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Abstract

I
N this thesis, we propose an automated real-time monitoring system for

victims in Mass Casualty Incidents (MCIs). New networking solutions

like Delay and Disruption Tolerant Networks (DTNs) or Wireless Sensor

Networks (WSNs) offer a wide array of opportunities in hostile environments

where access to communications is either non-existent or broken. Due to the

flexibility of WSNs, and their almost effortless field deployment, they can

easily reach unexplored or unfriendly areas, monitor their surroundings and

send back useful information. DTNs on their hand, can substitute a slow

and high latency infrastructure based network without needing it, just using

nearby resources opportunistically. In this study, we use this two technologies

to create an hybrid architecture to help in the triaging of victims in emergency

scenarios. The, usually, lack of a communication’s infrastructure, and the

scarcity of resources, make this kind of scenarios a perfect place to obtain

the most of DTNs and WSNs. In this thesis, we firstly present an overview

of the architecture, how the two technologies are going to work together, and

how they will exchange data using Mobile Agent (MA) technologies. Then,

we take the explicit itinerary construction from traditional MAs and apply it

to MAs working on wireless sensor nodes, with their resource restrictions and

battery issues. Thirdly, we extend this itinerary structure to support WSNs

clusters, fully autonomous networks with their own monitoring services, with

the only limitation of not being larger than 32 nodes. This contributions

are supported by tests and results which prove their feasibility and usability.

Finally, we present two theoretical approaches, one to retrieve remote services

in large WSNs, and another to provide access control for the nodes used in

this kind of networks.
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Resum

E
N aquesta tesis, hi ha proposat un sistema automàtic de moni-

torització de v́ıctimes en grans catàstrofes. Les noves sol·lucions

d’interconnexió de dispositius, com les Xarxes Tolerants a Retards

(DTNs) i les Xarxes de Sensors Sense Fils (WSNs), ofereixen un ample ven-

tall d’oportunitats en entorns hostils on l’accés a les comunicacions és, o bé

inexistent o bé inaccessible. Gràcies a la flexibilitat de les WSNs, i la seva

facilitat de desplegament, poden fàcilment accedir a zones inexplorades o

de dif́ıcil accés i monitoritzar els seus voltants per retornar informació val-

uosa. Les DTNs per la seva banda, poden suplir la mancança d’una xarxa

de comunicacions rudimentària sense la necessitat d’aixecar una infrastruc-

tura de comunicacions, senzillament fent servir els recursos propers de man-

era oportunista. En aquest estudi, fem servir aquestes dues tecnologies per

crear una arquitectura h́ıbrida per ajudar al triatge de v́ıctimes en escenaris

d’emergència. L’habitual falta d’una infrastructura de comunicacions, i els

escassos recursos fan d’aquest tipus d’escenari el lloc perfecte per treure tot

el potencial de les DTNs i de les WSNs. En aquesta tesi, primer fem una

mirada general a l’arquitectura, com les dues tecnologies funcionaran juntes,

i com s’intercanviaran dades fent servir tecnologies d’Agents Mòbils (MA).

Després, agafarem la construcció d’itinerari expĺıcit dels MAs tradicionals i

l’aplicarem als MAs funcionant sobre WSNs, amb les seves restriccions de

còmput i de bateria. En tercer lloc, extendrem aquesta estructura d’itinerari

expĺıcit per funcionar amb clústers de WSNs, xarxes totalment autònomes

amb els seus serveis de monitorització, amb l’única limitació de no poder ser

més grans de 32 nodes. Tot això recolzat per proves i resultats que demostren

la seva viabilitat i utilitat. Per acabar, presentem dues propostes teòriques,

una per accedir i recuperar serveis remots en WSNs grans, i una altra per

proporcionar control d’accés als nodes d’aquest tipus de xarxes.
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1
Introduction

I’m on my way home after a long walk. Today I’ve taken the long

route, not because I wanted to, but because the stress monitor in

my glasses told me my body needed it. I stop at my home’s front

door and I can see the stress is far lower than one hour before,

much better. My shoes had already sent my walk summary to my

glasses, pace, kilometers, route, . . . I would never have thought

you can spend that many calories just by walking! My watch sent

my heartrate, and a list of people I have crossed, with links to their

social network profiles, nobody interesting. I enter the kitchen and

take the glass of isotonic drink my fridge poured and I accept the

shopping cart prepared by my fridge and my pantry. In my way

to the bathroom I can feel the floor warming up under my feet,

the house knows I’m here and where I’m coming from and turns

on the heating in my usual route after a day like this. I enter the

bathroom and find the tub already filled with warm and relaxing

water, ready for me to smoothly slip into it.

T
HE previous situation is not, of course, the present day, but it also is

not a very distant future. As time passes by the Internet is becoming

more and more ubiquitous, reaching unimaginable objects, places

3



4 Chapter 1. Introduction

and devices. One simply has to look twenty years back, with the Internet

just in the beginnings of its adulthood. At that time, the early 90s, it left the

academia and made its first appearances in people’s homes, connecting them

to an unknown and unexplored global network. Not many years later this

stranger became a regular inhabitant in our homes, showing us a new widely

communicated world to explore, to invest and to investigate, but it was still

enclosed in computers, and users had to sit down and consciously connect to

the Internet. Computers were, at that time, the only window to look at that

young and untamed world. In this last years it moved to our pockets, to our

TVs, to our watches, . . . , every day we see things that we had never thought

they will be connected to the Internet, and they do so transparently to the

end user, some even not knowing they are using the Internet for a handful of

daily tasks). What to expect from the near future? The Internet of Things

was a term proposed in 1999 by Kevin Ashton [Ash09], and what it implies

is precisely what was depicted in the introductory story, a world where every

device is connected to the Internet, and working transparently for us.

To take advantage of all the possibilities the Internet of Things offers its de-

vices must have sensors with which receive outside inputs to process them and

respond adequately. What is more, they should create networks of nearby

sensor equipped devices and share their inputs to generate an adequate re-

sponse just in time for the user to use it. In a household environment this

has, probably, no difficulties, as access to a permanent network connection

and permanent power source are assured. In not so closed and safe scenarios,

though, one has to think of alternate ways to move data to its final desti-

nation without draining too much power from sensing devices, i.e. avoiding

expensive, in every possible definition, data transport mediums (Wi-Fi or

mobile data).

Wireless Sensor Networks (WSNs) is the term coined for this kind of inde-

pendent networks of small devices which may or may not have a direct exit

to a larger network, but are obliged to wait patiently until the right time

for communication comes. Minimizing battery and radio usage, while main-

taining a good update policy is key in this kind of scenarios where access to

updated information is a must or greatly improves the subsequent response.

The situation depicted in the above example is not a critical one, but having

the right information helps actuators to provide a more accurate response or,

on the other hand, in case of an accident it may be of great use to transmit

this data as fast as possible to the nearest medical resource.
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Looking at how the world is becoming more and more connected, we strongly

believe that sensor equipped devices will be an active part of our cities, mak-

ing our daily live easier and more comfortable. WSNs will be, of course,

critical elements of this smart city, by collecting environmental data and us-

ing our mobile devices as carriers for their collected information, avoiding

the use of a permanent wireless connection which will rapidly drain device’s

battery.

The contributions of this thesis are focused in finding solutions for the key is-

sues in data distribution inside WSNs and find a compromise between battery

usage and data freshness at end points. The starting point of our contribu-

tions is an existing application of our group (Mobile Agent Electronic Triage

Tag (MAETT) [MRMCC09]), which uses traditional Mobile Agents (MAs)

to manage victims in Mass Casualty Incidents (MCIs). This application uses

a form of communication not backed by end-to-end connectivity, but on a

point-to-point communication approach, choosing from their connected de-

vices which is the best to send its information, if it exists. This form of

communication is similar to what we know today as Delay and Disruption

Tolerant Networks (DTNs), where nodes follow a carry and forward approach,

storing their data for as long as they find a suitable node to send their infor-

mation.

Our proposal is to use MAs to design and build a complex application with

WSNs. The difference between our MAs and those used in the previous work

is that they are executed in the WSNs and have to deal with battery life and

computing performance issues. Up to now, all applications build with MAs

in WSNs are mere demonstrations of the possibility of using this technologies

together. On the other hand, we want to demonstrate that MAs in WSNs

are a real combination of technologies to be used in complex situations.

1.1 Objectives

Broadly, the objective of this thesis is to provide a complete MCI victims

monitoring system not relying in traditional infrastructure supported net-

works.

Concretely, the objectives are:
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1. Design and develop a hybrid architecture of DTNs and WSNs to con-

tinuously monitor victims and effectively communicate monitored data

in a MCI introducing WSNs and MAs inside these. WSNs

2. Extend this architecure to perform reliabily and efficiently regardless

the number of victims in the MCI

3. Design and develop a system to locate qualified medical personnel in

an affected area

4. Design a protection system for the information gathered by the moni-

toring application and prevent its unauthorized access

The combination of DTNs, WSNs and MAs offer new triaging systems, which

end up with more effective victim rescue planning and a better use of the

available human resources. Our aim was to study how these technologies

can change, for better, the way lifes are rescued in big emergencies. The

objectives have been achieved by using low power sensor nodes forming WSNs

to monitor victims, mobile agents to read, aggregate, share and carry sensed

data, and DTNs to carry this data to an Emergency Coordination Center

(ECC).

1.2 Results

At the time of this thesis writing, we have built a complete application to

efficiently manage active rescue teams in WSNs, all of this using what mod-

ern information technologies offer. We designed a use case scenario where

sensor nodes monitor MCI victims, information is collected by rescue teams

and opportunistically sent to an ECC which can then plan a more efficient

rescuing scheme, always with the most updated information about the health

state of the victims.

Moreover, we have built the application to be easily extensible and fault

tolerant, providing means to add and remove nodes and groups of nodes most

of the timees with little or no impact to the application’s performance.

We also designed and tested an algorithm to search and retrieve remote and

mobile services in a large WSN, specialized medics in our case. This algo-

rithm has been tested successfully in small networks.

Finally, we provided a theoretical approach to security with mobile agents in
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low power sensor nodes using an efficient algorithm that provides reasonable

access control protection without affecting in a considerable manner system’s

performance.

Positive results during the research have been published in both national and

international conferences and journals:

• Estanislao Mercadal, Carlos Vidueira, Cormac J. Sreenan, and Joan

Borrell. Improving the dynamism of mobile agent applications in wire-

less sensor networks through separate itineraries. Computer Commu-

nications, 36(9):1011 – 1023, 2013. ISSN 0140-3664.

URL http://dx.doi.org/10.1016/j.comcom.2012.09.017. [MVSB13]

• Estanislao Mercadal, Sergi Robles, Ramon Mart́ı, Cormac J Sreenan,

and Joan Borrell. Double multiagent architecture for dynamic triage of

victims in emergency scenarios. Progress in Artificial Intelligence, 1(2):

183–191, 2012. [MRM+12]

• Estanislao Mercadal, Guillermo Navarro-Arribas, Simon N Foley, and

Joan Borrell. Towards efficient access control in a mobile agent based

wireless sensor network. In 7th International Conference on Risk and

Security of Internet and Systems (CRiSIS), 2012, pages 1–4. IEEE,

2012. [MNAFB12]

1.3 Document Layout

This thesis is structured in four separated parts. In the first one required

concepts for the correct understanding of the thesis are presented, separated

in three main blocks, Introduction, State of the Art andHeterogeneous

Multiagent Architecture for Emergency Management. They mainly

develop what we have sought writing this thesis, detail the technologies and

their state prior to the publication of this thesis and describes the general

scenario used to test our research.

The second part, our real contribution, is structured in four independent chap-

ters: Mass Casualty Incident Management with Mobile Agents and

Wireless Sensor Networks, Clusters in WSNs using Mobile Agents,

Access Control in WSNs using Mobile Agents and Retrieval of Re-

mote Moving Data in WSNs with Mobile Agents, each presenting a

novel techique demonstrating how existing networking technologies can be

http://dx.doi.org/10.1016/j.comcom.2012.09.017
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used to solve various problems, all of them exemplified using a handy MCI

scenario where this technologies can deploy their potential.

Part three, exposes the combined conclusions of the thesis and presents some

future improvements to the presented architectures and algorithms which will

make the contributions more effective, easy to use and efficient.

Finally, the fourth part, is exclusively dedicated to the bibliography and the

acronyms used in this thesis.



2
State of the Art

T
HIS chapter introduces the reader to emergency scenarios in Mass

Casualty Incidents (MCIs), we apply our research results to this

kind of scenarios as they can be greatly benefited of it. We also

describe the key techologies used in this thesis, namely Wireless Sensor Net-

works (WSNs), Delay and Disruption Tolerant Networks (DTNs), and Mobile

Agents (MAs), which are used to automate important parts of victim man-

agement in emergency scenarios. The reader will also find the state of the art

of this technologies, each in an independent section of the chapter. We begin

by describing emergency scenarios and the state of the art of the administra-

tion of their victims. In the second section the low power requirements of the

WSNs and the mobility of some of their nodes to further improve their power

consumption is described. The third section is devoted to DTNs, a special

type of network where end-to-end connectivity is not assured. Finally, the

fourth section presents MAs, a programming paradigm that allows code and

data to be moved altoghether between nodes in a network.

All this technologies are put to work together to improve a previously existing

victim triage system in MCIs, known as Mobile Agent Electronic Triage Tag

(MAETT). MAETT uses an early form of DTN (see 2.1.2) to transparently

send victim’s triage data to the designated Emergency Coordination Center

9
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(ECC). We use this system as a base and add MA powered WSNs to provide

real time victim triage, as well as other improvements described throughout

this thesis.

2.1 Emergency management

After a big catastrophe, a hurricane, a terrorist attack or a nuclear melt-

down, for instance, reacting immediately and adequately is paramount, as

is the correct administration of available personnel and resources. In most

cases, communication networks are disrupted and unfunctional, increasing

the difficulty of the planning.

The affected zone is divided in 3 different zones depending on their situation

or function in the emergency. Zone 0 is where the disaster took place,

thus, where the catastrphe’s victims and injuried are. Zone 1 is where all

the emergency’s medical staff gathers. It is also where the field hospital is

located and where rescue personnel gathers. Finally, Zone 2 is composed of

all other medical effectives around the globe available to collaborate.

Effectives are coordinated by the ECC, located in zone 1, to ensure the proper

treatment and evacuation of affected victims. Triaging members scour zone

0 randomly searching for injured victims and tagging them following an stan-

dard protocol, e.g. Simple Triage And Rapid Treatment (START) [Sup84],

but not treating them. At the same time, various specialized medical teams

equipped with medical supplies, search for already triaged victims and treat

them, be it in-place or in an ambulance, moving them to the field hospital.

