main multiplex quantitative methodologies 

in the biomarker pipeline for verification [246]. 

To date, mass spectrometry-derived protein signatures have been identified, 

characterized, modeled, and are now moving into validation in extensive patient cohorts 

[249, 250]. Further characterization and sequencing of these key features should provide 

new insights into disease etiology, and presumably, intervention [251]. Surface-

enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) 

or two-dimensional polyacrylamide gel electrophoresis (2D)-PAGE have emerged as the 

primary investigator-based modality for biomarker discovery of early stage cancers 

[252], although these approaches do have some limitations [239]. More recently, stable 

isotope labeling with amino acids in cell culture, or SILAC, has emerged as a valuable 

proteomic technique [253-255].  

Two of the differential proteomic techniques for biomarker discovery used in this 

thesis are summarized below. 

 

2D-DIGE technology 

The term “proteomics” originated in the context of two-dimensional (2D) [256], a 

fundamental evolution in the field of separation technologies. 2D has proved to be a 

reliable and efficient method for the separation of proteins based on mass and charge. It 

can achieve the separation of thousands of different proteins on one gel [257]. In 2D 
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experiments, the staining pattern of proteins from two samples is compared, and the 

“up-regulated” and “down-regulated” proteins are identified. The main problem of 2D is 

its lack of reproducibility that difficult the comparison of different experiments. 

To overcome 2D reproducibility, the simultaneous staining of two samples has 

been developed in recent years to allow a one-step analysis and a direct comparison of 

different mixtures of proteins [258]. The 2D-DIGE approach significantly improves the 

sensitivity and reproducibility of 2DE analyses because differently labelled protein 

samples are resolved on the same gel [259].This methodology is known as Differential 

In-Gel Electrophoresis (DIGE). The basis of the technique is the reaction of mass- and 

charge-matched N-hydroxy succinimidyl ester derivatives of the fluorescent cyanine 

dyes Cy3 and Cy5 with lysine residues of two different protein samples. This allows the 

co-detection of individual proteins originating from the different samples in a single spot 

and a direct comparison of the protein expression levels (Figure 25). Moreover, the 

application of a pooled standard protein sample labelled with a third fluorescent dye 

(Cy2) onto each gel allows the linking of gel images from individual gel runs. This not 

only avoids the complications of inter-gel comparison but also speeds up the analyses 

and reduces the number of gels that need to be run for a reliable comparison of protein 

patterns [259].  

 

Figure 26. Differential In-Gel Electrophoresis (DIGE). A. Sample labeling with different dyes. B. 
2DE of the different labelled samples in the same gel. C. Typhoone scanner using different 
wavelength to obtain the different images from the same gel. D. Image analysis using specific 
software (Progenesis Samespots v2.0 software (NonLinear Dynamics, Newcastle, U.K.)). 
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SILAC methodology 

By SILAC, cells representing two biological conditions are cultured with 12C- or 

13C-labelled amino acids and proteins effectively become isotopically labelled as “light” 

or “heavy.” By adding stable, non-radioactive isotopic forms of amino acids to media 

when cells are growing cells, it is possible to achieve 100% amino acid incorporation. 

Upon isolation of proteins from these cells, samples can then be mixed in equal ratios 

and processed using conventional techniques for tandem mass spectrometry accurate 

protein identification [250]. Given that corresponding light and heavy peptides from the 

same protein will co-elute during chromatographic separation into the mass 

spectrometer, relative quantitative information can be gathered for each protein by 

calculating the ratio of intensities of the two peaks produced in the peptide mass 

spectrum (MS scan). Furthermore, sequence data can be acquired for these peptides by 

fragment analysis in the product ion mass spectrum (MS/MS scan) and used for accurate 

protein identification . Finally, when more than one peptide is identified from the same 

protein, the quantification is redundant, providing increased confidence in both the 

identification and quantification of the protein (Figure 27) [250]. 

 

 

Figure 27. SILAC experiment workflow. Adapted from web page: 
http://www.grc.nia.nih.gov/branches/lci/muproteomics.htm 

 

Because samples are mixed early on before processing and are subjected to the 

identical experimental protocol, experimental results achieve high fidelity with minimal 

bias, allowing relative quantitation of even small changes in protein abundance. 
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However, there is currently no way to reliably detect or predict which patients 

are at risk for metastatic cancer. Thus, the discovery of biomarkers that could distinguish 

patients with local disease from those with metastatic disease would be of great clinical 

value [239].  

 

c. microRNA biomarker discovery 

In recent years, evidence has accumulated that small non-coding RNAs are also 

used in a conserved manner to regulate key developmental events. At least four classes 

of regulatory small non-coding RNAs have been described, including microRNAs 

(miRNAs), short interfering RNAs (siRNA), repeat-associated small interfering RNAs 

(rasiRNAs) and piwi-interacting RNAs (piRNAs) [260]. Among these small RNAs, miRNAs 

(Figure 28) are the most phylogenetically conserved and function post-transcriptionally 

to regulate many physiologic processes, including embryonic development [261-263]. 

Therefore, investigations that are underway to find the molecular basis of 

metastatic PCa have focused on many novel molecules, among which microRNAs 

(miRNAs), that are becoming an attractive area of research. 

The miRNAs are small, noncoding subset of RNAs which consist of about 18-22 

nucleotides and bind to the 3’ untranslated region of messenger RNAs (mRNAs) [264]. 

By this action, they cause post-transcriptional inhibition or degradation of target mRNA, 

depending on the degree of complementary base pairing [186, 265]. During the past 12 

years, significant advances have been made in miRNA research leading to the discovery 

of over 4,500 miRNAs in vertebrates, flies, worms, plants, and viruses out of which more 

than 1,000 miRNAs have been fully characterized and the number is expected to grow in 

the coming years [186].  

The miRNAs are being implicated in the regulation of an increasing number of 

physiological processes. It is also believed now that they play an important role in the 

regulation of many cellular functions ranging from maintenance to differentiation and 

tissue development, from metabolism to cell cycle [186]. All of these facts leads to the 

conclusion that aberrant expression of miRNAs will have impact on various biological 
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processes where they are implicated, which will result in a variety of pathological events 

such as cancer [186, 266]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Current model of miRNA 

biogenesis and function. From REF [263].  
Abbreviations: SRF, serum response 
factor; TF, transcription factor. 

 

The role of miRNAs in cellular growth, differentiation and apoptosis of cancer 

cells through their interactions with their target mRNA has been studied [267, 268]. 

miRNAs may be oncogenic or tumour suppressors, with oncogenic being up-regulated 

and the tumour suppressors being down-regulated in cancers [186]. Generally, the 

importance of miRNAs in cancer is emphasized by the fact that around 50% of all miRNA 

genes are positioned in the so called ‘fragile sites’, the cancer associated genomic 

regions which are repeatedly changed in cancer [186]. Moreover, miRNAs are attractive 

candidates as multifunctional regulators of metastatic progression because one miRNA 

can regulate an entire set of genes [269]. 

The role of miRNAs in PCa is becoming clearer by understanding the interactions 

between miRNAs and their targets and the resulting impact on carcinogenesis of the 

prostate  [186, 267, 270]. It is believed that several miRNAs and their targets are 

aberrantly expressed in PCa which, in turn, alter the cellular growth, invasion, and 

metastatic potential of PCa cells. The abnormal expressions of certain miRNAs are now 
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considered valuable biomarkers for diagnosis, prognosis and classification of PCa (Table 

12) [271, 272]. All of the above information underscores the importance of the biology 

of miRNAs in PCa [186].  

 

Table 12. miRNAs that influence PCa progression. Adapted from REF [186] 

miRNA Role in PCa Function Study 

miR-15a 

and 

miR-16 

 

Tumour 
suppressors 
 

Inhibit cell proliferation, invasion 
and angiogenesis through 
regulation of 
multiple targets 

Aqeilan 2010 [273], 
Musumeci 2011 [274] 
 

miR-21 Onco-miRNA 
Increases tumour growth, invasion 
and metastasis 

Si 2007 [275], Selciklu 2009 
[276], Li 2009 [277], Ribas 
2009 [278] 

miR-125b Onco-miRNA 
Increases cell proliferation and 
inhibits apoptosis 

Lee 2005 [279], Shi 2007 
[270] 
 

miR-143 

Tumour 
suppressor 
 

Inhibits cell proliferation and 
migration by regulating KRAS, 
MAPK pathways and cell cycle. Also 
inhibits metastasis 

Clape 2009 [280], Xu 2011 
[281], Friedman 2009 [282] 

miR-145 
Tumour 
suppressor 

Inhibits migration, invasion and 
metastasis 

Friedman 2009 [282] 
 

miR-200 s 
Tumour 
suppressor 

Inhibit cell migration and invasion 
by reversing EMT 

Kong 2009 and 2010 [283, 
284] 
 

miR-221 Onco-miRNA 
Stimulates cell growth and 
influences cell cycle progression 

Zheng 2011 [285], Galardi 
2007 [286], Sun 2009 [287], 
Pang 2010 [267] 

miR-222 Onco-miRNA Increased cell cycle progression 
Galardi 2007 [286], Sun 
2009 [287], Pang 2010 
[267] 

miR-488 
Tumour 
suppressor 

Inhibits Androgen Receptor-
mediated cell growth 

Sikand 2010 [288] 
 

 

 

Thus far, only a small number of studies have investigated miRNA expression in 

PCa, and only a few have dealt with metastasis of this disease [188]. Differences in the 

expression profiles of miRNAs so far identified may have prognostic value for the various 

aspects of the disease and a better understanding of the role of miRNAs in the 

development and progression of PCa is needed [289]. Further research may also lead to 

identification of new miRNAs that are specifically related to PCa progression and 
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metastasis. Such metastasis-associated miRNAs may serve as metastatic biomarkers 

and/or new targets for therapy of metastatic disease [188]. 

miRNAs as biomarkers offer a number of advantages. First, compared with 

mRNAs, which are very sensitive to degradation, miRNAs are more stable in 

compromised human specimens (e.g., formalin-fixed paraffin-embedded; FFPE) [290, 

291]. Second, their expression levels can be measured reliably in FFPE tissue samples. 

Third, minute amounts of RNA are needed to establish their expression using reliable, 

quantitative PCR amplification strategies, such as TaqManVR qRT-PCR. Finally, miRNA 

expression profiles are not dependent on the preservation of the specimen’s 

architecture and cellular arrangement or the degree of cellular degeneration. 
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General format considerations 

 

 

Due to the complexity of this study, this thesis has been structured in three chapters, 

each with its own Hypothesis, Objectives, Material & Methods and Results with 

Discussion, instead of the traditional format.  

  

The main objective of this thesis is the study and characterization of prostate cancer 

bone metastases from different models to achieve an in-depth understanding of tumour 

cell dissemination and establishment of osseous metastases. The ultimate aim is to 

develop new metastasis-associated biomarkers that may be used as targets for effective 

therapies. 
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Establishment and Characterization of 

Intraosseous  Prostate Cancer  Bone Metastasis 

Model 
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BACKGROUND 

Bone is the most frequent location of metastases in patients with PCa. On 

postmortem examination, around 70% of patients that die of this cancer have evidence 

of metastatic bone disease [63]. For many patients, metastatic bone disease is a chronic 

condition with an increasing range of specific treatments that aim to slow the 

progression of the underlying disease [63]. In contrast, symptomatic PCa bone 

metastases are painful, debilitating, and generally fatal [292]. Metastatic bone disease 

results from the interaction between cancer cells and normal bone cells in the bone 

marrow microenvironment, where the stimulation of osteoclastic bone resorption 

triggers an uncoupled and unbalanced bone remodelling process [63]. 

The propensity of PCa to metastasize to bone is not well understood 

mechanistically. After PCa cells infiltrate the bone marrow, presumably via the venous 

plexus [293], two possible modes of engraftment have been postulated: the first is 

purely mechanical and involves trapping of PCa cells by filtration through the marrow; 

the second is biological and derives from the ‘seed and soil’ hypothesis of Paget, which 

holds that specific interactions between PCa cells and the bone marrow 

microenvironment are required for growth to occur [7]. In 1999, Koeneman et al. [294] 

focused on the interactions between PCa cells and the bone environment and 

hypothesised that prostate cells must acquire bone-like properties in order to grow and 

proliferate in the bone environment [292]. In this model, prostate cells become 

“osteoblast-like” and express proteins associated with osteoblast maturation, osteoblast 

differentiation and bone remodelling [292]. 

The generation of suitable in vivo models is critical for understanding the 

interactions between PCa cells and the bone microenvironment. The ideal animal model 

for PCa should mimic the clinical situation: the tumour should be of human origin, have 

a fast enough doubling time suitable for an experimental model, be androgen-

dependent or androgen-sensitive, produce prostate specific antigen (PSA), create lymph 

node and bone metastases, and develop androgen-independent status after castration 

[139]. The lack of an ideal model for metastases hinders the study of the whole process 

and of the precise mechanisms in each step of this metastatic disease. The development 

of xenograft mice models has greatly contributed to this area [295] and facilitates the 
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research of new targets to improve current therapies. Currently, the best animal model 

of PCa metastasizing to bone is the Nod/Scid-humanized model, an immunodeficient 

mice grafted with a human bone, where both PCa cells and the bone target can be of 

human origin [295]. This in vivo model enables the analysis of the governing mechanisms 

of the interactions between human tumour cells and human organ environment [296] in 

the establishment of tissue-specific and species-specific metastases. 

Proteomics is a useful tool for searching novel biomarkers for the detection, 

treatment and monitoring of diseases [252]. Thanks to the performance of mass 

spectrometry (MS), proteomic studies are able to identify a high number of proteins that 

are specific to a given malignancy.  

 

Understanding the complex interactions that contribute to the metastatic 

behaviour of tumour cells is essential for developing biomarkers of disease progression, 

as well as for the development of more effective therapies. 

  

 To sum up, some molecular factors in human PCa cells promote metastases 

preferentially to the bone; there is a relationship between bone stromal components, 

metastasizing cells and bone marrow-derived cells that could explain the tissue-tropism 

observed in metastases. Finally, circulating tumour cells able to colonize secondary 

tissues may possess specific characteristics that differentiate them from other tumour 

cells.
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HYPOTHESIS AND OBJECTIVES 

 

 

 

 

 

 

 

 

 

 

General objectives 

The main objective of Chapter I of this thesis was to identify differentially 

expressed proteins involved in the metastatic process of PCa to the bone to help clarify 

the complex nature of its development and its unusual mechanism(s) of disease 

progression.  

To accomplish this aim, the research was focused on the following areas: 1) to 

develop a humanized model of PCa bone metastases, 2) to analyze the differential 

proteomic profiles of both bone stromal components and human metastatic PCa cells in 

the grafted metastatic niche. And finally, 3) to further investigate the species-tropism of 

circulating human PCa cells to the human bone target in the same mice model. 

 

Specific objectives 

1. Development of a species- and tissue-specific metastases model of human PCa 

in immunodeficient and humanized mice engrafted with a human adult bone. 

Specifically, the humanized and immunodeficient mice model of PCa bone 

metastases consisted in the following consecutive steps: 

1a. Subcutaneous (s.c.) human adult bone implantation from non-cancerous patient into 

Nod/Scid immunodeficient mice; 

1b. Neovascularization of the grafted human bone for a period of 4 weeks; 

1c. Direct inoculation of PCa cells into the bone marrow of the implanted human bone; 

Main hypothesis: It is possible to identify by differential proteomics 

molecules that are mediating bone metastases for PCa into the metastatic 

niche through an in vivo model of PCa cell dissemination. 

 

Moreover, the use of those molecules can be used to identify those 

patients at risk of developing aggressive disease who may eventually 

benefit of a more personalized/targeted therapeutic approach. 
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1d. Tumour growth monitorization. 

 

2. To analyze the differential proteomic profiling of the bone stromal component 

and human PCa cells in the grafted metastatic niche. 

To further analyze changes in proteomic profiles for the PCa bone metastases 

dissemination, the 2D-DIGE approach was used to analyze those proteins whose 

expression was altered in bone metastases compared to normal bone. 

 

Specifically, the following procedures took place: 

2a.  Protein extraction from bone implants, quantification and sample preparation; 

2b.  Performance of 2D-DIGE technique comparing bone with metastases, bone without 

metastases and the tumour cell component; 

2c. Identification by MALDI-TOF-MS/MS of proteins differentially expressed and analysis 

of results. 

 

3. Study of species-tropism of circulating human PCa cells to the human bone 

target. 

Here, the preference of circulating human PCa cells introduced into humanized 

Nod/Scid mice to metastasize to the engrafted human bone or mouse bones was 

investigated. 

 

The following steps took place: 

3a. Nod/Scid mice were subcutaneously engrafted with human adult bone; 

3b. After neovascularisation, human PCa cells were injected intracardiacally; 

3c. Tumour progression and cell dissemination was monitored in vivo. 
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MATERIAL AND METHODS 

1 Tumour cell lines 

1.1 PCa cell lines 

All the in vivo experiments shown in this thesis have been carried out with the human 

PCa cell line (PC-3), derived from a bone metastasis of a grade IV prostatic 

adenocarcinoma [124], and obtained from the LoGiCal Standards (LGC, UK). PC-3 cells 

were cultured in sterile 75-cm2 tissue culture flasks filled with 15 mL complete media 

consisting of RPMI-1640 (Life Technologies, UK) supplemented with 10% foetal bovine 

serum (FBS; Gibco, Life Technologies, UK), 50 U/mL penicillin and streptomycin, 1X non-

essential amino acids (MEM), 2 mM L-glutamine, 10 mM HEPES (all from Gibco, Life 

Technologies) and 1 mM sodium pyruvate (PAA Laboratories, UK) at 37ºC in a humidified 

atmosphere (5% CO2/ 95% air). Cells were passaged and expanded every 6-7 days by 

trypsinization of cell monolayers. Culture media were changed every 3-4 days. The cells 

were harvested by trypsinization (0.25% trypsin, 0.02% EDTA) and washed three times 

by centrifugation in complete media. Cell concentration and viability were determined 

with 0.2% trypan blue solution using a Neubauer chamber. 

 

1.2 Constructs and stable cell line generation 

PC-3.pEGFPluc cells were generated by transfection of PC-3 cells with the expression 

vector pEGFPluc (a kind gift from Dr. Seoane), which uses the human cytomegalovirus 

(CMV) immediate early promoter to express the enhanced firefly Luc reporter gene 

upstream of the green fluorescent protein (GFP) gene. Plasmids (4 µg/well in a 6-well 

plate) were transfected into PC-3 cells using LipofectamineTM 2000 (Invitrogen, Life 

Technologies, UK), according to manufacturer’s instructions. Twenty-four hours after 

transfection, transfected cells were selected with geneticin (Life Technologies, UK) at a 

concentration of 500 µg/mL. After expansion of the clones, isolated colonies were 

cloned and characterized. GFP-expressing cells were isolated by fluorescence-activated 

cell sorting using the FacsAria (BD Bioscience, USA).  
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2 Bioluminescence in vitro assay 

To validate the bioluminescent light production (luciferase activity) of the clones, they 

were tested by in vitro assay using IVIS® Spectrum (Caliper Life Sciences, MA). Briefly, 

fifty microlitres of bioluminescent cells diluted from 200,000 to 196 cells were seeded 

into black, clear bottom 96-well plates. D-luciferin firefly (Promega Biotech Ibérica, 

Spain) at 300 µg/mL (50 µL) was added to each well just prior to imaging, and cells were 

incubated for less than 10 minutes at 37ºC. The production of light for each cell variant 

was linear, in proportion to the number of cells plated. All experiments were performed 

with pooled populations using the two highest luciferase expressing cell variants. 

 

3 Animal care and human adult bone implant 

Male Nod/Scid mice (NOD.C.B-17/IcrHsd-Prkdc
scid) were purchased from Harlan (Harlan 

Laboratories, Italy) at 4 weeks of age and maintained under specific pathogen-free 

conditions. Animals were kept for at least 1 week in the facility before experimental 

manipulation. Animals were kept in a sterile environment in cages with beds of sterilized 

soft wood granulate and fed irradiated rodent diet ad libitum with autoclaved tap water. 

An artificial cycle of 12h light/12h darkness was maintained in the room where the 

animals were kept. A maximum of five mice were kept in each box, and all 

manipulations were performed using sterile techniques within a laminar-flow hood at 

the animal facility. Experiments were performed on animals at 5 weeks of age. All the 

procedures associated with experimentation and animal care were performed according 

to the guidelines of the Spanish Council for Animal Care and the protocols of the Ethics 

Committee for Animal Experimentation at our institution. 

After obtention of the informed consent, normal-appearing bone tissue (from the 

spinous process of a vertebra) was extracted from a non-cancerous patient (a 44-year-

old man with hypertension and obesity) who underwent surgery in the Traumatology 

Department of the Hospital Vall d’Hebron in Barcelona. Implantation of human adult 

bone fragments into Nod/Scid mice was performed as described previously by Yonou et. 

al [296]. Briefly, after anesthetizing animals with 2% isofluorane, bone fragments were 

obtained and maintained under sterile conditions in RPMI 1640 at 4°C. Bone fragments 

of approximately 1 cm3 were subcutaneously (s.c.) implanted into the left flank through 
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a small skin incision in Nod/Scid mice within 1 h after their procurement (Figure 29). The 

resulting grafted Nod/Scid mice were used for the metastasis assay at 4 weeks after 

implantation.  

Figure 29. Human bone engraftment procedure. A. Male Nod/Scid mice were anesthetised with 
2% isofluorane before surgery. B-C. Human adult bone, a spinous process from a vertebra of a 
non-cancerous patient, was maintained under pathogen-free conditions in RPMI media at 4ºC 
within 1 h after their procurement and cut into small pieces (C) of approximately 1 cm3 before 
implantation. D. After wiping the area with 70% alcohol swabs, a skin incision to introduce the 
bone fragment was performed. E. The incision was closed by suture. The resulting grafted 
Nod/Scid mice were used for the metastasis assay 4 weeks after implantation.  
 

