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Abstract

The need of analyzing large data sets from many di�erent application �elds has fostered the

use of simpli�ed programming models like MapReduce. Its current popularity is justi�ed

by being a useful abstraction to express data parallel processing and also by e�ectively

hiding synchronization, fault tolerance and load balancing management details from the

application developer.

MapReduce frameworks have also been ported to multi-core and shared memory

computer systems. These frameworks propose to dedicate a di�erent computing CPU core

for each map or reduce task to execute them concurrently. Also, Map and Reduce phases

share a common data structure where main computations are applied.

In this work we describe some limitations of current multi-core MapReduce frameworks.

First, we describe the relevance of the data structure used to keep all input and intermediate

data in memory. Current multi-core MapReduce frameworks are designed to keep all

intermediate data in memory. When executing applications with large data input, the

available memory becomes too small to store all framework intermediate data and there is

a severe performance loss.

We propose a memory management subsystem to allow intermediate data structures

the processing of an unlimited amount of data by the use of a disk spilling mechanism.

Also, we have implemented a way to manage concurrent access to disk of all threads

participating in the computation.

Finally, we have studied the e�ective use of the memory hierarchy by the data structures

of the MapReduce frameworks and proposed a new implementation of partial MapReduce

tasks to the input data set. The objective is to make a better use of the cache and to

eliminate references to data blocks that are no longer in use.

Our proposal was able to signi�cantly reduce the main memory usage and improves

the overall performance with the increasing of cache memory usage.

Keywords. MapReduce; Multi-core; Threads; Main Memory; Virtual Memory
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Resumen

La necesidad de analizar grandes conjuntos de datos de diferentes tipos de aplicaciones

ha popularizado el uso de modelos de programaci�on simplicados como MapReduce. La

popularidad actual se justi�ca por ser una abstracci�on �util para expresar procesamiento

paralelo de datos y tambi�en ocultar e�cazmente la sincronizaci�on de datos, tolerancia a

fallos y la gesti�on de balanceo de carga para el desarrollador de la aplicaci�on.

Frameworks MapReduce tambi�en han sido adaptados a los sistema multi-core y de

memoria compartida. Estos frameworks proponen que cada core de una CPU ejecute una

tarea Map o Reduce de manera concurrente. Las fases Map y Reduce tambi�en comparten

una estructura de datos com�un donde se aplica el procesamiento principal.

En este trabajo se describen algunas limitaciones de los actuales frameworks para

arquitecturas multi-core. En primer lugar, se describe la estructura de datos que se

utiliza para mantener todo el archivo de entrada y datos intermedios en la memoria. Los

frameworks actuales para arquitecturas multi-core han estado dise~nado para mantener

todos los datos intermedios en la memoria. Cuando se ejecutan aplicaciones con un gran

conjunto de datos de entrada, la memoria disponible se convierte en demasiada peque~na

para almacenar todos los datos intermedios del framework, presentando as�� una grave

p�erdida de rendimiento.

Proponemos un subsistema de gesti�on de memoria que permite a las estructuras de

datos procesar un n�umero ilimitado de datos a trav�es del uso de un mecanismo de spilling

en el disco. Tambi�en implementamos una forma de gestionar el acceso simult�aneo al disco

por todos los threads que realizan el procesamiento.

Por �ultimo, se estudia la utilizaci�on e�caz de la jerarqu��a de memoria de los frameworks

MapReduce y se propone una nueva implementaci�on de una tarea MapReduce parcial para

conjuntos de datos de entrada. El objetivo es hacer un buen uso de la cach�e, eliminando

las referencias a los bloques de datos que ya no est�an en uso.

Nuestra propuesta fue capaz de reducir signi�cativamente el uso de la memoria principal

y mejorar el rendimiento global con el aumento del uso de la memoria cach�e.

Palabras clave. MapReduce; Multi-core; Threads; Memoria Principal; Memoria Virtual.
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Resum

La necessitat d'analitzar grans conjunts de dades per part de diferents tipus d'aplicacions

ha popularitzat la utilitzaci�o d'entorns de programaci�o simpli�cats com ara MapReduce. La

seva popularitat actual es justi�ca pel fet de proporcionar una abstracci�o �util per expressar

processament paral·lel de dades i per oferir una forma efectiva de fer transparent per al

programador d'aplicacions detalls sobre la implementaci�o de les t�ecniques de sincronitzaci�o,

toler�ancia a errors i balanceig de c�arrega.

Els entorns d'execuci�o MapReduce tamb�e han estat adaptats per als sistemes multi-core

i de mem�oria compartida. Aquests entorns proponen dedicar un core de CPU diferent a

cada tasca map i reduce i aix�� executar-les de forma concurrent. Per una altra part, les

etapes Map i Reduce comparteixen una estructura de dades comuna on s'aboquen la gran

part de computacions realitzades.

En aquest treball descrivim les limitacions m�es importants dels entorns actuals

d'execuci�o d'aplicacions MapReduce en entorns multi-core. Primer descrivim la rellev�ancia

de les estructures de dades utilitzades per mantenir les dades intermitges en mem�oria. Els

entorns actuals estan dissenyats per mantenir tots els resultats intermitjos en mem�oria

principal. Quan les aplicacions en execuci�o han de tractar grans quantitats de dades

d'entrada, la quantitat de mem�oria disponible no �es capa�c d'emmagatzemar la quantitat

d'informaci�o necess�aria i es produeix un greu problema de rendiment.

Proposem un nou subsistema de gesti�o de mem�oria per permetre que aquestes es-

tructures de dades puguin processar una quantitat il·limitada de dades amb l'�us d'un

mecanisme de spill al disc. Tamb�e presentem un altre mecanisme per a gestionar els

accessos a disc que generen tots els threads que participen al c�omput.

Finalment, tamb�e hem estudiat l'�us efectiu de la jerarquia de mem�oria per part

de les estructures de dades dels entorns MapReduce multi-core i proposem una nova

implementaci�o de l'execuci�o parcial de tasques MapReduce a les dades d'entrada. L'objectiu

�es fer un millor �us de la mem�oria cau, aix�� com eliminar les refer�encies als blocs de dades

que ja no es fan servir.

La nostra proposta ha estat capa�c de reduir signi�cativament la utilitzaci�o de la
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mem�oria principal, aix�� com millorar el rendiment general de les aplicacions amb un

increment en la utilitzaci�o de la mem�oria cau.

Paraules claus. MapReduce; Multi-core; Threads; Mem�oria principal; Mem�oria virtual.
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Resumo

A necessidade de analizar largos conjuntos de dados desde distintos tipos de aplica�c~oes

tem promovido o uso de simplicados modelos de programa�c~ao como MapReduce. A atual

popularidade �e justi�cada por ser uma abstra�c~ao �util para expressar processamento paralelo

de dados e tamb�em por efetivamente esconder detalhes de sincroniza�c~ao, tolerancia a

falhas, e gerenciamento de balanceio de carga do desenvolvedor da aplica�c~ao.

Frameworks MapReduce tamb�em foram portados para sistema multi-core e de mem�oria

compartilhada. Esses frameworks prop~oe dedicar os diferentes cores de uma CPU para

cada tarefa Map ou Reduce a ser executada concorrentemente. As fases Map e Reduce

tamb�em compartilham uma estrutura de dados comum onde o processamento principal �e

aplicado.

Em este trabalho n�os descrevemos algumas limita�c~oes dos atuais frameworks para

arquiteturas multi-core. Primeiro, n�os descrevemos o relevante da estrutura de dados

utilizada para manter todo o arquivo de entrada e dados interm�edios em mem�oria. Atuais

frameworks para arquiteturas multi-core foram desenhados para manter todos os dados

interm�edios em mem�oria. Quando se executam aplica�c~oes com grande conjunto de dados

de entrada, a mem�oria dispon��vel torna-se muito pequena para armazenar todos os dados

interm�edios do framework apresentando assim uma s�eria perda de desempenho.

N�os propomos um subsistema de gest~ao de mem�oria que permita as estruturas de dados

processar um ilimitado conjunto de dados atrav�es do uso de um mecanismo de spilling no

disco. N�os tamb�em implementamos uma maneira de gerenciar o acesso concorrente ao

disco de todos os threads que est~ao participando do processamento.

Finalmente, n�os estudamos o uso e�caz da hierarquia de mem�oria dos frameworks

MapReduce e propomos uma nova implementa�c~ao de uma tarefa Mapreduce parcial para

o conjunto de dados de entrada. O objetivo �e fazer um bom uso da cache em elimiar as

referencias para os blocos de dados que n~ao est~ao mais em uso.

Nossa proposta foi capaz de signi�cativamente reduzir a mem�oria principal utilizada e

melhorar o desempenho geral com o incrememento do uso da mem�oria cache.

Palavras chave. MapReduce; Multi-core; Threads; Mem�oria Principal; Mem�oria Virtual.
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Chapter 1

Introduction

In the early years of modern computing, when the �rst electronic computer was developed,

the famous ENIAC in 1946 occupied a huge room at the University of Pennsylvania in

the United States. At that time many of the most experienced technologists thought,

except for advanced military applications, such as breaking encryption codes or calculate

trajectories of projectiles, no one would want something as big as that. As technology has

advanced, the machines invaded the civilian world. Today there are computers everywhere,

it is hard to look at a side where there is not one. The evolution of technology has reduced

the physical size of computers and increased performance on a single workstation, however

the increased speed of the processors found growing barriers, as the physical limits were

reached. Today it is not possible to increase the frequency of processors as was observed

in the 90. The need for processing capacity is no longer achieved by faster processors and

now being obtained by increasing the number of operations performed simultaneously, i.e.

parallel processing.

Parallel systems are computer environments composed of a set of processing units that

work together in a simultaneous way with the objective of solving a problem. Parallel

environments are attractive because of their processing throughput, and their larger

amount of main memory and storage capacity. Such systems have emerged as a solution

to solve problems in totally di�erent areas [12]. The set of typical applications of these

systems include, physical systems simulations, and technical computations in the diverse

areas of the chemistry, physics, biology, materials science, climatology, astrophysics and

subsurface transport [5].

However, the use of parallel systems becomes useless if the necessary applications are

not properly designed. In general, the idea of processing a data set consists of simple

strategies, but becomes complicated when it is necessary to process large data sets in a

distributed way.
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MapReduce[11] is a programming model for expressing distributed computations and

a distributed execution framework for processing large amounts of data [29]. In the

MapReduce programming model, the user defines an algorithm using only two functions,

Map and Reduce.

The Map function takes an input data set and produces a set of intermediate key/value

pairs. The Reduce function receives an intermediate key K and a set of values for that

key. It aggregates together these values to create an output for the problem. Typically

just zero or one output value is produced per Reduce operation. In general, reductions

must wait until all Map operations are completed.

The MapReduce Model uses combiner functions to allow the local aggregation of values

of each Map. The complete MapReduce model scheme can be seen in Figure 1.1.

Figure 1.1: Basic data flow for MapReduce programming model.

The main advantage of MapReduce is to provide a simple abstraction for the developer,

transparently handling most of the internal implementation details in a scalable, robust,

and efficient manner[29].

The goal of MapReduce was focused on hiding complex problems of parallel execution

like fault tolerance, data distribution and load balancing [2][26]. The MapReduce usage

allows programmers to exclusively search for solutions to specific problems, as opposed to

how those computations are actually carried out or how to get the data to the processes

2



that need them.

MapReduce execution gets parallel speedup by running many Maps concurrently, each

on a di�erent part of the input �le, and by running many Reduces concurrently on di�erent

keys. In short the charm of MapReduce is that the programming model hides all the

concurrency management problems from the programmer[30].

In cluster-based MapReduce frameworks like Hadoop[44], the idea is to spread data

across the local disks of nodes and run processes on nodes that hold the data. The complex

issues of task managing storage in such environment are handled by using a distributed �le

system assembled over MapReduce. In most Hadoop executions, a distributed �le system

is used to store both the input to the Map phase and the output of the Reduce phase [10].

In Hadoop, each Map task is executed on the node that holds the input split, so that

the Map will be processing local data. If it is not possible to run a Map task on local data,

it becomes necessary to send input key/value pairs across the network.

Map and Reduce tasks run in isolation without any mechanism for direct communication.

During the shu�e and sort phase, the intermediate key/value pairs are merged, sorted

and then copied from the Map to the Reduce tasks nodes.

The need for faster processing required on a simple workstation in recent years,

provided a growth of multi-core and multi-processor systems. The advances in technology,

circuits integration and the limited performance of wide issue intruction execution, made

multi-core and multi-processor shared memory architectures become the basic building

block of parallel systems. They embeds multiple processing cores into a single system to

exploit growing amounts of thread-level parallelism for achieving higher overall chip-level

instruction-per-cycle rates.

By working over multi-core, cluster-based MapReduce frameworks exploit the paral-

lelism o�ered by current parallel workstations by running multiple, independent MapRe-

duce instances on the same node. The framework schedules tasks dynamically across

the available processors in order to achieve parallelism, load balance and maximize task

throughput.

Typical programming view of MapReduce frameworks can be divided into two set of

functions, the user and system set. The Map user-de�ned function is applied in parallel over

the input data, producing a list of intermediate key/value pairs. The Reduce user-de�ned

function is applied in parallel to all intermediate pairs with the same key. The system set

is composed of system-de�ned functions that are responsible for exploiting the available

parallelism, data distribution and intermediate key/value management[24].

In shared-memory systems, the intermediate data produced by the Map phase and the

Reduce phase output are stored in shared memory. Compared to cluster-based approaches,
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the multi-core has as main advantage its faster core-to-core communication through shared

memory[7][34]. For multi-core MapReduce frameworks the most important aspect is that

the Map and Reduce tasks handle with intermediate key/values through a shared memory.

Unlike the cluster-based where the handling takes place through the distributed file system

and network.

The use of a data structure organized in rows and columns makes Map and Reduce

tasks independent. Each Map task has its own row in a hash table. Using a unique hash

function, it finds the key position in the hash table. By processing the keys per column,

each Reduce task has access to all the repeated keys produced from different Map tasks,

as can be seen in Figure 1.2. Such a strategy avoids data copying, as reduce tasks reuse

the data structure product of the Map phase.

Figure 1.2: Intermediate data structure organization.

Metis[30] and Phoenix++[42] were implemented to support multi-core MapReduce

implementations,

In general, Phoenix++ and Metis work the same way, by using hash tables as a base,

which allows quick key lookup with O(1) complexity. Reduce tasks have simple and fast

access to all values of the same key by accessing columns of the data structure. Moreover,

Phoenix and Metis add rows to the hash table to increase the parallelism achieved, making

each worker has its own memory space.

In order to minimize the number of repeated keys in the intermediate data structure,

Phoenix++ and Metis implement a combiner function, which aims to make a local thread

reduction, saving main memory. After running the combiner function, the framework no
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longer stores a set of values and stores only a combined value of a given key.

The main di�erences between Phoenix++ and Metis is how they allocate the interme-

diate data structure and how they store the keys/value pair per hash entry.