If the ECC knows of a particular zone with critical victims, it can directly

send a medical team to that particular area, speeding up the treatment and

evacuation of those victims.

The sorting of victims during the first moments of a MCI aftermath is one

of the most important tasks, and is a crucial aspect for the efficiency of the

rescue teams. Existing protocols like START or Manchester Triage System

(MTS) [MJMW06] classify victims depending on the severity of its injuries

using a simple color code system.

Traditional identification methods use a standard physical cardboard tag

which is placed on the victim, usually around its neck. This tag contains,

generally, the color obtained with the classifying algorithm and other useful
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data about the health of the victim. Afterwards, medical personnel use this

tag to allocate resources more efficiently.

Although this approach is widely accepted and used [IMM+06, NS10, NG99],

there is room for improvement and many electronic systems have been pro-

posed to address what are considered the two main issues of victim triage

systems:

1. The physical nature of the tag placed on victims’ bodies, which hinders

their localization due to its dependance on the visual skills of the medi-

cal personnel and on directe eye contact. As an example, what whould

happen if wind moved the tag behind the victim’s body?

2. The task of sorting and locating victims for further assistance and trans-

portation are decoupled. Tagged victims’ tracing to verify their collec-

tion status is not possible, as is not the finding of a high critical victim

concentration in the emergency area.

Proposed electronic systems to solve these problems range from quick infras-

tructure deployments [DR07] to barcode or Radio Frequency Identification

(RFID) based solutions [ISOF06]. All of them try to solve the main issues

of emergency management, but fail to provide a feasible low-cost solution to

solve them, and especially to early resource provision.

As has been done in many other scenarios where distribution and coordi-

nation are of capital importance, agent technology has also been used for

emergency management [FL05], though agents’ purpose is not that of triag-

ing. Nonetheless, the introduction of agents in victim triaging meant an

important advance in emergency management systems, and the number of

applications in related areas is sensitively growing [Hen06].

2.1.1 Mobile Agent Electronic Triage Tag

MAETT [MRMCC09] went a step further and applied MAs and an early

form of DTN to the actual triaging system. In their proposal they add a

contact-free, low-range RFID device with a unique victim identifier, and a

handheld device with a Global Positioning System (GPS) receiver, a touch

screen, a RFID reader and wireless communications. This device is affixed

to the high visibility vest worn by the field personnel.
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MAETT’s foundations rely on mobile agent technology [CAM07], which al-

lows information to be directly transported from terminal to neighboring

terminal regardless of the status of the rest of the network at that partic-

ular time. GPS equipped handheld devices worn by medical personnel run

an execution environment for agents, known as the platform, JADE in our

case, where mobile agents can be created, executed and forwarded to other

terminals. Depending on the available information on their neighbors, agents

themselves, not the platform, nor the bearer, decide the route to follow to

efficiently deliver the collected information.

The main actors of MAETT are the victims, the triage personnel, and the

rescue teams (See Figure 2.1). Due to the nature of a MCI victims are scat-

tered over an arbitrarily large area, triage personnel scour this area searching

and triaging them according to standard methods (START, MTS, . . . ). The

result of the triage algorithm is written in a physical tag and placed visibly

on the victim. Finally, the rescue teams collect all the victims prioritizing

them depending on triage results. All this operations are coordinated by the

ECC.

Physical cardboard tags placed on victims have an integrated RFID and, at

the same time of the triage, an agent is created containing the information in

the tag, plus the GPS position of the victim and the RFID of the tag. All this

information is later used in the ECC to optimize rescue teams’ routes.

When triage personnel leave the ECC, they have an estimation on when they

will get back, the Time to Return (TTR). Agents use this TTR, available

in triage personnel handhelds, to decide whether it is worth to migrate from

one handheld to another, an agent will only change its host if the TTR is

smaller is the destination. This is to make sure that a migration will never

increase the time for an agent to reach the ECC. Eventually, when agents

arrive at their destination, the ECC, rescue teams are sent to rescue victims

with a detailed schedule of the route based on victim’s GPS position and

their medical condition.

In Chapter 4 we improve this construction by adding small wireless devices

equipped with sensors to victims. This small devices build up a Wireless

Network and is prepared to do a dynamic triage of emergency victims.
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Figure 2.1: MAETT basic scheme with the traditional cardboard tag.

2.1.2 Delay and Disruption Tolerant Networks

DTNs are a special type of networks not governed by the classical end-to-end

paradigm found in TCP/IP networks. In this particular networks, nodes can

be completely isolated for an extended period of time until they can effectively

dump their data to the next node of the route. Protocols suited for Mobile

Ad-hoc NETworks (MANETs) or ad-hoc networks, such as AODV [PR99] or

DSR [JMB+01], are useless for this kind of networks due to its low tolerance

to latencies, delays and broken links.

As a network of this type is always changing, its complete knowledge is not

possible and routing protocols designed for DTNs should rely on heuristics

and will be far from optimal. Despite of that, a bunch of routing proto-

cols for DTNs emerged since the apparition of these networks, being epi-

demic routing [VB+00] the most simple one, which replicates the message

whenever possible, with no additional routing logic. Other routing algo-

rithms like PRoPHET [LDS04], MaxProp [BGJL06], RAPID [BLV07] or

Spray and Wait [SPR05] considerably reduce the number of copied or re-

layed messages by applying additional logic to the node selection.

To illustrate the importance of DTNs in today’s and future communications
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just state that NASA is considering them for its future space operations [nas].

On the other hand, in MAETT they are used to opportunistically send vic-

tim’s data to the best candidate device, with the objective of reducing the

time needed for victim’s information to reach the ECC.

(a) (b)

Figure 2.2: Author’s illustration of DTN for space operations.

2.1.3 Mobile Agents

Software agents appeared for the first time in the literature in the late

1970s: “. . . is a computational agent which has a mail address and a be-

haviour. Actors communicate by message-passing and carry out their ac-

tions concurrently . . . ” [Hew77]. Their mobile counterparts firstly appeared

in the second half of the 1990s when proposals like Java Aglets [LOKK97],

Java to Go [LM96], Mobile Objects and Agents [MLC98], MOLE [SBH96]

and Telescript [Whi99] appeard in the press.

The MA paradigm implies that application code and data live together in a

single software entity. As a whole it can be moved between nodes of a net-

work and regenenerate its execution state and data in the new node (strong

migration), or start anew (weak migration). This new paradigm presents a
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new situation for network administrators: the job previously done in a cen-

tralized manner or using more than one application can now be done with a

single moving software unit!

Since the apparition of Concordia [WPW+97] mobile agents moved through

nodes of the network in an implicit manner, i.e. the next node for the agent

to migrate was hardcoded into the agent’s code. Any modification of the

network and agents’ code should be changed to reflect the changes in the

itinerary. Concordia introduced a separate structure holding the information

of the locations to be visited by the agent. Apart from migration instructions,

this new structure, included specific code and data for each visited host.

Separate itineraries were first sequential, the agent just followed the list of

nodes to visit one after the other, in the order specified by the programmer.

Flexible itineraries were introduced in the late 1990s [SRM+98] and allowed

agents to take decisions about their travel plan at runtime depending on the

type of the entry in the itinerary: the sequence, where only one possible

destination is offred to the agent, similar to the itineraries presented by Con-

cordia; the alternative, where some different predefined hosts are offered to

the agent and one has to be chosen; and the set, where all the hosts from a

predefined set must be visited by the agent.

Another step forward in the topic of mobile agent itineraries, a proposal from

1998 [GRB08] defined and protected separate itineraries for free-roaming

agents, involving the discovery of the location of one or more destination

nodes at runtime.

2.1.4 Mobile Agent Middlewares

In the first years of the second coming of agents in the 1990s a non profit

organization was founded in Switzerland with the intention of defining a full

set of standars for the building and communication of agents [ON98]. From

that moment many standards where proposed and adopted by many plat-

forms [BPR99, HKH09, GCB06, VGB08], being Agent Management [FIP04]

and Agent Communication Language [Fip02] the most widely used. In 2005

the organization dissolved and became an IEEE standards comittee.

For the work presented in this thesis the platform of importance is JADE [BPR99],

first appeared in 1999 and still actively developed [jad].
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2.1.5 Mobile Agents in DTNs

MA, with their ability to move code and data autonomously are great can-

didates to solve routing problems in DTNs. Their ability to execute code

in the platform they are on, and to reason which is the most suitable next

node to jump to depending on the environment, they can solve the routing

problems found in DTNs easily and without the need of charging every host

with different routing algorithms.

In MAETT, for example, victim’s data is stored in MAs and they are used to

route this data in the constrained environment that is an emergency scenario

until reaching the ECC (see Section 2.1.1). Every time a victim is triaged a

MA is created containing victim’s data, being its only objective to reach an

ECC in the smaller amount of time to improve the rescue plan and save the

maximum amount of lives as possible, being the agents themselves the ones

taking the decisions.

2.2 Wireless Sensor Networks

Wireless sensor networks (WSN) are an actively researched technology, with

around 19000 published scientific papers in 20121, a very similar number

to those published in the topic of ”Near Field Communications”, due to its

potential to bring computing to remote or disconnected areas, where ordinary

computing devices are not prepared to work. Long battery life and low

powered wireless communications are a must in this type of networks, where

its nodes can be unattended for long periods of time collecting data of its

surroundings.

They are a specific type of ad-hoc network consisting of hardware sensors

collecting particular measures, i.e. temperature or blood presure, and pro-

cessing elements, which collect these measures for further processing.

Devices forming this kind of networks are usually small, equipped with low

power processors, a bunch of sensors and are powered on batteries, depending

on the application lasting for months.

Traditional WSNs also require a special node, usually bigger and connected

1Google Scholar search for ”Wireless Sensor Networks” and ”Near Field Communica-

tions”, Last Accessed: 2013-04-05.
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to a larger power supply and to a network backbone known as the sink.

The other nodes of the network send their collected data to this special

node, which either makes the calculations itself and waits until the results

are collected, or sends the gathered data through a traditional network to a

place where it will be processed offline by the interested people.

On top of the processing and sensing hardware lies the operating system.

The most used ones are TinyOS [HSW+00] and Contiki [DGV04]. TinyOS

was released in the year 2000 by a co-operation between the University of

California, Berkeley, Intel Research and Crossbow Technology. Nowadays it

has grown and is an international consortium known as the TinyOS Alliance.

It runs on top of a large number of hardware devices such us Imote2, IRIS,

MicaZ, Mica2, Mulle, TMote Sky (Telos rev. B), UCMote Mini, even on Lego

Mindstorms NXT, among others. TinyOS applications are written in nesC,

a component-based, event-driven extension of the C programming language

and simulated using TOSSIM, the TinyOS simulator, which provides all the

interfaces needed to simulate an application as if it was running on a real

mote. The last stable release is 2.1.2 from August, 2012 [tin].

Contiki on its hand was first released in 2003 by Adam Dunkels and is now be-

ing actively developed by a large group of developers including Cisco, RWTH

Aachen University or Oxford University. As TinyOS, Contiki runs on top of

many hardware platforms such us MicaZ, TMote Sky (Telos rev. B), Wis-

mote and many others. Contiki applications are simulated with Cooja, its

network simulator, that accepts three classes of nodes: emulated, where all

the node hardware is emulated; Cooja nodes, where the code is compiled for

the simulation host; and Java nodes, where the node has to be reimplemented

as a Java class. A simulation can contain a mixure of these three classes. The

last stable release is 2.6 from July, 2012 [con].

2.2.1 Mobile Agents in WSNs

Some approaches to bring mobile agents to Wireless Sensor Networks ap-

peared in the first decade of the 21st century. Middleware proposals as

ActorNet [KSMA06], In-motes [GB06], Agilla [FRL09], MAPS [AFGG11]

and some others, emerged in the research community. Of all of them only

the aforementioned, according to their authors, ended up with an actual im-

plementation for one or another hardware platform and operating system.

ActorNet and In-motes for TinyOS over Mica2 nodes, MAPS for Sun SPOTs
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and Agilla for TinyOS over a variety of hardware platforms, mainly Telos

rev. B and Mica[X]. Refer to Table 1 for a full reference.

Among the different mobile agent middlewares proposed for WSNs, the first

one deployed inside real WSNs is Agilla [FRL05, FRL09].

The Agilla middleware

Agilla provides a programming model in which applications consist of evolv-

ing communities of agents that share a WSN. Agents can dynamically

enter and exit the WSN, can autonomously clone and migrate themselves

in response to environmental changes, and can maintain a global coordina-

tion through a tuple space, a type of shared memory accessed via pattern-

matching that enables a decoupled style of communication. The size of the

tuple space is up to 48 bytes in each node. Agilla was implemented on top

of TinyOS WSN operating system [HSW+00], and experimentally evaluated

on several real WSNs, for instance those consisting of TelosB [PSC05] nodes.

A basic Agilla installation in a TelosB node takes up 3866 bytes out of 10kB

of RAM and 45308 default bytes out of 48kB of ROM. See Figure 2.3 for an

illustration of Agilla’s architecture.

Figure 2.3: Agilla Middleware Components

(from http://mobilab.cse.wustl.edu/projects/agilla/).

Every Agilla node supports multiple mobile agents able to move or clone

across other nodes while carrying their state. To facilitate agent interac-

tions, every Agilla installation provides the node with two data structures, a

http://mobilab.cse.wustl.edu/projects/agilla/
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Agent Framework [SLO05]

Platforms: Mica2dot

Prog. language: Maté [LC02] TinyScript

Coordination: Shared memory, network messages

Applications: Global data collection

Gradient search

Event tracking

ActorNet [KSMA06]

Platforms: Mica2

Prog. language: High level functional-oriented

Coordination: Shared memory, network messages

Applications: Gradient search

In-Motes [GB06]

Platforms: Mica2dot

Prog. language: Micro-programming

Coordination: Tuple spaces, agent facilitators

Applications: Data gathering

WISEMAN [GVVL06, GVCL10]

Platforms: MicaZ

Prog. language: Text-based codes

Coordination: Local (node) variables

Applications: Early forest fire detection

Agilla [FRL05, FRL09]

Platforms: TelosB, Mica2,

MicaZ and Tyndall 25mm

Prog. language: Micro-programming

Coordination: Tuple spaces [Gel85]

Applications: Fire detection and tracking

Monitoring cargo containers

Navigation in a dynamic environment

MAPS [AFGG11]

Platforms: Sun SPOT

Prog. language: Java

Coordination: Network messages

Applications: Remote sensor monitoring

Table 1: Reference of Mobile Agent Platforms for Wireless Sensor Networks.
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nieghbor list and a tuple space, a sort of shared memory accessed via pattern-

matching queries that enables a decoupled style of communication. Agilla

also provides specialized reaction primitives enabling agents to efficiently re-

spond to changing states. Prior Agilla versions addressed WSN nodes by

their location in a grid structure, this restriction was removed in version

3.0.