 

4 Induction of bone tumours 

Four weeks after bone implantation, a group of ten engrafted Nod/Scid mice (the bone 

with bone metastases group) were inoculated with single cell suspensions (1 x 106 

cells/50 µL of sterile phosphate-buffered saline, PBS) of stable transfected PC-3 cells 

directly into the marrow spaces of the implanted human adult bone using a 27-gauge 

needle; another group of ten mice (the group of bone without metastases) with the 

same engraftment received a sterile solution instead of tumour cell suspension. 

 

5 Xenograft by intracardiac inoculation of prostate cancer cell suspension 

For the intracardiac (i.c.) injection of PC-3 luciferase-transfected cells, 5 week old male 

mice (n = 10 mice) were deeply anesthetized with ketamine (100mg/kg of body weight) 

and xylazine (10mg/kg of body weight) solution. Using a 25-gauge syringe, PCa cells (3 x 

105 in 0.1 mL sterile PBS) were injected into the left cardiac ventricle of the heart. The 

presence of a rapid pulsatile flow of bright red arterial blood (as opposed to darker, 

burgundy coloured blood) into the syringe was indicative of correct needle placement 
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[297]. Mice were imaged for luciferase activity immediately after injection and 

continued to be monitored weekly using IVIS® imaging. 

 

6 In vivo monitoring and ex vivo analysis 

For the time-course of the in vivo bioluminescence imaging (BLI) of each group of mice 

throughout the study, the IVIS® Spectrum (Caliper Life Sciences, USA) was used as 

described by Drake et al. [160]. Before imaging, mice were given an intraperitoneal (i.p.) 

injection (150 mg/ kg body weight) of D-Luciferin substrate (Promega Biotech Ibérica, 

Spain) and were anesthetized with 2% isofluorane (ABBOT Laboratories, Spain) (Figure 

30). Mice were imaged once weekly beginning on day 0 after tumour inoculation to 

evaluate and quantify bone tumour growth. Total image intensity was collected every 2 

min until a high plateau was reached. Values were recorded and images obtained. BLI 

signal was quantified by measuring the amount of highlighted pixels in the regions of 

interest (ROIs) around the dorsal and ventral images of each mouse. Total photon flux 

was quantified using the Living Image Software (Xenogen, Caliper Life Sciences, USA) 

with photons/ second (ph/s) units. ROIs in all images were kept at a constant area.  

In order to identify the location of tumours in these animals an ex vivo BLI was 

performed by injecting them with luciferin substrate followed by euthanasia after 5 

minutes incubation. Individual organs were excised and examined using the Xenogen 

imaging system. 

 

7 Histological analysis 

Mice were sacrificed by cervical dislocation after sedation, and the tumour-induced legs 

were dissected. Limbs were immediately fixed in 4% formaldehyde for 24 h. Following 

fixation, bone samples were decalcified by a decalcification solution (Decalcifier II, Leica 

Microsystems, Spain) and paraffin-embedded for histological examination. Hematoxylin 

and eosin (H&E) staining was performed on paraffin-embedded 4 µm sections to assess 

tumour development. 
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Figure 30. In vivo BLI imaging using the IVIS System. A-C. Mice were anesthetized using 2% 
isofluorane into the induction chamber. D-E. Before imaging, mice were given an intraperitoneal 
(i.p.) injection (150 mg/ kg body weight) of D-Luciferin substrate, placed into the IVIS Instrument 
and maintained under anaesthesia. F. The IVIS® Spectrum was used for the time-course of the in 

vivo BLI of mice. Mice were imaged once weekly beginning on day 0 after tumour inoculation to 
evaluate and quantify the bone tumour growth until the end of the experiment 7 weeks after 
cell inoculation.  

 

8 Protein separation by 2D-DIGE and gel imaging  

After mice were sacrificed, human bone implants were excised and total protein 

extracted as described by Pastorelli et al. [298]. Briefly, bones were homogenized in 500 

µL buffer solution containing 10mM K2HPO4, 10mM KH2PO4, 1mM EDTA, 10mM CHAPS 

(Sigma-Aldrich, UK) and a complete protease inhibitor cocktail tablet (Boehringer 

Mannheim, Germany). The homogenate was sonicated twice for 15 s and then 

centrifuged at 10, 000 x g  for 10 min at 4ºC. The pellet was discarded and an aliquot of 

the supernatant was used to determine protein concentration. Protein extracts were 

kept at -20ºC.  

 

8.1 Two dimensional differential in gel electrophoresis (2D-DIGE) 

Following extraction, any interfering component was removed by a modified TCA-

acetone precipitation (2D-CleanUp kit, Amersham Bioscience, USA) and the extracts 

were dissolved in DIGE lysis buffer (7M urea, 2M thiourea, 10mM Tris-HCl pH 8, 4% (w/v) 

CHAPS). Protein concentration was determined using the BioRad RC DC Protein Assay 

(BioRad, USA), according to the manufacturer’s protocol. Lastly, the pH was adjusted to 
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8.5 for DIGE labelling. Labelling of samples: bone with PCa metastases, bone without 

metastases or tumour component were labelled with Cy3 or Cy5 cyanine dyes, while the 

internal standard pooled samples, a pool of equal amounts of each sample analyzed in 

the DIGE experiment, were labelled with Cy2 dye. After 30 min of incubation on ice in 

the dark, the reaction was quenched with 10mM lysine and additionally incubated for 10 

min. According to the experimental design, the samples were finally combined at 50 ug 

of protein per Cy dye per gel, and diluted 2-fold with IEF sample buffer (7M urea, 2M 

thiourea, 4% (w/v) CHAPS, 2% 1.4-dithioerythritol (DTT), 2% pharmalyte pH 4-7 and 

0.002% bromophenol blue). The 2D-DIGE was performed using GE-Healthcare reagents 

and equipment (GE Healthcare, UK). First-dimension IEF was performed on IPG strips 

(24cm; linear gradient pH 4-7) using an Ettan IPGphor system (GE Healthcare, UK). Prior 

to IEF, strips were incubated overnight in 450 µL of Rehydration buffer with 1% 

pharmalyte pH 3-7, 100mM DeStreak and 0.002% bromophenol blue. After focusing for 

a total of 67 kV x h, strips were equilibrated 15 min in reducing solution (6M urea, 

100mM Tris-HCl pH 8, 30% (w/v) glycerol, 2% (w/v) SDS, 5mg/mL DTT and 0.002% 

bromophenol blue) and then 15 min on a rocking platform in alkylating solution (6M 

urea, 100mM Tris-HCl pH 8, 0% (w/v) glycerol, 2% (w/v) SDS, 22.55mg/mL 

iodoacetamide (IAA) and 0.002% bromophenol blue). Second dimension SDS-PAGE was 

run by overlaying the strips on 12-5% isocratic Laemmli gels, cast in low-fluorescence 

glass plates on an Ettan DALTsix system (GE Healthcare, UK). Gels were run at 20 ºC at a 

constant power of 2.5 W/gel for 30 min, followed by 17 W/gel until the bromophenol 

blue tracking front reached the end of the gel. Fluorescent images of the gels were 

acquired on a Typhoon 9400 scanner (GE Healthcare, UK). Image analysis and statistical 

quantification of relative protein abundance were performed using Progenesis 

SameSpots v2.0 software (NonLinear Dynamics, UK). The multivariate analysis tool of 

principal component analysis (PCA) was used as an explorative tool to visualize 

differences between datasets. 

 

8.2 Protein identification 

Protein spots of interest were excised from the gel using an automated Spot Picker (GE 

Healthcare, Sweden). Identification on spots selected was attempted after staining one 
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gel using Flamingo (BioRad, USA). Tryptic digests were purified using Zip Tip microtiter 

plates (Millipore, USA). MALDI-TOF-MS/MS analysis of tryptic peptides was performed 

on an Ultraflex TOF-TOF Instrument (Bruker, Germany). The spectra were processed 

using Flex Analysis 3.0 software (Bruker Daltonics, USA). Peak lists were generated using 

the signals in the m/z 800 - 4,000 region with a signal-to-noise threshold of greater than 

3. After removing peaks corresponding to keratin and trypsin autolysis peptides the 

resulting final peak list was used for identification of the proteins by peptide mass 

fingerprint. The Mascot 2.2 program (Matrix Science, UK) was used to search the Swiss-

Prot 55.4 database, limiting the search to human proteins. The criteria for positive 

identification were a significant Mascot probability score (score > 55, p < 0.05). 



Chapter I. Results and Discussion 

119 | P a g e  

 

RESULTS AND DISCUSSION  

Orthotopic Growth of PC-3 cells into Nod/Scid mice 

 

In order to develop a xenograft model to characterize the molecules involved in the 

complex process of PCa bone metastases, 5-week old immunodeficient male mice were 

engrafted s.c. with a small piece of a human adult bone (Figure 29), approximately 1 cm3 

of a spinous process of a vertebra from a non-cancerous patient. After engraftment no 

signs of inflammation or granulation in the bone grafts or in the surrounding murine 

tissues were observed. 

 

On day 0, single cell suspensions of the well-established and stable transfected human 

PCa cell line, PC-3 cells (1 x 106 cells/ 50 µL of sterile PBS), were inoculated directly into 

the human bone grafts of mice under anaesthesia with 2% isofluorane. Mice were 

imaged by BLI using the IVIS System (Figure 30) on day 0 after tumour inoculation and 

then weekly until the end of the experiment 7 weeks post-inoculation, when the tumour 

BLI signal had increased more than one order of magnitude without compromising the 

welfare of the mice, to evaluate and quantify tumour growth (Figure 31). At the time of 

anyeuthanasia, no severe signs of cachexia could be observed in any mice. PC-3 cells 

grew extensively after orthotopic implantation in the grafted adult human bone. 

 

Intraosseous injection of PC-3 cells into human-engrafted Nod/Scid mice resulted in the 

development of tumours in bone grafts of 70% of mice. Only 3 out of 10 mice with a 

human bone xenograft did not develop bone tumour after cell inoculation. The control 

group (mice with the human bone graft but without tumour cell inoculation) received a 

PBS injection and was otherwise treated in the same conditions throughout the study. 

During 7 weeks of bone tumour expansion, in vivo monitoring showed an exponential 

growth of the BLI signal corresponding to the kinetics growth of tumour cells (Figure 

31.A-B). 
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The ex vivo analysis demonstrated that the intraosseous BLI signals detected by the IVIS 

System were confined to the human bone graft (Figure 30.C). Histological analysis 

confirmed this result (Figure 31.D-E). Moreover, bone tumours showed an osteolytic 

phenotype derived from tumour proliferation of these human PCa cells (Figure 31.D). 

 

 

Figure 31. Tumour growth of human PC-3 into engrafted bone implants. A. A representative in 

vivo monitoring by BLI imaging in the IVIS System in Nod/Scid mouse engrafted with a bone 
implant after cell inoculation. Mice were imaged weekly from day 0 to day 52 post-injection. The 
colour scale on the right represents the BLI signal intensity (shown as radiance flux in photons 
per second) and corresponds to tumour burden. B. Histogram that represents the tumour 
growth of luciferase-expressing PC-3 cells into engrafted bone implants. Dots mean of BLI signal; 
bars, standard error of the mean (SEM). C. Ex vivo analysis of human bone implants grafted into 
Nod/Scid mice after 52 days of PCa tumour growth. Ex vivo BLI imaging of bone with metastasis 
confirmed that tumour cells were grown inside the bone implant. Control bones were excised 
from Nod/Scid mice with the engraftment but without cell inoculation. D-E. Histological 
examination by H&E staining of (D) bone implant with metastases (4x) and (E) without 
metastases (10x).  
Abbreviations: Bone M(x): bone with metastases. 

 

Engraftment was accompanied by a neovascularisation of bone tissue because bone 

tumours could not grow beyond an adequate blood supply within bone implants. 

However, no markers of vasculogenesis or angiogenesis, such as the vascular endothelial 

growth factor (VEGF), an important element in the creation of new blood vessels during 

embryonic development or after injury, were investigated. 
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Proteomic identification from intraosseous PCa tumours 

 

After sacrificing the mice, the bone grafts were excised and proteins extracted, 

quantified and separated using 2D-DIGE technology (Figure 32). 2D-DIGE permitted the 

direct comparison of all components from all samples, since the protein gels were 

normalized with a pool of proteins from all of samples included in this study. The 

proteins were resolved on a 12.5% acrylamide gel after an IEF on non-linear gradient 

strips of pH 4-7. The strategy to achieve labelling efficiency was that half of the samples 

from each group were labelled with Cy3 dye and the other half with Cy5 dye; a third 

fluorescent dye, Cy2, was used to label the internal standard sample. Thus, alternative 

labelling was carried out for the three samples groups (bone with PCa metastases, bone 

without metastases and tumour cell component) (Table 13). Additionally, the internal 

standard pool was run on each gel, within a total number of six gels. Unfortunately, one 

out of six gels had to be discarded because of its different appearance from other gels. 

Spots differentially expressed in the 2D-DIGE analyses were picked and submitted to 

MALDI-TOF-MS/MS for identification. Statistical analysis was performed using the 

Progenesis SameSpots v2.0 software.  

 

Table 13. Fluorescent labelling (Cy3 or Cy5) of human samples for the 2D-DIGE experiment 

Gel Cy3 Cy5 

1 Bone M(x)_1 Bone_1 

2 Bone M(x)_2 Bone_2 

3 Bone M(x)_3 Tumour cells 

4 Tumour cells Bone M(x)_4 

5 Bone_3 Bone M(x)_5 

6 Bone_4 Bone M(x)_6 

Abbreviations: Bone M(x): bone with metastases. 

 

Comparing fluorescent gel images from bone with metastasis versus control bones, 

more than 30 proteins were found to be differentially expressed. Protein spots of 

interest were picked from the Flamingo staining gel and tryptic digested. From 31 spots 

of interest picked and analyzed using MALDI-TOF-MS/MS, only 17 proteins could be 
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identified by their peptide mass fingerprint and for subsequent search on the Swiss-Prot 

55.4 database (Table 14). The search was limited to human proteins. 

Additionally, keratin peptides were discarted from the final list. Principal Component 

Analysis (PCA) showed different behaviors between bones with PCa cells and control 

bones (Figure 32).  

 

Figure 32. Proteomic experiment by 2D-DIGE technology. A. Example of a representative gel of 
a 2D-DIGE experiment on total protein from human bone implant samples. B. Silver staining gel 
where differentially expressed proteins are marked with blue circles to be picked and identified. 
C. Principal Component Analysis from DIGE experiment, where red dots correspond to bone with 
PCa metastases and blue dots to bone without metastases. D. Example of differential spots in 
PCa bone metastasis compared to control bones. Note: this specific spot is underexpressed in 
tumour samples compared to controls. 

 

From the final list of proteins, none of them were identified solely as of human origin. All 

17 proteins were either only from mouse origin or human, but with a high percentage of 

interaction with the protein from mouse origin. 
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Table 14. List of identified proteins from the DIGE experiment  

SwissProt # Name Score 
Pep match 

(%seq) 
Error % Inter 

ALBU  Serum albumin  113 16 (32) 31 66.6 

UAP1L  UDP-N-acetylhexosamine pyrophosphorylase-

like protein 1 

125 9 (23) 34 70.7 

GALK1 Galactokinase 368 7 (18) 152   

ACTB  Actin, cytoplasmic 1  58 6 (19) 26 20.4 

EIF3I  Eukaryotic translation initiation factor 3 

subunit I 

71 5 (19) 24 10.1 

CAPZB  F-actin-capping protein subunit beta  91 12 (42) 29 32 

EFHD2 EF-hand domain-containing protein D2  51 1 (5) 287   

FRIL1  Ferritin light chain 1 75 5 (34) 16 34.6 

APT  Adenine phosphoribosyltransferase  64 4 (35) 26 16.8 

VIME Vimentin 171 20 (46) 36 90.4 

KAP0 cAMP-dependent protein kinase type I-alpha 

regulatory subunit  

66 5 (18) 26 53.2 

GSTM1  Glutathione S-transferase Mu 1  88 8 (35) 22 30.5 

ACTN4 Alpha-actinin-4  147 17 (22) 23 47.9 

ACTN1 Alpha-actinin-1 267 7 (8) 98   

PSA Puromycin-sensitive aminopeptidase  222 5 (5) 104   

ALDOA Fructose-bisphosphate aldolase A 114 13 (37) 21 65.3 

ACTA Actin 116 3 (8) 58   

 

Circulating human tumour cells had a preference for targeting the human bone graft 

 

To further study both the species- and tissue-tropism of circulating human PCa cells, an 

intracardiac inoculation of tumour cells was performed in immunodeficient mice 

engrafted with human adult bone, as previously described. Four weeks after bone 

implantation, ten Nod/Scid mice were inoculated with a tumour cell suspension (3 x 105 

cells in 0.1 mL of sterile PBS) directly into the arterial circulation. Forty-eight hours after 

cell inoculation 2 mice out of 10 unexpectedly died presumably as a result of an 

inaccurate cell injection. Fortunately, two weeks post-inoculation 7 out of 8 mice 

showed a BLI signal in implanted human bones. No tumour signal was detected in 

mouse bones. 
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Animal models of cancer are important for identifying mechanisms of tumour growth 

and metastasis that replicate the clinical situation. Bone metastatic xenograft models 

involving the human PCa cell lines, PC3 [299-301], LNCaP [299, 300, 302, 303] or others 

[304, 305] have been developed using immunocompromised mice. These studies have 

documented new findings regarding bone remodelling and metastases. However, 

further studies are needed to clarify the pathogenesis of PCa metastases restricted to 

the microenvironment of the bone because the metastatic process is not only 

determined by the characteristics of the tumour cell itself but by its surrounding 

microenvironment [302]. Accordingly, the animal model presented in Chapter I of this 

thesis allowed to mimic PCa’s bone metastases as accurately as possible by means of the 

subcutaneous implantation of human adult bone fragments followed by the 

intraosseous injection of human PCa cells, to assess the in vivo formation and 

progression of bone lesions. 

 

In similar studies [296, 302] it has been observed that osteoblasts, osteoclasts and 

endothelial cells of implanted human bones were of human origin. Moreover, both 

human implanted cells and bone cells, including bone marrow stromal cells, survived 

and were functional for at least 16 weeks after subcutaneous implantation [302]. These 

findings confirmed that the human implanted bone is alive in this xenograft model. 

Although in this study no cytokeratin immunohistochemistry was carried out to assess 

the state of the implanted human bones into Nod/Scid mice, the in vivo tumour growth 

of PCa cells monitored by the IVIS System indicated that the environment allowed 

tumour growth and proliferation inside the human bone grafts. Moreover, the storage 

of growth factors in the bone matrix and their release into the intramedullary space may 

be necessary for PCa to remain viable and proliferate in bone metastases. 

 

The humanized Nod/Scid model developed in this Chapter had been previously 

described; in most of these studies tested different therapies against tumour growth or 

osteolytic activity [296, 301, 303-309]. However, none of these reports included the 

differential proteomic profile of bone metastases. 
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In contrast to similar studies [300, 302-304], a bone fragment from a man without 

evidence of cancer nor bone metastases instead of bone from a cancer patient donor 

was used to be implanted subcutaneously. This model aimed to avoid the conditioning 

of the bone environment to establish bone metastases from other cancer types and the 

existence of undetectable micrometastases in the bone fragment previous cell 

inoculation. 

 

Once the humanized mouse model had been established, proteomic techniques 

quantified the differential expression of protein profiles from bone with and without 

metastases, so that molecular changes could be attributed to PCa cells growing inside 

the implanted human bones. Using 2D-DIGE technology, several proteins were found to 

be differentially expressed in bone with metastases compared to control bones. Proteins 

of interest were picked, digested and analyzed by MS. However, only 17 proteins could 

be identified using the Swiss-Prot database. Even when the search was limited to human 

proteins none of them could be confirmed to be only of human origin. These findings 

suggest that in the Nod/Scid-human system the mouse stroma may play a role in 

facilitating tumour growth in metastatic lesions and that a mouse component that 

interacts with human bone and tumour cells may exist. 

 

Regarding the final list of identified proteins, some were cytoskeletal proteins (ACTB, 

CAPZB, ACTN4, ACTN1 and ACTA) or enzymes for different metabolism compounds 

(UPAL1, GALK1, APT and KAP0). A comprehensive literature search to study the possible 

role of these proteins in the development of bone metastases did not yield any positive 

result. Consecuently, no candidate was used to be validated in human samples.  

 

Concerning the results from the proteomic study, it is possible that the 2D-DIGE 

technology was not the best proteomic approach to perform this differential expression 

analysis. Indeed, 2D-DIGE has some limitations that could compromise the accuracy of 

the results [310]. Other proteomic approaches could be used to improve the 

identification of low abundant components with discriminatory expression in 

metastases, such as SELDI-TOF/MS (Surface-enhanced laser desorption/ionization time-
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of-flight mass spectrometry), ICAT (Isotope-coded affinity tag) and iTRAQ (Isobaric tags 

for relative and absolute quantitation). Firstly, SELDI-TOF/MS has an affinity-based 

approach that allows sensitive and high-throughput protein profiling and screening of 

biological samples [311]. This proteomic technique was used for protein profiling of 

serum from PCa patients with and without bone metastases [311] and for biomarker 

discovery in these samples. Secondly, the ICAT method has the power to quantitatively 

identify proteins including membrane proteins, low copy number proteins and high 

molecular weight proteins [312]. It was developed to reduce sample complexity and 

identify low-abundance proteins in complex samples [313]. However, to increase the 

level of labelling the isotope-coded protein labelling (ICPL) was developed. And finally, 

iTRAQ is similar in concept to ICAT. The power of iTRAQ is that it allows the 

simultaneous analysis of 4, 6 or 8 biological samples, which makes the experimental 

work more cost-effective [312]. So far, few studies have used ICAT [314-319] or iTRAQ 

[320-327] in PCa and they are mainly applied to PCa cell lines. None has been applied to 

PCa bone metastases. 

