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It’s not time to make a change

Just relax, take it easy

You’re still young, that’s your fault

There’s so much you have to know

Find a girl, settle down

If you want, you can marry

Look at me, I am old

But I’m happy

I was once like you are now

And I know that it’s not easy

To be calm when you’ve found

Something going on

But take your time, think a lot

I think of everything you’ve got

For you will still be here tomorrow

But your dreams may not

CAT STEVENS, Father and Son



ii



Agradecimentos

Chega um momento em que o trabalho se torna a tarefa mais importante de nossas vidas e

acabamos esquecendo que as pessoas que nos cercam são aquelas que fazem tudo valer a pena.

Com tanta correria no dia a dia, ficamos acomodados e esquecemo-nos de agradecer por tudo que

acontece conosco: a ajuda recebida, a graça alcançada. Neste momento, paro por um instante e

tento agradecer aquele sorriso, aquele puxão de orelha, aquelas palavras de conforto e também de

repreensão, aquele carinho, aquela tristeza e aquela alegria. Certamente, tudo isso me faz querer

ser uma pessoa melhor a cada dia.

Em primeiro lugar, quero agradecer a Deus por minha vida, minha família, minha noiva, meus

amigos, meus sentidos, minha sabedoria e pela dose diária de vontade e ânimo.

Agradeço e dedico este trabalho a minha mãe, Lucimary, a quem eu devo toda minha essência

como pessoa e cidadão. Te amo incondicionalmente, mãe!

Agradeço também ao meu pai, Wagner, que pôde proporcionar-me a oportunidade de ter uma

boa formação escolar básica; além de ensinar-me como (não) agir em determinadas situações.

Agradeço a Natália, meu amor, minha vida, meu tudo! Minha companheira dos momentos

felizes e tristes, com quem eu quero dividir toda minha vida. Você faz parte desse trabalho

tanto quanto eu, pois foi contigo que dividi o que me aconteceu de bom e de ruim em relação

ao doutorado. E, se hoje estou com a tese pronta, é porque você compreendeu que às vezes minha

atenção deve ser integral ao meu trabalho, além de aprender a suportar e administrar a distância

que nos separa. Obrigado por tudo, meu amor! Te amo para sempre!

Aos meus irmãos, sobrinhos, padrasto, cunhada, avó, tios, primos e sogros, agradeço pelos

momentos felizes em família, pois, toda vez que estive em sua presença, era motivo de festa e

alegria.

Agradeço a todos os professores e funcionários do ICMC/USP, em especial a minha orientadora



iv

Regilene Oliveira. Sem sua ajuda, Regilene, tenho certeza que não conseguiríamos chegar ao final

deste trabalho. Obrigado pela atenção e disposição em ajudar, ensinar e aprender. Certamente

foi um período de grande aprendizado e fortalecimento de laços para nós dois e espero que essa

parceria perdure por muitos anos.

Agradezco también a los profesores y empleados del Departamento de Matemáticas de la UAB

que me recibieron de brazos abiertos cuando llegué a Barcelona. Gràcies pel suport! Agradezco

especialmente a Joan Carles que ha tenido mucha paciencia para enseñarme y hacerme un cono-

cedor de la técnica empleada en este trabajo. Sin duda ya es más que un colaborador, es un gran

amigo.

I would like to thank Nicolae and Dana for the opportunity of meeting you and working with

you. I am pleased to know that, besides great professors, both of you are good friends that I will

take for the rest of my life. Thank you for everything you could help me in these last years and I

wish we could work together for many years more.

Aos amigos, irmãos que a vida me dá, muito obrigado pelo apoio, pelas conversas nas horas

certas e pelas risadas e conversas jogadas fora. Não há vida nem construção e conquistas sem

amigos do lado.

Agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa

de Doutorado no país e no exterior.

E por fim, fazendo minhas as palavras de Arthur Schopenhauer: “a tarefa não é tanto ver

aquilo que ninguém viu, mas pensar o que ninguém ainda pensou sobre aquilo que todo mundo

vê”!



Abstract

Planar quadratic differential systems occur in many areas of applied mathematics. Although

more than one thousand papers have been written on these systems, a complete understanding

of this family is still missing. Classical problems, and in particular Hilbert’s 16th problem, are

still open for this family. One of the goals of recent researchers is the topological classification

of quadratic systems. As this attempt is not possible in the whole class due to the large number

of parameters (twelve, but, after affine transformations and time rescaling, we arrive at families

with five parameters, which is still a large number), many subclasses are considered and studied.

Specific characteristics are taken into account and this implies a decrease in the number of param-

eters, which makes possible the study. In this thesis we mainly study two subfamilies of quadratic

systems: the first one possessing a finite semi–elemental triple node and the second one possess-

ing a finite semi–elemental saddle–node and an infinite semi–elemental saddle–node formed by

the collision of an infinite saddle with an infinite node. The bifurcation diagram for both fami-

lies are tridimensional. The family having the triple node yields 28 topologically distinct phase

portraits, whereas the closure of the family having the saddle–nodes within the bifurcation space

of its normal form yields 417. Invariant polynomials are used to construct the bifurcation sets

and the phase portraits are represented on the Poincaré disk. The bifurcation sets are the union

of algebraic surfaces and surfaces whose presence was detected numerically. Moreover, we also

present the analysis of a differential system known as SIS model (this kind of systems are easily

found in applied mathematics) and the complete classification of quadratic systems possessing

invariant hyperbolas.

Key words: quadratic differential systems; topological classification; affine invariant polynomi-

als; semi–elemental triple node; semi–elemental saddle–node; global phase portrait; SIS model;

invariant hyperbola
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Resumo

Sistemas diferenciais quadráticos planares estão presentes em muitas áreas da matemática

aplicada. Embora mais de mil artigos tenham sido publicados sobre os sistemas quadráticos ainda

resta muito a se conhecer sobre esses sistemas. Problemas clássicos, e em particular o XVI pro-

blema de Hilbert, estão ainda em aberto para essa família. Um dos objetivos dos pesquisadores

contemporâneos é obter a classificação topológica completa dos sistemas quadráticos. Devido ao

grande número de parâmetros (essa família possui doze parâmetros e, aplicando transformações

afins e re–escala do tempo, reduzimos esse número a cinco, sendo ainda um número grande para se

trabalhar) usualmente subclasses são consideradas nas investigações realizadas. Quando caracte-

rísticas específicas são levadas em consideração, o número de parâmetros é reduzido e o estudo se

torna possível. Nesta tese estudamos principalmente duas subfamílias de sistemas quadráticos:

a primeira possuindo um nó triplo semi–elemental e a segunda possuindo uma sela–nó semi–

elemental finita e uma sela–nó semi–elemental infinita formada pela colisão de uma sela infinita

com um nó infinito. Os diagramas de bifurcação para ambas as famílias são tridimensionais. A

família tendo um nó triplo gera 28 retratos de fase topologicamente distintos, enquanto o fecho

da família tendo as selas–nós dentro do espaço de bifurcação de sua forma normal gera 417.

Polinômios invariantes são usados para construir os conjuntos de bifurcação e os retratos de fase

topologicamente distintos são representados no disco de Poincaré. Os conjuntos de bifurcação são

a união de superfícies algébricas e superfícies cuja presença foi detectada numericamente. Ainda

nesta tese, apresentamos todos os retratos de fase de um sistema diferencial conhecido como

modelo do tipo SIS (sistema suscetível–infectado–suscetível, muito comum na matemática apli-

cada) e a classificação dos sistemas quadráticos possuindo hipérboles invariantes. Ambos sistemas

foram investigados usando de polinômios invariantes afins.

Palavras-chave: sistemas diferenciais quadráticos; classificação topológica; polinômios invari-
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antes afins; nó triplo semi–elemental; sela–nó semi–elemental; retrato de fase global; modelo do

tipo SIS; hipérbole invariante



List of abbreviations

We set here all of the abbreviations used in this thesis with their respective meaning.

QS: quadratic differential systems

QSf quadratic differential systems possessing a finite number of singularities (finite and infinite)

QsnSN: quadratic differential systems with a finite semi–elemental saddle–node and an infinite

saddle–node of type
(0
2

)
SN

QTN: quadratic differential systems with a semi–elemental triple node

QVF: quadratic vector field

SIS: susceptible–infected–susceptible
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Introduction

Closing problems is definitely the great pleasure of us mathematicians. We are also delighted

when we have a long–time–ago theme concluded, when we write down the most famous quote

“quod erat demonstrandum” in the end of the proof of a question formulated in the past. And

this pleasure seems to be directly proportional to the time elapsed between the formulation of the

question and the moment the answer is given.

With the advent of differential calculus, it became easy the possibility of solving many ques-

tions asked by ancient mathematicians, but at the same time some other questions were formu-

lated any further. The searching for primitives for functions that could not be expressed alge-

braically or with a finite number of analytic terms has greatly complicated the future research

and new areas of mathematics have even being created to answer these questions. And, besides

the problem of searching for a primitive for a differential equation in one dimension we add more

dimension, the problem became more complex.

As discussed above, the theory of ordinary differential equations became one of the basic tools

of pure and applied mathematics. For instance, this theory makes it possible to study the popula-

tion growth of species or the movement of a pendulum. If the derivation variable (well–known as

the time) just plays an implicit role, the differential equation is said to be autonomous and, in this

case, the systems can be considered as dynamical systems. The designation time for the derivation

variable probably came from the evolution in time of a particle in space and is used in this sense

since then. In addition, differential equations such as those used to solve real–life problems may

not necessarily be directly solvable, i.e. their solutions do not have an explicit expression. Instead,

solutions can be approximated using numerical methods.

Due to the complexity of solving generic differential systems and estimating their solutions,

some strategies have been taken and developed in the attempt of “minimizing the problem”.



2

Firstly, the birth of the qualitative theory of the differential equations introduced by Poincaré [47]

was a great breakthrough in the study of differential systems and, secondly, the restriction in the

analysis of families of differential systems with specific properties.

We recall, for example, the Hilbert’s 16th problem [33, 34]. It is the most investigated mathe-

matical problem in the qualitative theory of dynamical systems in the plane. In short, this prob-

lem discusses on the number of limit cycles in polynomial systems in the plane. Although the

proposed family (the polynomial case) is already a subfamily of the set of all differential equa-

tions, this problem is still difficult to solve. In view of this difficulty, many researchers have been

improving and giving new statements to the problem.

We dare say that the complete study of the huge family of generic differential systems is

impossible and, hence, researchers have been studying only particular classes of such family.

In this thesis we restrict ourselves to the study and the topological classification of planar

quadratic differential systems. By quadratic we mean that the functions which define the systems

are polynomials of degree two. However, this subfamily is also generic and we have some reasons

to restrict more this class of differential systems.

The first reason is that each particular subclass provide interesting results. For example,

Artés, Llibre and Schlomiuk [6] have classified topologically the quadratic systems possessing a

weak focus of second order. This class is interesting itself because all phase portraits with limit

cycles in it can be produced by perturbations of symmetric (reversible) quadratic systems with a

center.

Another reason is the existence of algebraic tools to deal with the problem of classifying topo-

logically quadratic systems with peculiarities. Concerning this issue, in 1966, Coppel [22] believed

that the classification of the quadratic systems could be completed purely algebraically, i.e. by

means of algebraic equalities and inequalities, it would be possible to find the phase portrait of

a quadratic system. At that time, his thoughts were not easy to be refuted. It is known that the

finite singular points of a quadratic system can be found as the zeroes of a resultant of degree four,

and its solutions can be calculated algebraically, as well as the infinite singular points. Addition-

ally, limit cycles could be generated by Hopf bifurcation whose conditions were also determined

algebraically.

However, as it is so often in mathematics that everything which is not perfectly proved may be

completely false, Dumortier and Fiddelaers [26] proved in 1991 that starting with the quadratic

systems (and following all subsequent systems) there exist geometric and topological phenom-
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ena in their phase portrait whose determination cannot be fixed by means of algebraic relations.

Specifically, most of the connections between separatrices and occurrence of double or semi–stable

limit cycles is not determinable algebraically. This shows us that it is at least interesting and chal-

lenging the study of quadratic systems and the attempt to classify topologically all their phase

portraits.

And the last reason (but not the less important nor, in fact, the last one) is the desire to classify

all the codimension–one unstable quadratic systems. We explain a little more about it. Artés, Kooij

and Llibre [4] have studied the structurally stable quadratic systems, modulo limit cycles. In their

book, they proposed the determination of how many and which phase portraits a quadratic system

can have after its coefficients suffer small perturbations. To obtain a structurally stable system

modulo limit cycle we need few conditions. Simply, the existence of multiple singular points and

separatrices connections are not allowed. Centers, weak foci, semi–stable limit cycles and all other

unstable elements are “eliminated” by the quotient modulo limit cycles. The main result in the

book [4] is that there exist exactly 44 topologically distinct phase portrait in the family of the

structurally stable quadratic systems, modulo limit cycles.

As the main goal is the complete classification of the family of quadratic systems, and having

classified topologically all the structurally stable quadratic systems, the natural continuation is

to study the quadratic systems with a degree of degeneracy one higher, i.e. the codimension–one

unstable quadratic systems, modulo limit cycles. We now allow the existence of multiple singular

points and separatrices connections. Following a methodical and systematic study like the one

conducted in [4], we can generate a family of topologically possible cases for this codimension.

Moreover, we have the advantage that not all the topologically possible phase portraits can be

realizable (fact that was learnt by constructing the 44 topological classes of structurally stable

quadratic systems).

Following this methodology and other similar ones already applied in [4], we hope it will be

possible to point out the candidates which are non–realizable and, using the extensive bibliogra-

phy, it may be possible to find many of those realizable ones, either because they have previously

appeared, or by some perturbation of them.

The state of the research is well advanced, remaining a few cases that refuse to find their

example (or to prove their impossibility) and providing nearly 200 phase portraits to the collection

of the 44. Again this is a very topological process with traces of qualitative theory.

Once we have completed the classification of the unstable quadratic systems of codimension
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one, it would be the turn of the codimension–two systems. Although the entire process can be

exhaustive, it can be subdivided into sections, and we also have the advantage that the higher

degeneration the system possesses, the greater the existing bibliography is. Furthermore, the

degree of codimension to further study is limited and, therefore, realizable.

Even if there exists a large literature from which we can take new examples of phase portraits

still unknown, new families of quadratic systems must be studied in order to contribute to this

systematic process.

The mainly used technique has been to produce a normal form for such family which fixes the

position of two finite singular points, allowing the identification of the two other finite singular

points (real or complex) by means of a quadratic equation. The study of singular points at infinity,

even involving the study of a simple cubic, has become easier when assuming a single variable.

Sometimes, instead, this technique has forced a normal form which has behaved in a more

complicated way in determining the bifurcation curves or surfaces, or simply which could have not

be extended continuously to the boundaries of the parameter space. The alternative of fixing only

one finite singular point is even more impracticable as it requires the use of a cubic to determine

the other three finite singular points.

However, there comes to us in recent time great advances in the theory of invariants, mainly

from the Sibirsky’s school [57] in Moldova by the hand of one of his main students, N. Vulpe. The

idea of the invariants is very simple and we will explain it with an example. We suppose that a

quadratic system has generically four singular points (real or complex), but in some hypersurface

of the parameter space a finite singular point goes to infinity and in another hypersurface another

singular point also goes to infinity. The way to calculate them is to obtain the resultant of degree

four in one of the variables. We denote by µ0x4+µ1x3 +µ2x2 +µ3x+µ4 such resultant. Therefore,

in the union of the hypersurfaces in where a finite point has gone to infinity we must have µ0 = 0,

so that the resultant gives exactly three (real or complex) solutions to the problem. And likewise,

if two finite singular points have gone to infinity, then µ0 = µ1 = 0. Furthermore, the fact that a

finite point collides with a point at infinity is an invariant under any affine transformation. We can

modify the normal form as we desire, and the fact that µ0 = 0 will be maintained. In fact, we would

have to be able (and we are) to obtain such expression not in terms of a certain normal form, but

in terms of the general quadratic system with twelve coefficients. And so, having obtained these

expressions, we can address classifications in wider parameter spaces since the position of the

singular points has no longer any influence in calculating the bifurcations.
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The great result of Sibirsky’s school has been obtaining the “bricks” of these invariants, the

tools to manipulate them, and obtaining a basis of elements which make up the ideal of invariant

polynomials up to degree twelve. By now, these basic elements have proven to be sufficient to set

all that can be determined algebraically in a quadratic system. Not only if a point goes to infinity

or not, but also if two (or more) points collide, if a system has a certain degenerate singular point

or not, if there exist invariant lines, if there exist centers and which global portrait they have, if

there exist certain types of first integrals, if there exist weak points (foci or saddles) which are

important to determine the possibility of creation of limit cycles. In short, everything that has

been studied in some particular normal form can now be viewed in terms of invariants and we

can obtain its bifurcations independently of the choice of the normal form.

From the papers of Artés, Llibre, Schlomiuk and Vulpe we obtain the classification of all pos-

sible combinations of finite singular points [8], of infinite singular points [53], systems with 6, 5

or 4 invariant straight lines, systems with weak focus or weak saddle, systems with polynomial

first integral, systems with rational first integral of second or third order, and it is in progress

the refinements of these works in terms of the tangential equivalence of singular points, i.e. in

sense of distinguishing a generic node with two directions from non–generic nodes with one or

infinite directions, or distinguishing the qualitative way a degenerate singular point is located

at infinity. Likewise, it is also under construction a comprehensive classification of all quadratic

systems in terms of their singular points. This still would not be the complete classification of

phase portraits, but we would get very close to its completeness, besides being an essential step

to achieve this.

