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Summary

Electronics surrounds many aspects of our everyday life. The progress of our actual so-
ciety is somehow ultimately linked to the progress of electronics. Such progress demands
smaller and faster devices. Therefore, the simulations tools needed to be able, to understand
the behavior of emerging electron devices and to improve them, have to be reinvented for
each new generation of devices.

The International Technology Roadmap for Semiconductors predicts that, in ten years,
electron devices will have less than 10 nanometers of channel length and they will work at
THz frequencies. The scientific community has done an important effort to provide reliable
simulations tools for studying the DC behavior of state-of-the-art nanoscale devices. Some
of the common classical and quantum simulation techniques are mentioned in the first
chapter. However, a similar effort for the the quantum simulation of the AC performance
of such nano metric and THz devices is still missing.

For nanoscale devices, at high frequency, the main difficulties that have to be taken into
account are the role of the displacement current (which imply a proper approximation for
the many-body problem) and the assumption that the total quantum current needs to be
continuously measured. This thesis provides an approximate solution to these problems
through the use of quantum (Bohmian) trajectories. As seen in the second chapter, such
Bohmian trajectories have advantages, from the computational point of view when we deal
with the many body problem or the continuous measurement.

In chapter three, the practical computation of the particle and displacement currents
are discussed using the so called Ramo-Shockley-Pellegrini theorem. We have presented a
quantum extension of the theorem using Bohmian (trajectories). We also discuss in detail
the implementation of the theorem in the BITLLES (Bohmian Interacting Transport for
non- equiLibrium eLEctronic Structures) simulator discussed in the appendix . The ex-
pressions of the total current can be used either for classical Monte Carlo solutions of the
Botzmann equation with classical trajectories or for the many-particle Schrodinger equation
with Bohmian trajectories.

Finally, using the tools developed in the previous chapters of this thesis, in chapter
four, we have studied the dependence of the current and the noise on the geometry and the
electrostatic boundary conditions of nanotransistors. In addition, we have presented and
original strategy to improve the cut off frequency of emerging multi-gate ballistic devices.
These numerical studies have been carried out by means of the BITLLES simulator for
classical and quantum scenarios.

This thesis is a step in the direction of providing a reliable dynamic quantum simulator
to the industry and the scientific community.
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Chapter 1

Small dimensions and high frequencies

1.1 Introduction: The role of electronics in our life

Electronics technology is changing our life broadly. For example, microprocessors and elec-
trical sensors make cars, ships, trains and planes more practical, environmental friendly and
secure. Paying bills electronically saves our time. Everyone agrees that the domain of elec-
tronics has revolutionized the world during the past century. Only about 30 years ago, the
thought of being surrounded by computers, microprocessors and cell or smart phones was
unheard of. The use of new technologies gives unimaginable possibilities. Flat screens with
network connections replace clumsy TVs. All this revolutionary improvements are due to
the evolution of the electronic devices, in general, and the transistor, in particular. The
transistor is the catalyst of this revolution. The improvement of the transistors is carried out
firstly by scaling down the electronic devices or/and secondly by looking for a new materials
with high electron mobility to increase their speed and to decrease their power consumption.
Doing these steps up requires a hard theoretical and experimental study to understand each
new generation of state-of-the art electronic devices. This thesis provides a theoretical ef-
fort in the simulation and understanding of the capabilities of these new devices with small
dimensions and high frequencies.

This introductory chapter will be organized as follows. Firstly we present a brief historical
developments of electronics. After, we discuss the predictions of International Technology
Roadmap for Semiconductors (ITRS)[I] toward to nanometirc dimensions and TeraHertz
(THz) working frequencies. Finally , we present different theoretical models used in the
literature to characterize and study of the classical and quantum electron devices.

1.2 Short historical development of electronics

Electronics began with the invention of the vacuum tube in the first decade of last century.
The simplest kind of vacuum tube is the diode, which was invented by John Ambrose Flem-
ing in 1904. A more versatile type of vacuum tube is the triode, or three-terminal tube,
invented by Lee Deforest in 1906. Initially, the first vacuum tube was not an amplifier but it
soon developed into a device with many functions, including amplifying very small electrical
signals. Although the triode was very success, it was a fragile device and it consumed a
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lot of power. For these reasons, in the mid-1920s, Julius Edgar Lilienfeld set out to find a
solid-state replacement for the thermionic triode. Lilienfeld patented applications to Canada
in 1925 and to the United States in 1926. He said explaining his invention [2]:

“The invention relates to a method of and apparatus for controlling the flow of
an electric current between two terminals of an electrically conducting solid by
establishing a third potential between said terminals; and is particularly adapt-
able to the amplification of oscillating currents such as prevail, for example, in
radio communication. Heretofore, thermionic tubes or valves have been generally
employed for this purpose....”

Due to the importance of Lilienfeld’s invention, he was acknowledged as pioneer in de-
veloping a solid-state-transistor by, for example, John Bardeen. He said in this regard:

“Lilienfeld had the basic concept of controlling the flow of current in a semicon-
ductor to make an amplifying device. It took many years of theory development
and material technology to make his dream a reality .”

It appears that Lilienfeld’s ideas embody the principles of the modern-day, and he set
the cornerstone of field-effect-transistor theory. However, unfortunately, his invention was
unsuccessful due to practical problems in the fabrication at that time and a bad selection of
materials. The first solid-state transistor successfully fabricated was done, at Bell laboratory;,
by the team of William Schockley, John Bardeen and Walter Brattain, 50 years after the
invention of the vacuum tube [3].

Figure 1.1: John Bardeen, William Shockley, and Walter Brattain [3]).

This team was awarded the Nobel Prize for their work in 1956. Many consider the
transistor to be one of the most important inventions in 20th century. Certainly, it is
the man-made object more abundant in the world. In this historical development, it is
also important to mention the electronic revolution carried on by inventing the integrated
circuit by Jack Kilby. The latter proposed a revolutionary concept of creating more than
one transistor on a single semiconductor piece. Then he successfully implemented his idea
in 1958, realizing a phase shift oscillator on a small piece of germanium, it was the first
electronics integrated circuit in Texas Instruments. Jack Kilby received the Noble Prize in
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Physics in 2000 for his part in the invention of the integrated circuit. It was a simple device
and it has one transistor, a capacitor and resistor all together on a piece of silicon [3]. The
next step in the developments electronics was at Fairchild, where Jean Hoerni developed the
planar process for transistors. Today the integrated circuit has evolved to have millions of
transistors on a single chip and most of all modern computers include microprocessor chip.
The microprocessor was introduced as a commercial product by Intel Corporation in 1971.

1.3 Toward nanoscale and THz frequencies

In the near future, the development of electronics is expected to follow the Moore’s law El
The increase in the number of transistors in a chip, offers more functions per chip with much
lower cost per function, which gives as a result smaller electron devices, higher performance
and greater energy efficiency. The I'TRS points to the improvement of the FET transistor as
the best strategy to be followed in the following years. Nonetheless, the scientific community
is looking for completely different alternatives to the FET transistors because of the mid-
term scaling required by Moore’s law (6.5 nm channel length transistors predicted for 2025
[1]) will be technologically and economically unattainable with the present FET technology.

2011 [TRS - Techmslogy Trends

‘Moone's Law" Enabled by

o Transastor M1 Half Pitch

) o Tae n o 0050 | ITRS MPLLASST ket 1 (1) % Pich o)
$ Dimension Technalogy [rsioncal iy @ 21 Dok, enfended 10 2013 en 3- |
L i T CyCE]

¥ f & XS0 | ITRES MPLU Prinied Gae Lengh (D000 (nm
i [P ST 1R AT LT |

L - P =" 00500 | ITRS MPU Physical Gale Lengih i) L
L} Fa g . Y By Proen 20025 0| oo

Harseadne |Te B

Transistor Gats lechnobogy
Powei-parformance Managarmant
Enabled by "Equivalent Scaling”

g ==
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Figure 1.2: MPU (Microprocessor Circuit)/High performance ASIC (Application Specific
Integrated Circuit) Half Pitch and Gate Length Trends [1].

It is, however, still not clear which proposals will replace the present transistors in the
mid-term future. Some works suggest that a revolution (similar to the substitution of vacuum
tubes by solid state transistor in the 50 s) is awaiting for the electronic industry. Others
affirm that such revolution will not take place, but we will see just an evolution of present

1”The number of transistors that can be implemented in a chip doubles approximately every 2 years”
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FET transistors into smaller structures. In any case, what is unquestionable is that the
dimensions of the new commercial electron devices will attain few nanometers, the evolution
of physical gate length and other parameters versus years is shown in Fig. [1.2]

Therefore, we are now leaving the microelectronic era to enter into the new nanoelectronic
era. The electron transit time, defined as the device length divided by the mean velocity is
reaching few picoseconds. Thus, these new electron devices tend to work at THz frequencies,

see the table below )

Year of production 2011 2012 2013 2014 2015 2016 2017 2018
Extended Planar Bulk 347 396 445 512 578 669 756 -
UTB FD - - 477 545 614 704 790 889

Multigate - - - - 620 710 795 890

Table 1.1: Cutoff frequency (GHz) for different technology evolution according to ITRS 2011.

In this regard, the ITRS suggests to change the generic designation of the present RF
(Radio Frequency) devices to HF (High Frequency) devices in order to reflect the much wider
spectrum that is expected for nanoscale devices [1].

Since electron devices are entering into the nanoelectronic era, the wave nature of elec-
trons have to be taken into account in the understanding of the behavior of these novel de-
vices. Therefore, theoretical approaches to treat quantum electron devices constitute today
a necessary tool to guide the continuous breakthroughs of the electronic industry. However,
the separation between classical and quantum transport is somehow artificial. The transition
is not clearly defined and the classical theory is a just limit of quantum mechanics when the
wave nature of electrons is not relevant. For these reasons, we prefer to split our understand-
ing of electron devices and the transport models used for such understanding between three
types: those where the particle-like nature of electrons is relevant, those where the wave-like
nature becomes relevant and those where both, the wave and the particle, become relevant.

1.4 Electron transport models in semiconductor de-
vices

A lot of studies have been done and many models have been developed for studying the DC
behavior of micro and nano scale devices with quantum and classical tools. A bit less was
carried out for the micro scale semiclassical devices at THz frequencies. The poorest studies
have been done for nanoscale, at very high frequency (THz), in particular at AC regime. In
this work we throw light on characterizing those nanoscale devices at THz frequencies.

The modeling of electron transport in semiconductor devices has become a very important
topic. This modeling is important for characterizing these devices before fabrication, and
also to anticipate the viability of electron devices. In this section, we present different models
following the previous division between those emphasizing the particle-like nature of electrons
and those emphasizing the wave-like nature. Then, in the next chapter, we will discuss the
Bohmian explanation that can be adequate for electron devices where either the wave or the
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particle nature of electrons become relevant. In the first set, we start out by Boltzmann’s
transport equation which can be obtained , for instance, from Vlasov’s equation (Liouville’s
equation) [4H6]. From the Boltzmann’s equation, the kinetic models for electronic devices are
using hydrodynamic and drift diffusion models. We present then the transport models where
the wave-like nature of electrons become relevant. Such models include the simple Landauer
approach, the quantum Wigner-Boltzmann transport equation, then, the Non-equilibrium
Green’s functions (NEGF) approach, and finally density functional theories.

We will take special attention to discern whether the transport model allows an un-
derstanding of the high-frequency behavior of devices or not. In principle, those with a
time-dependence in the equations allow such studies, independently of whether they are
classical or quantum models. Those with time-independent equations can only be used for
transport beyond DC assuming a quasi-static approximation in the AC and transient results.
At this point, let us emphasize that most of the quantum models are time-independent and
devoted mainly to understand the DC behavior of emerging devices. A quantum treatment
beyond the DC transport is mandatory [7] to convoy the electronic evolution.

1.4.1 Electron transport models where the particle-like nature is
relevant

Let us start by describing those transport models where the wave-nature of electrons is
neglected. We start by the Boltzmann’s transport equation.

1.4.1.1 Boltzmann’s transport equation

In the semiconductors devices with micrometric dimensions, there are a lot of scattering
mechanisms such us ionized impurities, optic and acoustic phonon , electron-electron etc
[8,[9]. These mechanisms have a direct effect on the operative characteristics of the electronic
devices , thus it is important to include these effects. They can be taken by means of
Boltzmann’s transport equation through the collision integral. The Boltzmann’s transport
equation was derived , the first time, by Boltzmann in 1872 to describe the gaz behavior.
However, to completely specify electron transport, we should know the state of each carrier
within the device. In particular, if the carriers behave as classical particles, we should
know each carrier position and momentum as a function of time. Alternatively, we can ask
also what is the probability of finding a carrier distribution with momentums centered at
(p1, ..., DN, t), locations centered at (71, ..., 7y, t), and time ¢t. The answer is the many-particle
distribution function:

f (P TN, Py o, D, ) dS2, (1.1)
where df) is an infinitesimal element of the phase space spanned by the coordinates and
momenta of all carriers. For most of the systems of interest, the many-particle distribu-
tion function, f(7,...,7n, D1, ..., Pn, t), is too difficult to be determined since it contains all
possible correlations among particles, i.e. how each particle motion depends on the other

particles. The many-particle distribution function fits the following Boltzmann’s equation
[10-13]
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contains the description of interaction processes. In most of practical cases, the collision
integral is approached by Fermi golden rule. Due to the difficulties to solve Boltzmann’s
equation the relazation time approximation is likely used to solve this equations [9]. Alter-
natively, there is a direct approach to study this system using Newton equations taking into
account random scattering force [L1], it is the Monte Carlo solution of the Boltzmann equa-
tion. For some example of studying electronic devices via the Boltzmann transport equation
with the Monte Carlo method we mention DAMOCLES and synopsys simulators [14], [15].
Although the Boltzmann transport equation accounts for far from equilibrium conditions,
its fundamental limitation comes from its single particle formulation and it describes a many
particle system of carriers in terms of a single particle distribution function.

It is important to emphasize that the Monte Carlo solution of the Boltzmann equation has
been successfully used to study high-frequency behavior of micrometric devices. In fact, for
such nanometric devices, where the wave nature of electron is not relevant, the Monte carlo
solution of the Boltzmann equation can be successfully applied. In this regard, the BITLLES
simulator explained in Appendix |C| includes (i) Monte Carlo solutions of the Boltzmann
equation and (ii) Monte Carlo solutions of the many-particle Schrédinger equation. Since
both types of simulations describe electrons as (classical or quantum) trajectories, 70 per
cent of the software of BITLLES (such as those routines related to the Poisson equation,
injection rates, electron dynamics,etc.) are identical. The main difference is that the electron
velocity in the classical trajectory is computed from the electric field, while it is related to
the many-particle wave function in Bohmian trajectories.

where F is an external force and < > . is the so called collision integral, which

1.4.1.2 Moment methods of Boltzmann’s equation: Drift-diffusion and hydro-
dynamic approaches

The carrier density continuity equation, momentum conservation equation and the energy
conservation equation are derived from Boltzmann’s equation. Stratton was the first to
introduce the general conservation or momentum-energy balance approach to investigate
hot electron transport in semiconductors. The analysis is performed by Stratton utilizing
a spherical harmonic expansion with the relaxation time approximation [8, [16]. Blotekjaer
extended this theory to retain all terms of moments i.e. without any approximation [8, [17].
The conservation equations are obtained through the three first moments of Boltzmann’s
equation. We have recalled these equations because there are used to derive the kinetics
models such us drift-diffusion and hydrodynamic models. Assuming the relaxation time
approximation for the collision terms and neglecting generation-recombination processes,
the hydrodynamic carrier density continuity , the hydrodynamic momentum conservation ,
and the hydrodynamic energy conservation equations, respectively read as follows,

on o,
o + V (nt) =0, (1.3)
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where n, v and ¢ are the average carrier density, velocity and energy of the electrons
respectively, m is the effective mass, K and T, are the Boltzmann constant and the tem-
perature of the carriers, and 7, and 7. are the momentum and energy relaxation times
respectively. Needless to say that such a simplification of the BTE, besides other addi-
tional limitations, still suffers from the same limitations as the BTE, this is from being a
single-particle approach.

Departing again from the first three moments of the Boltzmann transport equation, but
now assuming that the gradient of the carrier’s temperature is negligible, that the carriers are

always in equilibrium with the crystal, that the term (W ) v is small enough in comparison

with the other terms, and finally assuming a quasi-stationary regime, the equations to be
solved are reduced to the drift-diffusion carrier density continuity equation and the drift-
diffusion momentum conservation equation, i.e.

on 1o on
— =-VJ — 1.6
o e +(at)coll’ (16)
J = nuF + eDVn, (1.7)
and the mean-field Poisson equation. In ([1.7) D is the diffusion coefficient defined through

the Einstein relation D = @, p = < is the electron mobility, and J=¢e-7.

Besides still suffering from a single-particle treatment of electron dynamics, the drift-
diffusion equations assume thermal equilibrium between the crystal and the conducting elec-
trons, which constitutes a strong approximation that forces the system to remain under
near-equilibrium conditions.

The most popular method to solve the equations of these models is the self-iterative
method which is the first time developed by Gummel [I8-20]. These models can be found
in commercial simulator like SILVACO [21I]. They are time-dependant methods which are
valid for high frequency behaviors of semiclassical micrometric devices. They are however
not valid for quantum transport.

1.4.2 Electron transport models where the wave-like nature is rel-
evant

We present here the models where the wave-nature of electrons is emphasized. They
are generally named quantum models. Nowadays modeling and characterizing the quantum
electron devices is increasing , thus tending to study this type of components is crucial. For
this reason we tackle the quantum simulation tools , we start with Landauer approach, then
quantum Wigner-Boltzmann transport equation , after non-equilibrium Green’s functions
(NEGF) approach and finally density functional theories.
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1.4.2.1 Landauer approach

The Landauer approach probably constitutes the simplest quantum description of elec-
tron transport. Nonetheless, its ingenious and intuitive formulation has make it possible to
understand several quantum transport phenomena. It supposes that the current through a
conductor is only expressed in terms of the transmission probability of carriers injected from
the external contacts.
The conductance of a large macroscopic sample obeys a simple ohmic law: G = ocW/L.
However, as devices with smaller dimensions are considered, two corrections to this law are
needed. In one hand , there is an interface resistance independent of the length L of the
sample. In other hand the conductance does not decrease linearly with W. Instead it de-
pends on the number of transverse modes in the conductor and does down in discrete steps
[22].

The Landauer formula including both features mentioned before reads [22],

G = 2%MT (1.8)

where Gy = %(12.9!{:9)*1 is known as the quantum conductance unit. The factor T
represents the average probability that an electron injected at one end of the conductor
will transmit to the other end , M is the number of modes. The formula relates
the macroscopic conductance G with the factor T' of the electron device, and provides a
conceptual framework of thinking about conductance. More details about the Landauer
formula derivation is developed in the book [22].

In Landauer approach, in order to model the [-V characteristics, we consider a one-
dimensional structure under an applied source-drain bias, V4, for various gate bias (that
determines the barrier height) conditions. For a finite temperature the Landauer formula
[23] is

Iy, = q T dE Z Tl E) [f(E) = f(E + qVia)] . (1.9)
n,m=1

where ¢ is the electron charge, h is the Planck’s constant, f(F) and f(E + ¢Vy) are
the Fermi-Dirac distributions of source and drain reservoir respectively, and T, ,,(E) is the
transmission coefficient that depends on the detailed shape that define the potential. Also,
T,,m(E) depends on the electron conduction channels that can be defined through the use of
the indexes, n and m, that accounts for the electron energy confinement in the two lateral
dimensions.

The original formulation of the Landauer approach is a single-particle model and it ne-
glects electron-electron interaction, i.e. it assumes that the systems behave as a Fermi
liquid [24]. The popularity and the main virtues of the Landauer approach are due to its
simplicity, the relatively low computational requirements and its rather intuitive picture of
quantum electron transport. However, since continuous particles (scattering states) are as-
sumed throughout the system, transient simulations are difficult or impossible to implement
using the Landauer approach, i.e. it is a steady-state formalism. This approach can, by
definition, only capture mean field properties of the electron dynamics [25].
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1.4.2.2 Quantum Wigner-Boltzmann transport equation

We shall consider a quantum transport based on Wigner function which was introduced by
Eugene Wigner in 1932 as a quantum equivalent of classical particle distribution functions [4].
Szilard and Wigner shows that the expressions of the density matrix of quantum dynamics
can be transformed in a form directly comparable with its classical analog [26]. Wigner
functions were closely scrutinized by theoretical physicists but only recently their value for
semiconductor simulation was discovered. The goal was to link the wave function that
appears in the Schrodinger equation to a probability distribution in phase space.

It was firstly introduced by Wigner as,

+oo
fw (7?1,...77?N,]€1,...7k3]\/,t> O(Z / \I/j (F1+g1,...,FN+gN7t) (]_]_0)
j —00

N
WS (Fy = G, oy Ty — G t) - | [ diiee®™ (1.11)

Nonetheless, the Wigner function is today understood as the one-reduced Wigner pseudo-
distribution. Analogously to the deduction of the one-particle distribution function f (7, p,t)
from the classical many-particle distribution function f (7, ...,7n(t), p1, ..., Pn(t),t), from the
density matriz

p(FLy oy Py t) ijmf Py ooy Ty 1) (U5 (P ooy Py, 1), (1.12)

we can obtain a reduced denszty matriz as follows

N
x Z/xyj (7%, ooy Py 1) W5 (7 7, o, Py ) [ . (1.13)
j i=2

The Wigner function, can be then calculated from the reduced density matriz as

—+00

o (7R.0) oc/ o (Pt 7.7 — . t) dije™. (1.14)

—00

The Wigner equation reads,

1

s [ iV (RE=F) fu (R E 1) =0, (1.15)

where the Wigner potential V,, is defined as

Ve (RF) = s [ VDV

(1.16)
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Taking into account Boltzmann scattering , the equation (1.15)) becomes [23] 25| 27, 28],

W + %Eﬁrfw <F, k, t) +- L /dEVw (F, k- E) fu (F E’,t)

In this regard, the Wigner-Boltzmann formalism is based on solving the Wigner-Boltzmann
transport equation in the same way as the Boltzmann transport equation does for classical
systems.