Concerning memory, the Agilla middleware provides three different data stor-

age constructions:

The tuple space is a shared memory space where data is structured as

tuples that are accessed via pattern-matching queries or reactions. It

is used primarily for communication between agents, either coexisting

in the same node or not.

The stack is a simple LIFO queue that provides only two operations push

and pop. It is fundamentally used to store application runtime variables

and instruction return values. In a default Agilla installation it can

store up to 105 bytes.

The heap is a random-access storage area that allows agents to store, in a

default Agilla installation, 20 variables of 16-bit each. It is a random

access memory construction accessed with the setvar and getvar in-

structions.

A reaction is a method that makes agents respond to the presence of a

certain tuple in the tuple space, preventing them from performing continous

polls. They, reactions, consist of a tuple space template to react to, a label

to the callback function, and a block of code. Once registered (regrxn),

they notify the agent if a tuple matching the template is pushed into the

tuple space, and provides a jump position for the agent code to jump to and

respond to the tuple.

Regarding itineraries of MAs in WSNs, optimization of energy consumption

in their planning is paramount. As the problem of finding optimal itiner-

aries in WSNs is NP-hard [WRB+04b], a lot of research has been devoted

to this problem, surveyed in [CYK+11]. Different heuristics have been pro-

posed, from the simplest ones [QW01], based on genetic algorithms [MFV+06,

CCH+11], to more elaborated ones [CYK+11]. Multiple mobile agents’ itin-

erary planning is also considered in recent proposals [WCKC11, CYK+11] to

allow the scalability of the solutions to large WSNs.
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2.3 Summary and Conclusions

Albeit the middlewares and the research done in the mobile agents in WSNs

topic, they still need a killer application to move them out of their cradle. The

applications used to show the goodnesses of the technology don’t really unveil

the full potential of mobile agents, and stick with simple tasks easily done

without mobile agents and where their benefit is hardly noticeable.

This is not the case of our application proposal, as the reader will see through

the pages of this thesis, ours is a complex application using several novel

technologies to accomplish an important task, which is the automation of

the classification of victims in MCIs.

We believe the application has enough potential to become the launching

platform for future WSN applications that will help both our daily and pro-

fessional lifes.
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Part II





3
Heterogeneous Multiagent Architecture

for Emergency Management

B
EFORE entering in detail to the contributions of this thesis we

will take a quick glance to how all of them are supposed to work

together.

Agilla and JADE, despite being two very different agent technologies, can

coexist and share information to build a more complex agent system. Al-

beit agent migration between both platforms is not possible from the very

beginning, little changes in Agilla’s code make this cooperation possible by

embedding an Agilla agent into a JADE agent.

The first step of our contribution consists on using Agilla to continuously

monitor Mass Casualty Incident (MCI) victims inside Wireless Sensor Net-

works (WSNs) and use JADE agents to carry the monitored data to the

Emergency Coordination Center (ECC), introducing dynamism to Mobile

Agent Electronic Triage Tag (MAETT). We take advantage of the communi-

cation between the two technologies to share victims’ information and route

details, thus improving the efficiency of the triaging system.

We extend MAETT’s scheme (Figure 2.1. See Section 2.1.1 for a detailed

25
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description of MAETT) and add a wireless human monitoring device, similar

to the one depicted in Figure 3.1a, a TelosB compatible node manufactured

by Maxfor (http://www.maxfor.co.kr), that creates a WSN with its neigh-

boring nodes, which we later use to dynamically update the medical status

of every victim.

Medical personnel in the affected area also carry a WSN node to enable their

communication with the victim’s network. In this case the node is attached

to a handheld running JADE, working as a Delay and Disruption Tolerant

Network (DTN) node (Figure 3.1b).

(a) Example of wireless hu-

man monitoring device.

(b) N810 handheld with an attached WSN

node

Figure 3.1: Two types of sensor nodes used in our architecture.

Apart from the physical cardboard tag, triage personnel also place a wireless

capable monitoring node running Mobile Agents (MAs) (Figure 3.2a to ev-

ery triaged victim to continuously monitor their health status, computing a

health summary following an algorithm similar to Simple Triage And Rapid

Treatment (START) or Manchester Triage System (MTS). As nearby vic-

tims are both paper and electronically tagged, neighboring nodes belonging

to the same triage member wirelessly connect, creating a growing WSN of

victims.

When every victim in the vicinity is tagged, and thus, every body sensor is

monitoring its own victim, the triage personnel member ends the creation

of his WSN. At the same time, the triage personnel handheld starts the

calculation of an itinerary through the newly created WSN, which will be

used by a MA to fetch the updates of every victim’s medical condition.

To increase the probability of the collected information being correctly sent

http://www.maxfor.co.kr
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from a node in the WSN to a handheld device carried by a medical personnel

member, all status updates are shared by a mobile agent to the other nodes

of the WSN. This information waits for a passing by handheld, carried by

any medical personnel member in the emergency. A JADE mobile agent is

finally created in the handheld, containing the new health summaries of the

victims in the emergency, which is routed to the ECC applying the strategies

used in MAETT (Figure 3.2b).

(a) MAETT with continuously monitored vic-

tims.

(b) Detail of the return path to the ECC.

Figure 3.2: Our extension of MAETT.

3.1 WSN - DTN interface

For all the application to share data between medics, to move data to the

ECC, in other words, to be of use, we need to convince JADE and Agilla

agents to work together. We had to modify Agilla’s AgentInjector in the

handheld to obtain an instance of the running JADE platform or switch on

the platform if not running, this way we ensure that every received agent in

the handheld will generate a JADE agent.

Agents migrating to the handheld, the one to be encapsulated into a JADE

agent, needs a special piece of code to enable the communication with the

Injector at the other side of the USB interface. This code allows data in the

wireless node to be moved to a special address pertaining to the injector in

the handheld device.
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Our test platform, a Nokia N810 with MaemoOS Diablo (5.2008.43.7) did

not come with appropriate drivers to work with our TelosB motes. Thank-

fully, MaemoOS is a Linux kernel based open source OS and we were able to

recompile the stock kernel to include the required driver. Moreover, albeit

the handheld device supports host mode usb, not every USB cable has the re-

quired pin configuration to automatically notify their host of the requirement.

Fortunately, a simple command on our test platform was sufficient to enable

it. At that point the system recognized a new USB device, but complained

about being unable to access it. The problem was related to the paltform

not feeding enough power to the USB device. Writing a special udev rule,

specific for our type of sensor nodes solved the problem and, finally, the we

had our test platform completely functional.

3.2 Traveling the WSN

Visiting every node in the newly created WSN to share data between nodes,

preferably avoiding repetition and optimizing the number of hops, is thor-

oughly studied in graph theory, also known as the Traveling Salesman Prob-

lem, and known to be NP-Complete [Pap77], even in the Euclidean plane.

In our case, covering all the nodes of a WSN can be seen as specific case of the

problem, with the particularity of also trying to optimize energy consumption,

which happens to also be NP-Complete [Mas05, WRB+04a].

Genetic algorithms have been used to solve NP-Complete problems since the

begginings of the 90’s [JS89] and, particularly, to efficiently solve the specific

case of the Traveling Salesman Problem [Bra91, SRJB03, LnKM+99].

As we use a time and power restricted battery powered handheld device, it

is not feasible to calculate the optimal route for a problems of this kind.

Thus, we use a well studied genetic algorithm approximation [Mas05], which

is proved to offer good enough solutions. Albeit not being optimal, the

returned solution is a satisfactory route, both in computation and traveling

times.

The genetic algorithm starts by creating an initial population of random

paths to cover the network. A new generation is started by selecting only

the paths whose number of hops to cover the network is smaller or equal to

the remaining hops to meet the threshold (maximum number of nodes per
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path) are selected. Thereafter, x individuals are selected to be crossed, be

it a subset of their paths or two entire individuals. Finally, after a limited

number of crossings and new generations, all solutions are evaluated and

sorted in ascending order, from those with the smaller number of hops to

those with the highest, and the best one is selected.

This was our first approach and worked well with open field networks and

fully connected networks, without obstacles. When this premise is not sat-

isfied, the cost of generating valid individuals is too high to be used in a

resource contrained environment, both in time and power, as is our handheld

device. Indeed, in scenarios with broken links, it is very difficult to find valu-

able individuals after every iteration, due to the high cost of finding a valid

route through the graph in the crossing and mutation phases of the genetic

algorithm.

That is why we finally opted for a simple Depth-First Search (DFS) algo-

rithm [IPP+10], which computes the spanning tree of a given graph. In our

case, the returned tree is the path the Agilla MA will use to visit all the

nodes of the network.

It is worth noting that we can calculate a path using the DFS algorithm in

the handheld due to the following facts:

1. The handheld has the topology of the WSN, saved by the triage person-

nel while tagging victims. When the triage member closes the network,

the device starts calculating a network covering path and injects a MA

with the final route into the WSN.

2. The number of sensing nodes is limited. Both, to speed up the route

calculation process, and to lighten the medical personnel bags. The

weight of a health monitoring sensor, albeit it may seem negligible is

around 70g including two 1.5V AA batteries, and carrying more than

2Kg (∼30 nodes) may hamper the medical personnel.

Furthermore, to restrict the calculated itinerary to our concrete needs we

introduced three limitations to the DFS algorithm to return a better solution

for our network:

1. The initial node is the last victim triaged by a personnel member. This

prevents the triage member of having to move to the best possible

starting node, but inject the node where he is.

2. The itinerary does not need to be cyclic. The last and the first node
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of the network do not need to be connected. We add this restriction

first, to ease the computation of a solution, and second, because what

we want is not to reach a specific node but to have the sensor readings

of all of them. Hence, we can just follow the same route forwards and

backwards.

3. Restricted computation time. Albeit in our handheld devices a valid

DFS solution appears in less than a second, with a little more time

(∼20s) we can get, in some cases, a better result. We finally decided to

fix a maximum waiting time of 30s, which gives enough time to compute

a good solution in every case, and is short enough for a triaging member

to wait for.

Likewise, we set the conditions to determine the fitness of an itinerary over

another. In our case we want to minimize the amount of energy sensor

nodes consume, thus increasing their lifetime. As all nodes are active and

sensing victims’ health, the only other variable we can improve to minimize

energy consumption is the time spent in the transmissions. To do so, a

good approach is to minimize the distance an agent has to move to reach

the next node. With this condition we also reduce the errors made during

agents’ tramission, thus minimizing even more the time used for an agent to

migrate.

3.3 Times and routes

For evaluation purposes we measured both genetic algorithm and DFS times.

Our goal was to check the appropriability of the solutions for our traveling

agent in fully connected networks and in partially disrupted networks.

We started with the genetic algorithm in fully connected, randomly gener-

ated graphs. Tests started with initial populations of 10 and 50 randomly

generated individuals. Generations had a mutation probability of 0.01 and a

crossover probability of 0.7.

First tests with fully connected networks performed well both in computation

time and in path cost (see Table 3.1 and Figures 3.3a,3.3b). In the table

each cost value is the mean of 5 executions of the algorithm in our test

handheld.



3.3. Times and routes 31

Fully connected graph - Genetic Algorithm - N810

10 individuals 50 individuals

5 Nodes cost : 16.0755 cost : 15.5693

time: 0.7540 time: 6.0744

10 Nodes cost : 31.5538 cost :31.3979

time: 2.7115 time: 13.0550

25 Nodes cost1 : 68.3264 cost1 : 69.5351

time1 : 13.2146 time1 : 15.0000

cost2 : 55.7277 cost2 : 59.3514

time2 : 30.0000 time2 : 30.0000

cost3 : 55.8480

time3 : 52.9582

50 Nodes cost1 : 134.1062 cost1 : 115.9869

time1 : 15.0000 time1 : 15.0000

cost2 : 106.7367 cost2 : 107.5450

time2 : 30.0000 time2 : 30.0000

cost3 : 102.8928 cost3 : 101.5540

time3 : 42.7622 time3 : 60.0000

Table 3.1: Results for the genetic algorithm in a fully connected graph.

Results show the best solution obtained for time limits of 15, 30 and 60 sec-

onds. In some cases the best solution was found before reaching the limit, in

other cases the algorithm is still computing better solutions after the time-

out.

As we can see in Table 3.1, a solution is found in the first 15 seconds in a 50

nodes scenario, but waiting a bit more time, until reacing the 30 seconds, an,

approximately, 20% improvement is easily accomplished while not trespassing

the hypothetical time limit we established for the medical personnel to wait

during a triage (30s).

We also tested the genetic algorithm in partially disrupted networks with the

same configuration as in the fully connected tests, 10 and 50 randomly gener-

ated individuals, mutation probability of 0.01 and crossover probability of 0.7.

In these cases, the genetic algorithm is unable to obtain a solution in a reason-

able amount of time due to the excessive cost of validating every individual
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(a) 25 nodes (b) 50 nodes

Figure 3.3: WSNs solved with the genetic algorithm.

and maintaining a constant number of members in the population.

Nonetheless, DFS solved this situation and found good solutions in small

amounts of time. Furthermore, in some cases, waiting for the time limit to

expire, the solution improves considerably (see Table 3.2, where jNkO stands

for j Nodes and k Obstacles).

Scenario with obstacles - DFS - N810

5N1O Sc. 10N1O Sc. 25N3O Sc. 50N3O Sc.

cost : 21.995 cost1 : 77.0664 cost1 : 78.3977 cost1 : 103.3174

time: 0.066 time1 : 0.181 time1 : 0.102 time1 : 0.179

cost2 : 68.4044 cost2 : 77.5867 cost2 : 103.1823

time2 : 1.567 time2 : 81.448 time2 : 135.264

cost3 : 54.4441 cost3 : 77.3539

time3 : 5.351 time3 : +300

cost4 : 50.2357

time4 : 203.782

cost5 : 45.0835

time5 : +300

Table 3.2: Results using DFS in a partially connected graph

In randomly generated scenarios DFS proved its usefulness by generating

useful routes for MAs to travel WSNs, both in fully-connected networks and

in networks with broken links or visibility problems.
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To further test the algorithm we generated special scenarios, easily found in

actual catastrophes, Figure 3.4; reflecting a building, Figure 3.4a; a node dis-

tribution with one single solution, Figure 3.4b; two zones separated by a wall,

connected only by one solitary node, Figure 3.4c; or a star shaped scenario,

Figure 3.4d. DFS also found good enough solution in this type of scenarios

in reasonable amounts of time. Table 3.3 summarizes its results.

(a) Building-like. (b) Unique Path.

(c) Wall. (d) Star.

Figure 3.4: Special interest scenarios solved with DFS.

