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Notation and conventions

Here we introduce the notation and conventions to be used throughout this
Memoir

• Except otherwise indicated, will be used units where c = kB = h = 1.

• Metric signature [−,+,+,+].

• Greek indices are for the four space-time coordinates; Latin indices
are just for the spatial components.

• An overdot ˙( ) indicates derivative with respect to cosmic time, t.

• A prime ( )′ denotes derivative with respect to conformal time, τ .

• When dealing with perturbations the background quantities will be
noted by an overbar (̄ ).

• A semicolon (Tµν;µ) indicates covariant derivative; a coma (Tµν,µ) indi-
cates partial derivative.

• 3-vectors are indicated by bold characters.

• A subscript 0 denotes the present value of the corresponding quantity.

• ∇2 ≡ gi j∂i∂j .

• Symbols commonly used in this Memoir are shown in table 1.
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Background

Metric

gµν space-time metric tensor
γµν 3-space metric tensor
a cosmic scale factor
κ curvature of the 3-space; κ = −1, 0, 1

Energy content

ρ total energy density
ρA energy density of the Ath energy component

H Hubble factor, H ≡ ȧ
a

h parameter for Hubble constant H0, H0 ≡ 100h km s−1 Mpc−1

H conformal Hubble factor, H ≡ a′

a
P total pressure
PA pressure of the Ath energy component
wA equation of state parameter of the Ath energy component

ΩA density parameter of the Ath component; ΩA ≡ 8πG
3

ρA
H2

csA effective speed of sound of the ith component c2sA ≡ δPA

δρA

caA adiabatic speed of sound of the ith component c2aA ≡ ˙PA

ρ̇A
Distances

z redshift; z ≡ a−1 − 1
χ comoving distance
dL luminosity distance
dA angular diameter distance

Perturbations

Metric

B Amplitude of perturbations in the shift vector in a general gauge
E Amplitude of anisotropic distortion of the constant time hypersurfaces in a general gauge
ψ Amplitude of perturbations in the lapse function in a general gauge. Newtonian potential in

longitudinal gauge
φ Amplitude of perturbations in a unit 3-space volume in a general gauge. Scalar potential in

longitudinal gauge
hij metric perturbation in the synchronous gauge
h trace of the metric perturbation in the synchronous gauge
η traceless part of the metric perturbation in the synchronous gauge

Energy content

ρ̄A background energy density of the Ath component
δρA perturbed energy density of the Ath component

δA density contrast of the Ath component; δA ≡ δρA
ρ̄A

P̄A background pressure of the Ath component
δPA pressure perturbation of the Ath component
πA anisotropic stress perturbation of the Ath component

Table 1: Most frequently used symbols
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Most Frequently Used Acronyms

• BAO ....... baryon acoustic oscillations

• CDM ....... cold dark matter

• CMB ....... cosmic microwave background

• COBE ..... Cosmic background explorer

• CPL ........ Chevallier-Polarski-Linder

• EoS .......... equation of state

• FLRW ...... Friedmann-Lemâıtre-Robertson-Walker

• HZ ............ Harrison-Zel’dovich

• IR ............. infra-red

• ISW ........... integrated Sachs-Wolfe

• ΛCDM ...... lambda-cold-dark-matter

• LSS ........... large scale structure

• SN Ia ......... supernovae type Ia

• SW ............ Sachs-Wolfe

• UV ............ ultraviolet

• WMAP ..... Wilkinson-microwave-anisotropy-probe
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Chapter 1

Introduction

Nowadays the Universe appears to be undergoing a phase of accelerated ex-
pansion, as witnessed by supernovae data [1], [2], and later corroborated by
a host a cosmological measurements -very recently by the Planck satellite
[3]. While this expansion can be described in Einstein’s theory of gravity
by invoking the existence of a positive but exceedingly small cosmologi-
cal constant, Λ, connected to the quantum vacuum, many alternative, and
sometimes sophisticated, explanations have been proposed [4].

Roughly, the energy content of the present universe can be split into
5% of baryonic matter and 95% of a non-visible (dubbed the “dark sec-
tor” because its components do not interact electromagnetically) whose 25%
consists of non-relativistic, weakly interacting massive particles (“cold dark
matter”) and a 75% of a component with a huge negative pressure, the
so-called “dark energy”. The nature of the latter component is completely
unknown; this justifies that many “trial” candidates have been proposed.
By far, the simplest and most successful one is the cosmological constant,
mentioned above. However, it suffers from two main drawbacks at the the-
oretical level: the coincidence problem and the fine tuning problem. The
aim of this Memoir is to propose and constrain cosmological models of dark
energy that circumvent these difficulties.

This Memoir is organized as follows: The next three Chapters (§2, §3
and §4) introduce basic concepts widely used when considering the different
models that conforms our research work. The following Chapters focus on
the different cosmological models.

In §5 dark energy is considered connected to the holographic principle
and posits that it interacts (also non-gravitationally) with dark matter. The
holographic principle sets a length scale, in this case the Hubble length, i.e.,
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the scale of the causally connected events.
In §6 the previous model is studied more deeply and an alternative to

it is presented. Both models share identical background evolution but each
component behaves differently, which induces a diverse behavior at the per-
turbative level. This allows to observationally discriminate one model from
the other.

A further holographic dark energy model is proposed in §7; this one
based on the Ricci length (i.e., the maximum size a perturbation can have
leading to a black hole). Again, a non-gravitational interaction is assumed
between dark energy and dark matter.

In §8, a unified dark model (featuring a unification between dark mat-
ter ad dark energy) previously proposed is studied. Since the parameter
space that fits the observational data is very narrow (and also in view of
its theoretical interest), we decompose the single energy component into
cold dark matter and quantum vacuum interacting with one another. As a
consequence the allowed parameter space gets substantially augmented.

Although the models mentioned above mimic at the background level
the standard ΛCDM model, the dark components evolve very differently.
To rigorously study them, the numerical codes for the cosmological pertur-
bations must be suitably modified, with the drawback of notably increasing
the computational time. This is much alleviated in §9 where a novel method
to calculate the matter power spectrum of dark energy models is proposed.

Finally, in §10 three model independent parameterizations of the decel-
eration parameter, based on solid thermodynamic arguments, are proposed
and contrasted with the observational data.

In order not to burden the main text with calculations, the most con-
ventional ones have been relegated to six appropriate Appendices.
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Chapter 2

The homogeneous and
isotropic Universe

According to the cosmological principle, our solar system does not take
a privileged position in the Universe. Observational data from the COsmic
Background Explorer (COBE) [5] satellite showed that the radiations reach-
ing us from different directions of the sky is highly isotropic, with variations
of the order of one part in one hundred thousand. This has been confirmed
by the satellite probes Wilkinson Microwave Anisotropy Probe (WMAP)
[6] and Planck [7]. As the Universe we see is isotropic at large scales and
our position must be equivalent to any other, as a working hypothesis we
assume that the Universe is extremely homogeneous and isotropic1 at suf-
ficiently big scales (about 200 Mpc and beyond). Then, to the space-time
corresponds a spherically (maximally) symmetric and homogeneous geom-
etry [8], described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
metric

ds2 = −dt2 + a2(t)

[

dr2

1− κr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (2.1)

or, equivalently,

ds2 = a2(τ)

[

−dτ2 + dr2

1− κr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (2.2)

where ds is the space-time interval separating two neighboring events, a(t) is
the scale factor that describes the expansion of the Universe, and the cosmic
time t is related to conformal time τ by dt = a(τ)dτ . κ is the curvature

1In [8], chapter 13, it is demonstrated that any space isotropic about every point is
also homogeneous.
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of the 3-space and is normalized so that κ = −1 for the negatively curved
(open) universes, κ = 0 for the flat, and κ = 1 for the positively curved
(closed) ones.
The change of coordinates dχ ≡ dr√

1−κr2 (where χ describes the physical

distance regardless of the curvature of the 3-space), brings the metric (2.1)
into

ds2 = −dt2 + a2(t)
[

dχ2 + f2(χ)
(

dθ2 + sin2 θdφ2
)]

, (2.3)

where

χ =







arcsin r (κ = +1)
r (κ = 0)

arcsinh r (κ = −1)
and f(χ) =







sinχ (κ = +1)
χ (κ = 0)

sinhχ (κ = −1)
.

(2.4)
From eq. (2.3), it is easy to understand why a Universe with κ = +1 is
called closed, since the volume of the entire 3-space is finite, flat for κ = 0
as it is the familiar Euclidian 3-space, and open for κ = −1 since its volume
its infinite as in the flat case, but the geometry is the one of an hyperboloid
embedded in a 4-dimensional Lorentzian space2.

2.1 Unperturbed Einstein field equations

According to Wheeler, “space tells matter how to move, and matter tells
space how to curve” [9]. This is described by Einstein equations

Gµν = 8πGTµν , (2.5)

which imply the conservation of energy and momentum

Tµν;ν = 0 , (2.6)

via the Bianchi identities. The left hand side of eq. (2.5) describes the
geometry of space time through the Einstein tensor

Gµν ≡ Rµν − 1

2
gµνR , (2.7)

that can be obtained from the Ricci tensor Rµν and the Ricci scalar R, by
contracting indices (once and twice, respectively) of the Riemann tensor

Rαµνβ ≡ Γαµν,β − Γαµβ,ν + ΓλµνΓ
α
βλ − ΓλµβΓ

α
νλ , (2.8)

Rµν ≡ Rαµαν , (2.9)

R ≡ gµνRµν . (2.10)

2See §2.2 of [10]
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On their part, the Christoffel symbols are defined from the metric as

Γαµν ≡ 1

2
gαβ (gβν,µ + gµβ,ν − gµν,β) . (2.11)

So, the left hand side of equation (2.5), can be obtained from the metric
tensor gµν . The right hand side of eq. (2.5), the stress-energy tensor, ac-
counts for the energy content of matter and fields, and is the source of the
gravitational field. Besides being homogeneous and isotropic at large scales,
the energy content of the Universe is usally described by a mixture of perfect
fluids, each one with stress-energy tensor given by

TµνA = (ρA + PA)u
µuν + PAg

µν (A=1,2,...,n), (2.12)

where uµ =
[

1
a , 0, 0, 0

]

is the four-velocity of the fluids, with uµu
µ = −1,

which is shared by every energy component. The quantities PA and ρA
denote the pressure and energy density of the components, respectively.
The total stress-energy tensor will then be

Tµν =
n
∑

A=1

TµνA . (2.13)

Projecting Tµν in the parallel and normal directions to uµ the total energy
density and pressure are

T 0
0 = −ρ , T ij = Pδij , (2.14)

respectively, with δij the Kronecker delta. The 00 and ii components of the
Einstein tensor defined by eq. (2.7) are

G0
0 = −3

[

(

ȧ

a

)2

+
κ

a2

]

, (2.15)

Gi j = −2
ä

a
−
[

(

ȧ

a

)2

+
κ

a2

]

δij . (2.16)

All geometric quantities in the FLRW metric are displayed in appendix A.1.
From eqs. (2.14) - (2.16) we solve the 00 and ii component of eq. (2.5) to
obtain the Friedmann equation

(

ȧ

a

)2

=
8πG

3
ρ− κ

a2
, (2.17)
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and the Raychaudhuri equation (also called 2nd Friedmann equation)

ä

a
= −4πG

3
(ρ+ 3P ) . (2.18)

Here, for later use, we introduce the deceleration parameter q ≡ −äa/ȧ2.
For q > 0 (q < 0), the Universe decelerates (accelerates) its expansion.
Using eqs. (2.17) and (2.18), last expression can be recast as

q = −1− Ḣ

H2
. (2.19)

2.2 Conservation equations for non interacting flu-
ids

By using the stress-energy tensor of different perfect fluids, eq.(2.12), in the
conservation equation (2.6) with the FLRW metric (2.1) we obtain

TµνA ;µ = TµνA ,µ + ΓµαµT
αν
A + ΓναµT

µα
A = 0 , (2.20)

where A stands for the different fluids (radiation, baryons, cold dark matter,
dark energy, ...) which we assume are separately conserved. If we consider
just the 00 component of the equations (2.20), it follows

Tµ0A ;µ = Tµ0A ,µ + ΓµαµT
α0
A + Γ0

αµT
µα
A = 0 , (2.21)

and substituting the expression of the Christoffel symbols of the unperturbed
FLRW metric (appendix A.1), we get

ρ̇A + 3H(1 + wA)ρA = 0 , (2.22)

where H ≡ ȧ
a and wA is the equation of state (EoS) parameter, given by

PA = wAρA. If, moreover wA is a constant, after integration we obtain

ρA = a−3(wA+1) . (2.23)

We consider the Universe filled with baryons (subscript B), that accounts for
all the known non relativistic matter (including protons and neutrons and
leptons), cold dark matter (subscript CDM), such as weakly interacting
massive particles, and radiation (subscript R), that include all relativistic
particles (photons, massless neutrinos, etc). Non relativistic matter and
baryons have wCDM = wB = 0, while for radiation wR = 1

3 . Therefore,

ρCDM = ρCDM 0a
−3 , (2.24)

ρB = ρB 0a
−3 , (2.25)

ρR = ρR 0a
−4 . (2.26)
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2.3 Conservation equations for interacting fluids

If some (or all) components interact with each other, the total stress-energy
tensor will still be conserved, but not so the stress-energy tensor of the
interacting component. Their (non) conservation equation reads

TµνA ;µ = TµνA ,µ + ΓµαµT
αν
A + ΓναµT

µα
A = QµA . (2.27)

Then,
∑

AQ
µ
A = 0. The interaction term at background level fulfills

QµA = [QA,0] , (2.28)

where QA is a function of time to be specified. After solving eq. (2.27) in a
similar manner to the non-interacting case, we obtain

ρ̇A + 3H(1 + wA)ρA = QA , (2.29)

that is the equation that describes the evolution of the mean density of
interacting fluids.

2.4 The standard cosmological model

Nowadays, the simplest most successful model is the so-called ΛCDM. This
model assumes Einstein’s general relativity and considers that the energy
density is contributed solely by pressureless matter, radiation and a cosmo-
logical constant, Λ. The latter is supposedly connected to the energy of the
quantum vacuum [11] , though there is a severe fine tunning that will be
commented on §2.4.1. It was first introduced by Einstein in 1917 to keep
the Universe static. When inserted in the Einstein eq. (2.5), the Bianchi
identities are fulfilled and so the total stress-energy tensor is also conserved.
Since the metric is covariantly conserved, i.e., gµν;ν = 0, we can add a term
proportional to the metric and then (2.5) generalizes to

Gµν + Λgµν = 8πGTµν . (2.30)

After this, the Friedmann and Raychaudhuri equations read

(

ȧ

a

)2

=
8πG

3
ρ− κ

a2
+

Λ

3
, (2.31)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (2.32)
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Cosmological parameters of the ΛCDM model

H0 = 67.4± 1.4 km s−1 Mpc−1

ΩCDM 0h
2 = 0.1196± 0.0031

ΩB 0h
2 = 0.022078± 0.00033

ΩΛ = 0.686± 0.0016

100ΩK 0 = −0.10+0.62
−0.65

t0 = 13.813± 0.058 Gyr
z⋆ = 1090.37± 0.65
rs ⋆ = 144.75± 0.66

Table 2.1: Cosmological parameters for the ΛCDMmodel borrowed from [3].
h ≡ H0/100. z⋆ is the recombination redshift at which electron and hydrogen
nuclei formed atoms and the Universe became transparent to radiation, and
rs ⋆ the sound horizon at that time. t0 =

∫ a0
0

da
aH is the age of the Universe.

The conservation equation follows from Friedmann equations (2.31) and
(2.32) or through the conservation of the stress-energy tensor. In both cases
we get

ρΛ = ρΛ 0 , (2.33)

where ρΛ 0 ≡ Λ
8πG and wΛ = −1 through eq. (2.23). Thus, the quantum

vacuum has a negative pressure. Introducing the fractional energy density,
ΩA = 8πG

3H2 ρA we recast the first Friedman equation as

ΩCDM +ΩB +ΩR +ΩΛ +Ωκ = 1 , (2.34)

where Ωκ ≡ −κ/(aH)2.
At the end of the XXth century, two groups independently found (through
observations of supernovae type Ia (SN Ia) [1, 2]), that the expansion of
the Universe was accelerated at present, i.e., ä|0 > 0. This could not be
explained within general relativity using matter and radiation as the only
energy components. Some new component with negative pressure P < −1

3ρ
- see eq. (2.18) - was needed. The first, and so far the most successful
candidate is the cosmological constant [3]. Within this model, the most
recent values of the parameters that determine the cosmological evolution
at the background level are listed in table 2.1.

2.4.1 Fine tunning problem

From the fractional energy density ΩΛ and the cosmological data from table
2.1, the value of the energy density associated to the cosmological constant
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results ρΛ ≈ 1026 kg
m3 ≈ 10−47GeV 4. Quantum field theory relates Λ to

the vacuum energy density as the sum of the zero-point energies of all the
normal modes of a field of mass m as

ρΛ =
1

4π2

∫ kmax

0
dkk2

√

k2 +m2 ≈ k4max
16π2

, (2.35)

where kmax ≃ (8πG)−
1
2 is the ultraviolet (UV) cutoff at which quantum field

theory breaks down. If general relativity is to describe gravity up to Planck

scales, then ρΛ ≈ (8πG)−2

16π2 ≈ 1074GeV 4. So, there is a difference of 121
orders of magnitude between the observed vacuum energy density and its
quantum field value. A more conservative UV cutoff such as the energy scale
of quantum chromo-dynamics, leads to discrepancies of about 60 orders of
magnitude. Albeit the radiative contributions to the vacuum energy can be
of either sign, a fine tunning of at least one part in 1060 remains. Approaches
to solve the cosmological constant problem are considered in [12]. At the
moment, no universally accepted argument exists by which Λ should take
such non-vanishing low value.

2.4.2 The Coincidence problem

Equations (2.24), (2.25) and (2.33) tell us that the pressureless matter
(baryons plus cold dark matter) and the vacuum energy densities evolve
very differently. This means that when the hydrogen atoms formed, around
z⋆ ≈ 1100, r⋆ ≡ ρM ⋆

ρΛ ⋆
≈ 1011 while today the ratio between energy densi-

ties is r0 ≡ ρM 0
ρΛ 0

≈ 1. The fact that just recently the two energy densities
became of the same order despite of evolving so differently is the so-called
Coincidence problem, i.e., “why are the densities of matter and dark energy
of the same order precisely today?” [13]. It is fair to add that anthropic
arguments have been advanced to sustain the view that in reality the co-
incidence problem is not a problem at all - see e.g. [14]. However, these
arguments are rather unattractive and not convincing.

2.5 Dark energy alternatives to the standard cos-
mological model

To solve the two above problems of the standard ΛCDM model, many other
candidates to drive the accelerated expansion have been proposed. We di-
vide them in two main groups: the first one includes those models based
on general relativity that introduce exotic forms of energy components with
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a huge negative pressure - the so-called dark energy. The second one com-
prehends those models that do not introduce exotic components but modify
Einstein relativity. Amongst them, let us mention f(R) and f(T) proposals,
massive gravity, quantum loop gravity, etc. - see [15] and references therein.
We shall restrict ourselves to the first group; so we consider general relativity
as the theory that correctly describes gravity from the Planck era onwards.

2.5.1 Quintessence

A first option is to consider dark energy (the energy component meant to
accelerate the expansion thanks to its huge negative pressure) as the one cor-
responding to a canonical scalar field, φQ, [16, 17], dubbed “quintessence”.
It derives from the action

S =

∫

dx4
√−g

(

R

16πG
+ LSM + LQ

)

, (2.36)

where g is the determinant of the metric, R is the Ricci scalar and LSM
the Lagrangian of the particles in the Standard Model. LQ, the Lagrangian
describing quintessence, is that of a canonical scalar field

LQ = −1

2
φQ;µφ

;µ
Q − V (φQ) (2.37)

where V (φQ) is the potential. Introducing the Hilbert stress-energy tensor,

Tµν = 2√
−g

δ(
√
−gLA)
δgµν

= 2 δLA
δgµν

+ gµνLA, where A is any energy component,

one follows
Tµν = φQ;µφ

Q
;ν + gµνLQ , (2.38)

see [18] for details on Lagrangian formulation of general relativity. After
this, the energy density and the pressure for quintessence turn out to be

ρφQ =
1

2
φ̇2Q + V (φQ) , PQ =

1

2
φ̇2Q − V (φQ) . (2.39)

Every potential V (φQ) has an EoS parameter, wQ, associated to it and
vice versa; as well as an expansion history, H(a). Last statement is true
if, and only if, φ̇Q 6= 0. To learn more about the state of the art see
[17, 19, 20, 21, 22].

2.5.2 Phantom

Since many cosmological data are compatible with a value of the EoS of
dark energy parameter, wX < −1 Caldwell proposed a type of dark energy
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dubbed “phantom” [23]. In these models the dominant energy condition is
violated, i.e., ρX + PX < 0. Phantom models are based on the action

S =

∫

dx4
√−g

(

R

16πG
+ LSM + LP

)

, (2.40)

where LP stands for the phantom field Lagrangian, which has a non-canonical
kinetic term

LP =
1

2
φP;µφ

;µ
P − V (φP ) . (2.41)

Notice that the sign of the kinetic term has been varied with respect to the
one in quintessence models (2.37). This gives rise to the following equations

ρP = −1

2
φ̇2P + V (φP ) , PP = −1

2
φ̇2P − V (φP ) . (2.42)

The phantom field climbs the potential instead of rolling down it to its min-
imum, i.e., the energy density augments with time rather than decreases.
Since the Hamiltonian has no lower bound, the phantom field is unstable
from the quantum point of view unless a cutoff at low energies is set [24].
Another characteristic of this kind of models is that there is a future sin-
gularity in the scale factor, called the big rip, at which the whole Universe
rips apart [25]. In the literature there are many studies on phantom models.
Some representative examples can be found in [26]. It is worth of mention
that behind a quintessence or phantom scalar field, there can be a running
cosmological constant arising from a fundamental quantum field theory [27].
Another group of models with non-canonical kinetic term, dubbed k-essence,
was introduced in [28].

2.5.3 Holographic dark energy

This kind of models have become popular as they rest on the very reasonable
assumption that the entropy of every bounded region of the Universe, of size
L, should not exceed the entropy of a Schwarzschild black hole of the same
size [29]. That is to say,

L3Λ3 ≤ SBH ≃M2
PL

2
(

M2
P = (8πG)−1

)

, (2.43)

where Λ stands for the ultraviolet cutoff; the infrared cutoff is set by L.
However, as demonstrated by Cohen et al. [30], an effective field theory
that saturates the above inequality necessarily includes states for which the
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Schwarzschild radius exceeds L. It is therefore natural to replace the said
bound by another that excludes such states right away, namely,

L3Λ4 ≤M2
PL . (2.44)

This bound guarantees that the energy L3Λ4 in a region of size L remains
lower than the energy of a black hole of the same size [30]. By saturating
the inequality (2.43) and identifying Λ4 with the density of holographic dark
energy, ρX , it follows that [31]

ρX =
3c2

8πGL2
, (2.45)

where numerical factors are introduced for convenience and c2 is a dimen-
sionless quantity, usually assumed constant, introduced to encode the un-
certainties present in the theory (such as the number particle species and so
on). However, the latter parameter can vary with time [32, 33], if the varia-

tion is slow enough to preserve the holographic dependence, i.e., dc
2

dt <
dL2

dt .
The relationship (2.45) is widely used in models of holographic dark en-
ergy that aim to explain the present stage of cosmic accelerated expansion,
[32, 34, 35, 36, 37, 38, 39], via the huge negative pressure associated to
them. Broadly speaking, holographic dark energy models fall into three
main groups depending on the choice of the infrared cutoff, L. One is the
Hubble radius [32], the length scale that describes the size over which phys-
ical processes operate causally

RH = H−1 , (2.46)

Another choice is the event horizon radius [31, 40],

Rfe =

∫ ∞

t

dt

a
. (2.47)

It correspond to the distance covered by light from the instant t up to the
event horizon. However, this choice presents two severe problems: (i) It
suffers from causality, i.e., today’s energy density depends on the future
evolution of the Universe rather than the other way around. (ii) It also suf-
fers from circularity: to have acceleration as t→ ∞ is a necessary condition
for the event horizon to exist.
Another option is to consider the Ricci (or causal) radius [36]

−RCC =

(

R

6

)− 1
2

=
(

Ḣ + 2H2
)− 1

2
, (2.48)

12



where R is the Ricci scalar. This scale describes the maximum size that
a density perturbation can have in order to form a black hole [41]. The
particle horizon radius was also used [34] but it presents the severe drawback
of leading to a cosmology incompatible with a transition from deceleration
to acceleration in the expansion of the Universe. It is to be emphasized that
holographic models with dynamical length scales do not contain the ΛCDM
model as a limiting case since the energy density of the quantum vacuum,
being constant, cannot be holographic.

2.5.4 Unified models

Since neither the nature of dark matter nor dark energy is known, a more
ambitious project is to unify them in a single component -see e.g. [42, 43,
44, 45, 46, 47]. In this case, the coincidence problem disappears, and the
cosmological constant problem reduces to justify the vanishing of Λ. Here
we shall briefly describe some of them. Possibly the most studied are the
original Chaplygin gas [42] and the generalized Chaplygin model [43]. These
can be derived from a generalized Nambu-Goto action in a perturbed d-brane
in a (d + 1,1) spacetime. Its equation of state is

PCh = − β

ραCh
, (2.49)

and its energy density evolves with the scale factor as

ρCh =

(

β +
B

a3(1+α)

) 1
1+α

, (2.50)

where α and β are constant free parameters. For the original model [42],
α = 1. This energy density behaves as a cosmological constant in the far
future, a→ ∞, and as cold dark matter in the past, a≪ 1. However, it has
been shown that best fit value of the free parameter is very close to α = 0,
in which case the model reduces to the standard ΛCDM. But it is also a
possible that α ≈ 300, which results in a behavior completely different from
that of the standard model [44].
The model of Ref. [45] treats the dark sector as a barotropic fluid that
experiences a transition from a Einstein-de Sitter [48] expansion in the past
to a de Sitter one in the future, as in the previous case. The equation of
state is

PU = −ρΛ
[

1− tanh(ρU−ρt
ρs

)

1− tanh(ρΛ−ρtρs
)

]

, (2.51)
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where ρt is a constant energy scale at which the transition between the two
regimes took place; the bigger ρt, the earlier the transition. ρs, another free
parameter of the model, is related to the suddenness of the transition; the
smaller ρs the faster it occurs. Lastly, ρΛ is just the asymptotic value of
ρU . This model has two allowed regions in the parameter space. In one
ρs ≤ ρt and the transition proceeds very fast. In the other, ρs ≥ ρt and
the transition proceeds slowly. In both regions the ΛCDM is included as a
limiting case. The model of Ref. [46] behaves similarly, but it describes the
dark sector by a scalar field.

2.6 Distances

To determine distances in an expanding Universe it is of a great importance
and not an easy matter. We first consider the comoving size to the horizon,
τ , i.e., the distance traveled by light from the Big Bang (t = 0) up to now.
It can be derived from the metric given in eq. (2.3) by setting ds2 = 0.
Then,

τ =

∫ t

0

dt̂

a
. (2.52)

If we just consider the light emitted by a source at a scale factor a < a0,
then the comoving distance traveled by it is

χ(a) =

∫ t

t(a)

dt̂

a
=

∫ a

a0

dâ

â2H
. (2.53)

Typically distances are determined in astronomy by measuring the flux F
received from a given source of known luminosity L. By definition, F =
L(χ)

4πχ2(a)
where the L(χ) is the luminosity observed in a shell of (comoving)

size χ. The energy emitted by the source in a interval dt1 is Ldt1 and the
one received is L(χ)dt0 with dt1

a(t1)
= dt0

a(t0)
. The energy of an emitted photon

will be ǫ1 = 1
a1λ

and observed as ǫ0 = 1
a0λ

; so the luminosities given off

and received will be related by L(χ) = a21L. So we can recast the flux as

F = La2

4πχ2(a)
and define the luminosity distance for spatially flat (κ = 0)

models as

dL ≡ χ(a)

a
=

1

a

∫ t

t(a)

dt̂

a
= (1 + z)

∫ z

0

dẑ

H(ẑ)
, (2.54)

where z = (1/a)− 1 is the redshift.
Another way to define distances in astronomy considers measuring the angle
θ subtended by an object of physical size D in a flat Universe (κ = 0), that
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due to the fact that the size we observe is enlarged by the expansion to a
size aD, dA ≡ aD/θ. This distance is called angular diameter distance. The
subtended observed angle is θ = aD

aχ , and so, the angular distance, with
Ωκ = 0, results

dA ≡ aχ = a

∫ t

t(a)

dt̂

a
=

1

1 + z

∫ z

0

dẑ

H(ẑ)
. (2.55)

These magnitudes are very useful to fit dark energy models with observa-
tional data, SN Ia, BAO and X-ray in galaxy clusters. We will further
elaborate on this point in §4.
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Chapter 3

First order perturbation
theory

In dealing with cosmological perturbations data, e.g., cosmic structures
and anisotropies of the CMB one must, obviously, relax the assumption of
isotropy and homogeneity. To do this one first perturbs the FLRW metric
and then explores the consequences. We shall consider just small deviations
from the metric of the background, i.e.,

gµν = ḡµν + δgµν , (3.1)

where ḡµν is the background FLRW metric described by eq. (2.2), and
δgµν are small perturbations around the background. These perturbations
fall in three different types: scalar, vectorial, and tensorial. At first order,
these metric perturbations decouple from one another and can be treated
separately. This can be easily seen as follows: the background quantities
are all scalar since any vector or tensor would set a privileged direction, and
break the isotropy assumption. In a scalar equation every term should be
a scalar, and the same holds true for vector and tensor equations. Since
first order terms can only be formed by background quantities multiplied
by a perturbation term, the perturbations of different kind do not mix1.
We shall restrict our analysis to first order in perturbation theory. Due to
the fact that observations show that the spatial curvature of the Universe is
very small, if at all [3], we just consider the case of a spatially flat Universe.
Useful reviews on perturbation theory can be found in Refs. [50, 51, 52, 53].

