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Introduction

At the beginning of the twentieth century several previously experimentally reported
phenomena, such as the black body radiation [1], the photoelectric e�ect [2, 3] or the
spectral lines of atomic gases [4, 5, 6], were successfully accounted for by considering
that the energy radiated from atomic systems was in the form of discrete elements or
quanta [7, 8] and by the study of the internal structure of the atom which led to the
assumption of the Bohr's model [9, 10, 11, 12, 13, 14, 15]. These facts constituted the
birth of Quantum Mechanics. Although some phenomenological theories were initially
proposed, known as Old Quantum Mechanics [11, 12, 13, 14, 16, 17], it was not until the
mid-1920s that the standard formulation of Quantum Mechanics was developed and
�nally established around the 1930s, with the uni�cation [18] of several formulations
such as matrix mechanics [19, 20] and wave mechanics [21], and the inclusion of the
uncertainty principle [22]. Since then, Quantum Mechanics has allowed for a better
understanding of fundamental aspects related to the wave-particle duality [17, 23] and
the interaction between radiation and matter. Furthermore, Quantum Mechanics has
been the origin of other disciplines such as Quantum Chemistry [24], Quantum Optics
[25] or Quantum Information science [26]. The development of the latter two was
closely related to the invention of the laser [27, 28, 29], since it provided a more accurate
way to study the light-matter interaction and allowed for what is known as Quantum
engineering. Thus, laser light can be used, for example, for spectroscopy [30], generation
of nonlinear phenomena [31], for trapping and cooling of particles [32] and for the
measurement and manipulation of individual particle states [33].

Many of the processes in Quantum Mechanics and, in particular in Quantum engi-
neering, are purely oscillatory, i.e., are based on the wave-like behavior of the atomic
probability amplitude and its associated phase. For this reason, quantum oscillatory
processes can be extended to other non- quantum physical systems which also support
oscillating quantities. This is the case of the so-called adiabatic passage processes,
which in Quantum Mechanics allow for a robust and e�cient control of the atomic

1



Introduction

population transfer between two states of the system [34, 35]. Adiabatic passage pro-
cesses are a particular case of adiabatic following, a concept arising from the adiabatic
theorem [36]. As for any adiabatic following, one of the main characteristics of the adia-
batic passage processes is their robustness, i.e., if the process is performed adiabatically
the transfer will be e�cient regardless which are the selected speci�c parameter used
to drive the system and their uctuations. This constitutes the main advantage of
this kind of process with respect to other transfer processes, in which the transfer may
depend on a speci�c combination of parameter values of the system, specially when
high �delities are required. For example, in quantum computation, it is believed that
error thresholds between 10�4 and 10�2 in the �delity of the implementation of the
quantum logic gates are required for fault-tolerant computation [37]. Thus, adiabatic
passage processes to control the internal and external degrees of freedom of single cold
atoms have been suggested for the implementation of quantum logic gates due to their
high robustness and �delity [37, 38, 39, 40, 41, 42].

In this thesis, adiabatic passage processes are addressed in di�erent oscillatory
physical systems, both quantum and classical. As a common feature, all the approaches
present robustness and high �delity in the transfer of the oscillating quantity, which is
exploited in order to either provide new applications or to improve the existing ones in
the corresponding �eld of physics. In particular, we apply adiabatic passage processes
to control (i) light propagation in a system of three coupled optical waveguides, (ii)
sound propagation along a system of two coupled linear defects in a sonic crystal, (iii)
propagation of single cold atoms in systems of three coupled atomic waveguides and (iv)
transfer of single cold atoms in two-dimensional harmonic triple-well potential systems.

Since the central topic of this thesis is the spatial adiabatic passage process, Chapter
1 is devoted to explain the basics of adiabatic following of an eigenstate or supermode.
In order to link all the di�erent implementations of the adiabatic passage discussed
along the thesis, we will pay special attention in highlighting the key elements that a
physical system must have to perform it.

In Chapter 2 we present the spatial adiabatic passage of light in a system of three
evanescent-coupled silicon oxide total internal reection waveguide system, which con-
sists in a complete transfer of light intensity between the outermost waveguides of
the system. The advantage of spatial the adiabatic passage of light compared to the
traditional directional couplers is that the transfer is robust in front of technological
variations and does not depend on precisely selected parameter values. The spatial adi-
abatic passage of light was already presented as a proof of principle in [43, 44]. However,
here we show the �rst experimental implementation of the passage in CMOS-compatible
technology, which represents an important technological improvement since it allows for
a massive and low-cost fabrication of these devices and their incorporation to realistic
photonic integrated circuits. Additionally, using the same technology, we experimen-
tally demonstrate the use of the system as a high- and low-pass spectral �lter based
on the spatial adiabatic passage in a triple-waveguide system. Due to its robustness
against technological variations and its low cost this spatial adiabatic passage spectral
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�lter represents an alternative to interference-based and absorbance-based �lters.
In Chapter 3, spatial adiabatic passage processes are applied to sound waves for

the �rst time to the best of our knowledge. An interesting candidate for guiding
sound waves are linear defects in sonic crystals [45, 46], which allow for measurements
inside the crystal. In addition, sonic crystals o�er a straightforward analogy with
photonic crystals [47, 48, 49]. By modifying the geometry of the linear defects along
the propagation distance and studying the projected band diagrams obtained using the
plain wave expansion method, spatial adiabatic passage processes for sound waves are
proposed leading to the implementation of a coherent multifrequency adiabatic splitter,
a phase di�erence analyzer and a coherent multifrequency adiabatic coupler.

Chapter 4 proposes to use spatial adiabatic passage processes to inject into, ex-
tract from and velocity �lter neutral atoms in a dipolar ring trap by using two addi-
tional waveguides. The described mechanisms are based on the adiabatic following of
a transversal dark state and resemble the spatial adiabatic passage of matter waves in
potential wells [50, 51, 52, 53, 54, 55]. A semi-analytical condition for the threshold
longitudinal velocity allowing for an e�cient spatial adiabatic passage is obtained which
perfectly matches the results of the numerical integration of the full two-dimensional
Schr•odinger equation. Furthermore, it has been numerically checked that the proposal
can be realized using state-of-the-art parameter values for ultracold atoms in optical
dipole traps.

In the next two chapters, 5 and 6, we study the spatial adiabatic passage of a single
cold atom in two-dimensional triple-well potentials, going beyond the well understood
e�ectively one-dimensional systems [50, 51, 52, 53, 54, 55] and studying the possibilities
arising from the additional degrees of freedom. On the one hand, in Chapter 5, a system
of three coupled identical harmonic potentials with the traps lying in a triangular
con�guration is used for interferometry taking pro�t of a level crossing appearing in the
energy spectrum. On the other hand, in Chapter 6, angular momentum is successfully
generated by breaking the symmetry of a spatial adiabatic passage sequence in a system
of three harmonic traps of di�erent trapping frequencies by simultaneously following
two eigenstates of the system.

Finally, Chapter 7 presents the conclusions of this thesis and a discussion on future
perspectives.
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1
Adiabatic passage processes

Adiabatic passage processes have been successfully applied in di�erent �elds of physics,
such as Quantum Optics, Atomic Physics or waveguide Optics, to coherently control,
for example, the evolution of atomic population and the propagation of light, sound or
matter waves, and are at the basis of the research work presented in this thesis. Thus
the main aim of this �rst chapter is to introduce the concept of adiabatic passage. We
will start with the most general meaning of adiabatic following of an eigenvector and we
will continue with a brief review of spatial adiabatic passage and its implementation in
di�erent physical systems, specially focusing on the key elements necessary to perform
the passage with high e�ciency and robustness.

1.1 Adiabatic following of an eigenvector

As early as 1928, Max Born and Vladimir Fock stated the adiabatic theorem [56], which
introduced the concept of adiabatic following:

\A physical system remains in its instantaneous eigenstate if a given perturbation
is acting on it slowly enough and if there is a gap between the eigenvalue and the rest
of the Hamiltonian’s spectrum."

Let us illustrate the adiabatic theorem with a simple example. Consider a single
atom initially resting in the ground vibrational state of a one-dimensional harmonic
potential trap of frequency !, as shown in the left panel of Fig. 1.1. In the harmonic
trap, the atom can only occupy states with discrete energy values given by En =
~!(n+1=2), with n = 0; 1; 2; 3; ::: Our goal is to move the atom from its initial position,
xi, to a �nal position, xf . With this aim we will move the trap between these two
positions. If we move the trap very fast, the wavefunction cannot adapt to the change
and will remain in its initial position xi while the trap has been displaced some distance,
see Fig. 1.1(a). In this case, the wavefunction does not longer correspond to the ground
state of the trap, but to a combination of several of the states of the harmonic potential
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Chapter 1. Adiabatic passage processes

and will start oscillating inside the trap. However, if the trap is slowly moved, the
wavefunction can continuously readjust its shape and phase to the moving harmonic
potential, i.e., it will follow the instantaneous ground eigenstate of the harmonic trap
during the process and, therefore, any other higher n vibrational eigenstate will be
excited, see Fig. 1.1(b). This second case is an example of adiabatic following.

Non-adiabatic following

xi xf

xi xf

Adiabatic following

xi xf

Initial state

(a)

(b)

x

x

x

Figure 1.1: Schematic representation of an example of the �nal state of a non-adiabatic
following process (a) and an adiabatic one (b). At the left side, the initial state of
both processes, corresponding to an atom in the ground vibrational state of a one-
dimensional harmonic trap, is depicted.

The adiabatic following of an eigenvector is not an exclusive process of Quantum
Mechanics. For example, it can also be applied to light propagation in waveguides.
Propagating light can adiabatically follow a mode (eigenvector) of a waveguide if the
modi�cation of the mode pro�le is smooth along the propagation direction. In general,
to perform an adiabatic following it is necessary to have a physical system which allows
for discrete eigenvalues and eigenvectors that can be modi�ed along its temporal or
spatial evolution. If we call s the variable along which the eigenvector is modi�ed,
the eigenvalues and eigenvectors must be continuous functions of s. Additionally, the
eigenvalues cannot cross each other along s and the �rst and second derivates of the
eigenvectors have to be well de�ned with respect to s [36]. Any physical system ful�lling
these characteristics is a good candidate to perform an adiabatic following of one of
its eigenvectors. However, it is still necessary a smooth variation of the eigenvector
in s in order for the system to follow it adiabatically. How smooth the modi�cation
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of this eigenvector has to be can be obtained from the probability to excite any other
eigenvector of the system during the process. If the eigenvector that we want to follow
is j	i(s)i, the probability pi!j to excite any other state j	j(s)i during the process
ful�lls [36]:

pi!j . max

∣∣∣∣(h	j(s)j
dj	i(s)i
ds

)
=!ij(s)

∣∣∣∣2 ; (1.1)

where !ij(s) = !j(s)� !i(s), with !i(s) (!j(s)) being the oscillation frequency of the
j	i(s)i (j	j(s)i) eigenvector, which gives the corresponding eigenvalue. Thus, for a
certain modi�cation in the physical system with respect to s, if we want to follow
adiabatically the j	i(s)i eigenvector not exciting any other eigenvector j	j(s)i, the
value of pi!j has to be as small as possible for any j 6= i.

1.2 Adiabatic passage processes

Adiabatic passage processes are a particular example of adiabatic following which imply
a transfer of an oscillating quantity, as for example, the quantum probability amplitude
or an electromagnetic �eld, among di�erent individual elements of a physical system
that can support the oscillations, such as atomic states or modes of waveguides.

There are three basic conditions required to perform an adiabatic passage process.
The �rst one is the existence of these di�erent individual elements supporting the
oscillating quantity. Each of these elements supports its own oscillation, and we will
call them asymptotic eigenvectors. The second item is a coupling mechanism between
the asymptotic eigenvectors. And �nally, the third one is the possibility to control the
strength of the couplings and/or the oscillation frequency of the asymptotic eigenvectors
along the process. In a physical system where these three conditions are ful�lled, it is
possible to perform an adiabatic passage process by following an eigenvector of the full
system, which will consist of a superposition of the coupled asymptotic eigenvectors.

The evolution in s of the oscillating quantity, considering s as the variable that
measures the evolution of the process, can be studied by means of coupled linear equa-
tions. In a system of N asymptotic eigenvectors jki with k = 1; 2; � � � ; N , where each
asymptotic eigenvector is equal to

jki =



0
...
0
1
0
...
0



1
...
k � 1
k
k + 1
...
N

; (1.2)

the coupled equations for the evolution of the process can be written in a matrix form
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in the asymptotic eigenvectors basis as

i
d

ds


a1

a2
...
aN

 =
1

2


2"1 �
2,1 �
3,1 � � � �
N,1

�
1,2 2"2 �
3,2 � � � �
N,2

�
1,3 �
2,3 2"3 � � � �
N,3
...

...
...

. . .
...

�
1,N �
2,N �
3,N � � � 2"N



a1

a2
...
aN

 : (1.3)

Here, ak and "k are the complex amplitude and the oscillation frequency of the k-th
asymptotic eigenvector jki, respectively, and 
k,l with k 6= l is the coupling rate from
the k-th to the l-th asymptotic eigenvector.

The available eigenvectors of the full system j	i(s)i and the corresponding oscilla-
tion frequencies associated to the eigenvalues !i, with i = 1; 2; � � � ; N , can be obtained
by diagonalizing the matrix in Eq. (1.3). The obtained eigenvectors of the full system
consist in a superposition of the di�erent asymptotic eigenvectors. For example, the
i-th eigenvector could be represented as

j	i(s)i =


ai,1
ai,2

...
ai,N

 ; (1.4)

where ai,k are the amplitudes of the asymptotic eigenvectors jki. In most of the works
related with adiabatic passage processes, the matrix in Eq. (1.3) is written with 2"1

subtracted in the diagonal, i.e.,

i
d

ds


a1

a2
...
aN

 =
1

2


0 �
2,1 �
3,1 � � � �
N,1

�
1,2 2�2 �
3,2 � � � �
N,2

�
1,3 �
2,3 2�3 � � � �
N,3
...

...
...

. . .
...

�
1,N �
2,N �
3,N � � � 2�N



a1

a2
...
aN

 ; (1.5)

where �k = "k � "1. This usually allows for an easier diagonalization of the matrix,
obtaining the same eigenvectors as with Eq. (1.3) with only a constant common shift in
all the eigenvalues. Also, in most of the works, the matrices in Eq. (1.3) and (1.5) are
symmetric, i.e., 
k,l = 
l,k, which signi�cantly simpli�es the diagonalization problem.

By controlling both the strength of the couplings and the oscillation frequency
of the asymptotic eigenvectors, it is possible to modify the values of the amplitudes
ai,k of a certain eigenvector j	i(s)i. In this way, it is possible to initially excite an
eigenvector j	i(s = 0)i involving only certain individual elements of the physical sys-
tem with asymptotic amplitudes ai,k and, by adiabatically following the eigenvector
j	i(s)i, which is modi�ed along with the evolution of s, end up with a �nal eigenvector
j	i(s = S)i involving other individual elements with di�erent asymptotic eigenvector
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amplitudes. This adiabatic change of the asymptotic eigenvectors amplitudes consti-
tutes an adiabatic passage process. The adiabaticity condition in Eq. (1.1) is also valid
for the adiabatic passage. Additionally, once the eigenvalues of the process are calcu-
lated, Eq. (1.1) gives information on the limitations for the variation of the couplings
and the oscillation frequencies to perform an e�cient adiabatic passage process. It is
important to remember that there cannot be any crossing of the eigenvalues of the full
system during the process in order to perform the adiabatic following.

The advantage of adiabatic passage processes with respect to other transfer tech-
niques relays on their robustness: as long as the process is performed adiabatically and
the desired eigenvector is followed, the transfer between the asymptotic eigenvectors
will be almost 100% e�cient no matter the particular parameter values chosen for the
variation of the couplings, the variation of the oscillation frequency of the asymptotic
eigenvectors or the total time of the process or length of the system.

1.3 Examples of adiabatic passage processes

In this section we will briey review some of the implementations of the adiabatic pas-
sage processes. In particular, we will focus on the processes that have been used to
control the population transfer in systems of internal atomic levels and the population
transport in atomic traps. At the end of the section we will also introduce the propa-
gation dependent adiabatic processes that will be fully described in the next chapters
of this thesis, such as the control of (i) light propagation in coupled optical waveguide
systems in Chapter 2, (ii) sound propagation in systems of coupled linear defects in
sonic crystals in Chapter 3 and (iii) atomic propagation in systems of coupled dipolar
waveguides in Chapter 4. Another interesting example of adiabatic passage process is
shown in [57], where it has been applied to classical mechanical systems in order to con-
trol the oscillation of coupled springs or pendulums. Furthermore, although adiabatic
passage processes have been mainly used to control the transfer of atomic population
or light intensity, they have also been proposed for other applications, as for example
for spectral �ltering, as we will shown in Chapter 2, for splitting and phase analy-
sis of sound waves, as we will present in Chapter 3, or for interferometry or angular
momentum generation with single atoms, as it will be shown in Chapters 5 and 6.

1.3.1 Time-dependent adiabatic passage with atomic internal degrees
of freedom

Two techniques can be highlighted in order to control the population transfer in systems
of internal atomic levels, the so-called stimulated Raman adiabatic passage (STIRAP)
[34, 58, 59] and the rapid adiabatic passage (RAP)[59, 35] techniques.

The STIRAP technique is performed in �-type three-level atomic systems inter-
acting with two laser pulses in order to completely transfer the population between
the two ground states of the system. On the other hand, the RAP technique is im-
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plemented in two-level atomic systems interacting with a chirped laser pulse in order
to completely transfer the population between the two states. In the last decades,
these two techniques have been used for several applications [59], being the STIRAP
technique specially successful. For example, experimentally implemented applications
based on STIRAP processes have been developed as a way to control chemical reac-
tions [60], for coherent transfer of momentum [61], for laser cooling [62], or to create
coherent superpositions of photon-number states by strongly coupling an atom to a
cavity �eld [63]. Moreover, spatial dependent STIRAP has been proposed to achieve
sub-wavelegth localization via adiabatic passage, which, in turn, has been applied for
nanolithography and patterning of Bose-Einstein condensates [64], single-site address-
ing in optical lattices [65], or nanoscale resolution in uorescence microscopy [66]. Some
proposals based on the RAP technique have been also reported, as for example its use
for doppler-free adiabatic self induced transparency [67].

In atomic systems with two or three internal atomic states, the evolution variable
corresponds to the time, t, the oscillating quantity is the quantum probability ampli-
tude, the asymptotic eigenvectors are the states of the atomic levels, and the coupling
between them is given by the interaction with the light pulses. The way to control the
strength of the couplings is through the intensity of the laser pulses while the control of
the oscillation frequency of the asymptotic states is through the detuning of the laser
pulses, i.e., the di�erence between the laser light frequency and the transition frequency
between two atomic states.

Stimulated Raman adiabatic passage (STIRAP)

For the usual implementation of STIRAP [34], the Schr•odinger equation describing the
coupling of the three states forming the �-type system with the two laser pulses, in
the interaction picture and within the rotating wave approximation (RWA) [68], can
be written similarly to Eq. (1.5). Considering the �-type system, see Fig. 1.2, with
two ground states j1i and j3i and an intermediate excited state j2i, a pump pulse with
frequency !P that couples states j1i and j2i, and a Stokes pulse with frequency !S that
couples states j2i and j3i, the Schr•odinger equation reads:

i~
d

dt

a1

a2

a3

 =
~
2

 0 �
P (t) 0
�
P (t) 2�p �
S(t)

0 �
S(t) 2(�P ��S)

a1

a2

a3

 : (1.6)

Here, ak are the amplitudes corresponding to states jki, with k = 1; 2; 3, 
P (t) and

S(t) are the Rabi frequencies of the atom-laser interaction for the pump and the Stokes
�elds, respectively (
 = µ � E=~ where µ is the electric dipole moment and E is the
electric �eld). Without loss of generality we will assume that 
P and 
S are real-valued
and positive [59]. The diagonal elements of the Hamiltonian matrix in Eq. (1.6) are
the three RWA energies: the zero element is the energy of state j1i lifted (dressed) by
the photon energy ~!P and used as the reference energy level, �P = (E2�E1)=~�!P
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Chapter 1. Adiabatic passage processes

and �S = (E2 � E3)=~ � !S are the frequency o�sets (detunings) of states j2i and
j3i, respectively, where Ek is the energy of state jki (with k = 1; 2; 3) in the absence
of coupling with the �elds. Although both �P and �S can be di�erent from zero, the
two-photon resonance condition �P = �S is essential to perform the STIRAP process,
as it will be seen below.

|1〉

|2〉

|3〉

∆P ∆S

ΩP ΩSspont. em.

Figure 1.2: �-type system consisting of two ground states j1i and j3i coupled via an
excited state j2i through the interaction with two laser pulses, the Stokes and the pump,
with Rabi frequencies 
S and 
P , respectively. The detuning of the Stokes and pump
laser frequencies from the transition frequency to the excited state j2i are �S and �P ,
respectively. The excited state j2i may decay by spontaneous emission to other states.

Diagonalizing the Hamiltonian in Eq. (1.6) under the two photon resonance con-
dition, it is possible to �nd the energy eigenvalues and the eigenstates of the dressed
�-type system in interaction with the laser pulses. The oscillation frequencies of the
dressed-eigenstates, which are 1=~ times the energy eigenvalues, read:

!1 =
1

2

(
�P �

√
�2
P + 
2

P + 
2
S

)
; (1.7)

!dark = 0; (1.8)

!3 =
1

2

(
�P +

√
�2
P + 
2

P + 
2
S

)
; (1.9)

while the corresponding dressed-eigenstates can be expressed as:

j	1i = sin � sinθj1i+ cosθj2i+ cos � sinθj3i; (1.10)

j	darki = cos �j1i � sin �j3i; (1.11)

j	3i = sin � cosθj1i � sinθj2i+ cos � cosθj3i; (1.12)
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where the mixing angles � and θ are de�ned as:

tan � =

P


S
; (1.13)

tanθ =

√

2
P + 
2

S√

2
P + 
2

S + �2
P + �P

: (1.14)
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Figure 1.3: An example of the time evolution of (a) the Rabi frequencies of the pump
and Stokes laser pulses, (b) the mixing angle �, (c) the dressed-state eigenvalues, and (d)
the population in states j1i (starting at unity), j3i (reaching unity) and j2i remaining
equal to zero during the whole process, for a STIRAP process with �P = �S = 0.

The STIRAP process consists in the adiabatic following of the eigenstate j	darki,
the so-called dark state, which does not involve state j2i. From Eq. (1.11) it is straight-
forward to see that j	darki can be modi�ed by changing the mixing angle �, which in
turn, depends on the coupling strengths. The goal of the STIRAP process is to transfer
the atom between the ground states, for example from state j1i to state j3i. Intuitively,
one would think that the best way to do this is by coupling �rst state j1i to state j2i
and then couple state j2i to state j3i. However, in the STIRAP technique, states j2i
and j3i are coupled �rst, and then, with a certain temporal delay, state j1i and state j2i
are coupled. Thus, this temporal coupling sequence is usually called counterintuitive
coupling sequence. Considering initially the atom in state j1i, the coupling 
S is set
strong by increasing the intensity of the Stokes pulse while the pump is o�, i.e., 
P = 0.
In this way, � = 0 and the eigenstate j	dark(t = 0)i = j1i. Then, if the intensity of
the pump pulse increases and the one of the Stokes pulse starts decreasing, we reach
the opposite situation where 
P is strong while 
S = 0. In this case, � = ω=2 and
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the eigenstate j	dark(t = T )i = �j3i, where T is the total time of the process. If the
eigenstate j	darki is followed adiabatically by smoothly applying the pulse sequence
previously described, the atom will be e�ciently transferred from state j1i to j3i. This
corresponds to the STIRAP process. Note that during the process the excited state
j2i, which could introduce losses due to spontaneous emission is not populated at any
time. In Fig. 1.3 it is shown an example of the evolution in time of the couplings,
the � mixing angle, the energy eigenvalues and the population in the atomic states for
�P = �S = 0. In the �gure we can see that the there is no crossing of the energy
eigenvalues during the process.