Special scenarios - DFS - N810

Building Unique Path Wall Star

cost1 : 36.5687 cost : 27.3636 cost1 : 27.6036 cost : 57.7163

time1 : 0.08 time: 0.001 time1 : 0.058 time: 0.061

cost2 : 36.0348 cost2 : 25.6019

time2 : +120 time2 : 12.434

Table 3.3: DFS results in special interest scenarios



34 Chapter 3. Heterogeneous Multiagent Architecture

3.4 Summary and Conclusions

In this chapter we presented an overview of a multiple agent heterogeneous

architecture for victim monitoring in MCIs. We joined two different and

unrelated agent technologies, JADE and Agilla, to create a fully functional

system with real-time victim monitoring.

We have also seen that we can benefit of network knowledge in the handheld

devices carried by triaging personnel to calculate an efficient route through

the WSNs in very little time, that helps agents to effectively visit every node

in the network without wasting time searching for unvisited neighbours.

Moreover, we also added fault tolerance methods to our node visiting algo-

rithms so a failure on one or more of the nodes doesn’t prevent the application

from working and continue monitoring victims.



4
Mass Casualty Incident Management

with Mobile Agents and Wireless

Sensor Networks

T
HE first moments of a Mass Casualty Incident (MCI) aftermath are

decisive to save the highest number of lives. As the resources at

that moment are often scarce, it is essential to efficiently coordinate

efforts and evacuate and give urgent treatment to the most severely injured,

yet curable, victims. Therefore, the field work of trained personnel (doctors,

nurses, paramedical, . . . ) triaging victims in accordance to their medical

status is of capital importance. The information is later used to prepare

a rescue plan for the victims to be moved to a safer zone. Traditionally,

triage personnel used cardboard triage tags, Figure 4.1, to easily identify

victims. These triage tags are filled following a standard triage method like

Manchester Triage System (MTS) [MJMW06] or Simple Triage And Rapid

Treatment (START) [Sup84], which result in a color code that is clearly

shown in the cardboard tag, with some other basic medical information.

35
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Figure 4.1: Front and back view of a traditional cardboard triage tag.

Information and Communication Technologies can greatly improve the effi-

ciency of the work done by the trained personnel in these scenarios. Although,

some tough limitations have to be taken into account. Trained personnel, for

example, have to act quickly and will be reluctant to interact with complex

system or fill in forms in situ. Regarding the technology, it should not rely

on any local infrastructure, wired or not, as it could have been damaged in

the casualty or be unusable, and setting up a new one can be very expensive

in terms of money and/or time.

Mobile Agents (MAs) were previously introduced in this type of scenar-

ios [MRMCC09], and showed that they can took great advantage of the

technology. There, JADE mobile agents running in a touch screen handheld

device, were used to bring victims’ health state and GPS position to the

Emergency Coordination Center (ECC) and, from there, plan an appropri-

ate rescue plan. The traditional carboard triage tag is still placed on the

victim. JADE MAs makes its way to the ECC, leaping forward from device

to device, lying stored in a one of them for a while, waiting for a proper

candidate to jump to if it is at reach. The volatile network created with
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handheld devices goes beyond ad hoc or Mobile Ad-hoc NETwork (MANET)

possibilities, for the concurrent existence of communication links from source

to destination is not required. Its routing protocol uses the time the device

bearer will take to return to the ECC.

Albeit the proposal is a huge step ahead in MCI triaging it is still open to

improvements. One of the main problems is that the carried information gets

deprecated quickly, as victims’ health status, which has a great impact on the

subsequent rescue planning, may drastically change in a matter of minutes,

and this changes are never carried to the ECC.

Just by adding health monitoring Wireless Sensor Network (WSN) nodes to

the victims of the emergency we are able to update victims’ health status

stored in the ECC, and thus help the medical personnel to prepare a suitable

rescue plan for the changing conditions.

4.1 Introduction

MAs are one of the most notorious examples of the flexibility of computer

programming. The traditional paradigm of moving data to a computing

center, with its associated costs, both of network bandwith, time and storage,

can be now turned over and move a lighter piece of operating code from data

set to data set instead. By doing so, a lot of bandwith and storage is saved,

as well as possibly reducing the time by not having to wait for the data to be

delivered, and by making calculations in a more distributed manner.

Itinerary planning is one of the key issues when designing WSNs MAs appli-

cations [CGL07]. Itinerary planning includes both the selection of the set of

nodes to be visited, and the determination of the sequence in which they will

be visited. Depending on how the itinerary is determined we can have static,

dynamic or hybrid itineraries [CGL07]. In the static case, the decision relies

completely on the sink node or base station before the agent is dispatched.

If the itinerary is dynamic, the MAs autonomously decides the nodes to be

visited and their sequence, according to the current status of the WSN. Fi-

nally, if we are talking about hybrid itineraries, we assume that the set of

nodes to be visited is decided by the sink, but the sequence is determined

dynamically by the MA.

Of the analized middlewares for MAs (see 2.1.3), only WISEMAN [GVVL06,
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GVCL10] provides migration methodologies to support the three itinerary

planning methods, static, dynamic, and hybrid. Nonetheless, in all the

analyzed middlewares, the itinerary should still be defined inside the MA

code.

In this chapter we adapt the separate itineraries firstly found in Concor-

dia [WPW+97] (see Section 2.1.3) to a highly resource-constrained environ-

ment, i.e. WSNs, to improve the dynamism of the migration methodologies

of WSNs applications. Moreover, we show how separate itineraries allow us

to get a new application, exemplified with the Agilla middleware, in which

agents move globally in a WSN while deciding the node-visiting sequence

from these itineraries (hybrid planning).

4.2 Scenario

WSN describes the term of ubiquitous computing at it’s best, small devices

that can be easily situated in a myriad of places and program them to perform

an innumerable amount of tasks. In this study, we propose a new method to

share and aggregate data within WSN using MA itineraries and eliminating

the need of a central collection, and failure, point: the sink node. This section

describes the main actors and structures of an application of this kind.

Traveler MA moving through every node of the WSN using a previously

calculated itinerary. It reads the data found in every node, and also

writes the changes carried from previous nodes in the itinerary. Thus,

every node of the WSN has an up-to-date log of the rest of the network.

Victim static agent residing in every node of the WSN reading sensor data

and computing useful summaries with it. To save batteries it only

retrieves sensor readings and computes the summary when the Traveler

agent is in the same node, sleeping the rest of the time.

Extractor static agent residing in every node of the WSN waiting for a

contact with an external entity to dump the aggregated contents when

connected.

Delay and Disruption Tolerant Network (DTN) node portable de-

vice with WSN connection capabilities which fetches the data dumped

by the extractor. It is also the responsible of computing the itinerary

used by the traveler agent.
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Itinerary data structure used by the traveler containing the list of to be

visited nodes and its default visiting order. It is calculated by the DTN

node when the WSN is fully set up.

Agent communication is made through a series of steps depending on the

actors and the data forming part of it. The communication between traveler

and victim agents, where node readings are passed from victims to the trav-

eler and the rest of the WSN status is passed from the traveler to victims, are

traveler who initiate the protocol by sending a Activate INSERT message,

victim then responds to this message with the sensor readings. When the

last chunk of sensor reading data is received, the traveler starts sending the

readings of the rest of the WSN nodes. Finally when the transmission ends,

the victim responds with a FIN message, releasing the communication (See

Figure 4.2a).

In its hand, the communication between the extractor and victim agents is

simpler and requires just three steps. When in contact with a victim agent,

found in every node of th WSN, the extractor sends a Start DUMP message,

which the victim agent responds by sending back the status of the whole WSN.

When all the data is received, the extractor agent sends a FIN message, which

releases the communication. (See Figure 4.2b).

4.3 Separate itineraries for Mobile Agents in

WSN

The small processing power and memory of the devices used in WSNs con-

strains the design of separate itineraries to fit in their limited resources. As

our scenario requires active personnel carrying the monitoring nodes before

its placing, we can assume that they may agree to carry, at most, the weight

of 25 to 32 nodes (1.5Kg - 2Kg). With this limited number of nodes we

can design an itinerary structure to use in memory constrained monitoring

devices.

We managed to fit a single itinerary step into as little as 8 bits, including

the node identification (5 bits), an on/off bit and information about the

state of the monitored entity (2 bits). It is worth noting that the itiner-

ary is not computed to be circular, thus, to continuously move through the



40 Chapter 4. Mass Casualty Incident Management

(a) Traveler - Victim (b) Extractor - Victim

Figure 4.2: Agent communication protocols.

WSN, the traveler agent has to traverse the itinerary forwards and back-

wards. Figure 4.3 depicts two positions of our itinerary structure using the

aforementioned codification.

To adapt the itineraries to WSN nodes we made two simplifications to regard-

ing those in conventional agents (see Section 2.1.3). Firstly, we considered

only entries of the type sequence and alternative. Set entry types are out of

the study as it will require cloning the agent a determined number of times

and then gathering the collected results, as well as dealing with all its coordi-

nation, which will drain rapidly drain the battery of nodes. Thus, a WSN MA

itinerary is a sequence of node identifiers stored in agents’ memory. Agents

will move to the next node in the itinerary and, in the case the next node

is unreachable, or they decide otherwise, they will move the an alternative

node.

The second simplification is to consider that the same code will be run on

each node. Otherwise, nodes will require a capacity similar to Java reflection.

However, it is easy to adapt agent’s code to deal with specific nodes, e.g.
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Figure 4.3: Sample itineary entries using the proposed codification.

those at the ends of the itinerary.

4.3.1 Fault tolerance

Our proposal includes two fault tolerance mechanisms providing a MA is

unable to follow the proposed itinerary, both oriented in preventing node

failures or their unreachability. The first mechanism consists in moving to

alternative entries in the itinerary structure, thus skipping failed or removed

nodes. The second mechanism consists in using several traveler agents with

different itineraries to minimize the probability of all agents being caught

inside a failing node, and to cope with network partitioning.

In the first mechanism, when a traveler agent can not reach the next node

in its itinerary, either because it is failing or because it was attached to

a removed entity, it can apply up to three different methods to move to

alternative nodes. In the first implemented method, jump-after-next, the

MA looks a step forward into the itinerary structure and tries to migrate to

the following node if available and in range. If it is not, the traveler agent

decides, by a simple coin-flipping algorithm, to choose one of the remaining

methods: random-jump or reverse-itinerary.

In random-jump, the traveler gets the list of available neighbor nodes and

randomly chooses one of them for its migration. After the migration, the

traveler agent tries to resume its sequential route from the new node. In the

reverse-itinerary method, the trip through the itinerary is simply reversed,

just as it is done when arriving to the end node. Note that this last method is

a useful strategy when the network is partitioned, as both jump-after-next

and random-jump always try to go forward from the new node, and thus
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some backward nodes can be left unvisited.

For the second fault tolerance mechanism, our proposal can use several trav-

eler MA, where each of them starts its itinerary from a different node of

the network and, preferably, follows a completely different itinerary. This

method adds another layer to the tolerance against failures of the applica-

tion, increasing the robustness of the WSN in terms of partitioning. Now

it is more unlikely for a WSN to end up with a unmonitored part due to a

permanent failure of one, or several, critical nodes.

The alternative itineraries followed by the additional traveler agents are also

calculated in the DTN node, which has all the information about the mon-

itored entities. In this node, by selecting different starting nodes, we can

obtain different, but similarly effective, itineraries for all the MA. To prevent

DTN node bearers of having to move to several monitored entities to inject

the additional traveler agents, we use the same strategy as in the random-

jump fault tolerance method: each MA looks for the actual node in the

itinerary and follows its route from there.

The drawback of using more than one traveler is that the integrity of the

aggregated data is not guaranteed, i.e., an agent may update more recent

data written by a previous traveler agent. Given the small number of nodes

of our proposal, and that the rountrip time for a MA in such small network

is short this is not a critical issue. We could easily overcome this drawback

by adding a last-updated timestamp into the data set.

A situation that we had to take into account is the meeting of two, or more,

traveler agents into the same sensor node, if the node fails then all travelers

inside it will be lost. This is specially critical if the failing node is the only

link between two clouds of sensor nodes. To prevent this accumulation of

MAs we use a token-like solution. When a traveler agent wants to migrate

to a new node requests the token, if it is available, takes it and continues its

normal execution. If, in the other hand, another traveler agent has already

taken the tuple, the new agent tries to move to another node using one of

the aforementioned alternative methods.
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4.4 An implementation using Agilla Mobile

Agents

Using the only publicly available MA middleware for WSNs in TelosB nodes,

we implemented a proof-of-concept application and taken measures of both

running time and energy consumption to prove that our proposal is not only

feasible but useful in real-life scenarios.

We performed simulations using TOSSIM and TinyViz, and using actual

nodes both, in a closed environment and in a could-be-real scenario.

With the programming resources provided by Agilla we designed an efficient

communication protocol between the agents of our application using reac-

tions. In the communication between the victim agent and the traveler agent,

a tuple matching a reaction is placed by the latter into the former’s tuple

space to notify its arrival to the node. The victim agent then starts dump-

ing its sensor readings using the protocol as depicted in Figure 4.2a from

Section 4.2. In the case of the communication between victim and extractor

agents, a different tuple matching a different reaction is placed by the latter

into the former’s tuple space. The victim agent then dumps its collected data

into the extractor’s tuple space using the protocol depicted in Figure 4.2b

from Section 4.2.

The 8-bit per hop itinerary structure detailed in Section 4.3 is stored in the

heap memory construction into the Agilla MA. That way we can store the

maximum amount of nodes we defined for our architecture (25 to 32) in just

16 positions of the heap, and still have free positions for other application-

related purposes. The random-access nature of the heap permits agents to

move throughout the network in whichever way they need, a very useful

property for the defined fault-tolerance mechanisms.

What is more, using 8 bits to define a step of the itinerary, we can fit two

hops in just one position of the Agilla stack. Unfortunately, albeit this is an

advantage when looking to memory efficiency, this complicates the reading of

an itinerary step from the heap, forcing the division of the value and choosing

the required bits after pushing it onto the stack. Luckily, the Agilla ISA offers

a handy shiftr instruction which we use to move the value and get required

bits.
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4.4.1 Memory usage

In our implementation, the memory requirements of the application are very

small, leaving room in the WSN for a broad range of improvements. A

basic Agilla installation of our implementation in a TelosB node takes up to

3866 bytes out of the available 10kB of RAM, and 45308 bytes out of the

available 48kB of ROM, increasing in just 400 bytes of RAM a clean Agilla

installation.

