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Chapter 1

Introduction

In fact, all epistemological value of the theory of probability

is based on this: The large-scale random phenomena

in their collective action create strict, non-random regularity.

(Gnedenko and Kolmogorov, 1969)

The whole is more than the sum of its parts.

(Aristotle)

The subject of this thesis is to investigate phenomena that occur over a wide range of

spatial and temporal scales in systems composed of a large number of interacting units,

which present an emergent behaviour. Emergence implies that the collective behaviour

of the system cannot be explained by analysing the response of the individual parts that

compose it. This often manifests itself as large-scale statistical regularities and coherent

structures such as scale-invariant distributions for the coarse-grained observables of the

system. Emergent phenomena are a characteristic of Complex Systems, whose study

demands highly interdisciplinary approaches for developing models with the ability to

explain their observed features.

In particular, this research focuses on out-of-equilibrium slowly driven systems with

fast (in comparison to the driving) dissipation mechanisms and a dynamical evolution

controlled by local threshold-interactions. Many geophysical phenomena, such as atmo-

spheric convection and earthquakes, can be characterized by the aforementioned prop-

erties. Theoretical and empirical studies addressing the fundamental mechanisms un-

derlying such processes are required due to the increasing need for improved prediction

of natural hazards and forecasting of weather, as well as for climate change projections.

1



Chapter 1. Introduction 2

The research presented encompasses empirical analysis of complex systems' data, de-

velopment of statistical methods for model veri�cation and new insights into modelling

and prediction of complex systems.

1.1 Format and outline of the Thesis

The thesis format is \Thesis by Publication", following the Universitat Aut�onoma of

Barcelona (UAB) required standards: at least two articles published in international

peer-reviewed journals or book chapters, an introduction in which a common thematic

line is clari�ed and a summary, discussion and conclusion section. The articles pending

publication or preprints have been accepted to be a complementary part of the thesis

by the Postgraduate Studies Commission of the UAB. It is a requirement to attach the

papers in their original format at the end of the manuscript, apologies for repetition

that this constrain may cause.

Chapter 1 corresponds to the introduction and a global summary. A literature overview

is provided, placing the scope of the results of the articles in the wider context of the

current state-of-the-art. Chapters 2 and 3 correspond to the two published articles that

constitute the main part of this thesis. Chapter 4 corresponds to a submitted publication,

while Chapter 5 and 6 correspond to preprints of work in progress, which has been

already partially published in non-peer-reviewed proceedings (see A). In Chapter 7 we

present the general conclusions, synthesizing and combining the results of the previous

chapters. In addition, expectations of future research are emphasized.

Finally, in Chapter 8 a copy of the peer-review accepted publications is given. Comple-

mentary publications are given, following the requirements of the UAB, in Appendix A

that constitute the main part of this thesis.

1.2 Complexity and criticality

The fact that Complexity has an ambiguous and non-unique de�nition has led to sci-

enti�c controversy due to the overuse of the term. Moreover, in the past few decades

the term has been abused due to its perceived marketability. In Complex Systems

the term tends to be identi�ed with phenomena occurring in systems with many non-

trivially interacting parts which present emergence. The Complexity framework still

requires signi�cant theoretical and conceptual re�nements, while new appropriate sta-

tistical methodologies still need to be developed. Nevertheless, new scienti�c approaches

based on complexity ideas and views have already led to scienti�c advances, and hold
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much promise for understanding and modelling very diverse systems such as biological

systems (the brain, insect colonies, ecosystems, cells, etc.), social systems (the economy

and �nancial markets, road tra�c, language, World Wide Web, etc.) and geophysi-

cal systems (weather, earthquakes, solar 
ares, etc.) (Newman, 2011, and references

therein).

In this context, there are two basic strategies towards gaining scienti�c understand-

ing regarding a particular system. One strategy is to create highly realistic computer

simulations, building on all the interacting parts of the complex system and includ-

ing all the available details, and then, see if the emergent behaviour of the system is

reproduced. This approach is usually based on Monte Carlo simulations, agent-based

simulations, molecular dynamics simulations, multiscaling approaches, etc. Using this

�rst approach, one can end up creating a \new" complex system whose behaviour/dy-

namics is very di�cult to grasp. These kind of models can often have a considerable

amount of parameters, making their understanding very challenging. Also, the knowl-

edge of the precise interactions may be impossible. The alternative strategy, the one on

which this thesis is based, resides in the construction of highly simpli�ed mathematical

abstractions capable of capturing the emergent behaviour of the system. These simpler

models will be easier to solve mathematically and simulate in a computer than those of

the �rst approach. They are usually based on methodologies and approaches from dy-

namical systems, information theory, stochastic processes, cellular automata, networks

theory, computational complexity, among others. This second strategy presents prob-

lems such as oversimpli�cation (the models are too simple and cannot really describe the

phenomena) or irresolubility (simple models that are not as simple as initially expected,

in the sense that they are not easily mathematically solvable). These kind of models

can often be understood as a �rst step towards a \full" model: the idea behind this

approach is to identify the crucial variables of the system.

Some of the most in
uential and important ideas in the area of Complex Systems arise

from statistical physics and condensed-matter theory. Concepts such as scale invariance,

phase transition and criticality have received an enormous attention over the past few

decades from the physics and mathematical communities. This has resulted in signi�cant

number of research output on their fundamental theory and their applications to real-

world problems (Grauwin et al., 2012), including research on mathematical foundations

of statistical physics awarded with the Field's Medal (Smirnov, 2001).

Criticality is sometimes understood as a high susceptibility to external perturbations.

Even so, in this thesis criticality stands more speci�cally for the behaviour of a system

near a critical point of a second order (or continuous) phase transition, where the absence



Chapter 1. Introduction 4

of a characteristic scale i.e., scale invariance, manifests itself (Christensen and Moloney,

2005, Stanley, 1999). In the next section a de�nition for this term is introduced.

1.2.1 Phase transitions and long-range correlations

A system undergoes a phase transition when it su�ers a qualitative change in some

thermodynamic magnitude as a result of the variation of a characteristic parameter of

the system so-called control parameter. The order parameter is an observable of the

system that indicates the existence of the phase change. The point of coexistence of

both phases is called critical point. When the control parameter is continuous but its

derivative is not at the critical point the transition is called second order or continuous

phase transition.

A classical example of a phase transition is the transition of ferromagnetic to param-

agnetic in a magnetic material, which is often modelled by the Ising Model. The Ising

Model is a lattice model composed by N sites with a spin at each site i oriented up,

si = 1, or down, si = �1. The order in the system can be quanti�ed by the magnetic

moment, which is proportional to the magnetization. It is de�ned as

m(t) =
NX

k=1

si(t): (1.1)

The system is said to be in the magnetic phase if jmj > 0 and in the non-magnetic phase

if jmj = 0. One of the control parameter of this system is the temperature (T). For a

given critical temperature the magnetization passes from zero to positive.

Around the critical point many interesting properties appear. In particular, the micro-

scopic short-range interactions combine in such a way that correlations are developed

over all length scales. The lack of a characteristic scale, also referred to as scale invari-

ance, is expressed mathematically by means of power laws and power-law distributions

of certain macroscopic observables of the system.

Away from the critical point the correlations decay exponentially with the distance

between two given sites. However, in the proximity of the critical point and taking

the thermodynamic limit (size of the system tending to in�nity) the spatial correlation

decays slowly in space, proportionally to

corr(r) / 1

r�
: (1.2)

In this case, it is said that the system displays long-range correlations. Similarly, the

temporal correlation function also follows a power law in the proximity of the critical
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point. Moreover, the order parameter's susceptibility, which is the degree of change

in the order parameter in response to changes in the control parameter, diverges as a

power law approaching the critical point. When the system has a �nite size, �nite size

e�ects appear, limiting the power law range. They introduce a cuto� on the power-law

distributions.

It is only at the critical point, with �ne tuning of the control or control parameter, that

second order phase transitions and hence scale-free behaviour (or scaling) take place

in equilibrium systems. Only at this point, are order and disorder perfectly balanced

and emergent behaviour for the coarse grained variables of the system builds on the

microscopic short-range interactions.

In a continuous phase transition, the control parameter has to be tuned to a critical value

that depends on the microscopic details of the system. However, the critical exponents

(exponents of the power laws that emerge) associated with divergent mean variables,

such as the correlation function, do not depend on the microscopic details.

For a magnetic system undergoing a ferromagnetic-paramagnetic transition, the order

parameter is the net magnetization, as illustrated before for the Ising model, whereas in

liquid/gas transitions it is the density di�erence between the two phases (the transition

between the solid and liquid phases is thought always �rst-order)(Yeomans, 1992).

1.2.2 Universality

Continuous phase transitions have many interesting properties. The phenomena as-

sociated with these are often called critical phenomena, due to their association with

critical points. The most striking fact about phase transitions arising in di�erent sys-

tems is that they often share the same set of critical exponents, which characterize them.

This phenomenon is a manifestation of what is known as universality. For example, the

critical exponents at the liquid-gas critical point have been found to be independent of

the chemical composition of the 
uid (Yeomans, 1992), see there are several universality

classes, which are sets of systems sharing the same behaviour (in terms of critical expo-

nents and scaling functions). The universality class just depends on the dimensionality

of space and the symmetry of the order parameter, for systems in equilibrium and with

short-range interactions (Stanley, 1999).

Universality is understood mathematically by means of the renormalization group theory

of phase transitions. This theory states that the thermodynamic properties of a system

near a critical point of a phase transition depend only on a small number of features,

such as dimensionality and symmetries, and are insensitive to the underlying microscopic
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properties of the system. This fact was �rst recognized in 1971 by K. G. Wilson. His

seminal work on critical phenomena led to him winning the Nobel Prize for Physics in

1982 (Wilson, 1971).

1.3 The apparent ubiquity of power laws

The existence of a power-law distribution for a coarse-grained variable of a system has

been considered as pointing to criticality, and indicative that the models used for under-

standing and predicting the behaviour of such a system must be non-linear (Newman,

2005). However, there exists linear mechanisms capable to generate power-law distribu-

tions, as showed in the next section.

This statistical pattern has been observed in, a priori, a large number of macroscopic

variables of di�erent systems. Power-laws distributions have been claimed to be found

in diverse range of �elds such as sizes of city populations and wars, the frequency of

use of words in human languages or surnames in most cultures, the number of written

scienti�c papers and of citations of scienti�c papers, number of employees in �rms,

income or wealth, among many others (Newman, 2005, and references therein).

This thesis will focus primarily on geophysical processes. Power-law distributions have

been ascertained for earthquakes sizes, rockfalls, landslides, volcanic eruptions, forest

�res, rainfall and tropical cyclones, astrophysical phenomena and the times between

natural hazards events (see more details and related references in Chapter 2).

Recently there has been an increasing debate about the reliability of the methods used

widely in the literature for testing the existence of power laws. The potential relationship

between power laws and fashionable terms such as criticality or complexity, has lead to

a strong preference for �nding power laws. This preference, combined with unreliable

methods, has resulted in a strong scepticism about power-law claims (Clauset et al., 2009,

Stumpf and Porter, 2012). This is exacerbated by a more general tendency in science and

society: we are in the onset of the \Big Data era" and the so-called Data Science. After

the Internet boom we are now facing a data boom, that is expected by many to be a new

historical revolution equivalent to the Industrial Revolution, in particular for business

models, companies and policy planning. Buzzwords such as real-time customization,

improved management, self-regulating processes and reduction of uncertainty, cover non-

scienti�c high-impact journals (for instance, dozens of articles during September 2013

about this topic in Forbes, www.forbes.com). However, all these advances cannot be

achieved without mechanistic backing. This also applies to many analyses related to
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power-laws distributions. Without models and a theoretical framework supporting the

statistical analysis the current state-of-art cannot be advanced.

The importance of proper data analysis cannot be overestimated, and it is ultimately

crucial for testing theory against data. Concerning power laws, systematic methods

have been developed recently con�rming power law behaviour in many relevant systems

(Clauset et al., 2009), however, they have been found problematic (Corral et al., 2011).

Next, in Sections 1.3.1 and 1.3.2, a mathematical de�nition of a power-law distribution,

together with the properties associated with it, are given. A more detailed and broader

de�nition, including the so-called truncated power laws, is given in Chapter 2. Section

1.4 will survey di�erent known mechanisms (including the already mentioned criticality)

that lead to power-law emergence.

1.3.1 Definition

A continuous random variable X is power-law distributed if its probability density is

given by

fX(x) = Cx��; (1.3)

where x � xmin, xmin > 0, � > 1 and C is a normalization constant. Power-law distri-

butions are also called Pareto distributions (Evans et al., 2000, Johnson et al., 1994) (or

Riemann zeta distributions in the discrete case (Johnson et al., 2005)). Pareto distri-

butions are sometimes associated with slightly di�erent distributions in other contexts

(Johnson et al., 1994). For this reason, throughout this thesis only the term power-law

distribution will be used.

1.3.2 Properties

The most relevant and unusual statistical properties of power laws are scale invariance

and divergence of moments.

As already introduced, scale invariance characterizes power-law distributions due to the

fact that a power law is the only function such that it is the same at any scale we look on

it. These distributions are invariant under (properly performed) linear rescaling of axes,

and therefore have no characteristic scale. Note however that for power-law distributions

strict scale-invariance cannot hold, as xmin cannot be equal to zero by de�nition (the

distribution would not normalize). In addition, if � 2 (1; 2] all the moments diverge (i.e.

non �nite mean, variance, etc.) and the law of large numbers does not hold (Kolmogorov,

1956, p. 65). Hence, the mean of a sequence of realizations of an observable does not
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characterize it because it does not converge as the number of realizations increases, but

rather tends to in�nity (Shiryaev, 1996, p. 393). If � 2 (2; 3] the mean exists and

is �nite, but higher moments diverge and the conditions for the central limit theorem

to apply (in its original form) are not satis�ed (Bouchaud and Georges, 1990). For

higher �'s only moments higher than order � � 1 are in�nite and there is convergence

in probability towards the Gaussian law, but very slowly in some cases, depending on

the value of �.

A relevant case for many systems analysed in this thesis is when the distribution is a

power law with a decay at the tail at least as fast as an exponential function. Such

laws obey the central limit theorem but their kurtosis is very large: there is convergence

to a Gaussian at the centre of the law, but to a power law at the tails. Moreover the

weight in probability of these tails becomes more important as the exponent approaches

2 from above. For exponents smaller than 2, there is no convergence to a Gaussian

but to a L�evy Law (Sornette, 2004). In addition, for power laws, there is invariance

under aggregation just at the tail of the distribution : power laws are conserved under

polynomial transformations (Farmer and Geanakoplos, 2008).

The next section describes di�erent mechanisms for the generation of power laws. Many

of them are not related with criticality and then obtaining a power law is just a necessary

condition, but not su�cient for criticality.

1.4 Mechanisms for generating power laws

This section overviews several mechanisms that can explain the observed power-law

distributions. The one proposed by Bak et al. (1987), Self-Organized Criticality (SOC),

will receive a special attention as it is a good candidate for understanding the dynamics

of some geophysical systems, as for example the case of rainfall and convection, which

we will study in depth in this thesis. More details about this connection will be given

in section 1.5.

We do not aim to provide a complete list of mechanisms, but just to give an idea of the

variety of possible explanations for power-law behaviour. Some other mechanisms not

detailed here include: percolation, fragmentation and other related processes; directed

percolation and its universality class of so-called contact processes; crackling noise and

avalanches resulting from the competition between frozen disorder and local interac-

tions; and competition between multiplicative noise and birth-death processes. Com-

plete reviews of mechanisms and the corresponding references can be found in Farmer

and Geanakoplos (2008), Mitzenmacher (2004), Newman (2005) and Sornette (2004).
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Continuous phase transitions, already introduced in section 1.2.1, can be seen also as a

mechanism for the power law emergence.

1.4.1 Exponentiation of the Exponential

The �rst mechanism is one of the most trivial ways of obtaining a power-law distribution.

Given a continuous random variable X distributed exponentially, i.e.,

fX(x) / eax; (1.4)

the variable Y de�ned as the exponential of X, Y / ebX , will be power-law distributed

with distribution

fY (y) / y�1+a
b ; (1.5)

for y greater than a certain value ymin > 0.

1.4.2 Inverse of random variable

Consider a random variable X. Then the variable Y = X�
1
α with � > 0 (its inverse

variable for � = 1) will have distribution

fY (y) = fX(x)

����
dx

dy

���� = �
fX(x)

y1+�
: (1.6)

Suppose that fX(x(y)) tends to a constant for x ! 0 , then the distribution of Y for

large values approaches a power law with exponent 1 + �. A uniform behaviour of the

variable X leads to scale-free behaviour of its inverse power Y.

Jan et al. (1999) show that this argument is relevant for the fractional change of the

magnetization between successive measurements for the Ising model at the magnetized

phase.

1.4.3 The Yule processes

The Yule Process is a widely used mechanism for power-law emergence, also referred

in the literature as \cumulative advantage", \the richer get richer" or \preferential

attachment". The Yule Process is a stochastic process that consists of discrete elements

added randomly to a set of groups. All groups start with k0 elements and new ones are

added at a rate proportional to the number k that they have already, plus a constant

c > �k0. New groups can also appear between the appearance of one element and the
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next one, at a rate m, and hence the number of groups also grow. Hence, the model has

three parameters k0, c and m. The time in the model is de�ned as each time one new

element is added to a group. It can be demonstrated that the fraction of groups with

k elements, when the total number of groups is n, will not depend on n for long times.

Thus, the distribution of sizes of the groups for large times goes as

pk =
B(k; 2 + 1=m)

B(k0; 2 + 1=m)
pk0 ; (1.7)

where B is the beta-function (also called �rst kind Euler integral B(x; y) =
R 1

0 t
x�1(1�

t)y�1dt) and pk0 is the probability of having k0 elements in the group. Since the beta-

function has a power-law at the tail, the asymptotic exponent will be � = 2 + k0+c
m .

1.4.4 Random walk

Random walks (RW) are very well-studied stochastic processes for which many of their

properties associated with their �rst passage statistics distribute as power laws (Redner,

2001). For example, the �rst return time to the origin of the RW is power-law distributed

for large enough values of t

f(t) / t�3=2 if t� 1: (1.8)

This is equivalent to considering a random walk with an absorbing boundary at the

origin. Also, the areas under the �rst passage of a random walk present asymptotic

power law behaviour for the areas or sizes of the runs.

1.4.5 Branching process

A branching stochastic processes is a process in which an individual (the ancestor) creates

a random number of descendants k with probability pk given by a random variable Ki.

The process starts with one individual by de�nition, Z1=1. In a given generation t, a

total number of individuals Zt could reproduce following a certain distribution, and then

the population at time t+ 1 will be given by Zt+1 =

ZtX

i=1

Ki.

The average number of �rst-generation descendants created by an ancestor is the so-

called branching ratio, � =
X

k

kpk. Let's consider a simple case in which the number of

descendants Ki is distributed following a binomial distribution Bin(2; p), and then Ki

can be 0, 1 or 2. If p > 1=2, the branching ratio will be greater than 1 and the process

has a certain probability to continue inde�nitely. If p < 1=2, the branching ratio will be

smaller than 1, and the process will be �nish at some point. p = 1=2 corresponds to the
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critical case, the branching ratio will be exactly equal to one and the process will �nish

in a �nite time, but the total number of descendants in the process so called size of the

process, will follow asymptotically a power-law distribution with exponent 3=2 (Corral

and Font-Clos, 2013, Harris, 1989). This is a very simple example of a phase transition.

The parameter p can be seen as the control parameter of a phase transition (from �nite

to in�nite size of the total population) with critical point at pc = 1=2. In Figure 1.1

a realization of the process for this concrete distribution of descendants is given as an

example.

A branching process can be mapped to a random walk (Pruessner, 2012) and to anoma-

lous di�usion process when the distribution of descendants follows a power-law (Saichev

et al., 2005). Moreover, branching processes are the mean-�eld limit of a stochastic SOC

model (Zapperi et al., 1995).

Figure 1.1: A realization of a branching processes from the tree point of view (up) and
the evolution of descendants for each generation (down). The number of descendants
distribution is a binomial distribution Bin(2; 1=2). Reproduced from Corral and Font-

Clos (2013).

1.4.6 Self-organized criticality

As highlighted in the previous section, continuous phase transitions present power-law

behaviour at the critical point. However, they demand an external adjustment of the

control parameter, and they cannot explain the power-law behaviour observed in nature.
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A mechanism for scale invariance in natural systems was introduced by Bak et al. (1987).

They considered non-equilibrium systems of dissipative nature in which the e�ect of

dissipation is compensated by a slow external driving. This creates a 
ow of energy

through the system that leads to a non-equilibrium attractive critical state. The system

self-organizes around this scale-invariant critical state. Small local perturbations or

instabilities, which appear when some threshold is surpassed, can then lead to activity

that propagates rapidly through the system. This phenomenon is known as avalanche

and governs the dynamic evolution of SOC systems. Moreover, as expected in criticality,

the distribution of the avalanche sizes and durations are power laws. We will illustrate

conceptually these ideas using the metaphor of a sandpile.

The sandpile is driven out of equilibrium by a continuous but very slow { in comparison

to the dissipation rate (grains that leave the pile, usually at the border) { addition of

grains (the driving), one at a time, at random positions. Normally, when the grains

land, they �nd an equilibrium position. Initially, avalanches tend to be very small and

localized and the response is simply proportional to the external perturbation. But, if

we continue to drop grains, the sandpile grows in size because the pile can maintain a

�nite slope thanks to the friction between the grains. However, if at some point the pile

is too steep, the new grain may be unstable and an avalanche starts at this position. If

the slope of the pile becomes too shallow, the addition of grains will tend to increase it,

and if the slope becomes too steep, avalanches will tend to decrease it. Therefore, the

pile \self-organizes" into a steady state in which its slope 
uctuates around a constant

angle of repose (Christensen and Moloney, 2005).

The main characteristic features of SOC systems are:

- a slow external energy input;

- intermediate energy storage;

- a threshold dynamics, i.e., the activity occurs when a threshold is surpassed;

- sudden burst-like energy releases;

- avalanches of all sizes.

In order to emphasize the essential dynamical ingredients in a SOC system, Jensen pro-

poses a new abbreviation of SOC which summarizes them: \Slowly driven, interaction-

dominated threshold systems, SDIDT" (Jensen, 1998, p. 126).

The best candidates to be SOC systems in nature, in the sense that they present

SOC characteristics, are given by earthquakes (Gutenberg and Richter, 1944), forest
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�res (Malamud et al., 1998), solar 
ares (Dennis, 1988) or rainfall (Peters and Chris-

tensen, 2002, Peters et al., 2010); and with more controversy, the evolution of bio-

logical species (Raup, 1986, Sneppen et al., 1995, Sol�e and Manrubia, 2001), neural

networks (Bornholdt and R•ohl, 2003) and volcanic activity (Diodati et al., 1991). It is

also important to notice that real sandpiles generally do not present such a behaviour

(Pruessner, 2012).

SOC is a theory for critical phenomena that occur in natural systems without any tun-

ing necessity and its main goal is to identify which are the main characteristic of such

systems. This has been mostly investigated numerically through cellular automata mod-

els. The �rst model, which established the whole topic, is the Bak-Tang-Wiesend�eld

sandpile model (BTW model) that was introduced by Bak et al. (1987). Since then,

many models, deterministic and stochastic, have been proposed and investigated in the

literature, see Pruessner (2012, chapters 4 and 5) for a general review.

More than 25 years later, after signi�cant research of the general features of SOC by

investigating model properties and their analytical treatment, now the concern is to

verify these properties, determine universality classes of the models, as well as to provide

a continuous description for the dynamics.

1.4.7 Sweeping the instability

Sornette (1994) presented a robust mechanism for the appearance of a power-law dis-

tribution with a complete absence of self-organization that appears as a consequence

of some control parameter moving across a critical point, or more generally a global

bifurcation. This mechanism is one of the candidates able to explain the array of mea-

sures that link criticality and convection and precipitation. Next, in Section 1.5 will

summarize them.

1.5 Criticality in convection and precipitation

The atmosphere is a complex system very di�cult to analyse, model and understand.

But at the same time, it is one of the most accessible and well observed natural systems.

Convection and its associated precipitation is a key aspect of the Earth's climate, playing

a leading role in the planetary heat, moisture and momentum budgets, particularly in the

tropics. A broad range of atmospheric phenomena present scale-free distributions and

wide range spatial and temporal variability. In particular, many atmospheric phenomena

related to precipitation are associated with many characteristic time and spatial scales,
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and have large-scale correlations in time and space, which may result from the coupling

between non-linear mechanisms with different temporal and spatial characteristic scales

(e.g. Bodenschatz et al., 2010, Vattay and Harnos, 1994, Yano et al., 2003).

In particular, recent high-resolution (of the order of 10 m in the horizontal scale) satel-

lite observation analyses show that projected areas of clouds, together with many of

its geometric and radiative properties, follow power-law distributions over more than 5

orders of magnitude (from few to millions of km2) (Cahalan and Joseph, 1989, Lovejoy,

1982, Peters et al., 2009, Wood and Field, 2011). Modelling convection is then a very

challenging problem because computer models cannot simulate explicitly the small con-

vective clouds (which are the most numerous). The simulations performed divide the

atmosphere into boxes with typical horizontal sizes of the order of 1-20 km (weather

simulations) or of the order of 20-200 km (climate simulations). Figure 1.2 shows the

processes related with precipitation and their associated scales, and horizontal resolution

scales of different models used in atmospheric sciences: CRMs (Cloud Resolving Models

which explicitly model convection) and GCMs (General Circulation Models which do

not resolve convection).

Figure 1.2: Processes related with precipitation and their associated scales, and hor-
izontal resolution scales of CRMs and GCMs. MSC states for mesoscale convective
clusters, which are organized convective clusters that can be found mostly over tropical

oceans. Adaptation from Bodenschatz et al. (2010).

Advances towards higher resolution problems present many challenges, and not just the

obvious enormous additional computational costs. For instance, a common simplification

is that the effect of the small scales on the resolved scales can be represented as a

deterministic function of the large-scale flow. Fluctuations that emerge from small

scales are disregarded. However, this is too strong an assumption that breaks down
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for grid boxes of order 50 km and smaller (Ball and Plant, 2008): the ensemble size of

deep convective elements within a grid box is typically small. Deep convection refers

to thermally driven turbulent mixing with vertical motions that take parcels from the

lower atmosphere above 500 hPa (The level of 500 hPa is roughly dividing the mass of

the atmosphere in two and it lies near 5 km).

Errors in convective parametrizations (models of the unresolved processes as a function

of the resolved ones) are related with major issues in climate modelling, in particular

with spatially-organized phenomena such as the spatial distribution of tropical rainfall

and large uncertainties on whether many regions in the world will get wetter or drier

in the future (IPCC4, 2007). On the weather-forecasting timescales, an adequate rep-

resentation of convection and precipitation in numerical weather prediction (NWP) is

important for forecasts of damaging 
ash-
ood events.

Almost all current models of convection used for weather and climate prediction are

based on the concept of a collection of convective plumes embedded within a horizontally-

homogeneous medium called the environment. Convective quasi-equilibrium (QE) is

one of the classical assumptions made and postulates that convection acts to reduce

instabilities on a fast time scale as an adjustment to the slow drive arising from the

(resolved) large-scale forcing (e.g., radiative and advective cooling of the troposphere and

warming and moistening of the boundary layer). The system is self-maintained close to

a far-from-equilibrium statistically-stationary state, where driving and dissipation are

in balance (Arakawa and Schubert, 1974). Since it was �rst proposed in 1974, many

interpretations and implementations of the QE concept have been suggested. However,

QE remains a controversial issue, and both conceptual and practical-implementation

problems are still present (Mapes, 1997).

Many contributions have been made for improving parametrizations of deep convection.

In recent years, stochastic parametrizations have been proposed in order to represent

sub-grid variability stochastically (e.g. Majda and Khouider, 2002, Plant and Craig,

2008). Super-parametrization, which consists of embedding an explicit but very ex-

pensive cloud model within each climate model grid box, has also been explored (e.g.

Grabowski, 2004). However, although the theoretical framework underlying current op-

erational parametrizations has been much elaborated upon in the details, in its essentials

it has remained fundamentally unchanged for more than three decades.

Recent empirical studies across a broad range of observational scales have attempted

to characterize aspects of convective phenomena with a view to constraining convec-

tive parametrization (modelling of sub-grid processes). The surprising critical proper-

ties found empirically connect the convection parametrization problem with Statistical
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Physics theories of critical phenomena. This Chapter aims to summarize them and in-

troduce the key concepts that have been used in these analyses. Chapters 3, 4 and 5

will constitute the contribution of this thesis to this research line.

1.5.1 Rainfall seen as relaxation events

SOC ideas have had a signi�cant impact in the geosciences, and in particular for earth-

quake modelling (Bak, 1996, Sornette and Sornette, 1989). A simpli�ed picture of the

rainfall process helps to illustrate SOC characteristics for this particular problem: The

Sun continuously radiates electromagnetic energy which translates in the continuous

evaporation of water, coming mostly from the oceans. This, together with radiative

cooling in the upper atmosphere, translates into an instability that drives convective

updrafts. The water vapour carried up by convection is intermediately stored in the

atmosphere, and when a saturation threshold is reached in a susceptible environment,

condenses and precipitates. However, the coupling mechanisms between nearby regions

of the atmosphere is not clear, cold pools or winds associated with rainfall could be

candidates (Jordan, 2008).

The key variable from the SOC perspective is the so-called `rain event'. Given a precip-

itation time series in a given location, the rain event is de�ned as a sequence of non-zero

values of rain rate (with units mm/h). The event size s is the integrated rain rate over

the event s =
R

event r(t)dt (with units mm). One can also de�ne the inter-event time, as

the time between two successive events, or the duration of an event as the time it lasts.

It is important to observe that the application of this concept demands in practice

very high temporal-resolution measurements. Conventional rainfall local measurements,

which correspond to rainfall accumulation during an hour or a day, are not suitable for

this kind of analysis. In general, if the rain rate were known over an area, then the event

size could be related with a more physically meaningful variable: the energy released

during one event. However, the current available spatial measurements of rainfall are

either not continuous in time or too sparse in space.

Andrade et al. (1998) were the �rst to analyse rainfall time series from this perspective.

However the temporal resolution was insu�cient for performing a proper analysis and

they did not provide a complete description as they did not report results for rain-event

sizes, which is the key observable. Later, but independently, Peters et al. (2002) analyzed

1-minute resolution data from a vertical pointing radar situated in mid-latitudes (Baltic

coast). Power-law distributions for event sizes and for dry-spells durations over several
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orders of magnitude were reported, with exponents αs � αq � 1.4. For the event-

duration distribution the results were unclear, although a power law with an exponent

αd � 1.6 was fitted to the data.

1.5.2 Rethinking Quasi-equilibrium

As discussed, an observable distributed as a power law may indicate criticality, but it is

not a suffi cient condition given that trivial non-critical mechanisms also lead to power

laws. Peters and Neelin (2006) showed further evidence using satellite data over tropical

oceans: a relationship between satellite estimates of rain rate and water vapour over the

tropical oceans compatible with a continuous phase transition. Above a critical value of

column water vapour large areas of the troposphere would enter a convectively active

phase.

Figure 1.3: This figure summarizes the findings by Peters and Neelin (2006) for the
East Pacific ocean basin for four different temperature values. It shows the precipitation
mean and variance dependence on the amount of water vapour in a given column
w normalized by a critical value wc. The occurrence probability for water vapour
conditioned to precipitation occurrence is also shown. Figure from Ref. Neelin et al.

(2008)

In addition, they showed that the system tends to be close to the transition point. These

results can be interpreted in terms of departures from the point of QE and directly re-

lated with a proposed explanation for scale-free behaviour in a variety of real-word

systems, self-organized criticality (SOC). However, the data used in this study has been
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questioned (Yano and Plant, 2012). When the water vapour is high the measurements

of precipitation are highly unreliable and the amount of data is very low. This is still

controversial, but some recent studies using high-detailed simulations of clouds and pre-

cipitation also suggest the same functional relationship between precipitation and water

vapour (Yano et al., 2012). Data from the tropics has also been found to exhibit ap-

proximate power-law autocorrelation function decay (Neelin et al., 2008), and mesoscale

convective cluster sizes (systems with horizontal dimensions ranging from few kilometers

to several hundred kilometers, as illustrated in Fig. 1.2) have been found to follow a

power law distribution (Peters et al., 2009, Wood and Field, 2011). Again, these results

suggest criticality on the system.

Assuming that the previous functional relationship between precipitation and water

vapour is not an arti�ce of a bad measurement, one of the basic assumptions in which

almost all climate and weather-forecast relies can be reformulated: the quasi-convective

equilibrium.

1.5.3 Alternative explanations

Although the SOC hypothesis is fully compatible with observational analyses conducted

so far, alternative explanations for the observed behaviours are also possible. For exam-

ple, a closely-related alternative based on a stability threshold for boundary-layer water

vapour is able to reproduce some aspects of the observed characteristics (Muller et al.,

2009). Moreover, the observations could even be compatible with a complete absence

of self-organization: they could for instance arise as a consequence of some control pa-

rameter moving across a second-order phase transition, being subject to a sweeping-over

mechanism (Sornette, 1994), explained in Section 1.4.7. Or they could result directly

from a complex 
ow �eld, as was shown in simulations using randomized vortices and

passive tracers (Dickman, 2003).

In the previous sections we summarized recent observational studies that have shown

strong, although not de�nitive, evidence in support of criticality in the transition to deep

convection. However, the number of studies is still limited and alternative non-critical

mechanisms may also explain the observations. Thus, there remains a need to delve

further into the observations.

1.5.4 Outline of the contests of the thesis related to this section

The main part of this thesis is devoted to the investigation of an expectation of SOC

and criticality: universality of rain event associated exponents. In Chapter 2 a method
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for �tting and �nding exponents of power-law distributions is presented. In Chapter 3 a

study of data from the Atmospheric Radiation Measurement program (ARM) available

observational sites is presented. The time series have 1 minute temporal resolution

measured with the same optical rain gauge (Peters et al., 2010). The results show

unambiguous power-law distributions of event sizes, with apparent universal exponents

�s = 1:17� 0:03, extending the support to the SOC hypothesis in rainfall. Power laws

distributions are also found for the dry spell durations, but for event durations the

behaviour is unclear.

In Chapter 4 data obtained from a network of 20 rain gauges scattered in a region of

the NW Mediterranean coast is analysed. The measurements have 5 minute temporal

resolution, but a lower, in comparison to other analyses, threshold of rain rate detection

(0.1 mm in 5 minute, while ARM measurements have 0.2 mm in 1 minute).

Finally, in Chapter 5 the ARM analysis is extended to updated and new datasets. New

methods for addressing universality are introduced.
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Abstract Recently, Clauset, Shalizi, and Newman have proposed a systematic method

to �nd over which range (if any) a certain distribution behaves as a power law. However,

their method has been found to fail, in the sense that true (simulated) power-law tails are

not recognized as such in some instances, and then the power-law hypothesis is rejected.

Moreover, the method does not work well when extended to power-law distributions

with an upper truncation. We explain in detail a similar but alternative procedure, valid

for truncated as well as for non-truncated power-law distributions, based in maximum

likelihood estimation, the Kolmogorov-Smirnov goodness-of-�t test, and Monte Carlo

simulations. An overview of the main concepts as well as a recipe for their practical

implementation is provided. The performance of our method is put to test on several

empirical data which were previously analysed with less systematic approaches. We �nd

the functioning of our method very satisfactory.
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2.1 Introduction

Over the last decades, the importance of power-law distributions has continuously in-

creased, not only in geoscience but elsewhere (Johnson et al., 1994). These are proba-

bility distributions de�ned by a probability density (for a continuous variable x) or by

a probability mass function (for a discrete variable x) given by,

f(x) / 1

x�
; (2.1)

for x � a and a > 0, with a normalization factor (hidden in the proportionality symbol

/) which depends on whether x is continuous or discrete. In any case, normalization

implies � > 1. Sometimes power-law distributions are also called Pareto distributions

(Evans et al., 2000, Johnson et al., 1994) (or Riemann zeta distributions in the discrete

case (Johnson et al., 2005)), although in other contexts the name Pareto is associated

to a slightly di�erent distribution (Johnson et al., 1994). So we stick to the clearer term

power-law distribution.

These have remarkable, non-usual statistical properties, as are scale invariance and di-

vergence of moments. The �rst one means that power-law functions (de�ned between 0

and1) are invariant under (properly performed) linear rescaling of axes (both x and f)

and therefore have no characteristic scale, and hence cannot be used to de�ne a proto-

type of the observable represented by x (Christensen and Moloney, 2005, Corral, 2008,

Newman, 2005, Takayasu, 1989). For example, no unit of distance can be de�ned from

the gravitational �eld of a point mass (a power law), whereas a time unit can be de�ned

for radioactive decay (an exponential function). However, as power-law distributions

cannot be de�ned for all x > 0 but for x � a > 0 their scale invariance is not \complete"

or strict.

A second uncommon property is the non-existence of �nite moments; for instance, if

� � 2 not a single �nite moment exists (no mean, no variance, etc.). This has important

consequences, as the law of large numbers does not hold (Kolmogorov, 1956, p. 65),

i.e., the mean of a sample does not converge to a �nite value as the size of the sample

increases; rather, the sample mean tends to in�nite (Shiryaev, 1996, p. 393). If 2 < � � 3

the mean exists and is �nite, but higher moments are in�nite, which means for instance

that the central limit theorem, in its classic formulation, does not apply (the mean of a

sample is not normally distributed and has in�nite standard deviation) (Bouchaud and
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Georges, 1990). Higher �'s yield higher-order moments in�nite, but then the situation is

not so \critical". Newman reviews other peculiar properties of power-law distributions,

such as the 80j20 rule (Newman, 2005).

Although the normal (or Gaussian) distribution gives a non-zero probability that a

human being is 10 m or 10 km tall, the de�nition of the probability density up to in�nity

is not questionable at all, and the same happens with an exponential distribution and

most \standard" distributions in probability theory. However, one already sees that the

power-law distribution is problematic, in particular for � � 2, as it predicts an in�nite

mean, and for 2 � � < 3, as the variability of the sample mean is in�nite. Of course,

there can be variables having an in�nite mean (one can easily simulate in a computer

processes in which the time between events has an in�nite mean), but in other cases, for

physical reasons, the mean should be �nite. In such situations a simple generalization

is the truncation of the tail (Aban et al., 2006, Burroughs and Tebbens, 2001, Carrillo-

Men�endez and Su�arez, 2012, Johnson et al., 1994), yielding the truncated power-law

distribution, de�ned in the same way as before by f(x) / 1=x� but with a � x � b,

with b �nite, and with normalizing factor depending now on a and b (in some cases it

is possible to have a = 0, see next section). Obviously, the existence of a �nite upper

cuto� b automatically leads to well-behaved moments, if the statistics is enough to \see"

the cuto�; on the other hand, a range of scale invariance can persist, if b � a. What

one �nds in some practical problems is that the statistics is not enough to decide which

is the sample mean and one cannot easily conclude if a pure power law or a truncated

power law is the right model for the data.

A well known example of (truncated or not) power-law distribution is the Gutenberg-

Richter law for earthquake \size" (Kagan, 2002, Kanamori and Brodsky, 2004, Utsu,

1999). If by size we understand radiated energy, the Gutenberg-Richter law implies

that, in any seismically active region of the world, the sizes of earthquakes follow a

power-law distribution, with an exponent � = 1 + 2B=3 and B close to 1. In this

case, scale invariance means that if one asks how big (in terms of radiated energy)

earthquakes are in a certain region, such a simple question has no possible answer. The

non-convergence of the mean energy can easily be checked from data: catastrophic events

such as the Sumatra-Andaman mega-earthquake of 2004 contribute to the mean much

more than the previous recorded history (Corral and Font-Clos, 2013). Note that for

the most common formulation of the Gutenberg-Richter law, in terms of the magnitude,

earthquakes are not power-law distributed, but this is due to the fact that magnitude is

an (increasing) exponential function of radiated energy, and therefore magnitude turns

out to be exponentially distributed. In terms of magnitude, the statistical properties of

earthquakes are trivial (well behaved mean, existence of a characteristic magnitude...),

but we insist that this is not the case in terms of radiated energy.
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Malamud (2004) lists several other natural hazards following power-law distributions in

some (physical) measure of size, such as rockfalls, landslides (Hergarten, 2002), volcanic

eruptions (Lahaie and Grasso, 1998, McClelland et al., 1989), and forest �res (Mala-

mud et al., 2005), and we can add rainfall (Peters et al., 2002, 2010), tropical cyclones

(roughly speaking, hurricanes) (Corral et al., 2010), auroras (Freeman and Watkins,

2002), tsunamis (Burroughs and Tebbens, 2005), etc. In some cases this broad range

of responses is triggered simply by a small driving or perturbation (the slow motion of

tectonic plates for earthquakes, the continuous pumping of solar radiation in hurricanes,

etc.); then, this highly nonlinear relation between input and output can be labelled as

crackling noise (Sethna et al., 2001). Notice that this does not apply for tsunamis, for

instance, as they are not slowly driven (or at least not directly slowly driven).

Aschwanden (2011) reviews disparate astrophysical phenomena which are distributed

according to power laws, some of them related to geoscience: sizes of asteroids, craters in

the Moon, solar 
ares, and energy of cosmic rays. In the �eld of ecology and close areas,

the applicability of power-law distributions has been overviewed by White et al. (2008),

mentioning also island and lake sizes. Aban et al. (2006) provides bibliography for power-

law and other heavy-tailed distributions in diverse disciplines, including hydrology, and

Burroughs and Tebbens (2001) provide interesting geological examples.

A theoretical framework for power-law distributed sizes (and durations) of catastrophic

phenomena not only in geoscience but also in condensed matter physics, astrophysics,

biological evolution, neuroscience, and even the economy, is provided by the concept of

self-organized criticality, and summarized by the sandpile paradigm (Bak, 1996, Chris-

tensen and Moloney, 2005, Jensen, 1998, Pruessner, 2012, Sornette, 2004). However,

although the ideas of self-organization and criticality are very reasonable in the context

of most of the geosystems mentioned above (Corral, 2010, Peters and Christensen, 2006,

Peters and Neelin, 2006), one cannot rule out other mechanisms for the emergence of

power-law distributions (Czechowski, 2003, Dickman, 2003, Mitzenmacher, 2004, New-

man, 2005, Sornette, 2004).

On the other hand, it is interesting to mention that, in addition to sizes and durations,

power-law distributions have also been extensively reported in time between the occur-

rences of natural hazards (waiting times), as for instance in solar 
ares (Baiesi et al.,

2006, Bo�etta et al., 1999), earthquakes (Bak et al., 2002, Corral, 2003, 2004a), or solar

wind (Wanliss and Weygand, 2007); in other cases the distributions contain a power-law

part mixed with other factors (Corral, 2004b, 2009b, Geist and Parsons, 2008, Saichev

and Sornette, 2006). Nevertheless, the possible relation with critical phenomena is not

direct (Corral, 2005, Paczuski et al., 2005). The distance between events, or jumps, has
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received relatively less attention (Corral, 2006, Davidsen and Paczuski, 2005, Felzer and

Brodsky, 2006).