In order to allocate the intermediate data structure, Metis tries to predict its size. First

samples a part of the input and calculates the number of di�erent keys, then allocates

the hash table to have a speci�c amount of entries so that each entry contains a bounded

number of keys. Phoenix++ on the other hand uses a resizable hash table, which can

scale depending on the key distribution.

To store the keys/value pairs in hash entries, Phoenix++ uses a vector and Metis uses

a B+tree index. The vector usage is more advantageous to store sets of keys from non

repeated keys input, that do not require to be sorted. On the other hand, the use of trees

is most advantageous for large sets of repeated keys.

Current MapReduce frameworks deal with some major performance problems. MapRe-

duce frameworks are not designed to be e�cient if the intermediate data do not �t in main

memory.

Large input MapReduce applications provide a key distribution which causes the

intermediate data structure to grow. On multi-core environments, such data structures

can consume all the available main memory. When the available memory is not large

enough to store the data structure, it creates a paging �le on the hard disk, starting the

use of virtual memory. Continuous hard disk access makes the framework have a severe

performance loss.

Moreover, dealing with large datasets in main memory does not make scalable MapRe-

duce frameworks. Such behavior is presented because MapReduce frameworks present

a high contention when using threads across multiple chips. Due to non-uniform mem-

ory access e�ects, the cost are increased when more chips are used, obtaining a worse

performance with increasing number of threads[45].

Another major problem of multi-core MapReduce frameworks, it is the low cache

memory data-locality, when it is necessary to process large data sets. The large number

of di�erent keys produced and the growth of the intermediate data structure makes it

di�cult to keep all relevant data in cache memory.

In order to solve the problems presented in multi-core MapReduce frameworks, we

designed and implemented a solution that manages, handles and stores keys in a more

e�cient intermediate data structure.

In this work we describe an engineering technique for the MapReduce runtime library

to minimize the memory footprint and execution-time overheads when it is necessary to

manipulate large data sets.
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The proposed approach is divided into two major parts: a memory management system

for the intermediate data structure with a set of parameters and limits to synchronize

spilling of multiple threads to the hard disk, and a partial MapReduce system optimized

for better cache memory data-locality.

The memory management system for the intermediate data structure prevents that

the amount of intermediate data generated consumes the entire main memory. Our

proposed approach monitors the main memory usage on runtime, until a pre-de�ned limit

is met. Then it moves key/value pairs between main memory and hard disk until memory

is available again. Furthermore, using a set of parameters and limits, our mechanism

synchronizes the threads, thus avoiding any competition when spilling on the hard disk.

Our memory management mechanism adapts to changes in the available memory in the

execution environment, caused by sharing the system between di�erent applications.

The proposed partial MapReduce system aims to increase the cache memory data

cache locality. The mechanism groups execution of Map and Reduce phases such that the

Reduce phase begins as soon as the number of keys generated in the Map phase reaches a

pre-de�ned limit. Such a strategy assures that the most relevant data is maintained into

cache memory. The main issues of this proposed mechanism are:

• Partially stop the production of keys by the Map phase when reaching a cache

size-�t limit;

• Reduce the data produced partially so that the relevant data can �t in the

last-level cache, and only then return to run the Map phase;

• By restricting the amount of keys produced by the Map phase and run the

Reduce phase before the end of all Map operations it is possible to keep fewer

keys repeated in memory;

• Perform a global reduction when all the input has already been processed.

1.1 Objectives

The main objective of this work is to design, implement and evaluate a mechanism to

improve the performance of multi-core MapReduce frameworks through e�cient handling

of intermediate data structures. The strategy to solve this problem focuses in improving

the integration in memory hierarchy, hard disk, main memory and cache memory. The

speci�c objectives of this work are numbered as follows:
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1. Evaluate Metis and Phoenix++ performance using MapReduce applications

that process large data sets and identify the potential bottlenecks in multi-core

MapReduce frameworks;

2. Design and implement a memory management mechanism for multi-core MapRe-

duce frameworks that deals with changes in the amount of available memory and

reduce the main memory usage when the data do not �t in main memory;

3. Design and implement a mechanism to store and manipulate keys in a intermediate

data structure on MapReduce frameworks, which achieves better performance by

increasing data locality;

4. Propose a set of parameters that must be added to multi-core MapReduce

frameworks to manage the use of cache memory, main memory and hard disk for

each speci�c system;

5. Evaluate the performance improvement of the proposed solutions.

1.2 Work Organization

Through the objectives previously proposed the outline of the work follows this organization.

Chapter 2: Thesis Background. Presents the MapReduce programming model and

the related work on multi-core architectures. Introduces a brief explanation of

intermediate data structures and the inuence of key distribution, in addition to

the problem with the growth of intermediate structures.

Chapter 3: Proposal of Virtual Memory Management. Presents the proposed

mechanism to improve Virtual Memory Management, as well as details in the

implementation of the proposal.

Chapter 4: Proposal of Memory Hierarchy Management. Presents the proposed

mechanism to improve the memory hierarchy integration, as well as details of the

implementation, advantages and main points.

Chapter 5: Evaluation. Describes the used scenario and provides an explanation of

the results of our proposal as well as the types of applications and workloads.

Chapter 6: Conclusions. Finally, we present a conclusion of this work, future work

and open lines.
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Chapter 2

Thesis Background

In this chapter we �rst introduce the MapReduce programming model describing its

principles and some relevant details not visible to programmers. We start by introducing the

MapReduce programming phases and the internal operations that frameworks must provide

in between them. Then, we describe the existing multi-core MapReduce implementations

attending their architectural di�erences, focusing our description in the speci�c details

of the intermediate data structures they use. Of special importance are key distribution

and how current data structures tolerate data growth and variations of key distributions.

Finally, we discuss the inuence of the memory hierarchy in multi-core MapReduce

frameworks

2.1 MapReduce Programming Model and Framework

MapReduce[11] is a programming model originally developed by Google for expressing

distributed computations on massive amounts of data. It is also a private framework for

large-scale data processing on clusters of commodity servers [29][33][46]. Its main objective

is to facilitate the task of parallel programming. It proposes a way of abstracting the

details related with data distribution, load balancing and fault tolerance through a clear

and simpli�ed API of a distributed framework. The work of the programmers is to design

a solution to their problems by applying the MapReduce model. Then, the framework is

in charge of parallelizing the computation among the computing resources [14][15].

Since its introduction of MapReduce, apart from its intensive use by Google for tasks

involving large datasets each day, it has gained popularity by the widely use of Hadoop

[44], an Apache project MapReduce implementation. Hadoop has been used regularly by

public and private institutions like Yahoo, eBay, Facebook, Twitter, Amazon and IBM

[19].
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All MapReduce computations are arranged along a set of operations that take advantage

of a set of distributed computing resources in a cluster[35][31]. In Google and Hadoop

implementations, there are two main subsystems inside the framework:

• Task management environment: in charge of forking, synchronization and elimi-

nation of computation worker tasks;

• Distributed �le system: MapReduce frameworks use their own �le systems like

GFS [18][27] or HDFS [44] to store datasets. They provide read, write operations

on a distributed data repository and allow the replication of blocks as a fault

tolerance method.

Once a problem is speci�ed in terms of the MapReduce programming model, we can also

use that design to execute applications on any shared memory, multicore CPU computer

[9]. Then, the programming model becomes our point in common with the cluster original

implementations. This model is based on the following concepts [25]:

1. Iteration over the input.

2. Computation of key/value pairs from each piece of input.

3. Grouping of all intermediate values by key.

4. Iteration over the resulting groups.

5. Reduction of each group.

The terms Map and Reduce come from Lisp operations with the same name. In practice,

Reduce here can be signi�cantly di�erent from the Lisp's in that the output does not need

to be smaller than the input, and may in fact be higher [9].

The most viable approach to e�ciently tackling large-data problems today is to divide

and conquer, which is a fundamental concept in computer science that is introduced very

early in typical undergraduate curricula. The basic idea is to partition a large problem

into smaller sub-problems. To the extent that the sub-problems are independent [1], they

can be tackled in parallel by di�erent workers, represented by threads in a processor core,

cores in a multi-core processor, multiple processors in a machine, or many machines in a

cluster.

MapReduce frameworks perform parallel processing �rst by distributing the data among

a group of nodes. Then, each worker applies the same computation to a di�erent local

input data block [36].
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The MapReduce programming model has been e�ective in solving some problems

because it easily �ts many solutions to large data analysis. Expressing computation in

terms of Map and Reduce operations exhibits the inherent parallelism of an application,

allowing the e�cient exploitation of distributed machines by executing many tasks in

parallel [4]. The importance of MapReduce is providing an e�ective tool to tackle the

problem of large-scale data processing. It represents an e�ective new way of organizing

the computations needed at a very large scale [29].

2.1.1 MapReduce Programming Model

As previously mentioned, the MapReduce programming model is simple. The input data

format is application-speci�c, and must be speci�ed by the user [22][37][28]. In principle,

programmers must design a solution using Map and Reduce operations. From the point

of view of the programmer, the model can be expressed in the following stages that are

shown in Figure 2.1.

• Input is split in blocks and each map task receives one block as its input;

• Map tasks receive a key/value pair (a record) from each entry of its input block.

For text inputs, the key is the input �le line number while the value is the text

of the line;

• Map tasks apply some computation to each key/value input pair and generate

zero, one, or several di�erent key/value outputs;

• Reduce tasks input is a unsorted set of all values generated by all map tasks

associated with a speci�c key;

• Reduce tasks apply some computation, usually some kind of reduction operation

such as summation, to the set of values and generate an output as a solution to

the problem;

• The disjoint set of keys and values received by each reduce task is sorted by key.

Some relevant consequences are derived from this model.

• Map tasks are executed on local blocks of data without any interdependency;

• At the end of the execution of the map tasks, they generate a set of data called

intermediate key/value pairs. This set of values is automatically shu�ed (merged)

and sorted by the framework before providing input to reduce tasks;
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� Reduce tasks cannot generate a solution until all map tasks have finished their

execution;

� Reduce tasks do not have any interdependency.

Figure 2.1: Full Programming Model Map Reduce Schema.

In addition to the Map and Reduce operations, there are helper functions to increase

efficiency: combiner and partitioners, as shown in figure 2.2. The combiner functions

allow the aggregation of values for the same key at the end of the map execution. The

partitioner functions allow us to define the distribution of keys among the reducers.
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Figure 2.2: MapReduce Model With Combiner Functions.

2.1.2 Multi-core MapReduce Programming Model

There are different implementations of MapReduce for parallelizing computing hetero-

geneous and multi-core environments, for FPGA chips as the FPMR [40], GPU[4], [20],

[21], [41], [13], [32], [6], [3] and especially for multi-core architectures and multi-processor

shared memory as Phoenix[38][45], Phoenix++[42] and Metis[30], where we are focusing

our work.

As for cluster systems, multi-core MapReduce implementations require the programmers

to design their algorithms using two functions: map and reduce. Multi-core MapReduce

frameworks are available for programmers in the form of libraries, while Hadoop imple-

mentations provide an API via a Java runtime system in the form of a set of classes and

objects.

Typically, the library partitions the input into fixed size blocks and calls the specific

user map implementation on each block. The framework usually executes one thread per

CPU core for running map tasks.

Each map task generates a list of intermediate key/values as its output. When all

input blocks are processed by map tasks, the library starts creating reduce tasks, again

one per core, to call the specific user reduce implementation. This time, the library calls

reduce once for each distinct key produced by the map tasks. Each reduce generates a set

of output key/value pairs. Finally, there is a merge step where the framework sorts all
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reduce outputs by key.

Figure 2.3: MapReduce Programming Model.

The main benefit of this model is simplicity. The programmer provides a simple

description of the algorithm that focuses on functionality and not on parallelization [38].

Frameworks make use of multi-core resources by running many map tasks concurrently,

each on a different input block, and by executing many reduce tasks on different keys.

2.2 Multi-core MapReduce frameworks

The performance of MapReduce frameworks such as Hadoop is managed by the configura-

tion of a large number of parameters. System managers are responsible of modifying default

values to increase the efficiency of the platform for running a specific set of applications.

It is very important to have a good implementation of the sort-merge algorithm that

must join all intermediate key/values generated by map tasks, sort them and send the

joined values to each reduce task. This operation depends on the actual bandwidth of

both disk and network systems [11].

The multi-core MapReduce frameworks can be understood as interleaved models of

parallel and serial computation operating in steps. At each step, the user-defined serial

functions are executed independently in parallel. Each step consists of the consecutive

execution of the main phases, Map and Reduce [19].

The multi-core MapReduce frameworks have been designed to use the shared main

memory of the system. All map and reduce tasks operate in a shared data structure that

must be stored in main memory. This approach takes advantage of the rapid communication

between tasks through shared memory [7]. Therefore, the design and performance of the

data structures used to store and retrieve intermediate data are crucial in overall system

performance [45].
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MapReduce frameworks for multi-core architectures typically make extensive use of

pointers. All the framework main functions provide pointers to the input/output data

buffers. The use of pointers allows the data manipulation through all the phases without

the need for copying large amounts of data [38]. For instance, keys are not copied to

intermediate data structures. Instead, pointers to keys in the original input are used as

seen in Figure 2.4. An additional benefit is to simplify the implementation for any key

data type and size.

Figure 2.4: Multi Core MapReduce Framework.

2.2.1 Phoenix

Phoenix implements MapReduce for shared-memory systems [38][45]. It presents an API

to the programmer through a framework that deals with the issues of parallelization.

It consists of a set of functions that allows the programmer to initialize the framework

and link it with the application to be executed. The Phoenix runtime system spawns

multiple processes or threads that apply Map and Reduce functions concurrently across

the elements of the input dataset [45]. The API guarantees that within a partition of the

intermediate output, reducers will process the input pairs in key order, making it easy to

produce a sorted final output that is often desired. The Map and Reduce functions are

declared as void pointers wherever possible, providing flexibility in their declaration and

fast use without conversion overhead.

To start the Map stage, the framework uses the Splitter function to divide input into
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equally sized units to be processed by the Map tasks. The Splitter function is called

once per Map task and returns a pointer to the input data that will be processed. When

a MapReduce application starts a job, it spawns multiple workers and binds them to

different CPU cores. The Map tasks are allocated dynamically to workers and each one

emits intermediate key/value pairs, which are stored in an intermediate data structure.

Figure 2.5: Phoenix intermediate data structure Map Phase.

Phoenix uses a matrix as intermediate data structure as shown in Figure 2.5. Each

worker responsible of a map task accesses a different row of the matrix.

When the Map worker emits a key, it uses a hash function to determine a position

in its own row. This position contains a pointer to a keys array where the emitted key

is searched. The keys in the keys array are kept sorted to accelerate this search process.

For each key contained in this keys array there is another array where values are stored.

When a key already exists in the array of keys, the new value is just appended to the

array of values. If the emitted key is not found, (a pointer to) the actual key is stored in

the keys array. When a keys array is full, it is dynamically doubled. The same happens

with the values array.

In summary, each map worker uses a hash function shared by all map workers. It

accesses a row of pointers as a fixed-sized hash table. For each hash element, there is a

hash bucket containing keys. Each array of keys is implemented as a contiguous buffer.

The framework must wait for all Map tasks to complete before initiating the Reduce phase.