When deploying the application we ran into some issues regarding limitations

of the platform to host a large number of agents and neighbor nodes, regard-

ing the size of the messages exchanged between agents, and regarding the size

of the tuple space. To circumvent them we had to make some configuration

changes, the most important being:

• $AGILLA/nesc/agilla/Makefile.AGilla

– l. 1 -DAGILLA_NUM_AGENTS from 3 to 6

– l. 2 -DAGILLA_NUM_CODE_BLOCKS from 12 to 60

– l. 14 -DAGILLA_MAX_NUM_NEIGHBORS from 20 to 25

• $AGILLA/nesc/agilla/types/TupleSpace.h

– l. 45 AGILLA_MAX_TUPLE_SIZE from 20 to 48

• $TOSDIR/types/AM.h

– l. 65 #define TOSH_DATA_LENGTH from 29 to 36

With this small changes we increase the maximum number of agents per

node, from 3 to 6, the maximum memory used by an agent’s code, from 12

to 60 code blocks (1 code block equals 22 bytes), the maximum number of

neighbors per node from 20 to 25, the maximum size of a tuple from 20 to

48 bytes, and the length of a TinyOS message from 29 to 36 bytes.

When agents are injected into the node, they are saved in node’s RAM,

occupying the memory needed by the code (26 blocks, or 572 bytes) from

that reserved by the platform, plus the stack, the heap and agent’s registers

(248 bytes).
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4.4.2 Experimental evaluation

We evaluated the performance of our implementation against the TinyOS

simulator (TOSSIM), a testbed of up to 25 nodes, and in an open field

scenario that closely resembles a MCI situation.

The goal of the evaluation was, apart from debugging and checking the cor-

rect working of every part of the application, to check the response of fault-

tolerance mechanisms to node failures, and to measure round-trip times of

our traveler agents in different WSN configurations.

We first simulated the application using TOSSIM and TinyViz, the simula-

tor and visualization GUI for TinyOS. Debugging with this tools is not very

straightforward due to the ill-defined error messages thrown by Agilla, being

INVALID_TYPE and INVALID_SENSOR the most common, with no other infor-

mation, not even the line number. This forced us to follow the code step by

step and picture the stack and every memory position at every time.

When the code was finally checked and working we built a testbed of up

to 25 TelosB nodes (Maxfor MTM-CM5000-MSP and MTM-CM4000-MSP)

running Agilla v.3.1.1 over TinyOS, and injected our agents there to check

their correct behavior on actual nodes, and to check that the results obtained

with the simulations were valid on real sensor nodes. Unfortunately, this

move forced us to make important changes to our design, such as moving

from reactions to active waiting in traveler agents, due to problems during

their transmission, and reducing the size of TinyOS messages.

After verifying the proper functioning of the applications with the changes

applied, we moved our application to a real deployment where we tested

our application in a 15 node scenario which closely resembles a part of a

MCI.

4.4.3 Simulations

In the first simulation of our application using TOSSIM and TinyViz, we

used a circular topology with 10, 20 and 25 nodes (Figure 4.4), all of them

properly functioning. These helped us to solve small programming issues,

problems with the stack and with conditional and non-conditional jumps,

most of them due to the length of the code being left behind, easily solved

using a longer jump instruction.
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Figure 4.4: 25 node simulated circular topology.

After that we used the same circular topology but started forcing the failure of

randomly selected nodes. The implemented fault tolerance methods behaved

as expected, avoiding the problems of not finding the expected next node and

having to migrate to a different one, either looking forward one position in

the itinerary or randomly jumping to a reachable neighbor. This tests also

proved the completeness of the falut tolerance methods when the traveler

agent resumed its operation after an alternative migration.

The last simulation was done using two traveler agents in a partitioned WSN

(Figure 4.5). We tested their correct adaptation to a failure of an important

node, a node being the only link between two sections of the WSN. After the

failure, both agents remained in its partition of the network, visiting their

subset of nodes either following the itinerary either applying one of the falut

tolerance methods when not possible.

These simulation proved that our application worked correctly on actual

nodes and that was capable to respond to unforeseen situations. To cal-

culate its performance in terms of time and energy consumtion, though, we

moved to a more appropriate close-to-reality scenario.
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Figure 4.5: 21 node simulated breakable topology.

4.4.4 Testbed runs

The first test on the testbed consisted in veryfing the application to work as

in the simulations, without measuring time nor energy consumption. First

we made some test runs with all the nodes working and fully functional. At

that moment we perceived a problem with traveler agents and their reactions.

The problem was that after running the application for an undetermined time,

the reactions in the traverler agent stopped communicating with its bearer,

resulting in a complete stall of the application. To solve the issue we moved

communications done by these reactions to an active polling method, where

the agent looks for the expected data in the tuple space. With the problem

circumvented, we started measuring the time needed for traveler agents to

visit each node of the WSN.

Results of the runs with 10, 15, 20 and 25 nodes in a WSN without failed

nodes showed that a complete roundtrip of the traveler agent takes 1.2s per

node in the case of a 10 node network (24.4s until returning to origin), 1.46s

in a 15 node network (43.8s total), 1.45s in a 20 node network (58.1s total),

and 1.59s in a 25 node network (79.3s total). The increase in the time spent

per node is caused by the bigger amount of data carried by the agent, mainly

larger itineraries and more sensor readings.

Table 4.1 depicts the running times of the aforementioned tests, the samples

being the mean of 5 runs of 10 roundtrips each, errorbars show the deviation

of the data in each roundtrip sample.
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# nodes time (s)

10 24.419 ± 1.5s

20 56.786 ± 1.8s

25 1:20.275 ± 2s

Table 4.1: Testbed roundtrip times after 10 runs.

The second set of tests was done in a problematic WSN, that is, one with

failed or malfunctioning nodes. First, we benchmarked the performance of

our traveler agent with some deactivated nodes, 5 in the case of the 10 node

WSN, 9 for the 20 nodes one, and 11 for the 25 nodes WSN. These runs

were aimed at measuring the correct working of the jump-after-next fault

tolerance method, thus never deactivating two consecutive nodes.

Results, depicted in Table 4.2, show that the traveler agent responds very

well to problems with non-consecutive failing nodes, reducing rountrip times

by nearly the half when compared with the WSN without failed nodes. This

reduction happens mostly because the larger amount of time is spent doing

migrations thus, the less nodes to visit, the less migrations to perform, and

the less time to complete the roundtrip.

# nodes time (s)

10 13,541 ± 0.7

20 29.186 ± 0.9

25 39.356 ± 1.3

Table 4.2: Testbed roundtrip times with failed nodes.

Finally, the last test applied to the testbest was focused on measuring the

response of the application to network partitioning. The deployment for

this test consisted in two separated clouds of 10 nodes each, connected only

by a single critical node. We injected two independent traveler MAs, with

different itineraries and, after that, we turned off the critical node deliberately.

Each traveler agent was left in a different network partition, being completely

disconnected from the other part of the WSN. We proved that having two

independent traveler agents with disjoint itineraries is a good solution for this

kind of situations where the itinerary is not complete in any of the partitions

and fault tolerance methods are heavily used. We also used this scenario to

measure the time needed to visit every node of a partition, with the traveler

agent being forced to use every fault tolerance method implemented.
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In this case, we consider a roundtrip done when all the nodes of the parti-

tion cloud have been visited. Results showed very variable roundtrip times,

due to the heavy use of the random-jump fault tolerance method, which

doesn’t assure that a non-visited node will be selected as the next destination

(Table 4.3. Nonetheless, the test was useful to confirm that the application

is robust enough to undergo situations of this kind.

Lap Lap time Total time

1 01:02.832 01:02.832

2 00:55.650 01:58.482

3 00:59.964 02:58.446

4 00:41.615 03:40.061

5 00:21.669 04:01.730

Table 4.3: Testbed roundtrip times with 21 disconnected nodes with one

Traveler per cloud.

4.4.5 Real world scenario

Finally, we tested our application in a real world scenario, modeling a MCI

outside the building of our college (Figure 4.6). For our tests we used 15 sen-

sor nodes and tested the correct working of the application both, with all the

nodes working, and deactivating some of them. We asked some colleagues

to hold one of the sensor nodes and to act as a victim of a MCI (Figure 4.7

(Photo taken with a fisheye lens. Distances may appear distorted. GPS coor-

dinates for an accurate view of the area: (41.499727, 2.112164), (41.500070,

2.113401)).

Tests carried out with all the nodes working proved that what was promising

in the testbed is also applicable to a real scenario. Roundtrip times for the

application in a fully active network, with any failing node, also show that

testbed roundtrip values can be extrapolated to real scenarios. Runs of 10

continous roundtrips produced times of around 39 seconds for the 15 nodes

WSN, barely more than one second per node, a value very similar to that

obtained in the testbed.

Next tests were aimed to measure the overhead produced by applying fault-

tolerance methods to the itinerary roundtrip. Using the same building sce-

nario, we conducted another test where we randomly failed 5 nodes, never



50 Chapter 4. Mass Casualty Incident Management

Figure 4.6: Google Maps capture of the scenario location.

consecutive. Results are shown in Figure 4.8, where three different graphs are

depicted. One for the times of our application running on a 15 node WSN,

another showing a 10 node WSN, and a third on showing a 15 to 10 node

run, progressively failing nodes. The two first values correspond to the WSN

without failed nodes, following a one node per run fail until reaching the final

10 node configuration. In the figure can be seen that using the jump-after-

next fault-tolerance methode does not increase significantly the time needed

to make the roundtrip to the whole WSN, see last four samples. This is be-

cause the most time consuming task of our application are the transmissions

required to migrate the traveler agent and its data.

Tests with consecutive failed nodes have been also performed confirming the

usefulness of the application in these cases. Rountrip times, as they were on

the testbed simulations, are variable, and differ a lot from those seen in the

other tests. They are not suitable for benchmarking purposes, but they prove

the resilience of our application to all kinds of node configurations. Table 4.4

shows the roundtrip times obtained when traveling the broken network on

the building scenario.
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Figure 4.7: Field deployment.

Lap Total time Lap time (s)

1 2:26.246 2:26.246

2 4:30.442 2:04.196

3 5:47.146 1:16.704

4 6:20.464 0:33.318

5 8:02.186 1:41.722

Table 4.4: 15 node building like scenario with 5 consecutive failed nodes.

4.4.6 Energy consumption

In our tests we used TelosB compatible nodes powered by two AA batter-

ies (3V), consuming roughly 29.2mA when receiving to 20.6 when transmit-

ting, according to the manufacturer product reference guides. Experimen-

tally, we reached a mean continuous operation of our application (i.e., a

continuous migration of our traveler agents), in a scenario with 15 working

nodes powered by standard AA alkaline batteris, of nearly 5 days. Similar

lifetimes are praised by other existing WSN applications for emergency sce-

narios [GMS+07], and easily more time than the expected to rescue triaged

victims in a MCI.

4.4.7 Deployment issues

In some cases, we observed an interesting behavior when injecting agents in

a newly created WSN. When testing a network with failed nodes to check
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the behavior of the random-jump fault tolerance method, the traveler MA

got lost for a while, then reappearing following the pre-established itinerary

as if nothing happened. This issue raised important headaches to the team,

forcing the reprogramming of the itinerary, recalculate its values, etc. At

long last, not before some discouraging tests, an actual light appeared in our

testbed, not in a node from the studied WSN, but in a foreign node, not

used in the current test but powered on. The traveler MA, in one of its

random-jumps, reached a neighbor node out of its WSN, and jumped to

it.

After that, we ran more tests disconnecting every unused node and everything

worked as expected, finishing an, in the end, enriching experience which

opened an interesting research topic.

4.5 Summary and Conclusions

In this chapter we have seen how the adaptation of conventional separate

itineraries to the Agilla middleware is both feasible (in space and time), and

useful.

Regarding feasibility, in a highly resource-constrained environment such as
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Agilla running on TelosB nodes, we have developed an application in which we

can store separate itineraries with a length from 2 to 512 positions. Moreover,

we experimentally found that our Traveler MA (of 820 bytes) is able to follow

this itinerary with an approximated time of migration between nodes of 1.5

seconds.

Regarding usefulness, the inclusion of the separate itineraries (with their se-

quential and alternative entries) in Dynamic MAETT has shown the utility of

these itineraries as they allow the application to be very fault tolerant, react-

ing in front of failing WSN nodes. WSN partitions can also be easily handled

by the application just with two MAs following different itineraries.

All fault-tolerant strategies have been tested and all worked properly, allowing

to keep visiting all the nodes of all the partitions in a variable but limited

time. This time depends on the necessary number of random jumps for the

alternatives, and on the number of coincident nodes in the different itineraries

of all the Traveler agents.

In addition, we found that the middleware Agilla is flexible and robust enough

to support a new application following a new approach with agents moving

through the whole WSN according to separate itineraries. These itineraries

have been easily incorporated to Agilla, and this leads us to believe that

they can also be included in other WSN mobile agent systems running on

less restrictive environments.

One of the drawbacks of our application is the need to leave the injecting

node, the one attached to the handheld device, in connection range of the

created WSN. This forces the medical personnel to use that node as part

of the WSN, having to replace the injecting node every time a new WSN is

created. Albeit the injecting node ends up working as any other node and the

medical personnel does not have to carry any extra weight for this matter, the

need of changing it every time a new WSN has to be created adds an extra

task to the medical personnel. Not leaving the injecting node in connection

range makes the application to behave strangely after some time, to finally

end up totally motionless. Without having more Agilla internal information

regarding this issue, we figured out that the injecting node is acting as a kind

of a necessary cluster head for the WSN.

Moreover, right now, we only have seen the application working with a single

WSN. In next chapters we will see how we can modify the current architec-

ture to several independent (or not) WSNs.
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5
Clusters in WSNs using Mobile Agents

W
HEN first responders start victim triage in a Mass Casualty In-

cident (MCI) they rely on their sight to locate victims. Many

nearby victims may be left unattended by one of the first re-

sponders and be later triaged by another one, thus ending up belonging to

different overlapping Wireless Sensor Networks (WSNs). The movement of

Mobile Agents (MAs) between overlapping WSNs is desirable, but it cannot

be done in an uncontrolled manner. Agents in a WSNs should not be al-

lowed to randomly migrate to a different WSNs if no suitable node is found

in theirs.

The itinerary structure presented in Chapter 4 is well suited to define intra-

WSN routes, but fails when a foreign node enters the WSN’s radio range.

This problem is not admissible in a rescue operation and we cannot force

first responders to avoid such deployments, first because it is easy to miss

a particular victim when in haste, and second, because victim’s location is

unknown.

Manual node placing in our MCI triaging system puts us in an advantageous

position to easily build a clustered WSN. What we just have to prevent is the

unwanted migration of MAs of a WSN to another WSN while maintaining the

55
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flexibility, good roundtrip times and energy consumption of the non clustered

system. Identifying WSNs with a unique ID allows us to do so, but now we

have to deal with larger data sets, affecting both agents’ migration times and

energy consumption.