1In §5.4 of [49] the decomposition of scalar and tensor types is demonstrated in a
straightforward way. In appendix B of [50] is demonstrated for all cases.
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3.1 Scalar metric perturbations

The most general form of scalar metric perturbations in conformal time is

δgµν = a2(τ)

(

2φ −B,i
−B,i 2 (−ψδij + E,ij)

)

, (3.2)

whence the corresponding line element takes the form

ds2 = a2(τ)
{

−(1 + 2φ)dτ2 − 2B,idx
idτ + [(1− 2ψ)δij + 2E,ij ] dx

idxj
}

.
(3.3)

Since the density perturbations are the source of scalar metric perturbations,
as shown in §3.4, they are the only type to be considered here, for they are
decoupled from vector and tensor perturbations. Nevertheless, we next give
a brief description of these two types.

3.2 Vector metric perturbations

Vector perturbations decay at large scales in an expanding Universe so they
do not leave an observable imprint, and are not of a big interest in cosmology.
Nevertheless, here we shall describe the vector type metric perturbations:

δgµν = a2(τ)

(

0 −Si
−Si Fi;j + Fj;i

)

, (3.4)

where F ;j
i = S ;j

i = 0 because the gradient is normal to a divergenceless
vector, and then Fi or Si cannot be expressed as a divergenceless vector
plus the gradient of a scalar. If they could, the functions would not be pure
vector perturbations.

3.3 Tensor metric perturbations

Although tensor perturbations can, in principle, be detected as CMB anisotropies
on large scales [54], we will not consider them in much detail because we
are just interested in density perturbations. The general metric for tensor
perturbations is

δgµν = a2(τ)

(

0 0
0 hij

)

, (3.5)

with the constraints hii = h ;j
ij = 0 and hij = hji to ensure, as in the case of

vector perturbations, that they are purely tensorial. Tensor perturbations
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are, at first order, gauge invariant quantities [50, 55]. Gauge invariance is
considered below in §3.8. Summing up, the independent functions describing
all types of metric perturbations are 10 in total (4 scalars, 4 vectorials and
2 tensorials), one for each independent component of the metric.

3.4 Perturbed Einstein field equations

By perturbing eq. (2.5) we get

δGµν = 8πGδTµν . (3.6)

As before, the left hand side depends on the metric perturbations only,
and the right hand side on the perturbations of the energy content of the
Universe. All perturbations of the geometric functions are calculated in
appendix A.2. We use the perturbed Einstein tensor, together with the
perturbed stress-energy tensor of a fluid

TµνA = (ρA + PA)u
µ
Au

ν
A + PAg

µν + πµν A , (3.7)

keeping in mind that Tµν =
∑

A T
µν
A . The total energy density and the

pressure for every component is: ρA = ρ̄A + δρA and PA = P̄A + δPA. On

the other hand, πµν A (π0ν A = 0 and πij A =
(

∂i∂j − 1
3δ
i
j∇2

)

πA) denotes

the anisotropic stress tensor. The expression for the perturbed four-velocity
is

uµ =
1

a

[

(1− φ), v,i
]

, (3.8)

uµ = −a [(1 + φ), (v +B),i] , (3.9)

where v is the scalar part of the velocity perturbation vi = v,i + v⋆i (with
v⋆i;i = 0) and the expression of u0 and ui can be obtained through the metric
(3.2) and the conditions uµu

µ = −1 and ui = giµu
µ, respectively. Using

eqs. (3.2), (3.8) and (3.9) in eq. (3.7) we obtain the components of the
stress-energy tensor, namely

T 0
0 A = −(ρ̄A + δρA) , (3.10)

T 0
i A = (ρ̄A + P̄A)v,i A , (3.11)

T ij A = (P̄A + δPA)δ
i
j + πij A . (3.12)

Solving the perturbed Einstein field equations we get

3H2φ+H∇2(B + E′) + 3Hψ′ −∇2ψ = −4πGa2
∑

A

δρA , (3.13)
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−
(

Hφ+ ψ′)
,i
=
a2

2

∑

A

(ρ̄A + P̄A)v,i A , (3.14)

[

(

2H′ +H2
)

φ+Hφ′ + 2Hψ′ + ψ′′ +
1

2
∇2D

]

δij+
1

2
D,i
,j =

a2

2

∑

A

(

δPAδ
i
j + πij A

)

(3.15)
where D ≡ −φ + ψ + 2H (B + E′) + (B + E′)′, H ≡ a′/a and the prime
means derivative with respect to conformal time, τ .

3.5 Perturbed equations of motion for non inter-
acting fluids

In the absence of any interaction other than gravity between the differ-
ent components, they conserve separately, i.e., TµνA ;ν = 0. Here we will
covariantly derive the perturbed energy momentum tensor (3.7) using the
perturbed Christoffel symbols listed in table A.5. Proceeding as in the back-
ground case, we obtain for the 0 and i components

δρ′A+3H(δρA+ δPA)− 3(ρA+PA)ψ
′ − k2(ρA+PA)(vA+E′) = 0 , (3.16)

[(ρA + PA)(vA −B)]′+4H(ρA+PA)(vA−B)+(ρA+PA)φ+δPA−
2

3

k2

a2
πA = 0 ,

(3.17)
respectively, where we have used the Fourier transform for space derivatives:
v,i = −ikiv.

3.6 Perturbed equations of motion for interacting
fluids

When the fluid components interact with one another, usually dark mat-
ter and dark energy, the stress-energy tensor of each component does not
conserve in general, TµνA ;ν = QµA, but the total stress-energy tensor does,
∑

QµA = 0. Relative to the average four velocity uµ, the covariant stress-
energy transfer of a fluid A splits as [50, 55]

QµA = QAu
µ + FµA , QA = Q̄A + δQA , uµAF

A
µ = 0 , (3.18)

where QA is the energy density transfer, and FµA is the momentum density
transfer rate relative to uµ. Thus, one can introduce a momentum transfer
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potential, fA, as FµA = a−1
[

0, f ,i
A

]

. It follows

QAµ = a
[

−QA(1 + φ)− δQA, (fA +QA(v −B)),i

]

, (3.19)

where v is a velocity set once the interaction is defined. Using eq.(2.27) for
the perturbed stress-energy tensor in a general gauge, the evolution equa-
tions for the density and velocity perturbations are

δρ′A + 3H(δρA + δPA) − 3(ρA + PA)ψ
′ − k2(ρA + PA)(vA + E′)

= aQAφ+ aδQ , (3.20)

[(ρA + PA)(vA −B)]′ + 4H(ρA + PA)(vA −B) + (ρA + PA)φ+ δPA − 2

3

k2

a2
πA

= aQA(v −B) + afA . (3.21)

One can notice that the interaction introduces a new function at the per-
turbation level, fA. If we wish to fix it without adding an extra degree
of freedom, we have two main options: (i) consider that the momentum
transfer between fluids is in the direction of the velocity of the dark matter
particles QµA ∝ uµC [56]; and (ii) if dark energy is just vacuum, one can

consider that the total pressure perturbations are adiabatic δPTotal
δρTotal

= ṖTotal
ρ̇Total

[57] and the perturbations behave as if the whole dark sector was unified in
a single component.

3.6.1 Geodesic case

If the interaction is in the direction of the the cold dark matter particles
flow, from eqs. (3.18) and (3.19), there is no momentum transfer, and cold
dark matter particles will follow geodesics. In this case the interaction is
defined by

QCµ = −QXµ = a [−QA(1 + φ)− δQA, QA(vc −B),i] , (3.22)

fC = −fX = 0 . (3.23)

Bearing in mind that PC = 0 and πA = 0 (since CDM behaves as a perfect
fluid without anisotropic stress), we can set the CDM density and momen-
tum (non) conservation equation as

δρ′C + 3HδρC − 3ρCψ
′ − k2ρC(vC + E′) = aQCφ+ aδQ , (3.24)

[ρC(vC −B)]′ + 4HρC(vC −B) + ρCφ = aQC(vC −B) . (3.25)
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The corresponding equations for the dark energy component are

δρ′X + 3H(δρX + δPX) − 3(ρX + PX)ψ
′ − k2(ρX + PX)(vX + E′)

= aQXφ+ aδQ , (3.26)

[(ρA + PX)(vX −B)]′ + 4H(ρX + PX)(vX −B) + (ρX + PX)φ+ δPX ,

= aQX(vC −B) . (3.27)

If the interaction is in the direction of the dark energy flow, the equations
will be the same as (3.24) - (3.27) but with vX replacing vC in the last term
of eqs. (3.25) and (3.27).

3.6.2 Barotropic case

In this instance the dark energy is simply the vacuumm energy, so the back-
ground equation (2.22) for CDM and vacuum boils down to

ρ̇CDM + 3HρCDM = QCDM , (3.28)

ρ̇V = QV . (3.29)

Here it is assumed that the interaction is a total derivative of the vacuum
energy density, QCµ = −QVµ [−ρ̇V ,−∂iρV ] and also that that ρC is a function
of ρV . Further, since it should be a monotonically decreasing function of
time, it must be invertible whereby we can express ρV (ρC). By imposing
the global adiabaticity condition

δPC + δPV
δρC + δρV

=
ṖC + ṖV
ρ̇C − ρ̇V

, (3.30)

we obtain

δρV =
ρ̇V
ρ̇C
δρC . (3.31)

Consequently, the velocity and density perturbation conservation equations
for CDM are

δρ′C + 3HδρC − 3ρCψ
′ − k2ρC(vC + E′) = −δ′ρV , (3.32)

[ρC(vC −B)]′ + 4HρC(vC −B) + ρCφ = k2δρV , (3.33)

respectively, and the ones for dark energy are just constraint equations.
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3.7 Sound speed and pressure perturbations

In purely adiabatic fluids the effective sound speed in the reference rest
frame of the fluid,

c2sA ≡ δP

δρ

∣

∣

∣

∣

rf

, (3.34)

coincides with its adiabatic speed of sound,

c2aA ≡ P ′

ρ′
= wA +

w′
AρA
ρ′A

. (3.35)

However, dissipative processes generate entropy perturbations and the speed
of sound is no longer defined solely by background quantities. Under a gauge
transformation xµ → xµ + [dτA, δxA ,i] from the rest gauge to a general one
[50, 56] we have that

vA +B = (vA +B)|rf + dτA , δPA = δPA|rf − P ′
AdτA

and

δρA = δρA|rf − ρ′AdτA . (3.36)

The A rest frame is comoving (vA|rf = 0) and orthogonal to the time slicing
(B|rf = 0), thus vA + B = dτA. Using this together with eq.(3.35) and the
transformations (3.36), one finds

δP = c2aAδρA + (c2sA − c2aA)
[

δρA + ρ′A(vA +B)
]

. (3.37)

3.8 Gauge invariance

In the active approach to the gauge transformations in cosmology, one con-
siders two manifolds: the physical manifold, M, and the background space
time manifold, M̄, on which coordinates are stiff. A coordinate systems in
M is related to one in M̄ through a diffeomorphism D : M̄ → M. The
perturbations in a point p of a function Q in M is defined as

δQ(p) = Q(p)− Q̄(D−1(p)) . (3.38)

Though general relativity should be invariant under coordinates change,
the relation between background and physical functions will depend on the
selected diffeomorphism. In an equivalent approach, dubbed passive, one
considers a physical space-time manifold M with some coordinate system
xµ on it. To define background magnitudes, a background function Q̄(xµ)
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is assigned to every function Q on M. Then the perturbations δQ of the
magnitude Q is defined in a point p as

δQ(p) = Q(p)− Q̄(p) , (3.39)

they, therefore, depend on the coordinate system xµ chosen. A detailed
explanation of gauge transformations can be found in [51]. Following the
latter approach, we consider an infinitesimal coordinate transformation

x̃µ = xµ + ǫµ , (3.40)

that allows us to define the function Q in the new coordinate system

δQ(x̃µ) = δQ(xµ) + LǫQ̄ , (3.41)

Lǫ being the Lie derivative along the trajectory of ǫ. Notice that not every
diffeomorphism (3.40) preserves the scalar nature of metric perturbations.
The ones that do fulfill it are given by

x̃0 = x0 + ǫ0 and x̃i = xi + γijǫ,j , (3.42)

where the 3-vector part ǫi of the vector ǫµ = [ǫ0, ǫi] can be written as ǫi =
ǫi + γijǫ,j , a sum of a scalar and a vector perturbation. The change in the
scalar metric perturbations induced by the gauge transformation (3.42) is

g̃µν(x) ≈ ∂xµ

∂x̃α
∂xν

∂x̃β
gµν(x− ǫ)

≈ gµν(x)− gµν,αǫ
α − gανǫ

α
,µ − gµαǫ

α
,ν

= gµν(x) + L−ǫgµν . (3.43)

Thus, the transformation equations read

φ̃ = φ−Hǫ0 − ǫ0
′
, (3.44)

ψ̃ = ψ +Hǫ0 , (3.45)

B̃ = B − ǫ0 + ǫ′ , (3.46)

Ẽ = E − ǫ . (3.47)

One can introduce linear combinations of the scalar metric functions to con-
struct gauge-invariant variables. The most frequently used, first proposed
by Bardeen [58], are

Φ ≡ φ−H(B + E′)− (B + E′)′ , (3.48)

Ψ ≡ −ψ −H
(

B + E′) . (3.49)
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Another widely used one is the curvature perturbation. This is related to
the Bardeen variables in spatially flat cosmologies by

ζ ≡ Ψ+
H

H2 −H′
(

Ψ′ −HΦ
)

. (3.50)

In general, a scalar function f(xµ), splits in its background and perturbation
parts,

f(xµ) = ¯f(x0) + δf(xµ) . (3.51)

Frequently δf(xµ) will not be a gauge-invariant variable (unless δf(xµ) is a
constant); it will be modified under a gauge transformation (3.42) as

δ̃f(x0,x) = δf(x0 − ǫ0,x− ǫ) ≈ δf(xµ)− f̄ ′(x0)ǫ0 . (3.52)

However, one is free to construct a gauge-invariant variable adding a linear
combination of the metric perturbations like

δ̃fgi = δf + f̄ ′(B − E′) . (3.53)

So, there are two gauge degrees of freedom left (ǫ0 and ǫ) that should be
fixed. Depending on how one set them (i.e., in the gauge we choose), the
coordinate system in which perturbations are considered will be fixed. The
most widely used gauges in cosmology are the synchronous gauge and the
longitudinal (or conformal Newtonian) gauge, described in the next sections.
To do so, the Fourier transform will be used to move to the k-space, and
the divergence of the velocity, θ ≡ vi,i = −k2(v +B), will be used.

3.9 Synchronous gauge

In this gauge one has φ = B = 0. Under these conditions, the proper time
lapse between two hypersurfaces coincides with the coordinate time between
those hypersurfaces (ψ = 0). Here, the metric is defined by

ds2 = a2(τ)
{

−(1 + 2φ)dτ2 + [(1− 2ψ)δij + 2hij ] dx
idxj

}

, (3.54)

where the metric perturbations hij(τ,x) are described in the Fourier space
by two potential functions, h(τ,k) (the trace part) and η(τ,k) (the traceless
part) through the integral

hij(τ,x) =

∫

d3keikx
[

h(τ,k)k̂ik̂j + 6

(

k̂ik̂j −
1

3
δij

)

η(τ,k)

]

, (3.55)
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with k = kk̂. This gauge has the drawback of having some gauge degrees of
freedom remaining because some integration constants are not fixed in the
coordinates [50, 51, 52]. These can lead to unphysical gauge modes. In this
gauge the perturbed Einstein field equations (3.13), (3.14) and (3.15) read

k2η − 1

2
Hḣ = −4πGa2

∑

A

δρA(syn) , (3.56)

k2η̇ = 4πGa2
∑

A

(

ρ̄A + P̄A
)

θA(syn) , (3.57)

ḧ+ 2Hḣ− 2k2η = −8πGa2δT iA i(syn) , (3.58)

ḧ+ 6η̈ + 2H
(

ḣ+ 6η̇
)

− 2k2η = −16πGa2P̄AπA(syn) . (3.59)

The general equations of motion for an interacting fluid, A, in the syn-
chronous gauge can be obtained from the general ones (3.20) and (3.21) by

the identifications h
2 =

hij
2 = −ψδij + E,i,j . Then, one gets

δ′A + 3H(c2s A − wA)δA + (1 + wA)

(

θA +
h′

2

)

+ 3H
[

3H(1 + wA)(c
2
s A − wA) + w′

A

]

=
a

ρA

{

QA

[

−δA + 3H
(

c2s A − wA
) θA
k2

]

+ δQ

}

, (3.60)

θ′A + H(1− 3c2s A)θA − c2s A
(1 + wA)

k2δA +
2

3a2(1 + wA)ρA
k4πA

=
a

(1 + wA)ρA

{

QA
[

θ − (1 + c2s A)θA
]

+ k2fA
}

. (3.61)

By setting QA = fA = 0, last equations reduce themselves to the corre-
sponding expression for a non interacting fluid.

3.10 Longitudinal gauge

The longitudinal (or conformal Newtonian) gauge is characterized by E′ =
B = 0, and the constant time hypersurfaces and the constant space lines are
orthogonal to each other. Also the spatial part of the metric perturbations
is isotropic,

ds2 = a2(η)
{

−(1 + 2φ)dη2 + (1− 2ψ)δijdx
idxj

}

. (3.62)

In this gauge, as one can check, the Bardeen gauge invariant variables of eqs.
(3.48) and (3.49) are equal to the potentials, φ = Φ and ψ = −Ψ. Likewise,
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the Einstein field equations take the form

k2ψ + 3H
(

Hφ+ ψ̇
)

= −4πGa2
∑

A

δρA(long) , (3.63)

(

Hφ+ ψ̇
)

= 4πGa2
∑

A

(

ρ̄A + P̄A
)

θA(long) , (3.64)

ψ̈ +H
(

φ̇+ 2φ̇
)

+
(

2H′ +H2
)

φ+
k2

3
(ψ − φ) = −4π

3
Ga2δT iA i(long) ,

(3.65)
k2 (ψ − φ) = −16πGa2P̄AπA(long) . (3.66)

And the (non) conservation equations become

δ′A + 3H(c2s A − wA)δA + (1 + wA)
(

θA − 3ψ′)+ 3H
[

3H(1 + wA)(c
2
s A − wA) + w′

A

]

=
a

ρA

{

QA
[

φ− δA + 3H
(

c2s A − wA
)]

+ δQ
}

, (3.67)

θ′A + H(1− 3c2s A)θA − c2s A
(1 + wA)

k2δA +
2

3a2(1 + wA)ρA
k4πA − k2φ

=
a

(1 + wA)ρA

{

QA
[

θ − (1 + c2s A)θA
]

+ k2fA
}

. (3.68)

The relation between the potentials of Newtonian (φ and ψ) and Syn-
chronous gauge (h and η) are related by

φ = α̇+Hα and ψ = η −Hα , (3.69)

where α ≡ ḣ+6η̇
2k2

, and the transformations of variables from one gauge to the
other are [52]

δA(syn) = δA(long)− α
˙̄ρA
ρ̄A

, (3.70)

θA(syn) = θA(long)− αk2 , (3.71)

δPA(syn) = δPA(long)− α ˙̄PA , (3.72)

πA(syn) = πA(long) . (3.73)

This linear transformations permit to transform the equations from the syn-
chronous gauge to the longitudinal gauge, and viceversa.
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Chapter 4

Observational constraints

To constrain the free parameters of the cosmological models considered in
this Memoir, we use observational data from SN Ia (557 data points), the
CMB-shift, BAO, and gas mass fractions in galaxy clusters as inferred from
X-ray data (42 data points) and the Hubble rate (15 data points) as ge-
ometrical data. Being the likelihood function defined as L ∝ exp(−χ2/2)
the best fit follows from minimizing the sum χ2

total = χ2
sn + χ2

cmb + χ2
bao +

χ2
X−rays + χ2

Hubble. The data analysis realized in this memoir is briefly de-
picted in appendix A.3.

4.1 Super novae type Ia

The SN Ia type refers to supernovae produced in binary systems, a carbon-
oxigen white dwarf and a bigger companion, such as a red giant. The col-
lapsed object accretes gas and dust from its companion until the Chan-
drasekhar mass limit is reached, M ≃ 1.4M⊙. Beyond that point, the
degenerate gas pressure can not withstand the star weight and a gravita-
tional collapse ensues, leading to a thermonuclear explosion. Since the mass
and constituents of white dwarfs when they explode are alike, these su-
pernovae have a very similar light curve and maximum absolute magnitude.
Therefore, they are considered as nearly “standard candles”. However, there
different shapes at different bands have been found, and for different SN Ia.
Nevertheless, an empirical recipe that can convert them into “calibrated
candles” has been established [59]. Thus, SN Ia are now routinely used as
extragalactic distance indicators. Once the data are calibrated, we contrast
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the theoretical distance modulus

µth(zi) = 5 log10

(

DL

10pc

)

+ µ0 , (4.1)

where µ0 = 42.38 − 5 log10 h, of the cosmological model under study with
the observed distance modulus µobs(zi) of the 557 SN Ia compiled in the
Union2 set [60]. The latter assemble is much richer than previous SN Ia
compilations and has some other advantages, especially the refitting of all
light curves with the SALT2 fitter and an enhanced control of systematic
errors. In (4.1) DL = (1 + z)

∫ z
0

dz′

E(z′;p) denotes the Hubble-free luminosity

distance defined in eq. (2.54), with p the model parameters (ΩX0, c
2, rf ,

and H0), and E(z;p) := H(z;p)/H0. The χ2 from the 557 SN Ia is given
by

χ2
sn(p) =

557
∑

i=1

[µth(zi) − µobs(zi)]
2

σ2(zi)
, (4.2)

where σi denotes the 1σ uncertainty associated to the ith data point. To
eliminate the effect of the nuisance parameter µ0 we resort to the method

of [61] to obtain χ̃2
sn = χ

2 (minimum)
sn .

4.2 The cosmic microwave background

In 1965 Penzias and Wilson, from the Bell laboratories, found a very ho-
mogeneous and isotropic noise when working in a ultra-sensitive cryogenic
microwave antenna [62]. After contacting Dicke’s group at Princeton, it was
proposed that the noise corresponded to be the Cosmic Microwave Back-
ground (CMB) radiation [63] predicted nearly twenty years before by Alpher
and Herman [64]. The black body temperature detected by the antenna was
T = 2.3± 0.3 Kelvin. This discovery supposed a strong support for the hot
Big Bang theory, and shed light on how the Universe was at recombination,
but did not tell much of its matter content, its expansion rate, nor its spatial
curvature. Their anisotropies, detected much later by the COBE satellite
probe, shed further light on this. Figure 4.1 depicts this anisotropies as seen
by the Planck satellite.

The light of the CMB comes from the recombination epoch, around
z⋆ ≈ 1100, the time when electrons combined with protons to form neu-
tral atoms, and photons could propagate freely. Before then, photons and
baryons were tightly coupled by the Compton effect. The last scattering
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Figure 4.1: Temperature anisotropies detected by the Planck mission [7].
The blue spots are colder regions than average and the red ones hotter.

surface is the spherical surface with radius determined by the distance trav-
eled by light from the recombination epoch until the present. The tem-
perature anisotropies detected nowadays are of two main types: (i) primary
anisotropies; those imprinted in the photons before and while leaving the last
scattering surface (the physical processes that took place during recombina-
tion are quite well known); and (ii) secondary anisotropies, those imprinted
on the radiation when propagating from the last scattering surface to the
observer.

4.2.1 Primary anisotropies

While matter and radiation interact mainly due to Compton effect, both,
behave as a single fluid. The primordial perturbations set up by inflation
led to pressure gradients that propagated as sound waves. Normal mode
analysis breaks the system into a set of independent oscillators, and so, each
mode k of the temperature anisotropies Θ = ∆T/T corresponds to a forced
oscillator: (1 + R)Θ̈ + k2c2sΘ ≃ (1 + R)g, where, R ≃ 3ρB/4ργ is the ef-
fective mass of the oscillator and cs = 1/

√

3(1 +R) the speed of sound of
the coupled fluid before recombination. g = −k2c2sφ/3 − ψ̈ is the effective
acceleration provided by gravity, φ the Newtonian potential, and ψ ≃ −φ
(since neutrinos were decoupled before the recombination epoch) the spa-
tial curvature perturbation, both introduced in §3.10. At recombination
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the Universe was already matter dominated and the gravitational potentials
remained nearly constant; the acoustic oscillations present in the baryon-
photon plasma were frozen once the radiation decoupled from the baryons.
The size of the sound horizon at that time is described by the wavenumber
kA ≡ π/rs ⋆ with rs ⋆ =

∫

cs ⋆dη the horizon size at recombination. This
wave number sets the fundamental scale of the acoustic oscillations. The
position of the first acoustic peak in the power spectrum - Fig. 4.2 - is given
by this scale, lA ≃ kAdA, where lA gives us the size of the horizon at recom-
bination. Since this size depends on the geometry of space, and knowing
the angular diameter distance dA, that depends just on the model used, the
said position is a probe of the spatial curvature of the Universe, Ωκ 0 -see
fig. 4.3.

Figure 4.2: Temperature anisotropies power spectrum as a function of the
angle (lower scale) and the multipole moment (upper scale) detected by the
Planck mission [7]. The solid line correspond to the best fit ΛCDM model.
The position of the first acoustic peak (1◦−2◦) is compatible with |Ωκ 0| ≪ 1.

Photons that escape from the last scattering surface suffered a gravitational
redshift, that added to its intrinsic fluctuations, are known as the Sachs-

Wolfe effect [66]. The higher density regions attract matter and radiation
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Figure 4.3: The angular size of the sound horizon at recombination depends
on the geometry of the Universe and the distance to the last scattering
surface. At a fixed distance, a smaller physical scale is required to subtend
the same angle in a closed universe, and a larger one in an open universe.
Figure borrowed from [65].

that is pushed away from the lower density regions, and due to the presence
of a higher baryon density, it results harder for the photons to escape, so the
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corresponding temperature is enhanced with respect to the one of that very
region without baryons. In the underdense regions, the pressure is weaker,
and accordingly, due to the presence of baryons it results also harder for
the photons to climb the potential well, being the region less colder than it
should in the absence of baryons. This effect, known as baryon dragg, is the
cause of the alternating heights of the odd (over densities) and even peaks
(under densities) seen in the temperature anisotropies power spectrum -see
Fig. 4.2. This effect is crucial in determining the present baryon fraction
ΩB 0h

2 (≃ 0.022).
Albeit recombination took place well in the matter dominated era, i.e., after
the equality redshift, zeq, the potentials φ and ψ were not exactly constant.
This effect, called the driving effect introduces an enhancement of the peaks,
and since the wavenumber keq (describing the sound horizon scale at zeq)
is the critical scale to change the potential behavior. The peak-to-plateau
ratio is a test for ΩCDM 0. Since recombination lasted a while (∆z ≃ 80),
the photons mean free path increased in that period. Thus, for short wave-
lengths, the photons mean free paths overtook them. This mixed up the hot
with the cold regions and damped the anisotropies somewhat. This effect,
known as diffusion damping (or Silk damping), decreased the power of the
high multipoles l ≥ 1000 (small scales) seen in the Fig. 4.2. For details on
the CMB, see Ref. [67].

Cosmic Microwave Background shift parameter, R

As we have seen, the CMB power spectrum is sensitive to the distance to
the decoupling epoch via the locations of peaks. More specifically, thanks
to CMB data one can measure two distance ratios. The first one, defined
by the ratio between the distance to decoupling to the Hubble horizon at
that time H−1(z⋆), is the so called CMB-shift R [68, 69]. It measures the
displacement of the first acoustic peak of the CMB temperature spectrum
with respect to the location it would have taken in the Einstein-de Sitter
Universe

R =
√

ΩM0

∫ z⋆

0

dz
H(z)
H0

. (4.3)

This parameter is approximately model-independent but not quite as the
above expression somehow assumes a negligible dark energy density at de-
coupling, and should be suitably modified if not used in ΛCDM or wCDM
models [70, 71, 72]. The 7-year WMAP data providesR(zrec) = 1.725±0.018
[70].
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Acoustic scale lA

The other ratio provided by the CMB is the acoustic scale, lA, described by
the angular distance to the decoupling surface divided by the sound horizon
at that time

lA = π
dA(z⋆)

rs(z⋆)
. (4.4)

Both quantities, dA(z) and rs(z) are comoving. The 7-year WMAP data
yields lA = 302.09± 0.76 [70].

4.2.2 Secondary anisotropies

Here we briefly describe gravitational effects that affect the evolution of the
perturbations. In addition to that, there are other effects from reionization
that we will not consider here [65, 67]. One effect, null in a matter domi-
nated Universe, that alters the perturbations is the Integrated Sachs-Wolfe
(ISW) effect. It is due to the evolution of the potentials φ and ψ. Just after
recombination, the radiation content is not negligible though small, and so
the potential evolves modifying the CMB radiation field. This is known as
the early ISW effect. When dark energy begins dominating the Universe,
the potentials start to evolve again. So when a photon coming from the
last scattering surface falls into a potential well, e.g. created by a galaxy
cluster, the blueshift due to the infall is overcompensated by the redshift
arising when emerging from the evolving potential well. This is known as
late ISW effect. It has been detected a signal of this kind of anisotropy by
correlating WMAP data with large scale structures data [73, 74].
Other smaller perturbations affecting the CMB field are tensor perturbations
due to gravitational waves. The main consequence of gravitational waves is
to enhance the quadrupole (l = 2) [75]. Due to the high cosmic variance the
imprint of gravitational waves in the CMB has not been detected as yet.
Gravitational lensing can also affect the propagation of photons when pass-
ing close to potential wells. It should smooth the peaks of the spectrum,
especially on small scales [76, 77]; but, in any case, it will be just a second
order effect.