Using these algebraic tools, together with numerical tools to determine the nonalgebraic bi-

furcations, in the recent years researchers have managed to classify families of quadratic systems

that depend on four parameters. Turning to the projective space RP
3 and by foliating it, it is pos-

sible to complete in a reasonable time studies which involve partitions of the parameter space of

about 400 parts, which include about 125 different phase portraits. Many of these portraits pro-

vide new examples, which will be included in the great encyclopedia of the quadratic systems and

are the first found representatives of a certain structurally stable configuration with a concrete

number of limit cycles. Among these studies, we include the classification of quadratic systems

possessing a focus of second order [6].

Recalling the last reason discussed above for restricting the family of quadratic systems to

subfamilies with some specific characteristic, our purpose is to contribute to the classification of
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the structurally unstable quadratic systems of codimension one. One way to obtain codimension–

one phase portraits is considering a perturbation of known phase portraits of quadratic systems

of higher codimension. This perturbation would decrease the codimension of the system and we

may find a representative for a topological equivalence class in the family of the codimension–one

systems and add it to the existing classification.

With this intention, we propose the study of two classes of quadratic systems. The first one

possessing a finite semi–elemental triple node, and the other possessing a finite semi–elemental

saddle–node and an infinite semi–elemental saddle–node formed by the collision of an infinite

saddle with an infinite node. It is worth mentioning that this last class was divided into three

subclasses according to the position of the infinite saddle–node.

Systems possessing a finite triple node depend on 3 parameters (and, then, their bifurcation

space has dimension three — it is R
3) and yields a partition in the parameter space of 63 parts,

generating 28 topologically distinct phase portraits. The results on this family are contained in:

J. C. ARTÉS, A. C. REZENDE, R. D. S. OLIVEIRA, Global phase portraits of quadratic poly-

nomial differential systems with a semi–elemental triple node, Internat. J. Bifur. Chaos Appl. Sci.

Engrg. 23 (2013), 21pp.

Systems possessing the saddle–nodes as described above are divided into three subclasses

according to the position of the infinite saddle–node, namely: (A) with the infinite saddle–node in

the horizontal axis, (B) with the infinite saddle–node in the vertical axis and (C) with the infinite

saddle–node in the bisector of the first and third quadrants. These systems are 4−parametric,

but, after affine transformations and time rescaling, one of these parameters can be fixed as 1

and, hence, their bifurcation spaces have dimension three — they are RP
3). Doing this, we are

able to provide the classification of the closure of each one of these families within the set of their

representatives in the parameter space of the adopted normal forms for each family.

The parameter space of the closure of family (A) is partitioned in 85 parts, yielding 38 topo-

logically distinct phase portraits; the parameter space of the closure of family (B) is partitioned in

43 parts, yielding 25 topologically distinct phase portraits; and the parameter space of the closure

of family (C) is partitioned in 1034 parts, yielding 371 topologically distinct phase portraits. The

results on this families are contained in:

J. C. ARTÉS, A. C. REZENDE, R. D. S. OLIVEIRA, The geometry of quadratic polynomial

differential systems with a finite and an infinite saddle–node (A,B), Internat. J. Bifur. Chaos Appl.
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Sci. Engrg. 24 (2014), 30pp.

and

J. C. ARTÉS, A. C. REZENDE, R. D. S. OLIVEIRA, The geometry of quadratic polynomial

differential systems with a finite and an infinite saddle–node (C), Preprint, 2014.

For the analysis of the systems described above we have used the theory of invariant poly-

nomials proposed by Sibirsky and his pupils. In addition to this algebraic tool, we have used the

softwares Mathematica, P4 and also an implementation in Fortran.

Besides these three works, we dare to go a little beyond. While we were studying the prelimi-

naries for this thesis, we faced the problem of classifying topologically a quadratic system of type

SIS model. Until that time, we had not had contact with the theory developed by the Sibirsky’s

school, so we had to use the classical results on qualitative theory of differential equations. It is

a 4−parametric family which yields 3 topologically distinct phase portraits. The results on this

family are contained in:

R. D. S. OLIVEIRA, A. C. REZENDE, Global phase portraits of a SIS model. Appl. Math.

Comput. 219 (2013), 4924–4930.

Finally, but not less important, we also present in this thesis a joint work with Vulpe, which

was done during the Brazilian summer of 2014 at ICMC–USP. In this work, we use the invari-

ant polynomials to classify all the quadratic systems possessing a nondegenerate hyperbola given

necessary and sufficient conditions by means of the invariant polynomials for these systems to

possess at least one invariant hyperbola. Moreover, we provide their number and their multiplic-

ity. The results on these family are contained in:

R. D. S. OLIVEIRA, A. C. REZENDE, N. VULPE, Family of quadratic differential systems

with invariant hyperbolas: a complete classification in the space R
12. Cadernos de Matemática.

15 (2014), 19–75.

This thesis is divided as follows. In Chapter 1 we provide basic concepts on the qualitative

theory of differential equations and we also give an emphasis for the quadratic systems; the

reader which is familiar to these concepts can skip this chapter. In Chapter 2 we present all the

nomenclature concerning the singular points; they refer to “new” definitions more deeply related

to the geometry of the singular points, their multiplicity and, especially, their Jacobian matrices.

Chapter 3 presents the notions of blow–up and Poincaré’s compactification; in this chapter we

discuss the results of the SIS model.
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In Chapter 4 we describe the theory of invariant polynomials stated by Sibirsky and his pupils.

This is the most important tool used in this thesis.

The results of the systems possessing a triple node are demonstrated in Chapter 5, while

Chapters 6 and 7 discuss the systems having the two saddle–nodes, one finite and the other

infinite.

In Chapter 8 we classify all the quadratic systems possessing an invariant nondegenerate

hyperbola and, finally, in Chapter 9 we describe the further works to be done and ideas for the

future.

I take this opportunity to thank the committee members Jaume Llibre, Dana Schlomiuk and

Nicolae Vulpe for being present on the day of the defense (either in person or by videoconference)

and also for the valuable comments and corrections which have enriched this thesis further. More-

over, I thank the advisors Joan Carles Artés and Regilene Oliveira for all patience and willingness

to teach.

Have a good reading!



Chapter

1

Basic concepts on qualitative theory

of ordinary differential equations

In this chapter we present some of the basic results on the qualitative theory of ordinary

differential equations. Moreover, we define the class of differential systems we are going to study

and present some peculiarities and related theories which will provide the basic tools in their

analysis.

It is worth mentioning that the following theory is stated for differential equations in the

plane R
2. However, it is extendable for any euclidian space R

n (or even for Banach spaces) and it

can be easily found in any book of classical ordinary differential equations (e.g. see [58] and [1]).

We also provide some definitions which will be very useful in the development of the appli-

cations we purpose to investigate. If not mentioned, all the results stated below as well as their

proves can be found in [27].

1.1 Vector fields and flows in R
2

We consider U ⊂R
2 an open subset of the plane R

2. We define a vector field of class Cr on U

as a Cr map

X : U 7→R
2

where X (x) represents a vector attached at the point x ∈U . The r in Cr denotes a positive integer,

+∞ or ω, where Cω stands for the set of analytic functions.
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I t

ϕ

U

ϕ′(t)= X (ϕ(t))

ϕ(t)

Figure 1.1: An integral curve

Figure 1.1 shows the graphical representation of a vector field on the plane which consists of

a number of well chosen vectors (x, X (x)). Moreover, the notion of integrability of a vector field

is based on the idea of looking for curves x(t), with t belonging to some interval in R, which are

solutions of the differential equation

ẋ= X (x), (1.1.1)

where x ∈ U , and ẋ denotes dx/dt (i.e. the derivative of x with respect to t). In this sense, the

variables x and t are called the dependent variable and the independent variable of the differential

equation, respectively. The variable t is usually called the time.

If X = X (x) does not depend on t, we say that the differential equation (1.1.1) is autonomous.

Solutions of this differential equation are differentiable maps ϕ : I 7→U where I is an interval

of R where the solution is defined, such that

dϕ

dt
(t)= X (ϕ(t)),

for every t ∈ I.

We can also represent the vector field by the differential operator

X = X1
∂

∂x1
+X2

∂

∂x2
,

which operates on functions that are at least C1. For such a function f , the image

X f (x1, x2)= X1
∂ f (x1, x2)

∂x1
+X2

∂ f (x1, x2)

∂x2

represents the derivative of f ◦ϕ at x= (x1, x2), for any solution ϕ at t with ϕ(t)= x.
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Moreover, we associate to the vector field X = (X1, X2) (or to the differential equation (1.1.1))

the 1−form

ω= X1(x1, x2)dx2−X2(x1, x2)dx1.

In this thesis, the notation of a vector field may also appear as a differential equation or an

1−form, but they will refer to the same object (according to the correspondences made above).

Definition 1.1.1. A point x ∈ U such that X (x) = 0 (respectively, X (x) 6= 0) is called a singular

point (respectively, regular point) of X .

Remark 1.1.2. A singular point can also be called either a singularity, or a critical point, or an

equilibrium point. In this thesis we use all these denominations indistinctly.

Let x ∈U be a singular point of X . Then, ϕ(t)= x, with −∞< t <∞, is a solution of (1.1.1), i.e.

0=ϕ′(t)= X (ϕ(t))= X (x).

Definition 1.1.3. Let x0 ∈U and ϕ : I →U be a solution of (1.1.1) such that ϕ(0)= x0. The solution

ϕ : I →U is called maximal if, for every solution ψ : J →U such that 0 ∈ I ⊂ J and ϕ=ψ
∣∣
I , then

I = J and, consequently, ϕ=ψ.

In the case of Definition 1.1.3, we denote I = Ix0 and call it the maximal interval.

Definition 1.1.4. Let ϕ : Ix0 → U be a maximal solution (either regular or constant). Its image

γϕ = {ϕ(t); t ∈ Ix0} ⊂ U endowed with the orientation induced by ϕ, in case ϕ is regular, is called

orbit, trajectory or (maximal) integral curve associated to the maximal solution ϕ.

We recall that for a solution defining an integral curve, the tangent vector ϕ′(t) at ϕ(t) coin-

cides with the value of the vector field X at the point ϕ(t) (see Figure 1.1).

Remark 1.1.5. Let X be a vector field of class Cr, with 1 ≤ r ≤ ∞ or r = ω. We consider the set

Ω = {(t, x); x ∈ U , t ∈ Ix}. It is well-known that Ω is an open set in R
3 and ϕ : Ω → R

2 given by

ϕ(t, x)=ϕx(t) is a map of class Cr. (The proof of this fact can be found in [58].)

We denote by ϕ : Ω→ R
2 the flow generated by the vector field X . We note that, if Ix = R for

every x, the flow generated by X is defined on Ω=R×U . But many times we have Ix 6=R. For this

reason, the flow generated by X is often called the local flow generated by X .
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Definition 1.1.6. Let ϕx(t) be an integral curve of X. We say that it is periodic if there exists a

real number T > 0 such that ϕx(t+T)=ϕx(t), for every t ∈R.

Having stated some definitions, geometrical elements and properties of differential equations,

we need to discuss about the phase portrait of a planar differential system. The classification we

want to do is based on the topological classification of all phase portraits of some families.

1.2 Phase portrait of a differential system

As discussed in Section 1.1, the orbit γp of a vector field X : U →R
2 through the point p is the

image of the maximal solution ϕp : I p →U endowed with an orientation, if the solution is regular.

Remark 1.2.1. We note that the orbit passing through any point q ∈ γp coincides with γp, i.e., if

q ∈γp, then γq = γp.

By Remark 1.2.1, it follows that, if q ∈γp, then there exists t1 ∈ I p such that

q =ϕ(t1, p), ϕ(t, q)=ϕ(t+ t1, p) and I p − t1 = Iq.

In other words, given two orbits of X either they coincide or they are disjoint.

Roughly speaking, the next well-known result states that, given a solution ϕ of a vector field

X , it is either a point, or a line, or a periodic orbit.

Proposition 1.2.2. [27] If ϕ is a maximal solution of a Cr differential system (1.1.1), then one of

the following statements holds.

(i) ϕ is a bijection onto its image;

(ii) I =R, ϕ is a constant function and γϕ is a point;

(iii) I = R and ϕ is a periodic function of minimal period T (i.e. there exists a value T > 0 such

that ϕ(t+T)=ϕ(t), for every t ∈R, and ϕ(t1)=ϕ(t2), if |t1− t2| < T).

Remark 1.2.3. In statements (i) and (iii) of Proposition 1.2.2 we could add that γϕ is Cr− diffeo-

morphic to R and that γϕ is Cr− diffeomorphic to S
1, respectively.

An important object we are interested in this thesis is the global phase portrait of a differ-

ential system. All the classification we are going to present here are based on the topological

classification of the global phase portraits of families of polynomial systems.
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By a phase portrait of the vector field X : U → R
2 we mean the set of oriented orbits of X . It

consists of singularities and regular orbits, oriented according to the maximal solutions describing

them (and, consequently, in the sense of increasing t). In general, the phase portrait is represented

by drawing a number of significants orbits, representing the orientation by arrows (in case of

regular orbits). The notion of global phase portraits will be discussed later.

1.3 Topological equivalence and conjugacy

In this section we briefly present the notions of topological equivalence and conjugacy between

two vector fields which allow the comparison of their phase portraits.

Let X1 and X2 be two vector fields defined on open subsets U1 and U2 of R2, respectively.

Definition 1.3.1. The vector field X1 is topologically equivalent (respectively, Cr− equivalent)

to X2 when there exists a homeomorphism (respectively, a Cr− diffeomorphism) h :U1 →U2 which

sends orbits of X1 to orbits of X2 preserving orientation.

Definition 1.3.1 can be understood as follows. Let p ∈ U1 and γ1
p be the oriented orbit of X1

passing through p. Then, h(γ1
p) is an oriented orbit of X2 passing through h(p). Such a homeo-

morphism h is called topological equivalence (respectively, Cr− equivalence) between X1 and X2.

Now, let ϕ1 :Ω1 →R
2 and ϕ2 :Ω2 →R

2 be the flows generated by the vector fields X1 : U1 →R
2

and X2 : U2 →R
2, respectively.

Definition 1.3.2. The vector field X1 is topologically conjugate (respectively, Cr− conjugate)

to X2 when there exists a homeomorphism (respectively, a Cr− diffeomorphism) h : U1 →U2 such

that h(ϕ1(t, x)) = ϕ2(t, h(x)), for every (t, x) ∈ Ω1. In this case, it is necessary that the maximal

intervals Ix for ϕ1 and Ih(x) for ϕ2 be equal.

The homeomorphism (respectively, diffeomorphism) h of Definition 1.3.2 is called a topological

conjugacy (respectively, Cr− conjugacy) between X1 and X2. We note that any conjugacy is also

an equivalence.

Remark 1.3.3. A topological equivalence h defines an equivalence relation between vector fields

defined on open sets U1 and U2 = h(U1) of R2. A topological equivalence h between X1 and X2 maps

singular points to singular points and periodic orbits to periodic orbits. If h is a conjugacy, then

the period of the periodic orbits is also preserved.
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1.4 Polynomial differential systems

We now consider P and Q two complex polynomials in the variables x and y of degrees m and

n, respectively, and suppose that the two algebraic curves P(x, y) = 0 and Q(x, y) = 0 intersect in

a finite number of points, i.e. that the polynomials P and Q have no common factor in the ring of

complex polynomials. By Bézout’s Theorem (see [32], page 47), the two algebraic curves P(x, y)= 0

and Q(x, y) = 0 intersect in at most mn points of the complex plane C
2, and exactly in mn points

of the complex projective plane CP
2, if we take into account the multiplicity of the intersection

points.

A differential system of the form

ẋ = P(x, y),

ẏ=Q(x, y),
(1.4.1)

where P and Q are polynomials in the real variables x and y is called a polynomial differential

system of degree m, if m is the maximum degree of the polynomials P and Q.

From Bézout’s Theorem we conclude that a system (1.4.1) of degree m has either infinitely

many singular points or at most m2 singular points in R
2.

Two important elements of a polynomial differential system are invariant algebraic curves

and first integrals. They play an important role in the geometry of the system in the sense that

they allow to draw its phase portrait.

Definition 1.4.1. Let f ∈C[x, y]. We say that the algebraic curve f (x, y)= 0 is an invariant alge-

braic curve of systems (1.4.1), if there exists K ∈C[x, y] such that

P
∂ f

∂x
+Q

∂ f

∂y
= K f . (1.4.2)

The polynomial K is called the cofactor of the invariant algebraic curve f = 0.

Definition 1.4.2. Let V be an open and dense subset of R2. We say that a nonconstant function

H : V →R is a first integral of a system (1.4.1) on V, if H(x(t), y(t)) is constant for all of the values

of t for which (x(t), y(t)) is a solution of this system contained in V .

Clearly, H is a first integral of systems (1.4.1) if, and only if,

X (H)= P
∂H

∂x
+Q

∂H

∂y
= 0, (1.4.3)
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for all (x, y) ∈ V . When a system (1.4.1) has a first integral we say that this system is integrable.

We note that, if in Definition 1.4.1 we have K = 0, then f is a polynomial first integral of sys-

tem (1.4.1).

We now give the notion of graphics, which play an important role in obtaining limit cycles

when they are due to connection of separatrices, for example.

Definition 1.4.3. A (nondegenerate) graphic as defined in [28] is formed by a finite sequence

of singular points r1, . . . , rn (with possible repetitions) and non–trivial connecting orbits γi for i =

1, . . ., n such that γi has r i as α–limit set and r i+1 as ω–limit set for i < n and γn has rn as α–limit

set and r1 as ω–limit set. Also normal orientations n j of the non–trivial orbits must be coherent in

the sense that if γ j−1 has left–hand orientation then so does γ j. A polycycle is a graphic which has

a Poincaré return map.