In the Reduce phase, aiming to quickly join all the equal keys and their values, each
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Figure 2.6: Phoenix intermediate data structure Reduce Phase.

reduce worker retrieves all the keys and values of a column of the matrix as shown in

Figure 2.6. By assigning different workers to different columns all keys and its associated

values are merged. When a reduce worker finishes reduction in one designated column,

the framework is responsible of assigning another column to be processed.

The input of each reduce task is a set of arrays already sorted by key and at the end

of the reduce phase, each key has only one value associated with it. In the last step the

final output from all reduce tasks is merged into a single buffer, then sorted by keys. To

Phoenix, this Merge phase is considered optional.

2.2.2 Phoenix++

As a complete revision of the original Phoenix, Phoenix++[42] was developed to im-

prove execution speed through modularity in critical sections. First, it provides a flexible

intermediate key/value storage abstraction that permits to adapt the specific implementa-

tion to the features of the workload. And second, it includes a more effective combiner

implementation that can minimize memory usage.

As an improvement from the first implementation, Phoenix++ considers different types

of key distributions and basic execution parameters, which directly influence the use of

shared memory.

Phoenix++ classifies MapReduce applications by the number of keys that the map

tasks will emit:
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� 1:1 - each task outputs a single, unique key;

� *:k - any map task can emit any of a fixed number of keys, k;

� *:* - any map task can emit any key, where the number of keys is not known

before execution.

The idea of knowing the type of key distribution is to allow the user to choose a type of

intermediate data structure to be used from a list of options. Phoenix++ provides three

types of intermediate data structure to choose from

Figure 2.7: Phoenix++ non-blocking shared array.

� Common Array (1:1): a non-blocking array structure shared across all threads,

as it is shown in Figure 2.7. The common array leverages the fact that each

emitted key is unique and all threads can write into the same array without any

synchronization.

Figure 2.8: Phoenix++ fixed-size thread-local array.

18



� Array (*:k): a fixed-size thread-local array implementation, as it is shown in

Figure 2.8, which requires the keys to be integers within an a priori known range.

For tasks with a known, small key cardinality, insertion into a fixed size array

avoids the cost of hashing keys and repeatedly checking if the hash table should

be resized. Provides an increase in performance in cases where there is a small

computation per task.

Figure 2.9: Phoenix++ variable-width hash table.

� Hash table (*:*):This is the main improvement from the previous Phoenix

version with the objective to improve the search in large keys arrays. It is a

variable-width hash table implementation where each map thread can resize its

own hash table, as it is described in Figure 2.9. This ensures that insertion

complexity is kept in the order of O(1) even in the presence of an unexpectedly

large number of keys. With this structure, Phoenix must prevent the loss of

correspondence between the number of keys of each row, which would make it

difficult to group values of the same key, through the different threads. At the end

of the Map phase all keys and values are copied to a fixed-size hash table, where

the number of columns is the same as the number of reduce tasks to launch.

The use of distinct data structures to adjust the framework to each workload key

distribution improves the efficiency of handling specific known applications. In those cases,

the volume of data to be processed may not be necessarily large.

In addition to using different intermediate data structures Phoenix++ also has a

combiner function that performs a local reduction per thread, after each key/value pair

is emitted by the map function. The combiner function reduces the amount of memory

required when having multiple values for the same key inside each Map task.
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2.2.3 Metis

Using Phoenix as a base, Metis[30] is an improved multi-core MapReduce framework. To

increase the performance with most types of workloads, Metis makes use of three main

strategies

� The use of combiner function;

� A new data structure to store intermediate key/values;

� A key/value distribution prediction phase.

All Map workers have a hash table to store keys and values and use the same hash

function to ensure a good distribution of keys throughout the hash table. To avoid

competition between different threads on the same memory region, each thread has its

own Hash-tree, which is represented by each row of the matrix shown in Figure 2.10.

Each hash table entry points to a B+tree to store keys and values. The idea is to

achieve a theoretical O(1) search complexity accessing the hash table. Then, assuming N

keys stored in each hash bucket, traversing the tree to find the key position has O(logN)

complexity. If the key already exists, the worker adds a new value to the key list. If the

key does not exist, then the new key is inserted into the tree.

Figure 2.10: Metis intermediate data structure.

Some types of workload, exhibit a homogeneous key distribution in the Map output.

This predictability helps obtaining an approximate sizing of the intermediate data structure,

providing an equal distribution of keys across the hash table. Metis uses a prediction phase

to define the amount of entries in the hash table. The idea is to predict the total number
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of distinct keys that a Map task can generate. Metis makes this prediction counting the

total number of distinct keys issued over the �rst 10% of the input �le, and extrapolating

these results to the total execution.

Then, Metis allocates a hash table that is big enough to contain a certain average

number of keys per hash entry. In this way, search and insert complexity remains bounded.

By default, Metis tries to keep 10 distinct keys per hash entry.

2.2.4 Comparing Multicore MapReduce Frameworks: Interme-

diate Data Structures

Generally, the di�erent implementations of MapReduce work in the same way, following

an execution timeline divided between Map and Reduce phases. In large collections

of computers that form the clusters, the entire operation of communication between

di�erent phases is dominated by network performance. However, in multi-core MapReduce

frameworks there is no actual communication between di�erent phases as map and reduce

tasks share the same intermediate data structure.

The big di�erence between distinct multi-core MapReduce frameworks is the data

structure they implement and the way that they manage it. The management process

needs to consider multiple factors in order to obtain acceptable performance on multi-core

architectures.

Each Map task must avoid accessing the same positions when inserting keys and values,

saving as much locking and cache contention costs as possible. An intermediate data

structure must be able to maintain the keys sorted, allowing quick search and insertion,

and accelerating the combination of equal keys. Di�erent MapReduce applications pressure

in di�erent ways intermediate data structure. In this context the Map phase represents

most of the insertion work on the intermediate data structure for processing the input

data, producing and organizing keys. Also, Map tasks usually emit repeated keys in their

own output, which makes it relatively important to the intermediate data structure the

ability to perform a fast search for already existing keys.

The Reduce phase must consider all instances of a given key at the same time, grouping

the output of di�erent Map tasks. The Reduce tasks should generate an output organized

with the objective of minimizing the cost of the Merge phase [30].

Comparing the current main implementations of MapReduce for multi-core architecture,

Phoenix++ and Metis exhibit signi�cant di�erences in the intermediate data structure

used. Phoenix++ promotes the use of three adaptations of intermediate data structure on

the same framework. The user becomes responsible for deciding what type of intermediate
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data structure should be used. This procedure makes it necessary to know about the type

of workload of the application.

The use of a hash table is attractive for workloads with many repeated keys. Phoenix++

chooses to use a resizable hash table to store map outputs. The use of this strategy requires

Phoenix++ to make an extra copy between map and reduce phases, to retrieve the indices

that allow reduce tasks process equal keys. Variable-width hash table allows the framework

to avoid waste of main memory, since usually di�erent Map workers may emit di�erent

sets of keys, ranging from many repeated keys to many di�erent keys.

Metis uses in a di�erent data structure, freeing the user from the responsibility to

know the workload characteristics. Metis uses a hash table as well as Phoenix++. After

the end of the prediction phase, Metis de�nes the hash table size that is shared by all

workers. Instead of arrays, Metis uses B+ trees for each hash entry. The objective is to

take advantage from the sorting of keys that the B+ tree provides, in addition to O(logN)

complexity for insertion and search. Although the use of B+ trees is more attractive for

workloads where there are many repeated keys, they can also store a certain number of

distinct keys without sacri�cing performance. The sorting of the keys in the B+ tree

reduces the Merge phase execution time to make the �nal global sorting.

In summary, the Phoenix++ resize strategy adds some extra work to the framework,

thereby increasing execution time. Metis gets better performance by using a more

general intermediate data structure. However, the use of a prediction phase may end up

compromising the use of resources, by generating a waste of memory.

2.2.5 Inuence of Key Distribution

Understanding factors that a�ect positively or negatively MapReduce frameworks, pro-

vides an opportunity to optimize current strategies. In current multi-core MapReduce

frameworks, a factor that a�ects performance is the key distribution.

Shared memory MapReduce performance is highly a�ected by the number of interme-

diate output key/value pairs relative to the number of distinct keys [43]. As can be seen

in Figure 2.11 item 1 in accordance with a distribution key X, for each key in the key list,

it was kept in memory a list of values. In this case the shared memory is a�ected by the

number of keys, independently of the repetition of the keys. Using the combiner, which

makes the reduction of keys per thread, repeated keys no longer cause major impact on

the use of shared memory, as shown in Figure 2.11 item 2. However, in a key distribution

which is predominately high the number of unique keys, shared memory performance is

directly a�ected. Such a situation is caused because the combiner becomes useless, making

the key list grow thus increasing the size of the intermediate data structure, as shown in
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Figure 2.11 item 3.

Figure 2.11: MapReduce Framework Key Distribution.

On the other hand, the number of keys per hash entry is also an important factor

in the performance of multi-core MapReduce frameworks. By the way that frameworks

works, sharing main memory between different Map and Reduce tasks, all space allocated

in main memory is important. When an area of main memory allocated does not have

the amount of keys needed to cover the allocation cost, the framework is penalized in

unnecessary memory usage, reduced spatial locality, and increasing the work of all the

MapReduce framework phases.

Using as an example Metis[30], which by default tries to keep 10 keys trees in each

hash entry, although the proximity of this value depends on the distribution through the

hash table. The amount of keys per hash entry is an important parameter for Metis in

the decision of the hash table size. If Metis[30] makes a prediction that a given input file

contains 10 million of distinct keys, the number of columns required would be 1 million. In

short, for a prediction of 10 million distinct keys in a environment with 2 threads running,

it would create a table of 2 rows per 1 million columns. For the same input file with 10

million distinct keys, but in an environment with 24 threads it would be necessary a table

of 24 rows per 1 million columns. This situation creates a waste of memory space, since
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that the creation of a large table to ensure a memory space for each thread, allow the

increase of empty hash entries. The increase in the number of empty hash entries also

reected in unnecessary work to the Reduce tasks, that must go through all the column

reducing keys.

24



Chapter 3

Proposal of Virtual Memory

Management

3.1 Challenges of Managing Large Data Sets in Mul-

ticore MapReduce Frameworks and Work Pro-

posals

MapReduce is a paradigm that was designed to facilitate data parallel computing. Initially

developed for cluster environments, MapReduce applications can also be executed in

multi-core architectures by the use of specialized frameworks. One of the main proposals

of MapReduce implementations is the storage of the intermediate data in a speci�c data

structure

In cluster environments, the Map and Reduce tasks are usually executed in di�erent

machines and data communications between tasks are sent through the network. But

compared to multi-core shared memory environments, the major performance bottlenecks

processing for large MapReduce applications is the large memory requirements of shared

data structures and its management.

We have already described how the current implementation strategy is to keep all input

and intermediate data into memory during the entire execution. This makes necessary

the use of a large amount of main memory of the system [7]. Large data sets usually

have di�cult to predict key-value distributions that generate very large intermediate data

structures. In environments with limited amount of main memory, the whole performance

of the application is a�ected by the unmanaged use of virtual memory and disk.

The intermediate data structures used by multi-core MapReduce frameworks are hash

tables. Each of their entries points to a second data structure, where keys and values are
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actually stored. The size of the hash table is normally set at the beginning of execution,

while key-value buffers must grow to allocate map key and value outputs. There is an

ideal hash table where each entry contains a similar number of keys and values so that

search cost is evenly distributed. Structures where some entries are empty and others

store many values should be avoided as they waste memory space.

The main reason to use a MapReduce framework in a multi-core environment is the

possibility of executing concurrent map and reduce tasks using the available CPU cores.

This promise of parallelism is compromised by the limitations of the data structure needed

to store all intermediate data of all concurrent tasks. As each Map task will have its own

hash table to insert its keys values without any task dependence the space needed grows

linearly with the number of tasks.

For example, if a computing environment has just one thread per map task, the

MapReduce framework would allocate space for a hash table with only one row, with a

fixed number of N columns. If, for example, each map task generates a key-value set of

200 megabytes in main memory, now let’ s suppose that the same execution be done in

an environment with 32 threads for 32 map tasks. The framework must distribute 32

main memory spaces, one for each thread in use. That means a hash table with 32 rows

for the same fixed amount of N columns. In summary, memory needed makes a total of

6.4 gigabytes of main memory just to allocate space for the same workload used in the

execution with just one thread as shown in Figure 3.1.

Figure 3.1: Growth of intermediate data structure depending on the parallelism.

In conclusion, current designs of MapReduce frameworks data structures do not scale

well when dealing with large data set applications using a large number of threads.

When a Map task, in its key-value insertion process, runs out of main memory the

framework relies on the operating system to create a paging file in the hard disk, starting
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the use of virtual memory. Framework disk usage through virtual memory is not di�erent

from main memory. That is, Map tasks request scattered memory references to di�erent

hash entries actually mapped in the disk. As the disk latency can be a hundred times

slower than main memory, the performance is dramatically decreased.

3.2 Memory Management Proposals

In this section we present the main objectives of our proposal to improve the performance

multi-core MapReduce frameworks. During the execution time, the frameworks control the

ow of the application. Then, they are responsible of managing the use of resources. Any

improvement in the performance of the frameworks a�ects directly the whole application

execution times.

Initially multi-core MapReduce frameworks have been developed for applications which

data �ts in main memory[23]. When data sets grow bigger than the available memory

available, frameworks should consider strategies to manage the extra space needed. Dealing

with large data sets requires framework environments to be prepared to manage their

needs. Multi-core environments deal with a limited static amount of resources and more

demanding memory needs are not easily solved by adding more nodes to the system.

In order to solve the problems presented in multi-core MapReduce frameworks, we

designed and implemented a solution that manages, handles and stores keys and values in

a more e�cient intermediate data structure.

Our proposal objective is to improve the intermediate data structure memory man-

agement to be able to accept an indeterminate large number of key-values. We propose

to use a mechanism to monitor the memory needs of the MapReduce application. We

present a spilling subsystem to save the memory data structure to disk without a�ecting

the performance of the application. Finally, we also add a mechanism to manage the

concurrent access to disk by several concurrent threads.

For this work presented, we are using Metis as our platform of analysis. We have

designed and implemented some add-on modules to control certain routines of the original

Metis, adding some changes to the original code. As seen in Figure 3.2, we have added a

monitoring layer between the framework and the operating system, in order to measure

the resources used by the framework as a basis for taking decisions in higher-level modules

added.
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Figure 3.2: Proposed scheme to improve memory hierarchy usage.

3.3 Dynamic Monitoring of Resource Utilization

Our objective is to use a memory management system inside the multi-core frameworks

to hide the latency of the secondary memory accesses. First, the framework needs to be

aware of how resources are being used. To enhance the control of the framework over the

amount of resources used, we present a set of functions that allow the monitorization of

the main memory in use.

To collect the necessary information, we use the sysconf function, which allows us

to have access to several counters with less overhead than using the common sysinfo

library. The monitoring package collects two main system parameters. The total amount

of memory in the environment is collected during the start of the monitoring package. The

amount of available memory is dynamically monitorized during the application execution.