The importance of power-law distributions in geoscience is apparent; however, some of

the evidence gathered in favour of this paradigm can be considered as \anecdotic" or

tentative, as it is based on rather poor data analysis. A common practice is to �nd

some (naive or not) estimation of the probability density or mass function f(x) and plot

ln f(x) versus lnx and look for a linear dependence between both variables. Obviously,

a power-law distribution should behave in that way, but the opposite is not true: an

apparent straight line in a log-log plot of f(x) should not be considered a guarantee of

an underlying power-law distribution, or perhaps the exponent obtained from there is

clearly biased (Bauke, 2007, Clauset et al., 2009, Goldstein et al., 2004, White et al.,

2008). But in order to discriminate between several competing theories or models, as

well as in order to extrapolate the available statistics to the most extreme events, it is

very important to properly �t power laws and to �nd the right power-law exponent (if

any) (White et al., 2008).

The subject of this paper is a discussion on the most appropriate �tting, testing of

the goodness-of-�t, and representation of power-law distributions, both non-truncated

and truncated. A consistent and robust method will be checked on several examples in

geoscience, including earthquakes, tropical cyclones, and forest �res. The procedure is

in some points analogous to that of Clauset et al. (2009), although there are variations

is some key steps, in order to correct several drawbacks of the original method (Corral

et al., 2011, Peters et al., 2010). The most important di�erence is in the criterion to select

the range over which the power law holds. As the case of most interest in geoscience is

that of a continuous random variable, the more involving discrete case will be postponed

to a separate publication (Corral et al., 2012).

2.2 Power-law fits and goodness-of-fit tests

2.2.1 Non-truncated and truncated power-law distributions

Let us consider a continuous power-law distribution, de�ned in the range a � x � b,

where b can be �nite or in�nite and a � 0. The probability density of x is given by,

f(x) =
�� 1

a1�� � 1=b��1

�
1

x

��
; (2.2)

the limit b ! 1 with � > 1 and a > 0 provides the non-truncated power-law distribu-

tion, also called here pure power law; otherwise, for �nite b one has the truncated power
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law, for which no restriction exists on � if a > 0, but � < 1 if a = 0 (which is sometimes

referred to as the power-function distribution (Evans et al., 2000)); the case � = 1 needs

a separate treatment, with

f(x) =
1

x ln(b=a)
: (2.3)

We will consider in principle that the distribution has a unique parameter, �, and that

a and b are �xed and known values. Remember that, at point x, the probability density

function of a random variable is de�ned as the probability per unit of the variable that

the random variable lies in a in�nitesimal interval around x, that is,

f(x) = lim
�x!0

Prob[x � random variable < x+ �x]

�x
; (2.4)

and has to verify f(x) � 0 and
R1
�1 f(x)dx = 1, see for instance Ross (2002).

Equivalently, the distribution can be also characterized by its (complementary) cumu-

lative distribution function,

S(x) = Prob[random variable � x] =

Z 1

x
f(x0)dx0: (2.5)

For a truncated or non-truncated power law this leads to

S(x) =
1=x��1 � 1=b��1

a1�� � 1=b��1
; (2.6)

if � 6= 1 and

S(x) =
ln(b=x)

ln(b=a)
; (2.7)

if � = 1. Note that although f(x) always has a power-law shape, S(x) only has it in the

non-truncated case (b!1 and � > 1); nevertheless, even not being a power law in the

truncated case, the distribution is a power law, as it is f(x) and not S(x) which gives

the name to the distribution.

2.2.2 Problematic fitting methods

Given a set of data, there are many methods to �t a probability distribution. Goldstein

et al. (2004), Bauke (2007), White et al. (2008), and Clauset et al. (2009) check several

methods based in the �tting of the estimated probability densities or cumulative distri-

butions in the power-law case. As mentioned in the �rst section, ln f(x) is then a linear

function of lnx, both for non-truncated and truncated power laws. The same holds for

lnS(x), but only in the non-truncated case. So, one can either estimate f(x) from data,

using some binning procedure, or estimate S(x), for which no binning is necessary, and

then �t a straight line by the least-squares method. As we �nd White et al.'s (2008)
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study the most complete, we summarize their results below, although those of the other

authors are not very di�erent.

For non-truncated power-law distributions, White et al. (2008) �nd that the results of

the least-squares method using the cumulative distribution are reasonable, although the

points in S(x) are not independent and linear regression should yield problems in this

case. We stress that this procedure only can work for non-truncated distributions (i.e.,

with b!1), truncated ones yield bad results (Burroughs and Tebbens, 2001).

The least-squares method applied to the probability density f(x) has several variations,

depending on the way of estimating f(x). Using linear binning one obtains a simple

histogram, for which the �tting results are catastrophic (Bauke, 2007, Goldstein et al.,

2004, Pueyo and Jovani, 2006, White et al., 2008). This is not unexpected, as linear

binning of a heavy-tailed distribution can be considered as a very naive approach. If

instead of linear binning one uses logarithmic binning the results improve (when done

\correctly"), and are reasonable in some cases, but they still show some bias, high

variance, and bin-size dependence. A fundamental point is to avoid having empty bins,

as they are disregarded in logscale, introducing an important bias.

In summary, methods of estimation of probability-distribution parameters based on

least-squares �tting can have many problems, and usually the results are biased. More-

over, these methods do not take into account that the quantity to be �tted is a probability

distribution (i.e., once the distributions are estimated, the method is the same as for any

other kind of function). We are going to see that the method of maximum likelihood

is precisely designed for dealing with probability distributions, presenting considerable

advantages in front of the other methods just mentioned.

2.2.3 Maximum likelihood estimation

Let us denote a sample of the random variable x with N elements as x1, x2, . . . , xN ,

and let us consider a probability distribution f(x) parameterized by �. The likelihood

function L(�) is de�ned as the joint probability density (or the joint probability mass

function if the variable were discrete) evaluated at x1, x2, . . . , xN in the case in which

the variables were independent, i.e.,

L(�) =

NY

i=1

f(xi): (2.8)

Note that the sample is considered �xed, and it is the parameter � what is allowed

to vary. In practice it is more convenient to work with the log-likelihood, the natural
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logarithm of the likelihood (dividing by N also, in our de�nition),

`(�) =
1

N
lnL(�) =

1

N

NX

i=1

ln f(xi): (2.9)

The maximum likelihood (ML) estimator of the parameter � based on the sample is

just the maximum of `(�) (which coincides with the maximum of L(�), obviously). For

a given sample, we will denote the ML estimator as �e (e is from empirical), but it is

important to realize that the ML estimator is indeed a statistic (a quantity calculated

from a random sample) and therefore can be considered as a random variable; in this

case it is denoted as �̂. In a formula,

�e = arg max
8�

`(�); (2.10)

where argmax refers to the argument of the function ` that makes it maximum.

For the truncated or the non-truncated continuous power-law distribution we have, sub-

stituting f(x) from Eqs. (2)-(3) and introducing r = a=b, disregarding the case a = 0,

`(�) = ln
�� 1

1� r��1
� � ln

g

a
� ln a; if � 6= 1; (2.11)

`(�) = � ln ln
1

r
� ln g; if � = 1; (2.12)

g is the geometric mean of the data, ln g = N�1
PN

1 lnxi, and the last term in each

expression is irrelevant for the maximization of `(�). The equation for � = 1 is necessary

in order to avoid over
ows in the numerical implementation of Eq. (2.11). Remember

that the distribution is only parameterized by �, whereas a and b (and r) are constant

parameters; therefore, `(�) is not a function of a and b, but of �.

In order to �nd the maximum of `(�) one can derive with respect � and set the result

equal to zero (Aban et al., 2006, Johnson et al., 1994),

d`(�)

d�

����
�=�e

=
1

�e � 1
+
r�e�1 ln r

1� r�e�1
� ln

g

a
= 0; (2.13)

which constitutes the so-called likelihood equation for this problem. For a non-truncated

distribution, r = 0, and it is clear that there is one and only one solution,

�e = 1 +
1

ln(g=a)
; (2.14)

which corresponds to a maximum, as

L(�) = eN`(�) =
1

aN
(�� 1)Ne�N� ln(g=a); (2.15)
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has indeed a maximum (resembling a gamma probability density, see next subsection).

Figure 1 illustrates the log-likelihood function and its derivative, for simulated power-law

data.

Figure 2.1: Log-likelihood �(α) and its derivative, for simulated non-truncated power-
law data with exponent α = 1.15 and a = 0.001. The total number of data is Ntot =
1000. The resulting estimation yields αe = 1.143, which will lead to a confidence

interval α ± σ = 1.143 ± 0.005.

In the truncated case it is not obvious that there is a solution to the likelihood equation

(Aban et al., 2006); however, one can take advantage of the fact that the power-law dis-

tribution, for fixed a and b, can be viewed as belonging to the regular exponential family,

for which it is known that the maximum likelihood estimator exists and is unique, see

Barndorff-Nielsen (1978, p. 151) or del Castillo (2013). Indeed, in the single-parameter

case, the exponential family can be written in the form,

f(x) = C−1(α)H(x)eθ(α)· T (x), (2.16)

where both θ(α) and T (x) can be vectors, the former containing the parameter α of the

family. Then, for θ(α) = −α, T (x) = lnx, and H(x) = 1 we obtain the (truncated or

not) power-law distribution, which therefore belongs to the regular exponential family,

which guarantees the existence of a unique ML solution.

In order to find the ML estimator of the exponent in the truncated case, we proceed

by maximizing directly the log-likelihood �(α) (rather than by solving the likelihood

equation). The reason is a practical one, as our procedure is part of a more general

method, valid for arbitrary distributions f(x), for which the derivative of �(α) can be
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di�cult to evaluate. We will use the downhill simplex method, through the routine

amoeba of Press et al. (2002), although any other simpler maximization procedure should

work, as the problem is one-dimensional, in this case. One needs to take care when the

value of � gets very close to one in the maximization algorithm, and then replace `(�)

by its limit at � = 1,

`(�)!�!1 � ln ln
1

r
� � ln

g

a
� ln a; (2.17)

which is in agreement with the likelihood function for a (truncated) power-law distribu-

tion with � = 1.

An important property of ML estimators, not present in other �tting methods, is their

invariance under re-parameterization. If instead of working with parameter � we use

� = h(�), then, the ML estimator of � is \in agreement" with that of �, i.e., �̂ = h(�̂).

Indeed,
d`

d�
=
d`

d�

d�

d�
; (2.18)

so, the maximum of ` as a function of � is attained at the point h(�̂), provided that the

function h is \one-to-one". Note that the parameters could be multidimensional as well.

Casella and Berger (2002) study this invariance with much more care.

In their comparative study, White et al. (2008) conclude that maximum likelihood esti-

mation outperforms the other �tting methods, as always yields the lowest variance and

bias of the estimator. This is not unexpected, as the ML estimator is, mathematically,

the one with minimum variance among all asymptotically unbiased estimators. This

property is called asymptotical e�ciency (Bauke, 2007, White et al., 2008).

2.2.4 Standard deviation of the ML estimator

The main result of this subsection is the value of the uncertainty � of �̂, represented by

the standard deviation of �̂ and given by

� =
1p
N

�
1

(�e � 1)2
� r�e�1 ln2 r

(1� r�e�1)2

��1=2

; (2.19)

(Aban et al., 2006). This formula can be used directly, although � can be computed

as well from Monte Carlo simulations, as explained in another subsection. A third

option is the use of the jackknife procedure, as done by Peters et al. (2010). The three

methods lead to essentially the same results. The rest of this subsection is devoted to

the particular derivation of � for a non-truncated power-law distribution, and therefore

can be skipped by readers interested mainly in the practical use of ML estimation.
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For the calculation of �̂ (the ML estimator of �) one needs to realize that this is indeed a

statistic (a quantity calculated from a random sample) and therefore it can be considered

as a random variable. Note that � denotes the true value of the parameter, which is

unknown. It is more convenient to work with � � 1 (the exponent of the cumulative

distribution function); in the non-truncated case (r = 0 with � > 1) we can easily derive

its distribution. First let us consider the geometric mean of the sample, g, rescaled by

the minimum value a,

ln
g

a
=

1

N

NX

i=1

ln
xi
a
: (2.20)

As each xi is power-law distributed (by hypothesis), a simple change of variables shows

that ln(xi=a) turns out to be exponentially distributed, with scale parameter 1=(�� 1);

then, the sum will be gamma distributed with the same scale parameter and with shape

parameter given by N (this is the key property of the gamma distribution (Durrett,

2010)). Therefore, ln(g=a) will follow the same gamma distribution but with scale

parameter N�1(�� 1)�1.

At this point it is useful to introduce the generalized gamma distribution (Evans et al.,

2000, Johnson et al., 1994, Kalb
eisch and Prentice, 2002), with density, for a random

variable y � 0,

D(y) =
j�j

c�(
=�)

�y
c

�
�1
e�(y=c)δ ; (2.21)

where c > 0 is the scale parameter and 
 and � are the shape parameters, which have to

verify 0 < 
=� < 1 (so, the only restriction is that they have the same sign, although

the previous references only consider 
 > 0 and � > 0); the case � = 1 yields the usual

gamma distribution and � = 
 = 1 is the exponential one. Again, changing variables one

can show that the inverse z = 1=y of a generalized gamma variable is also a generalized

gamma variable, but with transformed parameters,


; �; c! �
;��; 1

c
: (2.22)

So, �̂� 1 = z = 1= ln(g=a) will have a generalized gamma distribution, with parameters

�N , �1, and N(�� 1) (keeping the same order as above). Introducing the moments of

this distribution (Evans et al., 2000),

hymi = cm
�
�
+m

�

�

� (
=�)
(2.23)
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(valid for m > �
 if 
 > 0 and for m < j
j if 
 < 0, and hymi in�nite otherwise), we

obtain the expected value of �̂� 1,

h�̂� 1i =
N(�� 1)

N � 1
: (2.24)

Note that the ML estimator, �̂, is biased, as its expected value does not coincide with

the right value, �; however, asymptotically, the right value is recovered. An unbiased

estimator of � can be obtained for a small sample as (1� 1=N)�e + 1=N , although this

will not be of interest to us.

In the same way, the standard deviation of �̂� 1 (and of �̂) turns out to be

� =
p
h(�̂� 1)2i � h�̂� 1i2 =

�� 1

(1� 1=N)
p
N � 2

; (2.25)

which leads asymptotically to (� � 1)=
p
N . In practice, we need to replace � by the

estimated value �e; then, this is nothing else than the limit r = 0 (b!1) of the general

formula stated above for � (Aban et al., 2006). The fact that the standard deviation

tends to zero asymptotically (together with the fact that the estimator is asymptotically

unbiased) implies that any single estimation converges (in probability) to the true value,

and therefore the estimator is said to be consistent.

2.2.5 Goodness-of-fit test

One can realize that the maximum likelihood method always yields a ML estimator for

�, no matter which data one is using. In the case of power laws, as the data only enters

in the likelihood function through its geometric mean, any sample with a given geometric

mean yields the same value for the estimation, although the sample can come from a

true power law or from any other distribution. So, no quality of the �t is guaranteed

and thus, maximum likelihood estimation should be rather called minimum unlikelihood

estimation. For this reason a goodness-of-�t test is necessary (although recent works do

not take into account this fact (Bar�o and Vives, 2012, Kagan, 2002, White et al., 2008)).

Following Goldstein et al. (2004) and Clauset et al. (2009) we use the Kolmogorov-

Smirnov (KS) test (Chicheportiche and Bouchaud, 2012, Press et al., 2002), based on

the calculation of the KS statistic or KS distance de between the theoretical probability

distribution, represented by S(x), and the empirical one, Se(x). The latter, which is

an unbiased estimator of the cumulative distribution (Chicheportiche and Bouchaud,

2012), is given by the stepwise function

Se(x) = ne(x)=N; (2.26)
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where ne(x) is the number of data in the sample taking a value of the variable larger

than or equal to x. The KS statistic is just the maximum di�erence, in absolute value,

between S(x) and ne(x)=N , that is,

de = max
a�x�b

jS(x)� Se(x)j = max
a�x�b

����
1

1� r�e�1

��a
x

��e�1
� r�e�1

�
� ne(x)

N

���� ; (2.27)

where the bars denote absolute value. Note that the theoretical cumulative distribution

S(x) is parameterized by the value of � obtained from ML, �e. In practice, the di�erence

only needs to be evaluated around the points xi of the sample (as the routine ksone of

Press et al. (2002) does) and not for all x. A more strict mathematical de�nition uses

the supremum instead of the maximum, but in practice the maximum works perfectly.

We illustrate the procedure in Fig. 2, with a simulation of a non-truncated power law.
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Figure 2.2: Empirical (complementary) cumulative distribution for a simulated non-
truncated power-law distribution with � = 1:15, a = 0:001, and Ntot = 1000, together
with its corresponding �t, which yields �e = 1:143. The maximum di�erence between
both curves, de = 0:033, is marked as an illustration of the calculation of the KS

statistic. The original theoretical distribution, unknown in practice, is also plotted.

Intuitively, if de is large the �t is bad, whereas if de is small the �t can be considered

as good. But the relative scale of de is provided by its own probability distribution,

through the calculation of a p�value. Under the hypothesis that the data follow indeed

the theoretical distribution, with the parameter � obtained from our previous estimation

(this is the null hypothesis), the p�value provides the probability that the KS statistic

takes a value larger than the one obtained empirically, i.e.,

p = Prob[KS statistic for power-law data (with �e) is > de]; (2.28)
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then, bad �ts will have rather small p�values.

It turns out that, in principle, the distribution of the KS statistic is known, at least

asymptotically, independently of the underlying form of the distribution, so,

pQ = Q(de
p
N + 0:12de + 0:11de=

p
N =

= 2
1X

j=1

(�1)j�1 exp[�2j2(de
p
N + 0:12de + 0:11de=

p
N)2]; (2.29)

for which one can use the routine probks of Press et al. (2002) (but note their Eq.

(14.3.9) is not right). Nevertheless, this formula will not be accurate in our case, and for

this reason we use the symbol pQ instead of p. The reason is that we are \optimizing"

the value of � using the same sample to which we apply the KS test, which yields a

bias in the test, i.e., the formula would work for the true value of �, but not for one

obtained by ML, which would yield in general a smaller KS statistic and too large

p�values (because the �t for �e is better than for the true value �) (Clauset et al., 2009,

Goldstein et al., 2004). However, for this very same reason the formula can be useful to

reject the goodness of a given �t, i.e., if pQ obtained in this way is already below 0.05,

the true p will be even smaller and the �t is certainly bad. But the opposite is not true.

In a formula,

if pQ < 0:05) reject power law; (2.30)

otherwise, no decision can be taken yet. Of course, the signi�cance level 0.05 is arbitrary

and can be changed to another value, as usual in statistical tests. As a �nal comment,

perhaps a more powerful test would be to use, instead of the KS statistic, the Kuiper's

statistic (Press et al., 2002), which is a re�nement of the former one. It is stated by

Clauset et al. (2009) that both tests lead to very similar �ts. In most cases, we have

also found no signi�cant di�erences between both tests.

2.2.6 The Clauset et al.’s recipe

Now we are in condition to explain the genuine Clauset et al.'s (2009) method. This

is done in this subsection for completeness, and for the information of the reader, as

we are not going to apply this method. The key to �tting a power law is neither the

ML estimation of the exponent nor the goodness-of-�t test, but the selection of the

interval [a; b] over which the power law holds. Initially, we have taken a and b as �xed

parameters, but in practice this is not the case, and one has to decide where the power

law starts and where ends, independently of the total range of the data. In any case, N

will be the number of data in the power-law range (and not the total number of data).
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The recipe of Clauset et al. (2009) applies to non-truncated power-law distributions

(b ! 1), and considers that a is a variable which needs to be �t from the sample

(values of x below a are outside the power-law range). The recipe simply consists in

the search of the value of a which yields a minimum of the KS statistic, using as a

parameter of the theoretical distribution the one obtained by maximum likelihood, �e,

for the corresponding a (no calculation of a p�value is required for each �xed a). In

other words,

a = the one that yields minimum de: (2.31)

Next, a global p�value is computed by generating synthetic samples by a mixture of

parametric bootstrap (similarly to what is explained in the next subsection) and non-

parametric bootstrap. Then, the same procedure applied to the empirical data (mini-

mization of the KS distance using ML for �tting) is applied to the synthetic samples in

order to �t a and �.

These authors do not provide any explanation of why this should work, although one

can argue that, if the data is indeed a power law with the desired exponent, the larger

the number of data (the smaller the a�value), the smaller the value of de, as de goes as

1=
p
N (for large N , see previous subsection). On the other hand, if for a smaller a the

data departs from the power law, this deviation should compensate and overcome the

reduction in de due to the increase of N , yielding a larger de. But there is no reason to

justify this overcoming.

Nevertheless, we will not use the Clauset et al.'s (2009) procedure for two other reasons.

First, its extension to truncated power laws, although obvious, and justi�able with the

same arguments, yields bad results, as the resulting values of the upper truncation cuto�,

b, are highly unstable. Second, even for non-truncated distributions, it has been shown

that the method fails to detect the existence of a power law for data simulated with a

power-law tail (Corral et al., 2011): the method yields an a�value well below the true

power-law region, and therefore the resulting p is too small for the power law to become

acceptable. We will explain an alternative method that avoids these problems, but �rst

let us come back to the case with a and b �xed.

2.2.7 Monte Carlo simulations

Remember that we are considering a power-law distribution, de�ned in a � x � b. We

already have �t the distribution, by ML, and we are testing the goodness of the �t by

means of the KS statistic. In order to obtain a reliable p�value for this test we will

perform Monte Carlo simulations of the whole process. A synthetic sample power-law

distributed and with N elements can be obtained in a straightforward way, from the
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inversion or transformation method (Devroye, 1986, Press et al., 2002, Ross, 2002),

xi =
a

[1� (1� r�e�1)ui]1=(�e�1)
; (2.32)

where ui represents a uniform random number in [0; 1). One can use any random number

generator for it. Our results arise from ran3 of Press et al. (2002).

2.2.8 Application of the complete procedure to many synthetic sam-

ples and calculation of p�value

The previous �tting and testing procedure is applied in exactly the same way to the

synthetic sample, yielding a ML exponent �s (where the subindex s stands from syn-

thetic or simulated), and then a KS statistic ds, computed as the di�erence between the

theoretical cumulative distribution, with parameter �s, and the simulated one, ns(x)=N

(obtained from simulations with �e, as described in the previous subsection), i.e.,

ds = max
a�x�b

����
1

1� r�s�1

��a
x

��s�1
� r�s�1

�
� ns(x)

N

���� : (2.33)

Both values of the exponent, �e and �s, should be close to each other, but they will not

be necessarily the same. Note that we are not parametrizing S(x) by the empirical value

�e, but with a new �tted value �s. This is in order to avoid biases, as a parametrization

with �e would lead to worse �ts (as the best one would be with �s) and therefore to

larger values of the resulting KS statistic and to arti�cially larger p�values. So, although

the null hypothesis of the test is that the exponent of the power law is �e, and synthetic

samples are obtained with this value, no further knowledge of this value is used in the

test. This is the procedure used by Clauset et al. (2009) and Malmgren et al. (2008),

but it is not clear if it is the one of Goldstein et al. (2004).

In fact, one single synthetic sample is not enough to do a proper comparison with the

empirical sample, and we repeat the simulation many times. The most important out-

come is the set of values of the KS statistic, ds, which allows to estimate its distribution.

The p�value is simply calculated as

p =
number of simulations with ds � de

Ns
; (2.34)

where Ns is the number of simulations. Figure 3 shows an example of the distribution

of the KS statistic for simulated data, which can be used as a table of critical values

when the number of data and the exponent are the same as in the example (Goldstein

et al., 2004).
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Figure 2.3: Cumulative (complementary) distribution of the Kolmogorov-Smirnov
statistic for simulated non-truncated power-law distributions with � = �e = 1:143, a =
0:001, and Ntot = 1000. The original \empirical" value de = 0:033 is also shown. The
resulting p�value turns our to be p = 0:060� 0:008. The \false" p�value, pQ, arising
from the KS formula, leads to higher values for the same de, in concrete, pQ = 0:22.

The standard deviation of the p�value can be calculated just using that the number of

simulations with ds � de is binomially distributed, with standard deviation
p
Nsp(1� p)

and therefore the standard deviation of p is the same divided by Ns,

�p =

s
p(1� p)
Ns

: (2.35)

In fact, the p�value in this formula should be the ideal one (the one of the whole

population) but we need to replace it by the estimated value; further, when doing

estimation from data, Ns should be Ns�1, but we have disregarded this bias correction.

It will be also useful to consider the relative uncertainty of p, which is the same as the

relative uncertainty of the number of simulations with ds � de (as both are proportional).

Dividing the standard deviation of p by its mean (which is p), we obtain

CVp =

r
1� p
pNs

'
r

1� p
number of simulations with ds � de

(2.36)

(we will recover this formula for the error of the estimation of the probability density).

In this way, small p�values are associated to large values of de, and therefore to bad �ts.

However, note that if we put the threshold of rejection in, let us say, p � 0:05, even true

power-law distributed data, with exponent �e, yield \bad �ts" in one out of 20 samples

(on average). So we are rejecting true power laws in 5 % of the cases (type I error).
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On the other hand, lowering the threshold of rejection would reduce this problem, but

would increase the probability of accepting false power laws (type II error). In this type

of tests a compromise between both types of errors is always necessary, and depends on

the relative costs of rejecting a true hypothesis or accepting a false one.

In addition, we can obtain from the Monte Carlo simulations the uncertainty of the

ML estimator, just computing ��s, the average value of �s, and from here its standard

deviation,

� =

q
(�s � ��s)2; (2.37)

where the bars indicate average over the Ns Monte Carlo simulations. This procedure

yields good agreement with the analytical formula of Aban et al. (2006), but can be

much more useful in the discrete power-law case.

2.2.9 Alternative method to the one by Clauset et al.

At this point, for given values of the truncation points, a and b, we are able to obtain

the corresponding ML estimation of the power-law exponent as well as the goodness of

the �t, by means of the p�value. Now we face the same problem Clauset et al. (2009)

tried to solve: how to select the �tting range? In our case, how to �nd not only the

value of a but also of b? We adopt the simple method proposed by Peters et al. (2010):

sweeping many di�erent values of a and b we should �nd, if the null hypothesis is true

(i.e., if the sample is power-law distributed), that many sets of intervals yield acceptable

�ts (high enough p�values), so we need to �nd the \best" of such intervals. And which

one is the best? For a non-truncated power law the answer is easy, we select the largest

interval, i.e., the one with the smaller a, provided that the p�value is above some �xed

signi�cance level pc. All the other acceptable intervals will be inside this one.

But if the power law is truncated the situation is not so clear, as there can be several

non-overlapping intervals. In fact, many true truncated power laws can be contained

in the data, at least there are well know examples of stochastic processes with double

power-law distributions (Bogu~n�a and Corral, 1997, Corral, 2003, 2009a, Klafter et al.,

1996). At this point any selection can be reasonable, but if one insists in having an

automatic, blind procedure, a possibility is to select either the interval which contains

the larger number of data, N (Peters et al., 2010), or the one which has the larger

log-range, b=a. For double power-law distributions, in which the exponent for small

x is smaller than the one for large x, the former recipe has a tendency to select the

�rst (small x) power-law regime, whereas the second procedure changes this tendency

in some cases.



Chapter 2. Fitting and Goodness-of-Fit Test of Power-law Distributions 39

In summary, the �nal step of the method for truncated power-law distributions is con-

tained in the formula

[a; b] = the one that yields higher

8
>><
>>:

N

or

b=a

9
>>=
>>;

provided that p > pc; (2.38)

which contains in fact two procedures, one maximizing N and the other maximizing

b=a. We will test both in this paper. For non-truncated power-law distributions the two

procedures are equivalent.

One might be tempted to choose pc = 0:05, however, it is safer to consider a larger value,

as for instance pc = 0:20. Note that the p�value we are using is the one for �xed a and

b, and then the p�value of the whole procedure should be di�erent, but at this point it

is not necessary to obtain such a p�value, as we should have already come out with a

reasonable �t. Figure 4 shows the results of the method for true power-law data.
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Figure 2.4: Evolution as a function of a of the KS statistic, the false p�value pQ, the
true p� value (for �xed a), and the estimated exponent. The true exponent, here called
�t and equal to 1.15, is displayed as a thin black line, together with a 2� interval.

2.2.10 Truncated or non-truncated power-law distribution?

For broadly distributed data, the simplest choice is to try to �t �rst a non-truncated
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power-law distribution. If an acceptable �t is found, it is expected that a truncated

power law, with b � xmax (where xmax is the largest value of x) would yield also a

good �t. In fact, if b is not considered as a �xed value but as a parameter to �t, its

maximum likelihood estimator when the number of data is �xed, i.e., when b is in the

range b � xmax, is be = xmax. This is easy to see (Aban et al., 2006), just looking at the

equations for `(�), (11) and (12), which show that `(�) increases as b approaches xmax.

(In the same way, the ML estimator of a, for �xed number of data, would be ae = xmin,

but we are not interested in such a case now.) On the other hand, it is reasonable that

a truncated power law yields a better �t than a non-truncated one, as the former has

two parameters and the latter only one (assuming that a is �xed, in any case).

In order to do a proper comparison, in such situations the so-called Akaike information

criterion (AIC) can be used. This is de�ned simply as the di�erence between twice the

number of parameters and twice the maximum of the log-likelihood multiplied by the

number of data, i.e.,

AIC = 2� (number of parameters)� 2N`(�e): (2.39)

In general, having more parameters leads to better �ts, and to higher likelihood, so, the

�rst term compensates this fact. Therefore, given two models, the one with smaller AIC

is preferred. Note that, in order that the comparison based on the AIC makes sense, the

�ts that are compared have to be performed exactly over the same data. So, in our case

this can only be done for non-truncated power laws and for truncated power laws with

b � xmax. Nevertheless, due to the limitations of this paper we have not performed the

comparison.

2.3 Estimation of probability densities and cumulative dis-

tribution functions

The method of maximum likelihood does not rely on the estimation of the probability

distributions, in contrast to other methods. Nevertheless, in order to present the results,

it is useful to display some representation of the distribution, together with its �t. This

procedure has no statistical value (it cannot provide a substitution of a goodness-of-

�t test) but is very helpful as a visual guide, specially in order to detect bugs in the

algorithms.
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2.3.1 Estimation of the probability density

In the de�nition of the probability density,

f(x) = lim
�x!0

Prob[x � random variable < x+ �x]

�x
; (2.40)

a fundamental issue is that the width of the interval �x has to tend to zero. In practice

�x cannot tend to zero (there would be no statistics in such case), and one has to take

a non-zero value of the width. The most usual procedure is to draw a histogram using

linear binning (bins of constant width); however, there is no reason why the width of

the distribution should be �xed (some authors even take �x = 1 as the only possible

choice). In fact, �x should be chosen in order to balance the necessity of having enough

statistics (large �x) with that of having a good sampling of the function (small �x).

For power-law distributions and other fat-tailed distributions, which take values across

many di�erent scales, the right choice depends of the scale of x. In this cases it is

very convenient to use the so-called logarithmic binning (Hergarten, 2002, Pruessner,

2012). This uses bins that appear as constant in logarithmic scale, but that in fact grow

exponentially (for which the method is sometimes called exponential binning instead).

Curiously, this useful method is not considered by classic texts on density estimation

(Silverman, 1986).

Let us consider the semi-open intervals [a0; b0); [a1; b1); : : : ; [ak; bk); : : : , also called bins,

with ak+1 = bk and bk = Bak (this constant B has nothing to do with the one in the

Gutenberg-Richter law, Sec. 2.1). For instance, if B = 5
p

10 this yields 5 intervals for

each order of magnitude. Notice that the width of every bin grows linearly with ak, but

exponentially with k, as bk � ak = (B � 1)ak = a0(B � 1)Bk. The value of B should

be chosen in order to avoid low populated bins, otherwise, a spurious exponent equal to

one appears (Pruessner, 2012).

We simply will count the number of occurrences of the variable in each bin. For each

value of the random variable xi, the corresponding bin is found as

k = int

�
ln(xi=a0)

lnB

�
; (2.41)

where the function int denotes the integer part of its argument. Of course, a0 has to

be smaller than any possible value of x. For a continuous variable the concrete value of

a0 should be irrelevant (if it is small enough), but in practice one has to avoid that the

resulting values of ak coincide with round values of the variable (Corral et al., 2011).

So, with this logarithmic binning, the probability density can be estimated (following its

de�nition) as the relative frequency of occurrences in a given bin divided by its width,
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i.e.,

fe(x
�
k) =

number of occurrences in bin k

(bk � ak)� number of occurrences
; (2.42)

where the estimation of the density is associated to a value of x represented by x�k.

The most practical solution is to take it in the middle of the interval in logscale, so

x�k =
p
akbk. However, for sparse data covering many orders of magnitude it is necessary

to be more careful. In fact, what we are looking for is the point x�k whose value of the

density coincides with the probability of being between ak and bk divided by the width

of the interval. This is the solution of

f(x�k) =
1

bk � ak

Z bk

ak

f(x)dx =
S(ak)� S(bk)

bk � ak
; (2.43)

where f and S are the theoretical distributions. When the distribution and its parame-

ters are known, the equation can be solved either analytically or numerically. It is easy

to see that for a power-law distribution (truncated or not) the solution can be written

x�k =
p
akbk

"
(�� 1)

B�=2�1(B � 1)

B��1 � 1

#1=�

; (2.44)

where we have used that B = bk=ak (if we were not using logarithmic binning we would

have to write a bin-dependent Bk). Note that for constant (bin-independent) B, i.e., for

logarithmic binning, the solution is proportional but not equal to the geometric mean

of the extremes of the bin. Nevertheless, the omission of the proportionality factor does

not alter the power-law behavior, just shifts (in logarithmic scale) the curve. But for a

di�erent binning procedure this is no longer true. Moreover, for usual values of B the

factor is very close to one (Hergarten, 2002), although large values of B (Corral et al.,

2011) yield noticeable deviations if the factor in brackets is not included, see also our

treatment of the radionuclide half-lives in Sec. 2.3, with B = 10. Once the value of B is

�xed (usually in this paper to 5
p

10), in order to avoid empty bins we merge consecutive

bins until the resulting merged bins are not empty. This leads to a change in the e�ective

value of B for merged bins, but the method is still perfectly valid.

The uncertainty of fe(x) can be obtained from its standard deviation (the standard

deviation of the estimation of the density, fe, not of the original random variable x).

Indeed, assuming independence in the sample (which is already implicit in order to apply

maximum likelihood estimation), the number of occurrences of the variable in bin k is

a binomial random variable (in the same way as for the p�value). As the number of

occurrences is proportional to fe(x), the ratio between the standard deviation and the
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mean for the number of occurrences will be the same as for fe(x), which is,

�f (x)

fe(x)
=

r
q

mean number of occurrences in k
' 1p

occurrences in k
; (2.45)

where we replace the mean number of occurrences in bin k (not available from a �nite

sample) by the actual value, and q, the probability that the occurrences are not in bin

k, by one. This estimation of �f (x) fails when the number of counts in the bin is too

low, in particular if it is one.

One �nal consideration is that the �tted distributions are normalized between a and

b, with N number of data, whereas the empirical distributions include all data, with

Ntot of them, Ntot � N . Therefore, in order to compare the �ts with the empirical

distributions, we will plot Nf(x)=Ntot together with fe(x
�
k).

2.3.2 Estimation of the cumulative distribution

The estimation of the (complementary) cumulative distribution is much simpler, as bins

are not involved. One just needs to sort the data, in ascending order, x(1) � x(2) � � � � �
x(Ntot�1) � x(Ntot); then, the estimated cumulative distribution is

Se(x(i)) =
ne(x(i))

Ntot
=
Ntot � i+ 1

Ntot
; (2.46)

for the data points, Se(x) =constant below these data points, and Se(x) = 0 for x >

x(Ntot); ne(x(i)) is the number of data with x � x(i) in the empirical sample. The formula

relating ne(x(i)) with i assumes that repeated values of the variable are not possible, so

it would not be valid for a discrete x. We use the case of empirical data as an example,

but it is of course the same for simulated data. For the comparison of the empirical

distribution with the theoretical �t we need to correct the di�erent number of data in

both cases. So, we plot both [NS(x) + ne(b)]=Ntot and Se(x), in order to check the

accuracy of the �t.

2.4 Data Analyzed and Results

We have explained how, in order to certify that a dataset is compatible with a simple

power-law distribution, many mathematical formulas are required, leading to an aston-

ishingly large number of calculations. Now we check the performance of our method

with diverse geophysical data, which were previously analyzed with di�erent, less rigor-

ous or worse-functioning methods. For the peculiarities and challenges of the dataset, we
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also include the half-lives of unstable nuclides. The parameters of the method are �xed

to Ns = 1000 Monte Carlo simulations and the values of a and b are found sweeping

a �xed number of points per order of magnitude, equally spaced in logarithmic scale.

This number is 10 for non-truncated power laws (in which b is �xed to in�nity) and 5

for truncated power laws. Three values of pc are considered: 0.1, 0.2, and 0.5, in order

to compare the dependence of the results on this parameter. The results are reported

using the Kolmogorov-Smirnov test for goodness-of-�t. If, instead, the Kuiper's test

is used, the outcome is not signi�cantly di�erent in most of the cases. In a few cases

the �tting range, and therefore the exponent, changes, but without a clear trend, i.e.,

the �tting range can become smaller or increase. These cases deserve a more in-depth

investigation.

2.4.1 Half-lives of the radioactive elements

Corral et al. (2011) studied the statistics of the half-lives of radionuclides (comprising

both nuclei in the fundamental and in excited states). Any radionuclide has a constant

probability of disintegration per unit time, the decay constant, let us call it � (Krane,

1988). If M is the total amount of radioactive material at time t, this means that

� 1

M

dM

dt
= �: (2.47)

This leads to an exponential decay, for which a half-life t1=2 or a lifetime θ can be de�ned,

as

t1=2 = θ ln 2 =
ln 2

�
: (2.48)

It is well known that the half-lives take disparate values, for example, that of 238U is

4.47 (American) billions of years, whereas for other nuclides it is a very tiny fraction of

a second.

It has been recently claimed that these half-lives are power-law distributed (Corral et al.,

2011). In fact, three power-law regions were identi�ed in the probability density of t1=2,

roughly,

f(t1=2) /

8
>><
>>:

1=t0:65
1=2 for 10�6s � t1=2 � 0:1s

1=t1:19
1=2 for 100s � t1=2 � 1010s

1=t1:09
1=2 for t1=2 � 108s:

(2.49)

Notice that there is some overlap between two of the intervals, as reported in the original

reference, due to problems in delimiting the transition region. The study used variations

of the Clauset et al.'s (2009) method of minimization of the KS statistic, introducing

and upper cuto� and additional conditions to escape from the global minimum of the

KS statistic, which yielded the rejection (p = 0:000) of the power-law hypothesis. These
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additional conditions were of the type of taking either a or b=a greater than a �xed

amount.

For comparison, we will apply the method explained in the previous section to this

problem. Obviously, our random variable will be x = t1=2. The data is exactly the same

as in the original reference, coming from the Lund/LBNL Nuclear Data Search web page

(Chu et al., version 2.0, February 1999). Elements whose half-life is only either bounded

from below or from above are discarded for the study, which leads to 3002 radionuclides

with well-de�ned half-lives; 2279 of them are in their ground state and the remaining 723

in an exited state. The minimum and maximum half-lives in the dataset are 3� 10�22

s and 7� 1031 s, respectively, yielding more than 53 orders of magnitude of logarithmic

range. Further details are in Corral et al. (2011).

The results of our �tting and testing method are shown in Table 2.1 and in Fig. 2.5.

The �tting of a non-truncated power law yields results in agreement with Corral et al.

(2011), with � = 1:09� 0:01 and a = 3� 107 s, for the three values of pc analyzed (0.1,

0.2, and 0.5). When �tting a truncated power law, the maximization of the log-range,

b=a, yields essentially the same results as for a non-truncated power law, with slightly

smaller exponents � due to the �niteness of b (results not shown). In contrast, the

maximization of the number of data N yields an exponent � ' 0:95 between a ' 0:1 s

and b ' 400 s (with some variations depending on pc). This result is in disagreement

with Corral et al. (2011), which yielded a smaller exponent for smaller values of a and b.

In fact, as the intervals do not overlap both results are compatible, but it is also likely

that a di�erent function would lead to a better �t; for instance, a lognormal between

0.01 s and 105 s was proposed by Corral et al. (2011), although the �tting procedure

there was not totally reliable. Finally, the intermediate power-law range reported in the

original paper (the one with � = 1:19) is not found by any of our algorithms working on

the entire dataset. It is necessary to cut the dataset, removing data below, for instance,

100 s (which is equivalent to impose a > 100 s), in order that the algorithm converges

to that solution. So, caution must be taken when applying the algorithm blindly, as

important power-law regimes may be hidden by others having either larger N or larger

log-range.

2.4.2 Seismic moment of earthquakes

The statistics of the sizes of earthquakes (Gutenberg and Richter, 1944) has been inves-

tigated not only since the introduction of the �rst magnitude scale, by Richter, but even

before, in the 1930's, by Wadati (Utsu, 1999). From a modern perspective, the most

reliable measure of earthquake size is given by the (scalar) seismic moment M , which is



Chapter 2. Fitting and Goodness-of-Fit Test of Power-law Distributions 46

Table 2.1: Results of the �ts for the Ntot = 3002 nuclide half-lives data, for di�erent
values of pc. We show the cases of a pure or non-truncated power law (with b = 1,
�xed) and truncated power law (with b �nite, estimated from data), maximizing N .
The latter is splitted into two subcases: exploring the whole range of a (rows 4, 5, and

6) and restricting a to a > 100 s (rows 7, 8, and 9).

N a (s) b (s) b=a �� � pc
143 0.316 �108 1 1 1.089� 0.007 0.10
143 0.316 �108 1 1 1.089� 0.007 0.20
143 0.316 �108 1 1 1.089� 0.008 0.50

1596 0.0794 501 6310 0.952� 0.010 0.10
1539 0.1259 501 3981 0.959� 0.011 0.20
1458 0.1259 316 2512 0.950� 0.011 0.50

1311 125.9 0.501 �1023 0.398 �1021 1.172� 0.005 0.10
1309 125.9 0.316 �1022 0.251 �1020 1.175� 0.005 0.20
1303 125.9 0.794 �1018 0.631 �1016 1.177� 0.005 0.50
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t 1

/2
) 
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-1

]

t1/2 [s]

p > 0.2, pure

p > 0.2, truncated (max N)

p > 0.2, a > 100s, truncated (max b/a)

Half-lives Radionuclides

Figure 2.5: Estimated probability density of the half-lives of the radionuclides, to-
gether with the power-law �ts explained in the text. The number of log-bins per order
of magnitude is one, which poses a challenge in the correct estimation of the density,

as explained in Sec. 2.3. Data below 10−10 s are not shown.

the product of the mean �nal slip, the rupture area, and the rigidity of the fault material

(Ben-Zion, 2008). It is usually assumed that the energy radiated by an earthquake is

proportional to the seismic moment (Kanamori and Brodsky, 2004), so, a power-law

distribution of the seismic moment implies a power-law distribution of energies, with

the same exponent.