Definition 1.4.4. A degenerate graphic is formed by a finite sequence of singular points r1, . . . , rn

(with possible repetitions) and non–trivial connecting orbits and/or segments of curves of singular

points γi for i = 1, . . . , n such that γi has r i as α–limit set and r i+1 as ω–limit set for i < n and

γn has rn as α–limit set and r1 as ω–limit set. Also normal orientations n j of the non–trivial or-

bits must be coherent in the sense that if γ j−1 has left–hand orientation then so does γ j. For more

details, see [28].

1.5 A few basic properties of quadratic systems relevant for this

study

Setting m = 2, we rewrite system (1.4.1) in the following generic form:

ẋ= a+ cx+d y+ gx2+2hxy+ky2,

ẏ= b+ ex+ f y+ℓx2+2mxy+ny2.
(1.5.1)

Remark 1.5.1. In systems (1.5.1), we consider the coefficient of the terms xy in both equations mul-

tiplied by 2 in order to make easier the calculations of the algebraic invariants we shall compute

later.

We list below some results which play a role in the study of the global phase portraits of the

real planar quadratic systems (1.5.1).
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(i) A straight line either has at most two (finite) contact points with a quadratic system (which

include the singular points), or it is formed by trajectories of the system; see Lemma 11.1 of

[62]. We recall that by definition a contact point of a straight line L is a point of L where the

vector field has the same direction as L, or it is zero;

(ii) If a straight line passing through two real finite1 singular points r1 and r2 of a quadratic

system is not formed by trajectories, then it is divided by these two singular points in three

segments ∞r1, r1r2 and r2∞ such that the trajectories cross ∞r1 and r2∞ in one direction,

and they cross r1r2 in the opposite direction; see Lemma 11.4 of [62];

(iii) If a quadratic system has a limit cycle, then it surrounds a unique singular point, and this

point is a focus; see [22].

(iv) A quadratic system with an invariant straight line has at most one limit cycle; see [21].

(v) A quadratic system with more than one invariant straight line has no limit cycle; see [12].

Proposition 1.5.2. A graphic must either

(i) surround a singular point of index greater than or equal to +1, or

(ii) contain a singular point having an elliptic sector situated in the region delimited by the

border, or

(iii) contain or surround an infinite number of singular points.

Proof. Let S be a simply connected closed bidimensional set which is invariant under the flow of

a vector field. In [4] the index of ∂S is given by:
∑n

i=1(E i −Hi +2)/2, where E i (respectively, Hi) is

the number of elliptic (respectively, hyperbolic) sectors which are inside the region delimited by S

of the singular points forming the border. Also the index of S is given by the index of ∂S plus the

sum of the indices of the singular points in the interior of S.

From the same paper, Proposition 4.8 claims that given a vector field X or p(X ) (the com-

pactified vector field2) and S an invariant region topologically equivalent to D
2 (the closed disk)

containing a finite number of singular points (both in ∂S or its interior), then the index of S is

always +1.

Now, assume that we have a graphic of a polynomial system. If it contains an infinite number

of singular points (either finite or infinite) we are done. Otherwise, such a graphic together with

1See Chapter 3 for the definition of finite and infinite singular points
2See Chapter 3 for the definition of compactified vector field
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its interior is an invariant region as defined in [4] and must have index +1. Since the index is

positive, we must have some element, either in the interior or on the border which makes the

index positive, and this implies the existence of either a point of index greater than or equal to

+1 in its interior or at least one elliptic sector coming from a singular point on the border and

situated in the region delimited by the graphic.

1.6 Intersection numbers for curves

According to [6], in this section we summarize the notion of intersection number of two al-

gebraic curves at a point (see [30] for a complete explanation). This notion will be very useful

in the definition of multiple singular point given in Chapter 2 and also in the description of the

bifurcation surfaces (in Chapters 5, 6 and 7) combined with the notion of divisor and zero–cycles

given in the end of Chapter 4.

Definition 1.6.1. Let C : f (x, y) = 0 and C′ : g(x, y) = 0 be two affine algebraic curves over C. The

intersection number of C and C′ over C at a point a ∈C
2 is the number:

Ia( f , g)= dimC

Oa

( f , g)
,

where Oa is the local ring of the affine complex plane A2(C)=C
2 at a, i.e. Oa is the ring of rational

functions r(x, y)/s(x, y) which are defined at a (i.e. s(a) 6= 0), and ( f , g) is the ideal generated by the

functions f and g.

In the case that the polynomial differential systems are quadratic, the intersection numbers

Ia(P,Q) for P and Q as in (1.5.1), at the singular points a in C
2 can be computed easily by using

axioms in [30].

We can also define the intersection number for projective curves. See Section 3.3 (page 35) for

the definition.

From now on, we assume that the reader knows most of the basic definitions and results

on qualitative theory of differential systems on the plane R
2 (see Chapter 1 of [27] for further

reference). However, in Chapter 3 we shall discuss more emphatically the ideas of blow–up and

Poincaré’s compactification which play an important role in the application presented there.
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Chapter

2

New nomenclature for singular

points

2.1 New notation and representation for singular points

In this section we present new notation and designation for singular points which make part of

a set of new definition more deeply related to the geometry of the singular points, their multiplicity

and, especially, their Jacobian matrices.

We summarize here the definitions we shall use in this thesis. The entire new designation

can be found in [7]. The purpose of these new nomenclature lays on the idea of introducing the

geometric equivalence relation for singularities, finite or infinite, of planar quadratic vector fields.

This equivalence relation is finer than the qualitative equivalence relation introduced by Jiang

and Llibre in [35] since the first one distinguishes among the foci of different orders and among

the various types of nodes. This equivalence relation also induces a finer distinction among the

more complicated degenerate singularities.

Definition 2.1.1. [7] Concerning the degeneracy of a singular point r of a quadratic vector field

X, it can be called:

(i) elemental, if both eigenvalues of DX (r) are nonzero;

(ii) semi–elemental, if DX (r) has exactly one of its eigenvalues equal to zero;

(iii) nilpotent, if both of the eigenvalues of DX (r) are zero, but the matrix of DX (r) is not identi-

cally zero;
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(iv) intricate, if the matrix of DX (r) is identically zero.

Remark 2.1.2. The equivalent names in the literature for the singular points given in Defini-

tion 2.1.1 are, respectively, hyperbolic (or elementary), semi–hyperbolic (or semi–elementary),

nilpotent and linearly zero.

Definition 2.1.3. We say an elemental singular point is an antisaddle, if its index is +1, and it

is a saddle, if its index is −1.

Notation 2.1.4. For the elemental singular points, we use the letters ‘s’ and ‘S’ for saddles; ‘n’ and

‘N’ for nodes; ‘ f ’ for foci and ‘c’ for centers. The lower–case letters are for finite singularities and

the capital letters are for the infinite ones.

Being more specific, we distinguish the finite nodes as follows:

(i) ‘n’ for a node with two distinct eigenvalues (generic node);

(ii) ‘nd ’ for a node with two identical eigenvalues whose Jacobian matrix cannot be diagonal

(one–direction node);

(iii) ‘n∗’ for a node with two identical eigenvalues whose Jacobian matrix is diagonal (star node).

Moreover, in the case of an elemental infinite generic node, we want to distinguish whether

the eigenvalue associated to the eigenvector directed towards the affine plane is, in absolute value,

greater or lower than the eigenvalue associated to the eigenvector tangent to the line at infinity.

This difference is relevant to determine if all the orbits except one on the Poincaré disk arrive at

infinity tangentially to the line at infinity or transversally to this line. We shall denote them by

‘N∞’ and ‘N f ’, respectively.

To distinguish among the foci (or saddles) of different orders we use the algebraic concept of

Poincaré–Lyapunov constants.

Definition 2.1.5. We call strong focus (or strong saddle) a focus (or a saddle) with nonzero

trace of the linearization matrix at this point. Such a focus (or saddle) will be defined to have the

order zero. A focus (or saddle) with trace zero is called a weak focus (or weak saddle).

Notation 2.1.6. According to Definition 2.1.5, finite elemental foci and saddles are classified as

strong or weak. When the trace of the Jacobian matrix evaluated at those singular points is not

zero, we call them strong saddles and strong foci and we maintain the standard notations ‘s’ and

‘f ’. But when the trace is zero, except for centers and saddles of infinite order (i.e. saddles with
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all their Poincaré–Lyapounov constants equal to zero), it is known that the foci and saddles, in

the quadratic case, may have up to 3 orders. We denote them by ‘s(i) ’ and ‘f (i)’, where i = 1,2,3

is the order. In addition, we have the centers which we denote by ‘c’ and saddles of infinite order

(integrable saddles) which we denote by ‘$’.

For details on Poincaré–Lyapunov constants and weak foci we refer to [39].

The next definition sets the concept of multiplicity of singular points using the notion of inter-

section numbers for curves stated in Definition 1.6.1.

Definition 2.1.7. [49] We say that a singular point r of system (1.4.1) has multiplicity k, if the

intersection number of the curves P = 0 and Q = 0 at r is k, i.e. if Ir(P,Q)= k.

Equivalently and roughly speaking, a singular point r of a polynomial differential system X

is a multiple singularity of multiplicity k, if r produces k singularities, as close to r as we desire,

in polynomial perturbations Xε of this system and k is the maximal such number. In polynomial

differential systems of fixed degree n we have several possibilities for obtaining multiple singu-

larities:

(i) a finite singular point splits into several finite singularities in n−degree polynomial pertur-

bations;

(ii) an infinite singular point splits into some finite and some infinite singularities in n−degree

polynomial perturbations;

(iii) an infinite singularity splits only in infinite singular points of the systems in n−degree per-

turbations.

Another way to describe a singularity of multiplicity k is calling it a collision of k singulari-

ties in which we can add as information the type of the singularities that can be obtained after

perturbations.

To all the previous cases it is possible to give a precise mathematical meaning using the notion

of multiple intersection at a point r of two algebraic curves, in the sense of Definition 2.1.7.

The next definition standardizes the notation of certain singular points which will be the

object of study in the next chapters.

Definition 2.1.8. (i) A finite singular point is a finite saddle–node, if its neighborhood is

formed by the union of two hyperbolic sectors and one parabolic sector;

(ii) An infinite singular point is an infinite saddle–node, if either:

(ii.1) it is the collision of an infinite saddle with an infinite node;
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(ii.2) it is the collision of a finite saddle (respectively, finite node) with an infinite node (re-

spectively, infinite saddle).

Notation 2.1.9. All nonelemental singular points are multiple points. For finite singular points

we denote their multiplicity with a subindex as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the

point is semi–elemental and ‘̂ ’ indicates that the singular point is nilpotent). In order to describe

the various kinds of multiplicity for infinite singular points we use the concepts and notations

introduced in [53]. Thus we denote by ‘
(a
b

)
...’ the maximum number a (respectively, b) of finite

(respectively, infinite) singularities which can be obtained by perturbation of the multiple point. For

example, ‘
(1
1

)
SN’ means a saddle–node at infinity produced by the collision of one finite singularity

with an infinite one; ‘
(0
3

)
S’ means a saddle produced by the collision of 3 infinite singularities.

The semi–elemental points can either be nodes, saddles or saddle–nodes, finite or infinite. We

will denote the semi–elemental ones always with an overline, for example ‘sn’, ‘s’ and ‘n’ with the

corresponding multiplicity. In the case of infinite points we will put ‘ ’ on the top of the parenthesis

with multiplicities. Semi–elemental nodes could never be ‘nd ’ or ‘n∗’ since their eigenvalues are

always different. In case of an infinite semi–elemental node, the type of collision determines whether

the point is denoted by ‘N f ’ or by ‘N∞’, where ‘
(2
1

)
N’ is an ‘N f ’ and ‘

(0
3

)
N’ is an ‘N∞’.

The nilpotent points can either be saddles, or nodes, or saddle–nodes, or elliptic–saddles, or

cusps, or foci, or centers. The first four of these could be at infinity. We denote the nilpotent singular

points with a hat ‘̂’ as in ‘ês(3)’ for a finite nilpotent elliptic–saddle of multiplicity 3 and ‘ĉp(2)’ for

a finite nilpotent cusp point of multiplicity 2. In the case of nilpotent infinite points, we will put the

‘̂’ on top of the parenthesis with multiplicity, for example
(̂1
2

)
PEP −H. The relative position of the

sectors of an infinite nilpotent point, with respect to the line at infinity, can produce topologically

different phase portraits. This forces us to use a notation for these points similar to the notation

which we will use for the intricate points.

We recall that the neighborhood of any singular point of a polynomial vector field (except for foci

and centers) is formed by a finite number of sectors which could only be of three types: parabolic,

hyperbolic and elliptic (see [27]). Then, a reasonable way to describe intricate and nilpotent points

at infinity is to use a sequence formed by the types of their sectors. The description we give is

the one which appears in the clock–wise direction (starting anywhere) once the blow–down of the

desingularization is done. Thus, in nondegenerate quadratic systems, we have just seven possibil-

ities for finite intricate singular points of multiplicity four (see [8]) which are the following ones:

phpphp(4), phph(4), hh(4), hhhhhh(4), peppep(4), pepe(4) and ee(4).
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We use lower–case letters because they refer to finite singularities and add the subindex (4) since

they are all of multiplicity 4.

For infinite intricate and nilpotent singular points, we insert a hyphen between the sectors to

split those which appear on one side or the other of the equator of the sphere. In this way, we will

distinguish between ‘
(2
2

)
PHP−PHP’ and ‘

(2
2

)
PPH−PPH’. Whenever we have an infinite nilpotent

or intricate singular point, we will always start with a sector bordering the infinity in order to

avoid using two dashes.

It is worth mentioning that the finer distinctions of singularities can be obtained algebraically.

The bifurcation diagram of the global configurations of finite and infinite singularities in quadratic

vector fields can be obtained by using only algebraic means, for instance, the algebraic tool of in-

variant polynomials. In some purposes, algebraic information may not be significant for the local

phase portrait around a singularity. For example, topologically there exists no distinction between

a focus and a node or between a weak and a strong focus. However, algebraic information plays a

fundamental role in the study of perturbations of systems possessing such singularities.

2.2 The normal form for semi–elemental singular points

In this section we present a well–known result which provides the normal form for a quadratic

system to posses either a semi–elemental saddle–node, or a semi–elemental triple node, or a semi–

elemental triple saddle at the origin. This normal form will be very useful in the next applications.

Proposition 2.2.1. [2, 27] Let r = (0,0) be an isolated singular point of the vector field X given by

ẋ= A(x, y),

ẏ= y+B(x, y),
(2.2.1)

where A and B are analytic in a neighborhood of the origin starting with a degree at least 2 in the

variables x and y. Let y= f (x) be the solution of the equation y+B(x, y)= 0 in a neighborhood of the

point r = (0,0), and suppose that the function g(x)= A(x, f (x)) has the expression g(x)= axα+o(xα),

where α ≥ 2 and a 6= 0. So, when α is odd, then r = (0,0) is either an unstable multiple node, or a

multiple saddle, depending if a > 0, or a < 0, respectively. In the case of the multiple saddle, the

separatrices are tangent to the x–axis. If α is even, the r = (0,0) is a multiple saddle–node, i.e. the

singular point is formed by the union of two hyperbolic sectors with one parabolic sector. The stable
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separatrix is tangent to the positive (respectively, negative) x–axis at r = (0,0) according to a < 0

(respectively, a >0). The two unstable separatrices are tangent to the y–axis at r = (0,0).

In the particular case where A and B from system (2.2.1) are real quadratic polynomials in

the variables x and y, a quadratic system with a semi–elemental singular point at the origin can

always be written into the form

ẋ= gx2 +2hxy+ky2,

ẏ= y+ℓx2 +2mxy+ny2.
(2.2.2)

By Proposition 2.2.1, if g 6= 0, then we have a semi–elemental saddle–node sn(2). If g = 0 and

hℓ 6= 0, then, if ℓ< 0, we have a triple node n(3) and, if ℓ> 0, we have a triple saddle s(3).

The study of the case g = 0 and ℓ< 0 is presented in Chapter 5 and the case g 6= 0 is discussed

in Chapters 6 and 7. The remaining case g = 0 and ℓ > 0 will be considered in near future (see

Chapter 9).



Chapter

3

Blow–up, Poincaré’s compactification

and application

In this chapter we give some notions of blow–up and Poincaré compactification. They are the

basic steps we need to learn concerning the qualitative theory of polynomial quadratic systems.

The blow–up is a tool used for studying the local behavior at nilpotent or intricate singularities

by means of blowing up each such a singularity to a line or a circle (as many times as necessary),

obtaining only elemental or semi–elemental singularities on this line (or circle); then we know

their local sectors and separatrices and apply the inverse process (called blow–down), describing

the local behavior of the given singular point. The blow–up is necessary if we want to construct

the phase portrait of a vector field having nilpotent and intricate singularities.

In turn, Poincaré compactification is crucial if we want to draw the global phase portrait of a

vector field on the plane. We shall be able to compactify the whole plane R
2 and identify it to the

unit disk D
2, with the infinity of R2 being the circle ∂D2 =S

1.

We also provide the notions of complex foliation with singularities on CP
2 and of intersection

number for complex curves.

Finally, we present an application using the tools presented until this chapter, including it.

The reader who is familiarized with these concepts could skip Sections 3.1, 3.2, 3.3 and 3.4 and

go directly to Section 3.5.
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3.1 Blow–up: desingularization of nonelemental singularities

We now present the basic tool for studying nonelemental singularities of a differential system

in the plane. This tool consists in applying changes in the variables called blow–ups and it is used

for classifying nilpotent and intricate singularities. Another approach of blow–up is to show that,

at isolated singularities, an analytic system has a finite sectorial decomposition.

The most–applied types of blow–up are the homogeneous one and the quasihomogeneous one.