To know the amount of total memory available in the environment represented by Tmem

in equation 3.1, we calculate Tpages that represents the total number of physical pages of

the system by the page size, represented by Psize.
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Tmem = Tpages × Psize (3.1)

To calculate the amount of memory available in the environment, represented by

Fmem, we calculate the amount of available pages represented by Fpages by the page size

represented by Psize, as can be seen in equation 3.2.

Fmem = Fpages × Psize (3.2)

As seen in the algorithm 1 at the beginning of the execution we start the monitoring

package, together with the MapReduce scheduler, to collect the total memory present in

the execution environment. To amortize the overhead caused by monitoring the memory

usage, each measure of the amount of memory available is only made at the beginning of

a new task.

Algorithm 1 Pseudo-code of the monitoring package.

1: init: MapReduce Scheduler
2: init: Monitoring Package
3: Monitoring Package: Check Total Memory
4: while not �nished loading input data do
5: while not �nished processing the input block do
6: scheduler: call phase MAP
7: while not �nished MAP phase do
8: Monitoring Package: Check Free Memory
9: scheduler: call task MAP

10: end while
11: end while
12: end while
13: while not �nished REDUCE phase do
14: Monitoring Package: Check Free Memory
15: scheduler: call phase REDUCE
16: end while
17: scheduler: call phase MERGE
18: end: MapReduce Scheduler
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3.4 Managing the Use of Memory of the Intermedi-

ate Data Structure

In multi-core MapReduce frameworks, Map phase is responsible for the production and

insertion of keys in the intermediate data structure. After having added the monitoring

package as can be seen in Figure 3.3, we have also designed and developed a spill and

buffering mechanism. The objective of this subsystem is to move a specific set of keys and

values of the intermediate data structure from memory to the hard disk in an organised way.

This system will avoid the complete exhaustion of main memory space during execution

and uncontrolled paging.

Figure 3.3: MapReduce Framework Buffering and spill scheme.

In the Map phase, our mechanism starts by identifying the actual amount of main

memory in the system to adjust memory usage to a specific limitation described as a

parameter in the framework user settings. The focus of this strategy is to allow the

framework to decide when keys and values stored in the intermediate data structure should

be spilled to the hard disk. Also, it also provides a specific amount of data to be spilled.

When a key is emitted by the Map task as can be seen in Figure 3.4 items 1 and 2,

the map thread searches the key for an entry in the hash table. When the hash entry is

found the thread traverses down the tree contained in the entry, until a position is found
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for the key to be inserted. The memory consumed by the Map Task is variable, depending

on the amount and distribution of unique keys stored in the hash table. Knowing that

the B+tree is an order 3 tree, storing up to 7 keys per node. Each time that a new key

is inserted into a new node, the system allocates space for seven keys. At the end of the

Map phase, the same thread that produced the keys checks if the memory has reached the

predefined memory occupation threshold. If the limit has been reached, the same thread

copies the keys stored in the last column of its own line on the hash table to an auxiliary

buffer, as can be seen in Figure 3.3 item 3. The key-value spill process must traverse every

leaf of the B+ tree, retrieving all keys and values contained. The goal is to serialize the

data structure before copying it in the hard disk. Serialization is the process of turning

structured objects into a byte stream for transmission over a network or for writing to

persistent storage [44].

Figure 3.4: Buffering and spill scheme.

To manage the keys and values, we create a spill buffer, which has the same number of

rows as the original hash table, i.e., the amount of threads that are running, and simply

perform sequential storage. Since this is only an intermediate buffer, with the purpose

of inserting sequentially, each line consists of an array that stores only key and value.

When the copying of keys is completed, if memory usage is not reduced sufficiently, the

same thread continues copying keys from the last column, in direction to first column.

The thread resumes the execution of to the next map task only if the memory is reduced
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enough or column zero is reached. The bu�er where the keys and values are copied spills

the keys on the hard disk when the task is completed or the bu�er is full, as seen in �gure

3.4, item 4. Each thread running generates a �le on the hard disk, where it stores its keys

and values.

In Reduce phase the needed task is to quickly retrieve keys and values that are on

the hard disk, to be merged with keys that are in main memory. In Reduce phase, the

framework must ensure that the prede�ned limit of the main memory in use will not be

exceeded, moving keys and values between main memory and hard disk when necessary.

To avoid the risk of overcoming the memory usage limits, the keys and values must be

brought from the hard disk on demand. Before the Reduce phase starts, a certain amount

of key-value pairs is moved from the hard disk to �ll the �rst group of columns which will

be reduced, as shown in Figure 3.4, items 5 and 6.

When the Reduce workers process the �rst group of columns, the management system

checks if the memory threshold is reached. Then, the workers copy the keys of the �rst

group of columns already reduced to spill bu�er, as shown in Figure 3.4, item 8. When

the spill bu�er is full, the keys are spilled to the hard disk, as shown in item 9, and freeing

up memory space. After all columns are processed by Reduce tasks, and before starting

the Merge phase, the thread zero retrieves all key-value sets stored on hard disk back to

memory. Then, they can be sorted and joined by merge workers, as is shown in items 10

and 11 of Figure 3.4. To start the Merge phase, all the keys that were on the hard disk

need to be brought back to memory.

The multi-core MapReduce frameworks do not store actual keys, but store pointers

to the input data. In this way, any speci�c type of keys can be used without modifying

map and reduce processing. To perform the strategy of bu�ering and spill, the framework

must lose some of this generality, since it is necessary to make the bu�ering and spill of

the keys and stop manipulating pointers. By bringing the keys back to memory, the bu�er

created to temporary store the keys is not freed until the end of the execution. Now, the

pointers no longer point to the keys of the input and begin to point to the keys stored in

the bu�er created by the spill mechanism

Performance optimization is directly linked to the occupation of the hash table entries,

i.e., the number of keys stored in each entry when the workers begin to move keys to the

hard disk. If workers begin to move keys to the hard disk too early, they may �nd a few

keys stored in the hash entries, increasing the overhead time of the workers, and making

little reduction of main memory usage. The decision to start taking the keys to the hard

disk should directly of the actual main memory consumption, and the memory limit set.

If other applications are sharing the main memory with the framework, it still should be
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able to move keys to the hard disk in the execution of the Map tasks without compromising

the memory utilization limit set. This scenario is not favourable to our mechanism, since

the many hash entries may still be empty. When the amount of moved keys to the hard

disk is small, it creates an overhead for each spill operation.

Spill operations made over the hard disk done by the last Map tasks of the execution

have less overhead since there is a higher number of already spilled keys. The number of

keys to be moved is limited by the spill bu�er size. This should be also a parameter that

the users should adapt to the system resources.

3.5 Synchronizing Multiple Threads Spilling to Hard

Disk

Multi-core MapReduce frameworks are designed to achieve parallelism running Map and

Reduce tasks over di�erent threads. In our �rst proposal of a memory management system

for intermediate data structure, we tryied to avoid that the excessively hard disk usage

would harm the overall execution time.

We su�ered a performance problem when the number of threads increased. By analyzing

deeper this performance loss, we found a signi�cant competition between threads to spill

keys to the hard disk during the Map phase. The problem was that the workstation owned

only one local hard disk and N threads were trying to spill keys to the hard disk at the

same time.

To spill keys on the hard disk, a particular thread should stop producing or processing

keys for the framework. Taking into account that a certain set of keys needs 200MB of

main memory, in a common hard disk a thread would take 2 seconds to spill all the keys.

On the other hand if there are 24 threads trying to spill keys in the hard disk, and each

thread has a set of 200MB keys, that means that the thread number 23 would have to

wait about 46 seconds to be able to spill the keys. During these 46 seconds of waiting, the

thread number 23 does not emit or process any keys for the framework. Such a problem

becomes even worse when the spill process needs to be done more than once. Initially, our

implementation used a global threshold value of memory usage to start the spill process

that was shared to all threads. We call that value, the hard limit as it represents the limit

amount of memory to use.

As a solution to avoid competition between di�erent threads to spill keys to hard disk,

we �rst de�ned a new threshold limit, called soft limit. The goal is to treat each thread

di�erently, so that disk access is done at di�erent times.
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The value of the hard limit is set by the user, and is calculated in percent of the total

amount of main memory. To calculate the base of the soft limit, the running thread divides

the hard limit by the total number of threads. To �nd the corresponding soft limit, the

running thread uses as a reference equation 3.3 , where Nt corresponds to the number

of the running thread, and Slimit corresponds to the base of the soft limit previously

calculated.

BSL = (Nt × Slimit) + Slimit (3.3)

Using as an example an environment with 6 threads, where the total amount of available

main memory is 24 gigabytes, and using a hard limit of 50% would result in the following

soft limits shown in table 3.1.

Table 3.1: Memory Limit.
Thread Soft Limit Hard Limit

0 2GB 12GB

1 4GB 12GB

2 6GB 12GB

3 8GB 12GB

4 10GB 12GB

5 12GB 12GB

34



Chapter 4

Proposal of Memory Hierarchy

Management

4.1 Optimizing Cache Utilization on Shared-Memory

MapReduce Frameworks

It is well known that the memory access pattern of an application can have a very important

e�ect on performance. In the worst case, the performance degradation can be up to two

orders of magnitude (around 100x). This worst case occurs for memory patterns that

exhibit no temporal or spatial locality, and when dependent data loads must be issued

sequentially to the memory system. Lack of locality occurs when the application accesses

its data from a large memory area and with an unpredictable scattered pattern.

Multithreaded applications running on top of multiprocessor, multi-core systems

provide additional parallelism at the thread-level: each thread issues independent memory

requests. This parallelism helps exploiting the available system memory bandwidth. H/W

multithreading is a latency-hiding strategy that can alleviate the e�ect of long-latency

cache misses that must be solved in main memory. However, several concurrent threads

competing for the scarce cache memory capacity may exacerbate contention and increase

cache miss rates.

MapReduce applications typically generate lots of data accesses, and the proportion

between data accesses and computation often grows with the size of the data input. Most

of these data accesses are performed by the system runtime, while the user-de�ned map

and reduce functions mainly compute using local data provided to the functions by the

runtime. The performance of applications with large data sets that require relatively

low computation operations is very sensitive to the management of the input data, and
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especially to the management of the intermediate key/value pairs.

Next we will analyse how current shared-memory MapReduce implementations handle

the memory hierarchy for applications with relatively large data sets. We will identify

performance problems originated on the design of the data structures used to store the

intermediate key/values generated by the Map phase. There are also problems when

scaling the execution to systems with a large number of cores (multiple sockets and several

cores per socket).

Based on the analysis, we will present a proposal, which we call partial MapReduce

execution, aimed to improve the performance of the system's memory hierarchy, and then

decrease overall execution time. The main idea behind the proposal is to distribute the

key/value pairs generated by the map tasks in a two-level data structure, where each level

is designed to meet di�erent performance requirements.

4.1.1 Memory Access Behaviour on Current MapReduce Frame-

works

MapReduce applications concentrate their memory accesses on reading input data, and

especially on reading and writing the intermediate key/value pairs generated by map tasks,

and consumed by reduce tasks. We will assume applications with relatively large data sets,

and applications that provide a user-de�ned combiner function and, therefore, assume

that reduction operations are associative. Associativity implies that the system can apply

the combiner function to the list of values associated to each key in any order, either

with values generated by the same map task or values from di�erent map tasks, without

a�ecting the �nal result.

Reading the input data e�ciently is a relatively straight forward problem. Since data

must be read just once and input data blocks can be processed concurrently, the most

e�ective strategy is to process large contiguous blocks of input data, so that spatial locality

is fully exploited. Shared-memory MapReduce frameworks handle this issue by partitioning

the input data into relatively large blocks and assigning a contiguous block to each active

map task (executed concurrently by a thread worker). For applications that generate few

intermediate keys and are mostly bounded by the input read time, the size of those blocks

can have a performance impact. In this case, the optimal size of the block will depend on

the total number of threads competing for the input data, and the organization of the

memory hierarchy (NUMA versus UMA organization, size of Last Level Cache (LLC), and

so on).

For MapReduce applications that generate a relatively large number of distinct in-
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termediate keys, the most important performance issue on shared-memory MapReduce

frameworks is the management of intermediate key/value pairs,both for searching and

inserting emitted keys. The organization of the intermediate data structure must accom-

plish two goals, often conicting: (1) minimize the number of operations and data accesses

for the search and insert operations, and (2) maximize data access locality to improve

memory performance. We will next explain how existing frameworks (Phoenix++ and

Metis) handle this question. In brief, they prioritize the �rst goal and assume a relatively

small number of distinct keys that assures a good memory performance.

4.1.2 Memory Access Behaviour for Intermediate Data Struc-

tures

Both Phoenix++ and Metis use dynamically sized hash tables, whose size grows with the

number of distinct intermediate keys. In both systems, the hash table stores a pointer to

another data structure, devoted to store the actual keys and values. Therefore, a single

algorithmic step provides a pointer to a reduced list of keys where the search can continue.

However, as the size of the hash table increases, the locality of accessing the hash table

decreases: accesses to the hash buckets tend to be scattered and the bigger hash table does

not �t in some of the cache levels. Also, the use of pointers requires two strictly sequential

accesses: one to the pointer and one to the pointed data, then reducing memory-level

parallelism.

Phoenix++ and Metis use di�erent data structures to store the actual keys and values.

Phoenix++ stores keys and values in contiguous arrays of memory, which enhances spatial

locality for sequential search. However, when the arrays of keys grow bigger and a binary

search algorithm is used, then locality su�ers. Resizing the array to accommodate a bigger

set of keys, although costly in terms of number of operations, exhibits good spatial locality.

Metis B+trees are more e�cient for insert operations when the number of keys in the

hash bucket is relatively large. However, both search and insert operations exhibit the

low data access locality and the low memory-level parallelism typical of a pointer chasing

access pattern.

There are two main drawbacks shared by both strategies: (1) the usage of pointers to

keys, instead of the actual key contains, and (2) the wasted storage space when keys do

not fully populate the data structures. By large, the �rst drawback is the most important

one.

Storing pointers to keys instead of keys simpli�es the search (and insert) algorithm

and memory management. This strategy releases algorithms to depend on the actual key
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data type, and memory storage size is �xed. This is especially helpful when keys are

variable-size strings. However, reading the stored key to be compared with the emitted key

requires two chained memory accesses and, what is worse, accessing the memory address

space devoted to the input data. The �rst occurrence of each key in the input data may be

referenced several times by means of the pointer contained in the data structure holding

intermediate key/value pairs. Those occurrences are scattered along the input data area

and accesses to them have very low spatial locality.

Having a large hash table reduces the average number of keys per bucket, and then

the total number of instructions needed for searching a key. The problem is that many

buckets may be empty, reducing the e�ciency of memory usage. Metis and Phoenix++

allocate relatively large blocks to accommodate keys and values. This improves spatial

locality when accessing consecutive keys, but the larger the granularity of the block, the

more space will be unused on average.