4.2.3 Temperature anisotropies power spectrum

Since the dark matter models considered in this Memoir little or nothing
modify the pre-recombination scenario of the standard ΛCDM model, here,
we describe some aspects of the temperature anisotropies formalism very
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schematically. For details see [49, 67]. In this section conformal time will
be denoted by η, to distinguish it from opacity described by τ . Several non-
equilibrium processes, governed by the Boltzmann-Einstein equation played
a crucial role in the evolution of the Universe, such as the formation of
light elements in the Big Bang nucleosynthesis, the capture of electrons by
protons to form neutral hydrogen and reionization. Neglecting polarization,
the said equation reads

Θ′ + (ikµ− τ ′)Θ = −Φ′ − ikµΨ− τ ′
[

Θ0 + µvB − 1

2
P2(µ)Θ2

]

. (4.5)

Here Θ ≡ δT/T̄ is the photon temperature perturbation, µ the photon
propagation direction, vB the baryons velocity, P2 the second order Legendre
polynomial described in appendix A.4, while Θ0 and Θ2 are, the monopole
(density) and quadrupole (velocity) moment in the multipole expansion of
the temperature field

Θl ≡
1

(−1)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ) , (4.6)

respectively. Atrio-Barandela et al [78] and Hu and Sugiyama [79] gave
expressions for the monopole and dipole in the tight coupled limit, that are
the dominant moment at recombination. However, effects like diffusion have
a non negligible quadrupole moment. These moments will be the source
of the CMB temperature anisotropies at recombination, but we wish to
compute them today. From the last scattering surface, photons travel in
a free streaming regime. Considering that τ(η0) = 0 and τ(ηi) ≫ 1 for
ηi ≪ η⋆, and noticing that [Θ′ + (ikµ− τ ′)Θ] eikµη−τ = d

dη

(

Θ eikµη−τ
)

, one
gets

Θ(k, µ, η0) =

∫ η0

0
dηS̃(k, µ, η) eikµ(η−η0)−τ , (4.7)

where S̃ is the source function equal to the right hand side of eq. (4.5). One
eliminates the µ dependence of S̃ by the replacement µ → 1

ik
d
dη , justified

because of the exponential in (4.8). Then one multiplies both sides of eq.
(4.7) by Pl and then integrate over µ to obtain

Θl(k, η0) =

∫ η0

0
dηS(k, η)jl[k(η0 − η)] , (4.8)
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where jl is the spherical Bessel function, whose properties are described in
appendix A.5. The source function is now recast as

S(k, η) ≡ e−τ
[

−Φ′ − τ ′
(

Θ0 +
1

4
Θ2

)]

+
d

dη

[

e−τ
(

Ψ− ivBτ
′

k

)]

− 3

4k2
d2

dη2
(

e−ττ ′Θ2

)

.

(4.9)
If one introduces the visibility function, g(η) ≡ −τ ′e−τ , which corresponds
to a probability distribution since

∫ η0
0 dηg(η) = 1, the source term can be

expressed as

S(k, η) ≃ g(η) [Θ0(k, η) + Ψ(k, η)] + e−τ
[

Ψ′
0(k, η)− Φ′(k, η)

]

+
d

dη

(

ig(η)vB(k, η)

k

)

. (4.10)

Notice that the first term in (4.10) gives the contribution from the intrin-
sic perturbation from recombination and the gravitational potential (Sachs-
Wolfe effect). The second term, related to the time dependence of the po-
tentials, is the integrated Sachs-Wolfe contribution. The last one is the
velocity term that describes the Doppler effect due to the relative veloci-
ties of emitter and observer. Equation (4.8), first proposed in [80], is of
great importance when computing temperature anisotropies. It divides the
computational effort in solving a geometrical part, jl, independent of the
cosmological evolution and a source term, S, that encodes the details of the
cosmological model. This equation is the basis of the Boltzmann codes to
compute CMB anisotropies, e.g., CMBfast, CAMB [81] and CLASS [82]. It
reduces the number of coupled differential equations from thousands to a
few dozens.
Since what we observe through telescopes from a given position, x, are di-
rections in the sky, µ, to compute temperature anisotropies, it is convenient
to expand them in spherical harmonics

Θ(x, µ, η) =
∞
∑

l=1

l
∑

m=1

alm(x, µ, η)Ylm(µ) , (4.11)

the analogous to the Fourier transform in a spherical surface. Because of
the spherical harmonics properties, given in appendix A.6, one can invert
eq. (4.11) as

alm(x, η) =
1

(2π)3

∫

d3keikx
∫

dΩY ⋆
lm(µ)Θ(x, µ, η) , (4.12)
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The mean value of the alm is zero but the variance does not vanish in general.
The latter is defined by

< alma
⋆
l′m′ >= δll′δmm′Cl , (4.13)

and it is what is really computed from the CMB data. There is a funda-
mental uncertainty related to the Cls that decreases with l, since there are
smaller number of samples with increasing angular size (there are less alm
for every Cl). It is known as cosmic variance, ∆Cl/Cl =

√

2/(2l + 1) -see
Fig. 4.2.

4.3 Baryon Acoustic Oscillations

Pressure waves originated from cosmological perturbations in the primeval
baryon-photon plasma produced acoustic oscillations in the baryonic fluid,
as has been seen in §4.2.1. These oscillations were frozen at recombination,
leaving overdense shells of radius equal to the size of the horizon at the
last scattering surface, around 150 Mpc today. Meanwhile, the dark mater
overdensities grew in the center of the shell without oscillating, since they did
not feel the radiation pressure. So, the center and the shell are correlated and
a peak must be expected in the correlation function (defined in §4.4) around
150 Mpc due to the baryonic acoustic oscillations (BAO) (governed by ΩMh

2

and ΩBh
2). Once the characteristic scale of the oscillations is determined at

z⋆ through the first peak in the CMB power spectrum, the acoustic scale can
be used as a standard ruler to measure absolute distances1. This oscillations
have been unveiled by a clear peak in the large scale correlation function
measured from the luminous red galaxies sample of the Sloan Digital Sky
Survey (SDSS) at z = 0.35 [83], as shown in Fig. 4.4, as well as in the Two
Degree Field Galaxy Redshift Survey (2dFGRS) at z = 0.2 [84]. Further
peaks have been observed more recently: at z = 0.278 (with the SDSS [85]),
at z = 0.106 (in the 6dFGRS [86]), and at z = 0.44, z = 0.60, and z = 0.73
(by the WiggleZ team [87]). These peaks are described by a characteristic
distance scale, the dilation scale,

Dv(zBAO) =

[

zBAO dA(zBAO)
2

H(zBAO)

]
1
3

. (4.14)

1This absolute distance is not model independent since we ought to fix the expansion
history, from z⋆ until today, using some model.
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Figure 4.4: Large-scale redshift-space correlation function of the SDSS lu-
minous red galaxies. The BAO peak can be seen around 100h−1 Mpc. The
plot is borrowed from [83].

(see Ref. [88] for a pedagogical derivation of this expression). Data from
SDSS and 2dFGRS observations provided a more model independent quan-
tity, Dv(0.35)/Dv(0.2) = 1.736± 0.065 [84].
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4.4 Matter power spectrum

The autocorrelation function

ǫ(r) ≡< δ(x)δ(x+ r) > (4.15)

describes the probability of finding, e.g., a galaxy at x+ r if there is one at
x. If ǫ(r) is zero, the galaxy distribution is said to be uncorrelated. Rather
than working in real space, it is more convenient to shift to Fourier space.
The density perturbation in k-space, δk, is defined by

δk(x) =
1

(2π)
3
2

∫

d3keikx (4.16)

By computing the mean of two k-modes of the density perturbations, we
obtain

< δ∗kδk′ > =
1

(2π)3

∫

d3x d3x′ eik’(x’−x) e−(k−k’)x

= δD(k − k′)P (k) (4.17)

where δD is the delta of Dirac. From equations (4.15), (4.16) and (4.17), it is
seen that the Fourier transform of the density perturbation autocorrelation
function is the matter power spectrum P (k). There are two characteristic
times when studying the evolution of the perturbations, the matter radiation
equality, teq and the time, tenter, when a perturbations becomes smaller than
the horizon, η, introduced in eq. (2.52). At the latter, causality begins to
apply to the perturbation. Using eq. (2.52), we get

η ∝
{

a
1
2 radiation dominated
a matter dominated .

(4.18)

It is generally assumed that the perturbations at t = tenter, follow the power
law

P (k, tenter) = Akn , (4.19)

with n a free parameter that characterizes the scale dependence. Recently,
the Planck collaboration found n = 0.9616±0.0094 [7]. In the linear regime,
spatial and time dependence can be separated: δk(t) = δk(t0)D+(t)/D+(t0),
where D+(t) denotes the growing solution. At the radiation dominated
epoch, the dark matter density perturbations remain nearly constant once
inside the horizon (the Mészáros effect [89]). On the other hand, at the
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matter dominated epoch (potentials nearly constant), in the subhorizon limit
(k ≫ a/H), one has D+ ∝ a, as follows from eq. (3.13). Thus, the CDM
matter power spectrum of density perturbations measured today can be
expressed as

δk(t0) =
D+(t0)

D+(tenter)
δk(tenter) ∝

1

D+(tenter)
δk(tenter)k

n . (4.20)

Therefore,

P (k, tenter) ∝
(

1

D+(tenter)

)2

kn . (4.21)

Bearing in mind the behavior of perturbations during the radiation and
matter dominated epochs, and using eq. (4.18), we get

P (k, t0) ∝
{

kn−4 (if k enters in the radiation dominated epoch)
kn (if k enters in the matter dominated epoch)

(4.22)
For n = 1, the matter power spectrum at horizon crossing is scale inde-
pendent (a Harrison-Zel’dovich spectrum [90, 91]). Figure 4.5 depicts the
matter power spectrum for the concordance ΛCDM model. However, in
this case, the effects due to the presence of baryons and the cosmological
constant appear while in this Section have been omitted.

4.5 Gas mass fraction

Since the bulk of baryons in galaxy clusters are in the form of hot X-ray
emitting gas clouds (other baryon sources lagging far behind in mass) the
fraction of baryons in clusters, fgas := Mgas/Mtot, at present is of great
interest since it is an indicator of the overall cosmological ratio ΩB/ΩM and,
up to a fair extent, it is independent of redshift [93] -see §4.5. This quantity
can be determined from the X-ray flux originated in hot clouds of baryons

and it is related to the cosmological parameters by fgas ∝ (1 + z)2 d
3/2
A ,

where dA := (1+ z)−1
∫ z
0

dz′

H(z′) denotes the angular diameter distance to the
cluster. Data were obtained by the Chandra satellite from 42 dynamically
relaxed galaxy clusters in the redshift interval 0.05 < z < 1.1 [94]. In model
fitting, the empirical formula

fgas(z) =
KAγ b(z)

1 + s(z)

Ωb0
ΩM0

(

dΛCDMA

dA

)3/2

(4.23)
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Figure 4.5: Matter power spectrum for the ΛCDM model. The scale of the
observed peak is keq. It is smooth because the transition from radiation to
matter domination was gently. Figure borrowed from [92].

(Eq. (3) in Ref. [94]), is conventionally used, in which the ΛCDM model
is utilized as reference. Here, the parameters K, A, γ, b(z) and s(z) model
the abundance of gas in the clusters.
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4.6 History of the Hubble parameter

Recently, high precision measurements by Riess and collaborators at z = 0,
from the observation of 240 Cepheid variables of rather similar periods and
metallicities [95], as well as measurements by Gaztañaga et al., at z =
0.24, 0.34, and 0.43 [96], who used the BAO peak position as a standard
ruler in the radial direction, have somewhat improved our knowledge of
H(z). However, at redshifts above, say, 0.5 this function remains largely
unrestricted. Yet, in order to constrain the models we employ these four
data alongside 11 noisier data in the redshift interval 0.1 . z . 1.8, from
Simon et al. [97] and Stern et al. [98], obtained from the differential ages of
passive-evolving galaxies and archival data.
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Chapter 5

Interacting dark energy
model at the Hubble length1

5.1 Basics of the model

The spatially flat FLRW holographic model proposed in [100] rests on two
main assumptions: (i) The dark energy density is governed by the saturated
holographic relationship, Eq. (2.45), with the infrared cutoff fixed by the
Hubble radius, i.e., L = H−1. (ii) Dark matter and dark energy do not
evolve independently of each other. They interact according to

ρ̇M + 3HρM = Q , and ρ̇X + 3H(1 + w)ρX = −Q , (5.1)

where w stands for the equation of state parameter of dark energy, and

Q = Γ ρX (5.2)

is the interaction term where Γ denotes the rate by which ρX changes as
a result of the interaction. We assume Γ to be semipositive-definite. Note
that if Q were negative, the transfer of energy would go from dark matter to
dark energy, in contradiction with the second law of thermodynamics [100].
Further, use of the Layzer-Irvine equation on nearly one hundred galaxy
clusters strongly supports this view [101].

Interacting models were first proposed by Wetterich to lower down the
value of the cosmological term [102]. Later on it was proved efficient at
easing the cosmic coincidence problem [103, 104] and it was suggested that
the interaction (whatever form it might take) is not only likely but inevitable

1This Chapter corresponds to the model of Ref. [99].
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[105]. The amount of literature on the subject is comparatively ample -
see, e.g., [106] and references therein. Admittedly, the expression (5.2) is
nothing but a useful parametrization of the interaction. Given our poor
understanding of the nature of dark matter and dark energy, there is no
clear guidance to derive an expression for Q from first principles. This is
why our approach is just phenomenological.

The model is fully specified by three quantities, e.g., the current value
of the Hubble rate, H0, the dimensionless density parameter ΩX (or, equiv-
alently, ΩM ), and Γ. Note that c2 is fixed by c2 = ΩX , as it can be readily
checked.

The first assumption readily implies that ΩX does not vary with ex-
pansion, and that the ratio of energy densities, r ≡ ρM/ρX , stays fixed
in spatially flat FRW universes (ΩM + ΩX = 1) for any interaction. The
latter consequence greatly alleviates the coincidence problem albeit, strictly
speaking, it does not solve it in full because the model cannot predict that
r ∼ O(1) (to the best of our knowledge, no model is able to predict it). This
feature of ΩX and r being strictly constants may seem too strong; however,
one should bear in mind that both quantities would slightly vary with the
Universe expansion if the parameter c2 in Eq. (2.45) were allow to weakly
depend on time, something not at all unreasonable [33]. Further, r would
not be constant if the restriction to spatial flatness were relaxed. At any
rate, we shall take the simpler stance that both c2 and r do not vary; thus,
the number of free parameters of the model will be kept to a minimum.

At first sight, the consequence of ΩX being of order unity also at early
times might look worrisome. One may think that a large dark energy com-
ponent at that period would prevent the formation of gravitationally bound
objects. However, this is not the case as

w = −1 + r

r

Γ

3H
(5.3)

is not constant, and for suitable choice of the ratio Γ/H it tends to the
equation of state of non-relativistic matter at early times. Its evolution
is governed by the Hubble rate which, in the simplest case of Γ being a
constant, takes the form

H = H0

[

Γ

3H0r
+

(

1− Γ

3H0r

)

a−3/2

]

, (5.4)

which corresponds to a specific generalized Chaplygin gas [43]. Figures 5.1
and 5.2 show the history of the equation of state for the best fit values of
the model up to redshifts 8 and 1.2, respectively. Figure 5.1 illustrates that
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at high redshifts w approaches zero asymptotically. Figure 5.2 shows that,
in accordance with the analysis in [107], w(z) varies little at small redshifts.
The deceleration parameter, q, defined in eq. (2.19), whose evolution is
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ΩX=0.745  Γ/H0=0.563 

Figure 5.1: Evolution of the equation of state parameter of dark energy, Eq.
(5.3), for the best fit model, up to z = 8. In this, as well as in subsequent
figures, the red swath indicates the region obtained by including the 1σ
uncertainties of the constrained parameters used in the calculation (in the
present case, ΩX and Γ/H0).

illustrated in Fig. 5.3, obeys

q =
1

2

(

1 − Γ

Hr

)

. (5.5)

This expression implies that q → 1
2 at high redshifts as it should, and that

the transition from deceleration to acceleration occurs at

ztr =

(

2Γ

3H0 r − Γ

)2/3

− 1 , (5.6)

which yields ztr ≃ 0.80 for the best fit values. It should be noted that in [32]
the transition deceleration-acceleration required that the c2 varied, if only
very slowly. In the present case, the transition also occurs for c2 = constant
(as, for simplicity, we are considering). The difference stems from the fact
that in [32] the ratio Γ/H was kept constant, while the present model has
Γ = constant, instead.
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Figure 5.2: Evolution of the equation of state of dark energy for the best fit
model up to z = 1.2. The observational data with their 2σ error bars are
borrowed from [107]. In plotting the curve no fit to these data was made.

The age of old luminous objects at high redshifts can constrain cosmo-
logical models by simply requiring that their age at the redshift they are
observed do not exceed the age of the Universe at that redshift. Figure 5.4
depicts the dependence of the age of the Universe on redshift for the best
fit values of both the holographic model and the ΛCDM model alongside
the age and redshift of three luminous old objects, namely: galaxies LBDS
53W069 (z = 1.43, t = 4.0 Gyr) [109] and LBDS 53W091 (z = 1.55, t = 3.5
Gyr) [110, 111], as well as the quasar APM 08279+5255 (z = 3.91, t = 2.1
Gyr) [112, 113]. While the ages of the two first objects are lower than the
ages of the holographic model and the ΛCDM model at the corresponding
redshifts, the age of the quasar APM 08279+5255 lies slightly further than
1σ beyond the age of the ΛCDM model at z = 3.91. By contrast, the holo-
graphic model is compatible at 1σ level with the age of the said quasar. The
tension between the APM quasar and the ΛCDM model has been known for
some time now (see [113] and references therein) and it has been revisited
recently [114, 115].
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Figure 5.3: History of the deceleration parameter, according to Eq. (5.5) in
terms of redshift for the best fit holographic model (solid line). The redshift
at which the transition deceleration-acceleration occurs is approximately
0.80. Also shown is the prediction of the ΛCDM model (dashed line). In
this, as well as in subsequent figures, the green swath indicates the region
obtained by including the 1σ uncertainties of the constrained parameters
used in the calculation (in the present case just ΩM0). The data are borrowed
from [108]. In drawing the curves no fit to these data was made.

5.2 Observational constraints

In this section we constrain the three free parameters (ΩX , Γ/H0, and H0)
of the holographic model presented above with observational data from SN
Ia (557 data points), the CMB-shift, BAO, and gas mass fractions in galaxy
clusters as inferred from X-ray data (42 data points), and the Hubble rate
(15 data points) to obtain the best fit values.

5.2.1 SN Ia

We contrast the theoretical distance modulus defined in eq. (4.1) with the
observed distance modulus µobs(zi) of the 557 supernovae type Ia assembled
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Figure 5.4: Dependence of the age of the Universe on redshift for the holo-
graphic model (solid line) and the ΛCDM model (dashed line). Also shown
are the ages and redshifts of three old luminous objects, namely: galax-
ies LBDS 53W069, and LBDS 53091, and the quasar APM 08279+5255 -
the latter with its 1σ error bar. In plotting the curves we have used the
best fit value H0 = 68.1 ± 2.1 km/s/Mpc for the holographic model and
H0 = 72.1+1.8

−1.9 km/s/Mpc for the ΛCDM model.

in the Union2 compilation [60]. The χ2 from the 557 SN Ia is given by

χ2
sn(p) =

557
∑

i=1

[µth(zi) − µobs(zi)]
2

σ2(zi)
, (5.7)

and proceeding as explained in §4.1, we obtain χ̃2
sn = χ

2 (minimum)
sn = 569.497.

5.2.2 CMB shift

The CMB shift was introduced in §4.2.1. It is nearly model-independent
and given by eq. (4.3) of §4.2.1. The 7-year WMAP data yields R(zrec) =
1.725± 0.018 [70]. The best fit value of the model is R(zrec) = 1.753+0.033

−0.027.
Minimization of

χ2
cmb(p) =

(Rth − Robs)
2

σ2R
(5.8)

produces χ
2 (minimum)
CMB−shift = 2.385.
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5.2.3 BAO

As mentioned in §4.3, can be traced to pressure waves at the recombina-
tion epoch generated by cosmological perturbations in the primeval baryon-
photon plasma. Here we use the ratio Dv(0.35)/Dv(0.2) = 1.736 ± 0.065
[84] to fit the model. The best fit value for the holographic model is
Dv(0.35)/Dv(0.2) = 1.642± 0.003, and minimization of

χ2
bao(p) =

([Dv(0.35)/Dv(0.2)]th − [Dv(0.35)/Dv(0.2)]obs)
2

σ2Dv(0.35)/Dv(0.2)

(5.9)

gives χ
2 (minimum)
bao = 2.089.

5.2.4 Gas mass fraction

As is well known, a very useful indicator of the overall cosmic ratio ΩB/ΩM ,
nearly independent of redshift, is the fraction of baryons in galaxy clusters
[93] -see §4.5. We used 42 measurements of dynamically relaxed galaxy
clusters in the redshift interval 0.05 < z < 0.1 [94]. To fit the data we have
employed the empirical formula (4.23). We fix the parameters K, A, γ, b(z)
and s(z) to their respective best fit values which can be found in Ref. [94].
The χ2 function from the 42 galaxy clusters reads

χ2
X−rays(p) =

42
∑

i=1

([fgas(zi)]th − [fgas(zi)]obs)
2

σ2(zi)
, (5.10)

and its minimum value results to be χ
2 (minimum)
X−rays = 44.758. Figure 5.5 shows

the fit to the data.

5.2.5 History of the Hubble parameter

To constrain the model we have used the H(z) data mentioned in §4.6.
Minimization of

χ2
Hubble(p) =

15
∑

i=1

[Hth(zi) − Hobs(zi)]
2

σ2(zi)
(5.11)
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Figure 5.5: Gas mass fraction in 42 relaxed galaxy clusters vs. redshift. The
solid and dashed curves correspond to the best fit models: holographic and
ΛCDM, respectively. The data points with their error bars are taken from
Table III in Ref. [94].

provided us with χ
2 (minimum)
Hubble = 11.897 and H0 = 68.1 ± 2.1 km/s/Mpc as

the best fit for the Hubble’s constant. Figure 5.6 depicts the Hubble history
according to the best fit holographic model alongside the best ΛCDM model.

Figures 5.7 and 5.8 summarize our analysis. The left panel of Fig. 5.7 depicts
the 68.3% and 95.4% confidence contours for SN Ia (orange), CMB shift
(brown), BAO (blue), X-ray (black), and H(z) (green), in the (ΩX , Γ/H0)
plane. The joined constraints corresponding to χ2

total are shown as shaded
contours. The right panel depicts the 68.3% and 95.4% confidence regions
in the (ΩX0, H0) plane of the holographic model (shaded regions) and the
ΛCDM model (blue contours). As it is apparent, the models present a non-
small overlap at 2σ level. Figure 5.8 depicts the normalized likelihoods,
L ∝ exp(−χ2

total/2), of the three free parameters of the holographic model.
Altogether, by constraining the holographic model presented in §5.1 with SN
Ia, CMB-shift, BAO, X-rays, and H(z) data we obtain ΩX = 0.745± 0.007,
Γ/H0 = 0.563+0.017

−0.015, and H0 = 68.1± 2.1 km/s/Mpc as best fit parameters,
with χ2

total = 630.627. This value lies well inside the 1σ interval (χ2
total dof ≈

1.03). It should be noted that the non-interacting case is discarded at a very
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Figure 5.6: Plot of H(z) for the best fit values of the holographic model
(solid line) and the ΛCDM model (dashed line). The data points and error
bars are borrowed from Refs. [95, 96, 97].

Model χ2
sn χ2

cmb χ2
bao χ2

X−rays χ2
H χ2

total χ2
total dof

Holographic 569.497 2.385 2.089 44.758 11.897 630.627 1.03

ΛCDM 541.833 0.013 1.047 41.527 8.727 593.142 0.97

Table 5.1: χ2 values for the best fit holographic model (ΩX = 0.745±0.007,
Γ/H0 = 0.563+0.017

−0.015, andH0 = 68.1±2.1 km/s/Mpc), and the best fit ΛCDM

model (ΩM0 = 0.259+0.006
−0.005, and H0 = 72.1+1.8

−1.9 km/s/Mpc).

high confidence level. This is not a surprise at all since for Γ = 0 the model
reduces to the Einstein-de Sitter (ΩM = 1, ΩX = 0) and accordingly, as Eq.
(5.5) tells us, the transition from deceleration to acceleration cannot occur.

Table 5.1 shows the partial, total, and total χ2 over the number of degrees
of freedom of the holographic model along with the corresponding values for
the ΛCDM model. In the latter one has just two free parameters, ΩM0

and H0. Their best fit values after constraining the model to the data are
ΩM0 = 0.259+0.006

−0.005, and H0 = 72.1+1.8
−1.9 km/s/Mpc, with χ2

total = 593.142.
We see that the ΛCDM model fits the data better than the holographic
model in spite of having one parameter less. Thus, the former model should
be preferred on statistical grounds. Nevertheless, this does not tell the whole
story; the ΛCDM cannot address the cosmic coincidence problem and has
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Figure 5.7: Left panel: the 68.3% and 95.4% confidence contours for the pair
of free parameters (ΩX , Γ/H0) obtained by constraining the holographic
model with SN Ia+CMB-shift+ BAO+X-ray+H(z) data. The joined con-
straints corresponding to χ2

total are rendered as shaded contours. The no
interacting case is largely disfavored by the data. Right panel: the 68.3%
and 95.4% confidence contours for the pair (ΩX0 , H0) of the holographic
model (shaded contours) and the ΛCDM model (blue contours). The solid
points signal the location of the best fit values. Notice the overlap at 2σ
confidence level between both models.

some tension with the age of the old quasar APM 08279+5255. By contrast,
the holographic model answers the said problem and shows compatibility,
at 1σ, with the age of the old quasar.

5.3 Evolution of the growth function

It is not unfrequent to find in the literature cosmological models that differ
greatly on their basic assumptions but, nevertheless, present a rather simi-
lar dynamical behavior. It is, therefore, rather hard to discriminate them at
the background level. However, their differences are more readily manifested
at the perturbative level (though, admittedly, the uncertainty in the corre-
sponding data are, in general, wider). This justifies our interest in studying
the evolution of the matter perturbations of the holographic model inside
the horizon. A prime tool in this connection is the growth function, defined
as

f ≡ d ln δM/d ln a , (5.12)
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Figure 5.8: The normalized likelihoods of ΩX , Γ/H0, and H0.

where δM denotes the density contrast of matter. In order to derive an
evolution equation for f , we start from the energy balance for the matter
component in the Newtonian approximation

δ̇M − k2

a2
vM = − Q

ρM
δM +

Q̂

ρM
. (5.13)

Here, vM is the velocity potential, defined by ûMα ≡ vM,α, where uMα is the
matter four-velocity, and the hat means perturbation of the corresponding
quantity. Recalling Eqs. (5.1) and (5.2) and that Γ and r do not vary, we
can write

δ̇M − k2

a2
vM = −Γ

r
(δM − δX) . (5.14)

Usually, the density contrast of dark energy is neglected under the assump-
tion that dark energy does not cluster on small scales. However, as forcefully
argued by Park et al. [116], the neglecting of the perturbation in the dark
energy component can be fully justified in the case of the cosmological con-
stant only. At any rate, in the present case the setting of δX to zero wold be
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incorrect given the coupling between both energy components at the back-
ground level (i.e., Eqs. (5.1)). It seems therefore reasonable to include a
coupling, at least approximately, also at the perturbative level. The simplest
possibility is to assume a proportionality δX = α δM with α a constant. As
we shall see, the only consistent choice for this constant (under the condi-
tions that Γ and r are held fixed) is α = 1. Thus, Eq. (5.14) becomes

δ̇M − k2

a2
vM = −Γ

r
(1− α) δM . (5.15)

An equation for vM follows from the momentum conservation of the matter
component. Assuming that there is no source term in the matter rest frame,
this equation takes the simple form

v̇M + φ = 0 , (5.16)

where φ is the Newtonian potential. Differentiation of (5.15), use of (5.16)
and (5.15), and substitution of the scale factor for the time as independent
variable, leads to

δ′′M + 3
2a

[

1 + Γ
3Hr +

2(1−α)
3

Γ
Hr

]

δ′M − 3
2a2

r+α
r+1

[

1− 4(1−α)
3

Γ
Hr

r+1
r+α

]

δM = 0 ,

(5.17)
where use of Friedmann’s equation, 4πGρM = 3

2H
2 r
1+r , has been made; the

prime means derivative with respect to a. For a vanishing Γ we must recover
the conventional perturbation equation δ′′M + 3

2aδ
′
M − 3

2a2
δM = 0 with the

growing solution δM ∝ a for a dust universe. Clearly, this is only feasible
for α = 1. With this choice the fractional matter perturbation δM coincides
with the total fractional energy density perturbation, δ ≡ ρ̂M+ρ̂X

ρM+ρX
. It follows

that the basic matter perturbation equation for the interacting holographic
models reduces to

δ′′M +
3

2a

[

1 +
Γ

3Hr

]

δ′M − 3

2a2
δM = 0 . (5.18)

Replacing δM by the growth function f , last equation becomes

f ′ + f2 +
1

2

(

1 +
Γ

Hr

)

f − 3

2
= 0 (5.19)

with f ′ := df/d ln a. This has the advantage of being a first order differential
equation. Notice that in the absence of interaction, Γ = 0, its solution is
simply f = 1 as it should, i.e., a dust dominated universe.
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Figure 5.9 depicts the evolution of the growth function in terms of the
redshift for the holographic as well as for the ΛCDM model. The latter
appears to fit the data below z ≃ 0.6 better than the former. In particular,
at z = 0.15 the best fit holographic model deviates ∆f = 0.3 (corresponding
to 3σ) from the observed value (though it falls within 1σ with the remaining
data points) while the best fit ΛCDM model falls within 1σ also at z = 0.15.