In this thesis we briefly introduce only the first type, and the second can be found in [27].

In spite of the fact that blow–up techniques are supposed to be known by the ones interested

in studying quadratic differential systems, the aim of discussing them here is to reinforce the

idea that, even if the singularity is nonelemental (as the nilpotent singular point), there exist

techniques which help us to detect the behavior at the point.

It is worth mentioning that the homogeneous blow–up is a particular case of the quasihomo-

geneous blow–up, if we consider the weights (1,1). In this sense, although we present only the

notions on homogenous blow–up, the algorithm used in program P4 (Planar Polynomial Phase

Portraits, see Chapter 10 of [27]; and also [3]) is based on the use of quasihomogeneous blow–up.

For further information on these two types of blow–up, see [27].

We consider a vector field X on R
2 of class C∞ and let p ∈ R

2 be a singularity of X . Via a

translation (if necessary), we may assume p is the origin of R2. We consider the map

φ :S1 ×R→R
2

(θ, r) 7→ (r cosθ, r sinθ).

Thus, we can define a new vector field X̂ of class C∞ on the cylinder S1×R such that φ∗(X̂ )= X ,

in the sense that

Dφv(X̂ (v))= X (φ(v)). (3.1.1)

This property is called the pull–back of X by φ and it is nothing else but X written in polar

coordinates.

Remark 3.1.1. The map φ is a C∞ diffeomorphism. Then, it is an authentic C∞ coordinate change

on S
1 × (0,∞), but not on {r =0}. This map φ is called the polar blow–up.

Indeed, it is easy to observe that φ maps the set {r = 0} to the point (0,0), but the inverse

mapping φ−1 blows up the origin to a circle.
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In order to study the phase portrait of X in a neighborhood V of the origin, it is sufficient

to study the phase portrait of X̂ on the neighborhood φ−1(V ) of the circle S
1 × {0} (we can even

restrict to {r ≥0}).

A priori analyzing X̂ seems to be a more difficult task than examining the vector field X itself,

but its construction is very helpful. We note that, if the k−jet jk(X )(0) is zero, then jk(X̂ )(u) = 0,

for all u ∈S
1 × {0}.

The cylinder is a good surface for having a global view of X̂ and its phase portrait. However, it

is generally less suitable for making calculations, since we regularly have to deal with trigonomet-

ric expressions. In this sense, we always choose to perform the computations in different charts.

On the parts of the cylinder given, respectively, by θ ∈ (−π/2,π/2) and θ ∈ (π/2,3π/2) we use a

chart given by

K x : (θ, r) 7→ (r cosθ, tanθ)= (x, y).

In this chart, the expression of the blow–up map φ is given by

φx : (x, y) 7→ (x, xy). (3.1.2)

Indeed, we observe that

φ=φx ◦K x : (θ, r)
K x

7→ (r cosθ, tanθ)

φx

7→ (r cosθ, r cosθ tanθ)= (r cosθ, r sinθ).
(3.1.3)

The map φx defined in (3.1.2) is called blow–up in the x−direction and the pull–back of X by

means of φx is denoted by X̂ x, i.e. (φx)∗(X̂ x)= X .

Analogously, on the parts of the cylinder given, respectively, by θ ∈ (0,π) and θ ∈ (π,2π) we use

a chart given by

K y : (θ, r) 7→ (cotθ, r sinθ)= (x, y).

So, this leads to the following expression of the blow–up map φ:

φy : (x, y) 7→ (xy, y), (3.1.4)

which is such that φ=φy ◦K y. The map φy defined in (3.1.4) is called blow–up in the y−direction

and the pull–back of X by means of φy is denoted by X̂ y, i.e. (φy)∗(X̂ y)= X .

Both φx and φy are called directional blow–ups.
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If jk(X )(0) = 0 and jk+1(X )(0) 6= 0, then jk(X̂ x)(z) = 0 and jk(X̂ y)(z) = 0, for z ∈ {x = 0} and

z ∈ {y= 0}, respectively. In this case, the pull–back X̂ and likewise X̂ x and X̂ y are quite degenerate,

and to make the situation less degenerate, we consider X defined as

X =
1

rk
X̂ .

It is clear that X is also a C∞ vector field on S
1 ×R. On {r > 0} this division does not change

the orbits of X̂ or their sense of direction, but only the parametrization by t. From the formulas

above, we conclude that singularities of X
∣∣
{r=0} comes in pairs of opposite points.

For the directional blow–ups we use (1/xk)X̂ x in case (3.1.2) and (1/yk)X̂ y in case (3.1.4).

Remark 3.1.2. We note that, on {x 6= 0} (respectively, {y 6= 0}), the vector fields (1/rk)X̂ and (1/xk)X̂ x

(respectively, (1/yk)X̂ y) are no longer equal up to analytic coordinate change, as were X̂ and X̂ x

(respectively, X̂ y), but they are the same up to analytic coordinate change and multiplication by a

nonzero analytic function.

Concerning the blow–up in the x−direction, since φ=φx◦K x, we conclude that (K x)∗(X̂ )= X̂ x.

Hence,

(K x)∗(X )= (K x)∗(X̂ /rk)=
1

rk
(K x)∗(X̂ )=

1

rk
X̂ x = X

x
(

x

r

)k

.

Seen in (θ, r)−coordinates, we have x/r = cosθ, which is strictly positive on the part of the

cylinder given by θ ∈ (−π/2,π/2).

Analogously, in the y−direction, we have (K y)∗(X̂ ) = X̂ y and (K y)∗(X ) = X
y
(sinθ)k, with

sinθ > 0 on the part of the cylinder given by θ ∈ (0,π).

The directional blow–up φx (respectively, φy) can also be used for making a study on

{(θ, r); θ ∈ (π/2,3π/2), r ≥0} (respectively, {(θ, r); θ ∈ (π,2π), r >0}), but in the case we have cosθ < 0

(respectively, sinθ < 0).

If k is odd, this implies that in the phase portraits that we find for X
x∣∣

{x≤0} (respectively,

X
y∣∣

{y≤0}) we have to reverse the time. Such a time reversal could be avoided by using φx (respec-

tively, φy) only for x ≥ 0 (respectively, y≥ 0); adding two extra directional blow–ups

φ−x :(x, y) 7→ (−x,−xy), φ−y : (x, y) 7→ (−xy,−y),

makes us limit to, respectively, x ≥ 0 and y≥ 0.



3.1 Blow–up: desingularization of nonelemental singularities 29

Remark 3.1.3. There exist some cases for which applying the blow–up only once is not sufficient

to desingularize the singularity, i.e. there remains nonelemental singularities of X
∣∣
{r=0} at which

we need to repeat the blow–up construction, leading to successive blow–up (see Example 3.2 of [27],

page 95, for an illustration of this fact).

Remark 3.1.4. After a sequence of n blow–ups, we find some C∞ vector field X
n

defined on a

domain Un ⊂ R
2. The vector field X

n
remains analytic if we consider an analytic vector field X.

We denote by Γn = (φ1◦· · ·◦φn)−1(0)⊂Un. Only one of the connected components of R2\Γn, call it An,

has a noncompact closure. Furthermore, the border ∂An ⊂ Γn is homeomorphic to S
1 and consists

of a finite number of analytic regular closed arcs meeting transversally. The map (φ1 ◦ · · · ◦φn)
∣∣
An

is an analytic regular diffeomorphism which maps An onto R
2 \{0}. There exists a strictly positive

function Fn on An such that X̂ n = FnX
n

and X̂ n
∣∣
An

is analytically diffeomorphic to X
∣∣
R2\{0} by

means of the diffeomorphism (φ1 ◦ · · · ◦φn)
∣∣
An

. The function Fn extends in a Cω way to ∂An where

in general it is 0.

By Remark 3.1.3, there appears some questions regarding successive blow–ups.

(a) How many times could we apply the blow–up to a vector field?

(b) Could this sequence of blow–ups be controlled in the sense that it leads to a desingularization?

(c) Is there any sufficient condition for applying successive blow–ups and obtain a desingularized

vector field?

The answer to all these questions is yes!

In order to control a sequence of blow–ups and to guarantee it leads to a desingularization, we

need the notion of a Łojasiewicz inequality.

Definition 3.1.5. We say a vector field X on R
2 satisfies a Łojasiewicz inequality at 0 if there

exist k ∈N, with k ≥ 1, and c >0 such that ‖X (x)‖ ≥ c‖x‖k on some neighborhood of 0.

Remark 3.1.6. We observe that for analytic vector fields at isolated singularities, a Łojasiewicz

inequality always holds (see [14] for further information).

The next theorem answers our questions. It provides a sufficient condition to obtain a desin-

gularized vector field and it also states the type of the obtained singularities. We shall not give a

proof for this theorem, but it can be found in [25].

Theorem 3.1.7. [25] If a vector field X satisfies a Łojasiewicz inequality at 0, then there exists

a finite sequence of blow–ups φ1 ◦ · · · ◦φn leading to a vector field X
n

defined in the neighborhood
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of ∂An of which the singularities on ∂An are elemental. These elemental singularities can be as

follows:

(i) isolated singularities p which are elemental or semi–elemental with flat behavior on the center

manifold;

(ii) regular analytic closed curves (or possibly the whole ∂An when n = 1) along which X
n

is

normally elemental.

We treat the blow–up only as a technique to desingularize singularities. The method comes

to be successful, at least if we apply it to a singularity of Łojasiewicz type, such as an isolated

singularity of an analytic system. The reader may find more information on this technique as

well as more examples in [27].

Having discussed a little about the (polar and directional) homogeneous blow–ups and their

successive application, we find that they are sufficient for studying isolated singularities of an

analytic vector field. Even though, there exist a more effective type of blow–up called the quasi-

homogeneous blow–up. As said earlier, this approach of blow–up is the one used in the program

P4 [3] due to the effectiveness of the desingularization compared to the homogeneous one. We

refer to [27] for further information on this topic.

3.2 Poincaré compactification

The main goal of this section is to present a technique which enables us to join all the local

behavior at each finite singular point with the behavior at infinite of a quadratic differential

system by compactifying the whole plane R
2 (in a “special” way), leading us to its global behavior

(or global phase portrait).

The first approach we think when talking about compactifying the plane R
2 is using the stere-

ographic projection of the sphere onto the plane, in which case a single “point at infinity” is ad-

joined to the plane (see [13]). However, Poincaré [46] introduced a better technique for studying

the behavior of trajectories near infinity by using the so called Poincaré sphere. Its advantage is

that the singular points at infinity are displayed along the equator of the sphere and they are of

a simpler nature than the singular points of the Bendixson sphere, but some of them being still

very complicated. Nevertheless, for our purpose, the Poincaré compactification will be very useful.

In order to draw the phase portrait of a vector field, we were supposed to work over the com-

plete plane R
2, which is not very practical. As our approach in this thesis is to study only polyno-
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mial vector fields, we can apply Poincaré compactification, which provides us a way to draw the

phase portrait in a finite region.

In this sense, in order to reduce the study to a finite region of the plane, we have to introduce

some notations.

In this section we shall use the coordinates (x1, x2) instead of (x, y). Let X = P ∂/∂x1 +Q ∂/∂x2

be a polynomial vector field (in the sense of Section 1.4), or, equivalently, the system

ẋ1 = P(x1, x2),

ẋ2 =Q(x1, x2).
(3.2.1)

We recall that the degree of X is d =max{deg(P),deg(G)}.

We consider R
2 as the plane (y1, y2, y3) = (x1, x2,1) in R

3. Let S
2 = {y ∈ R

3; y2
1 + y2

2 + y2
3 = 1} be

the sphere in R
3, which we shall call it as Poincaré sphere and which is tangent to R

2 at the point

(0,0,1).

We divide this sphere into three parts: H+ = {y ∈ R
3; y3 > 0}, the northern hemisphere,

H− = {y ∈R
3; y3 < 0}, the southern hemisphere, and S

1 = {y ∈R
3; y3 = 0}, the equator.

We consider the projection of the vector field X from R
2 to S

2 given by the central projections

f + :R2 →S
2 and f − :R2 →S

2,

where f +(x) (respectively, f −(x)) is the intersection of the straight line passing through the point

y and the origin with the northern (respectively, southern) hemisphere of S2, i.e.

f +(x)=
(

x1

∆(x)
,

x2

∆(x)
,

1

∆(x)

)
, f −(x)=

(
−

x1

∆(x)
,−

x2

∆(x)
,−

1

∆(x)

)
,

where ∆(x)=
√

x2
1 + x2

2 +1.

We observe that we obtain induced vector fields in each hemisphere which are analytically

conjugate to X . The induced vector field on H+ is X (y) =D f +(x)X (x), where y = f +(x), and, anal-

ogously, the one induced on H− is X (y)=D f −(x)X (x), where y= f −(x). We note that X is a vector

field on S
2 \S

1 which is tangent to S
2.

Remark 3.2.1. The points at infinity of R2 (two for each direction) are in bijective correspondence

to the points of the equator of S2.

The natural procedure now is to try to extend the induced vector field X from S
2 \S

1 to S
2.
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Unfortunately, in general it does not stay bounded as we get close to S
1, obstructing the extension.

However, by multiplying the vector field by the factor ρ(x)= yd−1
3 , the extension becomes possible.

Then, the extended vector field on S
2 is called Poincaré compactification of the vector field X

on R
2 and it is denoted by p(X ). We notice that, on each hemisphere H+ and H−, the vector field

p(X ) is no longer Cω−conjugate to X , but it remains Cω−equivalent.

3.2.1 Local charts on the sphere S
2

Considering S
2 as a smooth manifold, it provides us six local charts given by

Uk = {y∈S
2; yk > 0} and Vk = {y ∈S

2; yk < 0},

for k = 1,2,3. The corresponding local maps φk : Uk →R
2 and ψk : Vk →R

2 are defined as

φk(y)=−ψk(y)=
(

ym

yk

,
yn

yk

)
,

for m < n and m, n 6= k. We denote by z = (u,v) the value of φk(y) or ψk(y), for any k, such that

(u,v) will play different roles depending on the local chart we are considering (but their meaning

will be clear). Geometrically, the coordinates (u,v) can be expressed as in Figure 3.1. The points

of S1 in any chart have v= 0.

U1

U2

U3

u

u

v
v

u

v

Figure 3.1: The local charts (Uk,φk) for k = 1,2,3 of the Poincaré sphere
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3.2.2 The expression of the compactified vector field p(X )

We make here the calculations for the expression of p(X ) on the local chart U1; for the other

charts, the construction is analogous.

As we have X (x)= (P(x1, x2),Q(x1, x2)), then X (y)=D f +(x)X (x) with y= f +(x) and

Dφ1(y)X (y)=Dφ1(y) ◦ D f +(x)X (x)=D(φ1 ◦ f +)(x)X (x).

Let X
∣∣
U1

denote the system defined as Dφ1(y)X (y). Then, since

(φ1 ◦ f +)(x)=
(

x2

x1
,

1

x1

)
= (u,v),

we have

X
∣∣
U1

=



− x2

x2
1

1
x1

− 1
x2

1
0





P(x1, x2)

Q(x1, x2)


=

=
1

x2
1

(−x2P(x1, x2)+Q(x1, x2),−P(x1, x2))=

= v2
(
−

u

v
P

(
1
v

,
u

v

)
+

1
v

Q

(
1
v

,
u

v

)
,−P

(
1
v

,
u

v

))
,

and

ρ(y) = yd−1
3 =

1

∆(x)d−1
=

vd−1

∆(z)d−1
= vd−1m(z),

where m(z)= (1+u2+v2)(1−d)/2. Hence, it follows that

ρ(X
∣∣
U1

)(z)= vd+1m(z)
(
−

u

v
P

(
1

v
,
u

v

)
+

1

v
Q

(
1

v
,
u

v

)
,−P

(
1

v
,
u

v

))
.

With the purpose to prove that the extension of ρX to p(X ) is defined on the whole S
2, we note

that, while X
∣∣
U1

is not well defined when v = 0, the vector field p(X )
∣∣
U1

= ρX
∣∣
U1

is well defined

along v = 0, since the multiplying factor vd+1 cancels any factor of v which could appear in the

denominator.

In order to simplify the extended vector field, we also make a change in the time variable and

remove the factor m(z) and we still obtain a vector field on S
2 which is Cω−equivalent to X on

any of the hemispheres H+ and H−.
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Thus, the expression for p(X ) in the local chart (U1,φ1) is given by

u̇ = vd

[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇=−vd+1P

(
1

v
,
u

v

)
, (3.2.2)

for (U2,φ2) is

u̇ = vd

[
P

(
u

v
,
1

v

)
−uQ

(
u

v
,
1

v

)]
, v̇ =−vd+1Q

(
u

v
,
1

v

)
, (3.2.3)

and for (U3,φ3) is

u̇ = P(u,v), v̇=Q(u,v). (3.2.4)

The expression for p(X ) in the charts (Vk,ψk) is the same as for (Uk,φk) multiplied by (−1)d−1,

for k = 1,2,3.

We remark that it is sufficient to work on H+∪S
1 to study X in the complete plane R

2. The set

H+∪S
1 is called the Poincaré disk. Computations can be done only in the three charts (U1,φ1),

(U2,φ2) and (U3,φ3) using the expressions given by systems (3.2.2), (3.2.3) and (3.2.4), respec-

tively.

Definition 3.2.2. A finite (respectively, infinite) singular point of X or p(X ) is the singular

point of p(X ) which lies in S
2 \S

1 (respectively, S1).

Remark 3.2.3. If y ∈ S
1 is an infinite singular point, then −y is also a singular point. Since

the local behavior near −y is the local behavior near y multiplied by (−1)d−1, it follows that the

orientation of the orbits changes when the degree is even.

