
Modeling Linear and Nonlinear

Soft Ferromagnetic Materials

Thesis project from
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Preface

Today magnets form part of our daily life. They are responsible for most of the energy

generation (e.g. turbines), conversion (e.g. transformers) and its use (e.g. motors). In

these applications the precise control of magnetic fields and magnetization is essential to

devise new applications or to improve the existing ones. All these would not be possible

without an impressive development of magnetic materials. For example, in the last

century very large (hard magnets) and very small (soft magnets) values of crystalline

anisotropy have been achieved, spanning in five orders of magnitude. The vast range of

coercivities makes possible the design of the shape of the hysteresis loop desired for a

particular application.

Soft ferromagnets are of great interest because they can guide and concentrate mag-

netic fields and present low hysteresis and large values of both saturation magnetization

and susceptibility. These materials are found, for instance, in electromagnets, where

a soft ferromagnetic core is set to concentrate the field, and in electrical transformers,

motors or generators, in which the low power loss is an advantage.

The large number of existing and potential applications of soft ferromagnets ranges

from large scales (meters) to very small scales (nanometers). One of the large scale ap-

plications is superconducting magnetic levitation. Superconductors have demonstrated

to present stable and passive levitation lifting weights of hundreds of kilograms. Us-

ing these concepts, superconducting materials can be located in a vehicle that levitates

above a permanent-magnet guideway in what is known a magnetic levitation vehicle.

The main advantage of this technology is its contactless nature which allows a major

reduction of friction, and therefore larger vehicle speeds can be achieved with the same

power consumption. Soft ferromagnets located in the guideway modify the magnetic

field landscape of the permanent magnets leading to optimized values of levitation force

and stability of the levitating superconducting vehicle.

At the small scale, a very important application of soft ferromagnets is in magnetic

recording and since few decades ago, this industry has been pushing hard in the deep

understanding of magnetism at the nanoscale. In essence magnets produce magnetic

3



4

fields that can be used to store bits of information. This information can be read

using a magnetoresistive read head that consists of a multilayer of soft ferromagnetic-

metal-soft ferromagnetic with one of the ferromagnetic layers (pinned layer) attached

to an antiferromagnet. The other ferromagnetic layer is free to sense the magnetic

field at very small spatial scales. Information can also be stored in arrays of magnetic

tunnel junctions or simply cylindrical soft ferromagnets. These latter ones can present

a magnetic vortex state at remanence, a magnetization pattern that can store two bits

of information increasing the information density (number of bits per area of magnetic

media).

The aim of the present thesis is to model the behavior of soft ferromagnets in the

macroscopic and microscopic scales and their interaction with other magnetic materials

such as permanent magnets, superconductors or antiferromagnets for their use in the

mentioned applications.

This thesis is structured in two parts. In Part I we introduce a model that describes

the mutual interaction of a linear, isotropic, and homogeneous soft ferromagnetic bar

with a hard type II superconductor. The model is applied to the optimization of a typical

magnetic levitation guideway. In Part II a non linear model based on micromagnetic

scheme is introduced to model soft ferromagnets at the nanoscale range. The model

is applied to the study of exchange biased systems and the control of magnetic vortex

states.

Before starting with the first part, we review in the first chapter the main concepts

used throughout the thesis, introducing the main characteristics of ferromagnetic ma-

terials and the critical-state model, a model widely accepted in the description of the

macroscopic behavior of a hard type II superconductor, which we will use.

In the first part (Chapter 2) we start by reviewing the properties that make super-

conductors good candidates to achieve a passive and static levitation. In Chapter 3

we introduce the model of a linear, isotropic, and homogeneous soft ferromagnet in the

limit of very large susceptibility interacting with a superconductor. The magnetic poles

in the ferromagnet and the currents induced in the superconductor will be calculated

using a functional related to their magnetic energy. An advantage of the model pre-

sented is that both elements will mutually interact so that the magnetic pole density of

the ferromagnet will be affected by the currents induced in the superconductor and vice

versa.

A systematic study of the soft ferromagnet will be performed in Chapter 4. The

magnetic pole density in the ferromagnet will be studied when submitted to different

applied fields. The first, a uniform applied field, is used to understand the basic phe-

nomena and to compare our results with the existing analytical ones. Then the magnetic

response of the ferromagnet in the fields produced by one or two magnets (non-uniform)

is studied. The results of this chapter will be helpful to determine the size and shape

that a soft ferromagnet must have in each of the three applied fields to enhance the

magnetic field in a certain region of the space.

In a Chapter 5 we use the results obtained in the previous chapter to maximize the
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levitation force and stability of a typical magnetic levitation system based on supercon-

ductors. Results in this chapter may be useful when designing future magnetic levitation

systems.

At the beginning of Part II we set the motivation for the study of magnetism at the

nanoscale, and in particular we review the importance of soft ferromagnets in devices

using giant magnetoresistance and magnetic memories. The model for a non-linear

ferromagnet in the micromagnetic framework is presented in Chapter 6.

In Chapter 7 we present the hysteretic behavior of a ferromagnetic cylinder at the

nanoscale. Typically, the most stable magnetic configuration for this shape and size

in a soft ferromagnet is the magnetic vortex state. A simple procedure is introduced

to achieve independent control of chirality and polarity of a vortex state by simply

adjusting the applied field direction given a particular dot geometry.

An extension of the model presented in Chapter 6 is made in Chapter 8 to take into

account the effect that an antiferromagnetic material makes to the macroscopic behavior

of a soft ferromagnet. In this case, we will reproduce the basic phenomena of exchange

bias and study the distortion that a magnetic vortex state suffers along the thickness of

the soft ferromagnet due to the surface interaction with the antiferromagnet.

Finally, in Chapter 9 the conclusions of this thesis and future lines are presented.
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CHAPTER 1

Basic Concepts in Magnetism

In this chapter we review the basic concepts used in this thesis. In the first part

we present the main physical quantities describing the magnetism of materials. In the

second section we briefly explain ferromagnetism and the energies involved. Finally, we

introduce the main properties of superconducting materials and present a macroscopic

model that describes the magnetic behavior of hard superconductors.

1.1 Magnetostatics and Magnetic Materials

A magnetic material is a material that produces a magnetic field either spontaneous

or when submitted to an external applied field. In this section we review some key

concepts involving the magnetism of materials.

1.1.1 Magnetic Moment and Magnetization

In classical magnetostatics the dipolar magnetic moment created by a current density

J is

m =
1

2

∫
r× J(r)dV, (1.1)

where V is the volume where the current is present. In magnetic materials, apart from

the magnetic dipole induced by the currents flowing through it, there is an intrinsic

magnetic moment of quantum mechanical origin associated with the spin (angular mo-

mentum) of each electron [1, 2]. In materials where the spins locally point in the same

direction we can define the magnetization vector M which is a mesoscopic volume av-

erage of the magnetic moments M(r) = dm/dV . The macroscopic volume average

magnetization of a sample either from currents or magnetic moments is defined by

Mvol ≡
∫
mdV/Vs where Vs is the volume of the sample.

11



12 Basic Concepts in Magnetism

1.1.2 Maxwell’s Static Equations: Magnetostatics

When no magnetic moments or currents vary on time, the two fundamental equations

in magnetostatics are

∇×H = J, (1.2)

∇ ·B = 0, (1.3)

where H is the magnetic field, B is the magnetic induction and J is the free current

density [3]. The boundary conditions of the magnetic induction and the magnetic field

between two magnetic materials are

(H1 −H2)× en = 0, (1.4)

(B1 −B2) · en = 0, (1.5)

where 1 and 2 indicate the magnetic medium and en the unit vector perpendicular to

the interface pointing from medium 1 to 2. The quantity that relates magnetic induction

and magnetic field is the magnetization according to

B = µ0 (H + M) , (1.6)

where µ0 is the vacuum permeability. The divergenceless nature of the magnetic in-

duction [see Eq. (1.3)] which is also accomplished in the non-static regime allows the

definition of a magnetic vector potential A(r) such that

B(r) = ∇×A(r). (1.7)

The choice of ∇ ·A(r) or gauge is free since it does not change B(r). A common gauge

used is the Coulomb gauge ∇ ·A(r) = 0.

1.1.3 Magnetostatics without Free Currents

In magnetic materials where the free current density is zero (J=0) Eqs. (1.2), (1.3),

(1.4) and (1.5) can be rewritten as

∇×H = 0, (1.8)

∇ ·H = ρM, (1.9)

(H1 −H2)× en = 0, (1.10)

(H1 −H2) · en = −σM, (1.11)

where ρM and σM are the volume and surface magnetic pole densities, respectively and

are defined as

ρM ≡ −∇ ·M, (1.12)

σM ≡ (M1 −M2) · en. (1.13)
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Equations (1.9) and (1.11) along with Eqs. (1.12) and (1.13) indicate that the source

of magnetic field is due to a variation of the magnetization either in the volume [Eq.

(1.12)] or in the surface sample [Eq. (1.13)]. Magnetic field lines start in positive

magnetic poles and end in negative magnetic poles but never forming a closed loop.

The vanishing curl of H(r) in current free magnetic materials allows the definition

of the magnetic scalar potential φ, whose gradient is H(r) = −∇φ(r). This potential is

enough to describe the magnetic field in the whole space.

1.1.4 Magnetic Susceptibility and Linear Isotropic and Homogeneous

Materials

Magnetization M at each point in the sample is related to the magnetic field H in

the same point as

M(r) = χ(H, r)H(r), (1.14)

where χ(H, r) is an intrinsic parameter of the magnetic material known as the magnetic

susceptibility. In general, χ is a tensor that depends on the position r and the local field

H(r) inside the material. A linear isotropic and homogeneous material (LIH) is defined

as a material for which χ is a scalar quantity (isotropic) independent of the field (linear)

and the position (homogeneous) so that

M(r) = χH(r), (1.15)

is accomplished being χ is a real quantity. A LIH material can also be characterized by

the magnetic permeability µ which is related to the susceptibility as

χ =
µ

µ0
− 1. (1.16)

In a LIH material without any free current the combination of Eqs. (1.3), (1.6),

(1.12) and (1.15) leads to the conclusion that no volumic poles are induced and there-

fore the divergence of H vanishes inside the sample. Only the difference (divergence)

of M at the surface induce a surface magnetic pole density according to Eq. (1.13).

Another characteristic of this approximation (LIH) is that no irreversible processes can

be described.

1.1.5 Demagnetizing Fields and Demagnetizing Factors

The magnetic behavior of a sample does not only depend on its intrinsic properties

such as χ(H, r) but on the shape of the magnetic sample itself [4, 5]. This can be un-

derstood by looking at the boundary conditions Eqs. (1.4) and (1.5). The geometrical

effects of the magnetic sample are usually called demagnetizing effects. The demagne-

tizing field Hd or stray field is the magnetic field generated by the surface and volumic

magnetic pole densities in a magnet. If an external magnetic field Ha is applied to the

sample, the total magnetic field at any point in the space is

H = Ha + Hd. (1.17)
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The averaged volume magnetization of a sample is related to the averaged volume

demagnetizing field Hd,vol as

Hd,vol = −NMvol, (1.18)

where N is the magnetometric demagnetizing tensor. In general, Hd,vol and Mvol are

not parallel even in LIH materials. In some cases, as for instance LIH ellipsoidal samples

this two quantities are strictly parallel and the demagnetizing tensor reduces to a scalar

quantity called demagnetizing factor which can be defined as

N = −
Hd,vol

Mvol
. (1.19)

In general, the directions of Ha for which all the averaged magnetic quantities are parallel

and the demagnetizing tensor is reduced to a scalar are called the principal directions

of the sample. In this case, the demagnetizing tensor [defined in Eq. 1.18] expressed in

the basis of the principal directions is diagonal. i.e. has zeros in the non-diagonal part

of the matrix.

1.2 Special Cases of Linear Isotropic and Homogeneous

Magnetic Materials

The demagnetizing fields for LIH materials with χ → 0+ and χ → ∞ are analyzed

in this section.

1.2.1 χ→∞

When a uniform field is applied to a sample of positive susceptibility, the average

volume magnetization Mvol has the same direction as the external uniform applied

field Ha, as shown in Fig. 1.1(a). Positive magnetic pole density is generated in the

surface whose normal vector (directed outwards the sample) has the same direction as

the applied field. Conversely a negative surface magnetic pole density appears when the

normal to the surface is antiparallel to the field as indicated by Eq. (1.13).

As seen in Figs. 1.1(a) and 1.1(b) for χ > 0 the magnetic field produced by the

poles in the interior of the sample is opposite to the averaged magnetization direction.

Therefore, the total magnetic field inside the sample H = Ha + Hd is reduced with

respect to the applied field. The fact that Hd reduces the magnetic field inside the

sample gives the original name of demagnetizing field to Hd.

When χ→∞, we can see by the definition of magnetic susceptibility Eq. (1.14) that

H inside the sample must be zero so that the magnetization M remains finite. This

implies that inside the sample the demagnetizing field is the same but with opposite

direction to the applied field, i.e. Hd = −Ha as depicted in Fig. 1.1(a). In this case,

since the total magnetic field inside the sample is zero (this is, H1 = 0), the perpendicular

boundary condition [Eq. (1.11)] indicates that at the surface of the sample the field takes

a value |H| = σM. No magnetic field component parallel to the surface exists [Eq. (1.10)
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Mvol M

(a) (b)

Ha

Figure 1.1: Surface magnetic pole density indicated by signs and demagnetizing field lines (dashed)

for two LIH materials, χ→∞ (a) and χ =→ 0+(b).

and H1 = 0] and therefore the magnetic field at the surface is perpendicular to it with

expression H = σMen.

In magnetically soft materials (large χ) the initial slope of a hysteresis loop far from

saturation is very large and almost linear. For instance the typical slope for Permalloy

material is 105. The approximation of χ→∞ is only valid in this kind of materials and

in the applied field region where the material is far from saturation.

1.2.2 χ→ 0+

The limit of vanishing χ (from positive values) describes well the saturated regime of

ferromagnetic materials. This is, in the limit where the magnetization does not change

due to an increment or decrement of the applied magnetic field. It is also a way to

describe permanent magnets (PMs), or magnetic materials that due to their intrinsic

properties are magnetized mostly in one direction and do not change their magnetization

in a large range of applied magnetic fields. A typical example of a permanent magnetic

material is NdFeB having huge coercivities about 2.5 Tesla [6].

In the uniform magnetization or, equivalently χ = 0 limit, the magnetic pole density

is constant on the surfaces perpendicular to the applied field as shown in Fig. 1.1(b).

In this case, even though the magnetization is constant in the sample volume the de-

magnetizing field is not uniform. This apparent contradiction is solved as follows. For

small χ the magnetization of the sample is small according to Eq. (1.14) and therefore

small magnetic pole density is generated resulting in a small demagnetizing field. Since

H = Ha + Hd a small uniform applied field Ha >> Hd will make that inside the mate-

rial the magnetic field H is in the direction of Ha. Therefore the magnetization has the

same uniform direction as the applied field according to M = χH.
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1.3 Ferromagnetic Materials

Even though we can consider magnetic materials as LIH in some cases (explained

above), in general they present an irreversible behavior as described by the hysteresis

loops. Ferromagnetic materials [2, 7] at a temperature below its Curie temperature

Tc (temperature above which the ferromagnetic ordering no longer exists) may present

small zones called magnetic domains in which the magnetization remains mostly in one

direction. The existence of domains was proposed by Weiss back in the year 1907 in

order to explain why materials known to be ferromagnetic did not have a net magnetic

moment at the macroscopic scale [8]. The irreversible processes in a ferromagnet (FM)

occur due to coherent rotation of the magnetization in a domain or by domain wall

displacements. The study of these effects is complicated due to the high non linearity

of the problem.

Magnetic domains result from the competition of the main three energies in a FM: the

magnetostatic, the exchange and the crystalline anisotropy energies. The magnetostatic

energy results from the divergence of the magnetization, or in other words, the magnetic

pole densities in a FM. This energy can be written as [1]

Ed = −1

2
µ0

∫
HdMdV. (1.20)

The minimization of the magnetostatic energy is achieved by reducing the magnetic

poles (which is known as the magnetic pole avoidance principle [9]) or equivalently the

demagnetizing field inside the sample.

The exchange energy has a quantum origin [1, 10]. It reflects the competition between

the Coulomb interaction of two nearby electrons, and the Pauli exclusion principle. This

is, electrons in the same place can not have the same spin direction. If the Coulomb in-

teraction is weak two electrons are close and therefore must point in opposite directions,

conversely if the Coulomb interaction is strong they can point in the same direction.

Heisenberg set up to express the Hamiltonian of this interaction for two spins as [2],

H = −2JS1 · S2, (1.21)

where J is the exchange integral and S1, S2 are dimensionless quantum operators. In the

case of ferromagnetic materials J > 0 and neighboring spins point in the same direction.

Ferromagnetic materials present, independently of their shape, directions of easy

magnetization [7]. This is, a direction for which saturating the magnetic sample needs

for a weaker applied field compared to other directions. This phenomenon is known as

the crystalline anisotropy and is related with the crystal structure of the FM. A material

with uniaxial crystalline anisotropy has two easy directions and its energy density can

be expressed as

E = K sin2 θ, (1.22)

as a first approximation. Here, K is the anisotropy constant with units of J/m3 and

θ = 0 or θ = π are the easy directions.
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In soft materials (where the anisotropy is negligibly small) magnetostatic and ex-

change energies act on different scales to form domains. The main point is that the

exchange energy density is several orders of magnitude larger than the magnetostatic

one. However the magnetostatic energy density is of long range order whereas the ex-

change interaction is short range (neighboring spins). In this way, when the magnetic

sample is large it forms domains where locally the exchange energy is minimized (spins

point in the same direction) and globally the non uniformity of the domains reduces

the magnetic pole density lowering the magnetostatic energy. Conversely, when the

sample is small, the exchange forces dominate and the sample is uniformly magnetized

approaching the limit χ = 0. Using these concepts, Brown announced what would be

known as the fundamental theorem of fine particle theory [11]: the state of the lowest

free energy of a ferromagnetic particle is one uniform magnetization if the particle is

sufficiently small and one of nonuniform magnetization if it is sufficiently large. Size

effects (not the shape) on a soft fine magnetic particle are studied briefly in Appendix

C.

1.4 Hard Superconductors

In this section we briefly review some of the main properties of the superconductors

(SCs); readers are referred to [12, 13, 14, 15] for a further and deeper understanding of

these materials.

The superconducting state is a thermodynamic state of some materials that when

cooled below a critical temperature Tcrit present two phenomena simultaneously. The

first is that the electrical resistance drops abruptly to zero. The second is that for

sufficiently low fields the SC presents perfect diamagnetism, this is, the field produced

by the material is opposed to that of the applied field leading to null magnetic field

intensity in the interior of the sample. Two aspects must be distinguished from the

diamagnetic behavior of the SC. The first is the flux exclusion: when the SC is cooled

below Tcrit at zero field and then a field is applied, the magnetic flux does not penetrate

the sample. The second is the flux expulsion: cooling the SC in the presence of an

applied field makes the magnetic flux to be expelled from the SC as it reaches the SC

state. This last effect is known as the Meissner effect. Another fact worth mentioning

from SC is that contrary to many magnetic materials in which the source of magnetic

field is due to localized magnetic moments in the crystal (dipolar moment due to the

angular momentum of the electrons), the SC magnetic response is due to a free current

induced in the material.

There are two types of SCs, type I and type II. Type I presents a Meissner state if

the applied field Ha is below a critical field Hc specific for each material. In this type of

SC some currents (shielding currents) flowing in a shell of depth λ (penetration depth)

are induced in the surface of the SC in order to shield the magnetic induction inside it.

So B is zero in all the sample volume but in the regions where currents penetrate.

Type II SCs have the same properties as type I for any applied field below a certain
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critical value Hc,1. However, between Hc,1 and another larger critical field Hc,2 (Hc,2 >

Hc,1), magnetic induction partially penetrate inside the material bulk in the form of

superconducting current vortices, a state commonly known as the mixed state. These

vortices are quantized in the sense that each of them is surrounded by a current loop

whose magnetic flux φ = h/2e = 2.07 · 10−15Wb is quantized.

In type II SC in the mixed state, current vortices repel each other due to the in-

teraction of their magnetic induction generated. As a result, the vortices in a perfect

type II SC distribute in a triangular array called the Abrikosov net [16]. Normally, SCs

contain defects or impurities that can pin vortices, this is, they can keep a vortex fixed

in a position with a force called the pinning force. These imperfections can compensate

the repulsion of the vortices and suppress the Abrikosov net generating a non uniform

distribution of vortices in the SC. This, at the same time makes a non-uniform distri-

bution of B in some regions of the SC and according to Eq. (1.2) a macroscopic current

density appears. The magnitude of the current density in these regions is limited by the

average maximum pinning force, called critical-current density Jc. The type II SCs in

the mixed state presenting a strong pinning force are commonly known as hard SCs.