 

Regarding proteomic analysis, some studies have used 2D-PAGE coupled to MALDI-TOF 

or MS in metastatic PCa samples [328], PCa cell lines [329], breast cancer samples [330] 

or breast cancer cell lines [331-334]. Ronquist et al. [328] identified proteins derived 

from prostasomes that originated from cells of vertebral metastases of PCa patients but 

they did not study differences in protein profiles due to skeletal metastases. Although all 

these studies have initiated the characterization of molecular mechanisms of metastases 

suppressor molecules, further analyses are required to understand the tissue-tropism of 

PCa cells to the bone.  

 

Despite all these promising proteomic techniques, the little amount of proteins obtained 

from the in vivo assay did not allow to try other proteomic approaches to increase the 

number of identified differentially expressed proteins in PCa bone metastases compared 

to healthy bones. 
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Ultimately, to further examine both the species- and tissue-tropism of circulating human 

PCa cells, an intracardiac tumour cell inoculation was performed into the Nod/Scid-

human system. Two weeks after cell inoculation, circulating human PCa cells 

preferentially formed tumours in implanted human bone tissue in contrast to the host 

mouse tissue, thus corroborating the species-specificity observed by Yonou et al. [302]. 

These findings also indicate that human bone provides a favourable environment for the 

growth of PCa cells as suggested by Paget [7] in the “seed and soil” hypothesis. 

Additionally, similar studies [302] using LNCaP cells injected intravenously (i.v.) in mice 

in which adult human bone fragments were implanted s.c., demonstrated that two 

weeks after cell injection, LNCaP tumour foci were observed in human bone fragments, 

confirming that injecting human PCa cells into the circulation, either i.c. or i.v., can 

colonize the bone grafts whitin two weeks, as observed in this study. 

 

This study also demonstrated that the human bone graft was vascularised and allowed 

the establishment of circulating tumour cells migrating through the arterial circulation 

and also tumour growth of PC-3 cells inside the bone grafted, as monitored by the IVIS 

System. Moreover, the study showed PC-3 cells species-tropism for human bone grafts 

when tumour cells were inoculated into the arterial circularion. In contrast, McCabe et 

al. [335] described a complete lack of bone metastases in human bone grafts after i.c. 

injection of murine prostate cells (RM1) regardless of the quantity of cells introduced 

into nude mice.  

 

In addition, the colonization by human tumour cells of human bone grafts before any 

other tissue, such as lung or liver, suggests a tissue-tropism of PCa cells for their bone 

target, which correlates with the high incidence of skeletal metastases seen in 

advanced-stage PCa patients. 

 

All these observations further indicate that the colonization of human bone grafts by 

PCa cells involves species- and tissue-specific mechanisms and is not attributable to the 

passive lodging of tumour cells in bone [302].  
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In conclusion, these data indicate that the Nod/Scid-humanized mice may provide a 

model to study species- and tissue-specific steps of the human metastatic process. 

Unfortunately, the differential proteomic approach of this study could not identify the 

molecular changes that attract human PCa cells to human bone implants. 



 

 

 



 

130 | P a g e  

 

 

 

 

 

 

  

 

Chapter II 

 

 

Molecular characterization of highly bone 

metastastic prostate cancer cells obtained by in 

vivo selection in mice 
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BACKGROUND 

Only a minute proportion of cancerous cells that enter the bloodstream manage 

to survive in distant organs [336, 337]. In xenograft models, the inoculation of thousands 

of tumour cells into mice at the corresponding (orthotopic) sites of the primary 

neoplasm or directly into the circulation results in a limited number of metastatic 

colonies [338]. The capacity of a few cells from a heterogeneous population to 

metastasize suggests that relevant metastatic cells can be separated from the rest by in 

vivo selection [21]. The selection imposed by this process incorporates multiple barriers 

of the metastatic cascade, especially when the xenograft is carried out in a non- 

orthotopic location; it also enables comparisons of phenotypically diverse cell 

populations that originate from the same tumour [18]. 

The distinction between tumorigenic events that constitute prior conditions for 

metastasizing such as transformation and immune evasion and events specifically aimed 

at metastatic invasiveness, intravasation, extravasation and colonization of distant 

organs must be emphasized, since the capacity of tumours to metastasize is mainly 

attributable to the second set of functions [18].  

Bioinformatic analyses of data sets from primary tumour samples have 

uncovered complex gene-expression patterns, or ‘signatures’, able to predict the risk of 

metastatic recurrence [18]. It has also been reported that in vivo sorting of metastatic 

cell populations can isolate preexisting cell subpopulations with distinct metastatic 

organ tropism [339], which can be linked to the distinct proclivity for tumour 

colonization of gene-expression profiles. For example, in studies that used a cell line 

derived from a patient with advanced metastatic breast cancer, cell progenies showed 

preference for specific tissues were isolated following the injection into the arterial or 

venous circulation of immunodeficient animals [32]. In agreement with the selectivity of 

metastatic progression, these different cell variants were found in the parental, 

unselected population [32, 339]. Furthermore, subpopulations that metastasized to the 

bone, adrenal gland or lung tissue were associated with distinct gene-expression profiles 

[18]. These distinctive gene sets were therefore selected based on interactions with 

unique microenvironments, providing a genetic basis for metastatic tropism [18]. Thus, 

by combining bioinformatic analyses of transcriptional data sets with functional 
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validation in a xenograft mouse model, gene metastasis signature lists could be found 

differentially expressed in human primary tumours [223]. Consequently, the biological 

filter afforded by in vivo selection and the clinical filter provided by large gene-

expression data sets can be exploited to identify genetic determinants of metastases 

relevant to human disease [18].  

Metastatic genes should be defined as those with an activity that enables locally 

invasive tumour cells to enter the circulation, to home, to extravasate and to colonize 

distant tissues. These genes can be identified by combining functional testing in animal 

models with validation in clinical samples. To date, various candidate metastasis 

suppressor genes  that impede metastatic progression without affecting the primary 

malignancy have been identified [41]. Metastasis suppressor genes seem to operate at 

several stages of the metastatic process, including the final step, i.e., metastatic 

colonization. Many of the known metastasis suppressor genes (Table 15) would not have 

been predicted a priori since they do not have a known biochemical function consistent 

with current knowledge on invasion and metastasis. Biochemical investigation of 

metastasis suppressors has led to the identification of new pathways and functions 

crucial to the metastatic process [41]. 

 

Table 15. Metastasis-suppressor genes. Adapted from REF [41] 

Gene Cancer cell type with suppressive 

activity 

Function 

NM23 Melanoma, breast, colon, oral 
squamous cell 

Histidine kinase; phosphorylates KSR; which 
might reduce ERK 1/2 activation 

MKK4 Prostate, ovarian MAPKK; phosphorylates and activates p38 
and JNK kinases 

KAI1 Prostate, breast Integrin interaction; EGFR desensitization 
BRMS1 Breast, melanoma Gap-junction communication 
KiSS1 Melanoma, breast G-protein-coupled-receptor ligand 
RHOGDI2 Bladder Regulates RHO and RAC function 
CRSP3 Melanoma Transcriptional co-activator 
VDUP1 Melanoma Thioredoxin inhibitor 

EGFR, epidermal growth factor receptor; ERK, extracellular signal-regulated kinase; JNK, JUN-
terminal kinase; KSR, kinase suppressor of RAS; MAPK, mitogen-activated protein kinase kinase.
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By contrast, the identification of genetic alterations that would specifically 

mediate bone metastasis in PCa remains rather elusive. 

HYPOTHESIS AND OBJECTIVES 

 

Therefore, the detection of those prognostic biomarkers in the primary tumour 

may be used to identify those patients prone to develop aggressive PCa disease and who 

would benefit from more aggressive therapies aim at abrogating the metastatic process. 

 

General objectives 

The main objective of the research described in Chapter II of this thesis was to 

identify molecules associated with PCa bone dissemination in order to describe a bone 

metastasis signature, and more specifically, the phenotypic characteristics of PCa cells 

that mediate tumour progression within the bone microenvironment.  

The identification of biomarkers is essential for the characterization of PCa bone 

metastases, to better understand the complex process of this metastatic cascade from 

the primary tumour to distant organs and to design more effective therapies against 

tumour dissemination. 

PCa cells that invade sinusoids in the bone marrow and ultimately 

colonize bones may possess certain specific phenotypic characteristics.  

 

Main hypothesis: molecular changes can be quantified by differential 

expression analysis. These changes may reflect differences in bone 

metastatic potential of tumour disseminated cells that would identify 

metastasis-associated biomarkers.  

 

If any of these changes are already present in the primary tumour, it 

should be possible to detect them.  
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Consequently, this study has focused on two main areas: 1) to generate a highly- 

specific bone metastatic PCa cell line using a dissemination mouse model; and 2) to 

characterize PCa bone metastases by differential expression profiles. 

 

Specific objectives 

1. Generation of a bone metastatic-specific PCa cell line using a dissemination 

mice model  

 In this study, PC-3-luciferase expressing cells were introduced into nude mice 

through intracardiac injection (i.c.) and BLI images were performed serially to measure 

tumour growth over time. Intracardiac injection of tumour cells mimics hematogenous 

dissemination of cancer cells [340]. Even if this technique does not recapitulate every 

step of  the metastatic cascade, it is useful to investigate metastatic colonization and 

tumour growth in sites relevant to clinical metastatic disease [160]. The aim of the serial 

intracardiac injections was to enrich subpopulations of PCa cells with a progressively 

increasing preference to metastasize to bone. 

 

Specifically, the following steps took place: 

1a. Three rounds of in vivo selection in immunodeficient mice until achievement of bone 

metastatic behaviour in human PCa cell subpopulations. 

 i. PCa cell inoculation by i.c. injection into immunodeficient mice 

 ii. In vivo monitoring of tumour colonization and tumour growth 

iii. Isolation of metastatic cells in bone sites by flushing and expansion in culture 

iv. Enrichment by cell sorting and reinjection of tumour cells into the next group 

of mice 

1b. In vitro characterization of the PCa cell subpopulation with increased bone 

metastatic behaviour. 

 

2. Identification of biomarkers of PCa bone metastasis by differential expression 

profiles 

Metastatic variants were established from the inoculation of PC-3 human cancer cells 

that formed bone metastases. After 3 in vivo passages in the bone, the PC-3-BM 
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subclone was chosen for its high tendency to metastasize to the bone after intracardiac 

injection. Differential expression profiling allows the detection of signatures that may 

underlie prostate carcinogenesis. 

 

The following steps took place: 

2a. Performance of differential expression analysis by comparing cells with low (PC-3) 

and high (PC-3-BM) bone metastatic potential. 

i.  Analysis of differentially expressed miRNAs by Taqman Array Microfluidic cards 

ii. Analysis of differentially expressed genes by Human Gene Array  

iii.Analysis of differentially expressed proteins by SILAC technology 

2b. Selection of significantly altered molecules to describe an integrated molecular bone 

metastasis signature for advanced-stage PCa dissemination. 

 

Future objective 

Validation of the descriptive bone metastasis signature: use of identified molecules as 

prognostic biomarkers in clinical samples  

Understanding the pathophysiology that underlies bone metastases and 

identifying new therapeutic targets to prevent or treat them is critically important [66]. 

Moreover, the identification of novel targets or biomarkers to be validated in clinical 

samples and to provide new routes to regulate the mechanisms involved in PCa 

dissemination remains a priority. 

 

The following ongoing experiments aim to accomplish the aforementioned objectives: 

a. Validation of miRNA candidates by microdissection of tumour areas in formalin fixed 

paraffin-embedded tissues (FFPE) followed by RTqPCR detection. 

b. Validation of protein candidates by immunohistochemical detection in formalin fixed 

paraffin-embedded tissues. 
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MATERIAL AND METHODS  

1 Tumour cell lines and obtention of conditioned medium  

The human PCa cell line (PC-3), the human foetal osteoblastic cell line (hFOB 1.19) and 

the mouse clonal osteogenic cell line (MC3T3-E1 subclone 4) were obtained from 

LoGiCal Standards (LGC, UK). PC-3-BM cells were clonally derived from the human PC-3 

cell line and were isolated from bone metastases produced in immunodeficient mice 

after intracardiac injection of PC-3 cells. Both PC-3 and PC-3-BM cells express the 

pEGFPluc expression vector and therefore, they carry the integrated firefly luciferase 

gene coding region cloned upstream of the green fluorescent protein (GFP) gene. PCa 

cells were cultured as previously described in Chapter I (Material and Methods).  

The hFOB 1.19 (hFOB) are human foetal osteoblastic cells conditionally immortalized 

with a gene encoding for a temperature sensitive A58mutant of the SV40 large T antigen 

[341]. With an incubation of hFOB cells at a permissive temperature (33.5ºC), the 

temperature sensitive gene is expressed and these cells proliferate rapidly, whereas at a 

restrictive temperature (39ºC) the gene is not expressed and the cells proliferate less 

rapidly. hFOB cells were cultured at 33ºC in non-differentiating media for all 

experiments and therefore are considered premature osteoblastic cells. The hFOB 1.19 

(hFOB) cell line was cultured in a 1:1 mixture of phenol-free DMEM/Ham’s F12 medium 

containing 10% FBS and 1% gentamicin (Invitrogen, Life Technologies, UK) at the 

standard conditions (5% CO2) at the permissive temperature of 33ºC, which allows the 

expression of the large T antigen. 

MC3T3-E1 (MC3T3) is a murine preosteoblast cell line [342] that has a well characterized 

osteoblastic phenotype and is frequently used as a model to study in vitro effects of 

proinflammatory cytokines [343]. These cells were cultured in α-minimal essential 

medium (α-MEM) (Sigma-Aldrich, UK) supplemented with 10% FBS, penicillin and 

streptomycin (50 U/mL).  

 

To obtain conditioned medium (CM), PCa and osteoblast cells were seeded in 10 mm 

dishes at an equal number of cells (1 x 106) and incubated for 24 hours at 37ºC. The 

following day, the medium was replaced with fresh medium containing 1% FBS at a 

minimal volume to achieve concentration. Twenty-four hours later, the CM was 
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collected from the cultures, centrifuged to remove floating cells, filtered through a 0.2 

µm polyethersulfone membrane (Millipore, USA) and stored at -80ºC. 

 

2 In vitro Proliferation assay 

PCa cells (2,000 cells/well) were seeded into 96-well tissue culture plates in sextuplicate. 

After 24 hours, cell proliferation was quantified using MTT CellTiter 96 Assay (Promega 

Biotech Ibérica, Spain), following manufacturer’s instructions. Twenty microlitres of the 

One-Solution Reagent were added to each well, mixed by swirling the plates and 

returned to the incubator. After 2-3 hours, the absorbance was measured by dye 

solution using a BioTek ELx800 plate reader to directly test wavelengths of 490 nm. 

For co-culture experiments, osteoblast cells were seeded (1.5 x 104/well) in 12-well 

plates for 24 hours in complete media. The following day, the old media was changed to 

a 1:1 mixture of PCa cells medium and cells were incubated for an additional 24 hours. 

Next, PCa cells (1.5 x 104 cells/ insert) were seeded onto polyethylene terephthalate 

(PET) membranes (containing 0.4 µm pores) of the Transwell inserts (BD Bioscience, 

USA) in the presence or absence of osteoblast-containing wells (Figure 33). After 2 days 

of co-culture, PCa cells from inserts were fixed with 4% paraformaldehyde (PFA) and 

stained with bisbenzimide (Hoescht, Sigma-Aldrich, UK) and 0.1% crystal violet 

(AppliChem, Germany). Cells were counted at x400 magnification in standard optical 

microscopy and the average number of cells per field in five random fields was recorded. 

Triplicate filters were used and the experiments were repeated three times. 

 

 

Figure 33. Boyden Chamber: 
cells are seeded on top of the 
insert in serum-free media, and 
chemoattractants are placed on 
the lower compartment. 
Migratory and invasive cells 
move through the pores toward 
the chemoattractant below.  
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3 In vitro migration assay 

3.1 Wound healing assay 

The PCa cells were allowed to reach confluent monolayers in 24-well plates and 

incubated overnight. A straight line (wound) was then gently performed at the bottom 

of the dish with a 0.5 mm plastic pipette tip. Next, cells were washed, incubated in 

medium with 2% FBS and kept in a computer controlled mini-incubator, which provided 

stable temperature of 37ºC with 95% humidity, 5% CO2 and optical transparency for 

microscopic observations. The incubator was fastened to an inverted microscope (Live 

Cell Imaging CellR, Olympus, Japan) to monitor cell migration. Images were taken with 

the 4x objectives every 30 minutes at predetermined wound sites (3 sites per condition, 

performed in triplicate) and were analyzed using the ImageJ software (Wright Cell 

Imaging Facility, USA). Initial wound area (µm2) and time needed to close the wound (hr) 

were the variables used to calculate the migration speed of the cells.  

 

3.2 Transwell migration assay 

For co-culture experiments, osteoblast cells (hFOB or MC3T3) were seeded (1.0 x 104/ 

well) at the bottom of a 24-well plate with complete media for 24h. The following day, 

the old media were replaced with a 1:1 mixture of PCa cells medium and osteoblasts 

were incubated for an additional 24 hours. Then, PCa cells were seeded (1.0 x 104 cells/ 

insert) onto Transwell inserts (BD Bioscience, USA) with 8 µm diameter pore 

membranes, in a medium supplemented with 2% FBS in the presence or absence of 

osteoblast-containing wells. After 24 hours, the number of migrating PCa cells was 

determined as described above. The migration experiments were performed at least 

three times. 

 

4 In vitro Invasion assay 

PCa cells were seeded (1.0 x 104/ insert) onto Matrigel Invasion Chamber inserts  with 8 

µm diameter pore membranes in triplicate, with the lower chamber containing medium 

supplemented with 10% FBS and incubated for 24 hours. Cells in the lower chamber 

determined the number of cells as previously described.  
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For co-culture experiments, osteoblast cells (hFOB or MC3T3) were seeded (1.0 x 104/ 

well) at the bottom of a 24-well plate with complete media for 24h. The following day, 

the old media were replaced with a 1:1 mixture of PCa cells medium and osteoblasts 

were incubated for an additional 24 hours. Next, PCa cells were seeded (1.0 x 104 cells/ 

insert) onto Matrigel Invasion Chamber inserts (BD Bioscience, USA) with 8 µm diameter 

pore membranes, in a medium supplemented with 2% FBS, in the presence or absence 

of osteoblast-containing wells. After 24 hours, the number of invading PCa cells was 

determined as previously described.  

 

5 Animals and animal maintenance 

Congenitally athymic male nude mice (Hsd.Athymic Nude-Foxn1
nu) and NOD-SCID mice 

(C.B-17/IcrHsd-Prkdc
scid) were purchased from Harlan (Harlan Laboratories, Italy) at 4 

weeks of age and maintained under specific pathogen-free conditions. Animals were 

kept for at least 1 week in the facility before experimental manipulation. Animals were 

kept in a sterile environment in cages with beds of sterilized soft wood granulate and fed 

irradiated rodent diet ad libitum with autoclaved tap water. An artificial cycle of 12h 

light/12h darkness was maintained in the room where the animals were kept. A 

maximum of five mice were kept in each box, and all manipulations were performed 

using sterile techniques within a laminar-flow hood at the animal facility. Experiments 

were performed on animals at 5 weeks of age. All the procedures associated with 

experimentation and animal care were performed according to the guidelines of the 

Spanish Council for Animal Care and the protocols of the Ethics Committee for Animal 

Experimentation of our institution. 

 

6 Xenograft by intracardiac inoculation of prostate cancer cell suspension and 

BLI imaging 

The methodology for the intracardiac injection of PCa luciferase-transfected cells has 

been previously described in Chapter I (Material and Methods). Animals were sacrificed 

by cervical dislocation 5 or 6 weeks post-injection or earlier if there were signs of serious 

distress. For bioluminescence plots, the photon flux for each mouse was measured by 

the amount of highlighted pixels calculated by using a circular region of interest (ROI) in 
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a ventral or dorsal position and normalized to the value obtained immediately after 

xenografting the same area (day 0) of each mouse, so that all mice had an arbitrary 

starting BLI signal of 1. 

 

7 Derivation of cell subclones from bone metastases 

After sacrificing the mice, tumour cells from bone metastases were localized by ex vivo 

BLI imaging and freshly harvested under sterile conditions by flushing. Briefly, bones 

were dissected free of musculature and soft tissues using a scalpel and the upper and 

bottom part of the bone were cut. Bone marrow and tumour cells were rinsed twice 

with PBS using a 27-gauge syringe, centrifuged with additional fresh medium and put in 

cell culture dishes. The following day, the cells were washed twice with PBS to wash off 

mouse bone marrow cells that did not attach to the plate. Attached cells were 

maintained under geneticin resistance, expanded in vitro and selected by GFP 

fluorescence-activated cell sorting using the FacsAria (BD Bioscience, USA). These 

subpopulations were again inoculated intracardiacally in another group of animals. This 

process was repeated in a third group of mice. 

 

8 Transcriptomic and miRNA expression analysis  

8.1 Total RNA and miRNA isolation from PCa cells  

Total RNA including miRNAs was extracted using the miRNeasy Mini Kit (Qiagen, 

Germany) following manufacturer’s instructions. Total RNA concentration was assessed 

with a Spectrophotometer (NanoDrop 1000; Thermo Scientific, USA) and quality of RNA 

was ensured using the Agilent RNA 6000 Nano Kit in Bioanalyzer 2100 (Agilent 

Technologies, USA). Quality of miRNA was assessed by the amplification of small nuclear 

RNAs, RNU44 and U6 snRNA. 