Due to the fact that infinite singular points appear in pairs of diametrally opposite points, it is

enough to study half of them, and using the degree of the vector field, we can determine the other

half (and this explains why it suffices to study only the local charts (Uk,φk), k = 1,2,3, previously

mentioned).

Finally, we observe that the integral curves of S2 are symmetric with respect to the origin. In

this sense, it is sufficient to represent the flow of p(X ) only in the closed northern hemisphere (the

so called Poincaré disk). For practical purposes, in order to draw this as a disk in the plane, we can

project the points of the closed northern hemisphere onto the disk {(y1, y2, y3)∈R
3 : y2

1+y2
2 ≤ 1, y3 =

0}. This could be done by projecting each point of the sphere onto the disk using a straight line

parallel to the y3−axis; however, we can project using a family of straight lines passing through

a point (0,0, y3) with y3 < 0. If y3 is a value close to −∞, we shall get the same result, but if y3
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is close to zero, then we might get a better representation of what is happening near infinity. In

doing this we lose resolution in the regions close to the origin in the (x1, x2)−plane.

3.3 Complex (real) foliation with singularities on CP
2 (RP2)

In this section we follow the ideas of Darboux’s work [23]. Recalling the notation stated in

Chapter 1, given p(x, y) and q(x, y) polynomials with real coefficients, we associate to the vector

field p∂/∂x+q∂/∂y the differential 1−form ω1 = q(x, y)dx−p(x, y)d y, and the differential equation

ω1 = 0. (3.3.1)

Clearly, equation (3.3.1) defines a foliation with singularities on C
2. The affine plane C

2 is com-

pactified on the complex projective space CP
2 = (C3 \ {0})/ ∼, where (X ,Y , Z) ∼ (X ′,Y ′, Z′) if, and

only if, (X ,Y , Z) = λ(X ′,Y ′, Z′), for some complex λ 6= 0. The equivalence class of (X ,Y , Z) will be

denoted by [X : Y : Z].

The foliation with singularities defined by equation (3.3.1) on C
2 can be extended to a foliation

with singularities on CP
2 and the 1−form ω1 can be extended to a meromorphic 1−form ω on CP

2

which yields an equation ω= 0, i.e.

A(X ,Y , Z)dX +B(X ,Y , Z)dY +C(X ,Y , Z)dZ = 0, (3.3.2)

whose coefficients A, B, C are homogeneous polynomials of the same degree and satisfy the rela-

tion:

A(X ,Y , Z)X +B(X ,Y , Z)Y +C(X ,Y , Z)Z = 0, (3.3.3)

Indeed, consider the map i : C3\{Z = 0}→C
2, given by i(X ,Y , Z)= (X /Z,Y /Z)= (x, y), and suppose

that max{deg(p),deg(q)}= m > 0. Since x= X /Z and y=Y /Z we have:

dx=
ZdX −X dZ

Z2 , d y=
ZdY −Y dZ

Z2 ,

the pull–back form i∗(ω1) has poles at Z = 0 and yields the equation

i∗(ω1)=
q(X /Z,Y /Z) (ZdX −X dZ)

Z2 −
p(X /Z,Y /Z) (ZdY −Y dZ)

Z2 = 0.

Then, the 1−form ω = Zm+2i∗(ω1) in C
3 \ {Z 6= 0} has homogeneous polynomial coefficients of
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degree m+1 and, for Z = 0, the equations ω= 0 and i∗(ω1)= 0 have the same solutions. Therefore,

the differential equation ω= 0 can be written as (3.3.2), where

A(X ,Y , Z)=ZQ(X ,Y , Z)= Zm+1q(X /Z,Y /Z),

B(X ,Y , Z)=−ZP(X ,Y , Z)=−Zm+1p(X /Z,Y /Z),

C(X ,Y , Z)=Y P(X ,Y , Z)−XQ(X ,Y , Z).

(3.3.4)

We note that A, B and C are homogeneous polynomials of degree m+ 1 satisfying (3.3.3).

Moreover, the straight line Z = 0 is always an algebraic invariant curve of this foliation and its

singular points are the solutions of the system: A(X ,Y , Z)=B(X ,Y , Z)= C(X ,Y , Z)= 0.

In order to study the foliation with singularities defined by the differential equation (3.3.2)

subject to (3.3.3) with A, B, C satisfying the above conditions in the neighborhood of the line

Z = 0, we consider the two charts of CP2:

(u, z)=(Y /X , Z/X ), X 6= 0,

(v,w)=(X /Y , Z/Y ), Y 6= 0,

covering this line. We note that in the intersection of the charts (x, y) = (X /Z,Y /Z) and (u, z)

(respectively, (v,w)) we have the change of coordinates x = 1/z, y = u/z (respectively, x = v/w,

y = 1/w). Except for the point [0 : 1 : 0] or the point [1 : 0 : 0], the foliation defined by equations

(3.3.2) and (3.3.3) with A, B, C as in (3.3.4) yields in the neighborhood of the line Z = 0 the

foliations associated with the systems

u̇ =uP(1, u, z)−Q(1, u, z)=C(1, u, z),

ż =zP(1, u, z),
(3.3.5)

or

v̇=vQ(v,1,w)−P(v,1,w)=−C(v,1,w),

ẇ=wP(v,1,w).
(3.3.6)

In a similar way we can associate a real foliation with singularities on RP
2 to a real planar

polynomial vector field.

3.4 Intersection number for complex curves

For two projective curves in CP
2, F(X ,Y , Z)= 0 and G(X ,Y , Z)= 0, where F and G are homo-

geneous polynomials in the variables X , Y and Z which are relatively prime over C, we can define
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IW (F,G) regarding Definition 1.6.1.

Suppose, for example, that W = [a : b : c], where c 6= 0. Hence, W = [a/c : b/c : 1]. Let f (x, y) =

F(x, y,1) and g(x, y)=G(x, y,1). Then, IW (F,G)= Iw( f , g), where w= (a/c, b/c) (see Definition 1.6.1,

page 17). It is known that IW (F,G) is independent of the choice of a local chart and of a projective

change of variables (see again [30]).

Clearly, the above concept of intersection multiplicity extends to that of intersection multiplic-

ity of several curves at a point of the projective plane. In particular, we will be interested in the

way the projective curves A = 0, B = 0 and C = 0 intersect and hence in the values of

Ia(A,B,C)= dimC

Oa

(A,B,C)
.

Here, Oa is the local ring at a of the complex projective plane (for more information see [30]) and

(A,B,C) is the homogeneous ideal generated by these three polynomials.

If a is a finite or an infinite singular point of system (1.5.1) and A, B and C are defined as

in (3.3.4), then we have that Ia(P,Q), Ia(C, Z) and Ia(A,B,C) are invariant with respect to affine

transformations of (x, y) ([51]) and

Ia(A,B,C)=





Ia(P,Q)= Ia(p, q), if a is finite,

Ia(P,Q)+ Ia(C, Z), if a =∞.
(3.4.1)

3.5 Application: global phase portraits of a SIS model

The results presented in this section are based on the paper of Oliveira and Rezende [43].

Herein we analyze a quadratic system and provide its topological classification given all the

possible distinct phase portraits it has. We can find many papers with this aim. Most of the studies

rely on systems with real parameters and the study consists of outlining their phase portraits by

finding out some conditions on the parameters.

We present the study of a susceptible–infected–susceptible (SIS) model described by the equa-

tions

ẋ=−bxy−mx+ cy+mk,

ẏ= bxy− (m+ c)y,
(3.5.1)

where x and y represent, respectively, the portion of the population that has been susceptible

to the infection and those who have already been infected. Such system describes an infectious
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disease from which infected people recover with immunity against reinfection.

System (3.5.1) is a particular case of the class of classical systems known as SIS models,

introduced by Kermack and McKendrick [37] and studied by Brauer [15], who has assumed that

recovery from the nonfatal infective disease does not yield immunity. In system (3.5.1), k is the

population size (susceptible people plus infected ones), mk is the constant number of births, m is

the proportional death rate, b is the infectivity coefficient of the typical Lotka–Volterra interaction

term and c is the recovery coefficient. As system (3.5.1) is assumed to be nonfatal, the standard

term removing dead infected people −ay in [15] is omitted. As usual in the literature, all the

critical points of system (3.5.1) will henceforth be called (endemic) steady states (e.g. see [59]). In

this section we shall study the phase portraits of the differential system (3.5.1) with bm 6= 0.

Remark 3.5.1. If b = 0, then system (3.5.1) becomes linear, and if m = 0, then system (3.5.1)

satisfies ẋ+ ẏ= 0. These two cases are trivial and they are not interesting from a biological point of

view.

The integrability of system (3.5.1) has also been studied. For example, Nucci and Leach [42]

have demonstrated that (3.5.1) is integrable using the Painlevé test. Later, Llibre and Valls [40]

have proved that system (3.5.1) is Darboux integrable, and they have shown the explicit expres-

sion of its first integral and all its invariant algebraic curves.

Alternatively, the attempt of outlining the global phase portraits of differential systems is a

possible way to determine their global behavior.

We propose to classify all the topological classes of the global phase portraits of system (3.5.1)

using some information in [40]. The next theorem states the result obtained after the analysis of

such a system.

(SIS)1 (SIS)2 (SIS)3

Figure 3.2: Global phase portraits of system (3.5.1) in the Poincaré disk
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Theorem 3.5.2. There exist three topological distinct phase portraits of system (3.5.1) and they

are shown in Figure 3.2.

Remark 3.5.3. In Figure 3.2, we have plotted with wide curves the separatrices and we have

added some orbits drawn on the picture with thinner lines to avoid confusion in some required

cases (to show the invariant straight line).

3.5.1 Analysis of the system (3.5.1)

Provided that b 6= 0, system (3.5.1) has only two finite singular points

p =
(

c+m

b
,
−c+bk−m

b

)
and q = (k,0),

which are usually known, respectively, as endemic steady state and disease–free steady state. We

note that both finite singular points p and q coincide if bk−m = c.

The names given above to each steady states are not an accident. In q, the number of suscep-

tible individuals is equal to the population size k, whereas the number of infected people is null.

On the other hand, the number of susceptible people in p is the recovery coefficient plus the death

rate divided by the infection coefficient, while the infected ones are the rest of the population,

which leads to the presence of infected people, since bm 6= 0. Finally, note that only non–negative

values of x and y are interesting here, because they represent the number of individuals, even if

we present the phase portraits in the whole Poincaré disk.

First, we start with the analysis of the endemic steady state p. Translating the singular point

p to the origin in system (3.5.1), we obtain

ẋ=−bkx+ cx−my−bxy,

ẏ= (−c+bk−m)x+bxy,
(3.5.2)

which is equivalent to (3.5.1). The Jacobian matrix of (3.5.2) is given by

J(x, y)=


 c−bk−by −m−bx

−c+bk−m+by bx


 ,

which implies

δ= (bk− c−m)m and τ=−bk+ c,



40 Blow–up, Poincaré’s compactification and application

where δ and τ denote, respectively, the determinant and the trace of the matrix J(0,0).

If (bk− c−m)m <0, then p is a saddle point. On the other hand, if (bk− c−m)m >0, then p is

a node point, because τ2 −4δ= (c−bk+2m)2 ≥ 0.

In the case that (bk−c−m)m =0, or equivalently, m = bk−c, then p is semi–elemental. Indeed,

it is the case that both finite singular points are the same, i.e. p = q = (k,0). Here, system (3.5.2)

becomes

ẋ=−mx−my−bxy,

ẏ= bxy,
(3.5.3)

whose Jacobian matrix at (0,0) is

J(0,0)=


−m −m

0 0


 ,

so p is a semi–elemental point. By a linear change of coordinates, system (3.5.3) can be put on the

form of system (2.2.1) and, applying Proposition 2.2.1, we conclude that p is a saddle–node.

From the biological point of view, when the death rate m is equal to the portion of the popula-

tion which becomes infected (bk) minus the recovery coefficient, the dynamics around the steady

states p and q changes and they become only one point which attracts (the node part) and repels

(the saddle part) the orbits in its neighborhood.

Now, we analyze the disease–free steady state q. Translating the singular point q to the origin

in system (3.5.1), we obtain

ẋ=−mx+ cy−bky−bxy,

ẏ= (−c+bk−m)y+bxy,
(3.5.4)

which is equivalent to (3.5.1). The Jacobian matrix of (3.5.4) is given by

J(x, y)=


−m−by c−b(k+ x)

by −c−m+b(k+ x)




which implies

δ=−(bk− c−m)m and τ= bk− c−2m.

If −(bk− c−m)m < 0, then q is a saddle point. In contrast, if −(bk− c−m)m > 0, then q is a

node point, because τ2 −4δ= (c−bk)2 ≥ 0.

The case (bk− c−m)m = 0, or equivalently m = bk− c, has already been studied, and p = q is

a semi–elemental saddle–node.
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Finally, we have proved the following:

Proposition 3.5.4. Consider system (3.5.1) with bm 6= 0 and its two finite steady states p and q.

Then:

1. If either m > 0 and m > bk− c, or m < 0 and m < bk− c, then p is a saddle and q is a node;

2. If either m > 0 and m < bk− c, or m < 0 and m > bk− c, then p is a node and q is a saddle;

3. If m = bk− c, then p = q is a semi–elemental saddle–node.

Having classified all the finite singular points, we apply the Poincaré compactification to study

the infinite singularities.

In the local chart U1, where x= 1/v and y= u/v, we have:

u̇ = u(b+bu− cv− cuv−kmv2),

v̇= v(bu+mv− cuv−kmv2),
(3.5.5)

whose infinite singular points are (0,0) and (−1,0), which are a saddle–node of type
(1
1

)
SN (by

Proposition 2.2.1) and a node, respectively.

In the local chart U2, where x= u/v and y= 1/v, the system

u̇ =−bu−bu2+ cv+ cuv+kmv2,

v̇ = v(−bu+ cv+mv)
(3.5.6)

has two infinite singular points (0,0) and (−1,0). The latter one is a node and is the same as

(−1,0)∈U1, while the former one is a saddle–node of type
(1
1

)
SN.

We have just proved the following:

Proposition 3.5.5. The infinite singular points of system (3.5.1) are the origin of charts U1, V1,

U2 and V2, which are saddle–nodes of type
(1
1

)
SN, and (−1,0), belonging to each of the charts U1

and U2, which is a node.

Knowing the local behavior around finite and infinite singular points, another useful tool to

describe the phase portraits of differential systems is the existence of invariant curves. The next

result shows that system (3.5.1) has invariant straight lines.

Proposition 3.5.6. Let bm 6= 0. System (3.5.1) always has two invariant straight lines given by

f1(x, y)≡ y= 0 and f2(x, y)≡ k− x− y = 0. Additionally, if c = bk, then f3(x, y) ≡ k− x = 0 is also an

invariant straight line.
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Proof. By Definition 1.4.1, we can find K1(x, y)= bx−m− c, K2(x, y)=−m and K3(x, y)=−m−by

as the cofactors of f1(x, y), f2(x, y) and f3(x, y) (if c = bk), respectively.

3.5.2 Proof of Theorem 3.5.2

From Propositions 3.5.4 and 3.5.5 we get all the information about the local behavior of finite

and infinite singular points, respectively. Using the continuity of solutions and primary defini-

tions and results of ordinary differential equations (e.g. ω-limit sets, existence and uniqueness of

solutions, the Flow Box Theorem etc. [27]) and the existence of invariant straight lines of system

(3.5.1) stated by Proposition 3.5.6, the global phase portraits can be easily drawn.

We have to analyze the three cases stated in Proposition 3.5.4.

The finite steady state q is the intersection of the invariant curves f1(x, y) = f2(x, y) = 0, and

the other finite steady state p lies on the curve f2(x, y)= 0.

According to items (1) and (2) of Proposition 3.5.4, p (respectively, q) is a saddle (respectively,

a node) the one way and the other a node (respectively, a saddle).

In the case of item (1), a pair of opposite separatrices of the saddle p lies on the curve f2(x, y)=

0 while the other pair must end (or start) in parabolic sectors. In this sense, each one of the

separatrices of this second pair goes towards the nodal parts of different infinite saddle–nodes, as

shown in the portrait (SIS)1 in Figure 3.2.

Now, in the case of item (2), the singular point q is a saddle, which means that the four of its

separatrices lie on the two invariant straight lines f1(x, y) = f2(x, y)= 0. However, the node p lies

on the straight line f2(x, y) = 0, which implies that p is a limit set of one of the separatrices of q

and the other three separatrices end (or start) in three different infinite points, including a pair of

infinite saddle–nodes, which produces a connection of separatrices, as seen in the portrait (SIS)2

in Figure 3.2.

Another difference between the first two phase portraits in Figure 3.2 is that the correspond-

ing singular points at infinity receives/sends a different number of separatrices from/to the finite

singularities. Writing this characteristic in a sequence of digits, where each digit means the num-

ber of such separatrices, we can associate to the portraits (SIS)1 and (SIS)2 the sequences 211101

and 111010, respectively, which are clearly distinct.

Item (3) assures the existence of only one finite singular point, a saddle–node. Clearly, the cor-

responding phase portrait (SIS)3 is different from the previous two portraits due to the presence

of only one finite singular point.
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Finally, Theorem 3.5.2 has been proved.

In this section we have proved the existence of only three classes of global phase portraits of

the quadratic system (3.5.1). In general, in the qualitative theory of ordinary differential systems

it is quite important to know the global behavior of solutions of systems and this sometimes is not

an easy task. The most frequently used tools for this propose are the study of local behavior along

with the (local and global) stability, integrability, and also the global phase portrait, which was

employed in the present study.