1.4.1 Critical-State Model

The critical-state model is a macroscopic model that describes the magnetic response

of hard SCs. It was proposed by C. P. Bean [17, 18] and is based on the assumption that

any electromagnetic force, whatever small, will induce a macroscopic constant current

density Jc. This model applicability has been proved to be very broad to understand

magnetic measurements [19, 20, 21, 22, 23, 24, 25, 26]. The critical-state model implicitly

assumes that Hc,1 = 0, this is, no surface currents generated in the Meissner state are

considered.

In the following we review the main features of the Bean’s critical-state model by

studying an example. We consider the case of an infinite slab 1 of hard SC immersed in

a uniform applied field Ha in the y direction (this slab is finite in the x direction.).

The SC is initially zero-field cooled below Tcrit. When the applied field is increased

from zero some currents will be induced from the edge inwards following the Lenz’s law

[3] as shown in Fig. 1.2(a). These currents are opposite in sign so that they try to

shield SC volume. According to the model, the current density has a constant value Jc

and since Jc = |∇ ×H| = |∂Hy/∂x|, the total magnetic field inside the sample decays

linearly. This is, at the edge of the sample H = Ha and decreases linearly up to zero.

Two regions can be observed here, the region where the current has penetrated and

therefore a non-zero magnetic field exists and a region where there is no current and

consequently a vanishing magnetic field.

If the applied field is further increased the SC currents penetrate even more inside

the sample [Fig. 1.2(b)] up to a field Hp for which the sample is fully penetrated [Fig.

1An infinite slab is a geometry consisting on two infinite directions and a finite one being the sides

of the latter parallel and flat
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Figure 1.2: Sketch of current and field profiles within the Bean model for infinite slab in which the

field is applied in the y direction (one of the infinite directions of the slab).

1.2(c)]. Larger fields than Hp do not induce new currents in the sample but shift the

total field at the interior of the sample as shown in Fig. 1.2(d). If the applied field is

decreased after a maximum applied field Hm, critical-current density is induced in the

opposite direction [Fig. 1.2(e)]. These currents, penetrate in the same way as the initial

ones, this is, from the edges to the interior of the sample keeping the already existing

currents frozen.

The above example evidences the hysteretic nature of the critical-state model be-

cause, for instance, the initial state of zero applied field [Fig. 1.2(a)] is different to the

state found at the same field after increasing and decreasing it as shown in Fig. 1.2(f).

Even though we have solved the simplest case, critical-state modeling for different ge-

ometries such as cylinders or infinitely long bars has been solved and are reviewed in

[27].





Part I

Modeling Linear Soft

Ferromagnets: Application to

Levitation
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CHAPTER 2

Superconducting-Ferromagnetic Hybrids

The study of the interaction between soft ferromagnetic materials and supercon-

ductors has become an active topic of research because of their potential applications

when properly combined. One of the areas that has attracted much attention is high-

temperature coated conductors (CCs) [28, 29, 30] where usually [29] the superconducting

material is deposited over a ferromagnetic substrate [31]. CCs are combined with soft

ferromagnetic materials for electric and power applications such as high magnetic field

generation [32], energy storage [33, 34, 35], motors [36] or fault current limiters [37] or

even space gyroscopes [38]. For these applications a large critical-current density Jc

and low AC losses (hysteretic losses) are advisable. Usually Jc is increased by adding

some defects [39] to the SC that pin the vortices, however new studies reveal that soft

ferromagnetic parts placed inside [40] or outside [41, 42, 43, 44, 45, 46, 47] the SC can

increase its Jc. This effect is produced by the reduction of the magnetic field inside the

SC, a result that can also be used to reduce the AC losses in SC cables [48, 49] and

increase their transport current.

Another important application of systems where superconductors and ferromagnets

appear together is in levitation. In the following sections of this chapter we explain the

concept of levitation and the usefulness of superconductors combined with soft ferro-

magnets for this application.

2.1 Magnetic Levitation

Levitation is the process by which an object or body is suspended by a force against

gravity remaining in a stable position without contact. There are many forces on the

nature that can make an object to levitate [50] and depending on their nature can

be: aerodynamic (produced by gas pressure), acoustic (sound pressure), electrostatic
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(electric fields) or magnetic (magnetic fields), among others. In this section we will

analyze magnetic levitation.

A levitation system must be stable, this is, if the levitating object is slightly dis-

placed from its equilibrium position there must exist some restoring forces so that the

levitated object remains in the same position. Stability is crucial in levitation but dif-

ficult to achieve, for this reason many systems need a feedback system (and therefore

an additional energy input to the system) that changes dynamically the restoring force.

This is called active levitation. Conversely if the restoring force does not need for a

feedback system the system is called passive. Some systems start to levitate when the

levitating object moves. In this case the levitation is called dynamic levitation, and

static otherwise. A good example of dynamic levitation is the levitron1 in which a small

spinning magnet levitates over a larger one.

In magnetic levitation the force that makes the object to levitate is magnetic. The

first levitating system one may think of consist of a magnet placed above a fixed array

of magnets. Is it possible to find an array configuration so that the magnet above

can levitate static and passively? The answer is negative, the free magnet will wind

up attached to the others. More generally, Earnshaw [51] proved mathematically that

stable and static levitation is impossible for a body placed in a repulsive or attractive

static force field in which the force is dependent on the inverse square of the distance,

which is the case of magnetostatic force. In spite of the difficulty in achieving static and

passive levitation with magnetic fields, there are some systems in which the Earnshaw

theorem can be circumvented [52] using diamagnetic materials or superconductors as

explained in the following section.

2.2 Levitation with Diamagnets and Hard Type II Super-

conductors

Stable and static levitation with diamagnets is possible because they repel the mag-

netic field. Levitation of living organisms, that due to their water composition are

weakly diamagnetic, has been largely demonstrated. For instance, in Refs. [53, 54] a

frog is levitated in a large magnetic field gradient produced by two coils. In biological

sciences different techniques [55] have been developed to study the effect of ingravity on

cells and plants. Even more surprising is the demonstration of the movement control of

single cells [56] due to the field gradient produced by domain walls in ferromagnets.

Diamagnets as levitating objects are only stable if placed in local field minimum

[54]. Hard type II superconductors however, can achieve levitation not necessarily in

a field minimum. When cooling the superconductor below its critical temperature in

an arbitrary (static and non uniform) magnetic field distribution, the superconductor

remains stuck in the air as if it was in a medium with a lot of friction [57]. This frictional

force requires an energy dissipation that is caused by the pinning of the superconducting

1Commercially available at http://www.levitron.com/
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vortices. This fact makes hard type II superconductors good candidates to achieve static

and passive levitation because it is possible to make them levitate over an arbitrary

arrangement of permanent magnets.

Hard type II superconductors also present a large levitation force compared to typical

diamagnets because its magnetic response is much more large. This property along with

the intrinsic stability of hard type II superconductors is used to levitate heavy systems.

Some examples of this are linear magnetic bearings [58] or spaceship propulsion systems

[59] but the main applicability is on transportation systems based on superconductors.

Since the first demonstration of a man loading levitating vehicle based on this technology

[60], projects in China [61], Germany [62] and Brazil [63] have been developing new

technology to improve both stability and levitating force of the vehicle.

Transportation systems based on hard superconductors usually consist of a guideway

of permanent magnets and an array of hard type II superconductors attached to the

vehicle. These permanent magnets are made of rare earth materials and have a very

large coercivity and high saturation magnetization so that to make a large magnetic field

above the guideway. Rare earth price has been soaring for the last few years [64], for this

reason some test lines [65, 66, 67] include soft ferromagnets (commonly iron) between

the permanent magnets. Soft ferromagnets are also useful to guide the magnetic field

of the permanent magnets towards the superconductor and increase its levitation force.





CHAPTER 3

Numerical Model for Magnetic Interaction between SC and FM

In this chapter the mathematical model that describes the magnetic behavior of a

superconductor and a soft ferromagnet is described. Such a model will also take into

account the mutual interaction of both magnetic elements. Different theoretical ap-

proaches have been proposed to understand the effects that a soft ferromagnet produces

to a superconductor. Many of them use finite element methods assuming linear [68, 69]

or non-linear [70] permeability in the ferromagnetic parts. Other authors have obtained

analytical results by considering the SC as a perfect diamagnet and an ideal soft fer-

romagnet (χ → ∞) [71] or image methods considering a finite susceptibility [72] in

the ferromagnetic materials. Apart from finite element methods, there are also works

based on energy minimization of the SC parts considering linear ferromagnetic materials

[73] and others that minimize the energy of the ferromagnetic material combined with

iterative methods in the superconductor [74].

Our model assumes a SC in the critical state and an ideal soft ferromagnet both

translationally symmetric along the same direction. This model allows the simultaneous

calculation of the current profiles in the SC and magnetic pole density in the FM by

considering their mutual magnetic interaction and their interaction with an external

applied field.

3.1 Geometry and Magnetic Elements

We consider a FM and a SC, both infinitely long (translationally symmetric) in the

z direction and with rectangular cross section of aSC × bSC for the SC (in the x and

y directions, respectively) while the FM cross section occupies −aFM/2 ≤ x ≤ aFM/2

in the horizontal direction and −bFM ≤ y ≤ 0 in the vertical direction. Although here

we have considered rectangular elements, the model presented is valid for any cross-
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sectional shape as long as both elements are infinitely long. An external magnetic field

with translational symmetry He(x, y) and no z component is applied to such elements.

The SC is assumed to be in the critical-state regime [17, 18]. In general, the critical-

current density Jc is field dependent [75] and could be considered in our model by means

of iterative methods. However in the present work will always consider Jc independent

of the field. The critical current is also temperature dependent but we assume that our

simulations are performed at constant temperature and therefore at a fixed Jc.

The FM is considered ideal [71], this is, we consider a linear, isotropic and homoge-

neous FM with a very large value of susceptibility (χ → ∞). This implies that there

are only magnetic poles in the surfaces of the ferromagnet and a vanishing total mag-

netic field H inside it. By construction of the model, we are implicitly assuming that

saturation magnetization can never be achieved.

3.2 Interaction Functional

In this section we describe a functional related to the magnetic energy of the FM

and SC. The minimization of this functional will give the physical value of the magnetic

pole density distribution in the FM and supercurrents in the SC.

Different functionals have been proposed in the literature [76, 77, 78, 79, 80, 81, 82,

83] to find the induced current distribution on the SC in a translational field, those in

refs. [80, 81, 83, 84] for instance are based on the energy as the quantity to be minimized.

Our functional is an extension of the one presented in [84].

The current density distribution J(r) on the SC volume and the magnetic charge

per unit length (surface magnetic pole density) σ(r) on the FM surface at a certain time

is obtained by minimizing the functional

F [J, σ] = FSC [J, σ] + FFM [J, σ] , (3.1)

where

FSC [J, σ] =
1

2

∫
S
J(r)AJ(r)dS −

∫
S
J(r)AĴ(r)dS +

∫
S
J(r)(Ae(r)− Âe(r))dS

+

∫
S
J(r)(Aσ(r)− Âσ̂(r))dS, (3.2)

FFM [J, σ]

µ0
=

1

2

∫
l
σ(r)φσ(r)dl −

∫
l
σ(r)φσ̂(r)dl +

∫
l
σ(r)(φe(r)− φ̂e(r))dl

+

∫
l
σ(r)(φJ(r)− φ̂Ĵ(r))dl. (3.3)

Here, dS is the differential of area in the transverse section S of the SC whilst dl is

the differential of length in the perimeter l of the transverse area of the FM. The term

FSC [J, σ] takes into account the interaction of the currents in the SC with themselves

(first and second terms), with an external applied field (third term) and with the FM

(last term) whereas the term FFM [J, σ] is the analogous functional for the FM. In Eqs.
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(3.2) and (3.3) A stands for the vector potential, φ for the magnetic scalar potential

and the subindexes indicate the source, which can be the external applied field e, the

supercurrents J in the SC or the magnetic poles σ in the FM. The hat terms represent

the quantities in the previous time layer, therefore Ĵ and σ̂ are the current densities in

the SC and magnetic pole densities in the FM that minimize the functional (3.1) in the

previous time1.

The constraints applied to the magnitudes describing the SC and the FM are differ-

ent. For the SC we impose the critical-state condition [17] which is |J | ≤ Jc. We choose

the Coulomb gauge so that the potential vector direction is parallel to the current. In

the SC a transport current can be considered when minimizing the functional [82] how-

ever in the present work we only consider changes in the SC currents due to external

magnetic fields, in this case, the net current in a transverse section of the SC is zero,∫
S JdS = 0. For the FM the only constraint needed is

∫
l σ(r)dl = 0 indicating that no

net magnetic charges are induced.

The functional F [J, σ] has units of energy per unit length since the term for the SC

(FM) depends on a current density (a magnetic pole density) multiplied by a vector

potential (magnetic scalar potential). The first term FSC [J, σ] cannot be considered as

simply the energy per unit length of the SC system since it describes a hysteretic process.

FSC [J, σ] reduces to the functional introduced by Prigozhin [77, 85] if the interaction

with the FM is not considered, i.e., σ(r) is set to zero. Only under some conditions

[82] this functional is equivalent to the magnetic energy. The second term FFM [J, σ],

however, is µ0 times the energy per unit length of the FM if J(r) is zero, this is so

because the FM is non hysteretic. By setting the hat terms in FFM [J, σ] to zero we

recover the functional in [74] in which the behavior of a FM substrate was analyzed by

just minimizing the energy of the FM.

Defining the surface magnetic pole density variation δσ ≡ σ − σ̂ and current den-

sity variation δJ ≡ J − Ĵ it is possible to obtain another functional F′ [δJ, δσ] whose

minimization is equivalent to minimize F [J, σ]. So, we define

F′ [δJ, δσ] = F′SC [δJ, δσ] + F′FM [δJ, δσ] , (3.4)

where

F′SC [δJ, δσ] =
1

2

∫
S
δJ(r)AδJ(r)dS +

∫
S
δJ(r)(Ae(r)− Âe(r))dS

+

∫
S
δJ(r)(Aσ̂(r)− Âσ̂(r))dS

+

∫
S
δJ(r)Aδσ(r)dS +

∫
S
Ĵ(r)Aδσ(r)dS (3.5)

1This time dependence can be introduced either by considering an external applied field which changes

with time, or by considering that the external applied field is static and the SC and/or the FM are

moved relative to the source of magnetic field. With this latter consideration the external applied field

varies with time from the standpoint of the SC and/or the FM. In any case variations are performed

quasiestatically.
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and

F′FM [δJ, δσ]

µ0
=

1

2

∫
l
δσ(r)φδσ(r)dl +

∫
l
δσ(r)(φe(r)− φ̂e(r))dl

+

∫
l
δσ(r)(φĴ(r)− φ̂Ĵ(r))dl

+

∫
l
δσ(r)φδJ(r)dl +

∫
l
σ̂(r)φδJ(r)dl. (3.6)

If σ = δσ + σ̂ and J = δJ + Ĵ are introduced in F [J, σ], we obtain F′ [δJ, δσ] and

other terms that only depend on Ĵ and σ̂. Because of the definition of Ĵ and σ̂, the

terms including only them are already minimized and thus are omitted in Eq. (3.4).

3.3 Calculation of Currents and Magnetic Poles

The magnetic behavior of the SC and FM is determined by the supercurrents induced

in the former and the magnetic pole density originated in the surface of the latter. In

this section we show how to calculate both using the functional (3.4) when they are set

in a non-uniform applied field with translational symmetry along the z direction.

Since the currents in the SC are distributed in its cross section we divide it in

NSC rectangular-sectioned elements of infinite length and the same cross sectional area

∆x×∆y = ∆S. The current density at each element is assumed to be uniform and with

a value mJc/mm where mm is a positive integer and m is an integer between −mm and

mm. The FM surface is discretized in NFM elements of the same width ∆L and infinite

length. In each FM element it is assumed a uniform magnetic pole density that can be

±n∆σ where n is a positive integer with arbitrarily high value.

The change of F′FM [δJ, δσ] due to a magnetic pole density variation ∆σ over the j

element of the FM is

∆F′FM,j

µ0
= ∆σ∆L

NFM∑
p=1

Epjδσp +
1

2
Ejj(∆σ)2∆L+ ∆σ∆L

[
Ye,j − Ŷe,j

]

+ ∆σ∆L

NSC∑
k=1

Ĵk

(
QSC
kj − Q̂SC

kj

)
+ ∆σ∆L

NSC∑
k=1

δJkQ
SC
kj

+

NFM∑
p=1

NSC∑
k=1

σ̂pδJkQ
SC
kp ∆L, (3.7)

where Epj and QSC
kj are related to the magnetic scalar potential at the j element of

the SC due to a p element of the FM and a k element of the SC, respectively. These

quantities are geometrical factors between the element j of the SC and another element

of the FM or SC and are defined and explained in Sec. A.1 of Appendix A. Ye,j is the

magnetic scalar potential at the center of an element j in the FM due to an external

applied field (He). The quantity QSC
kj − Q̂SC

kj is related to the change in magnetic scalar
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potential at an element j of the FM due to a change in the relative positions between j

and an element k in the SC with respect to the previous time layer.

We can perform the equivalent change of current ∆I in an element i of the SC that

leads to a variation of the functional F′SC [δJ, δσ] by an amount

∆F′SC,i

µ0
= ∆S∆I

NSC∑
k=1

DkiδJk +
1

2
Dii(∆I)2 + ∆I

[
Ge,i − Ĝe,i

]

+ ∆I

NFM∑
p=1

σ̂p

(
QFM
pi − Q̂FM

pi

)
+ ∆I

NFM∑
p=1

δσpQ
FM
pi

+

NSC∑
k=1

NFM∑
p=1

ĴkδσpQ
FM
pk ∆S, (3.8)

where Dki and QFM
pi are quantities related to the magnetic vector potential over an

element i of the SC created by a k element of the SC and a p element of the FM, respec-

tively. As above, the first two quantities are geometrical factors between the element i

and another element of the FM or SC, further explanation and exact calculation of Dki

and QFM
pi can be found in Appendix A Sec. A.2. Ge,i is the magnetic vector potential per

unit µ0 due to an external applied field (He). In the third term the quantity QFM
pi −Q̂FM

pi

takes into account the change of magnetic vector potential at the i element of the SC

produced by a p element of FM due to a change in the relative position between i and

p in the previous and present time layer.

For a given current density Ĵ and magnetic pole density σ̂ distributions (both are zero

at the beginning) we calculate the next values of J and σ on the new field characterized

by Ae and φe by minimizing the sum of the two discretized functionals of Eqs. (3.8) and

(3.7) in the following way. First we consider ∆σ = 0, hence the functional Eq. (3.7)

is zero except the last term, and we find the pair of elements in the SC such that by

setting a current increment ∆I = ∆SJc/mm and −∆I, respectively, the sum of the two

functionals would decrease the most but always keeping the condition |J | ≤ Jc fulfilled.

In the same way, we consider ∆I = 0, and so the functional Eq. (3.8) becomes zero

except the last term. We then find the pair of elements in the FM for which an increment

of magnetic pole density ∆σ and −∆σ, respectively, would decrease the sum of the two

functionals the most. Once the pair of currents and magnetic pole densities are found we

choose the pair (either of currents or magnetic poles) that minimizes the most the sum of

the functionals. This pair of poles or currents are added to their respective discretization

elements. This step of minimization is repeated until the sum of the functionals can not

be further minimized. In the process of finding the optimum pair the last term of both

Eqs. (3.7) and (3.8) are not considered since they are additive constants independently

of the trial-position for ∆I and ∆σ.
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3.4 Calculation of Levitation Force

In the case of magnetic levitation, we are interested in obtaining the magnetic force

over the SC. This force comes from the interaction of the currents in the SC and the

magnetic field Hm produced by the guideway (FMs and PMs), i.e. it is a Lorentz force.

Once we obtain the current distribution in the SC and the magnetic pole density in the

FM the vertical force per unit length L exhibited by the SC is

Fy

L
= µ0

∫
S
JzHm, x dS, (3.9)

where Jz is the current density, S is the cross section of the SC and Hm, x is the x-

component of the magnetic field created by the guideway (PMs and FM) at the cross-

section of the SC. Similarly, horizontal force (guidance force) per unit length is

Fx

L
= −µ0

∫
S
JzHm, y dS, (3.10)

where Hm, y is the y-component of the magnetic field created by the guideway over the

SC. In our model, the SC cross section is discretized and Eqs. (3.9) and (3.10) can be

approximated as

Fy

L
' µ0

NSC∑
j=1

Hm, x, jIj , (3.11)

Fx

L
' −µ0

NSC∑
j=1

Hm, y, jIj , (3.12)

respectively. In these two equations Ij = Jj∆S is the current at the j-element and

Hm, x, j , Hm, y, j are the horizontal and vertical components of the field created by the

guideway in the center of the element j of the SC.