At any rate, it has been recently pointed out, from the observation of
nearby galaxies, that structure formation must have proceeded faster than
predicted by the ΛCDM model [118]. Clearly, slightly enhanced values of
f at low redshifts helps accelerate the formation of galaxies and clusters
thereof.
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Figure 5.9: Growth function vs. redshift for the best fit holographic model
(solid line). Also shown is the prediction of the ΛCDM model (dashed line).
The observational data are borrowed from Table II in Ref. [117]. In plotting
the curves no fit to these data was made.
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5.4 Temperatures anisotropies

Up to here we have neglected radiation and baryons, but if we wish to
compute temperature anisotropies we can’t do so. We need to introduce
photons and also baryons in the energy content of the Universe, in a similar
way as we will do in §6.8. We then obtain

(

H

H0

)2

=

[

Γ

3H0r
+

(

1− Γ

3H0r

)

a−3/2

]2

+ΩR 0a
−4 , (5.20)

where baryons are included as a part of the non radiation terms.
To compute the Cls introduced in §4.2.3 and the P (k) depicted in §4.4 we
need to solve the (non) conservation equations for the density and velocity
perturbations, for instance in synchronous gauge (we could have done it as
well in Newtonian), i.e., eqs. (3.60) and (3.61). If we impose the dark matter
particles to follow geodesics (see §3.6.1) for the interaction introduced in §5.1
we obtain for cold dark matter

δ′CDM = −h
′

2
+
aΓρX
ρCDM

(δX − δC) , (5.21)

and for dark energy

δ′X = −3H(c2s X − wX)δX − (1 + wX)
(

θX + h′
2

)

−3H
[

3H(1 + wX)(c
2
s X − wX) + w′

X

]

+ aΓ
[

+3H
(

c2s X − wX
)

θX
k2

]

,

(5.22)

θ′X = −H(1− 3c2s X)θX +
c2s X

(1+wX)k
2δX + aΓ

(1+wX)

(

1 + c2s X
)

. (5.23)

All background quantities can be computed from previous sections, but we
need to define c2s X ≪ 1 in order to reproduce a matter like behavior with the
dark energy component. Doing so and modifying the CLASS code [82], we
obtain the temperature anisotropies, Fig. 5.10. To compute them, we have
used the same parameters value obtained in §5.2. Notice that, even when the
temperatures anisotropies are not fitted with data, the result shown in Fig.
5.10 is quite close to the concordance ΛCDM, so our model will probably
reproduce the CMB data. When computing the matter power spectrum
in this particular model, it is not obvious the way one should define the
matter density perturbations. The dark energy, both at background and
perturbative level, behaves as cold dark matter for z ≫ 1. For this reason
it deserves further development to be done elsewhere.
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Figure 5.10: Temperature anisotropies. Solid (red) lines are for the holo-
graphic model with the parameter obtained in 5.2. Dashed (green) lines are
for the ΛCDM model with ΩΛ0 = 0.7, ΩCDM 0 = 0.25 and H0 = 70 km s−1
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5.5 Concluding remarks

We constrained the interacting holographic model of §5.1 with data from
SN Ia, CMB shift, BAO, the gas mass fraction in galaxy clusters, and H(z).
The parameters of the best fit model are: ΩX = 0.745 ± 0.007, Γ/H0 =
0.563+0.017

−0.015 , and H0 = 68.1± 2.1 km/s/Mpc. We have not included data of
the growth function in the likelihood analysis given the wide uncertainties
of the current data. However, we have derived the differential equation for
f , Eq. (5.19), and integrated it numerically for the best fit model.

It conforms reasonably well to the observational data but not so well
as the ΛCDM model (best fit values: ΩM0 = 0.259+0.006

−0.005, H0 = 72.1+1.8
−1.9

km/s/Mpc) does notwithstanding the latter has one less free parameter
than the former. However, the holographic model greatly alleviates the cos-
mic coincidence problem and seems compatible at 1σ level with the age of
the old quasar APM 08279+5255. Besides, the observational data from the
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CMB shift, BAO, X-ray, and some of the H(z) data, are not fully model
independent owing to the fact that they are extracted with the help of the
conventional ΛCDM. This frequently makes the latter tend to be observa-
tionally favored over any other cosmological model. Moreover, the BAO
data are conventionally determined under the assumption of purely adia-
batic perturbations. However, as recently argued [119], should isocurvature
components be present the shape and location of the CMB acoustic peaks
would be altered and the data extracted from BAO affected. Clearly, we
must wait for more abundant, varied, and model-independent accurate data
to decide which of the two models survives. If eventually neither of the
two does, we should not be so much disenchanted because, at any rate, this
“negative” result would have narrowed the parameter space of dark energy.
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Chapter 6

Holographic dark energy
described at the Hubble
length1

6.1 Introduction

In this section, we study some general features of holographic dark energy
models where the IR cutoff is defined by the Hubble radius. We will show
that, in general, identical cosmological backgrounds can be described by an
interacting holographic dark energy model with a constant holographic
parameter c2 or, alternatively, by a non-interacting holographic dark en-
ergy model with a parameter weakly varying on time (hereafter denoted
by c̃2). In spite of the global evolution in both scenarios being the same, the
energy densities and the EoS parameters, etc, can behave rather differently.
In what follows, quantities referring to holographic models with variable c2

will be noted by a tilde. They obey

ρ̃M = 3M2
P (1− c̃2)H2 and ρ̃X = 3M2

P c̃
2H2 . (6.1)

as well as

˙̃ρM = −3Hρ̃M and ˙̃ρX = −3H(1 + w̃)ρ̃X , (6.2)

i.e., we assume that their energy densities conserve separately.
In the interacting scenario, the (non) conservation equations read

ρ̇M + 3HρM = Q and ρ̇X + 3H(1 + w)ρX = −Q . (6.3)

1This Chapter corresponds to Ref. [120].
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and the EoS parameter

w = − Q

3(1− c2)ρXH
(6.4)

We remark that in any holographic interacting model defined at the Hubble
scale, independently of the nature of the interaction, dark energy and cold
dark matter share the same dependence on H, and thus present the same
background evolution. By rewriting Eqs. (6.3) as

ρ̇M + 3H

(

1− Q

3HρM

)

ρM = 0 ,

ρ̇X + 3H

(

1 + w +
Q

3HρX

)

ρX = 0 (6.5)

and using Eq.(6.4) both components share the same effective EoS parameter,
weff ≡ − Q

3HρM
. We will return to this later on. We shall also re-consider

the coincidence problem from the point of view of non-interacting models
where the energy densities ratio, r̃ ≡ ρ̃M/ρ̃X , is not a constant.

6.2 Background equivalence between interacting
and c̃2 models

In order to show that every interacting model can be considered as a non-
interacting one (with a c̃2 parameter varying in time) at the background
level (i.e., both models give rise to the same Hubble function), we must first
verify that both energy densities are positive. By Eqs. (6.1), this condition
implies 0 ≤ c̃2 ≤ 1.

From the Friedmann equations (2.17) and (2.18) and (6.3.2) we obtain

Ḣ = −3

2
H2
(

1 + c̃2w̃
)

. (6.6)

For the non-interacting model, from Eq. (6.3.1) we have that ρ̃M = ρ̃M 0a
−3

remains always positive.
We must also verify that ρ̃X is positive, i.e., that c̃2 ≥ 0. Since by hy-

pothesis interacting and c̃2 models share the same H(z), Eq. (2.18) implies

c̃2(z)

c2
=
w(z)

w̃(z)
, (6.7)

where z is the redshift. Thus, if the non-interacting dark energy has a neg-
ative EoS parameter w̃(z), since w(z) ≤ 0 and c2 ≥ 0, then ρ̃X and c̃2(z),
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cannot be negative.

Since ρM ≥ 0 and c̃2 ≤ 1, by differentiating Eq. (6.3.2), using Eqs. (6.4),
(6.6) and (6.7), and recalling that Q > 0, we obtain

dc̃2

dt
=

1− c̃2

ρM
Q ≥ 0 . (6.8)

As shown in [33], the condition dc̃2

dt ≥ 0 must be fulfilled for thermodynami-
cal reasons. Thus, we conclude that the Hubble function of any holographic
interacting model with Q ≥ 0 and c2 constant, also corresponds to an holo-
graphic non-interacting model (Q = 0) of dark energy (w̃ ≤ 0), with c̃2

obeying 0 ≤ c̃2(t) ≤ 1 and dc̃2

dt ≥ 0, and vice versa. It is also note-worthy
that despite both models being equivalent at the background level, they
share the same H(z), their energy components evolve diversely. In the in-
teracting case, the Hubble function will never have c2 as a free parameter,
but it will be multiplied by the constants in the interacting term Q, as can be
seen by using Eq. (6.6) in Eq. (6.4). This means that, as long as ΩX = c2,
the ΩX 0 parameter can not be fitted, because we have neither observational
nor theoretical constraints on the interaction and so, the dependence on
them is degenerated. On the other hand, in the c̃2 model it has the fixed
value, Ω̃X 0 = c̃2(z = 0). Consequently, at background level is not possible,
in principle, to discriminate interacting models from c̃2 ones. Nevertheless,
as we shall see in section 6.6, they are distinguishable at the perturbative
level.

6.3 Observational constraints

To constrain the free parameters of the Hubble holographic models presented
below (sections 6.4 and 6.5) we shall use observational data from SN Ia
Union2 set (557 data points) [60], BAO [84], the acoustic scale lA [70], gas
mass fractions in galaxy clusters as inferred from X-ray data (42 data points)
[94] and the Hubble rate (15 data points) [95, 96, 97, 98]. For details see §4
and §5.2.

6.4 Model 1

Let us now consider the holographic interacting model studied in §5 to con-
struct its equivalent c̃2(t) model. In the former the IR cutoff is also set by
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the Hubble length and the interaction term was taken as Q ≡ 3AH0ρM ,
with A a semipositive definite constant, related to the constant decay rate,
Γ, of dark energy into cold dark matter by A ≡ Γ

3H0r
. The corresponding

Hubble function is

H = H0

(

A+ (1−A)(1 + z)
3
2

)

, (6.9)

and the equation of state parameter

w = − A

ΩX

H0

H
, (6.10)

follows from Eq. (6.4) and the fact that ΩX = c2 and ΩM = 1− c2. Notice
that here the density parameters, Ωi ≡ ρi

3M2
PH

2 (i =M,X) are constant. The

model fits reasonably well the observational data and is consistent with the
age of the old quasar APM 08279+5255 [112, 113], something that ΛCDM
is not at 1σ confidence level.
This model presents an unexpected similarity to the Chaplygin gas model
[43]. To see this, bear in mind that in any Hubble holographic interacting
model cold dark matter and dark energy share the same effective EoS pa-
rameter, weff = −Q/(3HρM ). Multiplying it by the total energy density
we get the total pressure

P = weff ρ = −3
1
2AMP H0 ρ

1
2 . (6.11)

This expression is formally identical to the pressure of the generalized Chap-
lygin gas, P = −βρ−α [43]. As is well known, for α < 0 and β > 0, it may

imply instabilities since the squared adiabatic sound speed (c2s a ≡ Ṗ
ρ̇ ) is

negative. Due to the interaction, we can take account of non adiabatic
processes, and so consider an effective speed of sound. In §6.9 we find a La-
grangian formulation with a standard scalar field φQ for both models (the
interacting and the c̃2) with an effective speed of sound given by c2s = 1.
Notice that while in the interacting case r = ρM/ρX is a constant, in the
non-interacting one, r̃ may vary with time. We expand H2(z) and assume
that the term proportional to (1+z)3, corresponds to the usual matter term
in Friedmann’s equation, and identify the remainder as the dark energy
density. Thus,

M−2
P

3H2
0

ρ̃M = (1−A)2(1 + z)3 (6.12)

and

M−2
P

3H2
0

ρ̃X = A2 + 2A(1−A)(1 + z)
3
2 , (6.13)
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and from Eqs. (6.1.2), (6.9) and (6.13) it follows that

c̃2 =
2A(1−A)(1 + z)

3
2 +A2

(

A+ (1−A)(1 + z)
3
2

)2 . (6.14)

In consistency with the findings of [33], c̃2 never decreases and tends from
below to a constant value in the far future,

c̃2z→∞ = 0 , c̃2z→0 = 1− (1−A)2 , c̃2z→−1 = 1 , (6.15)

where 0 ≤ A ≤ 1 from observations. Table 6.1 shows the best fit values of
the parameters and their 1σ errors. Table 6.2 presents the χ2 of model 1
and ΛCDM, obtained by fitting each data set independently, and the total
χ2. The obtained χ2 per degree of freedom (dof) is χ2

dof = 1.00. Notice

that (1−A)2 = Ω̃M0 and its value (≈ 0.17) is about 6σ lower than the one
reported by Komatsu et al. [70]. However, this value is reached by using
the last scattering sound horizon as a standard ruler; i.e., it is not observed
directly but by integrating the background evolution. So truly, just a global
background evolution is obtained, that in the case of ΛCDM, gives the value
of ΩM0 mentioned above, but in other models, as in this one, it can vary.
Figure 6.1 shows the 1σ and 2σ confidence regions and the best fit value of
the free parameters of the models.

Model ΩX 0 H0 A

Interacting holographic 0.73 69.4± 1.7 0.588± 0.004
c̃2 holographic 0.830±0.003 69.4± 1.7 0.588± 0.004

ΛCDM 0.720±0.003 71.5+1.3
−1.5 —

Table 6.1: Values of the parameters of the models obtained by constraining them with the
observational data described in Section 6.3. ΩX 0 is not a free parameter in any of the two
holographic scenarios, but it is included for the sake of comparison with the conventional ΛCDM
model. Notice that despite the holographic models being described by the same Hubble function
they have different values of ΩX 0. This point does not discard any model, since the value from
WMAP7 [70] is obtained using the last scattering surface as a standard ruler, i.e., integrating
the ΛCDM background evolution from the last scattering surface to the present time. Thus, if
the Hubble function is the same for different models, geometric data alone can not distinguish
between them. The H0 values are given in km s−1 Mpc−1.

Although H(z) coincides with the corresponding expression in [99], neither
ρM nor ρX , nor w(z) do. The functional form of w̃ coincides with that of
the EoS parameter for the interacting case - cfr. Eq. (6.10)-,

w̃ = − A

Ω̃X

H0

H
(6.16)
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Model χ2
SN χ2

BAO χ2
lA

χ2
X−ray χ2

H χ2
tot χ2

tot dof

Model 1 554.8 1.7 0.3 44.9 11.3 613.0 1.00
ΛCDM 542.7 1.2 0.7 42.3 8.8 595.7 0.97

Table 6.2: χ2 values for the holographic model of sec. 6.4 and ΛCDM model. Each of them
has two free parameters (A and H0 the holographic, and ΩX 0 and H0 the ΛCDM).
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Figure 6.1: 1σ and 2σ confidence regions for the parameters A and H0 of model 1. The plot
holds for both scenarios, the interacting and the c̃2(t) (non-interacting). The dot indicates the
best fit values.

but has a different time dependence since ΩX 6= Ω̃X , as the left panel of Fig.
6.2 shows. Notice that in the interacting case, w crosses the phantom divide
line (w = −1). However, the weff defined in the line below Eq. (6.5), does
not cross the said line. The pressure, obtained by multiplying Eq. (6.16) by
Eq. (6.1.2) and using Eq. (6.9), described here for later purposes, reads

P̃ = w̃ρ̃X = −3AM2
PH

2
0

[

A+ (1−A)(1 + z)
3
2

]

. (6.17)

As shown in the right panel of Fig. 6.2, the coincidence problem is solved
(i.e., r is constant) in the interacting case (solid green line). By contrast, in
the c̃2 model (thin dot dashed red lines), it is not solved but is much less
severe than in the ΛCDM model (thick short dashed blue line).
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Figure 6.2: Left panel: EoS parameter for the interacting (w thin line, and weff thick line),
the c̃2 and ΛCDM models. Right panel: energy densities ratios, r = ρM/ρX , versus 1 + z for the
ΛCDM, the interacting and the c̃2 models. All the graphs were plotted using the best fit values
of the parameters, shown in table 6.1. Solid (green) lines are used for the interacting case, thin
dot dashed (red) lines for the c̃2 model, and thick short dashed (blue) for ΛCDM. The 1σ region
of the parameters is also plotted, but due to the very small errors, it results nearly inappreciable.

6.5 Model 2

In this model, cold dark matter and dark energy evolve separately (i.e.,
Q = 0) but the holographic parameter c̃2 varies slowly with time. In order

to have 0 ≤ c̃2 ≤ 1, and dc̃2

dt ≥ 0 we use the parametrization

c̃2 =
1

1 + r̃0(1 + z)ǫ
(6.18)

where r̃0 ≡ Ω̃M0

Ω̃X0
and ǫ a semipositive definite constant (notice that c̃2(z =

0) = Ω̃X0). In this case, the Hubble function

H = H0

√

Ω̃M0(1 + z)3 + Ω̃X0(1 + z)3−ǫ (6.19)

coincides with the Hubble function of the spatially flat wCDM model with
w̃ = − ǫ

3 . It obviously reduces to the ΛCDM model for ǫ = 3. If we consider
the Hubble function in Eq.(6.19) as coming from an interaction between
dark energy and dark matter, by Eq. (6.4) the interacting term would be

Q = −3 c2wρMH , (6.20)

where the EoS parameter of the interacting case is w = − ǫ
3c2(1+r̃0(1+z)ǫ)

.

The variation of c̃2, breaks the holographic dependence of dark energy
density. But as for the rate of variation of c̃2 we must have dc̃2

dt /c
2 =
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ǫr̃0(1 + z)ǫH/(1 + r̃0(1 + z)ǫ) . H, it may be considered as a small vari-
ation at the level of saturation. For the last inequality to be fulfilled,
f(z) ≡ ǫΩM0(1 + z)ǫ/(ΩX0 + ΩM0(1 + z)ǫ) ≤ 1. This is not always true in
the past, but the maximum value of f(z) , that is monotonously decreasing,
is f(z → ∞) = ǫ. Using the best fit value for ǫ, shown in table 6.3, its
maximum variation rate is of the order of the expansion rate, and the model
can still be considered holographic. The χ2 values obtained by fitting the
model with the different data sets, are shown in table 6.3. The χ2 per degree
of freedom obtained with the fit of all the data sets together is χ2

dof = 0.97.
The left panel of Fig. 6.3 shows that the EoS parameter w (thin solid green
line) cross the phantom divide line but the effective one weff (thick solid
green line) of the interacting case does not. The non-interacting case, as
we have mentioned before, is just a wCDM model with w = − ǫ

3 (thin dot
dashed red line). The right panel of Fig. 6.3 shows that the interacting
model (solid green line) solves the coincidence problem, and in the case of
the c̃2 one (thin dot dashed red line), it overlaps the ΛCDM line (thick short
dashed blue line), since w & −1. Fig. 6.4 depicts the 1σ and 2σ regions for
the parameters r̃0 and H0 (left panel) and r̃0 and w0 (right panel). Both
panels are the same for both scenarios, the interacting and the c̃2, however,
r̃0 is only related to the dark energy and cold dark matter densities in the
c̃2 description; in the interacting case it has no physical meaning. In both
cases today’s value of the EoS is the same w0 = w̃0 = − ǫ

3 , as the left panel
of Fig. 6.3 shows.
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Figure 6.3: Left panel: EoS parameter for the the interacting (w with thin line, and weff with
thick line), the c̃2 and ΛCDM models. Right panel: energy densities ratios, r ≡ ρM/ρX , versus
1 + z for the ΛCDM, the interacting and the c̃2 models. Notice that the energy densities ratio of
the c̃2 and ΛCDM models practically overlap. All graphs were drawn using the best fit values of
the respective parameters, shown in table 6.3. Solid (green) lines are used for the interacting case,
thin dot dashed (red) lines for the c̃2, and thick short dashed blue for ΛCDM. The 1σ region of
the parameters is also plotted.
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Model ΩX 0 H0 r̃0 ǫ

Interacting holographic 0.73 71.5± 2.6 0.370± 0.013 2.97+0.16
−0.14

c̃2 holographic 0.730±0.007 71.5± 2.6 0.370± 0.013 2.97+0.16
−0.14

ΛCDM 0.720±0.003 71.5+1.3
−1.5 — —

Table 6.3: Best fit values of the free parameters of the models. In the c̃2 holographic scenario,
ΩX 0 is obtained from the free parameter r̃0, so the model has only three free parameters. In the
interacting one, for ΩX 0 we use the value obtained in [70]. The H0 values are given in km/s/Mpc.

Model χ2
SN χ2

BAO χ2
lA

χ2
X−ray χ2

H χ2
tot χ2

tot dof

Model 2 542.7 1.2 0.0 41.5 8.8 594.2 0.97
ΛCDM 542.7 1.2 0.7 42.3 8.8 595.7 0.97

Table 6.4: χ2 values for the holographic model studied in Sec. 6.5 and for ΛCDM model. In
the former, the free parameters are r̃0, ǫ and H0. In the latter the free parameters are two, ΩX 0

and H0.
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6.6 Evolution of the subhorizon perturbations

We have seen that in model 1 (section 6.4), the interacting version is pre-
ferred over the non-interacting one because Ω̃M0 ≈ 0.17, too small as com-
pared with results of Komatsu et al. [70]. In model 2 (section 6.5), both
seem to be compatible with observations at the background level. A further
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study should be done, in general, to establish which scenario is observation-
ally favored. Here, we make a simple perturbation study, just considering
matter perturbations inside the horizon. This study just intends to illustrate
that a perturbative analysis can permit us tell apart the interacting from
the non-interacting scenario, despite they share the same H(z).

Once the Universe becomes matter dominated, the anisotropic stress due
to neutrinos will be negligible and, in the Newtonian gauge, it will suffice
just one single gravitational potential -say φ- to determine the flat metric
element

ds2 = −(1 + 2φ)dt2 + a2(1− 2φ)dxidxi. (6.21)

In the interacting case, the energy-momentum tensors of dark matter and
dark energy are not independently conserved. For the first component, by
perturbing the conservation equation Tµ νM ;µ = QµM , where QµM ≡ QuµM (with

uµM the four velocity of matter, and no momentum transfer in the cold dark
matter reference rest frame is assumed) [50, 56], the equations of motion for
the energy density and the velocity divergence (θ = ikjvj) perturbations,
with the speed of sound, c2sM = 0, and the EoS parameter, wM = 0, are

δ̇M = −θM
a

+ 3φ̇+
δQ

ρM
+

Q

ρM
(φ− δM ) , (6.22)

θ̇M = −HθM +
k2

a
φ , (6.23)

and for the dark energy component Tµ νX ;µ = QµX , where Q
µ
X ≡ −QuµM , and

since dark energy can be considered a scalar field, the effective speed of
sound c2sX = 1, the dynamical equations for perturbations become

δ̇X = − (1 + w)
θX
a

− 3H (1− w) δX − 3aH
[

3H
(

1− w2
)

+ ẇX
] θX
k2

+3 (1 + w) φ̇− Q

ρX

[

φ− δX + 3aH (1− w)
θX
k2

]

− δQ

ρX
,(6.24)

θ̇X = 2HθX +
1

(1 + w)

k2

a
δX − k2

a
φ− Q

(1 + w) ρX
(θM − 2θX) , (6.25)

while the Fourier transformed 0 − 0 and 0 − i components of the Einstein
equations are

k2

a2
φ+ 3H(φ̇+Hφ) = −4πG

∑

i

ρi δi , (6.26)

k2

a

(

φ̇+Hφ
)

= 4πG
∑

i

(ρi + Pi) θi . (6.27)
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A more detailed derivation of the perturbation equations can be found in
[56]. As we are concerned with subhorizon scales we just consider the case
in which k ≫ aH, and so, the Newtonian limit of Poisson’s equation (6.26)
is just

k2

a2
φ = −4πG (ρMδM + ρXδX) . (6.28)

From Eq.(6.28) and bearing in mind that every single energy component
obeys 8πG

3 ρi ≤ H2, one sees that the gravitational potential (and its deriva-
tives) can be neglected when compared with the density perturbations. After
all this, Eqs. (6.22)-(6.25) simplify to

δ̇M = −θM
a

, (6.29)

θ̇M = −HθM +
k2

a
φ , (6.30)

δ̇X = − (1 + w)
θX
a

− 3H (1− w) δX +
1

ρX
(QδX − δQ) , (6.31)

θ̇X =
1

(1 + w)

k2

a
δX − Q

(1 + w) ρX
(θM − 2θX) . (6.32)

Notice that in the interacting version of model 1, δQ = 3AH0ρMδM , but in
model 2, since Q includes a dependence in w and H, the analysis is more
involved. However, we assume, as in [56], that the product 3c2wH is just
an approximation to a time (but not position) dependent interaction rate,
so there are no perturbations there, and δQ = −3c2wHρMδM . In the c̃2

scenarios of both models, Q = 0 and δQ = 0.

6.6.1 Initial conditions

To solve numerically these four coupled differential equations, we must
choose some initial conditions to the density and velocity perturbations.
We set them at zi = 1000. We impose the potential to be a constant (we
have seen that it and its time derivative are much smaller than density per-
turbations), and using the perturbed Einstein equations (6.27) and (6.28),
we find the density and velocity initial conditions

k2φ = − 3

2(1 + zi)2
(ρM i δM (zi, k) + ρX i δX(zi, k)) , (6.33)

k2φ =
3

2(1 + zi)H
(ρM i θM (zi, k) + ρX i θX(zi, k)) . (6.34)
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for each model. Since we obtain, numerically, that the evolution of perturba-
tions is nearly independent of the wavenumber k in the range 0.001 hMpc−1 ≤
k ≤ 0.1 hMpc−1, that includes all the interesting scales under considera-
tion, we shall assume that initially dark energy perturbations are propor-
tional to the dark matter perturbations, i.e., δX(zi, k) = α δM (zi, k) and
θX(zi, k) = β θM (zi, k), with α a nonnegative constant.

Interacting version of model 1

We have the freedom to normalize the matter density contrast as δM (zi) =
1

1+zi
, then by equations (6.27) and (6.28), we find θM (zi) = −

(

1+αΩX0
ΩM0+βΩX0

)

H
(1+zi)2

.

For the dark energy component we take different choices for α and β. The
dashed (green) lines of the left panel of figure 6.5 correspond to the non-
interacting scenarios . Solid (blue) line is for the ΛCDM model, shown for
illustration. Each different dashed (green) line depicts various initial condi-
tions, from top to bottom, α = 0 and β = 0, α = 1 and β = 1, and α = 1
and β = 10. Notice that the interacting scenarios exhibit a dependence on
the initial conditions chosen for the dark energy component. The evolution
of perturbations depend on the initial conditions on θX but not so much on
δX .

c̃2 version of model 1

For the matter component we impose as in the previous case δM (zi) =
1

1+zi

and find θM (zi) = −
(

1+2αA (1−A) (1+z)−
3
2

1+2β A (1−A) (1+z)−
3
2

)

H
(1+zi)2

. Left panel of figure 6.5

shows the evolution of δM , dot-dashed (red) lines, for different options for
both δX(zi) and θX(zi). Each different dot-dashed (red) line depicts two
initial conditions, α = 0 and β = 0 and α = 1 and β = 10 (they practically
overlap). In this scenario, the final result does not depend on the chosen
initial conditions.

Interacting version of model 2

For the matter component we obtain as in the previous section 6.6.1 δM (zi) =
1

1+zi
and θM (zi) = −

(

1+αΩX0
ΩM0+βΩX0

)

H
(1+zi)2

. For the dark energy component

we take different options for both δX(zi) and θX(zi). The dashed (green)
lines of the right panel of figure 6.5 correspond to the non-interacting sce-
nario. Solid (blue) line is for the ΛCDM model, shown for comparison
purposes. Each different dashed (green) line depicts, from top to bottom on
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the right, α = 0 and β = 0, α = 1 and β = 1 and α = 1 and β = 10. Notice
that the interacting scenarios exhibit a dependence on the initial conditions
chosen for the dark energy component.

c̃2 version of model 2

For the matter component we find δM (zi) = 1
1+zi

and θM (zi) = − H
(1+zi)2

.

The right panel of figure 6.5, shows the evolution of δM , with dot-dashed
(red) lines, for various options for both δX(zi) and θX(zi). Each different
dot-dashed (red) line depicts the initial conditions, α = 0 and β = 0, and
α = 1 and β = 10, though they practically overlap. Again, the final result
does not depend on the initial conditions.

6.6.2 Results

Figure 6.5 shows the numerical solution for δM for model 1 (left panel),
and for model 2 (right panel), in both cases for k = 0.01 hMpc−1. How-
ever, the outcome is quite independent of the wavenumber k in the range
0.001 hMpc−1 ≤ k ≤ 0.1 hMpc−1 that includes all the interesting scales un-
der consideration. In the interacting case, the matter density perturbations
do not depend much on initial conditions imposed on the δX but they do on
the initials conditions on θX . Notice that in any case, the matter density
perturbations clearly differ in both scenarios, the interacting and the c̃2 one.
The most favored (the closer to ΛCDM), at least in the two models studied
here, are the c̃2 scenarios, since low density perturbations at z ≈ 10 can
be problematic for the large scale structure formation. To confront it with
observations, we resort to the growth function, f ≡ d ln δM/d ln a [121], and
the observational data borrowed from [117]. In figure 6.6, we can see that for
both models (left panel model 1, right panel model 2) the non-interacting
version fits better the data, as said before, especially at the present epoch.
This approach was just done to show that interacting versions and c̃2 shar-
ing the same H(z), and so indistinguishable at the background level, can
evolve differently at the perturbative level. However, to definitively discard,
or validate, the interacting model, an exact first order perturbation together
with the study of matter and radiation power spectrum seems necessary.