From the biological point of view, in the case represented in phase portraits (SIS)1 and (SIS)2

in Figure 3.2, it is clear that while the steady state q characterizes the presence of only susceptible

individuals, p indicates the mutual presence of susceptible and infected people. Besides, as q

is an asymptotically stable node in (SIS)1, the disease seems to be controlled and the whole

population tends to be healthy but susceptible to be infected again. As p is an unstable saddle

steady state, it suggests that there is no harmony between the number of susceptible people and

infected ones, although some of the solutions tend to q, indicating the control of the disease. The

same arguments are valid for (SIS)2, but now considering p as the node and q as the saddle

meaning that the infected population tends to increase as all solutions in a neighborhood of p

tend to it.

In portrait (SIS)3 in Figure 3.2, all the solutions tend to q (regarding that x, y > 0), i.e. if

m = bk− c, the disease is supposed to be controlled and the whole population is inclined to be

healthy but susceptible to the reinfection.

3.5.3 Equivalence between this SIS model and previous–studied normal form

After having stated and proved Theorem 3.5.2, we verified that, via an affine change in the

variables and in the time, we can simplify system (3.5.1) in two normal forms which have already

been classified by Schlomiuk and Vulpe in [54, 55].

These normal forms are given precisely by

u̇ = g+u, v̇ = v(v−u), (3.5.7)

where g ∈R and g(g−1) 6= 0, and

u̇ = u, v̇= v(v−u). (3.5.8)

The normal forms (3.5.7) and (3.5.8) are, respectively, the normal forms (IV .16) and (IV .17)
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from [54, Table 2, page 29] and [55, Table 2, page 17]. We note that system (3.5.8) is the particular

case of system (3.5.7) when g = 0.

Lemma 3.5.7. System (3.5.1) is equivalent to system (3.5.7) via an affine transformation in the

variables and a homothety in the time.

Proof. We need to construct the affine change in the variables and the homothety in the time

which transforms system (3.5.1) into system (3.5.7). We consider these transformations having

the forms: 
u

v


=


α β

γ δ





x

y


+


φ

ψ


 , τ=ωt. (3.5.9)

Then, after applying these mappings to system (3.5.1), we obtain the system

u̇ = a00+a10u+a01v+a20u2+2a11uv+a02v2,

v̇= b00+b10u+b01v+b20u2+2b11uv+b02v2,
(3.5.10)

where

a00 =
[
km(αβγ−αδ)2 +φ(m(βγαδ)2 +b(α−β)γδφ)+b(−α+β)(βγ+αδ)φψ

+bα(α−β)βψ2 − c(α−β)(−βγ+αδ)(−γφ+αψ)
]/[

(βγ−αδ)2ω
]
,

a10 =
[
−m(βγ−αδ)2 − c(α−β)γ(−βγ+α δ)+b(α−β)(−2γδφ+β γψ+αδψ)

]/[
(βγ−αδ)2ω

]
,

a01 =
[
(α−β)(cα(−βγ+α δ)+b(βγφ+αδφ−2αβψ))

]/[
(βγ−αδ)2ω

]
,

a20 =
[
b(α−β)γδ

]/[
(βγ−αδ)2ω

]
,

a11 =−
[
(b(α−β)(βγ+αδ)

]/[
(βγ−αδ)2ω

]
,

a02 =
[
bα(α−β)β

]/[
(βγ−αδ)2ω

]
,

b00 =
[
γ(km (βγ−αδ)2 + (γ−δ) φ(−cβγ+ cαδ+bδφ))+ ((βγ−αδ) ((cα+mβ)γ

−(c+m)αδ)−b(γ−δ)(βγ+αδ) φ)ψ+bαβ(γ−δ)ψ2]/[
(βγ−αδ)2ω

]
,

b10 =
[
(γ−δ)(cγ(βγ−α δ)+b(−2γδφ+βγψ+ αδψ))

]/[
(βγ−αδ)2ω

]
,

b01 =
[
(−m(βγ−αδ)2 + cα(γ−δ)(−βγ+α δ)+b(γ−δ)(βγφ+αδ φ−2αβψ)

]/[
(βγ−αδ)2ω

]
,

b20 =
[
bγ(γ−δ)δ

]/[
(βγ−αδ)2ω

]
,

b11 =−
[
(b(γ−δ)(βγ+αδ)

]/[
(βγ−αδ)2ω

]
,

b02 =
[
bαβ(γ−δ)

]/[
(βγ−αδ)2ω

]
.

(3.5.11)



3.5 Application: global phase portraits of a SIS model 45

As we want to preserve the invariant straight line {y = 0}, we set γ =ψ = 0, then the expres-

sions in (3.5.11) become

a00 =(m(kα+φ))/ω, a10 =−m/ω, a01 = ((α−β)(cα+bφ))/(αδω),

a20 =0, a11 =−((b(α−β))/(2αδω)), a02 = (b(α−β)β)/(αδ2ω),

b00 =0, b10 = 0, b01 =−((cα+mα+bφ)/(αω)),

b20 =0, b11 = b/(2αω), b02 =−((bβ)/(αδω)).

(3.5.12)

As a10 = 1 in system (3.5.7), then we set ω=−m and we compute:

a00 =−kα−φ, a10 = 1, a01 =−(((α−β)(cα+bφ))/(mαδ)),

a20 =0, a11 = (b(α−β))/(2mαδ), a02 =−((b(α−β)β)/(mαδ2)),

b00 =0, b10 = 0, b01 = (cα+mα+bφ)/(mα),

b20 =0, b11 =−(b/(2mα)), b02 =−(bβ)/(mαδ).

(3.5.13)

Now, in order to have b11 =−1/2, we set α= b/m and obtain:

a00 =− ((bk+mφ)/m), a10 = 1, a01 = ((−b+mβ)(c+mφ))/(m2δ),

a20 =0, a11 =−((−b+mβ)/(2mδ)), a02 = (β(−b+mβ))/(mδ2),

b00 =0, b10 = 0, b01 = (c+m+mφ)/m,

b20 =0, b11 =−1/2, b02 =β/δ.

(3.5.14)

By solving the equation a11 = 0, we obtain β= b/m and, then, we set δ= b/m in order to have

b02 = 1. Finally, in order to have b01 = 0, we set φ=−(c+m)/m and we obtain the system:

u̇ =
c−bk+m

m
+u, v̇= v2−uv, (3.5.15)

and the transformations (3.5.9) become:


u

v


=




b
m

b
m

0 b
m





x

y


+



−c−m

m

0


 , τ=−mt. (3.5.16)

Denoting g := (c−bk+m)/m and verifying that

g(g−1) =
(c−bk)(c−bk+m)

m2 6= 0,
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we arrive at system (3.5.8), proving the lemma.

From Lemma 3.5.7, studying system (3.5.1) is the same as studying system (3.5.8). And we

refer to the reader the configurations Config. 4.16 and Config. 4.17 from [55, Diagram 1, page 13]

which are the configurations of systems (3.5.7) and (3.5.8), respectively, concerning the position

of the singular points and the invariant straight lines. Moreover, the reader could see the phase

portraits in Figure 3.2 in their classification in [55, Table 3(a), Pictures 4.16(a), 4.16(b) and 4.17,

page 31].



Chapter

4

Invariant polynomials: comitants and

invariants

In this chapter we provide all the algebraic tools we shall use in future applications.

According to Olver [45] and Eves [29], the classical invariant theory has its origin in the

investigations done by Lagrange, Gauss and, in particular, Boole [16].

This subject was intensely approached by Cayley and Sylvester, who made remarkable prog-

ress in this topic and in many different other areas of Mathematics, and followed by many other

mathematicians from different parts of the world, as Hermite, Aronhold, Clebsch, Gordan and

Hilbert. Researchers from many countries (and each one in his time) united their efforts in the

common purpose to create and develop the classical invariant theory.

We consider the polynomial

p(x)= (x−3)4 (x+2) (x2+1)2 ∈C[x],

which is factorized and has four roots: x1 = 3, x2 =−2 and x3,4 =±i. Applying the affine transfor-

mation x=αx+β, α 6= 0, α,β∈C, to the polynomial p, we obtain

p(x)=
1

α9
(x−3α+αβ)4 (x+2α+αβ) (x2 +α2 +2αβx+α2β2)2.

After the transformation, the polynomial remains factorable and the multiplicity of the roots

is unchanged, whereas the explicit value of the roots and the coefficients change. These properties
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are called intrinsic and non–intrinsic, respectively.

The central problem in classical invariant theory is to find functions of the coefficients of

a given polynomial which, after subjecting the variables of this polynomial to a general linear

transformation, remain unchanged up to a factor involving only the coefficients of the transfor-

mation.

In this sense, there appears two problems regarding this intrinsic property. The first one is the

problem of equivalence which discusses about conditions to transform a polynomial into another

polynomial by a suitable change of coordinates which preserves the intrinsic properties equiva-

lent. And the last one is the existence of an associated canonical form, i.e. the attempt to find

out a system of coordinates in which the polynomial is transformed into a particular simple form.

Remarkably, these two problems lead to the first goal of classical invariant theory: to determine

the fundamental invariants.

We consider an example. Let

f (x, y)= ax2+2bxy+ cy2 ∈R[x, y]

be a real quadratic form. If we consider the change

x=αx+βy, y= γx+δy, α,β,γ,δ∈R, (4.0.1)

where

A :=


α β

γ δ


 is such that det A =αδ−βγ 6= 0,

then the polynomial f (x, y) is transformed into the polynomial f (x, y) by the change (4.0.1), re-

specting the relation:

f (x, y)= f (αx+βy,γx+δy) = f (x, y).

and we observe that the coefficients a, b and c of f (x, y) relate to the coefficients a, b and c of

f (x, y) according to the identities:

a =α2a+2αγb+γ2c, b =αβa+ (αδ−βγ)b+γδc, c =β2a+2βδb+δ2c. (4.0.2)

Using the identities in (4.0.2), we prove that there exists a relation between the discriminant
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∆ of f (x, y) and the discriminant ∆ of f (x, y). In fact, direct calculation leads to:

∆= b2−ac = (αδ−βγ)2 (b
2 +a c)= (αδ−βγ)2∆. (4.0.3)

Due to identity (4.0.3) we conclude that the types of the linear factors (which is the geometrical

meaning of the discriminant for the quadratic form) of the polynomial f (x, y) are preserved in the

polynomial f (x, y) via the change (4.0.1). In Table 4.0.1 we present the classification of the family

of quadratic forms.

Table 4.0.1: Classification of the family of quadratic forms

Sign of the discriminant Number of roots Canonical form

∆> 0 2 real (distinct) xy

∆< 0 2 complex k(x2+ y2), k ∈ {−1,1}
∆= 0, f 6≡ 0 2 double (real) kx2, k ∈ {−1,1}
∆= 0, f ≡ 0 — 0

As we can see, the discriminant ∆ is an invariant for the quadratic form f (x, y), and it is one

of the simplest example of an invariant in the classical invariant theory.

However, we are not interested here in the classical algebraic invariant theory. Our approach

in this thesis is the study and application of the algebraic invariants of differential systems.

In effect, since 1963 in the city of Kishinev (Moldova), Sibirsky and his pupils have been

working on the attempt of joining the concepts of invariant polynomials of autonomous differential

equations with the action of groups of linear transformations of the phase space.

And this is the approach we use in our results in this thesis. We apply Sibirsky and his pupils’

research and results in order to classify topologically planar differential systems in the space of

parameters (see next chapters).

With the purpose of using this technique, we need to fix some notation and concepts in order to

make the study clearer. The results of the next sections can be found in the book of Sibirsky [57].

4.1 Tensor notation of differential systems

We consider system (1.5.1) written in the form:

dx1

dt
= a1

1x1+a1
2x2 +a1

11(x1)2 +a1
12x1x2 +a1

21x2x1 +a1
22(x2)2,

dx2

dt
= a2

1x1+a2
2x2 +a2

11(x1)2 +a2
12x1x2 +a2

21x2x1 +a2
22(x2)2,

(4.1.1)
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where x1 and x2 are the dependent variable and t is the independent one. System (4.1.1) has

degree 2 and the polynomials in the right–hand side have fixed coefficients in x1 and x2. They

have no free terms and similar terms appear in the extent that x1x2 = x2x1. Moreover, it is always

possible to consider a1
12 = a1

21 and a2
12 = a2

21. Clearly, any system of the form

ẋ= ax+by+ cx2+dxy+ ey2,

ẏ= Ax+By+Cx2+Dxy+E y2,
(4.1.2)

can be written in the form (4.1.1) via the identification:

x1 = x, x2 = y, a1
12 = a1

21 =
d

2
, a2

12 = a2
21 =

D

2
,

dx1

dt
= ẋ,

dx2

dt
= ẏ.

Even though the form in (4.1.2) is more presentable, the form in (4.1.1) is more convenient,

since it is possible to give it in the condensed form

dx j

dt
=

2∑

α=1
a

j
αxα+

2∑

α,β=1
a

j

αβ
xαyβ, ( j = 1,2)

or, discarding the summation sign, in the form

dx j

dt
= a

j
αxα+a

j

αβ
xαyβ, ( j,α,β= 1,2). (4.1.3)

Another way to display equation (4.1.3) is in the form

dx j

dt
= a

j

j1 j2··· jω x j1 x j2 · · · x jω , ( j, j1, j2, . . . , jω = 1,2),

which is easily extended to multivariate systems with arbitrary polynomials or series on the

right–hand sides:

dx j

dt
=

∑

ω∈Ω
a

j

j1 j2··· jω x j1 x j2 · · · x jω , ( j, j1, j2, . . ., jω = 1,2, . . ., n), (4.1.4)

where Ω is some set of positive integers distinct among themselves, while the coefficients a
j

j1 j2··· jω

are symmetrical with respect to the lower indices, i.e. their values are not dependent on the order

of succession of these indices. We observe that, if the set Ω is infinite, then the right–hand sides

are formal series.
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4.2 The invariant polynomial

Let x = (x1, . . ., xn) be the vector of the dependent variables of systems (4.1.4), a be the union

of all the coefficients of systems (4.1.4), A be the space of the coefficients of systems (4.1.4) and

G = {g} be the group of linear transformations g of the n−dimensional space X of vectors x. We

denote the linear transformation g in the form

y= gx, (4.2.1)

where y= (y1, . . . , yn) is the vector of the new dependent variables, while g is an n×n matrix.
Applying the transformation (4.2.1) to systems (4.1.4), we arrive at the systems

d yr

dt
=

∑

ω∈Ω
br

r1r2···rω yr1 yr2 · · · yrω , (r, r1, r2, . . . , rω = 1,2, . . . , n). (4.2.2)

We analogously denote by b the union of all the coefficients of systems (4.2.2). It is clear that

b = b(a, g) and, consequently, we shall write b = a(g).

Definition 4.2.1. A polynomial of an infinite set of variables is a polynomial of any finite

subset of these variables.

Definition 4.2.2. A polynomial I(a) of coefficients from system (4.1.4) is called an invariant

polynomial of those systems in the group G, if there exists a function λ(g), depending only on

elements of the group, for which this identity holds:

I(b)=λ(g) I(a), (4.2.3)

for all g ∈ G and any a ∈ A. The function λ(g) is called a multiplicator. If λ(g) ≡ 1, then the

invariant polynomial I(a) is called absolute, otherwise it is relative.

4.3 Invariant polynomials under linear transformations: a mini-

mal basis

In this section we attain to the simple case T = {1}, Ω= {1}, n = 2, G =GL(2,R). This conditions

lead to the linear system ẋ = ax, where

a =


a1

1 a1
2

a2
1 a2

2


 .



52 Invariant polynomials: comitants and invariants

We consider

g =


α β

γ δ


 ,

with ∆ = det g. Then, from (4.2.1), we have x = g−1 y and ẏ = by, where b = gag−1, which is

equivalent to bg = ga, i.e.

b1
1α+b1

2γ= a1
1α+a2

1β, b1
1β+b1

2δ= a1
2α+a2

2β,

b2
1α+b2

2γ= a1
1γ+a2

1δ, b2
1β+b2

2δ= a1
2γ+a2

2δ.
(4.3.1)

Consequently, we find

∆ b1
1 =αδa1

1 −αγa1
2+βδa2

1−βγa2
2, ∆ b1

2 =−αβa1
1+α2a1

2−β2a2
1+αβa2

2,

∆ b2
1 = γδa1

1−γ2a1
2+δ2a2

1−γδa2
2, ∆ b2

2 =−βγa1
1+αγa1

2 −βδa2
1+αδa2

2.
(4.3.2)

After a set of computations, we find that the homogeneous invariant polynomials of first de-

gree have the form

I1(a)= a1
1+a2

2 = tr(a),

while the homogeneous invariant polynomials of second degree are of the form

I2(a)= a1
1a2

2−a1
2a2

1 = det(a),

(see Sibirsky [57] for details of the calculations).

For the third–degree invariant polynomials it is possible to show that they have the form

I3(a)= k1 (tr(a))3 +k2 tr(a) det(a)= k1 (I1(a))3 +k2 I1(a) I2(a),

i.e. they are polynomially expressed by the previous obtained invariant polynomials of lesser

degrees I1(a) and I2(a).

Definition 4.3.1. An invariant polynomial I(a) is called reducible, if it is polynomially expressed

by invariant polynomials of lesser degrees.

We note that the invariant polynomial I3(a) above is reducible. We denote I(a) ≡ 0 and say

that I(a) is congruent with zero. The notation I(a)≡ J(a) means that I(a)− J(a)≡ 0.

We are likely to show that any invariant polynomial of the system (4.1.4) is polynomially ex-
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pressed by means of I1(a) and I2(a). In this case, we say that I1(a) and I2(a) produce a polynomial

basis of (affine) invariants.

Definition 4.3.2. The set of all invariant polynomials {Iθ(a), θ ∈Θ} of systems (4.1.4) under the

group G is called a polynomial basis of invariant polynomials of those systems under the

group G, if any invariant polynomial I(a) of systems (4.1.4) under the group G can be expressed in

the form of a polynomial of invariants Iθ(a). Here, Θ is some set of finite or transfinite integers.