4.1.3 Memory Access Behaviour When Scaling to a Higher Num-

ber of Threads

Both Metis and Phoenix++ allocate independent data storage for each concurrent thread

executing a map task. This avoids including synchronization locks, which will hamper

performance scalability as more threads are added in the system. The cost of this simple

solution is to duplicate many data structures, sometimes increasing memory requirements

almost linearly with the number of threads, and putting more pressure on the processor

caches.

Applications that generate a large number of keys with many repetitions tend to

store the same key in each of the data structure corresponding to several of the running

threads. The pointers representing the same key point to di�erent positions in the input

data, since keys are inserted by each thread from its corresponding input blocks. This

behaviour exacerbates the problem of access locality: in the worst case, all the virtual

pages containing the input data are referenced from the intermediate data structures. This

can easily generate an extremely high amount of TLB misses, apart from multiple data

cache misses.

4.1.4 Memory Access Behaviour on the Merge Stage

Metis prioritizes the performance of the Map and Reduce stages, and allocates a very

large hash table to maintain a small average number of di�erent keys per bucket. This

generates a very large number of small sorted lists, which must be merged in the �nal
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stage of the framework in order to produce the �nal sorted output. We have measured that

applications with large input footprints expend a lot of their execution time in the �nal

merge phase. Merging a lot of small lists is not optimized for exploiting cache locality.

In summary, Metis and Phoenix++ are designed considering a relatively small number

of distinct keys, and prioritize the reduction of operations in the Map stage. For large

workloads, and for an increasing number of concurrent threads, this strategy achieves bad

memory performance.

4.2 Proposal: Partial MapReduce Execution

We want to attack the performance problems su�ered on current share-memory MapReduce

frameworks with applications that generate a large number of intermediate key/value

pairs. The main idea is to provide a two-level storage organization for key/value pairs.

The primary data structure is small and static, sized to �t into the last-level cache (LLC)

of the hierarchy, and it is optimized for concurrent searches and insertions of the key/value

pairs emitted from map tasks, and for concurrent reduction of these data. The secondary

data structure is dynamically allocated, and is optimized for a �nal reduce and merge sort

phase with large data sets.

For this strategy to work, we need to group the execution of Map and Reduce phases

such that the reduce phase begins as soon as the primary data structure is �lled. We call

this mechanism partial MapReduce, since the Reduce phase is partially applied, before all

the input has been processed. Reduced key/value pairs are stored sequentially and sorted

by key in the secondary data structure, which is basically a collection of sorted vectors

of key/value pairs. The partially reduced data must be reduced at the end, when all the

input has been processed, in a �nal stage that is combined with a �nal sorting operation.

Our proposal relies on the associativity and commutability of the reduction operation.

This is a property that accomplish a very large number of MapReduce applications, and

implies that the reduction operation can be applied in any order to the values associated

to a given key. This property is also needed to use combiner functions.

Figure 4.1 shows a scheme of the intermediate data structure used by Metis. When

an application generates a large number of distinct keys, the prediction phase of Metis

resizes the original hash table to a very large table, which will be poorly used. The

B+tree building blocks are dynamically allocated, and expand along the processor memory.

B+tree nodes must occupy a full cache line, or otherwise false cache sharing can occur.

Metis estimates the size of the hash table so that, on average, around 10 keys are stored

per bucket. Both facts contribute to have a low occupancy of the B+tree.
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Figure 4.1: Intermediate data structures used by Metis.

Figure 4.2 shows our proposed two-level intermediate data structure. The hash matrix

and the B+tree nodes are statically allocated. The blocks containing partial reduced

key/value pairs are dynamically allocated. The first-level structure contains the active

emitted keys, those generated in the current partial MapReduce phase. Searches and

insertions are performed using this structure. The second-level structure contains vectors

of sorted, partially-reduced key/value pairs. These data can expand along memory.

Figure 4.2: Two-level hierarchy for storing intermediate key/value pairs.

The proposal involves the following issues:

1. The size of the primary-data structure must be calculated depending on the size

40



of the Last Level Cache (LLC) of the processor. The amount of threads sharing

the LLC in the same socket must also be considered. Also, it is necessary to

consider if the table contains actual keys, or pointers to keys;

2. It is necessary to implement a mechanism for detecting when the primary data

structure is full, and then to synchronize all the threads and start the reduction

phase;

3. After the partial reduction, a merge operation generates the partial output, where

the key/value information is serialized (copied in contiguous positions). If pointers

to keys are used, then at this point the key information is copied into the �nal

output, so that no more references to the input processed so far are maintained;

4. The partially reduced and sorted data must be stored until the input data is

completely processed. At the end, these vectors must be reduced and merged to

generate the �nal output.

The main advantage of our proposal is that the partial Map and Reduce phases are

faster, because accesses to the intermediate data are mostly local into the LLC. Also, the

�nal Merge operation is more e�cient, because it operates with a small number of long

lists that are sequentially stored into memory, instead of a large number of short chained

lists that include pointers to the input keys.

The price to pay is the overhead of copying from the primary to the secondary structure.

This overhead should be small, because data is copied sequentially into main memory.

Also, keys are actually copied and the pointers can be discarded, e�ectively limiting the

memory footprint of the map and reduce phases. Also, the synchronization required

between partial Map and Reduce phases may reduce parallelism and hurt performance.

In order to prove that our proposal is e�ective, we have implemented a design that

works on top of Metis. This has the advantage that the proposed mechanism does not

include additional overhead when the application generates a small number of distinct

keys: a single execution processes all the input without �lling the primary data structure,

and then the additional mechanisms are not used.

4.3 Proposal: Partial MapReduce Implementation

To support the use of a small intermediate data structure, we reorganized the framework

to partial reduction. This strategy allows us to support the �xed size of intermediate

data structure, processing and reducing keys quickly. The principle of partial MapReduce
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includes joining all the Map, Reduce and Merge tasks in a partial execution, and replicate

through of the framework execution. Each partial execution allows the reduction of keys

that are on the intermediate data structure and make room for new keys, maintaining

structure within the limits of the LLC.

The Figure 4.3 shows an execution, that has been divided into two partial MapReduce

tasks. In part 0, the framework makes the distribution of the first block of the input file

to be processed by the map tasks, as shown in Figure 4.3 items 1 and 2. Each map task

processes a block of the input file on the first part shown in Figure 4.3 by item 2. As map

tasks process the blocks of the input file, the generated keys are stored in the intermediate

data structure shown in Figure 4.3 by item 3.

Figure 4.3: Partial MapReduce scheme.

In our implementation, the framework maintains a counter of the number of keys per

hash entry. When the counter reaches a preset limit, the framework stops processing the

input file through the map tasks and the reduce phase begins. The counter of keys per

hash entry aims to prevent the intermediate data structure grow sufficiently as to exceed

the size of LLC.

At the beginning of the reduce phase, shown in Figure 4.3 item 4, the framework

executes a reduce task per column. The goal is to aggregate all the values associated to

equal keys generated by distinct map tasks. Each reduce task stores the values in a new
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data structure, where the keys are sorted.

When the reduce phase reaches the last column of the hash table, the framework

releases the space taken by tasks map to store the keys, freeing up space in memory and

starts execution of the merge phase that can be seen in Figure 4.3 item 5. The merge

phase aims to merge all outputs generated by the reduce phase and perform a partial �nal

sort. The more sorted the keys are, the faster the execution of the merge phase will be.

When the merge phase is completed, all reduced and sorted keys are stored in a �nal data

structure, and the framework releases the data structure used by the reduce phase.

For our implementation, at the end of the merge phase, the framework checks if the

pointer to the input �le has reached the end of the �le, if not, the framework performs

another part of the execution.

In execution of the second part, the framework reruns all phases to process the next

block of the input �le shown in Figure 4.3 item 7. On reaching the end of the merge phase

shown in Figure 4.3 by item 10, the keys generated by the merge phase of the second part

are stored in a �nal data structure. With the end of all parts, the framework checks the

need to perform any more partial MapReduce. If the pointer to the input �le has reached

the end, the framework performs an extra merge phase that aims to merge and sort the

output of all execution parts, making a possible reduction if there are repeated keys in

di�erent parts of the execution. At the end of the execution it generates a �nal output, as

shown in Figure 4.3 item 11.

The idea is to divide the input load in blocks so that all phases can interact on each

block. At the end of execution of each MapReduce part, the result will be a number of

keys already reduced. In the original Metis, the Map phase had to process all the input

load before starting the Reduce phase, i.e., maintain a large intermediate data structure

and millions of keys stored in this intermediate data structure. In our proposal, we process

a part of the input load using N Map tasks, we reduce the keys stored in the intermediate

data structure of this small block using N reduce tasks. In the end we join and sort using

Merge phase.

Each block of the data set is processed as shown in Figure 4.4 item 1, until �nally

there is only one set of key bu�ers, reduced and sorted, as can be seen in Figure 4.4 item

2. For the framework to emit a �nal output, it is necessary to make extra an call to the

Merge phase, which aims to merge and sort all the output bu�ers of MapReduce parts, as

can be seen in Figure 4.4 item 3.

The development of the overall execution is simple, as can be see in the algorithm

2, which consists of blocks of MapReduce parts that perform calls to the Map, Reduce

and Merge phases. To reduce the use of main memory, we establish more procedures for
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Figure 4.4: Complete Partial MapReduce scheme.

allocation and freeing memory.

Partial MapReduce aims to process small blocks of the input file, generating small key

blocks, when the final result will always be a set of reduced keys. As shown in Figure 4.5,

different from Metis where the phases are called few times and generate all possible data,

our proposal calls phases more often and generate smaller sets of data.

4.3.1 Proposal: Map Phase

In the original Metis, for each existing thread in the environment, the framework launches

16 Map tasks, for an environment with 24 threads, Metis needs to launches by default 384

Map tasks. To organize the blocks of MapReduce parts, our proposal uses the original

Metis tasks as a reference. To try to increase the spatial locality of the data, the framework

should stop running the Map phase, even if the input file has not finished being processed,

and initiate execution of the Reduce phase. The idea is that a part of MapReduce execution

never finishs a Map task by half, which could cause loss of keys.

To know the moment at Map phase execution should be interrupted, our proposal uses

the LLC size as a reference. When the size of intermediate data structure gets closer to
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Algorithm 2 Partial MapReduce overview.

Require: Input, StructureSize
1: init: MapReduce Scheduler
2: while not �nished loading input data do
3: scheduler: call task MAPREDUCE
4: mapreduce: task N
5: malloc: intermediate data structure
6: while not �nished processing the input block do
7: scheduler: call phase MAP
8: malloc: �nal data structure
9: while not �nished processing the map block N do
10: scheduler: call task MAP
11: end while
12: scheduler: call phase REDUCE
13: free: intermediate data structure
14: scheduler: call phase MERGE
15: end while
16: end mapreduce: task N
17: end while
18: scheduler: call phase MERGE
19: free: �nal structure

overcoming the LLC size, the framework does not launch new Map tasks and waits for the

�nalization of Map tasks that are already running, to �nally call the Reduce phase.

If the framework interrupts the execution of the Map phase too early, it would increase

the number of parts of execution. Each time that the Map phase is interrupted, the

�nished threads are forced to wait for threads that are still running Map tasks. A number

of unnecessary MapReduce parts comes down as a unnecessary thread interruption.

If the framework takes too long to interrupt the execution of Map phase, or if the Map

tasks are long, the intermediate data structure will grow su�ciently may surpass the LLC

size reference.

Every new part of MapReduce execution, a new intermediate data structure is allocated

to support the data generated by the Map tasks, in other words, each part of MapReduce

execution has a individually intermediate data structure, as can be seen in Figure 4.6. In

the original Metis, a large intermediate data structure was allocated to support all data

generated by all Map tasks.

In the original version of Metis, the entire input �le was splitted through all the Map

tasks needed to be processed. In our proposal, the input �le is splitted into parts of the

MapReduce execution, after the �rst split, the block that belonging to each part task is

splitted between all Map tasks. Arrange the blocks in small sizes prevents that the Map
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Figure 4.5: Metis Data Flow versus Proposal Data Flow.

tasks, becomes large as to make the intermediate data structure can surpass the LLC size.

4.3.2 Proposal: Reduce Phase

When the Map phase that belongs to a particular part of MapReduce execution is

interrupted, the framework makes a call to Reduce phase. The keys reduction, of a

particular part of MapReduce execution keeps intermediate data structure size under

control.

In the original version of Metis, the intermediate data structure can grow unchecked,

and the Reduce phase is started only when the entire input file ends being processed.

In our proposal, a small set of keys is generated and reduced directly on the LLC. This

strategy allows reduce tasks become even faster. According to keys are reduced by the

Reduce tasks, the result is stored in another memory region, as shown in Figure 4.7,

allowing the release of the intermediate data structure at the end of the Reduce phase.

In the original Metis, to process 10 million of different keys, we would be needed 1
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Figure 4.6: Partial MapReduce Map phase scheme.

Figure 4.7: Partial MapReduce Reduce phase scheme.

million of Reduces task, which is the number of columns in the hash table. In our proposal,

the number of reduce tasks is directly related to the amount of LLC available. As each

part of MapReduce execution uses a small intermediate data structure, the number of

reduce tasks should take into consideration the amount of MapReduce parts produced by

the framework. If the number of columns in the hash table be set to 10K for example, and
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the framework requires 10 MapReduce parts to process all the input file, it would give us a

total of 100K of reduce tasks, only 10% of amount of Reduces tasks of the original Metis.

Different of the Map phase, where the total number of Map tasks is divided over

the number of MapReduce parts, in the Reduce phase the process is reversed. To know

the total number of Reduce tasks, we use the number of Reduce tasks multiplied by the

number of MapReduce parts.

4.3.3 Proposal: Merge Phase

When the Reduce phase is completed, the framework begins the Merge phase related with

the MapReduce part in execution. The Merge Phase of each MapReduce part aims to

generate only one set of keys reduced and sorted, which is stored in a final buffer, as can

be see in Figure 4.8.

Each sorted output generated by each MapReduce part, allows to accelerate the final

merge and sort of all the output generated by distinct MapReduce parts. At the end of the

execution of all MapReduce parts, an extra Merge phase is called by the framework, which

aims to merge and sort the data generated by all MapReduce parts of the framework, as

can be see in Figure 4.8.

Figure 4.8: Partial MapReduce Merge phase scheme.

During the sorting keys in the Merge phase, if they are found repeated keys coming

from distinct MapReduce parts outputs, the Merge phase makes another small reduction

in the repeated keys. This procedure becomes simple because the sorted keys provide the

nearest equal keys. However depending on the key distribution across the different blocks

and the number of MapReduce parts, there may be a significant number of keys to be

reduced. This extra reduction may cause an extra processing in the Merge phase.
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Chapter 5

Evaluation

In this section we describe the results obtained with the di�erent parts of our proposal.

Throughout this chapter, all comparative experiments consider the latest available version

of Metis in C, as well as the latest available version of Phoenix++.

5.1 Experimental Environment

Measurements have been taken in three di�erent environments: (I) a multi-core processor

with Intel Core Duo 3GHz and 6GB of main memory in 64-bit Linux. (II) A dual-socket

Intel Xeon E5645 2.4GHz with 6 cores/12 threads each one, with 96GB of main memory

in 64-bit Linux. Each of the 12 cores has a 32 KB L1 data cache, and 256KB L2 cache.