The most relevant results for the distribution of seismic moment are those of Kagan

for worldwide seismicity (Kagan, 2002), who showed that its probability density has a

power-law body, with a universal exponent in agreement with � = 1:63 ' 5=3, but with
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an extra, non-universal exponential decay (at least in terms of the complementary cumu-

lative distribution). However, Kagan's (2002) analysis, ending in 2000, refers to a period

of global seismic \quiescence"; in particular, the large Sumatra-Andaman earthquake of

2004 and the subsequent global increase of seismic activity are not included. Much

recently, Main et al. (2008) have shown, using a Bayesian information criterion, that

the inclusion of the new events leads to the preference of the non-truncated power-law

distribution in front of models with a faster large-M decay.

We take the Centroid Moment Tensor (CMT) worldwide catalog analyzed by Kagan

(2002) and by Main et al. (2008), including now data from January 1977 to December

2010, and apply our statistical method to it. Although the statistical analysis of Kagan

is rather complete, his procedure is di�erent to ours. Note also that the dataset does

not comprise the recent (2011) Tohoku earthquake in Japan, nevertheless, the qualita-

tive change in the data with respect to Kagan's period of analysis is very remarkable.

Following this author, we separate the events by their depth: shallow for depth � 70

km, intermediate for 70 km < depth � 300 km, and deep for depth > 300 km. The

number of earthquakes in each category is 26824, 5281, and 1659, respectively.

Second, we also consider the Southern California's Waveform Relocated Earthquake

Catalog, from January 1st, 1981 to June 30th, 2011, covering a rectangular box of

coordinates (122�W,30�N), (113�W,37:5�N) (Hauksson et al., Shearer et al., 2005). This

catalog contains 111981 events with m � 2. As, in contrast with the CMT catalog, this

one does not report the seismic moment M , the magnitudes m there are converted into

seismic moments, using the formula

log10M =
3

2
(m+ 6:07); (2.50)

where M comes in units of Nm (Newtons times meters); however, this formula is a very

rough estimation of seismic moment, as it is only accurate (and exact) when m is the

so-called moment magnitude (Kanamori and Brodsky, 2004), whereas the magnitudes

recorded in the catalog are not moment magnitudes. In any case, our procedure here is

equivalent to �t an exponential distribution to the magnitudes reported in the catalog.

Tables 2.2 and 2.3 and Fig. 6 summarize the results of analyzing these data with our

method, taking x = M as the random variable. Starting with the non-truncated power-

law distribution, we always obtain an acceptable (in the sense of non-rejectable) power-

law �t, valid for several orders of magnitude. In all cases the exponent � is between 1.61

and 1.71, but for Southern California it is always very close to 1.66. For the worldwide

CMT data the largest value of a is 3�1018 Nm, corresponding to a magnitude m = 6:25

(for shallow depth), and the smallest is a = 8 � 1016 Nm, corresponding to m = 5:2

(intermediate depth). If the events are not separated in terms of their depth (not
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Table 2.2: Results of the non-truncated power-law �t (b =1) applied to the seismic
moment of earthquakes in CMT worldwide catalog (separating by depth) and to the

Southern California catalog, for di�erent pc.

Catalog N a (Nm) �� � pc
CMT deep 1216 0.1259 �1018 1.622� 0.019 0.10
intermediate 3701 0.7943 �1017 1.654� 0.011 0.10
shallow 5799 0.5012 �1018 1.681� 0.009 0.10

CMT deep 898 0.1995 �1018 1.608� 0.020 0.20
intermediate 3701 0.7943 �1017 1.654� 0.011 0.20
shallow 5799 0.5012 �1018 1.681� 0.009 0.20

CMT deep 898 0.1995 �1018 1.608� 0.021 0.50
intermediate 3701 0.7943 �1017 1.654� 0.011 0.50
shallow 1689 0.3162 �1019 1.706� 0.018 0.50

S. California 1327 0.1000 �1016 1.660� 0.018 0.10
S. California 1327 0.1000 �1016 1.660� 0.018 0.20
S. California 972 0.1585 �1016 1.654� 0.021 0.50

shown), the results are dominated by the shallow case, except for pc = 0:5, which leads

to very large values of a and � (a = 5 � 1020 Nm and � ' 2). The reason is probably

the mixture of the di�erent populations, in terms of depth, which is not recommended

by Kagan (2002). This is an indication that the inclusion of an upper limit b to the

power law may be appropriate, with each depth corresponding to di�erent b's. For

Southern California, the largest a found (for pc = 0:5) is 1:6 � 1015 Nm, giving m = 4.

This value is somewhat higher, in comparison with the completeness magnitude of the

catalog; perhaps the reason that the power-law �t is rejected for smaller magnitudes is

due to the fact that these magnitudes are not true moment magnitudes, but come from

a mixture of di�erent magnitude de�nitions. If the value of a is increased, the number

of data N is decreased and the power-law hypothesis is more di�cult to reject, due

simply to poorer statistics. When a truncated power law is �tted, using the method of

maximizing the number of data leads to similar values of the exponents, although the

range of the �t is in some cases moved to smaller values (smaller a, and b smaller than

the maximum M on the dataset). The method of maximizing b=a leads to results that

are very close to the non-truncated power law.
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Figure 2.6: Estimated probability densities and corresponding power-law �ts of the
seismic moment M of shallow earthquakes in the worldwide CMT catalog and of the

estimated M in the Southern California catalog.

2.4.3 Energy of tropical cyclones

Tropical cyclones are devastating atmospheric-oceanic phenomena comprising tropical

depressions, tropical storms, and hurricanes or typhoons (Emanuel, 2005a). Although

the counts of events every year have been monitored for a long time, and other measure-

ments to evaluate annual activity have been introduced (see Corral and Turiel (2012)

for an overview), little attention has been paid to the statistics of individual tropical

cyclones.

In 2005, Emanuel introduced the power-dissipation index (PDI) as a simple way to

obtain a rough estimation of the total energy dissipated by all tropical cyclones in a

given season and some ocean basin (Emanuel, 2005b). But the PDI can also be used to

characterize individual events as well, as it was done later by Corral et al. (2010). Indeed,

the PDI is de�ned as the sum for all the discrete times t (that comprise the lifetime of

a tropical cyclone) of the cube of the maximum sustained wind speed multiplied by the

time interval of sampling, �t. In a formula,

PDI =
X

8t
v3
t�t; (2.51)

where vt is the maximum sustained wind speed. In the so-called best-track records,

�t = 6 hours; this factor would only be necessary in order to compare with other data

with di�erent �t (but caution should be present in this case for the possible fractal nature
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of the speed signal). Although the speeds are reported in knots, they are converted to

m/s (using that 1 knot=0.514 m/s), and then we report the PDI in m3/s2.

Corral et al. (2010) studied the statistics of the PDI (de�ned for individual events, in

contrast to Emanuel's (2005b) work) in 4 di�erent ocean basins for several time periods.

The results showed a rapid, perhaps exponential, decay at the tail, but a body of the

distribution compatible with a power law, for 1 or 2 orders of magnitude, with exponents

close to one. The connection with SOC phenomena was discussed by Corral (2010).

The method used was again a variation of the Clauset et al.'s (2009) one, introducing

an upper cuto� and additional restrictions to the variations of the parameters. Here we

revisit this problem, trying to use updated data (whenever it has been possible), and

applying the method which is the subject of this paper to x = PDI.
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Figure 2.7: Estimated probability densities of the PDI of tropical cyclones in 5 ocean
basins, together with their power-law �ts. The values of the densities are multiplied by
1, 102, 104, 106, and 108, for clarity sake. The �ts for the non-truncated case are akso

displayed, although they are not tabulated.

The data has been downloaded from the National Hurricane Center (NHC) of NOAA,

for the North Atlantic and the Northeastern Paci�c (Jarvinen et al., 1988, National

Hurricane Center) and from the Joint Typhoon Warning Center (JTWC) of the US Navy

(Chu et al., 2002, Joint Typhoon Warning Center, Annual Tropical Cyclone Reports)

for the Northwestern Paci�c, the Southern Hemisphere (comprising the Southern Indian

and the Southwestern Paci�c), and the Northern Indian Ocean. The abbreviation, time
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span, and number of events for each basin are: NAtl, 1966{2011, 532; EPac, 1966{2011,

728; WPac, 1986{2011, 690; SHem, 1986{2007 (up to May), 523; NInd, 1986{2007, 110.

The latter case was not studied in any of the previous works.

The results for a truncated power law maximizing N , shown in Table 2.4 and Fig. 2.7,

are in agreement with those of Corral et al. (2010). In general, exponents are close but

above 1, except for the Northwestern Paci�c, where � ' 0:96, and for the North Indian,

where � is substantially higher than one. We consider that this method performs rather

well. It would be interesting to test if universality can nevertheless hold (the high value

for the North Indian Ocean is based in much less data than for the rest of basins), or if

there is some systematic bias in the value of the exponents (the protocols of the NHC

and the JTWC are di�erent, and the satellite coverage of each basin is also di�erent).

If a non-truncated power law is �t to the data, the �ts turn out to be rather short,

with a high exponent (up to 6) describing the tail of the distribution (except for the

Southern Hemisphere, where no such tail is apparent). We do not give any relevance

to these results, as other alternatives, as for instance a simple exponential tail, have

to be considered (Corral and Turiel, 2012, del Castillo et al., 2012). Coming back to a

truncated power law, but maximizing the log-range, the algorithm sometimes �ts the

power law in the body of the distribution (with exponent close to 1) and for some other

times the algorithm goes to the fast-decaying tail. So the method of maximizing b=a is

not useful for this data.
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2.4.4 Area of forest fires

The statistics of the size of forest �res was an intense topic of research since the intro-

duction of the concept of SOC, at the end of the 1980's, but only from the point of view

of cellular-automaton models. Real data analysis had to wait several years (Malamud

et al., 1998, 2005), leading to power-law distributions, more or less in agreement with

the models. Here we are particularly interested in a dataset from Italy, for which a

power-law distribution of sizes was ruled out (Corral et al., 2008). Instead, a lognormal

tail was proposed for the �re-size probability density.

The data considered by (Corral et al., 2008), and reanalyzed in this study, comes from

the Archivio Incendi Boschivi (AIB) �re catalog compiled by the (Italian)

(http://www.corpoforestale.it). The subcatalog to which we restrict covers all Italy

and spans the 5-year period 1998-2002, containing 36 748 �res. The size of each �re is

measured by the burned area A, in hectares, with 1 ha=104 m2. In this subsection we

analyze the case of x = A.

The results in Table 2.5 and Fig. 2.8 show that a pure (non-truncated) power law is

only acceptable (in the sense of non-rejectable) for the rightmost part of the tail of the

distribution, comprising less than one order of magnitude. It is very indicative that

only 51 data are in the possible power-law tail. Therefore, we disregard this power-law

behavior as spurious and expect that other distributions can yield a much better �t

(not in order of the quality of the �t but regarding the number of data it spans). This

seems in agreement with other analyses of forest-�re data (Clauset et al., 2009, Newman,

2005). If a truncated power-law is considered, �tted by maximizing the number of data,

the results are not clearly better, as seen in the table. Moreover, there is considerable

variation with the value of pc. So, we do not give any relevance to such power-law �ts.

Finally, the method of maximizing b=a yields the same results as for the non-truncated

power law (except by the fact that the exponents are slightly smaller, not shown). In

order to provide some evidence for the better adequacy of the lognormal tail in front of

the power-law tail for these data, it would be interesting to apply an adaptation of the

test explained by del Castillo and Puig (1999).

2.4.5 Waiting time between earthquakes

The temporal properties of earthquakes has been a subject relatively little studied (at

least in comparison with the size of earthquakes). It is true that the Omori law has been

known for more than 100 years (Utsu, 2002, Utsu et al., 1995), and that this is a law

extremely important in order to assess the hazard of aftershocks after a big event, but
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Figure 2.8: Estimated probability density of the area of �res in the Italian catalog,
together with the power-law �ts. In contrast to the previous datasets analyzed, we

consider these power-law �ts as irrelevant.

Table 2.5: Results of the �ts for the burned area of the Ntot = 36 748 �res recorded
in the Italian catalog, for di�erent pc. The cases of a non-truncated power law and a
truncated power law, maximizing N , are shown. In the latter case, for pc = 0:10 and

0:50 the value of b is larger than the maximun value of the variable.

N a (ha) b (ha) b=a �� � pc
51 794 1 1 2.880� 0.276 0.10
51 794 1 1 2.880� 0.277 0.20
51 794 1 1 2.880� 0.277 0.50

168 316 7943 25 2.353� 0.117 0.10
148 316 1259 4 2.075� 0.213 0.20
51 794 79430 100 2.870� 0.281 0.50

the Omori law looks at time properties in a very coarse-grained way, as it only provides

the number of events in relatively large time windows. Thus, no information on the �ne

time structure of seismicity is provided, at least directly.

The situation has changed in the last decade, since the seminal study of Bak et al. (2002),

who found a uni�ed scaling law for earthquake waiting-time distributions. They took

Southern California and divided it in di�erent areas, and computed the time between

consecutive earthquakes for each area. So, if tji denotes the time of occurrence of the

i�th earthquake in area j, the corresponding waiting time θ ji is

θ ji = tji � t
j
i�1: (2.52)

The key point is that all the resulting waiting times were added to the same distribution
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(and not to a di�erent distribution j for each area). Subsequently, the uni�ed scaling

law was found to be valid for other regions of the world (Corral, 2004a). The shape

of the resulting probability density corresponds to a double power law, one for small

waiting times, associated to a mixture of scales of waiting times due to the Omori

law, and another for large waiting times, due to spatial heterogeneity arising from the

mixture of di�erent areas with di�erent seismic rates (Bak et al., 2002, Corral, 2003,

2004a, Corral and Christensen, 2006). The �rst exponent was found to be close to 1,

whereas the second one was about 2.2; the �ts were done by means of the nonlinear

least-squares Marquardt-Levenberg algorithm from gnuplot, applied to the logarithm

of the log-binned empirical density. Here we apply our more sophisticated method to

updated data for Southern California seismicity, with x = θ .

We use again the relocated Southern California catalog of Hauksson et al., see also

Shearer et al. (2005), but starting in 1984 and ending in June 30th, 2011. This is to

avoid some holes in the catalog for the preceding years. As for earthquake sizes, the

occurrence takes place in a rectangle of coordinates (122�W,30�N), (113�W,37:5�N).

This rectangle is divided into equal parts both in the West-East axis and in the South-

North axis, in such a way that we consider a number of subdivisions of 4 � 4, 8 � 8,

16� 16, and 32� 32. The waiting times for events of magnitude m � 2 in each of these

subdivisions are computed as explained above, resulting in a number of data between

103000 and 104000 in all cases.

For a non-truncated power law, the results are only coherent with the previous reported

ones (exponent around 2.2) for the intermediate cases, i.e., 8� 8 and 16� 16, see Table

2.6 and Fig. 2.9. The disagreement for the other cases can easily be explained. For

4 � 4, the number of resulting subdivisions, 16, seems rather small. As mentioned, in

Corral and Christensen (2006) the power-law tail was explained in terms of a power-law

mixture of exponentials; so, with only 16 regions is possible that the asymptotic behavior

is still not reached. On the other hand, the e�ect of the �nite duration of the catalog

is visible in the 32 � 32 data. Due to the scaling behavior of the distributions (Corral,

2003, 2004a), the possible power-law tail in this case is displaced to larger waiting times;

but the time span of the catalog, about 1010 s, clearly alters this power law, which starts

to bend at about 109 s. Thus, we conclude that a power-law exponent of about � ' 2:2

or 2.3 indeed exists, provided that the number of spatial subdivisions is high enough

and the temporal extension of the catalog is large enough.

When a truncated power-law is �tted, using the method of maximizing the number of

data N , the other power law emerges, but for a range shorter than what the plot of

the densities suggests. The exponent is in a range from 0.95 to 1.04 (except for the

4� 4 cases, in which it is a bit smaller). The largest log-range is 100, i.e., two decades.
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Table 2.6: Results of the �ts with a non-truncated power law and a truncated power
law, maximizing N , for earthquake waiting times calculated for di�erent subdivisions
of Southern California. Di�erent minimum p�values are shown. The total number of

data is above 103000 in any case.

Subdivisions N a (s) b (s) b=a �� � pc
4� 4 124 0.5012 �107 1 1 1.921� 0.085 0.10
8� 8 1671 0.3162 �107 1 1 2.198� 0.031 0.10
16� 16 542 0.3162 �108 1 1 2.324� 0.056 0.10
32� 32 67 0.3162 �109 1 1 4.404� 0.405 0.10

4� 4 124 0.5012 �107 1 1 1.921� 0.085 0.20
8� 8 1671 0.3162 �107 1 1 2.198� 0.031 0.20
16� 16 542 0.3162 �108 1 1 2.324� 0.056 0.20
32� 32 67 0.3162 �109 1 1 4.404� 0.403 0.20

4� 4 77 0.7943 �107 1 1 1.856� 0.098 0.50
8� 8 322 0.1259 �108 1 1 2.231� 0.070 0.50
16� 16 24 0.3162 �109 1 1 4.106� 0.703 0.50
32� 32 67 0.3162 �109 1 1 4.404� 0.449 0.50

4� 4 38765 1995 0.5012 �105 25 0.867� 0.006 0.10
8� 8 39851 316 0.1995 �105 63 0.987� 0.004 0.10
16� 16 44178 7943 0.7943 �106 100 0.956� 0.004 0.10
32� 32 43512 1259 0.1995 �106 158 1.029� 0.003 0.10

4� 4 38765 1995 0.5012 �105 25 0.867� 0.006 0.20
8� 8 39851 316 0.1995 �105 63 0.987� 0.004 0.20
16� 16 39481 7943 0.5012 �106 63 0.950� 0.005 0.20
32� 32 39654 1259 0.1259 �106 100 1.033� 0.004 0.20

4� 4 34113 3162 0.5012 �105 16 0.864� 0.007 0.50
8� 8 39851 316 0.1995 �105 63 0.987� 0.004 0.50
16� 16 39481 7943 0.5012 �106 63 0.950� 0.005 0.50
32� 32 39654 1259 0.1259 �106 100 1.033� 0.004 0.50

The graphical representation of the density seems to indicate that the possible power

law is in
uenced by the e�ect of two crossovers, one for large waiting times, associ-

ated to a change in exponent, and another one for smaller times, where the distribution

becomes 
at. Finally, the method of �tting which maximizes the log-range leads to

results that are similar to the non-truncated power-law case, although sometimes inter-

vals corresponding to very small times are selected. The latter results have no physical

meaning, as correspond to times below 1 s, i.e., below the error in the determination of

the occurrence time.

2.5 Conclusions

For power-law distributions, the �tting and the testing of the goodness of the �t is

a di�cult but very relevant problem in complex-systems science, in general, and in

geoscience in particular. The most critical step is to select, automatically (without
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Figure 2.9: Estimated probability densities and corresponding power-law �ts for the
waiting times of m � 2 in the Southern California catalog, for di�erent spatial subdi-
visions. The values of the density are multiplied by factors 1, 10, 100, and 1000, for

clarity sake.

introducing any subjective bias), where the power-law regime starts and where it ends.

We have explained in detail a conceptually simple but somewhat laborious procedure

in order to overcome some di�culties previously found in the method introduced by

Clauset et al. (2009), see Corral et al. (2011). Our method is summarized in �tting

by maximum likelihood estimation and testing the goodness of �t by the Kolmogorov-

Smirnov statistic, using Monte Carlo simulations. Although these steps are in common

with the Clauset et al.'s (2009) recipe, the key di�erence is in the criterion of selection

of the power-law range. Despite the many steps of these procedures, ours can be easily

implemented, and the resulting algorithms run very fast in current computers. We also

have explained how to estimate properly the probability density of a random variable

which has a power law or a fat-tail distribution. This is important to draw graphical

representations of the results of the �tting (specially in Fig. 5) but it is not required to

perform neither the �ts nor the goodness-of-�t tests.

The performance of the method is quite good, as checked in synthetic power-law datasets,

and the results of the analysis of previously reported power laws are very consistent. We

con�rm a very broad power-law tail in the distribution of the half-lives of the radionu-

clides, with exponent � = 1:09, as well as other power-law regimes in the body of the
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distribution. The results for the power-law exponent of the distribution of seismic mo-

ments worldwide and in Southern California are in agreement with previous estimates,

but in addition our method provides a reliable way to determining the minimum seismic-

moment value for which the Gutenberg-Richter law holds. This can be useful to check

systematically for the completeness thresholds of seismic catalogs. For the energy dissi-

pated by tropical cyclones, measured roughly through the PDI, we con�rm the power-law

behavior in the body of the distribution previously reported, with exponents close to

one. We also survey new results for the Southern Indian Ocean, but with a higher

power-law exponent. In contrast, for the case of the area a�ected by forest �res in an

Italian catalog, we obtain power-law-distributed behavior only for rather small windows

of the burnt area, containing a very few number of �res. Finally, for the waiting times

between earthquakes in di�erent subdivisions of Southern California we conclude that

the power-law behavior of the tail is very delicate, a�ected either by a small number of

subdivisions, when the size of those is large, or by the �nite duration of the record, which

introduces a sharp decay of the distribution when the number of subdivisions is high.

For the body of the distribution another power law is found, but the range is limited by

crossovers below and above it. We conclude that, in general, the method for truncated

power laws works better when the number of data in the power-law range is maximized.

When the quantity that is maximized is the logarithmic range (b=a) the �tting range can

jump between di�erent regimes. Also, the selection of a p�value above 0.50 seems too

strict sometimes, and values about 0.10 or 0.20 are more useful. Naturally, the methods

studied in this paper can be directly applied to the overwhelming number of fat-tailed

distributions reported during the last decades in geoscience.





Chapter 3

Universality of rain event size

distributions

Journal of Statistical Mechanics: Theory and

Experiment. P11030 (2010)

This chapter contains the following paper (a copy of the published version can be found

in Chapter 8).

Peters O, Deluca A, Corral A, Neelin JD, Holloway C E. Universality of rain event size

distributions. Journal of Statistical Mechanics: Theory and Experiment. P11030 (2010).

DOI: 10.1007/s10955-010-0039-0.

Abstract We compare rain event size distributions derived from measurements in cli-

matically di�erent regions, which we �nd to be well approximated by power laws of

similar exponents over broad ranges. Di�erences can be seen in the large-scale cuto�s

of the distributions. Event duration distributions suggest that the scale-free aspects are

related to the absence of characteristic scales in the meteorological

PACS 05.65.+b, 05.70.Jk, 64.60.Ht

3.1 Introduction

Atmospheric convection and precipitation have been hypothesised to be a real-world

realization of self-organized criticality (SOC). This idea is supported by observations

of avalanche-like rainfall events (Andrade et al., 1998, Peters et al., 2002) and by the

61
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nature of the transition to convection in the atmosphere (Neelin et al., 2009, Peters

and Neelin, 2006). Many questions remain open, however, as summarized below. Here

we ask whether the observation of scale-free avalanche size distributions is reproducible

using data from di�erent locations and whether the associated �tted exponents show

any sign of universality.

Many atmospheric processes are characterized by long-range spatial and temporal cor-

relation, and by corresponding structure on a wide range of scales. There are two com-

plementary explanations why this is so, and both are valid in their respective regimes:

structure on many scales can be the result of di�erent processes producing many char-

acteristic scales (Bodenschatz et al., 2010, Klein, 2010); it can also be the result of an

absence of characteristic scales over some range, such that all intermediate scales are

equally signi�cant (Barenblatt, 1996). The latter perspective is relevant, for instance,

in critical phenomena and in the inertial subrange of fully developed turbulence.

Processes relevant for precipitation are associated with many di�erent characteristic

time and spatial scales, see e.g. Ref. (Bodenschatz et al., 2010). The list of these scales

has a gap, however, from a few km (a few minutes) to 1,000 km (a few days), spanning

the so-called mesoscale, and it is in this gap that the following arguments are most likely

to be relevant.

The atmosphere is slowly driven by incident solar radiation, about half of which is

absorbed by the planet's surface, heating and moistening the atmospheric boundary

layer; combined with radiative cooling at the top of the troposphere this creates an

instability. This instability drives convection, which in the simplest case is dry. More

frequently, however, moisture and precipitation play a key role. Water condenses in

moist rising air, heating the environment and reinforcing the rising motion, and often,

the result of this process is rainfall. The statistics of rainfall thus contain information

about the process of convection and the decay towards stability in the troposphere. A

common situation is conditional instability, where saturated air is convectively unstable,

whereas dry air is stable. Under-saturated air masses then become unstable to convection

if lifted by a certain amount, meaning that relatively small perturbations can trigger

large responses.

Since driving processes are generally slow compared to convection, it has been argued

that the system as a whole should typically be in a far-from equilibrium statistically

stationary state close to the onset of instability. In the parlance of the �eld this idealized

state, where drive and dissipation are in balance, is referred to as \Quasi-Equilibrium"

(QE) (Arakawa and Schubert, 1974). In Ref. (Peters and Neelin, 2006), using satellite

data over tropical oceans, it was found that departures from the point of QE into the

unstable regime can be described as triggering a phase transition whereby large parts
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of the troposphere enter into a convectively active phase. Assuming that the phase

transition is continuous, the attractive QE state would be a case of SOC { a critical

point of a continuous phase transition acting as an attractor in the phase space of a

system (Dickman et al., 1998, Tang and Bak, 1988).

The link between SOC and precipitation processes has also been made by investigating

event size distributions in a study using data from a mid-latitude location (Peters et al.,

2002). Both the tropical data in Ref. (Peters and Neelin, 2006) and the mid-latitude

data in Ref. (Peters et al., 2002) support some notion of SOC in precipitation processes,

but the climatologies in these regions are very di�erent. Rainfall in the mid-latitudes

is often generated in frontal systems, whereas in the tropics, much of the precipitation

is convective, supporting high rain rates. It is not a priori clear whether these di�er-

ences are relevant to the SOC analogy, or whether they are outweighed by the robust

similarities between the systems. For instance, drive and dissipation time scales are well

separated also in the mid-latitudes. In time series from Sweden the average duration of

precipitation events was found to be three orders of magnitude smaller than the average

duration of dry spells (Olsson et al., 1993). It is therefore desirable to compare identical

observables from di�erent locations.

Scale-free event size distributions suggest long-range correlation in the system, which in

turn hints at a continuous transition to precipitation. Similar e�ects, however, can also

result directly from a complex 
ow �eld, as was shown in simulations using randomized

vortices and passive tracers (Dickman, 2003). Since the 
uid dynamics is complex enough

to generate apparent long-range correlation, and it is di�cult from direct observation to

judge whether the transition is continuous, we cannot rule out a discontinuous jump.

This uncertainty is mirrored in parameterizations of convection. The spatial resolution of

general circulation models is limited by constraints in computing power to about 100 km

in the horizontal. Dynamically there is nothing special about this scale, and the approach

in climate modeling for representing physical processes whose relevant spatial scales are

smaller is to describe their phenomenology in parameterizations. Parameterizations of

convection and precipitation processes often contain both continuous and discontinuous

elements. For instance, the intensity of convection and precipitation typically depends

continuously on a measure of convective plume buoyancy (such as convective available

potential energy) and water vapor content (Arakawa and Schubert, 1974, Betts and

Miller, 1986), but sometimes a discontinuous threshold condition is introduced to decide

whether convection occurs at all (Neelin et al., 2008).
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3.2 Data sets

We study rain data from all 10 available sites of the Atmospheric Radiation Measurement

(ARM) Program, see www.arm.gov, over periods from about 8 months to 4 years, see

Table 1. Precipitation rates were recorded at one-minute resolution, with an optical

rain gauge, Model ORG-815-DA MiniOrg (Optical Scienti�c, Inc.) (Ritsche). Data were

corrected using the ARM Data Quality Reports (Program), and rates below 0.2 mm/h

were treated as zero measurements, as recommended by the ARM Handbook (Ritsche),

see Figure 3.1.

The measurements are from climatically di�erent regions using a standardized technique,

making them ideal for our purpose. Three sites are located in the Tropical Western

Paci�c (Manus, Nauru and Darwin), known for strong convective activity. Niamey is

subject to strong monsoons, with a pronounced dry season. Heselbach is a mid-latitude

site with an anomalously large amount of rainfall due to orographic e�ects. Rainfall in

Shouxian is mostly convective in the summer months, which constitute most of the data

set. Graciosa Island in the Azores archipelago is a sub-tropical site, chosen for the ARM

program to study precipitation in low clouds of the marine boundary layer.

Three data are less straight-forward: The Point Reyes measurements speci�cally tar-

get Marine Stratus clouds, which dominate the measurement period and are known to

produce drizzle in warm-cloud conditions (without ice phase). Unfortunately the mea-

surements only cover six months, and it is unclear whether observed di�erences are

due to the di�erent physics or to the small sample size. The Southern Great Plains

(SGP) measurements su�er from a malfunction that led to apparent rain rates of about

0.1 mm/h over much of the observation period. The problem seems to be present in

most other data sets but is far less pronounced there, see Figure 3.1. Measurements

at temperatures below 3�C were discarded as these can contain snow from which it is

di�cult to infer equivalent rates of liquid water precipitation. The North Slope of Alaska

(NSA) data set contains mostly snow; it is included only for completeness.

None of the data sets showed signi�cant seasonal variations in the scaling exponents. In

the Point Reyes, SGP and NSA data we found slight variations but could not convince

ourselves that these were signi�cant. Data from all seasons are used.
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Figure 3.1: Probability (relative frequency) density of precipitation rate, r in mm/h.
The vertical line indicates the lower intensity cuto� at 0.2 mm/h. Smaller rain rates are
treated as zero. The peak around 0.1 mm/h, most pronounced in the Southern Great
Plains data, is due to a malfunction of the instrument. The Alaska data set contains

mostly snow and is included only for completeness.
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Figure 3.2: Probability densities of event sizes, s in mm, and a power-law �t (black
straight line).

Inset: Precipitation rates from Niamey, including two rain events lasting 7 and 15
minutes respectively. Interpreting reported rain rates of less than 0.2 mm/h as zero,

the shaded areas are the corresponding event sizes.

3.3 Event sizes

The data used here are (0+1)-dimensional time series, whereas the atmosphere is a

(3+1)-dimensional system. We leave the question unanswered which spatial dimensions

are most relevant { the system becomes vertically unstable, but it also communicates in

the two horizontal dimensions through various processes (Neelin et al., 2009).

Following Ref. (Peters et al., 2002), we de�ne an event as a sequence of non-zero mea-

surements of the rain rate, see inset in Figure 3.2. The event size s is the rain rate, r(t),

integrated over the event, s =
R

event dt r(t). The dimension of this object is [s] =mm,

specifying the depth of the layer of water left on the ground during the event. One mm

corresponds to an energy density of some 2500 kJ/m2 released latent heat of conden-

sation. If the rain rate were known over the area covered by the event, then the event

size could be de�ned precisely as the energy released during one event. Since spatial

information is not available, it is ignored in our study.

For each data set, the probability density function Ps(s) in a particular size interval

[s; s + �s) is estimated as Ps(s) � n(s)=(N�s), where n(s) is the number of events in

the interval and N the total number of events. We use (s + �s)=s = 101=5 � 1:58, i.e.

5 bins per order of magnitude in s. Standard errors are shown, for Ps(s): assuming
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Poissonian arrivals of events in any given bin, the error in n(s) is approximated byp
n(s).

3.4 SOC scaling

Studies of simple SOC models that approach the critical point of a continuous phase

transition focus on avalanche size distributions, which we liken to rain event sizes. Criti-

cal exponents are derived from �nite-size scaling, that is, the scaling of observables with

system size (as opposed to critical scaling, the scaling of observables with the distance

from criticality). In SOC models, moments of the avalanche size distribution scale with

system size L like D
sk
E
/ LD(1+k��s) for k > θs � 1; (3.1)

de�ning the exponent D, sometimes called the avalanche dimension, and the exponent

θs, which we call the avalanche size exponent. Equation 3.1 is consistent with probability

density functions Ps(s) of the form

Ps(s) = s��sGs(s=s�) for s > sl (3.2)

where s� = LD, and the scaling function Gs(s=s�) falls o� very fast for large arguments,

s=s� > 1, and is constant for small arguments, s=s� � 1, down to a lower cuto�,

s = sl, where non-universal microscopic e�ects (e.g. discreteness of the system) become

important.

Assuming that we have observations from an SOC system, and that a signi�cant part

of the observed avalanche sizes are in the region sl < s� s�, we expect to �nd a range

of scales where the power law

Ps(s) = Gs(0)s��s (3.3)

holds. Under su�ciently slow drive the exponent θs is believed to be robust in SOC

models (Alava et al., 2008, Pruessner and Peters, 2008). We infer event size distributions

like in Ref. (Peters et al., 2002) from measurements in di�erent locations and compare

values for the apparent avalanche size exponent θs. As a �rst step to assess the validity

of Equation 3.3 we produce log-log plots of Ps(s) vs. s and look for a linear regime,

Figure 3.2. Since the study of critical phenomena is a study of limits that cannot be

reached in physical systems, the �eld is notorious for debates regarding the signi�cance of

experimental work, which is especially true for SOC. While an element of interpretation

necessarily remains, we devise methods to maximize the objectivity of our analysis.
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Figure 3.3: (a) Event size distributions shifted along the supposed power laws to
collapse the loci of the cuto�s. (b) Inferred scaling function Gs, using θs = 1:17 for all
data sets. By far the largest deviations from a common scaling function are observed

for the unreliable data sets, Alaska (NSA) and Southern Great Plains (SGP).

In our data sets, time series of rain rates from di�erent locations, we interpret the

upper limit s� of the scale-free range as an e�ective system size. We cannot control this

size; nonetheless the scaling hypothesis, Equation 3.2, can be tested using appropriate

moment ratios (Rosso et al., 2009). For instance, s� /


s2
�
=hsi, provided sl � s�.

Hence, to account for changes in e�ective system sizes the s-axis in Figure 3.2 can be

rescaled to shsi=


s2
�
, see Figure 3.3(a). This collapses the loci of the large-scale cuto�s.

The Ps(s)-axis is rescaled by


s2
�2
= hsi3 / s�� , so that Figure 3.3(a) shows the curves

of Figure 3.2 shifted along their supposed power-laws, without having to estimate any

parameters. The curves are neither normalized nor do they collapse vertically { the

degree of vertical collapse is comparable to that in Figure 3.2. Plotting Ps(s)s
�s against

the rescaled variable shsi=


s2
�

produces Figure 3.3(b) of the scaling function Gs(s=(as�)),

where a is the proportionality constant relating s� to the moment ratio. This has the

advantage of reducing the logarithmic vertical range, which makes it possible to see

di�erences in the distributions that would otherwise be concealed visually. Figure 3.3(a)

covers 9 orders of magnitude vertically, whereas 3.3(b) covers little more than 2.

3.5 Exponent estimation and goodness of fit

For a detailed discussion, see 3.9. We apply a form of Kolmogorov-Smirnov (KS) test

(Press et al., 2002) similar to that in Ref. (Clauset et al., 2009). First, a �tting range

[smin; smax] is selected. In this range the maximum-likelihood value for θs in Equation 3.3

is found. Next, the maximum di�erence between the empirical cumulative distribution

in this range and the cumulative distribution corresponding to the best-�t power law is
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found. The same measure is applied to synthetic samples of data (each with the same

number of instances), generated from the best-�t power-law distribution. This yields

the \p"-value, i.e. the fraction of samples generated from the tested model (the best-�t

power law) where at least such a di�erence is observed. We stress that each synthetic

data set is compared to its own maximum-likelihood power-law distribution, i.e. an

exponent has to be �tted for each sample, so that no bias be introduced.

We keep a record of the triplet (smin; smax; θs) if the p�value is greater than 10% (our

arbitrarily chosen threshold). After trying all possible �tting ranges with smin and smax

increasing by factors of 100:01, we select the triplet which maximizes the number �N of

data between smin and smax.

The distributions in Figure 3.2 are visually compatible with a power law (black straight

line) over most of their ranges. The procedure consisting of maximum-likelihood estima-

tion plus a goodness-of-�t test con�rms this result: over ranges between 2 and 4 orders of

magnitude, all data sets are consistent with a power-law distribution and the estimates

of the apparent exponents are in agreement with the hypothesis of a single exponent

θs = 1:17(3), brackets indicating the uncertainty in the last digit, except for the three

problematic data sets from Point Reyes, the Southern Great Plains and Alaska. The

complete results are collected in Table 3.2. While the best-�t exponents in this table

are surprisingly similar (given the climatic di�erences between the measuring sites), the

error estimates are unrealistically small. Taking the statistical results literally, we would

have to conclude that the exponents are very similar but mutually incompatible (e.g.

θs
Manus = 1:18(1) and θs

Nauru = 1:14(1)) suggesting that θs is not universal. On phys-

ical grounds we do not believe this conclusion because systematic errors arising from

the measurement process, the introduction of the sensitivity threshold, binning during

data recording etc., are likely to be much larger than the purely statistical errors quoted

here. For example, Ref. (Peters et al., 2002) used a di�erent type of measurement with a

smaller sensitivity threshold and led to a best estimate for the exponent of 1.36. Further-

more, the apparent exponent can only be seen as a rough estimate of any true underlying

exponent. We tested that, �xing θs = 1:17, all data sets yield p > 10% over a range

larger than two and a half orders of magnitude, except for the three problematic data

sets. A two-sample Kolmogorov-Smirnov test for all pairs of datasets further con�rms

the similarity of the distributions for the di�erent sites, 3.10.

In Figure 3.4(a) we show a color plot of all triplets (smin; smax; θs), corresponding to the

Manus dataset. There is a large plateau where θs � 1:17, indicating that this value is

the best estimate for many intervals. Figure 3.4(b) is an analogous plot for the p�value,

showing that the goodness of the �t is best in the region of the plateau.
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Figure 3.4: (a) Color map showing the best-�t value for the exponent θs for all pairs
of smin and smax, (lower and upper ends of the chosen �tting range in mm) for the
Manus dataset. The large plateau corresponds to θs � 1:17. (b) Analogous plot for the

p�value.

Table 3.2: Avalanche size exponent θs for all sites (last column). Lower and upper end
of �tting range (in mm), logarithmic range smax=smin, number of events N , number of
events in �tting range �N , and a moment ratio proportional to the cuto� sξ are shown.

Brackets () denote errors in the last digit, determined by jackknife (Efron, 1982).

Site smin smax smax=smin N N


s2
�
= hsi (er) θs(er)

Manus 0.0069 18.7 2719. 11981 9320 53.(1) 1.19(1)
Nauru 0.0066 4.7 704. 5134 3996 37.(1) 1.14(1)
Darwin 0.0067 21.6 3230. 2883 2410 50.(1) 1.16(1)
Niamey 0.0041 55.0 13500. 262 232 25.(2) 1.19(3)
Heselbach 0.0072 1.4 195. 2439 1764 13.(1) 1.18(2)
Shouxian 0.0037 2.5 677. 480 406 39.(2) 1.19(3)
Graciosa 0.0069 1.0 148. 3066 2260 14.4(3) 1.16(1)
NSA 0.0205 5.9 288. 9097 6030 47.(1) 1.01(1)
Pt. Reyes 0.0062 66.7 10796. 579 427 37.(2) 1.40(2)
SGP 0.0062 58.8 9463. 1624 1196 27.(1) 1.40(2)

Climatic di�erences between regions are scarcely detectable in event size distributions,

which may be surprising on the grounds of climatological considerations. However, the

cuto� s�, representing the capacity of the climatic region around a measuring site to

generate rain events, changes signi�cantly from region to region, con�rming meteorolog-

ical intuition. This is di�cult to see in the logarithmic scales of Figure 3.2 but is easily

extracted from the moments of the distributions, Table 3.2. Thus, the smallest cuto�

(and likely maximum event size) in the ARM data is found in Heselbach (mid-latitudes),

whereas the largest is in Manus (Western Paci�c warm pool). We note that


s2
�
= hsi is

only proportional to the actual cuto� s�. Assuming a box function for the scaling func-

tion and using the value θs = 1:17, we can estimate the proportionality constant and

�nd s� � 2:2


s2
�
= hsi. With this estimate, none of the �tting ranges extends beyond
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Figure 3.5: (a) Probability densities for dry spell durations (in min). The diurnal cycle
is most pronounced in Niamey, otherwise the distributions are similar. (b) Distributions

collapsed onto their scaling function, similar to Figure 3.3(b).

the cuto�.

3.6 Dry spells

The durations of precipitation-free intervals have also been reported to follow an approx-

imate power law (Lavergnat and Gol�e, 1998, Peters et al., 2002). We therefore repeat

for dry-spell durations the same analysis as for the event sizes. Figure 3.5(a) shows the

distributions, with a collapse corresponding to Figure 3.3(b) in Figure 3.5(b). We notice

the di�erent strengths of the diurnal cycle, here visible as a relative peak near 1 day dry

spell duration. Exponents �tted to the distributions are similar, see Table 3.3. They also

agree with the analyses in Ref. (Lavergnat and Gol�e, 1998), where a double-power-law

�t was performed. For dry spell durations between a few seconds and a few hours the

authors found an exponent value of 1.35. The second, smaller, exponent for longer dry

spells found in that study may re
ect the signal from the diurnal cycle. This signal is

strong in Ref. (Peters et al., 2002), where a single-power-law �t yielded an exponent

estimate of 1.42.

3.7 Event durations

Precipitation event duration distributions are broad for all locations. Durations provide

a link to studies of geometric properties of precipitation �elds. Numerous studies of

tropical deep convective rain �elds (Peters et al., 2009), shallow convection �elds (Trivej
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and Stevens, 2010), clouds (Benner and Curry, 1998, Cahalan and Joseph, 1989, Mapes

and Jr., 1993), and model data from large eddy simulations (Neggers et al., 2003) have

reported the distributions of ground covered by events (in radar snap shots etc.) to be

well approximated by power laws. We note that in the clustering null model of critical

two-dimensional percolation, clusters de�ned in one-dimensional cuts, akin to durations,

do not scale, whereas two-dimensional clusters, akin to cloud-projections, do.

Applying to the durations the methods we used for the event sizes, we �nd comparatively

short power-law ranges, see Table 3.4. The scaling range, if it exists, is expected to be

smaller than for event sizes as the size distribution is a complicated convolution of the

event duration and precipitation rate distributions, Figure 3.1, whose product covers

a broader range than either of the distributions alone. The event size distribution is

broader than the duration distribution also because long events tend to be more intense

(not shown).

3.8 Conclusions

We �nd that the apparent avalanche size exponents, measured with identical instruments

in di�erent locations, are consistent with a single value of θs = 1:17(3) for all reliable

data sets. We note that the data sets from Point Reyes and from the Southern Great

Plains are similar in many respects, despite the di�erent reasons for treating them with

suspicion.

Table 3.3: Dry spell exponent (last column). Lower and upper end of �tting range
(in min), logarithmic range tdmax=tdmin, number of dry spells in data set, N , and
number of dry spells in the �tting range �N , and a moment ratio proportional to the
cuto� are shown are shown. Brackets () denote errors in the last digit, determined by
jackknife. The number of dry spells need not be within �1 of the number of events,
as our de�nition of an event (and a dry spell) implies that it can be split in two if it
contains an erroneous measurement. Note the magnitude of this e�ect in the NSA data

set.