The Wigner formalism has several virtues. It constitutes a time-dependent approach to
electrical transport accounting for far from equilibrium conditions in a rather natural way:.
However, the limitations of the Wigner function method are very similar to those of the
BTE. In the same way as the collision integral in the BTE, the Wigner’s one can account, in
principle, for all the many-body interactions. Unfortunately, obtaining analytical expressions
for the collision integral is a very complicate job, and in practice, interactions are included
just at a two-particle level. In this sense, the Wigner function constitutes in practice a
mean-field approach to quantum electron transport.

1.4.2.3 Non-Equilibrium Green’s Functions (NEGF) approach

Non-Equilibrium Green’s Functions (NEGF) is a many-body technique, also referred as
Keldysh formalism, it was developed by Kadanoff , Baym and Keldysh and it has gained
increasing attention in the analysis of transport phenomena in nanometric semiconductors
systems [22 24], 29]. This approach allows us, at least in principle, to solve exactly the
time-dependent Schrodinger equation for an interacting many-body system, from which it
can compute , in principle, the time-dependent current. This is carried out by solving
equations of motion for specific time-dependent single-particle Green’s functions, from which
the physical properties of interest, can be obtained [30]. The concept of Green’s functions
appears in many physical context including electrostatics and electromagnetics [31].

We briefly review the basic principles of this approach [22, 24]. To do this goal, we
consider the following differential equation,

DyyR =S (1.18)

where the response R is related to the excitation S by a differential operator D,, through
the equation ([1.18). We can define a Green’s function and express the response in the form,

R=D,'S=GS (1.19)

where G = Do_pl. Concerning the many-body problem we can write,

[E— Hoplp = S (1.20)
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where ) is the wave function and S is an equivalent excitation term due to a wave incident
from one of the leads. The corresponding Green’s function can be written,

G=[E—H,™" (1.21)

where H,, is the Hamiltonian operator. The Green’s function is like the impulse response of
a system. There are different techniques to find out the Green’s functions, see the references
[22, 24]. There are some simulators to study the electronic transport based on the Green
formalism. The most recognized one is the NEMO simulator [32].

Despite the powerful and rigorous character of non-equilibrium Green’s functions, they
are in general accompanied by a rather nonintuitive and hard mathematical formulation.
Even more, although electron-electron interactions beyond the mean-field approximation can
be introduced throughout the self-energies, using them, except for simple model systems, it
is a huge computationally demanding task, and most of the time outright impossible.

1.4.2.4 Density functional theories

The Density Functional Theory technique (DFT) was originally proposed by P. Hohen-
berg and W. Kohn [33] to calculate equilibrium ground states (i.e. minimum energy). The
description of electronic structure , by the DFT method, focuses on the electron density
rather than the wavefunction. In 1964 P. Hohenberg and W. Kohn showed the remarkable
theorem which states that ground state energy of an N-electron system is functional of one
electron density p [33]. Starting from an N-electron Hamiltonian

H(FbaFNaﬁlvaﬁN) :T+W+V7 (122)

where T is the kinetic energy operator and W is the electron-electron interaction operator.
Defining the density operator n evaluated at 7 = 7,

N
n(r) = N/\\IJ(F, FQ,...,FN,t)FHdﬁ, (1.23)
=2

and satisfying

/n (7)di = N, (1.24)

then, the operator v, describing a local static potential (like the electron-ion potential),
can be written as

V= /dFV (P)n (7). (1.25)

If it is assumed now that for a given V(7) we have found a density n(7), satisfying (1.24)),
which corresponds to the ground state of the Hamiltonian (1.22]), then the Hohemberg-Kohn
theorem states that two external potentials, which differ by more than a constant, cannot
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give the same ground-state density. This establishes a one-to-one correspondence between
the external potential and the ground-state density [13], 33] [34]

Inspired on the above theorem, Kohn and Sham deduced in 1965 their famous equations
[351,

W = - | KS KS (=
—o Vo Vi (1) + Vie (1) + VA7) | 637 (7) = endi” (7). (1.26)

corresponding to the solution of the time-independent Schrodinger equation of auxiliary
non-interacting electrons in the presence of the potential Vig (7) = Vi (7) + Ve (7) + V (7),
where

n ()

Vi (7) = eQ/dF‘F_ AT (1.27)

is the Hartree potential, and V. (7) is the unknown exchange-correlation potential in-
cluding all the many-body correlation effects.

Solving the above equations yields the wavefunctions ¢&9 (7), from which the ground-
state density is

n(7) =Y |ors (7). (1.28)

All properties of the ground-state system can be then extracted from . Unfortu-
nately, since the exchange-correlation potential is unknown, some kind of educated guess
must be formulated.

The main limitation of the ground-state density functional theory in order to describe
electron transport, is precisely its ground-state nature. In other words, such a theory assumes
that the system under study occupies a time-independent equilibrium state. This seems to
be not a good starting point in order to describe electron transport. However, there exists
some generalizations of the above theory.

In 1984, Runge and Gross generalized DFT to its time-dependent version [I3]. Time-
dependent density functional theory (TDDFT) includes time in the previous results in a very
natural way, and more importantly, it is capable of describing non-equilibrium scenarios.

Including a time-dependence into the Kohn-Sham potential, i.e. Vg (7, t) = Vi (7, t) +
Ve (Tyt) + V (7, 1), the time-dependent version of the Kohn-Sham equations becomes

o B =

And the charge density is then

n(Ft) =Y |or® (7.1). (1.30)
k=1

TDDEFT is in principle capable of accounting for both, far from equilibrium conditions
and many-body phenomena. Unfortunately, although such theorems constitute a formal
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demonstration of the validity of dynamical density-functional theories on predicting the
macroscopic electrical current, the true is that we do not know the exact functionals, and
some mean-field approximations must be used.There are others ways to study the quantum
transport such us Monte-Carlo method which is used to solve the many-particle Schrodinger
equation, see reference for more details [23]. On the other hand, there are several simulators
developed to study the electronic devices based on the methods DFT such us SIESTA [36],
TRANSIESTA [37], and for TDDET see the Octopus [38] simulators.

1.5 summary

Depending on which aspect of the electrons are relevant in each electron device, the wave
or the particle, different electron transport models are presented. In general, for large (mi-
crometric) dimensions, those models that emphasize the particle-like nature of electrons are
the appropriate ones. On the contrary, for studying electron devices with small (nanomet-
ric) dimensions, those models emphasizing the wave-like nature of electrons are preferred.
However, there are devices (such those where Coulomb blockade effects are relevant) or phe-
nomena to be studied (such the noise in quantum devices) where a electron transport model
using, both, the wave-like and the particle-like nature of electrons are very welcome. The
Bohmian model explained in next chapter will be an example.

Finally, let us emphasize that the development of quantum electron transport models for
electron devices are quite recent. Most simulators are developed for modeling/ understanding
DC transport and there are still many gaps to fill. Among them, quantum simulators able
to study AC transport, transients behaviors and fluctuations of the current (noise). This
thesis is a step in the direction of proving to the industry and the scientific community such
dynamic quantum simulators. In this regard , this thesis is part of the recent developement
of the BITLLES simulator see the Appendix [C]
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Chapter 2

Introduction to Bohmian Mechanics

2.1 Introduction

As mentioned in the introductory chapter, the modeling of classical and quantum electron
transport, merged the wave and the particle nature of electrons. In general, quantum trans-
port formalism deals with the wave nature of electrons by using orthodox quantum mechanics
tools. In this thesis, we will model quantum electron transport by using , simultaneously,
waves and particles. The theoretical backgrounds of this modeling is based on Bohmian
mechanics, which will be briefly introduced in this chapter.

We start out by a brief historical development of quantum mechanics showing different
interpretations/formulations. Then a preliminary discussion of Bohmian mechanics and
a simple way to derive Bohmian velocity are presented to introduce the readers to this
topic. Besides that, single and many particle Bohmian velocities are derived by means of
Schrodinger and quantum Hamilton-Jacobi equations. The computation of Bohmian velocity
and the quantum equilibrium hypothesis , which are the main basic postulates in Bohmian
mechanics, are illustrated. Finally, we answer the question on why we are interested in
studying Bohmian mechanics for nanoelectronics, showing their advantages solving the many
body problem via using the so called conditional wave function and doing the measurement
process without passing by the so called wave collapse.

2.2 Historical development of quantum mechanics

The origins of quantum mechanics started with the beginning of the twenty century. In clas-
sical physics quantities such us energy were always assumed to be a continuous variables. In
1900 Max Planck noticed that the measured spectrum of electromagnetic radiation produced
by hot objects could be explained only if a discrete quanta electromagnetic energy was con-
sidered. In another way, he suggested that the black bodies emit or absorb electromagnetic
radiation in discrete energies hr, where v is the frequency of the emitted or absorbed radia-
tion and h is a constant, named Planck constant [39]. Planck applied Wien displacement law
to find out an expression for the energy radiation. The black body radiation problem was
already stated by Gustav Kirchhoff in 1859. Planck won the 1918 Nobel Prize on physics for
this work. Based on Planck quantum hypothesis, in 1905 Albert Einstein postulated that

16
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light consists of individual quanta. By means of this discovery he explained the photoelec-
tric effect suggesting that the energy transfer between light and matter was done by light
quanta. The later came to be called photon till 1926. The photoelectric effect is the release
of electrons from certain metals or semiconductors by the action of light. Einstein received
the 1922 Nobel Prize for physics for his photoelectric effect discovering. From Einstein’s
and Planck’s postulations, strong debate was born, theorizing and testing how to go beyond
classical mechanics.

In 1913, based on Rutherford model of hydrogen atom, Niels Bohr developed an atomic
hydrogen model [40] , avoiding Rutherford model instability which was developed two years
before. Bohr stated two different postulates , the first one accounted for the stability of atom
and it stated that an atomic system cannot exist in all mechanically possible states, forming
a continuum, but in series of discrete stationary states. The second postulate accounted for
line spectra, it claimed that the difference in energy in a transition from one state to another
was emitted or absorbed as a light quantum hv. During the First war world in 1914, Arnold
Sommerfeld extended the circular orbits of Bohr to elliptic orbits.

Carrying on this historical quantum development, Werner Heisenberg suggested a new
and more general formalism of quantum mechanics that became known a matriz mechan-
ics, in 1925 [41H43]. This theory was developed with Max Born and Pascual Jordan helps.
Two years later, Heisenberg stated his uncertainty principle. The later states that the pro-
cess of measuring the position x of a particle disturbs the particle momentum p, so that
AxAp > h = %, where Az is the uncertainty of the position, Ap is the uncertainty of the
momentum and £ is the reduced Planck constant.

During PhD studies of Luis de Broglie, he was focused on the idea that if light can behave
as a particle , then particles should be able to behave as waves. Then, and based on the
work of Einstein and Planck, he proposed the theory, namely the particle-wave duality, that
the matter has the properties of both particles and waves, this it was in 1923. In particular,
starting with Einstein equation F = mc?, de Broglie was able to substrate the key compo-
nents of the equation and create his own formula h/p = A\, where E, m and p are respectively
energy, mass and momentum of particle. ¢ is a speed of light and X is a wavelength length
associated with particle [44].

In 1926, inspiring from de Broglie work (wave-particle duality), Erwin Schrodinger [45]
soon realized that the matter could be described by means of a wave picture and then he
searched for the general equation governing such wave. Finally, he proposed a fundamental
equation for atomic and molecular structure and its dynamical behavior, it is known as time
dependent Schrodinger equation. Schrodinger interpretation of the wave function i, at first,
was as the density distribution of the electron charge but then Max Born figured out the
statistical meaning of [¢)|* as the probability density of finding the electron in a particular
position 7 at time ¢. Born suggested that unlike the electromagnetic field , the Schrodinger
wave function 1 has no direct physical reality. It is only useful to compute |¢|?, which
was interpreted as a real probability [46]. At that time, the equivalence between a matrix
explanation of quantum mechanics, created by Werner Heisenberg, Max Born, and Pascual
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Jordan, and the wave function created by Schrodinger (Carl Eckart) in March (September)
1926 47, 148]. The generalization of matrix mechanics was done by Paul Dirac [47].

In general, the history of quantum mechanics is explained in textbooks as a history where
each step follows the previous one. However, the real history was much more chaotic and
several routes were explored simultaneously. Among them for instance, the ideas of Born,
Bohr, Heisenberg and others give place to the orthodox or Copenhagen interpretation of
quantum mechanics. This interpretation were strongly supported by Max Born, Wolfgang
Pauli and many others. There were important opponents to this interpretation such us
Albert Einstein, Erwin Schrodinger, Luis de Broglie, David Bohm and others. Next, we
discuss another coherent explanation of all quantum phenomena: Bohmian mechanics.

2.3 Preliminary discussion about Bohmian mechanics

Bohmian mechanics, is also called de Broglie-Bohm theory, the pilot-wave model or a causal
interpretation of quantum mechanic. It is an explanation of quantum phenomena formulated
initially by Louis de Broglie in 1927 and rediscovered by David Bohm in 1952 [49] 50]. P.
Holland said, showing how Bohm were inspired by de Broglie’s work:

“It should be noted that Bohm took issue with de Broglie’s conception of light in
witch ‘photons’ are conceived as massive corpuscles moving within the electro-
magnetic guiding field , and proposed instead that the only ‘real’ parameters are
the field coordinates and their conjugate momenta” [51)].

This approach is based on the simultaneous use of wave and particles when describing
non-relativistic particles (like elctrons) . Bohmian mechanics has been successfully used
to compute quantum trajectories in order to understand and predict the behavior of many
physical processes: diffraction experiments , barrier and dynamical tunneling and currents in
molecules and electrons devices [52]. The initial concept of quantum trajectory was proposed
by de Broglie even before the Orthodox formulation of quantum mechanics was formulated.
However, most of young scientists at that time were strongly influenced by the work of the
Copenhagen school (Heisenberg, Pauli, Dirac , Jordan etc. ) . In fact, de Broglie himself,
who works mainly alone in Paris, give up his own theory partly as a result of certain criti-
cisms made by Pauli . D. Bohm commented this abandonment saying “all of the objections
of de Broglie and Pauli could have been met if only de Broglie had carried his ideas to their
logical conclusion” [49].

A simple way to understand the differences between Bohmian mechanics and the Copen-
hagen or orthodox interpretation briefly explained in the introduction is looking on how the
concepts of waves and particles are merged to explain quantum phenomena. Therefore, two
different route can be defined [53]:

1. Wawve or particle?: It is depending on the experimental situation one can choose be-
tween a wave or particle behavior. The electron position is determined by means of
the probability density [¢)|? (Born law), on one hand. On the other hand, the particle
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nature of the electron appears when we measure the electron position. In Bohr’s words,
an object cannot be both a wave and a particle at the same time; it must be either
one or the other , depending upon the situation. This approach is called ( or it fits)
the Copenhagen , or orthodox interpretation of the quantum mechanics.

2. Wawve and particle: This route represents an explanation of the quantum phenomena
were the wave and the particle concepts merge at the atomic scale assuming that a pilot-
wave solution of Schrodinger’s equation guides the electron trajectory , as the electron
is guided by the electromagnetic field. This is what we call Bohmian mechanics. One
object cannot be a wave and a particle at the same time, but two can.

In this chapter we develop the ideas inspired by the second route. There are several ways
to derive these trajectories, we start with a very simple and intuitive one which is based on
obtaining a quantum velocity from a generic wave plane [54].

2.3.1 A simple way to derive Bohmian velocity

For this purpose we consider the following generic plane wave,

(7 1) = ekt (2.1)
where the frequency w is related with particle energy E through Planck equation by,

E =hw. (2.2)

Considering now de Broglie relation p'= k. We now look for an equation of motion for
the particle. To obtain k£ from ¢, we do the spacial derivative of 1) and we divide by i
and ¢. Thus, from (2.1) and (2.2)) we get the following motion equation,
- AV
mv=p=hk=—-—-. 2.3
p iU (2.3)
When we consider, instead of ([2.1)), a general and arbitrary complex-valued wave function,
then we end up with a complex velocity vector. The simplest choice is to take the real part
of the expression ([2.3). Since the equation ([2.3) can be rewritten,

mv = ?{Re(v—w) + i[m(v—¢)}, (2.4)

(0 (8
where I'm and Re mean respectively, imaginary and real parts of this function. Therefore
the Bohm equation or the Bohm field velocity is [54],
h Vi
7 = —Im(—). 2.5
= S Im(~E) (25
Similarly, we can derive Schrodinger’s equation. Classically , the energy of particle is
written like,

E="—+V. (2.6)

2m
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where V' is the potential energy. Using (2.1]), (2.2) and ([2.3) we found,

h oY
E=——-- 2.
ip ot (2.7)
and A
2 2
p? = —h*—". 2.8
" (2.8)
where A is the nabla operator. Then substituting (2.7) and (2.8)) into (2.6]) , we get,
h oY R Ay
=7 . 2.
wot - amw TV (29)
Multiplying the last equation (2.9) by ¢ we obtain Schrodinger’s equation [54],
h Oy h*
———={——A+V}y. 2.10
i Ot { 2m Vi (2.10)

2.4 Bohmian mechanics for single particle

After the intuitive presentation done in the previous subsection, here, we show how to
describe a quantum system associated to only one particle (or one degree of freedom) in
terms of trajectories, starting from the Schrodinger’s equation. In particular, we look for a
more formal and general way of defining a Bohmian velocity from Schrodinger’s equation.
The general procedure is the following: from Schrodinger’s equation we derive a continuity
equation for p = |1|* which includes a definition of current probability and then, by dividing
the current probability by p, we get a velocity field [23], [54]. After that an equivalent and
additional derivation of the velocity will be obtained from the quantum Hamilton-Jacobi
equation [23 49].

2.4.1 Bomian velocity from Schrodinger equation

For a 1D system subjected to a scalar time-dependent potential energy, V(z,t), the
single-particle Schrodinger equation can be written,

Op(z,t)  h* O*P(,t)
ot 2m  0a?
The orthodox interpretation of ¢ (x,t) does not describe a single experiment, but it

characterize an ensemble of identical particle (single-particle) experiments [23].

Let us look for a local continuity equation inside Schrodinger equation . To do this
goal , we use ¢ (z,t) and its complex conjugate 1*(z,t). Then , we can rewrite Eq.
as,

ih

V() (, b). (2.11)
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(1) 12 0(a,1)

w*(x,t)ihT = —*(z, 1) 5 o2 + " (z, )V (z, t))(x, t), (2.12)
* 2 92, /%
—@D(x,t)ihw = —@D(z,t)j—ma%—a@ + Y(x, )V (z, )" (x, t). (2.13)

From the the equations (2.12)) and ([2.13)), we found,

ol(x,t)]? h 0 oY(x oY*(x
PIE i 22 (410220 — g 2020, (2.14)

The equation (2.14) can be considered as the local conservation of particles when p(z,t) =
|¢)(x,t)|* and we define the current density , J(x,t), as,

T t) =g (@u(z,t)—ang’” - w*(a:,t)—awéi’ t)) |

The Schrodinger equation is compatible with a local conservation of particles, unlike most
wave function equations. This is due, in part, to the fact that V' (z,t) is a real function. It
can be interpreted p(z,t) = |[1(z,t)|* as a spatial distribution of an ensemble of trajectories.
Now if we want to find the quantum trajectories supported by the local conservation law
(2.14)), we have to search for a definition of the particle velocity. Knowing that | (z,t)|? is
the distribution of the ensemble of particles in the configuration space , we can easily show
that the particle velocity compatible with the local conservation of particles is [23],

(2.15)

J(x,t)

v(x,t) eI (2.16)
where J(x,t) is defined from equation (2.15). Due to the continuity equation (2.14) , an
ensemble of well defined trajectories whose initial positions are all selected according the
distribution |1 (z,,,)[* will reproduce |¢(z,t)* at all times if they move according to the
quantum velocity . This last property provides full meaning to the definition of the
Bohmian velocity for quantum trajectories.

2.4.2 Bomian velocity from quantum Hamilton-Jacobi equation

Alternatively, we can find the same particle velocity from a quantum Hamilton-Jacobi
equation. This was the development done by Bohm in his original work [49]. We write the
quantum (complex) wave function , ¥(x,t) = ¢.(z,t) + ity;(x,t) , in a polar form,

R*(x,t) = 2 (2, t) + 97 (2, 1), (2.17)
S(x,t) = harctan (%) . (2.18)

The wave function phase S(z,t) is not well defined when ¢, (z,t) = ¢;(z,t) = 0. However,
there we get R(z,t) = 0, meaning that no electrons will reach this configuration point |,
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so that in general we do not need to compute the velocity there. The quantum Hamilton-
Jacobi equation can be derived by introducing the polar form of wave function ¥ (z,t) =
R(z,t) exp(iS(z,t)/h) into . On one hand, one of the resulting equation gives the law
conservation law,

ot oz

On the other hand, the real one gives a quantum Hamilton-Jacobi equation,

OR'x,t) O (%_aséz’t)}g?(x,t)) — 0. (2.19)

8S(aj,t)+ 1 (85(:6,15)

o2m ox

ot om ) +V(x,t) + Qx,t) = 0. (2.20)

The term appeared in quantum Hamilton-Jacobi equation is called quantum potential and
it is defined [49],

R 0?R(x,t)/0z?