 

8.2 Reverse transcription and transcriptomic analysis 

For microarray analysis, RNAs were amplified, labelled and hybridized on an Affymetrix 

GeneChip® Human Gene 1.0 ST Array (Affymetrix, UK). Images were processed using the 

Microarray Analysis Suite 5.0 (Affymetrix, UK).  
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8.3 Megaplex reverse transcription RT reactions and 384-well TaqMan MicroRNA 

Array 

For each sample of PCa cell line, a multiplex RT reaction containing 2 different Megaplex 

RT primers (Applied Biosystems, USA) was performed. The Human Pool A v2.1 contains 

RT primers for 377 unique microRNAs and 5 controls, whereas the Human Pool B v2.0 

contains RT primers for 290 unique microRNAs and the same endogenous controls. 

Three hundred nanograms of total RNA from PCa cells were used for a 7.5 µL reaction. 

Final Megaplex RT primers concentration was 1 nmol/L (0.05x). Reaction conditions: 40 

cycles at 16ºC for 2 minutes, 42ºC for 60 seconds, 50ºC for 1 second, and finally 85ºC for 

5 minutes. Next, 6 µL of the Megaplex™ RT product was mixed with 0.45 mL of TaqMan 

Universal PCR Master Mix (Applied Biosystems, USA) and 0.444 mL of nuclease-free 

water. Reactions were run and analyzed on an Applied Biosystems 7900 Real-Time PCR 

at default thermal-cycling conditions. Reaction conditions: 55ºC for 2 minutes and 95ºC 

for 10 minutes, followed by 40 cycles of 95ºC for 15 seconds and 55ºC for 1 minute.  

TaqMan Array Micro Fluidic cards profiled one sample for the expression level of 384 

different miRNAs (including controls) using the comparative CT (ΔΔCT) method of 

relative quantitation. Each TaqMan Array Micro Fluidic card contains 5 types of 

endogenous controls: three replicates for U6 snRNA-001973, one replicate for RNU44-

001094 and one for RNU48-001006. The stability of the five controls was computed with 

the Coefficient of Variation (CV).  

 

8.4 Real Time Quantitative PCR (RTqPCR) 

One microgram of total purified RNA was subjected to a reverse transcriptase reaction 

using Superscript III (Invitrogen, Life technologies, USA) using 1 μl of Random Primers 

(50 μM, Invitrogen), 1 μl of dNTPs mixture (10 mM, Promega) and sterile distilled water 

to 13 μl for each reaction. Reaction conditions: 5 min at 65 ºC, followed by an incubation 

of 1 minute on ice; addition of 4 μl of 5X First-Strand Buffer, 1 μl of DTT (0.1 M, 

Invitrogen) and 1 μl of SuperScript III (Invitrogen); and incubation for 5 min at 25 ºC, 60 

min at 50 ºC and 10 min at 70 ºC, with a final step at 4 ºC. 
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Next cDNA, corresponding to approximately 1 μg of starting RNA, was used in three 

replicates for quantitative PCR (Taqman, Applied Biosystems, USA).  

For the confirmation of the microarray analysis the CAV-1-Hs00971716_m1, ANXA-10-

Hs00200464_m1 and ITGA2-Hs00158127_m1 probes were used. The GAPDH-

Hs9999905_m1 probe was used for normalization (Applied Biosystems). 

 

8.5 Signalling pathway analysis 

The analysis of biological significance was based on the enrichment analysis of the Gene 

Ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG), whereas the 

functional pathway and network analyses were performed through the Ingenuity 

Pathway Analysis (version 9.0, Ingenuity® Systems, USA).  

 

9 Protein expression analysis 

9.1 Western Blot of EMT molecules 

PCa cells growing in culture were scrapped, centrifuged and cleaned with 1x PBS. Whole 

cell extracts were prepared using Laemmli Buffer (100 mM Tris-HCl pH 6.8, 4% SDS and 

20% glycerol) and pellets and lysis buffer were incubated at 90 ºC for 5 min. Cell lysates 

were centrifuged at maximum speed for 45 min at 4ºC. After centrifugation, the 

supernatants of the total protein extraction were stored at -20 ºC. Protein concentration 

was determined with a BioRad RCDC Protein Assay kit (BioRad, Spain). Equal amounts of 

protein (50 µg/lane) were then resolved on an 8% sodium dodecyl sulphate-

polyacrylamide gel (SDS-PAGE) and transferred to a nitrocellulose membrane (Bio-Rad 

Laboratories, USA). Membranes were blocked in 5% milk solution (Tris buffered saline 

(TBS)–0.1% Tween) for 1 hr at room temperature and then incubated with the 

appropriate primary antibody in 5% milk solution overnight at 4ºC. Membranes were 

washed three times in TBS-0.1%Tween at room temperature and incubated for 1 hour 

with the corresponding horseradish peroxidase (HRP)-conjugated secondary antibody 

(Dako, Denmark). Final detection was obtained through the enhanced 

chemiluminiscence system (Amersham Pharmacia Biotech Inc., USA), following 

manufacturer’s instructions. Primary antibodies used for Western blot were: 

anti-integrin β1 (1/1000; 610467, BD Transduction Laboratories, USA), anti-integrin α2 
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(1/200; sc-74466, Santa Cruz Biotechnologies, USA), anti-Protein_B (1/100), anti-

Protein_A (1/200) and anti-α-tubulin (1/1000; 2125, Cell signalling). Densitometric 

analysis of the protein bands was performed with ImageJ software (Wright Cell Imaging 

Facility, USA) [344]. 

 

9.2 Cell culture and protein preparation for SILAC 

PCa cells, PC-3 and PC-3-BM, were grown in parallel at 37°C in L-lysine- and L-arginine-

depleted RPMI-1640 medium (Thermo Scientific, USA) supplemented with antibiotics, 

10% dialyzed foetal bovine serum (Sigma-Aldrich, UK) and either L-lysine 

monohydrochloride (100 mg/L; Sigma-Aldrich, UK) plus L-Arginine (100 mg/L; Arg-

SILAC™, Invitrogen, Life technologies, USA) (LIGHT medium) or Lysine HCl 13C-labelled 

(100 mg/L; Silantes GmbH, Germany) plus 13C6-L-Arginine HCl (50 mg/L; Silantes GmbH, 

Germany) (HEAVY medium). Fresh medium was replaced every 2 days and PCa cells 

were cultured for approximately 7 doublings to achieve complete labelling of cellular 

proteins with heavy and light labelled amino acids. Next, cells were washed three times 

with ice-cold PBS, and cell lysis and protein extraction were carried out.  

The cells were lysed in lysis buffer (150 mmol/L NaCl, 50 mmol/L Tris-HCl, 1 mmol/L 

EDTA, 0.25% DOC (deoxycholic acid) and 2% SDS (pH 7.6), in addition to a mixture of 

protease inhibitor cocktail (Boehringer Mannheim, Germany). Lysates were clarified by 

centrifugation at 12,000 x g for 20 min at 12ºC. Relative protein concentrations were 

measured using the BioRad RCDC Protein Assay kit (BioRad, Spain). 

 

9.3 Protein Separation and Trypsin In-gel Digestion 

Equal amounts of protein (100 µg) from each sample were mixed at a 1:1 ratio, and 

mixed with 6M urea (GndCl 6M) and pH was adjusted to pH 8. Next, a reducing buffer 

containing 700 mM Dithiothreitol (DTT; GE Healthcare, UK) and 50 mM Ammonium 

bicarbonate (AB; Sigma-Aldrich, UK) was added and samples were incubated for 1 h. For 

protein alkylation 700 mM Iodoacetamide (IAA; GE Healthcare, UK) containing 50 mM 

AB was added and incubated for 30 minutes in the dark. Mixed samples were run on a 

12% Acrylamide gel in SDS-PAGE, fixed 1 h with a fix solution (45% ethanol, 1% acetic 

acid) and lightly stained using Coomassie Blue overnight. Gel lanes were destained with 
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water, excised and cut horizontally into 20 equal sections. Excised sections were cut into 

≈1 mm3 pieces and destained using 50% acetonitrile/50% 25 mM AB solution, followed 

by dehydration in 100% acetonitrile for 10 min. Acetonitrile was discarded, and gel 

pieces were placed under vacuum centrifugation until completely dry. Each sample was 

then incubated overnight at 30ºC in a 0.2 µg/µL trypsin solution (in 25 mM AB). Peptides 

were extracted in 100% acetonitrile for 15 min at 37ºC, and then an extraction solution 

using 0.2% trifluoroacetic acid (TFA; Sigma-Aldrich, UK) was added for 30 min at room 

temperature. After a centrifuge spin, peptides were placed into PCR tubes, dried using 

vacuum centrifugation and stored at -20°C until analysis by mass spectrometry.  

 

9.4 Protein Identification and Quantification 

The digested proteins were analysed on an Esquire HCT Ultra Ion Trap mass 

spectrometer (Bruker, Germany), coupled to a nano-HPLC system (Proxeon, Thermo 

Scientific, USA). Peptide mixtures were first concentrated on a 300 mm id, 1 mm 

PepMap nanotrapping column and then loaded onto a 75 mm id, 15 cm PepMap 

nanoseparation column (LC Packings). Peptides were then eluted by a 0.1% formic acid - 

acetonitrile gradient (0%-40% in 100 min; flow rate ca. 300 nL/min) through a nano-flow 

ESI Sprayer (Bruker, Germany) onto the nanospray ionization source of the Ion Trap 

mass spectrometer. MS/MS fragmentation (3 x 0.3 s, 100–2800 m/z) was performed on 

three of the most intense ions, as determined from a 0.8 s MS survey scan (310–1500 

m/z), using a dynamic exclusion time of 1.2 min for precursor selection and excluding 

single-charged ions. An automated optimization of MS/MS fragmentation amplitude was 

used, starting from 0.60 V. Proteins were identified using Mascot (Matrix Science, UK) to 

search the SwissProt database. Searches were restricted to human (20407 sequences) 

taxon. MS/MS spectra were searched with a precursor mass tolerance of 1.5 Da, 

fragment tolerance 0.5 Da, trypsin specificity with a maximum of two missed cleavages; 

cystein carbamidomethylation was set as fixed modification, with methionine oxidation 

as well as the corresponding Lys and Arg SILAC labels as variable modifications.    

Data processing for protein identification and quantification was performed using 

WARP-LC 1.3 (Bruker, Germany), a software platform integrating liquid chromatography-

MS run data processing, protein identification through a database search of MS/MS 
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spectra and protein quantification based on the integration of the chromatographic 

peaks of MS-extracted ion chromatograms for each precursor. For protein 

quantification, both H/L and L/H ratios were calculated averaging the measured H/L and 

L/H ratios for the observed peptides after discarding outliers.  

 

10 Statistical analysis  

Student’s t-test was used to compare means in proliferation, migration (wound healing 

and transwell), invasion assays and also in miRNA expression levels (RTqPCR). 

Taqman MicroRNA Array cards were normalized by deltaCt method [345] and filtered 

out to increase statistical power and reduce unnecessary noise. Non-specific filters were 

applied to remove endogenous controls, undetermined categories and features whose 

standard deviation was below the 20th percentile of all standard deviations. The analysis 

to select differentially expressed miRNAs was based on adjusting a linear model with 

empirical Bayes moderation of the variance (p-value). The cut off for statistical 

significance was a p-value under 0.05. The t-test was used to compare expression levels 

between groups. In silico analysis of putative miRNA targets was performed using 

annotation methods from Bioconductor and based on miRBase 

(http://www.mirbase.org/) and TargetScanS (http://genes.mit.edu/tscan/). However, for  

experimentally verified miRNA targets two databases were used: the TarBase v6.0 [346] 

and the mirTarBase v3.5 [347]. 

Microarray data were normalized using the RMA method  described in [348, 349]. The 

analysis to select differentially expressed genes were based on adjusting a linear model 

with empirical Bayes moderation of the variance, a technique similar to ANOVA 

specifically developed for microarray data analysis by Smyth GK. [350]. The selection of 

differentially expressed genes was based on adjusted p-values below 0.01 and a 

absolute value of LogFC above 2. Statistical analyses were performed using the 

Statistical Package for Social Science version 15.0 (SPSS, IBM, USA).  

 

 

 

 



Chapter II. Results and Discussion 

147 | P a g e  

 

RESULTS AND DISCUSSION 

In vivo selection of PC-3 cell subpopulations with a preference to metastasize to bone  

 

Tumour cell populations are heterogeneous and have different abilities to metastasize 

to secondary organs such as the bone. In order to isolate highly metastatic 

subpopulations that home preferably to the bone, the in vivo selection approach was 

used. This methodology consisted of injecting PCa cells into the left ventricle of 

immunodeficient mice to recapitulate the natural spreading of tumour cells through 

arterial circulation, resulting in metastasis formation. To this end, 3 x 105 PC-3 luciferase-

expressing cells were injected intracardiacally into immunodeficient mice in two 

different mouse strains, nude and Nod/Scid mice (n = 5 mice/strain), in order to 

generate a subpopulation of PC-3 with a strain-independent growth in bone sites. Mice 

developed bone lesions 2 weeks after cell inoculation and animals were monitored until 

the end of the study (week 9). Mice were sacrificed immediately if they presented any 

symptom of paraplegia or cachexia.  BLI imaging was used to monitor tumour burden 

and tumour cell localization, whereas tumour-induced bone destruction was assessed 

using micro-computed tomography. After the sacrifice, tumour cells were isolated from 

bone metastases and reinoculated after expansion in culture (Figure 34).  

 

Figure 34. View of the sequential method for the in vivo selection of PCa cells with a preference 
to metastasize to bone. A. Following PCa cell culture of luciferase-expressing cells, the first step 
consists of B intracardiac inoculation of cells into immunodeficient mice and in vivo monitoring 
of tumour growth by BLI imaging using the IVIS System. In the second step, circulating tumour 
cells target multiple organs, including bones. C. The final step collects tumour cells from bone 
metastatic sites by flushing and puts them in culture to be injected again.  
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PC-3-BM, a metastatic subclone of PC-3 cells with a preference to home to bone was 

isolated after three rounds of this process of in vivo selection. Although the incidence of 

bone metastases increased concomitantly with each round of selection (Figure 35), the 

development of osteolytic lesions did not grow faster when compared to the parental 

cell line. Moreover, the distribution and number of bone metastases generated by PC-3-

BM cells was higher in leg, spinal cord and scapula areas. Non-bone metastases were 

less frequent and involved primarily lung and soft tissues such as the adipose tissue or 

the musculature. PC-3, the parental cell line with a poor metastatic phenotype, has an 

incidence of metastasizing to long bones of only 20% compared to the 100% of the PC-3-

BM subclone.  

 

 

Figure 35. Incidence of metastases after three rounds of in vivo selection in immunodeficient 
mice. A. Incidence of bone metastases in long bones over the whole experiment. B. Distribution 
and incidence of metastases in bones and soft tissues. C. Distribution and incidence of 
metastases only in bones. Results are expressed as percentage of metastases per total number 
of animals well injected in each round. 
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Figure 36 shows the time course of bone lesions development as monitored weekly by 

the IVIS System, from day 0 until day 63 after cell inoculation, comparing the parental 

PC-3 to the PC-3-BM subclone.  

 

Figure 36. Bone metastases development of PCa cells injected intracardiacally into nude mice. 
To select subpopulations of PC-3 cells which home preferably to bone, these tumour cells were 
inoculated directly through the arterial circulation and then isolated from bone metastases in 
long bones. A. Representative BLI imaging of the metastatic distribution pattern of parental PC-3 
cells compared to PC-3-BM cells, both injected intracardiacally into nude mice over time. The 
ventral and dorsal positions from each mouse were recorded weekly from day 0 until the end of 
the experiment. B. Representative micro-CT images showing osteolytic lesions caused by PCa 
cells from different mice before sacrifice. Black arrows show the metastatic lesions. 
 

 

In vitro characterization of the PC-3-BM subpopulation 

 

To further study the in vitro metastatic activity of two different human PCa 

subpopulations, which present high and low in vivo metastatic potential to bone, PCa 

cells were co-cultured with bone cells and multiple in vitro assays were performed. 
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Subsequently, tumour cells were cultured at 1:1 ratio with either bone mouse (MC-3T3) 

or human (hFOB1.19) osteoblast cells in co-culture systems using Boyden chambers as 

described in the Material and Methods section of Chapter II. Dissimilarities on tumour 

proliferation, migration and invasion rates were assessed in highly metastatic PC-3-BM 

cells compared to parental PC-3 cells (Figure 37). 

 

 

Figure 37. In vitro characterization of the in vivo selected clone PC-3-BM compared to the 
parental PC-3 cell line. To assess the metastatic activity from PC-3 and PC-3-BM cells, both cell 
populations were characterized by (A-D) proliferation, (B-E) migration and (C-F) invasion assays 
using Boyden chambers to establish co-culture systems. The PC-3-BM subpopulation showed 
induction of invasiveness and migration compared to parental PC-3 cells.  

 

Although the bone-metastatic subclone PC-3-BM obtained in a third round of selection 

had a growth rate comparable to that of parental PC-3 cells (Figure 37.A-D), they 

generated a higher number of bone lesions in immunodeficient mice and migrated and 

invaded more easily the transwell inserts in vitro in the presence of bone cells (Figure 

37). In terms of invasion, this induction of the metastatic potential  was slightly stronger 

when human PCa cells were placed at the upper compartment of the insert and human 

bone cells were at the bottom site (Figure 37.F), compared to results from mouse bone 

cells (Figure 37.C).   
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To elucidate if the in vivo changes observed in the phenotype of PC-3 subclones resulted 

from an inherent cell proliferation and migration trait or from the specificity of tumour 

cells to metastasize to bone, two types of tests were performed after each round of in 

vivo selection. Consequently, PC-3 subclones that differed from the parental cells on cell 

proliferation (by MTT assay) and migration (by Wound Healing assay) were discarded. 

 

To further evaluate changes in cell proliferation and cell communication between PCa 

and bone cells, additional in vitro studies using conditioned media (CM) were 

performed. Osteoblast cells were grown in fresh medium containing 1% FBS at minimal 

volume for 24 hours. Next, the CM was collected, centrifuged, filtered and placed in 

each well of 96-well plate where PCa cells, PC-3 or PC-3-BM had been seeded 24 hours 

before. Cell proliferation assays demonstrated that PCa cells did not proliferate more 

when CM from osteoblast cells were added, corroborating the results observed in the 

co-culture system (Figure 38). 

 

 

 

Figure 38. In vitro cell proliferation assay using conditioned media (CM) from PCa and bone cells. 
To assess changes in cell proliferation on both PCa and bone cells, the CM from another cell type 
was used. A. After 24 h of bone cell growth, CM were collected, centrifuged and added to each 
well where PCa cells had been seeded 24 h before. Cell proliferation was quantified using MTT 
CellTiter Assay. No changes were observed in PCa cells with mouse (MC3T3) or human (hFOB) 
bone cells CM. B. A significant increase in cell proliferation was observed in hFOB cells when CM 
from both PC-3 (p < 0.001) and PC-3-BM (p < 0.005) cells were added to the plate. 
Abbreviations: CM, conditioned media; M, MC3T3 cells; h, hFOB cells; P, PCa cells. 
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Remarkably, when CM from PCa cells were added to human osteoblast cells, there was a 

significant increase in cell proliferation (CM from PC-3 cells, p < 0.001; PC-3-BM cells, p < 

0.05) using the Student’s t-test.  

 

miRNAs expression profiling in PCa bone metastases 

 

The main goal of this discovery phase to identify metastasis-associated biomarkers was 

to investigate the differentially expressed miRNAs from two types of PCa cell lines, PC-3-

BM with high and PC-3 with low in vivo metastatic potential to bone, by collecting their 

expression data using TaqMan Array Micro Fluidic cards (Applied Biosystems).  

Following array processing, U6-snRNA, RNU44 and RNU48 normalization and filtering of 

the raw array data, the pairwise comparison of PC-3-BM and PC-3 cells identified 87 

miRNAs dysregulated in metastases, with an absolute log fold change value above 1.5. 

The analysis to select differentially expressed miRNAs was based on adjusting a linear 

model with empirical Bayes moderation of the variance. Of the 88 dysregulated miRNAs, 

20 miRNAs were consistently upregulated (Table 16) and 67 miRNAs were down-

regulated in the metastatic cell line compared to the parental one (Table 17).  Those 

miRNAs can be regarded as biomarker candidates with a potential biological relevance 

for PCa development. 

 

Table 16. Upregulated miRNAs (Log FC > 1.5) in PC-3-BM cells relative to PC-3 cells. 

 

miRNA name Log FC miRNA name Log FC 

miR-582-3p 4.38 miR-34a-3p 2.31 

miR-155 3.94 miR-202 2.24 

miR-628-5p 3.51 miR-582-5p 2.13 

miR-150 3.33 miR-33a 2.03 

miR-615-3p 3.18 miR-580 1.94 

let-7b-3p 2.98 miR-548b-5p 1.88 

miR-639 2.80 miR-142-3p 1.82 

miR-489 2.54 miR-1225-3p 1.81 

miR-650 2.50 let-7d-3p 1.56 

miR-105 2.33 miR-30a-3p 1.50 

Abbreviations: LogFC, log2-fold change. 
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Table 17. Downregulated miRNAs (Log FC < -1.5) in PC-3-BM cells relative to PC-3 cells. 