Site tdmin tdmax tdmax=tdmin N N


td

2
�
= htdi (er) θd(er)

Manus 24.4 1363.1 55.8 11992 4505 2149.(20) 1.16(2)
Nauru 7.5 1027.5 137.7 5126 2912 3557.(50) 0.99(2)
Darwin 8.5 3660.6 432.6 2892 1595 19477.(368) 1.17(1)
Niamey 2.4 1774.0 726.1 262 135 26386.(1699) 1.33(5)
Heselbach 9.5 5748.0 605.4 2441 1035 2043.(34) 1.37(2)
Shouxian 2.7 13488.5 4957.1 478 365 8776.(404) 1.27(3)
Graciosa 14.6 415.2 28.5 3068 1185 2943.(49) 1.28(3)
NSA 12.2 9033.2 739.7 3440 1531 4293.(73) 1.3(2)
Pt. Reyes 3.6 17141.0 4826.3 579 379 5513.(233) 1.27(2)
SGP 8.4 2248.7 268.5 1625 523 17243.(463) 1.46(3)
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Figure 3.6: (a) Probability densities for event durations (in min) are broad for all data
sets. From a few min up to a few hundred min a power law with an exponent θm � 2:0

roughly describes the data. (b) Collapsed distributions, similar to Figure 3.3(b).

Table 3.4: Duration exponent (last column). Lower and upper end of �tting range
(in min), logarithmic range twmax=twmin, number of events in data set, N , and number
of events in the �tting range �N are shown. Brackets () denote errors in the last digit,

determined by jackknife.

Site twmin twmax twmax=twmin N N


tw

2
�
= htwi θw(er)

Manus 34.4 641.9 18.7 11981 1200 122.(1) 2.12(4)
Nauru 25.4 437.5 17.2 5134 540 106.(1) 2.09(6)
Darwin 17.87 89.30 5.00 2883 554 109.(2) 2.0(1)
Niamey 2.7 211.8 78.4 262 157 79.(5) 1.39(7)
Heselbach 18.2 1005.0 55.1 2439 388 261.(5) 1.97(6)
Shouxian 7.7 197.5 25.5 480 172 84.(4) 1.73(9)
Graciosa 12.7 424.0 33.4 3066 512 60.(1) 2.12(6)
NSA 75.2 103.3 1.4 9097 16 49.(1) 6.(3)
Pt. Reyes 5.7 784.0 138.6 579 178 272.(1) 1.71(7)
SGP 9.4 278.2 29.7 1624 303 143.(4) 1.74(7)

The statistical error in this estimate is surprisingly small, but neither the value itself

nor the error change much using di�erent �tting techniques or introducing di�erent

sensitivity thresholds (not shown). Nonetheless we believe systematic errors to be larger.

Thus, the analysis gives an impression of the universality of the result but not necessarily

the physical \true" value of the exponent. This does not contradict the climatological

situation { tropical regions, for instance, are expected to support larger events than

mid-latitude locations, which could be realized as a smaller exponent value θs. While

the exponents are not signi�cantly di�erent, the larger tropical events are re
ected

in the greater large-scale cuto� of the tropical distributions. Similarly, the dry-spell

durations seem to follow another power law with θd = 1:2(1), and regional di�erences

can be seen in the strength of the diurnal cycle and the cuto� dry spell duration. The

broad range of event durations, Figure 3.6, suggests a link to the lack of characteristic
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scales in the mesoscale regime, where approximately scale-free distributions of clusters

of convective activity, for example cloud or precipitation, have been observed to span

areas between O(1 km2) and O(106 km2) (Benner and Curry, 1998, Cahalan and Joseph,

1989, Neggers et al., 2003, Peters et al., 2009, Trivej and Stevens, 2010). The observation

of scale-free rainfall event sizes suggests long-range correlation in the pertinent �elds, a

possible indication of critical behaviour near the transition to convective activity. Direct

measurements of the behaviour of the correlation function for the precipitation �eld

under changes of the (much more slowly varying) background �elds of water vapour and

temperature are desirable to clarify whether the long range correlation is a consequence

of the 
ow �eld, of the proximity to a critical point, or of a combination of both.

3.9 Appendix: Fitting procedure

In order to obtain reliable values of, for example, the exponent θs, independent of the

binning procedure used for the plots of Ps(s), we use maximum likelihood estimation.

We assume a power-law distribution Ps(s) = a�ss
��s , with support [smin; smax]. Nor-

malization yields a�s = (1� θs)=(s1��s
max � s1��s

min ) for a given value of θs.

We compute the log-likelihood function,

L := ln

�NY

i=1

Ps(si) =

�NX

i=1

ln
�
a�ssi

��s� (3.4)

where the index i runs over all �N events whose size si is between smin and smax. Holding

smin and smax �xed, the value of θs which maximizes L is the maximum likelihood

estimate of the exponent. Uncertainties in θs are determined using the jackknife method.

The goodness of the �t is assessed by a Kolmogorov-Smirnov (KS) test (Press et al.,

2002). The KS statistic, or KS distance, d, is de�ned as

d := max
smin�s�smax

jS �N (s)� Fs(s)j (3.5)

where S �N (s) denotes the empirical cumulative distribution, de�ned as the fraction of

observed events with a size smaller than s, in the interval [smin; smax]. Thus, ordering

the observed values by size, s1 � � � � � si � si+1 � � � � s �N , we have S �N (s) = i= �N

if si < s � si+1; Fs denotes the cumulative distribution of the maximum-likelihood

distribution, Fs(s) :=
R s
smin

Ps(t)dt.

The KS distance translates into the p�value. The p�value is the probability that syn-

thetic data, here drawn from a power law distribution with exponent θs, result in a
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KS-distance of at least d. For instance, p = 10% means that for power-law distributed

data with exponent θs there is a probability of 0.90 that the KS distance takes a value

smaller than d. Thus, if the data really are generated by a power law and we decide to

reject the power law as a model if p < 10%, we will reject the correct model in 10% of

our tests. Conversely, decreasing the limit of rejection in the p�value implies that we

accept more false models.

In our implementation of the KS test the distribution to be tested, Ps(s), is not inde-

pendent of the empirical data. This is because the exponent θs is obtained from the

data that are later used to test the distribution. We therefore cannot use the standard

analytic expression for p(d), see Ref. (Press et al., 2002), Ch. 15. Instead, we determine

the distribution of the KS distance and therefore the p�value by means of Monte Carlo

simulations: we generate synthetic power-law-distributed data sets between smin and

smax with exponent θs and number of data �N (see Table 3.2), and proceed exactly in the

same way as for the empirical data, �rst obtaining a maximum likelihood estimate of

the exponent θs and then computing the KS distance between the empirical distribution

of the simulated data and the �tted distribution containing the estimated value of θs.

The p�value is obtained as the fraction of synthetic data sets for which the KS statistic

is larger than the value obtained for the empirical data.

The �nal step is to compare results for di�erent ranges [smin; smax]. We try all possible

�tting ranges with smin and smax increasing by factors of 100:01 � 1:023. We choose to

report those intervals [smin; smax] that contain the largest number of events �N with a

corresponding p�value larger than 10%.

3.10 Appendix: Two-sample Kolmogorov-Smirnov Tests

A two-sample Kolmogorov-Smirnov test was performed for each pair of data sets, i; j

to test whether the two underlying event size probability distributions di�er. This test

does not assume any functional form for the probability distributions (Press et al., 2002).

As in the �tting of the exponent, we vary the testing ranges [smin; smax], keeping those

which yield p > 10%. We report the range with the maximum e�ective number of data,

�Ne� � �Ni
�Nj=( �Ni + �Nj). The results, shown in Table 3.5, con�rm that the pairs of

distributions from the reliable data sets are similar over broad ranges.
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Chapter 4

Scale Invariant Events and Dry

Spells for Medium Resolution

Local Rain Data

Submitted to Nonlinear Processes in

Geophysics

Abstract We analyze distributions of rain-event sizes, rain-event durations, and dry-

spell durations for data obtained from a network of 20 rain gauges scattered in a region

of the NW Mediterranean coast. While power-law distributions model the dry-spell

durations with a common exponent 1:50�0:05, density analysis is inconclusive for event

sizes and event durations, due to �nite size e�ects. However, we present alternative

evidence of the existence of scale invariance in these distributions by means of di�erent

data collapses of the distributions. These results are in agreement with the expectations

from the Self-Organized Criticality paradigm, and demonstrate that scaling properties

of rain events and dry spells can also be observed for medium resolution rain data.

4.1 Introduction

The complex atmospheric processes related to precipitation and convection arise from

the cooperation of diverse non-linear mechanisms with di�erent temporal and spatial

characteristic scales. Precipitation combines, for instance, the O(100�m) microphysics

e�ects as evaporation with O(1000km) planetary circulation of masses and moisture.

Rain �elds also presents high spatial and temporal intermittency as well as extreme

79
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variability, in such a way that their intensity cannot be characterized by its mean value

(Bodenschatz et al., 2010). Despite the complexity of the processes involved, surprising

statistical regularities have been found: numerous geometric and radiative properties

of clouds present clear scaling or multiscaling behavior (Cahalan and Joseph, 1989,

Lovejoy, 1982, Peters et al., 2009, Wood and Field, 2011); also, raindrop arrival times

and raindrop sizes, are well characterized by power-law distributions over several of

orders of magnitude (Lavergnat and Gol�e, 2006, Olsson et al., 1993).

The concept of self-organized criticality (SOC) aims for explaining the origin of the

emergence of structures across many di�erent spatial and temporal scales in a broad

variety of systems (Bak, 1996, Christensen and Moloney, 2005, Jensen, 1998, Sornette,

2004). Indeed, it has been found that for diverse phenomena that take place intermit-

tently, in terms of bursts of activity interrupting larger quiet periods, the size s of these

bursty events or avalanches follows a power-law distribution,

P (s) / 1

s�s
; (4.1)

over a certain range of s, with P (s) the probability density of the event size and θs its

exponent (and the sign / indicating proportionality). The size s can be understood

as a measure of energy dissipation. If durations of events are measured, a power-law

distribution also holds. These power-law distributions provide an unambiguous proof

of the absence of characteristic scales within the avalanches, as power laws are the only

fully scale-invariant functions (Christensen and Moloney, 2005).

The main idea behind SOC is the recognition that such scale invariance is achieved

because of the existence of a non-equilibrium continuous phase transition whose critical

point is an attractor of the dynamics (Dickman et al., 1998, 2000, Tang and Bak, 1988).

When the system settles at the critical point, scale invariance and power-law behavior

are ensured, as these peculiarities are the de�ning characteristics of critical phenomena

(Christensen and Moloney, 2005). Although sometimes SOC is understood in a broader

sense, as the spontaneous emergence of scale invariance, we will follow the previous

less-ambiguous de�nition. The concept of SOC has had big impact in the geosciences,

in particular earthquakes (Bak, 1996, Sornette and Sornette, 1989), landslides and rock

avalanches (Malamud, 2004), or forest �res (Malamud et al., 1998). Due to the existence

of power-law distributed events in them, these systems have been proposed as realizations

of SOC in the natural world.

The SOC perspective has also been applied to rainfall, looking at precipitation as an

avalanche process, and paying attention to the properties of these avalanches, called

rain events. The �rst works following this approach are those of Andrade et al. (1998)

and Peters et al. (2002; Peters and Christensen 2002, 2006). These authors de�ned,



Chapter 4. Scale Invariant features for Medium Resolution Local Rain Data 81

independently, a rain event as the sequence of rain occurrence with rain rate (i.e., the

activity) always greater than zero. Then, the focus of the SOC approach is not on the

total amount of rain recorded in a �xed time period (for instance, one hour, one day, or

one month), but on the rain event, which is what de�nes in each case the time period of

rain-amount integration. In this way, the event size is the total amount of rain collected

during the duration of the event.

Andrade et al. studied long-term daily local (i.e., zero-dimensional) rain records from

weather stations in Brazil, India, Europe, and Australia, with observation times rang-

ing from a decade to a century approximately, with detection threshold 0.1 mm/day.

Although the dry spells (the times between rain events) seemed to follow in some case

a steep power-law distribution, the rain-event size distributions were not reported, and

therefore the connection between SOC and rainfall could not really be checked. Later,

Peters et al. analyzed high resolution rain data from a vertically pointing Doppler radar

situated in the Baltic coast, which provided rates at an altitude between 250 m and 300

m above sea level, covering an area of 70 m2, with detection threshold 0.0005 mm/hour

and temporal resolution of 1 minute. Power-law distributions for event sizes and for

dry-spells durations over several orders of magnitude were reported, with exponents

θs ' θq ' 1:4. For the event-duration distribution the results were unclear, although a

power law with an exponent θd ' 1:6 was �t to the data.

More recently, a study covering 10 sites across di�erent climates has checked the univer-

sality of rain-event statistics using rain data from optical gauges (Peters et al., 2010).

The data had a resolution of 0:2 mm/hr, collected at intervals of 1 minute. The results

showed unambiguous power-law distributions of event sizes, with apparent universal ex-

ponents θs = 1:17�0:03, extending the support to the SOC hypothesis in rainfall. Power

laws distributions were also found for the dry spell durations, but for event durations

the behavior was not so clear.

Nevertheless, scale-free distributions of the observables are insu�cient evidence for SOC

dynamics, as there are many alternative mechanisms of power-law genesis (Dickman,

2003, Sornette, 2004). In other words, SOC implies power laws, but the reciprocal

is not true, power laws are not a guarantee of SOC. In particular, the multifractal

approach can also reproduce scale invariance, but using di�erent observables. When

applied to rainfall, this approach focus on the rain rate �eld, which is hypothesized to

have multifractal support as a result from a multiplicative cascade process. From this

point of view, alternative statistical models new forecasting and downscaling methods

have emerged (Deidda et al., 2000, Lovejoy and Schertzer, 1995, Veneziano and Lepore,

2012).
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In general, one can distinguish between continuous and within-storm multifractal anal-

ysis. The �rst one considers the whole rain rate time series (including dry spells), while

the second one analyzes just rain rate time series within storms. This requires a storm

de�nition, which usually contains dry periods too, but with duration smaller than a cer-

tain threshold. The connections between SOC and the multifractal approach are still an

open question, despite some seminal works (Hooge et al., 1994, Olami and Christensen,

1992, Schertzer and Lovejoy, 1994). We expect that these connections could be devel-

oped more in depth from the within-storm multifractal approach, which presents more

similarities with the SOC one; however, such an ambitious goal is beyond the scope of

this article.

Coming back to the problem of SOC in rainfall, a more direct approach was undertaken

by Peters and Neelin (2006). They analyzed satellite estimates of rain rate and vertically

integrated (i.e., column) water vapour content in grid points covering the tropical oceans

(with a 0:25� spatial resolution in latitude and longitude) from the Tropical Rainfall

Measuring Mission, and they found a sharp increase of the rain rate when a threshold

value of the water vapor was reached, in the same way as in critical phase transitions.

Moreover, these authors showed that most of the time the state of the system was close

to the transition point (i.e., most of the measurements of the water vapor correspond to

values near the critical one), providing convincing observational support of the validity

of SOC theory in rainfall. Further, they connected these ideas with the classical concept

of quasi-equilibrium for atmospheric convection (Arakawa and Schubert, 1974), allowing

the application of the SOC ideas in cloud resolving model development (Stechmann and

Neelin, 2011). Remarkably, as far as we know, an analogous result has not been found in

other claimed SOC natural systems, as earthquakes or forest �res; this would imply that

the result of Peters and Neelin is the �rst unambiguous proof of SOC in these systems.

In any case, the existence of SOC in rainfall posses many questions. As we have seen,

the number of studies addressing this is rather limited, mostly due to the supposed

requirement that the data has to be of very high time and rate resolution. Moreover,

testing further the critical dependence of rain rate on column water vapor (CWV), as

seen in Peters and Neelin (2006), is nonviable for local data due to current problems of

the microwave radiometers at hight CWV values (Holloway and Neelin, 2010). Finally,

the kind of data analyzed by Peters and Neelin is completely di�erent to the data

employed in the studies yielding power-law distributed events (Peters et al., 2002, 2010),

so, direct comparison between both kinds of approaches is not possible.

The goal of this paper is to extend the evidence for SOC in rainfall, studying the appli-

cability of this paradigm when the rain data available is not of high resolution. With
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this purpose, we perform an in-depth analysis of local rainfall records in a represen-

tative region of the Northwestern Mediterranean. For this lower (in comparison with

previous studies) resolution, the range in which the power-law holds can be substantially

decreased. This may require the application of more re�ned �tting techniques and scal-

ing methods. Thus, as a by-product, we explore di�erent scaling forms and develop a

collapse method based on minimizing the distance between distributions that also gives

an estimation of the power-law exponent. With these tools will be able to establish the

existence of scale-invariant behavior in the medium resolution rain data analyzed.

We proceed as follows: Section 2 describes the data used in the present analysis and

de�nes the rain event, its size and duration, and the dry spell. Section 3 shows the cor-

responding probability densities and describes and applies an accurate �tting technique

for evaluating the power-law existence. Section 4 introduces two collapse methods (para-

metric and non-parametric) in order to establish the ful�llment of scaling, independently

of power-law �tting. Discussion and conclusions are presented in section 5.

4.2 Data and definitions

4.2.1 Data

We have analyzed 20 stations in Catalonia (NE Spain) from the database maintained

by the Ag�encia Catalana de l'Aigua (ACA, http://aca-web.gencat.cat/aca). These

data come from a network of rain gauges, called SICAT (Sistema Integral del Cicle de

l'Aigua al Territori, formerly SAIH, Sistema Autom�atic d'Informaci�o Hidrol�ogica), used

to monitor the state of the drainage basins of the rivers that are born and die in the

Catalan territory. The corresponding sites are listed in Table 4.1 and have longitudes

and latitudes ranging from 1� 10' 51" to 3� 7' 35" E and from 41� 12' 53" to 43� 25' 40"

N. All datasets cover a time period starting on January 1st, 2000, at 0:00, and ending

either on June 30th or on July 1st, 2009 (spanning roughly 9.5 years), except the Cap

de Creus one, which ends on June 19th, 2009.
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In all the stations, rain is measured by the same weighing precipitation gauge, the device

called Pluvio from OTT (http://www.ott-hydrometry.de), either with a capacity of

250 or 1000 mm and working through the balance principle. It measures both liquid

or/and solid precipitation. The precipitation rate is recorded in intervals of �t = 5 min,

with a resolution of 1:2 mm/hr (which corresponds to 0.1 mm in 5 min). This precipita-

tion rate can be converted into an energy 
ux through the latent heat of condensation

of water, which yields 1 mm/hr ' 690 W/m2, nevertheless, we have not performed such

conversion. Figure 4.1(a) shows a subset of the time series for site 17 (Muga).

In order to make the �les more manageable, the database reports zero-rain rates only

every hour; then we consider time voids larger than 1 hour as operational errors. The

ratio of these missing times to the total time covered in the record is denoted as fM in

Table 4.1, where it can be seen that this is usually below 0.1 %. However, there are 3

cases in which its value is around 3 or 4 %. Other quantities reported in the table are

the fraction of time corresponding to rain (or wet fraction), fr, the annual mean rate,

and the mean rate conditioned to rain periods. Nevertheless, note that for a fractal

point process a quantity as fr depends on the time resolution, so, fr only makes sense

for a concrete time division, in our case, �t = 5 min.

4.2.2 Rain event sizes, rain event durations, and dry spell durations

Following Andrade et al. (1998) and Peters et al. (2002), we de�ne a rain event as

a sequence of consecutive rain rates bigger than zero delimited by zero rates, i.e.,

fr(tn); r(tn+1); : : : r(tm)g, such that r(ti) > 0 for i = n; n + 1; : : :m with r(tn�1) =

r(tm+1) = 0. Due to the resolution of the record, this is equivalent to take a threshold

with a value below 1.2 mm/hour. It is worth mentioning that this simple de�nition of

rain events may be in con
ict with those used by the hydrologists' community, so cau-

tion is required in order to make comparisons between the di�erent approaches (Molini

et al., 2011).

The �rst observable to consider is the duration d of the event, which is the time that

the event lasts (a multiple of 5 min, in our case). The size of the event is de�ned as the

total rain during the event, i.e., the rate integrated over the event duration,

s �
mX

i=n

r(ti)�t '
Z tm

tn

r(t)dt;

measured in mm (and multiple of 0.1 mm in our case, 1.2 mm/hr � 5 min). Notice that

this event size is not the same as the usual rain depth, due to the di�erent de�nition

of the rain event in each case. Figure 4.1(b) shows as an illustration the evolution of
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the rate for the largest event in the record, which happens at the Muga site, whereas

Figure 4.1(c) displays the sequence of all event sizes in the same site for the year 2002. It

is important to realize that this quantity is di�erent to the one at Fig. 4.1(b). Regarding

event durations, the time series have a certain resemblance to Fig. 1c, as usually they

are (nonlinearly) correlated with event sizes (Telesca et al., 2007). Further, the dry

spells are the periods between consecutive rain events (then, they verify r(t) = 0); we

denote their durations by q. When a rain event, or a dry spell, is interrupted due to

missing data, we discard that event or dry spell, and count the recorded duration as

discarded time; the fraction of these times in the record appears in Table 4.1, under the

symbol fD. Although in some cases the duration of the interrupted event or dry spell

can be bounded from below or from above (as in censored data), we have not attempted

to use that partial information.

4.3 Power-law distributions

4.3.1 Probability densities

Due to the enormous variability of the 3 quantities just de�ned, the most informative

approach is to work with their probability distributions. Taking the size as an example,

its probability density P (s) is de�ned as the probability that the size is between s and

s + ds divided by ds, with ds ! 0. Then,
R1

0 P (s)ds = 1. This implicitly assumes

that s is considered as a continuous variable (but this will be corrected later, see more

details on Appendix 4.6). In general, we illustrate all quantities with the event size s,

the analogous for d and q are obtained by replacing s with the symbol of each observable.

The corresponding probability densities are denoted as P (d) and P (q), with the implicit

understanding that their functional forms may be di�erent. Note that the annual number

densities (Peters and Christensen, 2002, 2006, Peters et al., 2002) are trivially recovered

multiplying the probability densities by the total number of events or dry spells and

dividing by total time.

The results for the probability densities P (s), P (d), and P (q) of all the sites under study

are shown in Figs. 4.2(a), 4.2(b), and 4.2(c), respectively. In all cases the distributions

show a very clear behavior, monotonically decreasing and covering a broad range of val-

ues. However, to the naked eye, a power-law range is only apparent for the distributions

of dry spells, P (q) (remember that a power law turns into a straight line in a log-log

plot). Moreover, the P (q) are the broadest distributions, covering a range of more than

4 orders of magnitude (from 5 min to about a couple of months), and present in some

cases a modest daily peak (in comparison to Peters et al. (2002), with 1 day = 1440
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min). In the opposite side we �nd the distributions of durations, P (d), whose range is

the shortest, from 5 min to about 1 day (two and a half orders of magnitude), and for

which no straight line is visible in the plot; rather, the distributions appear as convex.

The size distributions, P (s), de�ned for about 3 orders of magnitude (from 0.1 to 200

mm roughly), can be considered in between the other two cases, with a visually shorter

range of power-law behavior.

4.3.2 Fitting and testing power laws

A quantitative method can put more rigor into these observations. The idea is based on

the recipe proposed by Clauset et al. (2009) { see also Corral et al. (2011) { but improved

and generalized to our problem. Essentially, an objective procedure is required in order

to �nd the optimum range in which a power law may hold. Taking again the event size

for illustration, we report the power-law exponent �t between the values of smin and

smax which yield the maximum number of data in that range but with a p�value greater

than 10%. The method is described in detail in Peters et al. (2010), but we summarize

it in the next paragraphs.

For a given value of the pair smin and smax, the maximum-likelihood (ML) power-law

exponent is estimated for the events whose size lies in that range. This exponent yields

a �t of the distribution, and the goodness of such a �t is evaluated by means of the

Kolmogorov-Smirnov (KS) test (Press et al., 2002). The purpose is to get a p�value,

which is the probability that the KS test gives a distance between true power-law data

and its �t larger than the distance obtained between the empirical data and its �t.

For instance, p = 20% would mean that truly power-law distributed data were closer

than the empirical data to their respective �ts in 80% of the cases, but in the rest 20%

of the cases a true power law were at a larger distance than the empirical data. So, in

such a case the KS distance turns out to be somewhat large, but not large enough to

reject that the data follow a power law with the ML exponent.

As in the case in which some parameter is estimated from the data there is no closed

formula to calculate the p�value, we perform Monte Carlo simulations in order to com-

pute the statistics of the Kolmogorov-Smirnov distance and from there the p�value. In

this way, for each smin and smax we get a number of data �Ns in that range and, repeating

the procedure many times, a p�value. We look for the values of the extremes (smin and

smax) which maximize the number of data in between but with the restriction that the

p�value has to be greater than 10% (this threshold is arbitrary, but the conclusions do

not change if it is moved). The maximization is performed sweeping 100 values of smin

and 100 values of smax, in log-scale, in such a way that all possible ranges (within this
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log-resolution) are taken into account. We have to remark that, in contrast with Peters

et al. (2010), we have considered always discrete probability distributions, both in the

ML �t and in the simulations. Of course, it is a matter of discussion which approach

(continuous or discrete) is more appropriate for discrete data that represent a continu-

ous process. In any case, the di�erences in the outcomes are rather small. Notice also

that the method is not based on the estimation of the probability densities shown in the

previous subsections, what would be inherently more arbitrary (Clauset et al., 2009).

The results of this method are in agreement with the visual conclusions obtained in

the previous subsection, as can be seen in Table 4.2. Starting with the size statistics,

13 out of the 20 sites yield reasonable results, with an exponent θs between 1.43 and

1.54 over a logarithmic range smax=smin from 12 to more than 200. For the rest of the

sites, the range is too short, less than one decade (a decade is understood from now as

an order of magnitude). In the application of the algorithm, it has been necessary to

restrict the value of smin to be smin � 0:2 mm; otherwise, as the distributions have a

concave shape (in logscale) close to the origin (which means that there are many more

events in that scale than at larger scales), the algorithm (which maximizes the number

of data in a given range) prefers a short range with many data close to the origin than

a larger range with less data away from the origin. It is possible that a variation of the

algorithm in which the quantity that is maximized were di�erent (for instance related

with the range), would not need the restriction in the minimum size.

For the distribution of durations the resulting power laws turn out to be very limited

in range; only 4 sites give not too short power laws, with dmax=dmin from 6 to 12 and

θd from 1.66 to 1.74. The other sites yield extremely short ranges for the power law

be of any relevance. The situation is analogous to the case of the distribution of sizes,

but the resulting ranges are much shorter here (Peters et al., 2010). Notice that the

excess of events with d = 5 min, eliminated from the �ts imposing dmin � 10 min, has

no counterpart in the value of the smallest rate (not shown), and therefore, we conclude

that this extra number of events is due to problems in the time resolution of the data.

Considerably more satisfactory are the results for the dry spells. 16 sites give consistent

results, with θq from 1.45 to 1.55 in a range qmax=qmin from 30 to almost 300. It is

noticeable that in these cases qmax is always below 1 day. The removal by hand of

dry spells around that value should enlarge a little the power-law range. In the rest of

sites, either the range is comparatively too short (for example, for the Gai�a site, the

power-law behavior of P (q) is interrupted at around q = 100 min), or the algorithm

has a tendency to include the bump the distributions show between the daily peak (q

beyond 1000 min) and the tail. This makes the value of the exponent smaller (around

1.25). Nevertheless, the value of the exponent is much higher than the one obtained



Chapter 4. Scale Invariant features for Medium Resolution Local Rain Data 89

for the equivalent problem of earthquake waiting times, where the Omori law leads to

values around one, or less. This points to a fundamental di�erencesbetween both kind

of processes (from a statistical point of view).

In summary, the power laws for the distributions of durations are too short to be relevant,

and the �ts for the sizes are in the limit of what is acceptable (some cases are clear and

some other not). Only the distributions of dry spells give really good power laws, with

θq = 1:50� 0:05, and for more than two decades in 6 sites.

4.4 Scaling

4.4.1 Non-parametric scaling

However, the fact that a power-law behaviour does not exist over a broad range of values

does not rule out the existence of SOC (Christensen and Moloney, 2005). In fact, the

ful�lment of a power-law distribution in the form of Eq. (4.1) is only valid when �nite-

size e�ects are \small", which only happens for large enough systems. In general, when

these e�ects are taken into account, SOC behaviour leads to distributions of the form

(Christensen and Moloney, 2005, Peters et al., 2010),

P (s) = s��sGs(s=s�) for s > sl; (4.2)

where Gs(x) is a scaling function that is essentially constant for x � 1 and decays fast

for x� 1, accounting in this way for the �nite-size e�ects when s is above the crossover

value s�; the size sl is just a lower cuto� limiting the validity of this description. The

pure power law only emerges for s� ! 1, nevertheless, a truncated power law holds

over an appreciable range if the scales given by sl and s� are well separated, i.e., sl � s�.

As s� increases with system size, typically as s� / LDs (with Ds the so-called avalanche

dimension, or event-size dimension), the power-law condition (4.1) can only be ful�lled

for large enough system sizes.

Note that, in the case of a too short power-law range or a non-conclusive �t, we still

could check the existence of scaling using Eq. (4.2) if we knew s� or L. However, s�

is di�cult to measure, needing a parameterization of the scaling function, and it is not

clear what the system size L is for rainfall. It could be the vertical extension of the

clouds, or the depth of the troposphere. Nevertheless, it is important to realize that the

scaling ansatz (3.2) still can be checked from data without knowledge of L or s�. First,

notice that the ansatz implies that the k�order moment of s scales with L as

hski / LDs(k+1��s) for 1 < θs < k + 1; (4.3)
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if sl � s�, see Christensen and Moloney (2005). Second, Eq. (3.2) can be written in a

slightly di�erent form, as a scaling law,

P (s) = L�Ds�sFs(s=LDs) for s > sl; (4.4)

where the new scaling function Fs(x) is de�ned as Fs(x) � x��sGs(x=a) (a is the constant

of proportionality between s� and LDs). This form of P (s) (in fact, P (s; L)), with an

arbitrary F, is the well-known scale-invariance condition for functions with two variables

(Christensen and Moloney, 2005). Changes of scale (linear transformations) in s and

L may leave the shape of the function P (s; L) unchanged (this is what scale invariance

really means, power laws are just a particular case in one dimension).

Substituting LDs /


s2
�
= hsi and LDs�s / L2Ds= hsi /



s2
�2
= hsi3 (from the scaling of



sk
�
, assuming θs < 2) into Eq. (4.4) leads to

P (s) = hsi3


s2
��2 ~Fs(s hsi =



s2
�
); (4.5)

where ~Fs(x) is essentially the scaling function Fs(x), absorbing the proportionality con-

stants. Therefore, if scaling holds, a plot of


s2
�2
P (s)= hsi3 versus s hsi =



s2
�

for all

the sites has to yield a collapse of the distributions into a single curve, which draws

~Fs(x) (a similar procedure is outlined in Rosso et al. (2009)). In order to proceed, the

mean and the quadratic mean, hsi and


s2
�
, can be easily estimated from data. Since

no estimation of parameters is involved for this procedure, we call it non-parametric

scaling.

The outcome for P (s), P (d), and P (q) is shown in Figs. 4.3(a), 4.3(b), and 4.3(c), with

reasonable results, especially for the distribution of dry spells. The plot suggests that

the scaling function Gq of the dry-spell distribution has a maximum around x ' 1, but

this does not in disagreement with our approach, which only assumed a constant scaling

function for small x and a fast decay for large x.

Note that the quotient


s2
�
= hsi gives the scale for the crossover value s� (as s� /


s2
�
= hsi, with a constant of proportionality that depends on the scaling function Gs and

on sl=s�), and therefore it is the ratio of the second moment to the mean and not the

mean which describes the scaling behaviour of the distribution. This can have important

implications for extreme events: an increase in the value of the mean is not proportional

to an increase of the most extreme events, represented by s�. For the case of event sizes,

we get values of


s2
�
= hsi between 10 and 30 mm (which is a variability much higher

than that of hsi), and therefore the condition sl � s� is very well ful�lled (assuming

that the moment ratio


s2
�
= hsi is of the same order as s�, and with sl ' smin), which is

a test for the consistency of our approach. For dry spells


q2
�
= hqi is between 5 and 13
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days, which is even better for the applicability of the scaling analysis. The case of the

event durations is somewhat \critical", with


d2
�
= hdi between 70 and 120 min, which

yields d�=dl in the range from 14 to 24. Nevertheless, we observe that the condition

sl � s� for the power law to show up is stronger than the same condition for the scaling

analysis to be valid.

4.4.2 Parametric scaling

Further, a scaling ansatz as Eq. (3.2) or (4.4) allows an estimation of the exponent θs,

even in the case in which a power law cannot be �t to the data. From the scaling of the

moments of s we get, taking k = 1, LDs / hsi1=(2��s) and LDs�s / hsi�s=(2��s) (again

with θs < 2); so, substituting into Eq. (4.4),

P (s) = hsi��s=(2��s) F̂s(s= hsi1=(2��s)): (4.6)

One only needs to �nd the value of θs that optimizes the collapse of all the distributions,

i.e., that makes the previous equation valid, or at least as close to validity as possible.

As the scaling depends on the parameter θs, we refer to this procedure as parametric

scaling.

We therefore need a measurement to quantify distance between rescaled distributions.

In order to do that, we have chosen to work with the cumulative distribution function,

S(s) �
R1
s P (s0)ds0, rather than with the density (to be rigorous, S(s) is the complemen-

tary of the cumulative distribution function, and is called survivor function or reliability

function in some contexts). Although in practice both P (s) and S(s) contain the same

probabilistic information, the reason to work with S(s) is double: the estimation of the

cumulative distribution function does not depend of an arbitrarily selected bin width ds

(Press et al., 2002), and it does not give equal weight to all scales in the representation

of the function (i.e., in the number of points that constitute the function). The scaling

laws (4.4) and (4.6) turn out to be, then,

S(s) = L�Ds(�s�1)Hs(s=L
Ds); (4.7)

S(s) = hsi�(�s�1)=(2��s) Ĥs(s= hsi1=(2��s)); (4.8)

with Hs(x) and Ĥs(x) the corresponding scaling functions.

The �rst step of the method of collapse is to merge all the pairs fs; S(s)gi into a unique

rescaled function fx; yg. If i = 1; : : : ; 20 runs for all sites, and j = 1; : : : ;Ms(i) for all

the di�erent values that the size of events takes on site i (note that Ms(i) � Ns(i)),
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then,

x`(θ) � log(sji= hsi1=(2��)
i );

y`(θ) � log(Si(sji) hsi(��1)=(2��)
i );

with sji the j-th value of the size in site i, hsii the mean on s in i, Si(sji) the cumulative

distribution function in i, and θ a possible value of the exponent θs. The index ` labels

the new function, from 1 to
P
8iMs(i), in such a way that x`(θ) � x`+1(θ); i.e., the

pairs x`(θ); y`(θ) are sorted by increasing x.

Then, we just compute

D(θ) �
X

8`

�
[x`(θ)� x`+1(θ)]2 + [y`(θ)� y`+1(θ)]2

�
; (4.9)

which represents the sum of all Euclidean distances between the neighbouring points

in a (tentative) collapse plot in logarithmic scale. The value of θ which minimizes this

function is identi�ed with the exponent θs in Eq. (3.2). We have tested the algorithm

applying it to SOC models whose exponents are well known (not shown).

The results of this method applied to our datasets, not only for the size distributions

but also to the distributions of d, are highly satisfactory. There is only one requirement:

the removal of the �rst point in each distribution (s = 0:1 mm and d = 5 min), as

with the ML �ts. The exponents we �nd are θs = 1:52 � 0:12 and θd = 1:69 � 0:01, in

agreement with the ones obtained by the power-law �tting method presented above; the

corresponding rescaled plots are shown in Figure 4.4. Although the visual display does

not allow to evaluate properly the quality of the collapse, the reduction in the value

of the function D(θ) is notable. Then, the performance of the method is noteworthy,

taking into account that the mean values of the distributions show little variation in most

cases. In addition, the shape of the scaling function Gs can be obtained by plotting, as

suggested by Eq. (3.2), s�sP (s) versus s= hsi1=(2��s), and the same for the other variable,

d. Fig. 4.5 displays what is obtained for each distribution. In contrast, the application

of this method to P (q) does not yield consistent results, as θq turns out to be rather

small (1.24). Notice that the existence of a daily peak in the distributions is an obstacle

to a data collapse, as the peak prevents a good scaling.

4.5 Discussion and conclusions

We have performed an in-depth study of the properties of SOC related observables in

rainfall in the Mediterranean region in order to check if this framework can be useful

for modeling rain events and dry spells. The results support this hypothesis, which



Chapter 4. Scale Invariant features for Medium Resolution Local Rain Data 93

had not been checked before in this region or for this kind of data resolution. For the

distributions of rain-event sizes we get power-law exponents valid for one or two decades

in the majority of sites, with exponent values θs ' 1:50 � 0:05. For the distributions

of event durations, the �tting ranges are shorter, reaching in the best case one decade,

with exponents θd ' 1:70 � 0:05. This range is expected to be shorter than for event

sizes, given that these combine the event duration distribution with the rain rate (Peters

et al., 2010). And �nally, the dry spell distributions yield the more notable power law

�ts, with exponents in the range θq ' 1:50�0:05, in some cases for more than 2 decades.

These results are compatible with the ones obtained for the Baltic sea by Peters et al.

(2002), which yielded θs ' θq ' 1:4 and θd ' 1:6. The agreement is remarkable,

taking into account the di�erent nature of the data analyzed and the disparate �tting

procedures. However, the concordance with the more recent results of Peters et al. (2010)

is not very good, quantitatively. That previous study, with a minimum detection rate

of 0.2 mm/hr and a time resolution �t = 1 min, found θs ' 1:18 for several sites across

di�erent climates, using essentially the same statistical techniques as in the present

study. Exponents were found not universal for durations of events and dry-spells, but

for the latter they were close in many cases to θd ' 1:3. The di�erence between the

size and dry-spell duration exponents may be due to data resolution. Changes in the

detection threshold have a non-trivial repercussion in the size and duration of the events

and the dry spells (an increase in the threshold can split one single event into two or

more separate ones but also can remove events). Further, better time resolution and

lower detection threshold allow the detection of smaller events, enlarging the power law

range and reducing the weight from the part close to the crossover point (where the

distribution becomes steeper); this trivially leads to smaller values of the exponent. In

the dry spells case, the power-law range in this study is enough to guarantee that our

estimation of the exponents are robust, so the discrepancy with Peters et al. (2010) may

be due to the non-trivial e�ect of the change in the detection thresholds or di�erences

on the measurement devices.

On the other hand, �nite size e�ects can explain the limited power-law range obtained for

s and d observables, as it occurs in other (self-organized and non-self-organized) critical

phenomena. The �nite-size analysis performed, in terms of combinations of powers of the

moments of the distributions, supports this conclusion. The collapse of the distributions

is a clear signature of scale-invariance: di�erent sites share a common shape of the rain-

event and dry-spell distributions, with di�erences in the scale of those distributions,

depending on system size. Then, in the ideal case of an in�nite system, the power

laws would lack an upper cuto�. Moreover, the collapse of the distributions allows an

independent estimate of the power-law exponents, which, for event durations and sizes,
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are in surprising agreement with the values obtained by the maximum-likelihood �t. For

dry spell durations, a daily peak in the distributions hinders their collapse.

Nevertheless, future work should consider spatially extended events. Our measurements

are taken in a point of the system which re
ects information on the vertical scale, then,

the results could be a�ected by this. Another important issue are the implications of

the results for hazard assessment. If there is not a characteristic rain-event size, then

there is neither a de�nite separation nor a fundamental di�erence between the smallest

harmless rains and the most hazardous storms. Further, it is generally believed that

the critical evolution of events in SOC systems implies that, at a given instant, it is

equally likely that the event intensi�es or weakens, which would make detailed prediction

unattainable. However, this view has been recently proved wrong, as it has been reported

that a critical evolution describes the dynamics of some SOC systems only on average;

further, the existence of �nite size e�ects can be used for prediction (Garber et al., 2009,

Martin et al., 2010). Interestingly, in the case of rain, it has been recently shown by

Molini et al. (2011) that knowledge of internal variables of the system allows some degree

of prediction for the duration of the events, related also to the departure of the system

from quasi-equilibrium conditions. Finally, we urge studies which explore the e�ects of

resolution and detection-threshold value in high-resolution rain data. A common SOC

misbelief is that avalanches happen following a memoryless process, leading therefore

to exponential distributions for the waiting times (Corral, 2005). This has been proved

wrong if a threshold on the intensity is present (Paczuski et al., 2005). In this case,

times between avalanches follow a power-law distribution, as we �nd for dry spells.

In summary, we conclude that the statistics of rainfall events in the NW Mediterranean

area studied are in agreement with the SOC paradigm expectations. This is the �rst

time this study is realized for this region and it is a con�rmation of what has been

found for other places of the world, but using in ourcase data with lower resolution. If

a representative universal exponent existed, this would mean that just one parameter

is enough for characterizing the distributions. This would indicate that the rain event

observable cannot detect climatic di�erences between regions, but would shed light on

universal properties and mechanisms of rainfall generation.

4.6 Appendix: Details on the estimation of the probability

density

In practice, the estimation of the density from data is performed taking a value of ds

large enough to guarantee statistical signi�cance, and then compute P (s) as n(s)=(Ns�),
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where n(s) is the number of events with size in the range between s and s+ ds, Ns the

total number of events, and � is de�ned as

� = Rs(b(s+ ds)=Rsc � bs=Rsc);

with bxc the integer part of x and Rs the resolution of s, i.e. Rs = 0:1 mm (but note that

high resolution means low Rs). So, �=Rs is the number of possible di�erent values of the

variable in the interval considered. Notice that using � instead of ds in the denominator

of the estimation of P (s) allows one to take into account the discreteness of s. If Rs

tended to zero, then �! ds and the discreteness e�ects would become irrelevant.

How large does ds have to be to guarantee the statistical signi�cance of the estimation of

P (s)? Working with long-tailed distributions (where the variable covers a broad range

of scales) a very useful procedure is to take a width of the interval ds that is not the

same for all s, but that is proportional to the scale, as [s; s+ ds) = [so; bso), [bso; b
2so),

: : : [bkso; b
k+1so), i.e., ds = (b� 1)s (with b > 1). Given a value of s, the corresponding

value of k that associates s with its bin is given by k = blogb(s=so)c. Correspondingly,

the optimum choice to assign a point to the interval [s; s + ds) is given by the valuep
bs. This procedure is referred to as logarithmic binning, because the intervals appear

with �xed width in logarithmic scale (Hergarten, 2002). In this paper we have generally

taken b ' 1:58, in such a way that b5 = 10, providing 5 bins per order of magnitude.