Q1) =~ TR0
2m  R(z,t)

We conclude that we can interpret the wave function solution of Schrodinger equation

as an ensemble of quantum trajectories, with different initial positions and velocities. Then
the velocity of each trajectory x[t] is defined [23, [49] [55],

oft] = [iM} i, (2.22)

m Oz

(2.21)

It can be shown that the new expression of quantum velocity is identical to what men-

tioned in expression ([2.16)),

i@S(m,t)  J(x,t)
m O |Y(z, 1)

where J(z,t) is defined (2.15). The derivation of the Bohm trajectory from quantum
Hamilton-Jacobi equation show that the particles moves under the action of a force which

is not entirely derivable from the classical potential , V' (z), but which also obtains a contri-
2 92R(w,t)/0x?
T 2m R(z,t) :

v(z,t) = (2.23)

bution from the quantum potential , Q(z,t) =

The time derivative of the Bohmian velocity can be written [25] 49],

o d U(Zt[t],t) _ [_5_5(‘/(%75) + Q2 1))]amaly (2.24)

The quantum trajectories are not solutions of the classical Newton law with the classical
energy , but they are solutions of the quantum Newton law ([2.24]) where a quantum potential
, which take into account all non classical effects, is added to the classical potential.
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2.5 Bohmian mechanics trajectories for many-particle
systems

From a computational point of view, one of the most complicated problem when studying
quantum transport is to deal with many body problems. Historically, there are many at-
tempts to tackle this problem with different quantum techniques. Thus, it is mandatory
to see how these Bohmian trajectories are defined in many-particle systems. We will see
later that these trajectories, somehow, allow us to avoid dealing with the entire wave func-
tion when using the conditional wave-function. Here we briefly derive the many-particle
Bohmian velocity from Schrodinger and quantum Hamilton-Jacobi many-particle equations.
Their derivations are quite similar to those for single particle.

2.5.1 Bohmian trajectories for many-particles from Schrodinger
equation

We consider M spinless particles, the dynamic of this system is obtained from the fol-
lowing Schrodinger equation,

ot om Ox?
k=1

N 2
2P t) <Z_h_ > +U(a:1,...,xM,t)> W, o t). (225

The solution of this equation is called many particle wave function. Similarly to how we
found the single particle version ([2.14)) , we can easily found,

M

A(Z, 1) ~h 0 Lo ovt@ ) L 0( )
. — = 0. 2.2
ot + ; “om oxy, V(@) oxy, Vi) oxy, 0 (2.26)
Then k-th component of the N —vector current density can be read,
L h (AU ()
Jp(Z,t) = i5 (w(x,t) B V¥ (T, 1) B : (2.27)

Therefore the equation (2.26]) is interpreted as a local conservation of particles and |t (z1, . .., zx, t)|?
as a distribution of an ensemble of N trajectories in configuaration space. Finally, the
Bohmian velocity of the k-th trajectory is,

J t
(1, .., o, t) = ARV (2.28)

B W(:l:l,...,xM,t)P'

2.5.2 Bohmian trajectories for many-particles from quantum Hamilton-
Jacobi equation
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Introducing the polar form of the many particle wave function ¥ (xq,...,xp,t) =

the imaginary part,

ORX(z1, ...t t) = O [ 108(z1,...,200,1)
— t) ) = 2.2
at +;8$k (m axk R (xla y UM )) 07 ( 9)

where we recover the local conservation of particles and the Bohmian velocity of the x;

is defined,
1 0S(x1,...,x0m,t)
o t) = — . 2.30
Uk(a:la y LM, ) m &vk ( )
Similar to the case of single particle, the expressions (2.28)) and (2.30]) are identical. From

the real part of the Schrodinger equation we find,

M

85(:61,...,.TM,t)+ L@QS(xl,...,xM,t)

ot 2m ox?
k=1

+V(xy,...,xm,t) + Q(z1, ... 20, t) =0,

(2.31)
which is the quantum Hamilton-Jacobi equation for many-particles. The Quantum po-
tential is,

Q(l’l,...,ZL‘M,t): Qk(xl,...,xM,t), (232)

T

with,
B2 PR(w, .. wu,t)/ 0
2m R((El,...,ﬂfM,t) .
One important conclusions that we get from these results is that the Bohmian velocity
of one particle x; depends non-locality on the rest of trajectories. This is a fundamental
requirement for any accurate explanation of quantum phenomena.

Qr(x1,..., 70, t) = (2.33)

2.6 Main postulates of Bohmian mechanics

Let us present the basic postulates of Bohmian mechanics. We will present the theory in
terms of two main basic postulates [23, [53] [56].

2.6.1 First postulate

To illustrate this postulate, we consider a system M electrons described in the spatial coordi-
nates 7= {7, ....., "as } by the many-particle wave-function (7, t) obeying to many-particle
Schrodinger equation,

L OY(Ft MR B B
zh% — { Zl —5 V2 4+ U(7, t)}w(r, t), (2.34)
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and for simplicity, we have considered a solid-state system where the lattice-electron interac-
tion is included by means of the electron effective mass, m*. The term U(7,t) is the potential
energy that , here, defines the Coulomb interaction among electrons.

From equation it can be demonstrated that the probability distribution, |(7,t)[?,
obeys to the following continuity equation [57] ,

8[;& + Zvaga 7, 1) (2.35)

where fa (7, t) is the a—th component of the usual probability current density defined as,

e ih e
JalTt) = 5~ (VVath" = 4" Vath). (2.36)

From equation ([2.35) the vector field defined as
Ta(7,t) = Ja(7, 1) /|00 (7, ) (2.37)

and it can be interpreted as a velocity field for the a—particle. This velocity can be used to
define trajectories in the configuration space,

t

7ot) = (o) + / B, )dt, (2.38)

to
with 7(t) = {7 (t),...,7u(t)} and 7,(to) is the initial position.Thus, the dynamic of a single
particle in a quantum system is defined by the trajectory 7, (¢) that moves continuously
under the guidance of the Schrodinger equation.

2.6.2 Second postulate

The initial position and velocity of a particular trajectory cannot be certainly known.
When an experiment is repeated many times j = 1,..., N, the initials positions 77 (#;) of an
ensemble of trajectories 7 (t), associated with the same (7, t), have to be generated so that
the number of trajectories of the ensemble between i~ and 7+ dr” at the initial time t, would
be proportional to | (7, t,)|?.

The condition on the initial position can be mathematically written as,

(o) = tim — 3" [0, — (te)) for t =t (2.39)

where j = 1, ..., N is the number of different trajectories of the ensemble. If the proba-
bility density for the configuration satisfies R?(7,t,) = |[¢(7,t,)|* at o, then the probability
density at any time ¢ is given by R%(7,t) = |« (7, t)|?. This is an extremely important prop-
erty of any Bohmian mechanics. That condition together with the continuity equation ,
which make Bohmian mechanics to predict the same results as orthodox quantum theory.
In other word, these assumption which guarantees a total agreement between Bohmian me-
chanics and quantum mechanics regarding the results of any experiment, and it is called
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quantum equilibrium hypothesis [53, b8]. Equations (2.34), (2.35), (2.36), (2.37) and
constitute a basic set of equations describing Bohmian mechanics [53].

In fact, it is argued that the second postulate about the quantum equilibrium is just a
consequence, not a postulate, of the behavior of the universal many-particle wave-function
[58, 60]. Additionally, for system of identical particles, a third postulate can be presented
to ensure the proper symmetrization of the wave function, it is not discussed in this thesis.
Again, it is argued that such symmetrization is not a postulate in Bohmian mechanics,
but a consequence of dealing with identical Bohmian trajectories in the configuration space
[58, 60]. This topics are certainly far from the scope of the present thesis.

2.7 Measurement in Bohmian mechanics

In general, the orthodox quantum measurement is explained in the configuration space of
the system alone. According to the orthodox interpretation, the quantum measurement
process causes a random collapse of the wave function describing the quantum system. This
evolution is different from the one obtained from the Schrodinger equation. We resume here
two quite different laws which govern the time evolution of the wave function of the quantum
system [23] 25| [56]:

1. First law: the dynamical evolution of the system is carried out according to the
Schrodinger equation and it is deterministic. The final wave function of the quan-
tum system is perfectly determined when we know the initial wave function and the
Hamiltonian of the quantum system. This process happens when the system is not
measured.

2. Second law: this law is what we previously called the collapse of the wave function. The
latter before the measurement is substituted by one of the eigenstates of the particular
operator A related to measuring apparatus. Contrarily to the first law, the collapse
is not deterministic. The final wave function is randomly selected from the list of the
operator’s eigenstates list. This process happens during the measuring period.

We are interesting into studying Bohmian mechanics for its ability , besides to reproduce
all results obtained by orthodox mechanic, to predict measurable results without invoking
the wave function collapse. In the Bohmian theory the measurement process is treated just
as any other quantum process and the previous measurement difficulties of the orthodox
interpretation disappear. The whole quantum system , by means of this theory, is described
by a particle plus a wave function , rather than a wave function alone in orthodox mechanics.
The wave function and the trajectories are both , associated to the quantum system plus
the measurement apparatus. The orthodox quantum theory requires an operator to describe
the effect of the measuring apparatus, while such operator is not needed in the Bohmian
mechanics [23].

The proper modeling of a Bohmian measurement needs an explicit consideration of the
degrees of freedom of the pointer in the many particle wave function and many particle
Bohmian trajectories that define the whole system. Besides that, a Hamiltonian with or
without the measuring apparatus will provide a different evolution of the wave quantum
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system wave function according to measurement type. In the next paragraph , we take into
account these additional degrees of freedom of the apparatus to explain the measurement
process.

The Bohmian explanation of the quantum measurement is the most attractive feature

of the Bohmian explanation of the quantum nature [59]. Although the Bohmian and the
orthodox explanations of a measurement produce the same probabilistic predictions [49], the
mathematical implementation of the motion of the particles is quite different.
In the standard interpretation of quantum theory, the projective measurement process is
defined in a particular quantum region, the system. See figure (b) The state of the
quantum system in this particular region is determined by the wave function ¥g(7,t). The
process of measuring of a particular magnitude is mathematically defined through an opera-
tor , for instance G, acting on the wave function. The possible outcomes of the measurement
process correspond to one of the possible eigenvalues g of this operator that satisfy the equa-
tion G, (7) = gib,(7), where 1),(7) is an eigenvector of the operator. The set 1, (%) forms an
orthogonal basis of the Hilbert space of the quantum system so that the initial wave function
at the initial time can be written as,

Ys(Fot) =) cg(t)vy(F) (2.40)

where ¢,(t) is a complex value fitting the only following restriction ) _|[c,(t)|* = 1. This
condition ensures that the wave function ¢g(7,t) is well normalized. When measuring the
eigenvalue g,, the total wave function 1g(7,¢) collapses into the eigenvector v, (7). The
probability of getting the value g, in the measuring apparatus is then just P,, = |c,, (¢)[*.

In order to mathematically define the measurement process in the Bohmian formalism,
besides that the degrees of freedom 7 of the system , the degrees of freedom of the positions of
the pointer 5 belonging to the measuring apparatus are required [51], (56, [59]. Thus, we define
a total wave function (7, E, t) in a large configuration space that include the system plus
the measuring region, {7, E }. According to the Bohmian postulates, we select a particular
trajectory, {7 (t),£%(t)} of this larger configuration space, where o = 1,2,..., M, — oc.
The subindex « takes into account the uncertainty associated with the initial quantum state
according to quantum equilibrium condition defined in the section [2.6.2l Then in order to
be able to say that a measuring apparatus is able to correctly determine the eigenvalue g,
there are some necessary conditions that the entire system has to satisfy:

First, the pointer positions Ea(t) of such an apparatus have to be restricted to a particular
region, é%“(t) € Sy, every time that the quantum system is in the eigenstate v, (©s). We
define S, as a restricted set of positions in the space of ammeter position £. Let us define
o, (F,g,t) as the total wave function that fits the property that any experiment whose
quantum system is described by t,, (7) implies that the pointer points in the particular
region £2(t) € Sgr -

Second, the subspaces Sy and Sy of the whole configurational space must be non over-
lapping during the measuring, i.e. Sy N Sy = 0. Sy is defined as the restricted region
allowed to the pointer positions associated with second eigenstate, 1, (7), as g‘l(t) € Sy,
This implies that the states @, (7,€,t) and D, (7, ¢,t) do not overlap in the configuration
space during the measurement.
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(a) Bohmian measurement explanation in {x,&} space
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(b) Orthodox measurement explanation in {x} space
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Figure 2.1: (a) Bohmian measurement in the {x,{} configuration space: from the non
overlapping many particle (system+apparatus) wave function, only the g, part of the wave
function where the Bohmian trajectory is present is needed to compute the evolution of the
Bohmian system. (b) Orthodox measurement {z} space: in this case the system wave func-
tion collapses into the eigenvector 1, (7) associated with eigenvalue g, when the mesurement
takes places.



CHAPTER 2. INTRODUCTION TO BOHMIAN MECHANICS 29

A given good projective measurement apparatus, and a given that the eigenstates v, (7)

form a complete basis, during the measurement, then the only good decomposition for
(I)g(F7£at> 18 [59]7

(7, 1) = fo(&, 1) (). (2.41)

The fg(g, t) is a normalized function because @,(r, £,t) and 1, (7) are also a normalized
functions in their respective space. By construction, f,, (5, )N fy (E, t) = 0 during the
measuring time. Thus , even if ¢, () and 1, () overlap, the states @, (7, ¢,t) and o, (7, &,t)
do not overlap in the larger configuration space. See figure E(a) . We can then ensure that
an arbitrary wave function of the quantum system , (2.40)), can be rewritten in the whole
configuration space associated to a good measuring apparatus as [59],

B(F, 1) = Y colt) fo(€t) y(7) (2.42)
g

In the summary, during the measurement , the only total wave functions that can live
in the entire quantum system that includes a good measuring apparatus of the eigenvalues
g are the ones written in equation . An example of such wave functions is depicted
in Fig. [2.1(a). It is important to notice that Eq. implies no restriction on the wave
s (7, t) but only on the total wave function ®(7, {, t). If these restrictions are not respected,
we can find other types of total wave functions in the configuration space {7’ é’ }, but they
would be incompatible with stating that we have an apparatus that is able to measure the
eigenvalue g with certainty at time ¢.

We can now show how the projective measurement is exactly reproduced with the
Bohmian mechanics. As we have mentioned, apart from the wave function (2.42]), we have
to select an initial trajectory {7(0),£%(0)}. Such a trajectory will evolve driven by the total
wave function , and during the measurement, the particle trajectory {7(t),£*(t)} will be
situated in only one of the non overlapping wave packets of , for example f, (5, t)1)g, (7)
as depicted in figure (a).Thus, the pointer positions will be situated in £(t) € S,, and we
will conclude with certainty that the eigenvalue of the quantum system is g,. In addition,
the subsequent evolution of this trajectory can be computed from f, (5, )1, () alone . In
other word, we do need the entire wave function because the particle velocity can
be computed from f, (€, )14, (7). The rest of circles of Fig. (a) are empty waves that
do not overlap with f,, (€, )1, () so that they no effect on the velocity of the Bohmian
particle.This is how the orthodox collapse is interpreted within Bohmian mechanics.

The Bohmian measurement process explained above implies increasing the number of
degrees of freedom that one has to simulate from {7} to {7, £}. Sometimes , then, the use of
the Hermitian operators acting only in the wave function of the quantum system with the
ability of providing the outcomes if the measurements process without the explicit simula-
tion of the measuring apparatus is very welcomed. Operators are not needed in Bohmian
mechanics but they are very helpful mathematical tricks in practical computations. In the
next section we develop the expressions for commutating ensemble results from operators as
an infinite sum of Bohmian trajectories
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Before finishing this measurement task, we want to mention two technical problems that
appear in the numerical simulation of the measurement process done in practical scenarios
[56],

1. The first difficulty appears because of the specifying the Hamiltonian determining the
system and the apparatus evolution. This difficulty is similar to specifying which is
the operator that provides good information about the measuring processus in the
orthodox quantum mechanics.

2. The second difficulty is related to the computational limitations coming from solving
many particle Schrodinger equation . This problem appears because of adding the
pointer which adds degrees of freedom. But this problem disappears when we deal
only with the system wave function.

Further discussion of this point can be found in Ref. [56].

2.7.1 The mean value in terms of hermitian operators with Bohmian
trajectories

The operators are an indispensable tool in the orthodox formulation of the quantum me-
chanics to define the measurement process. In contrast, Bohmian mechanics does not require
the use Hermitian operators and the wave function collapse as the orthodox mechanics does.
Nonetheless , Bohmian mechanics can also express the expectation value of an observable
in terms of local observable which are directly deduced from orthodox Hermitian operators.
This is a quite usual way of introducing the Bohmian average of measurement.

The exact outcome of a particular quantum experiment described by the pure wave
function ¢ (x, t) is uncertain. If we repeat a quantum experiment many times with exactly the
same wave function v (z,t) , we obtain a different outcomes. The probabilistic information
of the experiment can be treated to obtain the main value.There several equivalent ways
for computing the mean value of the magnitude that we are measuring A. We consider the

Hermitian operator A and the mean value <fl> in the position representation.Then the
¥

mean value of this operator over the wave function ¥ (z,t) is given by,

<A>¢ - /_ Z o (x,1) A (x —ih%) b(w, t)da. (2.43)

Alternatively, the same mean value can be computed from Bohmian mechanics by defining
an spatial average of local magnitude Ap(z) weighed by R?(z,t),

(4) = / R2(2, ) Ap(a)da. (2.44)
Y —00
In order to obtain the same value with (2.43) and ({2.44), we write Ag(x) as [23] 25],

(@, t)A (2, —ih L) ¢(,t)
V*(x, t)(x,t)

Agp(z) = Real [ (2.45)
S(z,t)

] Y(z,t)=R(z,t)e’ &
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For practical purposes, we will compute the mean value using (Eq. (2.44])) with a large
j = 1,..., M number of Bohmian trajectories with different initial positions. The mean
value can be written,

<A>w ~ lim %iAB(xj[t]). (2.46)

In the limit M — oo, the value of is identical to the value of . We present
now a few exemples of how some common mean values are computed from the orthodox
quantum formalism and from Bohmian trajectories. We start computing the mean value of
the position,

(x), = /00 PV (z, t)z(x, t)dx (2.47)
with xp(x) = x so that,
(T)y = /_ R*(x,t)xdz. (2.48)

Identically, the main value of the momentum,

(b} = /_ " () <-m(%) (e, t)de (2.49)
with pg(z) = 90S(x,t)/0x,
0S(x,t)

= R*(z,t dz. 2.50
.= | R (2:50)
For the classical potential, we have,
V)= [ oV s (251)
with Vg(x) = V(z,t) so that,
V), = / R*(z,t)V (x,t)dx. (2.52)
We compute now the mean value of the kinetic energy,
00 hQ 82
K), = * - . 2.
(K), _Oow (x,1) < v (%2) Y(z,t)dx (2.53)

The local mean value of the kinetic energy takes into account the Bohmian kinetic energy
plus the quantum potential. In particular, Kp(x) can be obtained from the expression
[23, 25],

2m

e (2.54)

—1S(x 2 2 iS(x
Kp(x) = Real (_R@’”e S () Rl e ’”/’i)
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The real part of Kp is [23] 28],

1 (0S(x,1)
Ke = 2m ( oz

) + Q(z,1) (2.55)

so that, finally we obtain the Bohmian expression of the mean kinetic energy of the
ensemble of trajectories,

(K), = /_OO R(z,t) (L (355? “)2 + Q(:c,t)) dz. (2.56)

. 2m

In particular, if we want to compute the ensemble (Bohmian) kinetic energy , without
the quantum potential (@) , using (2.46]), it read,

M,
: 1 - 1 * 2/ «
(Kp) —(Q) = pm L Zl S v (27(), 1), (2.57)

Finally, let us notice that the probability density operator can be written as |z) (x| and
its expected value is (¢ z) (x| ) = |z, t)[?, or it is (1] ) (x| ) = R*(x,t) in Bohmian

language. The hermitian current operator can be written as J = 1/(2m)(|z) (x| p+p |x) (z|).
It can be demonstrated,

M

1

2 .

o= T = e ORet) = i 73 el fihile -l (259)
]:

The average value of the current density depends on the position and it is equal to
the average Bohmian velocity multiplied by the square modulus of R(x,t). At a particular
position z, this current is just the sum of all particles that reside around the position x = z;[t]
at time ¢. It is not always possible to know that we have selected a good operator that

perfectly describes the system.

2.8 Why Bohmian mechanics for nanoelectronics?

At first sight, it is not at all evident why Bohmian mechanics can help in studying high-
frequency quantum transport in nanoelectronic devices. Let us mention that such quantum
scenarios need a proper solution of the many-body (Coulomb) to deal with the displacement
current and manageable solution of the measurement problem because the AC transport
assumes a continuous measurement of the current. There are mainly two reasons why such
Bohmian trajectories are useful.

e The use of the (Bohmian) Conditional wave functions to deal with Coulomb interaction

e The use of Bohmian trajectories to deal with the measurement process

In this section, we discuss both.
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2.8.1 The Bohmian Conditional Wave Function

One of the reasons of the utility of Bohmian mechanics is its ability to tackle the many-body
problem discussed before in a different and original way. The active region of an electron
device can contain hundreds of electrons. The quantum computation of a wave function
with such number of electrons is a very difficult task, in fact, impossible. The many-particle
Schrodinger equation can be solved exactly only for very few degrees of freedom, i.e. one,
two, three electrons. A standard way to proceed consists then on reducing the complexity
of this problem by tracing out some degrees of freedom. For this goal, we discuss in this
section how a trajectory-based formulation allows us to tackle this problem with a different
way. The concept of conditional wave function [58,60] provides an original tool to deal with
open many-body quantum system [50].

To illustrate this point, let consider a bipartite system A + B whose spacial coordinates
can be split as ¥ = {7,,7,}. We call each subsystem a A system and its complement a B
system or the environment of system A. We define 7, as the position of a—electron in R3,
while 7% = {71, ......, Ta1, Tat1, ..., Tar} are the positions of the rest of electrons in a R3M~1)
space. The actual particle trajectories are accordingly denoted by 7(t) = {7, (t), 7 (t)}. Our
question now is ,

“How one can assign a wave function to each system A and B?”

In general it is not possible to do that if the two subsystems are entangled, it means that
the total wave function cannot be written as product ¥ (7) = 1, (7, )y (7). However, asking
by another way,

“What is the wave function of the system A that provides the exact velocity U,
for a given particular position ,(t) in B 27

The answer is given by the Bohmian mechanics and it is called conditional wave function,
this function can be written [56] 58, 60, [61],

Ya(Ta,t) = P(7a, (1), 1), (2.59)

which constitutes a multi-dimensional slice of the whole wave function. The expression
is considered as a wave function effective of the system A [60].