6.7 Conclusions

As we have seen, at background level, holographic interacting models whose
IR cutoff is set by the Hubble’s length can be viewed as non-interacting ones
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Figure 6.5: Left panel: the evolution of cold dark matter density perturbations versus redshift
in model 1. Right panel: the same for model 2. In plotting the graphs the dashed (green) lines
describe the matter density perturbations of the interacting scenario, the dot-dashed (red) lines
the c̃2, and the solid (blue) line ΛCDM for comparison purposes. Different initial conditions are
used for the interacting versions; from top to bottom at the right, α = 0 and β = 0, α = 1 and
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Figure 6.6: Left panel: the evolution of the growth function, f ≡ d ln δM
d ln a

, versus redshift for
model 1. Right panel: the same for model 2. In plotting the graphs the dashed (green) lines
describe the growth function of the interacting scenario, the dot-dashed (red) lines the c̃2, and
the solid (blue) line ΛCDM for comparison purposes. Different initial conditions are used for the
interacting versions; from top to bottom α = 0 and β = 0, α = 1 and β = 1 and α = 1 and
β = 10. For the c̃2, two different sets of initial conditions are used, but they practically overlap
each other (α = 0 and β = 0, and α = 1 and β = 10). Notice that in the right panel, the c̃2

scenario overlaps ΛCDM, as it behaves as a wCDM model with w = −0.99. Observational data
is borrowed from [117].

whose holographic parameter c̃2 is not constant but varies slowly. Because
they share an identical Hubble function, they are not distinguishable at the
background level. However, this degeneracy can be broken at the pertur-
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bative level, since both energy components, i.e., cold dark matter and dark
energy, evolve differently in each scenario. The interacting model and the
non-interacting one (section 6.4) fit the geometrical data rather well. At
the perturbative level, the non-interacting scenario is favored by large scale
structure formation. In the second model (section 6.5), which behaves as a
spatially flat wCDM model, both interpretations, interacting and c̃2(t), fit
the data well and the values of the parameters seem reasonable. It contains
the ΛCDM as a limiting case but with the coincidence problem alleviated in
the interacting scenario. To discriminate between both interpretations, at
the perturbative level, the non-interacting scenario appears favored. This
should not be surprising, since it mimics rather well the ΛCDM model.
In general, the non-interacting versions seem to be favored by the struc-
ture formation, however, the interacting can not be ruled out just at this
point. To go deeper in the matter, a full-fledged perturbative analysis seems
necessary.

6.8 Hubble functions considering the radiation com-
ponent

To constrain the model with CMB data, it is necessary to take into account
the radiation component, since we need to describe the Universe at the
last scattering surface, z⋆ ≈ 1090, where the said component is no longer
negligible. So, expressions like (6.9) and (6.19) are not appropriate at the
last scattering epoch, much less so at earlier times. The presence of radiation
invalidates the expression ρM = 3M2

P (1 − c2)H2, so to obtain the Hubble
function we rewrite the second Friedmann equation as

Ḣ

H2
= −3

2
(1 + wXΩX + wRΩR) , (6.35)

where the subscript R stands for radiation, and the EoS parameter wX does
not coincide with the w of sections 6.4 and 6.5. Differentiating Eq.(2.45)
and using Eqs. (6.3.2) and (6.35), we obtain

wX = − Q

(1− c2)ρXH
+
wR
c2

(

H0

H

)2

ΩR0(1 + z)4 . (6.36)

Because of this expression, Eq. (6.35) has no analytical solution. However,
we can consider two different integration regions. One for z ≤ 50 and an-
other for z ≥ 50. In the former, the universe is cold dark matter and dark
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energy dominated; in the latter only the higher z terms contribute.

In the example considered in section 6.4, Q ≡ ΓρX and in the first inte-
gration region, z ≤ 50, the second term in Eq. (6.36) contributes less than
1%, so the Hubble parameter is just like in Eq. (6.9), and the first Friedmann
equation come very close to

(

H

H0

)2

z≤50

≃ A2 + 2A(1−A)(1 + z)
3
2 + (1−A)2(1 + z)3 . (6.37)

For the second region, z ≥ 50, the first term in Eq. (6.36) contributes no
more than 1%, so the first Friedman equation can be approximated by

(

H

H0

)2

z≥50

≃ (1−A)2(1 + z)3 + 2ΩR0(1 + z)4 . (6.38)

As the two first terms in Eq. (6.37) are negligible in the region z ≥ 50, and
the second term in Eq. (6.38) is trifling when z ≥ 50, we can just consider
the Hubble function, after redefining 2ΩR0 → ΩR0 (notice that with this we
assume that what is holographic is the total energy density, and not only
dark energy), as

(

H

H0

)2

≃
(

A+ (1−A)2(1 + z)
3
2

)2
+ΩR0(1 + z)4 . (6.39)

This Hubble function is the same in both scenarios, the interacting and the
c̃2, as when we ignored the radiation component.
Proceeding as before, in the case of the model 2 (§6.5) we obtain

(

H

H0

)2

≃ Ω̃M0(1 + z)3 + Ω̃X0(1 + z)3−γ +ΩR0(1 + z)4 . (6.40)

In both cases, ΩR0 ≈ Ωγ0(1+0.0227Neff ) as described in [70], where Neff =
3.04 is the effective number of neutrino families.

6.9 Lagrangian formulation of the models of sec.
6.4

6.9.1 Interacting model with 1 scalar field

In §6.1, we have seen that this kind of interacting models, can be described
as a single fluid (as long as the evolution of the densities of dark energy and
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cold dark matter are identical), whose effective EoS parameter is

weff = −AH0

H
, (6.41)

with A a positive constant. The total effective pressure P = weffρ is

P = −3
1
2AMP H0 ρ

1
2 , (6.42)

where P and ρ ≡ ρM + ρX are the dark sector pressure and energy density
from Eqs. (2.17) and (6.41). For a standard scalar field φQ minimally
coupled to gravity, the action is defined by

S =

∫

d4x
√−g

(

R

2
+ LQ(φQ, χQ)

)

(6.43)

where χQ = 1
2gµν∂

µφQ∂
νφQ is the kinetic term. Assuming homogeneity and

isotropy, the energy (Hamiltonian) density and the pressure (Lagrangian
density) are

ρ =
1

2
φ̇2Q + V (φQ) and P =

1

2
φ̇2Q − V (φQ) . (6.44)

From the last two equations the potential and the kinetic term are

φ̇2Q = ρ+ P and V (φQ) =
1

2
(ρ− P ) , (6.45)

respectively. Using again Eqs.(2.17), (6.9) and (6.42) we obtain P (z) and
with (6.45) we obtain

dφQ =
2

3AH0

(

P 2

3A2M2
PH

2
0

+ P

)− 1
2

dP . (6.46)

After integration we get

L = P = −3A2M2
PH

2
0

16

(

4e
− 1

4

√

3

M2
P
(φQ−φQ 0)

+ e

1
4

√

3

M2
P
(φQ−φQ 0)

)2

,

(6.47)
where we have defined φQ 0 as the value of the scalar field at the maximum
pressure, i.e., when z → −1. It is interesting to notice that in the absence
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of interaction, A = 0, the pressure of the dark sector is that of cold matter.
From (6.47) and (6.45) we find the potential

V (φQ) =
3A2M2

PH
2
0

512

(

4 + e

1
2

√

3

M2
P
(φQ−φQ 0)

)2

×
(

16e
−
√

3

M2
P
(φQ−φQ 0)

+ 24e
− 1

2

√

3

M2
P
(φQ−φQ 0)

+ 1

)

.(6.48)

So we can describe the whole dark sector by a standard scalar field, with
an effective sound speed c2s = δP

δρ = 1, even if its adiabatic sound speed

c2a = Ṗ
ρ̇ is negative due to the interaction. Had we considered a general k-

essence Lagrangian density [122], the squared sound speed would have been
negative.

6.9.2 c̃2(t) model with 1 scalar field

Here we obtain a Lagrangian density for the dark energy in the case of the
holographic c̃2 model. This is motivated in order to show that the two models
of section 6.4, described at the background level by the same H(z), differ not
only because the energy densities evolve differently but also because their
Lagrangians are diverse.
To begin with, the dark energy density can be expressed as a function of the
pressure

ρ̃ = −3A2H2
0M

2
P − 2P̃ . (6.49)

Proceeding as before we obtain

L̃ = −3A2M2
PH

2
0 sec

2

(√

3

M2
P

φ̃Q − φ̃Q 0

4

)

and (6.50)

Ṽ (φ̃Q) =
3A2M2

PH
2
0

2
tan2

(√

3

M2
P

φ̃Q − φ̃Q 0

4

)

. (6.51)

As in the previous case, for a k-essence Lagrangian we would have obtained
c̃2s < 0.
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Chapter 7

Model of interacting
holographic dark energy at
the Ricci scale1

7.1 The holographic model

This model assumes a spatially flat homogeneous and isotropic universe
dominated by dark matter and dark energy, the latter obeying the holo-
graphic relationship (2.45). In virtue of Friedmann equations,

H2 =
1

3
M−2
P (ρM + ρX) , (7.1)

and

Ḣ = −1

2
M−2
P (ρM + ρX + pX) , (7.2)

the fractional dark energy density, ΩX , can be expressed as

ΩX =
c2

3c2w + 2
, (7.3)

where w, in general depends on time. The deceleration parameter (2.19)
takes the simple expression,

q = 1− ΩX
c2

. (7.4)

As we shall see, as a consequence of the evolution of ΩX , q varies mono-
tonically from positive values at early times (in the matter dominated era)

1This Chapter corresponds to the model of Ref. [39].
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to negative values at later times (in the dark energy dominated era). The
evolution of ΩX follows from the conservation equations of both dark com-
ponents. In the absence of non-gravitational interactions between them they
evolve independently and obey

Ω̇M −
(

1− 2ΩX
c2

)

(1− ΩX)H = 0 , (7.5)

Ω̇X +

(

1− 2ΩX
c2

)

(1− ΩX)H = 0 . (7.6)

Bearing in mind that in our case ΩM + ΩX = 1, we get the following
expressions in terms of the redshift ,

ΩX =
2ΩX0 − c2 + c2(1− ΩX0)(1 + z)

2
c2

−1

2ΩX0 − c2 + 2(1− ΩX0)(1 + z)
2
c2

−1
. (7.7)

The coincidence problem gets alleviated if for reasonable values of ΩX0 and
c2 we get r0 ∼ O(1). This is the case here since for ΩX0 and c

2 of order unity,
r0 also results of this same order. Here, again, r = ρM/ρX . However, for
late times (i.e, when z → −1) one has r → 0. In this sense, the coincidence
problem is not properly solved. To obtain a non-vanishing ratio at late times
some interaction between DM and DE must be incorporated in the picture
[104].

In this case, the evolution equations generalize to

Ω̇M −
(

1− 2ΩX
c2

)

(1− ΩX)H = QH , (7.8)

Ω̇X +

(

1− 2ΩX
c2

)

(1− ΩX)H = −QH , (7.9)

where the Hubble factor on the right hand sides has been introduced to
render the interaction term, Q, dimensionless.

Since the nature of both dark components is largely unknown, there is
ample latitude in choosing Q. We shall specify it by demanding that r
evolves from an unstable fixed point in the far past, r∞ ≡ r(z → ∞), to
a stable fixed point at the far future, rf ≡ r(z → −1) [104]. The pair of
equations (7.8) and (7.9) imply

ṙ =

[

r

(

1 + r − 2

c2

)

+Q(1 + r)2
]

H . (7.10)
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Imposing that rf be a fixed point, i.e., ṙ|r=rf = 0 the interaction term Q is
simply a constant given by

Q = − rf
(1 + rf )2

(

1 + rf −
2

c2

)

. (7.11)

As we shall see later, rf and c2 take values such that Q is positive-definite,
which entails a transfer of energy from dark energy to dark matter. Obvi-
ously if Q were negative, the transfer of energy would go in the opposite
direction which would conflict with the second law of thermodynamics [123]
and the coincidence problem would only worsen. Rewriting Eq. (7.10) as

ṙ = (Q+ 1)(r − rf )(r − r∞)H (7.12)

and using the condition ṙ = 0, the other fixed point can be expressed in
terms of the previous one, namely,

r∞ =
2− c2(1 + rf )

2rf + c2(1 + rf )
. (7.13)

To study the stability of the fixed points we first write r′ ≡ dr/d ln a = ṙ/H
and calculate the derivative of r′ with respect to r. In the case of the far
future fixed point we get

dr′

dr
|rf = 1 +

2(rf − 1)

c2(rf + 1)
. (7.14)

Since rf must be lower than r0 ≃ 0.45, from Eq. (7.4) with c2 < ΩX0 ≃ 0.75

(otherwise q0 would not be negative), one follows that dr′
dr |rf < 0, i.e., the

fixed point rf is a stable one. Similarly, we find that

dr′

dr
|r∞ = −2 + c2

c2
+

4

c2(1 + rf )
> 0 , (7.15)

i.e., the fixed point at the far past is an unstable one. Equation (7.12) can
be integrated with the help of (7.11). In terms of the redshift it yields,

r =
rf (r0 − r∞)− r∞(r0 − rf )(1 + z)(Q+1)(r∞−rf )

(r0 − r∞)− (r0 − rf )(1 + z)(Q+1)(r∞−rf )
. (7.16)

Inspection of (7.12) readily shows that when r lies between both fixed
points one has ṙ < 0, i.e., the ratio between the energy densities diminishes
monotonously from one fixed point to the other. This is depicted in Fig. 7.1.
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The said ratio smoothly decreases from high z (i.e., from r∞ -the unstable
fixed point is at z → ∞)) to asymptotically approach the fixed stable point,
rf , at z = −1. Note that the latter needs not be zero. In this regard the
coincidence problem is much alleviated because we are not living in any
special era. However, the problem is not solved in full since the model
cannot predict that r0 is of order unity. To the best of our knowledge, no
model predicts this value, as well as no model predicts the present value of
the temperature of the cosmic background radiation, the Hubble constant,
or the age of the Universe. For the time being, we must content ourselves by
taking these values as input parameters since, very possibly, we are to wait
for a successful theory of quantum gravity to compute them. The expression
for the fractional density of dark energy follows from the relationship r =
(1− ΩX)/ΩX and Eq. (7.16),

ΩX =
(r0 − r∞)− (r0 − rf )(1 + z)(Q+1)(r∞−rf )

(rf + 1)(r0 − r∞)− (r∞ + 1)(r0 − rf )(1 + z)(Q+1)(r∞−rf )
. (7.17)

From the latter and (7.3) we obtain the equation of state of dark energy in
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Figure 7.1: The ratio r between the energy densities vs. redshift for the
best fit model. As the inset shows rf ≡ r(z → −1) does not vanish. In this,
as well as in subsequent figures, the red swath indicates the region obtained
by including the 1σ uncertainties of the constrained parameters used in the
calculation.
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terms of the redshift,

w =
1

3

(

1− 2

c2
+ r∞ +

(r0 − r∞)(r∞ − rf )

r∞ − r0 + (r0 − rf )(1 + z)(Q+1)(r∞−rf )

)

. (7.18)

As shown in the left panel of Fig. 7.2 for the best fit model, w smoothly
evolves from a negative value close to zero at high redshifts to a value lower
than −1 at the far future. The right panel depicts its evolution near the
present time (z = 0) showing compatibility with recent observational data
which suggest that w does not depart much from −1 at sufficiently low
redshifts (see [107]). Integration of the second Friedmann’s equation (7.2)
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Figure 7.2: The equation of state parameter (as given by Eq. (7.18)) vs.
redshift up to z = 8 (left panel), and up to z = 1.2 only (right panel) for
the best fit holographic model. At high redshifts w approaches the equation
of state of non-relativistic matter and at low redshifts it does not depart
significantly from −1. The observational data are taken from [107]; each
error bar signifies a 2σ uncertainty.

provides us with the evolution equation for the Hubble factor which is key
to perform the statistical analysis of section 7.3,

H = H0

[

A1 + 2
(

A2 + (rf − r0)(1 + z)−A3
)

A4

]1/2

(1 + z)A5 , (7.19)

where

A1 = c2(1 + rf )(1 + r0) , A2 = r0rf − 1 , A3 = 1 +
2(rf − 1)

c2(1 + rf )
,

A4 = [c2(1 + rf ) + 2(rf − 1)](1 + r0) , A5 = 2− 1

c2(1 + rf )
.
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Figure 7.3 depicts the evolution of the deceleration parameter, Eq. (7.4),
for the best fit model. The observational data are borrowed from [108]. The
redshift at which the universe starts accelerating is z(q = 0) = 0.56+0.12

−0.9

while for the ΛCDM model z(q = 0) = 0.79 ± 0.02. As mentioned before,
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Figure 7.3: The deceleration parameter vs. redshift for the best fit holo-
graphic model (solid line) and the ΛCDM model (dashed line). In this, as
well as in subsequent figures, the green swath indicates the region obtained
by including the 1σ uncertainties of the constrained parameters used in the
calculation (in the present case just ΩM0). The observational data are taken
from [108]; however, in view of the large error bars we do not use these data
to fit the models.

there is ample freedom in the choice of the interaction term Q. In a previous
paper [99], on a holographic dark energy model with the Hubble rate as
infrared cutoff, we took Q ∝ ΩX [99]. We do not pursue this possibility here
because, as we have checked, it leads to a universe in which dark energy is
subdominant at very late times. While this does not contradict observation,
it looks a bit odd. In any case, it deserves a separate study which lies beyond
the scope of this Memoir.
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7.1.1 Age problem

As noted in §5.1, some cosmological models suffer from the so-called “age
problem”, namely, the existence of high redshifts objects whose age at some
redshift seem to exceed the Universe’s age predicted at that redshift (as in
the ΛCDM model, see e.g. [113]).

The age of the Universe at redshift z is

t(z) = t0 −
∫ z

0

dz′

(1 + z′)H(z′)
. (7.20)

Figure 7.4 shows the latter as a function of redshift for the best fit holo-
graphic model and the ΛCDM. Also marked in the figure are the ages and
redshifts of the three luminous old objects. As is apparent, the ages of two
old objects result compatible with both, the holographic and the ΛCDM
model; however, the age of the old quasar falls only within 2σ with the ages
predicted by these two models. Thus, some tension exists in this regard.
By contrast, the interacting holographic model of Ref. [99], which takes as
infrared cutoff the Hubble radius, is free of the problem. At any rate, it re-
mains to be seen in which direction (if any) future observations will “move”
the age of the said quasar.

7.2 Discussion of the cosmic coincidence

In holographic models of dark energy that take the Ricci’s length as the
infrared cutoff one can obtain a finite and approximate constant ratio r for
an ample redshift span even if no interaction between the dark components
is assumed -see e.g. [36]. Here we analyze how this comes about, and we
note that while this approach alleviates the coincidence problem it does so
only partially since it would entail somehow that we are living in a special
time.

We start by rewriting Friedmann’s equation (7.1) with the help of the
saturated holographic bound, ρX = 3M2

P c
2 (Ḣ + 2H2), as

3H2 = 3c2(Ḣ + 2H2) +
ρM0

M2
P

(1 + z)3 , (7.21)

and, for convenience, introduce the ancillary variable y−α = 1 + z. Thus,
Eq. (7.21) takes the form

3α2 ẏ
2

y2
= 3c2

{

α

[

ÿ

y
− ẏ2

y2

]

+ 2α2 ẏ
2

y2

}

+
ρM0

M2
P

y−3α . (7.22)
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Figure 7.4: Age of the Universe, t vs. redshift. The solid line corresponds
to the best fit holographic model and the dashed line to the ΛCDM model.
The data points from left to right locate the old objects LBDS 53W069,
LBDS 53W091 and APM 08279+5255.

By equating coefficients, we get α = c2/(2c2 − 1), and

ÿ +
ρM0

3c2M2
P α

y−3α+1 = 0 . (7.23)

Multiplying the latter by ẏ the differential equation can be readily solved.
Upon reverting to the original variable we obtain

3H2 =
2

(2− c2)M2
P

ρM0(1 + z)3 + βM−2
P ρM0(1 + z)2

1−2c2

c2 , (7.24)

where β is a positive-definite integration constant that can be identified as

β =
(

1
r0

− c2

2− c2

)

and, of the order of unity since r0 and c2 lie not far from

0.4.

Recalling Eq. (7.1) we finally get

ρX =
c2

2− c2
ρM0(1 + z)3 + β ρM0 (1 + z)2

1−2c2

c2 . (7.25)
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The dark energy density is contributed by two terms. The first one red-
shifts exactly as non-relativistic matter. The second one, in view that c2 is
bounded by 0.36 < c2 < 0.8, results subdominant for z of order of unity and
larger. Therefore, we can safely conclude that r = ρM/ρX ≃ (2− c2)/c2 for
0 ≤ z. This is why the ratio r results of order unity in an ample redshift
interval, also in the absence of interaction, as in Ref. [36]. However, in view
of the observational lower bound on c2, we see that r → 0 as z → −1. So,
in the holographic non-interacting model, r results well below unity, close
to zero, and approaches this null value asymptotically for an infinite span of
time. Altogether, according to this model, we live in a special and transient
period in which r results comparable to unity.

7.3 Observational constraints

To constrain the four free parameters (ΩX0, c
2, rf , and H0) of the holo-

graphic model presented above we use observational data from SN Ia (557
data points), the CMB-shift, BAO, and gas mass fractions in galaxy clus-
ters as inferred from X-ray data (42 data points), the Hubble rate (15 data
points), and the growth function (5 data points). Being the likelihood func-
tion defined as L ∝ exp(−χ2/2) the best fit follows from minimizing the
sum χ2

total = χ2
sn + χ2

cmb + χ2
bao + χ2

X−rays + χ2
Hubble + χ2

gf .

7.3.1 SN Ia

We proceed as in §5.2.1 to obtain χ̃2
sn = χ

2 (minimum)
sn = 543.70.

7.3.2 CMB-shift

Minimization of the CMB-shift

χ2
cmb(p) =

(Rth − Robs)
2

σ2R
(7.26)

produces χ
2 (minimum)
CMB−shift = 0.013.
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7.3.3 BAO

Using data from SDSS and 2dFGRS as in §5.2.3, the best fit value for the
holographic model is Dv(0.35)/Dv(0.2) = 1.664 ± 0.003, and minimization
of

χ2
bao(p) =

([Dv(0.35)/Dv(0.2)]th − [Dv(0.35)/Dv(0.2)]obs)
2

σ2Dv(0.35)/Dv(0.2)

(7.27)

gives χ
2 (minimum)
bao = 1.20.

7.3.4 Gas mass fraction

To fit the model we go forward as in §5.2.4 to get χ
2 (minimum)
X−rays = 41.79.

Figure 7.5 shows the fit to the data.
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Figure 7.5: Gas mass fraction in 42 relaxed galaxy clusters vs. redshift. The
solid and dashed curves correspond to the best fit models: holographic and
ΛCDM, respectively. The data points with their error bars are taken from
Table III of Ref. [94].
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7.3.5 History of the Hubble parameter

By minimizing

χ2
Hubble(p) =

15
∑

i=1

[Hth(zi) − Hobs(zi)]
2

σ2(zi)
(7.28)

we got χ
2 (minimum)
Hubble = 9.57 and H0 = 71.8 ± 2.9 km/s/Mpc as the best fit

for the Hubble’s constant. Figure 7.6 depicts the Hubble history according
to the best fit holographic model and the best ΛCDM model. The data used
are explained in §4.6.
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Figure 7.6: History of the Hubble factor in terms of the redshift for the best
fit values of the holographic model (solid line) and the ΛCDMmodel (dashed
line). The data points and error bars are borrowed from Refs. [95]-[98].

7.3.6 Growth function

As said above, background quantities that chiefly depend on H(z) are not
very useful at discriminating between cosmological models that present a
similar Hubble history, independently of how different they might be. One
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manner to circumvent this hurdle is to study evolution of the growth function
(see §5.3). The evolution of the latter obeys the coupled set of equations

δ̇M − k2

a2
vM = −1 + r

r
QH δM , (7.29)

v̇M +HvM +
1

a
φ = 0 , (7.30)

where the Newtonian potential φ fulfills Poisson’s equation

k2

a2
φ = −4πGρMδM . (7.31)

Solving the equations, and expressing in terms of r and using w = [c2(1 +
r) − 2]/(3c2) obtained from (7.3), c−2(1 + r)−1 = (Ḣ/H2) + 2, and (7.10),
from the evolution equations (7.8) and (7.9) one follows

f ′+f2+

(

1

c2(1 + r)
+Q

1 + r

r

)

f−3r3 + 2Q2(1 + r)3 − 2Qr(2 + r − r2)

2r2(1 + r)
= 0 ,

(7.32)
where f ′ ≡ df/d ln a. Note that in the limit Q→ 0, last equation collapses to
the corresponding expression of the Einstein-de Sitter scenario (ΩM (z) = 1
and δM ∝ a ∝ t2/3); that is to say, f ′+f2+[2+ (Ḣ/H2)]f = 3ΩM/2. (Recall
that for the Einstein-de Sitter model Ḣ/H2 = −3/2 and the solution of the
equation for f is simply f = 1). In constraining the model we have taken
only the five lowest redshift data of the growth function shown in Fig. 7.7
-the other data present very large error bars. The best fit yields χ2 = 1.06.

Figures 7.8 - 7.10 and table 7.1 summarize our findings. Figure 7.10 depicts
the 1σ confidence contours from SN Ia (dashed yellow), CMB-shift (solid
black), BAO (dashed blue), X-rays (dashed black), history of the Hubble
function (dot-dot dashed green), and grow function (dot-dashed red) in the
(ΩX0, c

2) plane (left panel) and the (ΩX0, rf ) plane. The joined constraints
corresponding to χ2

total are shown as shaded contours. As is apparent from
left panel most of the discriminatory power arises from the near orthogo-
nality between the X-ray and CMB-shift and supernovae contours. How-
ever, in the right panel the supernovae contour appears nearly degenerated
with respect to the X-ray contour. Altogether, by constraining the holo-
graphic model of §7.1 with data from SN Ia, CMB-shif, BAO, X-rays, H(z),
and the growth function we obtain ΩX0 = 0.707 ± 0.009, c2 = 0.407+0.033

−0.028,
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Figure 7.7: Growth function, f , vs. redshift as follows from integrating Eq.
(7.32)(solid line). Also shown is the prediction of the ΛCDM model (dashed
line). The observational data were taken from Ref. [117]. In constraining
both models we have used only the five less noisy data depicted in the figure,
(i.e., data corresponding to redshifts below 1.5).

rf = 0.013+0.006
−0.005, and H0 = 71.8± 2.9 km/s/Mpc as best fit parameters. It

is worth noticing that the non-interacting case, Q = 0 (which implies rf = 0
via Eq. (7.11)), lies over 2σ away from the best fit value. This feature seems
typical of holographic dark energy models (see e.g. [36, 38, 99]).

Table 7.1 shows the partial, total, and total χ2 over the number of degrees
of freedom of the holographic model along with the corresponding values for
the ΛCDM model. In the latter one has just two free parameters, ΩM0

and H0. Their best fit values after constraining the model to the data are
ΩM0 = 0.266± 0.006, and H0 = 71.8± 1.9 km/s/Mpc.

Although the ΛCDM model fits the data somewhat better, ∆χ2 ≃ 2.5,
than the holographic model, that has two more free parameters, it its un-
certain which model should be preferred in view that the former cannot
address the cosmic coincidence problem and the latter substantially allevi-
ates it. More abundant and accurate data, especially at redshifts between
the supernovae range and the CMB, will help decide the issue. Nonetheless,
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Figure 7.8: Panels from left to right, and top to bottom, show the 68.3%
and 95.4% confidence contours for the pair of free parameters (ΩX0, H0),
(ΩX0, c

2), (ΩX0, rf ), respectively, obtained by constraining the holographic
model with SN Ia+CMB-shift+ BAO+X-ray+H(z)+growth function data.
The solid point in each panel locates the best fit values.

we believe that the uncertainty will likely persists till a breakthrough on the
theoretical side allows us to calculate with confidence the true value of the
cosmological constant.

7.4 Concluding remarks

We performed a statistical study of the best fit parameters of the holo-
graphic model -presented in §7.1- using data from SN Ia, CMB-shift, BAO,
X-ray, the Hubble history, and the growth function; 621 data in total. The
maximum likelihood (or minimum χ2) parameters are ΩX0 = 0.707± 0.009,
c2 = 0.407+0.033

−0.028, rf = 0.013+0.006
−0.005, and H0 = 71.8 ± 2.9 km/s/Mpc with

χ2
dof ≈ 0.96. The ΩX0 and H0 values fall within 1σ of the corresponding

values determined by Komatsu et al. [124] (0.734 ± 0.029 and 71.0 ± 2.5
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Figure 7.9: Same as Fig. 7.8 for the pairs of free parameters (H0, rf ), (c
2,

rf ), and (H0, c
2).

km/s/Mpc, respectively). The evolution of the equation of state parameter,
w, at redshift below 1.2 (see right panel of Fig. 7.2) is compatible with the
observational constraints derived in [107] and, as in other Ricci’s holographic
models [36, 37, 38, 125], it crosses the phantom divide line at recent times
(see right panel of Fig. 7.2). Curiously enough, the ΩX0 and c2 best fit val-
ues of this model agree within 1σ with the corresponding values obtained by
Suwa et al. [38] despite the use of a very different interaction term between
the dark components.

As mentioned in §2.5.3 holographic models do not contain the ΛCDM
model as a limiting case. It is also noteworthy that, in general, the c2 term
in the holographic expression for the dark energy, Eq. (2.45), should not
be considered constant except precisely when the Ricci’s length is chosen as
the infrared cutoff [33].