In [34], a speci�c condition for the adiabaticity of the process has been derived from
the more general one shown in Eq. (1.1) together with numerical studies. In particular,
considering that (i) �P = �S = 0, (ii) the strength of the couplings follows a Gaussian
pro�le along the process, and (iii) the maxima of these Gaussians, 
P,max and 
S,max,
are separated in time �t =

p
2ν, where ν is the the standard deviation of the Gaussian

temporal pro�les of the laser pulses, the adiabaticity condition is given by

�t
√


2
P,max + 
2

S,max > 10: (1.15)

Rapid adiabatic passage (RAP)

Regarding the RAP technique, the Schr•odinger equation that describes the time evo-
lution of the probability amplitude in the system of two atomic states coupled through
a chirped laser pulse is also of the form of Eq. (1.5). Considering the two states as
j1i, the ground state, and j2i, the excited state, interacting with a laser pulse that
couples them and has a frequency !L(t) that can be varied in time (see Fig. 1.4), in the
interaction picture and within the RWA [68], the Schr•odinger equation can be written
as

i~
d

dt

(
a1

a2

)
=

~
2

(
0 �
(t)

�
(t) 2�(t)

)(
a1

a2

)
: (1.16)

Here, ak are the amplitudes corresponding to states jki, with k = 1; 2, 
(t) is the Rabi
frequency of the atom-laser interaction. As in the case of STIRAP, we will assume
that 
 is real-valued and positive [59]. The diagonal elements of the Hamiltonian
matrix are the RWA energies, with the zero element being the energy of state j1i
dressed by the photon of energy ~!L and used as the reference energy level, while
�(t) = (E2�E1)=~�!L(t) is the detuning with respect to state j2i, where E1 and E2

are the energies of the states j1i and j2i in absence of the laser interaction, respectively.

If the Hamiltonian in Eq. (1.16) is diagonalized, the energy eigenvalues and eigen-
states are obtained. The oscillation frequencies of the eigenstates read:

!� =
1

2

(
��

√

2 + �2

)
; (1.17)
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Figure 1.4: System consisting of two internal atomic states j1i and j2i interacting with
a laser pulse with temporal variation of its frequency and intensity.

The corresponding energy eigenstates of the system are given by:

j	+i = cos �j1i+ sin �j2i; (1.18)

j	�i = sin �j1i � cos �j2i; (1.19)

and the corresponding mixing angle � is de�ned as:

tan 2� =



�
: (1.20)

The RAP process consists of adiabatically following either j	+i or j	�i to achieve
a complete transfer of the atomic population from the ground state j1i to the excited
j2i state. From Eqs. (1.18) and (1.19) it is clear that both eigenstates can be modi�ed
by changing the mixing angle �, which depends on the ratio 
=� (see Eq. (1.20)):

� if 
� j�j and � > 0, the mixing angle is � = 0 and the eigenstates are j	+i = j1i
and j	�i = �j2i

� if 
 � j�j and � < 0, the mixing angle is � = ω=2 and the eigenstates are
j	+i = j2i and j	�i = j1i.

� if 
 〈 j�j, the mixing angle value is � = ω=4 and the eigenstates are j	+i =
(j1i+ j2i)=

p
2 and j	�i = (j1i � j2i)=

p
2.

In this way, since the objective is to transfer the atom from j1i to j2i, we can modify �
either from 0 to ω=2 and follow j	+i, or from ω=2 to 0 and follow j	�i. This implies
that the process has to start with the laser far from resonance but with low enough
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Figure 1.5: Example of the time evolution of (a) the Rabi frequency 
 and the detuning
�, (b) the mixing angle �, (c) the dressed-state eigenvalues, and (d) the population in
states j1i (starting at unity) and j2i (reaching unity) for a RAP process.

intensity to ful�ll 
� j�j, with � > 0 if we want to follow j	+i or with � < 0 if we
want to follow j	�i. Then, the absolute value of the detuning has to smoothly decrease
while the laser intensity (and thus, the coupling) increases, reaching eventually 
〈 j�j
and � = ω=4. At this point, the sign of the detuning has to change and increase its
absolute value while the coupling strength decreases until 
� j�j is ful�lled again but
with the opposite sign of � compared to that at the beginning of the process. If the
modi�cation of the followed eigenstate, j	+i or j	�i, has been smooth enough during
the process, the atom will be able to follow it adiabatically and it will be transferred
from j1i to j2i, which constitutes the RAP process. An example of a RAP process is
shown in Fig. 1.5, where the eigenstate j	+i is adiabatically followed. Additionally,
Fig. 1.5 shows that there is no crossing of the energy eigenvalues during the process,
which allows for the adiabatic following of one of the eigenstates of the system (j	+i
in the �gure).

A speci�c condition can be found from Eq. (1.1) on how to modify the coupling and
the detuning in order that the atom can follow the selected eigenstate [59, 35]. The
condition reads

1

2

∣∣∣ _
�� 
 _�
∣∣∣� (


2 + �2
)3/2

; (1.21)

where the dot denotes time derivative.

Note also that if the � angle is modi�ed from either 0 or ω=2 to ω=4, the �nal
state would correspond to a splitting of the atom between the j1i and j2i states, i.e., a
superposition j	+i = (j1i+j2i)=

p
2 or j	�i = (j1i�j2i)=

p
2 depending on the followed

eigenstate of the system.
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1.3.2 Time-dependent adiabatic passage with external degrees of free-
dom

After the successful implementation of adiabatic passage techniques for systems of
internal atomic levels, adiabatic passage processes were extended to external degrees
of freedom in the �eld of Ultracold Atoms. The �rst work appeared in 2004 [50], where
adiabatic passage processes were proposed to coherently control the transport of a
single cold atom between the most distant wells of a system of three tunneling-coupled
potential wells. Subsequently, other works also proposed adiabatic passage processes
for transport of single cold atoms [52, 54, 69] as well as for other kind of particles, such
as electrons [70], vortices [71] or holes [55], and also Bose{Einstein condensates (BECs)
[72, 73, 74, 75, 53, 76]. All these adiabatic passage processes implying transport in
space have been named spatial adiabatic passage processes. These systems of single
particles or BECs also present the required elements to perform adiabatic passage
processes that we have discussed in Section 1.2. Speci�cally, the evolution variable s is
the time t, the oscillating quantity corresponds to the quantum probability amplitude,
the asymptotic eigenvectors are the asymptotic energy vibrational eigenstates of the
individual potential wells, and the coupling between the asymptotic states is given by
the tunneling e�ect which can be modi�ed with the separation between traps. For
the case of single particles, the control of the oscillation frequency of the asymptotic
eigenstates is obtained by modifying the characteristics of the potential trap in order
to shift the energy of the asymptotic states, which is proportional to the oscillation
frequency. For BECs, apart from the energy of the asymptotic states given by the
trap, it has to be taken into account that the nonlinear interaction also changes the
oscillation frequency of the asymptotic eigenstate that is populated.

In these systems, only the three asymptotic eigenstates of similar energy, one per
potential well, play a role in the adiabatic population evolution. We will call these
asymptotic states as jLi for the left trap, jCi for the central trap and jRi for the right
trap. Other asymptotic eigenstates of the wells are assumed to have signi�cant di�erent
values of energy and therefore uncoupled from the three considered ones. In this case,
the equation describing the evolution of the probability amplitudes of being in states
jLi, jCi or jRi can be written similarly to Eq. (1.3), with tunneling coupling rates
JLC between states jLi and jCi, and JRC between states jRi and jCi, while no direct
coupling is considered between the outermost traps:

i~
d

dt

aRaC
aL

 =
~
2

2("R + gjaRj2) �JRC(t) 0
�JRC(t) 2("C + gjaC j2) �JLC(t)

0 �JLC(t) 2("L + gjaLj2)

aRaC
aL

 : (1.22)

Here, ak are the amplitudes corresponding to the states jki, with k = R;C;L, and the
diagonal elements of the matrix are twice the oscillation frequencies of the asymptotic
eigenstates. "k is equal to Ek=~ with Ek being the energy of the asymptotic vibrational
eigenstate jki disregarding the nonlinear interaction between particles. The term g
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Figure 1.6: Schematic representation of a triple-well potential. The considered asymp-
totic eigenstates are the ground vibrational states of the traps, which are denoted as
| L〉for the left trap, | C〉for the central trap and | R〉for the right trap. The other
asymptotic states are assumed to be far enough in energy not to be coupled with the
three ground ones. The energy of the ground states is given by � εk with k = L,C,R
and the coupling rates between the states, JLC and JRC , depend on the separation
distances dLC and dRC between the traps. A single particle or BEC wavefunction is
represented in the ground state of the right trap, | R〉, which corresponds to the initial
state of the system.

represents the nonlinear interaction. For a single particle g is equal to 0 and Eq. (1.22)
is the time dependent Schr̈odinger equation. For BECs g accounts for the s-wave
particle-particle interaction and Eq. (1.22) corresponds to the time dependent nonlinear
Schr¨odinger equation or Gross-Pitaevskii equation [77].

For the single particle case, as for the STIRAP technique, if the oscillation fre-
quencies of the asymptotic eigenstates | L〉and | R〉are set to be equal, εR = εL, a
counterintuitive coupling sequence can be applied to transfer the single particle be-
tween the outermost traps by means of a spatial adiabatic passage process. In fact,
Eq. (1.22) for the single particle case with the condition εR = εL is completely anal-
ogous to Eq. (1.6), giving exactly the same eigenvalues and eigenvectors of the whole
system. The dark state here is written as

| Ψdark〉= cosθ| R〉− sinθ| L〉, (1.23)

where the mixing θ angle is also analogous to the STIRAP case

tanθ=
JRC
JLC

. (1.24)

The main difference for the spatial adiabatic passage of a single particle compared to
the STIRAP technique is the way to perform the counterintuitive coupling sequence.
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Since the tunneling coupling rates depend on the separation between the traps, by
changing the distance between the traps it is possible to change the coupling rates.
Thus, for example, if the atom is initially in the right trap, �rst left and middle traps are
approached and then separated and, with a certain temporal delay, right and central
trap are approached and separated. This trap movement, which corresponds to a
counterintuitive coupling sequence, allows for a modi�cation of the dark state from
j	dark(t = 0)i = jRi to j	dark(t = T )i = �jLi, where T represents the total time of the
process. Therefore, if the eigenstate j	darki is adiabatically followed during the process,
a transfer of the atom from the right to the left trap is achieved, which represents an
example of a spatial adiabatic passage process. Note that during the process the
eigenvalues of the whole system do not cross each other, which allows for the adiabatic
following. In particular, the adiabaticity condition for the transport is equivalent to
the one in Eq. (1.15). The robustness of the transport has been numerically proved by
adding oscillations to the movement of the traps and also considering a tilted potential
[50]. Furthermore, an application of the spatial adiabatic passage in triple-potential
wells is described in [78], where �ltering of vibrational states is proposed based on the
fact that coupling rates present higher values for higher vibrational states.

The scenario is not so simple to analyze when the spatial adiabatic passage transport
is intended with BECs [72, 73, 74, 75, 53, 76]. Since the nonlinear terms depending on
the population appear in the diagonal, it is not simple to ful�ll the resonance condition
between the asymptotic vibrational eigenstates of the right and left trap, i.e., to keep
"R + gjaRj2 equal to "L + gjaLj2. The nonlinearity can lead to crossings in the energy
eigenvalues that forbid the adiabatic following of the dark state. However, externally
changing the trap parameters it is possible to modify "R and "L during the process
in order to improve the results of the transfer. For example, in [72] it is shown that,
imposing � = "C � "R = "C � "L (which implies that "R = "L), a complete population
transfer between the external traps can be achieved by applying a counterintuitive
coupling sequence if the following condition is ful�lled:

g� � 0 and jgj < gc = j�j: (1.25)

The spatial adiabatic passage process described above, for both single particles and
BECs, does not involve population in the central trap at any time during the process.
However, this should not lead to the inappropriate idea that there is transport without
transit [73, 74]. In [79], by using Bohmian mechanics (which provides an alternative
description of Quantum Mechanics and, in particular associates trajectories to the
wavefunction) it is clearly demonstrated the transit of both single particles and BECs
through the central trap. Also by means of Bohmian mechanics, the same authors
describe in [79] a counterintuitive e�ect of the spatial adiabatic passage processes in
triple-well potentials: the slower is the trap movement is performed (implying a better
adiabatic following of the dark state), the faster are the Bohmian velocities associated
to the trajectories for the transport of the single particles or the BECs.

Spatial adiabatic passage processes have been also implemented to control the trans-
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port of a BEC between the two coupled asymptotic vibrational ground states of a
double-well potential [75]. In this case, if we call these asymptotic eigenstates of the
individual traps as jRi for the right trap, and jLi for the left trap, the Gross-Pitaevskii
equation describing the evolution of the BEC in the double-well potential is of the form
of Eq. (1.3) and gives:

i~
d

dt

(
aR
aL

)
=

~
2

(
2("R + gjaRj2) �JRL(t)
�JRL(t) 2("L + gjaLj2)

)(
aR
aL

)
; (1.26)

where ak are the amplitudes corresponding to states jki, with k = R;L, JRL(t) is the
tunneling-coupling between the right and left trap, while the diagonal elements of the
matrix are twice the oscillation frequencies of the asymptotic eigenstates. The term g
represents the nonlinear interaction. As for the triple-well potential, other eigenstates
are assumed to have energies very far from the ones of jRi and jLi and then unable to
couple to them and participate in the evolution.

Because of the nonlinear term, the eigenvalues and eigenstates of the system are not
necessarily similar to the ones for the RAP technique in Section 1.3.1. In reference [75],
after a detailed analysis of the evolution of the energy eigenvalues and the bifurcations,
the authors show that, by appropriately modifying the coupling and the energy di�er-
ence between the asymptotic eigenstates in time, it is possible to (i) equally split the
BEC between the right and left traps and (ii) to transfer completely the BEC between
the two traps, within certain ranges of parameter values.

In the case that g = 0, as for example for a single particle in the double well
potential, the eigenvalues and eigenstates of the system are much easier to calculate
and are completely analogous to the ones shown for the RAP technique in Subsection
1.3.1. In particular, since the mixing angle would correspond to tan � = JRL=�, with
� = "R � "L, by changing the ratio JRL=� similarly as for the RAP technique, it
would be possible to modify the two eigenstates of the system and, by following them,
transfer the single particle between the two potential wells.

1.3.3 Propagation-dependent adiabatic passage

Spatial adiabatic passage processes have not only been implemented as time-dependent
processes but also as propagation-dependent processes. This is the case of di�erent
systems of coupled waveguides, which can be used to control the propagation of light
[43, 44], sound waves or cold atoms [51, 80]. Although the detailed explanation of
the spatial adiabatic passage processes in these three systems will be described in the
chapters 3, 4 and 5, respectively, below we present the basic common elements in all
these systems.

Cold atoms propagating in systems of dipolar waveguides are an intermediate ex-
ample, where both time and propagation are directly related through the propagation
velocity of the atoms in the waveguides. Thus, these systems of dipolar waveguides can
be seen as triple-potential wells, where the distance between the traps changes with
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the position along the propagation direction z of the atom in the system of waveg-
uides. Considering a triple-waveguide system, if we assume only the coupling of one
transversal vibrational state per each waveguide (jRi, jCi and jLi for the right, central
and left waveguides, respectively), with oscillation frequencies "k with k = R;C;L, and
couplings JLC between the left and central waveguides and JRC between the right and
central waveguides, then the Schr•odinger equation in (1.22) with g = 0 can be used
to describe the evolution of the probability amplitude, with analogous results as for
single particles in potential wells. In this case, since the atomic velocity relates t with
z, the evolution of the probability amplitudes and the couplings can be represented as
a function of z. The spatial adiabatic passage process for cold atoms propagating in a
system of three coupled identical waveguides will be described in detail in Chapter 4.
In there, the fact that the waveguides are taken identical will imply that "R = "C = "L
since the transversal vibrational eigenstates will be of the same energy.

Regarding light or sound propagation in systems of waveguides we will work with
continuos wave beams. Thus, the variable accounting for the evolution cannot involve
time but only the propagation direction z. In these systems, the oscillation quantity is
a wave (electromagnetic �eld or sound pressure and velocity), the asymptotic eigenvec-
tors of the system are the modes of the individual waveguides, the coupling coe�cients
are usually due to the evanescent �elds and depend on the separation between the
waveguides, and the oscillation frequency of a mode of an individual waveguides cor-
responds to the propagation constant in that waveguide. In this way, for example, for
a system of three coupled waveguides and considering only one mode per waveguide
(either because the waveguides are single mode or because the propagation velocity of
other modes is very di�erent from the three considered ones), the coupled-mode equa-
tions [81] describing the wave propagation in the most general way are of the form of
Eq. (1.3) and read

i~
d

dz

aRaC
aL

 =
1

2

 2kR �
CR(z) 0
�
RC(z) 2kC �
LC(z)

0 �
CL(z) 2kL

aRaC
aL

 ; (1.27)

where ak are the amplitudes corresponding to the individual modes of the waveguides
with k = R;C;L, 
kl is the coupling coe�cient from the k to the l mode, and kk
is the propagation constant of the k mode. It is assumed that the right and the left
waveguides are not directly coupled. Thus, diagonalizing the matrix in Eq. (1.27) it is
possible to �nd the eigenvectors of the system of waveguides, the supermodes, as well
as the eigenvalues, which are the propagation constants of these supermodes. In most
of the cases the coupling coe�cients between two waveguides can be considered equal,
i.e., 
kl = 
lk, which greatly simpli�es the diagonalization problem.

Further details about the implementation of the spatial adiabatic passage for light
propagation will be given in Chapter 2. As well, spatial adiabatic passage processes for
sound propagation will be studied in Chapter 3.
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2
Spatial adiabatic passage of light

This chapter is structured into two main parts based on the two recently published
papers [82] and [83], where we discuss theoretically and experimentally the basic ap-
plications of the spatial adiabatic passage of light. In the �rst part, we present a
fully complementary metal-oxide-semiconductor (CMOS)-compatible spatial adiabatic
passage of light working in the visible range. We experimentally show that a system
of three total internal reection (TIR) waveguides, which has been de�ned by using
non-stoichiometric silicon oxide, with variable separation along their propagation di-
rection allows for a highly e�cient transfer of light between the outermost waveguides
by adiabatically following one supermode of the system. This transfer of light is the
so-called spatial adiabatic passage of light. We also demonstrate that such transfer is
very robust against small variations of the system parameters. In the second part of
the chapter, we present the �rst experimental realization of a light spectral �lter based
on the spatial adiabatic passage of light. We show that a triple-waveguide structure
(of fully integrable CMOS-compatible identical TIR silicon oxide waveguides) can be
used simultaneously as a low- and high-pass spectral �lter within the visible range
of wavelengths. If a light beam is injected into the right waveguide, after propagat-
ing along the system, long wavelengths are transferred into the left output, whereas
short wavelengths propagate to the right and central outputs. The stopband of the
�lter reaches values up to �11 dB for the left output and approximately �20 dB for
the right plus central outputs. The passband values are close to 0 dB for both cases.
We also demonstrate that the �ltering characteristics of the �lter can be controlled
by modifying the parameter values, which de�ne the geometry of the triple-waveguide
system. However, the general �ltering behavior of the system does not critically depend
on technological variations. Thus, our proposal of spatial adiabatic passage �ltering
constitutes an alternative to other integrated �ltering devices, such as interference or
absorbance-based �lters.
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Chapter 2. Spatial adiabatic passage of light

2.1 Introduction

Photonic integrated circuits (PICs) have the potential to revolutionize computing plat-
forms due to the high speed and quality of light-based communications. PICs could
enhance the performance of the more traditional electronic components, whose progress
might be shrunk due to the limited capability of the electronic connections data band-
width. Using light as a carrier of information allows much higher data rates and
avoids problems related to electromagnetic interferences. Furthermore, miniaturiza-
tion of electronic components is reaching the limits of classical physics and a possi-
ble solution to push further the limits of classical computing could be to use inte-
grated waveguide circuits for optical computing [84]. Additionally, photonic integration
has been recently pushed forward by taking advantage of complementary metal-oxide-
semiconductor (CMOS)-compatible technology, which allows high quality PICs to be
obtained with high-index contrasts [85, 86]. Due to this contrast, sharp bends can be
implemented, leading to signi�cant miniaturization of the optical components. Fur-
thermore, CMOS-compatibility allows the usage of already developed mass-production
fabrication techniques for electronic components on the one hand and the monolithic
integration of PICs with additional electronic circuits on the other hand. In this con-
text, several research groups have successfully characterized silicon-based PICs, such as
couplers, power splitters, optical modulators, wavelength demultiplexers (WDMs) and
�lters [87, 88, 89, 90]. However, huge e�orts are still required in order to implement real
PICs able to replace and improve the traditional electronic integrated circuits. There-
fore, new techniques o�ering full control of light propagation in silicon based optical
devices are fully desirable.

In particular, integrated wavelength �ltering structures have attracted signi�cant
interest mainly due to their potential to be applied not only in telecommunication
applications, but also in other �elds, such as spectroscopy [91] or sensing [92]. Dif-
ferent strategies and geometries toward implementing all-optical integrated PICs for
�ltering have been previously presented. Several types of interference-based integrable
spectral �lters have been proposed. First, structures that are commonly called single
channels, with the most representative being ring resonators [92] and Mach{Zehnder
interferometers [93]. Second, a more advanced con�guration uses multiple channels or
WDMs, in which the current trends are arrayed waveguide gratings [94] and planar
concave gratings (also known as echelle gratings) [95]. With respect to ring resonators,
high Q values are obtained due to the strong �eld enhancement caused by recursive
light propagation inside the structure. This feedback, however, also causes nonlineari-
ties, which distort the device response. Regarding Mach{Zehnder interferometers, the
main open issue is related to the precise coupling ratio required between the stages,
which basically depends on the critical technological steps, as well as the matching
between the delay lengths. In the case of WDMs, planar concave gratings have the
advantage of a minor footprint; however, in arrayed waveguide gratings, it is pos-
sible to selectively tune each delay line and, in general, there is signi�cantly larger
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design freedom. Nevertheless, in both cases, the required technology is critical, and
the robustness against technological variations is very low. The shallow etch con�g-
uration [96] partially solves this issue, but at the expenses of requiring an additional
and highly accurate photolithographic step, and still demands highly precise etching
steps. In this context, spectral �ltering structures based on both single and multiple
channels require an extremely robust technology that uses both critical alignment and
etching steps. Nevertheless, they are undoubtedly the workhorse of telecommunication
applications. It is also true that such strict technological steps clearly hamper their
applications where instead of narrow and sharp peaks, robustness and technological
simplicity are key issues. Absorbance-based integrated �lters o�er an alternative [97].
Typically, their stopband and passband extend to a broad region instead of presenting
single/multiple peaks, and absorbance-based integrated �lters are easy to implement
and characterize. However, the di�erence between the passband and stopband is not
as high when compared to that of interference �lters, and the spectral �ltering cannot
be tuned because it depends either on the particular organic compound [98] or on the
bandgap material in the �lter [99].