In order to use the conditional wave function to reduce the degrees of freedom of a system
we must know how it evolves in time. It can be demonstrated [62] that v,(7,,t) obeys the
following wave equation,

ih awag;a, ) = { - QH_VZ + Ua(FmFb(t)ﬂt)
+GalFas T (1), 1) + ia(Fay T (2). 1) P (7o ) (2.60)

The explicit expression of the potential G, (7, 75(t),t) and J, (7, 7 (), t) that appears in
can be found in the Ref. [62]. However their values are in principle unknown and
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they need some educated guesses. On the other hand, the total electrostatic potential energy
among the M electrons that appears in (2.34]) , has been divided into two parts,

U(7o, T(t), 1) = Ua(Ta, 7p(t), t) + Up(75(2), 1), (2.61)

The term U, (7,, 75(t), ) can be any type of many-particle potential defined in the position-
representation, in particular it can include short-range and long-range Coulomb interactions
[56]. The remaining term Uy (ry(t),t) in is contained in the coupling potential G,
in . From a practical point of view , all quantum trajectories 7(¢) have to be com-
puted simultaneously. In order to gather all the above concepts, let us discuss a practical
computation with conditional wave function by detailing a sequential procedure [56]:

1. At the initial time ¢y, we fix the initial position of all a—particles, 7, (to), according to
(2.39), and their associated single-particle wave function 1, (7, to).

2. From all particle positions, we compute the exact value of the potential U, (7, 7}(to), t)
for each particle. An approximation for the terms G, and .J, is required at this point.

3. We then solve each single particle Schrédinger equation , (2.60)), from ¢ = 0 till ¢y + dt.

4. From the knowledge of the single-particle wave function ¢, (7, to+dt) , we can compute
the new velocities ¥, (¢y + dt) for each a—particle.

5. With the previous velocity , we compute the new position of each a—particle as 7, (to +
dt) = 7, (to) + Ua(to + dt)dt.

6. Finally, with the set of new positions and wave functions , we repeat the whole proce-
dure (steps (a) till (e)) for another infinitesimal time dt till the total simulation time
is finished.

The advantages of the above algorithm using instead of is that , in order
to find an approximate , 7,(¢) , we do not need to evaluate the wave function and potential
energies in the whole configuration space , but only over a smaller number of configuration
points, {7, 7(f)}. The main difficulty in this procedure is how to define the terms G, and
J,. The simplest solution of the conditional wave-function is just ignoring them as explained
in Refs. [50] 59].

2.8.2 A sequential measurement with Bohmian trajectories

Next, we present why Bohmian mechanics can help in dealing with the problem of the
measurement of the current. During the measurement, a non-unitary evolution of the system
is required. In other words, the global wave function is collapsed (into an eigenstate of the
measuring operator) or it suffers a strong perturbation. Here we present an explanation
on how Bohmian mechanics explains the unitary and non-unitary evolution of the quantum
system.The wave packet in figure represent the solution of the (unitary) Schrédinger
equation of wave packet incident upon a tunneling barrier, at three different times. The
initial wave packet , with normal equal to one, is divided into a transmitted plus a reflected
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wave packets. According to Copenhagen explanation , when the system is measured at time
t1, a non unitary evolution appears in the wave function and , randomly, the reflected wave
packet disappears. Only the transmitted wave packet describes the electron at time ¢;. Then
when the system is measured again at t,, the electron is still represented the transmitted
wave packet.

Time Tunneling Barrier

S L e e S ——

e i T e

t

Poition

-

Figure 2.2:  Schematic explanation of the ability of Bohmian mechanics to discuss unitary and non-unitary
evolution of a wave packet incident upon a tunneling barrier.

Alternatively, the same unitary and non-unitary evolution can be explained with Bohmian
mechanics. The initial position of the Bohmian trajectory is selected randomly at the initial
time. Then, at times t; and ¢, the evolution of the trajectory is only determined by the
transmitted wave packet .The reflected wave packet is an empty wave that has no effect on
the evolution of the trajectory. In this explanation, we have taken into account an idealized
role of the measuring apparatus.

2.9 Summary

The basic tools to characterize a quantum system by means of Bohmian trajectories are
presented in this chapter. We have presented the Bohmian trajectory formalism using dif-
ferent methods. We emphasize that all predictions done by orthodox quantum mechanics
are exactly reproduced with Bohmian mechanics. We have discussed how the measurement
is explained in Bohmian mechanics. Finally, we have discussed why it can be useful, from a
computational point of view, to study quantum system, in general, and electron transport,
in particular. We emphasize its ability to deal with the measurement problem and to tackle
many-body problems in terms of conditional wave-functions. In next chapter, we will use
Bohmian trajectories to compute the total current.
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Chapter 3

Total current for classical and
quantum systems

3.1 Introduction

In this chapter, we discuss the computation of the total current in classical and quantum
nanoelectronics devices. We start by showing the important role of the displacement current
in the high-frequency behavior of nanometric devices. We present a historical development of
the Ramo-Shockley-Pelligrini (RSP) theorem. After that we discuss how the RSP theorem is
extended to the quantum world though a proper ensemble. We end this chapter showing the
numerical difficulties that appears in the practical implementation of the Ramo-Shockley-
Pelligrini expressions used in the BITLLES simulator [C]

3.2 The role of displacement current

In the first section we want to discuss the difficulties that appears when trying to correctly
model high frequency classical and quantum transport, and the relevance of the displacement
current in such scenarios. For DC transport, we generally deal only with the particle current
I,(t) related to the number of electrons crossing a particular surface S;. Nevertheless, the
electric field inside a quantum device is both inhomogeneous and time varying because of
its time dependence on the external bias and the movement of electrons. Under such time-
dependent scenarios, a displacement current /,(t), proportional to the time-derivative of the
electric field, is always present in electronic devices.

The displacement current has no role when modeling DC because, by definition, the
time-average value of I4(t) is zero. However, I,;(t) has a fundamental role when modeling
high-frequency transport. The total current is I(t) = I,(t) + I4(t) and it has to satisfy a
current conservation law, meaning that I(t) evaluated on a closed surface S must be zero at
any time. This is just a consequence of the Maxwell equations [63], 65].

Let us see now the importance of the displacement current, when we want that the
simulated and the measured currents to be exactly equal at all time. It is common to compute
the electrical current on the (simulated) surface Sp of the active region of figure 3.1} while a
real measurement is performed on the (non-simulated) surface S4 in the ammeter. It is then

37
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Figure 3.1: Schematic representation of a typical electrical circuit used in this chapter for
studying the difference between the computed and the measured current in electrical device.
Device simulators compute the current on the surface, Sp, of the active region, while the
ammeter measures it on the surface, Sy.

crucial to understand in which extension is the current on S4 equal to that on Sp. In fact,
these currents will be only equal if we consider the total current I(t) = I,(t) + I4(t), where
I,(t) and I4(t) are respectively the particle and displacement components. Since the Maxwell
equations ensure that the total current density J (71,t) is a vector with a null divergence, then
we can write fs 4 (71,t)d3 = 0 for a closed surface S = {Sp, Sa, Sp} where Sy, is a the surface
parallel to the transport d1rect1on in the cable as drawn in ﬁgure B.1 In part1cular for a
cable we can assume fs (71,t)ds = 0, so finally we get fs (r1,t)ds = —fS (71,t)ds.
The important point is that we have to simulate the total current (not only the particle
current) in Sp if we want to ensure that the simulated result si equal to the measured one
at S A-

Before starting the RSP theorem, let us write the standard expressions of the total time
dependent current. The displacement current expression , I4(t), is,

Iy(t) = /S | e@)%da (3.1)

where () is electric permittivity , E (7, t) is electric field vector at the position 7 at the
time ¢t and S; is surface where this current evaluated. Such electric field requires the self-
consistent solution of the charge and the electric field. In quantum mechanics, this means
working with a many-particle wave function. The particle (conduction) current expression,
I,(1), is,

I,(t) = / T(7t) - dg= lim S L sgn(i) (3.2)
. < At

where J; (73, t) is the current density vector at the position 7; at the time ¢ and the sum N,
is the number of electrons that have crossed the surface S; during the temporal step dt. The
function sgn(7) is equal to 1 when one electron leaves the volume € through the surface S;,
while it is sgn(i) = —1 when the electron enters.
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3.2.1 The total current is a continuous function of time

It is clear that the expression id discontinuous when the electron crosses the surface, the
same happens for the expression . However, the total current measured on a particular
surface is a continuous function of time. At first sight, this result can seem somehow sur-
prising because we have realized that neither the conduction nor the displacement currents
are continuous. Since the continuity of the total current is not explicitly discussed in most
textbooks, we provide here a formal demonstration of this property.

First, let us compute the discontinuity of the particle current at the time t = ¢; when an
electron is just going to cross a particular surface S; (from left to right). The surface S; is
defined by the points 75 = {z5,0 < ys < L,,0 < z, < L.} . We assume that at time ¢ = t;
the electron is still in the left side of S , while at t; + At it is already on the right. The
conduction current at that time ¢ = t; can be defined as:

q
it = Jim L (3.3)

The particle current is zero every time except during the time interval [tq,t; + At where
it takes the value , which tends to infinite because At — 0.
Second, we compute the discontinuity of the displacement current at that time ¢ = ¢;. The
displacement current, written in equation can be rewritten here as,

Js, €V EF t + At)ds — [o e(F)E(F, t1)ds
Ii(ty) = lim ==
At—0 At
In order to simplify the mathematical burden, we consider that the electron moves only
in the z—direction with the following 7g[t] = {xp[t],0,0}. The electric field flux on the
surface S; of lateral section (L, - L) situated on a position = = z; at [t; + At], can be written
as,

(3.4)

L L
= [ — xlty + At])dzsdys
/Si E(Fo,ty + At)d / / e o xB[t A T g+ 2 (3.5)

If we assume that zp[t] =~ z[t;] + vAt during the time interval [t;,¢; + At] with v the
electron velocity and (x, — zg[t + At])?> much smaller than y? + 22 | then expression (3.5
can be rewritten ,

L L
g (—a ot eald)
E ot At — 2 dz,dy,
/& oty / / Ire [ +apn
L L
2 Y —vAt
dzsdy, 3.6
+/o / Tre [ 1 R W (3.6)

The first term of the right hand side of can be interpreted as the electric field flux
generated by the electron on the surface S; of lateral dimension (L, - L,) situated on the
position 7 = {2xp[t] — 25,0 <y, < L,,0 <z, < L,}. Let notice that the distance between
these two surfaces is x5 — (2z[t] — z5) = Az ~ 0. Finally, we write as,
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L Ly v
Iq(t1) :/ / Amre [y2 +22}3/2d25dy3

' —fs* F')Ertlds—fs E(7 t,)d5
dm A 0

We consider the volume Vp which is enclosed by the total surface Sy composed by the
surfaces S} and 5; , plus two additional surfaces L,Az and two L,Az. Since Az =~ 0, only
the surfaces S} and S; are relevant. Therefore , we can rewrite (3.7)) as,

L. rLy g v
] t — d sd S
d( 1) /0 /0 dre y§+22]3/2 zsay

i — Jo € (P E(F, t,)ds
At—0 At
The first term can be interpreted as the time derivative of the electric field flux for un electron
located very close (but not equal ) to surface S. From the Gauss law integrated on the closed
surface S7, the second term is equal to the total charge inside the volume V7, which is in our
particular volume at t = ¢, is ¢q. Therefore, the displacement current can be written,

_ [dEF 4+ At) q
tit) = [ G 39

(3.8)

Certainly the value gives an infinite negative value because of the limit At — 0 ,
in the second term of the right hand side. However, summing that current with the particle
current , the infinite values disappear and therefore we obtain a continuous current at
any time , even when the electron is traversing the surface S.

At this point, after showing mathematically the continuity of the total current, we can
anticipate the numerical difficulties that we will get when trying to achieve such continuity.
This preliminary discussions will be enlarged in the last section of this chapter. In Fig. 3.2 we
have presented an example where the total current is computed using for a resonant tunneling
diode composed of two highly doped drain-source GaAs regions, two AlGaAs barriers with
the length of 1.6 nm and height 0.5 eV, and a quantum well with a length of 2.4 nm. It
is assumed a constant effective mass m = 0.067 mq , with mg the electron free mass, along
the whole 3D structure. Transport takes place from source to drain in the z—direction.
The lateral dimensions of the RTD are 24 nm in the y— and z— directions, limited by
an impenetrable material. This simulation is carried out using Bohmian trajectories (but
exactly the same difficulties appears for classical ones).

It is clear from figure that the current computed by means of the RSP theorem is
numerically more efficient than that computed directly from expressions and . The
former are free from the spurious discontinuities when the electrons crosses the surface. The
difficulties appear because neither At nor the spatial grid Az can be zero numerically. The
RSP expressions are not completely free from this difficulties, but we will see later that they
combine the particle and displacement currents in such a way they the expressions become
more efficient numerically. See more details about this study in Ref. [66].
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Figure 3.2: Time-dependent total current computed on the six surfaces that form the volume

Q of figure . The computation of the current within the first method and

expressions (dashed lines) has spurious effects that are not present when the second method
and expressions (solid line) is used [66].

3.3 Brief history of the Ramo-Shockley-Pellegrini the-
orem

The RSP theorem provides an alternative expressions for the computation of the time de-
pendent total current different from the definitions of the displacement current and
particle current . The main benefits in using these alternatives expressions is to avoid
some numerical problems and to show explicitly the dependence of the current on the spatial
geometry, this last property will be used in the next chapter @l The currents are computed
using the 3D integral domain (in general, the 3D active region of the device) instead of only
2D integral domain (the surface where we compute the current). We will see later these
advantages in details .

Before presenting a mathematical development of the classical and quantum RSP theo-
rem, we provide an introductory overview of its historic development. We anticipate that this
theorem has had a quiet limited success. In our opinion, the numerically viable algorithm to
extend the RSP theorem to quantum scenarios using the quantum (Bohmian) trajectories
that we present in this thesis, together with the ability of state-of-the-art emerging devices
to work at frequencies above the THz regime [67H71], will provide a renewed interest for this
theorem.

The original work of Shockley [72] and Ramo [73] in 1938 and 1939, respectively, was
devoted to the computation of the total current for the typical electron devices at that
time, i.e. the vacuum tube. A vacuum tube can be designed as two infinite metallic plates
separated by air. According to figure (3.3 we name Sy the left plate and S; the right plate.
For one electron moving from Sy to S; at velocity v, (t) in the transport direction, the total
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Sy=L L,

Dirain

e Syl by
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Figure 3.3: Schematic representation of a two-terminal nanoscale device. We draw an arbi-
trary parallelepiped of dimensions Ly - L, - L., whose volume €} is limited by the closed surface

S =18, Ss,....Ss}.

current on Sy can be written as [72] [73],

vz (1)
L,
The formal demonstration of this expression (3.10]) will be done in the next subsection, ¢

is the electron charge without sign. Hereafter, we provide a definition of the Fy(7) function

Ly(t) =~ TY(t) = gFy(7) - 9(t) = —g (3.10)

and a preliminary discussion on when the approximation E(F) = (1/L,)Z is reasonable. In
order to understand such function, we define a set of functions (one set for each particular
surface S;) as the scalar functions ®;(7) and its vector functions F;(7), through,

Fi(7) = =V (7). (3.11)
These functions ®;(7) and F;(7) fulfill the equations,

V(i) - Fi(7) = =V (e(7) - V(7)) = 0. (3.12)

For the reasons that will be fully evident later, the following particular Dirichlet boundary
condition on the definition of ®;(7) are considered,

meaning that ®;(7) = 1 on the surface S; and zero on the other surfaces [74]. Let us
emphasize that, contrarily to the first set, the functions ®;(7) and F;(7) have no direct
physical meaning. They are just mathematical arbitrary functions [75].

As indicated, the subindex ¢ means that we have six different possible set of functions,

one for each surface S;. All functions ®;(7) and F(7) share the same defining equations
(3.11) and (3.12)), but different boundary conditions (3.13]).

Going back to our original goal of checking when the approximation F, () = (1/L,)Z is
reasonable. In ﬁgure we have represented Fy(7) (arrows) and ¢4(7) (degraded colors) for
the solution of equations and with the particular Dirichlet boundary conditions
mentioned in in a 2D rectangular space [76]. Here, the direction z is the one from
S4 to S1 and the y direction from S4 to S1. As expected, arrows are almost constant in
modulus and direction everywhere inside €, except for the negligible surfaces {5, S3} on
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the top and bottom of the figure Because of the geometry, the spatial derivative in the
y direction is almost negligible in comparison with that in the x direction. Therefore, the
solution of equation (3.12) is basically ®;(7) = 1 — x/L, and F,(7) = (1/L,)Z.

-
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Figure 3.4: (Color online) the function F(F) (arrows) and ¢(7) when the longitudinal dimen-
sion is smaller than the transversal dimensions. The function F(7) is roughly constant and

equal to 1/L, [706].

Certainly, expression Fy(7) = (1/L,)¥ is not general. See, for example, the results in
figure |3.5| where the top and bottom surfaces are no longer smaller than the lateral surfaces
[76]. Then, ﬁ4(f") is not constant neither in modulus nor direction and we conclude that
expression is not valid for the geometry depicted in figure . The geometry of the
device has a clear influence on Fy() which, in turn, affects the current I,(¢).

After the work of Ramo and Shockley on vacuum tubes, an extension to solid state-state
electron devices (with spatial charge density inside €2) was needed. This effort was carried
out by Cavalleri et al. [77] in 1971 for semiconductor detectors. In that work, they assumed
that the electrode surfaces S. completely enclose the volume 2, i.e. S =S, , with constant
potentials on all electrodes. These conditions can be assumed in particle detectors but are
certainly not general conditions in most semiconductor devices.

In 1978, the work of Berg et al. [7§] provided a complementary demonstration of the
theorem including non-electrode surfaces. They defined the surfaces S, = Si,...,Sy of N
electrodes, and considered S, as the remaining surface. They provided some arguments to
neglect the current in the surfaces S,:

“All parts of the surface Sy can be chosen sufficiently far away, so that they are
located in field-free regions” [78].

This explanation can be used to provide simplified expressions that are useful in some
particular scenarios, but to neglect non-electrode surface S, is not always possible. Since S
has to be closed surface, there is always a part of the surface S, that has to be in contact
with some electrode surface S;. Similar approximations are also present in the demonstration
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presented by Kim et al. [79] for inhomogeneous media and when the electrodes have a time-
varying signal. They used the Green’s theorem for their demonstration, but their final
expressions ignore what occurs in the non-electrode surfaces because their definition of S is
incomplete:

“Where V' denotes the whole volume of our system except for M electrodes, S is
the surface of the M electrodes and 75 is the position vector on S 7 [T9].

Figure 3.5: (Color online) the function F(F) (arrows) and ¢(7) when the longitudinal di-
mension is larger than the transversal dimensions. The function F(7) (arrows) decreases
exponentially from the surface Sy to the surface Sy [70].

To the best of our knowledge, the work of Pellegrini in 1986 provided the first and com-
pletely accurate generalization of the Ramo and Shockley theorem for general semiconductor
devices [80] where all previous limits and difficulties are totally removed. His theorem is in-
dependent of the fact that electrodes have or not a time-dependent voltage or they enclose
the whole system completely, or only partially. He also took into account electromagnetic
vector potential in his demonstration. In recognition of this achievement, we have called this
work Ramo-Shockley-Pellegrini theorem.

We mention also an interesting extension of the RSP theorem done by Yoder et al. [§1]
in 1996 that can be used in transport models without trajectories. In their demonstration,
they assume that the component (of the holes and electrons current densities J,, ,, the dis-
placement current J; and the total current .J;) which are normal to the surface S are zero
in the non-electrode surface, J, 4 - 7 = 0, with 7 is a normal vector to that surface. This
condition allows them to relax the boundary conditions mentioned by Pellegrini [80] and
used by us in when defining Fi(7). However, their extra condition J, 47 = 0 is cer-
tainly not general and it can be, in some cases, too restrictive. For example, in a field effect
transistor where the interaction between gate and channel electrons is due to the electric
field perpendicular to the transport direction, we have J;, - 77 # 0 on the gate surface.

The RSP theorem has found a successful application in the Monte Carlo solution of the
Boltzmann equation, for AC computations [82H84]. On the other hand, instead of computing
the DC current from the number of particles crossing a particular surface, the RSP theorem
allows the computation of such DC current from a larger number of particles moving inside
a volume that contains the previous surface. The ultimate reason why DC current can be
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computed in a volume is because of homogenous value of the DC current (i.e. the DC current
can be equivalently computed in a lateral surface located in any position along the transport
direction).

Another use of the RSP theorem found in the literature is as a ’justification’ for in-
troducing the displacement current without solving/approximating the many-body problem
[85, [86]. Roughly speaking, once the velocities or the conduction current inside the ac-
tive device region are known for non-interacting electrons, the displacement current can
be taken into account by means of that theorem. However, the use of the expressions of
RSP theorem without such self-consistence can be a reasonable first-order estimation of the
time-dependent current, but they are not strictly accurate. In summary, a self-consistent
solution of the transport and Gauss equation is needed to compute an accurate value of the
total current, with or without the RSP theorem, with classical or with quantum transport
formalisms.

The RSP theorem in time-dependent quantum scenarios has been used to discuss some
unexpected (Floquet-like) features of time-dependent quantum transport for non-interacting
electrons [87]. Finally, an extension of the RSP theorem to quantum system in terms of
quantum (Bohmian) trajectories has been proposed by the two authors Alarcén and Oriols
[66]. The quantum version of the RSP theorem is effectively accompanied with a compu-
tational algorithm for solving Gauss and many-particle Schrodinger equation in terms of
trajectories [88].