5.1 Introduction

Dynamic itineraries for mobile agents in WSN are a very interesting and

robust way of collecting, aggregating and sharing sensed data in this type of

networks. They facilitate field personnel job by maintaining an updated copy

of the status of the whole network, and even remove the need of a dedicated

node in WSN without affecting energy consumption. All of this is done in a

record time, even useful in MCI where human lifes are in danger.

A key issue that remained unanswered, though, is what to do when nodes

belonging to different WSNs make contact, or when we want to use more than

32 nodes. Up to now, a MA living in a particular WSN makes no distinction

about the nature of the node, and if, unfortunately, a foreign node reaches

that network, the MA can easily jump to that new nodes, leaving its home

WSN with no clear returning schedule.

WSN clustering is a widespread solution to improve their performance, man-

agement and size. How to assign nodes to a cluster and which one will act as

its sink (cluster head) are open problems with multiple solutions proposed.

In our case, WSNs are clearly delimited at deploying time and we can omit

the node selection step. Which node will be the cluster head is also a solved

problem in our case, as every node can rely data to an external node when

requested.

What remains undone, then, is the definition of a MA itinerary structure

which supports clustering. In this chapter we transform our previous itinerary

structure to one that supports WSN clusters. All of this is done without los-

ing the application resilience to node failures, as every fault-tolerance method

developed from the previous structure is still valid for the new one.
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5.1.1 Scenario

The scenario detailed in Chapter 4 where we had a static agent monitoring

the victim, and a MA moving around a pre-built WSN, following a pre-

computed itinerary, introduced an information technologies assisted triaging

system for MCIs. There, first responders built multiple networks of small

sensor nodes which continuously monitor MCI victims and send their updated

health statu to an Emergency Coordination Center (ECC) when possible

using an opportunistic network of handheld devices worn by first responders

themselves.

The size of each of this networks is purposedly limited to 32 nodes, a weight

limit imposed by the willingness of first responders to carry heavy weights. It

is a problem though, that when nodes from different networks make contact,

a highly probable situation, MAs pertaining to one network may accidentally

migrate to another, leaving its own network partly (or totally) unmonitored.

This situations must be avoided, as it is not desirable to leave possible curable

victims unmonitored. However, it is valuable to be able to migrate a MAs

from one network to another on purpose, being it a reallocation of resources

in case of network partitioning, or an information exchange.

The itinerary structure presented in the previous chapter is not flexible

enough to contain the necessary changes to support multiple overlapping

WSNs.

5.1.2 New separate itineraries

Following the itinerary step design introduced in Chapter 4, and considering

the limitations of the sensor nodes, we expanded the size of an itinerary

position by 8-bit (16-bit total) to insert the network identifier, now being as

follows: one control bit, two bits for the status summary of the unit, 8 bits

for the network identifier and the last five bits for the node identifier inside

the network. Of course the final user may decide to use the 13 identifier bits

in another manner. In our case, due to the limitations stated in Section 4.3,

the aforementioned structure is the most suitable, leaving space for up to 256

networks of 32 nodes each, that is, we are able to monitor up to 8192 MCI

victims. Figure 5.1 depicts the new itinerary structure using our particular

bit arrangement.
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Figure 5.1: Generic itinerary entry using the new codification.

This new itineraries still use the same simplifications used in the previous

structure, i.e., only entries of type sequence and alternative are considered,

leaving set entry type out of the study due to its difficulty to work efficiently

with battery powered devices; and that the same code will be run on each

node, just adapting the code to deal with specific nodes, e.g. those at the

ends of the itinerary.

As in the previous structure (Section 4.3), we also applied fault tolerance

to cluster-aware itineraries. Jump-after-next, random-jump, reverse-

itinerary were successfully ported to work with more complex structures.

See Section 4.3.1 for a full description of these methods.

5.2 Implementation in Agilla

As we have done for the non-clustered construction, we simulated the new

itinerary structure with TOSSIM and TinyViz, and in a closed environment.

We used the same communication protocol as used in the non-clustered im-

plementation (Figures 4.2a and 4.2b).

In this case, though, we have a 16-bit per hop itinerary structure which is

stored in the heap memory construction. To be able to create a network of

up to 32 nodes we had to increase the number of heap positions allocated by

Agilla from 20 to 40; and the tuple space size from 100 to 170. Finally we

have to modify the length of TinyOS messages from 29 to 60.

• $AGILLA/nesc/agilla/types/Agilla.h

– l.138 AGILLA_HEAP_SIZE from 20 to 40
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• $AGILLA/nesc/agilla/Makefile.Agilla

– l.18 -DAGILLA_TS_SIZE from 100 to 170

• $TOSDIR/types/AM.h

– l.65 TOSH_DATA_LENGTH from 29 to 60

After compilation of the application to reflect these changes it needs, in

a TelosB node, 45356 bytes of ROM, slightly more than our non-clustered

implementation; and 6170 bytes of RAM, around 2kB more than our non-

clustered implementation. This increase is mainly due to the extension of

the number of heap positions from 20 to 40, whose memory is pre-allocated

when installing the application.

5.2.1 Experimental evaluation

We evaluated the performance of the clustered implementation in networks

with up to 25 nodes for proper comparison with the non-clustered implemen-

tation, where we tested the application with a maximum of 25 nodes due to

the supposed weight allowance of first responders.

Apart from debugging and checking the correct working of every part of

the clustered implementation, fault-tolerance included, we want to measure

round-trip times of the new traveler agent and compare them with the non-

clustered implementation.

First, we simulated the clustered application using TOSSIM and TinyViz.

After checking its correct working we tested the fault tolerance methods also

in TOSSIM and TinyViz. Finally we moved our tests to actual nodes in a

controlled testbed, where we took time readings for evaluation and compari-

son.

As in the simulations with the non clustered implementation we first tested

the application with a circular topology of 10 nodes, all of them properly

functioning (Figure 5.2). In this first simulation we used a simple itinerary

sequence, where the traveler always jumps to its neighbor node in numeric

order.

Confirmed the correct working of the implementation in a non-faulty network

we moved our tests to a more complex one. In this case, we no longer used

the simple circular network but a randomly generated one, disabled two of its
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Figure 5.2: Circular topology with 10 working nodes.

nodes (Figure 5.3), and tested the jump-after-next fault tolerance method.

As can be seen in Figure 5.3b, every node gets visited despite two of them

being faulty, this was the expected behavior of the application and proves

that a faulty node, if not critical, is not a hinderance for the MA to visit

every other node in its itinerary.

(a) Nodes not visited. (b) All nodes visited.

Figure 5.3: Random 10 node network with 2 failed nodes.

The next test was designed to prove the correct working of the random-

jump fault tolerance method. In this case we used a linear topology network

and disabled some of its central nodes. The test wanted to prove that if

no next or after-next node of the itinerary is available to jump, a randomly

selected node, inside the domain of the WSN is selected, given it is in range.

Figure 5.4 depicts the final state of the linear network with all its nodes visited

after the agent making use of the random-jump fault tolerance method. As

it is shown, every active node in the WSN is visited, even though there is no
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continuity in the itinerary sequence. It is worth stating that the destination

node can not be predicted due to the random nature of the jump, and an

already visited node may be selected to continue the itinerary from that point.

Its nature makes it suitable as a fallback fault tolerance method, to be used

only in case any other method is able to find an appropriate next node.

Figure 5.4: Linear 10 node network with 3 consecutive failed nodes.

Testbed evaluation

After checking the correct working of the clustered application in a variety of

scenarios and with different node configurations, we compared the obtained

results to our previous implementation. It is predictable that migration times,

and subsequent rountrip times, will be larger in the clustered approach, as

the data carried by traveler agents is bigger. Remember that each itinerary

step now takes a whole stack or heap position, while in the non-clustered

approach they take just the half.

We ran the new application in 5, 10, 20 and 25 node WSNs and compared

their roundtrip times to the non-clustered approach.

We expected to see a the difference of migration and roundtrip times be-

tween the non-clustered and the clustered implementations increasing with

the number of nodes. In the end, we are doubling the number of stack and/or

heap positions needed to store the same number of itinerary steps in favor
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of the flexibility of a cluster-ready WSN. Figures 5.5 to 5.8 effectively show

the predicted differences. For example, for the 5 node network we see a

mean increase of 3.22 seconds per roundtrip, averaging up to 11.8 seconds

to perform the complete roundtrip. For the 10 node network the increase

is even bigger, a mean of 8.82 seconds per roundtrip, now completing the

full roundtrip in an average of 30.2 seconds. For the 20 node network we

move to double figure numbers, reaching a mean difference of 17.77 seconds

per roundtrip, finishing the roundtrip in around 77.1 seconds. Finally the

difference for clustered and non-clustered application in a 25 node network

is of the order of 24.74 seconds per roundtrip, completing it in 107.5 seconds

in average (Table 5.1).

# nodes Clustered time (s) Non-clustered time (s)

5 11.8 8.58

10 30.2 21.38

20 77.1 59.33

25 107.5 82.76

Table 5.1: Clustered vs. non-clustered roundtrip times.
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 0

 10

 20

 30

 40

 50

 60

 70

 1  2  3  4  5  6  7

T
im

e
 (

s
e
c
o
n
d
s
)

Lap #

Cluster aware agents

Simple agents

Figure 5.7: 20 node network clustered and non-clustered roundtrip times.

5.3 Summary and Conclusions

In this chapter we have extended the work done in the previous chapter to

allow our architecture to accept more sensor nodes and overlapping networks.
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Figure 5.8: 25 node network clustered and non-clustered roundtrip times.

We proved that with little changes to our itinerary structure, we can expand

our WSN to up to 8192 nodes. All this without increasing agent’s roundtrip

times significantly.

Concerning usefulness, separating nodes into clusters independently identi-

fied showed its utility in fault-tolerance tests, just affecting a single cluster,

leaving the rest of the network unchanged, and by allowing more than the

initial 32 monitored entities.

Moreover, we reproved that Agilla can support an application of this type,

with complex itinerary structures to move independently through a large

clustered WSN without ever colliding with agents from other clusters. And,

being Agilla one of the lightest and resource restrictive mobile agent plat-

forms, leds us to think that porting these complex itineraries to other less

restrictive mobile agent platforms will be a not-so-hard task.



6
Retrieval of Remote Moving Data in

WSNs with Mobile Agents

N
ETWORKS where nodes don’t have knowledge of the whole topol-

ogy are, by definition, very limited in functionalities. Problems

solved in traditional networks, such as routing, have to be rethought

considering the particularities of this kind of networks. Finding a particular

service in one of this networks is another, not tackled, problem. Imagine a

node needs a particular service which is moving randomly through the net-

work. It can of course, broadcast the request and flood the network with

petitions, but it will rapidly saturate the network and block any other agent,

or application, running on it.

Using some clever nodes in the network to contain more knowledge the

location of about moving services makes contacting them easier and more

efficient, while not considerably enlarging applications code. Once configured

forwarder nodes will only make requests to clever nodes, which will respond

with a route to the craved service.
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6.1 Motivation

Fetching a distant service in Wireless Sensor Networks (WSNs) may be of

great use in cases where services are limited and randomly moving through

a large area, with no expected visiting time.

For example, in a Mass Casualty Incident (MCI), stabilizing victims before

picking them up is paramount and any measure to increase the number of

saved victims is very welcome. Right now, MCI victims are stabilized by

qualified medics moving through the affected area and attending those vic-

tims they can find in eye range or using some Emergency Coordination Cen-

ter (ECC) controlled assignment. In some cases, though, to properly stabilize

a victim it may be needed a particular specialist (heart, lungs, . . . ) which

may not be available in the surroundings at the time, thus leaving the victim

not appropriately attended, or too late.

Using a service (medic) tracking algorithm in conjunction with a targeted

message sending technique could highly improve the number of saved victims

in scenarios of this type.

Current techniques are limited to the tracking part of the algorithm, not

allowing to send any message to the target.

6.2 Scenario

In our MCI scenario we had paramedics going through the affected area

stabilizing and triaging victims and equipping them with sensor nodes to

monitor their vital signs, while they wait to be rescued. These paramedics,

and therefore, victims, could take great advantage of this ability to call a

qualified medic to properly treat an injuried victim to be proberly stabilized.

Recall the scenario described in Chapter 3 and the triaging system described

in Chapter 2, where every victim receives a sensor node which reads their vital

signs and shares them with neighboring nodes, to rapidly deliver the whole

WSN summary to a passing by paramedic equipped with a handheld device.

Here we will use the nodes as a messaging infrastructure for medics and

paramedics where paramedics will create the request and medics will receive

it. For the infrastructure to work correctly we need to distinguish between

two types of nodes, those who will act as simple senders or forwarders, and
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those who will maintain an updated state of WSN’s services: forwarder and

clever nodes.

Clever nodes location is known by every node of the network, included those

carried by the services, as well as a path to reach them. How clever nodes

announcement is made to the rest of the network is not discussed here, as

there exist a lot of alternatives in the literature, for example Directed Diffus-

sion [IGE+03].

Clever nodes choice depends on the topology of the network, always looking

for those nodes (one or more) that minimizes the overall number of hops

to any service, a centroid search algorithm[KKRF12] for example. They,

clever nodes, listen for services announcements and save their last known

position, as well as the path to reach them, which is equal to the path the

message from the service used to reach the clever node, and update entries

accordingly. When they receive a service request, they respond the requester

back positively if they can assign the service, or negatively otherwise, and

forward the petition to the selected service, who then directs itself to the

requesting node position.

Forwarder nodes, on its hand, just forward or make new service requests,

sending them to one of the clever nodes and waiting for their response.

In Figure 6.1 we can see a sequence diagram depicting how a service is as-

signed to a forwarder node starting from its announcement. After the an-

nouncement to a forwarder node, service details are sent, through a multi-

hop path, to one of the clever nodes in the WSN. There, it waits until it

is updated by another announcement or until somebody requests their assis-

tance. When requested the clever node sends back the assigned service ID

to the requester and forwards the petition to the service.

6.2.1 Clever nodes

The poor knowledge WSN nodes have about the network they belong to

difficults the correct routing of service requests and responses. That’s why

we introduce clever nodes, specially programmed nodes that wait for service

requests and manage every aspect of the request, from service selection to

notification to the requester.

Clever nodes listen for service requests from one of the other nodes of the
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Figure 6.1: Clever node messages.

network and select an appropriate service from their list of available services

depending on the requirements of the request and its location. Then they

forward the received request to the selected service and notify the original

requester that a service has been assigned. The assigned service is then

removed from the list and further petitions for this type of service are assigned

to another entry.

Services are added to clever nodes with simple announcements containing

their identification, the offered services and the route they used to reach the

clever node (Figure 6.2a).

(a) Announcement (b) Request (c) Selection

Figure 6.2: Service lifecycle.