The 6 cores on each chip share a 12 MB L3 cache. (III) A four sockets AMD Opteron

Processor 6376 2.3GHz with 16 cores each one, with 128GB of main memory in 64-bit

Linux. Each of the 64 cores has 16kB L1 data cache, and 2MB L2 cache. The 16 cores on

each chip share a 12 MB L3 cache. All executions are done using the maximum number of

H/W threads available in the system (I) 2 threads; (II) 24 threads; and (III) 64 threads.

5.2 Benchmark Applications Description

As shown in previous studies[30], di�erent applications push the framework in di�erent

ways. On the one hand, certain applications spend most of the execution time in the

MapReduce libraries, manipulating the Map tasks output and sorting the Reduce task

outputs. On the other hand, there are applications that make little use of the MapReduce

library, guided by the application purpose and the type of output produced. Of the

applications originally available with the original Metis, we can divide into two main

groups, represented by tables 5.1 and 5.2. In the �rst group represented by table 5.1, the
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applications that make high use of MapReduce library, are the Word Count and Inverted

Index benchmarks. In the second group represented by table 5.2, the applications that

make lower use of MapReduce library, are the PCA, kmeans, histogram, Linear Regression,

String Match and Matrix Multiply benchmarks.

Table 5.1: Benchmark applications that make higher use of the MapReduce library.

Application Description Keys Pairs per key

Word Count Counts the number of unique word occurrences Unique words No words

Inverted Index Build reverse index for words Unique words No words

Table 5.2: Benchmark applications that make lower use of MapReduce library.

Application Description Keys Pairs per key

PCA Principle component analysis on a matrix Input matrix 1

Kmeans Classifying 3D points into groups K Points/K

Histogram Computes the RGB histogram of an image 3X256 Nomap input splits

Linear Regression Calculate the best t line for points 5 Nomap input splits

String Match Find an encrypted word from les with keys 4 Nomap input splits

Matrix Multiply Multiply two integer matrices 0 0

In Figure 5.1 it is possible to see the execution time distribution between the application

and the MapReduce library. Our proposed improvement is based on modi�cations made

over the original Metis framework, this situation makes the improvements in memory usage

and execution time can be best viewed in benchmark applications that use MapReduce

library more extensively. Based on the previously mentioned points, we decided to use the

benchmark application presented in table 5.1, since these applications make hight use of

the MapReduce library, they can demonstrate the problems pointed out in this work. In

short, the kind of MapReduce applications used in this work, are applications where any

Map task can emit any number of keys with any distribution.

To show the improvement obtained with our proposal, we use the original Word Count

benchmark application of Metis[30] and Phoenix++[42], both already included in the

original frameworks. The use of an Word Count application is signi�cant for three main

reasons: (I) it has a scenario where relatively large input loads are used; (II) it can

produce a number of intermediate keys that exceed even the size of the input load; (III)

it has a key distribution which can be signi�cantly reduced. Based-cluster Frameworks of

previous work[39] showed such behavior for Word Count applications.
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Figure 5.1: MapReduce library usage.

For the Inverted Index case, we use it only for the comparisons against the original

Metis[30], since Phoenix++[42] does not provide an Inverted Index benchmark application.

5.2.1 Word Count

The application counts the frequency of occurrence of each word in a given input file.

The Map task processes different parts of the input file and returns intermediate data

consisting of word(key) and the value 1, which indicates that the word was found. Reduce

tasks unify and add values to each word (Key) on the global set of all keys found.

5.2.2 Inverted Index

The application traverses a set of occurrences in a document, extracts all keys, and compiles

an index from keys to files. Each Map task analyzes a set of files. For each key that is

found, it generates an intermediate pair with the key and the information of the file as the

value. The Reduce task combines all the files that reference the same key in a single set.

5.3 Workload

When we analized the type of workload initially used by Metis and Phoenix++ papers,

we verified that both were too small to exemplify the problem of memory consumption

that we described.
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To demonstrate the framework behavior attending its memory consumption issue

presented, we chose to make use of synthetic input �les, so that we could push the

framework to substantiate such problems. For aspects of comparison, the original Metis

uses as maximum workload an input �le that has 300MB, while Phoenix++ works with

an input �le maximum of 1GB, while we use the workloads shown in table 5.3.

Table 5.3 is divided into Input Size, Keys and Pairs. Input Size represents the size in

bytes of each input, Keys represents the number of unique keys present in the input and

Pairs represents the number of words present in the input, i.e., the amount of key/value

pairs.

Table 5.3: Repeated Keys Workload.

Input Size Keys Pairs

3.9GB 10M 200M

7.8GB 20M 400M

11.7GB 30M 600M

15.6GB 40M 800M

19.6GB 50M 1.0G

23.5GB 60M 1.2G

27.4GB 70M 1.4G

5.4 Memory Management Performance

5.4.1 Bu�ering and Spill Execution Time

Using Intel Core Duo with 6GB of main memory, the goal in this experiment was to verify

the bene�ts obtained at execution time using the Spill/Bu�ering Mechanism in a limited

environment.

Using the inputs described in Table 5.3, it is possible to see in Figure 5.2 the result

obtained. For inputs of 10M to 40M keys it is possible to see that there is no di�erence in

Map phase execution time compared to original Metis. Such a situation occurs because

the memory usage limit set was not exceeded and the framework does not need to make

use of the bu�ering/spill mechanisms. On the other hand, for the 50M, 60M and 70M

inputs, it is possible to see a speedup of 2.2, 2.4 and 3.6 respectively.

When the memory usage limit is exceeded, the mechanism moves keys between main

memory and hard disk, avoiding the use of virtual memory. Although such a mechanism

use the hard disk, the entire procedure is done in an orderly way, designed to be e�cient
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with the framework, which allows to hide the hard disk natural latency.

Figure 5.2: Map phase Execution Time using Buffering/Spill mechanism.

As seen in Figure 5.3, in the Reduce phase the 40M input uses the Buffering/Spill

mechanism. Such a situation occurs because the memory usage limit was exceeded in the

last Map task, forcing the first Reduce task move keys between the hard disk and memory.

In contrast with the Map phase, where only keys and values were moved from main

memory to the hard disk, the Reduce phase can make two types of operations, move keys

and values to the hard drive or bring keys and values from hard disk to the main memory.

While the Map phase only produces keys, the Reduce phase needs to process keys and

values, which makes it necessary to retrieve keys from the hard disk to be processed.

For 40M, 50M, 60M, and 70M inputs it is possible to see a speedup of 1.4, 2.1, 2.2 and

2.5 respectively, which shows an improvement as the workload increases.
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Figure 5.3: Reduce phase Execution Time using Buffering/Spill mechanism.

5.4.2 Buffering and Spill Main Memory Usage

Using the Intel Xeon environment with 96GB of main memory, our goal in this experiment

was to verify the reduction in main memory usage making use of our Buffering/Spill

mechanism.

Figures 5.4 and 5.5 show the reduction in main memory usage obtained in the Map and

Reduce phases for the optimized version. For the input files of 10M, 20M and 30M of keys,

there is no change from the original Metis, because for these types of workloads the memory

limit is not reached. As the memory consumption does not exceed the limit, there is no

change on the way that the MapReduce framework works in each of the implementation

compared.

On the other hand, as seen in Figures 5.4 and 5.5, for input files of 40M, 50M, 60M

and 70M of keys, memory usage is exceeded and the framework begins to make use of

our mechanism. Our Buffering/Spill mechanism has reduced the use of main memory for

the workloads of 40M, 50M, 60M and 70M keys. As explained in section 3.4, each time

the main memory usage limit is reached, our mechanism move keys and values between

main memory and hard disk. Each keyset brought to hard disk allows the release of new

memory space, preventing the main memory to be fully consumed, which would force the

system to use the swap area, increasing the number of page faults.

54



Figure 5.4: Main memory usage on Map phase using Buffering/Spill mechanism.

Also in Figure 5.5 we can observe the same behavior as Figure 5.4, but with a smaller

reduction in main memory. This situation is justified by the fact that the Reduce phase

needs more data in memory to make the reduction, in addition to produce more intermediate

data in main memory before the old data can be freed. Unlike the Map phase where the

main work consists of producing and storing keys in a intermediate data structure, during

the Reduce phase the data must be read from an intermediate structure, processed and

stored in a second structure, forcing the framework to hold more keys at the same time

into main memory.
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Figure 5.5: Main memory usage on Reduce phase using Buffering/Spill mechanism.

5.4.3 Buffering and Spill Major Page Faults

Using the Intel Core Duo environment with 6GB of main memory, our goal in this experi-

ment was to verify the possible reduction in page faults making use of our Buffering/Spill

mechanism.

A page fault is an interrupt triggered by the hardware when an application accesses

a page mapped into the virtual memory space, but that was not loaded into main

memory. Page faults, by its own characteristic, degrade the performance of an application.

Optimizations that reduce the number of page fault occurrences improve application

performance and also system performance. In general, an optimization can go through the

reduction of total main memory usage as shown in section 5.4.2.

In a page fault occurrence, the system uses the swap as an extension of memory. In

contrast, we define in this mechanism the need to reduce these pages faults, since the

constant interaction of the system with the hard disk becomes costly to the execution

time. Moving a set of keys to the hard disk before the total amount of main memory is

consumed, prevents the system to use the swap. In this way it is possible to decrease the

number of page faults, also reducing the constant and disordered hard disk access. Figures

5.6 and 5.7 the decrease of page faults, both in the Map and Reduce phase. Moving the

keys to the hard disk in groups, before the main memory be fully consumed, reduces the

latency influence of hard disk access at execution time, effect that can be observed by the
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use of swap.

Figure 5.6: Page faults Reduction on Map phase using spill/buffering mechanism.

Figure 5.7: Page faults Reduction on Reduce phase using spill/buffering mechanism.
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5.4.4 Thread Disk Acess Execution Time

Using the Intel Xeon environment with 96GB of main memory, our goal in this experiment

was to verify the efficiency of using the hard and soft limit mechanism in order to avoid

competition between different threads to move keys to hard disk. For this, we have

designed an experiment using the workloads described in Table 5.3. The objective is to

verify the improvement in execution time, caused by less competition among threads for

access to the hard disk.

In the Figure 5.8 it shows that for execution with a limit of 10%, where only a hard limit

is used, there is a significant increase in execution time. This situation is the consequence

of using the 24 threads available to move large amounts of keys to the hard disk at the

same time. When more than one thread tries to write a set of keys to the hard disk,

it makes the hard disk receive a long list of requests. Concurrent writes from different

threads will issue seek operations, introducing an overhead which could slow down the

system, depending on the number of keys written.

Keeping the 10% hard limit, and now making use of the soft limit strategy, we can see

an execution time improvement of up to 2x, because fewer threads access the hard disk at

the same time. The actual value of the hard limit, combined with the type of input and the

memory usage, reflects in more keys moved to hard disk and a higher reduction of memory

usage, or fewer keys moved to hard disk and a lower memory reduction. The knowledge

about the workload type in use, combined with the configuration of these parameters may

provide better performance of the multi-core MapReduce framework.

Figure 5.8: Total execution time using hard and soft limit.
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5.5 Partial MapReduce

In this section, the idea was to determine the e�ciency of our partial MapReduce proposal.

In addition to supporting a small intermediate data structure, our proposal allows to

organize the framework operation in di�erent ways to reduce the keys and values as soon

as possible, reducing the main memory consumption.

For this experiment we used both the Intel Xeon and the AMD Opteron, since both

have di�erent amount of cores sharing the cache memory. While in the Intel Xeon each 6

cores share 12MB of L3 cache memory, in the AMD Opteron the same 12MB of L3 cache

memory are shared among 16 cores. Knowing that the use of partial MapReduce provides

a cache memory locality increase, we expected that such di�erence between architectures

also would provide di�erent performance results.

In this experiment we use the Word Count benchmark running over our proposal, in

comparison with Phoenix++ and the original Metis. We also show the performance of

Inverted Index benchmark. A comparison is made between the original Metis and our

proposal, since Phoenix++ does not provide a Inverted Index benchmark.

5.5.1 Word Count Total Execution Time on Intel Xeon

Considering total execution time, our implementation achieves better performance than

Metis and Phoenix++. The results in the total execution time of our implementation are

signi�cantly smaller compared to Metis and Phoenix++.

We designed an experiment where resizing the intermediate data structure and pro-

cessing the keys as soon as possible, allowed us to reduce the total execution time. In the

Figure 5.9, it is possible to see that our implementation get a signi�cant improvement in

execution time, both against Metis as Phoenix++. The goal of our implementation, was

to seek the best possible con�guration, to improve the results preventing the growth of

the intermediate data structure, and keeping the locality with the cache memory.

Among the three frameworks used, as seen in Figure 5.9 Phoenix++ has the worst

performance. We can partially conclude, that the cost of resizing the hash table size and

copy of the keys to the new hash table represent an important part of the total execution

time. On the other hand, the large amount of distinct keys produced, makes it di�cult

for Phoenix++ to keep cache memory locality. This situation makes the execution of

Phoenix++ to be dominated by non-uniform main memory access.
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Figure 5.9: Intel Xeon Total Time using Word Count Benchmark.

The improvements presented in Figures 5.9 can be seen in the table 5.4. Our imple-

mentation has significant improvements over the original version of Metis and Phoenix++.

Over Metis can be seen that in total execution time over Intel Xeon environment our

implementation can be up to 2,3 times faster, while against Phoenix++ our implementation

is up to 4.2 times faster. It is also possible to see in table 5.4, that the reduction in

execution time is not uniform, since the distribution of keys directly influences the pressure

over the framework.

Table 5.4: Total Execution Time Speedup on Intel Xeon using Word Count Benchmark.

Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 2.2x 1.8x

7.8GB 20M 2.1x 1.5x

11.7GB 30M 2.3x 1.6x

15.6GB 40M 2.0x 2.5x

19.6GB 50M 1.8x 3.3x

23.5GB 60M 1.9x 3.9x

27.4GB 70M 1.8x 4.2x

In Figure 5.10, it is possible to see that our proposal achieves significantly lower L3

Cache miss rate than Phoenix. The reduction is smaller compared with Metis, since we

use Metis as the basis for our implementation. Among the main points of this reduction

we can include using a relatively smaller intermediate data structure, and always keep

reduced keys to avoid keys repetition and the allocation cost of keeping the repeated keys .
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Figure 5.10: Word Count L3 Cache Memory miss rate on Intel Xeon.

By maintaining a smaller intermediate data structure, each instruction requires less

CPU cycles to complete, as viewed in Figure 5.11. Keeping a smaller intermediate data

structure results in fewer cycles to process and sort keys.

Figure 5.11: Word Count Benchmark CPI on Intel Xeon.

5.5.2 Word Count Map Phase Total Execution Time on Intel

Xeon

Our objective is to reduce the cost of the Map tasks execution by taking advantage of

spatial locality between the processor and the cache memory, allowed a reduction of the
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costly work done by the map tasks. When executing a map task, the framework deals

with three main operations, seeking position in the hash table, get the position in the tree

and balance resultant trees.