 

miRNA name Log FC miRNA name Log FC 

miRNA_A -7.34 miRNA_F -2.02 

miRNA_B -6.69 miR-192 -2.01 

miRNA_C -6.65 miR-545-5p -1.95 

miR-630 -6.41 miR-18b -1.93 

miR-16-2-3p -5.10 miRNA_G -1.90 

miR-135b -4.62 miR-134 -1.89 

miR-194 -4.29 miR-875-5p -1.87 

miR-199a-3p -4.02 miRNA_H -1.86 

miR-376a -3.97 miR-423-5p -1.83 

miR-382 -3.90 miR-323-3p -1.81 

miR-148a -3.60 miR-126-5p -1.80 

miR-190b -3.31 miR-122 -1.80 

miR-495-3p -3.27 miR-374a-3p -1.78 

miR-376a-5p -3.08 miR-766 -1.78 

miR-331-5p -3.04 miR-450b-5p -1.77 

miR-409-3p -3.01 miR-411 -1.76 

let-7a-3p -2.93 miR-376c -1.75 

miR-34b -2.90 miR-151-5p -1.70 

miR-502 -2.87 miR-182-3p -1.70 

miR-181c-3p -2.82 miR-1285 -1.68 

miR-20b -2.76 miR-571 -1.68 

miRNA_D -2.75 miR-195 -1.67 

miR-550 -2.73 miR-664 -1.67 

miR-363 -2.58 miR-888 -1.65 

miR-9 -2.53 miR-425-5p -1.64 

miR-181c -2.53 miR-191-3p -1.62 

miR-7-5p -2.52 miR-125 -1.61 

miR-432-3p -2.52 miR-182 -1.59 

miR-378 -2.41 miR-422a -1.55 

miR-30d -2.39 miR-1296 -1.53 

miRNA_E -2.32 miR-137 -1.52 

let-7f-2-3p -2.18 miR-9-3p -1.51 

miR-133a -2.15 miRNA_I -1.51 

hsa-miR-1238 -2.03   

Abbreviations: Log FC, log2-fold change. 
Note: Some miRNA identifications are coded due to intellectual property reasons 
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To verify the accuracy of the array data, RTqPCR experiments were performed for the 

most dysregulated miRNAs in the ranking of the candidate list and several additional 

miRNAs with potential involvement in metastatic PCa disease found in the literature. As 

a result, 20 miRNAs of interest plus the normalizer RNU44 were analyzed by RTqPCR. 

The association between array data and RTqPCR was good for all candidates except for 

miR-191, -195, -100, -21 and -210, and particularly strong for candidates with significant 

fold changes, such as miR-105, miRNA_A, miRNA_B and -135b. 

 

Table 18. Comparison of Log FC between Microfluidic Array and RTqPCR data. 

 

miRNA name Microfluidic card (Log FC) RTqPCR (Log FC) 

miR-105 2.33 1.60 

miR-146a 0.71 2.56 

miRNA_A -7.34 -6.31 

miRNA_B -6.69 -5.69 

miR-194 -4.29 -1.52 

miRNA_G -1.90 -1.56 

miR-135b -4.62 -6.39 

miR-9 -2.53 -1.74 

miR-191 -0.80 0.25 

miR-195 -1.67 0.82 

miR-100 -0.76 0.99 

miR-21 -0.77 0.64 

miR-210 1.11 -0.23 

miRNA_J -1.33 - 

miR-141 0.35 - 

miR-218 - -1.15 

miR-96 - -1.02 

miR-34c - - 

Abbreviations: Log FC, log2-fold change. 
Note: Some miRNA identifications are coded due to intellectual property reasons 

 

Differentially expressed genes involved in PCa bone metastases 

 

In order to investigate which were the most relevant differentially expressed genes, but 

also to further associate the dysregulation of miRNAs with their target genes at mRNA 

level, the two subpopulations of PCa with different in vivo metastatic potential were 

examined for differential mRNA expression using Human Gene Array (Affymetrix). As 
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shown in Tables 19 and 20, 32 mRNAs were upregulated and 13 downregulated in the 

more metastatic cell line with an absolute log fold change value above 2.5.  

 

Table 19. Upregulated mRNA (Log FC > 2.5) in PC-3-BM cells relative to PC-3 cells. 

 

Entrez ID GeneSymbols Name log FC adj. p-value 

285 ANGPT2 angiopoietin 2 4.67 3.77E-07 

1134 CHRNA1 cholinergic receptor, nicotinic, alpha 1 (muscle) 4.06 4.48E-06 

255324 EPGN epithelial mitogen homolog (mouse) 3.86 3.77E-07 

8787 RGS9 regulator of G-protein signaling 9 3.30 3.77E-07 

158511 CSAG1 chondrosarcoma associated gene 1 3.19 7.34E-07 

28984 C13orf15 chromosome 13 open reading frame 15 3.12 7.34E-07 

728461 CSAG2// 
CSAG3 

CSAG family, member 2// CSAG family, member 
3 

3.04 7.34E-07 

84189 SLITRK6 SLIT and NTRK-like family, member 6 3.00 1.21E-06 

9966 TNFSF15 tumor necrosis factor (ligand) superfamily, 
member 15 

2.99 1.47E-06 

 Gene_A  2.99 1.47E-06 

344901 OSTN osteocrin 2.97 6.73E-06 

167681 PRSS35 protease, serine, 35 2.88 2.08E-06 

245972 ATP6V0D2 ATPase, H+ transporting, lysosomal 38kDa, V0 
subunit d2 

2.85 5.20E-06 

 Gene_B  2.84 4.23E-06 

2591 GALNT3 UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 3 (GalNAc-T3) 

2.80 7.34E-07 

4113 MAGEB2 melanoma antigen family B, 2 2.78 1.27E-06 

80763 C12orf39 chromosome 12 open reading frame 39 2.74 2.54E-05 

2895 GRID2 glutamate receptor, ionotropic, delta 2 2.74 3.86E-06 

23224 SYNE2 spectrin repeat containing, nuclear envelope 2 2.73 7.34E-07 

80017 C14orf159 chromosome 14 open reading frame 159 2.72 1.41E-06 

26002 MOXD1 monooxygenase, DBH-like 1 2.72 7.34E-07 

27063 ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 2.67 1.64E-06 

25891 PAMR1 peptidase domain containing associated with 
muscle regeneration 1 

2.65 7.34E-07 

 Gene_C  2.65 1.79E-06 

81832 NETO1 neuropilin (NRP) and tolloid (TLL)-like 1 2.63 1.36E-06 

731220 RFX8 regulatory factor X, 8 2.63 1.27E-06 

57717 PCDHB16 protocadherin beta 16 2.57 7.34E-07 

80177 MYCT1 myc target 1 2.57 1.36E-06 

6347 CCL2 chemokine (C-C motif) ligand 2 2.56 8.84E-06 

8515 ITGA10 integrin, alpha 10 2.52 7.93E-07 

401024 FSIP2 fibrous sheath interacting protein 2 2.52 1.53E-06 

1293 COL6A3 collagen, type VI, alpha 3 2.50 7.34E-07 

Abbreviations: Log FC, log2-fold change; adj. p-value, adjusted p-value. 
Note: Some dysregulated mRNA are coded due to intellectual property reasons. 
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Table 20. Downregulated mRNA (Log FC < -2.5) in PC-3-BM cells relative to PC-3 cells. 

 

Entrez ID Gene Symbol Name Log FC adj. p-value 

100128252 LOC100128252// 
LOC100288114 

Uncharacterized LOC100128252// 
uncharacterized LOC100288114 

-5.82 7.34E-07 

9674 KIAA0040 KIAA0040 -4.14 3.77E-07 

100129543 ZNF730 zinc finger protein 730 -4.01 7.06E-06 

3294 HSD17B2 hydroxysteroid (17-beta)  
dehydrogenase 2 

-3.38 3.77E-07 

9119 KRT75 keratin 75 -3.27 3.77E-07 

55612 FERMT1 fermitin family member 1 -3.21 7.93E-07 

1803 DPP4 dipeptidyl-peptidase 4 -3.12 5.28E-07 

100033432 SNORD116-21// 
SNORD116 

small nucleolar RNA, C/D box 116-21 -2.98 8.33E-06 

440519 ZNF724P zinc finger protein 724, pseudogene -2.90 4.79E-06 

6507 SLC1A3 solute carrier family 1 (glial high affinity 
glutamate transporter), member 3 

-2.86 7.34E-07 

2239 GPC4 glypican 4 -2.83 1.61E-06 

112770 C1orf85 chromosome 1 open reading frame 85 -2.79 1.10E-06 

139886 SPIN4 spindlin family, member 4 -2.63 1.21E-06 

Abbreviations: Log FC, log2-fold change; adj. p-value, adjusted p-value. 

 

To verify the accuracy of the microarray data, RTqPCR experiments were performed for 

some of the dysregulated genes, such as integrin alpha 2 (ITGA2), caveolin (CAV1) and 

annexin alpha 10 (ANXA10), among others. Those selected genes were found 

dysregulated at mRNA and also at protein level and were previously reported to have a 

role in metastases. The association between the microarray data and RTqPCR was good 

for all genes (Figure 39). 

 

Figure 39. ITGA2, CAV1 and ANXA10 are dysregulated in PC-3-BM cells compared to PC-3 cells. 
ITGA2 and CAV1 are upregulated in the bone metastatic cell line compared to the parental one, 
whereas ANXA10 is downregulated. GAPDH, a housekeeping gene, was used to normalize mRNA 
levels in the analysis of those genes by RTqPCR. 
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Differentially expressed proteins involved in PCa bone metastasis 

 

Similarly to Chapter I, one of the main objectives of Chapter II was to investigate 

proteins associated to PCa’s metastatic process. In order to identify differentially 

expressed proteins, changes in PC-3 and PC-3-BM tumour cell lines were evaluated using 

the SILAC method.  

PCa cells were grown in culture under light and heavy isotopic conditions for 7 

generations. A crossed-labelling experiment was performed where PC-3 and PC-3-BM 

were labelled with light and heavy isotopic conditions, respectively, but also inversely, 

with heavy and light labelling, to rule out chance changes in protein expression levels. 

After cell lysis and protein extraction, equal amounts of extracted proteins were mixed 

and run on a 12% acrylamide gel in SDS-PAGE for protein separation based on their 

molecular weight. After gel fixation and staining, gel lanes were excised and cut 

horizontally into 20 equal sections. Next, each section was cut again into ≈1 mm3 pieces. 

After trypsin digestion, peptides were analysed by MS through a nano-flow ESI Sprayer. 

Proteins were identified using Mascot searching into the SwissProt database, whereas 

protein quantification was calculated averaging the measured Heavy/Light ratio (PC-3-

BM/PC-3 cells, SILAC experiment 1) and Light/Heavy ratio (PC-3-BM/PC-3, SILAC 

experiment 2) of quantified peptides (Figure 40). 

 

Figure 40. SILAC method. A. Gel after Coomassie Blue staining. Left, molecular weight marker for 
proteins, the middle lane corresponds to the light (PC-3-BM) and heavy (PC-3) labelling and the 
right lane corresponds to the heavy (PC-3-BM) and light (PC-3) labelling. B. Example of MS 
spectrum from one peptide after MS/MS fragmentation. Notice in the middle panel the ratio 
determination between the light (non-labelled) and heavy (labelled) peaks. 
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Almost 992 proteins were identified in one experiment (SILAC L1) and 1,078 proteins in 

the other (SILAC L2). 749 proteins were shared by the two lists (Figure 41.A). In this 

study, nearly 18% of proteins were identified by a single peptide and were consequently 

discarded from the differential expression analysis since confidence in their 

identification and quantification was poor. In addition, proteins identified in the 

SwissProt database as keratins were also discarded from the analysis as possible sources 

of contamination. Furthermore, the MS/MS spectra for all peptides used for 

quantification were manually inspected and verified. 

 

To perform the relative protein quantification, a protein was considered as differentially 

expressed when it (i) was identified in the SwissProt database of human origin, (ii) was 

identified for more than one peptide, and (iii) was found dysregulated with a fold change 

at least 1.5 times higher or lower in relation to the parental cell line. Consequently, after 

filtering the final differentially expressed list, 14 upregulated proteins in the highly bone 

metastatic PC-3-BM cell line (Table 21 and Figure 41.B) and 17 down-regulated proteins 

(Table 22 and Figure 41.C) were obtained. Finally, two additional restrictive criteria were 

applied in order to include candidate proteins into the further integrative analysis when: 

(i) the percentage of quantified peptides from the total identified peptides for each 

protein was higher than 50%, and (ii) the coefficient of variation (CV) was lower than 

30%.  The CV is a normalized measure of dispersion of a probability distribution. After 

filtering with all the aforementioned criteria, a final list of 21 proteins were differentially 

expressed and were found in both SILAC experiments, of which 9 were upregulated and 

12 downregulated in the PC-3-BM cell line. 
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Figure 41. Venn diagrams overlapping proteins between the highly (PC-3-BM) and lower (PC-3) 
metastatic PCa cell lines analyzed by the SILAC method. In experiment L1 (blue circles), PC-3-BM 
cells were labelled with light and PC-3 cells with heavy isotopic conditions, and inversely, in 
experiment L2 (red circles) PC-3-BM cells were labelled with heavy and PC-3 cells with light 
isotopic conditions. A. The diagram shows the total number of identified proteins. B. The 
diagram shows the number of upregulated proteins and C the number of downregulated 
proteins after filtering.  
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Table 21. Upregulated proteins (FC > 1.5) in PC-3-BM cells relative to PC-3 cells. 

 

Entrez ID Symbol Name FC % ID 

peptides 

CV 

[%] 

 Protein_A  6.60 72 28.53 

 Protein_B  2.39 100 27.71 

3673 ITGA2 integrin, alpha 2 (CD49B, alpha 2 
subunit of VLA-2 receptor) 

2.26 100 24.16 

10226 M6PRBP1 Mannose-6-phosphate receptor-binding 
protein 1 - Homo sapiens (Human) 

2.11 67 18.6 

493869 GPX8 glutathione peroxidase 8 (putative) 2.08 67 25.43 

7167 TPI1 triosephosphate isomerase 1 1.95 48 8.04 

2597 GAPDH glyceraldehyde-3-phosphate 
dehydrogenase 

1.90 78 15.97 

 Protein_C  1.84 100 24.13 

3688 ITGB1 integrin, beta 1 (fibronectin receptor, 
beta polypeptide, antigen CD29 
includes MDF2, MSK12) 

1.77 70 25.23 

301 ANXA1 Annexin A1 1.74 68 20.78 

6888 TALDO Transaldolase 1.74 67 22.99 

4082 MARCKS myristoylated alanine-rich protein 
kinase C substrate 

1.62 100 26.64 

 Protein_D  1.53 100 18.15 

2023 ENOA Alpha-enolase - Homo sapiens (Human) 1.52 62 18.85 

Abbreviations: FC, fold change; % ID peptides, percentage of identified peptides; CV, coefficient 
of variation. 
Note: Some proteins are coded due to intellectual property reasons. 
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Table 22. Downregulated proteins (FC < -1.5) in PC-3-BM cells relative to PC-3 cells. 

 

Entrez ID Symbol Name FC % ID peptides CV [%] 

 Protein_E  -4.88 100 22.23 

10105 PPIF peptidylprolyl isomerase F -2.61 60 14.35 

9144 SYNGR2 synaptogyrin 2 -2.39 67 10.56 

94081 SFXN1 sideroflexin-1 -2.29 71 20.41 

1327 COX4I1 cytochrome c oxidase subunit IV isoform 1 -2.16 100 32.31 

373156 GSTK1 glutathione S-transferase kappa 1 -2.08 100 12.82 

1666 DECR1 2,4-dienoyl CoA reductase 1, 
mitochondrial 

-2.04 100 17.23 

9377 COX5A cytochrome c oxidase subunit Va -2.03 60 18.46 

 Protein_F  -1.97 100 16.37 

3192 HNRPU heterogeneous nuclear ribonucleoprotein 
U 

-1.97 80 23.94 

5250 SLC25A3 solute carrier family 25 (mitochondrial 
carrier; phosphate carrier), member 3 

-1.93 60 12.65 

1537 CYC1 cytochrome c-1 -1.90 67 7.09 

7791 ZYX zyxin -1.78 75 15.49 

4191 MDHM malate dehydrogenase 2, NAD -1.75 74 15.57 

515 ATP5F1 ATP synthase, H+ transporting, 
mitochondrial Fo complex, subunit B1 

-1.70 80 21.23 

498 ATP5A1 ATP synthase, H+ transporting, 
mitochondrial F1 complex, alpha subunit 1 

-1.70 71 16.25 

84908 F136A family with sequence similarity 136, 
member A 

-1.70 100 29.59 

Abbreviations: FC, fold change; % ID peptides, percentage of identified peptides; CV, coefficient 
of variation. 
Note: Some proteins are coded due to intellectual property reasons. 

 

Figure 42 shows the SILAC ratio distribution for all quantified proteins following a 

Gaussian distribution of the data, where the maximum number of proteins indicated an 

abundance ratio of 1.0. 
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Figure 42. Distribution of protein expression ratio as determined by SILAC. The SILAC ratio for 
each protein represents the relative expression difference between high (PC-3-BM) and low (PC-
3) metastatic PCa cells. The percentages indicate the respective portions of quantified proteins 
that were up- or downregulated in the metastatic cell line with an absolute fold change of 1.5. 

 

To further confirm the SILAC results, four proteins for which antibodies were readily 

available were tested by Western blot. The level of integrin alpha-2 (ITGA2), integrin 

beta-1 (ITGB1), Protein_A and Protein_B, all proteins related to the EMT process, were 

assessed by immunoblot (Figure 43). Alpha-tubulin was used as a loading control 

because relatively no change was observed by SILAC. The expression level of these 

proteins had a good association with that observed by the SILAC experiment except for 

Protein_A, whose expression level did not change in PC-3-BM compared to PC-3 cells. 
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Figure 43. Western blot of EMT differentially expressed proteins in parental PC-3 and metastatic 
PC-3-BM cells. Proteins from PCa cells grown in culture were extracted and resolved on 8% SDS-
PAGE gel. Primary antibodies of anti-integrin β1 (1/1000; 610467), anti-integrin α2 (1/200; sc-
74466), anti-Protein_A (1/100), anti-Protein_B (1/200) and anti-α-tubulin (1/1000; 2125) were 
used for the detection of EMT associated proteins. Alpha-tubulin was used as loading control. 
 

 

Integrative view of differentially expressed molecules responsible for prostate cancer 

bone metastases 

 

The overview of the integration method to describe a PCa bone metastasis signature, 

essentially composed of 3 step levels, is presented in Figure 44. The screening method 

was based on three differential expression analysis by high-throughput, which compared 

two human PCa cell populations with high (PC-3-BM) and low (PC-3) in vivo metastatic 

potential to bone. The first level led to the identification of the differentially expressed 

miRNAs as determined by Array Microfluidic Cards. The second level was the 

differentially expressed genes highly associated with dysregulated miRNAs as assessed 

by Gene expression Array. And finally, the third step corresponded to differentially 

expressed proteins found by the SILAC method. Since miRNAs and proteins can be 

potentially used as biomarkers, they may provide a suitable list of candidates for the 

detection of prognostic biomarkers for PCa metastases. 
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Figure 44. Overview of the three differential expression analyses carried out in this study to 
describe a PCa bone metastasis signature.   

 

In order to select the candidate miRNAs and proteins, two individual approaches were 

performed with all data collected in the three screening methods. Firstly, a comparative 

analysis between miRNAs and their target genes was carried out to select which of the 

miRNA-target gene association was represented in the metastatic model. Secondly, the 

analysis compared the differentially expressed genes and proteins. Finally, it was 

considered that proteins and miRNAs highly related in the differential expression 

analysis play a role in the metastatic development of PCa. 

 

As a first step in the identification of miRNAs with potential significance in the PCa 

metastatic process, putative target genes for each of the differentially expressed 

miRNAs were identified using annotation methods from Bioconductor and based on the 

miRBase and the Gene Ontology enRIchment anaLysis and visuaLizAtion (GOrilla) tool. 

Overlapping the results extracted from the microRNA array to the gene microarray data, 

an mRNA enrichment analysis was obtained with a list of the biological processes most 

altered in metastases. The most altered were response to chemical stimulus, such as cell 

surface receptor signalling pathways or cell-to-cell signalling, and cell motility or cell 

adhesion functions. However, to further identify which biological processes regulated by 

the differentially expressed miRNAs were the most affected, a biologically-guided 

approach based on a miRNA GO enrichment analysis was performed using a GO 
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enrichment of the targeted genes according to their miRNA expression levels. In this 

case, two experimentally verified miRNA target databases were used, the TarBase v6.0 

and the mirTarBase v3.5. The miRNA GO enrichment analysis (Figure 45) showed that 

the generation of precursor metabolites and energy, the small molecule metabolism, 

oxidation-reduction process and gene expression among other processes were affected, 

offering an overview of the main functions altered due to metastases. 

 

Figure 45. Main GO terms altered in the study after GO enrichment analysis. A. Scatter plot 
where some of the main GO terms altered are identified. The significance of the log p-value for 
each GO term is represented by the colour and size (see legend). B. Interactive graph of the 
same GO terms altered.  
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On the other hand, with the standardization of gene and protein codes, the comparative 

analysis identified 80 differentially expressed molecules present in both microarray and 

SILAC data. This association between differentially expressed genes and proteins is 

represented in Figure 46. Focusing on the 21 differentially expressed proteins obtained 

after the most restrictive filter, an association between gene and protein expression 

levels was found for all molecules except for 2 where gene-protein expression was 

inversely correlated (Gene_D and RL27A) and a further 2 molecules that were not 

expressed in the microarray data (Protein_C and Protein_D). 

 

Figure 46. Distribution of genes and proteins differentially expressed depending on their 
expression levels. Most molecules have well-correlated expression levels. Each dot represents a 
molecule differentially expressed in the microarray and SILAC experiments. Black dots are 
proteins found only in one SILAC experiment; red dots represent proteins in the two SILAC 
experiments. 