Service selection needs to consider some important aspects, both of the origin

of the petition and of the service itself, in order to minimize the time needed

by the service to reach the requester. That is, a clever node will select the
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service that minimizes the sum of the time to contact with it and the time

needed for the service to move to where it is needed, or in other words, the

proximity of the service to the request.

After assigning a service to a petition, or after a long time without contact-

ing with a particular service, clever nodes remove it from its set of selectable

nodes and, in the case of the service being assigned, start ignoring their up-

date announcements. Also if clever nodes think that the number of hops

needed to reach a service is excessive they will also remove it from its se-

lectable set. Thus, clever nodes have three methods of removing a service

from their selectable set, after it is assigned to a petition, after a time up

since the last contact and if the number of hops is higher than a thereshold.

Figure 6.3 shows the lifecycle of a saved service.

Figure 6.3: State diagram of a service in the clever nodes.

Entries in the selectable set are updated according to services’ subsequent

contacts, maintaining their identifier and offered service but resetting their

timer and updating their route.

6.2.2 Forwarder nodes

While clever nodes wait for announcements and requests, and make decisions

to efficiently manage them, the task of the other active component of the
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architecture is limited to listen and forward announcements or requests to

the next node in the petition’s route to a clever node or to a service.

To forward requests to one of the clever nodes, they rely on a pre-computed

next node which moves the petition closer to its destination. In our case

we set up the routes using the first two steps of the directed diffusion algo-

rithm [IGE+03]: interest propagation and gradients setup, with clever nodes

as interest sources and forwarder nodes setting up their own gradients and

choosing one of the shortest routes (Figure 6.4).

On the other hand, to forward a service assignment from a clever node to

the last known position of the service, forwarder nodes use the saved route

of the service announcement in the clever node and trace it backwards.

(a) Interest propagation (b) Gradients setup

Figure 6.4: Route definition from forwarder nodes to clever nodes.

6.3 Implementation in Agilla

To implement the proposed service tracking and retrieval protocol we used

Mobile Agents (MAs) over the Agilla platform as in our previous implemen-

tations. In this case we programmed three different types of agents:

Clever node static agent In this case agents are static, they reside in

the designated clever nodes listening for service announcements and

requests. When a request arrives they assign a matching service.

Itinerary cloning agent Agent injected into the selected coordination points.

They clone themselves to in range forwarder nodes and create a minimal

hop route from forwarder nodes to one of the clever nodes.
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Medic mobile agent Act as medics moving throughout the damaged area.

If during their route they detect a node with special attention, they

send a service request to one of the clever nodes.

Services mobile agent Act as medics offering services moving throughout

the damaged area. A service announcement is sent every time they

move from one node to another. They also listen for requests from

clever nodes.

For the simulations we used, as in previous works, TOSSIM and TinyViz

simulators. We started with a 25 node grid-like WSN with a single manually

selected clever node situated in the center of the network.

In the clever node, for service selection we used a simple FIFO queue, but

any more complex selection algorithm could be used, and every petition gets

answered if a matching service is available.

Simulations started with the clever node announcing itself to the network,

cloning a configuration agent to its one-hop neighbors, which keep cloning

until every node of the network has stored the next jump, always keeping

the one that minimizes the route to the clever node. When an agent arrives

to a node with less or the same jumps to the clever node, it kills itself, not

cloning anymore.

After that, we had the network set up. We then injected a single service

to the network which started moving randomly through the network using

its one-hop neighbors. After each jump, the service sent an announcement

using Agilla tuples and reactions to the clever node using the route saved in

the previous step which, when reaching the clever node, was saved into an

Agilla tuple containing the service ID, last known position and the offered

services.

Finally, we injected a medic agent which, as the service, randomly moves

throughout the WSN using only its one-hop neighbors. At random positions

it sent a service petition to the clever node using also Agilla tuples and

reactions and waited there for the confirmation.
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6.4 Evaluation

We didn’t have any problem when simulating our approach with a small

WSN (<= 32 nodes). Times were pretty good, reaching the sought service

in times of the order of 1 digit seconds, which proved that our architecture

and protocol were accurate to tackle this problem.

When moving to larger networks, though, Agilla began to complain about

buffer and memory problems in the configuration part of the simulation. Af-

ter some research we find that they were mainly because of the impossibility

of the Agilla simulator to inject agents to nodes different than the gateway

(node 0) without passing through it. Moreover, if nodes are not in connecion

range with node 0, even if there exists a path to it, the platform is unable to

inject any agent to the remote node.

We modified Agilla’s parameters to increase buffer and allocated memory,

but it was all in vain, even though we managed to increase the number of

simulated nodes up to 50 the platform kept complaining about buffer and

memory shortage.

On the other hand, while testing for a way to inject agents one by one to re-

mote nodes, increasing times between injections, increasing buffers, message

and memory sizes, . . . The simulator often crashed unexpectedly, forcing us

to start the test from the very beginning.

We believe that it won’t happen on physical nodes, as we can individually

inject agents into their destination node, not needing to overload node 0. On

the same matter, though, it may later raise problems with clever nodes not

having enough memory to maintain a reasonable working set of available

services. The unavailability of enough physical nodes prevented us to test

these situations.

6.5 Summary and Conclusions

In this chapter we have implemented a working service retrieval system with

mobile agents working on low powered sensor nodes.

We have seen that just adding a special logic to a small number of strategically

placed nodes, we can easily find remote moving services in a network of

indeterminate size. Unfortunately, in our tests we were not able to make it
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work with more than 50 nodes due to simulator problems with the injection of

multiple agents, though in the less than 50 nodes tests results were promising.
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7
Access Control in WSNs using Mobile

Agents

P
ROTECTING mobile agents has been, since their apparition, a

widely studied topic [Vig97, ST98], even the protection of their

itineraries [MB03]. Wireless Sensor Networks (WSNs) are not at

all an exeption, as they operate in open, usually non guarded environments

and access to their information is easily accessible and altered. Traditional

intinerary protecting schemes are hardly useful in these power constrained

environments.

Public key authorization credentials provide a flexible approach to imple-

menting access control in open distributed systems. WSNs being an example

of such systems; however, their low-power nature implies energy efficiency re-

quirements that may mean it is not practical to carry out computationally in-

tensive operations, such as public key operations. In this chapter we describe

a distributed access control system for WSNs applications that uses compu-

tationally efficient one-way hash-functions to implement authorization cre-

dentials in a highly resource constrained environment such as the one we use

in this thesis by adding automation to victim triaging (see Chapter 4).
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7.1 Motivation

Data and network access security in low power WSNs is, on occasion, some-

thing to take into account at the time of their deployment. The low comput-

ing power of their constituent nodes make common protection techniques to

be revised and, more often than not, discarded, before applying them.

Despite the inconvenients, it is possible, as well as desirable, to protect de-

ployed WSNs information against unauthorized accesses, both for reading

and for writing.

In previous chapters, we presented a new use case for Mobile Agent (MA)

WSNs where sensor nodes conforming a WSNs monitor, record and trans-

mit victim vital signs in Mass Casualty Incidents (MCIs). While nodes are

used to process sensitive health information, privacy and security issues of

the WSN are not addressed. Besides authentication and end-to-end security

requirements, there is a need to provide support for authorization. In partic-

ular, a sensor node has to be able to determine whether it is safe to carry out

some action on its sensitive data on behalf of some requester. For example,

to permit a doctor’s handheld device to modify victim’s data on the sensor,

or to integrate data coming from another sensor, or to accept a request to

reprogram a hosted agent.

Existing authorization approaches are not practical for this scenario. While

they may be interesting for traditional scenarios with non constrained devices,

the nature of WSNs makes it impossible to apply them. Albeit it may be

straightforward to implement static access control policies on a sensor node,

these policies require, in practice, ongoing administration to reflect changing

access requirements and direct sensor policy update or coordination with a

central authorization server is not practical given the nature of WSNs.

In this chapter, we propose a Trust Management / decentralized authoriza-

tion [BFL96, LABW92, EFL+99] style approach using public key authoriza-

tion certificates to specify authorization delegation between public keys. As

sensor nodes use low power processors with energy efficiency requirements, it

is not feasible to carry out computionally intensive operations, such as those

used in public key cryptography [Sen10].

We argue that Bloom Filters [Blo70] can be used to implement an effective

access control system for this kind of applications which doesn’t depend on
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public key cryptography. Bloom filters are implemented using one-way cryp-

tographic hash functions which are relatively cheap in terms of computation

requirements, and are appropriate for WSN applications [Sen10].

7.2 Scenario

In the scenario detailed in previous chapters, we had a static agent in each

victim monitoring them, and a MA moving around a pre-built WSN following

a pre-computed itinerary. There, we introduced information technologies to

assist in the triage system by using first responders to build multiple networks

of small sensor nodes which continuously monitor MCI victims, and send their

updated health status to the area’s Emergency Coordination Center (ECC)

using an opportunistic network of handheld devices worn by first responders

themselves.

The access control method presented in this chapter uses the existing el-

ements and infrastructure of the scenario to limit user’s access to nodes,

limiting their reading or writing permissions.

We use the ECC as the coordinating authority, having administrative rights

for the entire system that decides the security policy/permission ordering.

The ECC then delegates authority for sensor node access to their controlled

nodes by administrative groupings. These groupings can then delegate au-

thority to their teams/departments involved in the MCI which can, in turn,

further delegate to other teams or individuals. Figure 7.1 shows an example

for the used MCI scenario.

Sensor nodes then verify if a requester has permission to read or write their

data.

7.3 Bloom filters

Bloom filters [Blo70] are space efficient probabilistic data structures used to

test whether an element is or not in a set. As elements can only be added to

the set, the probability of false positives increases with the number of added

elements. False negatives, on its part, are not possible. A query to the set

returns either inside (may be wrong), or absolutely not inside.
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⊤

Police D. . . .Medical D.Fire D.

Ambulances Emergency Pers. . . . . . .. . .

. . .
Triage Sensor

Read Write

Figure 7.1: Permission scheme example.

A Bloom filter, when empty, is a bit array of a defined length m, with all its

bits set to 0. To change the values of these bits we must define a number k

of hash functions whose solutions map into one of the m array positions with

a uniform random distribution.

Adding and querying elements of the set we have to feed it to every one of

the defined hash functions to get k array positions, which will be set to 1 if

we are adding an element, or compare with the values in the array to check

if the element is in the set. If the comparison returns that the element is not

in the set, we are sure that it is not, if, on the other case, the comparison

returns that the element is in the set, it can be either because it is really in

the set or, due to the addition of other elements, a false positive.

The example in Figure 7.2 we have a 18 bit Bloom filter array where we have

defined 3 different hash functions. We have 4 elements (x, y, z, w) which we

want to check if they are in the filter. We feed them to the hash functions

and obtain 3 different array positions for each one of the elements. We then

check if these positions are set to 1 in the array. Elements x, y, z have all

their positions set to one thus, the filter returns true for these elements. Array

positions for element w, however, have one of their positions set to 0 thus,

element w doesn’t pertain to the filter, and returns false.

Bloom filters have some useful security characteristics. Given a value it is

fast and easy to check whether the element is in the filter. However, given
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Figure 7.2: Example of a Bloom filter with matching and non-matching

elements.

a suitably configured filter, it is not feasible to calculate the list of elements

contained in the filter.

The idea of coding persmissions in Bloom filters comes from micropayment

systems [RS97, Ped97], where hash chains are used to represent coins, and can

be used to provide a rudimentary form of authorization delegation [Fol03].

7.4 Bloom Permissions

We consider (Perm,≤) as a lattice of permissions P with a supremum de-

noted as ⊤ and an infimum denoted as ⊥. Given x, y ∈ Perm then x ≤ y

is interpreted to mean ”if a user has permission y then implicitly he also has

permission x”. Given a permission a ∈ Perm then define ⌈a⌉ = {x ∈ Perm |

a ≤ x} and we have that for a, b ∈ Perm then a ≤ b ⇔ ⌈a⌉ ⊇ ⌈b⌉.

We also consider P(X) as a Bloom permission filter that is configured with

the subset of permissions X ⊇ Perm, and (P ,⊇) to denote the lattice set of

all Bloom permissions. It follows that a ≤ b ⇔ P(⌈a⌉) ⊇ P(⌈b⌉). Thus, the

set of all Bloom permissions P ,⊇) is isomorphic to the set of all permissions

(Perm,≤).

7.4.1 Bloom permission delegation

The administrative authority of the WSN and thus, the owner of the policy

(Perm,≤), generates a set of Bloom permissions P(⌈a⌉) for each a ∈ Perm.

The supremum permission ⊤ ∈ Perm is assumed to be a secret ’seed’ that is
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known only to the administrative authority. All other permissions in P \{⊤}

are considered to be public. Bloom permissions are intended to provide secret

credentials that participants present in order to prove authorization for its

corresponding permission.

Permission delegation Suppose a participant holding the Bloom permis-

sion P(⌈a⌉) whishes to delegate the Bloom permission corresponding

to x ∈ Perm, where x ≤ a to another participant. The delegator

does not know the secret seed ⊤, and is therefore unable to directly

compute P(⌈a⌉). However, the delegator can compute the Bloom filter

P(⌈a⌉)∪P(⌈x⌉ \ {⊤}), which is equal to P(⌈a⌉), and pass it on to the

recipient.

Authorization verification Suppose a participant presents a bit vector

X corresponding to the Bloom permission P(⌈a⌉) as proof of autho-

rization for an operation that requires permission x ∈ Perm. The

recipient of the request checks P(⌈x⌉) = X. If the recipient holds an-

other permission a ∈ P such that b ≤ a, P(⌈b⌉) is easily computable

from P(⌈a⌉), as P(⌈b⌉) = P(⌈a⌉) ⊔ (P(⌈b⌉) \ P({⊤})).

Bloom permissions are intended to provide unforgeable secret credentials

used to grant access to restricted resources. A participant holding the Bloom

permission P(⌈a⌉) for a ∈ Perm can compute any lower Bloom permission

x ≤ a. Howerver, without knowing the secret seed permission ⊤ ∈ Perm, or

its corresponding P⌈⊤⌉, a participant holding P(⌈a⌉) cannot feasibly com-

pute / forge the Bloom permission P(⌈x⌉) where x � a.

7.5 Access control in sensor nodes

In our MCI scenario we want to restrict the acces to sensor nodes to be

sure that data read and collected by them arrives safe and unmodified to the

ECC.

We assume that, as the coordinating authority, the ECC has administrative

authority for the entire system and decides the security / permission ordering.

The ECC delegates authority for sensor access to the sensors controlled by

administrative groupings, including the police department, medical services

and fire department. These groupings delegate authority to the teams /

departments involved in the MCI, who can in turn delegate to further teams
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and individuals.