Definition 4.3.3. A polynomial basis of invariants of systems (4.1.4) under the group G is called

minimal, if after the removing of any invariant polynomial out of the set, it will cease to be a

polynomial basis.

Remark 4.3.4. The minimality of a polynomial basis, consisting of the invariants tr(a) and det(a),

follows from the fact that it is impossible to express det(a) by means of the square of tr(a).

Sibirsky [57] provides more concepts concerning the tensor notation, for instance the oper-

ations on tensors: multiplication, (total) contraction, extended (total) contraction, (extended) al-

ternation. By using these operations on tensors of systems (4.1.4), the obtained expressions will

form a polynomial basis of affine (orthogonal) invariant polynomials of systems (4.1.4) (see [57],

Theorem 6.1, page 12).

4.4 Comitants of systems of differential equations

Definition 4.4.1. A polynomial U(a, x) of coefficients of systems (4.1.4) and the dependent vari-

able x = (x1, x2, . . . , xn) is called a comitant of systems (4.1.4) under the group G, if there exists a

function λ(g) such that

U(b, y)=λ(g)U(a, x), (4.4.1)

for all g ∈G, a ∈ A and x ∈ X. If λ(g) ≡ 1, then the comitant U(a, x) is called absolute, otherwise it

is relative.

We observe that the invariants for systems (4.1.4) under the group G defined in Definition 4.2.2

are a particular case of comitants when they do not explicitly depend on the the variable x. More-

over, the theorem of a polynomial basis of comitants is easily extended from the theorem of a

polynomial basis of invariants.

Let U(a, x) be a comitant of systems (4.1.4). Applying the transformation (4.2.1) to systems

(4.1.4), we obtain systems (4.2.2) with the comitant U(b, y). Doing the same transformation within
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the comitant U(a, x) (as a polynomial), we obtain the polynomial U(a, g−1 y), which we call the

transformed comitant. In this sense,

U(b, y)=λ(g)U(a, x)=λ(g)U(a, g−1 y).

Then, we have the following result.

Proposition 4.4.2. [57] The coefficients of a comitant of transformed systems are proportional to

the coefficients of the transformed comitant.

In continuation, Sibirsky [57] constructs some bases of invariant polynomials. For example,

he shows that the polynomial basis of GL−invariants of systems (4.1.3) consists of 16 elements

(from I1 to I16). Furthermore, if we add 20 more comitants (from K1 to K20) to those 16 invariants,

we obtain a polynomial basis of GL−comitants of systems (4.1.3). We shall denote this basis of 36

GL−comitants by K .

An important concept in this line is the definition of syzygies.

Definition 4.4.3. Assume K is the basis of GL−comitants of systems (4.1.3). A syzygy among

comitants of systems (4.1.3) is any relation of the form S(K ) = 0, where S(K ) is a polynomial of

comitants from K , which is an identity with respect to the variables a and x, i.e. with respect to

the coefficients and the dependent variable of such systems, and is not an identity with respect to

comitants from K .

We consider a finite set of syzygies among comitants from K given by:

Si(K )= 0, (i = 1,2, . . .,̹). (4.4.2)

We shall say that the syzygy S(K ) = 0 is a consequence of syzygies (4.4.2), if it is possible to

select polynomials Pi(K ) (i = 0,1, . . .,̹) of comitants from K with P0 6≡ 0 relative to a and x, such

that the equation

P0S =
∑̹

i=1
PiSi (4.4.3)

appeared as identity with respect to the comitants which it contains. We shall call the system of

syzygies (4.4.2) independent, if none of them is a consequence of the others and we shall say that a

system of syzygies (4.4.2) is a basis, if every syzygy among the comitants from K is a consequence

of syzygies (4.4.2).
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The condition of independence is equivalent to the condition that for every set of polynomials

Pi(K ) (i = 1,2, . . .,̹) from which at least one is not identical to zero with respect to a and x, the

inequality
∑̹

i=1
PiSi 6≡ 0 (4.4.4)

is fulfilled with respect to invariant polynomials.

We can prove that, among the invariant polynomials I1 to I16 and K1 to K20, there exist

27 independent syzygies and every other syzygy among this set of invariant polynomials is a

consequence of these 27 ones (see [57], Theorem 17.1, page 44).

The usage of invariants and comitants have been extensively applied in quadratic differential

systems, as we can see in [41, 8, 6]. In the next section, we shall provide the main comitants used

in the previous studies.

4.5 T−comitants governing the geometry of the singularities

Considering quadratic systems, we write system (1.5.1) in the form

ẋ= p0 + p1(x, y)+ p2(x, y),

ẏ= q0+ q1(x, y)+ q2(x, y),
(4.5.1)

where p i and qi are homogenous polynomials in x and y of degree i with real coefficients, some

of which may be zero. We denote the set of such systems by QS.

In accordance to Schlomiuk and Vulpe [53], the group Aff(2,R) of affine transformations on the

plane acts on the set QS in the following way. Given g ∈Aff(2,R), g : R2 →R
2, we have

g :


x

y


= M


x

y


+B and g−1 :


x

y


= M−1


x

y


−M−1B,

where M = (Mi j) is a 2×2 nonsingular matrix and B is a 2×1 matrix over R. For every S ∈ QS,

we can form its transformed system S̃ = gS:

˙̃x = p̃(x̃, ỹ),

˙̃y = q̃(x̃, ỹ),
(4.5.2)

where 
p̃(x̃, ỹ)

q̃(x̃, ỹ)


= M


(p ◦ g−1)(x̃, ỹ)

(q ◦ g−1)(x̃, ỹ)


 .
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The map

Aff(2,R)×QS → QS

(g,S) 7→ S̃ = gS

verifies the axioms for a left group action. For every subgroup G ⊆Aff(2,R), we obtain an induced

action of G on QS.

We can identify the set QS of systems (4.5.1) with a subset of R12 via the embedding QS ,→

R
12 which associates to each system (4.5.1) the 12−tuple a = (a1, . . .,a12) of its coefficients. For

every group action g ∈ Aff(2,R), we consider the map r g : R12 → R
12 which corresponds to g via

this action. It is known (see, for instance, Sibirsky [57]) that the map r g is linear and the map

r : Aff(2,R)→ GL(12,R) thus obtained is a group homomorphism. For every subgroup G of Aff(2,R),

r induces a representation of G onto a subgroup G of GL(12,R).

We consider the polynomial ring R[a1, . . .,a12, x, y] and denote it by R[a, x, y].

Rewriting Definition 4.4.1 in the previous notation, we say that a polynomial U(a, x, y) ∈

R[a, x, y] is a comitant, if there exists χ ∈Z such that

U(r g(a), g(x, y))= (det(g))−χU(a, x, y),

for every (g,a) ∈ G ×R
12 and (x, y) ∈ R

2. We note that, if G = GL(2,R) (respectively, G = Aff(2,R)),

then the comitant U(a, x, y) of systems (4.5.1) is called GL−comitant (respectively, affine comi-

tant).

Definition 4.5.1. A subset X ⊂ R
12 will be called G−invariant if, for every g ∈ G, we have

r g(X ) ⊆ X.

Let T(2,R) be the subgroup of Aff(2,R) formed by translations. We consider the linear rep-

resentation of T(2,R) into its corresponding subgroup T ⊂ GL(12,R), i.e. for every τ ∈ T(2,R),

τ : x= x̃+α, y= ỹ+β, we consider as above rτ :R12 →R
12.

Definition 4.5.2. A GL−comitant U(a, x, y) of systems (4.5.1) is a T−comitant, if, for every (τ,a)∈

T(2,R)×R
12, the relation U(rτ(a), x̃, ỹ)=U(a, x̃, ỹ) holds in R[x̃, ỹ].

We now consider s polynomials Ui(a, x, y)∈R[a, x, y], i = 1, . . . , s:

Ui(a, x, y)=
di∑

j=0
Ui j(a)xdi− j y j, i = 1, . . . , s,
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and assume that the polynomials Ui are GL−comitants of a system (4.5.1), where di denotes the

degree of the binary form Ui(a, x, y) in x and y with coefficients in R[a].

We denote by

U =
{
Ui j(a)∈R[a]; i = 1, . . . , s, j = 0,1, . . ., di

}
,

the set of the coefficients in R[a] of the GL−comitants Ui(a, x, y), i = 1, . . ., s, and by V (U ) its zero

set, i.e.

V (U )=
{

a ∈R
12; Ui j(a)= 0, ∀ Ui j(a)∈U

}
.

Definition 4.5.3. Let U1,U2, . . . ,Us be GL−invariant polynomials of a system (4.5.1). A GL−comi-

tant U(a, x, y) of such a system is called a conditional T−comitant (or CT−comitant), modulo

the ideal generated by Ui j(a) (i = 1, . . ., s; j = 0,1, . . ., di) in the ring R[a], if the following two

conditions are satisfied:

(i) the algebraic subset V (U )⊂R
12 is affinely invariant (see Definition 4.5.1);

(ii) for every (τ,a)∈ T(2,R)×V (U ), we have U(rτ(a), x̃, ỹ)=U(a, x̃, ỹ) in R[x̃, ỹ].

In other words, a CT−comitant U(a, x, y) is a T−comitant on the algebraic subset V (U )⊂R
12.

Definition 4.5.4. A polynomial U(a, x, y) ∈ R[a, x, y], homogeneous of even degree in x and y, has

well–determined sign on V ⊂ R
12 with respect to x and y, if, for every a ∈ V, the binary form

u(x, y)=U(a, x, y) yields a function of constant sign on R
2, except on a set of zero measure where it

vanishes.

Remark 4.5.5. We draw the attention to the fact that, if a CT−comitant U(a, x, y) of even weight

is a binary form of even degree in x and y, of even degree in a and has well–determined sign on

some affine invariant algebraic subset V, then its sign is conserved after an affine transformation

and time rescaling.

We consider the polynomials

P = p0+ p1 + p2 and Q = q0 + q1+ q2 in R[a, x, y], (4.5.3)

where

p0 = a00, p1 = a10x+a01 y,

p2 = a20x2+2a11xy+a02 y2,

q0 = b00, q1 = b10x+b01 y,

q2 = b20x2+2b11xy+b02 y2,

(4.5.4)
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and

Ci(a, x, y)= y p i(a, x, y)− x qi(a, x, y)∈R[a, x, y], i = 0,1,2,

D i(a, x, y)=
∂

∂x
p i(a, x, y)+

∂

∂y
qi(a, x, y)∈R[a, x, y], i = 1,2.

(4.5.5)

According to Sibirsky [57], the polynomials of degree one with respect to the coefficients of the

initial systems, namely

{
C0(a, x, y), C1(a, x, y), C2(a, x, y), D1(a), D2(a, x, y)

}
, (4.5.6)

are GL−comitants with respect to the coefficients of systems (4.5.1).

The next definition presents a differential operator which plays an important role in the next

result.

Definition 4.5.6. Let f , g ∈R[a, x, y]. The differential operator ( f , g)(k) ∈R[a, x, y], given by

( f , g)(k) =
k∑

h=0
(−1)h

(
k

h

)
∂k f

∂xk−h∂yh

∂k g

∂xh∂yk−h
(4.5.7)

is called transvectant of index k of f and g (see [31, 45] for further reference).

The next result by Vulpe [60] states that we can obtain any GL−comitant by applying basic

operations and the transvectant.

Proposition 4.5.7. [60] Any GL−comitant can be constructed from the elements of the set (4.5.5)

by using the operations: addition, subtraction, multiplication and the transvectant.

We construct the following GL−comitants of second degree with respect to the coefficients of

initial system:

T1(a, x, y)= (C0,C1)(1) , T4(a)= (C1,C1)(2) , T7(a, x, y)= (C1,D2)(1) ,

T2(a, x, y)= (C0,C2)(1) , T5(a, x, y)= (C1,C2)(1) , T8(a, x, y)= (C2,C2)(2) ,

T3(a)= (C0,D2)(1) , T6(a, x, y)= (C1,C2)(2) , T9(a, x, y)= (C2,D2)(1) .

(4.5.8)

In order to be able to calculate the values of the needed invariant polynomials directly for

every canonical system we shall express here a family of T−comitants expressed by means of Ci



4.5 T−comitants governing the geometry of the singularities 59

(i = 0,1,2) and D j ( j = 1,2):

Ã =
(
C1,T8−2T9+D2

2

)(2)
/144,

B̃ =
{
16D1 (D2,T8)(1) (3C1D1−2C0D2+4T2) +32C0 (D2,T9)(1) (3D1D2−5T6 +9T7)

+2(D2,T9)(1)
(
27C1T4−18C1D2

1 −32D1T2 +32(C0,T5)(1)
)

+6(D2,T7)(1) [8C0(T8 −12T9)−12C1(D1D2+T7)+D1(26C2D1+32T5)

+C2(9T4 +96T3)]+6(D2,T6)(1) [32C0T9−C1(12T7 +52D1D2)−32C2D2
1

]

+48D2 (D2,T1)(1) (2D2
2 −T8

)
−32D1T8 (D2,T2)(1) +9D2

2T4 (T6 −2T7)

+12D1 (C1,T8)(2) (C1D2−2C2D1)+6D1D2T4
(
T8−7D2

2 −42T9
)

−16D1 (C2,T8)(1) (D2
1 +4T3

)
+12D1 (C1,T8)(1) (T7 +2D1D2)

+96D2
2

[
D1 (C1,T6)(1) +D2 (C0,T6)(1)

]
−16D1D2T3

(
2D2

2 +3T8
)

−4D3
1D2

(
D2

2 +3T8 +6T9
)
+6D2

1D2
2 (7T6+2T7)−252D1D2T4T9

}
/(2833),

D̃ =
[
2C0(T8−8T9 −2D2

2)+C1(6T7 −T6)− (C1,T5)(1) +6D1(C1D2−T5)−9D2
1C2

]
/36,

Ẽ =
[
D1(2T9 −T8)−3(C1,T9)(1)−D2(3T7 +D1D2)

]
/72,

F̃ =
[
6D2

1(D2
2 −4T9)+4D1D2(T6+6T7)+48C0 (D2,T9)(1)−9D2

2T4+288D1Ẽ

−24
(
C2, D̃

)(2) +120
(
D2, D̃

)(1) −36C1 (D2,T7)(1) +8D1 (D2,T5)(1)
]

/144,

K̃ =(T8 +4T9+4D2
2)/72≡

(
p2(x, y), q2(x, y)

)(1)
/4,

H̃ =(−T8 +8T9+2D2
2)/72.

(4.5.9)

The polynomials defined above in addition to (4.5.5) and (4.5.8) will serve as “bricks” in con-

structing affine invariant polynomials for systems (4.5.1).

In this sense, Boularas et al. [17] constructed a minimal polynomial basis of affine invariant

polynomials of systems (4.5.1) of degrees up to 12 (as polynomials in the coefficients of the systems

and the dependent variable) by using the affine invariant polynomials in (4.5.9). For this thesis,

we need only the basis of affine invariant polynomials of 42 elements which are in the Table 4.5.1.

In the list of Table 4.5.1, the bracket “[ ” is used in order to avoid placing the otherwise neces-

sary up to five parenthesis “( ”.

Using the basic elements (4.5.9) as well as the affine invariant polynomials A i (i = 1, . . . ,42)

from Table 4.5.1, we can construct the invariant polynomials we are going to use in the next

chapters.
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Table 4.5.1: Minimal basis of affine invariant polynomials

A1 = Ã, A22 =
[
C2, D̃)(1),D2

)(1),D2
)(1),D2

)(1)
D2

)(1)/1152,

A2 = (C2,D)(3)/12, A23 =
[
F̃, H̃)(1), K̃

)(2)/8,

A3 =
[
C2,D2)(1),D2

)(1),D2
)(1)/48, A24 =

[
C2, D̃)(2), K̃

)(1), H̃
)(2)/32,

A4 = (H̃, H̃)(2), A25 =
[
D̃, D̃)(2), Ẽ

)(2)/16,
A5 = (H̃, K̃)(2)/2, A26 = (B̃, D̃)(3)/36,

A6 = (Ẽ, H̃)(2)/2, A27 =
[
B̃,D2)(1), H̃

)(2)/24,

A7 =
[
C2, Ẽ)(2),D2

)(1)/8, A28 =
[
C2, K̃)(2), D̃

)(1), Ẽ
)(2)/16,

A8 =
[
D̃, H̃)(2),D2

)(1)/8, A29 =
[
D̃, F̃)(1), D̃

)(3)/96,

A9 =
[
D̃,D2)(1),D2

)(1),D2
)(1)/48, A30 =

[
C2, D̃)(2), D̃

)(1), D̃
)(3)/288,

A10 =
[
D̃, K̃)(2),D2

)(1)/8, A31 =
[
D̃, D̃)(2), K̃

)(1), H̃
)(2)/64,

A11 = (F̃, K̃)(2)/4, A32 =
[
D̃, D̃)(2),D2

)(1), H̃
)(1),D2

)(1)/64,

A12 = (F̃, H̃)(2)/4, A33 =
[
D̃,D2)(1), F̃

)(1),D2
)(1),D2

)(1)/128,

A13 =
[
C2, H̃)(1), H̃

)(2),D2
)(1)/24, A34 =

[
D̃, D̃)(2),D2

)(1), K̃
)(1),D2

)(1)/64,

A14 = (B̃,C2)(3)/36, A35 =
[
D̃, D̃)(2), Ẽ

)(1),D2
)(1),D2

)(1)/128,

A15 = (Ẽ, F̃)(2)/4, A36 =
[
D̃, Ẽ)(2), D̃

)(1), H̃
)(2)/16,

A16 =
[
Ẽ,D2)(1),C2

)(1), K̃
)(2)/16, A37 =

[
D̃, D̃)(2), D̃

)(1), D̃
)(3)/576,

A17 =
[
D̃, D̃)(2),D2

)(1),D2
)(1)/64, A38 =

[
C2, D̃)(2), D̃

)(2), D̃
)(1), H̃

)(2)/64,

A18 =
[
D̃, F̃)(2),D2

)(1)/16, A39 =
[
D̃, D̃)(2), F̃

)(1), H̃
)(2)/64,

A19 =
[
D̃, D̃)(2), H̃

)(2)/16, A40 =
[
D̃, D̃)(2), F̃

)(1), K̃
)(2)/64,

A20 =
[
C2, D̃)(2), F̃

)(2)/16, A41 =
[
C2, D̃)(2), D̃

)(2), F̃
)(1),D2

)(1)/64,

A21 =
[
D̃, D̃)(2), K̃

)(2)/16, A42 =
[
D̃, F̃)(2), F̃

)(1),D2
)(1)/16.