3.5 Calculation of Stability

In levitation systems it is not only important the force acting on the levitating body

(in our case the SC) but the restoring forces over it when the body undergoes small

displacements around its equilibrium position. The vertical and horizontal stiffnesses

per unit length are defined as

κyy
L

= −∂Fy/L

∂y
, (3.13)

κxx
L

= −∂Fx/L

∂x
, (3.14)

respectively. For the system to be stable, vertical and horizontal stiffnesses must remain

positive around the levitation point.
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3.6 Limits and Validity of the Model

The SC is assumed to be below its critical temperature Tcrit (around 77K for YBCO)

whilst the FM is below its Curie temperature Tc [7] which is typically 1044K for iron

[2]. Our simulations are performed in a quasi-static situation.

The approximation of considering the soft ferromagnet as a perfect soft ferromagnet

is justified by the large susceptibilities (χ ∼ 105 − 106) and very low coercivities (Hc ∼
1 − 10 A/m) found in some magnetic materials manufactured today [2, 86, 87]. These

ferromagnets are smartly located in electromagnets, transformers or motors where low

coercivities and large susceptibilities are advisable [2]. All these materials get saturated

when set in a sufficiently large applied field. In our model the saturation of the soft

ferromagnet is not considered. This may restrict ourselves to simulations where magnetic

fields are not large. However, even in this case our model can give a first approximation.





CHAPTER 4

Magnetic Response of an Ideal Soft Ferromagnet

Before analyzing the mutual interaction between the SC and FM in the levitation

case, it is important to understand the magnetic behavior of both SC and FM separated.

The simplest case is to submit the FM or SC to a constant applied field. The SC response

to a uniform applied field has already been studied for different geometries, such as slabs

[17], or infinitely long bars with rectangular [88, 89, 90] or elliptical [91, 92] cross sections

among others [27]. Also, much research has been done when the applied field over the

SC is non-uniform [27, 93, 95]. However no systematic study of a FM under different

applied fields has been carried out. In this chapter we analyze the magnetic response of

the FM bar set in a uniform applied field or a field produced by PMs, i.e. non-uniform.

4.1 Uniform Applied Field

The simplest case is to consider a FM immersed in a uniform applied field. Studying

this case not only allows us to understand the basic behavior of the FM but also to

validate our results through analytical calculations. In our case of translationally sym-

metric ideal soft ferromagnet with rectangular cross section aFM × bFM there exists an

analytical solution for the magnetic pole density distribution at its surface [96].

In our simulation, we consider a vertical applied field (perpendicular to aFM side)

He = Haŷ, where Ha is positive (see inset of Fig. 4.1). Figure 4.1 shows the distribution

of surface magnetic pole density in the FM for several values of bFM/aFM obtained by

numerical calculations (symbols) and by the analytical expressions of the Ref. [96]

(lines). We will refer to the different sides of the FM as top (T, y = 0), bottom (B,

y = −bFM), left (L, x = −aFM/2) and right (R, x = aFM/2). For sake of simplicity only

the pole densities of the upper right corner are plotted since, in the uniform applied

field case, the pole distribution is horizontally symmetric and vertically antisymmetric
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Figure 4.1: Comparison of the numerical (symbols) and analytical (lines) distributions of surface

magnetic pole density of a FM set in a uniform applied field in the positive y direction for different

ratios bFM/aFM. The inset shows an sketch of the considered system. Because of the symmetry, on the

abscissa only the position of poles starting from the middle of the right side (R) to the middle of the

top side (T) are represented counterclockwise (see blue line and the arrow in the inset).

with respect to the center of the FM (x = 0,y = −bPM/2). By comparing numerical and

analytical distributions we can see that there is an excellent agreement between both,

so the validity of our model in this limit is confirmed.

To make the total field H zero inside, the FM has to produce a negative vertical

component of magnetic field in its interior. For this reason top and bottom sides must

have positive and negative values of magnetic pole density, respectively. As can be seen

in Fig. 4.1 these sides have a quasi-constant magnetic pole density at the regions far

from the corners. This distribution creates a quasi-uniform vertical magnetic field in

the central region in order to cancel the applied field. Near the corners however, a

uniform magnetic pole density can no longer exist, otherwise a large horizontal field

would be created in the interior region near the corners. Istead, the magnetic pole

density increases in all the sides near the corners so that the horizontal field is completely

canceled. Magnetic pole density diverges in the corners as can be seen in Fig. 4.1. Top

and bottom sides diverge more rapidly than left and right side do, to make a net field in

the -y direction. This is, if both sides were to diverge in the same way, their field would

cancel mutually and therefore near the corners we would not have a zero total field.

The linearity of the FM is evidenced in Fig. 4.1 (see the normalization of σ). For

the same FM, if the applied field is changed by a factor, the magnetic pole density at

each point will be multiplied by the same factor. Since the applied field has the same
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value and direction at every point in the space, the magnetic pole density shape and

value for a given applied field only depend on the aspect ratio bFM/aFM.

It is interesting to see that when bFM/aFM << 1 we can approximate the top and

bottom sides in a region far from the corners as two uniformly charged infinite sheets.

As said previously, these distributions produce a quasi uniform vertical field inside the

sample. In this case, the magnetic pole density is |σ| = Ha far from the corners (see red

curve in Fig. 4.1). By contrast, when bFM/aFM >> 1 the absolute value of pole density

of the top and bottom sides increases (black curve in Fig. 4.1) and tends to diverge.

A simple explanation can be given looking at the central point of the FM (x = 0,

y = −b/2). Since top and bottom sides are farther from this point when bFM/aFM

increases they must increase their magnetic pole density to make the same vertical field

and cancel the applied field.

4.2 Permanent-Magnet field

We now move to a case where the applied field is not uniform, as for example the

field created by a square-sectioned PM. The FM is placed just above the PM, which is

uniformly magnetized in the y direction (MPM = 7.95×105 A/m) and of side aPM = 0.1

m. In this way the bottom side of the FM is always in contact with the top side of the

PM. In this example, as opposed to the case of a uniform applied field, the shape of the

magnetic pole density depends on the ratios aFM/aPM and bFM/aPM. Changing the side

lengths of the FM while keeping its aspect ratio fixed changes the magnetic pole density

shape because the field felt by each side also changes.

For the case of a square-sectioned FM with the same side as the PM (aFM = bFM =

aPM) we find the magnetic pole distribution of Fig. 4.2(a) when the field is created by the

PM (dashed line) compared to the response to a uniform applied field as in the previous

section (line). In the case of the PM field, the surface pole density σ is normalized to

HPM, which is defined as the magnetic field created by a PM of square cross section at

the center of its surface perpendicular to the magnetization (HPM ' 0.35M). In the

case of the uniform applied field, σ is normalized to Ha.

Figure 4.2(a) shows that, unlike the case with uniform applied field, all surfaces of

the FM have positive density except the bottom one. This result can be understood by

looking at Fig. 4.2(b) where the magnetic field lines produced by the PM are represented.

In these profiles we find that the PM field tends to enter from the bottom side of the

FM and exit through the rest of the sides.

Furthermore, the non uniformity of the PM field is responsible for the difference,

in modulus, between the poles of the upper and lower surfaces. The shape of the pole

distribution in the bottom surface also creates a negative horizontal field in the region

x > 0 and positive in x < 0 which compensates the horizontal field produced by the PM

in this surface [see Fig. 4.2(b)]. Finally, in Fig. 4.2(a) it can be seen that left and right

surfaces have a large positive value of magnetic pole density near the PM (y ≈ −bFM)
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Figure 4.2: (a) Magnetic pole density of a square-sectioned FM of side aFM = 0.1 m set in a uniform

applied field Ha (line) and in a field produced by a PM (dashed line). The PM has the same square

cross section as the FM and is uniformly magnetized in the positive y direction with a saturation

magnetization MPM = 7.95× 105 A/m. Magnetic pole densities are normalized to the applied field and

HPM (see text). The positions of magnetic pole density are represented on the abscissa starting from

the left (L) surface of the FM and then following counterclockwise the bottom (B), right(R) and top

(T) surfaces. (b) Calculated magnetic field lines produced by only the PM. The position of the FM is

marked with a dashed square on top of the PM.

and this value decreases as the pole approaches to the top side because the horizontal

field produced by the PM in the lateral sides is higher near the PM.

It should be noted that the sign and value of magnetic pole density at each point

of the FM surface does not only depend on the external magnetic field at a particular

point but on the field of all the other poles in that point. Analyzing the behavior of

all magnetic poles can be cumbersome, therefore, we focus now on a single pole as

representative of the overall response. In Fig. 4.3 we plot how the pole density at the

center of the top side (x = 0) varies for three different heights of the FM (bFM) as a

function of its width (aFM) being the PM kept always the same as before.

The dependence of the top central pole density with the FM width is, in general,

very similar in the three studied heights, i.e., the pole density increases for small widths

and it decreases when the FM is widened. For a fixed aFM, the case of the thin FM

(bFM/aPM = 0.5) is the one that provides larger central pole density since the thinner

the FM is the stronger the field felt by the top side is because of its closeness to the PM.

When the width of the FM is very large (aFM → ∞) the central magnetic pole

density at the FM top side tends to zero for all bFM’s. In fact, this result is extended

to all poles of the upper surface. In the bottom surface, however, magnetic pole density

at each point tends to double the value of the vertical component of the PM field at

the particular point. One way to understand these results is to apply the image method

[3, 97, 98], approximately valid in this limit because the FM volume and in particular

its bottom surface are equipotential. The sum of the field produced by the PM and



4.2 Permanent-Magnet field 39

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

a F M / a P M = 5
a F M / a P M = 2

 

 

 b F M / a P M =  0 . 5
 b F M / a P M = 1
 b F M / a P M = 2

�/M
PM

a F M / a P M

a F M / a P M = 1 / 3

b F M

b P M

a P M

a F M

Figure 4.3: Magnetic pole density in the middle of the top side of the FM (marked with ×) as a

function of the FM width (aFM) for different heights (bFM). Black line, red dashed line and blue dotted

line represent the ratios bFM/aPM = 0.5, 1, 2, respectively. The corresponding straight lines represent the

vertical field produced by the PM at the same points of the FM for the different curves bFM/aPM. The

pole density σ is normalized to the PM magnetization MPM. The insets are sketches of the geometry

for the curve bFM/aPM = 0.5 and three values of aFM.

its image will be the total magnetic field in the region y ≤ −bFM (under the FM). On

the bottom side of the FM this sum is twice the field created by one of the PMs, and

therefore σ is twice the vertical component of the PM field in this surface. In this limit,

since the bottom side completely cancels the field produced by the PM for the region

y > −bFM (inside the FM and above it) there is no need for the top side to cancel any

field and thus its pole density is zero.

By contrast, when the width of the FM is very small (aFM → 0) for a fixed bFM the

magnetic pole density in the middle of the FM top surface diverges, because since the

width shrinks, there is less surface able to create a field capable to cancel the PM field

and so the top and bottom parts must have a large magnetic pole density.

FMs are added to PMs systems in order to modify the total magnetic field at some

points without the need to increase the number of PMs. For this purpose in Fig. 4.3 it

is also represented the magnetic field produced by the PM in the middle of the top side

(straight black, red dashed and blue dotted lines for bFM/aFM=0.5,1,2, respectively).

Figure 4.3 shows that, in the studied point, the set FM-PM generates more magnetic

field than the case of a single PM when the width of the FM is small and the opposite

happens when the width is large. Therefore, using a FM does not always enhance the
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magnetic field at a given point of interest. The shape of the FM is a crucial parameter.

In particular, as the height of the FM increases the range of aFM/aPM at which the

magnetic field is enhanced also increases.

4.3 Two Permanent-Magnets Field

A more sophisticated case is when the applied field is produced by two square-

sectioned PMs which are the same saturation magnetization MPM and side aPM as in

the previous section. These two PMs are attached to the left and right sides of the

FM (see inset of Fig. 4.4) with magnetizations in the positive and negative horizontal

directions, respectively. The top sides of the three elements, PMs and FM are kept

vertically aligned at y = 0. As it will be seen in the next chapter, this geometry

is particularly interesting for levitation for it produces a large vertical and horizontal

fields above it.
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Figure 4.4: Distribution of magnetic pole density of a FM of width aFM = aPM and different heights

(bFM) set between two square-sectioned PMs with antiparallel magnetization in the x direction. On the

abscissa the positions of the pole densities are represented starting from the left (L) surface and then the

bottom (B), right (R) and top (T) surfaces, successively. The left inset shows an sketch of the guideway

with bFM/aFM = 0.6. The right inset shows a zoom of the central region of the FM top surface. Orange

dashed dot dot line is the vertical field produced by only the two PMs in the top side of the FM.

The magnetic pole density of the FM surface for different FM heights bFM is shown

in Fig. 4.4. In the case of the square FM (black line), the sign of the magnetic pole

density is positive for the top and bottom sides (where the PM field tends to exit the

FM) and negative in the left and right sides (where the PM field tends to enter the

FM). The reason is that the FM tends to cancel the field perpendicular at each side.
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According to this, the magnetic pole density in the top and bottom sides is maximum

near the corners and minimum towards the middle (x = 0), as seen in Fig. 4.4, because

the vertical component of the field produced by the PMs is larger near the corners. By

contrast, the absolute value of magnetic pole density in the left and right sides takes its

maximum in the middle of the side (y = −bPM/2) since the field perpendicular to this

side produced by the PMs is maximum in this point and decreases towards the edges.

When the height of the FM changes, the field produced by the PMs over each point

in the surface of the left, right and bottom parts also changes. More specifically, as the

height of the FM decreases, two negatively charged regions appear in the bottom side

close to the edges (see Fig. 4.4). For small heights, these regions extend and eventually

occupy the entire lower surface. This behavior is consequence of three effects. The

first one is that the vertical PM field begins to enter through the bottom surface when

bFM < aPM/2, so the bottom part tends to be negative as the FM is shrunk. The second

effect is due to the increase of the negative magnetic pole density on the lateral sides

close to the bottom. This makes a positive vertical field over the region of the bottom

part close to the left and right sides and thus more negative magnetic pole density builds

up. Finally, the third effect comes from the positive top side, which tends to make a

large negative vertical field over the bottom side as the height of the FM is shrunk. This

makes the poles of the bottom side to decrease.

Figure 4.5: Magnetic field lines above the system of two square-sectioned PMs (aPM = bPM = 0.1 m)

uniformly magnetized in opposite directions of x pointing each other (black dashed lines) and the same

system with a FM width of aPM and height of bFM/aPM = 0.6 set in the middle of the two PMs (red

solid lines).

We find that the largest value of the magnetic pole density over the whole top side at

a ratio bFM/aPM = 0.66 (Fig. 4.4). This is because the magnetic pole density over the

top side depends mostly on the field produced by the bottom side over the upper one.
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Particularly, it depends on the relative distance between top and bottom sides and the

sign of the poles of the latter. As the FM height is shrunk from bFM = aFM, magnetic

field over the top side produced by the bottom one increases because the latter side is

positively charged. Therefore, the magnetic pole density increases in the top side (see

inset of Fig. 4.4). However, the bottom side becomes eventually negatively charged and

hence it produces a negative vertical field over the top side. This results in decreasing

the magnetic pole density over the top side. The height at which the compensation of

both effects occurs is bFM/aPM ≈ 0.66.

Although the results of Fig. 4.4 are obtained for a fixed width (aFM = aPM), when

different FM widths are considered, the largest values of the top pole density are also

found for similar ratios bFM/aPM, being slightly higher or lower than 0.66 when the

width increases or decreases, respectively.

Since the field at any point in the surface is perpendicular to it and with the value of

the magnetic pole density, poles in the top surface indicate the vertical field just above

the FM. Comparing to the vertical field produced by the two PMs (orange dashed dot

dot curve in Fig. 4.4) we see that in fact any FM improves the vertical field above the

guideway but for bFM/aPM ≈ 0.66 this field is the highest. Magnetic pole density over

the FM not only indicates the strength of the vertical field but of the horizontal field

and its effect can be thought of as a uniformly charged sheet for a first approximation.

We compare magnetic field lines with FM (bFM/aPM ≈ 0.66) and without it in Fig. 4.5.

As it can be seen, field lines are closer when the FM is present, indicating a larger field.

4.4 Chapter Summary and Conclusions

The magnetic response of a soft ferromagnetic bar has been studied in different

applied fields. A remarkable agreement between our calculations and the previously

analytical results has been found. In the cases of non-uniform applied field we have seen

how by tuning the shape of the FM we can change the field at the FM surroundings.

Special focus has been given to the case of an ideal soft ferromagnet set between two

permanent magnets. We have determined that when the two PMs are square-sectioned,

a good option to maximize the field above them is to set a soft FM in between with

height approximately 0.6 times the height of the PMs. This result can be useful when

designing magnetic levitation trains based on superconducting levitation.



CHAPTER 5

Optimization of a Superconducting Levitation System

A good levitation system must be stable to horizontal and vertical displacements

and achieve a large levitation force. Both effects have been studied experimentally by

changing the size of the PMs or their orientation [63, 99, 106, 100, 101, 102, 103, 104, 107,

108], by modifying the SC arrangements and properties [59, 101, 105, 109, 110, 111, 112]

or even by submitting the SC to different cooling processes [105, 106, 107, 108, 113, 114,

115, 116, 117, 118].

Equivalently, there are many theoretical studies where superconducting levitation is

studied by changing the PM guideways [84, 93, 94, 95, 108, 119, 120, 121, 122, 123, 124,

131], or the bulk SC properties [84, 93, 95, 121, 122, 123, 124, 125, 126, 127, 128, 131].

Also the different cooling processes of the SC material [93, 95, 108, 120, 121, 123, 124,

127, 129] are a crucial point to take into account when designing good levitation systems.

In many theoretical works, soft ferromagnetic parts are not considered in the guide-

way [84, 119, 120, 121] whereas in others are modeled as passive non-interacting parts

[108, 124]. This is, they consider that the SC behavior is affected by the FM but not

the opposite way. In this chapter we study a practical case of levitation in which the

soft ferromagnetic material is an ideal soft ferromagnet able to mutually interact with

the SC. We optimize the shape of the system so that to achieve large levitation and

complete stability.

5.1 Geometry for High Levitation Force

When optimizing the levitation force and stability of a magnetic levitation system

there are two important factors: the physical properties of the PMs, FMs and SCs (e.g.

saturation magnetization and critical-current density) and their geometry (width and

height of each magnetic element). In this chapter we fix the physical properties and vary

43
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the geometrical ones in order to find the largest levitation force for a complete stability.

In the guideway we consider a FM of aFM × bFM cross section set between two uni-

formly magnetized PMs of side aPM×bPM each in the horizontal and vertical directions,

respectively (see Fig. 5.1). The two PMs are uniformly magnetized in the horizontal

direction pointing to the FM, i.e. the PM at x < 0 is magnetized in the positive x

direction (see Fig. 5.1) whilst the PM at x > 0 in the negative one. The saturation

magnetization is assumed MPM = 7.95×105A/m , or equivalently µ0MPM = 1T (typical

for rare earth PMs [130]). Several theoretical [93, 119, 121, 124, 131] and experimen-

tal [58, 59, 60, 63, 66, 67, 100, 103, 105, 106, 107, 132] studies show that this guideway

arrangement is a good candidate to achieve large levitation force on the SC placed above.

SC

PM

y

xz
PMFM

bPM

aPM

dy

aSC

bSC

aFM

bFM

Figure 5.1: Sketch of the levitation system. A FM is set between two PMs with their top sides

aligned. The arrows inside the PMs indicate the direction of their magnetization. The SC is set above

the guideway at a vertical distance dy.

The levitating SC of cross section aSC × bSC is set above the guideway being its

center of the bottom side at a vertical distance dy and horizontal distance dx with

respect to the origin (center of the top side of the FM). A constant critical-current

density of Jc = 3.7 × 105A/m2 is assumed which corresponds to typical values found

in experiments [102, 103]. Throughout this chapter the SC will occupy the total width

of the guideway (aSC = 2aPM + aFM), in this way, for the same height of the SC the

levitation force is larger [121]. Also, in all calculations the SC will be zero-field cooled

(ZFC) at a large distance (dy/bPM=5) from the system of PMs and FM.
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5.2 General Effect of a Soft Ferromagnet in Levitation

To show the effect that introducing a FM produces to the vertical force we study the

case of square PMs of side bPM = aPM = 0.05 m and a SC of rectangular cross section

3bPM× bPM. In order to maximize the field above the guideway, the FM height is set to

bFM = 0.6bPM (see Sec. 4.3) whereas its width is the same as the PM aFM = aPM = bPM.
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Figure 5.2: Levitation force per unit length over the SC of cross section 3bPM×bPM as a function of the

vertical distance dy for the case of a guideway consisting on two square-sectioned PMs (bPM = 0.05m)

separated a distance bPM (dashed line) and the same PMs with a FM of height bFM = 0.6bPM in between

(solid line). Open and full dots indicate the force for the guideway with FM and without it, respectively.