Recently, it has been shown that in a system of three identical coupled waveguides
it is possible to transfer a light beam between the outermost waveguides in a very
e�cient way by means of adiabatically following a supermode of the system that only
involves the two outermost waveguides, the so-called spatial adiabatic passage of light
[82, 43, 44]. This new technique o�ers full control of light propagation. As a proof
of principle [43], such adiabatic passage technique was implemented in waveguides
fabricated by the Ag-Na ion exchange technique applying a titanium mask onto an
Er:Yb-doped glass substrate. Although e�ective, this technology has a relative impact
since it is not CMOS-compatible and therefore it cannot be monolithically implemented
with other electronic circuits. In addition, the geometries suitable to be obtained with
ion-exchange are quite limited, hampering the applicability of the adiabatic passage of
light. In [44], although they use standard photolithographic techniques, the fabricated
waveguides in [44] are intended for the study of nonlinear e�ects on the spatial adia-
batic passage of light. In this chapter, we present the �rst implementation of the spatial
adiabatic passage technique for visible light with a fully CMOS-compatible technology.
Concretely, three total internal reection (TIR) [100] non-stoichiometric silicon oxide
rib waveguides have been used to de�ne the spatial adiabatic passage geometry, repre-
senting an important technological improvement since it allows a massive and low-cost
fabrication of these devices and their incorporation to realistic PICs.

Additionally, we introduce a completely new method of light spectral �ltering, based
on the spatial adiabatic passage of light technique [82, 43, 44]. We experimentally
demonstrate that a system of three identical TIR silicon oxide coupled waveguides can
act simultaneously as a high- and low-pass spectral �lter for the visible range, separating
the long and short wavelengths among the di�erent waveguides [83]. We will refer to
this type of �lter as a spatial adiabatic passage (SAP) �lter. The proposed con�guration
shows a di�erent �ltering behavior compared to interference �lters [96], because there
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is an absence of periodic peaks but a wide transmission band, while maintaining a
moderate di�erence between the passband and stopband values. Moreover, in contrast
to absorbance-based �lters [97], the �ltering characteristics of the SAP �lter can be
modi�ed by varying the geometric parameters of the structure. However, variations in
a given geometric parameter value do not imply a severe change in the spectral response.
Therefore, in contrast to the interference �lters, the SAP �lters proposed here have high
technological robustness. Furthermore, the SAP �lter triple-waveguide system is also
fully CMOS-compatible and technologically simple to fabricate, requiring only one, non-
critical photolithographic step. As such, SAP �lters can be monolithically implemented
with other electronic elements into PICs with a low-cost and mass-production.

2.2 Spatial adiabatic passage of light in CMOS-compatible
silicon oxide waveguides

2.2.1 Spatial adiabatic passage mechanism

The spatial adiabatic passage of light in systems of three identical single-mode evanes-
cent coupled optical waveguides [82, 43, 44] (as the one schematically depicted in
Fig. 2.1(a)) resembles the well known stimulated Raman adiabatic passage (STIRAP)
technique [34] used in Quantum Optics to e�ciently transfer atomic or molecular pop-
ulation between two internal states of a �-type three level system. Propagation of light
is described by the evolution of the mode amplitudes ai along the propagation direction
z, with i = R;C;L accounting for the right, central and left waveguides, respectively.
Such evolution is given by the coupled-mode equations [81, 100]:

i
d

dz

 aR
aC
aL

 =
1

2

 0 
RC(z; �) 0

RC(z; �) 0 
LC(z; �)

0 
LC(z; �) 0

 aR
aC
aL

 ; (2.1)

where 
LC (
RC) is the coupling coe�cient between the left (right) and the central
waveguides and � is the wavelength. Since weak coupling is assumed, we consider that
the right and left waveguides are not directly coupled.

Diagonalizing Eq. (2.1), it can be seen that one of the eigenvectors of the system
(supermode) only involves light in the right and left waveguides:

D(�) =

 cos �
0

� sin �

 ; (2.2)

with tan � � 
RC=
LC . Since the couplings are due to the evanescent �elds, they
can be easily modi�ed by engineering the transverse waveguide separation along the
z propagation direction. In particular, we consider the right waveguide of the triple-
waveguide system to be excited by the input light source, and the spatial con�guration
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Figure 2.1: (a) Schematic top view of the geometry of the system of waveguides con-
sisting of two circularly bent outermost waveguides, left (L) and right (R), and one
straight central waveguide (C). The minimum distance between waveguides is given by
x0, and the z distance between the centers of the curved waveguides is de�ned by �.
(b) Schematic representation of the geometry, specifying the materials and refractive
indices of one of the three TIR waveguides that integrate the system. (c) Experimental
pro�le of the intensity of the fundamental mode of one of the waveguides. Light is
mostly con�ned and propagates in the z direction inside the SiOx layer with index
1:48. In particular, ribs, which de�ne the waveguides, are used to con�ne light in the x
horizontal direction, whereas the di�erence of refractive indices between layers con�nes
light in the vertical direction y.

of the waveguides forces the couplings to follow a counterintuitive sequence along z.
Initially, the left waveguide approaches the central waveguide. Later, and with a cer-
tain overlap, the right waveguide approaches the central waveguide, whereas the left
waveguide separates from the central waveguide, as shown in Fig. 2.1(a). With this
spatial con�guration, the mixing angle, �, evolves from 0 to ω=2. If the modi�cation of
� is adiabatically performed, the supermode (2.2) is followed, avoiding the excitation
of the other two supermodes of the system, and light will be e�ciently transferred
between the outermost waveguides (from right to left in our case) without the prop-
agation of light intensity into the central waveguide. We can understand this process
by showing the evolution along z of the supermode (2.2) of the structure [101, 102]. In
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Fig. 2.2, we plot the intensity profile of the supermode (2.2) from numerical simulations
at three different positions along z (input, middle and output). The input light into
the right waveguide corresponds to the initial spatial distribution of the supermode
(2.2) of the complete structure. Since the geometry of the system is being transformed
adiabatically, all of the power remains in the supermode (2.2), being finally transferred
to the left waveguide. As expected from supermode (2.2), the central waveguide is not
involved in the process.
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Figure 2.2: Numerical simulations of the supermode (2.2) of the triple-waveguide sys-
tem at three different positions along z: (a) input, (b) middle, (c) output. Simulations
are calculated with λ = 800 nm and geometrical parameter values x0 = 7 µ m and
δ = 4700 µ m.

This light transfer is the so-called spatial adiabatic passage of light [82, 43, 44]. As
we will demonstrate in next sections, the spatial adiabatic passage of light is a robust
process, i.e., the light transfer is effi cient for a broad range of parameter values of the
waveguides as long as the transfer is perfomed adiabatically. This also implies that the
process is almost insensitive to relatively large fluctuations in these parameter values,
an important feature that directional couplers do not exhibit [87]. Notice also that in
a similar fashion, the spatial adiabatic passage technique has been proposed for the
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robust and e�cient transfer of neutral atoms in triple-well traps and waveguides and
for the �ltering of vibrational matter wave states [50, 51, 78].

2.2.2 Design, fabrication and experimental setup

The optimization of the geometry of the system of three coupled waveguides has been
carried out by numerical simulations using the software Fimmprop and Fimmwave
(Photon Design). We have numerically checked that the adiabatic transfer of light is
independent of the polarization of the incident light. The parameter values obtained in
the simulations have been used to design the masks for the fabrication process. Nev-
ertheless, several devices with slightly di�erent parameter values have been considered
in such designs taking into account possible small variations between simulations and
experiment, and to test the robustness of the adiabatic passage.

The fabrication process of the silicon based integrated optical waveguides can be
summarized as follows. First, a layer of 2�m of silica SiO2 is thermally grown on a
(100) silicon wafer. Then, a layer of non-stoichiometric silicon oxide SiOx with a height
of 1:7�m and a refractive index of 1:48 is deposited over the silica layer by plasma
enhanced chemical vapor deposition (PECVD). At this point, waveguides are obtained
by de�ning ribs with a thickness of 0:2�m and width of 4�m in the SiOx layer by using
the appropriate mask and dry etching. Finally, another layer of non-stoichiometric
silicon oxide SiOy of 2�m with index 1:46, acting as a passivation layer, is deposited
on the top of the device using PECVD. Fig. 2.1(b) represents the transverse pro�le of
one of the waveguides of the system including the sizes of the di�erent layers and the
values of the refractive indices, which were checked by ellipsometry [103]. Fig. 2.1(c)
shows the experimental pro�le of light intensity of the fundamental mode at the output
of one of the waveguides.

The experimental setup consists of a diode laser (Thorlabs S1FC635, Newton, New
Jersey, USA) emitting at 635 nm connected to one end of a single-mode optical �ber.
The other end of this �ber is placed over a piezoelectric 3D positioning system (piezosys-
tem jena NV40/3, Jena, Germany), which allows accurate �ber optics-waveguide align-
ment. Light propagating inside waveguides is collected by an infrared single-mode opti-
cal �ber located on another piezoelectric positioning system (piezosystem jena d-Drive)
and transferred to a power meter (Newport 1930F-SL, Irvine, USA).

2.2.3 Experimental results and discussion

Insertion and attenuation losses were determined by measuring identical waveguides of
di�erent lengths, obtaining values of 3:6� 0:3 dB and 0:36� 0:01 dB=mm, respectively.
In order to characterize the coupling coe�cients 
RC,LC , we have manufactured systems
of two parallel waveguides with di�erent separation distances d between their centers:
7�m, 7:5�m, 8�m, 8:5�m, 9�m and 10�m. Coupling coe�cients for the di�erent
distances are obtained by measuring the spatial period of the intensity oscillations be-
tween pairs of waveguides. The experimental results may be �tted by the decaying
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Figure 2.3: (a) Counterintuitive sequence of the experimentally measured coupling
coe�cients 
RC,LC along the propagation direction z. (b) Top view image of one of the
fabricated devices in which light losses allow us to observe the adiabatic transfer of light
between the outermost waveguides with almost no intensity in the central waveguide.
Schematic representation of the waveguides is depicted on the experimental image.

exponential curve 
(d) = 
0 exp�d/l with 
0 = 29:8� 3 mm�1 and l = 2:72� 0:09�m.
This dependence allows us to check that the coupling coe�cients 
RC,LC along the
z propagation direction in the fabricated systems of three waveguides ful�ll the adi-
abaticity required to follow only the supermode (2.2) and avoid the excitation of the
other supermodes [43].
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Figure 2.4: Relative fraction of light intensity at the output of the left waveguide of the
system, IL=(IL + IC + IR), as a function of � and x0. Crosses indicate the experimental
measurements.

Fig. 2.3(a) shows the experimentally determined counterintuitive sequence of cou-
pling coe�cients 
RC,LC along z for one of the fabricated systems of three waveguides
with the following parameters: radius of curvature of the outermost waveguides 3:5 m,
spatial delay � = 4200�m and minimum separation between waveguides x0 = 7�m. A
complete top view image of the path followed by the light beam across the same sys-
tem of waveguides has been obtained by taking several pictures with a charge-coupled
device camera connected to an optical microscope, see Fig. 2.3(b). The image con�rms
the adiabatic transfer of light from the right to the left waveguide, with almost no
intensity in the central waveguide.

We have also checked the robustness of the spatial adiabatic passage in the fabri-
cated systems of three coupled waveguides by measuring the intensity of light at the
outputs of the three waveguides (IL, IC and IR) for di�erent devices. Fig. 2.4 shows
the relative fraction of light intensity at the left output, IL=(IL + IC + IR), for di�erent
devices with � and x0 parameters varying from 3700�m to 5700�m and from 7�m to
9�m, respectively. The radius of the external waveguides is kept equal to 3:5 m for all
the measured devices. The highest measured relative fraction values of light ending up
into the left waveguide are above 0:99 whereas the lowest measured relative fraction is
higher than 0:87, demonstrating the low sensitivity of the adiabatic passage to small
variations of the parameters.
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2.3 Light spectral filtering based on spatial adiabatic pas-
sage

In this section we present the �rst experimental realization of a light spectral �lter
based on the spatial adiabatic passage technique [83]. We use a very similar triple
waveguide system compared to the one presented in the previous section (composed
of fully integrable CMOS-compatible identical TIR silicon oxide waveguides) and we
show that it can simultaneously work as a low- and high-pass spectral �lter within the
visible range of wavelengths. The precise parameter values of the waveguides as well
as a schematic depiction of the triple waveguide system are shown in Fig. 2.5.
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Figure 2.5: (a) A schematic depiction of the SAP �lter geometry, viewed from above,
consisting of one straight central waveguide (C) and two circularly bent external waveg-
uides, right (R) and left (L). The z separation between the centers of the bent waveg-
uides is given by �, and the minimum separation between waveguides is de�ned by x0.
The devices total length in the z direction is D = 2:5 cm and the external waveguides
radius of curvature is r = 3:5 m. (b) A schematic representation of the di�erent layers
of one of the rib waveguides, specifying the refractive indices and materials.

2.3.1 Spatial adiabatic passage filtering mechanism

As it was previously discussed in Section 2.2.1, the propagation of light into a system
of three identical single-mode evanescent coupled waveguides can be described through
coupled mode equations Eq. (2.1). However, in this section we also take into account
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that in the evanescent couplings depend on the wavelength of the propagating light, �.
Generally, this dependence is approximately linear with � [81]. Thus, considering two
identical straight TIR waveguides separated by a distance d, the evanescent coupling
can be expressed as:


(�; d) = 
0(�) exp(�d=l(�)): (2.3)

Numerical simulations using Fimmprop and Fimmwave (Photon Desing) of light
propagating in a system of two straight waveguides with the parameters indicated in
Fig. 2.5(b) for several separation distances d con�rm that, for a �xed distance d, 
(�; d)
increases linearly with � for the range of wavelengths of interest in this work (from 400
to 950 nm), as shown in Fig. 2.6(a). Additionally, from these simulations, we have
obtained the dependence of the decay constant, l(�), on �, which also grows linearly
for the range of working wavelengths.
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Figure 2.6: Numerical simulations used for the characterization of the couplings. (a)
Dependence of the coupling coe�cient between two straight TIR waveguides (with
the characteristics speci�ed in Fig. 2.5(b)), 
(�; d), on � for �xed distances d. The
simulation points are �tted by straight lines. (b) Typical counterintuitive sequence of
couplings coe�cients along z in a system of three coupled waveguides obtained from
numerical simulations with x0 = 7�m and � = 4700�m for di�erent wavelengths:
400 nm (dotted), 600 nm (dashed) and 800 nm (solid). The increase in strength and
width of the couplings along the z direction can be observed as the wavelength �
increases.

Using expression (2.3) for the coupling between each set of two pairs of waveguides
in the triple-waveguide system (Fig. 2.5(a)) and considering the dependence of the
separation between waveguides along z, we obtain the variation of the couplings along
z, which follows a Gaussian function:


RC,LC(z; �) � 
(�; x0) exp

[
(�z �D=2� �=2)2

2rl(�)

]
; (2.4)
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where � is the spatial delay between the outermost waveguides, x0 is the minimum
separation between waveguides, D is the total length of the system and r is the value
of the radius of the external waveguides (see Fig. 2.5(a)). The �rst factor at the right-
hand-side of Eq. (2.4),


(�; x0) � 
0(�) exp (�x0=l(�)) ; (2.5)

gives the maximum value of the couplings along z. It is analogous to expression (2.3),
and therefore, it has the same linear dependence on � for �xed values of x0. More-
over, the term 2rl(�) in Eq. (2.4) indicates the width of the Gaussian along z. Since
l(�) grows linearly with �, the width of the coupling variation along z increases as �
increases. In Fig. 2.6(b), using the numerically obtained couplings, we represent the
spatial dependence of the couplings in the triple-waveguide system for di�erent values
of the wavelength. We can observe that the strength and the width of the couplings
increase as the wavelength, �, increases. Note that we have numerically veri�ed that
the waveguides used in this work (Fig. 2.5(b)) are e�ectively single-mode within the
working wavelength range (400� 950 nm) and that the coupling rates are polarization
independent.

In the SAP �lter system composed of three coupled waveguides, light is transferred
between the outermost waveguides if the adiabaticity condition is ful�lled, i.e., if the
couplings 
RC and 
LC are strong enough, and the overlap between them along the
propagation direction z (Fig. 2.6(b)) is long enough [82, 43, 44, 34]. Thus, for speci�c
values of x0 and � of the geometry of the SAP �lter, it may be that the couplings are only
strong and wide enough along z to ful�ll the adiabaticity requirements for long enough
wavelengths. In this case, if light is injected in the right waveguide, longer wavelengths
are transferred to the left waveguide. However, for short enough wavelengths, because
the couplings are too weak, light is unable to reach the left waveguide, remaining
in either the right waveguide or the central waveguide or in a combination of both.
Therefore, if we take as the outputs of the SAP �lter the left waveguide and the sum of
the right and central waveguides, the SAP device simultaneously works as a high-pass
and low-pass spectral �lter based on the spatial adiabatic passage of light.

We can show more speci�cally the spectral �ltering mechanism in the SAP triple-
waveguide system by taking the adjusted parameters of 
(�; x0) and l(�) from the
numerical simulations and introducing them into Eq. (2.4) and, �nally, integrating
Eq. (2.1). The results of the numerical integration for x0 = 7�m and � = 4700�m
are depicted in Fig. 2.7. Fig. 2.7(a) shows the transmittance at the output of the left,
central and right waveguides relative to the total intensity as a function of the wave-
length. Although the left waveguide output signal varies smoothly, power oscillations
in the right and central waveguide outputs can be observed. Nevertheless, the right
and central waveguides could be joined after the device, yielding the result shown in
Fig. 2.7(b). In this case, the sum of the right and central outputs presents a signi�-
cantly more robust behavior, and we can observe the predicted behavior of the SAP
�lter which works simultaneously as a high-pass and low-pass spectral �lter. In par-
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ticular, within the range of studied wavelengths, for the left waveguide (high-pass), we
�nd a stopband that reaches a value of �17 dB and a passband of 0 dB. For the sum of
the right and central waveguide intensities (low-pass), we �nd a stopband that reaches
�22 dB and a passband of 0 dB. Taking into account that the device can work as a
high- and low-pass spectral �lter simultaneously, we de�ne the cuto� wavelength, �c ,
as the wavelength for which half of the intensity is at the output of the left waveguide
and half at the output of the other two waveguides. Thus, �c corresponds to a decrease
in intensity of approximately 3 dB and to the point at which the two curves in Fig. 2.7
(b) cross each other. For the presented �gure, the cuto� wavelength is 610 nm.
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left waveguide

central waveguide

right waveguide

Figure 2.7: Results of numerical integration of Eq. (2.1) with parameter values x0 =
7�m and � = 4700�m. (a) Transmittance at the output of the left (dashed line),
central (dashed-dotted line) and right (solid line) waveguides represented relative to
the total output intensity as a function of the wavelength. In (b), the high- and low-pass
�ltering behavior for a SAP �lter can be observed, represented as the transmittance
at the output of the left (dashed line) and the sum of the central and the right (solid
line) waveguides relative to the total output intensity with respect to the wavelength.
No losses are considered when integrating Eq. (2.1).

Since SAP �ltering is based on the robust technique of the spatial adiabatic pas-
sage of light as we discussed in Section 2.2, we expect a similar �ltering behaviour,
even though the geometric parameter values of the system are signi�cantly modi�ed.
Nevertheless, studying the e�ect of varying the x0 and � parameters, we can observe
that the speci�c �ltering characteristics of the device (the cuto� wavelength, as well as
the stop and passband regions) can be tuned by wavelength. On the one hand, if the
spatial delay value � is increased, the overlap between the couplings becomes smaller.
Thus, only strong and wide enough couplings along z will ful�ll the adiabaticity con-
dition. On the other hand, if the minimum separation between the waveguides x0 is
increased, the strength of the couplings will be reduced, because the coupling values
decay exponentially as the distance between the waveguides increases. Then, stronger
and wider couplings (corresponding to long wavelengths) will also be required to main-
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tain the adiabaticity of the process. In conclusion, the �ltering characteristics, such
as the cuto� wavelength, are moved to longer wavelengths as the values of x0 and �
increase. The numerical simulations integrating Eq. (2.1) with the adjusted parameters

(�; x0) and l(�) support this reasoning, as it can be observed in Fig. 2.8.
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Figure 2.8: Numerical simulations of the high- and low-pass spectral �ltering behaviour
for a SAP �lter with (a) x0 = 7�m and � = 5700�m and (b) x0 = 9�m and � =
4700�m. In comparison with the curves in Fig. 2.7 with x0 = 7�m and � = 4700�m
(light grey in these �gures), we observe that when increasing the value of � in (a) and
x0 in (b), the cuto� wavelength of the device is moved to longer wavelengths. In all the
cases, the output of the left (central and right) waveguides corresponds to the dashed
(solid) line.

2.3.2 Design, fabrication and experimental setup

Numerical simulations using Fimmwave and Fimmprop (Photon Design) were per-
formed to optimize the geometry of the triple-waveguide SAP �lter for di�erent wave-
lengths and the obtained parameter values were used to de�ne the required technolog-
ical steps. The SAP �lters were fabricated with a total length of 2:5 cm, and external
waveguides were given a radius of curvature of 3:5 m. To obtain devices with di�erent
�ltering characteristics, for every system of waveguides, slightly di�erent parameter
values of the spatial delay � and minimum separation between waveguides x0 were also
fabricated.

The fabrication process for the triple-waveguide systems is analogue to the one
explained in the Section 2.2.2, being the only di�erence the thickness of the rib. The
�ltering devices were fabricated with a 2-�m-thick layer of SiO2, a non-stoichiometric
silicon oxide SiOx layer of 2�m of height with de�ned ribs of 4�m width and a thickness
of 0:5�m, and �nally a 2-�m-thick passivation layer of non-stoichiometric silicon oxide
SiOy. Fig. 2.5(b) shows the transverse pro�le of a waveguide belonging to the triple-
waveguide system, specifying the sizes of the layers and the refractive index values,
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which were measured by ellipsometry [103].

The experimental setup is composed of a halogen white light source (Ocean Optics
HL-2000-HP-FHSA, Dunedin, Florida, USA) connected to a 4-�m core optical �ber
(Thorlabs 600HP, Newton, New Jersey, USA). The position of the other end of the
�ber is controlled by a piezoelectric three-dimensional positioning system (Piezosystem
Jena NV40/3, Jena, Germany), which provides nanometer-scale precision alignment
between the optical �ber and the waveguide. The light emerging from the system is
collected by another 4-�m core optical �ber, placed on another piezoelectric positioning
system (Piezosystem Jena d-Drive) and transmitted to a microspectrometer (Ocean
Optics QE65000).

With respect to the losses of the SAP �lter, since the �nal goal of our proposal
is to place the device into a PIC, we are mainly interested in the losses produced
by the SAP geometry of the system, i.e., those losses due to the couplings and the
bending of the waveguides, but not in the insertion and propagation losses, which
depend on the characteristics of the speci�c waveguides. Thus, we studied the losses
due to the adiabatic passage geometry by comparing the sum of the output intensities
of the three waveguides of the device with the output of a single straight waveguide
with equal features and the same length as the system of three waveguides. The
experimental and numerical tests show that the losses due to the adiabatic passage
geometry are negligible. With respect to the range of wavelengths available in the
presented experimental setup, 400 to 950 nm can be sampled. The range is mainly
limited by the allowed wavelengths propagating inside the �bers in addition to the
sensitivity of the microspectrometer.