A lingering problem, both for this model and the ΛCDM model, refers
to the age of the old quasar APM 08279+5255 at redshift z = 3.91. In both
models the measured quasar age would fall within 1σ only if the Hubble
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Model χ2
sn χ2

cmb χ2
bao χ2

X−rays χ2
H χ2

gf χ2
total χ2

total dof

Holographic 543.70 0.01 1.20 41.79 9.57 1.06 597.34 0.96

ΛCDM 542.87 0.05 1.13 41.59 8.73 0.43 594.80 0.96

Table 7.1: χ2 values of the best fit holographic model (ΩX = 0.707± 0.009,
c2 = 0.407+0.033

−0.028, rf = 0.013+0.006
−0.005, and H0 = 71.8 ± 2.9 km/s/Mpc), and

the best fit ΛCDM model (ΩM0 = 0.266 ± 0.006, and H0 = 71.8 ± 1.9
km/s/Mpc).

constant, H0, would come down substantially -something we do not ex-
pect although it cannot be excluded. Accordingly, we must wait for further
observational data to see whether the present tension gets exacerbated or
disappears.

Before closing, it results interesting to contrast the model explored in
this Chapter with the model of §5. The present one shows a better fit to the
growth function at low redshifts, as well as to the CMB-shift and BAO data.
However, it does not fit so well the age of the old quasar APM 08279+5255.
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Chapter 8

Decomposing a unified dark
matter model

8.1 Background equations

The unified dark matter model introduced in [45] was described by the equa-
tion (2.51). If one wishes to build a model featuring the same background
evolution but with an interaction between dark matter and vacuum, the
linking equations for the scenarios, interacting and unified, are

PU = PV = −ρV and ρU = ρC + ρV , (8.1)

where ρV and ρC denote the vacuum and dark matter energy density respec-
tively, and the vacuum pressure obeys PV = −ρV . The evolution equations
for the interacting model are

ρ̇C + 3HρC = QC and ρ̇V = QV , (8.2)

where to ensure energy conservation, QC = −QV . Fig. 8.1 shows the
evolution of the dark matter (left panel) and vacuum (right panel) energy
densities.

In order to derive an expression for the speed of sound of the unified
fluid, we differentiate with respect to time the first constraint in (8.1), to
obtain, using (8.1) again,

3HρC
dPU
dρU

= ρ̇V (8.3)

and after using eq.(2.51) we get

c2s U ≡ dPU
dρU

=
ρV

AρsρΛ
(2AρΛ − ρV ) , (8.4)
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where A =
(

1− tanh(ρΛ−ρtρs
)
)−1

. The transition redshift, ztr, was defined

in [45] as the redshift at which cs U has its maximum value. The change
in the sound speed is the cause of the transition from a period of matter
domination to the present accelerated expansion.
To get an expression for the energy densities, we use eq. (8.4) in eq.(8.3),
and bearing in mind (8.2) we obtain

ρ̇V =
3HρC
AρsρΛ

ρV (2AρΛ − ρV ) , (8.5)

ρ̇C = − 3HρC
AρsρΛ

[AρsρΛ + ρV (2AρΛ − ρV )] , (8.6)

where we can identify

QV = 3H ρV ρC Q(ρV ) , (8.7)

with Q(ρV ) ≡ 2AρΛ−ρV
AρsρΛ

. Introducing the first eq. of (8.2) in eq. (8.5), and
integrating, one follow

ρC − ρC0 = −ρV + ρV 0 +
ρs
2
ln

(

ρV 0(ρV − 2AρΛ)

ρV (ρV 0 − 2AρΛ)

)

. (8.8)

Finally, imposing ρV = ρΛ when ρC = 0 in the integration constants, last
expression reduces to

ρC = −ρV + ρΛ +
ρs
2
ln

[

ρV − 2AρΛ
ρV (1− 2A)

]

. (8.9)

Notice that if we look at eq. (8.5) as a one dimensional dynamical system
(we can write ρC as a function of ρV using eq. (8.9) and as we just consider
expanding FLRW universes, H > 0), we see that it has three fixed points
ρV = 0, ρC = 0 (equivalent to ρV = ρΛ through eq. (8.9)) and ρV = 2AρΛ.
We should point out that in the interval 0 ≤ ρV ≤ ρΛ, ρ̇V ≥ 0 (ρV ≤ 2AρΛ
by the definition of A) and so ρV = 0 is equivalent to a = 0, and ρV = ρΛ to
a→ ∞. So, the point in ρV = 0 is unstable and located in the far past and
the one in ρC = 0 is stable and to be reached only in the far future. Notice
then, that the integration limits give a definition for the constant ρΛ, i.e., it
is the value of the interacting vacuum energy in the far future. The other
fixed point, ρV = 2AρΛ, is unphysical because ρC → −∞.
From eqs. (8.1) and (8.9) we obtain the EoS parameter of the unified model
as

wU ≡ PU
ρU

= − 2ρV

2ρΛ + ρs ln
[

ρV −2AρΛ
ρV (1−2A)

] . (8.10)
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We could use eqs. (8.5) and (8.9) to obtain numerically ρC and ρV , but due
to the presence of ρ−1

V in the square parethesis of eq. (8.9), and ρV being
zero for a long time, it seems a better option to solve numerically the unified
dark matter conservation equation

ρ̇U + 3H(ρU + PU ) = 0 , (8.11)

and then through eqs. (2.51) and (8.1) split it in ρC and ρV . In this scenario
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Figure 8.1: Left panel depicts ρC and right panel ρV for the model described
by eq. (2.51), both interacting and unified scenarios and ΛCDM model. Red
(solid) line is for ρs = 0.5ρΛ and ρt = 103ρΛ, green (long dashed) line for
ρs = 0.1ρΛ and ρt = 102ρΛ and blue (short dashed) line for ρs = 10−7ρΛ
and ρt = 10ρΛ. Black (dotted) line is for ΛCDM.

the speed of sound of both components, cold dark matter and vacuum is a
constant. So the transition redshift, ztr, describes when the interaction takes
place. From equation (8.7), we can see that QV = 0, both when a≪ 1 and
a≫ 1 and the parameter ρs determines the time during which dark matter
and vacuum interact between each other.

8.2 Vacuum energy momentum tensor

As is well known, the stress-energy tensor of the vacuum can be described
by

T Vµν = −ρV gµν . (8.12)

Since ρV + PV = 0, the four-velocity of the vacuum, uµ, is undefined. Be-
cause the vacuum stress-energy tensor, T V µν is proportional to the metric
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tensor, any four-velocity is an eigenvector, and all observers see the same
energy density ρV . However, due to the interaction between dark matter
and vacuum, the vacuum stress-energy tensor is not conserved

T V µν ;µ = −QVν . (8.13)

From eqs. (8.12) and (8.13), it follows that

QVν = −ρV;ν . (8.14)

Therefore so long QVν 6= 0, the vacuum is spacetime inhomogeneous. Al-
though the vacuum does not have a well defined four-velocity, using the
energy flow QVν , we can define a preferred unit four-vector

uµV =
ρ;µV

|ρV;νρ;νV |
1
2

. (8.15)

Even if the background interaction is determined, there is still freedom to
choose the energy transfer direction, QVν = QV ǔν . The simplest case cor-
responds to the one in which the flux is parallel to the dark matter four-
velocity, i.e., ǔν = uCν . Also, as the total stress-energy tensors should be
conserved,

Tµν C ;µ = QCν . (8.16)

and so QCν = −QVν .

8.3 Linear perturbations

Since at background level, both unified and interacting scenarios have an
identical behavior, we need to go to the perturbation level to distinguish
them.

8.3.1 UDM model

In this case we just have a dark component, UDM, evolving independently
from baryons and photons, apart from the constraints on the potentials ψ
and φ. The evolution equation of the density contrast, δU of the UDM fluid
is

δ′U + 3H(c2sU − wU )δU + (1 + wU )θU + 3H
[

3H(1 + wU )(c
2
sU − wU ) + w′

U

] θU
k2

−3(1 + wU )ψ
′ + (1 + wU )(B − E′)k2 = 0 , (8.17)

θ′U + H(1− 3c2sU )θU − c2sU
(1 + wU )

k2δU − k2φ = 0 , (8.18)
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8.3.2 Interacting model

In this case we have dark matter and vacuum interacting also non gravita-
tionally with each other according to eqs. (8.5) and (8.6). Notice that eqs.
(3.19) and (8.14) imply a constraint between the gradient (δρV,i) and the
force ([f +QV (vV +B)],i), i.e., −afV = δρV + aQV (vC + B) [57]. For the
vacuum, eq.(3.37) reduces to δP = −δρV , which could also be inferred from
the first equation in (8.1). This means that c2s V = −1, but this is not a
problem since the vacuum does not have a physical sound speed, as long as
it does not propagate. For this reason it seems reasonable to choose v = vC
to set the direction of the energy flow - see eqs. (3.18) and (3.19).
In §3.6 the conservation equations for interacting fluids where given, and as
the conservation of momentum implies fC = −fV , the resulting equations
for the interacting dark matter are

δ′C + θC − 3ψ′ + (B − E′)k2 = 3HρVQ (δC − φ)− a

ρC
δQV , (8.19)

θ′C +HθC − k2φ = −k
2afC
ρC

, (8.20)

and

δ′V = 3HρCQ (φ− δV ) +
a

ρV
δQV , (8.21)

δV = 3HρCQ
θC
k2

− a

ρV
fV , (8.22)

for the inhomogeneous vacuum. Note that the momentum continuity equa-
tion (8.22) is just the link derived from the momentum flow.

8.4 Results

To obtain numerical solutions we resort to a modified version of the code
CLASS [82]. This code can use the synchronous gauge (§3.9), as well as
the Newtonian one (§3.10). Here we will use the synchronous gauge, that is
defined by assuming that cosmic time in the background coincides with the
proper time for observers at fixed spatial coordinates. In this gauge, there
are some gauge degrees of freedom remaining, since the initial hypersurfaces
and their coordinates are not fixed. This is usually set by assuming that the
dark matter particles are at rest in this frame, i.e., θC = 0. We will do so
in the dark matter (geodesic) case but not in the UDM case, as it does not
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behave like dust. So, in this gauge eqs. (8.18) and (8.17) read

δ′U = −3H(c2sU − wU )δU − (1 + wU )

(

θU +
h′

2

)

, (8.23)

θ′U = −H(1− 3wU )θU − w′
U

1 + wU
θU +

c2sU
(1 + wU )

k2δU . (8.24)

In the UDM case we cannot fix θU = 0, since wU 6= 0, and even imposing the
initial condition θU = 0, there is an evolution in time. Figure 8.2 shows the
matter power spectrum for the unified scenario. One can see in the plots,
that only the very slow transition region is compatible with observation. In
this regime, the model is nearly indistinguishable from ΛCDM [45].
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Figure 8.2: Matter power spectrum for the Unified model. In the rightmost
column ztr ≃ 13 and for the leftmost one ztr = 0. The top line is in the very
slow transition regime and the bottom one in the fast (but not fastest due
to numerical problems in dealing with it).

In the interacting case we can fix the energy flow to be geodesical, to follow
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the motion of the dark matter particles, i.e., QµA = QAu
µ
c , whence there

is no momentum transfer, fC = −fV = 0, or alternatively let the interac-
tion be just QµV = ∇µρV and impose the total energy density to behave
barotropically. We will study both, and call the latter case barotropic.

8.4.1 Geodesical case

When the flow obeys QµA = QAu
µ
c , we fix the gauge degree of freedom as

usual by setting θC = 0. Then the evolution equation for interacting dark
matter density perturbations is

δ′C = 3HρVQδC − h′

2
. (8.25)

As we can see that in the synchronous gauge, eq. (8.22) gives us δV = 0.
One can also notice that, except for the different behavior of the background
evolution, the perturbation equations for δρC and θC are exactly those of
a non interacting vacuum plus dark matter cosmology. Figures 8.3 and 8.4
show the matter power spectrum and temperature anisotropies for the inter-
acting (geodesic) scenario. It can be seen that the parameter region allowed
for the model is much wider than in the unified case, and is compatible with
models very different from ΛCDM.

8.4.2 Barotropic case

This case corresponds to Qµ = [−ρ̇V , ∂iρV ]. Since eq. (8.9) is a monotoni-
cally decreasing function of time, it can be inverted to express ρV in terms
of ρC . We then impose the global adiabaticity condition (3.31). Thus, the
velocity and density perturbation conservation equations become

δ′C = 3HρVQδC −
(

θC +
h′

2

)

− δρ′V
ρC

, (8.26)

θ′C = −HθC − k2δρV
ρC

+ 3HρVQθC . (8.27)

Notice that in this last case we cannot set θC = 0, as in the UDM one. From
figure 8.5 we see that now the matter power spectrum and the CMB power
spectrum look identical to the one of the unified model. This fact is derived
analytically in the next section.
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Figure 8.3: Matter power spectrum for the interacting (geodesic) model. In
the rightmost column the interaction takes place at zint ≃ 13 and for the
leftmost one at zint = 0. The top row corresponds to models in which the
interaction lasts a long time, and the bottom one to models where it lasts
very little.

8.5 Relation between the perturbations in the uni-
fied fluid and in the interacting (barotropic)
cases

From the Einstein equations (3.56) and (3.57) we introduce the total density
and velocity perturbations

δρ = δρC + δρV , (8.28)

θ =
ρC

(ρC + ρV )(1 + wT )
θCDM . (8.29)
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Figure 8.4: Temperature anisotropies for the interacting (geodesic) model.
The different plots are explained in Fig. 8.3.

where ρ = ρC + ρV . This total perturbations will follow the same equations
as the unified fluid, eqs. (8.23) and (8.24). We rewrite them as

δρ′ = −3H(1 + c2s T )δρ− (1 + wT )ρ

(

θ +
h′

2

)

, (8.30)

θ′ = −H(1− 3c2s T )θ +
c2s T

(1 + wT )ρ
k2δρ , (8.31)

to simplify the later calculations. Using eq. (8.29), we recast eq.(8.30) as

δρ′ = −3H(1 + c2s T )δρ− ρCθC − (1 + wT )ρ
h′

2
. (8.32)
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Figure 8.5: Left panel depicts the CMB power spectrum and the right panel
the matter power spectrum for the unified, interacting and ΛCDM models.
Red lines are for the UDM model and green for the interacting (barotropic)
ones. In drawing the graphs we used ρs = 10−1ρΛ and ρt = ρΛ.

Then, we use the background relations c2s T = δP
δρ = − δρV

δρ and wT = P
ρ =

−ρV
ρ to finally obtain

δ′C = −
(

θC +
h′

2

)

− QC + δρ′V
ρC

. (8.33)

This expression coincides with eq. (8.26). Now let’s see what happens with
eq. (8.31). The time derivative of eq.(8.29) can be written as

θ′ = 3Hc2s T θC +
QC
ρC

θC + θ′C , (8.34)

after using the adiabaticity condition w′
T = ρ′

ρ (c
2
s T−wT ). Inserting eq.(8.34)

into eq.(8.31), we get

θ′C = −HθC − k2
δρv
ρC

+
QV
ρC

θC , (8.35)

expression identical to eq. (8.27). The matter spectrum and temperature
anisotropies for the unified and the interacting (barotropic) scenarios are
shown in Fig. 8.5.

8.6 Conclusions

In this Chapter we consider an equation of state for the dark sector from
two different points of view. The first one, already studied in [45], it is seen
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as a unified dark matter model. Due to the effects of the sudden change in
the speed of sound, the parameter regions compatible with observations are
very narrow, as shown in Fig. 8.3. Only very slow transitions are allowed,
and for those parameters, the model behaves similarly to ΛCDM. It is not
seen in Fig. 8.3, but fast transitions are also allowed, provided they happen
at ztr ≫ 1. Those cases are very hard to deal with numerically since c2s U
behaves like a Dirac’s delta.
It is of theoretical interest that, as was already shown in [57], any unified
model can be described as a cold dark matter plus vacuum, with both com-
ponents interacting with one another. For both scenarios to be completely
equivalent at the bakcground and perturbative (first order) levels, the in-
teraction should be of the barotropic kind (§8.4.2). Instead of this, one can
define the interaction to be geodesic (§8.4.1), and then the equivalence at the
perturbative level is broken. For the interacting (geodesic) scenario, models
that behave differently from ΛCDM (see Fig. 8.1) are however allowed by
observations.
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Chapter 9

The Matter Power Spectrum
of Dark Energy Models and
the Harrison-Zel’dovich
Prescription1

9.1 Introduction

In the concordance ΛCDM cosmological model, the current accelerated
phase of expansion is driven by a cosmological constant Λ that dominates
the present energy density of the Universe, whose equation of state param-
eter is w = −1. The second component in importance is cold dark matter,
which drives the growth of large scale structure (LSS). This simple model
fits rather well the observational data and requires the minimum set of cos-
mological parameters [3]. Also, it is the preferred model based on statistical
selection criteria [127]. The observational successes of the ΛCDM cosmol-
ogy is linked to its capacity to reproduce the right sequence of cosmological
eras: matter-radiation equality occurs well before recombination and the
matter dominated period lasts long enough to allow the growth of LSS. The
length of the radiation and matter periods are crucial to determine the shape
of the matter and radiation power spectra. Alternative models must also
reproduce the correct sequence of cosmological eras to fit the data [128].

While the ΛCDM model fits the observational data very well, it appears
rather unsatisfactory from the theoretical point of view. In fact, a cosmo-

1This Chapter corresponds to Ref. [126].
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logical constant is not very appealing. Its measured value is 120 orders of
magnitude smaller than the expected amplitude at the Planck scale and
introduces the coincidence problem. This is why a plethora of more flex-
ible models that behave akin to the ΛCDM at the background level have
been introduced over the years -see [4, 17] for recent reviews. This com-
plicates enormously the task of judiciously deciding which model should be
preferred over all the others in view of their observational and theoretical
merits. For instance, the acceleration could be driven by a dark energy
component with EoS parameter w 6= −1 [129], constant or variable on cos-
mological timescales. The simplest variants require cosmological parame-
ters to be fine tuned at some initial time, suffering also -though, at a lower
extent- from the coincidence problem and more complex models have been
introduced, e.g. [102, 130]. Before carrying out a detailed analysis, these al-
ternatives first use probes of the cosmic expansion history such as luminosity
distances derived from supernovae type Ia data, angular diameter distances
from baryon acoustic oscillations (BAO), the expansion rate, H, at various
redshifts, etc. [131, 39, 99]. Data on matter density perturbations and cos-
mic microwave background (CMB) anisotropies provide stronger constraints
but require to solve the time evolution of the density perturbations in all
components. In general, the resulting set of equations is far more involved
than in the standard ΛCDM model. Furthermore, small differences on the
dynamics of the dark sector change the equations governing the evolution
of matter perturbations [132], and no generic constraints can be imposed on
large classes of models. As a result, many models in the literature have not
been constrained by the current data on density inhomogeneities and CMB
temperature anisotropies -see e.g. [133].

The aim of this Chapter is to show how to derive the matter power
spectrum of a generic dark energy model without the need of solving in full
the perturbation equations for the radiation and matter components. Sev-
eral observables can be computed in terms of the matter power spectrum
alone and can be used to constrain the model beyond the expansion rate.
The observables include: (a) the fluctuation of the matter density pertur-
bations on a sphere of 8h−1Mpc, σ8 [134]; (b) the rms peculiar velocity of
matter on spheres of radius R, 〈v2(R)〉1/2 [135]; (c) the weak lensing conver-
gence spectrum [136]; (d) the Sachs-Wolfe (SW) and Integrated Sachs-Wolfe
(ISW) components of the CMB temperature anisotropies [66]; (e) the cross-
correlation of the ISW with templates of projected density of galaxies [137],
etc. For example, the SW and ISW effects are the dominant contributions
to the CMB anisotropies at low multipoles. If the power spectrum is nor-
malized to the measured value σ8 = 0.801 ± 0.030 [138], the predicted low
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order multipoles of the CMB, the peculiar velocity on a given scale [139]
or the measured ISW-Large Scale Structure cross-correlation [140] can be
compared with observations. Our method provides simple tests of models
using a wealth of data beyond luminosity and angular diameter distance
measurements.

The idea of how to construct the matter power spectrum is based on
the Harrison-Zel’dovich (HZ) [90, 91] prescription. For any two models, the
amplitude of density perturbations are specified at horizon crossing instead
of at some arbitrary initial hypersurface. The final spectrum will differ only
by the subsequent (subhorizon) evolution of each single mode. If we use as
a starting model one that is implemented on publicly available numerical
codes like CMBFAST [80], for example the concordance ΛCDM model, we
will be able to construct the power spectrum of a generic dark energy model
(not implemented on numerical codes). The method can be used to derive
the power spectrum ranging from galaxy to horizon scales, i.e., at all the
scales that can be observed at present.

In developing this method, our aim is not to use it to solve models of
dark energy with a constant EoS parameter. In section 9.3, we consider a
dark energy model with constant EoS parameter, w = −0.5 (though being
aware that it is observationally discarded) just to illustrate the accurateness
of the method in a model which, on the one hand, it is easy to obtain the
exact evolution of the perturbations and, on the other hand, its evolution
differs substantially from that of the standard ΛCDM. With this we can see
that obtaining the matter power spectrum of a dark energy model from the
one of ΛCDM is reasonable also in cases when both models differ greatly at
the background level.

This method can be useful in solving the perturbation equations of inter-
acting models [141, 32, 39, 99, 104]. Many of these models aim to describe
the Universe at low redshifts, when both dark components dominate the
expansion. Following our method, the matter perturbations evolve as in
the ΛCDM model before horizon crossing (this avoid the need of explicitly
introducing initial conditions for the perturbations). Moreover, because it
suffices to compute the evolution of the perturbations of the particular dark
energy model considered after they enter the horizon, the set of equations
to be solved gets greatly simplified. This is shown in §9.3.
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9.2 The Harrison-Zeldovich prescription

In their seminal papers, Harrison and Zel’dovich [90, 91] computed the
present matter power spectrum assuming that all perturbations at horizon
crossing have the same amplitude. Then, they computed the matter power
spectrum P (k) at the present time after accounting for the subhorizon evolu-
tion of each mode. To illustrate their argument, let us construct the power
spectrum of the standard CDM model, a model that only contains dark
matter , baryons and radiation (subscripts CDM , B, and R, respectively),
and verifies ΩCDM + ΩB + ΩR = 1, where Ωi is the energy density of com-
ponent i in units of the critical density. Let us define the density contrast
by δ(k, t) = (δρ/ρ̄)(k, t). In the linear regime, spatial and time dependence
can be separated: δ(k, t) = δ(k)D+(t)/D+(t0), where D+(t) denotes the
growing solution and δ(k) is evaluated at the present time, t0. The current
power spectrum is then defined as: P (k) = |δ(k)|2.

In the standard cold dark matter (CDM)model, D+(t) ≈ const during
the radiation dominated era and D+(t) = D+(tin)(t/tin)

2/3, during the mat-
ter dominated period. The HZ prescription establishes that all mass pertur-
bations, defined as ∆(k, t) = 1

2π2 k
3P (k)(D+(t)/D+(t0))

2, have the same am-
plitude at the time tin when they enter the horizon, i.e., a(tin)λin = dH(tin)
where a(t) is the scale factor, dH(t) the radius of the horizon, and λin the
comoving wavelength of each particular mode; kin = 2π/λin would be the
corresponding wavenumber. In particular

∆(kin, tin) = const = ∆(keq, teq), (9.1)

with teq the moment of matter-radiation equality.
Once a perturbation enters the horizon, it will evolve as D+(t) and we

can write

∆(keq, t0) =

(

D+(t0)

D+(teq)

)2

∆(keq, teq) =

(

D+(t0)

D+(teq)

)2

∆(kin, tin)

=

(

D+(tin)

D+(teq)

)2

∆(kin, t0) . (9.2)

equation The evolution after horizon crossing depends on whether it occurs
before or after matter-radiation equality:

1. If tin < teq, then D+(tin) = D+(teq) because perturbations are essen-
tially frozen in the radiation era. Consequently, P (kin) = P (keq) (kin/keq)

−3.
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2. If tin > teq, then D+(tin)/D+(teq) = (tin/teq)
2/3 = (keq/kin)

2. In
the last equality we have used the relation between the comoving

wavenumber and the time of horizon crossing kin ∝ t
−1/3
in , valid in

the matter era. Then P (kin) = P (keq) (kin/keq).

As a consequence of the growth of density perturbations in the matter
and radiation epochs, the power spectrum has two asymptotic regimes:
P (k) ∼ k1, k−3 at large and small scales, respectively, with a maximum at
the scale of matter-radiation equality. Since the transition from the radia-
tion to the matter dominated period is not instantaneous, P (k) has a smooth
maximum about matter-radiation equality, at keq. The power spectrum is
conveniently expressed as P (k) = Akn T 2(k), where A is a normalization
constant and n the spectral index at large scales. The transfer function T (k)
is determined by the growth rate within the horizon. In the specific case of
the HZ prediction, n = 1.

9.3 The matter power spectrum of generic dark
energy models

The spectra of the concordance ΛCDM models differ from the spectra of
models with no cosmological constant in two main respects, namely: (i)
the scale of matter radiation equality is shifted to larger scales, and (ii) the
growth factor of matter density perturbations slows down once the overall
expansion accelerates. As mentioned above, in this section we shall show
how to compute the present matter power spectrum of a dark energy model,
in principle not implemented on a numerical package, from the power spec-
trum of a model that is implemented. As an example, we shall construct the
power spectrum of models with w = −0.8,−0.5,−0.1 from the concordance
ΛCDM. The evolution of density perturbations of dark energy models with
constant EoS is implemented in standard packages like CMBFAST and can
be computed numerically but they will be useful to estimate the accuracy of
the method. For simplicity, all models will share identical cosmological pa-
rameters, namely ΩΛ = 0.73,ΩCDM = 0.23,ΩB = 0.04, H0 = 71 km/s/Mpc
and n = 1. The models differ only in the EoS parameter, w.

Following the HZ prescription, we assume that all perturbations have
the same amplitude at horizon crossing. Then, we just need to compare the
growth rate of density perturbations in both models once perturbations cross
the horizon. Even if the subhorizon evolution of density perturbations is the
same in the ΛCDM as in the dark energy model, the final power spectrum
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could be different. In each model, fixed comoving wavelengths λin cross the
horizon at different times tin and the growth rate from tin to the present time
t0 will be different for each of them. Then, we need to determine: (i) the size
of the horizon as a function of time to fix when a perturbation crosses the
horizon, and (ii) solve the equations of evolution of subhorizon density per-
turbations during the radiation, matter and accelerated expansion epochs.
If dark matter and dark energy density perturbations evolve independently
during the radiation regime, we can expect the evolution of dark matter
perturbations to be independent of the model. Specifically, in the radiation
era the expansion timescale is texp ∝ (GρR)

−1/2 while if the free-fall time of
matter within a density perturbation is tff ∝ (GρCDM )−1/2, much smaller
than the expansion timescale and matter perturbations will not grow signifi-
cantly during the radiation regime. With this simplifying assumption, if the
dark energy model and ΛCDM have the same matter-radiation equality and
perturbations cross the horizon at the same time, then the power spectrum
at small scales will have the same shape in both models. Without restricting
the applicability of our method, this assumption guarantees that the dark
energy model will pass the constraints imposed by the galaxy distribution
on scales λ ≤ 100 Mpc /h not less well than the ΛCDM model.

Our method is more easily implemented when the equations of evolu-
tion of subhorizon sized perturbations after matter-radiation equality form
a closed system and can be solved independently for each energy density
component. If both models have identical evolution during the radiation
era, once the Universe becomes matter dominated the anisotropic stress due
to neutrinos will be negligible and, in the Newtonian gauge, it will suffice
just one single gravitational potential -say φ- to determine the flat metric
element

ds2 = −(1 + 2φ)dt2 + a2(1− 2φ)dxidxi . (9.3)

From the (0,0) component of Einstein’s equations, the evolution of the grav-
itational potential is given by

k2

a2
φ+ 3H

(

φ̇+Hφ
)

= −4πG
∑

ρ̄iδi , (9.4)

where the sum extends over all matter components. If the energy com-
ponents interact only gravitationally between themselves, then the energy-
momentum tensors are individually conserved. For a generic component A,
by perturbing the conservation equation T µν

A ;µ = 0 one obtains
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δ̇A = −(1 + wA)

(

θA
a

− 3φ̇

)

− 3H
(

c2s,A − wA
)

δA, (9.5)

θ̇A = −H(1− 3wA)θA − ẇA
1 + wA

θA +
k2

a (1 + wA)
c2s,AδA +

k2

a
φ, (9.6)

For a more general treatment, including interaction between dark energy
and dark matter, see e.g. [142]. When the evolution is subhorizon, k ≫ aH
and time derivatives can be neglected compared to spatial gradients, eq. (9.4)
reduces to the Poisson equation:

k2φ = −4πGa2
∑

ρiδi . (9.7)

Equations (9.5) and (9.6) can be specialized to the case of dark matter,
baryons and dark energy, wCDM = wB = cs,CDM = cs,B = 0. If the dark
energy sound speed is cs,X = 1, then it will not cluster at small scales and
we can take δX ≈ 0. Under this assumption, the equations of evolution of
matter density perturbations, defined as ρ̄MδM = ρ̄CDMδCDM + ρ̄BδB are:

δ̇M =
θM
a
, (9.8)

θ̇M = −HθM − k2φ

a
, (9.9)

k2φ = −4πGa2ρ̄MδM . (9.10)

From this equations, the evolution of matter density perturbations is
described by a single second order differential equation:

δ̈M + 2Hδ̇M − 4πGρ̄MδM = 0. (9.11)

This equation does not depend on unknown functions, so the evolution
of matter density perturbations can be solved exactly, as required by our
method. In terms of the growth function, f , Eq. (9.11) could be transformed
into an even simpler, first order, differential equation (see e.g. [39, 99, 121]).