(i,ii,iii,iv) mark the force at the distances dy/bPM=2,1,0.3,0.1 for the descending curve and those labeled

as 1, 2 and 3 indicate the force at dy/bPM=0.3,1,2 in the ascending one. Arrows indicate the SC direction

of movement.

After cooling the SC at the ZFC point, it is descended towards the guideway (de-

creasing dy) up to a distance dy/bPM = 0.1 and then ascended again. Such movement is

performed keeping the SC always centered with respect to the guideway (dx = 0). The

resulting levitation force undergone by the SC during this process is represented in Fig.

5.2 for the cases of the guideway with FM and without it.

Levitation force increases in the descending process, a fact that can be explained

by the current distribution in the SC and the field of the guideway over it. Currents
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begin penetrating the SC in order to cancel the field variation in its interior [see Fig.

5.3 (a)]. This penetration is larger when the SC is closer to the guideway yet the field

over the SC increases. For the same reason, the bottom part of the SC has always

a deeper penetration of currents although currents also appear in the top part due

to demagnetizing effects [84]. In order to cancel the vertical field in the SC interior

currents are positive for x > 0 and negative otherwise as can be seen in Fig. 5.3 (a).

The horizontal field over the SC also increases as the SC gets closer to the guideway

being always positive for x > 0 and negative otherwise (see Fig. 4.5 in the preceding

chapter). The interaction of this horizontal field with the penetrated currents leads to

a positive levitation force according to Eq. (3.9).
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Figure 5.3: Current density profiles in the SC for the descending process (a) and the ascending

one (b) for the cases of the guideway with FM (left column) and without FM (right column). Gray

(black) represents positive (negative) current density in the z direction. i, ii, iii, vi in (a) mark the

vertical distances dy/bPM = 2, 1, 0.3, 0.1, respectively whereas 1, 2 and 3 in (b) are dy/bPM = 0.3, 1, 2,

respectively. These points are the same as shown in Fig. 5.2.

In the ascending process currents penetrate in opposite sign as compared to the

descending one (see Fig. 5.3). This is consequence of a negative vertical field variation

over the SC in this movement. These new currents interact with the field of the guideway

resulting in a decrease of the levitation force as Fig. 5.2 shows.

The levitation force loop is wider for the case of the guideway with FM as shown in

Fig. 5.2. In fact, although it has not been shown here, for a fixed FM width (aFM = bPM)
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any FM would increase the levitation force. However, the height of the FM that gives

the largest levitation force is bFM/bPM = 0.6. This is a consequence of what is shown

in Sec. 4.3, both vertical and horizontal fields above the guideway are maximum for

this FM shape. In our case this leads to a deeper penetration of currents in the SC (see

Fig. 5.3) and a larger horizontal field over the penetrated region therefore forces become

larger.
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Figure 5.4: Magnetic pole density of the top side (y = 0) of the FM with cross section bPM × 0.6bPM

for three separations of the SC and the FM in the descending (black lines) process dy/bPM = 1, 0.3, 0.1

and one at dy/bPM = 0.3 in the ascending one (red). These vertical distances correspond to ii,iii,iv and

1 in Fig. 5.2.

During the ascending and descending processes the FM gets affected by the field of

the SC and changes its magnetic pole density distribution. Initially, in the descending

process, the FM is only affected by the field of the two PMs resulting in a magnetic pole

density distribution as shown in the blue dash-dotted line of Fig. 4.4. When the SC

gets closer to the guideway, their currents create a large negative vertical field over the

FM making the top side of the latter to reduce its poles (see Fig. 5.4). In this way the

FM is getting demagnetized and makes a weaker field above the guideway.

When the SC is ascended, the magnetic pole density distribution at the top side

increases compared to the same vertical separation in the ascending process. This be-

havior is depicted in Fig. 5.4 where it is shown that magnetic pole density at the top

side is larger in the ascending process at a distance dy/bPM = 0.3. This is a consequence
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of the penetration of opposite sign currents in the SC (see Fig. 5.3 (b)) that makes

a weaker negative vertical field over the FM. Eventually, when the SC is ascended a

sufficiently large distance (dy/bPM ≈ 2), currents do not affect the FM and magnetic

pole distribution is only due to the PMs field.

5.3 Stability and Minor Loops

Stability for our geometry without FM has already been studied [115, 120, 133]. This

section is focused on the influence of the FM on stability.
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Figure 5.5: Same as Fig. (5.2) but with a vertical minor loop starting at dy/bPM = 0.5 and finishing

at dy/bPM = 1.5 in the descending curve. The inset shows a zoom of the minor loop.

A vertical minor loop in the descending branch is performed as follows. The SC is

descended from the cooling point to a given distance dy1 and then firstly it is ascended to

a vertical distance d2y > d1y and then descended again to dy1. Considering the geometry

of the previous section, we perform a vertical minor loop starting at dy1/bPM = 0.5 and

ending at dy2/bPM = 1.5 as Fig. 5.5 shows. Two features must be noticed here. The first

is that the vertical minor loop is closed, this is, the vertical force at the beginning and

end of the loop is the same in spite of the hysteretic process of the minor loop, a fact well
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known from other calculations [84] without FM. When adding a FM this behavior does

not change and the starting and ending point present the same force as well as current

profile in the SC and magnetic pole density in the FM. This is a consequence of the

linearity of the FM. The second feature is that, as above, the guideway with FM makes

a wider loop as a consequence of the larger field and deeper penetration of currents.

After the minor loop (see inset Fig. 5.2) the descending and ascending processes are the

same as if the minor loop had not been performed.
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Figure 5.6: Vertical stiffness per unit length as a function of the vertical separation for the case of a

guideway composed of two square-sectioned PMs of side aPM = bPM = 0.05m (dashed line) and the same

guideway with a FM of width aFM = bPM and height bFM = 0.6bPM (solid line). The SC is 3bPM × bPM

cross-sectioned. A reference for zero vertical stiffness is represented by the straight line.

An interesting quantity to study is the vertical (horizontal) stiffness defined in Eqs.

(3.13) and (3.14) which measures the change of vertical (horizontal) force due to a small

vertical (horizontal) displacement. In our simulations we study the vertical stiffness at

a given vertical distance dy by descending the SC horizontally symmetric with respect

to the guideway (dx = 0) and then ascending the SC a small distance ∆dy/bPM = 0.2.

The resulting vertical stiffness is shown in Fig. 5.5. In this particular geometry the SC

is always vertically stable. This result can also be understood by looking at the initial

slope of the minor loop in Fig. 5.2. When ascending the SC in the descending branch

levitation force decreases because currents with opposite sign start to penetrate the SC.

This current penetration (and field over the currents) is even larger when the FM is in
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the guideway resulting in a larger stability at all the vertical distances as shown in Fig.

5.6.
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Figure 5.7: Levitation force per unit length for two consecutive minor loops with amplitude

|∆dx/bPM| = 0.2 at a constant vertical distance dy/bPM = 0.5. Solid line and dashed line correspond to

the guideway with and without FM, respectively. Arrows indicate the direction of SC movement and

levitation force at distances dx/bPM = −0.2, 0, 0.2 are marked with points. In the inset a plot of the

force at dx/bPM = 0 normalized to initial levitation force is represented as a function of the loop number.

In real cases horizontal displacements of the SC around its equilibrium point may

exist. To study the SC behavior in this case horizontal minor loops are performed.

For our minor loop, the SC is descended to a working distance dy/bPM = 0.5, and

then is horizontally displaced to dx/bPM = 0.2,−0.2, 0 one after the other. In general,

during this process, the SC undergoes a torque that makes it rotate [66]. However in

our simulations the SC is forced to make the horizontal displacement without rotating.

Vertical force for two consecutive minor loops is shown in Fig. 5.7. Levitation force

decreases monotonically when the SC is horizontally displaced, a fact observed in several

experiments [59, 106, 115]. This is consequence of the asymmetric current profiles in

the SC. When the SC moves horizontally, it undergoes a non horizontally symmetric

magnetic field variation which turns out into a non symmetric current profile as can

be seen in Fig. 5.8(a). Magnetic field variation is the same but opposite in sign if the

SC moves from the left (negative x) to the center (dx = 0) as compared from the right

(positive x) to the center. Therefore current profiles at the center have similar shapes
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Figure 5.8: Current profiles in the SC for a minor loop at dy/bPM = 0.5 with amplitude |∆dx/bPM| =
0.2 when the guideway has the FM. Numbers in (a) correspond to the marked points in Fig. 5.7. Left

(right) current profile in (b) is the current distribution at dx/bPM = 0 coming from negative (positive)

x direction after 25 horizontal minor loops.

[see for instance profiles 7 and 9 in Fig. 5.8(a)] but changing the asymmetric induced

currents by opposite sign and making a reflection at y = 0 axis.

Current profiles have a deeper penetration of asymmetric currents in the SC as it

passes through dx = 0. However after several minor loops this current profile saturates

(see Fig. 5.8) and therefore levitation force also saturates. This can be seen in the inset

of Fig. 5.7 where the normalized levitation force at dx = 0 is plotted as a function of

the number of minor loops.

Comparing the cases of the guideway with FM and without it, the observed behavior

is the same, however force is always larger for the case of having a FM because of the

deeper penetration of currents. The decay of the force at dx = 0 is also larger for the

guideway with FM for the same reason.

Our levitation system is not always stable to horizontal displacement as opposed to
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Figure 5.9: Horizontal stiffness per unit length as a function of the vertical separation dy for the cases

of the guideway of two PMs (dashed line) or the same guideway with a FM in the middle (line).

the vertical ones. In Fig. 5.9 we have plotted the horizontal stiffness as a function of

the vertical separation between the guideway and the SC. Each point of both curves

has been calculated descending the SC from ZFC vertically aligned with the guideway

(dx = 0) up to each distance dy and then making a small horizontal displacement of

|∆dx| = 0.2. This figure shows that when the guideway consists of two PMs the system

becomes unstable for distances dy/bPM & 0.75. The addition of a FM makes the system

to become stable at a smaller distance dy and enhances the stability at the distances

where it was already stable.

5.4 Optimization of the Ferromagnet Width

In Sec. 4.3 an optimized value for the FM height was found to be bFM = 0.6bPM. In

this section we show which is the optimum width of the FM for a larger levitation force.

In Fig. 5.10 we show the levitation force at a vertical distance dy = bPM/2 for a SC

covering the entire width of the guideway (aSC = 2bPM +aFM) for different widths of the

FM (aFM). For large and small widths, the levitation force decrease and has a maximum

in between. This behavior is the result of two effects, the closeness of the PMs and the

SC volume. By reducing the FM width the magnetic field above the guideway increases
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Figure 5.10: Levitation force per unit length as a function of the FM width at a vertical distance

dy = bPM/2 for the case of a guideway composed of two square-sectioned PMs of side bPM = aPM = 0.05m

(dashed line) and the same PMs with a FM of height bFM = 0.6bPM in between (solid line). The SC

has a cross section of (2bPM + aFM)× bPM, i.e. it occupies the total width of the PMs-FM guideway as

shown in the two insets representing the cases aFM/bPM = 0.5 and aFM/bPM = 2.5.

because the field of the two PMs sum up. This effect makes the force to increase since

the penetration of currents is larger and so it is the horizontal field over them. However,

as we decrease the FM width, the SC volume is also reduced and therefore less currents

are able to penetrate. This last effect makes the force to decrease. Compensation of both

occurs at the maximum shown in Fig. 5.10 in which the SC volume is not sufficiently

small whereas the PMs are close enough to make a large field.

As expected, levitation force is larger with FM due to the increase of magnetic

field above the guideway as can be seen comparing the two curves in Fig. 5.10. It is

noteworthy that the effect of the FM is larger for large FM widths and it decreases

as the FM is shrunk. This result may not be intuitive for small FM widths because

magnetic pole density on the top side of the FM tends to diverge. However, top side

surface tends to zero which in turn results in a finite magnetic field produced by the

FM. On the contrary, in the limit of large FM widths the force tends to a finite value

because the SC tends to be penetrated only in the regions above the PMs.

Another difference is observed between the two cases, the maximum in Fig. 5.10

occurs at larger aFM when the FM is present. A fact that can be explained by the increase

in horizontal field due to the FM which makes the compensation to occur for larger FM

widths. As before, this enhancement of horizontal field and current penetration makes

the system with FM to be more stable. It is indeed always vertically stable for any FM

width but it becomes horizontally unstable for widths aFM/bPM > 1.5.
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5.5 Modifying the Permanent Magnet Width

The study in the previous section considered only square-sectioned PMs, but chang-

ing the PM shape makes the magnetic field distribution and intensity to be different. As

in previous section, we consider here that the SC occupies the total width of the guide-

way. In particular one may think on tunning the levitation force as a function of the

geometrical parameters of the PMs aPM and bPM to find an even larger levitation force.

In this section the width of the PMs (aPM) is changed keeping its height bPM = 0.05 m

constant to see how the maximum of force changes as a function of the FM width aFM.

The FM height is kept to its optimized value bFM=0.6bPM.
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Figure 5.11: Same as Fig. 5.10 but the PMs width set to aPM = bPM/2 in (a) and aPM = 2bPM in (b)

where bPM = 0.05m.

In Figs. 5.11(a) and 5.11(b) the levitation force is plotted as a function of the FM

width for the case of aPM = bPM/2 and aPM = 2bPM, respectively. We observe that

the maximum of force in the curves of different aPM is shifted. That is, the maximum

occurs for large aFM when aPM is small and vice versa. This is so because for large

aPM the horizontal field in the central part above the PM is smaller than when aPM is

small; for this reason when aPM is large it is necessary to decrease the gap between the

PMs to increase the horizontal field above them so the compensation occurs at a smaller

aFM. The levitation force increases as the PM width is larger and the peak of maximum

force in the case of having FM has a value of approximately 2×aPM/bPM. The stability

has been also analyzed and is found that the system is always vertically stable and the

horizontally stable region is enhanced when the FM is added to the guideway.
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5.6 Chapter Summary and Conclusions

Throughout this chapter the basics of levitation with hard type II SC have been

studied for a guideway consisting on two PMs and the same PMs with a FM in the

middle. This system is always vertically stable and becomes horizontally unstable for

vertical distances smaller tan dy/bPM < 1.5. Vertical minor loops are closed but not so

horizontal minor loops. In both cases the magnetic history is the responsible of these

behaviors.

We have quantitatively shown that by adding a soft ferromagnetic material in the

guideway of the levitating system, the levitation force increases and both the vertical

and horizontal stabilities are slightly enhanced. The reason is that the soft ferromagnet

guides the magnetic field of the PMs to produce a larger field in the supercoductor which

makes it to be more penetrated by currents. The combination of guiding the magnetic

field and increasing the penetration results in an increased levitation force. It is also

possible to increase the levitation force by increasing the permanent magnet width; this

implies a reduction of the ferromagnetic width to achieve a larger levitation force.

Even though the levitation performance is better when increasing the PM volume this

results in an increase of costs. PM volume can be reduced by adding soft ferromagnetic

parts to the guideway which help to guide the magnetic field towards the SC. The

results presented in this chapter may be useful for better understanding the role that a

soft ferromagnetic material plays in the guideway of a linear magnetic levitation system

based on levitating superconductors.
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Over the past few decades there has been an active research on magnetic properties

at the nanoscale [134, 135, 136]. Part of this interest was boosted by the magnetic

recording industry [134, 137, 138] since magnets produce strong magnetic fields that

can be used to store information. In this introduction we briefly review the applications

of nanoscale magnets and their foreseeable future.

Conventionally digital information in computers was stored in hard disk drives typi-

cally consisting on a polycrystalline thin film media [139]. Small regions of this material

were in-plane uniformly magnetized using a inductive write head such as a small elec-

tromagnet. In the boundary separating two uniformly magnetized regions a stray field

resulting from the magnetic poles generated appears. Depending on the magnetization

directions this stray field has two out-of-plane field directions (a bit of information) that

can be read with a magnetic field sensor. The key to improve this technology is to

reduce the signal-to-noise ratio and increase both, the read/write speed and the infor-

mation density (number of bits per area of magnetic media). Hard disk drives have the

advantage of storing information even when the power is cut (non-volatile devices) but

reading/writing process can be considered slow because the read/write tip has to be

mechanically moved to read different zones of the disk.

An important breakthrough, the discovery of giant magnetoresistance (GMR) [140]

made possible to construct much more efficient magnetic field sensors [141] at the

nanoscale (read heads using GMR were available in 1997) therefore reducing the read

error while enabling to increase the information density. GMR [142] is observed in mul-

tilayered thin film structures composed of alternating ferromagnetic and non-magnetic

conductive layers. In these systems the in-plane or out-of-plane resistance is very low

when the ferromagnetic layers have the same magnetization direction whereas very large

when they are oppositely magnetized. In many cases the multilayered film consists of

two ferromagnetic layers, one of which (free layer) can be magnetized in two directions

whereas the other (pinned layer) has magnetization direction fixed due to exchange

coupling with an antiferromagnetic (AFM) layer. The free layer can change its magneti-

zation direction depending on the field that undergoes therefore changing the resistance

of the multilayer and enabling the sensing of small magnetic fields.

GMR effects also provide new ways to store information [143, 144]. The idea is to

put several multilayers and magnetize the free layer of each in the desired direction

so that to store a bit of information. Commonly these multilayers presenting GMR

are stacks of ferromagnetic-metal-ferromagnetic (spin valves) or ferromagnetic-insulator-

ferromagnetic (magnetic tunnel junctions). These devices, where the information is

stored by the orientation of magnets and are of random access nature (the time for

accessing an individual bit is independent of its position), are called magnetic random

access memories (MRAM). MRAMs [2] are also non volatile and since they do not need

moving parts to store and read information they are expected to be much faster in the

reading/writing process than hard disk drives.

The first commercial MRAM was released in 2006 and is expected to replace random

access memories widely used in computation today. Research is now focused not only
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on the change of magnetization direction due to a magnetic field but on spin polarized

currents. It was theoretically demonstrated [145, 146] and experimentally validated

[147] that a polarized current carries a torque that can be transferred to the magnetic

material making possible the switching of magnetization without magnetic fields. This

effect, known as the spin transfer torque effect [148] (STT) is complementary to the GMR

in the sense that the first changes the magnetization with polarized currents whereas the

second changes the flow characteristics of this current due to the magnetization. This

new effect, STT, may be applicable in other types of magnetic storage devices, such as

the magnetic racetrack memory [149].

In this part of the thesis we develop a model to describe the magnetic behavior of

nano-sized magnetic structures in the first chapter. This model is applied to control the

magnetization of a magnetic dot based on a magnetic vortex structure in the second

chapter. In the last chapter we extend the model to introduce the effect that an anti-

ferromagnetic material exchange coupled to the ferromangetic layer can produce to the

ferromagnetic layer.



CHAPTER 6

Micromagnetic Model

Micromagnetics is a theory describing the magnetization distribution of ferromag-

netic materials at the intermediate length scale between magnetic domains and crystal

lattice sites (from tens of nanometers to few micrometers). In this chapter we introduce

a procedure to obtain the quasistatic magnetization distribution of a ferromagnetic body

of arbitrary shape.

6.1 Micromagnetic Energy Density and Assumptions

As pointed out in the basic concepts part (Chapter 1), ferromagnetic materials are

formed by a discrete distribution of atomic spins or magnetic moments. These magnetic

moments interact locally by the exchange interaction and globally by magnetostatics.

The goal of micromagnetics is to describe this problem in a continuum approximation

as opposed to discrete for an effective mesoscopic theory.

The first approximation is to describe the exchange energy in a continuum [1, 9, 10]

by assuming classical spins which vary in direction a small amount from one to the

other. A continuous expression of the exchange energy is obtained where involving

no longer magnetic moments but their average, i.e. magnetization. This theory makes

compatible exchange energy with the Maxwell’s theory of electromagnetism in which one

deals with averaged physical quantities, such as permeabilities or susceptibilities [10].

The second approximation is to assume that the magnetization modulus |M(r)| = Ms

is constant throughout the sample, which is a valid approximation if averaging the

magnetic moments of a perfect crystal. Ms is, in general, temperature dependent [150]

and henceforth we will only deal with isothermal conditions.

Considering all the above, the Gibbs free energy density [10, 151] at a point r inside

a homogeneous ferromagnetic sample is

61
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g [r,m(r)] = A
[
(∇mx)2 + (∇my)2 + (∇mz)

2
]

− 1

2
µ0MsHd ·m− µ0MsHa ·m +K

[
1− (uk ·m)2

]
, (6.1)

where m(r) ≡m is a unitary vector in the direction of the magnetization at point r and

with components mx, my and mz in the x, y and z directions, respectively.

The first term in Eq. (6.1) is the exchange energy density. This energy tries to keep

the ferromagnet with uniform magnetization by penalizing the non uniformity with a

positive energy. The exchange constant A is an effective parameter coming from the

continuation of the exchange energy [1] and is related to the exchange energy density

between neighboring spins. A also takes into account the symmetry of the crystal,

which in our case is cubic because we are considering that A is isotropic throughout

the material [1, 152]. The second term in Eq. (6.1) corresponds to the magnetostatic

energy density [1, 3, 97]. Hd(r) ≡ Hd is the demagnetizing field whose sources are

the surface and volumic magnetic poles of the sample itself. At every point this field

depends on all the magnetic poles of the sample, in this sense it is a global quantity.