2.3.3 Experimental results and discussion

The results shown in Fig. 2.9 experimentally demonstrate the spectral �ltering, based
on the spatial adiabatic passage of light technique for one of the fabricated SAP �l-
ters with a minimum separation between waveguides of x0 = 9�m and spatial delay
� = 5200�m. Fig. 2.9(a) shows the intensity at the output of the left, central and right
waveguides as transmittance relative to the total output intensity (we previously veri-
�ed that the losses due to the adiabatic passage geometry are negligible). As expected
from the numerical simulations, some power oscillations can be observed between the
right and central waveguides, depending on the wavelength. However, we could join
the right and central waveguides in a single waveguide just after the described triple-
waveguide system by appropriately designing the photomask used for fabrication. By
doing this, we would obtain an output corresponding to the sum of the right and cen-
tral waveguides, which presents a signi�cantly smoother and more robust behavior, as
obtained from the numerical simulations in Section 2.3.1. Thus, Fig. 2.9(b) represents
the experimentally measured intensity at the output of the left waveguide and the sum
of the outputs of the right and central waveguides as the transmittance relative to the
total output intensity.
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Figure 2.9: (a) Measured intensity, represented as transmittance at the left (grey),
central (black) and right (light grey) outputs relative to the total output intensity as a
function of the wavelength. (b) The measured intensity, represented as transmittance
at the left (grey) and the sum of the central and the right (black) outputs relative to the
total output intensity with respect to the wavelength. The parameter values for this
speci�c device are x0 = 9�m and � = 5200�m. The experimental cuto� wavelength in
this case is �c = 638 nm.

From this result, we experimentally conclude that the triple-waveguide SAP �lter
acts as a high-pass (output at the left waveguide) and low-pass (output at the cen-
tral and right waveguides) spectral �lter, representing a new and di�erent �ltering
behavior in comparison to interference �lters [96] and absorbance-based �lters [97].
We have obtained a �ltering e�ciency between the e�ciency of the interference and
the absorbance-based �lters. In particular, the measured values for the left waveguide
output (high-pass) reach a value of approximately �11 dB for the stopband, and the
passband is close to 0 dB. For the sum of right and central (low-pass) waveguides, the
stopband is approximately �20 dB and the passband �0:5 dB. The measured cuto�
wavelength is 638 nm.

As discussed in Subsection 2.3.1, SAP �lters allow for a modi�cation of the �ltering
characteristics (the cuto� wavelength, stopband and passband) by changing the param-
eter values � and x0. Fig. 2.10 shows the measured transmittance of various systems
with di�erent � parameter values (3700�m, 4200�m, 4700�m, 5200�m and 5700�m)
for di�erent x0 values (7�m, 7:5�m, 8�m and 9�m). Within the measurement range
(400�950 nm), similar slopes, values of the stop-band at approximately �20 dB for the
sum of the right and central waveguides and values up to �12 dB for the left waveguide
can be observed, which are expected to be lower for shorter wavelengths (not available
with our setup). The values of the passband are very close to 0 dB for both cases when-
ever the value is within the measurement range. In Fig. 2.10, we also observe some
oscillations of the transmittance for the sum of the central and right outputs, which
supports the numerical analysis previously described in Subsection 2.3.1 and shown in
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Figure 2.10: Experimental measurements of the left (upper row) and the sum of the
central and right (lower row) output transmittance for di�erent values of � and x0.
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Figure 2.11: Variation of the cuto� wavelengths as a function of (a) x0 for di�erent
values of � and (b) � for di�erent values of x0.

Fig. 2.7 and Fig. 2.8. These oscillations do not a�ect the high- and low-pass �ltering
behavior of the SAP �lter. Furthermore, as already anticipated, for a �xed value of x0,
the transmittance curves are shifted to longer wavelengths for an increasing value of
the � parameter. Similarly, for a �xed value of �, increasing the value of x0 also shifts
the transmittance curves to longer wavelengths. This change in the �ltering character-
istics represents an improvement in comparison to absorbance-based �lters. Moreover,
it can be observed that in contrast to interference �lters, varying some of the geometric
parameter values of the SAP �lters does not imply that there is a drastic modi�cation
of the spectral response of the SAP �lter.

Fig. 2.11 shows the evolution of the cuto� wavelength when varying the � and x0

parameter values. It can clearly be observed that the cuto� wavelength increases as �
and x0 increase. Furthermore, Fig. 2.11 could be used to adjust the numerical simu-
lations to the experimental results to obtain the value of the real couplings acting in
the fabricated devices. If we compare the experimental �gures (Fig. 2.9 and Fig. 2.10)
with the numerical �gures (Fig. 2.7 and Fig. 2.8), the qualitative �ltering behavior is
the same, although some di�erences arise. The �rst is that the stop-bands obtained
through numerical simulations reach deeper values than the experimental stopbands.
It can be observed that for some cases, the measured values of the intensity at extreme
values of the considered range of wavelengths tend to stabilize; however, in the nu-
merical simulations, the values continue evolving to lower transmittance values. This
di�erence can be explained because at the limits of both short and long wavelengths,
the e�ciency of the microspectrometer used is very low. Therefore, the signal-to-noise
ratio is very small. Additionally, the maximum dynamic range available with our setup
is 35 dB, and consequently, the stopband values that can be measured are limited to
this value. Nevertheless, such a value is su�cient to con�rm the validity of the con-
�guration proposed here. Second, it can be observed that for the experimental case,
the �ltering behavior is shifted to shorter wavelengths in comparison to the numerical
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curves, which may be associated with a slight variation in the thicknesses and/or re-
fractive indices of the layers in the fabrication process. However, this result does not
a�ect the overall behavior of the proposed device. Additionally, the result con�rms the
devices robustness against technological variations and validates these SAP �lters as
e�cient and cost-e�ective integrable devices.

2.4 Conclusions

Using CMOS-compatible technology, we have experimentally demonstrated that it is
possible to achieve a highly e�cient and robust transfer of light between the outermost
waveguides of a system of three coupled identical waveguides by adiabatically following
one supermode of the system. Thus, TIR silicon-based waveguides are very promis-
ing candidates for the control of the ow of light by means of the adiabatic passage
technique in systems that can be monolithically implemented together with other inte-
grated devices. Contrarily to directional couplers, where the transfer of light between
waveguides depends on precise geometry parameter values, we have experimentally
checked the robustness of the passage in systems of three waveguides against variations
of the parameter values of the system. In particular, the measured relative fraction
of intensity at the left waveguide output of several systems of waveguides ranges from
0:87 to values above 0:99, for variations of the geometry parameter values between 20%
and 35%.

Aditionally, we have theoretically and experimentally demonstrated that it is pos-
sible to use a triple-waveguide system, with identical coupled TIR silicon oxide waveg-
uides, as a simultaneous high- and low-pass spectral �lter, based on the spatial adiabatic
passage of light technique. Light is injected into the right waveguide of the system,
and after propagating along the system, long wavelengths are transferred into the left
output; in contrast, short wavelengths propagate to the central and right outputs. We
refer to this device as the SAP �lter, which constitutes the �rst experimental real-
ization of an analogous of the STIRAP technique working as a �lter. The SAP �lter
represents an alternative to other integrated �ltering devices, such as interference �lters
or absorbance-based �lters. Additionally, since the waveguides used in the fabricated
SAP �lters are fully CMOS-compatible, they could be monolithically integrated with
other photonic and electronic elements into a PIC, allowing low cost and mass produc-
tion. We have also demonstrated that upon varying the minimum distance between
waveguides, x0, and the spatial delay between the external waveguides, �, the �ltering
characteristics of the system can be modi�ed. In particular, we have shown that if the
values of x0 or � are increased, the cuto� wavelength, which separates the low- and
high-pass �ltering regions, is shifted to longer wavelengths. In this way, by modifying
the fabrication parameter values, it is possible to adapt the �ltering characteristics of
the device to �t speci�c requirements. However, these variations do not change the
general �ltering behavior of the SAP �lter, which con�rms its robustness with respect
to technological variations.
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3
Spatial adiabatic passage of sound waves

In this chapter, spatial adiabatic passage processes for sound waves propagation are
investigated. Sound waves are guided through a system of two linear defects in a sonic
crystal consisting of steel cylinders embedded in a water host medium. Di�erent struc-
tures are designed leading the implementation of for instance a coherent multifrequency
adiabatic splitter, a phase di�erence analyzer and a coherent multifrequency adiabatic
coupler. Since the working principle of these devices is the spatial adiabatic passage,
they are robust in front of uctuations of the geometric parameter values.

3.1 Introduction

A unique feature of the adiabatic passage processes, which consist in the adiabatic
following of an eigenvector of a system, is their working robustness against variations
of the parameter values. Adiabatic passage processes have been successfully studied in
several areas of physics, such as Quantum Optics, Ultracold Atoms, and light propa-
gation in coupled waveguide systems. In Quantum Optics, two techniques have been
extensively studied, the so-called stimulated Raman adiabatic passage [34] (STIRAP)
and the rapid adiabatic passage [104, 105] (RAP). In both cases, an eigenstate of an
atomic system interacting with a speci�c sequence of laser pulses is modi�ed in time
and adiabatically followed, achieving a complete and robust transfer of population be-
tween two internal atomic levels of the system. Adiabatic passage processes were later
extended to external degrees of freedom in the Ultracold Atoms �eld [50], where it
was proposed to transport single atoms between the most distant traps of a system of
three tunneling-coupled potential wells, the so-called spatial adiabatic passage. Sub-
sequently, spatial adiabatic passage processes have also been applied for transport of
electrons [70], Bose{Einstein condensates (BECs) [72, 73, 74, 75] and holes [55], for
state [78] and velocity [106] �ltering of neutral atoms and also for the generation of
matter wave angular momentum [107]. Spatial adiabatic passage for light propagation
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in a system of three total internal reection (TIR) coupled optical waveguides [43, 82]
has been experimentally reported. In this case, a supermode of a triple-waveguide sys-
tem is adiabatically modi�ed and followed along the propagation direction, achieving a
complete light transfer between the outermost waveguides of the system. Furthermore,
applications of the light spatial adiabatic passage have been successfully experimentally
demonstrated, such as a polychromatic beam splitter [108] and a spectral �lter [83].

Light guiding in waveguides has been extensively studied, being TIR waveguides
the most technologically developed [81]. However, the introduction of photonic crystals
(PhCs) [47, 48, 49] allowed for a new way of light guiding by means of linear defects, con-
sisting in rows with unitary cells of di�erent geometry along PhCs [109, 110, 111, 112],
which could be integrated with much smaller sizes than the traditional TIR waveg-
uides. Linear defects allow for light guiding due to the creation of propagation bands
within the band gap frequencies. In analogy with the PhCs, phononic crystals (PCs)
were introduced [113, 114, 115, 116, 117] in the �eld of sound waves propagation,
leading to numerous new physical phenomena for sound waves such as negative re-
fraction and focusing [118, 119], nondi�ractive propagation [120], or angular bandgaps
[121], to cite a few. As well, sound guiding in linear defects in PCs has been studied
[122, 123, 124, 125, 126, 127, 128], including systems of coupled linear defects [129].

In this chapter, spatial adiabatic passage processes for sound waves are adressed for
the �rst time to the best of our knowledge, leading to the implementation of for instance
a coherent multifrequency adiabatic splitter, a phase di�erence analyzer and a coherent
multifrequency adiabatic coupler. In particular, we investigate the sound propagation
in systems of two linear defects in sonic crystals (SCs) [45, 46]. SCs are a particular
case of PCs that consist of solid scatterers embedded in a uid host medium. Without
loss of generality SCs allow considering the propagation of only longitudinal waves,
which constitutes an important simpli�cation. Furthermore, SCs are experimentally
relevant since, for example, they allow for measurements inside the crystal [121]. It is
important to note that the devices to be discussed here, since they are based on spatial
adiabatic passage processes, are robust and do not depend on precise parameter values
of the physical system. Moreover, the Cobtained results could be easily extended to
light propagation in two coupled PhC linear defects and also to light propagation in
two coupled TIR waveguides.

In Section 3.2 we present the considered physical system consisting of two coupled
linear defects in a SC, and we will calculate the allowed bands into the bandgap and
their corresponding supermodes. We will also distinguish between two di�erent fre-
quency ranges inside the bandgap, one where both a symmetric and an antisymmetric
supermodes coexist, and another range where only the antisymmetric supermode is
present. Thus, in Section 3.3, for the range in which both supermodes exist, we will
study spatial adiabatic passage processes through the couple-mode equations, leading
to the implementation of a coherent multifrequency adiabatic splitter, in Subsection
3.3.1, and a phase di�erence analyzer, in Subsection 3.3.2. Finally, in Section 3.4, we
will focus in the frequency range with only the antisymmetric supermode, where we
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will design spatial adiabatic passage processes working as a coherent multifrequency
adiabatic splitter and as a coupler.

3.2 Physical system

We consider a two-dimensional square lattice SC made of steel cylinders (�lling medium)
immersed in water (host medium) containing linear defects. The propagation of sonic
waves in SCs consisting of two di�erent materials can be described by the following
linear equations [120]:

β
@v

@t
= �∇p; (3.1a)

@p

@t
= �B∇ � v; (3.1b)

where B(r) is the bulk modulus, β(r) is the density, p(r; t) is the pressure �eld and
v(r; t) is the velocity vector �eld. Considering sound beams with harmonic temporal
dependence and that B(r) and β(r) are periodic functions with the periodicity of the
lattice, equations (3.1) can be solved by means of the plane wave expansion (PWE)
method, which gives an eigenvalue problem equation [114, 115, 120]:∑

G′

[!2b�1
G�G′ � β�1

G�G′(k + G) � (k + G0)]pk,G′ = 0; (3.2)

where ! is the angular frequency of the plane waves divided by the sound velocity in
the host medium, ch, k is a two-dimensional Bloch vector belonging to the irreducible
Brillouin zone, G and G0 are vectors of the reciprocal lattice, pk,G′ is the coe�cient
for the pressure �eld expanded following the Bloch-Floquet theorem

p(r) = e(ik�r)
∑
G′

pk,G′e
(iG′�r); (3.3)

and b�1
G�G′ and β�1

G�G′ are the Fourier coe�cients of the inverted relative values of
the bulk modulus, �B(r)�1 = Bh=B(r), and the density, �β(r)�1 = βh=β(r), respectively.
Here, Bh and βh are the bulk modulus and the density of the host medium, respectively.

In the case of a SC consisting of only two di�erent materials, the values of the
coe�cients b�1

Ḡ
and β�1

Ḡ
, with Ḡ = G�G0, can be found by integrating over the �lled

area (corresponding to steel) inside the two-dimensional unit cell. For β�1
Ḡ

one obtains
[114, 115, 120]

β�1
Ḡ

=


1

A

∫ ∫
1

�β(r)
dr =

βh
βc
f + (1� f); for Ḡ = 0 (3.4)

1

A

∫ ∫
e(iḠ�r)

�β(r)
dr; for Ḡ 6= 0 (3.5)
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where A is the area of the unit cell, f is the �lling factor and βc is the density of the
�lling material. In the case of a square lattice and a SC formed by cylinders of radius
r0, Eq. (3.5) takes the following form:

β�1
Ḡ

=

(
βh
βc
� 1

)
2f
J1(jḠjr0)

jḠjr0
; for Ḡ 6= 0; (3.6)

where J1(x) is the Bessel function of the �rst kind. Expressions for b�1
Ḡ

are analo-
gous [120].

The eigenvalues of Eq. (3.2) can be numerically obtained and correspond to the
frequencies of the allowed propagation bands in the SC. By plotting these frequencies
as a function of the k values it is possible to construct the band diagrams. Once
the frequencies are known, by using Eq. (3.3) it is also possible to calculate the the
supermodes of the structure, i.e., the pressure �eld p(r).
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Figure 3.1: (a) Schematic representation of the unit cell. (b) Projected band diagram of
the SC without any defect, where a sonic band gap can be observed. The SC considered
in this work has a lattice constant of a = 5 mm and consists of steel cylinders of radius
r0 = 2:25 mm (βc = 7:8 � 103 kg m�3 and Bc = 160 � 109 N m�2) immersed in water
(βh = 103 kg m�3, Bh = 2:2 � 109 N m�2). 961 plane waves have been used in the
PWE.

To study the control of sound propagation along linear defects (or waveguides) in
the SC, it can be considered that sound travels mostly in the direction along the defect.
In this situation it is convenient to project the band diagram [49], i.e., for every kx in
the irreducible Brillouin zone, all the solutions that bring the combination of the kx
and any ky in the irreducible Brillouin zone into a band are represented, where y is
perpendicular and x is parallel to the linear defect. The unit cell and the projected
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sonic band diagram of the considered SC without linear defects are shown in Fig. 3.1.
The existence of a complete band gap can be observed.

(b)(a)

rd

rdU

rdL

z

y

Figure 3.2: Schematic representation of a supercell with (a) one linear defect and (b)
two linear defects separated by a single row.

A way to create linear defects in SCs is by adding rows of cylinders with di�erent
radii. If we introduce one linear defect composed of cylinders of radius rd, bands cor-
responding to the modes of the individual waveguide are obtained into the band gap
allowing for sound guiding inside the SC. Similarly, if we introduce two parallel linear
defects with radii rdU (for the upper one) and rdL (for the lower one) separated, for
example, by one normal row of cylinders, bands corresponding to di�erent symmetric
and antisymmetric supermodes of the system appear into the band gap. For the calcu-
lation of band diagrams containing linear defects it is necessary to change the unit cell
to a supercell, which contains several of the previous unit cells in the y direction, as
shown in Fig. 3.2. The PWE method can also be used in this case [128]. However, b�1

Ḡ

and β�1
Ḡ

have to be recalculated for the corresponding supercell with Eq. (3.5). For the
case of one linear defect in a supercell containing nine cylinders (Fig. 3.2(a)) Eq. (3.5)
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becomes:

β�1
Ḡ

=

(
βh
βc
� 1

)
2ω

9a2

[
rd
J1(jḠjrd)
jḠj +

2r0
J1(jḠjr0)

jḠj

4∑
j=1

cos(j �Gya)

 ;
for Ḡ 6= 0: (3.7)

On the other hand, for the case of two defects separated by a single row in a supercell
containing nine cylinders (Fig. 3.2(b)) Eq. (3.5) reads:

β�1
Ḡ

=

(
βh
βc
� 1

)
2ω

9a2[
rdU

J1(jḠjrdU )

jḠj eiḠya + rdL
J1(jḠjrdL)

jḠj e�iḠya+

2r0
J1(jḠjr0)

jḠj

1=2 +

4∑
j=2

cos(j �Gya)

 ;
for Ḡ 6= 0: (3.8)

Expressions for b�1
Ḡ

are analogous.

Fig. 3.3 shows the band diagrams for two di�erent supercells, each one with two
defects, obtained using the PWE method. Fig. 3.3(a) corresponds to a SC with two
equal defects corresponding to the absence of cylinders (rdU = rdL = 0), and Fig. 3.3(b)
represents the band diagram of a SC with two defects of very di�erent radius, one
empty row (rdU = 0) and rdL = 1:2 mm. In Fig. 3.3 we also represent the supermodes
of the system of two parallel linear defects, which have been calculated using Eq. (3.3).
The supermodes allow us to distinguish between symmetric bands and antisymmetric
bands. In this work we will focus in two of the bands, the symmetric one represented
in green color, and the antisymmetric one represented in red color. It is worth to note
that in Fig. 3.3(b) there is another band represented in orange color which signi�cantly
overlaps in frequencies with the antisymmetric band. This band corresponds to a higher
antisymmetric supermode of the system. Because of its antisymmetric transverse pro�le
within the space of one waveguide (see Fig. 3.3(b)), this supermode will not be excited
by the sound source which has a symmetric transverse pro�le. Therefore, we consider
that this higher supermode will not play any role in the sound propagation.

In Fig. 3.3 we can also see that when the two defects are equal, both supermodes
(symmetric and antisymmetric) spread equally into the two defects. However, when
the defects have signi�cant di�erent radii, the symmetric supermode is localized in the
linear defect with smallest radius (rdU = 0 in the �gure) whereas the antisymmetric
stays localized in the linear defect with bigger radius (rdL = 1:2 mm in the �gure).
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Figure 3.3: Band structures for two linear defects of radii (a) rdU = rdL = 0 and (b)
rdU = 0 and rdL = 1.2 mm in a SC with the same parameter values as in Fig. 3.1. In
both figures, we show the symmetric, in green, and the antisymmetric, in red, bands
that are used for the control of sound propagation. The orange band corresponds to a
higher antisymmetric supermode. The supermodes for the symmetric and antisymmet-
ric bands are shown for a frequency ν = 1.9 × 105 Hz by plotting the pressure field. The
higher antisymmetric supermode is also shown in (b) for a frequency ν = 2.05 × 105 Hz.
In (a) and (b) the regions where both the symmetric and antisymmetric supermodes
coexist are marked in light yellow, and also where only one of the supermodes exist, in
light green for the symmetric and in light red for the antisymmetric.

In general, the transverse amplitude profiles of the supermodes can be modified by
changing the difference between the radii sizes: the more different are the radii of two
defects the more localized are the supermodes in one of the defects. Thus, if one of
the supermodes of the system is excited, either the symmetric or the antisymmetric,
by smoothly changing the radii of the linear defects along the propagation direction
it is possible to adiabatically follow the initially excited supermode of the system,
which, due to the radii modification, will smoothly change its transversal amplitude
profile along the propagation direction. This adiabatic following, which corresponds
to the so-called spatial adiabatic passage process [50, 70, 72, 73, 74, 75, 55, 43, 82],
allows for a control of the sound propagation along linear defects in SCs. If the radius
modification is realized not adiabatically enough, sound waves will not be able to
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follow the change of the transverse pro�le of the initially excited supermode along the
propagation direction, exciting other supermodes of the system and we would lose the
control of sound propagation. It is important to remark that, spatial adiabatic passage
processes have the advantage that they are robust in front of variations of the parameter
values. In our case, uctuations in the size of the defects are not critical to perform a
spatial adiabatic passage process, only a smooth enough variation of the radii size is
needed in order to adiabatically follow the supermode.

In Fig. 3.3 we can also distinguish frequencies where the symmetric and antisym-
metric supermodes coexist (light yellow shadow), whereas there are regions where either
only the antisymmetric supermode (light red shadow) or only the symmetric (light green
shadow) are present. In the following, di�erent spatial adiabatic passage processes will
be discussed in order to control the sound propagation for several applications. First,
it will be studied the frequency range in which both the symmetric and antisymmetric
supermodes coexist along the propagation. Later, it will be checked the case in which
only one supermode is allowed.

3.3 Two-supermode case

The propagation of sound along two defects for frequencies where both symmetric and
antisymmetric supermodes exist can be approximately described by the coupled-mode
equations, as it can be done for TIR waveguides [81] or photonic crystal linear defects
[130]. Coupled-mode equations give a straightforward and convenient insight to the
study of waves propagation in waveguide systems. For the most general case of two
coupled waveguides they can be written as:

i
d

dz

(
CU (z)
CL(z)

)
=

1

2

(
2kU (z) �
LU (z)
�
UL(z) 2kL(z)

)(
CU (z)
CL(z)

)
; (3.9)

where kU (kL) is the propagation constant of the individual upper (lower) waveguide,

UL (
LU ) is the coupling coe�cient from the upper to the lower (from the lower to
the upper) waveguide, and CU (CL) represents the amplitude function of the �eld in
the upper (lower) waveguide. For the case of sound, the total pressure �eld in a system
of two coupled sonic waveguides can be expressed by

p(y; z) =
∑
k=U,L

Ck(z)Pk(y); (3.10)

where PU (PL) is the mode of only the upper (lower) waveguide. The velocity �eld can
be described similarly.