We also assume that sensors offer a set of actions to requesters (other sensors

and readers) at their interfaces. If we let (SPerm,≤) define the ordering over

corresponding sensor access permissions, for example, by a powerset lattice

over its action interface, including, rd to read sensor data, wr to modify

sensor data, fwd to accept data from a sensor and forward it, install to

install a new mobile agent and status to read system status information.

We assume there exists a secret seed action permission ⊤a that provides

a unique greater bound on SPerm. Sensors are grouped according to its

category. Let (Cats,≤) define an ordering between sensor nodes, and we

assume there exists a secret seed category ⊤c that provides a unique greater

bound on Cats. In principle, the kind of category chosen depends on the level

of access control granularity required in the application, and can range from

one single group / category, to a separate category for each sensor. For our

scenario, categories are organized as a powerset lattice of MCI departments

including police, fire, medic, etc.

The permission ordering for sensors is defined as a cartesian product order-

ing (Perm,≤) of the category ordering (Cats,≤) and the action permission

ordering (SPerm,≤). A sensor in category c and offering an action that

requires action permission p requires a requester to prove that it holds a

permission (c′, p′), or more specifically, the Bloom permission P(⌈(c′, p′)⌉),

where (c, p) ≤ (c′, p′). For example, a radiography sensor checks that a re-

quester holds permission ({medic}, {rd}) before responding with a heartrate

reading.

During the initial configuration of a sensor that has to be assigned to category

c, the ECC pre-computes a table that maps each action (permission) offered

by the device to its corresponding Bloom permission for its category. For

example, a mapping from rd action to P(⌈({medic}, {⊤a})⌉) to an authority

in the medic department, authorizing it to initialize its own sensors.

Personnel authorization for some action on sensors is done by granting the

corresponding Bloom permission. Here we assume that each participant holds

a permission (c, a) and therefore, can request any sensor action requiring per-

mission (c′, a′) ≤ (c, a). For example, a medic holding a Bloom permission

({ambulance, police}, {rd}) can read sensors placed by police and ambu-

lance departments. If a participant holding permission (c, a) is delegated the

new permission (c′, a′), then they hold the permission (c, a) ⊔ (c′, a′), whose

corresponding Bloom permission is easily computed by a set-union. Further
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research will include a role-based policy mechanism whereby participant’s

roles decide the permission that the participant holds.

The access control mechanism also applies to requests between sensors. In

addition to mediating access requests (with their corresponding Bloom per-

mission checks), a sensor also holds a maximum authorization Bloom per-

mission. This permission is used to prove authorization on any requests the

sensor may make. As an illustrative example, a sensor holding permission

P(⌈({medic, fire, police}, {rd, fwd})⌉) can request its message to be passed

by a fire department sensor, and computes and presents the corresponding

Bloom permission for ({fire}, {fwd}) to the target sensor.

A simlar mechanism can be used to delegate authority between sensors. For

example, a medic sensor can delegate authority ({police}, {fwd}) to a fire de-

partment sensor to enable its messages to be further propagated by police sen-

sors. In this case a medic sensor can (efficiently) compute its new maximum

authorization as the union of the Bloom permission P(⌈({police}, {fwd})⌉)

with its current maximum.

The proposed mechanism requires the requester to prove to the sensor that it

holds a secret (Bloom permission) credential which is effectively an authenti-

cation check. Directly revealing the secret credential over a public connection

is subject to a replay attack. Furthermore, in the case of an authorization

check, the presenting participant needs to be sure that the recipient is en-

titled to receive the permission, that is, that the recipient also holds the

permission.

7.5.1 Discussion

It is worth noting that using our scheme we are giving up some security to

improve efficiency. Its overall security is less than that provided by an asym-

metric cryptography based system using, for example, authorization certifi-

cates. On the other hand, we are assuming that system’s communications

are secure, that is, a third party cannot snort an access request with a Bloom

permission and perform a repetition attack. To solve this last issue we use

several strategies, amongst them:

1. If the application is closed, we can assume that communications are

secure (secret and authentic). For example, using symmetric cryptogra-

phy with pre-shared keys. Also consider that MCI applications usually
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Sensor Requester

Sensor Requester

Sensor Requester

x⊕ nR

x⊕ nS

nR ⊕ nS

Figure 7.3: Access request protocol example.

have a short lifespan, thus reducing the possibility of compromising the

keys.

2. Prevent the inclusion of the Bloom permission in sensor access requests.

If we consider the Bloom permission as x, we can use a protocol where

the secret key is generated by both participants (Figure 7.3).

7.6 Summary and Conclusions

In this chapter we have presented the use of hash function based permission

structures (Bloom filters) as an authorization scheme in environments where

asymmetric cryptography is too expensive.

We have seen that with Bloom filters, which require only simple hash cal-

culations, we can get an acceptable level of security in networks with very

low power resources as are WSNs. All of this theoretically without increas-

ing the application’s size to the point of not being usable in our very low

power, both computational and energetical, devices, and without delaying

the computation time in the device drastically.
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Part III





8
Conclusions and future work

I
N Chapter 1 we have presented the objectives of this thesis, being its

main goal to provide a secure system to automatically monitor victims

in real time in emergency scenarios, even though it could be used to

monitor other elements in any scenario with networking difficulties. In this

chapter we discuss how we have fulfilled the foresought objectives and present

future lines of research on this topic, on some of which we have already started

working on.

We started with an existing victim triaging system from our group, Mobile

Agent Electronic Triage Tag (MAETT) [MRMCC09], which added a first

layer of networking to victim triaging. An early form of Delay and Disruption

Tolerant Networks (DTNs) were used to carry manually collected data to the

ECCs. In figure 8.1a we can see a diagram depicting MAETT’s actors and

their role in an emergency. Victims triaged using the upper-right corner

cardboard tag, medics equipped with handheld devices to create and send

triage data through the network, the ECCs, destination of the data, and

ambulances ready to collect already triaged victims. In this system, changes

on victims’ health, be them an improvement or a receding, are not recorded

and may lead to erroneous or inaccurate victim collection.
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(a) MAETT, our starting point (b) After our first contribution

Figure 8.1: MAETT, before and after.

In the first contribution of this thesis (Chapters 3 and 4) we propose an

automated monitoring system using MAs and low-power sensor nodes to

provide real-time monitoring to MAETT. There, we use the flexibilty of MA

to autonomously take decisions depending on their context to define a robust

and low memory impact itinerary structure to visit every node of a WSN

and read the sensor readings to finally drop this data to a passing by handheld

equipped MAETT-like medic who will route the updated information to the

ECC, which will handle this updates and respond accordingly. We also equip

this itinerary structure with fault-tolerance methods in case one or more

nodes fail or go missing during the monitoring. In this first chapters we

see how this itinerary is calculated from the handheld in network building

time and how it is integrated very lightly in Agilla mobile agents and further

injected to the victim’s WSN.

Figure 8.1b shows both the new and the old elements of the scenario working

together to provide an automated victim monitoring system. Virtual WSNs

are encircled and in one of them we can see little black dots representing

agents sharing victim information inside the network. Colored smileys in

the outer part of the virtual WSNs are the agents in charge of carrying the

information collected in the WSN to the ECC in the lower right corner.

Simulations and tests done with our implementation both in closed testbeds

and in the open air proved the correct working of our system with good WSN

roundtrip times and fault tolerance support (See section 4.4.2 for tables and

figures).
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As future work regarding the agent itineraries, seen in chapter 4, it would be

interesting to port our application to other WSN mobile agent middlewares

such as WISEMAN or MAPS, to allow a direct comparison among those mid-

dlewares. Translating our application to a TinyOS (non-agent) environment

(similar to [GMS+07]) could also be interesting to get an additional under-

standing of benefits and drawbacks of using mobile agents in WSNs.

As we were researching agent itineraries we knew that our networks will

be limited to 32 nodes, mainly for two different matters: 1. The sensors’

weight and the willingness of paramedics; and 2. Sensors’s memory limits.

A decision that we later found out was very accurate given the limitations

of the simulator. Thus, we were aware that we would have to use more

than one network to fulfill the needs of a real MCI. Our second contribution

deals precisely with this matter, and we defined a clustered architecture to

increase the number of monitored victim in an emergency to more than 8000

(See Chapter 5).

In our case WSN clusters were easily defined by allowing paramedics to just

add sensors to their open network at a time. Then it was just a matter of

increasing the number of bits used to identify a node to include the cluster

identifier. Of course, the itinerary structure defined in the previous chapter

had to be redefined to include the cluster identifier. Fault tolerance methods

had also been modified to deal with this clustered implementation. Fortu-

nately, the interface between WSNs and the medics’ network had not had to

be modified as we designed it to accept any kind of data sent from a WSN’s

node.

Simulations and tests done with our implemenation of this clustered archi-

tecture, both in testbeds and in the open air, proved that our architecture

performs well and agents in different clusters do not interfere with others.

Roundtrip times were of course a bit higher than with the non-clustered ap-

proach, but were still appropriate for the monitoring needs (See section 5.2

for tables and figures).

As future work it would be interesting to improve fault tolerance methods to

assure every node is frequently visited despite using lots of random-jump

fault tolerance strategies. Also it would be interesting to compare one trav-

eller agent results with networks with more than one mobile agent travelling

the network, both with different itineraries and maybe only partial.

Once our architecture for MCI victims monitoring was finished we though
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that it would be interesting to have the possibility to ask a remote specialized

medic to come to another medic’s position if the victim that is being triaged

or treated requires special attention from an specialist. Our next contribution,

described in detail in Chapter 6 handles precisely this situation.

In this third proposal, we start with an unknown network of victims and, with

the inclusion of some management logic to few strategically selected nodes

we can easily create a route from every node to every other node, that mobile

agents can easily follow (See section 6.2.2 for the details of route generation).

Basically we look for the shortest path to the special nodes and every other

node uses this as their starting point ask this special nodes for the route to

a particular node. A simplified form of directed diffusion is used to generate

this routes.

During the simulations our agents (refer to Section 6.3 for a description of

the agents involved in this system) performed quite well in small networks.

Increasing their size caused a series of memory overflow errors in simulation

configuration time, which we believe are caused by the simulator unability to

directly inject agents to a specific node, but it has to be done always through

the node 0, which has to be unavoidably directly connected to the target

node.

We really believe that if we should be able to simulate our system with

real nodes or in a simulator supporting a direct injection alternative, the

obtained results would be interesing, making the deployment of the system

an attractive alternative.

Future work regarding the retrieval of remote systems would include, of

course, the simulation in larger networks of real nodes, testing other injec-

tion and agent deployment alternatives and, the design of a remote service

retrieval system in clustered WSNs. Designing this second system, will kill

two birds with one stone: 1. Will enable clustered WSNs to retrieve remote

services, and 2. Will solve the problem of memory overflows when working

with large networks.

A possible approach to the design of such system could be one similar to

existing routing protocols in IP networks, where routers, in our case clever

node, know where to send requests to external addresses directing them to a

neighbour router who owns the addresses or knows a path to them.

As we can see in Chapter 7 we also took the time to think about security in

our victim monitoring system. As we are dealing with valuable and critical
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health status information we do not want it to be manipulated, modified or

removed in any way, as it will worsen our victim monitoring system.

When designing this protection scheme we wanted it to be simple, lightweight

and fast, first because we want it to run in very low power devices, and second

because we don’t want the user wait for the encryption to end. We used

a known structure known as Bloom filters [Blo70] to provide a reasonable

level of protection without compromising the efficiency of the system. We

presented a theoretical approach to an access control system using one way

cryptographic hash functions which can be used in low power devices such as

our sensor nodes. The system includes permission delegation from a higher

authority allowing discrete permissions to be assigned to lower members in

the scheme.

Future work for this access control scheme will start with implementing the

scheme in Agilla and test it both in the simulator and on actual nodes.

Finally, to conclude the conclusions . . .We have built an heterogeneous sys-

tem using different MA technologies and network types, working fluently

together to offer a secure, flexible, fault tolerant and autonomous real-time

victim monitoring system. We have presented our results for each of the

parts of the system and shown the conclusions drawn in each of them. Also,

we introduced several topics to further research for each of the contributions

which we think will make the system even better.

Although we achieved good results with MAs in WSNs we believe that it is

still in its early stages. The stability of the platform, both in real devices

and in the simulator made the testing and debugging of our algorithms and

architectures last longer than expected due to random errors caused by un-

expected simulator crashes. What is more, successful tests in the simulator

crashed then when moved to real nodes, giving us unexpected headaches and

hair pulling situations, fortunately most of them solved favourably.

We strongly believe in mobile agents as an activating technology for rich

and complex WSNs applications, even the other way around, as WSNs and

their communication particularities create the perfect environment for MAs

to develop perfectly. But it won’t be until a lot of work is done in buliding a

complete and simple middleware to be used outside the research institutions.
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A
Acronyms

WSN Wireless Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

DTN Delay and Disruption Tolerant Network . . . . . . . . . . . . . . . . . . . . . . . . . . 87

MA Mobile Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

MAETT Mobile Agent Electronic Triage Tag . . . . . . . . . . . . . . . . . . . . . . . . . . 87

MANET Mobile Ad-hoc NETwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

MCI Mass Casualty Incident . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ECC Emergency Coordination Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

START Simple Triage And Rapid Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 35

95
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MTS Manchester Triage System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
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[LnKM+99] P. Larrañaga, C.M.H. Kuijpers, R.H. Murga, I. Inza,

and S. Dizdarevic. Genetic algorithms for the travelling

salesman problem: A review of representations and op-

erators. Artificial Intelligence Review, 13:129–170, 1999.

10.1023/A:1006529012972.

[LOKK97] Danny B Lange, Mitsuru Oshima, Günter Karjoth, and Kazuya

Kosaka. Aglets: Programming mobile agents in Java. InWorld-

wide Computing and Its Applications, pages 253–266. Springer,

1997.

[Mas05] D. Massaguer. Multi mobile agent deployment in wireless sen-

sor networks. Master’s thesis, University of California, Irvine,

2005.

[MB03] Joan Mir and Joan Borrell. Protecting mobile agent itineraries.

In Mobile Agents for Telecommunication Applications, pages

275–285. Springer, 2003.

http://ptolemy. eecs. berkely. edu/dgm/javatools/java-to-go
http://ptolemy. eecs. berkely. edu/dgm/javatools/java-to-go


103

[MFV+06] Daniel Massaguer, Chien-Liang Fok, Nalini Venkatasubrama-

nian, Gruia-Catalin Roman, and Chenyang Lu. Exploring sen-

sor networks using mobile agents. In Proceedings of the fifth

international joint conference on Autonomous agents and mul-

tiagent systems, pages 323–325. ACM, 2006.

[MJMW06] Kevin Mackway-Jones, Janet Marsden, and Jill Windle. Emer-

gency triage. BMJ Books, 2006.
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