As the distributions are estimated from a �nite number of data, they display statistical


uctuations. The uncertainty characterizing these 
uctuations is simply related to the

density by
�P (s)

P (s)
' 1p

n(s)
;

where �P (s) is the standard deviation of P (s) (do not confound with the standard

deviation of s). This is so because n(s) can be considered a binomial variable (von

Mises, 1964), and then, the ratio between its standard deviation and mean ful�lls

�n(s)=hn(s)i ' 1=
p
n(s), with n(s)=Ns � 1. As P (s) is proportional to n(s), the

same relation holds for its relative uncertainty.
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Figure 4.1: (a) Subset of the rain rate time series for site 17 (Muga) for year 2002.
(b) More reduced subset of the rain rate time series for the same site, corresponding to
the largest rain event on the record, with s = 248:7 mm, on April 11, 2002. Time refers
to hours since midnight. A very small rain event is also present at the beginning, with
s = 0:3 mm and separated to the main event by a dry spell of duration q = 15 min. (c)

Corresponding event-size time series for the same site, for year 2002.
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Figure 4.2: Probability densities for all the sites for the whole time covered by the
record of: (a) Event sizes, (b) Event durations, and (c) Dry spells.
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Table 4.2: Results of the power-law �tting and goodness-of-�t tests applied to event
sizes, event durations, and dry-spell durations (in mm or in min), for the period of 9 and
a half years speci�ed in the main text. The table displays the minimum of the �tting
range, smin, and the ratio between the maximum and the minimum of the �tting range
(logarithmic range, smax=smin), total number of events, number of events in �tting
range ( �Ns, �Nd, and �Nq, for s, d, and q, respectively), and the power-law exponent
with its uncertainty (one standard deviation) calculated as stated by Bauke (2007) and

displayed between parenthesis as the variation of the last digit.

Site smin
smax
smin

Ns
�Ns θs

1 0.2 180.5 5393 1886 1.54(2)
2 0.2 4.5 5236 1323 1.64(6)
3 0.2 155.5 5749 2111 1.53(2)
4 0.2 12.0 5108 1745 1.43(3)
5 0.2 140.0 5289 2106 1.52(2)
6 0.2 68.0 4924 1969 1.49(2)
7 0.2 105.5 5219 2234 1.51(2)
8 0.2 213.0 5112 2047 1.53(2)
9 0.2 5.0 5366 1459 1.53(5)

10 0.2 19.0 6691 2452 1.51(2)
11 0.2 65.0 6224 2373 1.49(2)
12 0.2 4.0 5967 1500 1.53(6)
13 0.3 66.7 8330 1853 1.45(2)
14 0.2 3.5 6525 1711 1.56(6)
15 0.3 3.7 6485 1102 1.39(7)
16 0.2 3.5 7491 1852 1.59(5)
17 0.2 80.5 6962 2853 1.52(2)
18 0.2 41.5 7511 2847 1.51(2)
19 0.2 99.5 6767 2742 1.47(2)
20 0.2 3.5 9012 2047 1.69(5)

dmin
dmax
dmin

�Nd θd
10 10.0 1668 1.67(4)
10 4.0 1581 1.60(6)
10 6.0 1726 1.66(5)
10 3.5 1564 1.41(7)
10 3.5 1530 1.58(7)
10 3.5 1441 1.59(7)
10 3.5 1621 1.51(7)
10 4.0 1567 1.55(6)
10 4.0 1658 1.51(6)
10 3.5 2066 1.57(6)
10 5.0 1932 1.56(5)
10 4.0 1889 1.49(6)
10 12.5 2288 1.74(3)
10 5.0 2299 1.62(4)
10 5.0 2095 1.64(5)
10 4.0 2385 1.59(5)
10 3.5 2087 1.60(6)
10 3.5 2238 1.57(6)
10 3.5 1958 1.60(6)
10 8.5 2972 1.66(3)

qmin
qmax
qmin

Nq
�Nq θq

95 7.8 5387 743 1.75(7)
5 273.0 5231 4729 1.46(1)

10 80.0 5745 3207 1.53(2)
5 196.0 5103 4520 1.47(1)

20 47.3 5287 1706 1.45(2)
20 31.3 4926 1537 1.47(3)
5 256.0 5215 4734 1.51(1)

15 65.0 5107 2098 1.50(2)
10 90.0 5419 2889 1.55(2)
25 33.0 6685 1758 1.48(3)
45 468.3 6219 2005 1.24(1)
5 235.0 5961 5376 1.47(1)

130 158.5 8328 1501 1.27(2)
5 215.0 6520 5906 1.47(1)

15 49.7 6479 2560 1.51(2)
5 214.0 7510 6789 1.50(1)

10 68.5 6958 3719 1.52(1)
20 31.0 7507 2302 1.53(2)
50 21.7 6800 1378 1.26(3)
15 34.3 9007 3367 1.50(2)
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Figure 4.3: Collapse of the probability densities for all the sites for the whole time
covered by the record of: (a) Event sizes, (b) Event durations, and (c) Dry spells.
Rescaling is performed using the �rst and second moment of each distribution, following

Eq. (4.5).
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Figure 4.4: Collapse of the probability densities for all the sites for the whole time
covered by the record of: (a) Event sizes and (b) Event durations; rescaled using Eq.
(4.6) with the exponents: θs = 1:52 and θd = 1:69, determined minimizing the Euclidean
distance between parametrically collapsed distributions. Units are mm or min to the

corresponding powers appearing in the axes.
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Figure 4.5: Inferred scaling functions Gs and Gd corresponding to the rescaled distri-
butions of s and d in Figure 4.4, multiplied by sτs and dτd . Units in the abscissae are

as in the previous plot, whereas in the ordinates these are mmτs−1 and minτd−1.





Chapter 5

Testing Universality in Critical

Exponents: the Case of Rainfall

This chapter corresponds to unpublished work, related to the non-peer-review publica-

tion that can be found in Appendix A.

Abstract One of the key clues to consider rainfall as a self-organized critical phe-

nomenon is the existence of power-law distributions for rain-event sizes. We have studied

the problem of universality in the exponents of these distributions by means of a suitable

statistic whose distribution is inferred by several variations of a permutational test. In

contrast to more common approaches, our procedure does not su�er from the di�culties

of multiple testing and does not require the precise knowledge of the uncertainties as-

sociated to the exponents. When applied to seven sites monitored by the Atmospheric

Radiation Measurement Program the tests lead to the rejection of the universality hy-

pothesis, despite the fact that the exponents are rather close to each other.

5.1 Introduction

The concept of universality is \one of the most striking features of the theory of critical

phenomena" (Yeomans, 1992), giving sense to the extended use of modelling in statistical

physics. Strictly, it would mean that using a naive model one could derive all the

critical exponents and scaling functions of any real system displaying a second order

phase transition, no matter the complications of the interactions in the system, because

critical exponents and scaling functions should be \universal". In practice, the name

universality is somewhat pretentious (Stanley, 1999), and what one instead obtains are

several \universality classes", which are sets of systems sharing the same behaviour
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(in terms of critical exponents and scaling functions), depending only, in equilibrium

and for systems with short-range interactions, on the dimensionality of space and the

symmetry of the order parameter. This is in sharp contrast with the behaviour of other

important properties, as for instance the critical temperature, justifying the perplexity

for the universality phenomenon.

The classi�cation of many disparate systems into a relatively reduced number of univer-

sality classes is therefore a fundamental problem (analogous somehow to the construction

of the Mendeleev's periodic table (Stanley, 1999)), which relies on the accurate deter-

mination of critical exponents and scaling functions. A weaker form of universality

considers only the coincidence of the critical exponents, disregarding the scaling func-

tions. This is due, when dealing with experimental or numerical data, to the fact that

critical exponents can be obtained directly as a single number each one, whereas scaling

functions need to be parametrized (which introduces some degree of arbitrariness in the

parametrization); otherwise, scaling functions need to be obtained from the analytical

solution of a model.

Among all the di�erent critical exponents, an important subset are those arising from

probability distributions, such as cluster number densities, avalanche size distributions,

etc. (Christensen and Moloney, 2005, Stau�er and Aharony, 1994). In this case, the

probability mass function or the probability density f(s) of the variable s can be written,

at least for large s, as

f(s) = s��G(s=sc); (5.1)

where sc is a characteristic value of s and G is a scaling function that can be an ex-

ponential or any other function going to a constant for small s and decaying very fast

for large s. Close to the critical point and in the in�nite system-size limit, sc diverges,

G tends to a constant, f(s) becomes a power law, and θ emerges as a genuine critical

exponent.

Similar situations arise outside critical phenomena; for instance, in anomalous di�u-

sion, the long-term behavior of a di�usion process (with short-range correlations) can

be classi�ed within a continuous of universality classes de�ned by the L�evy-stable laws,

characterized by power-law tails (Bouchaud and Georges, 1990). Although the behav-

ior of the system is not governed by a continuous phase transition, it is possible to

understand it from the existence of a �xed point in some renormalization-group trans-

formation equations. Other stochastic processes lead to analogous situations (Corral,

2009a, Gy•orgyi et al., 2008).

The determination of critical exponents is not an easy task, even more di�cult when

they are the exponents of power-law distributions. Very recently, considerable attention



Chapter 7. Testing Universality in Critical Exponents: the Case of Rainfall 105

has been devoted to the proper �t of such distributions, together with the subsequent

goodness-of-�t testing. White et al. and Clauset et al. (among others) (Clauset et al.,

2009, White et al., 2008) mention the systematic errors that can arise from using the

least-square linear regression method applied to ln f(s) as a function of ln s, although

the alternative recipe proposed by Clauset et al. to �nd the most suitable power-law

range has been found to perform badly in some cases (Corral et al., 2011), so somewhat

di�erent methods have been suggested by other authors (Deluca and Corral, 2013b,

Peters et al., 2010).

But determining the critical exponents as accurately and unbiasedly as possible, together

with their associated uncertainties, is not the end of the story if one is looking for

universality. The exponents need to be properly compared, in order to test if they are

statistically compatible with each other or not. From a more practical point of view, if

universality does not hold, one may monitor some process by the changes in the value of

some power-law exponent, which can play the role of a precursor of catastrophic failure

(see citations at Ref. (Bar�o et al., 2013)).

The subject of this paper is to develop a systematic procedure to compare critical ex-

ponents, applying it to study in detail a non-equilibrium problem: that of universality

in rain-event size distributions, which is important to characterize rainfall as a self-

organized critical phenomena (Bak, 1996, Christensen and Moloney, 2005). These dis-

tributions were �rst analyzed for one single location in the Baltic coast by Peters et al.

(Peters and Christensen, 2002, Peters et al., 2002), who reported a power-law distribu-

tion with an exponent θ around 1.4. More recently, Ref. (Peters et al., 2010) widened

the study to 10 sites around the globe; after discarding 3 of them due to di�erent instru-

mentally induced biases and errors, not only the power-law hypothesis was con�rmed

but also the scaling form of the distribution, Eq. (5.1), with rather smaller exponents,

ranging from θ = 1:14 to 1.19. However, a proper statistical test to decide if the ex-

ponents were compatible with a unique value or not was not attempted. This is what

we undertake here, extending the study in order to include new data and new sites. In

the following section we introduce the rain data, the de�nition of rain events, and the

precise way of �tting the power-law exponents. Next, we explain some naive ways of

compare the values of the exponents. Section IV is devoted to the development of a

simple permutational test in order to test the universality of the exponents for the rain

data of Ref. (Peters et al., 2010), whereas in Sec. V this test is improved.
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5.2 Data, rain events, and power-law fitting

As in Ref. (Peters et al., 2010), we analyze rain data from the Atmospheric Radiation

Measurement (ARM) Program (www.arm.gov). The ARM rain database presents the

advantage of its homogeneity in the sense that all sites are equipped with the same type of

pluviometer, an optical rain gauge from MiniOrg (Optical Scienti�c, Inc.), Model ORG-

815-DA. Rain rate is recorded with a one-minute temporal resolution, with a minimum

value of 0.001 mm/hour, but we disregard rain rates below 0.2 mm/hour (i.e., we treat

them as zero), as recommended by the ARM Handbook. Other corrections were applied

to the data using the ARM Data Quality Reports (dat).

In order to compare with the results of Ref. (Peters et al., 2010), we consider the same

sites studied there, excepting the 3 sites that those authors found problematic (North

Slope of Alaska, Point Reyes, and Southern Great Plains, all 3 in USA); this yields a

remainder of M=7 sites, see Table 5.1. For some of these sites (Manus, Nauru, Darwin,

and Graciosa) new data are available since the study of Ref. (Peters et al., 2010), so our

database has been updated accordingly. The rest of the sites (Niamey, Heselbach, and

Shouxian) remain essentially the same, except perhaps little operational errors reported

since then.

Table 5.1: ARM observation sites with corresponding starting and ending times and
location. I. stands for island.

Site start time end time latitude longitude

Manus I., Papua New Guinea 2005/02/15 2012/03/18 2.116◦S 147.425◦E

Nauru I., Nauru Republic 2005/02/15 2012/03/18 0.521◦S 166.916◦E

Darwin, Australia 2005/02/15 2012/03/18 12.425◦S 130.892◦E

Niamey, Niger 2005/12/26 2006/12/08 13.522◦N 2.632◦E

Heselbach, Germany 2007/04/01 2008/01/01 48.450◦N 8.397◦E

Shouxian, China 2008/05/09 2008/12/28 32.558◦N 116.482◦E

Graciosa I., Azores, Portugal 2009/04/14 2011/01/06 39.091◦N 28.029◦E

The fundamental concept in this kind of approaches is the rain event, which is de�ned

as a sequence of rain-rate values all above a certain threshold (starting and ending below

threshold) (Andrade et al., 1998, Peters and Christensen, 2002, Peters et al., 2002); in

our study the threshold is set to 0.2 mm/hour (Peters et al., 2010). The size s of the

event is the total amount of rain collected during the lifetime of the event, i.e., the time

integral of the rain rate along event duration. A large record of rainfall contains enough

events to estimate the probability density of the rain-event size, f(s), and, independently,

to test if this distribution follows a power law or not.

The key to �t properly power-law distributions to real-world data is to have an objective

criterion to decide at which point the power law starts and (in the truncated case) at
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which point it ends; these cut-o�s de�ne the �tting range. This is so because incom-

pleteness of the data for very small sizes and �nite-size e�ects for large sizes lead to

considerable deviations from a power-law regime. As a �tting method we essentially

use the improvement and extension of the Clauset et al.'s method (Clauset et al., 2009)

introduced in Ref. (Peters et al., 2010) and explained in much detail elsewhere (Deluca

and Corral, 2013b). Summarizing, \all" �tting ranges are considered, and among those

which yield acceptable �ts (high enough p�values), the one containing more data points

(i.e., more events) is selected.

Fitting is performed by maximum likelihood estimation, goodness of �t is tested by the

Kolmogorov-Smirnov distance, and the p�value of the �t is computed from Monte Carlo

simulations. To look for the �tting range we sweep 20 values per order of magnitude

(equidistant in logscale) of the small-size and large-size cut-o�s. We consider a �t as

acceptable (or not rejectable) if p > 0:10, which is computed with 300 Monte Carlo

realizations. Provided that we �nd at least one non-rejectable �t, for each site i we end

up with three optimized values: one is the estimated exponent �θi and the other two,

ai and bi (the small-size and large-size cut-o�s), de�ne the �tting range ai � s � bi

for which the power-law �t holds. The uncertainty in the exponent is quanti�ed by the

standard deviation of the maximum likelihood estimation, calculated using the jackknife

procedure (the formula of Ref. (Aban et al., 2006) and our Monte Carlo simulations are

in agreement with this method). Results of the �ts for the rain-event size distributions

are shown in Table 5.2.

As a �rst trial, in order to simplify the comparison between the di�erent sites, we decide

to consider the common range over which all distributions are power laws. We de�ne

then a = max8i ai and b = min8i bi (verifying that a � b); then, new exponents θ̂i are

recalculated for this common range by maximum likelihood estimation. The estimated

power-law �ttings will be given then by

fi(s) /
1

s�̂i
; for a � s � b: (5.2)

The resulting exponents will be di�erent but very close to the previous ones (within the

expected 
uctuations), see Table 5.2. Nevertheless, the p�value for the new �ts may

change, even being possible that some of them drop below the acceptance threshold.

This is what naturally happens in goodness-of-�t testing (as the null hypothesis may be

rejected even when it is true). We do not need to do anything in this regard, just the

reader must be aware of it.
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Table 5.2: Results of power-law �ts for the 7 sites studied in Ref. (Peters et al., 2010)
(with updated data). The total number of rain events (for 0 < s < 1) is Ni. The
resulting optimum cut-o�s ai and bi are displayed, in mm, together with the resulting
number of events in �tting range �ni and exponent �θi. When the �ts are restricted to
the common range, a = 0:0071 mm and b = 0:501 mm, the new number of events
and power-law exponents are ni and θ̂i. The quantity in parenthesis is the standard

deviation of the exponents in units of the last signi�cant digit of the exponent.

Site i Ni ai bi bi=ai �ni �θi ni θ̂i
1. Manus 15725 0.0071 10.0 1413 11910 1.152(05) 8455 1.151(09)
2. Nauru 8404 0.0063 3.2 501 6350 1.120(07) 4831 1.122(12)
3. Darwin 5216 0.0063 3.5 562 3946 1.106(09) 2959 1.095(15)
4. Niamey 260 0.0040 56.2 14125 231 1.193(26) 135 1.231(72)
5. Heselbach 2437 0.0040 0.6 141 1844 1.132(16) 1569 1.149(21)
6. Shouxian 476 0.0040 1.3 316 372 1.165(32) 290 1.185(48)
7. Graciosa 4260 0.0071 0.5 71 2841 1.147(15) 2841 1.147(15)

5.3 Difficulties of multiple testing

Let us consider �rst the simple case in which one only has to decide if some exponent (or

in general, some statistic) θ takes the same value or not in two di�erent systems, 1 and

2. The null hypothesis is then θ1 = θ2. What one usually has is an estimation for each

exponent, denoted as θ̂i, with i = 1; 2, together with an estimation of their standard

deviations, which, if the number of data for each system is large, we can assume converges

to the true standard deviation, �i.

Under the null hypothesis, the di�erence d = θ̂1 � θ̂2 will have zero mean, and, if

datasets 1 and 2 are independent samples (which will be the common situation if the

two systems are unrelated), the standard deviation of the di�erence of the estimators

will be �d =
p
�2

1 + �2
2. As, asymptotically, θ̂1 and θ̂2 are normally distributed (Aban

et al., 2006), so will be their di�erence, and therefore it is straightforward to obtain

a con�dence interval for it. If the interval, centered at zero, includes the observed

value of the di�erence, the null hypothesis cannot be rejected and the exponents can be

considered to take the same value in both systems (which can belong then to the same

universality class, at least regarding the exponent θ).

Observe that, although the test for the di�erences is well known, it is not in agreement

with the somewhat extended practice of verifying if the con�dence intervals of θ̂1 and θ̂2

overlap, which yields a smaller signi�cance level (and is, then, less \rigorous", or more

permissive 1). For instance, if we compare the exponents of the Manus and Darwin sites,

the di�erence between them is d = jθ̂Manus � θ̂Darwinj = 0:055 with standard deviation

1For instance, at a significance level of 5 % the uncertainty of τ̂i is given by ±zcσi, with zc = 1.96.
If σ1 = σ2 = σ, the probability of |τ̂1 − τ̂2| >

√
2σzc is indeed p(|z| > zc) = 0.05, but testing if

|τ̂1 − τ̂2| > 2σzc reduces drastically the significance level to p(|z| >
√

2zc) = 0.0066.
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Table 5.3: Di�erence between power-law exponents for the common �tting range.
Uncertanty is evaluated as 1:96�d, corresponding to 5% signi�cance level. Signi�cant

di�erences are underlined.

Nauru Darwin Niamey Heselbach Shouxian Graciosa

Manus 0.03�0.03 0.06�0.03 0.08�0.14 0.00�0.04 0.03�0.10 0.00�0.03
Nauru - 0.03�0.04 0.11�0.14 0.03�0.05 0.06�0.10 0.02�0.04
Darwin - - 0.14�0.14 0.05�0.05 0.09�0.10 0.05�0.04
Niamey - - - 0.08�0.15 0.05�0.17 0.08�0.14
Heselbach - - - - 0.04�0.10 0.00�0.05
Shouxian - - - - - 0.04�0.10

�d =
q
�2
Manus + �2

Darwin = 0:0175. Considering the 1:96�d interval, we should reject

the hypothesis that both exponents are the same, with a 95 % con�dence.

But the situation is not so simple when one needs to analyze 3 or more systems. Taking

the naive approach of comparing the overlap of the con�dence intervals, some systems

may lay outside the overlap region of the rest just by chance, which will be more likely

as the number of systems increases. So, the rejection in the previous example could be

caused by an unavoidable \bad luck," as those sites are just a part of a much larger

collection of sites. Also, it might be di�cult to de�ne which is the overlap region, as

there can be several subsets, or a continuous of overlapping subsets.

If we take all pairs of systems, this leads to M(M�1)=2 pair tests if there are M di�erent

systems. In our case, M = 7 and M(M � 1)=2 = 21. Comparing the M exponents by

pairs one can see from Table 5.3 that the null hypothesis would be rejected in 3 out

of the 21 cases, at the 5% signi�cance level. Are these rejections really signi�cant?

In order to avoid the rejection of the null hypothesis for a given test \by accident",

one can apply some correction of the signi�cance level, as the Bonferroni correction

or the �Sid�ak correction (Abdi, 2007, Bland and Altman, 1995). With a con�dence

level of 95 % we have a probability of rejecting the null hypothesis when it is true

of � � 1 � 0:95 = 0:05 (this is indeed the signi�cance level); so, sooner or later we

will get large enough di�erences in the exponents, due to statistical 
uctuations, if the

number of tests is large enough. Therefore, the probability of at least one rejection in

21 independent tests is 1 � (1 � �)21 = 0:67, and we can consider this number as the

global (or familywise) signi�cance level, which turns out to be rather high.

The idea of the �Sid�ak correction is to select � in such a way that the resulting global

signi�cance level is more reasonable, say 0.05; then, in our case, � = 1 � 21
p

1� 0:05 =

0:0024. For the Bonferroni correction one approximates 1 � (1 � �)21 ' 1 � (1 �
21�) = 0:05, which leads in this case to essentially the same � = 0:0024. This has

the advantage of not requiring the independence of the tests, providing a lower bound

for the signi�cance level. To achieve a con�dence level of 99:76% with the normal
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distribution it is necessary to consider a bit more than 3 standard deviations, this is

3:036
q
�2
w + �2

l . In this case, all pairs of exponents seem to be compatible except one,

corresponding to sites 1 and 3. These sites yield a di�erence between their exponents

equal to 0:055 � 0:053, which we can consider in the limit of rejection and makes the

decission about the universality on the value of exponents a very critical issue.

However, the Bonferroni and �Sid�ak corrections seem too generous (in order to claim for

universality, or too conservative in order to detect di�erences). They reduce the type

I error (false positive) at the cost of an enormeous increase of the type II error (false

negative). We could explore a di�erent approach. When the null hypothesis is true,

the number of rejections of the null hypothesis in independent tests will be binomially

distributed, and the probability of having x rejections in 21 tests will be

g(x) =

 
21

x

!
�x(1� �)21�x: (5.3)

This leads to the fact that the probability of getting 3 or more rejections (which is what

we got at the 95 % con�dence level, � = 0:05) is 1 � (g(0) + g(1) + g(2)) = 0:085,

which seems somewhat small, but not small enough to reject the hypothesis of equality

of exponents for all pairs. (Notice that the �Sid�ak correction arises imposing that the

probability of one or more rejections is 1 � g(0) = 0:05.) Nevertheless, the reasoning

based on the binomial distribution is problematic, as there cannot be 21 independent

tests with 7 datasets. Rather, the number of independest tests would be just 3; for

instance, the �rst test could be between datasets 1 and 2, the second between 3 and

4, and the third between 5 and 6 (but of course there are other combinations...). Let

us note that the dependence of the tests was not taken into account in Ref. (Lippiello

et al., 2012).

5.4 Restricted permutational test

The purpose of the previous examples was to illustrate the di�culty of dealing with

multiple testing. An additional problem is the identi�cation of the standard deviation of

the maximum likelihood exponent for �xed ai and bi with the true error of the exponent

for the whole optimization process. We expect this error to be larger, but its precise

value is hard to quantify. Instead of multiple testing, we propose an alternative track,

using a permutational test, which avoids these drawbacks.

The null hypothesis H0 is now that for the common range a � s � b all exponents

are the same, i.e., θi = θj , for all i and j (note that before we had M(M � 1)=2 null
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hypotheses, one for each pair). What we need �rst is a statistic that quanti�es the

divergence between all the exponents, in such a way that the largest the value of the

statistic, the stronger the evidence against the null hypothesis. In order to construct

this statistic we may take a weigthed sum of (θ̂i � θ̂j)2, or of jθ̂i � θ̂j j, for all i and j,

or rather, the maximum of all the di�erences, max8ij(θ̂i � θ̂j). The �rst option gives

more weight to the most extreme di�erences than the option of taking instead the sum

of the absolute values of the di�erences, but lest weight than the option of the maximum

di�erence. So, the second power of the di�erences constitutes a compromise between

the importance given to the extremes and the importance given to the central values.

Our particular selection for the statistic is

b� =
M�1X

i=1

MX

j=i+1

ninj
ni + nj

(θ̂i � θ̂j)2; (5.4)

where ni is the number of data of site i in the common power-law range, a � s � b.

When this statistic refer to the empirical data (and not to simulations) we will call it

b�data.

The prefactor depending on ni and nj can be easily justi�ed. Under the null hypothesis,

and for independent datasets, each θ̂i � θ̂j has zero mean and variance �2
i + �2

j . But

�i / 1=
p
ni, where the proportionality constant depends on the value of the exponent

and on the �tting range (Aban et al., 2006). Therefore, for identical exponents and for a

common �tting range, the expected value h(θ̂i� θ̂j)2i is proportional to 1=ni+1=nj , and

so, ninj=(ni +nj)h(θ̂i� θ̂j)2i is the same for all i and j, independently of the number of

data ni and nj . Then, every term in b� has the same expected value and contributes the

same to the sum (on average). If we did not include the prefactor we would be giving

more weight to the smallest datasets. On the contrary, if, for some reason, we wanted

to give more weight to the largest datasets we could have taken [ninj=(ni + nj)]
2 as a

prefactor, for example.

The scale for b� is provided by the achieved signi�cance level or P�value of the test,

which is de�ned as the probability that, under the null hypothesis H0, the random

variable b� is larger than the value we obtained for the observed data b�data, i.e.,

P = Probfb� � b�data j H0 is trueg; (5.5)

so, the smaller the P�value, the stronger the evidence against H0 (we use capital P in

order to distinguish this P�value from the p�value of the power-law �t). Although each

term in the sum of b� follows a gamma distribution, with the same parameters, there

is no easy way to compute the distribution of the sum, due to the fact that the terms
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are not independent. That is, even if all datasets i; j; k, etc., are independent, the terms

(θ̂i � θ̂j)2, (θ̂j � θ̂k)2, etc., are not.

Fisher's permutation test (Efron and Tibshirani, 1993) (also called randomization test)

is a clever way to compute the P�value in cases like these. It is based on the idea that,

if the null hypothesis is correct, any data value could correspond to any dataset and the

data values (the size of the rain events in our case) are therefore interchangeable. In

order to proceed with the test, we combine the n1 + n2 + ::: + nM observations from

all the datasets into a single meta-dataset and take M random samples of sizes n1, n2,

..., nM without replacement (this is done just by a permutation or reshu�ing of the

meta-dataset, and then taking consecutive ni values). This generates M new datasets

with the same number of data than the initial ones. Next we �t the power-law exponents

(in the common �tting range) for each permuted or reshu�ed dataset and from their

values we compute the new test statistic b�sh, in the same way as for b�data (sh stands for

shu�ed now). As the �tting range, given by a and b is �xed, the �t of the exponent is

simple, using just maximum likelihood estimation. The distribution of the test statistic,

under the null hypothesis, is obtained repeating the process a large enough number of

times, Nsh. In our case, we always take Nsh = 100. With that we can compute easily

an approximation of the P�value by

P � value � #fb�sh � b�datag
Nsh

(5.6)

where #fb�sh � b�datag is the number of permutations for which b�sh � b�data. For our

M = 7 rain datasets we obtain b�data = 30:3, which, after the permutational procedure,

leads to P = 0:03. So, at the 5% signi�cance level, we reject the hypothesis that all the

exponents take the same value and we cannot give statistical support to universality in

rainfall.

5.5 Complete permutational test

One can realize that the previous procedure has at least one drawback. The choice of

a common �tting range seems somewhat arti�cial, due to the fact that this range is

optimum for some empirical dataset but not necessarily for any of the permutations, a

fact that can introduce a bias in the procedure. In other words, the �t can be better

for the true datasets than for the reshu�ed ones, and in this way we are not treating

the latter in the same way as the former. This is something that needs to be avoided;

simulated or permuted data have to be treated in exactly the same way as the real data

to avoid biases and artifacts (Clauset et al., 2009, Malmgren et al., 2008).
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In order to proceed in the same way with the permuted data, we have to look, for each

reshu�ed dataset, for the most appropriate �tting range, and then select the common

power-law range. Thus, we introduce a modi�cation of the test in which we do not

reshu�e the common part of the data in which all distributions are power law, but we

reshu�e the whole data. That is, we aggregate the N1 +N2 + � � �+NM data, where Ni

is the total size of dataset i, and take random samples, without replacement, of size N1,

N2, : : : , NM , and, we insist, we perform with these datasets in the same way as with

the true data. Notice that in the previous subsection the null hypothesis was that, over

a common range given by a and b, all the distributions were power laws with the same

exponent. Now the null hypothesis is di�erent, rather, we test if there exist a common

range over which all the distributions are power laws with the same exponent, but we

do not specify which is that common range.

The procedure is summarized as follows, for every permutation ` (with ` from 1 to Nsh):

1. For each reshu�ed data set i = 1;M calculate the values of a
(`)
i and b

(`)
i which

lead to the largest number of data in a power law �tted in that range, provided

that p � 0:10. This is done by maximum likelihood estimation of the exponent

plus the Kolmogorov-Smirnov test plus Monte Carlo simulations of a power law in

the range a
(`)
i � s � b

(`)
i .

2. Select the common �tting range for the M reshu�ed datasets, as a(`) = max8i a
(`)
i

and b(`) = min8i b
(`)
i (and verify that a(`) � b(`)). This yields ~n

(`)
i events in the

common power-law range for dataset i.

3. Calculate new exponents in the common �tting range, by maximum likelihood

estimation. We call these exponents ~θ
(`)
i .

4. Calculate the test statistic e�(`)
sh (with a new de�nition, see Eq. (5.8) below).

And the same is repeated for every permutation. Then, the P� value is calculated as

in the previous case, Eq. (5.6).

Note that step 1, the most time consuming (due to the Monte Carlo simulations), was

removed in the method of the previous section, as the common �tting range was the same

in all permutations (obviously, step 2 was also unnecessary). This meant that only data

inside the common �tting range had to be permuted. Now, we release such a restriction,

and as a result, each collection of reshu�ed datasets will lead to a di�erent common

�tting range. In this case, one has to take care in order to compare the test statistic

e� corresponding to the real data and the reshu�ed data, as our previous de�nition did

not take into account that di�erent �tting ranges correspond to di�erent variances of
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θ̂i � θ̂j . Indeed, from Ref. (Aban et al., 2006) we know that the standard deviation of

the estimation of the power-law exponent ~θi for the empirical data will be

~�i =
1p
ni

�
1

(~θi � 1)2
� r~�i�1 ln2 r

(1� r~�i�1)2

��1=2

; (5.7)

with r = a=b and analogously for the reshu�ed data, replacing ~θi by ~θ
(`)
i , r by r(`) =

a(`)=b(`), and ni by ~n
(`)
i . Note that for the empirical data, the exponents of both methods,

θ̂i and ~θi, are the same, but not necessarily for the reshu�ed data. The same happens

for the number of events in the power-law regime and the resulting standard deviations,

i.e., ni = ~ni and �i = ~�i (for the empirical data), but we need to distinguish ~n
(`)
i from

n
(`)
i and ~�

(`)
i from �

(`)
i (for the permuted data).

In general, the larger the �tting range, the smaller r, and the smaller also �i (even if

the number of data keeps constant). In order to compensate this fact, we de�ne the test

statistic as

~� =
M�1X

i=1

MX

j=i+1

(~θi � ~θj)
2

(~�2
i + ~�2

j )
; (5.8)

where ~�i is the standard deviation of the exponent, calculated either from Eq. (5.7),

from Monte Carlo simulations, or from the jackknife method (our particular choice). By

dividing by the sum of the variances we do not only ensure that each pair of datasets

contributes the same to the statistic (on average) but also that the statistic has the same

average value for each permutation (under the null hypothesis). When the �tting range

is �xed for all permutations, this statistic is essentially the same (except for a constant

factor) as the one employed in the previous section, Eq. (5.4). Note nevertheless that,

in contrast with the multiple testing explained before, the outcome of this test is not

in
uenced by the size of the \error bars" associated to the exponents, i.e., we could

duplicate the value of ~�i and the P�value of the test would not change. In other words,

we just use the standard deviation as a scaling factor of the di�erences between the

exponents. The results of this generalized test for the M = 7 data yield e�data = 44:8

and P = 0:04; again, the null hypothesis of universality can be rejected at the 5%

signi�cance level.

5.6 Conclusions

We have developed permutational tests to deal with the universality or not of the critical

exponents arising from power-law probability distributions. More common methods

require the precise estimation of the uncertainty of the exponents, which is di�cult for

our sophisticated �tting and testing procedure of the value of the exponents Deluca and
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Corral (2013b). Moreover, those common methods su�er from the di�culties of multiple

testing, as for instance the arti�cially high values of the family-wise signi�cance level

and the non-independence of the tests.

Our alternative permutational tests give clear and unambiguous results: despite the fact

that the di�erences between the exponents are rather small, the universality hypothesis

is rejected, both for a extremely simple version of the permutational test and for a

more complete implementation that avoids arti�cial biases in the procedure. It is worth

mentioning also that for the original data analyzed in Ref. Peters et al. (2010) (which

contains less events due to the shorter time span covered), the tests are not able to �nd

deviations from universality. So, it is only when a critical amount of data is available

that these deviations show up. This issue needs to be further investigated, but we

can speculate that the deviations could arise from a lack of stationarity, due to long-

term slight variations associated for instance with El Ni~no phenomenon or to seasonal


uctuations. At present, the number of data available is still small to shed light on this

point. Finally, the fact that the universality hypothesis is rejected in the tests does not

mean that one has to rule out the existence of a universal mechanism for atmospheric

convection, as uncontrolled systematic errors can be present in the collection of data.





Chapter 6

Probabilistic Forecasting and The

Effect of Thresholding

Many atmospheric processes related to precipitation have large scale correlations in time

and space, which are the result of the coupling between several non-linear mechanisms

with di�erent temporal and spatial characteristic scales. Despite the diversity of indi-

vidual rain events, a recent array of statistical measures presents surprising statistical

regularities giving support to the hypothesis that atmospheric convection and precip-

itation may be a real-world example of Self-Organised Criticality (SOC) (Bak et al.,

1987, Tang and Bak, 1988). The usual approach consists of looking at the occurrence

of rain by days or months. For \episodic" rain events, similar to avalanches in cellular-

automaton models, scale-free rain event distributions are found (Peters et al., 2002).

However, a power-law distribution (i.e. scale-free) of the observable is not su�cient

evidence for SOC dynamics, as there are many alternative mechanisms that give rise to

such behaviour (see, for example, Dickman (2003), Mitzenmacher (2004)).

Further support for the SOC hypothesis was given by Peters and Neelin (2006), who

found a relation between satellite estimates of rain rate and water vapour over the trop-

ical oceans compatible with a phase transition, in which large parts of the troposphere

would be in a convectively active phase. In addition, it was shown that the system

was close to the transition point. They also related it to the concept of atmospheric

quasi-equilibrium (Arakawa and Schubert, 1974), which argues that, since driven pro-

cesses are generally slow compared to convection, the system should typically be in a

far-from equilibrium statistically stationary state, where driving and dissipation are in

balance. In addition, recent works have shown that local event size distributions present

signs of universality in the system, as was expected in the SOC framework (Deluca and

Corral, 2013a, Deluca et al., 2013, Peters et al., 2010). The resulting rain event size
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distributions were found to be well approximated by power laws of similar exponents

over broad ranges, with differences in the large-scale cutoffs of the distributions. The

possible consequences of this framework for the prediction of atmospheric phenomena

still remain unclear.

6.1 Data and Methods

In this contribution we use high-resolution (1 minute) local rain intensities across differ-

ent climates described in Peters et al. (2010), stochastic convective models (Stechmann

and Neelin, 2011) and SOC models such as the BTW model and the Manna model,

for investigating how predictable the time series of rain activity and rain event sizes

are (Bak et al., 1987, Manna, 1991).

We use the hazard function Hq as a decision variable, which is sensitive to clustering

or repulsion between events in the time series. The conventional precursor pattern

technique requires a large amount of data, does not capture long memory and has been

found to perform worse than the hazard function in similar analysis (Bogachev et al.,

2009). Hq is defined as the probability that a threshold-crossing event will occur in the

next ∆t, conditional on no previous event within the past tw

Hq(tw; ∆t) =

∫tw+∆t

tw
Pq(τ)dτ∫∞

tw
Pq(τ)dτ

, (6.1)

where q corresponds to the different thresholds on sizes and ∆t is set to 1 min for

the rain data and one parallel update for the SOC models. The various quantities are

illustrated in Figure 6.1.

Figure 6.1: Sketch of the hazard function variables

Note that the hazard function gives us a probabilistic forecast and in order to perform

a deterministic prediction we will need to consider a discrimination threshold.
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We also evaluate the quality of the prediction with the receiver operating characteristics

method (ROC) (Egan, 1975). For any binary prediction (occurrence or non-occurrence

of an event) four possible outcomes can occur: true positive (TP), false positive (FP),

true negative (TN) and false negative (FN), see Figure 6.2.

Figure 6.2: Four possible outcomes of a binary prediction in a contingency table.

ROC curves compare sensitivity and specificity. The sensitivity is defined as the number

of correctly predicted occurrences divided by the total number of actual occurrences, and

the specificity as the number of correctly predicted non-occurrences divided by the total

number of actual non-occurrences,

sensitivity =
TP

TP + FN
specificity =

TN

FP + TN
. (6.2)

Each threshold on the decision variable will give a different point on the ROC curve.

If we consider the minimum possible threshold we will always predict the occurrence

of an event, for which the sensitivity is one and the specificity zero. The diagonal in

Figure 6.3 corresponds to random prediction. Points above the diagonal represent good

predictions (better than random) and points below poor predictions.

6.2 Results

We find that on the events scale (slow time scale), rain data renormalise to a trivial

Poisson point process for large thresholds, while for small thresholds events cluster.

This is in contrast to the anti-clustering of high-threshold events in the 2D BTW model

as a result of finite-size effects and the building up of correlations, seen previously by

Garber et al. (2009) (see Figure 6.3(a) and Figure 6.3(b)).
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However, rain data has an unavoidable threshold on intensity due to the device resolution

that blurs the interpretation of the results on the event scale. At the level of intensities

(slow time scale), we �nd that prediction is insensitive to all but very high thresholds.
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Figure 6.3: Example of ROC curves data on the slow time scale for rainfall data (a)
and for the 2D BTW SOC Model simulated data (b).



Chapter 7

Summary, Conclusions and

Expectations

The debate about the reliability of the big number of power-law claims found in the lit-

erature can only come to an end by advancing not only the current statistical methods

for testing such hypothesis, but also by re�ning, improving and extending the theoret-

ical framework that should support the mechanisms from which they emerge. These

improved tests can also help to distinguish between di�erent possible underlying mech-

anisms and to explore if the real-world data ful�l their particular expectations. This

�nal chapter summarizes the results that this investigation has reached and outlines the

perspectives of future work.

The focus of this thesis has been to investigate geophysical phenomena with a wide

range of spatial and temporal scales, which present an emergent behaviour that man-

ifests as scale-invariant distributions for the coarse-grained observables of the system.

These phenomena occur in out-of-equilibrium slowly driven systems with fast dissipation

mechanisms and a dynamical evolution controlled by local threshold-interactions.

First, in Chapters 2 and 3, statistical techniques have been developed for making ac-

curate estimations of the parameters of power-law distributions, based on maximum

likelihood methods, the Kolmogorov-Smirnov test and Monte Carlo simulations of the

distributions. We have corrected important 
aws of the work presented by Clauset et al.

(2009), which has become already a standard reference with more than 600 cites up to

now by indexed publications in the ISI web of Knowledge. We have also generalized

the procedure for the case in which the power-law distribution has both a lower and an

upper cuto�, case in which Clauset et al.'s method is not applicable. The applicability

of this new method is broad, including many types of truncated distributions.
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In Chapter 2 (Deluca and Corral (2013b)) the �tting procedure has been explained

in detail. Its performance has been checked using synthetic power-law datasets and

previously reported power laws for di�erent geophysical systems such as seismic moments

(worldwide and in Southern California), energy dissipated by tropical cyclones, waiting

times between earthquakes in di�erent subdivisions of Southern California and half-lives

of radionuclides, con�rming previous positive results that were previously obtained by

dubious methods. In addition, it has been tested for a negative case also giving the

expected results: forest �res in Italy do not follow a power-law distribution.

In Chapter 3 (Peters et al. (2010)) the method has been applied for investigating the

reproducibility of the observation of scale-free rain event avalanche distributions using

data from di�erent locations and looking for signs of universality in the associated �tted

exponents. The rain event size distributions, measured with identical instruments in

climatically di�erent locations, have been found consistent with a single value of the ex-

ponent θs = 1:17(3). However, universality cannot be clearly veri�ed from this analysis,

because the statistical error in this estimate is too small. It does not take into ac-

count the whole procedure of the test, but just gives the error assuming that the range

of the �t was previously known, and then we believe that the true systematic errors

are larger. Although the exponents does not seem signi�cantly di�erent, climatological

variations are re
ected in the greater large-scale cut-o� of the distributions for tropical

measurements. Dry-spells durations have been found also to follow another power law

with θs = 1:2(1), with regional di�erences also observed in the cuto�. Event durations

present a broad distribution, but which is clearly no a power law.

After this, in Chapter 4 we have analysed data from Catalonia (NE Spain). In this case

the temporal resolution was lower than in the study reported in Chapter 3, leading to

higher uncertainties at the initial part of the distribution and then, to smaller power-law

ranges. In addition, the data also presented a higher minimum rate measurement, which

is found to have a non-trivial e�ect on the exponents values that are consistent with a

single value of θs = 1:50(5), compatible with the values obtained in Peters et al. (2002).

Dry-spells are found to follow power-law distribution with θd = 1:50(5) (called θq in

this chapter), in some cases for more than 2 decades. Scaling techniques are applied

in order to see the collapse of the distributions and also used for determining collective

exponents, which are found consistent with the �tting method.

Determining the critical exponents and their uncertainties in an accurate and unbiased

way is not enough for checking universality. Therefore, in Chapter 6, a method based

on a permutation test has been developed in order to determine if the estimated expo-

nents for the global database of rain (Chapter 3) are statistically compatible. Updating

the available datasets the method is capable to see di�erences between the exponents.
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Even so, the exponents that have been obtained are very similar, and although the test

clearly rejects universality, this does not rule out the existence of an underlying common

universal mechanism for deep convection. Further investigation is needed in order to

determine the origin of the small discrepancies.