It is possible to diagonalize Eq. (3.9) in order to obtain the expressions for the sym-
metric, P+(z), and antisymmetric, P�(z), supermodes as a function of the parameters
of the individual linear defects:
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P+(z) =

 cos �=
√

ΩUL
ΩLU

sin2 � + cos2 �√
ΩUL
ΩLU

sin �=
√

ΩUL
ΩLU

sin2 � + cos2 �

 (3.11)

and

P�(z) =

 sin �=
√

sin2 � + ΩUL
ΩLU

cos2 �

�
√

ΩUL
ΩLU

cos �=
√

sin2 � + ΩUL
ΩLU

cos2 �

 ; (3.12)

where the mixing angle � is de�ned by

tan 2� =

p

UL
LU

�k
(3.13)

with �k = kL � kU . The propagation constants of the P+(z) and P�(z) supermodes
are

k� =
kU + kL �

√

UL
LU + �k2

2
: (3.14)

For example, the coupled-mode equations (3.9) properly describe the power oscil-
lations between two equal waveguides characteristic of the directional couplers when
incident sound waves are injected into one of the two waveguides [81]. For two equal
waveguides we have that kU = kL = k and 
DU = 
UD = 
, with k and 
 be-
ing constant along z. In this case, the symmetric and antisymmetric supermodes are
equal to P+(z) = (1; 1)T =

p
2 and P�(z) = (1;�1)T =

p
2 with propagation constants

k+ = k � 
=2 and k� = k + 
=2, which leads to the well-known coupling-length ex-
pression LC = ω=jk+ � k�j = ω=
. These power oscillations between two waveguides
are analogous to the Rabi oscillations between two internal atomic levels. In fact, the
coupled-mode equations provide a useful analogy between propagation of waves along
two coupled waveguide systems and the time evolution of the population in two-level
atomic systems interacting with a laser beam. Additionally, the coupled-mode equa-
tions (3.9) allow us to easily con�rm that, as we have discussed in Section 3.2, by
smoothly changing the radii of the linear defects it is possible to modify and follow
the symmetric and antisymmetric supermodes of the system and control the sound
propagation. Thus, in order to modify along the propagation direction the P+ and
P� supermodes obtained from the coupled-mode equations, it is necessary to change
the couplings and thus, the mixing angle � (see Eqs. (3.11) and (3.12)), which de-
pends on the ratio

p

UL
LU=�k, as shown in Eq. (3.13). This ratio, and therefore

the supermode transverse pro�les, can be changed by modifying the radii size of the
defects. Calculating the band diagrams for a single defect with Eq. (3.2), Eq. (3.4) and
Eq. (3.6) it is straightforward to check that the value of j�kj = jkL � kU j increases
by making the defect radii progressively di�erent between them. In particular, when
the defects are equal, rdU = rdL, �k = 0. The values of the couplings

p

UL
LU can

be found by using Eq. (3.14), since k� can be obtained from the band diagrams with
two defects in the SC. Thus, it can be checked that when the radii of the defects are
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equal, j�kj � p
UL
LU and � = ω=4. Whereas when jrdL � rdU j 〈 0, the condition
j�kj 〈 p
UL
LU is ful�lled and � is equal to either 0 or ω=2, depending on the sign
of �k. In this way, by changing the di�erence between the radii of the linear defects,
it is possible to modify the mixing angle � from either 0 or ω=2, corresponding to the
symmetric and antisymmetric supermodes localized in only one of the defects, to ω=4,
where the symmetric and antisymmetric supermodes are equally spread between the
two linear defects. This is in agreement with the results shown in Fig. 3.3. Thus, a
smooth modi�cation of the di�erence of radii size will allow for the adiabatic following
of either the symmetric or the antisymmetric supermodes of the system leading to a
spatial adiabatic passage of sound waves.

This way of modifying and following the symmetric and antisymmetric supermodes
presented here resembles the well-known rapid adiabatic passage (RAP) [104, 105] tech-
nique presented in Chapter 1, which allows for a coherent control of atomic population
in a system of two internal atomic states interacting with a laser pulse of changing
frequency.

3.3.1 Coherent multifrequency adiabatic splitter

In this section we will apply the previous ideas coming from the coupled-mode theory
to the linear defects in SCs in order to obtain a robust 50% coherent superposition of
sound waves at the output of the two linear defects.

To this aim, we need to modify the mixing angle � from either 0 or ω=2 to ω=4. For
example: if we consider that at the input of the system only the upper linear defect
is excited (CU = 1 and CL = 0) and the radii are di�erent so �k is large compared
to
p


UL
LU , � = 0 and only the symmetric supermode P+(zinitial) is excited. Then,
if along the z propagation direction the defect radii become progressively more similar
(reaching equal values at the output of the system), �k decreases making

p

UL
LU

large compared to �k, and � evolves adiabatically from 0 up to ω=4. At the output
of the system, where the linear defects are equal and � = ω=4, the followed symmetric
state P+(zfinal) in Eq. (3.12) corresponds to have 50% of the �eld in each of the two
linear defects. Fig. 3.4 schematically represents the evolution of the mixing angle � and
the amplitude in each linear defect. As summarized in table 3.1, there are four possible
ways to achieve the 50% power superposition at the output of the two coupled linear
defects.

We have designed a structure following the example above described (corresponding
to the �rst row of table 3.1) and we have performed numerical simulations by integrat-
ing Eq. (3.1) with the Finite Element method in order to con�rm the predictions of the
coupled-mode equations for the 50% splitting. Fig. 3.5 shows the results of the numer-
ical simulations of sound waves of frequency � = 1:9� 105 Hz propagating through the
designed structure. We can see how an initial input beam is equally split into the two
linear defects at the output. The input linear defect consists of an empty row. The
second linear defect consists of cylinders that change their radius from rdL = 2:25 mm
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Figure 3.4: Schematic representation of the evolution of (a) the mixing angle � and (b)
the �eld intensity in the upper and lower defects.

Sign of Injection Mixing angle Followed
�k = kL � kU evolution supermode

+ CU = 1, CD = 0 0) ω=4 P+(z)

+ CU = 0, CD = 1 0) ω=4 P�(z)

� CU = 1, CD = 0 ω=2) ω=4 P�(z)

� CU = 0, CD = 1 ω=2) ω=4 P+(z)

Table 3.1: Four possible situations in which at the end of the device the �eld injected
in one of the linear defects ends up in a 50% superposition between the two parallel
coupled linear defects.

(the size of the cylinders in the SC) to rdL = 0. The two linear defects are separated by
one row of the SC. di�erent and we excite the upper one, which has the smallest radius
and corresponds to � = 0 and the symmetric P+ supermode. Along the propagation,
the radius of the cylinders of the lower linear defect decreases smoothly until the linear
defect is empty. By doing this, the angle � and the P+ supermode adiabatically evolve
along the propagation direction until � = ω=4 and the symmetric supermode is equally
spread into the two linear defects.

In Fig. 3.6 we plot the normalized power at the two outputs as a function of the
frequency. We see that the adiabatic splitting works in a signi�cantly broad range of
frequencies from 1:71 � 105 Hz to 1:95 � 105 Hz, in agreement with the available fre-
quencies for the symmetric supermode in the band diagrams for the di�erent points
along the propagation, see Fig. 3.3. Thus, this structure constitutes a coherent multi-
frequency adiabatic splitter. The splitting works for di�erent frequencies as long as it
is possible to follow adiabatically the P+ supermode. If the supermode is not adiabat-
ically followed, for example because of a too sudden change of the radii of the defect,
the symmetric supermode (or even some other higher supermodes) would be excited,
limiting the e�ciency of the splitting. spatial adiabatic passage it is necessary that
the values of �k and the couplings

p

UL
LU are strong enough with a large enough

spatial overlap [43, 82].
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Figure 3.5: Numerical simulations of (a) the pressure �eld and (b) the total intensity
�eld for sound propagation along the SC with two linear defects acting as a coherent
beam splitter structure for a frequency � = 1:9�105 Hz. The parameter values of the SC
are the same as in Fig. 3.1. The upper linear defect consists of a row empty of cylinders
whereas the lower linear defect smoothly changes its radius from rdL = 2:25 mm to
rdL = 0.
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Figure 3.6: (a) Normalized power at the upper (red curve) and lower (blue curve)
outputs as a function of the frequency respect to the total power at the output and
integrated over the width of each defect (5 mm width for each defect). (b) Normalized
total power reaching the outputs relative to the maximum power at the two outputs.

3.3.2 Phase difference analyzer

A structure similar to the one described in Section 3.3.1 can be implemented in order
to measure the phase di�erence between two sound beams. In this case, at the input
the two defects are empty of cylinders, being � = ω=4 and both the symmetric and
the antisymmetric supermodes spread equally into the two defects, see Fig. 3.3(a).
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Along the propagation direction, the defect radius of the lower linear defect smoothly
increases its size up to rdL = 1:2 mm, while the upper defect remains without cylinders,
rdU = 0. Thus, at the output of the system, since the radii of the defects are signi�cantly
di�erent, �k 〈 p
UL
LU , � = 0, and the symmetric supermode is localized in the
upper waveguide while the antisymmetric one is localized in the lower defect, as shown
in Fig. 3.3(b). Now we consider that two sound beam sources are placed at input
of the system, each one in front of each linear defect. If the sources are in phase,
only the symmetric supermode will be excited, sound waves will follow adiabatically
the supermode along the propagation and at the end of the device there will be only
sound intensity in the upper output for which rdU = 0. On the other hand, if the
two sources are in opposite phase, only the antisymmetric supermode will be excited
and sound waves will follow it adiabatically ending up into the lower output for which
rdL = 1:2 mm. In general, one can consider any phase di�erence ' between the input
sources and the initial �eld for two sources of equal intensity can be expressed as:

 in =
1p
2

(
1
eiϕ

)
: (3.15)

The symmetric and antisymmetric supermodes given by the coupled-mode equations,
Eq. (3.11) and Eq. (3.12), at the input where the two defects are equal read:

P+(0) =
1p
2

(
1
1

)
; (3.16)

P�(0) =
1p
2

(
1
�1

)
: (3.17)

Projecting  in into the symmetric and antisymmetric supermodes and taking the mod-
ulus square it is possible to �nd the sound intensity that approximately excites each
supermode, I+ and I�:

I+ = jP+(0)�  inj2 =
1

2
(1 + cos') (3.18)

I� = jP�(0)�  inj2 =
1

2
(1� cos'): (3.19)

Since at the output of the system the symmetric supermode corresponds only to sound
intensity in the upper linear defect (I+ = IU,out) and the antisymmetric supermode
to sound intensity in the lower linear defect (I� = IL,out), it is possible to measure
the initial phase di�erence ' between two sources of the same power by measuring the
intensities at the two linear defect outputs:

' = arccos

(
IU,out � IL,out
IU,out + IL,out

)
: (3.20)

Thus, this structure of linear defects can be used as a phase di�erence analyzer.
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Figure 3.7: Band structures for two linear defects of radii (a) rdU = rdL = 0 and (b)
rdU = 0 and rdL = 1:2 mm including the surrounding raws of radius rdS = 2:5 mm. In
both �gures we plot the symmetric (in green) and the antisymmetric (in red) bands
that are used for the control of sound propagation. The supermodes for the symmetric
and antisymmetric bands are shown for a frequency � = 1:9� 105 Hz. It is possible to
see that the sound pressure of these supermodes is more concentrated into the linear
defects than in Fig. 3.3.

In order to enhance the working e�ciency of the phase di�erence analyzer, the
radius of the cylinders surrounding the linear defects (the cylinders corresponding to
the row above the upper linear defect, the row between the linear defects and the row
below the lower linear defect) have values smoothly changing from rdS = 2:5 mm to
rdS = 2:25 mm (the size of the cylinders in the SC) in the �rst 10 columns of the SC. In
this way it is easier to correctly excite the symmetric and antisymmetric supermodes
with the two sound sources, since at the input of the system the sound waves are
more concentrated into the waveguides but not in the rest of the SC. In a similar way,
the radius of the central cylinders and the cylinders surrounding the linear defects in
the last 10 columns of the SC have values smoothly changing from rdS = 2:25 mm
to rdS = 2:5 mm. By doing this, the supermodes at the output of the system are also
more concentrated in the waveguides, which allows for a better identi�cation of the �nal
intensity at each output. The fact that the supermodes are more concentrated when
they are surrounded by rows of radius rdS = 2:5 mm has been checked by comparing
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Figure 3.8: Numerical simulations of the sound pressure propagation along the SC
with two linear defects acting as a phase di�erence analyzer structure, with a phase
di�erence between the two input sources of (a) ' = 0, (b) ' = ω=2 and (c) ' = ω
for a frequency � = 1:9 � 105 Hz. The parameter values for the SC are the same as
in Fig. 3.1. The upper linear defect consists of a row empty of cylinders whereas the
lower linear defect smoothly changes its radius from rdL = 0 to rdL = 1:2 mm. The
�rst 10 columns surrounding the linear defects have radii changing from rdS = 2:5 mm
to rdS = 2:25 mm and vice-versa for the last 10 surrounding columns.

the band diagrams and the symmetric and the antisymmetric supermodes obtained
with these extra thicker rows surrounding the linear defects in plotted Fig. 3.7 with
the diagrams and supermodes shown in Fig. 3.3. These new band diagrams have been
determined by considering the surrounding rows as new linear defects of radius rdS and
recalculating Eq. (3.5):

β�1
Ḡ

=

(
βh
βc
� 1

)
2ω

9a2[
rdU

J1(jḠjrdU )

jḠj eiḠya + rdL
J1(jḠjrdL)

jḠj e�iḠya+

2rdS
J1(jḠjrdS)

jḠj
(
1=2 + cos(2 �Gya)

)
+

2r0
J1(jḠjr0)

jḠj

4∑
j=3

cos(j �Gya)

 ;
for Ḡ 6= 0: (3.21)

The expressions for b�1
Ḡ

can be analogously calculated.
Fig. 3.8 shows the results for the sound propagation obtained by numerical inte-

grating Eq. (3.1) using the Finite Element method. We can observe sound pressure
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waves of frequency � = 1:9� 105 Hz propagating along the designed structure for three
di�erent values of phase di�erence between the input sources: 0, ω=2 and ω. We can
clearly see that the intensity at the output depends on the phase di�erence and that
for ' = 0 (' = ω=2) only the symmetric (antisymmetric) supermode is excited and fol-
lowed, while for ' = ω=4 both supermodes are equally excited and followed. Fig. 3.9(a)
shows the dependence of the �nal intensity in each waveguide on the phase di�erence,
which follow the expected behavior (Eq. (3.18) and Eq. (3.19)). Thus, it is possible
to calculate the measured phase di�erence using Eq. (3.20) as a function of the known
phase di�erence introduced between the sources (Fig. 3.9)(b). The results from the
numerical simulations are in good agreement with the analytical ones. Small discrep-
ancies arise only close to 0 and ω phase di�erences. This is due to the impossibility to
completely decouple the two linear defects at the input and the output of the system.
Nevertheless, a proper calibration of the device would allow for the assignment of a
real value of the phase di�erence to every measured value.
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Figure 3.9: (a) Intensity in each waveguide output as a function of the phase di�erence
between the input sources, in blue the upper output and in red the lower output. The
results follow those expected from Eq. (3.18) and Eq. (3.19), represented in black. (b)
In red color is represented the measured phase di�erence using Eq. (3.20) as a function
of the known phase di�erence between the sources. The black line corresponds to the
ideal measurement given by Eq. (3.20).

The results shown above are for a frequency � = 1:9 � 105 Hz, which is approxi-
mately in the middle of the frequency range where both symmetric and antisymmetric
supermodes coexist, see the yellow-shadowed area in Fig. 3.3. For this reason, both
supermodes are excited with similar intensities. However, for other frequencies sur-
rounding that frequency, one of the supermodes will be excited with slightly more
intensity than the other one. Nevertheless, the system can still be used for the mea-
surement of the phase di�erence bewteen two beams by adjusting the normalization in
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Eq. (3.16) and Eq. (3.17), and also calibrating the obtained outputs.

3.4 One-supermode case

Up to now we have studied sound propagation in two parallel linear defects for fre-
quencies in which both symmetric and antisymmetric supermodes exist. However,
from Fig. 3.3(a) and (b) it is clear that there are frequencies in which only one of
the supermodes can propagate. In particular, marked with a red shadow in Fig. 3.3,
there is a quite broad range of frequencies where only the antisymmetric supermode
exists. For these frequencies it is not possible to use the coupled-mode theory since
only one supermode is available. However, it is still possible to adiabatically follow the
antisymmetric supermode of the system in case of smoothly modifying the radius size
of the defects along the propagation direction. In fact, the absence of the symmetric
supermode allows to relax the smoothness condition for the change in radii size of the
linear defects along the propagation direction. Therefore, in this range of frequencies
it is possible to design much shorter SC structures for applications that only require
the following of a single supermode.
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Figure 3.10: (a) Numerical simulations of the sound propagation with a frequency
� = 2:08� 105 Hz along the SC with two linear defects for the coherent beam splitter
structure, for the pressure �eld (upper plot) and the total intensity �eld (lower plot).
(b) Normalized power at the upper (red curve) and lower (blue curve) outputs as a
function of the frequency respect to the total power at the output and integrated over
the width of each defect.

This is the case of the coherent multifrequency adiabatic splitter, where by designing
a structure with two linear defects starting with very di�erent radii of the defects,
rdL = 1:5 mm and rdU = 0, and ending with the defects of the same size, rdL =
rdU = 0:5 mm, it is possible to modify the transverse pro�le antisymmetric mode
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Figure 3.11: (a) Numerical simulations of the sound propagation with a frequency
� = 2:08�105 Hz along the SC with two linear defects for the robust complete transfer
structure, for the pressure �eld (upper plot) and the total intensity �eld (lower plot).
(b) Normalized power at the upper (red curve) and lower (blue curve) outputs as a
function of the frequency respect to the total power at the output and integrated over
the width of each defect.

from being very localized in one of the defects to equally spread in the two linear
defects. In Fig. 3.10(a) we show the sound pressure propagation in a designed structure
for a coherent multifrequency adiabatic splitter when only the antisymmetric mode is
available. Additionally, Fig. 3.10(b) plots the normalized power at the upper and lower
outputs as a function of the frequency with respect to the total power. We can see
that frequencies from 2� 105 Hz to 2:13� 105 Hz there is a 50% splitting of the sound
intensity, which is the range in which only the antisymmetric supermode is present.
Although the results here show a narrower range of working frequencies and a bit higher
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oscillations of the total power reaching the output as compared to the one presented
in Section 3.3.1, the structure can be signi�cantly shortened (approximately in 5 times
respect to the one in Section 3.3.1).

Additionally, given the short length of the splitter, it is possible to design a structure
made of two of them, one after the other, with the second one rotated by 180 degrees
with respect to the �rst one. By doing this, sound waves initially in one of the linear
defects are completely transferred to the other linear defect by adiabatically following
the antisymmetric supermode (see Fig. 3.11(a)). Fig. 3.11(b) shows the range of fre-
quencies in which the complete transfer works e�ciently, which as expected coincides
with the case of the one-supermode splitter.

3.5 Conclusions

In this chapter we have demonstrated for the �rst time the possibility to apply spatial
adiabatic passage processes to the �eld of sound waves propagation. Sonic crystals
with two linear defects that change their geometry along the propagation direction
are designed in order that the sound waves adiabatically follow a supermode of the
system. Two di�erent frequency ranges within the band gap are studied. On the one
hand, a frequency range in which both a symmetric and an antisymmetric supermode
of the system coexist. For this frequency range, two structures have been designed
working as a coherent multifrequency adiabatic splitter and as as a phase di�erence
analyzer. On the other hand, a range of frequencies where only the antisymmetric
supermode exists is also present. This allows for a reduction in length of the designed
structures since transitions to any other supermode are strongly suppressed. A coherent
multifrequency adiabatic splitter and a coupler have been designed for this range of
frequencies. It is important to note that since these applications are based on spatial
adiabatic passage processes, they are robust and do not depend on speci�c parameter
values of the physical system.
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4
Spatial adiabatic passage

of single cold atoms in waveguide potentials

In this chapter we introduce a coherent technique to inject, extract, and velocity �lter
neutral atoms in a ring trap coupled via tunneling to two additional waveguides [106].
The proposed technique is based on the spatial adiabatic passage of cold atoms in
waveguide potentials: by adiabatically following the transverse spatial dark state, an
e�cient and robust velocity dependent atomic population transfer between the ring and
the input/output waveguides is achieved. We derive explicit conditions for the spatial
adiabatic passage that depend on the atomic velocity along the input waveguide as well
as on the initial population distribution among the transverse vibrational states. The
validity of our proposal has been checked by numerical integration of the corresponding
two-dimensional Schr•odinger equation with state-of-the-art parameter values for 87Rb
atoms and an optical dipole ring trap.

4.1 Introduction

Recent advances in the preparation and manipulation of ultra-cold neutral atoms have
enabled a large number of high precision applications in di�erent disciplines such as
Atom Optics, Quantum Metrology, Quantum Computation, and Quantum Simulation
[131]. Neutral atoms can be trapped in a large variety of potential geometries, among
which ring traps present some unique features, such as possessing periodic boundary
conditions, that make them ideal candidates to investigate quantum phase transitions
[132], matter wave Sagnac interferometry [133], stability of persistent currents and
superconducting quantum interference devices [134, 135, 136, 137, 138, 139, 140, 141],
propagation of matter wave solitons and vortices [142], cold collisions [143], or arti�cial
electromagnetism [144, 145]. Bright optical (attractive) ring traps for neutral atoms
have been experimentally reported with far-detuned optical dipole beams propagating
through annular microlenses [146, 147], with a combination of TOP traps and Gaussian
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beams [148], with Laguerre{Gauss (LG) modes [149, 150, 141], and by means of spatial
and acousto-optic modulators [151], while dark (repulsive) optical rings have been
realized by an appropriate superposition of Laguerre{Gauss laser modes [150] and by
means of the dark Poggendor� ring of conical refraction [152].

In fact, one can foresee ring traps for cold atoms in low-energy physics to play a
similar role as circular accelerators and storage rings in high-energy physics. Thus, as
it was in the past for its high-energy physics counterpart, to seek for e�cient methods
to inject, �lter, store, decelerate, accelerate, and extract cold neutral atoms into and
from ring traps is a focus of present interest. In this chapter, we discuss a coherent
method for injecting neutral atoms into, extracting them from, and velocity �ltering
them in a ring trap, which is based on the spatial adiabatic passage technique for
cold atoms in dipolar waveguides [50, 51]. As it has been explained in Chapter 1, the
spatial adiabatic passage technique here discussed is the matter wave analog [50, 51]
of the stimulated Raman adiabatic passage (STIRAP) technique [34] and has been
previously proposed for e�ciently transporting single atoms [50, 51, 52, 53, 54, 55]
and Bose{Einstein condensates [72, 73] between the two extreme traps of a triple-
well potential, as well as for quantum tomography [78]. Furthermore, as it has been
presented in Chapter 2, the spatial adiabatic passage for light propagating in a system of
three coupled optical waveguides [43, 82] and a spatial adiabatic passage-based spectral
�ltering device [83] have been recently experimentally reported.

4.2 Physical system

The physical system under consideration consists of a ring trap and two optical dipole
waveguides coupled via tunneling in the three con�gurations shown in Fig. 4.1(a). In
each case, the two waveguides coupled to the ring can be switched on or o� at will
by simply turning on or o� the laser �eld that generates them. As a consequence,
injection, extraction and velocity �ltering of neutral atoms can be applied selectively
when needed. The technique consists of adiabatically following a particular energy
eigenstate of the system, the so-called transverse spatial dark state. Depending on
the atomic velocity, an e�cient and robust transfer of atoms between the ring and the
outermost waveguide or vice versa takes place, with its performance surpassing the case
of simply spatially overlapping the ring and the input/output waveguides [153].