3.4 Classical demonstration of the RSP theorem

To do this demonstration, we consider an arbitrary parallelepiped of volume 2 = L, - L, - L,
limited by the closed surface S composed of six rectangular surfaces S = {51, S, ..., Sg}. The
only restriction is that S has to include the surface where the total current /;(t) is computed.
See Fig3.3

For our demonstration of the RSP theorem, we consider a second set of scalar function
plus the vector function defined as the gradient of the former. In particular, this second set
will be the electromagnetic scalar potential V (7, ¢) and the vector field E (7, t) related as,

E(F,t) = —VV(7,1). (3.14)
The reader realizes that we use a quasi-static definition of the electric field. As discussed
in Appendix [A] the explicit consideration of an electromagnetic vector potential can be
neglected in most practical scenarios.
According to the uniqueness theorem for the solution of the Poisson equation [63] 65], both
functions, V/(7,t) and E (7,t), are unambiguously defined inside the volume 2 through the
well-known Gauss equation:

V(e() - E(7) = =V(e(7) - VV (7)) = q Y _ 8(7 = i[t]), (3.15)

plus the appropriate (Dirichlet or Neumann) boundary condition on the whole closed surface
S. The right hand side of (3.15)) is just the charge density [74] of electrons, ¢ the electron
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charge (with sign) and () the 3D delta function. Electrons paths are defined by 7[t] with
k ={1,2,...,N}. Here N includes all electrons inside and outside the volume €2, so that
it does not change with time. For simplicity, along this chapter, we will assume a scalar
position-dependent permittivity, e(7). Although we will not discuss this issue in this work,
the device geometry engineering can also include the proper design of €(7) to optimize the
AC spectrum.

Once we have defined the two sets of (well-behaved [74] [75]) functions, we put them
into the following Green’s second identity [63-65] evaluated inside the volume € and on the
limiting closed surface .S,

—

/Q VD) -V [P V0]~ 8(7) - T [TV (1) o

_ /S o) [V 70V, 2TV (1)) - ds (3.16)

with (3.14)), (3.15)), (3.11)) and (3.12)), we can rewritten (3.16) as,

/Qq-<I>i(F)- lié(?—ﬁ[t])] cdv =
- [@n [V R - a0 ) i 17)

Finally, taking into account the delta function in the left-hand side and the boundary
conditions (3.13)) in the last term of the right hand side of (3.17]), we obtain,

q- ®i(T[t))O(t — t)O(t; — 1) =

1=

—AE(F)'E(ﬂ‘V(F,t)~d§+/ () - B(F.t) - ds (3.18)

Si

where ¢ and ¢ are the times when the electron 7,[t] enters and leaves the volume (2,
respectively. The function ©(t) is Heaviside function (or unit step function). To relate the
delta function in (3.17) and Heaviside function in ([3.18)), we use,

Ot —t)O(ty —t) = / §(F — [t]) - dv (3.19)

Q

To avoid unnecessary discussions, those electrons that enter inside 2 several times are
considered as different trajectories 7 [t] each entering time.

The time derivative of the left-hand side of (3.18)) gives,
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CU[H]O(t — 1,)O (1] — 1)
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k=1 k=1

N N
> g B[t — )0t — 1) = > q- i[O — t1)5(17 — 1), (3.20)
k=1 k=1

where we have used d®;(7[t]) /dt = —F;(7]t]) - G[t] with the electron velocity @,[t] = d?t[t].

According to (3.19)), we can rewrite the first term of the right hand side of (3.20) as,

N
Y a- Bl - d(i[)e - #)e ) — ) = / E(P)- JFt)-do,  (321)
k=1 Q
where we define the current density as,
N
7t) = q- Te(T[t])5(F — 7 t]). (3.22)
k=1

The last two terms of the right hand side of expression (3.20) can be rewritten as the
number of particles crossing the surface S;,

g| Y st—t)— > -1 :—/S(]Z(F,t)-dg, (3.23)

7[ti]es; T[tR]€S:

where we have used that ®;(7%[t]) = 0 for those k-electrons entering or leaving the volume
Q through a surface different from S;, while ®;(7%[t]) = 1 for those k-electrons entering or
leaving through S;. This is just a consequence of the boundary conditions . We do
also use §(t — t,) = 6(7" — 7[ts]) - [Uk[tz]| to relate the temporal delta to the spatial delta in
3.23|). Putting and together with the time derivative of the right hand side of
3.18)) and reordering the terms, we obtain two sets of equivalent expressions to compute the
total current [;(¢) through the the surface S; as [89],

() = TS(t) + Tt) = TU(t) + TE(8), (3.24)

where the direct expressions for the total current I;(¢) are [89],

/ J.(7 4)d5 (3.25)

() = /S | e<m-%d§ (3.20

while the RSP expressions are [89],

i) =~ | B - do (3.27)

v = [ oA S ds 329
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These expressions and are exactly the ones found by Pellegrini [80].

Finally, let us notice that the terms I'!(¢) and I'¢(¢) cannot be interpreted as the conduc-
tion, Y$(t), and displacement, Y%(t), currents, respectively. For example, T'Y(t) # 0 when
the electron is not crossing the surface S;, while T¢(¢t) = 0. The term I'!(¢) includes itself
the conduction and part of the displacement currents altogether. We call the first expression
the volume expression of the RSP theorem, while the second expression the surface expres-
sion. See Appendix [B|for a discussion of the current continuity and the role of the boundary

conditions ({3.13)).

3.5 Orthodox quantum version of the Ramo-Shockley-
Pellegrini theorem

Hereafter, we present a quantum generalization of the classical theorem demonstrated in
section 3.4 We will consider that the quantum system is described by a many-particle wave-
function W(r, ..., 7y, t) solution of the time-dependent many-particle Schrédinger equation
for Coulomb-interacting electrons. For simplicity, we assume spinless electrons.

We notice that the standard quantum mechanics does not provide information on indi-
vidual experimental realization, but only on the probabilistic statistical results. In simple
words, |U(77, ..., 7x, t)|* provides the probability of finding particles in different positions, but
it does not specify which are the position in one particular experiment. Thus, the extension
of the RSP theorem into standard quantum mechanics has to be done in terms of ensemble
of possible positions.

The scalar potential, V() defined in expression has to be interpreted as the value
of the scalar potential at the position 7 and time ¢ for a distribution of electrons given by
™, ...,7n. The probability of each position distributions is described by the (normalized)
wave function |U (7, ..., 7y, t)|* (where we obviously eliminate the time because we are not
dealing with trajectories, but only positions). Hereafter, it will be useful to write explicitly
the dependence of the scalar potential on all positions, i.e. V (7,7, ...,7x). Thus, the mean
”quantum” scalar potential V(7 ) is,

V(F, t) = / dUl..../ dUqu/(Fl, ceey FN,t)|2 . V(F, 771, ceey FN), (329)
Qoo Qoo

where (), means an infinite 3D space for volume-integration. Identically for the mean
"quantum” electric field,

E(rt) = /dvl..../ don [ T(Frs s Py )2 - B, P ), (3.30)
Qoo Qoo

In addition, the left hand side of expressions (3.17]) can be written as,
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N
/ dvl../ dvk../ doy |V (7, ..., TN, )] /dv q- D, [Z5 ]
Qoo Qoo Qoo

k=1
N
:Z/ dUl../d’Uk../ dUN‘\IJ(Fl,...,FN,t)F'Q'(I)i(’l?k). (331)
k=1 v $eo Q o0

Notice the volume 2 for the integration of dvy in the right hand side of (3.31)), due to
the restrictions of the delta function inside that volume €. The scalar functions ®;() and

its vector functions F;(7), are equivalent to its classical counterpart, i.e. ®;(7) = ®;(7) and

Fi(7) = Fi(7), because they do not depend on the electron positions. Thus, we can rewrite
the quantum ensemble/mean version of expression (3.17) as,

Z/ dvy.. /dvk / don | (7, ooy P, )2 - q - @ (Fr)
:—/Se(r)[ 70) - B7) — 0.(7) - E(7.1)] - ds. (3.32)

In order to do the time derivative of the left hand side of (3.32]) we use the quantum local
conservation law,

d|\:[](7?1a TNa —
p Zvrh 1o T 1), (3.33)

where ij (71, ..., 7N, t) is the standard quantum current density associated to the 7, particle.
Then, taking into account (i3.33)) and (3.11]), we obtain for the time derivative of the left-hand

side of (3.32]),

/ d?)l /d’l}k/ dUN . ﬁf‘h [(I)Z(Fk) j" (7“17 .- 777N7t)]
Q Q Q

N N
QZZ/ dUl / dvk / dUN Tk J* (7’1, ...,’FN,t) . 5kh (334)
=1

k=1 h

where ¢y, is the Kronecker delta, which appears because ﬁ;}fbi(ﬁc) is zero when h # k.
Next, we evaluate the first integral of the right-hand side of (3.34) as,
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N N
_QZZ/S; Ch}l”/ﬂdvk”/Q dUN ’ th(CDZ<Fk) ' th(F17"'aFN7t)) -
k=1 h=1 oo oo
N

—qZ/ dvl../dsfk../ doy - Bi(7%) - T (P, ooy P 1), (3.35)
k=1 oo 5 o0

where we have used that any integral in the (infinite) volume ., gives zero because it is
equal to evaluating current density at the (infinite) surface S,. By using the boundary
conditions for ®;(7%) on the surface S (meaning ®,(7%) = 0 except for S; ), we can
rewrite expression (3.35)) as,

N
—QZ/Q dvl/Sdgk/ﬂ dUNCI)Z<Fk)JFk(F17,FN7t)
k=1 %% oo
- _/ ds - J.(71), (3.36)
Si

where the mean (many-particle) quantum current density J,(7, ¢) is defined as,

N
fc(m):ZU dvl../ dUk_l/Q cw,m/Q va-ﬁk(Fl,...,FN,t)] (3.37)
k=1 {eS] oo [e’s) oo

k=T

Next, we evaluate the second integral of the right-hand side of (3.34) as,

N
—Z/ dvl/dﬁk/ d’UN'Fi'(Fk)'j:’k<F1,...,FN,t)
k=1 v {loo & o0

:_/mwﬁmuﬂﬁw (3.38)

where again, we use the definition (3.37). The final quantum version of the RSP theorem
can be written as [89],

I.{t) = To(t) + Y2(0) = T70) + T3 (1), (3.39)

where the direct expressions for the total current I;(¢) are [89],

To(D) — /5 7S, (3.40)

TI(t) = /S e() - = s (3.41)
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while the RSP expressions are [89],

T(t) = —/QF,-(F) - J (7 t) - dv, (3.42)

0 - [ A s (3.43)

We obtain again, as in classical version , the volume term and the surface term
3.43). Expressions — are the just the quantum averaged version of expression
3.24)-(13.28). The important point for the present chapter is that the quantum and classical
versions of the total current share the same dependence on the function F;(7).

3.6 Bohmian quantum version of the Ramo-Shockley-
Pellegrini theorem

Here, we want to reproduce the previous quantum expressions with Bohmian trajectories.
From a computational point of view, the most relevant properties of Bohmian trajectories
is the fact that an appropriate ensemble of Bohmian trajectories does exactly reproduce
the probability presence at any time. Such property is mathematically described with the
following identity [90],

M N
1
= = 2 1 =
| (7, .y TN, )| _]\/llgnoo i E | |5(rk -

] (3.44)
j=1 k=1
where {7[t]....7[t]} is a many- partlcle Bohmlan trajectory whose initial p081t10n are {77[0]....7%,[0]}.
In order to ensure that expression is valid one has to select {7%[0]....7%[0]} according

to the initial wave-packet probablhty dlstrlbutlon U (7, ..., 7w, 0) 2. ThlS last condition is
called ”quantum equilibrium hypothesis ”[90], as we have showed in the second chapter. The
super-index j = 1, ..., M accounts for the M — oo number of different Bohmian trajectories
that we have to consider to reproduce the standard quantum statistical results.

According to (3.44]), we can rewrite (3.29) as,

S 1 i
V(it) = lim — Zl V(7 AL, ..., P [t]), (3.45)
]:
and (i3.30) as,
- 1 X , .
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Identically, the right hand side of expression ({3.31]) gives,

N
Z/ dvl../dvk../ don | U (7L, .o, P, )2 - q - ©i(7)
k=1 o o

= lim —qu O, (F[])O(t — t1)O(t — 1), (3.47)

M—oo M

where we include ©(t — ¢£)O(t? — t) to ensure that only 7%[t] € Q are considered. Now,
we have to compute the time-derivative of expression (3.47). It can be done following the
same steps done in section from expressions (3.18) till (3.24) for classical trajectories.
Conceptually, we have changed a classical trajectory by a quantum trajectory, but the math-
ematical procedure is identical. Finally, we have to include a sum over all possible Bohmian
trajectories (the quantum ensemble). Thus, the direct current is I;(t) = Y¢(t) + T¢(t), with
[89]7

T¢(t) = lim —Z/ [t], ..., 7" [t]) - d5, (3.48)

M-soo M

0 1 ) E(F (7, (L], ..., 7 [t]) e
Tit) = A}linoo i Z/ (1) p ds, (3.49)

while the RSP expressions I;(t) = I'!(t) + I'¢(t) are [89],

M0 = = Jim 37 > [ B Tt Pl - (3.50)
T5(t) = A}@@%Z[qe(ﬁ . T rﬂgé‘“’fﬁN[t]) . d3, (3.51)

Again, the volume expression (3.50) and the surface expression (3.51)). It is quite simple
to realize that, as expected, expressions ([3.48)-(3.51)) and (3.40))-(3.43]) are identical. We have
used a Bohmian definition of the quantum current [similar to the the classical expression
(13.22)] as,

Te7 Pt o Zq T (P[], P (O = 7 [1]), (3.52)
where @ (7[t], ..., 7 [t]) is the Bohmian velocity of the k-particle defined as,
- : Jr (8], -, [, 1)
T(AL], ..., A [t]) = — : (3.53)
MGG GHCRAIE
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where Jz (71, ...,7n, t) is the standard quantum current defined in (3.33). As expected, we

straightforwardly realize that the mean (many-particle) quantum current density J.(7,¢)
defined in (3.37)) is related to (3.52)) through,

M
—- 1 = . .
j=1

3.7 Instantaneous current and the noise

As we mentioned in the previous sections, the classical expression of the RSP theorem
provides the instantaneous total (conduction plus displacement) current measured by the
ammeters. On the contrary, the quantum version provides only an ensemble description.
Strictly speaking, either the Bohmian version — or the orthodox quantum version
— are computed by repeating the same experiment, defined through the same
many-particle wave function, many times. For example, the Bohmian expressions are written
as a sum over M — oo selection of Bohmian trajectories. Each many-particle trajectory
represents a different experiment associated to the exactly the same system. The quantum
ensemble results check all quantum probabilities hidden in the many-particle wave function
or many-particle Bohmian trajectories.

At this point, it seem mandatory to clarify whether this Bohmian trajectories can be
useful to compute the fluctuations of the current, what we call the noise. Classically, the
noise is always related to the autocorrelation expression,

—+00
R(r) = / I(t + 7)I(t)dt (3.55)
—0o0

From the last expression we see that the instantaneous current /(t) is needed to compute
the autocorrelation. The experimentally accessible power spectral density of the fluctuations
is constructed by Fourier transforming . At this point, one can wounder weather we can
use the Bohmian trajectories to compute the noise. The answer is yes. A similar discussion
as the one done in the previous section ensures that the Bohmian trajectories provides a
good description of the quantum ensemble value of the quantum noise. In simple words, by
construction, any quantum observable that can be computed with the many-particle wave
function can be exactly reproduced with the Bohmian trajectories.

At this point, a clarification is mandatory. The fact that we have demonstrated that
we can compute the quantum ensemble value of the total currents and fluctuations from an
ensemble of Bohmian trajectories, see expressions —, does not certify the reality of
these trajectories, but only that they are good mathemathical tools to compute total current
and the correlations. These Bohmian trajectories cannot be measured in any experiment.
Therefore, whether or not one wants to assume that these trajectories are real is just a
subjective decision, without implications in its practical ability to provide accurate compu-
tations. In any case, getting intuition about the individual behavior of these trajectories
helps us to understand the results of the ensemble of trajectories (i.e. the wave function).

Finally, let us mention that expression implies two different measurements of the
current at time t and ¢ + 7. In quantum mechanics, the interaction between the measure-
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ment apparatus and the systems has to be considered explicitly. During the numerical results
presented in next chapter we will assume that the current is measured through weak mea-
surements that get information of the system with a very small perturbation of the system
[91]. Ensemble Bohmian-like velocities of photons have been measured with this type of
measurement [92]. In any case, these topics which are being developed by other members of
the research group of Dr. Oriols is far from the scope of this thesis.

3.8 On the implementation of Ramo-Shockley-Pellegrini
theorem

In the remain of this chapter, we discuss the numerical problems on the practical implemen-
tation of the expressions RSP theorem. The problems are directly related to the fact that
when we select a spatial and a temporal grid, a time step At and a spatial step Az has to
be defined. Then, temporal and spatial derivatives are approximated by finite differences ,
with its pertinent numerical error.

During this chapter we mentioned two different methods to compute the total time de-
pendent current, which involves four expressions. We will discuss the numerical solutions
in the computation of each of them. They are the direct computation of the displacement
current given by expression and conduction (particle) current given by (3.2). Alter-
natively, we will discuss the computation of the currents from RSP expressions and
(13.28) or its Bohmian equivalents and . We discuss explicitly the difficulties of
each one of these terms:

3.8.1 The conduction and displacement current

By looking at expressions , we realize that the definition of At directly implies that the
amount of conduction current that we compute each time an electron crosses a surface is
inversely proportional to At. Thus, we get a arbitrary value. In principle, one can argue
that this arbitrary value will be canceled by the discontinuity of the displacement current
that we know it appears when the electron crosses the surface (we have shown explicitly
that the total current is a continuous function of time). However, the discontinuities in the
displacement current depends on Az and the electron velocity v,. Therefore, it is not easy
at all to synchronize the spatial and temporal steps to ensure the desired continuity of the
total current seen in section |3.2.1 This particular problem is not directly present in the
implementation of the RSP theorem, where the conduction current is intrinsically added
with part of the displacement current in the volume term . Other important problems
appear in the computation of the displacement current (similar to the ones discussed in Sec.
3.8.3)).

In any case, in the BITLLES simulator we will use the expressions of the current computed
from the volume and surface expressions of the RSP theorem, therefore, we will not further
discuss the numerical problems of the direct implementation. Unfortunately, other problems
appear. Finally, we emphasize that the implementation of the RSP expressions in BITLLES
simulator is exactly identical for Bohmian trajectories or for classical ones.



CHAPTER 3. TOTAL CURRENT FOR CLASSICAL AND QUANTUM SYSTEMS 55

3.8.2 The volume term of the RSP theorem

In the computation of the volume term of the RSP total current, expression or ,
we need the value of the irrotational function F (r) along the path of the trajectory. Because
of the spatial grid, ]3(7‘_‘) keeps a constant value in each mesh, of length Az, during the
time interval Az /v,, that an electron with velocity v, needs to cross it. Then, a spurious
discontinuity appears in the computation of the currents when the electron changes the
spatial mesh. The simplest solution of selecting a time simulation step At equal or larger
than Ax /v, implies a loss of accuracy in the time-dependence of the simulations.

In order to solve the mentioned problem of the discontinuities of the irrotational function
F (r) along the trajectory of the electron because of the temporal and spatial grids, we derive
here an alternative definition of F () in which we provide a linear representation of this
function inside the mesh depending on the electron position. Then, the irrotational function
F () will change inside each mess. For simplicity, let us discuss only the x component of the
irrotational function. The 2 components of the irrotational function F(7) is defined as:

F.(I,m,n) = Az + B, (3.56)

The subindex ¢ means the x directions. The vector function in the other directions can be
understood looking at the development done below and using ¢ = y, ¢ = z. The terms [,m
and n corresponds to the 3D grid points where of our spatial simulating box. Therefore, for
example, a particle with positions x(t), y(y) and z(¢) which corresponds to a mesh point | = 4,
m = 5and n = 3, will have associated a = component of F'(7) equal to F,(4,5,3) = Az(t)+B.
The constants A and B are determined by the following new boundary conditions,

Fc(lmin + 17 m, TL) - Fc(lmina m, n)

FL (T 1 12) = Follmins m,m) = ( 2

), (3.57)

where F™ (1., m,n) is the new component of F(7) in the ¢c—direction at the first mesh.

The values F.(lin, m,n) and F.(l,, + 1,m,n) are the old components of ﬁ(F) in the
c—direction , respectively, at the first and the second mesh. A schematic representation to
linearize this function is presented in Fig. [3.6l The boundary conditions at the last mesh is
written,

Fc(lmax - 17m7 Tl) - Fc(lmax - 2,?71, Tl)
2

F(lnaz, myn) = Fo(lpae — 1,m,n) + ( ), (3.58)

where F"(l,42, m, 1) is the new component of F (7) in the c—direction at the last mesh.
The values Fi.(ler — 1, m,n) and F.(lpee — 2,m,n) are the old components of F(7) in the
c—direction at the last mesh and its previous one, respectively. We recall that the component
of the irrotational function F(7) , for instance in z—direction in terms of ¢(r) is written as,

oc(i +1,m,n) — ¢.(i,m,n)
Av ),
where ¢ (i, m,n) and ¢.(i + 1, m,n) are the values of the “potential” [75] at the nodes i
and 7 + 1, respectively. The constants A and B are determined by the expression of F (7),

F.(i,m,n) = —( (3.59)
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Fc(lmax'lamxn)

Fc(lmax'zlmln)

Fc(lmin"'ls mrn)

Irrotational function F

Fc(lmin,m,n)

c-direction

Figure 3.6:  Schematic representation for linearizing the irrotational function showing the
discontinuity of that function between two mesh and its constant value along the mesh. This
representation is for the x—direction

(3.56)), and two condition values (3.57) and (3.58), we have then two equations with two

unknowns. This approximation presents a good tool to avoid , firstly keeping the value of
the irrotational function ﬁ(F) in the same mesh with a constant value and secondly the
discontinuity appearing when an electron displaces from one mesh to another. We recap this
improvement in the Fig. showing a comparison between the current I'“(¢) with and
without linearizing of the irrotational function F (7).