The demagnetizing or stray energy is minimized by reducing the poles or, equivalently

the demagnetizing field in the sample. The exchange energy, depends on the gradient

of the magnetization at each point and therefore is a local quantity. The energy density

due to the interaction of the sample with an external applied field Ha (Zeeman energy)

is the third term of Eq. (6.1). This term becomes minimum when the magnetization

aligns in the direction of the field. The last term of Eq. (6.1) is the energy density

due to uniaxial crystalline anisotropy in the direction of the unitary vector uk. This

means that the anisotropy energy density is minimized when the magnetization points

the direction uk or −uk, which are the easy magnetization directions. Other crystalline

anisotropy symmetries can be studied within the micromagnetic framework by simply

substituting the last term of Eq. (6.1) by the corresponding expression [10]. However

we will only deal with uniaxial anisotropy.

6.2 Brown’s Static Equations

A static physical magnetization distribution in a ferromagnetic body is one that min-

imizes the Gibbs free energy [1], that is, the sum of g [r,m(r)] over the sample volume.

Eq. (6.1) may present many relative minima corresponding to different magnetization

patterns. Many works have been published by assuming a magnetization distribution

and minimizing the energy as a function of one parameter. For instance in [153] the

domain wall thickness is found assuming Bloch, Néel or cross-tie walls magnetization

configurations. In Ref. [154] it is assumed a configuration close to a vortex state and

the best magnetization shape for the minimum energy is found.

It is possible to find a set of equations that m must satisfy so that the energy of

the magnetic sample is an extremal (maximum or minimum). This set of equations is
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called Brown’s static equations [9, 150] and can be obtained using first order variations

[1, 9, 150] on m of the Gibbs energy density [Eq. (6.1)] or deriving Eq. (6.1) by m [10].

Brown’s static equations are

m×Heff(r) = 0, if r ∈ V, (6.2)

∂m

∂n
= 0, if r ∈ ∂V, (6.3)

where V is the volume of the sample and ∂V its surface. In Eq. (6.2), Heff(r) = Heff is

the effective field, defined as

Heff =
2A

µ0Ms
∇2m + Hd + Ha +

2K

µ0Ms
uk (m · uk) , (6.4)

with

∇2m =
∂2m

∂x2
+
∂2m

∂y2
+
∂2m

∂z2
. (6.5)

Equation (6.2) indicates that the magnetization at each point of the magnetic sample

must have the same direction to the effective field Heff for the magnetization distribution

to be in a local energy minimum (or maximum). This field is also a continuous function

of the position and contains the contributions of the exchange (first term), magnetostatic

(second term), external applied field (third term) and anisotropy (last term) energies.

It must be noticed that adding an arbitrary term proportional to m to the effective field

does not change the solution of (6.2) [1].

The second equation [Eq. (6.3)] refers to the boundary conditions [1, 151, 155,

156] meaning that at the sample surface the magnetization must not vary along the

direction n (perpendicular to the surface). This condition arise from the symmetry

breaking of exchange interactions at the surfaces [151]. The case shown here is the free

boundary conditions [151]. If the material is attached to other magnetic materials with

different exchange anisotropy, Eq. (6.3) may be modified at the interface between the

two materials [157, 158].

The Gibbs free energy density Eq. (6.1) can now be rewritten in terms of the

contributions to the effective field Heff as

g [r,m] = −1

2
µ0Msm(r) [Hex(r) + Hd(r) + 2Ha(r) + Han(r)] , (6.6)

with Hex(r) = Hex the exchange field [first term of Eq. (6.4)] and Han(r) = Han the

anisotropy field [last term of Eq. (6.4)].

The advantage of Brown’s equations is that by assuming a certain magnetization (ei-

ther minimum or not) the result of the calculation is a magnetization distribution whose

energy is a relative minimum. This makes possible to describe hysteresis because one

finds a relative energy minimum at a certain applied field taking into account the mag-

netization distribution at the previous applied field, hence the history of the magnetic

sample.
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6.3 Discretization of Effective Field

Consider a ferromagnetic sample whose saturation magnetization is Ms having a

uniaxial anisotropy with constant K and direction uk. The exchange of the sample is

considered isotropic with exchange constant A. We divide the magnetic sample into Nx,

Ny and Nz parts in the x, y and z directions forming a regular array of N = Nx×Ny×Nz

orthorhombic cells with sides ∆x, ∆y and ∆z. Each discretization cell (micromagnetic

cell) i is characterized by three integer indexes ix, iy and iz in the cartesian coordinates,

and is uniformly magnetized in the direction mi (where |mi| = 1 and with components

mix, miy and miz). The center of i-th cell will be denoted by the coordinates xi, yi
and zi (ri = xiex + yiey + ziez, being ex, ey, and ez the unit vectors in the cartesian

coordinates).

The size of the micromagnetic cell must be small enough to make sure that the

exchange forces in the cell dominate over the long range magnetostatic interactions. If

this is the case it is valid to assume uniformly magnetized cells. The size of the cell may

be determined by a characteristic length of the material, that for soft ferromagnets (very

low anisotropy) is the exchange length defined by lex =
√

2A/µ0Ms [10]. This length

indicates the order of magnitude over which m varies in direction by comparing the

strength of the exchange and magnetostatic energies [151]. Much more coarser meshes

may lead to very different unphysical solutions as discussed in [159] and calculated in

[160].

In order to solve Eqs. (6.2) and (6.3) the effective field must be evaluated in the

sample volume, or equivalently in all our micromagnetic cells. In the following sections

it is described how to calculate numerically the discrete version of the effective field [Eq.

(6.4)] at each micromagnetic cell.

6.3.1 Applied Field

When an external magnetic field Ha = Ha(r) is applied to the sample the field at

each cell is defined as

Ha,i = Ha(ri), (6.7)

this is, it is considered that in all the cell volume the applied field is uniform and with

value and direction corresponding to center of the cell i.

6.3.2 Uniaxial Anisotropy Field

The effective field arising from uniaxial anisotropy at a cell i only depends on its

local magnetization direction mi and is

Han,i =
2K

µ0Ms
uk (mi · uk) . (6.8)

Its direction is always along the easy axis of the material (defined by uk) being its

magnitude zero when mi is perpendicular to the easy axis.
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6.3.3 Exchange Field

The exchange field [first term of Eq. (6.4)], is a local quantity and depends on a

second derivative ∇2m. Therefore, to calculate the exchange field at the center of a

cell i the m values of its neighboring cells are needed. This field is evaluated using the

six nearest neighboring cells to the i-cell (two for each of the cartesian coordinates).

The second numerical derivative of a function f at the discretization point i in the x

direction is, if i belongs to the bulk

∂2f

∂x2

∣∣∣∣
i

=
fix−1,iy ,iz − 2fix,iy ,iz + fix+1,iy ,iz

∆2
x

, (6.9)

where fix−1,iy ,iz and fix+1,iy ,iz are the values of the f function at the neighboring cell in

the negative and positive x directions, respectively. Equivalently the second derivatives

in the y and z directions are

∂2f

∂y2

∣∣∣∣
i

=
fix,iy−1,iz − 2fix,iy ,iz + fix,iy+1,iz

∆2
y

, (6.10)

∂2f

∂z2

∣∣∣∣
i

=
fix,iy ,iz−1 − 2fix,iy ,iz + fix,iy ,iz+1

∆2
z

, (6.11)

respectively. According to Eq. (6.4) and Eq. (6.5) the discrete version of the exchange

field at a cell i is

Hex,i =
2A

µ0Ms

(
∂2mx

∂x2

∣∣∣∣
i

+
∂2mx

∂y2

∣∣∣∣
i

+
∂2mx

∂z2

∣∣∣∣
i

)
ex

+
2A

µ0Ms

(
∂2my

∂x2

∣∣∣∣
i

+
∂2my

∂y2

∣∣∣∣
i

+
∂2my

∂z2

∣∣∣∣
i

)
ey

+
2A

µ0Ms

(
∂2mz

∂x2

∣∣∣∣
i

+
∂2mz

∂y2

∣∣∣∣
i

+
∂2mz

∂z2

∣∣∣∣
i

)
ez. (6.12)

The above equation is only valid if the cell i is at the bulk. At the boundaries

of the magnetic sample the exchange field must be evaluated differently in order to

accomplish Eq. (6.3). This equation expresses that across the boundary of the sample

the magnetization direction must not change. To take this into account some authors

[161, 162] introduce a virtual shell of micromagnetic cells surrounding the boundary of

the sample whose magnetization direction m is the same as its first neighbor. This shell

is sometimes called mirror shell. The boundary cells at which we want to calculate the

field undergo an exchange field due to its mirror whose direction is proportional to their

magnetization and therefore, as explained before, can be left out. For this reason, in

our calculations we only consider the exchange field produced by the real neighbors (in

these cases, the ”out-of-sample” terms in Eqs. (6.9), (6.10), (6.11) are considered zero).

This method of calculating the exchange field at the boundaries is only valid when using

six neighbors [161].
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6.3.4 Magnetostatic or Stray Field

The demagnetizing field at the center of a micromagnetic cell is the sum of the stray

field over this cell due to all the cells, including itself. When calculating the field at

a cell, the first attempt is to consider that the field of each is of dipolar origin. This

is, a dipole of moment Ms∆x∆y∆z set at the center of each cell. The dipolar field is

the same as for a uniformly magnetized sphere (outside the sphere) and therefore the

approximation of a dipole in an orthorhombic micromagnetic box is better when the

box is cubic. In this scheme, the field at the center of a cell due to itself (self field) is

infinite. However, in the cubic approximation there is no need to evaluate the self field

because uniformly magnetized cubes have no shape anisotropy [163, 164, 165] (their self

energy is independent of the magnetization direction) and their field at its center is

proportional to its magnetization. Therefore this field can be left out in the calculation

of the effective field as mentioned above.

A much better approximation, specially for non-cubic cells, is calculating the field

at the center of each cell due to uniformly magnetized cells. It should be borne in mind

that since each cell is uniformly magnetized its volumic pole density is zero throughout

the cell. However, a surface magnetic pole density does exist. Parallel surfaces of the

cell have the same uniform surface magnetic pole density but of opposite sign. Their

magnetic pole density depends on the direction of the magnetization on the cell and

ranges from −Ms to Ms continuously depending on the local m. This approximation

allows to evaluate the self field of a cell. This scheme is more realistic than the dipolar

one. In [163] a comparative study between both is made.

There are some cases in wich the evaluation of the demagnetizing field at the center

of the cell can lead to large errors if the micromagnetic cell is not cubic. For instance

there is a systematic error in the demagnetizing energy computation in thin magnetic

samples magnetized along the thin direction [166]. In this case, the demagnetizing field

evaluated at the center of the cell is the largest and therefore an overestimation of

the demagnetizing energy is committed. A simple way to overcome this problem is to

average the field over the entire cell [167, 168] instead of calculating it at its center.

Throughout this work this last approximation will be followed.

The averaged demagnetizing field at a cell i due to a cell j may be expressed in the

form of a matrix as

Hd,ij = Ms

ηxxij ηxyij ηxzij
ηyxij ηyyij ηyzij
ηzxij ηzyij ηzzij


mjx

mjy

mjz

 = Msηijmj . (6.13)

The matrix ηij is purely geometrical and its elements have no units. A component ηxyij
may be understood as the volume average of the x component of the demagnetizing field

(normalized to Ms) due to a cell j uniformly magnetized in the y direction. The readers

are referred to Appendix B for detailed calculation and discussion of the symmetries of

the matrix ηij .
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The total demagnetizing field over a cell i is the sum of the field due to all the cells,

therefore

Hd,i = Ms

N∑
j=1

ηijmj . (6.14)

Here, N calculations are needed to obtain the demagnetizing field at each cell, there-

fore for all the cells N2. This makes this field the most time consuming in micromagnetic

calculations. To overcome this problem some authors take advantage of the equidistant

meshes and apply fast Fourier transforms [169, 170, 171] which reduces the number of

calculations. Another approach is used here, and consists in defining a second discretiza-

tion grid for the sample to approximate the demagnetizing field of far cells.

Consider now a coarser discretization of our micromagnetic sample Nxc×Nyc×Nzc =

Nc. This discretization is related to the fine one (micromagnetic cells) by Nx = nxNxc,

Ny = nyNyc and Nz = nzNzc where nx, ny and nz are integers larger than 1 so that each

coarse cell contains n = nxnynz small cells in its interior. An schematic representation

of the two grids in the case of nx = ny = 3 is shown in Fig. 6.1(a). In this scheme

each micromagnetic cell i belongs to a larger cell ic whose magnetization unit vector is

defined as mic, calculated as the average of m of the small containing cells.

The demagnetizing field at a general micromagnetic cell i has two contributions in

this approximation, one from the small neighboring cells and another from the far coarse

cells. This is mathematically expressed as

Hd,i =
∑
j∈ti

ηi,jmj +
∑
j∈Ti

ηij,cmj,c, (6.15)

where ηij and ηij,c are the matrices for fine and coarse meshes, respectively.

In Eq. (6.15) ti represents the set of small cells whose large cell is in contact with

the large cell containing i. In Fig. 6.1(b) these neighboring cells are colored in light

gray. Ti is the set of all the coarse cells whose small cells are not elements of ti. A subset

of Ti is represented in dark gray in Fig 6.1(b), all the remaining elements of Ti are not

represented in this figure.

The first sum of Eq. (6.15) is over 27n and the second over N/n − 9. Therefore,

for the total demagnetizing field evaluation the number of calculations is of the order of

N2/n2 for N sufficiently large, reducing the computational time considerably.

Our approximation is very accurate in calculating the major contribution to the

demagnetizing field of a cell, which is the field of its neighboring cells. The field from

farther cells decays very rapidly with distance and tends to be the field of a dipole. This

last contribution is very weak and for this reason large cells are considered avoiding

the details of the fine grid. The approximation of considering large cells uniformly

magnetized in the direction of the averaged containing cells is only justified where both

discretization cells are of the order of magnitude of the exchange length of the material

considered. In this way one can assume a quasiuniform magnetization at each large cell.
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ii

(a) (b)

Figure 6.1: Schematic representation of the neighboring cells of a fine cell i in a two dimensional

discretization. Coarse and fine grids (separated by thick and thin lines, respectively) are related with

the parameters nx = ny = 3. A cell of each discretization is colored in light gray in (a). Dots indicate

that there are more cells out of this neighborhood. In (b) fine cells light gray colored represent the set

ti whereas coarse cells in dark gray represent a subset of Ti. The remaining elements to complete Ti are

all the coarse cells outside the represented neighborhood.

6.4 Numerical Iterative Procedure

Consider the set of all micromagnetic cells in a discretized sample whose magne-

tization directions are initially m1(ζ = 0), · · · ,mN (ζ = 0), where ζ is the iteration

step. The effective field is calculated at each cell as discussed above having the set

Heff,1(ζ), · · · ,Heff,N (ζ). Since at equilibrium the local magnetization points the effec-

tive field [Eq. (6.2)] we force each cell i to be in the same direction as its effective field,

namely

mi(ζ + 1) =
Heff,i(ζ)

|Heff,i(ζ)|
. (6.16)

This process is repeated until the maximum change of angle (azimuth φ and zenith θ in

spherical coordinates) with respect to the previous iteration step is below a threshold ε.

This last condition must be fulfilled at all the cells. Therefore, for reaching the solution,

the conditions

|φmi(ζ+1) − φmi(ζ)| < ε, (6.17)

|θmi(ζ+1) − θmi(ζ)| < ε, (6.18)

must be satisfied for every i = 1, · · · , N . Here, φmi(ζ) and θmi(ζ) are the angles of the

magnetization direction of a general micromagnetic cell i.

Once the equilibrium magnetization is found, we can calculate each energy contri-
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bution with the corresponding effective field as in Eq. (6.6). This is,

G = − µ0MsVc

N∑
i=1

Ha,imi −
1

2
µ0MsVc

N∑
i=1

Hd,imi

− 1

2
µ0MsVc

N∑
i=1

Hex,imi −
1

2
µ0MsVc

N∑
i=0

Han,imi, (6.19)

where Vc = ∆x∆y∆z is the volume of the micromagnetic cell. A quasi-static hystere-

sis loop is performed by first saturating the sample at a large magnetic field and then

decreasing the field in small steps until the sample gets saturated in the opposite direc-

tion. At each field the equilibrium magnetization distribution is found by the iteration

method described. Following this, highly metastable states could appear. For instance

in small enough particles, typically the initial positive uniform state persist up to large

negative field values which in turn results in large coercivities. In order to randomly

break the symmetry of these states and allow the magnetic sample to reach more stable

and less energetic magnetization distribution, we add a random parameter to our algo-

rithm. When the field is changed and before the first iteration step, each mi is changed

by the angles ±φi,ε and ±θi,ε. These angles are different at each micromagnetic cell and

are generated from a random uniform distribution [172] with maximum amplitude ε.

6.5 Limits and Validity of the Model

The model presented in this chapter is only valid for ferromagnetic or ferrimagnetic

materials at a fixed temperature T that determines the averaged magnetic moment

Ms(T ) = Ms. Here, only the quasi-static regime is considered (no time dependence)

although it is possible to introduce some modifications in the exchange field [Eq. (6.4)]

to take into account time effects. This can be done using the Landau-Lifshitz-Gilbert

equation [1, 10].

The approximation of continuum matter makes only sense when calculating

macroscale physical quantities such as domain wall size. Any result coming out from our

calculations with size smaller than the exchange length may be unphysical and further

analysis should be carried out. This means, for instance, that within our approximation

we can not describe quantum spins but only their average behavior.

The numerical procedure presented in this chapter is tested in Appendix C where

a standard problem is solved and compared to different solutions obtained by other

authors. There we present reasonings why we use 6 neighbor to calculate the exchange

field instead of 12 neighbors, which is more accurate. We also use ε = 10−4 in all the

thesis as justified in Appendix C. This numerical procedure is valid for any size of the

magnetic particle. However, since the size of the micromagnetic cell is fixed at the

exchange length, the larger the magnetic particle the more micromagnetic cells we use

and, thus, the more time consuming the calculation is.





CHAPTER 7

Geometrical Control of Magnetic Vortex States

In thin soft ferromagnetic cylinders (dots) with diameters less than a micron, the

most stable magnetization pattern at zero applied field is typically a vortex state [173,

174]. This structure appears close to remanence and consists of an in-plane curling

magnetization whose chirality can be clockwise (CW) or counterclockwise (CCW) and

an out-of-plane core [175] with polarity up or down. The existence of this four energetic

degenerate states of chirality and polarity have potential applications in MRAM [176,

177, 178], but this application requires the independent control of each bit (chirality and

polarity).

In the literature there is large number of works focused on the control and/or mod-

ification of the vortex state in soft ferromagnetic dots. On the one hand there is much

interest in achieving a fast vortex core polarity switching. This reversal process is pro-

duced due to applied magnetic field bursts [179] or spin polarized currents [180] that

induce an oscillatory mode in the vortex core around its equilibrium position (gyroscopic

mode [181]). On the other hand some works show how to control vortex chirality by

introducing some asymmetries in the dot shape [182, 183, 184, 185], in its magnetic

properties [186], or in the applied field distribution [187, 188, 189]. Some of them also

control the polarity of the vortex by adding an out-of-plane magnetic field [184] or

by using non-practical complex geometry [185]. The vortex chirality control has been

achieved [190, 191] by modulating the thickness of the dot, however, the complete con-

trol of chirality and polarity in dots with practical geometries by adjusting a simple

parameter is a remaining goal.

In the first section, the hysteresis loop of a typical cylindrical dot is studied to

understand the shape modifications introduced in the thickness-modulated dot of the

second section. In the last section a simple model to understand the physics will be

presented.

71
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7.1 Submicrometer Dot Hysteresis Loop

Consider a cylindrical Permalloy dot with diameter 360 nm and thickness 18 nm

discretized in cubes of side 6 nm (lex =5.7 nm). This material has an exchange constant

A = 1.3 × 10−11 J/m, a saturation magnetization Ms = 8 × 105A/m and a very low

crystalline anisotropy which will be neglected (K = 0). The thickness has a similar

length compared to lex so that the magnetization will be quasi-uniform across it. The

large diameter-to-thickness ratio of the dot also favors an in-plane (x − y plane) mag-

netization distribution because otherwise the magnetostatic energy would be very large

according to the demagnetizing factors [4, 192].
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Figure 7.1: (a) Magnetization in the applied field direction of a Permalloy dot with diameter 360 nm

and thickness 18 nm as a function of the applied field value. A schematic representation of the dot and

the direction of the applied field is shown in the inset. Points with numbers indicate the magnetization

along the applied field for the field values Ha = 125, 0,−500 Oe corresponding to numbers 1,2 and 3,

respectively in the initial curve (marked with arrows). Number 4 is at −98 Oe of the reverse curve.