 

In order to identify which miRNAs and proteins were associated through their target 

genes and were differentially expressed in the PC-3-BM compared to the parental PC-3 

cell line, an accurate analysis using experimentally verified miRNA target databases was 

carried out. This analysis generated a ranking of potential miRNA-protein candidates to 

be further validated (Table 23). From this list, proteins differentially expressed could be 

related to miRNA, also found differentially expressed in the Microfluidic Taqman Array, 
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and vice versa, a ranking list of differentially expressed miRNAs could be related to their 

final protein product (Table 24). 

 

Table 23. Protein and miRNA candidates found in the integrative analysis 
 
Entrez Id Symbol Name Protein FC miRNA name miRNA FC Source 

3688 ITGB1 integrin, beta 1 1.77 

miR-183-5p -2.53 tarbase6 

miR-192-5p -4.03 tarbase6 

miRNA_a 1.26 tarbase6 

miRNA_b -6.71 mirTarBase 

3673 ITGA2 integrin, alpha 2 2.26 

miRNA_c -3.62 tarbase6 

miR-30a-5p -2.05 tarbase6 

miRNA_d -3.72 tarbase6 

4082 MARCKS 

myristoylated alanine-
rich protein kinase C 
substrate 

1.85 

miR-122-5p -3.47 tarbase6 

miR-155-5p 15.39 tarbase6 

miR-21-5p -1.70 mirTarBase 

 
Protein_B 

 
2.39 

miR-7-5p -5.75 tarbase6 

miR-155-5p 15.39 tarbase6 

miR-30a-5p -2.05 tarbase6 

miR-34a-5p 4.85 tarbase6 

miRNA_a 1.26 tarbase6 

Abbreviations: FC, fold change. 
Note: most miRNAs are inversely expressed to their protein expression level and are regulating 
more than one protein. Some names are coded due to intellectual property reasons. 

 

 

Table 24. Ranking list of the top ten differentially expressed miRNAs with their protein targets. 

 

miRNA name Number of target proteins 

miRNA_b 22 

miR-30a-5p 10 

miRNA_d 10 

miR-21-5p 9 

miRNA_a 9 

miR-34a-5p 9 

miR-7-5p 8 

miR-192-5p 8 

let-7b-5p 6 

miR-155-5p 5 

Note: Some names are coded due to intellectual property reasons. 
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To summarize, this study shows that intracardiac injection of human PCa cells in 

immunodeficient mice is a useful experimental model to investigate the 

pathophysiology of bone metastases in vivo. Furthermore, the bone metastases model 

described in this Chapter developed by intracardiac injection of the PC-3 cell line 

followed by subsequent selection of a sub-line with increased in vivo propensity for 

bone metastases is a promising alternative to spontaneous metastatic models such as 

the TRAMP mice, since it offers a high experimental bone-metastatic tumour incidence; 

it frequently metastasizes to specific bone sites such as the femur and tibia; and it 

recapitulates the early stages of the metastatic process from tumour cells entering into 

the blood to disseminate to distant organs. 

 

After three rounds of in vivo selection, the PC-3-BM subpopulation of PC-3 showed an 

increased preference to metastasize to bone, with up to 100% of bone lesions (Figure 

36) when tumour cells were injected intracardiacally into immunodeficient mice, 

compared to the 20% incidence of PC-3 cells. The most affected bones were leg, spinal 

cord and scapula (Figure 36). 

 

When located in the bone marrow, prostate tumour cells with the potential to 

metastasize to bone would come in contact with bone lining cells. Bone lining cells are 

quiescent or premature osteoblasts and therefore immature hFOB and MC3T3 cells are 

particularly good models for bone cells and those PCa cells that would come in contact 

with the bone microenvironment after tumour colonization [351]. In addition to the 

results observed in vivo, the PC-3-BM cells also showed an increase migration and 

invasiveness capacity when they were grown in co-culture with osteoblast cells 

compared to parental PC-3 cells. In particular, a even more increase was observed when 

the co-culture was composed of human PCa (PC-3) and human osteoblast cells (hFOB) 

instead of murine bone cells (Figure 37). The intrinsic species-specificity of human PCa 

cells for human bone cells is an interesting feature that corroborates the species-tropism 

observed by Yonou et al. [302] and also the findings previously described and discussed 

in Chapter I.  
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Moreover, cell proliferation assays demonstrated that PCa cells did not proliferate faster 

when they were directly co-cultured or when CM from osteoblast cells were added to 

PCa cells (Figure 37-38). However, a significant increase in bone cell proliferation was 

observed when CM from PC-3 or PC-3-BM was added to those cells. In accordance with 

these results, studies with paired clinical samples [352] in breast, colon and prostate 

cancer have shown that the metastatic growth rate correlated with the corresponding 

rates for the primary tumour, i.e., tumour cells in metastatic sites do not proliferate 

quicker than cells in the primary tumour. The same pattern of cell proliferation has been 

observed in this model (Figure 37-38). These data suggest that factors released from 

bone cells do not stimulate tumour cells to grow faster, but PCa cells may acquire 

characteristics that facilitate their establishment in the bone marrow microenvironment 

during the metastatic process. Bidirectional paracrine interactions between PCa cells 

and osteoblasts may enhance PCa cell survival and proliferation of osteoblasts and are 

believed to be responsible for the resistance of prostatic metastatic cancer to treatment 

[353]. However, many factors and molecules released from numerous cells, such as 

bone stromal components and bone lining cells, enhance tumour growth and survival of 

metastatic cancer cells within the bone microenvironment [69]. Similarly, primary 

tumours may condition the bone marrow by means of the production of circulating 

factors that target cells in the bone microenvironment and thus render it conducive to 

tumour localization and colonization [69]. Examples include osteopontin (OPN), secreted 

by tumour cells promoting bone marrow cell recruitment or tumour formation [354], 

MMP production from osteoclasts supporting PCa skeletal metastasis [355] and PTHrP,  

produced by various tumours and able to promote bone resorption [78] and to enhance 

the production of local factors in the bone marrow [69]. All these data suggest that bone 

cells together with bone marrow stromal cells may attract tumour cells to the bone and 

may further provide a favourable niche through the modulation of a large number of 

genes and proteins in the bone microenvironment. 

 

In order to identify bone metastasis-associated biomarkers in PCa, three strategies were 

carried out by differential expression analysis (Figure 44). Firstly, a Taqman Array of 

microRNA was carried out to detect those miRNAs differentially expressed in the PC-3-
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BM cell line compared to the parental one. From this analysis, a final list gathered 20 

upregulated miRNAs which may function as oncogenes (Table 16), and 68 

downregulated miRNAs in the metastatic cell line, acting as tumour suppressors (Table 

17). In general, multiple miRNAs known as oncomiRs have been shown to have 

oncogenic properties or act like tumour suppressor genes. An alteration in oncomiR 

expression is causatively linked to cancer development [356]. 

 

Some of the differentially expressed miRNAs found in this study have been previously 

associated with PCa (miR-21 [277], miR-126* [357], miR-34 cluster [358]), PCa 

metastases (miRNA_J) or metastases of other types of cancer (miR-582 [359], miR-155 

[360], miRNA_G). The miR-200 family is comprised of five miRNAs that are encoded 

within two clusters. Each cluster encodes a polycistronic gene. One cluster resides on 

the human chromosome 1 and encodes miR-200b, miR-200a, and miR-429, while the 

other cluster is located on human chromosome 12, and encodes miR-200c and miR-141 

[267, 361]. In this study, some miRNAs from the miR-200 family were found 

dysregulated in the metastatic cell line. Vrba et al. [361] determined that the miR-200 

family participates in the maintenance of an epithelial phenotype and loss of its 

expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the 

loss of expression of miR-200 family members is linked to an aggressive cancer 

phenotype in prostate [283, 361] and in breast cancer [362].  

 

In addition to the miRNA differential expression profile, the second study was performed 

at mRNA level using Human Gene Array to further correlate the miRNA expression 

profile with the one found at mRNA level. It is known that regulatory effect on miRNAs is 

mediated by the interaction between miRNAs and their target mRNAs and nearly 30% of 

gene expression is probably regulated by miRNAs via this interaction (Figure 47) [267]. 

Individual miRNA may regulate around 200 targets by partial base pairing to mRNAs, 

whereas a particular target is probably modulated by few miRNAs via different number 

and types of binding sites in the 3’ UTR of the targets, suggesting that one miRNA may 

control numerous biological or pathological signalling pathways by affecting the 

expression and function of their targets [267].  
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Figure 47. A diagram of genes and microRNA pathways in the cell. Within the nucleus, the initial 
expression of genes and miRNA genes are transcribed. Both the messenger RNA (mRNA) and the 
precursor miRNA (pre-miRNA) are exported to the cytoplasm where the pre-miRNA is processed 
into mature miRNA. Next, the following three events may can occur: (i) the direct protein 
assembly; (ii) the degradation of the mRNA when the miRNA binds complementarily to the 
mRNA; (iii) the expression inhibition of the mRNA when a total complementary binding between 
miRNA and mRNA does not exist and consequently the protein assembly is blocked. 

 

Some of the genes identified by differential mRNA expression were potentially targeted 

by both up- and downregulated miRNAs. In view of these results, further analysis was 

restricted to target genes whose dysregulation was potentially solely associated either 

with upregulated or downregulated miRNAs. 

 

Among the mRNAs upregulated in the most metastatic cell line, some such as the 

ADAMTS1 [363] and Gene_D have been reported to have a role in PCa metastases. 

Similarly, mRNAs downregulated in the PC-3-BM cell subpopulation, such as SERPINB5, 

have been found to be a tumor suppressor gene in mammary and prostate [364] 

tumours, which further confirms the reliability of this analysis. 
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Finally, the third differential expression analysis was based on proteomics in order to 

associate the major changes observed in protein abundance between the two cell 

populations with their differences in bone metastatic in vivo potential. 

 

In contrast to RNA analysis, proteomics addresses the relative abundance of the protein 

product, post-translational modifications, subcellular localization, turnover, interaction 

with other proteins and functional aspects. Additionally, in terms of gene expression 

levels, a correlation of less than 0.5 has been determined between mRNA and protein 

levels, probably due to differences in the rates of degradation of individual mRNAs and 

proteins and post-translational modifications. Moreover, one gene can have various 

isoforms of mRNA giving rise to more than one protein. Therefore, in humans could be 

at least three times more proteins than genes [312]. For this reason, verification of a 

gene product by proteomic methods is an important step in providing key information 

about levels of expression, post-translational modifications, protein-protein interactions 

and intracellular localization of gene products [312]. In PCa research, large-scale 

proteomic approaches have only been applied to date to the discovery of new 

biomarkers in body fluids or to characterize changes in the proteome of prostate cells. 

However, none of them have been applied to PCa metastases. 

 

In the SILAC method, a crossed-labelling condition was performed to increase the 

analytical stringency and to rule out protein changes observed by chance. A total of 749 

different proteins were common to the two SILAC experiments (Figure 41.A). A high 

percentage of these proteins (71%) were found in an abundance ratio of 1 (Figure 42). 

However, after filtering, 14 proteins were found upregulated (Table 21) and 17 were 

downregulated (Table 22) in the PC-3-BM metastatic cell line, with a dysregulation at 

least 1.5 times different from the parental PC-3 cell line (Figure 41). This number 

changed to 9 and 12, respectively, when two additional criteria for a more stringent 

filter were applied. 

 

Among the most upregulated proteins in the metastatic PCa cell line, some had already 

been associated with PCa, such as Protein_D, or PCa metastases, such as integrin alpha 2 
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[365, 366] and beta 1 [367, 368]. A recent study [365] demonstrated that the integrin 

heterodimer α2β1 protein, a receptor for collagen and other matrix molecules, was 

elevated in PCa skeletal metastases compared to PCa primary lesions and soft tissue 

metastases, thus contributing to the selective metastasization to the bone. Hall et al. 

[369] also suggested that its ligation by collagen I activates RhoC guanosine 

triphosphatase, which mediates PCa invasion, a mechanism for the preferential 

metastasization of PCa cells within the bone. The activation of integrin β1 with β3 has 

been seen to contribute to the migration [370] and invasion [371] of PCa cells. 

Interestingly, Virtakoivu et al. [368] defined that down-regulation of AKT1 and AKT2 

induced activation of β1 integrins and enhanced adhesion, migration and invasion of PCa 

cells. Moreover, the dysregulation of the miR-200 family induced integrin activity and 

cell migration in PC-3 cells [368], corroborating the miRNA and proteomic results 

described above. 

 

Annexin A1 (ANXA1) has been implicated in metastases of lung [372] and breast [373-

376] cancer, but no reports suggest a role for metastases of PCa. ANXA1 promotes 

metastases formation by enhancing TGFβ/Smad signalling and actin reorganization, 

which facilitates an EMT-like switch, thereby allowing efficient cell migration and 

invasion of metastatic breast cancer cells [375, 376], or through specific activation of the 

NF-κB signalling pathway [377]. Paradoxically, ANXA1 expression, which inversely 

correlates with the increasing histological grade of PCa [378-381], was found to be 

upregulated in the SILAC experiment. 

 

Protein_D has exhibited an inverse correlation with the metastatic potential of breast 

cancer cells and poor prognosis of patients. This protein has been reported to be 

upregulated in adenocarcinoma of the prostate and is associated with disease 

progression and adverse patient prognosis. Its expression was found to be higher in 

prostasomes from cancer cells than those of normal cells. 

 

Other molecules such as Protein_C could be a good candidate to identify potential 

biomarkers associated with skeletal metastases because it has been described to be 
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upregulated in hepatocellular carcinomas with invasive behaviour. On the other hand, 

the myristoylated alanine-rich protein kinase C substrate (MARCKS) has a role in 

adherens junction formation and tumorigenesis in PC-3 cells [382] and it plays key roles 

in cell motility and invasion, partly because it is a target of the miR-21 [277]. Also, 

Protein_B could be a novel marker for PCa metastasis as it has been described as a 

prognostic and therapeutic target marker in colorectal cancer. Moreover, Protein_B,  an 

oncogenic gene directly regulated by the tumour suppressive miR-1285 showed a 

significant induction of cell proliferation and invasion in renal cell carcinoma. In this 

work, a marked down-regulation of the miR-1285 and an increased up-regulation of the 

Protein_B were found in the metastatic cell line compared to the parental PCa cell line, 

confirming the results previously published on PCa.  

 

Similarly, downregulated proteins in the PC-3-BM cell subpopulation such as zyxin (ZYX) 

could behave as a tumour suppressor gene through its direct binding to myopodin, a 

protein frequently deleted in aggressive PCa [383]. 

 

Some proteins related with the EMT process such as integrin alpha 2 (ITA2), integrin 

beta 1 (ITB1), Protein_B and Protein_A were found to be differentially expressed in the 

PC-3-BM subpopulation. They were confirmed by Western Blot (Figure 43) to be 

upregulated in PC-3-BM compared to PC-3 cells, except for Protein_A, the expression of 

which did not change. Preliminary observations of these EMT proteins have shown 

substantial implication in PCa progression and dissemination. However, further studies 

are required to determine whether some of these identified molecules have a 

prognostic significance in PCa patients.  

 

Future aspects: 

 

The validation phase of these and other differentially expressed proteins in high versus 

low bone metastatic PCa cell capability is ongoing in order to investigate their role as 

potential candidates for PCa biomarkers.  
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The identification of specific protein changes served as a starting point for further 

studies which will advance the understanding of the molecular mechanisms underlying 

metastases and provide potential prognostic markers for disseminated PCa. 
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Chapter III

 

 

Generation of a bone metastasis mice model for 

therapeutic approaches.  

 

The selective cyclooxygenase-2 inhibitor 

suppresses tumour progression in prostate 

cancer bone metastasis 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III. Background 

178 | P a g e  

 

BACKGROUND 

Many studies investigating agents to halt bone metastatic disease progression 

have found that the inhibition of cyclooxygenase-2 (COX-2) can be an effective 

therapeutic option [384, 385].  

COX-2, one of the two main inducible isoforms of COX [386], is an enzyme that 

converts arachidonic acid (AA) to prostaglandins (PGD2, PGE2, PGF2α), prostacyclin 

(PGI2) or thromboxane A2 through tissue-specific isomerases [387]. It is associated with 

inflammation, carcinogenesis [388] and has also been implicated in cell growth 

promotion and apoptosis inhibition. More importantly, it has been shown to be over-

expressed in PCa [389-393]. The contribution of COX-2 to tumour progression could be 

partly mediated by the vascular endothelial growth factor (VEGF) [394].  

Celecoxib is a selective COX-2 inhibitor commonly used in the management of 

osteoarthritis that has also shown anti-neoplastic properties [395, 396]. Moreover, 

clinical assays have also suggested that celecoxib reduces the risk of breast, lung and 

colon cancer [397-400]. Celecoxib can also exert its anti-cancer effect via COX-2-

independent mechanisms, which include interference with Akt (signal transduction), NF-

κB (inflammatory mediator of tumorigenesis) and other mediators in cancer 

development and progression [401, 402]. It seems that celecoxib can inhibit cancer 

progression at different stages through COX-2-dependent and COX-2-independent 

actions. 

 PCa prevention with celecoxib has been proved in many preclinical and clinical 

studies [403-405]. Also, selective inhibition of COX-2 has specifically suppressed the 

progression of PCa cell lines [406]. Xenograft models provide an effective system to 

investigate secondary organ colonization of human cells and remain the model of choice 

for preclinical studies of human tumour-derived cells [125]. In a preclinical breast cancer 

bone metastasis model, a high dose of intraperitoneal celecoxib plus minocycline 

hydrochloride had an inhibitory effect [407].  

There are no current preclinical or clinical studies on the effect of oral celecoxib 

at standard human doses on established bone metastatic disease in PCa. 
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HYPOTHESIS AND OBJECTIVES 

 

 

 

 

 

 

General objectives 

The main objectives of this Chapter were 1) to develop PCa bone metastases 

models in immunodeficient mice through two different strategies to evaluate the 

efficacy of celecoxib as a preventive or 2) as a suppressive agent for bone metastatic 

disease. 

 

 

Specific objectives 

1. Development of tumour cell dissemination animal model to evaluate the 

efficacy of celecoxib as a preventive agent for bone metastatic disease. 

PCa cells were introduced into the blood of nude mice through intracardiac inoculation 

modelling the hematogenous dissemination of cancer cells and enabling the study of 

metastatic colonization and tumour growth in bone sites. 

 

Specifically, the following steps took place: 

1a. Intracardiac inoculation of PC-3-BM luciferase-expressing cells into immunodeficient 

mice to develop a tumour cell dissemination animal model. 

1b. Bone metastases were quantified in order to examine whether celecoxib was 

suitable to be used as a preventive agent for bone metastatic disease. 

 

 

 

 

 

Main hypothesis: celecoxib can be used as a preventive or therapeutic drug 

in PCa bone metastases thanks to its anticancer properties. 
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2. Development of an established bone metastasis animal model to assess the 

efficacy of celecoxib as a suppressive agent for bone metastatic disease. 

Through intratibial (i.t.) inoculation, bone lesions of PCa cells were formed directly in the 

bones of immunodeficient mice to assess the efficacy of celecoxib in the development of 

established bone metastases. 

 

In particular: 

2a. Intratibial inoculation of PC-3 luciferase-expressing cells into immunodeficient mice 

to generate bone lesions directly into the tibias of nude mice. 

2b. Tumour burden was quantified weekly in order to assess whether the suppressive 

drug celecoxib was able to block tumour growth of implanted bone metastasis. 

 

 

Future objective 

 

Both bone metastases models would be used to investigate the use of other therapeutic 

approaches or target strategies in the implantation and establishment of PCa bone 

lesions.
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MATERIAL AND METHODS 

1 Materials and reagents 

Celecoxib for in vitro studies was purchased from Sigma (PZ0008, Sigma Aldrich, UK) and 

was dissolved in 100% dimethyl sulfoxide (DMSO) (Sigma Aldrich, UK) as stock solution. 

It was then diluted further in PBS solution as assay media for cell culture experiments. 

The final concentration of DMSO for all experiments was maintained at 0.1%. For in vivo 

studies, celecoxib (Celebrex, Pfizer Pharmaceuticals Group, USA) was added to the AIN-

76A semi-purified rodent diet at 15 ppm. The commercially available kit for MTT 

CellTiter 96 Assay (Promega Biotech Ibérica, Spain) was used. 

 

2 Cell viability assay in monolayer cell cultures 

The number of viable cells after treatment was determined using a Neubauer chamber 

under a light microscope. PC-3 cells (2.5 x 105) were plated in triplicate on 100-mm 

tissue culture dishes in complete medium (10% FBS). The following day, the medium was 

replaced by medium with celecoxib (25, 35, 50 and 100 µM) or without (DMSO) and 

allowed to grow for 72 hours. Cell viability was determined by the trypan blue exclusion 

assay, which was done by mixing 80 µL of cell suspension and 20 µL of 0.4% trypan blue 

solution for 2 min. Blue cells were counted as dead cells, and the cells that did not 

absorb dye were counted as live cells. The results are presented as percentages relative 

to the value determined with solvent-treated control cultures. 