T T L T
1201 —a— r¥(t) without linearization
| —o— () with linearization

8

40t

Current 1'%t (mA)
2

20+

0009 0012 0015 0018
Time (Ps)

Figure 3.7: A comparison between the current I'U(t) with and without linearizing irrotational
function F(F) for a transistor FET with the geometry Ly - L, - L, = 8-2.5-2.5 nm?* on the
surface Sy.

In the next paragraph we develop a technical solution for the currents (3.28]).
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3.8.3 The surface term of the RSP theorem

The problems of the surface term are quite similar to the problems that we would get
if we computed the displacement current directly in our simulation box with a spatial and
temporal grid. During the all time that the an electron remains inside a spatial cell, the
distribution of the charge density inside the grid remains constant (we assume the charge
distributed uniformly in the cell). Therefore, the potential profile and electric field, which
are related to the charge through the Poisson equation, remain invariant with time. Then,
the displacement current is equal to zero, and only a large discontinuity appears on these
current when the electron changes the spatial cell (see Appendix Fig. [B.1)).

One possible solution was the selection of (non-unitary) Gaussian distribution of the
charge along the different nodes of the simulation box. The electron is assumed to have
associated a Gaussian distribution of charge, whose central position is located at the electron
position z(t), y(t) and z(t) and spatial dispersion is arbitrarily selected. We have prove this
assignment of the charge in order to obtain a smooth charge density as a function of time
instead of a discontinuous one. The basic idea was that when an electron is inside a mesh, its
electric charge spreads in a large number of meshes of the devices instead of being punctual,
and the distribution of charge between the nodes changes continuously. Then, the electric
filed and the potential profile changes continuously too. In order to avid discontinuities
we have to select a spatial dispersion of the Gaussian that implies several (4,5,..) nodes.
We have arbitrarily changes the “local” distribution of the charge by and “spurious” non-
local distribution. This is conceptually wrong for classical electrons and also for Bohmian
ones. Another problem was that the arbitrary spatial dispersion of the Gaussian charge
distribution affects drastically the results.

The solution to the discontinuity problems of the numerical evaluation of the surface
term of the total current, has been developing a new strategy to write the time derivative
of the potential and of the electric field directly from the Coulomb law (assuming a uniform
dielectric constant along the simulating box).

In order to explain how to derive this alternative solution, we consider two types of
mathematically equivalents ways of solving the Poisson equation for a system of electrons
as represented in figure [3.8, The electrons inside the box simulation feel the same boundary
conditions. In figure [3.8la the electrons out of the box simulation impose the boundary
conditions to those inside interacting with them, while those inside the box in figure [3.8b
feel the boundary conditions fixed by an external field.

Let us now discuss mathematically this equivalence in a region. The potential evaluated
at a point r inside the box is defined as V(1,1 (t),72(t), ..., 75 (t);7n41(E), . .., 7asr(t)), where
N is the number of the electrons which are inside the simulation box and the number (M —N)
is those outside the box of figure .a. The (M — N) electrons play the role of the external
bias, thus we can write the potential at the position r inside the box as,

Vi(r,ri(t),re(t), ..., ri_1(t), ri(t), rip1(t), ..., (1), 1), (3.60)

where we have substituted the dependence of all the terms (ry41(t), ..., 7 (t)) by t. We can
consider the effect of the (M — N) outside electrons on the NN inside electrons as a change
of the boundary conditions versus the time t. Fxpressions (3.60) will be the one we will
use to evaluate the current in . The deal with those currents is similar, thus we study
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Figure 3.8:  The electron inside the simulation box feel the same boundary conditions, but
with different representation. In (a) the boundaries are considered as a consequence of the
reaction of the interactions inside the box with those outside of it. In the representation (b),
they are presented by the values imposed on the electric field (Neumann) or the potential
(Dirichlet) on the surfaces.

only one of them for instance (3.28). The time derivative of the potential (3.60)) when all
electrons inside the box moves, i = 1, ..., N, reads,

dv(r?rl(t)?r2(t)a'-->ri—1(t)7ri(t)>ri+l(t)a'-->rN(t)>t) _ a_v+ = 8\/%
dt SOt o dt]

(3.61)

where v; = Cfi’;i is the velocity of the i—electron and %—‘t/ presents the external boundary

conditions i.e. the effect of the electrons outside the box. Now to evaluate (3.61)), we need
to compute % . For this goal we express the potential with the Coulombic form for the
moving i—electron ,

1 q1
1% ), 79(t), - i1 (), 7 (8), T (£), o (), 1) = —
(Tvrl( ),7"2( )7 T 1()7”()7“+1() TN() ) 471'6”7”—7”1@)“
1 qo 1 qi
Tt T P
dre ||r — ro(t)]| dre ||r — ri(t)]|
1 Y
+...+ . 3.62
dre ||r — ry(t)]| ( )
From the last equation (3.62)) we find,
1 i
o _ O swe ) _ b i (3.63)
or; or; Are ||r — ri(t)]]? '

Many terms have been canceled because of their independence on r;. Using (3.63]) the
time derivative of the potential (3.61]) can be rewritten as:
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AV (ryri(t), ra(t), ... ri1 (), ri(t), riga (t), ..., rn(t), 1)

dt
o L1 qiV;
- 4+ Lt 3.64
ot ; dre ||r — ri(t)||? (3.64)

In using this procedure, the main limitation is that the Coulomb expressions are only
valid for a uniform dielectric constant. No further approximation is present. Such solution is
computationally acceptable when the number of electrons is limited to few hundreds, which
is our scenario of interest in the 3D Poisson solver of the BITLLES. The great advantage is
that most of the temporal derivatives are done analytically without problems associated to
the grid.

The practically implemented version of the expression in BITLLES simulator,
where the data of the current is collected at each time step, At, is the following. We are not
directly interested in the term , but on its time averaged value along At. Therefore,
we have:

1 brat 8\/ Z ov drz) B ii B 1 )i
At J, or; dt’ dme||r — rz( D =it = Ab)|| 7 At
(t

=1
V'(t;) — V(t; — At))
At
where 7;(t;) , r;(t; — At) are the positions of electrons at the times ¢; and t; — At. The term
V(t; — At) is the voltages at the times ¢; — At. The term V’(¢;) is the voltage at time t;
when only the boundary conditions are changed, but the electrons positions remains equal
to the previous ones 7;(t; — At). In the Fig. we have presented the implemented version
of the displacement current .
From the current presented in Fig. we see that it is continuous except when the
electron cross the surface where we compute the current. In the annex we show
different ways we tried to reach this result.

_I_

(3.65)

3.9 Summary

In this chapter we have derived classical and quantum versions of the RSP theorem that
allows us the practical the computation of classical and quantum total currents in nanoelec-
tronic devices. In the quantum side, we have demonstrated that the Orthodox or Bohmian
version are totally equivalent. The RSP expressions for classical or Bohmian particles have
been implemented into the BITLLES simulator ,Appendix [C], in order to discuss the high
frequency behavior of nanoscale electron devices. The practical difficulties of its implementa-
tion are discussed. Numerical examples using these expressions applied to nanoscale devices
will be discussed in next chapter.

Finally, let us emphasize how important is the computation of the current in the sim-
ulation of electron devices. Such devices, understood as a system of interacting electrons,
are subjected to external conditions of the potential at the boundary fixed by a (DC, AC
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Figure 3.9:  Displacement current on the surface Sy for a transistor FET with the
geometry L, - L, - L, = 8-2.5-2.5 nm?* on the surface Si.

or transient batteries). Depending on these external potentials a different flux of electrons
is generated. Such motion of electrons is the responsible of the total (conduction plus dis-
placement) current measured in a external ammeter. Simulating the behavior of the device
is just getting the correct relationship between the a priori fixed value of the voltage at the
battery and the a priori unknown value of the current at the ammeter. This final reflection
justify why is so important to we get an accurate calculation of the total current.
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Chapter 4

High-frequency results for
nanotransistors

4.1 Introduction

In the previous chapter, we develop and implement the tools for the computation of the total
current in nanometric devices. The BITLLES simulator, in general, and the implementation
of the Ramo-Shockley-Pellegrini theorem, in particular, are valid either for classical or quan-
tum simulations. Therefore, we will mix classical and quantum simulations of noise, AC and
transients. Most of our practical conclusions in this chapter are independent on whether we
use classical or quantum (Bohmian) trajectories.

e Noise We study the power spectral density when nanometric devices are DC biases.
Then, we study how the intrinsic noise in digital applications grows when small dimen-
sions are considered.

e AC and Transients We study the effect of the FET geometries in the total current.
We use this result to propose an original way of optimizing the cut-off frequency of
nanoscale devices.

We start this chapter with some preliminary discussions on the relation between measured
and computed total currents and on the effect of the geometry on the temporal behavior of
nanoscale devices.

4.2 Preliminary discussions:

We can certainly compute different parameters in order to characterize and study nanoelec-
tronic devices. However, all the results we will get are basically determined by the time-
dependent behavior of the total current. Let us start by discussing the relation between the
computed current (in the simulation box) and the measured current (in an ammeter situated
far from the simulation box).

62
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4.2.1 Discussion on the measured and computed current

In the study of any electron device, we do only take into account the active region. However,
the real experimental system included many other parts, such as cables, batteries, ammeters,
etc. which are not simulated explicitly. Therefore is mandatory to differentiate between the
current computed on the surface S1 of trhe simulation bos i () and the current measured
measured by the drain ammeter ip(t) of Fig. [4.1] The same happens for ig*(¢) and the
current ig(t) measured at the source. When dealing with DC current is trivially true that
both current are identical. However, for time-dependent current, the situation is far from so
simple. We will use the Ramo-Shockley-Pellegrini theorem (RSP) discussed in the previous
chapter to discuss this issue in detail.

According to the RSP theorem, when using the volume €2 in the 2-terminal device drawn
in Fig. (a), the displacement currents present on the surfaces Ss, S3, S5 and Sg are finally
collected by the drain or source cables. The lines of the electric field E (7, t) leaving these
surfaces end on the drain or source cables, even without crossing S1 or S4. Therefore,
clearly, ip(t) # igh(t) and ig(t) # ig'(t). This results can be understood in a very simple
way. The total current measured in S1 is different from the current measured in S4 because
it is the current measured on the six surfaces that is zero S1 = —52 — S3 — 54 — S5 — 56,
not S1 = —54. On the contrary, the current in the two ammeters has to be equal, at any
time, because we are dealing with a two-terminal device.

Therefore, in a two terminal device, if we want to use the RSP theorem to compute the
total current we need a volume 2 with surfaces S1 and S4 so large that all electric lines
drawn in Fig. [£.1}(a) cross such surfaces. Then, the other surfaces are so far from the active
region that the displacement current crossing such surfaces is almost negligible. Then, we
arrive to a situation with S1 = —52 — S3 — 54 — 55 — S6 ~ —S54. As we will discuss below
such type of volumes € corresponds to a situation where Fy(7) = 1/L,7 and F,(7) = —1/L,&
that gives the some current for both surfaces.

On the contrary, for the multi-gate Field Effect Transistors (FET) structure drawn in
Fig. .1](b), any volume € that coincides with the channel volume provides equal computed
and measured currents. The lines of the electric field E(F, t) leaving the lateral surfaces
Sy, 53,55 and Sg are collected immediately at the metallic gates. None of them arrives at
the drain or source cables. See Fig. [4.I[b). Therefore, for the Gate All Around (GAA)
FETs, we have ip(t) = i5'(t) and is(t) = i3*(¢).

4.2.2 The dependence of F;(f) on L,, L, and L,

Once we have clarified the relation between the simulated and the measured current, we
want to explain how the geometry of the electron device and its electrostatic boundary con-
ditions determine the behavior of the total current. Since we will use the RSP theorem
discussed in the previous chapter, where the irrotational function F’Z(F) plays a fundamen-
tal role, let us first discuss its dependence on the device geometry. In the introduction
of the previous chapter, using a 2D quick field simulator, we have briefly discussed such
dependence. Here, we enlarge such discussion by dealing with an analytical solution of
equation, V(e(7)F;(F)) = —V(e(F)V®;(7)) = 0, when the particular boundary conditions,
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Figure 4.1: (Color online) (a) Schematic representation of a 2-terminal device. When using
the volume Q, the current measured in the drain contact ip(t) is not equal to ig*(t) because
the lines of the electric field (dotted lines) on the other surfaces end finally in the drain
contact without crossing S1. (b) A 6-terminal device satisfies ip(t) = i2L(t) for Q equal to
the channel volume because the lines of the electric field on the surfaces Ss,53,55 and Sg are

collected by 4 gates [935].

Q;(7) = 1;7 € S; and @;(r) = 0;7 € Shy, are used. We assume the particular volume (2
depicted in Fig. [4.2) with a homogenous dielectric constant. There are no difference between
studying the current on the surface 1 or 4 , in the next we will carry on discussing the current
on surface 1 instead of that on surface 4. Under such simple geometry, the solution for the
scalar function ¢4 () can be written as [94], 95]:

IRURR N | i
0 = 3 :;”:§5 i j-sinh (w ()2 + () Lw)

-sin(—y) - sin(+—2z), (4.1)

with 7 = (z,y, z). First, let us discuss how reproduces the boundary conditions of
Laplace equation mentioned above. At the points 7 = (0,y, z), 7 = (2,0, 2) or 7 = (z,y,0)
we obtain ¢;(7) = 0. In order to compute ¢;(7) on the surface 7 = (L,,y, z), we write a
"square wave” defined as f(y) =1for 0 <y < L, and f(y) = —1 for L, <y < 2- L, as the

following Fourier series:
o0

fly) = % > %sin (Z;;T—y) : (4.2)

Y



CHAPTER 4. HIGH-FREQUENCY RESULTS FOR NANOTRANSISTORS 65

The same series can be used for the z variable and, as expected, we obtain ¢(L,,y,z) =
fly)- f(z)=1for 0 <y < L,and 0 < z < L,.

Figure 4.2: Schematic representation of a two-terminal nano-resistor. We draw an arbitrary
parallelepiped of dimensions Ly.Ly.L,, whose volume Q is limited by the closed surface S =

{S1, 52, ..., 56}

In addition, because of this particular boundary conditions, (¢;(7) = 1 when 7 € S
and ¢1(r) = 0 when 7 € Sj41), the role of the lateral variables, y and z, is identical and
interchangeable, but radically different from x. As a consequence, the shape of ¢; () does
not depend on the exact magnitudes of L,, L, and L., but only on the proportionality among
them. In particular two limit different shapes of ¢, () can be expected when L, < L,, L,
or L, > L, L..
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Figure 4.3: Representation of ¢;(7) along the points 7 = (z, L, /2, L,/2) for two particular
geometry.

When L, < Ly, L,, we can use the approximation sinh({) ~ { when & — 0. Then,
expression (4.1)) can be written as [76]:

61(F) ~ L%f@) fz) ~ L%, (4.3)
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where we have used again (4.2). This is the shape seen in the line with squares in Fig. H
Thus, a good approximation for the function Fi(7) along ¥ = (x, L,/2,L,/2) for 0 <z < L,

is:
- 1
Fi(rf)- Z=Fn =~ T (4.4)
This is exactly the geometry discussed by Ramo and Shockley in the vacuum tube , it is the

same result found in Fig. in the chapter [3

When L, > L,, L,, we can make the approximation sinh(§) = exp(£)/2 when £ — oo
in (4.1). For simplicity, due to the presence of 1/(i - j) in (4.1)), we take just the first terms
(¢ =1and j =1) to write ¢ (7) at 7= (z, L, /2, L./2) as [70]:

Yy z

o1(F) = exp (w\/(%)Q + (L—)2 (r— Lx)> . (4.5)

This is a quiet good approximation of what we have plotted in Fig. for ¢1(7) when
L,> L,, L, (solid circle). The shape of ¢ () in the x direction can be roughly approximated
by an exponential function [96] starting at zero and arriving at the unity. Thus a reasonable
approximation for F,(7) along 7 = (z, L,/2,L,/2) for 0 <z <L, is:

Fi(F) - & = F m —a, - exp (0u(z — L)) (4.6)
being «a, defined from 1) and it is equal (, /Liy)2 - <L%)2 This result corresponds to the

exponential shape of the magnitude of the arrows in Fig. 4, chapter 3. Expression (4.6) is
valid under the condition 1/a, < L,. In summary, the shape of Fi(7) depends drastically
on the relation between L, and L,,L..

4.2.3 The time dependent current behavior depending on device
geometry

After discussing how the device geometry determines the shape of E(F), let us discuss directly
the dependence on the geometry and electrostatic boundary conditions on the total current.
We consider now an electron traversing the volume of the active region with a constant
velocity U = (v, 0,0) in the transport direction, from source to drain (this correspond to the
ballistic transport in 1D quantum wire transistors considered in this work). According to the
RSP theorem, this electron generates a current pulse on S;. In our simplified scenario, the
electron transit time can be defined as 7 = L, /v,. For the analytical arguments developed in
this work showing the dependence of I;(¢) on the geometry, we can assume that I (t) ~ T'{(¢).
When L, < Ly, L., we can use to obtain:

Vs
L(t) = T4(t) ~ 4l

Ot — 0)0(r —1). (4.7)

T

As expected, the time-integration of this current is equal to the electron charge fOT I (t)dt =

qus/L,T = q. It is easy to show that this is true for any well-defined function F_i(r)
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On the contrary, when L, > L,, L,, using (4.6]), the current can be approximated by:
L(t) = TYt) = |gla- e . Ot — 0)O(T — t). (4.8)

We have defined a = v,«, and used z = v,t, meaning L, = v,7. The previous condition
for the validity of , ie. 1/a, < L, is now rewritten as 1/a < 7. Again, the time
integration of gives [[T{(t)dt = q- (1 —e ") =~ ¢ when 1 < ar. The important
lesson that we have to learn from expressions and is that the temporal width of
the current pulse '] (¢) is related (through the electron velocity v,) to the maximum spatial
distance between the electron and the surface so that the electric field is still non-negligible on
I(t). See Fig. for a computation of the current pulse without approximations confirming
the transition from a square to an exponential pulse current.
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Figure 4.4: Time dependent current I;(¢) for one electron traversing a gate-all-around tran-
sistor when three different geometries are considered.

At this point, before going to numerical classical and quantum simulations of real nano-
metric devices, it is important to emphasize again that for a two terminal device we have to
use Fi(7)-Z = —L% and Fy(r) = L% For multi-gate devices, however, the richness of different

types of functions F’z(f") can be used to improve high-frequency device performances.

4.3 High-frequency Noise

Studying noise is considered a complementary tools to characterize and model the electronic
devices. Engineers want to study it to try to avoid its pernicious effect on device performance,
while physicists look for it in order to show new physics hidden in the time-averaged results of
the DC measurements. We study which are the consequences on the noise of the dependence
of the total currents on the device geometry.

4.3.1 Power spectral densities in DC simulation

Via a simple example we analytically study the power spectral densities (PSD) in DC regime
then we do the same work but using the BITLLES (with Monte Carlo solutions of the
Boltzmann equation) to verify our conclusion.
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4.3.1.1 Analytical result:

Now, we consider the noise spectrum for the two different device geometries mentioned
above. Consequently, we have to define two volumes, 2 = 100 nm - L, - L, and Q" =
100 nm- Ly - L7, with identical length L, = 100 nm but different lateral areas. Then, in order
to compute the PSD(w) of I1(t) in both volumes, we have to compute the autocorrelation

function, R(At):

1 T
R(AY) = lim- oo / LT (t + At)dt, (4.9)
-T

and then Fourier transform such autocorrelation function.

We assume that all electrons are injected, from source to drain, with the same energy. The
electrons are injected at an effective rate v, meaning that the number of injected electrons
during a time interval 7" is T'v. We assume that electrons are injected, at a low rate, without
correlation between their initial times #;, and ¢}. This means that there is no correlation for
the currents associated to different electrons. Thus, we obtain R(At) = 0 when At > 7.
Then, the autocorrelation function for 0 < At < 7 can be rewritten as:

Ry (At) = q21/vm2/ For(vpt) Fpp (vgt 4+ v, At)dt, (4.10)
At
where we have used that x = v,t. Now, we consider the two geometries of the volume 2
mentioned above. We fix v, = 10°m/s, giving 7 = L, /v, = 1ps.

First, for the geometry L, = 100 nm < L, L., we take the current (4.7) represented in
Fig. 4.4(a). Then, the Fourier transform of the autocorrelation (4.10)) gives [76]:

. 2 2)
PSDy(w) = 2425 WT/2) 411
S 1((&)) qv (WT/2)2 ( )
We have known that sin?(£)/¢2 — 1 when €& — 0. Thus, we obtain PSD;(0) = 2¢°v.

On the contrary, PSDi(w — oo) = 0. The frequency where the PSD(f) drops down is
we =2 fe = 27/ T.

Second, for the geometry L, = 100 nm > Ly, L, we take the current (4.8) represented
in Fig. |4.4(c). Then, the Fourier transform of the autocorrelation (4.10]) gives [76]:

PSD(w) =2¢°V ———. (4.12)

We have known that PSD’(0) = 2¢*/" and that PSD}(w — oo) = 0. The frequency where
the PSD(f) drops down is w. = a. To avoid unnecessary discussions, we assume that there
is no electron confinement in the lateral directions (see Ref.[97] for a discussion of confine-
ment in the injection rates), so that the injection rate is roughly proportional to the S; or
S7. Thus, we can expect that the injection rate in the first case is much higher than in
the second case v > v*. This consideration on v and v* does only affect the DC current
of the two geometries. On the contrary, we are interested in the time dependent current
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that is represented in Fig. [.4] which do also depend on S; and S}. In Fig. [£.5] we have
represented the PSDs(f) corresponding to expressions and for the geometries
L, = 100 nm < Ly, L.(solid square) and L, = 100 nm > Ly, L} (solid triangle) , respec-
tively. Certainly, the frequencies where the PSD(f) drops down of both geometries become
different, w} > w.
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Figure 4.5: Power spectral densities PSD;(f) and PSD)(w) (in units of 2¢*v) , respectively,
for the currents I (t) expressions and (4.8]) for non-correlated transmitted electrons,
moving with constant velocity v, = 10°m/s, inside two different geometries. In particular,
we consider a fixed value L, = 100 nm giving a transit time 7 = L, /v, = 1ps.