Finally, in Chapter 6 we have studied the e�ect of thresholding on SOC models, rain

models and actual rain data. The predictability of extreme events and extreme inten-

sities is studied by means of a decision variable sensitive to the tendency to cluster or

repulse between them and its quality evaluated by the receiver operating characteris-

tics method. On the events scale (large scale), times between events for rainfall data

and models renormalise to a trivial point process, and then the predictability decreases

when the threshold increases. Moreover, for small thresholds there is clustering between

events. The opposite behaviour (anti-clustering) arises in simple SOC models due to

�nite-size e�ects and building up correlations as the threshold raises, which makes our

results intriguing. However, these results are challenged by the fact that rain data has

an unavoidable threshold on intensity due to the measuring device resolution. In the

intensity picture (short scale), the prediction is not a�ected by the threshold, as the

process remains mostly unchanged (also their critical corresponding exponents) until

very high thresholds are reached.

7.1 Future work and perspectives

This thesis raises perspectives in three interrelated research lines: generalization of the

current �tting methods for mixtures of power laws with other distributions; the devel-

opment of a new theoretical framework for convection modelling able to reproduce the

observed behaviour, as well as increasing empirical evidence supporting the connection

between SOC and deep convection; and studies on consequences on the predictability of

events in SOC-like systems.

7.1.1 Fitting and testing

A complete investigation about the reasons of when and why Clauset et al.'s method

(2009) fails is needed. This analysis may answer if alternatives to the KS-distance could

be useful in order to the deal with the limitations of their approach.

Our method can be very easily extended to �t other long-tailed distributions, which

are usually alternatives to the power-law distribution, such as the log-normal distribu-

tion. Likelihood-ratio tests can be used to determine the best statistical model for each



Chapter 7. Conclusions and Expectations 124

particular case. A nice alternative to that is to use a more general distribution that

depending on their parameters can be one or the other, such as the Full-Tails Gamma

distribution (del Castillo et al., 2012).

On the other hand, there is a clear limitation of our approach that should be taken into

account. Why just �t the power law range of the distribution? Truncated power laws

are justi�ed in some contexts, but not in general. Many geophysical data sets used in

this thesis present �nite size e�ects at the tail of the distribution and lack of data for

small values. But this is not the case in general, and then, the development of methods

for proper and accurate �tting of mixtures of power laws with other distributions is an

important task for the future.

Also, it would be interesting to develop of a statistical framework for detection of changes

on the statistical behaviour of key variables of a given system, for example detecting

universality classes shifts. The potential applicability of this is very broad, including

detection of climate change, identi�cation of di�erent kind of convection, or for detecting

the onset of �nancial crises.

7.1.2 Rainfall and convection

In particular, this thesis has contributed to recent observational studies that have shown

strong, although not de�nitive, evidence in support of criticality in the transition to

active deep convection. However, the number of studies is still limited and alternative

non-critical mechanisms may also explain the observations. A new theoretical framework

for convection modelling able to reproduce the observed behaviour is sorely needed.

However, although the SOC hypothesis is fully compatible with observational analyses

conducted so far, alternative explanations for the observed behaviours are also possible,

as commented in Section 1.5.3. Thus, there remains a need to delve further into the

observations.

The observation of scale-free rainfall event sizes suggests the presence of long-range

correlations in the system. Direct measurements of the behaviour of the correlation

function for the precipitation �eld under changes of the (much more slowly varying)

background �elds of water vapour and temperature are desirable to clarify whether the

long range correlation is a consequence of the 
ow �eld, of the proximity to a critical

point, or of a combination of both.

Moreover, there has been little work to date in assessing whether observational features

consistent with criticality can be reproduced using cloud-resolving models (CRMs), in

which convection is modelled explicitly rather than being parametrized. If so, this could
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offer valuable insights by allowing a systematic investigation into the key dynamical

mechanisms responsible for such behaviour. If not, this would raise important questions

about the interpretation of observations, and also about the possibility of important

missing processes in the cloud models.

The construction of simple models can help to elucidate important underlying mech-

anisms. Different alternatives can be discriminated by comparing them with observa-

tional results. Thus, for the near future, it is very important to build a critical stochastic

model with extended interaction of convective plumes, able to reproduce the observed

patterns, controlled by local threshold-interactions between plumes (SOC-like), see Fig-

ure 7.1. This would be a simplified model which could be tested in an idealized setting,

with a view towards understanding how to build the essential critical mechanisms into

future parametrizations of convection.

Figure 7.1: Simplified sketch of a hypothetical cellular automaton model controlled
by local-threshold spatial interactions between convective plumes.

The development of a fundamental critical model that can lead to the observed critical

behaviour is a diffi cult challenge that holds much promise for both Critical Phenomena

and Atmospheric Sciences. Very little has been done along these lines. To the best of

our knowledge, there have not been any published attempts. A Master’ s thesis from the

University of Reading represents an interesting but preliminary attempt at addressing

this problem (Jordan, 2008). Moreover, a simple stochastic model has been designed by

Stechmann and Neelin (2011), which was able to reproduce various statistical empirical

measures. However, the authors make clear that the criticality was introduced ad-hoc

into their model, and it therefore cannot answer how and why the criticality arises.

This representation aims to develop the fundamental statistical theory. Significantly,

such an approach can be interfaced with stochastic convective parametrizations that

will have an impact on more complicated and realistic parametrizations suitable for
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Global Circulation or Numerical Weather Prediction models (Bengtsson et al., 2013,

Plant, 2012, Ragone et al., 2013). Some prototype models based on cellular automaton

ideas have been recently developed but none of them have been suitably developed to

reproduce the temporal and spatial critical patterns observed (e.g. Khouider et al., 2003,

2010, Plant, 2012).

7.1.3 Thesholding, predictability and SOC

Indirect thresholding given by the measurement resolutions is present almost in any real-

world data set and the e�ects of it should not be underestimated. Moreover, applying

thresholds is needed for studying large events, which are crucial for the modelling of man

geophysical processes, as they are the events that have the largest impact in societies

(
oods, high-magnitude earthquakes, solar 
ares, etc.).

From a theoretical point of view, it has been seen that thresholding, on the intensity scale

or on the event scale, has a non-trivial e�ect in SOC models time series. A deep study of

this e�ects on mean-�eld limit of SOC models can help to have a better understanding

of the thresholding process. This is connected to the study of correlations in time and

space and has been seen to have a big impact in the possibilities of using them in order

to make stochastic forecasting of the time series.
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A b s t r a c t

Recently, Clauset, Shalizi, and Newman have proposed a systematic
method to find over which range (if any) a certain distribution behaves as
a power law. However, their method has been found to fail, in the sense
that true (simulated) power-law tails are not recognized as such in some
instances, and then the power-law hypothesis is rejected. Moreover, the
method does not work well when extended to power-law distributions with
an upper truncation. We explain in detail a similar but alternative proce-
dure, valid for truncated as well as for non-truncated power-law distribu-
tions, based in maximum likelihood estimation, the Kolmogorov–Smirnov
goodness-of-fit test, and Monte Carlo simulations. An overview of the main
concepts as well as a recipe for their practical implementation is provided.
The performance of our method is put to test on several empirical data which
were previously analyzed with less systematic approaches. We find the func-
tioning of the method very satisfactory.

Key words: power-law distribution estimation, goodness-of-fit tests, bin-
ning, seismic-moment distribution, waiting-time distribution, tropical-
cyclone energy.
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1. INTRODUCTION

Over the last decades, the importance of power-law distributions has continu-
ously increased, not only in geoscience but also elsewhere (Johnson et al. 1994).
These are probability distributions defined by a probability density (for a con-
tinuous variable x) or by a probability mass function (for a discrete variable x)
given by

f(x) ∝ 1

xα
, (1)

for x ≥ a and a > 0, with a normalization factor (hidden in the proportion-
ality symbol ∝) which depends on whether x is continuous or discrete. In
any case, normalization implies α > 1. Sometimes power-law distributions
are also called Pareto distributions (Evans et al. 2000, Johnson et al. 1994) or
Riemann zeta distributions in the discrete case (Johnson et al. 2005), although
in other contexts the name Pareto is associated to a slightly different distribution
(Johnson et al. 1994). So we stick to the clearer term of power-law distribution.

These have remarkable, non-usual statistical properties, as are scale invari-
ance and divergence of moments. The first one means that power-law functions
(defined between 0 and ∞) are invariant under (properly performed) linear
rescaling of axes (both x and f) and therefore have no characteristic scale,
and hence cannot be used to define a prototype of the observable represented
by x (Christensen and Moloney 2005, Corral 2008, Newman 2005, Takayasu
1990). For example, no unit of distance can be defined from the gravitational
field of a point mass (a power law), whereas a time unit can be defined for ra-
dioactive decay (an exponential function). However, as power-law distributions
cannot be defined for all x > 0 but for x ≥ a > 0, their scale invariance is
not “complete” or strict.

A second uncommon property is the non-existence of finite moments; for
instance, if α ≤ 2 not a single finite moment exists (no mean, no variance,
etc.). This has important consequences, as the law of large numbers does not
hold (Kolmogorov 1956, p. 65), i.e., the mean of a sample does not converge
to a finite value as the size of the sample increases; rather, the sample mean
tends to infinite (Shiryaev 1996, p. 393). If 2 < α ≤ 3 the mean exists and is
finite, but higher moments are infinite, which means, for instance, that the cen-
tral limit theorem, in its classic formulation, does not apply (the mean of a sam-
ple is not normally distributed and has infinite standard deviation) (Bouchaud
and Georges 1990). Higher α ’s yield higher-order moments infinite, but then
the situation is not so “critical”. Newman reviews other peculiar properties of
power-law distributions, such as the 80|20 rule (Newman 2005).

Although the normal (or Gaussian) distribution gives a non-zero proba-
bility that a human being is 10 m or 10 km tall, the definition of the proba-
bility density up to infinity is not questionable at all, and the same happens
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with an exponential distribution and most “standard” distributions in prob-
ability theory. However, one already sees that the power-law distribution is
problematic, in particular for α ≤ 2, as it predicts an infinite mean, and for
2 ≤ α < 3, as the variability of the sample mean is infinite. Of course, there
can be variables having an infinite mean (one can easily simulate in a com-
puter processes in which the time between events has an infinite mean), but
in other cases, for physical reasons, the mean should be finite. In such situ-
ations a simple generalization is the truncation of the tail (Aban et al. 2006,
Burroughs and Tebbens 2001, Carrillo-Menéndez and Suárez 2012, Johnson
et al. 1994), yielding the truncated power-law distribution, defined in the same
way as before by f(x) ∝ 1/xα but with a ≤ x ≤ b, with b finite, and with
normalizing factor depending now on a and b (in some cases it is possible to
have a = 0, see next section). Obviously, the existence of a finite upper cut-
off b automatically leads to well-behaved moments, if the statistics is enough
to “see” the cutoff; on the other hand, a range of scale invariance can persist,
if b � a. What one finds in some practical problems is that the statistics is
not enough to decide which is the sample mean and one cannot easily con-
clude if a pure power law or a truncated power law is the right model for the
data.

A well known example of (truncated or not) power-law distribution is the
Gutenberg–Richter law for earthquake “size” (Kagan 2002, Kanamori and
Brodsky 2004, Utsu 1999). If by size we understand radiated energy, the
Gutenberg–Richter law implies that, in any seismically active region of the
world, the sizes of earthquakes follow a power-law distribution, with an expo-
nent α = 1+2B/3 and B close to 1. In this case, scale invariance means that
if one asks how big (in terms of radiated energy) earthquakes are in a certain
region, such a simple question has no possible answer. The non-convergence of
the mean energy can easily be checked from data: catastrophic events such as
the Sumatra–Andaman mega-earthquake of 2004 contribute to the mean much
more than the previous recorded history (Corral and Font-Clos 2013). Note that
for the most common formulation of the Gutenberg–Richter law, in terms of
the magnitude, earthquakes are not power-law distributed, but this is due to the
fact that magnitude is an (increasing) exponential function of radiated energy,
and therefore magnitude turns out to be exponentially distributed. In terms of
magnitude, the statistical properties of earthquakes are trivial (well behaved
mean, existence of a characteristic magnitude, etc.), but we insist that this is not
the case in terms of radiated energy.

Malamud (2004) lists several other natural hazards following power-law
distributions in some (physical) measure of size, such as rockfalls, landslides
(Hergarten 2002), volcanic eruptions (Lahaie and Grasso 1998, McClelland
et al. 1989), and forest fires (Malamud et al. 2005), and we can add rainfall
(Peters et al. 2001, 2010), tropical cyclones (roughly speaking, hurricanes)
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(Corral et al. 2010), auroras (Freeman and Watkins 2002), tsunamis (Bur-
roughs and Tebbens 2005), etc. In some cases this broad range of responses
is triggered simply by a small driving or perturbation (the slow motion of
tectonic plates for earthquakes, the continuous pumping of solar radiation in
hurricanes, etc.); then, this highly nonlinear relation between input and output
can be labeled as crackling noise (Sethna et al. 2001). Notice that this does not
apply for tsunamis, for instance, as they are not slowly driven (or at least not
directly slowly driven).

Aschwanden (2013) reviews disparate astrophysical phenomena which
are distributed according to power laws, some of them related to geoscience:
sizes of asteroids, craters in the Moon, solar flares, and energy of cosmic
rays. In the field of ecology and close areas, the applicability of power-law
distributions has been overviewed by White et al. (2008), mentioning also
island and lake sizes. Aban et al. (2006) provides bibliography for power-
law and other heavy-tailed distributions in diverse disciplines, including hy-
drology, and Burroughs and Tebbens (2001) provide interesting geological
examples.

A theoretical framework for power-law distributed sizes (and durations) of
catastrophic phenomena not only in geoscience but also in condensed matter
physics, astrophysics, biological evolution, neuroscience, and even the econ-
omy, is provided by the concept of self-organized criticality, and summarized
by the sandpile paradigm (Bak 1996, Christensen and Moloney 2005, Jensen
1998, Pruessner 2012, Sornette 2004). However, although the ideas of self-
organization and criticality are very reasonable in the context of most of the
geosystems mentioned above (Corral 2010, Peters and Christensen 2006, Pe-
ters and Neelin 2006), one cannot rule out other mechanisms for the emergence
of power-law distributions (Czechowski 2003, Dickman 2003, Mitzenmacher
2004, Newman 2005, Sornette 2004).

On the other hand, it is interesting to mention that, in addition to sizes and
durations, power-law distributions have also been extensively reported in time
between the occurrences of natural hazards (waiting times), as for instance in
solar flares (Baiesi et al. 2006, Boffetta et al. 1999), earthquakes (Bak et al.
2002, Corral 2003, 2004b), or solar wind (Wanliss and Weygand 2007); in other
cases the distributions contain a power-law part mixed with other factors (Corral
2004a, 2009b, Geist and Parsons 2008, Saichev and Sornette 2006). Neverthe-
less, the possible relation with critical phenomena is not direct (Corral 2005,
Paczuski et al. 2005). The distance between events, or jumps, has received rel-
atively less attention (Corral 2006, Davidsen and Paczuski 2005, Felzer and
Brodsky 2006).

The importance of power-law distributions in geoscience is apparent; how-
ever, some of the evidence gathered in favor of this paradigm can be consid-
ered as “anecdotic” or tentative, as it is based on rather poor data analysis.
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A common practice is to find some (naive or not) estimation of the proba-
bility density or mass function f(x) and plot ln f(x) versus ln x and look
for a linear dependence between both variables. Obviously, a power-law dis-
tribution should behave in that way, but the opposite is not true: an appar-
ent straight line in a log-log plot of f(x) should not be considered a guar-
antee of an underlying power-law distribution, or perhaps the exponent ob-
tained from there is clearly biased (Bauke 2007, Clauset et al. 2009, Gold-
stein et al. 2004, White et al. 2008). But in order to discriminate between
several competing theories or models, as well as in order to extrapolate the
available statistics to the most extreme events, it is very important to properly
fit power laws and to find the right power-law exponent (if any) (White et al.
2008).

The subject of this paper is a discussion on the most appropriate fitting,
testing of the goodness-of-fit, and representation of power-law distributions,
both non-truncated and truncated. A consistent and robust method will be
checked on several examples in geoscience, including earthquakes, tropical
cyclones, and forest fires. The procedure is in some points analogous to that
of Clauset et al. (2009), although there are variations is some key steps, in
order to correct several drawbacks of the original method (Corral et al. 2011,
Peters et al. 2010). The most important difference is in the criterion to se-
lect the range over which the power law holds. As the case of most inter-
est in geoscience is that of a continuous random variable, the more involv-
ing discrete case will be postponed to a separate publication (Corral et al.
2012).

2. POWER-LAW FITS AND GOODNESS-OF-FIT TESTS
2.1 Non-truncated and truncated power-law distributions
Let us consider a continuous power-law distribution, defined in the range a ≤
x ≤ b, where b can be finite or infinite and a ≥ 0. The probability density of
x is given by

f(x) =
α− 1

a1−α − 1/bα−1

�
1

x

�α

, (2)

the limit b → ∞ with α > 1 and a > 0 provides the non-truncated power-law
distribution, also called here pure power law; otherwise, for finite b one has the
truncated power law, for which no restriction exists on α if a > 0, but α < 1
if a = 0 (which is sometimes referred to as the power-function distribution
(Evans et al. 2000)); the case α = 1 needs a separate treatment, with

f(x) =
1

x ln(b/a)
. (3)
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We will consider in principle that the distribution has a unique parameter, α,
and that a and b are fixed and known values. Remember that, at point x, the
probability density function of a random variable is defined as the probability
per unit of the variable that the random variable lies in a infinitesimal interval
around x, that is,

f(x) = lim
∆x→0

Prob[x ≤ random variable < x + ∆x]

∆x
, (4)

and has to verify f(x) ≥ 0 and
�∞
−∞ f(x)dx = 1; see for instance Ross

(2002).
Equivalently, the distribution can be also characterized by its (complemen-

tary) cumulative distribution function,

S(x) = Prob[random variable ≥ x] =

� ∞

x

f(x�)dx�. (5)

For a truncated or non-truncated power law this leads to

S(x) =
1/xα−1 − 1/bα−1

a1−α − 1/bα−1
, (6)

if α �= 1 and

S(x) =
ln(b/x)

ln(b/a)
, (7)

if α = 1. Note that although f(x) always has a power-law shape, S(x) only
has it in the non-truncated case (b → ∞ and α > 1); nevertheless, even not
being a power law in the truncated case, the distribution is a power law, as it is
f(x) and not S(x) which gives the name to the distribution.

2.2 Problematic fitting methods
Given a set of data, there are many methods to fit a probability distribution.
Goldstein et al. (2004), Bauke (2007), White et al. (2008), and Clauset et al.
(2009) check several methods based in the fitting of the estimated probability
densities or cumulative distributions in the power-law case. As mentioned in the
first section, ln f(x) is then a linear function of ln x, both for non-truncated
and truncated power laws. The same holds for ln S(x), but only in the non-
truncated case. So, one can either estimate f(x) from data, using some binning
procedure, or estimate S(x), for which no binning is necessary, and then fit a
straight line by the least-squares method. As we find White et al.’s (2008) study
the most complete, we summarize their results below, although those of the
other authors are not very different.
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For non-truncated power-law distributions, White et al. (2008) find that the
results of the least-squares method using the cumulative distribution are rea-
sonable, although the points in S(x) are not independent and linear regression
should yield problems in this case. We stress that this procedure only can work
for non-truncated distributions (i.e., with b → ∞); truncated ones yield bad
results (Burroughs and Tebbens 2001).

The least-squares method applied to the probability density f(x) has sev-
eral variations, depending on the way of estimating f(x). Using linear binning
one obtains a simple histogram, for which the fitting results are catastrophic
(Pueyo and Jovani 2006, Bauke 2007, Goldstein et al. 2004, White et al. 2008).
This is not unexpected, as linear binning of a heavy-tailed distribution can be
considered as a very naive approach. If instead of linear binning one uses log-
arithmic binning the results improve (when done “correctly”), and are reason-
able in some cases, but they still show some bias, high variance, and bin-size
dependence. A fundamental point is to avoid having empty bins, as they are
disregarded in logscale, introducing an important bias.

In summary, methods of estimation of probability-distribution parameters
based on least-squares fitting can have many problems, and usually the results
are biased. Moreover, these methods do not take into account that the quantity to
be fitted is a probability distribution (i.e., once the distributions are estimated,
the method is the same as for any other kind of function). We are going to
see that the method of maximum likelihood is precisely designed for dealing
with probability distributions, presenting considerable advantages in front of
the other methods just mentioned.

2.3 Maximum likelihood estimation
Let us denote a sample of the random variable x with N elements as x1, x2,
…, xN , and let us consider a probability distribution f(x) parameterized by
α. The likelihood function L(α) is defined as the joint probability density (or
the joint probability mass function if the variable were discrete) evaluated at
x1, x2, …, xN in the case in which the variables were independent, i.e.,

L(α) =
N�

i=1

f(xi) . (8)

Note that the sample is considered fixed, and it is the parameter α what is al-
lowed to vary. In practice it is more convenient to work with the log-likelihood,
the natural logarithm of the likelihood (dividing by N also, in our definition),

�(α) =
1

N
ln L(α) =

1

N

N�

i=1

ln f(xi) . (9)
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The maximum likelihood (ML) estimator of the parameter α based on the sam-
ple is just the value of α that yields the maximum of �(α) (which coincides
with the maximum of L(α), obviously). For a given sample, we will denote
the ML estimator as αe (e is from empirical), but it is important to realize
that the ML estimator is indeed a statistic (a quantity calculated from a random
sample) and therefore can be considered as a random variable; in this case it is
denoted as α̂. In a formula,

αe = arg max
∀α

�(α) , (10)

where argmax refers to the argument of the function � that makes it maximum.
For the truncated or the non-truncated continuous power-law distribution

we have, substituting f(x) from Eqs. (2)-(3) and introducing r = a/b, disre-
garding the case a = 0,

�(α) = ln
α− 1

1 − rα−1
− α ln

g

a
− ln a , if α �= 1, (11)

�(α) = − ln ln
1

r
− ln g , if α = 1 ; (12)

where g is the geometric mean of the data, ln g = N−1
�N

1 ln xi, and the
last term in each expression is irrelevant for the maximization of �(α). The
equation for α = 1 is necessary in order to avoid overflows in the numerical
implementation of Eq. (11). Remember that the distribution is only parameter-
ized by α, whereas a and b (and r) are constant parameters; therefore, �(α)
is not a function of a and b, but of α.

In order to find the maximum of �(α) one can derive with respect α and
set the result equal to zero (Aban et al. 2006, Johnson et al. 1994),

d�(α)

dα

����
α=αe

=
1

αe − 1
+

rαe−1 ln r

1 − rαe−1
− ln

g

a
= 0 , (13)

which constitutes the so-called likelihood equation for this problem. For a non-
truncated distribution, r = 0, and it is clear that there is one and only one
solution,

αe = 1 +
1

ln(g/a)
, (14)

which corresponds to a maximum, as

L(α) = eN�(α) =
1

aN
(α− 1)Ne−Nα ln(g/a) , (15)

has indeed a maximum (resembling a gamma probability density, see next sub-
section). Figure 1 illustrates the log-likelihood function and its derivative, for
simulated power-law data.
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Fig. 1. Log-likelihood �(α) and its derivative, for simulated non-truncated power-
law data with exponent α = 1.15 and a = 0.001. The total number of data is Ntot =
1000. The resulting estimation yields αe = 1.143, which will lead to a confidence
interval α ± σ = 1.143 ± 0.005.

In the truncated case it is not obvious that there is a solution to the likeli-
hood equation (Aban et al. 2006); however, one can take advantage of the fact
that the power-law distribution, for fixed a and b, can be viewed as belonging
to the regular exponential family, for which it is known that the maximum like-
lihood estimator exists and is unique; see Barndorff-Nielsen (1978, p. 151) or
del Castillo (2013). Indeed, in the single-parameter case, the exponential family
can be written in the form

f(x) = C−1(α)H(x)eθ(α)·T (x) , (16)

where both θ(α) and T (x) can be vectors, the former containing the parameter
α of the family. Then, for θ(α) = −α, T (x) = ln x, and H(x) = 1 we
obtain the (truncated or not) power-law distribution, which therefore belongs to
the regular exponential family, which guarantees the existence of a unique ML
solution.

In order to find the ML estimator of the exponent in the truncated case, we
proceed by maximizing directly the log-likelihood �(α) (rather than by solving
the likelihood equation). The reason is a practical one, as our procedure is part
of a more general method, valid for arbitrary distributions f(x), for which
the derivative of �(α) can be difficult to evaluate. We will use the downhill
simplex method, through the routine “amoeba” of Press et al. (1992), although
any other simpler maximization procedure should work, as the problem is one-
dimensional, in this case. One needs to take care when the value of α gets very
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close to one in the maximization algorithm, and then replace �(α) by its limit
at α = 1,

�(α) →α→1 − ln ln
1

r
− α ln

g

a
− ln a , (17)

which is in agreement with the likelihood function for a (truncated) power-law
distribution with α = 1.

An important property of ML estimators, not present in other fitting meth-
ods, is their invariance under re-parameterization. If instead of working with
parameter α we use ν = h(α), then the ML estimator of ν is “in agreement”
with that of α, i.e., ν̂ = h(α̂). Indeed,

d�

dν
=

d�

dα

dα

dν
, (18)

so, the maximum of � as a function of ν is attained at the point h(α̂), pro-
vided that the function h is “one-to-one”. Note that the parameters could be
multidimensional as well. Casella and Berger (2002) study this invariance with
much more care.

In their comparative study, White et al. (2008) conclude that maximum
likelihood estimation outperforms the other fitting methods, as always yields
the lowest variance and bias of the estimator. This is not unexpected, as the
ML estimator is, mathematically, the one with minimum variance among all
asymptotically unbiased estimators. This property is called asymptotical effi-
ciency (Bauke 2007, White et al. 2008).

2.4 Standard deviation of the ML estimator
The main result of this subsection is the value of the uncertainty σ of α̂, rep-
resented by the standard deviation of α̂ and given by

σ =
1√
N

�
1

(αe − 1)2
− rαe−1 ln2 r

(1 − rαe−1)2

�−1/2

, (19)

(Aban et al. 2006). This formula can be used directly, although σ can be
computed as well from Monte Carlo simulations, as explained in another sub-
section. A third option is the use of the jackknife procedure, as done by Peters
et al. (2010). The three methods lead to essentially the same results. The rest of
this subsection is devoted to the particular derivation of σ for a non-truncated
power-law distribution, and therefore can be skipped by readers interested
mainly in the practical use of ML estimation.

For the calculation of α̂ (the ML estimator of α) one needs to realize
that this is indeed a statistic (a quantity calculated from a random sample) and
therefore it can be considered as a random variable. Note that α denotes the
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true value of the parameter, which is unknown. It is more convenient to work
with α− 1 (the exponent of the cumulative distribution function); in the non-
truncated case (r = 0 with α > 1) we can easily derive its distribution. First
let us consider the geometric mean of the sample, g, rescaled by the minimum
value a,

ln
g

a
=

1

N

N�

i=1

ln
xi

a
. (20)

As each xi is power-law distributed (by hypothesis), a simple change of vari-
ables shows that ln(xi/a) turns out to be exponentially distributed, with scale
parameter 1/(α − 1) ; then, the sum will be gamma distributed with the same
scale parameter and with shape parameter given by N (this is the key property
of the gamma distribution (Durrett 2010)). Therefore, ln(g/a) will follow the
same gamma distribution but with scale parameter N−1(α− 1)−1.

At this point it is useful to introduce the generalized gamma distribution
(Evans et al. 2000, Johnson et al. 1994, Kalbfleisch and Prentice 2002), with
density, for a random variable y ≥ 0,

D(y) =
|δ|

cΓ(γ/δ)

�y

c

�γ−1

e−(y/c)δ , (21)

where c > 0 is the scale parameter and γ and δ are the shape parameters,
which have to verify 0 < γ/δ < ∞ (so, the only restriction is that they have the
same sign, although the previous references only consider γ > 0 and δ > 0) ;
the case δ = 1 yields the usual gamma distribution and δ = γ = 1 is the expo-
nential one. Again, changing variables one can show that the inverse z = 1/y
of a generalized gamma variable is also a generalized gamma variable, but with
transformed parameters,

γ, δ, c → −γ,−δ,
1

c
. (22)

So, α̂ − 1 = z = 1/ ln(g/a) will have a generalized gamma distribution,
with parameters −N, −1, and N(α− 1) (keeping the same order as above).
Introducing the moments of this distribution (Evans et al. 2000),

�ym� = cmΓ
�
γ+m
δ

�

Γ (γ/δ)
(23)

(valid for m > −γ if γ > 0 and for m < |γ| if γ < 0, and �ym� infinite
otherwise), we obtain the expected value of α̂− 1,

�α̂− 1� =
N(α− 1)

N − 1
. (24)
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Note that the ML estimator, α̂, is biased, as its expected value does not co-
incide with the right value, α ; however, asymptotically, the right value is re-
covered. An unbiased estimator of α can be obtained for a small sample as
(1 − 1/N)αe + 1/N, although this will not be of interest to us.

In the same way, the standard deviation of α̂ − 1 (and of α̂) turns out to
be

σ =
�
�(α̂− 1)2� − �α̂− 1�2 =

α− 1

(1 − 1/N)
√

N − 2
, (25)

which leads asymptotically to (α − 1)/
√

N. In practice, we need to replace
α by the estimated value αe ; then, this is nothing else than the limit r = 0
(b → ∞) of the general formula stated above for σ (Aban et al. 2006). The fact
that the standard deviation tends to zero asymptotically (together with the fact
that the estimator is asymptotically unbiased) implies that any single estimation
converges (in probability) to the true value, and therefore the estimator is said
to be consistent.

2.5 Goodness-of-fit test
One can realize that the maximum likelihood method always yields a ML esti-
mator for α, no matter which data one is using. In the case of power laws, as
the data only enters in the likelihood function through its geometric mean, any
sample with a given geometric mean yields the same value for the estimation,
although the sample can come from a true power law or from any other dis-
tribution. So, no quality of the fit is guaranteed and thus, maximum likelihood
estimation should be rather called minimum unlikelihood estimation. For this
reason a goodness-of-fit test is necessary (although recent works do not take
into account this fact (Baró and Vives 2012, Kagan 2002, White et al. 2008)).

Following Goldstein et al. (2004) and Clauset et al. (2009) we use the
Kolmogorov–Smirnov (KS) test (Chicheportiche and Bouchaud 2012, Press
et al. 1992), based on the calculation of the KS statistic or KS distance de

between the theoretical probability distribution, represented by S(x), and the
empirical one, Se(x). The latter, which is an unbiased estimator of the cumula-
tive distribution (Chicheportiche and Bouchaud 2012), is given by the stepwise
function

Se(x) = ne(x)/N , (26)

where ne(x) is the number of data in the sample taking a value of the variable
larger than or equal to x. The KS statistic is just the maximum difference, in
absolute value, between S(x) and ne(x)/N, that is,

de= max
a≤x≤b

|S(x)−Se(x)|= max
a≤x≤b

����
1

1−rαe−1

��a

x

�αe−1

−rαe−1

�
−ne(x)

N

���� , (27)



FITTING OF POWER-LAW DISTRIBUTIONS 1363

Fig. 2. Empirical (complementary) cumulative distribution for a simulated non-
truncated power-law distribution with α = 1.15, a = 0.001, and Ntot = 1000,
together with its corresponding fit, which yields αe = 1.143. The maximum differ-
ence between both curves, de = 0.033, is marked as an illustration of the calculation
of the KS statistic. The original theoretical distribution, unknown in practice, is also
plotted. Colour version of this figure is available in electronic edition only.

where the bars denote absolute value. Note that the theoretical cumulative dis-
tribution S(x) is parameterized by the value of α obtained from ML, αe. In
practice, the difference only needs to be evaluated around the points xi of the
sample (as the routine “ksone” of Press et al. (1992) does) and not for all x.
A more strict mathematical definition uses the supremum instead of the maxi-
mum, but in practice the maximum works perfectly. We illustrate the procedure
in Fig. 2, with a simulation of a non-truncated power law.

Intuitively, if de is large the fit is bad, whereas if de is small the fit can be
considered as good. But the relative scale of de is provided by its own proba-
bility distribution, through the calculation of a p-value. Under the hypothesis
that the data follow indeed the theoretical distribution, with the parameter α
obtained from our previous estimation (this is the null hypothesis), the p-value
provides the probability that the KS statistic takes a value larger than the one
obtained empirically, i.e.,

p = Prob[KS statistic for power-law data (with αe) is > de] ; (28)

then, bad fits will have rather small p-values.
It turns out that, in principle, the distribution of the KS statistic is known, at

least asymptotically, independently of the underlying form of the distribution,
so

pQ = Q(de

√
N + 0.12de + 0.11de/

√
N)

= 2
∞�

j=1

(−1)j−1 exp[−2j2(de

√
N + 0.12de + 0.11de/

√
N)2] , (29)
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for which one can use the routine “probks” of Press et al. (1992) (but note their
Eq. (14.3.9) is not right). Nevertheless, this formula will not be accurate in our
case, and for this reason we use the symbol pQ instead of p. The reason is that
we are “optimizing” the value of α using the same sample to which we apply
the KS test, which yields a bias in the test, i.e., the formula would work for the
true value of α, but not for one obtained by ML, which would yield in general
a smaller KS statistic and too large p-values (because the fit for αe is better
than for the true value α) (Clauset et al. 2009, Goldstein et al. 2004). However,
for this very same reason the formula can be useful to reject the goodness of a
given fit, i.e., if pQ obtained in this way is already below 0.05, the true p will
be even smaller and the fit is certainly bad. But the opposite is not true. In a
formula

if pQ < 0.05 ⇒ reject power law , (30)

otherwise, no decision can be taken yet. Of course, the significance level 0.05
is arbitrary and can be changed to another value, as usual in statistical tests. As
a final comment, perhaps a more powerful test would be to use, instead of the
KS statistic, the Kuiper’s statistic (Press et al. 1992), which is a refinement of
the former one. It is stated by Clauset et al. (2009) that both tests lead to very
similar fits. In most cases, we have also found no significant differences between
both tests.

2.6 The Clauset et al.’s recipe
Now we are in condition to explain the genuine Clauset et al.’s (2009) method.
This is done in this subsection for completeness, and for the information of the
reader, as we are not going to apply this method. The key to fitting a power law
is neither the ML estimation of the exponent nor the goodness-of-fit test, but
the selection of the interval [a, b] over which the power law holds. Initially, we
have taken a and b as fixed parameters, but in practice this is not the case, and
one has to decide where the power law starts and where ends, independently of
the total range of the data. In any case, N will be the number of data in the
power-law range (and not the total number of data).

The recipe of Clauset et al. (2009) applies to non-truncated power-law dis-
tributions (b → ∞) , and considers that a is a variable which needs to be fit
from the sample (values of x below a are outside the power-law range). The
recipe simply consists in the search of the value of a which yields a minimum
of the KS statistic, using as a parameter of the theoretical distribution the one
obtained by maximum likelihood, αe, for the corresponding a (no calculation
of a p-value is required for each fixed a). In other words,

a = the one that yields minimum de. (31)
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Next, a global p-value is computed by generating synthetic samples by a mix-
ture of parametric bootstrap (similarly to what is explained in the next subsec-
tion) and non-parametric bootstrap. Then, the same procedure applied to the
empirical data (minimization of the KS distance using ML for fitting) is ap-
plied to the syntetic samples in order to fit a and α.

These authors do not provide any explanation of why this should work, al-
though one can argue that, if the data is indeed a power law with the desired
exponent, the larger the number of data (the smaller the a-value), the smaller
the value of de, as de goes as 1/

√
N (for large N, see previous subsec-

tion). On the other hand, if for a smaller a the data departs from the power
law, this deviation should compensate and overcome the reduction in de due
to the increase of N, yielding a larger de. But there is no reason to justify this
overcoming.

Nevertheless, we will not use the Clauset et al.’s (2009) procedure for two
other reasons. First, its extension to truncated power laws, although obvious, and
justifiable with the same arguments, yields bad results, as the resulting values
of the upper truncation cutoff, b, are highly unstable. Second, even for non-
truncated distributions, it has been shown that the method fails to detect the
existence of a power law for data simulated with a power-law tail (Corral et al.
2011): the method yields an a-value well below the true power-law region, and
therefore the resulting p is too small for the power law to become acceptable.
We will explain an alternative method that avoids these problems, but first let
us come back to the case with a and b fixed.

2.7 Monte Carlo simulations

Remember that we are considering a power-law distribution, defined in a ≤
x ≤ b. We already have fit the distribution, by ML, and we are testing the
goodness of the fit by means of the KS statistic. In order to obtain a reliable
p-value for this test we will perform Monte Carlo simulations of the whole
process. A synthetic sample power-law distributed and with N elements can be
obtained in a straightforward way, from the inversion or transformation method
(Devroye 1986, Press et al. 1992, Ross 2002)

xi =
a

[1 − (1 − rαe−1)ui]1/(αe−1)
, (32)

where ui represents a uniform random number in [0, 1). One can use any
random number generator for it. Our results arise from “ran3” of Press et al.
(1992).
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2.8 Application of the complete procedure to many syntetic samples and
calculation of p-value
The previous fitting and testing procedure is applied in exactly the same way
to the synthetic sample, yielding a ML exponent αs (where the subindex s
stands from synthetic or simulated), and then a KS statistic ds, computed as
the difference between the theoretical cumulative distribution, with parameter
αs, and the simulated one, ns(x)/N (obtained from simulations with αe, as
described in the previous subsection), i.e.,

ds = max
a≤x≤b

����
1

1 − rαs−1

��a

x

�αs−1

− rαs−1

�
− ns(x)

N

���� . (33)

Both values of the exponent, αe and αs, should be close to each other, but they
will not be necessarily the same. Note that we are not parameterizing S(x) by
the empirical value αe, but with a new fitted value αs. This is in order to avoid
biases, as a parameterization with αe would lead to worse fits (as the best one
would be with αs) and therefore to larger values of the resulting KS statistic
and to artificially larger p-values. So, although the null hypothesis of the test is
that the exponent of the power law is αe, and synthetic samples are obtained
with this value, no further knowledge of this value is used in the test. This is
the procedure used by Clauset et al. (2009) and Malmgren et al. (2008), but it
is not clear if it is the one of Goldstein et al. (2004).

In fact, one single synthetic sample is not enough to do a proper comparison
with the empirical sample, and we repeat the simulation many times. The most
important outcome is the set of values of the KS statistic, ds, which allows to
estimate its distribution. The p-value is simply calculated as

p =
number of simulations with ds ≥ de

Ns
, (34)

where Ns is the number of simulations. Figure 3 shows an example of the
distribution of the KS statistic for simulated data, which can be used as a table
of critical values when the number of data and the exponent are the same as in
the example (Goldstein et al. 2004).

The standard deviation of the p-value can be calculated just using that the
number of simulations with ds ≥ de is binomially distributed, with standard
deviation

�
Nsp(1 − p) and therefore the standard deviation of p is the same

divided by Ns,

σp =

�
p(1 − p)

Ns
. (35)

In fact, the p-value in this formula should be the ideal one (the one of the whole
population) but we need to replace it by the estimated value; further, when doing
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Fig. 3. Cumulative (complementary) distribution of the Kolmogorov–Smirnov
statistic for simulated non-truncated power-law distributions with α = αe = 1.143,
a = 0.001, and Ntot = 1000. The original “empirical” value de = 0.033 is also
shown. The resulting p -value turns our to be p = 0.060 ± 0.008. The “false” p -value,
pQ, arising from the KS formula, leads to higher values for the same de, in concrete,
pQ = 0.22. Colour version of this figure is available in electronic edition only.

estimation from data, Ns should be Ns − 1, but we have disregarded this
bias correction. It will be also useful to consider the relative uncertainty of p,
which is the same as the relative uncertainty of the number of simulations with
ds ≥ de (as both are proportional). Dividing the standard deviation of p by its
mean (which is p) , we obtain

CVp =

�
1 − p

pNs
�
�

1 − p

number of simulations with ds ≥ de
(36)

(we will recover this formula for the error of the estimation of the probability
density).

In this way, small p-values are associated to large values of de, and there-
fore to bad fits. However, note that if we put the threshold of rejection in, let us
say, p ≤ 0.05, even true power-law distributed data, with exponent αe, yield
“bad fits” in one out of 20 samples (on average). So we are rejecting true power
laws in 5% of the cases (type I error). On the other hand, lowering the threshold
of rejection would reduce this problem, but would increase the probability of
accepting false power laws (type II error). In this type of tests a compromise
between both types of errors is always necessary, and depends on the relative
costs of rejecting a true hypothesis or accepting a false one.

In addition, we can obtain from the Monte Carlo simulations the uncertainty
of the ML estimator, just computing ᾱs, the average value of αs, and from here
its standard deviation,

σ =

�
(αs − ᾱs)2 , (37)
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where the bars indicate average over the Ns Monte Carlo simulations. This
procedure yields good agreement with the analytical formula of Aban et al.
(2006), but can be much more useful in the discrete power-law case.

2.9 Alternative method to the one by Clauset et al.
At this point, for given values of the truncation points, a and b, we are able
to obtain the corresponding ML estimation of the power-law exponent as well
as the goodness of the fit, by means of the p-value. Now we face the same
problem Clauset et al. (2009) tried to solve: how to select the fitting range?
In our case, how to find not only the value of a but also of b ? We adopt the
simple method proposed by Peters et al. (2010): sweeping many different values
of a and b we should find, if the null hypothesis is true (i.e., if the sample is
power-law distributed), that many sets of intervals yield acceptable fits (high
enough p-values), so we need to find the “best” of such intervals. And which
one is the best? For a non-truncated power law the answer is easy, we select the
largest interval, i.e., the one with the smaller a, provided that the p-value is
above some fixed significance level pc. All the other acceptable intervals will
be inside this one.

But if the power law is truncated, the situation is not so clear, as there can
be several non-overlapping intervals. In fact, many true truncated power laws
can be contained in the data, at least there are well know examples of stochas-
tic processes with double power-law distributions (Boguñá and Corral 1997,
Corral 2003, 2009a, Klafter et al. 1996). At this point any selection can be rea-
sonable, but if one insists in having an automatic, blind procedure, a possibility
is to select either the interval which contains the larger number of data, N
(Peters et al. 2010), or the one which has the larger log-range, b/a. For double
power-law distributions, in which the exponent for small x is smaller than
the one for large x, the former recipe has a tendency to select the first (small
x) power-law regime, whereas the second procedure changes this tendency in
some cases.

In summary, the final step of the method for truncated power-law distribu-
tions is contained in the formula

[a, b] = the one that yields higher





N
or
b/a



 provided that p > pc , (38)

which contains in fact two procedures, one maximizing N and the other max-
imizing b/a. We will test both in this paper. For non-truncated power-law dis-
tributions the two procedures are equivalent.