Search the hash entry corresponding with key is the less problematic, such operation

has constant access and complexity O(1). After �nding the hash entry, the map task must

�nd the key position in the tree with the complexity O(logN). In the original version of

Metis, trees with 10 keys did not o�er a high cost in balance, but when using smaller

hash tables, consequently it was necessary to use more large trees. This decision forced

us to consider the cost of balancing the trees during their growth. In short, we conclude

that the use of cache memory has bene�ted mainly the operations done on the trees of

each hash entry. For workloads where the rate of key repetition is low, the replacement

of trees per array can provide improved insertion time, but it should be considered that

maintaining sorted arrays may be more costly.

On the other hand Phoenix++ does not use B+trees, leaves the work of sorting the

keys to Merge phase, avoiding the cost of sorting in the Map phase.

As mentioned in section 2.2.3, Metis uses a prediction phase to de�ne the main

parameters of intermediate data structure. Also during the prediction phase Metis

also allocates the intermediate data structure. Phoenix++ on the other hand has an

initialization phase which takes the responsibility of cost allocation. In our implementation,

due to using a �xed size intermediate data structure, the original prediction phase becomes

unnecessary, in this way on our implementation we establish all memory allocation for

intermediate data structure in the Map phase.

Knowing that multi-core MapReduce frameworks extensively use the main memory,

and we also considered memory allocation to have a cost in execution time. For purposes

of comparison at the execution time, in Phoenix++ the Map phase was counted together

with the cost of allocation in the initialization phase, as well as Metis, for the allocation of

the intermediate data structure made in the prediction phase.

As seen in Figure 5.12, the Map phase execution time follows more or less the same

behavior of the total execution time. It is still possible to see a signi�cant Map phase

reduction in execution time of our implementation over the original Metis and Phoenix++,

showing the advantage provided by the spatial locality of data.
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Figure 5.12: Intel Xeon Map phase execution time using Word Count Benchmark.

In the table 5.5 it can be seen in detail the results shown in Figure 5.12, where we

achieved a speedup between 1.8 and 3 compared against Metis, and between 1.6 and 6.1

compared against Phoenix++.

Table 5.5: Map Phase Execution Time Speedup on Intel Xeon using Word Count Bench-

mark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 3.0x 2.2x

7.8GB 20M 2.4x 1.6x

11.7GB 30M 2.5x 1.6x

15.6GB 40M 2.5x 3.6x

19.6GB 50M 2.2x 4.4x

23.5GB 60M 2.0x 5.5x

27.4GB 70M 1.8x 6.1x

5.5.3 Word Count Reduce Phase Total Execution Time on Intel

Xeon

In original Metis execution, regardless of the size of the intermediate data structure,

a reduce task would do the work of reducing a given column once. By dividing the

original implementation in MapReduce parts, reduce tasks are forced to fall back on all the
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intermediate data structure for each MapReduce part generated. However the reduction

of the intermediate data structure to a size that can be working on cache memory, allowed

this extra work did not create a significant overhead.

Another advantage that reduced the overhead created by the extra work of reduce

tasks, was the number of columns used in our intermediate data structure. In the original

version of Metis, for an input file with 10M of different keys, a hash table with about 1M

columns would be required. For overhead in reduce phase became significant at execution

time, it would be necessary that our implementation utilizes about 100 MapReduce parts,

much higher than the 10 needed for the current input file 70M keys.

As can be seen in Figure 5.13, the Reduce phase already has a relatively short execution

time, however our implementation has better execution time than the original Metis and

Phoenix++, due to the small intermediate data structure and spatial locality.

Figure 5.13: Intel Xeon Reduce phase execution time using Word Count Benchmark.

In Table 5.6, it is possible to see the speedup obtained in the Reduce phase, caused by

the use of our proposal. Unlike the Map phase, the Reduce phase presents a relatively

stable speedup compared Metis and Phoenix++.

Among the three main phases, Map, Reduce and Merge, the Reduce is the phase that

consumes smaller execution time, making it relatively difficult to achieve large execution

time reductions.
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Table 5.6: Reduce Phase Execution Time Speedup on Intel Xeon using Word Count

Benchmark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 1.4x 1.9x

7.8GB 20M 1.7x 2.4x

11.7GB 30M 1.7x 2.3x

15.6GB 40M 1.8x 2.8x

19.6GB 50M 1.9x 2.7x

23.5GB 60M 1.8x 2.2x

27.4GB 70M 2.2x 2.2x

5.5.4 Word Count Merge Phase Total Execution Time on Intel

Xeon

In Metis and Phoenix++, the Merge phase is called only after all keys having been

processed and reduced. For these implementations, the Merge phase is only responsible

for sorting and join the di�erent key blocks.

On the other hand, the Merge phase of our implementation beyond sort and join

di�erent key blocks, is also responsible for reducing possible repeated keys. When our

implementation generates many MapReduce parts, depending on the distribution of input

keys, it is possible to arrive repeated key on the Merge phase. If there are many repeated

keys in the Merge phase, our implementation can have lower performance than Metis and

Phoenix++.

As can be seen in Figure 5.14 compared with Phoenix++, our implementation always

has better execution time. On the other hand, when comparing against Metis. In such

comparison, it is only possible to get better performance in the larger input �les, because

it is directly inuenced by the key distribution these input �les that has no extra work to

merge phase.
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Figure 5.14: Intel Xeon Merge phase execution time using Word Count Benchmark.

In Table 5.7, it is possible to see that for the 30M and 40M input files , our implemen-

tation introduces a slight worsening versus Metis. This situation is caused by the existence

of possible repeated keys, and the need to make reductions in the Merge phase.

Table 5.7: Merge Phase Execution Time Speedup on Intel Xeon using Word Count

Benchmark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 2.2x 1.8x

7.8GB 20M 1.2x 1.2x

11.7GB 30M 0.9x 1.2x

15.6GB 40M 0.9x 1.2x

19.6GB 50M 1.0x 1.5x

23.5GB 60M 1.2x 1.4x

27.4GB 70M 1.3x 1.3x

5.5.5 Word Count Total Main Memory Usage on Intel Xeon

A characteristic present in Metis was the high main memory usage, pushed forward with

the parallelism of the environment, which made the prediction phase used by Metis became

the main responsible. Using a simple calculation, Metis tries to predict the number of

distinct keys based on the 10% of the initial input file, and scale the size of the hash table.

The main fault on the prediction phase, is not take into account the parallelism factor,

and eventually allocate memory space much larger than would be needed, causing a high
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waste of main memory in parallel environments. A major question was to understand if

it was actually necessary for example, for a input with 10M keys in an environment of

two threads to have 2M hash entries, while in an environment of 64 threads 64M hash

entries were necessary . Resizing the intermediate data structure was clearly the change

that could bring many benefits to the framework. Knowing that the main memory is a

limited resource, the possibility of using fewer resources is always a good option. Such

a change offers an advantage to all phases, even if different types of workload pressure

intermediate data structure in different ways.

Phoenix++ already works with the idea that different Map tasks produce different

amounts of keys, using hash tables of varying size and achieving a better use of main

memory.

In Figure 5.15 it can be seen the reduction in main memory achieved, using our imple-

mentation against Metis and Phoenix++. Our implementation using partial MapReduce,

allows us to make best use of main memory available space. Against the original version of

Metis, we managed to get a significant reduction in use of main memory. However as it is

possible to see in Figure 5.15, the use of partial MapReduce and a fixed size intermediate

data structures, gets more or less the same main memory usage than Phoenix++, although

the strategies are quite different.

Figure 5.15: Intel Xeon main memory usage using Word Count Benchmark.

The reduction in main memory usage of our implementation against Metis and

Phoenix++, can be seen in detail in table 5.8 for the Intel Xeon environment.
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Table 5.8: Reduction in main memory usage on Intel Xeon using Word Count Benchmark.

Input Size Keys Over Original Metis Over Phoenix++

3.9GB 10M -67% -46%

7.8GB 20M -34% +1%

11.7GB 30M -39% -1%

15.6GB 40M -35% +1%

19.6GB 50M -34% +6%

23.5GB 60M -37% +2%

27.4GB 70M -39% -1%

5.5.6 Inverted Index Total Execution Time on Intel Xeon

As a second option, we decided to prove the e�ciency of our proposal using Inverted Index

benchmark. The Inverted Index maps terms and their occurrences in a document or set of

documents. It is an indexing strategy that allows performing quick and accurate searches

in exchange for greater di�culty in the act of inserting and updating documents. It is

usually built on a traditional list of documents, is so called because reverse the hierarchy

of information.

Unlike the Word Count application, where Map tasks simply must emit all found words.

In Inverted index, each key emited requires more processing than is necessary in word

count.

As it is possible to see in Figure 5.16, the use of partial MapReduce show an improvement

even when using an di�erent application from the Word Count initially used. Unlike the

original Metis, our proposal is able to maintain a low growth at execution time when

increase the workload, as can been see in Figure 5.16 mainly for 60M and 70M inputs .
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Figure 5.16: Intel Xeon Total Time using Inverted Index Benchmark.

In table 5.9 it can be seen that our proposal was able to achieve a speedup between

1.5 and 2.3 times faster than the original Metis, as was also shown in Figure 5.16.

Table 5.9: Total Execution Time Speedup on Intel Xeon using Inverted Index Benchmark.

Input Size Keys Over Metis

3.9GB 10M 1.5x

7.8GB 20M 1.5x

11.7GB 30M 1.5x

15.6GB 40M 1.5x

19.6GB 50M 1.5x

23.5GB 60M 1.7x

27.4GB 70M 2.3x

5.5.7 Inverted Index Map Phase Total Execution Time on Intel

Xeon

Looking with more detail, it can been seen in Figure 5.17 compared with the figure 5.16

that Map phase has significant influence on the framework execution time. Such a situation

is justified because the Map phase is responsible for reading all the input file information,

produce and organize all the keys in the intermediate data structure. As seen in Figure

5.17, it is possible to obtain a significant improvement in execution time for the 70M input

file.
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Figure 5.17: Intel Xeon Map phase execution time using Inverted Index Benchmark.

The details of the executions shown in Figure 5.17 can be appreciated with more detail

in the table 5.10, where it can be seen that our proposal led to a speedup between 1.3 to

1.7 times faster than the original Metis.

Table 5.10: Map Phase Execution Time Speedup on Intel Xeon using Inverted Index

Benchmark.
Input Size Keys Over Metis

3.9GB 10M 1.4x

7.8GB 20M 1.4x

11.7GB 30M 1.3x

15.6GB 40M 1.3x

19.6GB 50M 1.3x

23.5GB 60M 1.3x

27.4GB 70M 1.7x

5.5.8 Inverted Index Reduce Phase Total Execution Time on

Intel Xeon

Unlike the Map phase where the keys are mapped from an input file and organized into

a intermediate data structure, the Reduce phase only needs to process the keys already

organized in intermediate data structure. Such a situation allows the reduce phase have a
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linearly stable execution time, as can be seen in figure 5.18. Even so, our proposal is able

to show improvement for all workloads.

Figure 5.18: Intel Xeon Reduce Phase Execution Time using Inverted Index Benchmark.

As can be seen in table 5.11, the use of our proposal allowed a small improvement

in the execution time of the Reduce phase, using as a benchmark the Inverted Index

application. With a stable behavior, we managed to get speedup between 1.4 and 1.6

faster than the original Metis.

Table 5.11: Reduce Phase Execution Time Speedup on Intel Xeon using Inverted Index

Benchmark.
Input Size Keys Over Metis

3.9GB 10M 1.6x

7.8GB 20M 1.6x

11.7GB 30M 1.5x

15.6GB 40M 1.5x

19.6GB 50M 1.4x

23.5GB 60M 1.4x

27.4GB 70M 1.5x
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5.5.9 Inverted Index Merge Phase Total Execution Time on In-

tel Xeon

Some large workloads have a Reduce phase that emits many items, so that the final Merge

has significant cost. For these types of workloads, sorting the keys in final output may

reduce the cost of the Merge. In short, for these workloads it may be beneficial that the

intermediate data structure store the keys in sorted order.

In the original Metis, the Merge phase receives a large number of short vectors ordered

from 1 to 10 keys to make a global sorting. In our proposal, by make a partial reduction,

the Merge phase receives a smaller set of ordered vectors, where the number of keys sorted

by vector is significantly higher than the original Metis. By receives a higher number of

sorted keys, the cost of making a global sort becomes relatively smaller. This advantage

can be seen in Figure 5.19, mainly for 70M input, where we achieved speedup that reaches

6.1 times faster than the original Metis.

Figure 5.19: Intel Xeon Merge Phase Execution Time using Inverted Index Benchmark.

The speedup details of the Figure 5.19 can be seen with more detail in the table 5.12

below.
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Table 5.12: Merge Phase Execution Time Speedup on Intel Xeon using Inverted Index

Benchmark.
Input Size Keys Over Metis

3.9GB 10M 1.4x

7.8GB 20M 1.4x

11.7GB 30M 1.5x

15.6GB 40M 1.4x

19.6GB 50M 2.0x

23.5GB 60M 3.6x

27.4GB 70M 6.1x

5.5.10 Inverted Index Total Main Memory Usage on Intel Xeon

In the original Metis, to process large number of di�erent keys it would need a large

intermediate data structure. In our proposal, the size of the intermediate data structure

related to the amount of LLC available. As each part of MapReduce execution uses a small

intermediate data structure, it is possible to always keep the smallest possible number of

keys in memory.

By taking advantage of a small data structure intermediate as well as improvements

in execution time, it is also possible to see an improvement over the amount of main

memory usage. Making partial data reduction prevents the intermediate data structure to

grow without control. As a result of our proposal it can be seen in Figure 5.20 that using

Inverted Index, our framework can achieve a reduction up to 25% in main memory usage

compared to Metis.
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Figure 5.20: Intel Xeon Main Memory Usage using Inverted Index Benchmark.

In the table 5.13 it is also possible to see that our proposal achieves the reduction in

memory usage ranging between 19% and 25% for all types of workloads.

Table 5.13: Reduction in Main Memory Usage on Intel Xeon using Inverted Index

Benchmark.
Input Size Keys Over Original Metis

3.9GB 10M -19%

7.8GB 20M -25%

11.7GB 30M -23%

15.6GB 40M -24%

19.6GB 50M -24%

23.5GB 60M -23%

27.4GB 70M -23%

5.5.11 Word Count Total Execution Time on AMD Opteron

In Figure 5.21, it can be seen that the original Metis lose performance when handling a large

volume of keys in a more parallel environment. On the other hand, our implementation

are able to maintain roughly the same performance. While the Intel Xeon has 6 cores and

12 threads sharing the 12MB of cache memory, the AMD Opteron keeps 16 cores sharing

the same 12MB of cache memory, which makes it difficult to improve the execution time

performance on AMD Opteron.
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Previous work reported that accesses to the main memory are 33% slower than accesses

to cache memory. Any program that uses more than 64 threads will experience such

non-uniform latency[38]. This may partially explain the drop in Metis performance, since

it is necessary to handle with large datasets in main memory through the many threads.