At this point, it can be interesting to understand without the RSP theorem the differences
in the frequencies (i.e. w¥ > w.) when two different lateral surfaces S; > S} are considered.
Let us consider one electron situated so far away from the surface S} that the contribution
of this electron to the displacement current on the small surface S} is negligible. However,
this electron have a non-negligible influence on the displacement current on S;. The reason
is not that the electron has changed the magnitude of the electric field that it generates, but
that S7 > ST. Thus, we have to take into account many more small "local” contributions to
the displacement current [98] of this electron on S; than in the smaller surface S}. Thus, the
temporal width of the pulse on I;(¢) on S; is larger than on the current I7(t) of the smaller
surface S7.

4.3.1.2 Simulation result:

In order to confirm previous results, we have carried out this simulation using the BITLLES
simulator presented in the previous chapter. In the [C], we present the interface of this
simulator Fig. and current voltage charcteristic of GAA transistor with the geometry
L,-L,-L,=8-12-12 nm?, see Fig. . The noise spectrum of a gate-all-around Silicon
nanowire (which is a typical multigate structure avoiding short-channel effects with a low-
dimensional channel to reach higher mobilities) has been simulated.

In this simulation, we consider a gate-all-around Silicon nanowire depicted in Fig. 4.6
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Figure 4.6: Schematic representation of a gate-all-around transistor. The channel dimensions
are Ly, L, and L, and it is limited by the closed surface S = {S,...,S6}. Transport takes
place from source to drain. This transistor is designed by The BITLLES simulator

We assume the transport along the (100) channel orientation (we use an electron effective
mass equal to 0.19 times the electron free mass). An uniform relative permittivity equal to
11.75 in the whole volume (2 is considered. We consider two particular device geometries.
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Figure 4.7: Normalized PSD(f) of non-correlated transmitted electrons. Three different
geometries, with same longitudinal dimension (Lx) and different section area (L, L,), are
compared using Monte Carlo simulation (BITLLES) for gate-all-around Silicon nanowire

[99].

In Fig. , the numerical PSDs for three different geometries (Lx-Ly-Lz = 8-24-24 nm3),
(Lz-Ly-Lz = 8-8-8 nm?) and (Lxz-Ly-Lz = 8-2-2 nm?) are reported confirming the simpler
analytical results. We emphasize again that this conclusions are valid for gate-all-around
transistors with ballistic transport.

4.3.2 Intrinsic noise in digital applications

We move now towards another topic on noise. Here, we will explicitly consider two-terminal
devices which imply that the total current generated by an electron of velocity v, is I(t) =
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q v/ L,. From this results, one can anticipate that the shape of the current pulse originated
by one electron are modified when L, — 0. In particular, we know that the electron transit
time is roughly equal to Lx/v,. We notice that, obviously, the current multiplied by the
electron transit time is ¢ v,/L,; L, /v, = q. The current pulse is the responsible of transmit-
ting an electron of charge ¢ from left to right. Therefore, in the limit of L, — 0 studied in
this section, we have pulse with a very large current during a very short transit time. This
situation repersents a large noise in the current, which can be roughly understood as the
difference between the instantaneous value and the average value. Let us notice that the
average value is not modify by L,, but it depends on the injection rate (i.e. on the doping
or Fermi level).

A quantitative analysis of the THz noise in practical applications needs to recognize that
a device is a part of a very large circuit. The rest of the circuit works as a low-pass filter
so that only those current fluctuations with frequencies smaller than the cut-off frequency
become relevant when analyzing the high frequency noise. The cut-off frequency depends
on each particular application. In general, most applications are designed to work as fast as
possible, being the inverse of the transit time, 1/7, the ultimate intrinsic frequency limitation.
In this regard, these ultra-small electronic devices are expected to work at or beyond THz
frequencies.

In general, the high-frequency noise is discussed from the power spectral density of the
current fluctuations, as we have done. Alternatively, in this paragraph, we discuss the
frequency dependence of the THz noise in terms of the probability distribution function,
P(Ir,t), defined as the probability of finding the time-averaging current I at time t,:

1 t+7/2
Ir(t) = T / - I(thdt'. (4.13)
t—

In particular, the DC value is defined as u(t) = I7_o(t). Clearly, as we increase T, the
fluctuations of I1(t) around p(t) decrease. Expression can be interpreted as the result
of passing the intrinsic current I(t) through a low-pass filter whose transfer function is
sinc(wT'/2). See Fig. for the schematic description on how to construct the histogram
P(Ir,t). We assume many (infinite) different currents associated to identical samples. Each
current is filtered through @ Then, at each time ¢, we can construct the histogram
P(Ir,t). Asseen in Figs. [1.§(a) and (b), different T —averaging provides different histograms.
As indicated in Figs. [1.§(a) and (c), a small averaging time 7’1 can imply a non-negligible
probability of logical errors when the output voltage Viy/ is misunderstood as Viy. A larger
averaging time 72 (see Fig. 4.8(d)) avoids these logical errors, but reduces the maximum
operating frequency of the logical gate.

The computation of P(Ir,t) instead of the power spectral density has several practical
advantages. On one hand, it allows a direct estimation of digital errors expected from the
circuit as the area of the tails of the histograms of Fig. when the output voltages are
related to the current, for example, through a load resistance R (as seen in Figs. [4.8(c)
and (d)). On the other hand, P(Ir,t) is the common language used in quantum mechanical
descriptions of noise with full counting statistics [I00]. For example, the asymmetry of the
current histogram of Fig. [4.8(a), i.e. the skewness, has been predicted and measured [100].
Finally, it allows a quantification of the overall high-frequency noise (beyond 1/f and g-
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(a) Small averaging time T1 (b) Large averaging time T2
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(c) Logical errors with T1 (d) Logical errors with T2
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V'o' = R'lTl ﬂ V'1'= R'lTl V’O'= R'ITZ ﬂ V‘l'= R'ITZ
Error No Error

Figure 4.8: Schematic representation on the construction of the histogram P(Ir,t) at differ-
ent times ¢ from a small T'1 (a) and large T2 (b) ensemble of T-averaging currents. Logical
error probability due to the noise after T'1—averaging (c¢) and T2—averaging (d) using a
resistor R that relates current and voltage fluctuations [101].

r noise) in just one parameter. The standard deviation or(t) of the distribution P(Ir,t)
provides such information:

or(t) = \/ / T () — pt))2 PIp,t)dIr (4.14)

In this framework, we will use this parameter o7(t) to evaluate the noise. Its evolution
for different averaging times 7' can be related to a different cut-off frequencies through
w=2m/T.

4.3.2.1 Numerical results for the standard deviation o after T-averaging:

In Fig. we plot the distribution P(Ir, t) for transistor L,-L,-L, = 8-24-24 nm? for several
values of the averaging time 7. As observed, a longer T leads to narrower distributions. Fig.

[4.10] reports the values or(t) discussed in (4.14) for two different lengths . The smaller
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Figure 4.9: Computation of P(Ir,t) for transistor L, - L, - L, = 8 -24 - 24 nm? and for
different values of 7.

length implies larger fluctuations and higher noise. Roughly speaking, the noise remains
independent of 7" when T < 7, while it decreases nearly lineal with 7 when 7" > 7.

4 e — )

Standard dispersion o, ]
—m—L=8 nm
—m—L=16nm
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—0—L=16 nm
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o
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Figure 4.10: Effective switching time (right) and standard deviation or (left) as a function
of the averaging time 7. (Inset) All around gate ballistic transistor with identical lateral
dimensions H=W=24 nm and different length L are considered [101].

4.3.2.2 Numerical results for the effective transit time 7 after T-averaging:

As we increase the averaging time 7" in Fig. the noise drastically drops. Unfortunately,
a large averaging time T will also degrade the transient behavior of the device. The result
presented in Fig. is for two different all around gate ballistic transistor with L = 8 nm
and L = 16 nm (see inset in Fig. . In both devices, the lateral area is 24 x 24 nm?. In
our Monte Carlo simulation, BITLLES simulator, the voltage changes from 0 V' till 0.5 V'



CHAPTER 4. HIGH-FREQUENCY RESULTS FOR NANOTRANSISTORS 74

implying a transient current I(¢), as schematically seen in Fig. .

We plot the switching time elapsed to change from the current Ippp till Ioy in Fig. [4.10]
Initially, for small 7', the switching time gives its intrinsic constant value, which is related
to the delay time 7. However, after a larger T—averaging, the current I'r(¢) has degraded
its dynamic response because of the time-integral (filtering) of expression . One can
easily conclude that the effective switching time is roughly given by 7 = % + T. In Fig.
we see the expected degradation of the dynamic properties of that transistor because
of the T-averaging. For large T', we have 7p ~ T

We conclude from Fig. that the smaller devices (short L,) become noisier than the
larger ones. Therefore, such small devices will require that a large T'—averaging to reduce
the noise. According to our results, such T—averaging is so severe, the advantages of the
small transit time are not profitable. In this regard, it seems that the constant reduction of
the dimensions of electron devices will find an unbreakable red-wall in the noise behavior.

4.4 Transient and AC simulation of nanoscale FET's

The last topic studied in this chapter will be devoted to the AC behavior of emerging
nanoscale devices. In particular, we will discuss the cut-off frequency of gate-all-around
devices. Therefore, the AC study needs the consideration of AC sources in the gate of the
FET transistors. We start with a discussion on the relation between the transit time and
the cut-off frequency, which will become crucial on our results.

4.4.1 On the transit time

It is generally believed that the electron transit time is the ultimate responsible for high-
frequency limitations of electronic devices. Ramo [73] and Shockley [72], in the 30’s, were the
pioneers in determining how the electron transit time, 7, limits the high-frequency perfor-
mance of electronic devices. They showed that an electron moving with velocity v = {v,, 0,0}
between two (infinite) metallic plates separated by a distance L generates a current peak on
one of the plates equal to i(t) = —q - v, /L during 0 < t < 7, being ¢ the (unsigned) electron
charge. The time-integral of the current during 7 = L/v, gives the expected transmitted
charge —q. The physical origin of this current peak is the electric field generated by the
electron on the plates (that implies a displacement current there).

For FETs, the role of the transit time in their high-frequency performance is clearly
manifested in the cut-off frequency, fr, defined as the frequency at which the magnitude of
the small signal current gain hoi(f) rolls of to unity i.e., |ho1(fr)| = 1. Such frequency can
be simply approximated as fr ~ g,,/(2nCy) where g, = 0Ips/0Vss is the small-signal FET
transconductance in saturation bias and Cy the dielectric capacitance [102]. After a simple
calculation, it can be seen that fr ~ 1/(277) pointing out again the electron transit time as
the ultimate limiting factor [102], without any influence from the lateral dimensions.

The preferred strategies to decrease the transit time of FETs have been (i) reducing L via
scaling or (ii) increasing v, via changing channel materials. Scaling down the length implies
that most ultra-small FETs must be designed with double-gate, tri-gate and even (GAA)
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structures to enhance the electrostatic gate control on the current [103]. According to ITRS
2012 [I] GAA and SOI (Substrate on Insulator) structures have been chosen as candidates
for electrostatic control, see Fig.
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Figure 4.11: Different solutions for increase carriers mobility looking for or improving ma-
terials and also for electrostatic control through GAA or SOI [1).

There is a consensus in the scientific community that the scaling of these multi-gate ultra-
small FETs are approaching its limits, and it is necessary to look for different strategies [I].
Increasing the electron velocity with the use of high-electron-mobility FETS, based on I1I-V
materials such as GaAs and InP, have been also a successful alternative to reduce the transit
time [104]. Identically, Graphene channels are expected to provide higher velocities [105].

Alternatively, in this work, we show through a careful analysis of the displacement current
generated by a moving electron that, for some particular emerging FETSs the limiting high
frequency factor is an effective transit time, which can be much smaller than 7. For such
particular FET, the high-frequency performance can be improved without neither length
scaling nor using materials with higher electron mobility.

4.4.2 The effect of the FET geometry on the total current of a
free electron

Previously we have studied the dependance of the current traversing the electron devices
by means of the Ramo-Shockley-Pelligrini. This time we carry out this study using the
definitions of the total current (particle plus replacement currents). For this end, first, we
consider an electron with a trajectory 7{t] = {v, - t,0,0}, with v, = 10° m/s, moving in free
space inside the volume Q = L x W x H, limited by a closed surface S = {S1, 52, .., 56},
plotted in the inset of Fig. [4.12l The electron generates a time-dependent electric field
E(F, t) on the surface S1. Such electric field, together with the particle current density,
J (7,t), are the responsible for the total current on S1:

iSHt) = / J(7t) - ds + / mw - ds, (4.15)
s1 s1 ot
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with €(7) the inhomogeneous electric permittivity. In a real system, as the transistors dis-
cussed afterwards, the surface S1 must be a material (a metal) whose electrons interact with
the one considered in Fig. 4.12l The value of i3 (¢) plotted in Fig. show the dependence
of the temporal pulse of the current on the lateral area W x H for a fixed length L = 8 nm.
A unique trajectory, meaning a unique electron transit time 7 = L/v,, is used in all previous
computations. We conclude from Fig. that the shape of the current pulse is strongly
dependent on the lateral surface W x H. For the structure 8 x 24 x 24 nm? we recover the
old result of Ramo [73] and Shockley [72].
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Figure 4.12: (Color online) Total current on S1 (right side of the box ) for an electron
traversing the volume Q0 = L x W x H of the inset. A fixed length L = 8 nm and several
lateral W x H areas of the box are considered [95)].

Let us emphasize that the continuity of the current presented in Fig. is due to had
into account the two components current (conduction and displacement), this is because of
the discontinuity appeared in the particle current when the electron traverses the interested
surface is compensated by counterpart appeared in the displacement current. In Fig. [4.13
we have presented the electric flux in surface S;, which its time derivative presents the
displacement current. In that figure we clearly see the discontinuity at the moment the
electron traverses the surface Sj.

4.4.3 The effect of the FET geometry on F;(7)

Before explaining this conclusion , going back to the Ramo-Shockley-Pelligrini theorem we
present the irrotationnel function in 2D , for instance on the surface S, P_’g L(F). For two
different geometries this functions have been presented in Fig. [£.14] from it we realize that
a moving electron will have an influence on I'3l(¢) (the first term in the Ramo-Shockley-
Pelligrini current) only during the time when it is close to drain surface. In the rest of
positions inside the channel, we get ﬁgl(F) ~ 0. Thus, the transit time 7 is no longer a
relevant parameter to determine the temporal width of the ip(t) pulse. From ([4.6), we can
consider an effective device length L., which is smaller than L because L < W, H. Such
effective device length, provides an “effective” transit time L, /v, < T.

The main conclusion on the electron devices performance concerning AC regime is based
on the fundamental difference between the current pulses obtained from either expression
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Figure 4.13: Electric flur on Sy (right side of the box ) for an electron traversing the box of
the inset. Different geometries with a fixed length of L = 8nm and several lateral areas are

considered [106].

or . However, when predicting the currents, we have assumed that electrons do
not move in the lateral directions z and y. An electron with a zig-zag trajectory would
produce a quite arbitrary current pulse. In this regard, the physical origin of the effec-
tive length L, discussed in our work is different from the ones considered in the liter-
ature for larger devices [107, [10§]. It can be straightforwardly demonstrated [109] that
quantum (Bohmian) trajectories associated to a FET with confinement on the lateral sur-
faces single subband have zero velocities in the lateral directions when only one energy
subband is available E(k,,n,,n.) = hi*k2/(2m}) + E,, with the confinement energy given by
E, = I°m?/m;(n2/W? + n?/H?). Then, the previous predictions of the current from (4.4)
and become very accurate. This is the reason why our conclusion is, strictly speaking,
only valid for quantum wires (QWs). In particular, for transport through the (100) direc-
tion on Si channels, the presence of only one significant subbands is reasonable for lateral
dimensions below W, H < 12 nm (E, ~ 0.14eV for n, =2 and n, = 1 for W = H = 12 nm).

4.4.4 Small signal equivalent circuit scheme for FET

To study gate-all-around transistor Fig. [£.6]in small signal regime , we consider its equivalent
quadripole. In that regime , the gate-all-around transistor (quadripole) can be presented as
it is shown in Fig{d.15 The elements Cy and Cyq are in the respective source-gate and
drain-drain capacitances , 1y is the output resistance and g, is the transconductance. From
Fig. , the admittance capacitance can be written,

L =Y1.1Vi +Y1,5V5,
I =Y3,1Vi + Yo%, (4.16)

and the gain current reads,
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Figure 4.14: (Color online) The unit-less irrotational function F5'(z,y) = F3*(x,y, H/2) - &
for the two geometries [93].
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Figure 4.15: Equivalent circuit schema for gate-all-around transistor in small signal regime.

I
ho1 = I_2|V2:0 (4.17)
1

The modified equivalent circuit schema to compute that current gain is presented in
Fig[.16] From that figure and using a small algebraic operation we found,

dm
hoy ~ ——— 4.18
%% (Gt Cy) (4.18)

The cut-off frequency fr is the frequency where the current gain small signal is approxi-
matively equal to unity, i.e.

_ Gm _
ho1(fr) = SCot O] 1 (4.19)



CHAPTER 4. HIGH-FREQUENCY RESULTS FOR NANOTRANSISTORS 79

.|I-| I:-‘.'L' J'_'
60— = =D
.. ke TR
I'.I:|'. C|4':. L gm["lllwd_.-" -.‘_L ]-I 1;]_-;:|-
5 | 5

Figure 4.16: Equivalent circuit schema for gate-all-around transistor in small signal regime
used to compute the gain current.

Thus the cut-off frequency reads,

9Im
= 4.20
1= o O (4.20)

The cut-off frequency in versus the transit time is also defined,

1

fr= Dy (4.21)

4.4.5 Numerical simulation of the cut-off frequency from transient
simulations

Now, we provide numerical support to the previous conclusions through a time-dependent
simulation of electron transport through a GAA QW FET, using the small signal equivalent
schema presented before. We can define the gate current as ig(t) = i52(t) + 23 (t) +i3°(t) +
i80(t) satisfying ip(t) +is(t) +ia(t) = 0, at any time, because we know that 3.0 i3 (t) = 0.
The six currents ig(t) are computed from expressions of Ramo-Shockley-Pelligrini current
with the vector function ﬁgz(f') obtained from the 3D numerical solution Laplace equation
(i.e. the definition of the irrotationnal functions) , with a spatial grid of 0.5 nm in the x
direction and 1 nm in the others. In all structures we consider a Si intrinsic channel (whose
volume is ) and a 1 nm thick oxide layer. The Coulomb interaction among electrons in
the channel, and between them and those in the drain, source and gate metallic contacts is
obtained through a 3D solution of the Poisson equation with the appropriate Dirichlet or
Neumann conditions [I10]. In particular, we go beyond the standard mean-field approxima-
tion treating Coulomb interaction among electrons, by computing a particular 3D Poisson
equation for each electron [I11]. Time-dependent Monte Carlo simulations are done through
the BITLLES simulator [112] where all the previous features can be included. For sim-
plicity, semi-classical trajectories, with energy confinement in lateral directions, are used.
Our conclusions do not depend on the differences between classical or quantum trajectories
[T09, 113].

We compute the transient current ip(t), is(t) and ig(t) when the drain-source contacts
have a fixed DC bias, Vpgs = 0.5 V, and a step voltage of 0.5 V is applied to the gate for
two different GAA FET geometries. The first structure A has L = 8 nm, W4 = 12 nm and
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Figure 4.17: (Color online) Total (displacement plus conduction) transients currents com-
puted in the drain (solid black line), source (solid blue line) and gate (solid red line) ammeter
of the structures A and B for the GAA QW FET of Fig. when a step voltage from (grey
dashed line) is applied on the gates, while the drain source voltage is fized to 0.5 V. The sum
of the three currents, in each structure, is equal to zero.

H, = 12 nm and the second one B has L = 8 nm, W = 6 nm and Hg = 6 nm. The first
observation of the result plotted in Fig. [4.17(a) and (b) is that ip(t) + is(t) + ig(t) = 0.
This confirms the correctness of our numerical RSP algorithm [IT4]. The gate current has
a similar behavior in both structures. In addition, the perturbation on ip(t) of B finished
earlier than that of A, meaning that the current in structure B reaches its DC value before
the current in A. The differences between these currents can be perfectly understood from
our discussion on expression and for GAA QW FETs. In the A structure, all
electrons inside the simulating box affect the drain and source transients currents, while in
the structure B only those electrons close to the drain affect ip(¢) and those close to the
source affect ig(t). This difference is due to the shape of the irrotational function F, SHP).
For structure A, F35%(7) is non-zero along the whole device length of Fig. |4.14(a) Whlle for
structure B, Fgl(ﬁ is equal to zero in a large part of the length of Flg. . These
differences are directly translated into differences between the high-frequency behavior of A
and B FETs.

With the aim to see the effect of the cross section area on the transit time using the
Bohmian trajectory, we have considered four different geometries with the same longitudinal
length and different lateral sections. The structures are four GAA transistors with L, = 8 nm
, a 0.5V had applied to produce the change current from state I,ss to I,,. The result are
presented in Fig. It is clear from that figure that the time the current in the structure
with section lateral L, - L, = 24 - 24nm? needs to change from the state I,¢s to I, one is
greater than those for the others while it is needed more verification to say the difference
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Figure 4.18: A comparison of the time needs a transistor to shift from the state I,5¢ to Iy,
for four different geometries is presented .

between others.