One might be tempted to choose pc = 0.05; however, it is safer to consider
a larger value, as for instance pc = 0.20. Note that the p-value we are using is
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Fig. 4. Evolution as a function of a of the KS statistic, the false p -value pQ, the true
p -value (for fixed a) , and the estimated exponent. The true exponent, here called αt

and equal to 1.15, is displayed as a thin black line, together with a 2σ interval. Colour
version of this figure is available in electronic edition only.

the one for fixed a and b, and then the p-value of the whole procedure should
be different, but at this point it is not necessary to obtain such a p-value, as we
should have already come out with a reasonable fit. Figure 4 shows the results
of the method for true power-law data.

2.10 Truncated or non-truncated power-law distribution?
For broadly distributed data, the simplest choice is to try to fit first a non-
truncated power-law distribution. If an acceptable fit is found, it is expected
that a truncated power law, with b ≥ xmax (where xmax is the largest value of
x) would yield also a good fit. In fact, if b is not considered as a fixed value
but as a parameter to fit, its maximum likelihood estimator when the number of
data is fixed, i.e., when b is in the range b ≥ xmax, is be = xmax. This is easy
to see (Aban et al. 2006), just looking at the Eqs. (11) and (12) for �(α), which
show that �(α) increases as b approaches xmax. (In the same way, the ML
estimator of a, for fixed number of data, would be ae = xmin, but we are not
interested in such a case now.) On the other hand, it is reasonable that a trun-
cated power law yields a better fit than a non-truncated one, as the former has
two parameters and the latter only one (assuming that a is fixed, in any case).

In order to do a proper comparison, in such situations the so-called Akaike
information criterion (AIC) can be used. This is defined simply as the difference
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between twice the number of parameters and twice the maximum of the log-
likelihood multiplied by the number of data, i.e.,

AIC = 2 × (number of parameters) − 2N�(αe) . (39)

In general, having more parameters leads to better fits, and to higher likelihood,
so, the first term compensates this fact. Therefore, given two models, the one
with smaller AIC is preferred. Note that, in order that the comparison based on
the AIC makes sense, the fits that are compared have to be performed exactly
over the same data. So, in our case this can only be done for non-truncated
power laws and for truncated power laws with b ≥ xmax. Nevertheless, due to
the limitations of this paper we have not performed the comparison.

3. ESTIMATION OF PROBABILITY DENSITIES AND CUMULATIVE
DISTRIBUTION FUNCTIONS

The method of maximum likelihood does not rely on the estimation of the
probability distributions, in contrast to other methods. Nevertheless, in order
to present the results, it is useful to display some representation of the distri-
bution, together with its fit. This procedure has no statistical value (it cannot
provide a substitution of a goodness-of-fit test) but is very helpful as a visual
guide, specially in order to detect bugs in the algorithms.

3.1 Estimation of the probability density
In the definition of the probability density,

f(x) = lim
∆x→0

Prob[x ≤ random variable < x + ∆x]

∆x
, (40)

a fundamental issue is that the width of the interval ∆x has to tend to zero. In
practice ∆x cannot tend to zero (there would be no statistics in such case), and
one has to take a non-zero value of the width. The most usual procedure is to
draw a histogram using linear binning (bins of constant width); however, there
is no reason why the width of the distribution should be fixed (some authors
even take ∆x = 1 as the only possible choice). In fact, ∆x should be chosen
in order to balance the necessity of having enough statistics (large ∆x) with
that of having a good sampling of the function (small ∆x). For power-law
distributions and other fat-tailed distributions, which take values across many
different scales, the right choice depends of the scale of x. In these cases it
is very convenient to use the so-called logarithmic binning (Hergarten 2002,
Pruessner 2012). This uses bins that appear as constant in logarithmic scale,
but that in fact grow exponentially (for which the method is sometimes called
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exponential binning instead). Curiously, this useful method is not considered
by classic texts on density estimation (Silverman 1986).

Let us consider the semi-open intervals [a0, b0), [a1, b1), . . . , [ak, bk), . . . ,
also called bins, with ak+1 = bk and bk = Bak (this constant B has noth-
ing to do with the one in the Gutenberg–Richter law, Section 1). For instance,
if B = 5

√
10 this yields 5 intervals for each order of magnitude. Notice that

the width of every bin grows linearly with ak, but exponentially with k, as
bk − ak = (B − 1)ak = a0(B − 1)Bk. The value of B should be chosen in
order to avoid low populated bins; otherwise, a spurious exponent equal to one
appears (Pruessner 2012).

We simply will count the number of occurrences of the variable in each bin.
For each value of the random variable xi, the corresponding bin is found as

k = int
�

ln(xi/a0)

ln B

�
, (41)

where the function int denotes the integer part of its argument. Of course, a0

has to be smaller than any possible value of x. For a continuous variable the
concrete value of a0 should be irrelevant (if it is small enough), but in practice
one has to avoid that the resulting values of ak coincide with round values of
the variable (Corral et al. 2011).

So, with this logarithmic binning, the probability density can be estimated
(following its definition) as the relative frequency of occurrences in a given bin
divided by its width, i.e.,

fe(x
∗
k) =

number of occurrences in bin k

(bk − ak) × number of occurrences
, (42)

where the estimation of the density is associated to a value of x represented
by x∗

k. The most practical solution is to take it in the middle of the interval in
logscale, so x∗

k =
√

akbk. However, for sparse data covering many orders of
magnitude it is necessary to be more careful. In fact, what we are looking for is
the point x∗

k whose value of the density coincides with the probability of being
between ak and bk divided by the width of the interval. This is the solution of

f(x∗
k) =

1

bk − ak

� bk

ak

f(x)dx =
S(ak) − S(bk)

bk − ak
, (43)

where f and S are the theoretical distributions. When the distribution and its
parameters are known, the equation can be solved either analytically or numer-
ically. It is easy to see that for a power-law distribution (truncated or not) the
solution can be written

x∗
k =

�
akbk

�
(α− 1)

Bα/2−1(B − 1)

Bα−1 − 1

�1/α

, (44)
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where we have used that B = bk/ak (if we were not using logarithmic bin-
ning we would have to write a bin-dependent Bk). Note that for constant (bin-
independent) B, i.e., for logarithmic binning, the solution is proportional but
not equal to the geometric mean of the extremes of the bin. Nevertheless, the
omission of the proportionality factor does not alter the power-law behavior,
just shifts (in logarithmic scale) the curve. But for a different binning proce-
dure this is no longer true. Moreover, for usual values of B the factor is very
close to one (Hergarten 2002), although large values of B (Corral et al. 2011)
yield noticeable deviations if the factor in brackets is not included; see also our
treatment of the radionuclide half-lives in Section 3, with B = 10. Once the
value of B is fixed (usually in this paper to 5

√
10) , in order to avoid empty bins

we merge consecutive bins until the resulting merged bins are not empty. This
leads to a change in the effective value of B for merged bins, but the method
is still perfectly valid.

The uncertainty of fe(x) can be obtained from its standard deviation (the
standard deviation of the estimation of the density, fe, not of the original ran-
dom variable x). Indeed, assuming independence in the sample (which is al-
ready implicit in order to apply maximum likelihood estimation), the number
of occurrences of the variable in bin k is a binomial random variable (in the
same way as for the p-value). As the number of occurrences is proportional to
fe(x), the ratio between the standard deviation and the mean for the number of
occurrences will be the same as for fe(x), which is,

σf (x)

fe(x)
=

�
q

mean number of occurrences in k
� 1√

occurrences in k
, (45)

where we replace the mean number of occurrences in bin k (not available from
a finite sample) by the actual value, and q, the probability that the occurrences
are not in bin k, by one. This estimation of σf (x) fails when the number of
counts in the bin is too low, in particular if it is one.

One final consideration is that the fitted distributions are normalized be-
tween a and b, with N number of data, whereas the empirical distributions
include all data, with Ntot of them, Ntot ≥ N. Therefore, in order to compare
the fits with the empirical distributions, we will plot Nf(x)/Ntot together with
fe(x

∗
k).

3.2 Estimation of the cumulative distribution
The estimation of the (complementary) cumulative distribution is much simpler,
as bins are not involved. One just needs to sort the data, in ascending order,
x(1) ≤ x(2) ≤ · · · ≤ x(Ntot−1) ≤ x(Ntot) ; then, the estimated cumulative
distribution is

Se(x(i)) =
ne(x(i))

Ntot
=

Ntot − i + 1

Ntot
, (46)
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for the data points, Se(x) = constant below these data points, and Se(x) = 0
for x > x(Ntot) ; ne(x(i)) is the number of data with x ≥ x(i) in the empirical
sample. The formula relating ne(x(i)) with i assumes that repeated values of
the variable are not possible, so it would not be valid for a discrete x. We use the
case of empirical data as an example, but it is of course the same for simulated
data. For the comparison of the empirical distribution with the theoretical fit
we need to correct the different number of data in both cases. So, we plot both
[NS(x) + ne(b)]/Ntot and Se(x), in order to check the accuracy of the fit.

4. DATA ANALYZED AND RESULTS

We have explained how, in order to certify that a dataset is compatible with a
simple power-law distribution, many mathematical formulas are required, lead-
ing to an astonishingly large number of calculations. Now we check the per-
formance of our method with diverse geophysical data, which were previously
analyzed with different, less rigorous or worse-functioning methods. For the
peculiarities and challenges of the dataset, we also include the half-lives of un-
stable nuclides. The parameters of the method are fixed to Ns = 1000 Monte
Carlo simulations and the values of a and b are found sweeping a fixed num-
ber of points per order of magnitude, equally spaced in logarithmic scale. This
number is 10 for non-truncated power laws (in which b is fixed to infinity) and
5 for truncated power laws. Three values of pc are considered: 0.1, 0.2, and
0.5, in order to compare the dependence of the results on this parameter. The
results are reported using the Kolmogorov–Smirnov test for goodness-of-fit. If,
instead, the Kuiper’s test is used, the outcome is not significantly different in
most of the cases. In a few cases the fitting range, and therefore the exponent,
changes, but without a clear trend, i.e., the fitting range can become smaller or
increase. These cases deserve a more in-depth investigation.

4.1 Half-lives of the radioactive elements
Corral et al. (2011) studied the statistics of the half-lives of radionuclides (com-
prising both nuclei in the fundamental and in excited states). Any radionuclide
has a constant probability of disintegration per unit time, the decay constant, let
us call it λ (Krane 1988). If M is the total amount of radioactive material at
time t, this means that

− 1

M

dM

dt
= λ . (47)

This leads to an exponential decay, for which a half-life t1/2 or a lifetime τ
can be defined, as

t1/2 = τ ln 2 =
ln 2

λ
. (48)
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It is well known that the half-lives take disparate values, for example, that of
238 U is 4.47 (American) billions of years, whereas for other nuclides it is a
very tiny fraction of a second.

It has been recently claimed that these half-lives are power-law distributed
(Corral et al. 2011). In fact, three power-law regions were identified in the prob-
ability density of t1/2, roughly,

f(t1/2) ∝





1/t0.65
1/2 for 10−6 s ≤ t1/2 ≤ 0.1 s

1/t1.19
1/2 for 100 s ≤ t1/2 ≤ 1010 s

1/t1.09
1/2 for t1/2 ≥ 108 s.

(49)

Notice that there is some overlap between two of the intervals, as reported in
the original reference, due to problems in delimiting the transition region. The
study used variations of the Clauset et al.’s (2009) method of minimization
of the KS statistic, introducing and upper cutoff and additional conditions to
escape from the global minimum of the KS statistic, which yielded the rejection
(p = 0.000) of the power-law hypothesis. These additional conditions were of
the type of taking either a or b/a greater than a fixed amount.

For comparison, we will apply the method explained in the previous section
to this problem. Obviously, our random variable will be x = t1/2. The data
is exactly the same as in the original reference, coming from the Lund/LBNL
Nuclear Data Search web page (Chu et al. 1999). Elements whose half-life is
only either bounded from below or from above are discarded for the study, which
leads to 3002 radionuclides with well-defined half-lives; 2279 of them are in
their ground state and the remaining 723 in an exited state. The minimum and
maximum half-lives in the dataset are 3×10−22 s and 7 × 1031 s, respectively,
yielding more than 53 orders of magnitude of logarithmic range. Further details
are in Corral et al. (2011).

The results of our fitting and testing method are shown in Table 1 and in
Fig. 5. The fitting of a non-truncated power law yields results in agreement with
Corral et al. (2011), with α = 1.09 ± 0.01 and a = 3 × 107 s, for the three
values of pc analyzed (0.1, 0.2, and 0.5). When fitting a truncated power law,
the maximization of the log-range, b/a, yields essentially the same results as
for a non-truncated power law, with slightly smaller exponents α due to the
finiteness of b (results not shown). In contrast, the maximization of the num-
ber of data N yields an exponent α � 0.95 between a � 0.1 s and b � 400 s
(with some variations depending on pc). This result is in disagreement with
Corral et al. (2011), which yielded a smaller exponent for smaller values of a
and b. In fact, as the intervals do not overlap both results are compatible, but
it is also likely that a different function would lead to a better fit; for instance,
a lognormal between 0.01 s and 105 s was proposed by Corral et al. (2011),
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T a b l e 1

Results of the fits for the Ntot = 3002 nuclide half-lives data, for different values of pc

N a [s] b [s] b/a α ± σ pc

143 0.316 × 108 ∞ ∞ 1.089 ± 0.007 0.10

143 0.316 × 108 ∞ ∞ 1.089 ± 0.007 0.20

143 0.316 × 108 ∞ ∞ 1.089 ± 0.008 0.50

1596 0.0794 501 6310 0.952 ± 0.010 0.10

1539 0.1259 501 3981 0.959 ± 0.011 0.20

1458 0.1259 316 2512 0.950 ± 0.011 0.50

1311 125.9 0.501 × 1023 0.398 × 1021 1.172 ± 0.005 0.10

1309 125.9 0.316 × 1022 0.251 × 1020 1.175 ± 0.005 0.20

1303 125.9 0.794 × 1018 0.631 × 1016 1.177 ± 0.005 0.50

Notes: We show the cases of a pure or non-truncated power law (with b = ∞, fixed)
and truncated power law (with b finite, estimated from data), maximizing N. The
latter is split into two subcases: exploring the whole range of a (rows 4, 5, and 6) and
restricting a to a > 100 s (rows 7, 8, and 9).

Fig. 5. Estimated probability density of the half-lives of the radionuclides, together
with the power-law fits explained in the text. The number of log-bins per order of mag-
nitude is one, which poses a challenge in the correct estimation of the density, as ex-
plained in Section 3. Data below 10−10 s are not shown. Colour version of this figure
is available in electronic edition only.
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although the fitting procedure there was not totally reliable. Finally, the interme-
diate power-law range reported in the original paper (the one with α = 1.19) is
not found by any of our algorithms working on the entire dataset. It is necessary
to cut the dataset, removing data below, for instance, 100 s (which is equivalent
to impose a > 100 s), in order that the algorithm converges to that solution.
So, caution must be taken when applying the algorithm blindly, as important
power-law regimes may be hidden by others having either larger N or larger
log-range.

4.2 Seismic moment of earthquakes
The statistics of the sizes of earthquakes (Gutenberg and Richter 1944) has
been investigated not only since the introduction of the first magnitude scale,
by Richter, but even before, in the 1930’s, by Wadati (Utsu 1999). From a mod-
ern perspective, the most reliable measure of earthquake size is given by the
(scalar) seismic moment M, which is the product of the mean final slip, the
rupture area, and the rigidity of the fault material (Ben-Zion 2008). It is usu-
ally assumed that the energy radiated by an earthquake is proportional to the
seismic moment (Kanamori and Brodsky 2004), so, a power-law distribution
of the seismic moment implies a power-law distribution of energies, with the
same exponent.

The most relevant results for the distribution of seismic moment are those
of Kagan for worldwide seismicity (Kagan 2002), who showed that its probabil-
ity density has a power-law body, with a universal exponent in agreement with
α = 1.63 � 5/3, but with an extra, non-universal exponential decay (at least in
terms of the complementary cumulative distribution). However, Kagan’s (2002)
analysis, ending in 2000, refers to a period of global seismic “quiescence”; in
particular, the large Sumatra–Andaman earthquake of 2004 and the subsequent
global increase of seismic activity are not included. Much recently, Main et al.
(2008) have shown, using a Bayesian information criterion, that the inclusion
of the new events leads to the preference of the non-truncated power-law distri-
bution in front of models with a faster large- M decay.

We take the Centroid Moment Tensor (CMT) worldwide catalog analyzed
by Kagan (2002) and by Main et al. (2008), including now data from January
1977 to December 2010, and apply our statistical method to it. Although the
statistical analysis of Kagan is rather complete, his procedure is different to
ours. Note also that the dataset does not comprise the recent (2011) Tohoku
earthquake in Japan; nevertheless, the qualitative change in the data with respect
to Kagan’s period of analysis is very remarkable. Following this author, we
separate the events by their depth: shallow for depth ≤ 70 km, intermediate
for 70 km < depth ≤ 300 km, and deep for depth > 300 km. The number of
earthquakes in each category is 26824, 5281, and 1659, respectively.
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Second, we also consider the Southern California’s Waveform Relocated
Earthquake Catalog, from 1 January 1981 to 30 June 2011, covering a rectan-
gular box of coordinates (122◦ W, 30◦ N), (113◦ W, 37.5◦ N) (Hauksson et al.
2012, Shearer et al. 2005). This catalog contains 111981 events with m ≥ 2.
As, in contrast with the CMT catalog, this one does not report the seismic mo-
ment M, the magnitudes m there are converted into seismic moments, using
the formula

log10 M =
3

2
(m + 6.07) , (50)

where M comes in units of Nm (Newtons times meters); however, this formula
is a very rough estimation of seismic moment, as it is only accurate (and exact)
when m is the so-called moment magnitude (Kanamori and Brodsky 2004),
whereas the magnitudes recorded in the catalog are not moment magnitudes. In
any case, our procedure here is equivalent to fit an exponential distribution to
the magnitudes reported in the catalog.

Tables 2 and 3 and Fig. 6 summarize the results of analyzing these data
with our method, taking x = M as the random variable. Starting with the non-
truncated power-law distribution, we always obtain an acceptable (in the sense
of non-rejectable) power-law fit, valid for several orders of magnitude. In all
cases the exponent α is between 1.61 and 1.71, but for Southern California it
is always very close to 1.66. For the worldwide CMT data the largest value of a
is 3 × 1018 Nm, corresponding to a magnitude m = 6.25 (for shallow depth),
and the smallest is a = 8 × 1016 Nm, corresponding to m = 5.2 (intermedi-
ate depth). If the events are not separated in terms of their depth (not shown),
the results are dominated by the shallow case, except for pc = 0.5, which leads
to very large values of a and α (a = 5 × 1020 Nm and α � 2). The reason
is probably the mixture of the different populations, in terms of depth, which
is not recommended by Kagan (2002). This is an indication that the inclusion
of an upper limit b to the power law may be appropriate, with each depth cor-
responding to different b ’s. For Southern California, the largest a found (for
pc = 0.5) is 1.6 × 1015 Nm, giving m = 4. This value is somewhat higher, in
comparison with the completeness magnitude of the catalog; perhaps the reason
that the power-law fit is rejected for smaller magnitudes is due to the fact that
these magnitudes are not true moment magnitudes, but come from a mixture of
different magnitude definitions. If the value of a is increased, the number of
data N is decreased and the power-law hypothesis is more difficult to reject,
due simply to poorer statistics. When a truncated power law is fitted, using the
method of maximizing the number of data leads to similar values of the expo-
nents, although the range of the fit is in some cases moved to smaller values
(smaller a, and b smaller than the maximum M on the dataset). The method
of maximizing b/a leads to results that are very close to the non-truncated
power law.
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T a b l e 2

Results of the non-truncated power-law fit (b = ∞) applied to
the seismic moment of earthquakes in CMT worldwide catalog (separating by depth)

and to the Southern California catalog, for different pc

Catalog N a [Nm] α ± σ pc

CMT deep 1216 0.1259 × 1018 1.622 ± 0.019 0.10

intermediate 3701 0.7943 × 1017 1.654 ± 0.011 0.10

shallow 5799 0.5012 × 1018 1.681 ± 0.009 0.10

CMT deep 898 0.1995 × 1018 1.608 ± 0.020 0.20

intermediate 3701 0.7943 × 1017 1.654 ± 0.011 0.20

shallow 5799 0.5012 × 1018 1.681 ± 0.009 0.20

CMT deep 898 0.1995 × 1018 1.608 ± 0.021 0.50

intermediate 3701 0.7943 × 1017 1.654 ± 0.011 0.50

shallow 1689 0.3162 × 1019 1.706 ± 0.018 0.50

S. California 1327 0.1000 × 1016 1.660 ± 0.018 0.10

S. California 1327 0.1000 × 1016 1.660 ± 0.018 0.20

S. California 972 0.1585 × 1016 1.654 ± 0.021 0.50

Fig. 6. Estimated probability densities and corresponding power-law fits of the seis-
mic moment M of shallow earthquakes in the worldwide CMT catalog and of the esti-
mated M in the Southern California catalog. Colour version of this figure is available
in electronic edition only.
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T a b l e 3

Results of the truncated power-law fit, by maximizing the number of data, applied to
the seismic moment of earthquakes in CMT worldwide catalog (separating by depth)

and to the Southern California catalog, for the different pc

Catalog N a [Nm] b [Nm] b/a α±σ pc

CMT deep 1216 0.1259×1018 0.3162×1023 0.2512×106 1.621±0.019 0.10

intermediate 3701 0.7943×1017 0.7943×1022 0.1000×106 1.655±0.011 0.10

shallow 13740 0.1259×1018 0.5012×1020 0.3981×103 1.642±0.007 0.10

CMT deep 1076 0.1259×1018 0.5012×1019 0.3981×102 1.674±0.033 0.20

intermediate 3701 0.7943×1017 0.7943×1022 0.1000×106 1.655±0.011 0.20

shallow 13518 0.1259×1018 0.1995×1020 0.1585×103 1.636±0.008 0.20

CMT deep 898 0.1995×1018 0.3162×1023 0.1585×106 1.604±0.021 0.50

intermediate 3701 0.7943×1017 0.7943×1022 0.1000×106 1.655±0.011 0.50

shallow 11727 0.1259×1018 0.1995×1019 0.1585×102 1.608±0.012 0.50

S. California 1146 0.1259×1016 0.1259×1022 0.1000×107 1.663±0.020 0.10

S. California 1146 0.1259×1016 0.1259×1022 0.1000×107 1.663±0.020 0.20

S. California 344 0.7943×1016 0.1259×1022 0.1585×106 1.664±0.036 0.50

Note: Except for global shallow seismicity (and for the global deep case with
pc = 0.20) the selected b is larger than the maximum value of the variable.

4.3 Energy of tropical cyclones
Tropical cyclones are devastating atmospheric-oceanic phenomena compris-
ing tropical depressions, tropical storms, and hurricanes or typhoons (Emanuel
2005a). Although the counts of events every year have been monitored for a
long time, and other measurements to evaluate annual activity have been intro-
duced (see Corral and Turiel (2012) for an overview), little attention has been
paid to the statistics of individual tropical cyclones.

In 2005, Emanuel introduced the power-dissipation index (PDI) as a simple
way to obtain a rough estimation of the total energy dissipated by all tropical
cyclones in a given season and some ocean basin (Emanuel 2005b). But the
PDI can also be used to characterize individual events as well, as it was done
later by Corral et al. (2010). Indeed, the PDI is defined as the sum for all the
discrete times t (that comprise the lifetime of a tropical cyclone) of the cube of
the maximum sustained wind speed multiplied by the time interval of sampling,
∆t. In a formula,

PDI =
�

∀t

v3
t∆t , (51)

where vt is the maximum sustained wind speed. In the so-called best-track
records, ∆t = 6 hours; this factor would only be necessary in order to compare
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with other data with different ∆t (but caution should be present in this case for
the possible fractal nature of the speed signal). Although the speeds are reported
in knots, they are converted to m/s (using that 1 knot = 0.514 m/s), and then we
report the PDI in m 3 /s 2.

Corral et al. (2010) studied the statistics of the PDI (defined for individual
events, in contrast to Emanuel’s (2005b) work) in 4 different ocean basins for
several time periods. The results showed a rapid, perhaps exponential, decay
at the tail, but a body of the distribution compatible with a power law, for 1
or 2 orders of magnitude, with exponents close to one. The connection with
SOC phenomena was discussed by Corral (2010). The method used was again
a variation of the Clauset et al.’s (2009) one, introducing an upper cutoff and
additional restrictions to the variations of the parameters. Here we revisit this
problem, trying to use updated data (whenever it has been possible), and apply-
ing the method which is the subject of this paper to x = PDI.

The data has been downloaded from the National Hurricane Center (NHC)
of NOAA, for the North Atlantic and the Northeastern Pacific (Jarvinen et al.
1988, NHC 2012) and from the Joint Typhoon Warning Center (JTWC) of the
US Navy (Chu et al. 2002, JTWC Annual Tropical Cyclone Reports 2012) for
the Northwestern Pacific, the Southern Hemisphere (comprising the Southern
Indian and the Southwestern Pacific), and the Northern Indian Ocean. The ab-
breviation, time span, and number of events for each basin are: NAtl, 1966-
2011, 532; EPac, 1966-2011, 728; WPac, 1986-2011, 690; SHem, 1986-2007
(up to May), 523; NInd, 1986-2007, 110. The latter case was not studied in any
of the previous works.

The results for a truncated power law maximizing N, shown in Table 4 and
Fig. 7, are in agreement with those of Corral et al. (2010). In general, exponents
are close but above 1, except for the Northwestern Pacific, where α � 0.96,
and for the North Indian Ocean, where α is substantially higher than one. We
consider that this method performs rather well. It would be interesting to test if
universality can nevertheless hold (the high value for the North Indian Ocean is
based in much less data than for the rest of basins), or if there is some systematic
bias in the value of the exponents (the protocols of the NHC and the JTWC are
different, and the satellite coverage of each basin is also different).

If a non-truncated power law is fit to the data, the fits turn out to be rather
short, with a high exponent (up to 6) describing the tail of the distribution (ex-
cept for the Southern Hemisphere, where no such tail is apparent). We do not
give any relevance to these results, as other alternatives, as for instance a sim-
ple exponential tail, have to be considered (Corral and Turiel 2012, del Castillo
et al. 2012). Coming back to a truncated power law, but maximizing the log-
range, the algorithm sometimes fits the power law in the body of the distribution
(with exponent close to 1) and for some other times the algorithm goes to the
fast-decaying tail. So the method of maximizing b/a is not useful for this data.
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Fig. 7. Estimated probability densities of the PDI of tropical cyclones in 5 ocean
basins, together with their power-law fits. The values of the densities are multiplied by
1, 102, 104, 106, and 108, for clarity sake. The fits for the non-truncated case are
also displayed, although they are not tabulated. Colour version of this figure is available
in electronic edition only.

T a b l e 4

Results of the truncated power-law fits, maximizing N, for
the PDI in the 5 ocean basins with tropical-cyclone activity, for different values of pc

Basin N a [m3/s2] b [m3/s2] b/a α ± σ pc

EPac 637 0.1259 × 1010 0.7943 × 1011 63 1.094 ± 0.033 0.10
NAtl 417 0.1995 × 1010 0.7943 × 1011 40 1.168 ± 0.047 0.10
SHem 523 0.1259 × 1010 0.1259 × 1012 100 1.108 ± 0.034 0.10
WPac 637 0.5012 × 109 0.1259 × 1012 251 0.957 ± 0.025 0.10
NInd 102 0.7943 × 109 0.1995 × 1012 251 1.520 ± 0.077 0.10

EPac 571 0.1995 × 1010 0.7943 × 1011 40 1.149 ± 0.039 0.20
NAtl 417 0.1995 × 1010 0.7943 × 1011 40 1.168 ± 0.047 0.20
SHem 523 0.1259 × 1010 0.1259 × 1012 100 1.108 ± 0.033 0.20
WPac 637 0.5012 × 109 0.1259 × 1012 251 0.957 ± 0.025 0.20
NInd 102 0.7943 × 109 0.1259 × 1012 158 1.490 ± 0.077 0.20

EPac 571 0.1995 × 1010 0.7943 × 1011 40 1.149 ± 0.040 0.50
NAtl 417 0.1995 × 1010 0.7943 × 1011 40 1.168 ± 0.045 0.50
SHem 465 0.1995 × 1010 0.1259 × 1012 63 1.132 ± 0.040 0.50
WPac 637 0.5012 × 109 0.1259 × 1012 251 0.957 ± 0.024 0.50
NInd 86 0.7943 × 109 0.1259 × 1011 16 1.323 ± 0.139 0.50
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4.4 Area of forest fires
The statistics of the size of forest fires was an intense topic of research since
the introduction of the concept of SOC, at the end of the 1980’s, but only from
the point of view of cellular-automaton models. Real data analysis had to wait
several years (Malamud et al. 1998, 2005), leading to power-law distributions,
more or less in agreement with the models. Here we are particularly interested
in a dataset from Italy, for which a power-law distribution of sizes was ruled
out (Corral et al. 2008). Instead, a lognormal tail was proposed for the fire-size
probability density.

The data considered by Corral et al. (2008), and reanalyzed in this study,
comes from the Archivio Incendi Boschivi (AIB) fire catalog compiled by the
(Italian) Corpo Forestale dello Stato (2012). The subcatalog to which we re-
strict covers all Italy and spans the 5-year period 1998-2002, containing 36 748
fires. The size of each fire is measured by the burned area A, in hectares, with
1 ha = 104 m2. In this subsection we analyze the case of x = A.

The results in Table 5 and Fig. 8 show that a pure (non-truncated) power
law is only acceptable (in the sense of non-rejectable) for the rightmost part of
the tail of the distribution, comprising less than one order of magnitude. It is
very indicative that only 51 data are in the possible power-law tail. Therefore, we
disregard this power-law behavior as spurious and expect that other distributions
can yield a much better fit (not in order of the quality of the fit but regarding
the number of data it spans). This seems in agreement with other analyses of
forest-fire data (Clauset et al. 2009, Newman 2005). If a truncated power-law is
considered, fitted by maximizing the number of data, the results are not clearly

Fig. 8. Estimated probability density of the area of fires in the Italian catalog, together
with the power-law fits. In contrast to the previous datasets analyzed, we consider these
power-law fits as irrelevant. Colour version of this figure is available in electronic edi-
tion only.
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T a b l e 5

Results of the fits for the burned area of the Ntot = 36 748 fires
recorded in the Italian catalog, for different pc

N a [ha] b [ha] b/a α ± σ pc

51 794 ∞ ∞ 2.880 ± 0.276 0.10

51 794 ∞ ∞ 2.880 ± 0.277 0.20

51 794 ∞ ∞ 2.880 ± 0.277 0.50

168 316 7943 25 2.353 ± 0.117 0.10

148 316 1259 4 2.075 ± 0.213 0.20

51 794 79430 100 2.870 ± 0.281 0.50

Note: The cases of a non-truncated power law and a truncated
power law, maximizing N, are shown. In the latter case, for
pc = 0.10 and 0.50 the value of b is larger than the maximun
value of the variable.

better, as seen in the table. Moreover, there is considerable variation with the
value of pc. So, we do not give any relevance to such power-law fits. Finally,
the method of maximizing b/a yields the same results as for the non-truncated
power law (except by the fact that the exponents are slightly smaller, not shown).
In order to provide some evidence for the better adequacy of the lognormal tail
in front of the power-law tail for these data, it would be interesting to apply an
adaptation of the test explained by del Castillo and Puig (1999).

4.5 Waiting time between earthquakes
The temporal properties of earthquakes have been a subject relatively little stud-
ied (at least in comparison with the size of earthquakes). It is true that the Omori
law has been known for more than 100 years (Utsu 2002, Utsu et al. 1995), and
that this is a law extremely important in order to assess the hazard of after-
shocks after a big event, but the Omori law looks at time properties in a very
coarse-grained way, as it only provides the number of events in relatively large
time windows. Thus, no information on the fine time structure of seismicity is
provided, at least directly.

The situation has changed in the last decade, since the seminal study of Bak
et al. (2002), who found a unified scaling law for earthquake waiting-time dis-
tributions. They took Southern California and divided it in different areas, and
computed the time between consecutive earthquakes for each area. So, if tji de-
notes the time of occurrence of the i-th earthquake in area j, the corresponding
waiting time τ j

i is
τ j
i = tji − tji−1 . (52)
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The key point is that all the resulting waiting times were added to the same dis-
tribution (and not to a different distribution j for each area). Subsequently, the
unified scaling law was found to be valid for other regions of the world (Corral
2004b). The shape of the resulting probability density corresponds to a dou-
ble power law, one for small waiting times, associated to a mixture of scales
of waiting times due to the Omori law, and another for large waiting times,
due to spatial heterogeneity arising from the mixture of different areas with
different seismic rates (Bak et al. 2002, Corral 2003, 2004b, Corral and Chris-
tensen 2006). The first exponent was found to be close to 1, whereas the second
one was about 2.2; the fits were done by means of the nonlinear least-squares
Marquardt–Levenberg algorithm from “gnuplot”, applied to the logarithm of
the log-binned empirical density. Here we apply our more sophisticated method
to updated data for Southern California seismicity, with x = τ.

We use again the relocated Southern California catalog of Hauksson et al.
(2012), see also Shearer et al. (2005), but starting in 1984 and ending in 30 June
2011. This is to avoid some holes in the catalog for the preceding years. As
for earthquake sizes, the occurrence takes place in a rectangle of coordinates
(122◦ W, 30◦N) , (113◦ W, 37.5◦N) . This rectangle is divided into equal parts
both in the West-East axis and in the South-North axis, in such a way that we
consider a number of subdivisions of 4×4, 8×8, 16×16, and 32×32. The
waiting times for events of magnitude m ≥ 2 in each of these subdivisions are
computed as explained above, resulting in a number of data between 103 000
and 104 000 in all cases.

For a non-truncated power law, the results are only coherent with the previ-
ous reported ones (exponent around 2.2) for the intermediate cases, i.e., 8 × 8
and 16 × 16, see Table 6 and Fig. 9. The disagreement for the other cases can
easily be explained. For 4×4, the number of resulting subdivisions, 16, seems
rather small. As mentioned, in Corral and Christensen (2006) the power-law
tail was explained in terms of a power-law mixture of exponentials; so, with
only 16 regions it is possible that the asymptotic behavior is still not reached.
On the other hand, the effect of the finite duration of the catalog is visible in
the 32×32 data. Due to the scaling behavior of the distributions (Corral 2003,
2004b), the possible power-law tail in this case is displaced to larger waiting
times; but the time span of the catalog, about 1010 s, clearly alters this power
law, which starts to bend at about 109 s . Thus, we conclude that a power-law
exponent of about α � 2.2 or 2.3 indeed exists, provided that the number of
spatial subdivisions is high enough and the temporal extension of the catalog is
large enough.

When a truncated power-law is fitted, using the method of maximizing the
number of data N, the other power law emerges, but for a range shorter than
what the plot of the densities suggests. The exponent is in a range from 0.95
to 1.04 (except for the 4 × 4 cases, in which it is a bit smaller). The largest
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T a b l e 6

Results of the fits with a non-truncated power law and a truncated power law,
maximizing N, for earthquake waiting times

calculated for different subdivisions of Southern California

Subdivisions N a [s] b [s] b/a α ± σ pc

4 × 4 124 0.5012 × 107 ∞ ∞ 1.921 ± 0.085 0.10

8 × 8 1671 0.3162 × 107 ∞ ∞ 2.198 ± 0.031 0.10

16 × 16 542 0.3162 × 108 ∞ ∞ 2.324 ± 0.056 0.10

32 × 32 67 0.3162 × 109 ∞ ∞ 4.404 ± 0.405 0.10

4 × 4 124 0.5012 × 107 ∞ ∞ 1.921 ± 0.085 0.20

8 × 8 1671 0.3162 × 107 ∞ ∞ 2.198 ± 0.031 0.20

16 × 16 542 0.3162 × 108 ∞ ∞ 2.324 ± 0.056 0.20

32 × 32 67 0.3162 × 109 ∞ ∞ 4.404 ± 0.403 0.20

4 × 4 77 0.7943 × 107 ∞ ∞ 1.856 ± 0.098 0.50

8 × 8 322 0.1259 × 108 ∞ ∞ 2.231 ± 0.070 0.50

16 × 16 24 0.3162 × 109 ∞ ∞ 4.106 ± 0.703 0.50

32 × 32 67 0.3162 × 109 ∞ ∞ 4.404 ± 0.449 0.50

4 × 4 38765 1995 0.5012 × 105 25 0.867 ± 0.006 0.10

8 × 8 39851 316 0.1995 × 105 63 0.987 ± 0.004 0.10

16 × 16 44178 7943 0.7943 × 106 100 0.956 ± 0.004 0.10

32 × 32 43512 1259 0.1995 × 106 158 1.029 ± 0.003 0.10

4 × 4 38765 1995 0.5012 × 105 25 0.867 ± 0.006 0.20

8 × 8 39851 316 0.1995 × 105 63 0.987 ± 0.004 0.20

16 × 16 39481 7943 0.5012 × 106 63 0.950 ± 0.005 0.20

32 × 32 39654 1259 0.1259 × 106 100 1.033 ± 0.004 0.20

4 × 4 34113 3162 0.5012 × 105 16 0.864 ± 0.007 0.50

8 × 8 39851 316 0.1995 × 105 63 0.987 ± 0.004 0.50

16 × 16 39481 7943 0.5012 × 106 63 0.950 ± 0.005 0.50

32 × 32 39654 1259 0.1259 × 106 100 1.033 ± 0.004 0.50

Note: Different minimum p -values are shown. The total number of data is above
103 000 in any case.

log-range is 100, i.e., two decades. The graphical representation of the density
seems to indicate that the possible power law is influenced by the effect of two
crossovers, one for large waiting times, associated to a change in exponent, and
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Fig. 9. Estimated probability densities and corresponding power-law fits for the wait-
ing times of m ≥ 2 in the Southern California catalog, for different spatial subdivi-
sions. The values of the density are multiplied by factors 1, 10, 100, and 1000, for
clarity sake. Colour version of this figure is available in electronic edition only.

another one for smaller times, where the distribution becomes flat. Finally, the
method of fitting which maximizes the log-range leads to results that are similar
to the non-truncated power-law case, although sometimes intervals correspond-
ing to very small times are selected. The latter results have no physical meaning,
as correspond to times below 1 s, i.e., below the error in the determination of
the occurrence time.

5. CONCLUSIONS

For power-law distributions, the fitting and the testing of the goodness of the fit
is a difficult but very relevant problem in complex-systems science, in general,
and in geoscience in particular. The most critical step is to select, automati-
cally (without introducing any subjective bias), where the power-law regime
starts and where it ends. We have explained in detail a conceptually simple but
somewhat laborious procedure in order to overcome some difficulties previ-
ously found in the method introduced by Clauset et al. (2009); see Corral et al.
(2011). Our method is summarized in fitting by maximum likelihood estima-
tion and testing the goodness of fit by the Kolmogorov–Smirnov statistic, using
Monte Carlo simulations. Although these steps are in common with the Clauset
et al.’s (2009) recipe, the key difference is in the criterion of selection of the
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power-law range. Despite the many steps of these procedures, ours can be easily
implemented, and the resulting algorithms run very fast in current computers.
We also have explained how to estimate properly the probability density of a
random variable which has a power law or a fat-tail distribution. This is impor-
tant to draw graphical representations of the results of the fitting (specially in
Fig. 5) but it is not required to perform neither the fits nor the goodness-of-fit
tests.

The performance of the method is quite good, as checked in synthetic
power-law datasets, and the results of the analysis of previously reported power
laws are very consistent. We confirm a very broad power-law tail in the distri-
bution of the half-lives of the radionuclides, with exponent α = 1.09, as well
as other power-law regimes in the body of the distribution. The results for the
power-law exponent of the distribution of seismic moments worldwide and in
Southern California are in agreement with previous estimates, but in addition
our method provides a reliable way to determining the minimum seismic-
moment value for which the Gutenberg–Richter law holds. This can be useful
to check systematically for the completeness thresholds of seismic catalogs.
For the energy dissipated by tropical cyclones, measured roughly through the
PDI, we confirm the power-law behavior in the body of the distribution pre-
viously reported, with exponents close to one. We also survey new results for
the Southern Indian Ocean, but with a higher power-law exponent. In contrast,
for the case of the area affected by forest fires in an Italian catalog, we obtain
power-law-distributed behavior only for rather small windows of the burnt area,
containing a very few number of fires. Finally, for the waiting times between
earthquakes in different subdivisions of Southern California we conclude that
the power-law behavior of the tail is very delicate, affected either by a small
number of subdivisions, when the size of those is large, or by the finite duration
of the record, which introduces a sharp decay of the distribution when the num-
ber of subdivisions is high. For the body of the distribution another power law is
found, but the range is limited by crossovers below and above it. We conclude
that, in general, the method for truncated power laws works better when the
number of data in the power-law range is maximized. When the quantity that is
maximized is the logarithmic range (b/a), the fitting range can jump between
different regimes. Also, the selection of a p-value above 0.50 seems too strict
sometimes, and values about 0.10 or 0.20 are more useful. Naturally, the meth-
ods studied in this paper can be directly applied to the overwhelming number
of fat-tailed distributions reported during the last decades in geoscience.
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1. Introduction

Atmospheric convection and precipitation have been hypothesized to be a real-world
realization of self-organized criticality (SOC). This idea is supported by observations of
avalanche-like rainfall events [1, 2] and by the nature of the transition to convection in
the atmosphere [3, 4]. Many questions remain open, however, as summarized below. Here
we ask whether the observation of scale-free avalanche size distributions is reproducible
using data from different locations and whether the associated fitted exponents show any
sign of universality.

Many atmospheric processes are characterized by long-range spatial and temporal
correlation, and by corresponding structure on a wide range of scales. There are
two complementary explanations why this is so, and both are valid in their respective
regimes: structure on many scales can be the result of different processes producing many
characteristic scales [5, 6]; it can also be the result of an absence of characteristic scales
over some range, such that all intermediate scales are equally significant [7]. The latter
perspective is relevant, for instance, in critical phenomena and in the inertial subrange of
fully developed turbulence.

Processes relevant for precipitation are associated with many different characteristic
time and spatial scales, see e.g. [6]. The list of these scales has a gap, however, from a
few kilometers (a few minutes) to 1000 km (a few days), spanning the so-called mesoscale,
and it is in this gap that the following arguments are most likely to be relevant.

The atmosphere is slowly driven by incident solar radiation, about half of which is
absorbed by the planet’s surface, heating and moistening the atmospheric boundary layer;

doi:10.1088/1742-5468/2010/11/P11030 2
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combined with radiative cooling at the top of the troposphere this creates an instability.
This instability drives convection, which in the simplest case is dry. More frequently,
however, moisture and precipitation play a key role. Water condenses in moist rising air,
heating the environment and reinforcing the rising motion, and often, the result of this
process is rainfall. The statistics of rainfall thus contain information about the process
of convection and the decay towards stability in the troposphere. A common situation
is conditional instability, where saturated air is convectively unstable, whereas dry air
is stable. Under-saturated air masses then become unstable to convection if lifted by a
certain amount, meaning that relatively small perturbations can trigger large responses.