To keep the spatial locality in AMD, the path to follow is to reduce the size of the

intermediate data structure. However the decrease of the intermediate data structure,

requires that our implementation launches many MapReduce parts to prevent the interme-

diate data structure to grow sufficiently to lose locality with cache memory. As explained

in section 4.3.1, a small structure causes more interruptions in the execution, which may

cause loss of performance.

In terms of execution time, for our implementation, the number of threads that are

sharing the cache memory on the Intel Xeon processor provides better locality with cache

memory and hence better performance, as shown in Figure 5.9.

Figure 5.21: AMD Opteron Total Time using Word Count Benchmark.

The improvements presented in Figures 5.21 can be see in the table 5.14. As can be

seen in table 5.14, our implementation can be up to 5.6 times faster than Metis, and up to

3.5 times faster than Phoenix++.
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Table 5.14: Total Execution Time Speedup on AMD Opteron using Word Count Bench-

mark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 5.6x 2.6x

7.8GB 20M 5.0x 3.5x

11.7GB 30M 4.1x 3.3x

15.6GB 40M 3.4x 2.5x

19.6GB 50M 3.2x 2.2x

23.5GB 60M 3.8x 2.4x

27.4GB 70M 3.6x 2.2x

5.5.12 Word Count Map Phase Total Execution Time on AMD

Opteron

Following the pattern of Figure 5.21, over the total execution time in Figure 5.22 it is

possible to see that the Map phase execution time follows the same pattern as the total

execution time. By making use of arrays instead of trees B+tree, Phoenix++ achieves

better spatial locality than Metis, although there are more threads sharing the same

memory cache. However our implementation follows the same intermediate data structure

style and can get better Map phase execution time performance than both.

Figure 5.22: AMD Opteron Map phase execution time using Word Count Benchmark.

Looking in more detail through the table 5.15, as can be see that our implementation

can be up to 7.2 times faster than Metis. Against the time taken in Intel Xeon, while
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Metis lose performance, Phoenix++ can still be a little faster. Yet our implementation

can be up to 4.1 times faster than Phoenix++ at the Map phase execution time.

Table 5.15: Map Phase Execution Time Speedup on AMD Opteron using Word Count

Benchmark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 7.2x 2.3x

7.8GB 20M 6.4x 3.9x

11.7GB 30M 5.9x 4.1x

15.6GB 40M 4.9x 3.4x

19.6GB 50M 3.9x 2.7x

23.5GB 60M 5.1x 3.1x

27.4GB 70M 4.6x 2.8x

5.5.13 Word Count Reduce Phase Total Execution Time on

AMD Opteron

As well as shown by using the Intel Xeon environment, our implementation takes advantage

of the small intermediate data structure usage to perform smaller number of reduce tasks,

and to be relatively faster. As can be see in Figure 5.23, our implementation outperforms

Metis and Phoenix++.

Figure 5.23: AMD Opteron Reduce Phase Execution Time using Word Count Benchmark.

Looking at table 5.16, we can see that our implementation can be up to 2.6 times faster
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than Metis and up to 3 times faster than Phoenix++ in the Reduce phase using AMD

Opteron.

Table 5.16: Reduce Phase Execution Time Speedup on AMD Opteron using Word Count

Benchmark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 2.4x 2.8x

7.8GB 20M 2.6x 3.0x

11.7GB 30M 2.1x 2.5x

15.6GB 40M 1.8x 2.4x

19.6GB 50M 2.1x 2.7x

23.5GB 60M 2.6x 2.2x

27.4GB 70M 2.6x 2.2x

5.5.14 Word Count Merge Phase Total Execution Time on AMD

Opteron

As explained in section 5.5.4, in our implementation the Merge phase execution time is

greatly influenced by the existence of repeated keys in the output of each MapReduce part.

This situation makes necessary to make reduction of the repeated keys during the Merge

phase. As can be seen in Figure 5.24, unlike the results shown in Intel Xeon, on the AMD

Opteron the influence of repeated keys becomes even higher, so that our implementation

have worse or equal execution times than Metis and Phoenix++.

Figure 5.24: AMD Opteron Merge Phase Execution Time using Word Count Benchmark.
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As can be seen in table 5.17, compared with Metis is possible to see that the best

result does not exceed 1,8 times faster, and for input with 30M and 40M of keys our

implementation has worse performance. Compared with Phoenix++, while the input file

keys 10M has a key distribution allowing our implementation to be 3.2 times faster. For

the input of 70M keys our implementation delivers worse performance than Phoenix++.

Table 5.17: Merge Phase Execution Time Speedup on AMD Opteron using Word Count

Benchmark.
Input Size Keys Over Metis Over Phoenix++

3.9GB 10M 1.8x 3.2x

7.8GB 20M 1.3x 1.7x

11.7GB 30M 0.9x 1.6x

15.6GB 40M 0.9x 1.1x

19.6GB 50M 1.3x 1.1x

23.5GB 60M 1.3x 1.0x

27.4GB 70M 1.2x 0.9x

5.5.15 Word Count Total Main Memory Usage on AMD Opteron

As can be seen in Figure 5.25, now using an environment with increased parallelism, while

Metis increases the memory usage for supporting the intermediate data structure and

parallelism, we maintain the memory usage similar to that used in the environment of

Figure 5.15. Now against Phoenix++, as can be seen in Figure 5.25, our implementation

achieves slightly better results with less use of main memory.

Figure 5.25: AMD Opteron main memory usage using Word Count Benchmark.
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Compared with the results using the Intel Xeon, we can see in table 5.18 that our

implementation introduces a slight reduction in main memory usage versus Phoenix. On

the other hand, comparing versus Metis our implementation still presents significant

improvements in the main memory usage, using up to 53% less main memory.

Table 5.18: Reduction in Main Memory Usage on AMD Opteron using Word Count

Benchmark.
Input Size Keys Over Original Metis Over Phoenix++

3.9GB 10M -53% -39%

7.8GB 20M -50% -26%

11.7GB 30M -46% -9%

15.6GB 40M -44% -10%

19.6GB 50M -46% -9%

23.5GB 60M -46% -4%

27.4GB 70M -46% -3%

5.5.16 Inverted Index Total Execution Time on AMD Opteron

As can be seen in Figure 5.26, comparing the word count application shown in Figure 5.21,

the execution time is about 16% higher using inverted index.

Just like the original execution, our proposal follows the same linear execution that

original Metis, However, our implementation can be 1.6 times faster. Relatively less than

the 5.6 times faster obtained using word count with the same input data size.

Figure 5.26: AMD Opteron Total Time using Inverted Index Benchmark.
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When compared with the Word Count application used shown in table 5.14, the

improvement with Inverted index shown in table 5.19 is relatively small. This situation

shows the important influence exerted on the framework for different applications.

Table 5.19: Total Execution Time Speedup on AMD Opteron using Inverted Index

Benchmark.
Input Size Keys Over Metis

3.9GB 10M 1.6x

7.8GB 20M 1.7x

11.7GB 30M 1.7x

15.6GB 40M 1.7x

19.6GB 50M 1.7x

23.5GB 60M 1.6x

27.4GB 70M 1.6x

5.5.17 Inverted Index Map Phase Total Execution Time on AMD

Opteron

As in experiments done with Word Count benchmark, also in Inverted Index benchmark

the Map phase suffers the highest influence to the overall behavior of the application. Can

be seen in Figure 5.27 that the behavior is very similar to Figure 5.26, with an increase in

execution time linearly due the size of the input.

Figure 5.27: AMD Opteron Map phase execution time using Inverted Index Benchmark.
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As the total execution time, it is possible to see in table 5.20 that the Map phase keeps

between 1.6 and 1.7 times faster than Metis.

Table 5.20: Map Phase Execution Time Speedup on AMD Opteron using Inverted Index

Benchmark.
Input Size Keys Over Metis

3.9GB 10M 1.7x

7.8GB 20M 1.7x

11.7GB 30M 1.6x

15.6GB 40M 1.6x

19.6GB 50M 1.6x

23.5GB 60M 1.6x

27.4GB 70M 1.6x

5.5.18 Inverted Index Reduce Phase Total Execution Time on

AMD Opteron

Analyzing figure 5.28 compared with the results presented in phase Map, it is possible

to see that the Inverted index has a strong linear behavior due of the size of input file.

On the other hand we can see that unlike Word Count, the Map and Reduce phase in

the inverted index the key distribution of the input does not produce large change in the

behavior of the framework.

Figure 5.28: AMD Opteron Reduce Phase Execution Time using Inverted Index Benchmark.
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As can be seen in table 5.21 the behavior between 1.5 and 1.7 times faster than Metis,

is relatively similar to that shown in Map phase through the table 5.20.

Table 5.21: Reduce Phase Execution Time Speedup on AMD Opteron using Inverted

Index Benchmark.
Input Size Keys Over Metis

3.9GB 10M 1.5x

7.8GB 20M 1.7x

11.7GB 30M 1.7x

15.6GB 40M 1.7x

19.6GB 50M 1.7x

23.5GB 60M 1.7x

27.4GB 70M 1.7x

5.5.19 Inverted Index Merge Phase Total Execution Time on

AMD Opteron

The major difference in the behavior of Inverted Index as can be seen in Figure 5.29

happens when using the Merge phase. Between the inputs of 40M and 50M keys it is

possible to see that in Merge phase the Inverted Index loses some of the linear characteristic

shown so far in other phases. Also during Merge phase we can see that it is possible to get

a speedup to 3.5 times faster than Metis, unlike the 1.7 obtained in the Map and Reduce

phases.

Figure 5.29: AMD Opteron Merge Phase Execution Time using Inverted Index Benchmark.
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The table 5.22 presents in more detail the results shown previously in the Figure 5.29.

Table 5.22: Merge Phase Execution Time Speedup on AMD Opteron using Inverted

Index Benchmark.
Input Size Keys Over Metis

3.9GB 10M 2.1x

7.8GB 20M 2.1x

11.7GB 30M 3.5x

15.6GB 40M 3.4x

19.6GB 50M 2.5x

23.5GB 60M 2.1x

27.4GB 70M 2.0x

5.5.20 Inverted Index Total Main Memory Usage on AMD Opteron

As well as in the use of Word Count benchmark, as shown in Figure 5.30 in the Inverted

Index the reduction in the main memory usage follows the same behavior. This situation

is influenced mainly by the use of an intermediate data structure that is referenced the

cache memory size and effective keys reduction through the use of partial MapReduce.

Figure 5.30: AMD Opteron Main Memory Usage using Inverted Index Benchmark.

The table 5.23 presents in more detail the results shown previously in the Figure 5.30,

where it is possible to obtain a reduction in main memory usage up to 44%.
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Table 5.23: Reduction in Main Memory Usage on AMD Opteron using Inverted Index

Benchmark.
Input Size Keys Over Original Metis

3.9GB 10M -35%

7.8GB 20M -39%

11.7GB 30M -44%

15.6GB 40M -42%

19.6GB 50M -38%

23.5GB 60M -36%

27.4GB 70M -36%
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Chapter 6

Conclusions

6.1 Final Conclusions

This thesis analyzes current multi-core MapReduce frameworks and identi�es and de-

scribes some of their limitations. In summary, these frameworks are designed to keep all

intermediate data in memory. When executing applications with large data input, they

fail to make an optimal usage of the cache memory, and when the available memory is too

small to store all framework intermediate data, there is a severe performance loss.

This research shows the relevance of the data structure used to store the intermediate

data for the global execution performance, and proposes a memory management subsystem

to allow the processing of an unlimited amount of data by the use of a disk spilling mecha-

nism. Key/value pairs are copied from memory to disk in a controlled way. Information

is serialized and compacted before writing to disk. This mechanism reduces signi�cantly

the occurrence of page trashing due to the management of virtual memory performed by

the operating system. System memory usage is monitored to launch the spilling process

when meeting a certain threshold value. . This dynamic scheme allows the framework to

adapt to varying availability of memory, for example due to existence of other concurrent

applications sharing the same computer resources.

Experiments with an application making an intensive usage of the MapReduce library

show a speedup with respect to the original Metis implementation of up to 3.6 and up to

2.5 in the Map and Reduce phases, respectively.Those results have been published in the

international conference that is referenced below:

• T. Ferreira, A. Espinosa, J.C. Moure, P. Hern�andez. An Optimization

for MapReduce Frameworks in Multi-core Architectures, In Proceed-

ings of The International Conference on Computational Science, ICCS

87



2013, Barcelona, Spain, June 2013. [16]

Additionally, we have proposed and implemented a way to manage concurrent access

to disk of all threads participating in the computation. We set di�erent triggers for each

thread so that there is less contention when moving data from memory to disk. The

proposed mechanism reduces execution time up to a half on a dual-socket system executing

a total of 24 threads. The results have been presented and published in the following

international conference:

• T. Ferreira, A. Espinosa, J.C. Moure, P. Hern�andez. Optimizing

the use of the Hard Disk in MapReduce Frameworks for Multi-core

Architectures, In Proceedings of The 2013 International Conference

on Parallel and Distributed Processing Techniques and Applications,

PDPTA 2013, Las Vegas, United States of America, July 2013. [17]

Finally, we have studied the e�ective use of the memory hierarchy by the data structures

of the MapReduce frameworks and proposed a new implementation of partial MapReduce

tasks to the input data set. The objective was to make a better use of the cache and

to eliminate references to data blocks that are no longer in use. Experiments using 2

applications and two computer systems show that execution time is always improved by

at least 1.5x. Speedups range between 1.5 and 5.6 with respect to Metis, and between 1.5

and 4.2 with respect to Phoenix++, depending on the application, the input data size,

and the computer system considered. An additional bene�t of the partial MapReduce

proposal is a reduction of main memory usage of up to 67

We have presented the previous proposal in a paper that has been rejected for publica-

tion and, with the help of the useful feedback from the referees we are currently making a

�nal e�ort to improve the explanations and experimental setup to disseminate the results.

• T. Ferreira, A. Espinosa, J.C. Moure, P. Hern�andez. Improving Per-

formance in Memory Hierarchy on MapReduce Frameworks for Multi-

Core Architectures, to be submitted.

6.2 Future Work and Open Lines

There are two clear continuation lines for the work presented in this document. First, we

have to integrate the two main proposals into a robust framework to allow the community

to bene�t from its use. Second, we have to extend the experimentation to a broader range
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of applications. In particular, we want to test applications from the bioinformatics �eld,

with strong data-intensive requirements.

A uni�ed shared memory MapReduce framework and a broader set of relevant applica-

tions would allow a more in-depth performance analysis to identify the key performance

factors and the adequate key system parameters. We want to develop a tuning methodology

that set those system parameters to let the framework adapt to the key performance

characteristics of each application.

An open line is to extend shared memory MapReduce to cluster-based systems, using a

hybrid approach with an in-memory version in each shared memory node and a disk-based

MapReduce version across nodes. The memory management mechanisms studied and

proposed in this work could be extended by considering remote nodes an additional level

of the memory hierarchy.

A di�erent open line is to extend the ideas described in this work to many-core

platforms, like GPUs [20][21][32] or the intel Xeon Phi [8] [RefPhi: mirarabajo]. These

processors are very complex to program, and can greatly bene�t from a programming

abstraction that hides the low-level details of thread management, synchronization and

intermediate data management.
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