 

3 Cell viability assay in anchorage-independent cell cultures 

Human PC-3 cell aggregates were generated using a liquid overlay technique, as 

previously described [408]. Briefly, 24-well plates were coated with 0.5% agarose 

(SeaKemVRLE agarose, Lonza, Switzerland) in serum-free medium. Cells were released 

from the monolayer cultures and resuspended in complete medium. PC-3 cells (100,000 

cells/ mL) were deposited in each well and maintained at 37ºC for 48 hours. Celecoxib 

was added (25, 50 and 100 µM) or not (DMSO) and maintained for 72 hours. Cell death 

was determined by trypan blue staining of the cell suspension. The results are presented 

as percentages relative to the value determined with solvent-treated control cultures. 
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4 Anchorage-dependent clonogenic assay 

To determine the involvement of COX-2 in the ability of cancer cells to form colonies, a 

clonogenic assay was performed. PC-3 cells (200 cells/ mL) were plated in RPMI-1640 

medium with FBS in a six-well plate. After treatment for 14 days with celecoxib (10, 25, 

50 and 100 µM) or without it (DMSO), cell colonies were rinsed with PBS and stained 

with 0.05% crystal violet in PBS for 20 minutes after fixation with 4% paraformaldehyde 

(PFA). Plates were rinsed in water three times and then a 10% acetic acid solution in PBS 

was added to each well and incubated more than 30 minutes. After swirling and 

pipetting up and down, 0.2 mL of stain were placed in a 96-well plate and the 

absorbance was measured at 590 nm using the BioTek ELx800 plate reader (BioTek 

Instruments Inc., UK). The results are presented as percentages relative to the value 

determined with solvent-treated control cultures. 

 

5 Immunofluorescence of COX-2 

PC-3 cells were placed onto glass coverslips in 12-well plates and incubated for 24 hr. 

Then, old medium was removed and fresh medium was added with celecoxib (25, 50 

and 100 µM) or without (DMSO), and cells were cultured for 48 hours more. Cells were 

fixed with 4% PFA for 10 min, treated with 50 mM NH4Cl for 30 min to prevent 

autofluorescence and permeabilized with 4% Triton X-100 for 10 min. Cells were 

incubated with primary antibody anti-COX-2 (M19 clone, Santa Cruz Biotechnology Inc., 

USA) followed by an 647-Alexa Fluor (Molecular Probes, Invitrogen, USA) red-conjugated 

secondary antibody for 1h at RT in dark. For detection of nuclei, bisbenzimide (Hoescht, 

Sigma Aldrich, UK) was mixed at 10 μg/ml with the secondary Ab solution. Coverslips 

were mounted using the Aqua/Poly Mount Medium (Polysciences Europe GmbH, 

Germany). Fluorescence images were captured using DM-IRBE inverted fluorescence 

microscope (Leica, Germany) coupled to a TCS-NT argon/krypton confocal laser (Leica). 

Z-stacks were collected and averaged projected and the fluorescence intensity was 

quantified with the Leica Confocal Software. 
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6 Animals and animal maintenance 

Congenitally athymic male nude mice (Hsd.Athymic Nude-Foxn1
nu) were purchased from 

Harlan (Harlan Laboratories, Italy) at 4 weeks of age and maintained under specific 

pathogen-free conditions. Animals were kept in same conditions as previously described 

in Chapter I (Material and Methods).  

 

7 Xenograft by intracardiac inoculation of prostate cancer cell suspension 

Five-week old athymic male nude mice were used for the intracardiac (i.c.) inoculation 

of human PC-3-BM cells. Prior to the inoculation, mice were randomized into 2 groups 

after the quarantine (n = 10 control group, n = 10 prevention group). The prevention 

group began the 15 ppm COX inhibitor-supplemented diet seven days before the cell 

inoculation, while the control group was fed the standard diet without the COX inhibitor. 

Both groups continued their diets until the end of the experiment. The methodology for 

the i.c. injection of luciferase-transfected PC-3-BM cells (3 x 105) has been previously 

described in Chapter I (Material and Methods).  

 

8 Xenograft by intratibial implantation of prostate cancer cell suspension 

Prior to inoculation, the cells were harvested at near confluence and suspended at a 

concentration of 2 x 105 in 10 µL in a sterile PBS solution. Cells were kept on ice until 

being used for mouse inoculation (0-2 h). Cell viability was 97% or above at the time of 

inoculation, as determined by trypan blue staining of the cell suspension. Five-week old 

nude mice were used for the intratibial (i.t.) inoculation of cancer cells. After one week 

of quarantine, mice were randomized into 2 groups (n = 15 control group, n = 15 treated 

group), and 0.01 mL of luciferase-transfected PC-3 cells were inoculated into the right 

tibia, similar to described by Berlin et al. [409], under appropriate anesthetics and 

analgesics. Briefly, right legs were cleaned with 70% ethanol, and a 26-gauge needle was 

inserted ~5 mm deep into the diaphysis of the tibia through the knee joint using a 

drilling motion. When the needle was well inserted into the tibia, the needle was 

removed, and a 27G insulin syringe (Myjector® 1mL, Terumo Corporation, USA) was 

inserted. Next, 10 µL of cell suspension was slowly inoculated into the tibia (Figure 48). 
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At day 0, the success of the inoculation was verified by bioluminescence imaging (BLI) of 

the mice in the IVIS® System.  

 

 

Figure 48. Schematic representation of the intratibial inoculation procedure. Male nude mice 
were anesthesized with 2% isofluorane before surgery and right legs were cleaned with 70% 
ethanol. A. A 26-gauge needle was used to drill into the diaphysis of the tibia through the knee 
joint using a drilling motion. B. Next, a 27-gauge needle with the tumour cell suspension was 
inserted and cells were administrated slowly into the medullary space of the tibia. 

 

9 Study design and celecoxib supplementation diet  

Treated mice from both experimental groups, metastases prevention and therapeutic, 

were fed with a special diet formulated by Research Diets, Inc. (New Brunswick, USA) 

based on the AIN-76A semi-purified rodent diet. Celecoxib (Celebrex, Pfizer 

Pharmaceuticals Group, USA) was added to the diet prior to pelleting at a final 

concentration of 15 ppm and stored in a cold room. Mice were fed either the AIN-76A 

control diet or the COX inhibitor-supplemented AIN-76A diet. Throughout the study, 

mice were permitted free access to the diet and drinking water. Dietary administration 

of celecoxib in the prevention study started 7 days before the tumour cell inoculation 

and continued until the end of the experiment. Mice in the therapeutic study group 

began to receive the COX inhibitor diet 7 days after the tumour cell tibial injection and 

continued this diet until the end of the study (Figure 49). Body weights were recorded 

weekly, and animals were monitored daily for their general health. At the end of the 

study, mice were sacrificed by cervical dislocation after sedation. Bones and intratibial 

prostate tumours were stored frozen at -80ºC and paraffin-embedded for further 

biochemical and histological analysis.  
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Figure 49. Experimental procedure diagram. Animals were randomized into two independent 
studies to test the potential effects of celecoxib as a bone metastasis preventive agent (A) 
starting one week before intracardiac cell inoculation or as a therapeutic agent, and (B) starting 
one week after intratibial cell injection. To evaluate the incidence of bone metastasis and 
quantify the tumour growth inside bone, mice were monitored by BLI in the IVIS System 

 

10 Western blot analysis for the detection of COX-2 

Total protein from frozen intratibial prostate tumour tissues from celecoxib-treated and 

control groups were lysed by the addition of 0.25 mL of lysis buffer (150 mmol/L NaCl, 

50 mmol/L Tris-HCl, 1 mmol/L EDTA, 0.25% DOC (deoxycholic acid) and 2% SDS (pH 7.6), 

in addition to a mixture of protease inhibitor cocktail (Boehringer Mannheim, Germany). 

Mixtures were homogenized using a syringe to break up the cell aggregates and then 

cleared by centrifugation at 12,000xg for 20 min at 4ºC. The supernatant (total lysate) 

was stored at -80ºC for further analysis. Protein concentration and gel preparation were 

performed as previously described in Chapter II (Material and Methods). The primary 

antibodies for the Western blot were anti–COX-2 primary antibody (M19 clone, Santa 

Cruz Biotechnology) at final concentration of 200 µg/ mL and anti-alpha-tubulin (2125, 

Cell Signaling Technology Inc., USA). Densitometric analysis of the protein bands was 

performed with ImageJ software (Wright Cell Imaging Facility, USA) [344]. 
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11 Bone Histology 

Mice were sacrificed by cervical dislocation after sedation, and the tumour-induced legs 

were dissected. Limbs were immediately fixed in 4% formaldehyde for 24 h. Following 

fixation, bone samples were decalcified by a decalcification solution (Decalcifier II, Leica 

Microsystems, Spain) and paraffin-embedded for histological and immunohistochemical 

examination. Hematoxylin and eosin (H&E) staining was performed on paraffin-

embedded 4 µm sections to assess tumour development in these limbs, including 

mitotic count in 10-fields (40x). Histological examination was performed by an 

experienced pathologist. 

 

12 Immunohistochemical analysis 

To determine the effect of celecoxib on the human prostate PC-3 cells injected into the 

tibia of mice, immunohistochemical (IHC) analysis was performed to detect the tissue 

level expression of COX-2 and cleaved caspase-3. Paraffin sections of 4 μm were 

deparaffinized using xylen and rehydrated using descending concentrations of ethanol 

according to standard protocols. Goat monoclonal antibody for COX-2 (sc-1747, Santa 

Cruz Biotechnologies Inc., USA) and rabbit monoclonal antibody for cleaved caspase-3 

(#9664P, Cell Signaling Technology Inc., USA) were incubated at dilution 1:100 overnight 

at 4ºC. For primary antibody detection, incubation with secondary biotinylated antibody 

(LSAB kit, Dako, Denmark) was achieved at room temperature for 30 minutes. The 

visualization of antigen-antibody reaction was accomplished through incubation with 

streptavidin-HRP for 15-30 minutes, and further incubation with DAB chromogen 

substrate (Dako, Denmark) was performed for 5 minutes. All cases were counterstained 

with hematoxylin.  

 

13 Statistical analysis 

All in vitro experiments were repeated a minimum of three times. Statistical analyses 

using Statistical Package for Social Science software (SPSS Inc., V16, USA) were carried 

out, and results were represented using the GraphPad 5 Prism software. The one-way 

analysis of variance (ANOVA) and Tukey post-hoc analysis were used for the viability, 

clonogenicity and proliferation assays, whereas two-sided unpaired Student’s t-test was 
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used for the number of mitotic cells and body weights among the different groups. The 

mean BLI intensity and corresponding standard errors of the mean (SEM) were 

determined for each experiment. The comparison analysis of mean BLI was done using 

Student’s t-test with Welch’s correction. Nonlinear regression plots were used to 

describe the relationship between BLI intensity and time after cell injection and R
2 

values were reported to assess the quality of the nonlinear regression model. p-values of 

0.05 or less were considered significant. 
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RESULTS AND DISCUSSION 

Effect of celecoxib on cell viability and proliferation in monolayer cultures of human 

PC-3 cells 

 

In this study, the effect of various concentrations of celecoxib on the growth and death 

of PC-3 cells cultured in monolayer was assessed. In these experiments, PC-3 cells were 

treated with indicated concentrations of celecoxib (5 to 100 µmol/L) for 48 or 72 hours. 

The number of viable and dead cells was determined by a trypan blue exclusion assay 

and MTT CellTiter 96 Assay. The treatment of PC-3 cells with celecoxib inhibited cell 

growth and caused cell death in a concentration-dependent manner (Figure 50). 

 

Treatment of PC-3 cells cultured in monolayer with 50 and 100 µmol/L of celecoxib for 

72 h resulted in a decrease in the number of viable cells to 14% and 73%, respectively 

(Figure 50.A), when compared to control cells treated only with DMSO solvent. 

Statistical analysis using the One-Way ANOVA with a Tukey’s multiple comparison test 

showed that the difference for the number of viable cells between the control and 50-

100 µmol/L celecoxib-treated cells was statistically significant (p < 0.05 and p < 0.001, 

respectively). 

 

The effects of celecoxib on the growth of PC-3 cells were also studied. In these 

experiments, PC-3 cells were treated with celecoxib (5 to 50 µmol/L) for 48 hours. At 

lower doses, treatment with 10 µmol/L celecoxib caused a small 37% (p < 0.05) decrease 

in the number of viable cells (Figure 50.B) compared to the solvent-treated control, 

whereas a higher concentration of celecoxib (50 µmol/L) caused stronger growth 

inhibition, an 80% (p < 0.001) decrease, compared to the control.  
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Figure 50. Celecoxib treatment inhibits cell viability and proliferation of human prostate PC-3 
cells under anchorage-dependent and independent conditions in a dose-dependent manner. A. 

Celecoxib decreases cell viability under anchorage-dependent conditions. PC-3 cells were 
treated with medium containing vehicle or 25 to 100 µmol/L celecoxib for 3 days. A trypan blue 
exclusion assay was performed to evaluate cell viability expressed as a percentage of the 
differences among the number of viable cells between each treatment group and the solvent-
treated control group; B. Celecoxib decreases cell proliferation in a dose-dependent manner. PC-
3 cells were seeded into a 96-well plate treated with medium containing vehicle or 5 to 50 
µmol/L celecoxib for 48 hours. Cell number was assessed by MTT assay; C. Celecoxib inhibits cell 
viability under anchorage-independent conditions. PC-3 cell aggregates were deposited into a 
24-well plate and were treated with vehicle or 25 to 100 µmol/L celecoxib for 3 days. Cell death 
was determined by trypan blue staining; D. Celecoxib inhibits colony formation ability in the 
anchorage-dependent clonogenic assay. PC-3 cells were seeded into a six-well plate at low 
density. Long-term celecoxib treatment (10 to 100 µM) or vehicle was administered for 14 days 
before crystal violet staining was performed to evaluate cell colony formation. All results are 
presented as percentages relative to the value determined with solvent-treated control cultures 
normalized to 100% for the control. Points, mean of three separate experiments in which each 
treatment was repeated, bars, and SD (*, p < 0.05; **, p < 0.01; ***, p < 0.001); E. 
Representative images of cell viability under anchorage-independent conditions; F. 
Representative images of the anchorage-dependent colony formation assay. 
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Effect of celecoxib on PC-3 cells under anchorage-independent conditions and on 

colony formation 

 

To determine whether COX-2 plays a role in tumour cell aggregates viability and in the 

generation of colonies from tumour initiating cells, the effect of celecoxib on PC-3 cells 

under anchorage-independent conditions and their ability to form colonies were 

analyzed.  

 

PC-3 cells were grown as aggregates to mimic the prostate tumour cell dissemination as 

spheroids and whether COX-2 could affect cell survival in cells grown under anchorage-

independent conditions was checked. Treatment with celecoxib (25 to 100 µmol/L) 

inhibited the growth of PC-3 aggregated cells in a concentration-dependent manner, as 

measured by cell viability with the trypan blue exclusion (Figure 50.C). Celecoxib at a 50 

µmol/L concentration caused a 50% (p < 0.05) reduction in cell viability compared to 

solvent-treated cells (Figure 50.E).  

 

Next, to determine whether treatment with celecoxib would inhibit the in vitro ability of 

tumour cells to form colonies, in order to test the possible role of COX-2 in the 

progression of initiating tumours at metastatic sites, a colony-forming assay was 

performed. PC-3 cells were grown at low cell density (200 cells/ well) in the absence or 

presence of the indicated concentration of celecoxib (10 to 100 µmol/L) for 14 days 

followed by crystal violet staining. Similar to results of tumour cell aggregates, long-term 

celecoxib treatment inhibited anchorage-dependent colony formation in a 

concentration-dependent manner (Figure 50.D). Celecoxib at a 10 µmol/L concentration 

caused a 29% (p < 0.05) decrease in cell colony formation ability compared to solvent-

treated cells (Figure 50.F).  

 

The results of the in vitro colony-forming assay indicate the cancer cells’ potential for in 

vivo clonogenic activity [410], and they also could indicate that COX-2 function is 

important for tumour-aggregated cell growth and for the colony-forming ability of 

human PC-3 cells.  
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Effect of celecoxib on the subcellular localization of COX-2 expression in PC-3 cells 

 

PC-3 cells expressed basal levels of cytosolic and nuclear COX-2 protein (Figure 51) 

detected by immunofluorescence, while the celecoxib treatment (25 to 100 µM) for 48 

hours showed a higher COX-2 staining in the nuclei fraction compared to control 

although was not statistically significant. Independent quantification of cytosolic and 

nuclear fractions was performed in order to study the differential expression and 

subcellular localization of COX-2 in PC-3 cells after the COX-2 inhibitor treatment. Using 

the look-up-table with the Spec3 color scale (Figure 51, right panels) the fluorescent 

intensity of COX-2 was more perceptible. Celecoxib at high dose (100 µM) exhibited a 

marked inhibition of cell viability, as shown in Figure 50, therefore, the relative 

quantification to the COX-2 protein expression was not possible.  

 

Figure 51. Subcellular localization of COX-2 expressed in PC-3 cells after treatment with 
celecoxib. Human PC-3 cells were treated with celecoxib (25, 50 and 100 μM) or DMSO for 48 h. 
Cells were examined by confocal microscopy after immunofluorescence staining with anti-COX-2 
(red) and Hoechst (blue) for the nucleus. Overlay of the two images is shown in merge panels. 
COX-2 fluorescent intensity from cytoplasmatic and nuclear fractions were quantified 
independently and normalized by the total number of cells. Spec3 panels (right) show the 
fluorescent intensity using the look-up-table. Scale bar = 10 μm. Note fluorescence staining in 50 
μM celecoxib treatment increases the COX-2 expression into the nuclei 
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Preventive effect of celecoxib on bone metastasis dissemination in athymic nude mice 

 

To validate in vitro findings on human PCa cell aggregates simulating tumour cells 

disseminating from primary tumours to distant organs, the preventive efficacy of the 

selective COX-2 inhibitor on PCa bone metastasis incidence was assessed. 

 

In this model, PC-3-BM cells were injected into the left ventricles of nude mice. 

Approximately 98% of the well-injected mice developed bone metastasis. Mice from the 

celecoxib-treated group (n = 10) were fed the COX inhibitor-supplemented AIN-76A diet 

(3 mg/kg body weight, oral, daily) seven days before cell inoculation. They maintained 

the COX inhibitor diet throughout the study, whereas the control mice (n = 10) were 

only fed the standard diet. All animals were i.c. injected at day 0, and the BLI intensity 

signal (tumour burden) and number of metastases in the mice were recorded weekly 

until day 50 post-injection (Figure 52), when mice were sacrificed before compromising 

their welfare. 

 

Consumption of the celecoxib supplemented diet at such a low dose (15 ppm) for 50 

days did not cause any differences in the total body weight gain of the celecoxib-treated 

mice compared to the controls (Figure 52.B).  

 

The relative incidence of bone metastases within the two experimental groups was 

quantified using the IVIS Spectrum System coupled with Xenogen Living Image software, 

as the mean number of bone metastases per mouse and the mean BLI signal in skeletal 

sites. After 50 days of celecoxib oral treatment at human standard equivalent dose (15 

ppm), the selective COX-2 inhibitor did not show a significant decrease in the 

establishment of bone metastases for human PCa cells injected i.c. into nude mice 

(Figure 52). However, both the mean number of bone metastases per mouse (Figure 

52.C) and the mean tumour burden (BLI signal) in bone metastatic sites (Figure 52.D) 

were lower in celecoxib-treated mice compared to controls, though not statistically 

significant. These results showed that the oral consumption of COX-2 inhibitor at 15 ppm 

(human equivalent dose) was not enough to significantly inhibit PCa bone metastasis. 
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Figure 52. Prevention of PCa bone metastasis with celecoxib. Luciferase-expressing PC-3-BM 
cells were injected i.c. into nude mice fed on a normal diet (control) or a diet mixed with 
celecoxib (15 ppm) beginning 7 days before cell inoculation until the end of the experiment on 
day 50 post-injection. Mice were imaged weekly starting at day 0, and the relative BLI signal of 
the bodies of the mice was quantified. a Representative BLI imaging of nude mice after PCa cell 
inoculation at day 0 (left panel) until day 50, when mice were sacrificed and ex vivo analysis 
(right panel) performed to detect and quantify bone metastases; b From day 0 to day 50, the 

celecoxib diet had no effect on the weight gain of the prevention group mice compared to the 
control mice. Points, mean of weight gain, bars, SEM of 10 mice. Before sacrifice, the BLI signal 
was quantified by measuring the amount of highlighted pixels in the ROIs of each mouse, and 
total photon flux was quantified using the Living Image Software with the photons/second (ph/s) 
units; c The average number of micrometastases in skeletal sites per mouse at day 50 post-
injection was not statistically significant in the celecoxib-treated compared to the control mice; d 
The average BLI signal in skeletal sites per group at day 50 post-injection was slightly lower in the 
celecoxib-treated mice compared to the controls, though not statistically significant 
 

 

Celecoxib inhibits tumour progression of PCa cells in bone metastasis 

 

To test the in vivo effect of the selective COX-2 inhibitor on the growth established 

prostate tumours in bone environment, human bioluminescence PCa cells were directly 
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injected inside the tibia of 5-week old athymic nude mice. Several minutes after cell 

inoculation, the success of the procedure was verified by imaging with the IVIS® System, 

where a localized BLI signal was detected and quantified in the hind limbs of the mice 

(Figure 53). A secondary BLI signal could also be detected in the lungs, proving that 

bioluminescent PC-3 cells properly injected into the bone marrow cavity could reach the 

lung through hematogenous dissemination as quickly as several minutes post-injection. 

 

One week after cell inoculation, when PCa tumours were well-established in the bone of 

mice confirmed by the IVIS® System, celecoxib-treated mice began the COX inhibitor-

supplemented diet, while the control mice remained on the standard diet throughout 

the study (Figure 53.A). Consumption of the celecoxib supplemented diet (at 15 ppm) 

for 7 weeks did not show changes in the total body weight gain of the mice from either 

group (Figure 53.B).  