As a �rst con�guration, we study the injection of a single cold neutral atom of mass
m with a velocity v into the ring trap by modeling the geometry of the physical system
as a two-dimensional (2D) optical potential formed by three coupled dipole waveguides,
see Fig. 4.1(b), with the ring and input traps being described as a segmented circular
waveguide. The dynamics is governed by the 2D Schr•odinger equation:

i~
@

@t
 (x; y) =

[
� ~2

2m
r2 + V (x; y)

]
 (x; y); (4.1)

where r2 is the 2D Laplace operator and V (x; y) is the waveguides trapping potential.
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Figure 4.1: (a) Schematic representation of the physical system consisting of a ring trap
and two dipole waveguides for injecting neutral atoms into, extracting them from, and
velocity �ltering them in the ring. (b) Potential geometry for the injection protocol
where the two dipole waveguides and part of the ring are modeled as three coupled
waveguides. The input (curved) waveguide and the ring waveguide are denoted by
C and R, respectively, and correspond to two circularly bent waveguides, while the
central straight waveguide is denoted by S. The distance d0 accounts for the minimum
y separation between adjacent waveguides while x0 gives the x distance between the
two positions of mimimum separation.

The transverse con�nement for each waveguide is modeled by a harmonic potential of
identical ground state width � �

√
~=(m!?), with !? being the transverse trapping

frequency. Truncated harmonic potentials are usually considered in the literature [50,
51] since they allow for the analytical derivation of the tunneling rates. Gaussian or
P•osch{Teller potentials describe more accurately the experimental trapping potentials
but they lead to qualitatively similar results [78].

The geometry of each waveguide depends parametrically on x through the variation
of the corresponding waveguide center position yi = yi(x) with i = C; S;R labeling
the curved, straight, and ring waveguides, respectively (Fig. 4.1(b)). Thus, the triple
waveguide potential can be written as truncated harmonic potentials:

V (x; y) = ~!? min
i=C,S,R

[
(y � yi (x))2 =2�2

i (x)
]
; (4.2)
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where �2
i (x) =�2 � 1 + j@yi (x) =@xj2, with �i being the width in the transverse y

direction of the vibrational ground state of the i-th waveguide. As a simpli�cation,
considering that the y-separation between the waveguides slowly varies along the x-
axis, i.e., @yi (x) =@x � 0, the velocity of the atom along any of the waveguides can be
approximated as v � vx. Thus, the motion of an atom with longitudinal velocity vx
can be decoupled from the vibrational motion in the transverse direction. In this way,
the system is e�ectively reduced in the y-direction to a one-dimensional (1D) triple
well potential of identical widths with the tunneling rates depending on the separation
between the waveguides that, in the atom's own reference frame, are varied in time
according to yi (x = vxt).

4.3 Velocity filtering mechanism

Assuming that the energy separation between the di�erent vibrational states of each
transverse harmonic potential is large enough to avoid crossed tunneling among di�er-
ent vibrational states and that there is no signi�cant coupling between the two outer-
most waveguides, the transverse Hamiltonian H? of the system can be approximated
to H? = H0 �H1 � � � � �Hn � : : : with:

Hn =
~
2

 0 �JCSn (x) 0

�JCSn (x) 0 �JSRn (x)

0 �JSRn (x) 0

 ; (4.3)

where J ijn is the tunneling rate between the n vibrational states of two adjacent waveg-
uides i and j.

After diagonalizing each Hamiltonian Hn, a set of three transverse energy eigen-
states for each n is obtained. One of them involves only the vibrational states of the
two extreme waveguides and is known as the transverse spatial dark state [50, 51]:

jDn(�n)i = cos �njniC � sin �njniR; (4.4)

where �n is de�ned as tan �n � JCSn =JSRn . For a given n, a spatial adiabatic passage of
a neutral atom between the two most separated waveguides is achieved by adiabatically
following the spatial dark state. This transfer process implies a smooth spatial variation
of the tunneling rates such that �n slowly changes from 0 to ω=2. In the protocol for
injecting the atom from the input waveguide C to the ring R, the appropriate tunneling
rates variation can be achieved if the two initially empty waveguides, S and R, are
approached and separated �rst along x and, with an appropriate spatial delay x0, the
C and S waveguides are approached and separated (Fig. 4.1(b)).

Considering identical transverse harmonic potentials, for a given n, the maximum
tunneling rate between the C and the S, and between the S and the R waveguides
will be equal, JCSn (�x0=2) = JSRn (x0=2) (� Jmax

n ), corresponding to a separation d0

between the two closest waveguides. The `global' adiabaticity condition to perform a
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Figure 4.2: Longitudinal threshold velocity vthx given by Eq. (4.5) for the injection
protocol as a function of the minimum waveguides separation d0 for di�erent transverse
vibrational states n. In all cases x0 = 50� and A = 10. The cross and the circle mark
the parameters used in the numerical simulations of Fig. 4.3(a) and (b), respectively.

spatial adiabatic passage reads
p

2Jmax
n T > A, where T = x0=vx, and A is a dimen-

sionless constant that for optimal parameters takes a value around 10 [34]. Therefore,
the spatial adiabatic passage will succeed for longitudinal atomic velocities ful�lling:

vx < vthx �
p

2Jmax
n x0=A: (4.5)

Hence, by appropriately engineering the dimension x0 of the interaction region and
the tunneling rates through the minimum separation d0, it is possible to implement a
velocity �lter such that atoms with a longitudinal velocity below the threshold velocity
given by Eq. (4.5) will be adiabatically transferred into the ring. As the tunneling rates
depend on the transverse vibrational state n, the proposed adiabatic transfer technique
can also be used for �ltering vibrational states [78].

We have applied the recurrence Gram{Schmidt orthogonalization [78, 41] and the
Holstein{Herring methods [154, 155] to obtain analytical expressions for the tunneling
rates Jmax

n , see Appendix A. From these tunneling rates, we have plotted in Fig. 4.2
the longitudinal threshold velocity vthx as a function of the minimum distance d0 with
x0 = 50� and A = 10. Clearly, since the threshold velocity increases when the tunneling
rate increases, higher values for the threshold velocity are achieved at short distances
d0. It is also shown in this �gure how the threshold velocity increases for increasing
values of n, as expected since the tunneling rate grows with n.
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Figure 4.3: 2D numerical simulations showing the atomic probability distribution at
three di�erent consecutive times for an input matter wave packet with (a) an initial
velocity vx = 0:3�!? at n = 0, and (b) an initial velocity vx = 0:9�!? at n = 1. In
both cases d0 = 3:9�, x0 = 50�, with the radius of the ring and curved waveguides
being r = 3000�.

4.4 Numerical results

4.4.1 Injection protocol

Up to here, we have described the main ideas of the proposal by simplifying the initial
2D problem as a transverse 1D triple well potential with position dependent tunneling
rates and analyzing the problem in terms of the transverse Hamiltonian. In order
to be more realistic, we now investigate the injection protocol by a direct numerical
integration of the 2D Schr•odinger Eq. (4.1) for 87Rb atoms with the geometry shown
in Fig. 4.1(b) and the transverse potential given in Eq. (4.2). Fig. 4.3(a) and (b)
show three consecutive snapshots of the atomic probability distribution for the n = 0
and n = 1 transverse vibrational states, respectively, for the con�gurations marked
in Fig. 4.2 by a cross (for Fig. 4.3(a)) and a dot (for Fig. 4.3(b)). They correspond
to input velocities below the respective threshold velocities vthx , indicating that the
global adiabaticity conditions for the spatial adiabatic passage are ful�lled. Thus, in
both cases the atom is completely injected into the ring waveguide. Fig. 4.4 shows
the numerically calculated region (in white) for which the transfer probability into
the ring is higher than 97% for the ground, Fig. 4.4(a), and �rst excited, Fig. 4.4(b),
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Figure 4.4: Numerically calculated probability for population injection into the ring
waveguide as a function of the input velocity vx and the minimum separation d0 for
an input wave packet at (a) n = 0 and (b) n = 1. The rest of the parameters are
as in Fig. 4.3. White areas correspond to the parameter region for which the transfer
probability into the ring is higher than 97%. Solid curves represent the corresponding
threshold velocities shown in Fig. 4.2.

transverse vibrational states as a function of the input velocity and the minimum
distance between waveguides, in good agreement with the threshold velocity expression
derived in Eq. (4.5) (solid lines). In addition, we have numerically con�rmed that,
for appropriate parameter sets, it is possible to perform �ltering of the transverse
vibrational states using the fact that the tunneling rates depend on n.

4.4.2 Extraction protocol

Let us now turn to the discussion of the extraction process in the con�guration de-
picted in Fig. 4.1(a) (center). The atoms can be extracted from the ring by applying
the same protocol as for injection but simply exchanging the role of the curved and ring
waveguides. In an extension, the output waveguide could be part of a secondary ring
to be used as an accumulator or storage ring for cold atoms, being repeatedly supplied
by the �rst ring. In addition, it could be possible to choose the parameters for the
ring geometry and the injection/extraction protocol in such a way that for an initially
broad atomic velocity distribution in the �rst ring, only atoms with low enough longi-
tudinal velocity, such that they ful�ll the adiabaticity condition, were transfered to the
secondary ring. Rethermalization during a round trip in the �rst ring would deliver
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Figure 4.5: Waveguide geometry for a double spatial adiabatic passage process includ-
ing the atomic probability distribution for three di�erent consecutive times with the
initial velocity being (a) vx = 0:3�!? and (b) vx = �!?. (c) Final atomic population
in the ring as a function of vx. In all cases n = 0.

additional low-velocity atoms into the secondary ring, presenting this secondary ring
an improved starting condition for further manipulation of the atoms.

4.4.3 Velocity filtering

We discuss here the velocity �ltering con�guration shown in Fig. 4.1(a) (right) and
Fig. 4.5(a), where atoms propagating along the ring (r = 3000�) are coupled to a
particular waveguide geometry designed to perform a double spatial adiabatic passage
process: the cold neutral atom is transferred from the ring to the external waveguide
and comes back into the ring. This process corresponds to the adiabatic following of the
transverse spatial dark state in Eq. (4.4), where in this case the �n angle slowly changes
from 0 to ω=2 (for the �rst part of the double spatial adiabatic passage) and goes back
to 0 (for the second part). Each individual adiabatic passage geometry is characterized
by d0 = 3:9� and x0 = 50�. At x = 0 the separation between the waveguides is 7�.
Fig. 4.5(a) and (b) show the evolution of an input atomic wave packet at di�erent
times (ti, t0, and tf ) for vx = 0:3�!? and vx = �!?, respectively, and n = 0 in both
cases. In (a), the double spatial adiabatic passage is performed with high e�ciency:
the atomic wave packet follows the dark state and continues to propagate along the
ring after the �ltering section. On the contrary, in (b) the input velocity is too high
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resulting in the excitation of other eigenstates of the system and the spreading of the
atomic wave packet among the three waveguides. Fig. 4.5(c) shows the �nal population
in the ring as a function of the initial longitudinal velocity showing that slow atoms
are able to adiabatically follow the spatial dark state and return to the ring trap with
high �delity, while faster atoms that do not ful�ll the adiabaticity condition spread
among the three waveguides, thus reducing the �nal population in the ring. One can
estimate the expected values of the atomic velocities that will be �ltered by means of
this geometry for realistic ring geometries [152]: assuming 87Rb atoms in an optical ring
potential with radius of � 1 mm and trapping frequency !? � 2ω � 1 kHz, we obtain
�!? � 2 mm=s. Therefore, based on Fig. 4.5(b), it should be possible to selectively
remove atoms with velocities higher than vx � 0:6�!? = 1:2 mm/s.

4.5 Conlusions

We have presented a coherent technique for the injection of neutral atoms into, extract-
ing them out of, and velocity �ltering them inside a ring dipole trap. The technique
is based on the spatial adiabatic passage of cold atoms in waveguide potentials, which
consists in adiabatically following the transverse spatial dark state of the system. Ex-
plicit conditions for the spatial adiabatic passage between the waveguides and the ring
as a function of the initial longitudinal atomic velocity and on the initial population
distribution among the transverse vibrational states have been discussed. In particular,
a semi-analytical expression for the threshold longitudinal velocity allowing for a high
e�ciency of the spatial adiabatic passage has been obtained, which perfectly matches
with the full 2D numerical simulations of the Schr•odinger equation. Furthermore, nu-
merical simulations demonstrate that �delities higher than 97% are achieved for both
the injection and extraction protocols within a signi�cantly broad ranges of parameter
values of the longitudinal atomic velocity and the minimum separation between the
waveguides. The performance of our proposal has been checked with state-of-the-art
parameter values for 87Rb atoms and an optical dipole ring trap, showing the possi-
bility to �ltrate out atoms at velocities higher than � 1:2 mm/s from an optical ring
potential with radius of � 1 mm and trapping frequency !? � 2ω � 1 kHz.
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5
Single-atom interferometer

based on two-dimensional spatial adiabatic passage

In this chapter we extend the spatial adiabatic passage technique to the two dimensional
case by considering a single cold atom in a system of three two-dimensional harmonic
traps of the same trapping frequency in a triangular geometry. We show that the
transfer of a single atom from the ground state of a harmonic trap to the ground
state of the most distant one is successfully achieved in a robust way for a broad
range of parameter values. Nevertheless, we �nd that there is a speci�c geometrical
con�guration of the traps for which a crossing of two energy eigenvalues occurs and
the transfer of the atom fails, splitting its wavefunction into a coherent superposition
between two of the traps. We take advantage of this situation to propose a single-
atom interferometer based on spatial adiabatic passage and discuss its performance
in terms of the �nal population distribution among the asymptotic eigenstates of the
individual traps. The results have been checked with numerical simulations of the full
two-dimensional Schr•odinger equation.

5.1 Introduction

Atom interferometers are focus of current research interest due to their suitability to
perform high-precision measurements [156, 157, 158, 159, 160, 161, 162, 163]. This
is mainly motivated by the small wavelengths associated to matter waves and by the
wide range of atomic properties like mass, magnetic moment, and polarizability that
makes them suitable to measure fundamental constants, internal forces, accelerations
and rotations.

The implementation of an atomic interferometer requires an e�cient and robust
method to split and recombine the matter wavefunction, i.e., to control the external
degrees of freedom of the atom. Tunneling between trapping potentials constitutes
a fundamental tool for the preparation and manipulation of single quantum particles
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states. However, direct tunneling between two resonant traps leads to Rabi-type oscil-
lations of the atomic population, which are not experimentally easy to controlate since
they are very sensitive to small variations of the parameter values of the system [50].
The spatial adiabatic passage technique in a system formed by three traps lying on a
straight line has been proposed [50, 70, 51, 74, 54, 55, 69, 78] as the spatial analogue
of the stimulated Raman adiabatic passage (STIRAP) technique [34] well known in
Quantum Optics. At variance with direct tunneling, spatial adiabatic passage o�ers a
much richer behavior and a more robust performance than direct tunneling approaches
since it does not require an accurate control of the system parameters. Three-well
interferometry with Bose{Einstein condensates (BECs) using an analogue of fractional
STIRAP has been recently reported [76]. The spatial adiabatic passage has also been
extended to the transport of single atoms along dipolar waveguides [51, 106], to the
transport of BECs in triple-well potentials [72, 73] and to the light transfer in coupled
optical waveguides [43, 82, 83].

Here, we extend the spatial adiabatic passage technique to a scheme that breaks
the e�ective one-dimensionality that up to know has been assumed from the direct
analogy with the STIRAP processes. We consider a single atom in a system of three
not aligned two dimensional harmonic traps, which has no analogue in quantum optical
systems of internal states. We study the conditions to achieve a complete transfer of the
atoms between the ground states of the most distant traps showing that it is possible
to perform a robust spatial adiabatic passage process in the considered geometry. We
also show that under conditions in which the adiabatic transfer fails, it is possible to
implement a novel scheme for atom interferometry.

This chapter is organized as follows. In Section 5.2 we introduce the physical
system that will be investigated for the two-dimensional spatial adiabatic passage,
and present and diagonalize the Hamiltonian that governs the dynamics of a single
atom in the trapping potential. The conditions required to perform two-dimensional
spatial adiabatic passage are derived in Section 5.3. In Section 5.4 we discuss the
implementation and performance of a matter wave interferometer using a level crossing
in the eigenvalue spectrum. Finally, Section 5.5 is devoted to the conclusions.

5.2 Physical system

We consider a system that consists of three two-dimensional harmonic potentials (la-
beled A, B and C) with equal trapping frequencies (!A = !B = !C = !). As schemat-
ically shown in Fig. 5.1, the three traps are not lying on a straight line but form a
triangle, with the trap center positions being xA = �dAB cos�, yA = �dAB sin�,
xB = yB = 0, xC = dBC and yC = 0 for the A, B and C traps, where dAB and dBC
are the distances between A and B traps, and B and C traps, respectively.

In Cartesian coordinates, the A, B and C asymptotic ground states of the traps
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Figure 5.1: Schematic representation of the system of three harmonic traps, A, B and
C with equal trapping frequencies. For the parameters de�nition see the text.

can be written as:

 A = θ0(x� dAB cos�)θ0(y + dAB sin�); (5.1)

 B = θ0(x)θ0(y); (5.2)

and
 C = θ0(x� dBC)θ0(y); (5.3)

respectively, where θ0 is the single-particle ground state eigenfunction of the one-
dimensional quantum harmonic oscillator.

In one-dimensional spatial adiabatic passage, three in-line traps are considered such
that the coupling between the outermost traps is neglected, i.e., only neighbor coupling
is considered. In contrast, in the two-dimensional case we assume that all three traps
are directly tunnel-coupled to each other. The tunneling rates between A and B, B
and C, and A and C are denoted as JAB, JBC and JAC , respectively. If the dynamics of
the system is restricted to the space spanned by f A(t);  B(t);  C(t)g, the Hamiltonian
that governs its evolution reads:

H =
~
2

 0 �JAB �JAC
�JAB 0 �JBC
�JAC �JBC 0

 ; (5.4)

where the couplings depend on the separation between the centers of the harmonic
potentials as [50] (see Appendix A):

Jij
!

=
�1 + e(α−1dij/2)2

{
1 +
p
ω��1dij

[
1� erf(��1dij=2)

]
=2
}

p
ω(e(α−1dij)2/2 � 1)=(��1dij)

; (5.5)
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being i; j = A;B;C with i 6= j, � =
√

~=(m!), and m the mass of the single cold
atom.

New and richer phenomenology compared to the one-dimensional spatial adiabatic
passage case can be found by diagonalizing the Hamiltonian in Eq. (5.4). The energy
eigenvalues of Eq. (5.4) are obtained from its characteristic polynomial which is a
depressed cubic equation:

E3 + pE + q = 0; (5.6)

where:

p = �~2

4
(J2
AB + J2

BC + J2
AC); (5.7)

q =
~3

4
JABJBCJAC : (5.8)

Since the energy eigenvalues of the Hamiltonian of Eq. (5.4) must be real, the solutions
of Eq. (5.6) have to ful�ll:

4p2 + 27q2 � 0: (5.9)

In this case, the analytic expression of the the energy eigenvalues reads:

Ek = 2

√
�p

3
cos

[
1

3
arccos

(
3q

2p

√
�3

p

)
+ k

2ω

3

]
; (5.10)

where k = 1; 2; 3. For 4p2+27q2 < 0 three di�erent energy eigenvalues exist, while 4p2+
27q2 = 0 implies that the E2 and E3 eigenvalues become degenerated. In particular,
the equality 4p2 + 27q2 = 0 is ful�lled if and only if

JAB = JBC = JAC ; (5.11)

which would lead to an energy level crossing, E2 = E3. In our con�guration this level
crossing occurs for the angle � = 2ω=3 when all the traps are equally separated. For
any other angle � the distances between the traps cannot be all equal simultaneously
and therefore, as long as the traps are coupled, the system will have three di�erent
energy eigenvalues.

The eigenstates 	k of Eq. (5.4) read:

	k =
1

N
(ak A + bk B � ck C) ; (5.12)

with

ak = JBC �
2EkJAC
~JAB

; (5.13)

bk = JAC �
2EkJBC
~JAB

; (5.14)

ck = JAB �
4E2

k

~2JAB
(5.15)
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and

N =
√
a2
k + b2k + c2

k; (5.16)

where k = 1; 2; 3. For JAC = 0, which means q = E2 = b2 = 0, Eq. (5.12) yields the
same expression for the energy eigenstates as in the one-dimensional spatial adiabatic
passage case. In particular, one of the eigenstates becomes the so-called spatial dark
state, i.e., 	2 = cos � A � sin � C with � = tan�1(JAB=JBC). In this case, the spatial
adiabatic passage consists in adiabatically following the spatial dark state from the
initial state  A to the �nal state  C by smoothly varying � from 0 to ω=2, i.e., by
applying the so-called counterintuitive temporal sequence of the tunneling rates.

5.3 Two-dimensional spatial adiabatic passage

In this section we will make use of the previously derived eigenvalues and eigenstates
of Hamiltonian (5.4) to investigate up to which extend spatial adiabatic passage works
for the two-dimensional case where the coupling between the outermost traps JAC is
also present.
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FIG. 2. An example of (a) the coupling sequences

, and (b) the distances between traps
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Figure 5.2: Temporal evolution of (a) the distances between traps dAB, dBC and dAC ,
and (b) the couplings JAB, JBC and JAC during the spatial adiabatic passage process.
The parameter values are: � = 0:5ω and � = 0:2T , where T is the total time of the
process. Coupling rates are given in units of ! and distances in units of �.

In the two-dimensional case, the counterintuitive temporal sequence of the couplings
is applied with the single cold atom initially located in the vibrational ground state of
trap A. In our case, with the B trap �xed in the position (0; 0), the sequence consists
in approaching and separating �rst C and B traps, and later on and with a certain
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temporal delay, approaching and separating A and B traps, keeping the � angle �xed.
Note that the distance dAC will depend on the two control distances, dAB and dBC and
the angle �, so dAC will not be a free parameter. The couplings as a function of time
can be easily calculated through their dependence on the separation between traps, see
Eq. (5.5).
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FIG. 2. An example of (a) the coupling sequences
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Figure 5.3: Energy eigenvalues as a function of time (a) and temporal evolution of
the population of the asymptotic states of the traps  A,  B, and  C for the three
eigenstates of the system 	1 (b), 	2 (c), and 	3 (d). Parameter values as in Fig. 5.2
and energy given in units of ~!.

Fig. 5.2 shows an example of the temporal evolution of the distances between traps
and the corresponding coupling rates for the counterintuitive sequence of spatial adia-
batic passage. For this temporal evolution of the couplings, Fig. 5.3 shows the corre-
sponding energy eigenvalues as well as the population of each asymptotic level of the
individual traps for the three eigenstates of the system. From Eq. (5.12) and the exam-
ple in Fig. 5.3 it is possible to observe that, when the spatial adiabatic passage sequence
is applied, the eigenstate 	2 involves initially only the trap A. Thus, since the atom is
initially located in the A trap, the system is in the state  (t = 0) = 	2(t = 0) =  A. If
the sequence of approaching and separating the traps is performed adiabatically [34],
the system will be able to follow the eigenstate 	2 during the whole process. At the
end of the sequence (at a total time T ),  (t = T ) = 	2(t = T ) =  C . Therefore, by
applying a counterintuitive coupling sequence the single atom is completely transferred
from A to C traps. This is true for a range of angles from � = 0 (the one-dimensional
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spatial adiabatic case) to � < �th = 2ω=3. However, for � = �th there is a level cross-
ing between 	2 and 	3 and it is no longer possible to adiabatically follow the energy
eigenstate 	2. For very large angles, � > �th, the coupling JAC becomes much more
intense than the other two couplings and any eigenstate of the system allows for the
complete transfer from A to C.
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FIG. 2. An example of (a) the coupling sequences
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Figure 5.4: Energy eigenvalues as a function of time (a), and temporal evolution of
the population of each asymptotic states of the traps  A,  B, and  C for the three
eigenstates of the system 	1 (b), 	2 (c), and 	3 (d) for dAB and dBC as in Fig. 5.2
but with � = 2ω=3. Energy given in units of ~!.