(b) Energies of the initial curve normalized to the magnetostatic energy (Em) of a perfectly in-plane

uniformly magnetized dot with the geometry considered. Here straight, dotted and dashed lines are the

magnetostatic, exchange and applied field energies, respectively.
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A typical hysteresis loop of this dot with a uniform in-plane applied field is shown

in Fig. 7.1(a). In the inset of this figure we show a schematic representation of the

dot and the direction of the applied field (y direction). The corresponding energies

(exchange, applied field and magnetostatic) normalized to the magnetostatic energy of

the uniformly magnetized dot (Em = µ0M
2
s NV/2, where V the volume of the dot and

N its in-plane demagnetizing factor for χ→ 0+ [4]) are shown in Fig. 7.1(b).

At the beginning of the initial curve (from positive to negative applied field), the dot

is saturated with a very large field. The Zeeman term is dominant over the exchange

and magnetostatic ones and the particle gets magnetized in the direction of the applied

field. The exchange energy is close to its minimum (zero) due to the uniformity of the

magnetization. Magnetostatic energy however is very close to its maximum but does not

reach it because, as can be seen in Fig. 7.2(1), the m distribution curves in the regions

near the surfaces. This magnetization curvature reduces the surface magnetic pole

density lowering the magnetostatic energy with respect to the uniform case. Commonly

this magnetization shape is called onion state.

(1) (2)

(3)

-1

1

m
z

-1

1

m
z

-1

1

m
z

-1

1

m
z

(4)

CW UP

Figure 7.2: In-plane magnetization distribution at different applied fields marked with points 1,2,3

and 4 in Fig. 7.1(a). Arrows indicate the magnetization direction and violet and blue colors mark the

regions where mx > 0 and mx < 0, respectively. Out-of-plane magnetization at y = 0 is shown at the

top of each in-plane magnetization distribution plotted. The number of plotted spins is reduced for

clarity.
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When the applied field is decreased and close to zero, the Zeeman energy becomes

negligible and the competition between exchange and magnetostatic energies determines

the magnetization distribution. In this region is where the vortex state appears mini-

mizing the magnetostatic energy at the expense of the exchange energy. As seen in Fig.

7.2(2), the magnetization curls in-plane so that surface and volumic poles are reduced,

which turns in a sharp decrease of the magnetostatic energy as in Fig. 7.1 (b). The

exchange energy, however, increases because the magnetization distribution is no longer

uniform. At the core of the vortex, this in-plane curl would lead to an infinite exchange

energy of the dot because there would be a very rapid magnetization change in this

region. Therefore, at the core, the exchange forces the magnetization to uniformly point

out-of-plane. This, in turn, produces a surface magnetic pole density in the core surfaces

that prevents the magnetization energy to decrease to zero. In the vortex shown here

Fig. 7.2(2), the chirality is clockwise (CW) and the vortex core points in the positive z

direction (up).

Further decrease of the applied field maintains the vortex distribution [193, 194] due

to its large stability but shifts its core as shown in Fig. 7.2(3). The shift is always

perpendicular to the applied field and with direction determined by the chirality. In our

case, since the vortex is CW the region pointing the negative field tends to increase so

the vortex shifts to −x. Conversely, if the vortex was CCW the movement would be

in +x direction. So, the vortex chirality determines its movement direction. In all this

process the magnetostatic energy increases because the dot is tending to a uniformly

magnetized state whereas the exchange is reduced. For a sufficiently large applied field

the core is expelled from the dot resulting in uniformly magnetized distribution in the

applied field direction (this time, negative).

The reverse curve (from negative to positive applied field) must be ideally the same

as the initial one because there is no asymmetry in the dot. However in Fig. 7.2(4) we

see that the nucleation field (the field at which the vortex state appears) is smaller in the

reverse curve. This is because the symmetry of the uniform state is broken differently

in the two curves owing to the random. In our case for instance, a C-state [shown in

Fig. 7.2(4)] appears just before the nucleation of the vortex. This precursor state of

the vortex determines its chirality, which in this case will be CW. In fact, since this

symmetry breaking is random, so it is the chirality and polarity of the vortex generated.

This last result indicates that there is no way of controlling chirality and polarity of a

vortex state with an in-plane applied field.

7.2 Thickness-Modulated Ferromagnetic Dot

As we say above, by changing the geometry of the dot it is possible to control the

vortex state generated. Consider now a dot with diameter a = 360 nm and thickness

b = 18 nm as in the previous section but with a thicker half part of total thickness

b+ c = 24 nm in the region x > 0 (see Fig. 7.3 for clarification) separated by a middle

edge. An in-plane uniform field is applied at an angle θa with respect to the x axis so
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that Ha = Ha [cos θaex + sin θaey] where ex and ey are the unitary vectors in the x and

y directions, respectively.
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Figure 7.3: Schematic and not scaled representation of the thickness-modulated dot in a 3D (a) and

2D (b) views. This dot has a diameter a and a thickness b. The thicker part, colored in dark gray is set

in the half part region x > 0 and has a total thickness of b+ c. The in-plane field is applied at an angle

θa with respect to the x axis. Positive angles are measured counterclockwise.

In Fig. 7.4(a) we show a calculated hysteresis loop for the dot with an applied field

of θa = π/4. Initially, the dot is positively saturated in the applied field direction, then

the field is decreased up to a non-uniform state appears. As explained before, when the

applied field is reduced the minimization of the magnetostatic and exchange energies

determines the magnetization pattern. In this case, the thicker zone is the first to bend

its magnetization with respect to the applied field direction. A simple explanation for

this is that in the thinner region the exchange energy dominates over the magnetostatic

one, keeping the magnetization aligned at smaller fields compared to the thicker region.

In fact, for sufficiently thin cylindrical dots [173, 174] a non-uniform magnetization is

no longer possible and the dot remains uniformly magnetized.

The thicker region curls its magnetization following the applied field and the rounded

border of the sample forming a C-state as shown in Fig. 7.4(b)(i) for the initial curve

and Fig. 7.4(b)(iii) for the reversal curve. This C-state is determined and therefore so

it is the chirality of the next vortex state. In this case at remanence a CCW vortex [see

Fig. 7.4(b)(ii)] is formed in the initial curve and a CW vortex [see Fig. 7.4(b)(iv)] in

the reversal one.

The vortex core enters by the surface of the dot near a point perpendicular to the

applied and in the thinner region [white colored zone at the surface for θ = 3π/4 of Figs.

7.4(b)(i) and 7.4(b)(iii)]. Its polarity is also determined and depends on the surface poles

generated in the middle edge. When the C-state is formed, the magnetization tending to

enter the thicker zone creates negative poles in the flat surface whereas the magnetization

tending to exit the thicker zone a positive magnetic pole density. All these poles create

an out-of-plane stray field in the whole sample, and in particular in the region where

the vortex core nucleates. In our case we can see in Fig. 7.4(b)(i) that the positive

poles are closer than the negative ones making a negative out-of-plane field which bias

the core to point down [Fig. 7.4(b)(ii)]. Conversely, in the reverse curve the closer poles
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Figure 7.4: (a) Magnetization along the applied field direction M‖ of a Permalloy dot of Fig. 7.3 with

diameter of 360 nm and thicknesses 18 nm and 24 nm. The inset shows a scheme of the dot, where the

thicker part (x > 0) is colored in dark gray, and the direction of the uniform applied field (π/4 with

respect to the positive x axis) is indicated by a red arrow. (b) Magnetization distribution of the marked

points of (a). Black arrows present the in-plane magnetization direction of the bulk and violet and blue

colors indicate mx > 0 and mx < 0, respectively. Red arrows indicate the in-plane magnetization of the

thicker part. In the upper part of the lower graphs there is also plotted the out-of-plane magnetization

mz along the line y = 0 and z = −3 nm. The number of plotted spins is reduced for clarity.
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Figure 7.5: Same as Fig. 7.4 but with an applied field angle θa = 3π/4.
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are the negative ones [see Fig. 7.4(b)(iii)] which turns out into a vortex core pointing

up as shown in Fig. 7.4(b)(iv). At remanence, the vortex state has a non zero in-plane

magnetization because of the non-compensated contribution of the thicker zone [dark

gray zone in Fig. 7.3(a)].

Summing up, if the applied field is θa = π/4 the remanent state is a CCW-down

vortex, whereas the remanent state of the reversal curve is a CW-up vortex. We can

define CW and up as +1 value, and CCW and down as −1 and the product of chirality

and polarity, known as the handedness (H). From the above results we see that the

handedness of the vortex in the initial and reverse curves is conserved and in this case

is positive.

A hysteresis loop for a different applied field angle (θa = 3π/4) is shown in Fig.

7.5(a). In this case, the chirality of the vortex in the initial and reverse curves is the

same as in the case θa = π/4, because in essence the C-state in the thicker zone follows

the direction of the applied field. However the vortex starts to nucleate at θ = 5π/4 and

therefore the closer surface magnetic poles are opposed to that of the previous case. This

is, in the initial curve the negative magnetic poles are closer [see Fig. 7.5(b)(i)] making

a positive out-of-plane field that turns into an up core as shown in Fig. 7.5(b)(ii). In

the reverse curve the closer poles are the positive ones [see Fig. 7.5(b)(iii)] obtaining a

down vortex core as seen in Fig. 7.5(b)(iv). The handedness of the vortex is the same

in the initial and reversal curves with a negative value as opposed to the case θa = π/4.
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Figure 7.6: Four vortex states obtained from saturating the sample at any angle within the four

different quadrants and quasi-statically decrease the field up to zero. H indicates the handedness of the

resulting vortex.

With these two examples we have been able to obtain the four different vortex states

for a ferromagnetic dot. These results are not only valid for the cases θa = π/4 and

θa = 3π/4, in fact, the same vortex state is obtained if the field is applied at any angle

belonging to the same quadrant. This is illustrated in Fig. 7.6 where the remanent vortex

state is represented as a function of the angle θa. The procedure to prepare a specific

state is always saturating the sample in the applied field direction whose remanent state
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is the desired one and then decrease quasi-statically the field up to zero. There are,

however four cases in which the vortex state can not be determined a priori and its final

state is random. At θa = 0, π chirality is undetermined because the field is symmetric

with respect to the thicker part, as a consequence polarity is also undetermined. At

θa = π/2, 3π/2 chirality is fully determined but surface magnetic poles generated at the

middle edge are symmetric making the vortex core polarity to be undetermined.

The results presented above are not only valid when the edge is in the central line of

the dot (x = 0). In fact, it can be located at any position x leading to the same results

as presented schematically in Fig. 7.6. For instance, we have tested cases where it is

located at x = −a/4 and x = a/4 and obtained the same trends as in Fig. 7.6.

The simplicity of the chirality and polarity control in this kind of dots with modulated

thickness is such that can be summarized in two simple rules:

1. Chirality of the vortex state is controlled by both the position of the thicker part

and the sign of the applied field component parallel (Ha||) to the middle edge. If

the position of the thicker zone is at right (left), for Ha|| > 0 the chirality is CCW

(CW) whereas for Ha|| < 0 is CW (CCW).

2. Vortex core polarity is controlled by the sign of the magnetic poles (induced by

the chirality in the flat surface of the edge) closer to the vortex core nucleation

point. If the sign is positive (negative) the vortex core is down (up).

7.3 Analytical Model

A simple analytical model can capture the physics of the vortex-state determination

in these dots. We consider the dot shown in Fig. 7.3 with the same dimensions as

in the numerical case and with the in-plane applied field in the θa direction. As first

approximation we consider that the vortex nucleates perpendicular to the applied field

direction and in the thinner part. The nucleation point is, therefore,

x = xn = −a
2
| sin θ|,

y = yn =
a

2
Sign[sin θ] cos θ,

z = zn ∈ [0,−b],

(cross in Fig. 7.7), this is, at an angle θa + π/2 if θa ∈ [0, π] and at an angle θa − π/2 if

θa ∈ [π, 2π]. Magnetic pole densities induced in the C-state are assumed as two opposite

magnetic charges Qm1 and Qm2 (Fig. 7.7). The sign of the magnetic charges is obtained

by the sign of the applied-field component parallel to the flat surface of the middle edge

Qm1 = Msc
a
2Sign[sin θ] and Qm2 = −Qm1, so the chirality is C = Sign[sin θ]. The sign of

the out-of-plane component of the magnetic field created by these point charges at the

nucleation point determines the polarity of the vortex P = Sign[Hz(xn(θ), yn(θ), zn(θ))].
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Figure 7.7: Schematic representation for the analytical model. (a) and (b) are 3D and 2D views,

respectively. The red cross marks the nucleation point (θa + π/2) of the vortex. The C-state direction

is indicated by the arrows in the thick part. As an approximation two point charges (instead of a

continuum) with absolute value Qm1 are set in the middle edge of the dot at the points with the same

x and z coordinates (x = 0, z = b+ c/2) but y = a/4,−a/4.

The out-of-plane field at any point in the space x, y, z can be written as the sum of

the contributions of the two charges as

Hz(x, y, z) = Hz1(x, y, z) +Hz2(x, y, z), (7.1)

Hz1(x, y, z) =
Qm1

4π

(z − c/2)

(x2 + (y − a/4)2 + (z − c/2)2)
3
2

, (7.2)

Hz2(x, y, z) =
Qm2

4π

(z − c/2)

(x2 + (y + a/4)2 + (z − c/2)2)
3
2

. (7.3)

We are interested in the sign of the field at the nucleation point, depending on which

the vortex core will be up or down.
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Figure 7.8: (a) Out-of-plane magnetic field created by the two opposite magnetic charges at the

nucleation point with zn = 0 (solid) and zn = −b (dotted) as a function of the angle θa between the

applied field and the x > 0 axis. (b) Polarity (thick blue) and chirality (thin red) of the vortex state as

a function of θa.
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Figure 7.8(a) shows the evolution of the out-of-plane charge field with θa for zn = 0

(solid) and zn = −b (dotted). In both cases and in the intermediate ones the trend

is the same. For 0 < θa < π/2 and 3π/2 < θa < 2π the z-field is negative because

the positive charge (Qm1 and Qm2, respectively) is the nearest. When π/2 < θa < π

and π < θa < 3π/2 the proximity of the negative charge (Qm2 and Qm1, respectively)

makes the field to be positive. At θ = π/2 and θ = 3π/2 the z-field is zero because

the two opposite charges are equidistant from the nucleation point and their effects are

compensated. In Fig. 7.8(b) we find a summary of the vortex chirality and polarity

behaviors as a function of θa. We thus confirm that these results are the same as the

numerical ones obtained in Fig. 7.6.

7.4 Chapter Summary and Conclusions

In this chapter we have seen that in a thin soft ferromagnetic cylinder of nanometer

size the different competing energies favour a magnetic vortex state. This state mini-

mized the magnetostatic energy at the expense of the exchange one. However in this

geometry a specific state of chirality and polarity at remanence can not be determined

a priori with an in-plane magnetic field.

A simple geometrical modification of the dot has been proposed. By saturating this

dot and then decreasing quasistatically the field, the vortex that appears at near zero

field depends only on the direction of the field. This procedure allows to prepare the

desired vortex state at remanence.

In spite of the complexity of the micromagnetic model used here, the control of the

vortex state can be summarized with two simple rules.





CHAPTER 8

Exchange Bias in Cylindrical Nanomagnets

The phenomenon of exchange bias (EB) or exchange anisotropy was first ob-

served by Meiklejohn and Bean in the 50’s [195] in the study of Co particles with

its oxidized antiferromagnetic shell (CoO). EB occurs when cooling a ferromagnetic-

antiferromagnetic coupled system through the Néel temperature (TN) of the antiferro-

magnet (with Tc > TN) in the presence of an applied magnetic field [196, 197]. The

most well known effect is a shift of the hysteresis loop when the field is applied in the

field-cool (FC) direction. This property is used in giant magnetoresistance based read

heads to pin a reference ferromagnetic layer whilst keeping another layer free to sense

the direction of the magnetic field [2, 144].

In this chapter we introduce an extension of the micromagnetic model presented in

Chapter 6 describing the experimentally observed effects that an antiferromagnetic layer

produces to the hysteresis loop of a ferromagnetic layer.

8.1 Exchange Bias Phenomenology and Existing Models

In antiferromagnetic materials spins are oriented anti-parallel because its exchange

integral J is negative (see Sec. 1.3) and therefore the bulk material has no net macro-

scopic magnetization. At the interface layer between the ferromagnetic and antiferro-

magnetic material the antiferromagnetic moments can be compensated (no net magnetic

moment) or uncompensated (all spins in the layer pointing the same direction)[198]. It

is the exchange coupling of these antiferromagnetic interfacial spins with its homolo-

gous ferromagnetic ones that creates the EB effect. The coupling results in a shift of

the hysteresis loop of the ferromagnetic layer by a quantity Hb (bias field) along the

field-cool direction. This shift can be interpreted as a unidirectional (as opposed to

uniaxial) anisotropy because spins have its minimum of energy along one direction only.

83
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In addition, also a widening of the hysteresis loop is observed, i.e. an enhancement of

the coercivity in the hysteresis loop of the ferromagnetic phase.

Different models to explain EB have been proposed [198, 199] and can be divided

into two groups, depending on the AFM interface. The first group explains EB in

compensated interfaces. The original model leading to EB in this kind of interfaces,

proposed by Meiklejohn and Bean [200], assumed an interface layer completely frozen in

the field-cool direction. Even though this model could describe the shift of the hysteresis

loop Hb, its value was too large compared to the experiment. Mauri [201] proposed a

simple model to reduce the bias field consisting on the relaxation of the AFM material

accommodating a domain wall along its thickness (assumed infinite). In this model, the

antiferromagnetic moments of the first interface layers can be dragged by the interfacial

ferromagnetic spins due to the exchange coupling. Similar models have been proposed

using this philosophy [202, 203, 204] but the main picture is as follows: for sufficiently

thin AFM layer, the exchange coupling between FM and AFM layers is large enough

to drag all the AFM spins to their equilibrium position along the opposite direction

of the easy axis, leading to a uniaxial anisotropy (larger coercivity). For large AFM

thickness the AFM can accommodate a reversible domain wall when the field is applied

in the opposite direction to the cooling field. The difference of energies between the

distributions with a domain wall and without it results in the shift of the hysteresis

loop.

The second group of models tries to study EB in perfectly compensated interfaces.

In these interfaces it is difficult to explain EB because the AFM interface has the same

number of spins pointing opposite directions and therefore their averaged effect over

the FM is null. In order to break this symmetry, Malozemoff [205] proposed a model

in which the AFM surface is rough, this is, there appear small bumps in the AFM

interface. These bumps, or defects, are randomly oriented giving rise to formation

of domains (perpendicular to the interface) in the AFM, predicting very reasonable

values of Hb. In another work Koon [206] calculated theoretically that compensated

interface AFM spins present a spin-flop structure [7] with perpendicular alignment to

the ferromagnetic spins. Schulthess and Butler [207] showed later that Koon’s model

would lead to a uniaxial anisotropy instead of unidirectional but allowing the spins

to rotate in 3D [208] and including AFM defects at the interface leads to an effective

explanation of EB in compensated interfaces.

In order to shine some light on which is the exact mechanism in EB systems,

experiments have focused on the study of the interface separating the ferromagnetic

and antiferromagnetic phases. It was found that EB occurs in both compensated

[209] and uncompensated [210] interfaces. Measurements along the AFM interface

[211, 212, 213, 214] and thickness [215] have resulted in a non-zero net magnetic moment

component suggesting that some AFM spins are uncompensated (do not have its AFM

counterpart). These uncompensated defects support the theory of Malozemoff [205] and

there is a strong believe [216] that EB occurs due to a fraction of uncompensated spins

that are pinned (frozen) in the field-cool direction.
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The bias effect can be modeled without taking into account the microstructure of the

interface as a uniform field in the field-cool direction [217]. However here we propose

a rather more complex model consisting on a fully compensated interface with some

defects on it capturing the physics of the experiments. These defects are considered as

macroscopic (avoiding the details of the spin structure) in the micromagnetic framework.

8.2 Modeling Exchange Bias in Micromagnetic Formalism

In the following we consider a Permalloy dot with 504 nm of diameter and 30 nm

of thickness with negligible crystalline anisotropy, a saturation magnetization Ms =

8 × 105 A/m and exchange constant A = 1.3 × 10−11J/m. For our simulation the

sample is discretized in 6 nm sided cubes (lex = 5.7nm). The dot is exchange biased

to an antiferromagnet and both are field-cooled along the positive y direction. This

antiferromagnet is simulated as an extra micromagnetic layer attached below the dot (see

inset of Fig. 8.1) in which each micromagnetic site has zero magnetization (compensated

sites) except some randomly chosen defects, which can be seen as a macroscopic average

of uncompensated spins of the antiferromagnet. Defects in the antiferromagnet are of two

types pinned (PIN) and unpinned (UPIN) [218]. The pinned defects are micromagnetic

sites that have an infinite uniaxial anisotropy along the FC direction. Therefore, since

they are initially saturated in the FC direction, cannot be switched with a finite applied

field and so they remain fixed. The other kind of defects, the unpinned, have the same

uniaxial anisotropy axis as the pinned ones but smaller anisotropy constant Kupin =

5 × 105 J/m3, which is of the order of magnitude found in IrMn [218]. These defects

are able to rotate along with the FM due to the exchange coupling with it. The total

number of defects considered is around 16% (900 micromagnetic cells), this is similar

to the percentage of pinned uncompensated spins at the interface measured in several

experiments [214, 212]. No exchange interaction is assumed among defects.