 

BLI signals in the hind limbs were quantified weekly by measuring the amount of 

highlighted pixels in constant ROIs from day 0 to day 43 post-injection (Figure 53.C), the 

end point of the study. Mice were sacrificed before compromising their welfare, based 

on the increase of i.t. BLI tumour burden (with two orders of magnitude). Tibias were 

excised, in order to pathologically confirm that luciferase signals observed by imaging 

were indeed localized into bones. After 43 days of celecoxib treatment at a human 

standard dose, there was a significant decrease (167.5 ± 68.9 in difference between ph/s 

means; p < 0.05) in established PC-3 tumours inside the tibias of celecoxib-treated mice 

compared to the control group (Figure 54 and Table 25).  

 

In a previous pilot experiment, the effect of celecoxib on PCa growth in the bone 

environment at a higher concentration (1,000 ppm) of celecoxib was investigated. In this 

study, 5-week old male athymic mice (n = 10) were equally divided into two groups, and 

luciferase expressing PC-3 cells were i.t. injected as previously described in Materials 

and Methods. Mice from the control group were fed with the AIN 76A diet, whereas 

mice from the treated group received the AIN 76A diet supplemented with celecoxib (at 

1,000 ppm). Animals in both groups were observed weekly for body weight gain, tumour 
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progression by BLI, and survival up to 7 weeks. In this study, a strong anti-proliferative 

effect of celecoxib in the tumour progression of PCa cells inside bones was observed. 

These results demonstrated that celecoxib had an in vivo potential effect on tumour 

viability and proliferation at high doses. Nonetheless, the aim of the present study was 

to investigate the efficacy of celecoxib as a suppressive drug on the establishment and 

progression of PCa bone metastasis at a human equivalent dose. 

 

Figure 53.  BLI tumour progression of PCa cells i.t. injected into nude mice. To determine the 
therapeutic effect of celecoxib, luciferase-expressing PC-3 cells were injected i.t. directly into 
nude mice fed a normal diet (control) or a diet mixed with celecoxib (15 ppm) beginning at day 7 
after cell inoculation until the end of the study on day 43. Animals were injected in cohorts of 15 
mice. Mice were imaged weekly starting at day 0, and the relative BLI signal (shown as radiance 
flux in photons per second) in hind limbs was quantified as described in materials and methods. 
ROIs in all images were kept at a constant area. A. Measurement of BLI images from 
representative control and celecoxib-treated mice over time. Mice receiving celecoxib exhibited 
a decrease in the tumour growth based on luciferase-expressing PCa cells inside the tibia; B. 
From day 0 to day 43, the celecoxib diet  (3 mg/kg body weight, daily) had no effect on the 
weight gain of the celecoxib-treated mice compared to the control mice. Points, mean of weight 
gain, bars, SEM of 15 mice. Body weights in all groups were monitored weekly over time; C. 

Histogram of the normalized BLI signal as photon flux from intratibial prostate tumours 
comparing the treated and control groups over time. The BLI signal at day 0 was set arbitrarily as 
1. Columns, BLI signal, bars, SEM 



Chapter III. Results and Discussion 

196 | P a g e  

 

Table 25. Effect of Celecoxib feeding on PC-3 tumour growth inside the tibia of nude mice 

 

 

Figure 54. Celecoxib inhibits PC-3 tumour progression in nude mice. Normalized BLI signal of 
bone metastases in the hind limbs of mice inoculated i.t. with the PC-3.EGFPluc cells. BLI signal 
intensities from celecoxib-treated and control mice were reported as the average of normalized 
tumour growth with a significant difference between means of 167.5 ± 68.9 in both groups (*, p 
< 0.05) calculated using Student’s t-test with Welch correction. 

 

Celecoxib inhibits the COX-2 expression in PC-3 established tumours  

 

Considering results for the in vivo tumour progression inhibition in established tumours 

in bone niches, whether the growth inhibition detected by BLI correlated to a significant 

decrease in COX-2 protein expression in these tumours, as a result of the celecoxib 

treatment by oral consumption, was examined. After sacrifice, intrabone prostate 

tumours were dissected from both control and celecoxib-treated mice, and the levels of 

COX-2 were compared by immunoblot detection (Figure 55.A). Celecoxib treatment as a 

therapeutic agent caused a significant COX-2 protein expression decrease in established 

PC-3 tumours compared to control mice (p = 0.0021) (Figure 55.B). 
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Figure 55. Celecoxib inhibits COX-2 expression in PC-3 i.t. injected tumours. After 43 days of 
celecoxib treatment, PC-3 tumours growing inside the tibia of nude mice were excised and cell 
lysates were subjected to western blotting with the COX-2 monoclonal antibody (M19 clone, 
Santa Cruz Biotechnology Inc.). A. The abundance of COX-2 protein band in the region of 72-74 
kDa size range decreased significantly in celecoxib-treated mice. The nitrocellulose membrane 
shown in the upper panel was reprobed with an alpha-tubulin antibody; B. Relative 
quantification of COX-2 protein expression normalized to alpha-tubulin level. Results were 
expressed as mean ± SEM, **p < 0.01 

 

To evaluate the effects of dietary celecoxib on metastatic PCa growth inhibition, 

histological analysis were performed. Macroscopically tumours (Figure 56.A) of nude 

mice were analyzed and confirmed by ex vivo and histological analysis (Figure 56.A-B) in 

order to determine whether tumours were properly injected inside the tibia and 

consequently, where osteolytic lesions derived from tumour proliferation of PC-3 cells 

occurred (Figure 56.C). Most of the i.t. tumours exhibited an aggressive phenotype with 

attendant tumour cells invading the surrounding soft tissue (Figure 56.C). A global 

evaluation showed that i.t. prostate tumours from celecoxib-treated mice presented 

more zones of necrosis compared to those from control mice (around 20-30% and 2-

10%, respectively). Moreover, the percentage of mitotic and apoptotic cells were scored 

(Figure 56.D-I) in H&E-stained and IHC sections. A significant increase in the number of 

mitotic cells (p < 0.01, Figure 56.F) and concomitant decrease of apoptotic cells (p < 

0.001, Figure 56.I) were found in proliferative zones of control mice compared to those 

receiving celecoxib. According to the COX-2 immunoblot results (Figure 55), the IHC 

detection of COX-2 showed an inhibition of COX-2 expression in mice receiving the COX 

inhibitor diet compared to the controls (Figure 56.J-K). The IHC quantification presented 

as percentage of expression between these two groups showed a significant decrease in 

COX-2 levels in celecoxib-treated mice (p < 0.001, Figure 56.L) compared to the control 

group.  
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Figure 56. Histologic evaluation of human PC-3 cells i.t. injected into nude mice. a-b 
Representative images of a PC-3 tumour grown i.t. in nude mice at day 43 post-injection (a) 
before sacrifice and (b) ex vivo BLI image of the tumour visualized with the IVIS® System; c 
Panoramic view showing the PCa tumour growth inside the bone marrow cavity after proper i.t. 
injection (10x); d-e Celecoxib caused an effect on cell viability and proliferation showing 
differences in scoring mitotic cells in 10 high-power fields (40x) detected by H&E staining in (d) 
control compared to (e) celecoxib-treated mice; black arrows indicate examples of mitotic cells; f 
Histrogram represents the percentage of mitotic cells counted in 10 high-power fields (40x) 
presented as control versus celecoxib (**, p < 0.01); g-h Lower expression levels of cleaved 
caspase-3 (positive brown-staining) were found in (g) control compared to (h) celecoxib-treated 
mice; i Histogram represents percentage of apoptotic cells counted in 10 high-power fields (40x) 
detected by cleaved caspase-3 (***, p < 0.001); j-k Higher expression levels of COX-2 (positive 
brown-staining) were detected in i.t. tumour sections in (j) control compared to (k) celecoxib-
treated mice; l Histogram represents percentage of COX-2 positive cells  (***, p < 0.001). 
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To correctly evaluate new treatment strategies for bone metastatic disease, appropriate 

animal models are needed. In this work, two animal models of bone metastasis were 

analyzed to mimic the crucial steps of the metastatic process, tumour cell establishment 

and tumour progression. Briefly, for tumour cell-bone seeding, a human PCa cell line 

was i.c. injected into mice, whereas for tumour progression of pre-established bone 

metastatic disease, an i.t. injection was chosen. Using these experimental models, both 

extensively used in the literature, it was possible to investigate the effect of therapeutic 

agents, such as celecoxib, on the tumour progression of metastatic disease. 

 

Studies have suggested that COX-2 inhibitors may be promising as chemopreventive and 

therapeutic agents in cancer [388]. The anti-cancer and anti-inflammatory properties of 

COX-2 inhibitors stem from the blockade of prostaglandins by inhibiting the activity of 

the rate-limiting enzyme, COX [411]. It is hypothesized that non-steroidal, anti-

inflammatory drugs (NSAID), such as celecoxib, sensitize cancer cells to apoptosis by 

blocking COX (I and II) activity and decreasing prostaglandin levels [412]. In particular, 

celecoxib was shown to inhibit prostate carcinogenesis in the transgenic 

adenocarcinoma of a mouse prostate model [388, 413]. In vitro and in vivo studies with 

human PCa cells demonstrated the specific role of the selective COX-2 inhibitor in 

growth inhibition and apoptosis induction enhanced to pro-caspase-6 and -9 expression 

[414, 415] and its potential effect in combination with atorvastatin [414, 416]. The 

mechanisms by which celecoxib inhibits the growth of PC-3 prostate tumours and 

induces apoptosis are not clear, even though Erk1/2 and NF-kβ have been identified as 

potential targets for the design of chemopreventive agents for the prevention of PCa. It 

has been shown that the NF-kβ family of transcription factors is constitutively activated 

in various human malignancies including PCa [417], promoting cell growth and 

proliferation by regulating the expression of genes, such as c-myc, cyclin D1, and IL-6 and 

inhibiting apoptosis in PCa cells through activation of the expression of anti-apoptotic 

genes, such as Bcl-2 [417]. Moreover, RNA interference-mediated COX-2 inhibition 

resulted in overall cancer cell growth and cell cycle arrest, however, unlike the selective 

COX-2 inhibitor celecoxib [418], siRNA-mediated COX-2 inhibition was less effective in 

inducing apoptosis [419]. 
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Results from in vitro and in vivo assays indicated that celecoxib, at a low dose, had an 

effect on cell proliferation and the viability of cultured PC-3 cells in monolayer, and even 

in a more complex system of anchorage-independent conditions. It also decreased PC-3 

tumours in bone metastatic niches in nude mice (Figure 50, 52 and 53). However, the 

objective of this study was not to elucidate the mechanisms of action of celecoxib, which 

have already been reported.  

 

Treatment of PC-3 cells with celecoxib (50 µmol/L) decreased cell viability and 

proliferation in monolayer cultured cells to 14% and 80%, respectively (Figure 50.A-B), 

whereas in anchorage-independent conditions, celecoxib (50 µmol/L) caused a 50% 

reduction in cell viability in PC-3 cells (Figure 50.C) and more than 90% reduction of 

colony forming ability (Figure 50.D) in a long-term celecoxib treatment. In vitro studies 

suggest that celecoxib affects growth inhibition and the ability to form colonies in PC-3 

cells. Furthermore, all these findings suggest that COX-2 has an important role in cell 

survival and proliferation but also the selective inhibition of COX-2 mediated by 

celecoxib resulted in a slight increase in the nuclear subcellular fraction compared to the 

cytosol. 

 

These results were tested with an initial “physiologic” animal bone metastasis model, 

based on i.c. injection of PC-3 cells typifying the crucial steps of bone metastasis disease 

[156]. Celecoxib was selected as a preventive agent based on previous reports that 

objectified how celecoxib inhibited osteoclast formation in a culture system on human 

osteoclast precursors at clinical concentrations [420] and how it also inhibited the 

differentiation of mice bone marrow-derived monocyte/macrophage precursor cells 

[421]. As there were no reports in the literature using celecoxib to prevent PCa bone 

metastasis, but there were evidences that COX-2 expression is related to bone 

metastasis [422], this work studied the potential cancer preventive effect of celecoxib 

on PCa dissemination to distant organs, such as bones, keeping in mind that the efficacy 

of any chemopreventive agent against a specific type of cancer primarily depends upon 

its effect in interrupting the process of carcinogenesis, as well as depending on the 
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safety, efficacy, availability, acceptability and cost of the proposed chemopreventive 

agent [423].  

 

In the in vivo study, animals were monitored with non-invasive BLI using the IVIS® 

System that quantified tumour progression over time with a final histological analysis 

confirming the definitive, local bone metastasis burden. Even though the results showed 

that there were fewer bone metastases between both prevention and control groups 

(6.9 ± 1.4, celecoxib; 6.4 ± 0.9, controls; Figure 52.C-D), statistical analysis did not show 

differences in the mean tumour burden after 50 days of treatment with celecoxib. The 

study suggests that the administration of celecoxib, at a low dose, was not effective 

enough to prevent the seeding of PCa cells into the host bone of athymic nude mice. 

However, because no toxicity was observed in the study, it could be possible to increase 

the dose to improve the efficacy of celecoxib as a preventive agent in PCa bone 

metastatic disease.   

 

Moreover, the research was focused on evaluating the inhibitory effect of celecoxib, at a 

low dose, on established bone metastatic disease in athymic nude mice, which had 

developed experimental bone metastasis through the i.t. injection of PC-3 cells. 

Although celecoxib showed to inhibit local PCa progression and regression in both 

subcutaneous PCa tumours and prostatic intraepithelial neoplasia in the transgenic 

mouse model [388, 424], and it was associated with an induction of apoptosis in vivo, 

the effect of celecoxib on the growth of prostate tumours in bone metastatic disease has 

not been previously studied. Nevertheless, in other cancer types, such as breast cancer, 

celecoxib in combination with minocycline hydrochloride has shown an inhibitory effect 

on osseous metastasis, increasing tumour-cell death [407]. 

 

At day 43 after the injection of tumour cells (when the experiment was terminated), all 

of the celecoxib-treated and control animals had i.t. PCa tumours with osteolytic 

appearance after histological examination (Figure 56.C), as it has been described by 

others [425, 426]. The oral consumption of celecoxib (3 mg/kg body weight) in the 

therapeutic group of mice caused a significant decrease (a difference between mean 
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tumour burden of 167.5 ± 68.9, p < 0.05; Figure 53 and 54) in PC-3 tumour growth inside 

the tibias compared to control mice. Subsequently, bone histology revealed that the PC-

3 tumours of celecoxib-treated mice had a greater incidence of necrosis, lower number 

of mitotic cells and higher levels of apoptotic cells (Figure 56.D-I) compared to the non-

treated mice. At the protein level, COX-2 expression was significantly lower (with 1.87 ± 

0.03 of difference between means; p < 0.01; Figure 55) in PC-3 i.t. tumours after 43 days 

of celecoxib treatment compared to controls.  

 

These results suggest that celecoxib enhances the dormancy of PC-3 cells that are 

injected into athymic mice because it could be acting as an anti-proliferative drug 

decreasing tumour growth, not only through cell viability reducing the number of mitotic 

or proliferative cells (Figure 50 and 56) or maybe inducing senescence [427, 428], but 

also inducing cell death mediated by different pathways of apoptosis [429-431] or 

necrosis [432] even though the mechanisms by which celecoxib is acting in tumour cells 

are not clear. 

 

Clinical trials using celecoxib in PCa patients have shown varied results. One study 

published that celecoxib caused biological effects on cell proliferation, apoptosis, 

angiogenesis and hypoxia in PCa tissue [433]. In contrast, 400 mg of celecoxib twice daily 

for 4 to 6 weeks in men with clinically localized PCa showed that celecoxib had no effect 

on intermediate biomarkers of prostate carcinogenesis but may alter PCa progression by 

COX-independent mechanisms [434]. Many clinical studies [435, 436] were carried out 

to define the cardiovascular risks associated with COXIBs and NSAIDs, but these adverse 

risks that were dose- and treatment duration-dependent appeared to be compound, 

more specific to NSAIDs, rather than to COXIBs [437]. Even recently, in the STAMPEDE 

randomized trial advanced PCa patients who received androgen-deprivation therapy 

(ADT) plus celecoxib (400 mg twice daily for up to 1 year) were compared to those who 

received ADT alone. The study concluded that treatment with celecoxib was not 

sufficiently active [438, 439]. Despite these data, results from this preclinical animal 

model do not overlap with the clinical results mentioned above, since the STAMPEDE 

study lacked patient homogeneity, both biologically and clinically, and this could have 
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hampered the ability to detect a benefit in men, who did not yet have metastasis, or in 

COX-2-positive patients [440]. Moreover, the population of advanced PCa patients was 

mixed and varied, and patients were not selected based on their COX-2 over-expression 

or their risk of metastatic disease. The role of COX-2 inhibition for PCa prevention must 

still be revealed, and the role of COX-2 inhibition in men with COX-2 over-expressing PCa 

could be worth investigating in future studies, balancing the potential benefits against 

the potential cardiovascular risks of these drugs [440]. 

 

All data from this work suggest that celecoxib does not prevent or reduce the 

development of bone metastases, though it does suppress their progression. At human 

equivalent dose, celecoxib does not interfere with tumour cell seeding in the host bone. 

It is probable that COX-2 inhibition does not play a major role in the cellular interaction 

between host stromal cells and prostate tumour cells or that there is the need for other 

agents that could potentiate the effect. It is also possible that the main effects of 

celecoxib are the inhibition of cellular proliferation and the stimulation of apoptosis. 

Neither of these affects tumour-bone seeding. Even though the effects on tumour-bone 

seeding seem discouraging, celecoxib at a low dose shows an impact in halting the 

progression of established bone metastatic lesions. 

 

The administration of celecoxib at a standard human dose in preclinical levels seems to 

arrest the growth potential of human PCa cells when they have metastasized to bone. 

Thus, celecoxib should be clinically reevaluated as an adjunct to the standard of care for 

PCa patients with established bone metastatic disease. 
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Conclusions 

 

1. The direct injection of stable transfected human PC-3 cells inside a human bone 

graft in immunodeficient mice forms orthotopic tumours in the bone metastatic 

niche, indicating the usefulness of this model for the pathophysiological studies of 

human PCa bone metastases. 

2. Circulating human PC-3 cells show tissue-tropism for the human bone graft when 

they are injected intracardiacally in immunodeficient mice. This result indicates 

that the bone provides a more favourable environment for the growth of PCa cells 

than other organs or tissues.  

3. Circulating human PC-3 cells show a species-tropism for the human bone graft 

when they are injected intracardiacally in immunodeficient mice. This result 

suggests that human PCa cells could have a species preference for human tissues 

as opposed to host mouse tissues. 

4. Experimental models using small animals such as mice limit the amount of clinical 

material (healthy human adult bone) to be implanted. Consequently, the 2D-DIGE 

proteomic strategy might not be sensitive enough to identify relevant protein 

candidates of differentially expressed proteins in human bone metastases. These 

results suggest that the detection of proteins of human bone metastases would be 

enhanced by increasing the amount of implanted human bone and through the 

use of other proteomics methods such as iTRAQ. 

5. The direct injection of tumour cells into the left ventricle of mice recapitulates the 

later stages of the metastatic process, from the entry into the bloodstream to the 

growth in distant sites. For this reason, this model could be the appropriate 

method for preclinical studies of tumour cell dissemination in advanced stages.  

6. The in vivo selection process generates a subpopulation of tumour cells with a 

distinct propensity to metastasize to bone. Three rounds of this in vivo selection 

are sufficient for the enrichment of these cells.  
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7. Compared to parental PC-3 cells, the selected PC-3 cells with higher in vivo 

preference to metastasize to bone showed an increased migration and invasion 

capability when they were grown in vitro with bone cells.  

8. Immediately after the intracardiac injection into the left ventricle, the efficacy of 

the cell inoculation must be confirmed by a visualization method such as the IVIS® 

System, to rule out a possible tumour cell injection into the lung or other sites 

within the thoracic cavity. 

9. The differential expression analysis from two populations with distinct metastatic 

potential derived from the same PCa cell line enables the detection of changes or 

signatures that may underlie the metastatic capability of those cells. 

10. The in silico data integration method based on the three “omic” approaches of the 

discovery phase is a crucial and complex step to describe the bone metastasis 

signature of PCa. 

11. Cell-to-cell interactions and cell contact functions are the main pathways altered in 

metastases obtained after the GO enrichment analysis, which could explain 

changes in migration and invasion activities observed in in vivo and in vitro assays. 

12. At microRNA level, miRNA_D, miRNA_E, miRNA_G and miR-21 are differentially 

expressed in the PC-3-BM cell line compared with parental PC-3 cells. They are also 

located in the central hub of interactions between miRNAs and proteins. 

13. Based on the results from the SILAC experiments, Protein_B, Protein_D, MARCKS 

and ANXA10 are differentially expressed proteins in the PC-3-BM cell line 

compared with parental PC-3 cells. These proteins are also highly associated with 

changes at miRNA and gene level.  

14. The above mentioned miRNA and protein molecules, among many others, are 

promising potential candidates to be further validated in clinical samples for their 

implication in PCa progression. 

15. Direct intratibial cell inoculation is a promising alternative to existing models of 

bone metastases, as it offers an easier and faster bone metastatic tumour growth. 

However, it cannot replicate early stages of tumour cell dissemination.  

16. The use of the selective COX-2 inhibitor, celecoxib, at the human equivalent dose 

inhibited tumour progression of PCa cells in the bone metastasis mice model. 
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However, it did not prevent the development of bone metastases. These results 

suggest that celecoxib could be reassessed as adjuvant therapy to treat PCa 

patients with established bone metastatic lesions. 

 

17. These data must be validated in clinical samples to increase the robustness of 

these results. A high degree of similarity is expected to be found between the cell 

line model and the clinical specimens. 

18. Many of the data generated in this study provide valuable insights into the 

molecules potentially implicated in the metastatic progression of PCa. Critically, 

the best candidate molecules could be developed into novel diagnostic and 

therapeutic tools. 
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