Let us now investigate in detail the particular case for which there is an energy
level crossing. Fig. 5.4 shows the evolution of the energy eigenvalues for the same
temporal variation of the distances dAB and dBC as in Fig. 5.2 but with � = �th, as
well as the population of each asymptotic level for the three eigenstates of the system.
It is clearly shown in Fig. 5.4(a) that the two energy eigenstates 	2 and 	3 cross at
a certain time during the dynamics eliminating the possibility to adiabatically follow
state 	2. Instead, the system would be transferred from state 	2 to 	3 which at the
end of the process will be a superposition of the atom being in trap A and trap B with
equal probability, as it can be seen in Fig. 5.4(d).

Up to know, we have discussed two-dimensional spatial adiabatic passage restricting
the dynamics to the space spanned by the three asymptotic states of the individual
traps. In the following we will check the validity of this simpli�ed model by numerically
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integrating the 2D Schr•odinger equation, which reads:

i~
@

@t
 (x; y) =

[
� ~2

2m
r2 + V (x; y)

]
 (x; y); (5.17)

where r2 is the 2D Laplace operator and V (x; y) is the trapping potential, which we
assume to be constructed from truncated harmonic oscillator potentials

V (x; y) = min
i=A,B,C

{
1

2
m!2

i

[
(x� xi)2 + (y � yi)2

]}
: (5.18)

Here (xi; yi) with i = A;B;C are the positions of the individual trap centers, and
!A = !B = !C = !.
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Figure 5.5: Temporal evolution of the population distribution of the single particle
in the system of three traps with broken spatial symmetry for T = 5000!�1 and the
parameter values as in Fig. 5.2 but with � = ω=2 (a) and � = 2ω=3 (b).

Fig. 5.5 shows the population distribution at di�erent times for a process of total
time T = 5000!�1 with (a) � = ω=2 and (b) � = 2ω=3. One can see in Fig. 5.5(a)
that a single particle is completely transferred from the A trap to the C trap, which
corresponds to the adiabatic following of the eigenstate 	2. Contrarily, in Fig. 5.5(b)
we can see that the atom ends up in a superposition of traps A and B. This is due to
the energy level crossing that occurs at t = 0:5T when the three traps are equidistant,
which implies that the system is transferred from 	2 to 	3, following 	3 until the end
of the process.
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5.4 Single atom interferometry

In the previous section we have seen that for � = �th the transfer of population between
A and C traps fails, and the atomic wavefunction ends up in 	3, which is a coherent
antisymmetric superposition of A and B traps with equal probabilities. This coherent
splitting of the atomic wavefunction and its eventual recombination can be used to
implement a robust atomic interferometer as it will be discussed in the following lines.
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Figure 5.6: Temporal evolution of the population distribution of the single particle in
the system during the recombination process for (a) ' = 0, (b) ' = ω=2 and (c) ' = ω.

The �rst step of the interferometer corresponds to the splitting process due to the
level crossing already depicted in Fig. 5.5(b). At the end of the splitting, at time T ,
we perform the second step by imprinting a relative phase, ', between the A and B
traps. The last step is the recombination process that consists of reversing in time
the evolution of the couplings performed during the splitting process, i.e., keeping �
�xed, we approach and separate �rst A and B traps, and with a certain time delay
we approach and separate C and B traps. At the �nal time, 2T , the population
distribution of the output atomic state among the asymptotic states of the traps will
allow for a direct measurement of the imprinted phase.

To check the performance of the interferometer, Fig. 5.6 shows the population
distribution at di�erent times during the recombination process for (a) ' = 0, (b)
' = ω=2, and (c) ' = ω. It is clearly shown in Fig. 5.6(a) that for ' = 0, at the
end of the process (t = 2T ), the atom returns to trap A. This is due to the complete
reversibility of the splitting process that leads to the transfer back of the system from
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Figure 5.7: Population at the end of the process (t = 2T ) of trap A (a), sum of the
populations of traps B and C (b) and measured phase di�erence between A and B traps
as a function of the imprinted phase di�erence at t = T . These results correspond to
a total time t = 2T = 8000!�1.

state 	3 to 	2 at the particular time for which the crossing of energy levels occurs.
After the crossing, the system follows 	2, which at the end of the process has only
contribution of  A.

When a phase di�erence, ', between the A and B traps is imprinted after the
splitting process, the state of the system becomes 	ϕ(T ) = 1p

2
( A� eiϕ B) which can

be decomposed at this particular time in a superposition of 	3(T ) = 1p
2
( A� B) and

	1(T ) = 1p
2
( A +  B). By reversing the sequence of couplings, the 	3 contribution

will be transfered to 	2 at the level crossing and it will end up in trap A while the
	1 contribution will evolve backwards according to Fig. 5.4(b) and at the end of the
process will be in a superposition of traps B and C. Thus, by measuring the population
of the three traps at the end of the process one can infer the phase di�erence between
A and B traps just before the recombination process. The populations of traps B and
C at the output of the interferometer read:

j B(2T )j2 + j C(2T )j2 = jh	1j ϕij2 =
1

2
(1� cos') (5.19)

while the population of trap A is given by:

j A(2T )j2 = jh	3j ϕij2 =
1

2
(1 + cos'): (5.20)
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Thus, the phase di�erence between A and B traps can be written as

' = � arccos

[ j A(2T )j2 � (j B(2T )j2 + j C(2T )j2)

j A(2T )j2 + j B(2T )j2 + j C(2T )j2
]

(5.21)

In Fig. 5.7, we plot the analytic prediction and the numerically obtained population
at the end of the process (t = 2T ) of trap A (a), the sum of the populations of traps
B and C (b) and the measured phase di�erence between A and B traps as a function
of the imprinted phase di�erence at t = T . We clearly see a full agreement between
the results from Eq. (5.19), Eq. (5.20) and Eq. (5.21) and the corresponding numerical
integration of the 2D Schr•odinger equation. The nearly linear behavior between the
measured phase di�erence with the imprinted one evidences the excellent performance
of the described system as a matter wave interferometer.

5.5 Conclusions

We have discussed two-dimensional spatial adiabatic passage for a single cold atom
in a trapping potential consisting of three two-dimensional harmonic wells forming a
triangular con�guration. It has been shown analytically and numerically the successful
performance of spatial adiabatic passage for a broad range of parameters. However,
there is a critical con�guration for which the three tunneling rates become equal at
a particular time during the dynamics which, implies a level crossing in the system's
eigenvalue spectrum. This level crossing produces a coherent splitting of the matter
wave that we have used as the �rst step to build up a matter wave interferometer.
Once the matter wave is split between two of the traps we have imprinted a relative
phase between these two traps showing that the recombination process results in a
distribution of the matter wave among the asymptotic states of the traps that depends
on the imprinted phase. Finally, we have numerically checked the excellent performance
of the interferometer to measure the imprinted phase.
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6
Tunneling induced angular momentum

for single cold atoms via spatial adiabatic passage

In this chapter we demonstrate the possibility to generate states carrying angular mo-
mentum for a single cold atom by breaking the symmetry of a spatial adiabatic passage
process in a two-dimensional system of three harmonic potential wells [107]. The spa-
tial symmetry is broken by rotating the position of the initial trap with respect to the
middle trap. With this new con�guration, by performing a spatial adiabatic passage
sequence, a superposition of two eigenstates of the system are adiabatically followed
and the single cold atom is completely transferred to the �rst excited states of the �nal
trap, which are resonantly coupled via tunneling to the ground states of the initial
and middle traps. Depending on the total time of the process, angular momentum is
generated in the �nal trap, with values that oscillate between �~. It is also shown
that both a complete transfer and generation of angular momentum can be obtained
for broad range of parameter values. We discuss the process in terms of the asymptotic
states of the individual wells and the results are checked by numerical simulation of
the full two-dimensional Schr•odinger equation.

6.1 Introduction

Controlling the states of quantum particles is a challenging task and a topic of signif-
icant present activity in the �elds of Atom Optics, Quantum Computation, Quantum
Metrology, and Quantum Simulation of condensed matter systems [164, 156, 165, 131,
166]. In particular, the generation of angular momentum for matter waves is attracting
a lot of attention as, for instance, in studying superuid properties of Bose-Einstein
condensates (BECs) [167]. These condensates can sustain vortices, which have been
envisioned to be used in applications for interferometry, as for example gyroscopy with
counter-rotating vortex superpositions [168], Quantum Information, such as coherent
superpositions of arbitrary winding numbers [169, 170] or entangled vortex states [171],
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and as a way to study the behavior of random polynomial roots [172]. Di�erent tech-
niques have been proposed and experimentally reported to generate angular momentum
with single atoms and BECs, such as stirring with a laser beam [173], phase imprinting
[174, 175], transfer of orbital angular momentum from optical states [176, 177, 178],
rotating traps [179, 180, 167, 181], turbulence [182], dynamical instabilities [183] or
merging multiple trapped BECs [184].

At the same time, adiabatic techniques to control the external degrees of freedom
of massive particles have been developed [50], based on the spatial analogue of the
Stimulated Raman Adiabatic Passage technique [34]. For the centre-of-mass degree
of freedom, this is usually realized by considering a triple well con�guration and as-
suming that only a single state in each trap contributes to the dynamics. Up to now,
all proposals in which the spatial adiabatic passage technique has been discussed have
been e�ectively one-dimensional (1D): the traps are arranged in a linear geometry and
a single particle in one of the outer traps is coherently transferred to the other outer-
most trap with very high �delity. Signi�cant work has been done for this process by
discussing e�ciency and robustness for single atoms [50, 51, 54, 69, 78, 79], electrons
[70], atomic vortices [71], holes [55] and BECs [72, 73, 74, 75]. Recently, spatial adi-
abatic passage for light propagating in a system of three coupled optical waveguides
[43, 82, 83] has been experimentally reported.

In this chapter, we go beyond those well understood 1D systems and focus onto
the possibilities o�ered by two-dimensional (2D) setups. Higher dimensional systems
often allow for new processes arising from the additional degrees of freedom and here
we will address the generation of angular momentum for a single particle, e.g., a single
cold atom, by means of 2D tunnel-coupling between traps. Angular momentum is an
inherent two-dimensional (2D) quantity, which can only be created in systems in which
rotational symmetry is broken. We demonstrate that, by applying a spatial adiabatic
passage sequence in a system of three traps with broken spatial symmetry, a single
particle can be completely transferred from the ground vibrational state of the initial
trap to the two degenerate �rst excited states of the �nal trap. Depending on the
total time of the process, this can generate angular momentum with values oscillating
between �~. Note that such a two-dimensional process has no analogue in quantum
optical systems involving internal states. Furthermore, the process is robust since both,
the complete transfer and the generation of angular momentum, occur within a broad
range of parameter values.

In the following we �rst introduce the physical system consisting of three potential
harmonic wells and we show the necessity of breaking the spatial symmetry of the
system in order to generate angular momentum with a single cold atom by means of
a spatial adiabatic passage sequence of couplings. Afterwards, using the asymptotic
states of the individual traps and the couplings between them, both the complete trans-
fer of population to the �nal trap and the process of generation of angular momentum
are described by �nding the energy eigenvalues and eigenstates of the system. Finally,
numerical integrations of the full 2D Schr•odinger equation, which con�rm the predicted
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results, are presented.

6.2 Physical system

We consider a system consisting of three two-dimensional harmonic potentials (labeled
A, B and C), in which initially a single particle is located in the vibrational ground
state of trap A. The trapping frequencies of A and B are equal (!A = !B = !) and
the one for C is chosen as half that value (!C = !=2). Such an arrangement means
that the ground energy levels in traps A and B are in resonance with the �rst excited
level in trap C allowing for e�ective tunnel-coupling.

Due to the symmetry in each of the individual potentials, the eigenstates can either
be described in cartesian coordinates, leading to the standard quantum numbers nx
and ny, or in polar coordinates using the quantum numbers n and l, where n is the
principal quantum number and l corresponds to the topological charge. In our situation
the resonant �rst excited energy level in trap C is degenerate as ECnx,ny

= EC1,0 = EC0,1
or as ECn,l = EC1,1 = EC1,�1. Angular momentum can only be present when both states

with energies ECnx,ny
= EC1,0 and ECnx,ny

= EC0,1 have �nite occupancy and there is
a certain phase di�erence between them. For example, direct tunneling between the
ground state of a trap of trapping frequency ! and the �rst excited states of a trap with
trapping frequency !=2, without any initial angular momentum present, can only lead
to occupation of either the state with energy EC1,0 or the one with EC0,1, or a combination
of both with zero phase di�erence, not allowing for angular momentum generation. In
particular, maximum angular momentum, hLzi = �~, occurs when the two degenerate
states in cartesian coordinates are (i) equally populated and (ii) have a phase di�erence
of ω=2, i.e.:

 C1,�1(r; �) =
1p
2

[
 C1,0(x; y)� i C0,1(x; y)

]
; (6.1)

where  Cn,l(r; �) =  C1,�1(r; �), in polar coordinates, and  Cnx,ny
(x; y) =  C1,0(x; y) and

 Cnx,ny
(x; y) =  C0,1(x; y), in cartesian coordinates and in a x � y reference frame, are

the eigenfunctions of the �rst excited states of the C trap.

6.3 Effective one-dimensional case

We will start studying the case of spatial adiabatic passage with the three 2D traps
lying and moving on a straight line. During the process, the positions of the trap
centers are xA = �dAB, yA = 0, xB = yB = 0, xC = dBC and yC = 0, where dAB
and dBC are the distances between the traps A and B and B and C, respectively (see
Fig. 6.1). We consider four di�erent states which are in resonance, the ground states
of A and B traps and the two �rst excited states of the C trap. In the chosen reference
frame x�y and cartesian coordinates, the A and B trap ground states can be expressed
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as:

 A0,0(x; y) = θω0 (x+ dAB)θω0 (y) (6.2)

and

 B0,0(x; y) = θω0 (x)θω0 (y); (6.3)

respectively. Here θω0 is the single-particle ground state eigenfunction of the one-
dimensional quantum harmonic oscillator with trapping frequency !:

θω0 (x) =
(m!
ω~

)1/4
exp

(
�m!x

2

2~

)
; (6.4)

where m is the mass of the particle.

For the C trap with !=2 we consider the eigenfunctions

 C1,0(x; y) = θ
ω/2
1 (x� dBC)θ

ω/2
0 (y) (6.5)

and

 C0,1(x; y) = θ
ω/2
0 (x� dBC)θ

ω/2
1 (y); (6.6)

where θ
ω/2
0 and θ

ω/2
1 are the single-particle ground and �rst excited state eigenfunc-

tion of the one-dimensional quantum harmonic oscillator with trapping frequency !=2,
respectively:

θ
ω/2
0 (x) =

(
m!=2

ω~

)1/4

exp

(
�m(!=2)x2

2~

)
; (6.7)

θ
ω/2
1 (x) =

p
2

(
m!=2
3
p
ω~

)3/4

x exp

(
�m(!=2)x2

2~

)
: (6.8)

x

y

ω ω
ω/2

A B C

dAB dBC

Figure 6.1: Schematic representation of the system of three 2D harmonic traps for the
linear con�guration. The A and B traps have a trapping frequency ! and C trap a
trapping frequency !=2.

The tunneling rates coupling the di�erent traps of the system depend on the trap
separation and can be calculated analytically considering harmonic truncated potentials
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[50], see Appendix A. In this linear con�guration, A and B traps, and B and C traps are
coupled with rates JAB and JBC , respectively, whereas A and C traps are assumed to
be separated enough to neglect direct coupling between them. In particular, because
of the symmetry of the system, JBC only couples the state  B0,0(x; y) of the B trap

with the  C1,0(x; y) state of the C trap. In this way, the other excited state,  C0,1(x; y),
does not play any role in the dynamics and the problem can be modeled with a 3� 3
Hamiltonian using the base f A0,0;  B0,0;  C1,0g:

H =
~
2

 0 �JAB 0
�JAB 0 �JBC

0 �JBC 0

 : (6.9)

As we saw in Chapter 1, by diagonalizing this Hamiltonian, it is possible to �nd an
energy eigenstate, the so-called spatial dark state, that only involves the asymptotic
states of the outermost traps:

	D(�) = cos � A0,0 � sin � C1,0; (6.10)

where the mixing angle � is given by tan � = JAB=JBC [34, 51, 54, 69, 78, 79]. With a
single cold atom initially located in the ground state of the A trap,  A0,0(x; y), a spatial
adiabatic passage sequence [51, 54, 69, 78, 79] can be applied by moving the traps
along the x axis: keeping the B trap in a �xed position, the C trap is approached and
separated to the B trap, and later on with a certain temporal overlap the A trap is
approached and separated to the B trap. By doing this, � changes from 0 to ω=2 and,
therefore, the dark state evolves from  A0,0(x; y) to  C1,0(x; y). Therefore, if the sequence
is adiabatically performed, the dark state is followed, being the cold atom completely
transferred to the �rst excited state  C1,0(x; y) of the C trap. However, although the
single atom can be completely transferred to the C trap, with this geometry it is not
possible to generate angular momentum because there is no transfer of population to
the  C0,1(x; y) state. Numerical simulations of the 2D Schr•odinger equation supporting
this will be shown in Section 6.6.

6.4 Two-dimensional case

In order to populate both of the degenerate states of the �rst excited level of C traps
towards the generation of angular momentum, it is necessary to break the spatial
symmetry of the linear con�guration. With this aim, we will consider a geometry in
which the A trap is rotated around the B trap and forms an angle � with respect to the
x axis, as can be seen in Fig. 6.2. The positions of the trap centers are xA = �dAB cos�,
yA = �dAB sin�, xB = yB = 0, xC = dBC and yC = 0. Since we have rotated the
position of the A trap, its new eigenfunction for the ground vibrational state has to be
rewritten, in cartesian coordinates, as:

 A0,0(x; y) = θω0 (x� dAB cos�)θω0 (y + dAB sin�): (6.11)
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The other eigenfuctions for B and C traps have the same expressions as for the linear
case (Eqs. (6.3), (6.5) and (6.6)).

x

y

ω

ω ω/2

γ
them are given by the previous

A

B C

dAB

dBC

dAC

β

Figure 6.2: Schematic representation of the system of three harmonic 2D traps with
broken spatial symmetry. As for the linear case, the traps A and B have a trapping
frequency ! and trap C has a trapping frequency !=2.

The breaking of symmetry introduces two new e�ects with respect to e�ective 1D
con�gurations: (i) traps A and C can get close enough to allow direct tunnel coupling
and (ii) there is no longer a preferred direction along which one of the states in C
can line up. Thus, since the position of the A trap with respect to the C trap forms
an angle  with the x axis, there is a population transfer between the state  A0,0(x; y)

and  C1,0(x; y) with coupling rate JAC1,0 , but also between  A0,0(x; y) and  C0,1(x; y) with

coupling rate JAC0,1 . Therefore, both �rst excited states of the C trap become involved in

the dynamics of the system, which in the basis f A0,0;  B0,0;  C1,0;  C0,1g can be described
by the 4� 4 Hamiltonian:

H =
~
2


0 �JAB �JAC1,0 �JAC0,1

�JAB 0 �JBC 0
�JAC1,0 �JBC 0 0

�JAC0,1 0 0 0

 : (6.12)

It is straightforward to check that Hamiltonian (6.12) possesses four non-degenerate
eigenvalues, except for JBC=

p
2 = JAB = JAC1,0 = JAC0,1 when two of them become

degenerate. As previously, the coupling rates depend on the trap separation and can
be calculated analytically considering harmonic truncated potentials [50], see Appendix
A. Additionally, since in the chosen x� y reference frame the ground state of A trap is
coupled to both degenerate �rst excited states in C, the two coupling rates depend on
the angle  as JAC1,0 = Jω,ω/2 cos  and JAC0,1 = Jω,ω/2 sin , where Jω,ω/2 is the coupling
rate between the ground state of a trap with trapping frequency ! and a resonant �rst
excited state of a trap with trapping frequency !=2.
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6.5 Generation of angular momentum carrying states

The generation of angular momentum occurs along with the transfer of the particle from
the A to the C trap through a spatial adiabatic passage process [50, 51, 54, 69, 78, 79].
As for the linear case, this corresponds to a counterintuitive temporal sequence of the
couplings, i.e. with the particle initially located in A and the position of B being �xed,
the C trap is �rst moved towards and away from the B trap along the x axis, and
with a certain temporal delay, �, the A trap approaches and moves away from the B
trap, keeping the angle � constant. In the following, we will analyze this process in
terms of the overall energy eigenvalues and eigenstates of the system by diagonalizing
the Hamiltonian in Eq. (6.12), which is the only way to obtain a deeper understanding
of the process due to the complex interplay of the three traps a�ecting each other. To
approach and separate the traps, the evolution of the distances dBC and dAB follows
a cosine function evaluated between 0 and 2ω, see Fig. 6.3(a) left. The right hand side
panel of Fig. 6.3(a) shows the corresponding tunneling rates, and Fig. 6.3(b) displays
the temporal evolution of all four energy eigenvalues of the Hamiltonian. Note that for
the chosen parameters no level crossing occurs.
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FIG. 2. An example of (a) the coupling sequences
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Figure 6.3: (a) Temporal evolution of the distances between traps dAB, dBC and dAC
(left panel), and the couplings JAB, JBC , JAC1,0 and JAC0,1 (right panel), during the
spatial adiabatic passage process. (b) Energy eigenvalues as a function of time. The
parameter values are: � = 0:55ω, � = 0:2T , and dBC and dAB with values between 10�
and 3:5�, and 9� and 2:5�, respectively, where � =

√
~=(m!), and T is the total time

of the process.

The population of each asymptotic level of the traps for the four energy eigenstates
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Figure 6.4: Temporal evolution of the population of each asymptotic level of the traps
( A0,0,  B0,0,  C1,0 and  C0,1) for the four eigenstates of the system (	1, 	2, 	3 and 	4).
The parameter values are as in Fig. 6.3.

of the system is shown in Fig. 6.4. Since initially the particle is in the A trap, the
eigenfunction of the system at t = 0 can be written as a superposition of the eigenstates
	2 and 	3 as

 (t = 0) =
1p
2

[	2(t = 0) + 	3(t = 0)] =  A0,0; (6.13)

where 	2(t = 0) =
(
 A0,0 +  C0,1

)
=
p

2 and 	3(t = 0) =
(
 A0,0 �  C0,1

)
=
p

2. If the process
is adiabatic and level crossings are absent, this superposition of eigenstates is followed
all through the process, leading to a �nal state of the form

 (t = T ) =
1p
2

[
	2(t = T ) exp

(
� i

~

∫ T

0
E2dt

)
+

	3(t = T ) exp

(
� i

~

∫ T

0
E3dt

)]
: (6.14)

In particular, as it can be seen from Fig. 6.4 that, at the �nal time T , 	2 and 	3 only
involve the asymptotic states of the C trap,  C1,0(x; y) and  C0,1(x; y):

	2(t = T ) = a C0,1 � b C1,0; (6.15)

90



Chapter 6. Tunneling induced angular momentum for single cold atoms

	3(t = T ) = b C0,1 + a C1,0 (6.16)

where jaj2 + jbj2 = 1. This means that by following the two eigenstates 	2 and 	3, a
complete transfer of population from the initial trap A to the �nal trap C is achieved.
Moreover, superpositions (a C0,1 � b C1,0) and (b C0,1 + a C1,0) are also two asymptotic
eigenstates of the C trap, just in a x0�y0 rotated reference frame respect to the original
ones,  C1,0(x; y) and  C0,1(x; y). We can call them

 0C0,1(x0; y0) = 	2(t = T ); (6.17)

 0C1,0(x0; y0) = 	3(t = T ): (6.18)

It is then easy to see from Eq. (6.14) that  0C0,1(x0; y0) and  0C1,0(x0; y0) are equally pop-
ulated and that the phase di�erence between them is given by

'(t = T ) =
1

~

∫ T

0
(E3(t)� E2(t))dt: (6.19)

From Fig. 6.3(b) it can be seen that the phase di�erence will be directly proportional
to T , since the energy di�erence between the energy eigenvalues E3 and E2 follows the
same pattern, independent of the total time of the process. Rewriting Eq. (6.14) in polar
coordinates it is possible to show that the expected value of the angular momentum is
a function of the phase di�erence '

hLz(T )i = sin['(T )]: (6.20)

Therefore, the generated angular momentum hLzi will follow a sinusoidal curve as a
function of the total time of the process T , with a maximum at ' = (n + 1=2)ω for
n 2 N.