Since driving processes are generally slow compared to convection, it has been argued
that the system as a whole should typically be in a far-from equilibrium statistically
stationary state close to the onset of instability. In the parlance of the field, this idealized
state, where drive and dissipation are in balance, is referred to as ‘quasi-equilibrium’
(QE) [8]. In [3], using satellite data over tropical oceans, it was found that departures
from the point of QE into the unstable regime can be described as triggering a phase
transition whereby large parts of the troposphere enter into a convectively active phase.
Assuming that the phase transition is continuous, the attractive QE state would be a case
of SOC—a critical point of a continuous phase transition acting as an attractor in the
phase space of a system [9, 10].

The link between SOC and precipitation processes has also been made by investigating
event size distributions in a study using data from a mid-latitude location [2]. Both the
tropical data in [3] and the mid-latitude data in [2] support some notion of SOC in
precipitation processes, but the climatologies in these regions are very different. Rainfall
in the mid-latitudes is often generated in frontal systems, whereas in the tropics, much of
the precipitation is convective, supporting high rain rates. It is not a priori clear whether
these differences are relevant to the SOC analogy, or whether they are outweighed by the
robust similarities between the systems. For instance, drive and dissipation timescales are
well separated also in the mid-latitudes. In time series from Sweden the average duration
of precipitation events was found to be three orders of magnitude smaller than the average
duration of dry spells [11]. It is therefore desirable to compare identical observables from
different locations.

Scale-free event size distributions suggest long-range correlation in the system, which
in turn hints at a continuous transition to precipitation. Similar effects, however, can also
result directly from a complex flow field, as was shown in simulations using randomized
vortices and passive tracers [12]. Since the fluid dynamics is complex enough to generate
apparent long-range correlation, and it is difficult from direct observation to judge whether
the transition is continuous, we cannot rule out a discontinuous jump.

This uncertainty is mirrored in parameterizations of convection. The spatial
resolution of general circulation models is limited by constraints in computing power
to about 100 km in the horizontal. Dynamically there is nothing special about this
scale, and the approach in climate modeling for representing physical processes whose
relevant spatial scales are smaller is to describe their phenomenology in parameterizations.
Parameterizations of convection and precipitation processes often contain both continuous
and discontinuous elements. For instance, the intensity of convection and precipitation
typically depends continuously on a measure of convective plume buoyancy (such as
convective available potential energy) and water vapor content [8, 13], but sometimes

doi:10.1088/1742-5468/2010/11/P11030 3
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Table 1. Observation sites with corresponding time periods, number of observed
precipitation events N , estimated annual precipitation in millimeters, and
location.

Site From Until N Precip./yr Location

Manus Island, 02/15/2005 08/27/2009 11 981 5 883.29 2.116◦S, 147.425◦E
Papua New Guinea
Nauru Island, 02/15/2005 08/27/2009 5 134 1 860.87 0.521◦S, 166.916◦E
Republic of Nauru
Darwin, Australia 02/15/2005 08/27/2009 2 883 1 517.09 12.425◦S, 130.892◦E
Niamey, Niger 12/26/2005 12/08/2006 262 608.37 13.522◦N, 2.632◦E
Heselbach, Germany 04/01/2007 01/01/2008 2 439 2 187.85 48.450◦N, 8.397◦E
Shouxian, China 05/09/2008 12/28/2008 480 1 221.20 32.558◦N, 116.482◦E
Graciosa Island, Azores 04/14/2009 07/10/2010 3 066 702.35 39.091◦N, 28.029◦E
NSA, USA 04/01/2001 10/13/2003 9 097 23 516.16 71.323◦N, 156.616◦E
Point Reyes, USA 02/01/2005 09/15/2005 579 797.85 38.091◦N, 122.957◦E
SGP, USA 11/06/2007 08/24/2009 1 624 968.95 36.605◦N, 97.485◦E

a discontinuous threshold condition is introduced to decide whether convection occurs at
all [14].

2. Data sets

We study rain data from all ten available sites of the Atmospheric Radiation Measurement
(ARM) Program, see www.arm.gov, over periods from about eight months to four years,
see table 1. Precipitation rates were recorded at 1 min resolution, with an optical rain
gauge, Model ORG-815-DA MiniOrg (Optical Scientific, Inc.) [15]. Data were corrected
using the ARM Data Quality Reports [16], and rates below 0.2 mm h−1 were treated as
zero measurements, as recommended by the ARM Handbook [15], see figure 1.

The measurements are from climatically different regions using a standardized
technique, making them ideal for our purpose. Three sites are located in the Tropical
Western Pacific (Manus, Nauru and Darwin), known for strong convective activity.
Niamey is subject to strong monsoons, with a pronounced dry season. Heselbach is a
mid-latitude site with an anomalously large amount of rainfall due to orographic effects.
Rainfall in Shouxian is mostly convective in the summer months, which constitute most
of the data set. Graciosa Island in the Azores archipelago is a sub-tropical site, chosen
for the ARM program to study precipitation in low clouds of the marine boundary layer.

Three data are less straightforward: the Point Reyes measurements specifically
target Marine Stratus clouds, which dominate the measurement period and are known
to produce drizzle in warm-cloud conditions (without ice phase). Unfortunately the
measurements only cover six months, and it is unclear whether observed differences are
due to the different physics or to the small sample size. The Southern Great Plains
(SGP) measurements suffer from a malfunction that led to apparent rain rates of about
0.1 mm h−1 over much of the observation period. The problem seems to be present
in most other data sets but is far less pronounced there, see figure 1. Measurements at
temperatures below 3 ◦C were discarded as these can contain snow from which it is difficult

doi:10.1088/1742-5468/2010/11/P11030 4
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Figure 1. Probability (relative frequency) density of precipitation rate, r in
mm h−1. The vertical line indicates the lower intensity cutoff at 0.2 mm h−1.
Smaller rain rates are treated as zero. The peak around 0.1 mm h−1, most
pronounced in the Southern Great Plains data, is due to a malfunction of the
instrument. The Alaska data set contains mostly snow and is included only for
completeness.

to infer equivalent rates of liquid water precipitation. The North Slope of Alaska (NSA)
data set contains mostly snow; it is included only for completeness.

None of the data sets showed significant seasonal variations in the scaling exponents.
In the Point Reyes, SGP and NSA data we found slight variations but could not convince
ourselves that these were significant. Data from all seasons are used.

3. Event sizes

The data used here are (0+1)-dimensional time series, whereas the atmosphere is a (3+1)-
dimensional system. We leave the question unanswered as to which spatial dimensions
are most relevant—the system becomes vertically unstable, but it also communicates in
the two horizontal dimensions through various processes [4].

Following [2], we define an event as a sequence of non-zero measurements of the rain
rate, see inset in figure 2. The event size s is the rain rate, r(t), integrated over the event,
s =

∫
event

dt r(t). The dimension of this object is [s] = mm, specifying the depth of the
layer of water left on the ground during the event. 1 mm corresponds to an energy density
of some 2500 kJ m−2 released latent heat of condensation. If the rain rate were known
over the area covered by the event, then the event size could be defined precisely as the
energy released during one event. Since spatial information is not available, it is ignored
in our study.

For each data set, the probability density function Ps(s) in a particular size interval
[s, s+Δs) is estimated as Ps(s) ≈ n(s)/(NΔs), where n(s) is the number of events in the

doi:10.1088/1742-5468/2010/11/P11030 5
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Figure 2. Probability densities of event sizes, s in mm, and a power-law fit (black
straight line). Inset: precipitation rates from Niamey, including two rain events
lasting 7 and 15 min respectively. Interpreting reported rain rates of less than
0.2 mm h−1 as zero, the shaded areas are the corresponding event sizes.

interval and N the total number of events. We use (s + Δs)/s = 101/5 ≈ 1.58, i.e. 5 bins
per order of magnitude in s. Standard errors are shown, for Ps(s): assuming Poissonian

arrivals of events in any given bin, the error in n(s) is approximated by
√

n(s).

4. SOC scaling

Studies of simple SOC models that approach the critical point of a continuous phase
transition focus on Avalanche size distributions, which we liken to rain event sizes. Critical
exponents are derived from finite-size scaling, that is, the scaling of observables with
system size (as opposed to critical scaling, the scaling of observables with the distance
from criticality). In SOC models, moments of the avalanche size distribution scale with
system size L like

〈sk〉 ∝ LD(1+k−τs) for k > τs − 1, (1)

defining the exponent D, sometimes called the avalanche dimension, and the exponent
τs, which we call the avalanche size exponent. Equation (1) is consistent with probability
density functions Ps(s) of the form

Ps(s) = s−τsGs(s/sξ) for s > sl (2)

where sξ = LD, and the scaling function Gs(s/sξ) falls off very fast for large arguments,
s/sξ > 1, and is constant for small arguments, s/sξ � 1, down to a lower cutoff,
s = sl, where non-universal microscopic effects (e.g. discreteness of the system) become
important.

doi:10.1088/1742-5468/2010/11/P11030 6
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Figure 3. (a) Event size distributions shifted along the supposed power laws to
collapse the loci of the cutoffs. (b) Inferred scaling function Gs, using τs = 1.17
for all data sets. By far the largest deviations from a common scaling function are
observed for the unreliable data sets, Alaska (NSA) and Southern Great Plains
(SGP).

Assuming that we have observations from an SOC system, and that a significant part
of the observed avalanche sizes are in the region sl < s � sξ, we expect to find a range of
scales where the power law

Ps(s) = Gs(0)s−τs (3)

holds. Under sufficiently slow drive the exponent τs is believed to be robust in SOC
models [17, 18]. We infer event size distributions as in [2] from measurements in different
locations and compare values for the apparent avalanche size exponent τs. As a first step
to assess the validity of (3) we produce log–log plots of Ps(s) versus s and look for a linear
regime, figure 2. Since the study of critical phenomena is a study of limits that cannot be
reached in physical systems, the field is notorious for debates regarding the significance of
experimental work, which is especially true for SOC. While an element of interpretation
necessarily remains, we devise methods to maximize the objectivity of our analysis.

In our data sets, time series of rain rates from different locations, we interpret the
upper limit sξ of the scale-free range as an effective system size. We cannot control
this size; nonetheless the scaling hypothesis, (2), can be tested using appropriate moment
ratios [19]. For instance, sξ ∝ 〈s2〉/〈s〉, provided sl � sξ. Hence, to account for changes in
effective system sizes the s-axis in figure 2 can be rescaled to s〈s〉/〈s2〉, see figure 3(a). This
collapses the loci of the large-scale cutoffs. The Ps(s)-axis is rescaled by 〈s2〉2/〈s〉3 ∝ sτ

ξ ,
so that figure 3(a) shows the curves of figure 2 shifted along their supposed power laws,
without having to estimate any parameters. The curves are neither normalized nor do
they collapse vertically—the degree of vertical collapse is comparable to that in figure 2.
Plotting Ps(s)s

τs against the rescaled variable s〈s〉/〈s2〉 produces figure 3(b) of the scaling
function Gs(s/(asξ)), where a is the proportionality constant relating sξ to the moment
ratio. This has the advantage of reducing the logarithmic vertical range, which makes it

doi:10.1088/1742-5468/2010/11/P11030 7
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Table 2. Avalanche size exponent τs for all sites (last column). Lower and upper
end of fitting range (in mm), logarithmic range smax/smin, number of events N ,
number of events in the fitting range, N̄ , and a moment ratio proportional to the
cutoff sξ are shown. Brackets ( ) denote errors in the last digit, determined by
jackknife [22].

Site smin smax smax/smin N N̄ 〈s2〉/〈s〉(er) τs(er)

Manus 0.0069 18.7 2 719 11 981 9320 53(1) 1.19(1)
Nauru 0.0066 4.7 704 5 134 3996 37(1) 1.14(1)
Darwin 0.0067 21.6 3 230 2 883 2410 50(1) 1.16(1)
Niamey 0.0041 55.0 13 500 262 232 25(2) 1.19(3)
Heselbach 0.0072 1.4 195 2 439 1764 13(1) 1.18(2)
Shouxian 0.0037 2.5 677 480 406 39(2) 1.19(3)
Graciosa 0.0069 1.0 148 3 066 2260 14.4(3) 1.16(1)
NSA 0.0205 5.9 288 9 097 6030 47(1) 1.01(1)
Pt. Reyes 0.0062 66.7 10 796 579 427 37(2) 1.40(2)
SGP 0.0062 58.8 9 463 1 624 1196 27(1) 1.40(2)

possible to see differences in the distributions that would otherwise be concealed visually.
Figure 3(a) covers nine orders of magnitude vertically, whereas figure 3(b) covers little
more than two.

5. Exponent estimation and goodness of Þt

For a detailed discussion, see appendix A. We apply a form of Kolmogorov–Smirnov
(KS) test [20] similar to that in [21]. First, a fitting range [smin, smax] is selected. In
this range the maximum-likelihood value for τs in (3) is found. Next, the maximum
difference between the empirical cumulative distribution in this range and the cumulative
distribution corresponding to the best-fit power law is found. The same measure is applied
to synthetic samples of data (each with the same number of instances), generated from
the best-fit power-law distribution. This yields the ‘p’-value, i.e. the fraction of samples
generated from the tested model (the best-fit power law) where at least such a difference
is observed. We stress that each synthetic data set is compared to its own maximum-
likelihood power-law distribution, i.e. an exponent has to be fitted for each sample, so
that no bias be introduced.

We keep a record of the triplet (smin, smax, τs) if the p-value is greater than 10% (our
arbitrarily chosen threshold). After trying all possible fitting ranges with smin and smax

increasing by factors of 100.01, we select the triplet which maximizes the number N̄ of
data between smin and smax.

The distributions in figure 2 are visually compatible with a power law (black
straight line) over most of their ranges. The procedure consisting of maximum-likelihood
estimation plus a goodness-of-fit test confirms this result: over ranges between 2 and 4
orders of magnitude, all data sets are consistent with a power-law distribution and the
estimates of the apparent exponents are in agreement with the hypothesis of a single
exponent τs = 1.17(3), brackets indicating the uncertainty in the last digit, except
for the three problematic data sets from Point Reyes, the Southern Great Plains and
Alaska. The complete results are collected in table 2. While the best-fit exponents in

doi:10.1088/1742-5468/2010/11/P11030 8
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(a) (b)

Figure 4. (a) Color map showing the best-fit value for the exponent τs for all pairs
of smin and smax, (lower and upper ends of the chosen fitting range in mm) for
the Manus dataset. The large plateau corresponds to τs ≈ 1.17. (b) Analogous
plot for the p-value.

this table are surprisingly similar (given the climatic differences between the measuring
sites), the error estimates are unrealistically small. Taking the statistical results literally,
we would have to conclude that the exponents are very similar but mutually incompatible
(e.g. τManus

s = 1.18(1) and τNauru
s = 1.14(1)) suggesting that τs is not universal. On

physical grounds we do not believe this conclusion because systematic errors arising from
the measurement process, the introduction of the sensitivity threshold, binning during
data recording etc, are likely to be much larger than the purely statistical errors quoted
here. For example, [2] used a different type of measurement with a smaller sensitivity
threshold and led to a best estimate for the exponent of 1.36. Furthermore, the apparent
exponent can only be seen as a rough estimate of any true underlying exponent. We
tested that, fixing τs = 1.17, all data sets yield p > 10% over a range larger than two
and a half orders of magnitude, except for the three problematic data sets. A two-sample
Kolmogorov–Smirnov test for all pairs of datasets further confirms the similarity of the
distributions for the different sites, appendix B.

In figure 4(a) we show a color plot of all triplets (smin, smax, τs), corresponding to the
Manus dataset. There is a large plateau where τs ≈ 1.17, indicating that this value is the
best estimate for many intervals. Figure 4(b) is an analogous plot for the p-value, showing
that the goodness of the fit is best in the region of the plateau.

Climatic differences between regions are scarcely detectable in event size distributions,
which may be surprising on the grounds of climatological considerations. However, the
cutoff sξ, representing the capacity of the climatic region around a measuring site to
generate rain events, changes significantly from region to region, confirming meteorological
intuition. This is difficult to see in the logarithmic scales of figure 2 but is easily extracted
from the moments of the distributions, table 2. Thus, the smallest cutoff (and likely
maximum event size) in the ARM data is found in Heselbach (mid-latitudes), whereas
the largest is in Manus (Western Pacific warm pool). We note that 〈s2〉/〈s〉 is only

doi:10.1088/1742-5468/2010/11/P11030 9
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Figure 5. (a) Probability densities for dry spell durations (in min). The diurnal
cycle is most pronounced in Niamey, otherwise the distributions are similar.
(b) Distributions collapsed onto their scaling function, similar to figure 3(b).

proportional to the actual cutoff sξ. Assuming a box function for the scaling function
and using the value τs = 1.17, we can estimate the proportionality constant and find
sξ ≈ 2.2〈s2〉/〈s〉. With this estimate, none of the fitting ranges extends beyond the cutoff.

6. Dry spells

The durations of precipitation-free intervals have also been reported to follow an
approximate power law [23, 2]. We therefore repeat for dry spell durations the same
analysis as for the event sizes. Figure 5(a) shows the distributions, with a collapse
corresponding to figure 3(b) in figure 5(b). We notice the different strengths of the diurnal
cycle, here visible as a relative peak near one day dry spell duration. Exponents fitted to
the distributions are similar, see table 3. They also agree with the analyses in [23], where
a double-power-law fit was performed. For dry spell durations between a few seconds and
a few hours the authors found an exponent value of 1.35. The second, smaller, exponent
for longer dry spells found in that study may reflect the signal from the diurnal cycle.
This signal is strong in [2], where a single-power-law fit yielded an exponent estimate of
1.42.

7. Event durations

Precipitation event duration distributions are broad for all locations. Durations provide a
link to studies of geometric properties of precipitation fields. Numerous studies of tropical
deep convective rain fields [24], shallow convection fields [25], clouds [26]–[29], and model
data from large eddy simulations [30] have reported the distributions of ground covered
by events (in radar snap shots etc) to be well approximated by power laws. We note that

doi:10.1088/1742-5468/2010/11/P11030 10
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Table 3. Dry spell exponent (last column). Lower and upper end of fitting range
(in min), logarithmic range tdmax/tdmin, number of dry spells in data set, N , and
number of dry spells in the fitting range, N̄ , and a moment ratio proportional
to the cutoff are shown. Brackets ( ) denote errors in the last digit, determined
by jackknife. The number of dry spells need not be within ±1 of the number of
events, as our definition of an event (and a dry spell) implies that it can be split
in two if it contains an erroneous measurement. Note the magnitude of this effect
in the NSA data set.

Site tdmin tdmax tdmax/tdmin N N 〈td2〉/〈td〉(er) τd(er)

Manus 24.4 1 363.1 55.8 11 992 4505 2 149(20) 1.16(2)
Nauru 7.5 1 027.5 137.7 5 126 2912 3 557(50) 0.99(2)
Darwin 8.5 3 660.6 432.6 2 892 1595 19 477(368) 1.17(1)
Niamey 2.4 1 774.0 726.1 262 135 26 386(1699) 1.33(5)
Heselbach 9.5 5 748.0 605.4 2 441 1035 2 043(34) 1.37(2)
Shouxian 2.7 13 488.5 4957.1 478 365 8 776(404) 1.27(3)
Graciosa 14.6 415.2 28.5 3 068 1185 2 943(49) 1.28(3)
NSA 12.2 9 033.2 739.7 3 440 1531 4 293(73) 1.3(2)
Pt. Reyes 3.6 17 141.0 4826.3 579 379 5 513(233) 1.27(2)
SGP 8.4 2 248.7 268.5 1 625 523 17 243(463) 1.46(3)

Table 4. Duration exponent (last column). Lower and upper end of fitting range
(in min), logarithmic range twmax/twmin, number of events in data set, N , and
number of events in the fitting range, N̄ , are shown. Brackets ( ) denote errors
in the last digit, determined by jackknife.

Site twmin twmax twmax/twmin N N̄ 〈tw2〉/〈tw〉 τw(er)

Manus 34.4 641.9 18.7 11 981 1200 122(1) 2.12(4)
Nauru 25.4 437.5 17.2 5 134 540 106(1) 2.09(6)
Darwin 17.87 89.30 5.00 2 883 554 109(2) 2.0(1)
Niamey 2.7 211.8 78.4 262 157 79(5) 1.39(7)
Heselbach 18.2 1005.0 55.1 2 439 388 261(5) 1.97(6)
Shouxian 7.7 197.5 25.5 480 172 84(4) 1.73(9)
Graciosa 12.7 424.0 33.4 3 066 512 60(1) 2.12(6)
NSA 75.2 103.3 1.4 9 097 16 49(1) 6(3)
Pt. Reyes 5.7 784.0 138.6 579 178 272(1) 1.71(7)
SGP 9.4 278.2 29.7 1 624 303 143(4) 1.74(7)

in the clustering null model of critical two-dimensional percolation, clusters defined in
one-dimensional cuts, akin to durations, do not scale, whereas two-dimensional clusters,
akin to cloud-projections, do.

Applying to the durations the methods we used for the event sizes, we find
comparatively short power-law ranges, see table 4. The scaling range, if it exists, is
expected to be smaller than for event sizes, as the size distribution is a complicated
convolution of the event duration and precipitation rate distributions, figure 1, whose
product covers a broader range than either of the distributions alone. The event size
distribution is broader than the duration distribution also because long events tend to be
more intense (not shown).

doi:10.1088/1742-5468/2010/11/P11030 11
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Figure 6. (a) Probability densities for event durations (in min) are broad for all
data sets. From a few min up to a few hundred min a power law with an exponent
τm ≈ 2.0 roughly describes the data. (b) Collapsed distributions, similar to
figure 3(b).

8. Conclusions

We find that the apparent avalanche size exponents, measured with identical instruments
in different locations, are consistent with a single value of τs = 1.17(3) for all reliable data
sets. We note that the data sets from Point Reyes and from the Southern Great Plains are
similar in many respects, despite the different reasons for treating them with suspicion.

The statistical error in this estimate is surprisingly small, but neither the value
itself nor the error change much using different fitting techniques or introducing different
sensitivity thresholds (not shown). Nonetheless we believe systematic errors to be larger.
Thus, the analysis gives an impression of the universality of the result but not necessarily
the physical ‘true’ value of the exponent. This does not contradict the climatological
situation—tropical regions, for instance, are expected to support larger events than mid-
latitude locations, which could be realized as a smaller exponent value τs. While the
exponents are not significantly different, the larger tropical events are reflected in the
greater large-scale cutoff of the tropical distributions. Similarly, the dry spell durations
seem to follow another power law with τd = 1.2(1), and regional differences can be seen
in the strength of the diurnal cycle and the cutoff dry spell duration. The broad range
of event durations, figure 6, suggests a link to the lack of characteristic scales in the
mesoscale regime, where approximately scale-free distributions of clusters of convective
activity, for example cloud or precipitation, have been observed to span areas between
O(1 km2) and O(106 km2) [25, 24, 30, 28, 26]. The observation of scale-free rainfall event
sizes suggests long-range correlation in the pertinent fields, a possible indication of critical
behavior near the transition to convective activity. Direct measurements of the behavior
of the correlation function for the precipitation field under changes of the (much more
slowly varying) background fields of water vapor and temperature are desirable to clarify

doi:10.1088/1742-5468/2010/11/P11030 12
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whether the long-range correlation is a consequence of the flow field, of the proximity to
a critical point, or of a combination of both.

Acknowledgments

This work was supported in part by the National Oceanic and Atmospheric Administration
Grant NA08OAR4310882 and the National Science Foundation Grant ATM-0645200.
Data were obtained from the Atmospheric Radiation Measurement (ARM) Program
sponsored by the US Department of Energy, Office of Science, Office of Biological and
Environmental Research, Environmental Sciences Division. AD would like to thank the
Spanish Ministerio de Educación for travel support and Imperial College London for
hospitality. Initial research by AD was supported by a grant from the Explora-Ingenio
2010 project FIS2007-29088-E. Other grants: FIS2009-09508, and 2009SGR-164. AC is a
participant of the CONSOLIDER i-MATH project.

Appendix A. Fitting procedure

In order to obtain reliable values of, for example, the exponent τs, independent of the
binning procedure used for the plots of Ps(s), we use maximum-likelihood estimation. We
assume a power-law distribution Ps(s) = aτss

−τs , with support [smin, smax]. Normalization
yields aτs = (1 − τs)/(s1−τs

max − s1−τs
min ) for a given value of τs.

We compute the log-likelihood function,

L := ln
N̄∏

i=1

Ps(si) =
N̄∑

i=1

ln
(
aτssi

−τs
)

(A.1)

where the index i runs over all N̄ events whose size si is between smin and smax. Holding
smin and smax fixed, the value of τs which maximizes L is the maximum-likelihood estimate
of the exponent. Uncertainties in τs are determined using the jackknife method.

The goodness of the fit is assessed by a Kolmogorov–Smirnov (KS) test [20]. The KS
statistic, or KS distance, d, is defined as

d := max
smin≤s≤smax

|SN̄(s) − Fs(s)| (A.2)

where SN̄(s) denotes the empirical cumulative distribution, defined as the fraction of
observed events with a size smaller than s, in the interval [smin, smax]. Thus, ordering
the observed values by size, s1 ≤ · · · ≤ si ≤ si+1 · · · ≤ sN̄ , we have SN̄ (s) = i/N̄
if si < s ≤ si+1; Fs denotes the cumulative distribution of the maximum-likelihood
distribution, Fs(s) :=

∫ s

smin
Ps(t) dt.

The KS distance translates into the p-value. The p-value is the probability that
synthetic data, here drawn from a power-law distribution with exponent τs, result in a KS
distance of at least d. For instance, p = 10% means that for power-law-distributed data
with exponent τs there is a probability of 0.90 that the KS distance takes a value smaller
than d. Thus, if the data really are generated by a power law and we decide to reject the
power law as a model if p < 10%, we will reject the correct model in 10% of our tests.
Conversely, decreasing the limit of rejection in the p-value implies that we accept more
false models.

doi:10.1088/1742-5468/2010/11/P11030 13
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In our implementation of the KS test the distribution to be tested, Ps(s), is not
independent of the empirical data. This is because the exponent τs is obtained from the
data that are later used to test the distribution. We therefore cannot use the standard
analytic expression for p(d), see [20], chapter 15. Instead, we determine the distribution
of the KS distance and therefore the p-value by means of Monte Carlo simulations: we
generate synthetic power-law-distributed data sets between smin and smax with exponent
τs and number of data N̄ (see table 2), and proceed exactly in the same way as for the
empirical data, first obtaining a maximum-likelihood estimate of the exponent τs and then
computing the KS distance between the empirical distribution of the simulated data and
the fitted distribution containing the estimated value of τs. The p-value is obtained as the
fraction of synthetic data sets for which the KS statistic is larger than the value obtained
for the empirical data.

The final step is to compare results for different ranges [smin, smax]. We try all possible
fitting ranges with smin and smax increasing by factors of 100.01 ≈ 1.023. We choose to
report those intervals [smin, smax] that contain the largest number of events N̄ with a
corresponding p-value larger than 10%.

Appendix B. Two-sample KolmogorovÐSmirnov tests

A two-sample Kolmogorov–Smirnov test was performed for each pair of data sets, i, j to
test whether the two underlying event size probability distributions differ. This test does
not assume any functional form for the probability distributions [20]. As in the fitting of
the exponent, we vary the testing ranges [smin, smax], keeping those which yield p > 10%.
We report the range with the maximum effective number of data, N̄eff ≡ N̄iN̄j/(N̄i + N̄j).
The results, shown in table B.1, confirm that the pairs of distributions from the reliable
data sets are similar over broad ranges.

Table B.1. Maximum range smax/smin over which the p-value of a two-sample
KS test is greater than 10%.

Nauru Darwin Niamey Heselbach Shouxian Graciosa NSA Pt. Reyes SGP

Manus 5386 16 257 16 386 679 6 355 638 14 32 8
Nauru — 6 753 13 495 236 221 342 27 19 7
Darwin — — 12 247 236 271 575 27 16 5
Niamey — — — 3466 16 420 2 358 1599 668 253
Heselbach — — — — 14 600 13 265 18 20 5
Shouxian — — — — — 26 440 13 65 39
Graciosa — — — — — — 11 17 589
NSA — — — — — — — 10 3
Pt. Reyes — — — — — — — — 19 916
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1 Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, E-08193, Cerdanyola, Barcelona, Spain
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Power-law distributions contain precious information about a large variety of physical pro-
cesses [1]. Although there are sound theoretical grounds for these distributions, the empirical
evidence giving support to power laws has been traditionally weak.

Here, we present an alternative procedure, valid for truncated as well as for non-truncated
power-law distributions, based in maximum likelihood estimation of the exponent, the Kolmogorov-
Smirnov goodness-of-fit test, and Monte Carlo simulations [2, 3, 4]. In addition, we also present
procedures for testing the existence of a single universal exponent in a collection of different
datasets, based on the definition of a statistic that contains the weighted sum of the differences
of the values of the exponents for all pairs of datasets.

Power-Law Fitting

A continuous variable x, where a ≤ x ≤ b with b finite or infinite and a > 0, is power-law
distributed if its probability density is given by,

(1) f(x) =
α− 1

a1−α − 1/bα−1

(
1

x

)α
.

If b→∞ and α > 1 the distribution is called a non-truncated power-law distribution; while for
finite b the distribution is called a truncated power law, for which no restriction exists on α.

The key to fit properly power-law distributions to real-world data is to have an objective
criteria to decide at which point the power law starts (and, in the truncated case, at which point
it ends); this is the fitting range.

The Method

Given a sample of the random variable x with N elements as x1, x2, . . . , xN , we want to estimate
the parameter α and determine the interval defined by a and b where the power-law holds.

In order to obtain a reliable estimate of the exponent α we use maximum likelihood estima-
tion. For that, we assume a and b as known. We compute the log-likelihood function for our
particular case,

(2) `(α) = ln
α− 1

1− rα−1
− α ln

g

a
− ln a, if α 6= 1,

where r = a/b and g is the geometric mean. Holding a and b fixed, the value of α which
maximizes `(α) is the maximum likelihood of the exponent.

Then, the quality of the fit is assessed by a Kolmogorov-Smirnov (KS) test [5]. The KS
statistic, or KS distance, de, is defined as the maximum difference in absolute value between the
theoretical cumulative distribution and the empirical cumulative distribution, which is estimated

by ne(x)
N [6].
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2 Testing universality and goodness-of-fit test of power-law distributions

The KS distance allows us to calculate the p-value, the probability that, under the null
hypothesis, the KS statistic takes a value larger than the one obtained empirically. As the
exponent α is obtained from the data, we need to determine the distribution of the KS distance
using Monte Carlo simulations. Next, we apply the same procedure for all possible ranges [a, b]
and compare the results. We keep the fits, i.e. , the triplets {a, b, α}, such that the corresponding
p-values are larger than a certain pc.

Finally, we need to select objectively one fitting range among all the listed triplets. For a
non-truncated power law (b =∞) we select the largest interval, i.e. , the smaller a. If the power
law is truncated we consider two different criteria for choosing the range: select the interval
that maximizes the number of data in it or select the larger log-range b/a. In fact, many true
truncated power laws can be contained in the data [7]. Maximizing N tends to select power
laws in the initial range on values, while maximizing the log-range tends to select power laws
nearer to the tail of the distribution.

Application for the seismic moment of earthquakes

In Fig. 1 one can see an illustration of the method performance results for the seismic moment
(M) of earthquakes worldwide and in Southern California. Starting with the non-truncated
power-law distribution, we always obtain significant power-law fit, valid for several orders of
magnitude. In both cases the exponent α is between 1.61 and 1.71, but for Southern California
is more stable. For the worldwide CMT catalog restricted to shallow earthquakes the largest
value of a is 3× 1018 Nm, corresponding to a magnitude m = 6.25. For Southern California, the
largest a found (for pc = 0.5) is 1.6 × 1015 Nm, giving m = 4. This value is somewhat higher,
in comparison with the completeness magnitude of the catalog; this can be attributed to this
catalog specific characteristics [3]. When a truncated power law is fitted, using the method of
maximizing the number of data leads to similar values of the exponents, although the range of
the fit is in some cases moved to smaller values (smaller a, and b smaller than the maximum
M on the dataset). The method of maximizing b/a leads to results that are very close to the
non-truncated power law.
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Figure 1. Estimated probability densities and corresponding power-law fits of the
seismic moment M of shallow earthquakes in the worldwide CMT catalog and of the
estimated M in the Southern California catalog.
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Universality Verification

As we have just seen, the determination of the exponents of power-law distributions is not a
straightforward task. However, determining the critical exponents as accurately and unbiasedly
as possible, together with their associated uncertainties, is not enough for verifying universality.
The exponents need to be properly compared, in order to test if they are statistically compatible.

Confidence intervals for exponent differences

In the case in which one only has two different datasets with estimated exponents αe1 and αe2,
the difference αe1 − αe2 will have zero mean, under the null hypothesis. Also if datasets are
independent, the standard deviation of the difference of the estimators will be

√
σ2
e1 + σ2

e2.
As, asymptotically, power-law MLE exponents are normally distributed [8], so will be their

difference. Then, it is straightforward to obtain a confidence interval for the difference. If the
interval includes the observed difference value, the null hypothesis cannot be rejected and the
exponents can be considered to take the same value.

Nevertheless, the situation is not so simple when one needs to analyse 3 or more systems.
In order to avoid the rejection of the null hypothesis by chance, corrections of the significance
level, as the Bonferroni correction or the Šidák correction [9], need to be applied. However,
these corrections are too generous in order to claim for universality.

The Permutation Test

For multiple testing we propose a permutation test [10]. We define a test statistic such that the
larger its value, the stronger the evidence against the null hypothesis H0. The null hypothesis
will be that for the common range a ≤ xj ≤ b all exponents are the same, i.e., αei = αej , for all
i and j.

We choose for example,

(3) Θ̂ =
M−1∑

i=1

M∑

j=i+1

(αei − αej)2,

where M is the number of datasets. More complex and powerful alternatives are considered in
[11].

The scale for Θ̂ is provided by the achieved significance level or p−value of the test, which

is defined as the probability that, under the null hypothesis H0, the random variable Θ̂ is larger

than the value we obtained for the observed data Θ̂data, i.e.,

(4) p = Prob{Θ̂ ≥ Θ̂data | H0 is true},
so, the smaller the p−value, the stronger the evidence against H0.

We will use a permutation test as a way to compute the p−value. It is based on the idea
that, if the null hypothesis is correct, any data value could correspond to any dataset and the
data values (the size of the events in our case) are therefore interchangeable. First, we combine
the n1+n2+...+nM observations from all the datasets into a single meta-dataset (ni the number
of data a ≤ xj ≤ b for each dataset) and take M random samples of sizes n1, n2, ..., nM without
replacement. This generates M new datasets with the same number of data than the initial
ones. Next, we fit the power-law exponents (in the common fitting range) for each permuted or

reshuffled dataset and from their values we compute the new test statistic Θ̂sh (where sh stands
for shuffled).

The distribution of the test statistic, under the null hypothesis, is obtained repeating the
process a large enough number of times. With that we can compute easily an approximation of
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the p−value by

(5) p− value ≈ #{Θ̂sh ≥ Θ̂data}
Nsh

where #{Θ̂sh ≥ Θ̂data} is the number of permutations for which Θ̂sh ≥ Θ̂data.

Application for rainfall data

We apply the method to rain data from the Atmospheric Radiation Measurement (ARM) Pro-
gram (www.arm.gov) used in Ref. [2], excluding the 3 sites that were found problematic there.

For the rain event sizes, defined as in Ref. [2], we obtain Θ̂data = 0.051 which leads to p = 0.26.
So we cannot rule out the universality of the exponents.

Conclusions

For power-law distributions, the fitting and testing the goodness-of-fit is a difficult but very
relevant problem in complex-systems science, in particular in geoscience. The most critical step
is to select, automatically (without introducing any subjective bias), where the power-law regime
starts and where it ends. We present a procedure that overcomes some problems found in the
method introduced by Clauset et al. (2009), see [12].

We tested the performance of the method with synthetic power-law datasets and real-world
data. The results for the power-law exponent of the distribution of seismic moments world-
wide and in Southern California are in agreement with previous estimates, but in addition our
method provides a reliable way to determining the minimum seismic-moment value for which
the Gutenberg-Richter law holds.

Moreover, we present procedures for comparing the estimated critical exponents in order
to test the existence of a single universal exponent [11]. The results for the rainfall data are
consistent with theoretical expectations [2].

References

[1] B. D. Malamud. Tails of natural hazards. Phys. World, 17 (8):31–35, 2004.
[2] O. Peters, A. Deluca, A. Corral, J. D. Neelin, and C. E. Holloway. Universality of rain event size distributions.

J. Stat. Mech., P11030, 2010.
[3] A. Corral and A. Deluca. Fitting and goodness-of-fit test of non-truncated and truncated power-law distri-

butions. Acta Geophys., 2013. Accepted for publication.
[4] A. Corral, A. Deluca, and R. Ferrer i Cancho. A practical recipe to fit discrete power-law distributions. ArXiv,

1209:1270, 2012.
[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in FORTRAN.

Cambridge University Press, Cambridge, 2nd edition, 1992.
[6] R. Chicheportiche and J.-P. Bouchaud. Weighted Kolmogorov-Smirnov test: Accounting for the tails. Phys.

Rev. E, 86:041115, 2012.
[7] A. Corral. Point-occurrence self-similarity in crackling-noise systems and in other complex systems. J. Stat.

Mech., P01022, 2009.
[8] I. B. Aban, M. M. Meerschaert, and A. K. Panorska. Parameter estimation for the truncated Pareto distri-

bution. J. Am. Stat. Assoc., 101:270–277, 2006.
[9] J. M. Bland and D. G. Altman. Multiple significance tests: the Bonferroni method. Brit. Med. J., 310:170–170,

1995.
[10] Efron B and Tibshirani R J. An Introduction to the Bootstrap. Chapman & Hall/CRC, 1st edition, 1993.
[11] A. Deluca, P. Puig, and A. Corral. Testing universality of critical exponents: the case of rainfall. page In

preparation, 2013.
[12] A. Corral, F. Font, and J. Camacho. Non-characteristic half-lives in radioactive decay. Phys. Rev. E,

83:066103, 2011.



Other Publications 198



Workshop in Complex Systems

Criticality on Rainfall: Statistical Observational
Constraints for the Onset of Strong Convection
Modelling

Anna Deluca1;2, �Alvaro Corral1, and Nicholas R. Moloney3

1 Centre de Recerca Matem�atica, Edi�ci C, Campus de Bellaterra, E-08193, Cerdanyola, Barcelona,
Spain

2 Departament de Matem�atiques, Universitat Aut�onoma de Barcelona, E-08193, Cerdanyola,
Barcelona, Spain

3 London Mathematical Laboratory, 14 Buckingham Street, WC2N 6DF London, United Kingdom

1 Introduction

A better understanding of convection is crucial for reducing the intrinsic errors present in
climate models [1]. Many atmospheric processes related to precipitation have large scale
correlations in time and space, which are the result of the coupling between several non-
linear mechanisms with different temporal and spatial characteristic scales. Despite the
diversity of individual rain events, a recent array of statistical measures presents surpris-
ing statistical regularities giving support to the hypothesis that atmospheric convection
and precipitation may be a real-world example of Self-Organised Criticality (SOC) [3, 4].
The usual approach consists of looking at the occurrence of rain by days or months. For
\episodic" rain events, similar to avalanches in cellular-automaton models, scale-free rain
event distributions are found [6]. However, a power-law distribution (i.e. scale-free) of
the observable is not su�cient evidence for SOC dynamics, as there are many alternative
mechanisms that give rise to such behaviour (see, for example, [7, 8]).

Further support for the SOC hypothesis was given by Peters and Neelin [9], who
found a relation between satellite estimates of rain rate and water vapour over the trop-
ical oceans compatible with a phase transition, in which large parts of the troposphere
would be in a convectively active phase. In addition, it was shown that the system was
close to the transition point. They also related it to the concept of atmospheric quasi-
equilibrium [10], which argues that, since driven processes are generally slow compared
to convection, the system should typically be in a far-from equilibrium statistically sta-
tionary state, where driving and dissipation are in balance. In addition, recent works
have shown that local event size distributions present signs of universality in the system,
as was expected in the SOC framework [11, 12, 13]. The resulting rain event size dis-
tributions were found to be well approximated by power laws of similar exponents over
broad ranges, with differences in the large-scale cutoffs of the distributions. The possible
consequences of this framework for the prediction of atmospheric phenomena still remain
unclear.

2 Data and Methods

In this contribution we use very high-resolution (1 minute) local rain intensities across
different climates described in [11], stochastic convective models [14] and SOC models
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2 Constrains for Convective Parametrizations

such as the BTW model and the Manna model, for investigating how predictable the
time series of rain activity and rain event sizes are [2, 3].

We use the hazard function Hq as a decision variable, which is sensitive to cluster-
ing or repulsion between events in the time series. The conventional precursor pattern
technique requires a large amount of data, does not capture long memory and has been
found to perform worse than the hazard function in similar analysis [15]. Hq is defined
as the probability that a threshold-crossing event will occur in the next ∆t, conditional
on no previous event within the past tw

(1) Hq(tw; ∆t) =

∫ tw+∆t

tw
Pq(τ)dτ∫ ∞

tw
Pq(τ)dτ

,

where q corresponds to the different thresholds on sizes and ∆t is set to 1 min for
the rain data and one parallel update for the SOC models. The various quantities are
illustrated in Fig. 1.

Figure 1. Sketch of the hazard function variables

Note that the hazard function gives us a probabilistic forecast and in order to perform
a deterministic prediction we will need to consider a discrimination threshold.

We also evaluate the quality of the prediction with the receiver operating character-
istics method (ROC) [16]. For any binary prediction (occurrence or non-occurrence of
an event) four possible outcomes can occur: true positive (TP), false positive (FP), true
negative (TN) and false negative (FN), see Fig. 2.

Figure 2. Four possible outcomes of a binary prediction in a contingency
table.

ROC curves compare sensitivity and specificity. The sensitivity is defined as the num-
ber of correctly predicted occurrences divided by the total number of actual occurrences,
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and the specificity as the number of correctly predicted non-occurrences divided by the
total number of actual non-occurrences,

(2) sensitivity =
TP

TP + FN
specificity =

TN

FP + TN
:

Each threshold on the decision variable will give a different point on the ROC curve.
If we consider the minimum possible threshold we will always predict the occurrence of
an event, for which the sensitivity is one and the specificity zero. The diagonal in Fig. 3
corresponds to random prediction. Points above the diagonal represent good predictions
(better than random) and points below poor predictions.

3 Results

We find that on the events scale (slow time scale), rain data renormalise to a trivial
Poisson point process for large thresholds, while for small thresholds events cluster. This
is in contrast to the anti-clustering of high-threshold events in the 2D BTW model as a
result of finite-size effects and the building up of correlations, seen previously by Garber
et al. [17] (see Fig. 3(a) and Fig. 3(b)).

However, rain data has an unavoidable threshold on intensity due to the device
resolution that blurs the interpretation of the results on the event scale. At the level of
intensities (slow time scale), we find that prediction is insensitive to all but very high
thresholds.
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Figure 3. Example of ROC curves data on the slow time scale for rainfall
data (a) and for the 2D BTW SOC Model simulated data (b).
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