A symmetric hysteresis loop for this dot without AFM is shown in the black line

of Fig. 8.1. Due to the dimensions considered, the reversal mechanism observed is

via a vortex state formation as indicated by the shape of the hysteresis loop and the

magnetization distribution shown in Fig. 8.2. Adding an antiferromagnetic layer with all

its defects pinned (red line in Fig. 8.2) results in a shift of the hysteresis loop of 290 Oe.

One way to understand the shift is by considering the asymmetry of the distributions

when the sample is saturated along the field-cool direction and opposite to it. In the

first case, the AFM sites point in the same direction as the FM ones, therefore the

resultant exchange energy is very small. In the second case, the FM point oppositely to

the AFM defects resulting in a large exchange energy. This excess of energy needs for

a larger applied field (i.e. applied field energy) to reverse the magnetization oppositely

to the FC direction resulting in a shift in the loop. Another way to see this effect is by

considering that all the pinned spins make a constant effective exchange field along the

field-cool direction and therefore shift the loop.

Blue line of Fig. 8.1 shows the case where all the defects are unpinned. Here,
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Figure 8.1: Magnetization loop along the y direction for a Permalloy dot of diameter 504 nm and

thickness 30 nm attached to an AFM layer of the same diameter. The sample is FC along the positive

y direction. Black, blue, green and red are the curves without defects, 900 defects unpinned, 400

pinned-500 unpinned, and 900 pinned. The inset shows a sketch of the FM and the attached AFM.

the hysteresis loop is not shifted because, contrary to the previous case, the energy of

the saturated state along the FC direction and opposite to it is the same. This is, in

both cases AFM sites point in the same direction as the FM ones. Comparing to the

case without AFM (black line in Fig. 8.1) a larger coercivity (160 Oe of total width)

is observed because the FM sites have to drag their underlying AFM sites due to the

exchange coupling. However, AFM sites have two preferential directions (along the field-

cool axis) making more difficult to reverse them, and in turn their exchange coupled FM

sites. The difficulty on reversing the magnetization is observed in the blue line of Fig.

8.1 because the vortex nucleates and annihilates at larger fields in both, the initial and

the reversed curves.

Up to now, we have seen that pinned defects make a shift of the hysteresis loop

whereas the unpinned ones make it broader. The hysteresis loop a combination of both

defects (400 pinned and 500 unpinned, for example) is shown in Fig. 8.1 in green line.

In this case, a simultaneous loop shift and an increase in coercivity are observed. The

bias field is reduced to practically half the value obtained in the case of all the defects

pinned. The same occurs with the coercivity comparing to the case with all the defects

unpinned. This suggests that bias and anisotropy scale linearly with the number of

pinned and unpinned defects, respectively. A deeper study of both effects as a function
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of the number of defects will be further developed in Sec. 8.4.

Different loops with the same number and type of defects have been performed. Since

the defects are randomly distributed we have obtained similar results as those presented

in this section.

8.3 Distortion of an Exchange Biased Vortex

Due to the interfacial nature of the exchange bias phenomenon, a distortion of the

magnetization distribution along the thickness of the ferromagnet is expected. In this

section we analyze the difference in the magnetization distribution of the numerical

ferromagnetic layer closer to the AFM (interface layer) and the layer of the FM farther

from the interface (free layer).

In Fig. 8.2 we plot the magnetization distribution when the vortex state is centered

(no net in-plane magnetization) for the cases of Fig. 8.1. The centered vortex is at zero

applied field for the case without defects but at a non zero field for the other cases.

Black and green (below black) arrows in each plot are the magnetizations of the free

and interface layers, respectively, and the underlying colors indicate the difference in

each component of the magnetization between the interface (i) and free (f) layers. Red

for mp,i − mp,f > 0, blue for mp,i − mp,f < 0 and white for no difference. p is the

magnetization component (x, y or z).

In the case without defects no difference should be observed in the region where the

magnetization is in-plane because there is no asymmetry along the thickness. These

regions are marked in white in the upper row of Fig. 8.2. However a clear difference

in the x and y components of the magnetization can be observed in the region of the

vortex core as shown in Figs. 8.2(i-1) and 8.2(i-2). Here, the out-of-plane magnetization

(wich in this case points +z direction) breaks the symmetry along the thickness. In

order to understand how the magnetization changes along the thickness a schematic

representation of the vortex core has been drawn in Fig. 8.3. As explained in the previous

chapter, the vortex core magnetization lines up in order to minimize the exchange energy.

However, if the magnetization was perfectly aligned along the z direction magnetostatic

energy would be very large. To reduce this energy, the magnetization bends radially in

the vortex core so that the surface magnetic pole density is reduced [see the signs in Fig.

8.3(a)] with respect to the uniform case. The same radial distortion of the magnetization

but with opposite sign is undergone by the uppermost layer and the lowermost layer

(black and green arrows, respectively) as depicted in Fig. 8.3(b). It is noteworthy that

no difference in the z component of the magnetization is observed in Fig. 8.2(i-3), this

is because we have only plotted the difference between the uppermost layer and the

lowermost layer which, as shown in Fig. 8.3(a), have the same mz. However, in Fig.

8.3(a) we see that in fact mz also changes along the thickness.

Looking at the cases with defects, we may notice is that the mz component of the

magnetization practically does not change along the thickness as shown by the white

and soft-colored zones in the right-most panels of Fig. 8.2. mz is, in fact almost zero
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Figure 8.2: Magnetization distribution of a centered vortex state in the FM for the cases without

antiferromagnet (zero defects), 900-PIN, 900-UPIN and 400-PIN 500-UPIN indicated by rows i, ii, iii

and iv, respectively. The in-plane magnetization distribution for the interface FM layer and the free

FM layer are represented by the green and black arrows, respectively. The same distribution of arrows

is plotted in each row. Colors in the first, second and third columns (labeled with numbers 1,2 and 3)

represent the quantities mx,i −mx,f , my,i −my,f and mz,i −mz,f , respectively. This is, the difference

of each component of the unit magnetization vector between the interface layer and the free layer with

red positive (0.75 difference), blue negative (-0.75 difference) and white zero.
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everywhere except in the vortex core where the magnetization distortion mechanism is

the same as explained before. However, in the cases with AFM, a slight difference in

mz is observed in the vortex core due to the asymmetry induced by the defects. In all

the cases with defects, the main magnetization distortion will be in-plane.

(a) (b)

z

x

y

r

r

Figure 8.3: (a) Schematic representation of the magnetization vector projection on a plane perpen-

dicular to the thickness in the region of the vortex core. The core in this case points in the z positive

direction (up). Colors black and green represent the upper and lower layers along the thickness of the

FM, respectively and plus and minus signs indicate the magnetic pole density induced in these surfaces.

(b) In-plane projection of the magnetization vector at the vortex core. x, y and z axis are indicated

in the figure and r represents an arbitrary radial direction. Dot an cross indicate the magnetization

direction perpendicular to the paper plane.

In the second row of Fig. 8.2 we represent the difference between the interface and

free layers for the case of an AFM with 900 defects pinned. Contrary to the case without

AFM, here we not only observe a thickness distortion in the vortex core but in almost

all the vortex. In this case, the symmetry between the interface and free layers is broken

due to the pinned defects of the AFM shown in Fig. 8.5(a).

(a) (b)

Figure 8.4: Schematic representation of the magnetization vector deviation of the interface layer (green

arrows) with respect to the free layers (black arrows) for the cases in which the AFM has only pinned

sites (a) or only unpinned sites (b). Red arrows indicate the direction of deviation. Vortex core is not

shown here.

The free layer has a magnetization shape closer to a perfect vortex compared to

the interface layer [see Fig. 8.4(a)] because it is less affected by the defects and as



90 Exchange Bias in Cylindrical Nanomagnets

a consequence has the shape of minimum energy (vortex state). The interface layer,

however, is distorted with respect to the perfect vortex [green arrows in Fig. 8.4(a)].

The distortion is in the field-cool direction because of the unidirectional exchange field

produced by the defects and takes its maximum when the magnetization is more deviated

from the field-cool direction [see red color in Fig. 8.2(ii-2) or green arrows in Fig. 8.4(a)].

In the regions where the magnetization points in the same direction to the field-cool (+y),

it does not change along the thickness because the interface layer is aligned with the AFM

defects minimizing the exchange energy. When the magnetization is aligned opposite to

the field-cool direction (-y) the exchange energy is maximum but the magnetization is

also unchanged because of the collective effect of the other neighbors.

(a) (b)

Figure 8.5: Defects at the AFM interface when the FM presents a vortex state. In case (a) 900 pinned

defects and in (b) 900 unpinned defects, corresponding to Fig. 8.2(ii) and Fig. 8.2(iii), respectively.

For 900 unpinned defects, a different distortion pattern for my is observed in Fig.

8.2(iii)[and schematically in Fig. 8.4(b)]. These defects have two easy directions and

therefore, the magnetization of the interface layer will bend in the field-cool direction if

the magnetization has +my component and opposite to the FC direction if the magneti-

zation has −my component. This can be seen schematically by the red and green arrows

in Fig. 8.4(b) and by the colors and arrows in Fig. 8.2(iii-2). Minimum magnetization

distortion is in the region where the magnetization points to +y and −y directions (as

in the case of 900 pinned) and in the small region where my changes of sign because

the anisotropy field by the defects reaches zero. Contrary to the pinned defects, the

unpinned ones are able to rotate with the FM and form an elongated vortex due to the

uniaxial anisotropy as shown in Fig. 8.5(b). This result, the impression of the vortex

state in the AFM has already been observed experimentally [219].

The combination of pinned and unpinned defects in the AFM is shown in the bottom

row of Fig. 8.2. A similar distortion to the case with pinned defects is found indicating
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Figure 8.6: Same hysteresis loops as in Fig. 8.1 showing the interface layer (dashed line) and the

free layer (solid line) magnetizations normalized to the saturation magnetization of one layer. i,ii,iii and

iv are the cases without defects, 900 pinned, 900 unpinned and 400 pinned-500 unpinned, respectively

(same as rows in Fig. 8.2).

that even though there are more unpinned defects the appreciable distortion is produced

by the pinned ones. However, this distortion is significantly smaller if we compare the

color of Figs. 8.2(ii-2) and 8.2(iv-2) because there are less pinned defects in the second

case.

The vortex distortion is not only appreciable in the magnetization configuration but

in the hysteresis loop itself. In Fig. 8.6 we show the hysteresis loop for the interface

and free layers in the same cases of Figs. 8.1 and 8.2. Here we have only represented

the magnetization along the field direction (FC direction) because even though there

is a local distortion of the vortex in the x and z directions, they compensate and no

net difference between the layers is observed. This can be understood by looking at the

colors of the difference in mx and mz of Fig. 8.2.

As expected, no change in the loop is found for the case without defects [Fig. 8.6(i)]

so that the two curves collapse. When the defects are pinned the magnetization of the

interface layer (dashed line) is vertically shifted (towards larger My) in all the points

of the hysteresis loop as shown in Fig. 8.6(ii). It is therefore difficult to reverse the

magnetization opposite to the FC direction but easier to do so when the field is along
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the FC direction. When all the defects are unpinned [see Fig. 8.6(iii)] it is difficult to

reverse the interfacial layer in both branches, the initial and the reverse ones due to the

uniaxial nature of the defects. This is, the interfacial curve is above the free layer for

the initial curve and below it for the reversal one [see Fig. 8.6(iii)]. Even though the

separation between the two curves may seem small it has been found systematically in

calculations with more unpinned defects (not shown here). Finally, in Fig. 8.6(iv) the

400 pinned defects make an effect similar to the 900 defects [see Fig. 8.6(ii)] although

with a much weaker distortion due to the number of pinned defects.

8.4 Effect on the Antiferromagnet Thickness

As mentioned in Sec. 8.1, the bias phenomenon is not only linked to a shift of

the hysteresis loop but also to an increase of the coercivity [196, 220, 221]. These two

properties vary with the thickness of the AFM giving three distinct behaviors for large,

intermediate and thin thicknesses. For thick AFM layers the bias field and the coercivity

are independent of the AFM thickness. However, as the thickness is decreased a dramatic

reduction of the bias and an increase of coercivity are observed. Further decrease of the

thickness reduces the bias field to zero and the coercivity to a small value.
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Figure 8.7: Bias (Hb, in absolute value) and coercive (Hc) fields as a function of the type of defects.

The total number of defects is 900.

Our purpose is to explain the AFM thickness dependence of bias and coercivity in

the intermediate thickness regime. To do so, we assume that the number of interfacial
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defects (900 in total) is fixed because the interface does not change, however as the

thickness changes so does the type of defects. In thick AFM layers only pinned defects

are considered leading to a large bias, whereas for thin ones we just consider unpinned

defects whose effect is an increase of coercivity as explained in Sec. 8.2.

Bias and anisotropy as a function of the type of defects is shown in Fig. 8.7. To

obtain each of this pair of values (bias and coercivity) we have performed a complete

hysteresis loop twice so as to take into account two sets of random positions of the

defects. Different randoms lead to quite different values of bias and coercivity for the

same number and type of defects. This fact can be attributed to the change of nucleation

field for the vortex. This is, at fields where the vortex is about to nucleate, it presents

a metastable state whose symmetry may be easier or more difficult to break depending

on the position of the defects, thus the random. This effect leads to large variation of

coercivities which in turn result in a variation of the calculated bias field. However, the

general tendency is that bias and coercivity increase quasi linearly with the number of

pinned and unpinned defects, respectively.

8.5 Chapter Summary and Conclusions

In this chapter we have presented an extended version of the micromagnetic model

to describe an exchange biased system. Within this framework we have been able to

reproduce the two main features observed in the hysteresis loops of an exchange biased

FM, a unidirectional anisotropy (bias) and a uniaxial anisotropy (increase in coercivity).

A bias is obtained with pinned defects in the AFM and the coercivity with the unpinned

ones.

The distortion along the thickness of the vortex state has been analyzed. The layers

close to the AFM have a larger distortion due to the interaction with it. The pinned

defects distort the vortex along the field-cool direction and the unpinned ones along the

FC direction and opposite to it depending on the magnetization direction. These effects

can also be observed in the hysteresis loops of the interfacial and free layers.

A simple way to model the behavior of the AFM thickness has been proposed. In

this model, a large coercivity and small bias is observed when the AFM is thin whereas

a large bias and small coercivity are obtained when the AFM thickness is large. In spite

of the disperse values of bias and coercivity a general trend could be observed. However,

it is clear that further research in this issue has to be carried out.





CHAPTER 9

Conclusions of the Work and Future Lines

In this thesis we have presented two different ways to model soft ferromagnetic

materials and in particular their interaction with other magnetic materials such as su-

perconductors or antiferromagnets. This thesis is divided in two parts, one for each

model and their applicable scales.

In the first model we study the physics at large scale of soft ferromagnets. We

consider a linear, isotropic, and homogeneous ferromagnetic bar with very large suscep-

tibility and a superconducting bar in the critical state. Both magnetic elements have

a rectangular cross section (although other cross sections can be considered) and are

infinitely long in the same direction. A functional related to the energy is minimized to

obtain the magnetic pole density in the ferromagnet and the current density distribution

in the superconductor. The key point of this model is that it can take into account the

mutual magnetostatic interaction between the soft ferromagnet and the superconductor,

this is currents in the superconductor are affected by poles in the ferromagnet and vice

versa.

This model is applied to the study of a soft ferromagnet in different applied magnetic

fields, either uniform or non uniform due to permanent magnets. We have seen that,

since soft ferromagnets guide and concentrate magnetic fields, the change of geometry

of the ferromagnet changes dramatically the field at its surroundings. In particular,

one can concentrate or screen the magnetic field of a permanent magnet using a soft

ferromagnet. A more practical case of study deals with superconducting levitation using

a guideway of permanent magnets. In our case, the guideway consists of two square-

sectioned permanent magnets oppositely magnetized with a gap (of the same size as the

magnets) in the middle. In this arrangement the maximum magnetic field concentration

above the guideway using a soft ferromagnet placed in the gap is achieved when the

height of the soft ferromagnet is around 0.6 times the height of the permanent magnet.
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The levitation force undergone by a superconductor placed above the optimized

guideway is compared with the same guideway without ferromagnet. We analyze the

case that the superconductor is zero-field cooled far away from the permanent magnets,

descended towards them and then ascended again. We have found that the optimized

guideway gives larger values of force because the superconductor is more penetrated by

the currents and the field felt by them has a larger horizontal component compared with

the case without ferromagnet. However, not only the superconductor gets affected by the

ferromagnet, in fact, when the superconductor is near the guideway the ferromagnet gets

demagnetized due to the strong fields produced by the currents in the superconductor.

The superconductor in the guideway with the soft ferromagnet has been demonstrated

to be more stable to vertical and horizontal displacements.

The second model deals with the description of the physics of soft ferromagnets at

a nanoscopic scale, this is, at a length that describes well the details of ferromagnetic

domains and domain walls at which the behavior of the ferromagnet is highly non linear.

The mathematical formulation is based on micromagnetics formalism. The model is

applied to the study of a nanoscopic soft ferromagnetic cylinder in which the most stable

magnetization pattern is a vortex state consisting of a curling in-plane magnetization

(with a certain chirality) and an out-of-plane core (polarity). It is argumented that

in this kind of cylinders chirality and polarity can not be controlled using quasistatic

uniform applied fields. We have proposed a thickness modulated dot in which this control

can be achieved by a simple process of saturating the sample with an in-plane field and

then decreasing quasistatically the field up to remanence. In this dot, the control of the

vortex chirality and polarity is governed by two simple rules and is achieved by tuning

just one parameter, the applied field direction.

The non-linear model is extended to study the case of exchange biased soft ferromag-

nets. The antiferromagnetic layer is modeled as an extra layer of material with some

macroscopic defects randomly distributed along its surface. Two kinds of defects are

assumed: the pinned defects are frozen in the field-cool direction and do not respond

to any applied field whereas the unpinned ones have a large but finite anisotropy in the

field-cool direction. In this approximation, the pinned defects lead to a unidirectional

anisotropy (a bias shift) and the unpinned ones explain uniaxial anisotropy (coercivity

increment). The model is able to reproduce the main features observed in experimental

hysteresis loops of exchange biased systems.

Since exchange bias phenomenon occurs at the interface between the soft ferromagnet

and the antiferromagnet it is expected that the magnetization distribution changes in

the regions close to the antiferromagnet compared to those far from it. In particular,

we have studied the vortex distortion along the thickness of the soft ferromagnet. A

net distortion along the field-cool direction is found in the case that pinned defects

are present in the antiferromagnet. Also the effect that increasing the thickness of the

antiferromanget has on the shape of the hysteresis loop for the ferromagnet has been

effectively studied although the random position of the defects blur the tendency of bias

and coercivity.
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Future works based on the work in this thesis may lead to a deeper understanding of

the interaction between soft ferromagnetic materials and other materials. For instance,

the interaction between a superconducting vortex pinned due to the field of the core of a

magnetic vortex. This effect has already been observed experimentally [43, 44, 45, 47].

Another possible extension of the work is to consider time effects and polarized currents

in micromagnetic modeling so as to model more complex magnetic structures such as

skyrmions [222, 223, 224, 225].





APPENDIX A

Geometrical Factors for Magnetic Scalar Potential and Magnetic

Vector Potential

In this appendix we calculate the factors Eij , Q
SC
ij of the discretized functional of

the FM (3.7) and the factors Dij , Q
FM
ij coming from the discretized functional of the

SC (3.8). The first two are related to the magnetic scalar potential φ whereas the other

two with the vector potential A.

In all the calculations following we assume the SC and FM elements to be infinitely

long in the z direction. The SC element has a cross section ∆x × ∆y in the x and y

directions respectively whereas the FM element has a length ∆L in its finite direction,

that can be either x or y. Further it is considered that the SC element carry a uniform

current density J = Jz = I/∆x∆y along the z direction whilst the FM element has a

uniform magnetic pole density σ. The position of each element either the SC or the FM

is defined in their respective center and will be denoted as (xk, yk) for the k element.