Let D+(t) be the growing mode solution of Eq. (9.11). To solve the equa-
tion, we need to specify the initial conditions at some arbitrary time. In the
CMBFAST code, this is done at some initial space-like hypersurface. In HZ,
all modes have the same amplitude at horizon crossing, i.e., amplitudes are
fixed at different times for different modes. This amplitude will depend on
the model, but for the same wavelength the ratio of amplitudes of different
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models will be constant, independent of scale, and this factor could be ab-
sorbed into the normalization. But even if the amplitudes at horizon crossing
were the same, the current amplitudes will differ because of their different
growth rates. When a perturbation of a fixed scale kin enters the horizon at
time tin,X and tin,ΛCDM it grows by a factor D+,X(t0,X)/D+,X(tin,X) and
D+,ΛCDM (t0,ΛCDM )/D+,ΛCDM (tin,ΛCDM ), respectively. Therefore, the final
amplitudes will differ by a factor

Q(kin) =
D+,X(t0,X)/D+,X(tin,X)

D+,ΛCDM (t0,ΛCDM )/D+,ΛCDM (tin,ΛCDM )
. (9.12)

As a result,
PX(k) = Q2(k)PΛCDM (k). (9.13)

This identity holds even if the spectral index differs from unity, n 6= 1.

Figure 9.1: (a) Ratios of the horizon radii, dH , of three cosmological models:
standard CDM, concordance ΛCDM, and the w = −0.5 dark energy model:
dH,ΛCDM (z)/dH,CDM (z) (blue dashed line), dH,X(z)/dH,CDM (z) (thick red
solid line), and dH,ΛCDM (z)/dH,X(z) thin (black) solid line. (b) Growth
factors of the ΛCDM (dashed blue line) and dark energy model (solid red
line) in units of the growth factor of the standard CDM model, D+,CDM ∼
(1 + z)−1.

To derive Q(k) for each cosmological model we first compute the horizon
radius, dH(z), to determine when a mode enters the horizon, and then solve
the dynamical equations to find the subhorizon growth factor D+(z) after
matter-radiation equality. If subhorizon perturbations in ΛCDM and dark
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energy models grow at the same rate in the radiation dominated regime,
then Q(k) = const and σ8,X = Q(2π/8h−1Mpc)σ8,ΛCDM . If both power
spectra are normalized at the same amplitude at small scales, then Q(k ≫
keq) = 1 and dark energy and ΛCDM spectra will coincide at small scales.
The method could be applied to superhorizon scales if the equations of
evolution formed a closed system. If not, one can simply extrapolate their
amplitude using the HZ prescription. If required, it could also be generalized
to include perturbations in other components such as dark energy. It suffices
to specify the amplitude of every component at horizon crossing and follow
its subsequent evolution.

Figure 9.1a shows the ratio of the comoving size of the horizon between
different models; the thick solid (red) and dashed (blue) lines correspond
to the ratio of the horizon size of the w = −0.5 dark energy and ΛCDM
models with respect to the standard (ΩΛ = 0, Ωm = 1) CDM model. As
expected, the size of the horizon is the same in the radiation dominated
regime irrespective of the cosmology. The thin (black) solid line represents
the ratio of the ΛCDM horizon size to that of the w = −0.5 dark energy
model, i.e., dH,ΛCDM/dH,X . In this case the ratio is very similar up to z ≈
30. The difference arises because the period of accelerated expansion starts
earlier in the dark energy model. In Figure 9.1b we plot the growth factor
(in units of the standard CDM growth factor) of the w = −0.5 dark energy
model, solid (red) line, and the concordance ΛCDM model, dashed (blue)
line. All models are normalized so that the amplitudes of the growing modes
at recombination are the same: D+(zrec) = (1 + zrec)

−1, i.e., they coincide
with the growth factor of the standard CDM at that redshift (zrec ≈ 1090).

Figures 9.2a,c,e depict the exact and approximated power spectra. In
each panel, the dashed black line represents the power spectra computed
numerically using CMBFAST for dark energy with w = −0.8 (a), w = −0.5
(c), and w = −0.1 (e). Solid (blue) lines plot the power spectra derived
using our analytic approximation and dot-dashed (red) lines correspond to
the concordance ΛCDM model used to construct the approximated solu-
tions. For the first two models, the approximated and exact dark energy
spectra are almost indistinguishable on a log-log scale. In Figures 9.2b,d,f
we represent the ratio of the approximated to the exact (computed with
CMBFAST) power spectrum (solid -blue- line) for (from top to bottom)
w = −0.8,−0.5,−0.1. The dot-dashed (black) line represents the ratio of
the concordance ΛCDM power spectra to the exact dark energy power spec-
tra. The accuracy of our prescription depends on the model parameters. It
is within 1-3% for w = −0.8, 1-8% for w = −0.5, and degrades to 5-35% for
w = −0.1. Properly speaking, this latter model is not a dark energy model
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because it does not lead to a period of accelerated expansion. Even in this
extreme case and ignoring the clustering of this “dark energy”, the approx-
imation is rather good, the largest error being 35% at k ∼ 5 × 104Mpc/h.
In any case, a certain discrepancy between the numerical and approximated
spectra is to be expected, as found around k ∼ 10−3Mpc/h, since for per-
turbations that come within the horizon after matter-radiation equality the
gravitational potential is still evolving with time and Eq. (9.7) becomes less
accurate. Figure. 9.2 is our main result. It shows how useful our prescrip-

Figure 9.2: (a,c,e) Matter power spectra of the concordance ΛCDM (dot-
dashed red line) and the dark energy model (solid blue line) with EoS pa-
rameter w = −0.8 (a), w = −0.5 (c), and w = −0.1 (e). The dashed line
correspond to the numerical (CMBFAST) solution and the (blue) solid line
corresponds to the approximated spectrum derived using eq. (9.13). All
other cosmological parameters are the same as in the ΛCDM concordance
model: H0 = 71 km/s/Mpc, Ωm = 0.27, ΩΛ = ΩX = 0.73, and n = 1.
(b,d,f) Ratios between different matter power spectra: PΛCDM (k)/PX(k)
(dot-dashed black line), and PX,approx(k)/PX(k) (solid blue line). Panel (b)
corresponds to w = −0.8, (d) to w = −0.5, and (f) to w = −0.1.
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tion is to construct the matter power spectrum of an arbitrary dark energy
model. The closer the model parameters are to the matter power spectrum
used as a starting point (in the examples above, the ΛCDM model), the
more accurate the approximation is. Once the dark energy model param-
eters differ significantly, our approach is not so accurate but, at the same
time, the power spectrum of the dark energy model separates from the con-
cordance model. Therefore, as long as the concordance model is a good fit
to the data, the difference between this model and the exact/approximated
dark energy spectrum are so large (almost a factor 30 in the w = −0.1 case)
that the uncertainty of our approximation is irrelevant. Large scale struc-
ture data like CMB temperature anisotropies on large scales would certainly
rule out the w = −0.1 model, even allowing for a 50% uncertainty in the
matter power spectrum at all scales. The w = −0.5 spectrum is identical
to ΛCDM at small scales, but different enough at large scales as to expect
that CMB temperature anisotropies on large angular scales could rule out
the model. For w = −0.8, the approximate spectrum is so close to that
of ΛCDM that to discriminate it from the concordance model will require
background tests such as SN Ia, BAO, etc. (even if we consider the exact
matter power spectrum). As determined by Larson et al. [138], WMAP
7yrs data alone yields w = −1.12+0.42

−0.43 at 1σ, while including data on BAO
and high redshift supernova produces w = −0.980±0.053 [70]. Here lies the
main advantage of our approach: one can quickly construct an approximate
power spectrum for any dark energy model that is more appealing from the
theoretical point of view than the ΛCDM concordance model. When the
model agrees with the data at the background level, if the matter power
spectrum is very different from ΛCDM, it will not fit the observations of
galaxy clustering and LSS.

9.4 The Radiation Power Spectrum

After computing the dark energy power spectrum, constraints on the model
can be imposed using data on galaxy clustering and LSS. Since the spectral
shape at small scales is the same than in the ΛCDM, once the dark energy
model is normalized to the measured σ8, it will reproduce the data on small
scales (galaxy clustering, peculiar velocity amplitude, weak lensing conver-
gence spectrum, etc.) as well as the ΛCDM. Of the three models discussed
in Fig. 9.2, we shall restrict our analysis to w = −0.5 dark energy model. As
shown in Figure 9.1, horizon size and perturbation growth between w = −0.5
dark energy and ΛCDM start to differ at z ≃ 20 and the power spectrum at
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k ≤ 4 × 10−3h/Mpc (see Fig. 9.2c), scale that comes into the horizon well
in the matter era. The differences in the matter power spectrum can only
be tested using data on large scales, like CMB temperature anisotropies.

Prior to decoupling, baryon and photons are tightly coupled and inhomo-
geneities in the baryon distribution are also reflected in anisotropies on the
radiation field. Several physical mechanisms contribute to the generation of
temperature anisotropies [65, 67]. Analytic methods that trace the structure
of the cosmic microwave background anisotropies have been used to compute
the contribution of different effects such as gravitational redshifts, acoustic
oscillations, diffusion damping, Doppler shifts, reionization as well as the
effect of curvature, a cosmological constant and their dependence on initial
conditions [79]. The gravitational redshifts are the dominant contribution
on large scales. These anisotropies are strongly dependent on the underlying
matter power spectrum. At l ≤ 10, the largest contributions come from the
SW and ISW effects [66]. Both components can be accurately computed in
terms of quadratures involving only the matter power spectrum

CSWl =
Ω2
mH

4
0

2πD2
+(0)

∫ ∞

0
k2dk

P (k)

k4
j2l (kr(z)) , CISWl =

2

π

∫ ∞

0
k2dkP (k)I2l (k) ,

(9.14)

where Il(k) = 3ΩM,0
H2

0
c2k2

∫ zrec
0 dzjl(kr(z))(d[(1+z)D+]/dz). In these expres-

sions jl is the spherical Bessel function, r(z) =
∫ z
0 H

−1(z)dz the look-back
distance and ΩCDM 0 the current matter density in units of the critical den-
sity and D+ is the growth factor that verifies D+(z) = (1 + z)−1 well in
the matter dominated period, so during that epoch there is no significant
ISW effect. The total radiation spectrum would contain contributions such
as acoustic oscillations and Doppler shifts, so Cl ≥ CSWl + CISWl . The ac-
curacy of Eq. (9.14) could be improved by including more contributions as
discussed in [78, 143] but, as we will see below, the difference in the ampli-
tude of the low multipoles suffices to rule out the w = −0.5 model so the
current approximation is accurate enough for our purposes. In Fig. 9.3a,
the thin (blue) solid and dashed lines represent the radiation spectra of the
dark energy and ΛCDM models, respectively, computed using CMBFAST.
The models are normalized to the σ8 obtained from the code, σ8 = 0.80 for
ΛCDM and σ8 = 0.53 for the w = −0.5 dark energy model. The thick (red)
solid line represents the power spectra computed using Eq. (9.14) and the
dot-dashed (green) line the radiation spectra computed with the same equa-
tion but with the approximated matter power spectra. All matter power
spectra are normalized to σ8 = 0.801 [138]. The open squares correspond to
the binned power spectrum measured by WMAP 7 yrs data [144]; error bars
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Figure 9.3: (a) Power spectra of the CMB temperature anisotropies. Thin
dashed (blue) and solid (blue) lines represent the exact spectrum of the
ΛCDM model (with σ8 = 0.801) and dark energy model (σ8 = 0.53), re-
spectively. Thick (red) solid and dot-dashed (green) lines plot multipoles
computed using eq. (9.14) with the exact and approximated matter power
spectrum, both normalized to σ8 = 0.801. The data are WMAP 7yrs mea-
surements. (b) Cl,X,eq 9.14/Cl,X,CMBFAST using eq. (9.14) and the exact
and approximated matter spectra, solid (red) and dot-dashed (green) lines
respectively. The dashed (black) line represents the ratio of the previous
two.

include instrumental noise and cosmic variance. To facilitate the comparison
between the different approximations, the top two lines in Fig. 9.3b repre-
sent the ratio of the dark energy approximated (computed using Eq. (9.14)
and the exact matter power spectrum) to the exact dark energy radiation
spectrum (solid red line), and the dark energy (using also the approximated
matter power spectrum), to the same exact dark energy radiation spectrum
(dot-dashed green line). The dashed (black) line is the ratio of the previous
two. The error introduced by computing Cl using Eq. (9.14) with the exact
or the approximated matter power spectrum is smaller than 10%.

Fig. 9.3 summarizes the comparison of the w = −0.5 dark energy model
with CMB data. When CMB anisotropies are computed using CMBFAST
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and normalized to WMAP 7 yrs data, the CMB power spectrum fits the low
multipoles rather well, but then the amplitude of matter density fluctuations
is σ8,X = 0.53, well outside the value σ8 = 0.801 ± 0.030 [138] allowed by
the data. As a result, the w = −0.5 dark energy model with parameters
ΩM = 0.27, ΩΛ = 0.73, etc. is ruled out. But if the calculation of the CMB
power spectrum proves to be difficult, the approximated power spectrum
could be used to approach the problem differently. Once the power spectrum
of the dark energy model (with w = −0.5) is constructed and normalized
to σ8 = 0.801, the amplitude of temperature anisotropies at l ≤ 10 would
result l(l + 1)CXl /2π ∼ 2000(µK)2, about a factor of 2 larger than the
measured spectrum, a factor larger than the uncertainties introduced by our
approximation (less than 10%) or by Eq. (9.14) (less than 15% for l ≤ 10).
Therefore, without the need of further information, a model like dark energy
with w = −0.5 could be ruled out based on the amplitude of the low order
multipoles. Models that differ from ΛCDM also during the radiation regime
can be more severely constrained by using weak lensing, peculiar velocities,
or galaxy clustering data.

9.5 Conclusions

We have shown in this chapter how to compute the matter power spec-
trum of dark energy cosmological models using a fiducial ΛCDM model and
the growth factor of subhorizon density perturbations of the model under
consideration. This allows to use data on CMB temperature anisotropies
and galaxy clustering to discriminate models without having to solve the
evolution of density perturbations of all matter components, thus economiz-
ing much effort. Figure 9.2 shows the advantage of our proposal. In most
cosmological models, the equations describing the time evolution of matter
density perturbations can be derived from the conservation of the energy
momentum tensor and solved for each component individually. Thus, an
approximated matter power spectrum can be easily computed. If a model
fits the background evolution as determined, for example, by luminosity dis-
tances obtained from supernovae data, before proceeding to a detailed study
of the evolution of its density perturbations and CMB anisotropies, one can
compute an approximated matter power spectrum and predict observables
such as the low multipoles of the CMB, the ISW-LSS correlation, the weak
lensing convergence spectrum, etc., that can be compared with observations.
Even if a model agrees with the data on the expansion rate of the Universe,
it could be ruled out by data on temperature anisotropies or galaxy clus-
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tering without requiring to solve the first order perturbation equations in
full.

Our method has its limitations: it produces an approximated matter
power spectrum and only observables derived from it can be used. Since it
fixes amplitudes at horizon crossing, it is insensitive to any instability that
could occur on superhorizon scales such as those present in some models
with interactions in the dark sector [145, 56]. However, as our examples
show, the approximated and numerical power spectra are very similar when
the model parameters are close to those of the starting model. This is the
advantage of our approach: the approximated power spectrum can be used
to distinguishing models, that despite reproducing the background observa-
tional data, would fail to fit the galaxy clustering and LSS data. In this
respect, the w = −0.8 model is so close to ΛCDM it should be tested with
background data such as SN Ia, BAO etc. to be ruled out (the same happens
with the exact matter power spectrum). In the w = −0.5 dark energy model,
the relative error in the approximated and numerical P (k) is smaller than
8%, but the difference with the concordance model is so significant that the
predicted CMB temperature anisotropies on large scales are about a factor
of 2 larger than the measurements, a factor much larger than the uncertainty
introduced by our approximation or by Eq. (9.14). Finally, the w = −0.1 is
so different from ΛCDM that it can be ruled out at a glance, irrespectively
of the poorer quality of our approximation. When the observables derived
from the approximated matter power spectrum fails to fit the data, we can
confidently expect the model to fail. But even if a model fits some data on
galaxy clustering, it may not necessarily reproduce all the observations, like
the full spectrum of CMB temperature anisotropies; it simply means that it
deserves further study.
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Chapter 10

Three
thermodynamically-based
parameterizations of the
deceleration parameter 1

10.1 Introduction

The deceleration parameter (2.19), is a key quantity in describing the evo-
lution of the homogeneous and isotropic universe. Its importance lies in the
fact that it tells us the rate at which the Universe accelerates or decelerates
its expansion. Unfortunately, at present measurements of q suffer from non-
small uncertainties that quickly grow with redshift, though it is virtually
certain that the Universe is accelerating nowadays, i.e., that q0 < 0 (the
zero subscript means present time). Expressions of q(z) provided by cosmo-
logical models are of not much help either because none of them rests on
sufficiently convincing theoretical grounds. It is to be hoped that things will
eventually turn for the better when a successful theory of quantum gravity
is in place, though it may well take a long while.

Nevertheless, on the observational side the situation may improve com-
paratively soon given the variety and range of ongoing and planned major
ambitious projects that involve bigger telescopes and advanced techniques
-for a short review and a comprehensive list of references see §14 of [147]. In
view of the above, it seems reasonable to propose parametrized expressions

1This Chapter corresponds to Ref. [146].
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of q(z) based not in any specific cosmological model but on practical and
empirical reasons that lessen their wide latitude. They can be useful while
we patiently wait for a theoretically sound model backed by observation at
all scales.

Thus far, different parametrizations, such as q = q0 + q1z, q = q0 +
q1z(1 + z)−1, q = q1 + q2z(1+z)

−2, q = 1/2 + q1(1+z)
−2, q = 1/2 + (q1z +

q2)(1 + z)−2, and more complex than these, have been considered in the
literature to reconstruct q(z) from observational data (see e.g. [148]-[153]).
However, the first parametrization is adequate for | z |≪ 1 only and the
others are unsuitable to predict the behavior of the deceleration parameter
in the far future; in particular, they diverge as z → −1. Parametrizations
whose intended range of validity includes the far future are necessarily more
involved and usually contain three or four free parameters [154, 155].

In this paper we propose three model independent parametrizations, with
just two free parameters, valid from the matter dominated epoch (z ≫ 1)
onwards (i.e., up to z = −1), based on practical and theoretical reasons
and independent of any cosmological model. By construction they obey the
asymptotic conditions, q(z ≫ 1) = 1/2, q(z = −1) = −1, and a further
condition, dq/dz > 0, which is valid at least when q → −1. The first condi-
tion expresses the conviction that at sufficiently high redshift the Universe
was matter dominated (otherwise it would be very hard to account for the
observed cosmic structures). At first sight, the other conditions are less
compelling. As explained below, they are based on the second law of ther-
modynamics when account is made of the entropy of the apparent horizon.
Usually one parametrizes a function in any specific interval by interpolating
it between two given points (one at either end of the interval), modulo one
first knows the value taken by the function at these two points. In actual
fact, the parametrizations of q(z) proposed so far have just one fixed point:
the asymptotic value at high redshift (q must converge to 1/2 when z ≫ 1).
The other, q0, is not in reality a fixed point because the value of the decel-
eration parameter at z = 0 is not very well known and therefore left free.
The parametrizations proposed in this paper have two fixed points, one at
the far past (z ≫ 1), and other at the far future (z = −1). The second fixed
point conforms to the thermodynamical constraints imposed by the second
law. We believe this means a clear advantage over previous parametrizations
of q(z), with just one fixed point. While it can be found in the literature
parameterizations that also fix q at z = −1 they do so arbitrarily, i.e., not
grounded on sound physics.

Here are proposed three model-independent parametrizations of q(z),
from z ≫ 1 up to z = −1, that comply with the second law of thermody-
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namics and constrain their two free parameters with recent observational
data. As it turns out, all of them predict that the present stage of acceler-
ated expansion will never slow down and are consistent with the spatially
flat ΛCDM model.

10.2 Thermodynamical constraints on q(z)

As is well known, physical systems tend spontaneously to some equilibrium
state compatible with the constraints imposed on them. This summarizes
the empirical basis of the second law of thermodynamics. Very briefly, this
law establishes that isolated, macroscopic systems, evolve to the maximum
entropy state consistent with their constraints [156]. As a consequence their
entropy, S, cannot decrease at any time, i.e., dS ≥ 0. Further, in the last
phase of the evolution S has to be a convex function of the said variable,
d2S(z → −1) < 0.

Arguably, the entropy of Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universes is dominated by the entropy of the causal horizon, at least at
late times -see e.g. [157]. As causal horizon we shall take the apparent
horizon, the marginally trapped surface with vanishing expansion of radius
r̃A = 1/

√
H2 + k a−2 [158], where k denotes the spatial curvature index.

Interestingly enough, it has been shown that this horizon represents the
appropriate thermodynamic boundary surface [159]. Leaving aside possible
quantum corrections its entropy results proportional to area of the latter
(4πr̃2A) [158],

SA ∝ A = 4π (H2 + k a−2)−1 . (10.1)

Therefore, so long as we can ignore the entropy within the horizon, the
second law of thermodynamics imposes A′ ≥ 0, at any time, as well as
A′′ ≤ 0 at late times -the prime meaning derivative with respect to the scale
factor. Both conditions are to be fulfilled if the FLRW universe is to tend
to thermodynamic equilibrium at late times [160].

Bearing in mind the definition of the deceleration parameter, for spatially
flat (k = 0) FLRW universes we can write

A′ = 2A 1 + q

a
, and A′′ = 2A

[

2

(

1 + q

a

)2

+
q′

a
− 2

1 + q

a2

]

.

(10.2)
The first equation implies q ≥ −1. Inspection of the second one reveals that
when a→ ∞ the middle term in the square parenthesis dominates. Thereby,
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dq/da < 0 in that limit. Thus, for the Universe to tend to thermodynamic
equilibrium at late times we must have q → −1 and dq/dz > 0 as z → −1.

10.3 Statistical tools

This Section outlines the use of the observational data to fit the parametriza-
tions of the deceleration parameter, q(z). Since the likelihood function is
defined by L ∝ exp(−χ2/2) the best fit to the data follows from minimizing
the sum χ2

total = χ2
SN + χ2

BAO/CMB + χ2
H . As detailed below, the best

fit values of the parameters can be obtained by contrasting the proposed
parametrizations with the empirical data mentioned above and minimizing
the χ2

total by means of the Markov Chain Monte Carlo method.

10.3.1 SN Ia

We compare the theoretical distance modulus with the observed distance
modulus µobs(zi) of the 557 supernovae type Ia assembled in the Union2
compilation [60].

10.3.2 BAO and CMB

Here we use the peaks measured at z = 0.35 [83] and at z = 0.2 [84],
together with more recently observed ones: at z = 0.278 (with the SDSS
[85]), at z = 0.106 (in the six degree Field Galaxy Redshift Survey [86]),
and at z = 0.44, z = 0.60, and z = 0.73 (by the WiggleZ team [87]).
From each peak the ratio of the comoving sound horizon rs(z) at decoupling
(z = z⋆ ≃ 1090) and at the drag epoch (z = zd), the epoch at which
the acoustic oscillations are frozen in, can be measured. Here cs is the
speed of sound. Likewise, at each peak, a characteristic distance scale, the
dilation scale, eq. (4.14), can also be determined. To compute the drag
epoch redshift we use the formula (4) of Eisenstein and Hu in [161] and get

zd ≈ 1020. Multiplying the ratio, rs(zd)
DV (zBAO) , taken from the BAO peaks by

the acoustic scale (4.4), we get dA(z⋆)
DV (zBAO)

rs(zd)
rs(z⋆)

at each redshift of the seven
BAO data. Here we use the value for lA derived from Wilkinson microwave
anisotropy probe (WMAP)7-years data, namely, lA = 302.09± 0.76 [70]. If
we also use the value of the ratio of sound horizon at the drag epoch and
at recombination (redshift z⋆), computed from the values reported in [70]
rs(zd)
rs(z⋆)

= 1.045±0.015 we obtain the new estimator dA(z⋆)
DV (zBAO) , shown in table

10.1, as done in [72]. Using this estimator, the dependence in the sound
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horizons at decoupling and the drag epoch is suppressed. Thus we just use
the ratio between them, which is almost model independent. This follows
because both redshifts are rather close and the sound horizon at decoupling
and drag essentially depend on the fractional difference between the number
of photons and baryons [72]. To obtain the χ2 for the combined BAO/CMB

zBAO 0.106 0.2 0.278 0.35 0.44 0.6 0.73

rs(zd)

DV (zBAO)
0.336 ±
0.015

0.1905 ±
0.0061

0.1394 ±
0.0049

0.1097 ±
0.0036

0.0916 ±
0.0071

0.0726 ±
0.034

0.0592 ±
0.0032

dA(z⋆)

DV (zBAO)
30.92±1.45 17.53±0.62 12.83±0.49 10.09±0.36 8.43 ± 0.66 6.68 ± 0.33 5.45 ± 0.30

Table 10.1: Values of rs(zd)
DV (zBAO) (reported in [83, 84, 86, 85, 87]) and the

derived ratio dA(z⋆)
DV (zBAO) .

data we compute
χ2
BAO/CMB = XTC−1X , (10.3)

where

X =





























dA(z⋆)
DV (0.106) − 30.92
dA(z⋆)
DV (0.2) − 17.53
dA(z⋆)

DV (0.278) − 12.83
dA(z⋆)
DV (0.35) − 10.09
dA(z⋆)
DV (0.44) − 8.43
dA(z⋆)
DV (0.6) − 6.68
dA(z⋆)
DV (0.73) − 5.45





























and XT the transpose matrix. The elements of covariance matrix C are
given by

Cij =
∑

k





∂ dA(z⋆)
DV (z)

∂pk





zi





∂ dA(z⋆)
DV (z)

∂pk





zj

Cpk i j , (10.4)

where the sum is over the estimators used (in our case, rs(zd)
DV (zBAO) , lA/π and

rs(zd)
rs(z⋆)

). The elements of the original covariance matrices are C lA
π

= θ2lA
π

,

C rs(zd)

rs(z⋆)

= θ2rs(zd)
rs(z⋆)

and CBAO i j = θBAO i θBAO j ri j where θBAO i stand

for the errors associated with the estimator rs(zd)
DV (zi)

. The only non-zero off-
diagonal correlation coefficients ri j are rz=0.2 z=0.35 = 0.337, rz=0.44 z=0.6 =
0.369 and rz=0.6 z=0.73 = 0.438, and their symmetric [84, 87]. Thus, the
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inverse covariance matrix comes to be

C−1 =





















0.492 −0.084 −0.126 −0.136 −0.025 −0.081 −0.088
−0.084 3.362 −0.327 −2.397 −0.065 −0.209 −0.228
−0.126 −0.327 4.429 −0.528 −0.098 −0.314 −0.342
−0.136 −2.397 −0.528 9.712 −0.106 −0.338 −0.368
−0.025 −0.065 −0.098 −0.106 2.798 −2.749 1.182
−0.081 −0.209 −0.314 −0.338 −2.749 15.002 −7.294
−0.088 −0.228 −0.342 −0.368 1.182 −7.294 14.587





















.

10.3.3 History of the Hubble parameter

In addition to the data used in §5.2.5 and §7.3.5, we have included in our
analysis 9 more recent correlated data from the WiggleZ survey [162]. The
corresponding χ2

χ2
H(p) =

15
∑

i=1

[Hth(zi) − Hobs(zi)]
2

σ2(zi)
+XT

HC
−1
H XH , (10.5)

where

XH =





























Hth(0.05)− 69.4
Hth(0.15)− 76.6
Hth(0.25)− 75.3
Hth(0.35)− 78.3
Hth(0.45)− 87.3
Hth(0.55)− 88.9
Hth(0.65)− 101.4
Hth(0.75)− 96.9
Hth(0.85)− 127.3





























and C−1
H is the inverse covariance matrix given in table 6 of [162].

10.4 Parametrizations

Here we propose and constrain three parametrizations of the deceleration
parameter, valid from the matter dominated era up to z = −1. These
fulfill: (i) q(z ≫ 1) = 1/2 (as demanded by cosmic structure formation),
(ii) q(z = −1) = −1 and dq(z)/dz > 0 when q(z) → −1 as required by the
thermodynamic arguments above (the second law of thermodynamics). In
interpolating between (z = −1, q = −1) and (z ≫ 1, q = 1/2) we introduce
two free parameters q1 and q2 and fit them to the observational sets of data
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by the method of last Section. Note that due to the scarcity of q(z) data
and their big error bars, we do not constrain the parametrizations directly.
We constrain instead the expressions for H(z) that arise from integrating
them; namely,

H(z) = H0 exp

{∫ z

0
[1 + q(x)] d ln(1 + x)

}

, (10.6)

which holds for all parametrizations. This has the advantage of a much
bigger and robust statistics. Notice that the Hubble constant also enters
this expression as a free parameter. Its value for each parametrization is
obtained by fitting it to the H(z) data, [95, 96, 97, 98, 162].

10.4.1 Parametrization I

As a first parametrization we propose

q(z) = −1 +
3

2

(

(1 + z)q2

q1 + (1 + z)q2

)

, (10.7)

where to avoid divergences q1 and q2 must be positive-definite. Introducing
(10.7) in (10.6), it follows

H(z) = H0

(

q1 + (1 + z)q2

q1 + 1

) 3
2q2

. (10.8)

(We note in passing that for q2 = 3 the ΛCDM behavior is reproduced). By
using the method outlined in last section in conjunction with the observa-
tional data (SN Ia (557), CMB/BAO (7) andH(z) (15)), we fit the three free
parameters occurring in (10.8). The result is q1 = 2.87+0.70

−0.53, q2 = 3.27±0.55,

and H0 = 70.5+1.5
−1.6 km/s/Mpc. Table 10.2 shows the χ2 values of the best

fit.