Figs. 6.3 and 6.4 correspond to a particular value of the angle � = 0:55ω. However,
we have checked that the above process works for all angles 0 < � < �t, which is
the parameter range in which the energy eigenspectrum and eigenfunctions are similar
to the ones shown in Fig. 6.3 and 6.4. The only signi�cative variation is that the
energy di�erence between E2 and E3 is smaller for smaller angles, leading to longer
oscillation periods of the angular momentum as a function of the total time of the
process T . Around �t � 0:625ω, for a broad range of values of the distances dAB and
dBC , the energy eigenstates 	3 and 	4 become almost degenerate at one point during
the evolution, which limits the possibility to follow the superposition of the states 	2

and 	3 adiabatically. As discussed earlier, this particular time corresponds to the
instant at which JBC=

p
2 � JAB � JAC1,0 � JAC0,1 and �t therefore represents the angle

up to which both, a complete transfer and the generation of angular momentum, work
e�ciently.
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6.6 Numerical results

Although in the previous section we have used the asymptotic states of the individual
traps to describe the dynamics of the system, the full dynamics is governed by the 2D
Schr•odinger equation:

i~
@

@t
 (x; y) =

[
� ~2

2m
r2 + V (x; y)

]
 (x; y); (6.21)

where r2 is the 2D Laplace operator. Here V (x; y) is the trapping potential, which we
assume to be constructed from truncated harmonic oscillator potentials

V (x; y) = min
i=A,B,C

{
1

2
m!2

i

[
(x� xi)2 + (y � yi)2

]}
; (6.22)

where (xi; yi) with i = A;B;C are the positions of each trap center, !A = !B = !
and !C = !=2. Thus, to establish the validity of our model above, we present in the
following the numerical solution of Eq. (6.21), with the trapping potential Eq. (6.22)
in the regime where � < �t.
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Figure 6.5: Temporal evolution of the population distribution of the single particle in
the system of three traps with linear geometry. Three di�erent times are shown: (a)
the initial time, (b) the intermediate time T=2 = 1500!�1 and (c) the �nal total time
T = 3000!�1.

First, the linear case con�guration has been numerically simulated, with the results
shown in Fig. 6.5. As it was expected, a complete transfer of the atom from the  A0,0
state of the A trap to the  C1,0 state of the C trap is obtained, with no �nal angular
momentum.
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Figure 6.6: Temporal evolution of the population distribution of the single particle
in the system of three traps with broken spatial symmetry for T = 5183!�1 and
the parameter values as in Fig. 6.3. The adiabatic following of the superposition of
	2(t) and 	3(t) can be observed by comparing with Fig. 6.4: from t = 0:42T to
t = 0:48T oscillations corresponding to the phase di�erence between 	2(t < 0:5T ) =
( A0,0 +  C0,1)=

p
2 and 	3(t < 0:5T ) = ( A0,0 �  C0,1)=

p
2 are shown; for t = 0:58T and

t = 0:6T oscillations due to the phase di�erence between 	2(t > 0:5T ) =  0C0,1 and

	3(t > 0:5T ) =  0C1,0 are also observed.

Secondly, numerical simulations of the triple-well potential system with broken
spatial symmetry have been performed. The population distribution at di�erent times
is shown in Fig. 6.6 for a process of total time T = 5183!�1. One can see that a
single particle is completely transferred from the A trap to the C trap, where a state
with maximum angular momentum, hLzi = �~, is created, which corresponds to the
adiabatic following of the eigenstates 	2 and 	3 (see also point c in Fig. 6.7).

Calculations have also been performed in order to scan the values of the angular
momentum as a function of the total time of the process T , as it is shown in Fig. 6.7. In
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Figure 6.7: Generated angular momentum as a function of the total time of the process
T (upper plot). Final states in the C trap and their phases for four different final total
times a, b, c and d (lower plots). Parameter values as in Fig. 6.3.

agreement with Eq. (6.20), numerical results show a sinusoidal behavior of the angular
momentum generated in the C trap as a function of the total time of the process T ,
with maximum values reaching ± � .

Fig. 6.8 shows the 2D numerical simulations for the angular momentum and the
transfer of population to the C trap as a function of the β angle for a total time
T = 6000ω−1. As predicted for the 4 × 4 formulation, both a complete transfer and
values of the angular momentum close to ± � are obtained from very small angles up
to values close to βt = 0.625π , proving the robustness of the process. It has also been
numerically checked that if other parameter values (as the distances between the traps
and the delay δ) are slightly changed, as long as the process is adiabatically performed,
values of angular momentum close to ± � can still be reached with a modification of
the oscillation frequency of 〈Lz〉as a function of the total time T . Thus, the process
of complete transfer to the C trap and generation of angular momentum is very robust
and highly versatile.
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Figure 6.8: Generated angular momentum (blue line) and final transferred population
in the C trap (red line) as a function of the β angle for a total time T = 6000ω−1.
Parameter values are the same as in Fig. 6.3.

6.7 Conclusions

In this chapter we have demonstrated that angular momentum for a single cold atom
can be successfully generated by breaking the symmetry of a spatial adiabatic passage
sequence in a system of three 2D harmonic traps of different trapping frequency. A
single cold atom initially in the ground state of a harmonic trap of frequency ω , can
be fully transferred to the first excited states of a final harmonic trap of frequency
ω/2 by adiabatically following a superposition of two energy eigenstates of the system.
The energy difference between these two eigenstates results in a phase difference be-
tween the equally populated excited states of the final harmonic trap, which leads to
the generation of angular momentum. The obtained values oscillate between ± � and
depend on the total time of the process. We have modeled this process by using the
asymptotic levels of the three harmonic traps and the couplings between them in a 4 × 4
Hamiltonian. Results have been checked against the numerical solution of the full 2D
Schr¨odinger equation, proving the robustness of this spatial adiabatic passage process
since both a complete transfer and values of the angular momentum up to ± � can be
found within a broad range of parameter values. Our work demonstrates that adiabatic
techniques for centre-of-mass states hold significant potential for new processes, which
have no direct equivalent in, for example, the control of internal degrees of freedom.
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7
Conclusions and outlook

In this last chapter we will briey summarize the main results that we have presented
in this PhD thesis, remarking possible future perspectives.

Spatial adiabatic passage processes have been studied all along this thesis for the
coherent control of light propagation in systems of coupled waveguides, sound propa-
gation in systems of coupled linear defects in sonic crystals, and also for matter waves
transport in systems of coupled waveguides and potential wells. Some of the main
characteristics of the spatial adiabatic passage are its robustness and high e�ciency to
control the transfer of an oscillating quantity, such as light, sound or matter waves.
Thus, in this thesis we have made use of these characteristics and the dependence of
the adiabaticity condition on the parameters of the system to propose new devices and
discuss new implementations in these various �elds.

Before going to the details of each of the spatial adiabatic passage processes studied
in this thesis, and in order to make clear how the spatial adiabatic passage can be
addressed in such di�erent physical systems as optical waveguides, linear defects in
sonic crystals or dipolar traps or waveguides, in Chapter 1 we have set the common
elements necessary to perform the adiabatic passage in di�erent physical systems and
we have also briey reviewed some examples of the main adiabatic passage processes.

In Chapter 2 we have studied the spatial adiabatic passage of light in systems of
three coupled waveguides. We have designed and fabricated systems of three evanes-
cently coupled TIR silicon-oxide waveguides in which we have experimentally checked
that it is possible to achieve a robust and highly e�cient transfer of light between the
outermost waveguides of the system. The robustness of the spatial adiabatic passage
of light has been also experimentally checked by obtaining e�cient transfer processes
when measuring devices with di�erences in the geometry parameter values. In particu-
lar, for variations of the geometry parameter values between 20% and 35%, the relative
fraction of intensity that has been transferred ranges from 0:87 to values above 0:99 for
di�erent measured systems of waveguides. Thus, the spatial adiabatic passage of light
represents a powerful alternative in front of directional couplers, in which the transfer
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of light between waveguides depends on precise geometry parameter values. Although
the work presented in Chapter 2 is not the �rst implementation of spatial adiabatic
passage of light [43, 44], it represents the �rst one using a CMOS-compatible technol-
ogy, which could allow for the integration of the devices together with other photonic
or electronic elements for a low-cost and allowing massive production. Furthermore, in
Chapter 2 we have also theoretically proposed and experimentally demonstrated that
a system of three TIR silicon oxide waveguides can be used as a high- and low-pass
spectral �lter. In this case, using the fact that the coupling strength depends on the
wavelength, we have shown that, if light is injected into the right waveguide of the
system, after propagating along the system, long wavelengths propagate to the left
output, whereas short wavelengths are transferred into the central and right outputs.
The �ltering mechanism is based on the adiabaticity of the spatial adiabatic passage
process and, therefore, we have referred to the fabricated devices as spatial adiabatic
passage �lters. We have also demonstrated that, depending on the geometry parameter
values, the �ltering characteristics can be tuned on wavelength but keeping the same
�ltering behavior. Additionally, the fabricated spatial adiabatic passage �lters are also
CMOS-compatible. Hence, due to their properties, spatial adiabatic passage �lters can
constitute a feasible alternative to other integrated �ltering devices such as interference-
based �lters or absorbance based �lters. Although we have focused this work within
the visible range, an extension to other wavelength ranges is straightforward since,
as we have discussed in Chapter 1, the conditions to perform spatial adiabatic pas-
sage processes can be ful�lled in systems of three coupled waveguides no matter of the
speci�c value of the wavelength if the couplings between the waveguides are modi�ed
appropriately. Thus, for example, both the spatial adiabatic passage and the SAP �lter
could be implemented into the standard frequency range of telecommunications.

Spatial adiabatic passage processes for waves propagating in systems of three waveg-
uides resemble the quantum optical stimulated Raman adiabatic passage technique [34]
used to e�ciently transfer the atomic population between the ground states of a �-type
system of internal atomic levels in interaction with two laser pulses. A similar analogy
can arise between the rapid adiabatic passage technique [35], used to coherently trans-
fer the population between the ground and the excited levels of a system of two internal
atomic levels that interact with a laser pulse of variable frequency, and systems of two
coupled waveguides. This analogy gave rise to the proposals discussed in Chapter 3,
where the propagation of sound waves in a sonic crystal is controlled in systems of
two coupled linear defects by adiabatically following the available supermodes of the
system. In Chapter 3 we have �rstly calculated the band diagrams of the system of two
linear defects. From them, we have extracted the information on how the geometry
of the defects can be modi�ed along the propagation direction in order to change the
transverse pro�le of the supermodes. Additionally, two frequency regions have been
identi�ed, one where both the symmetric and antisymmetric supermodes of the sys-
tem are present and another where only the antisymmetric supermode exists. For the
�rst one, the coupled-mode theory can be used, giving an understandable insight into
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the problem and allowing for the analogy with the rapid adiabatic passage technique
[35]. Two applications based on spatial adiabatic passage have been proposed for (i)
coherent multifrequency adiabatic splitting and (ii) phase di�erence analyzing. On the
other hand, for the second range of frequencies, since only the antisymmetric super-
mode exists and transitions to other supermodes are strongly supressed, it is possible
to design structures of much shorter length. In this case, a coherent multifrequency
adiabatic splitter and a coupler have been designed. As for the structures implemented
in Chapter 2, the robustness is also a quality present in the devices proposed in Chap-
ter 3 and the obtained results are still valid if some uctuations on the parameter
values are present. It is important to note that the equations for sound propagation
in sonic crystals can be directly related to the TE or TM modes for light propagation
in two-dimensional systems. Therefore, the applications here discussed could be easily
extended to the �eld of light propagation in photonic crystals with linear defects. Fur-
thermore, the applications described through the coupled-mode equations could also
be extended to other kind of optical waveguides such as the standard TIR waveguides.

Dipolar waveguides for the propagation of matter waves can also be used to per-
form spatial adiabatic passage processes, as we have discussed in Chapter 4. In this
chapter, we have introduced a novel coherent mechanism for the injection, extraction,
and velocity �ltering of neutral atoms in a ring dipole trap. Control in the storage of
matter waves in ring traps is a topic of present interest, since the characteristics of ring
traps make them perfect candidates to investigate quantum phase transitions [132],
matter wave Sagnac interferometry [133], stability of persistent currents and supercon-
ducting quantum interference devices [138], propagation of matter wave solitons and
vortices [142], cold collisions [143], or arti�cial electromagnetism [144]. The proposed
mechanisms for injection, extraction and velocity �ltering make use of two additional
curved dipole waveguides and are based on spatial adiabatic passage processes. These
processes can be modeled in analogy to the well-known spatial adiabatic passage of sin-
gle particles in coupled one-dimensional potential traps [50], showing that a transverse
spatial dark state of the system is followed along the propagation of a single neutral
atom. In Chapter 4 we have obtained a semi-analytical expression for the threshold
longitudinal velocity of the atom allowing an e�cient spatial adiabatic passage process,
which is in good agreement with the results obtained by the two-dimensional numeri-
cal simulations of the Schr•odinger equation. Furthermore, the robustness of the spatial
adiabatic passage has been numerically demonstrated since high �delities, above 97%,
have been obtained for a signi�cantly broad range of parameter values of the initial
longitudinal velocity of the atoms and the minimum distance between the centers of
the dipolar waveguides. In particular, it has been numerically checked that the in-
jection, extraction and velocity �ltering protocols are feasible for realistic experiments
with state-of-the-art parameter values. Thus, a future experimental realization of the
protocols could lead to a new way to control the storage of neutral atoms in ring dipole
traps. Additionally, it could be also interesting to propose similar mechanisms for in-
jecting, extracting and velocity �ltering Bose{Einstein condensates or solitons in a ring
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trap to explore the role of the nonlinearity in these systems.

To the best of our knowledge, up to now all the spatial adiabatic passage proposals
so far discussed in the literature can be considered as e�ectively one-dimensional as only
one dimension is involved in the transfer process. In Chapter 5 and 6 we go beyond the
well-known one-dimensional systems and we have studied the possibilities that spatial
adiabatic processes o�er in fully two-dimensional systems. In particular, in Chapter
5 we consider two-dimensional spatial adiabatic passage for a single cold atom in a
system of three identical two-dimensional harmonic wells in a triangular con�guration.
We have shown both analytically and numerically that, by moving the traps following
a counterintuitive coupling sequence, the transfer from the initial trap to the �nal trap
is complete for a broad range of parameter values. Nevertheless, we have seen that if
the traps are arranged in a particular con�guration such that the three coupling rates
are equal at a particular time during the process, two of the energy eigenvalues become
degenerated. Thus, this con�guration implies a level crossing, which produces an equal
splitting of the matter wave between two of the traps of the system. This splitting o�ers
the possibility to implement a matter wave interferometer. We have shown that after
imprinting a relative phase between the two traps in which the matter wave is equally
split, an inverse coupling sequence results in a distribution of the matter wave among
the asymptotic states of the individual traps that depends on the imprinted phase. The
proposal has been numerically checked with the integration of the full two-dimensional
Schr•odinger equation.

On the other hand, in Chapter 6 we have addressed the generation of angular mo-
mentum for a single cold atom in a system of three two-dimensional harmonic traps of
di�erent trapping frequencies in a triangular geometry. We have seen that by applying
a spatial adiabatic sequence of couplings, a single cold atom located in the ground state
of the initial trap of trapping frequency ! is completely transferred to the �rst excited
states of a �nal harmonic trap of frequency !=2, equally populating both of them. By
modeling the process using the asymptotic states of the traps and the couplings between
them with a 4� 4 Hamiltonian, we have shown that the system adiabatically follows a
superposition of two energy eigenstates of the system. Thus, the accumulated energy
di�erence between these two eigenstates during the process results in a phase di�erence
between the equally populated excited states of the �nal harmonic trap, which leads to
the generation of angular momentum, with values that oscillate between �~ depending
on the total time of the process. Numerical integrations of the full two-dimensional
Schr•odinger equation have been performed in order to check the results. Moreover, we
have numerically investigated the robustness of this spatial adiabatic passage and have
found that both a complete transfer and values of the angular momentum up to �~ can
be found within a broad range of parameter values. Note that in a similar way as for
BECs [168, 169, 170, 171], angular momentum with single cold atoms in potential traps
could lead to applications in the �elds of Interferometry and Quantum Information. As
a whole, in Chapters 5 and 6 we have seen that a fully two-dimensional system allows
for new processes that have no analogue in e�ective one-dimensional systems.
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In conclusion, in this thesis we have demonstrated that spatial adiabatic passage
is a highly versatile and general physical process, which can lead to very di�erent
applications in various �elds of physics, and in which the robustness in the performance
is the key element that makes it a unique process.
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A
Appendix: coupling coefficients calculation

Coupling rates between two harmonic wells of trapping frequency ! separated a distance
d can be calculated using both the Gram-Schmidt (GS) orthogonalization procedure
or the Holstein{Herring method.

A.1 Gram–Schmidt orthogonalization

We consider the single-particle ground state eigenfunctions of the 1D quantum har-
monic oscillator for two traps separated a distance d, θω0 (x + d=2) and θω0 (x � d=2).
With these two functions and �nding a proper normalization we construct a symmetric
eigenfunction:

�ω,ω
+,0(x) =

1

Nω,ω
+,0

[θω0 (x+ d=2) + θω0 (x� d=2)] ; (A.1)

and an antisymmetric eigenfunction:

�ω,ω
�,0(x) =

1

Nω,ω
�,0

[θω0 (x+ d=2)� θω0 (x� d=2)] : (A.2)

The normalizations Nω,ω
s and Nω,ω

a are given by:

Nω,ω
+,0 =

∫ 1
�1

[θω0 (x+ d=2) + θω0 (x� d=2)]� [θω0 (x+ d=2) + θω0 (x� d=2)] dx; (A.3)

Nω,ω
�,0 =

∫ 1
�1

[θω0 (x+ d=2)� θω0 (x� d=2)]� [θω0 (x+ d=2)� θω0 (x� d=2)] dx: (A.4)

The energies of the symmetric, Eω,ω+,0 , and the antisymmetric, Eω,ω�,0 , eigenfunctions
correspond to the expected values of the Hamiltonian with the truncated double well
harmonic potential with both wells having a trapping frequency !, Hω,ω:

Eω,ω+,0 =

∫ 1
�1

�ω,ω
+,0(x)�Hω,ω�ω,ω

+,0(x)dx; (A.5)
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Eω,ω�,0 =

∫ 1
�1

�ω,ω
�,0(x)�Hω,ω�ω,ω

�,0(x)dx: (A.6)

The coupling rate between the two harmonic traps of frequency ! separated a distance
d (if it appears as �(~=2)J in the Hamiltonian) is given by

Jω,ω0,0 =
Eω,ω�,0 � Eω,ω+,0

~
: (A.7)

With the already found eigenfunctions of the two-traps system, new eigenfunctions
corresponding to higher excited vibrational states of the two coupled traps can be found
by applying the recurrence relation of the Gram{Schmidt (GS) [185] orthogonalization:

�ω,ω
�,i+1 = a�,i+1�ω,ω

�,i +GS [x] �ω,ω
�,i + c�,i+1�ω,ω

�,i�1 ; (A.8)

a�,i+1 = �
〈

�ω,ω
�,i jGS [x] j�ω,ω

�,i

〉
=
〈

�ω,ω
�,i j�

ω,ω
�,i

〉
;

c�,i+1 = �
〈

�ω,ω
�,i j�

ω,ω
�,i

〉
=
〈

�ω,ω
�,i�1j�

ω,ω
�,i�1

〉
;

For harmonic potentials whose eigenfunctions are Hermite polynomials we have that
GS [x] = x. For example, to �nd the �rst excited states of the two coupled traps,
�ω,ω
�,1, we should take the previously found eigenstates �ω,ω

�,0 and choose �ω,ω
�,�1 = 0 in

the recurrence relation. The resulting orthogonal states have to be normalized after
the GS procedure. Once the eigenfunctions for higher energy eigenstates are known,
the coupling rates can be found similarly as in Eq. (A.5), Eq. (A.6) and Eq. (A.7).

A.2 Holstein–Herring method

In the main order approximation, which gives exact solution for the ground level n = 0,
symmetric and antisymmetric states can be approximated by respective superposition

of the asymptotic eigenfunctions of each potential �ω,ω
�,n =

(
θωn,L � θωn,R

)
=
p

2, where

L and R correspond to the left and right trap, respectively. In this case, the Holstein{
Herring method [154, 155] can be applied, which provides and expression for the tun-
neling rate at an excited level n for identical potentials:

~Jω,ωn,n = Eω,ω�,n � Eω,ω+,n =
�r

(
θωn,L (x)

)2

1� 2
∫1
x

(
θωn,L (z)

)2
dz

∣∣∣∣∣∣∣
x=xZ

; (A.9)

where xZ denotes the symmetry point at which the antisymmetric solution vanishes,
i.e., �ω,ω

�,n (x = xZ) = 0.
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A.3 Coupling between resonant traps of different trap-
ping frequencies

The coupling rate Jω,ω/2 between the ground state of a trap with trapping frequency
! and a resonant �rst excited state of a trap with trapping frequency !=2 can be
found analogously to the method discussed in section A.1. In this case, the symmetric
and antisymmetric states have to be constructed with the single-particle ground state
eigenfunction of the one-dimensional quantum harmonic oscillator for one trap, for
example θω0 (x+ d=2), and the resonant single-particle �rst excited state eigenfunction
of the one-dimensional quantum harmonic oscillator for the other trap, for example

θ
ω/2
1 (x� d=2). The symmetric state can be written as

�
ω,ω/2
+,0 (x) =

1

N
ω,ω/2
+,0

[
θω0 (x+ d=2) + θ

ω/2
1 (x� d=2)

]
; (A.10)

while the antisymmetric eigenfunction reads

θ
ω,ω/2
�,0 =

1

N
ω,ω/2
�,0

[
θω0 (x+ d=2)� θω/21 (x� d=2)

]
: (A.11)

The normalizations N
ω,ω/2
+,0 and N

ω,ω/2
�,0 are given by

N
ω,ω/2
+,0 =

∫ 1
�1

[
θω0 (x+ d=2) + θ

ω/2
1 (x� d=2)

]� [
θω0 (x+ d=2) + θ

ω/2
1 (x� d=2)

]
dx;

(A.12)

N
ω,ω/2
�,0 =

∫ 1
�1

[
θω0 (x+ d=2)� θω/21 (x� d=2)

]� [
θω0 (x+ d=2)� θω/21 (x� d=2)

]
dx:

(A.13)
The rest of the calculation is analogous to Eq. (A.5), Eq. (A.6) and Eq. (A.7).
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Absorptionsvermögen der Körper für Wärme und Licht. Annalen der Physik 109,
275 (1860).

[2] W. Hallwachs. Ueber die Electrisirung von Metallplatten durch Bestrahlung mit
electrischem Licht. Annalen der Physik 270, 731 (1888).

[3] P. Lenard. Ueber die lichtelektrische Wirkung. Annalen der Physik 313, 149
(1902).

[4] E. C. Watson. The first reported observations on emission spectra. American
Journal of Physics 20, 569 (1952).

[5] N. Lockyer. The story of helium. Nature 53, 319 (1896).

[6] A. J. �Angstr•om. Recherches sur le spectre solaire (W. Schultz, Uppsala, 1868).
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