We consider the conventional small-signal admittance parameter model for a three-
terminal FET as drawn in Fig. 4.19 with i,(t) = ig(t) — i8°(t) and iy(t) = ip(t) — iBC(¢),
being i2(t) and B¢ () the DC value before the voltage step. We repeat several times the
transient simulations in order to avoid fluctuations while focusing only on the deterministic
admittance parameters (without noise sources). A Fourier transform [IT5] of i1(¢) and i (¢)
directly provides the small-signal admittance parameters Y51 (f) and Y7 ;(f). The intrinsic
cut-off frequency, fr, can be computed then as |ho1(fr)| = |Yo1(fr)/Yi1(fr)] = 1. To see
clearly the effect of the cross section area, we have presented the intrinsic cut off frequencies
in Fig. for the geometries considered in Fig. [4.12 We notice that for the same longitu-
dinal length L, the cut off frequency increases from fr = 0.62 THz to fr = 10.20 T Hz when
the later area is scaled down, as seen in Fig. [£.19] These results confirm that the geometry
of the GAA QW FETs (for a fixed L) has a relevant role in their high-frequency behavior.

At this point it is important to clarify whether or not this THz intrinsic cut-off frequencies
are expected to be reached soon. In fact, the cutoff frequency predicted by ITRS 2012 [I] is
tending toward these frequencies in the next future, see table 1.1, We are somehow studying
the electronic devices that are epxected to be on the market in 10 years [1].

Year of production 2011 2012 2013 2014 2015 2016 2017 2018
Extended Planar Bulk 347 396 445 512 578 669 756 -
UTB FD - - 477 545 614 704 790 889

Multigate - - - - 620 710 795 890

Table 4.1: Cutoff frequency (GHz) for different technology evolution according to ITRS 2011.

In order to confirm the role of the current pulse on the results, we present the correlations
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Figure 4.19: (Color online) hyy parameters as a function of frequency for the structures
considered in Fig. [{.13. (a) Two-port (admittance) small-signal circuit. (b) Source current
autocorrelation with DC bias. The FET with larger lateral area does not satisfy the single
band quantum wire requirement, but it is included to show the tendency of the results.

of the source current with DC bias for previous FETs. The results in the Fig. |4.19(b) clearly
show that the larger the lateral area is, the wider the current temporal pulse.

In conclusion, we have presented an original strategy to improve the device high-frequency
performance without increasing the device length, but only playing with the lateral surfaces.
For such study, we have computed the hybrid parameters (h;;) in order to predict the cutoff
frequency. However, the simulation tool developed here allows us to compute the scat-
tering parameters (.5;;), which are very common in high-frequency measurement, from our
BITLLES simulator. For a relation between hybrid parameters (h;;) and scattering param-
eters (5;;), see Ref. [I16]. We are interested into these parameters (S;;) because of their
advantages at very high frequency. For instance using the hybrid or admittance parameters
at those frequencies is impracticable because it is difficult to do a short circuit appearing
radiation which alters the signal. While using the parameters (.5;;) do not need to do that
short circuit and the matching is done easily. We emphasize that the BITLLES simulator
is able to compute classical, but also quantum scattering parameters, where, for example,
tunneling high-frequency phenomenology becomes relevant.

4.5 Summary

In this chapter, we have use of understanding of quantum and classical currents in terms
of the RSP theorem, in order to make some predictions of the high-frequency behavior of
nanoelectronic devices. We have shown that the pulse of the total current generated by
one electron has temporal width that is drastically depending on the lateral area of the
devices. The pulse becomes narrow when we decrease that lateral area. This property has a
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strong effect on the power spectral density of the noise on DC transport. When the lateral
area is small the pulse is narrow and the mentioned spectrum riches higher frequencies. We
also discuss the noise in FETSs for digital applications. For such scenarios, focused on two-
terminal devices, we conclude that the reduction of the channel lenght implies an increment
of the noise. The degradation is severe enough to be able to questioning the utility of further
scaling down electron devices. Finally, based on the previous results, we have discover a new
strategy to improve the cutoff frequency fr of nanoscale FETs without neither scaling it nor
using a another materials. The importance of playing with multi-gate (i.e. multi-terminal)
structures that provide a richer high-frequency phenomenology is manifested along the whole
chapter.
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Chapter 5

Conclusions

The progress of our actual society is somehow ultimately linked to the progress of elec-
tronics. Such progress demands that each generation of new devices is faster and smaller
than the previous one. The scientific community has done an important effort to provide
reliable simulations tools for studying the DC behavior of state-of-the-art nanoscale devices.
Some of the common classical and quantum simulation techniques are mentioned in the first
chapter. However, a similar effort for the the quantum simulation of the AC performance
of such nanoscale and TeraHertz devices is still missing. For micrometric dimensions or sce-
narios where the particle-like nature of electrons mainly determine the performance of the
device, a Monte Carlo solution of the Boltzmann equation has been developed and it can
be successfully used to study DC transport. On the other hand, there are scenarios where
both the wave-like and the particle-like nature of electrons, become relevant. An example
of such scenarios are the study of AC transport and noise in quantum devices. For these
type of scenarios, the second chapter is dedicated to explain how Bohmian mechanics can
be a very useful tool to study/understand/characterize them. We have also discussed how
the measurement of the current is done in Bohmian mechanics without considering wave
function collapse. Finally, we have discussed why it can be useful, from a computational
point of view, to study many-particle quantum system in terms of conditional (Bohmian)
wave-functions.

In the third chapter we have derived classical and quantum versions of the Ramo-
Shockley-Pellegrini theorem that allows the computation of the total (conduction plus dis-
placement) currents. In the quantum side, we have demonstrated that the Orthodox or
Bohmian version are totally equivalent. The Ramo-Shockley-Pellegrini expressions for clas-
sical or Bohmian particles have been implemented in the BITLLES simulator. The practical
difficulties of its implementation are discussed. The role of displacement current to obtain a
continuous current at any time have been theoretically shown.

In the fourth chapter, we have shown that the temporal width of the current pulse
genrated by an electron is drastically depending on the lateral area of the multi-gate elec-
tron devices, and it becomes narrow when we decrease that area. This property has a strong
effect on the AC and noise behavior . In addition, we have presented an original strategy
for improving the cutoff frequency fr of multi-gate ballistic devices without neither scaling
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it nor using a another materials.

We can sum up the conclusions of this thesis:

1. Extension of the Ramo-Shockley-Pellegrini theorem to the quantum Bohmian version
and its discussion in terms of quantum (Bohmian) trajectories.

2. Practical implementation of the expressions of the Ramo-Shockley-Pellegrini theorem
for the total (displacement and conduction) current into the BITLLES simulator for
classical and quantum simulations.

3. Demonstration that the time dependent current of gate-all-around transistors dras-
tically depends on the device geometry. This predictions have been confirmed by
numerical Monte Carlo results on quantum wire gate-all-around.

4. Demonstration that the (properly averaged) high-frequency noise of two-terminal bal-
listic system increases when device dimensions are reduced.

5. Study of the effect of the cross section area of the multi-gate device geometry on the
temporal width of the current pulse. It is shown that the smaller lateral section area
provides the higher cut off frequency and the higher noise.

Finally, let us emphasize that the development of quantum electron transport models for
electron devices are quite recent. Most simulators are developed for modeling/ understand-
ing DC transport only and there are still many gaps to fill and some urgency in doing it.
Among them, there are very few quantum simulators that are able to study AC transport,
transients and fluctuations of the current (noise). This thesis is a step in the direction of
proving a reliable dynamic quantum simulator to the industry and the scientific community .
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Appendix A

Quasi-static approximation

In principle, the electric field E (7,t) present in expression 1) has to be defined from
the scalar potential, V (7, ¢), and also from a vector potential A(7,t) via:

E(7,t) = =VV(F,t) — 0A(F,t) /ot (A1)

Then, if we use (A.1l}) in the development of the Ramo-Shockley-Pellegrini, we will
obtain an additional term in the Ramo-Shockley-Pellegrini expression of the current[66],
L(t) =T9(t) + T5(t) + I () with:

(o = [ ) - PAD) o (A.2)

This term, I'7*(¢), where /T(F, t) appears, can be neglected in most practical situations.
In particular, the condition for neglecting I'/*(¢) is that the device size, L, is much
smaller than the minimum wavelength of the electromagnetic field A = ¢/f > L, where
c is the electromagnetic propagation speed and f is the signal oscillating frequency [66].
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Appendix B

Conservation current with and
without the RSP theorem

In this appendix we will demonstrate that the sum of the total current I;(¢) over the
six 1 = 1..... 6 surfaces of the parallelepiped of Fig. is zero. There are two possible
demonstration. First, looking for the current conservation of the direct expression of
I;(t) and, then, invoking the equality between the direct and Ramo-Shockley-Pellegrini
expressions, see . Second, looking for current conservation directly inside the math-
ematical expressions of the Ramo-Shockley-Pellegrini theorem. Here, we will do both.
The following "local” charge conservation law is a necessary requirement for any trans-
port formalism, Sp( 1)

oo (7t

V(T t) + 5
The first term of Eq. is the conduction current density and the second term is the
temporal variations of electron charge density, p(7,t) defined in the right hand side of
Eq. , that can be related to the electric field, E(F, t), by using the Gauss equation.
Then, we can rewrite Eq. as,

= 0. (B.1)

—

OE(T,t)
ot

s

= Vir(7,t) = 0. (B.2)

Vi(7t) + V |e(P)

where we have defined the total current density, fT(F, t), as the sum of the conduction
plus displacement current densities. From Eq. (B.2)), we can use the divergence theorem
to obtain the following identity for the total current,

6
V(7 t)dv = / Jr(F,t)ds =Y Ii(t) =0, (B.3)
@ o i=1
Finally, since we known that I;(t) = T¢(t) +Y%(t) = T(t) + T¢(t), see expression ((3.24]),
we obtain from (B.3):

PBNHORSHOIEI (B-4)

i=1
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Next, we want to reobtain the final result (B.4)) directly from the expressions of the
Ramo-Shockley-Pellegrini theorem.

From ([3.27)), we know that:

dv (B.5)

B o OV(rt)
—/Se(r)- Y as (B.6)

In order to obtain the condition (B.4)), we just have to show that Z?Zl ﬁz(f’) = 0. From
the definition of F(7), we know that:

ZF;'(F) == ZW%(F) =-V [Z ¢>¢(F)] (B.7)

Thus, the condition Y%  Fi(¥) = 0 can be translated into the new condition

i i) = cte.

We define ¢(7) = S0, ¢;(7) as the potential function constructed as the sum of the
solution of the previous six functions ¢;(7). By construction, according to , for
each surface S;, we have ¢;(7) = 1 for any 7 € S;, while ¢;(¥) = 0 for the other
surfaces. In summary, ¢(7) = 1 for any 77 € S. In addition, because of the superposition
principle that applies to the equation (3.12]), we know that ¢(7) is also solution of the
"Laplace” equation . According to the uniqueness theorem for the solution of the
Poisson (Laplace) equation [74], we known ¢(7) = 1. Therefore, as expected, the sum
of the total current over the six surfaces is zero. In fact, we have demonstrated that
SO TI(t) = 0 and 30 T%(t) = 0. This demonstration confirms that Y¢(t) # T'¥(t)
because .0, T¢(t) # 0. In addition, we show that the boundary conditions are
mandatory to obtain ¢(7) = 1.

Finally, we want to emphasize that we are discussing the current continuity in a 3D
space, where I1(t) can be different from I4(t). The condition that these current have to
fulfill is just 3", I;(t) = 0, not I,(¢) = I4(t). On the contrary, since the DC (average)
current of the non-electrode surface will be zero, we do obtain the DC current through
S1 is equal to Sy for a two-terminal 3D device.



APPENDIX B. CONSERVATION CURRENT WITH AND WITHOUT THE RSP THEOREM99

B.1 Numerical problems on the currents (3.1) and
3.28

In this annex we show the different ways we followed to improve the displacement current
assigning the electric charge by two different methods. The displacement current
presented in Fig. is when the electric charge assigned to a mesh is equal free path
time divided by simulation time step At , we call it standard.

800 —pr————————T—— 7
~ < 300 @
<

g \_Efuzoo
~ 600} §uwo .
- 5 0
[0} 050 055 060 065 0.70
8 Time (fs)
S 400} .
(7]
Q
s
= 200} -
(o]
~~
E
T
= 0
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Time (fs)

Figure B.1: Displacement current on the surface Sy for a transistor using the (stan-
dard) assignment charge. The inset (a) is zoom in of Id(t) in [0.5 — 0.7]fs time interval.

We conclude from that figure that current has two numerical problems : i) there is a
discontinuity when the electron displaces from one mesh to another and ii) the current
magnitude maintains at zero value .

To overcome the first dilemma we tried another charge assignment version whose the
function weight is written [119],

B ] IV PR O] P Bt O]
wlr) = (1 - - P - EEE, (5.3)

and whose displacement current is presented in Fig[B.2]
This presentation shows that the charge assignment equ. (B.8)) allowed to avoid only
the nullity of the current inside the meshes.
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Figure B.2: Displacement current for a transistor on the surface Si using the assign-
ment charge equ. ([B.§) . The inset (a) is zoom in of I%(t) in [1.5 — 1.7]fs time interval.



Appendix C
The BITLLES simulator

Due to the expensiveness of the technologies used to fabricate and then to study the
electron devices , it is necessary to do a prior study for these devices. For this reason it
is very important to look for tools to do these preliminary works, there are simulators
which can be considered as a virtual labs. In this chapter we present a simulator which
is called BIT LLESE]. This tool is recently developed by Xavier Oriols and his co-workers
in electronic department in Universitat Autonoma de Barcelona and it is dedicated to
study and characterize time-dependent 3D electron transport in classical and quantum
nanoelectronic devices. In this simulator and for classical transport, Monte Carlo tech-
nique for Boltzmann equation selfconsistently with Poisson equation are implemented
to find classical trajectories. In the counterpart , for the quantum electronic devices,
the quantum trajectories for Schrodinger’s equation are determined by means of Monte
Carlo technique too. Besides that , both mean field and field for each electron Poisson
equation solutions are considered [120]. What is more, an electron injection model suit-
able for the semi-classical Monte Carlo simulation of nanoscale devices is included [121].
The Ramo-Shockley-Pelligrini theorem besides the Bohmian trajectories are taken into
account considering their advantages.

This simulator gives access to time-resolved electron dynamics and then to provide any
moment of currents. It have been shown the ability of the BITLLES simulator to predict
DC, AC, noise, transients for electron devices,

By means of this recently developed simulator we can design nanoelectronic devices such
as resonant diode tunneling (RTD) or transistors. And by its friendly interface it can
easily edit the geometries or the properties of the materials, this interface in illustrated
in Fig. [C.1]

Via this simulator we carried out current voltage characteristic of GAA transistor.

!The acronym BITLLES (Bohmian Interacting Transport for non-equiLibrium eLEctronic Structures) is
also the catalan name of the bowling pins, which are solid pieces of plastic or wood situated in a periodic
structure (similar to a solid-state structure) waiting for a ball (an electron) to impinge on them. See the
website http://europe.uab.es/bittles

101



APPENDIX C. THE BITLLES SIMULATOR 102

e
'I -
-
| =
E ]
e
A
pe——
™1
™
o
I
-l B
#
-
Rk
T &a
i
| b S
R ¥ mwi I
swta b 8 i
T TR :"‘""""‘_-
1T e
T oA =
Ppe: *

LE ]
T
TR

||||||

Figure C.1: GAA transistor designed by BITLLES simulator.
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Figure C.2:  Current voltage characteristic for GAA transistor with the geometry Ly-Ly,-L, =
8-12-12 nm? .



Appendix D

List of publications,
Conferences/Workshops Attended

D.1 Chapters in books

1. G. Albareda , D. Marian, A. Benali, A. Alarcén , S. Moises , X. Oriols , Electron

Devices Simulation with Bohmian Trajectories.

. G. Albareda, F. L. Traversa, A. Benali, and X. Oriols, Book title : Theory and
Applications of Monte Carlo Simulations, Chapter Monte Carlo simulations beyond
the mean field approzimation: Application to Electron transport at the nanoscale.
Editorial: InTech Estimated Date of Publication: January 2011.

D.2 International publications

1. G.Albareda, A. Benali, X.Oriols, Analytical solution of reservoirs and leads for

static and dynamic self-consistent simulations of small electron devices, J. Comput.
Electron (submitted).

. G.Albareda, D. Marian, A. Benali, S. Yaro, N. Zanghi, X.Oriols, Time-resolved
FElectron Transport with Quantum Trajectories, J. Comput. Electron (12), 405,
July 2013.

. A. Benali, F. L. Traversa, G. Albareda, M. Aghoutane, and X. Oriols, Improving
the intrinsic cut-off frequency of gate-all-around quantum-wire transistors without
channel length scaling, Appl. Phys. Lett. 102, 173506 , May 2013.

. G. Albareda, F. L. Traversa, A. Benali and X. Oriols, Computation of quantum
electrical currents through the Ramo-Shockley-Pellegrini-Pellegrini theorem with
trajectories, Fluctuation and Noise Letters, 11, 1242008, September 2012.

. A. Benali, F. L. Traversa., G. Albareda, A. Alarcén, M. Aghoutane and X. Ori-
ols, Effect of gate-all-around transistor geometry on the high-frequency noise: an
analytical discussion, Fluctuations and Noise Letters 11, 1241002, September 2012.
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D.3 Conferences/Workshops Attended

1. X. Oriols, A. Benali, S. M. Yaro, G. Albareda, J. Mateos, T. Gonzalez, Accurate
predictions of terahertz noise in ultra-small devices: A limiting factor for their
practical application?, of 22nd International Conference on Noise and Fluctuations
(ICNF), France, 2013. (Oral presentation).

-Proceeding of ICNF 2013, IEEE Xplore .

2. A. Benali, F. L. Traversa, G. Albareda, M. Aghoutane and X. Oriols, Towards
frequency performance improvement of emerging devices without length scaling,
Spanish Conference on Electron Devices (CDE), Valladolid, Spain, 2013. (Oral
presentation).

-Proceeding of CDE 2013, IEEE Xplore.

3. A. Benali, F. L. Traversa, G. Albareda, M. Aghoutane and X. Oriols, Geome-
try engineering for the RF behavior of low-dimensional gate-all-around transistors,
15th International Workshop on Computational Electronics (IWCE), 2012 ; Madi-
son , USA ( poster Presentation).

-Proceedings of IWCE 2012 , IEEE Xplore.
4. X. Oriols, F. L. Traversa, G. Albareda, A. Benali, A. Alarcén, S. M. Yaro, X.

Cartoixa , Multi-time measurement and displacement current in time-dependent
quantum Transport, INCE 2012 , Madison , USA ( Invited talk).
-Proceedings of IWCE 2012 , IEEE Xplore.

5. A. Benali, F. L. Traversa, G. Albareda, M. Aghoutane and X. Oriols , How does
the geometry of nanoelectronic devices affect their high-frequency noise? Unsolved
Problems on Noise 2012, Kolkata, India (Invited talk).

6. G. Albareda, F. L. Traversa, A. Benali and X. Oriols, High frequency quantum
noise: the many-body and the continuous-measurement problems , Unsolved Prob-
lems on Noise 2012 , Kolkata , India . (Oral presentation).

7. A. Benali, G. Albareda, F. L. Traversa, A. Alarcén X. Cartoixa and X. Oriols
, BITLLES: A quantum trajectory simulator with explicit Coulomb and exchange

correlations among transport electrons for DC, AC, and noise applications, BNC-b
RESEARCH MEETING , July 2011 , Bellaterra, Spain.

8. G. Albareda, A. Alarcon, F. Traversa, A. Benali, A. Padro, and X. Oriols,
BITLLES: a quantum-trajectory simulation tool for electron transport in large elec-
tronic structures, HPC-NN2011 (High performance Computing), April 2011, Bilbao
, Spain. ( poster Presentation).

9. G. Albareda, A. Alarcon, F. Traversa, A. Benali and X. Oriols, A quantum trajec-
tory simulator for DC, AC, and noise with explicit Coulomb and exchange correla-
tions among transport electrons, Congress: NanoSpain 2011, NanoSudoe, (Spain,
Portugal and France), April 2011, Bilbao ,Spain . (Collaboration in the abstract).

10. A. Benali, F. Traversa , G. Albareda, A. Alarcon, M. Aghoutane and X. Oriols,
On the relationship between the intrinsic cut-off frequency and the electron transit
time in nanoscale devices, 8 th Spanish Conference on Electron Devices (CDE)
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2011, Palma de Mallorca , Spain. ( poster Presentation).
-Proceeding of CDE 2011, IEEE Xplore.

11. A. Alarcén, A.Benali, A. Padro, G.Albareda, F.L.Traversa and X. Oriols, The
BITLLES simulator for nanoscale devices, International Workshop on Computa-
tional Electronics (IWCE), October 2010, Pisa , Italy. ( poster Presentation).

12. A.Benali, G. Albareda, A. Alarcén, M. Aghoutane and X. Oriols, High frequency
modeling of classical and quantum nanoscale electron devices, Trends in Nanotech-
nology , September 2009, Barcelona, Spain. ( poster Presentation).

13. A. Alarcén, A. Benali, G. Albareda and X. Oriols, On the computation of high
frequency current in nanoelectronic ballistic devices, 7 th Spanish Conference on
Electron Devices (CDE) 2009, Santiago de Compostela , Spain,. Febrary 2009.
(Oral presentation).

-Proceeding of CDE 2009, IEEE Xplore.
D.4 Invention

BITLLES simulator.
Developed by: X. Oriols , G. Albareda, F. Traversa, A. Alarcon, A. Padro, X. Cartoixa
, A. Benali , S. Moises.

It is a simulator for modeling the classical and quantum nanoelectronbic devices. More
details can be found in http://europe.uab.es/bitlles.

D.5 Awards

Best five poster of the CDE 2011 award,
obtained by the authors:

A. Benali, F. Traversa , G. Albareda, A. Alarcén, M. Aghoutane and X. Oriols,
for the work:

On the relationship between the intrinsic cut-off frequency and the electron transit time
in nanoscale devices,

in 8 th Spanish Conference on Electron Devices (CDE) 2011, Palma de Mallorca , Spain.
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