Data sets χ2
SN χ2

BAO/CMB
χ2
H χ2

tot χ2
tot dof

Union2+BAO/CMB+H(z) 542.6 2.6 17.9 563.3 0.96

Table 10.2: Best fit χ2 values of parametrization I, Eq. (10.7). The free
parameters are q1, q2 and H0.

Figure 10.1 shows the evolution of the q for the best fit values of parametriza-
tion I (solid line), with its 1σ confidence region (shadowed area), and the
spatially flat ΛCDM model (dashed line) as determined by the WMAP 7-
years team [70] (the latter graph is included for the sake of comparison), in
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Figure 10.1: Left panel: deceleration parameter vs. redshift. The shaded
area shows the 1σ confidence region. Right panel: Hubble function vs.
redshift (the observational data are borrowed from Refs. [95, 96, 97, 98]).
In both panels the solid (red) and the dashed (green) lines are used for the
best fit of parametrization I (Eq. (10.7)) and for the ΛCDM model with
ΩM0 = 0.27 and H0 = 72.1 km/s/Mpc -see [70]-, respectively. The latter
graph is shown for comparison.

the interval −1 ≤ z ≤ 5 (left panel), and the evolution of the Hubble func-
tion in the interval 0 ≤ z ≤ 3 (right panel). Figure 10.2 depicts the 1σ and
2σ contour plots of the pairs (q1, q2) (left panel) and (H0, q0) (right panel).
Upon assuming that the expansion is dominated by pressureless matter and
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Figure 10.2: Left panel: 1σ and 2σ confidence regions of the pair of free
parameters (q1, q2) of parametrization I, Eq. (10.7). Right panel: 1σ and
2σ regions of the pair of free parameters (H0, q0). The dot signals the best
fit values.
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some other (unspecified) component, non-interacting with each other except
gravitationally, the effective EoS parameter is given by

w(z) =
2q(z)− 1

3(1− ΩM (z))
. (10.9)

Parametrizations of q(z) and w(z) are somewhat equivalent but not quite
because in the latter case some assumptions about the energy budget of the
Universe, as well on the existence or not of possible interactions between the
different components, have to be made while in the former (as in our case)
not necessarily. Having said this, it is interesting to confront (10.9) with the
widely used Chevallier-Polarsky-Linder (CPL) parametrization [163, 164]

w = w0 + w1
z

1 + z
, (10.10)

not far from z = 0, in the redshift range −0.3 ≤ z ≤ 0.3. We restrict
ourselves to comparative small redshift around z = 0 because it diverges
at z → −1. After numerically linearizing our expression for w(z) we get
w0 = −0.92± 0.10 and w1 = 0.31+0.28

−0.25, values in very good agreement with
those reported in [70], for the CPL parameters, namely: w0 = −0.93± 0.12
and w1 = −0.38+0.66

−0.65. As Fig. 10.3 reveals, comparison in the extended
interval −0.5 ≤ z ≤ 5 shows that for z ≥ 2.5 the evolution of the effective
of both EoS disagree in excess of 1σ. This is consistent with claims that the
CPL parametrization is not appropriate to fit data simultaneously at low
and high redshifts [165, 166].

10.4.2 Parametrization II

As a second parametrization we propose,

q(z) = −1

4

(

3q1 + 1− 3(q1 + 1)
q1e

q2(1+z) − e−q2(1+z)

q1eq2(1+z) + e−q2(1+z)

)

. (10.11)

In this case the Hubble function must be obtained by numerically in-
tegrating Eq. (10.6). Proceeding as before we obtain, q1 = 0.078+0.086

−0.043,

q2 = 0.95+0.23
−0.20, and H0 = 70.4 ± 1.6 km/s/Mpc for the three parameters

entering H(z). The χ2 best fit values are shown in table 10.3.
Left panel of Fig. 10.4 shows the evolution of q for the best fit value

of parametrization II (with its 1σ confidence region) and the ΛCDM model
obtained by Komatsu et al. [70]. The right panel depicts the evolution of
the Hubble function versus redshift in the interval 0 ≤ z ≤ 3.
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Figure 10.3: EoS parameters vs. redshift. The shaded area shows the 1σ
confidence region. The solid (red) and the dashed (green) lines are used for
the best fit of parametrization I (Eq. (10.7)) and for the CPL parameter-
ization, Eq. (10.10), both with ΩM0 = 0.27 ± 0.03. For the CPL parame-
terization the values w0 = −0.93 ± 0.12 and w1 = −0.38+0.66

−0.65 obtained by
Komatsu et al. [70] were used.

Data sets χ2
SN χ2

BAO/CMB
χ2
H χ2

tot χ2
tot dof

Union2+CMB/BAO+H(z) 542.7 2.7 17.7 563.1 0.96

Table 10.3: Same as Table 10.2 but for parametrization II, Eq. (10.11)
.

Figure 10.5 shows the 1σ and 2σ contour plots of the pair (q1, q2) (left
panel), and (H0, q0) (right panel). Note that q0 results more degenerate
than in the previous parametrization (as well as in the next one). This
arises because -as direct inspection shows- in the other two parametrizations
q0 depends on just one free parameter, q1, while in this parametrization it
depends on both, q1 and q2.

Considering the effective EoS parameter (10.9), as in the previous sec-
tion, we obtain after linearization w0 = −0.97+0.33

−0.21 and w1 = −0.15+0.70
−0.47.

As Fig. 10.6 shows, the evolution of the said effective EoS and the CPL in
an extended redshift interval is similar to the previous one but with the 1σ
uncertainty interval significantly wider.
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Figure 10.4: Same as Fig. 10.1 but for parametrization II, Eq. (10.11).
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Figure 10.5: Same as Fig. 10.2 but for parametrization II, Eq. (10.11).

10.4.3 Parametrization III

The previous parametrization presents the inconvenience of a significant
uncertainty in q0 since it depends on the two free parameters. The following
parametrization

q(z) = −1

4
+

3

4

q1e
q2

z√
1+z − e

−q2 z√
1+z

q1e
q2

z√
1+z + e

−q2 z√
1+z

, (10.12)

avoids this as q0 depends on q1 only. Again, H(z) must be obtained nu-
merically. Then, proceeding as in the two previous instances, we obtain
q1 = 0.36+0.07

−0.08, q2 = 1.57+0.27
−0.33, and H0 = 70.5+1.4

−1.6 km/s/Mpc. The χ2 values
of the best the fit are indicated in table 10.4. Figure 10.7 shows the evo-
lution of the deceleration parameter for the best fit parametrization (with
its 1σ confidence region) and the ΛCDM model as determined the WMAP
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Figure 10.6: EoS parameters vs. redshift. The shaded area shows the 1σ
confidence region. The solid (red) and the dashed (green) lines are used for
the best fit of parametrization I (Eq. (10.7)) and the CPL parametrization,
Eq. (10.10), respectively, both assuming ΩM0 = 0.27 ± 0.03. For the CPL
parametrization the values w0 = −0.93±0.12 and w1 = −0.38+0.66

−0.65 obtained
by Komatsu et al. [70] were used.

Data sets χ2
SN χ2

BAO/CMB
χ2
H χ2

tot χ2
tot dof

Union2+CMB/BAO+H(z) 542.6 1.7 17.9 563.2 0.96

Table 10.4: Same as Table 10.2 but for parametrization III, Eq. (10.12).

team [70] (left panel), and the evolution of the Hubble function (right panel).
Fig. 10.8 shows the 1σ and 2σ contour plots of the pairs (q1, q2) (left panel)
and (H0, q0) (right panel). As for the effective EoS parameter (10.9), pro-
ceeding as in the previous subsections, we obtain w0 = −1.01 ± 0.06 and
w1 = 0.03 ± 0.16. Again, the evolution of the said effective EoS and the
CPL in an extended redshift interval is rather similar to the one in Fig.
10.3; thereby, we do not feel it necessary to show it here.

10.4.4 Discussion

Figure 10.9 compares the parametrizations. All three yield rather similar
results being really close between one another from the statistical standpoint
(χ2
dof = 0.96 for all of them). However, parametrization II looks somewhat
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Figure 10.7: Same as Fig. 10.1 but for parametrization III, Eq. (10.12).
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Figure 10.8: Same as Fig. 10.2 but for parametrization III, Eq. (10.12).

less favored than the other two because of the noticeably wider 1σ region of
q vs. z, as seen in the left panel of Fig. 10.4.

All of them are consistent with a present stage of accelerated expansion,
never to end or slow down. Further, the best fit plots of H(z) and q(z)
are alike the corresponding plots of the ΛCDM model as determined by
Komatsu et al. [70]. From Table 10.5 we learn that all H0 best fit values are
within 1σ of each other and consistent with the H0 value reported in [70].
The same holds true for the best fits of the age of the Universe, t0, q0 and the
redshift, zt, at which the transition deceleration-acceleration occurred (i.e.,
q(zt) = 0), though the central values of the latter are not so close between
each other as the corresponding values of the other two parameters. At any
rate, the three of them are consistent with the zt ≈ 0.5 value obtained by
Wu et al. using the history of the strong energy condition [167], as well as
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Figure 10.9: Deceleration parameters vs. redshift. Solid (red), long dashed
(blue) and short dashed (green) lines are for parametrizations I, II and III
respectively. The graphs of parameterizations I and III practically overlap
each other.

with the findings of Riess et al. [168], Cunha and Lima [150], and Lu et al.

[169].
As table 10.5 shows, the values predicted for Hubble’s constant, H0, by

the three parametrizations are within 1σ between one another and with the
value predicted by the ΛCDM model that best fit identical sets of observa-
tional data. This is also true for t0, q0 and zt.

Param. I Param. II Param. III ΛCDM

H0 70.5+1.5
−1.6 70.4± 1.6 70.5+1.4

−1.6 70.2± 1.4

t0 13.6± 0.5 13.7± 0.4 13.6± 0.2 13.4± 0.1

q0 −0.61+0.06
−0.07 −0.56+0.35

−0.22 −0.60±0.06 −0.60± 0.03

zt 0.71+0.14
−0.17 0.77+0.52

−0.57 0.72+0.27
−0.21 0.76± 0.05

Table 10.5: Hubble’s constant, H0 (in km/s/Mpc), the age of the Universe,
t0 (in Gyr), the deceleration parameter, q0, and the redshift, zt, of the
transition deceleration-acceleration for the three parametrizations, and the
flat ΛCDM model fitted to the same data sets.

A direct and model-independent determination of q(z) in the redshift
interval 0 ≤ z ≤ 1 was carried out by Daly and coworkers [108] who applied
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the expression [170]

q(z) = −1 − (1 + z)

[

d2y/dz2

dy/dz
+

Ωk0 y dy/dz

1 + Ωk0y2

]

(10.13)

to the 192 SN I data points of Davis et al. [171] and 30 radiogalaxy data
points of Daly et al. [172] -see Fig. 10 in [108]. In (10.13) y(z) = H0(a0 r) is
the dimensionless coordinate distance, r the radial coordinate of the FLRW
metric, and Ωκ 0 = −κ/(H0 a0)

2. Notice that it just assumes the FLRW
metric; i.e., it holds regardless the energy components of the Universe or the
specific theory of gravity adopted. Figure 10.10 shows the best fit graphs of
q(z) of each parametrization superimposed to experimental results of Daly
et al. [108]. As it is seen, these lines fall within the 1σ region of q(z) as
determined in Ref. [108].

One may wonder up to what extent the imposing of the thermodynamic-
based, far future, constraint q(z = −1) = −1 biases the parametrizations
toward the ΛCDM model. We have studied this by letting the value of
q(z = −1) as an additional free-parameter and fitting it using solely the
observational data. The results are: q(z = −1) = −0.65+0.21

−0.50, q(z = −1) =

−1.1+0.2
−1.7, and q(z = −1) = −0.82+0.07

−0.4 for parametrizations I, II and III,
respectively. Except for the second one, the quintessence cold dark matter
(CDM) model is somewhat preferred but, in all the cases, the physically mo-
tivated choice q(z = −1) = −1 results compatible within 1σ. The drawback
of letting q(z = −1) free, aside from violating thermodynamics, is that the
other two free-parameters present a wide degeneracy.

Likewise, the derived values for the Hubble constant (first row in Table
10.5) differ from the recently obtained by Riess et al., H0 = 74.2 ± 3.6
km/s/Mpc, [95], who used 240 Cepheids variables at z < 0.1, by about
6% (but they all agree with the latter at 1σ). We have considered this
by repeating the analysis of subsection IIIC but this time leaving aside
the mentioned value of Riess et al. The results now are: H0 = 70.0+1.7

−1.5,

H0 = 70.0+1.5
−1.6, and H0 = 70.1+1.6

−1.6 Km/s/Mpc for parametrizations I, II and
III, respectively. Thus, both sets of results are essentially coincident (they
differ by less than 1%). They also agree very well with the Hubble constant
value observationally derived by Komatsu et al., 70.4± 2.5 km/s/Mpc [70],
using WMAP 7-year data. So, while there is a significant difference between
the Hubble constant value of Riess et al. and ours, it is not a substantial
one; after all, they agree at 1σ confidence level. At any rate, the root of the
discrepancy may be rightly traced at the difference in methods employed.
While Riess et al. essentially used astrophysical data, we (as well as Komatsu
et al.) resorted to cosmological data instead.
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Figure 10.10: Top panel: observational constraints, at 1σ confidence level,
on the deceleration parameter versus redshift, obtained by Daly et al. using
the combined sample 192 supernovae and 30 radio galaxies (top panel of Fig.
10 in [108]); the thick solid line corresponds to the central experimental value
of q(z). Solid, dashed, and dot-dashed lines correspond to parametrizations
I (Eq. (10.7)), II (Eq. (10.11)) and III (Eq. (10.12)), respectively. Bottom
panel: The same as the top panel except that the observational constraints
on q(z) were obtained solely from the sample of 30 radio galaxies (bottom
panel of Fig. 10 in [108]). In both panels parametrizations I and III practi-
cally overlap each other.

10.5 Concluding remarks

In this Chapter we proposed three different two-parameter parametrizations
of q(z) valid from the matter era (z ≫ 1) up to the infinite future (z = −1),
modulo H(z) > 0. These rest in the following hypotheses: (i) at cosmologi-
cal scales the Universe is homogeneous and isotropic, thereby well described
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by the FLRW metric; (ii) in the matter dominated era q = 0.5 ; (iii) at
least at late times the entropy of the Universe is dominated by the entropy
of the apparent horizon. The second an third hypotheses furnish two fixed
points (at z ≫ 1 and z = −1, respectively), thereby drastically reducing the
ample latitude one faces in parameterizing q(z). By smoothly interpolating
between these two points one can obtain useful parametrizations, but with
shrunk arbitrariness.

Except for the existence of a matter dominated era at early times, the
parametrizations are independent on any specific cosmological model; and,
on the other hand, they are flexible enough to accommodate many homo-
geneous and isotropic models. We constrained the free parameters with the
latest observational data (SN Ia, BAO, CMB, and H(z)). Accordingly if
to accommodate a given cosmological model the free parameters, q1 and
q2, in the three parametrizations should take values widely apart from their
respective best fits (which are consistent within 1σ with the flat ΛCDM
model), we may confidently discard the said model.

Thermodynamics in spatially flat (κ = 0) FLRW universes demands that
q(z = −1) = −1. This provides us with an additional and very useful fixed
point to parametrize q(z) in a model independent manner. Note that in
the absence of a physically motivated value of the deceleration parameter
at z = −1 one is led to choose some or other random value. By contrast, in
our case we have taken q(z = −1) = −1 on solid thermodynamic grounds.

Albeit we have considered just the particular set of spatially flat FLRW
universes, it is not a big restriction at all. Indeed, recalling that in the case
of non-flat metrics the area of the apparent horizon is given by Eq. (10.1) it
follows that A′ = A2/(2πa) [H2(1+ q) + k a−2]. When a→ ∞ and k = −1,
the last term on the right hand side is necessarily subdominant otherwise
one would have A′ < 0, contrary to the second law. Hence the condition
A′ ≥ 0 in that limit reduces to the one in flat space, namely, q ≥ −1. In
the positively curved case, and again in the same limit, one can assume that
H ∝ an, n being some real number. As it can be straightforwardly checked,
the aforementioned last term results, once more, subdominant provided that
n > −1 which is the case of most realistic cosmologies. Thus, (z = −1, q =
−1) is an asymptotic fixed point not only for spatially flat universes but also
for open universes and for a rather ample set of closed universes.

Our results suggest that from the era of matter domination onward q
decreases monotonously with expansion (i.e., dq/dz > 0), the transition
deceleration acceleration occurred at a redshift of about 0.7, and that q0 ≃
−0.6. They do not support recent claims that the cosmic expansion is today
reverting to a decelerated phase (i.e., that dq/dz|0 < 0) [166], [173]-[176]. On
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the contrary, they show overall consistency with the findings of [148]-[155],
[108], [177], as well as with those of Serra et al., [107]. The latter authors
showed that the equation of state of dark energy has not varied noticeably
in the redshift interval 0 ≤ z ≤ 1.
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Chapter 11

Overall conclusions

In this Memoir we have dealt with cosmological models of interacting dark
energy, especially with those in which the latter is holographic.

• We constrained two different models of holographic interacting dark
energy with several cosmological data sets in §5, §7 and §6. In all of
them, the non interacting case was discarded at least at 2σ level. When
the infrared cutoff is described by the Hubble length it is discarded
at 30σ. The result are compatible with the actual value of the cos-
mological parameters determined by Komatsu and collaborators [70],
albeit the ΛCDM model presents a marginally better fit and more
statistical power. So, if dark energy is holographic, what is a very rea-
sonable assumption, dark energy and dark matter must interact (also
non-gravitationally) with each other.

• Any holographic interacting dark energy model can be recast as a non
interacting one endowed with a c2 parameter that slowly varies with
time -see §6. The non interacting models seem to fit the data better,
since the best fit models are close to the ΛCDM model.

• We have shown that an equation of state describing the dark sector,
can be seen as a unified dark matter model or a cold dark matter
plus vacuum energy. The former ones have problems in fitting the
data and so far, generally, only models behaving close to the standard
ΛCDM model are compatible with current observations. By contrast,
the interacting models are compatible with data in spite of departing
from the ΛCDM.

• We proposed a novel method to compute the matter power spectrum
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in (exotic) dark energy models that save computational time since it
suffices to calculate the matter power spectrum of the ΛCDM model
and the growth function after recombination of the model under con-
sideration. The errors introduce by the method remain below 8%.

• Many parameterizations of the deceleration parameter (or nearly equiv-
alently the equation of state parameter) diverge in the far future and
sometimes at high redshifts. We proposed three different parameteri-
zations, based on thermodynamical arguments, that are well behaved
at all times. They also fit the geometric cosmological data and are
close to the predictions of the standard ΛCDM model.
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Appendix A

A.1 Some geometric quantities associated to the
background FLRW metric

The homogeneous and isotropic metric in cosmic time is described by

ds2 = − dt2 + a2γijdx
idxj , (A.1)

and in conformal time by

ds2 = a2
(

−dτ2 + γijdx
idxj

)

; (A.2)

where the 3-space metric tensor reads

γij =





1
1−kr2 0 0

0 r2 0
0 0 r2 sin2 θ



 .

The Christoffel symbols are defined trough the metric tensor by

Γαµν ≡ 1

2
gαβ (gβν,µ + gµβ,ν − gµν,β) . (A.3)

Thus, being the metric (A.1) diagonal and g00 a constant quantity, we have

Γ0
µν = −1

2
g00gµν,0 =

1

2
gµν,0 . (A.4)

Then,
Γ0

00 = 0 and Γ0
ij = ȧaγij . (A.5)

All the other Christoffel symbols for the FLRW metric in coordinate as well
as in conformal time can be derived in a similar fashion. All of them are
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Christoffel symbols

cosmic time t conformal time τ

Γ0
00 = 0 Γ0

00 =
a′
a

Γ0
i0 = 0 Γ0

i0 = 0

Γ0
ij = ȧaγij Γ0

ij =
a′
a γij

Γi00 = 0 Γi00 = 0

Γi0j =
ȧ
aδ
i
j Γi0j =

a′
a δ

i
j

Γijk =
s Γijk Γijk =

s Γijk

Table A.1: Christoffel symbols for the FLRW metric. Bear in mind that the
Christoffel symbols are symmetric in the lower indices. sΓijk denotes the
Christoffel symbol of the 3-space metric γij .

Riemann tensor

cosmic time t conformal time τ

R0
i0j = aäγij R0

i0j =
(

a′
a

)′
γij

Ri 00j =
ä
aδij Ri 00j =

(

a′
a

)′
δij

Ri jkl =
(

κ+ ȧ2
) (

δikγjm − δimγjk
)

Ri jkl =

(

κ+
(

a′
a

)2
)

(

δikγjm − δimγjk
)

R0
00i = R0

0ij = R0
ijk = Ri 0jk = Ri j0k = 0

Table A.2: Riemann tensor components for the FLRW metric.

listed in table A.1. From the Christoffel symbols, the Riemann and Ricci
tensors and the Ricci scalar

Rαµνβ ≡ Γαµν,β − Γαµβ,ν + ΓλµνΓ
α
βλ − ΓλµβΓ

α
νλ , (A.6)

Rµν ≡ Rαµαν , (A.7)

R ≡ gµνRµν , (A.8)

listed in tables A.2 and A.3, respectively, follow. From them the Einstein’s
tensor reads

Gµν ≡ Rµν − 1

2
gµνR . (A.9)

It’s components are listed in table A.4.
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Ricci tensor

cosmic time t conformal time τ

R0
0 = 3 äa R0

0 =
3
a2

(

a′
a

)2

Ri j =
{

ä
a + 2

[

(

ȧ
a

)2
+ κ

a2

]}

δij Ri j =
1
a2

[

a′′
a +

(

a′
a

)2
+ 2κ

]

δij

R0
i = Ri 0 = 0

Ricci scalar

R = 6
{

ä
a +

[

(

ȧ
a

)2
+ κ

a2

]}

R = 3
a2

[

2a
′′
a +

(

a′
a

)2
+ 2κ

]

Table A.3: Ricci tensor components and Ricci scalar for the FLRW metric.

Einstein tensor

cosmic time t conformal time τ

G0
0 = −3

[

(

ȧ
a

)2
+ κ

a2

]

G0
0 = − 3

a2

[

(

a′
a

)2
+ κ

]

Gi j = −
{

2 äa +
[

(

ȧ
a

)2
+ κ

a2

]}

δij Gi j = − 1
a2

[

2a
′′
a −

(

a′
a

)2
+ κ

]

δij

G0
i = Gi 0 = 0

Table A.4: Einstein tensor components for the FLRW metric.
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A.2 Some geometric quantities in the perturbed
FLRW metric

This Appendix present the perturbed geometrical quantities in the spatially
flat case (κ = 0). The perturbed FLRW metric is described in conformal
time by the line element

ds2 = a2
{

−(1 + 2φ)dτ2 −B,idx
idτ + [(1− 2ψ)δij + 2E,ij ] dx

idxj
}

.
(A.10)

The components of the contravariant tensor gµν at first order are

g00 = −a−2(1−2φ) , g0i = −a−2B,i , gij = a−2
[

(1 + 2ψ)γij − 2E,ij
]

.
(A.11)

Then, at first order, since the metric (A.10) is no longer diagonal, we have
that

Γ0
00 =

1

2
g0α (gα0,0 + g0α,0 − g00,α) ≈

1

2

[

g00g00,0 + g0ig00,i
]

≈ a′

a
+φ′ (A.12)

All the other perturbed Christoffel symbols for the perturbed FLRW metric
follow in a similar fashion. Table A.5 lists them. From them, the Riemann

Perturbed Christoffel symbols in conformal time

Γ0
00 =

a′
a + φ′

Γ0
i0 = φ,i − a′

a B,i

Γ0
ij =

[

a′
a − 2a

′
a φ− a−2(a2ψ)′

]

δij −B,ij + a−2(a2E,ij)
′

Γi00 = φ,i − a′
a B

,i −B′,i

Γi0j =
a′
a δ

i
j − ψ′δij + E′,i

,j

Γijk =
a′
a B

,iδjk + 3E,i,jk + ψ,iδjk − ψ,jδ
i
k − ψ,kδ

i
j

Table A.5: Christoffel symbols for a general (spatially flat) perturbed FLRW
metric.

tensor, Ricci tensor and Ricci scalar can be obtained. Likewise, one can
derive the Einstein tensor as in the non perturbed case. Its components are
listed in table A.4.

.
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Einstein tensor in conformal time τ

δG0
0 =

2
a2

[

3H2φ+H∇2(B + E′) + 3Hψ′ −∇2ψ
]

δG0
i = − 2

a2
(Hφ+ ψ′),i

δGi j =
2
a2

{

[(

2H′ +H2
)

φ+Hφ′ + 2Hψ′ + ψ′′ + 1
2∇2D

]

δij +
1
2D

,i
,j

}

D ≡ −φ+ ψ + 2H (B + E′) + (B + E′)′

Table A.6: Einstein tensor components for a general (spatially flat) per-
turbed FLRW metric. Recall that ∇2 ≡ gij∂i∂j .

hb

m

p 1 2 3 4 5 6

68.3 % 1.00 2.30 3.53 4.72 5.89 7.04
95.5 % 4.00 6.18 8.02 9.72 11.3 12.8

Table A.7: ∆χ2 for 1σ and 2σ confidence level.

A.3 Data analysis

When measuring a set of observables yi(xi), if the errors, σi, follow a Gaus-
sian distribution, the probability of obtaining a value “yth” from a given
model with M free parameters θj , is given through the likelihood function

L(θi) ∝ exp

∑n
i=1 −

[yi−yth(xi;θj)]
2

2σ2
i , (A.13)

where n is the number of measured data. To obtain the most probable value
for the parameters, one must maximize L(θi) or, alternatively, minimize the
χ2 estimator defined as

χ2 ≡
n
∑

i=1

[yi − yth(xi; θj)]
2

2σ2i
. (A.14)

It has the advantage that if the errors in the data are normally distributed
or the sample is large enough, the probability distribution for the different
values of χ2 at its minimum, χ2

min, follow a chi-square distribution with
n−m degrees of freedom [178]. So it will have a mean n−m and variance
2(n −m). Moreover, the quantities ∆χ2 ≡ χ2 − χ2

min are distributed as a
chi-square distribution with m degrees of freedom. This allows to set the
confidence region for any m parameter space -see table A.7. To maximize
L (or minimize χ2) within a model of a few parameters, a suitable way
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to move through the m dimensional parameter grid is to use the Markov
Chain Monte Carlo (MCMC). It is a random sampling method to move
toward the maximum likelihood parameter region. The chain has m + 1
elements for every step it takes, one for every parameter value plus one for
their likelihood. The algorithm that operates to reach the maximum is

1. Set the initial conditions of the chain (can be random).

2. Calculate the likelihood for the parameters chosen L1.

3. Save the value of the parameters and the likelihood in the chain.

4. Change randomly the value of a parameter to generate a new set. The
step is defined by a Gaussian distribution with rms σi.

5. Compute the new likelihood L2.

6. Save the new value of the parameters and the likelihood in the chain.

7. If L2 > L1 the set is accepted and the next step is taken from the
actual set of parameters and proceed again to 4.

8. If L2 < L1 a new random number, x, is generated:

• If x < L2/L1 the step is accepted and a next step is taken from
the actual set and proceeds as in 4.

• If x > L2/L1 the step is rejected and the next step is taken from
the last accepted set of parameters, going then back to 4.

Several chains are usually run (8 in our case) to avoid the relatives maxi-
mums in the likelihood. The number of steps to have a good convergence
should be around 30000 [179], but generally it suffices to fulfill the Gelman-
Rubin test [180]. It consists in defining a number R̂ that estimates the
variance of the chains once they reach a stationary state. First one needs to
compute the mean and the variance of the M chains y

ȳj =
1

N

N
∑

i=1

yji and W =
1

M(N − 1)

M,N
∑

i,j=1

(

yji − ȳj
)2

, (A.15)

respectively, each one with 2N parameters (one computes the mean and
variances of the last N). Thus, the mean of all the chains and the variance
between them are

ȳ =
1

NM

MN
∑

i,j=1

yji and Bn =
1

M − 1

M
∑

j=1

(

ȳj − ȳ
)2
, (A.16)
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respectively. Then, the quantity

R̂ =
N−1
N W +Bn

(

1 + 1
M

)

W
, (A.17)

estimates the degree of convergence of the chain. In our work we have taken
R̂ < 1.1 as the full convergence value, as in [179]. For more details and
exhaustive description of the Markov Chains theory, see [181].

A.4 Legendre polynomials

These polynomials, solutions to the Legendre differential equations, are
given by the expression

Pl(µ) =
1

2ll!

dl

dµl
(

µ2 − 1
)l

(l ∈ N ), (A.18)

of particular interest are

P0(µ) = 1 , P1(µ) = µ and P2(µ) =
3µ2 − 1

2
. (A.19)

A.5 Spherical Bessel functions

They are related to the Legendre Polynomials by

jl(x) =
(−i)l
2

∫ 1

−1
dµY ∗

lm(θ, φ)e
ixµ , (A.20)

and have the property
jl(x) = (−i)ljl(−x). (A.21)

A.6 Spherical harmonics

They are eigenfunctions of the angular part of the Laplacian

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ) , (A.22)

and are orthogonal and normalized by
∫

dΩY ∗
lm(θ, φ)Y

∗
lm(θ, φ) = δll′δmm′ . (A.23)
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They are related to Legendre polynomials by

Pl(µ) =
4π

2l + 1

l
∑

m=−l
Y ∗
lm(x̂)Y

∗
lm(x̂

′) , (A.24)

where µ = x̂ · x̂′.
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