A.1 Magnetic Scalar Potential Over the FM

The energy terms of the functional (3.6) in its discretized form Eq. (3.7) contain

the geometrical factors Eij and QSC
ij . The first is the magnetic scalar potential per unit

magnetic pole density that creates an element of the FM averaged to another one. The

second is the magnetic scalar potential per unit current density created by an element

of the SC in the center of an element of the FM.

A.1.1 Calculation of the Matrices Eij

Consider a FM element i with its finite length along the x direction. Magnetic scalar

potential per unit magnetic pole density created by such magnetic pole distribution in
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any point space (x, y) except in the element i is

Ui(x, y, xi, yi) ≡
φ(x, y, xi, yi)

σ
= − 1

4π

∫ xi+∆L/2

xi−∆L/2
ln
[
(xi − x)2 + (yi − y)2

]
dxi. (A.1)

The matrix Ei,j is defined as the magnetic scalar potential per unit magnetic pole density

of the element i averaged to another element j in the FM. This is mathematically

Ei,j(xi, xj , yi, yj) =
1

∆L

∫ lj+∆L/2

lj−∆L/2
Ui(xj , yj , xi, yi)dlj , (A.2)

where lj is the coordinate of the j element in the finite direction and dlj the differential

of length in the same direction. In the case that the j element lies in the x direction

(parallel to i), lj = xj and dlj = dxj and considering a vertical (along y) separation b

between i and j Eq. (A.2) becomes

E
‖
ij(xi, xj , b) =

−1

4π∆L
[f(xi + ∆L/2, xj + ∆L/2; b)

− f(xi −∆L/2, xj + ∆L/2; b)

− f(xi + ∆L/2, xj −∆L/2; b)

+ f(xi −∆L/2, xj −∆L/2; b)] , (A.3)

where the function f(u, v; b) is

f(u, v; b) = −1

2

[
6uv + 4b(u− v) arctan

(
u− v
b

)
− (b2 − (u− v)2) ln(b2 + (u− v)2)

]
. (A.4)

For the self interaction (Eii) the two sheets are infinitely close, i.e. xj → xi and b→ 0,

Eq. (A.3) is the magnetic scalar potential per unit magnetic pole density of the element

i over himself,

E
‖
ii =

∆L

4π
(3− ln(∆L2)). (A.5)

Another possible case is when the j is perpendicular to i (dlj = dyj) then the matrix

Eij becomes

E⊥ij (xi, yj ; yi, xj) =
1

4π∆L
[g(xi − xj + ∆L/2, yi − yj −∆L/2)

− g(xi − xj −∆L/2, yi − yj −∆L/2)

− g(xi − xj + ∆L/2, yi − yj + ∆L/2)

+ g(xi − xj −∆L/2, yi − yj + ∆L/2)] , (A.6)

with

g(u, v) = v2 arctan
(u
v

)
+ u2 arctan

(v
u

)
+ vu ln(u2 + v2)− 3uv. (A.7)
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Parallel [Eq. (A.3)] and perpendicular [Eq. (A.6)] interactions are symmetric under

permutation of their indices (Eij = Eji) meaning that the magnetic scalar potential per

magnetic pole density created by i over j is the same that j creates over i. All possible

interactions between two geometrical infinite sheets are considered in this two equations.

A.1.2 Calculation of Matrices QSC
ij

Consider an element i of the SC. Using Biot-Savart law it is easy to calculate the

magnetic field at any point in the space produced by such current distribution, then

integrating the x(y) field component on −x(−y) direction we obtain the magnetic scalar

potential per current density. The magnetic scalar potential per current density pro-

duced by an element i of the SC over the center of the element j (xj , yj) in the FM

is

QSC
ij (xi, yi;xj , yj ,∆x,∆y) ≡

φ(xi, yi;xj , yj ,∆x,∆y)

J
=

=
1

8π

[
4(α− xj)(γ − yj) arctan

(
α− xj
γ − yj

)
− 4(α− xj)(δ − yj) arctan

(
α− xj
δ − yj

)
+ 4(β − xj)(δ − yj) arctan

(
β − xj
δ − yj

)
− 4(β − xj)(γ − yj) arctan

(
β − xj
γ − yj

)
+ (γ − yj)2 ln

(
(β − xj)2 + (γ − yj)2

(α− xj)2 + (γ − yj)2

)
+ (α− xj)2 ln

(
(α− xj)2 + (γ − yj)2

(α− xj)2 + (δ − yj)2

)
+ (γ − yj)2 ln

(
(α− xj)2 + (δ − yj)2

(β − xj)2 + (δ − yj)2

)
+ (γ − yj)2 ln

(
(β − xj)2 + (δ − yj)2

(β − xj)2 + (γ − yj)2

)]
, (A.8)

where α, β, γ and δ are defined as

α = xi + ∆x/2,

β = xi −∆x/2,

γ = yi + ∆y/2,

δ = yi −∆y/2, (A.9)

and (xi, yi) is the center of the element i.
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A.2 Potential Vector Over the SC

In the discretized functional (3.8) two geometrical factors Dij and QFM
ij appear. The

first is the potential vector per unit current and µ0 that an i element of the SC produces

to another one. The second is the vector potential per unit magnetic pole density and

µ0 produced by an element i of the FM to the center of an element j in the SC. In the

following we use the gauge ∇ ·A = 0 (Coulomb gauge) so that the vector potential is

in the same direction of the current density (A = Azk) with k the unit vector in z.

A.2.1 Calculation of Matrices Di,j

Considering an i element of the SC we can calculate the magnetic vector potential

using the one created by a wire and summing up for the i cross section. Then, the

magnetic vector potential of the element i on any point space (x, y) outside i per unit

current and µ0

A′z(x, y;xi, yi) ≡
Az(x, y;xi, yi)

µ0I
= − 1

4π
[g(x− xi −∆x/2, y − yi −∆y/2)

− g(x− xi + ∆x/2, y − yi −∆y/2)

− g(x− xi −∆x/2, y − yi + ∆y/2)

+ g(x− xi + ∆x/2, y − yi + ∆y/2)] , (A.10)

where g(u, v) is the function defined previously, Eq. (A.7). Considering another element

j in the SC, the coefficient Dij , is the average over j cross section of the vector potential

per unit current and µ0 generated by the element i, this is

Dij =
1

∆x∆y

∫ xj−xi+∆x/2

xj−xi−∆x/2
dx

∫ yj−yi+∆y/2

yj−yi−∆y/2
dyA′z(x, y;xi, yi). (A.11)

When inserting Eq. (A.10) in Eq. (A.11) we obtain

Dij =
−1

4π∆x∆y
[h(xj − xi + ∆x/2, yj − yi + ∆y/2,∆x,∆y)

− h(xj − xi −∆x/2, yj − yi + ∆y/2,∆x,∆y)

− h(xj − xi + ∆x/2, yj − yi −∆y/2,∆x,∆y)

+ h(xj − xi −∆x/2, yj − yi −∆y/2,∆x,∆y)] , (A.12)

with h(u, v; t, d) defined as

h(u, v; t, d) = G(u+ t, v + d)−G(u− t, v + d)

− G(u+ t, v − d) +G(u− t, v − d), (A.13)
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where

G(l, k) = −25

24
l2k2

− 1

24
(k4 + l2 − 6l2k2) ln(l2 + k2)

+
l3k

3
arctan

(
k

l

)
+
lk3

3
arctan

(
l

k

)
. (A.14)

As in the calculation of the matrices Eij , Dij is symetric under permutation of their

indices (Dij = Dji).

A.2.2 Calculation of Matrices QFM
ij

For an i element of the FM it is easy to obtain the magnetic field distribution and

then integrating the x(y) of the field on the y(−x) direction we find the vector potential

created by a sheet with uniform magnetic pole distribution.

In the case that the i element lies in the horizontal direction x, the potential vector

over the center of an element j of the SC per unit magnetic pole density and µ0 is

QFM
ij (xj , yj , yi, α, β) =

A(xj , yj , yi, α, β)

µ0σ
=

1

4π

[
2(β − xj) arctan

(
yj − yi
β − xj

)
− 2(α− xj) arctan

(
yj − yi
α− xj

)
+ (yj − yi) ln

(
(yj − yi)2 + (β − xi)2

(yi − yj)2 + (α− xj)2

)]
, (A.15)

where α and β are defined as

α = xi + ∆L/2,

β = xi −∆L/2. (A.16)

However, if the FM element is in the y direction the factor QFM
ij is calculated as

QFM
ij (yj , xj , xi, γ, δ) where the factors γ and δ are

γ = yi + ∆L/2,

δ = yi −∆L/2. (A.17)





APPENDIX B

Magnetostatic Field Interaction Matrix

Consider a uniformly magnetized (along a direction mj = (mjx,mjy,mjz) with

|mj | = 1) ortorrombic cell j with sides ∆x, ∆y and ∆z in the x, y and z directions, re-

spectively. The center of this cell is at the distance rj = (xj , yj , zj) from the origin. The

center of a second cell i with the same dimensions is located at a distance ri = (xi, yi, zi).

Then the demagnetizing field at i averaged through all its volume due to the cell j is

written as

Hd,ij = Ms

ηxxij ηxyij ηxzij
ηyxij ηyyij ηyzij
ηzxij ηzyij ηzzij


mjx

mjy

mjz.

 = Msηijmj , (B.1)

where ηij is the interaction matrix [163]. A general component of the matrix ηζ1,ζ2ij

must be understood as the ζ1 (x, y or z) component of the field averaged over a cell

i normalized to Ms due to another cell j magnetized in the ζ2 (x, y or z) direction.

For instance ηxyij is the x component of the field at i normalized to Ms due to a cell j

magnetized in the y direction.

It is important to notice that due to the reciprocity theorem [9, 150] ηij is symmetric

and therefore only six terms must be evaluated [151]. Due to the symmetry of the

interactions only two mathematical expressions are needed to compute the six terms,

an off-diagonal term and a diagonal term. We calculate first a diagonal term.

The z field component at the center of a cell i (not averaged and normalized to Ms)

due to a cell j uniformly magnetized in the z direction can be calculated as

hzzij =
1

4π

1∑
α,β,γ=0

(−1)α+β+γ+1 arctan

(
(xi − xαj)(yi − yβj)

(zi − zγj)D(i, xαj , yβj , zγj)

)
. (B.2)

In this equation

ζαj ≡ ζj +
∆ζ

2
(−1)α−1 (B.3)
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are the coordinates (ζ = x, y, z) of the vertices of the micromagnetic cell j and the

distance between each vertex of the j cell and the center of i is defined by

D(i, xαj , yβj , zγj) =
√

(xi − xαj)2 + (yi − yβj)2 + (zi − zγj)2. (B.4)

The matrix component ηzzij is defined as the average over the volume of the i cell of

the quantity hzzij

ηzzij =
1

∆x∆y∆z

∫ ∫ ∫
hzzij dxidyidzi, (B.5)

where the integral is performed through all the volume of the cell i.

To obtain the other diagonal terms (ηxxij and ηyyij ) one just have to make permutations

of all the variables in Eq. (B.2) and calculate its average as in Eq. (B.5).

For the off diagonal terms of the matrix ηij we calculate for instance the x component

of the field at the center of a cell i due to a cell j uniformly magnetized in the z direction

as

hxzij = − 1

4π

1∑
α,β,γ=0

(−1)α+β+γ+1 ln |yi − yβj +D(i, xαj , yβj , zγj)|. (B.6)

As before, the averaged quantity of Eq. (B.6) is the quantity ηxzij and therefore can be

written as

ηxzij =
1

∆x∆y∆z

∫ ∫ ∫
hxzij dxidyidzi. (B.7)

The other off-diagonal terms ηxyij and ηyzij can be obtained by permutations of all the

variables in Eq. (B.6) and then calculating the average.

A simple and shorter [167] way to express ηzzij and ηxyij is

ηzzij =
1∑

α,β,γ,α′,β′,γ′,=0

(−1)α+β+γ+α′+β′+γ′ F (zij + zγi − zγ′j

, xij + xαi − zα′j , yij + yβi − yβ′j),

ηxzij =

1∑
α,β,γ,α′,β′,γ′,=0

(−1)α+β+γ+α′+β′+γ′ G (yij + yβi − yβ′j

, zij + zγi − zγ′j , xij + xαi − xα′j),

where xij , yij and zij are the components of the vector ri − rj and the functions F and
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G are defined as

F (z;x, y) = xyz arctan
(xy
zd

)
+

1

2
x(y2 − z2) ln(|d− x|)

+
1

2
y(x2 − z2) ln(|d− y|) +

1

6
(x2 + y2 − 2z2)d, (B.8)

G(y; z, x) = −xyz ln(d+ y) +
1

6
x(x2 − 3y2) ln(z + d)

+
1

6
z(x2 − 3y2) ln(d+ x) +

1

2
z2y arctan

(xy
zd

)
+

1

2
x2y arctan

(zy
xd

)
+

1

6
y3 arctan

(
xz

yd

)
+

1

3
xzd, (B.9)

respectively with d =
√
x2 + y2 + z2.

In micromagnetic calculations where a magnetic sample is discretized in a regular

(equi-spaced) array of N ortorrombic cells, the number of matrices needed would be

N2. This is, for the field evaluation at each cell the contribution of all the others must

be taken into account. The matrix ηij depends only on three parameters, that are the

absolute value of the relative positons between cells i and j. Therefore ηij only depends

on |xi − xj |, |yi − yj | and |zi − zj | and the number of independent matrices reduces to

N .





APPENDIX C

Solution of Standard Problem # 2

Different problems analyzing the behavior of magnetic particles have been proposed

by the National Institute of Standards and Technology (NIST) [226]. The aim of this

initiative is to identify numerical problems between the modeling community.

In this appendix we analyze standard problem # 2 in order to verify our numerical

procedure compared to other reports [166, 227, 228]. In this problem, a rectangular

magnetic particle with lengths 5d, d and 0.1d in the x, y and z directions (see Fig. C.1),

respectively is set in a uniform applied field in the (1,1,1) direction. The characteristic

exchange length of the material is lex defined as in section 6.3. In this appendix all cal-

culations will be performed with a convergence criterion ε = 10−5 without randomizing

the magnetization distribution after each applied field.

5d

d
x

y H [1,1,1]a

Figure C.1: Schematic representation of the particle shape. x and y axis are shown in dotted arrows

whereas z axis is out-of-plane. A uniform field is applied in the (1,1,1) direction, this is, at an angle

arccos
[
1/
√

3
]

(54.74 degrees approximately) from each of the coordinate axis.

In Fig. C.2 a hysteresis loop of a particle with size d/lex = 15 is shown. In this

calculation we have used an in-plane square mesh of ∆x = ∆y = lex and an out-of-plane

cell size ∆z = 1.5lex. For the computation of the demagnetizing field no coarser mesh

has been used (see Sec. 6.3.4).

The particle size is comparable to the exchange length and for this reason it will be

almost uniformly magnetized. At a large field, the magnetization points the direction of
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the field. However, taking a closer look at the individual components of the magnetiza-

tion Mx, My and Mz on Fig. C.2 we see that at large field Mx > My > Mz. The reason

is that the quasi-uniform magnetization distribution favors the magnetization along the

longest particle axis in order to minimize the magnetostatic energy. This fact can be

understood comparing the demagnetizing factors [5, 229] of this prism.
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Figure C.2: Hysteresis loop of a particle with d/lex = 15. Solid line indicates the magnetization

in the applied field direction. Dotted, dashed and dashed-dotted represent the magnetization in the x,

y and z directions, respectively for the initial curve only. In the insets, we show different magnetiza-

tion distributions corresponding to the applied fields Ha/Ms = 0.25, 0,−0.05,−0.25 for i,ii,iii and iv,

respectively. These points are marked in the initial curve of the hysteresis loop.

At remanence (zero applied field) the particle gets magnetized along the longest

direction (x direction), however a small canting in the edges of the particle exist [see Fig.

C.2 (ii)] . This canting follows the positive y direction as a reminiscence of the previous

applied field forming an “S-state” (also found in [227] for a particle of d/lex = 12) that

reduces the surface magnetic pole density. The pole reduction helps to decrease the

magnetostatic energy compared to the uniform state case.
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Further decrease of the applied field make the interior zone of the particle to rotate

more rapidly than the edges in the direction of the field. This rotation goes on up to a

sharp jump in the hysteresis loop that corresponds to a rapid change of the sign of My

as shown in Fig. C.2 (iii). A second larger jump in the hysteresis loop can be observed.

This change of magnetization uniformly rotates the magnetization passing though the

−y direction up to the full alignment with the field (see Fig. C.2 (iv)).
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(iii)

(iv)
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Figure C.3: Same as Fig. C.2 but with particle size d/lex = 5.

In Fig. C.3 we show the same hysteresis loop as in Fig. C.2 but for a smaller

particle of size d/lex = 5. In this calculation the micromagnetic cells are cubic with

side ∆x = ∆y = ∆z = 0.25lex. As opposed to the previous calculation we use a second

coarser grid with parameters nx = ny = nz = 2 to evaluate the demagnetizing field (see

Sec. 6.3.4).

Since the particle is very small compared to the exchange length the exchange en-

ergy dominates and the particle remains almost uniformly magnetized through all the

hysteresis loop. This means that both the initial (from positive field to negative field)
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and reversal (from negative field to positive field) curves occur via coherent rotation

of the magnetization as can be seen in the insets of Fig. C.3. At remanence [see Fig.

C.3 (ii)] this particle is much more uniformly magnetized in the x direction than in the

larger particle tending to minimize the magnetostatic energy. In fact, as the size of the

particle tend to zero, the remanent magnetization must be Mx/Ms = 1. i.e. perfectly

magnetized along the x direction. To see this in Fig C.4 we show the x component of the

remanent magnetization as a function of the particle size d in two different calculations,

using 12 neighbors and 6 neighbors [161] for the evaluation of the exchange field.

0 2 4 6 8 10 12 14
0.96

0.97

0.98

0.99

1.00

M
x
/M

s

d/l
ex

Figure C.4: x component of magnetization at remanence as a function of the particle size d. Solid and

dashed line correspond to the same calculation but using 6 neighbors and 12 neighbors [161], respectively

for the computation of the exchange field.

In Fig. C.4 we see that for very small particles the remanent magnetization lies along

the x direction as expected. The size at which the x component of the magnetizaton at

remanence has a sharp decrease due to the S-state is about d/lex = 10 as found by other

authors in [227, 226]. This sets the quantitative limit for the particle to be uniformly

magnetized.

In Fig. C.4 we see that the 6 neighbor approximation slightly underestimates the

exchange field because for small particles the remanence Mx/Ms is not as close to 1

as the 12 neighbor case. However these two curves are very similar (notice the range

of Mx in Fig. C.4) and therefore since we do not need to reproduce such detail, all

calculations in this thesis are performed using 6 neighbors. The same occurs with the

convergence criterion. Although in this problem we have used ε = 10−5 because we

need more accuracy, ε = 10−4 is used in all the thesis. For smaller ε the calculation of

hysteresis loops has no significant difference neither on the shape of the loop nor in the

magnetization distributions.



Bibliography

[1] A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford University

Press, Oxford, 1996).

[2] J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press,

2010).

[3] J. D. Jackson, Classical Electrodynamics (New York: John Wiley & Sons, 1975).

[4] D.-X. Chen, J. A. Grug and R. B. Goldfarb, IEEE Trans. Magn. 27, 3601 (1991).

[5] D.-X. Chen, E. Pardo, and A. Sanchez, IEEE Trans. Magn. 41, 2077 (2005).

[6] G. Bai, R. W. Gao, Y. Sun, G. B. Han, and B. Wang. J. Magn. Magn. Mat. 308,

20 (2007).

[7] B. D. Cullity, Introduction to Magnetic Materials (John Wiley & Sons, Hoboken,

New Jersey, 2009).

[8] W. F. Brown, Jr., Rev. Mod. Phys. 17, 15 (1945).

[9] W.F. Brown Jr. Magnetostatic Principles in Ferromagnetism (North-Holland, Am-

sterdam, 1962).

[10] H. Kronmuller, M. Fahnle, Micromagnetism and the Microstructure of Ferromag-

netic Solids (Cambridge University Press, Cambridge, 2003).

[11] W. F. Brown Jr., J. Appl. Phys. 39, 993 (1968).

[12] A. C. Rose-Innes and E. H. Rhoderik, Introduction to Superconductivity (Oxford:

Pergamon Press, 1969).

[13] P. G. de Gennes, Superconductivity of Metals and Alloys (Reedwod City: Addison-

Wesley, 1989).

113



114 BIBLIOGRAPHY

[14] C. P. Poole Jr, H. A. Farach, and R. J. Creswick, Superconductivity (San Diego:

Academic Press, 1995).

[15] M. Cyrot and D. Pavuna, Introduction to superconductivity and high-Tc materials.

(Singapore: World Scientific, 1992).

[16] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

[17] C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).

[18] C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

[19] D. -X. Chen and R. B. Goldfarb, J. Appl. Phys 66, 2489 (1989).

[20] D. -X. Chen, A. Sanchez, J. Nogués, and J. S. Muñoz, Phys. Rev. B 41, 9510
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