The most significant elements for the finite singularities are µ0(a) and D(a), which are given

by

µ0(a)=
Resx(p2, q2)

y4 and D(a)=−
(((

D̃, D̃
)(2)

, D̃
)(1)

, D̃
)(3)

,

and they respectively determine when at least one finite singular point collides with an infinite

one and when at least two finite singular points collide (see [8] for more details). It is to say that

this two invariant polynomials (together with other ones) are responsible for the number and

multiplicity of finite singular points.

There also exist the invariants which govern the types of the singular points. For instance, W4

helps us to decide if an antisaddle is a node or a focus and it is given by

W4(a)=1512A2
1(A30−2A29)−648A15 A26+72A1A2(49A25+39A26)

+6A2
2(23A21−1093A19)−87A4

2 +4A2
2(61A17 +52A18+11A20)

−36A8(396A29+265A30)+72A29(17A12−38A9 −109A11)
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+12A30(76A9−189A10 −273A11−651A12)−648A14(23A25+5A26)

−24A18(3A20+31A17)+36A19(63A20+478A21)+18A21(2A20+137A21)

−4A17(158A17+30A20+87A21)−18A19(238A17+669A19).

And the most significant invariant polynomials which govern the number and multiplicity of

infinite singular points of systems (4.5.1) are µ0 and

η(a)=
(M̃, M̃)(2)

384
=Discrim(C2),

where M̃(a, x, y)= (C2,C2)(2).

We can observe that, besides the fact that all these polynomials are invariant in the sense of

Definition 4.2.2, they also carry geometrical properties of systems (4.5.1) as commented above.

Suggestively, we can rewrite some of them in the forms below and understand their geometrical

meaning:

C2(a, x, y)= y p2(x, y)− x q2(x, y),

M̃(a, x, y)= 2Hess(C2(a, x, y)),

η(a)=Discrim(C2(a, x, y)),

K̂(a, x, y)= Jacob(p2(x, y), q2(x, y))= 4K̃ ,

µ0(a)=Resx(p2, q2)/y4 =Discrim(K̂(a, x, y))/16.

In what follows we present the expressions of invariants and comitants in terms of the basic

ones presented above which we shall use in the classification problems we propose in the next

chapters:

Ĥ(a, x, y)=−Discrim
(
αp2(x, y)+βq2(x, y)

)∣∣
{α=y,β=−x} =−4H̃,

Ñ(a, x, y)= K̂(a, x, y)+ Ĥ(a, x, y),

θ(a)=Discrim(Ñ(a, x, y)),

T4(a)=µ0ρ1ρ2ρ3ρ4, T3(a)=µ0(ρ1ρ2ρ3 +ρ1ρ2ρ4 +ρ1ρ3ρ4 +ρ2ρ3ρ4),

T2(a)=µ0(ρ1ρ2 +ρ1ρ3 +ρ1ρ4 +ρ2ρ3 +ρ2ρ4 +ρ3ρ4), T1(a)=µ0(ρ1 +ρ2 +ρ3 +ρ4),

where ρ i in Ti (i = 1,2,3,4), in generic case, is the trace of the Jacobian matrix at each singular

point. The invariant polynomials T4 and Ti (i = 1,2,3) are defined in [61] and they are responsible

for the weak singular points; see [61, Main Theorem] for further information.
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We now consider the differential operator L = x ·L2− y·L1 (see [11]) acting on R[a, x, y], where

L1 =2a00
∂

∂a10
+a10

∂

∂a20
+

1

2
a01

∂

∂a11
+2b00

∂

∂b10
+b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 =2a00
∂

∂a01
+a01

∂

∂a02
+

1

2
a10

∂

∂a11
+2b00

∂

∂b01
+b01

∂

∂b02
+

1

2
b10

∂

∂b11
.

Using this operator, we construct the following important set of invariant polynomials:

µi(a, x, y)=
1

i!
L

(i)(µ0), i = 1, . . .,4, (4.5.10)

where L
(i)(µ0) = L (L (i−1)(µ0)). These polynomials are in fact invariant polynomials of systems

(4.5.1) with respect to the group GL(2,R) (see [11]).

Using the invariant polynomials µi (i = 0,1, . . .,4), we can construct the invariant polynomials

D, P, R, S, T, U and V, which are responsible for the number and multiplicities of finite singular-

ities of a nondegenerate quadratic system. They are expressed as follows:

D(a)=−(((D̃, D̃)(2), D̃)(1), D̃)(3)/576,

P(a, x, y)= 12µ0µ4−3µ1µ3 +µ2
2,

R(a, x, y)=µ2
1 −8µ0µ2,

S(a, x, y)=R2 −16µ2
0P,

T(a, x, y)= 18µ2
0(3µ2

3 −µ2µ4)+2µ0(2µ3
2 −9µ1µ2µ3 +27µ2

1µ4)−PR,

U(a, x, y)=µ2
3 −4µ2µ4,

V(a, x, y)=µ4.

We discuss now an application of the invariant polynomials from the former list. For this,

we need the notion of a zero–cycle of the projective plane in order to describe the number and

multiplicity of singular points of a quadratic system. This notion and the notion of the divisor of

a line were used for purposes of classification of planar quadratic differential systems by Pal and

Schlomiuk [51], Llibre and Schlomiuk [39], Schlomiuk and Vulpe [53, 54] and Artés, Llibre and

Schlomiuk [6].

Definition 4.5.8. We consider formal expressions D =
∑

n(w)w, where n(w) is an integer and only

a finite number of n(w) are nonzero. Such an expression is called a zero–cycle of CP2, if all w

appearing in D are points of CP2. We call degree of the zero–cycle D the integer deg(D) =
∑

n(w).

We call support of D the set Supp(D) of w’s appearing in D such that n(w) 6= 0.
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We recall that CP2 denotes the complex projective space of dimension 2. For a system S be-

longing to the family (4.5.1) we denote ν(P,Q) = {w ∈ C2; P(w) = Q(w) = 0} and we define the

following zero–cycle D
S
(P,Q)=

∑
w∈ν(P,Q) Iw(P,Q)w, where Iw(P,Q) is the intersection number or

multiplicity of intersection at w of the projective completions of the curves P = 0 and Q = 0 (see

Section 3.4). It is clear that, for a nondegenerate quadratic system, deg(D
S
) ≤ 4 and the number

of points in Supp(D
S
) is lesser of equal to 4. The zero–cycle D

S
(P,Q) is undefined for a degenerate

system.

Having constructed the invariant polynomials D, P, R, S, T, U and V, their geometrical mean-

ing is revealed in the next proposition.

Proposition 4.5.9. [11, 61] The form of the divisor D
S
(P,Q) for nondegenerate quadratic sys-

tems (4.5.3) is determined by the corresponding conditions indicated in Table 4.5.2, where we write

p+ q+ rc + sc if two of the finite points, i.e. rc, sc, are complex but not real.

Table 4.5.2: Necessary and sufficient conditions: the number and multiplicity of the finite singu-
lar points of nondegenerate quadratic systems

No.
Zero–cycle
D

S
(P,Q)

Invariant criteria No.
Zero–cycle
D

S
(P,Q)

Invariant criteria

1 p+ q+ r+ s µ0 6= 0,D< 0,R> 0,S> 0 10 p+ q+ r µ0 = 0,D< 0,R 6= 0
2 p+ q+ rc + sc µ0 6= 0,D> 0 11 p+ qc + rc µ0 = 0,D> 0,R 6= 0

3 p c + qc + rc + sc µ0 6= 0,D< 0,R≤ 0
12 2p+ q µ0 =D= 0,PR 6= 0

µ0 6= 0,D< 0,S≤ 0
4 2p+ q+ r µ0 6= 0,D= 0,T< 0 13 3p µ0=D=P=0,R 6= 0
5 2p+ qc + rc µ0 6= 0,D= 0,T> 0 14 p+ q µ0 =R= 0,P 6= 0,U> 0
6 2p+2q µ0 6= 0,D=T= 0,PR> 0 15 p c + qc µ0 =R= 0,P 6= 0,U< 0
7 2p c +2qc µ0 6= 0,D=T= 0,PR< 0 16 2p µ0 =R= 0,P 6= 0,U= 0
8 3p+ q µ0 6= 0,D=T= 0,P= 0,R 6= 0 17 p µ0 =R= 0,P= 0,U 6= 0
9 4p µ0 6= 0,D=T= 0,P=R= 0 18 0 µ0 =R=R= 0,U= 0,V 6= 0
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Chapter

5

The topological classification of

quadratic differential systems with a

semi–elemental triple node

5.1 Motivation for the study

Artés, Kooij and Llibre [4] classified all the structurally stable quadratic planar systems mod-

ulo limit cycles, also known as the codimension–zero quadratic systems. Roughly speaking, those

systems are characterized by having the properties: all singularities, finite and infinite, are sim-

ple, with no separatrix connection, and where any nest of limit cycles is considered as a single

point with the stability of the outer limit cycle. The authors proved the existence of 44 topologi-

cally different phase portraits for such systems.

The natural continuation of this idea is the classification of the structurally unstable quadratic

systems of codimension–one, modulo limit cycles. The next definition characterizes systems of

codimension one.

Definition 5.1.1. A differential system is said to be a system of the first degree of structural

instability (or a system of codimension one) if, and only if, the following conditions are satisfied:

(i) A vector field, in the region of its definition, has one, and only one, simplest structurally

unstable object, that is to say one of the following types:

(i.1) a multiple focus of multiplicity one;
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(i.2) a limit cycle of multiplicity two;

(i.3) a saddle–node of multiplicity two (with divergence nonzero);

(i.4) a separatrix from one saddle point to another;

(i.5) a separatrix forming a loop for a saddle point (with divergence nonzero).

(ii) A vector field, in the region of its definition, has no structurally unstable limit cycles, saddle–

point separatrices forming a loop, or equilibrium states other than those listed in (i).

(iii) If the vector field has a saddle–node, none of its separatrices may go to a saddle point and no

two separatrices of the saddle–node are continuation one of the other.

(iv) The separatrix of a saddle point of the vector field in its region of definition may not go to a

separatrix forming a loop as t →−∞ or as t →∞. The region of definition cannot contain two

saddle point separatrices going to the same limit cycle of multiplicity two, one as t →−∞ and

the other as t →∞.

The above conditions, which are general for any class of vector fields, are easily reduced for

the case of polynomial vector fields, and even more for quadratic vector fields, as for example

condition (iv) which implies the existence of a saddle point inside the regions limited by a loop

separatrix or a limit cycle, which cannot happen in quadratic vector fields, according to item (iii)

of Section 1.5, on page 15.

Furthermore, these conditions are even simpler for the study done modulo limit cycles since

we do not need to deal with multiple focus or limit cycles. So, the conditions will be reduced to:

(i) A vector field, in the region of its definition, has one, and only one, simplest structurally

unstable object, that is to say one of the following types:

(i.1) a saddle–node of multiplicity two (with divergence nonzero);

(i.2) a separatrix from one saddle point to another;

(i.3) a separatrix forming a loop for a saddle point (with divergence nonzero).

(ii) A vector field, in the region of its definition, has no structurally unstable limit cycles, saddle–

point separatrices forming a loop, or equilibrium states other than those listed in (i).

(iii) If the vector field has a saddle–node, none of its separatrices may go to a saddle point and

no two separatrices of the saddle–node are continuation one of the other.

Even more, condition (i.3) of having a separatrix forming a loop for a saddle point with diver-

gence nonzero can be considered without the requirement on the divergence as this means that
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the loop is such that a limit cycle cannot bifurcate from it (compared with the fact that a limit cy-

cle can bifurcate from a multiple focus). When considering specific examples, we will simply take

care of this condition holding, but it is not needed when studying the topological possible phase

portraits.

In short, a polynomial vector field is structurally unstable of codimension one modulo limit

cycles if, and only if, they have one and only one of the following simplest structurally unstable

objects: a saddle–node of multiplicity two (finite or infinite), a separatrix from one saddle point to

another, and a separatrix forming a loop for a saddle point with its divergence nonzero. This study

is already in progress [5], all topological possibilities have already been found, some of them have

already been proved impossible and many representatives have been located, but still remain

some cases without candidate.

It is worth mentioning that all the phase portraits of codimension one are split into four

groups according to the possession of a structurally unstable element: (A) possessing a finite

semi–elemental saddle–node, (B) possessing an infinite semi–elemental saddle–node
(0
2

)
SN, (C)

possessing an infinite semi–elemental saddle–node
(1
1

)
SN, and (D) possessing saddle connection.

One way to obtain codimension–one phase portraits is considering a perturbation of known

phase portraits of quadratic systems of codimension greater than one. This perturbation would

decrease the codimension of the system and we may find a representative for a topological equiv-

alence class in the family of the codimension–one systems and add it to the existing classification.

In order to contribute to this classification, some families of quadratic systems of higher codimen-

sion are studied, e.g. systems with a weak focus of second order, see [6].

Besides, the complete characterization of the phase portraits for real planar quadratic vector

fields is not known and attempting to classify topologically these systems, which occur rather of-

ten in applications, is quite a complex task. As mentioned before (see Section 4.5), this family of

systems depends on twelve parameters, but due to the action of the group G of real affine trans-

formations and time homotheties, the class ultimately depends on five parameters, but this is still

a large number. So, we draw our attention to some subfamilies of quadratic systems possessing

three and four parameters.

In this chapter our goal is to classify topologically all quadratic systems possessing a semi–

elemental triple node as a finite singularity. This study is part of this attempt of classifying all

the codimension–one quadratic systems.

We know that one phase portrait here will bifurcate to one of the codimension–one systems
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still missing.

The results provided in this chapter can be also found in the paper of Artés, Rezende and

Oliveira [9].

5.2 Statement of the results

The goal of this chapter is to study the class QTN of all quadratic systems possessing a semi–

elemental triple node. If we have a finite triple point, the possibility of having another finite

singular point is present. Indeed, in case the remaining singularity did not go to infinity, then

there is another singularity in the finite plane. In this study we follow the pattern set out in [6].

The class QTN is partitioned into 63 parts: 17 three–dimensional ones, 29 two–dimensional

ones, 15 one–dimensional ones and 2 points. This partition is obtained by considering all the bi-

furcation surfaces of singularities and one related to connections of separatrices, modulo “islands”

(see Section 5.4.3).

Theorem 5.2.1. There exist 28 distinct phase portraits for the quadratic vector fields having a

semi–elemental triple node and given by the normal form (5.3.1) (class QTN). The bifurcation

diagram for this class is the affine tridimensional space R
3. All these phase portraits are shown in

Figure 5.1. Moreover, the following statements hold:

(a) There exist three phase portraits with limit cycles, and they are in the parts V6, V15 and 5S5;

(b) There exist three phase portraits possessing a single graphic with two singular points both

infinite which surrounds a focus. They are in the parts 5S4, 7S1 and 5.7L1;

(c) There exists exactly one phase portrait possessing a graphic with two singular points both

infinite which surrounds an infinite number of graphics being all loops. It is in part 1.3L2;

(d) There exist 19 phase portraits with two finite singular points and 9 with only one finite singular

point.

From the 28 topologically distinct phase portraits stated in Theorem 5.2.1, 9 occur in three–

dimensional parts, 13 in two–dimensional parts, 5 in one–dimensional parts and 1 occurs in a

single zero–dimensional part.

In Figure 5.1 we have denoted with a little disk the elemental singular points and with a little

triangle the semi–elemental triple node. We have plotted with wide curves the separatrices and

we have added some thinner orbits to avoid confusion in some required cases.
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V1 V3 V4
V6

V8 V10 V11 V12

V15 1S1 1S2 1S3

1S4 5S1
5S2 5S4

5S5 5S7 5S8 5S9

5S10 7S1 1.3L1 1.3L2

1.5L1 1.5L2
5.7L1 P1

Figure 5.1: Phase portraits for quadratic vector fields with a semi–elemental triple node
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Remark 5.2.2. The phase portraits are labeled according to the parts of the bifurcation diagram

where they occur. These labels could be different for two topologically equivalent phase portraits oc-

curring in distinct parts. Some of the phase portraits in three–dimensional parts also occur in some

two–dimensional parts bordering these three–dimensional parts. An example occurs when a node

turns into a focus. An analogous situation happens for phase portraits in two–dimensional (respec-

tively, one–dimensional) parts, coinciding with a phase portrait on one–dimensional (respectively,

zero–dimensional) part situated on the border of it.

Corollary 5.2.3. After applying a perturbation, the phase portrait V11 in Figure 5.1 yields a new

topologically possible phase portrait of codimension–one expected to exist.

5.3 Quadratic vector fields with a semi–elemental triple node

According to Definition 2.1.1, a singular point r of a planar vector field X in R
2 is semi–

elemental, if the determinant of its Jacobian matrix, DX (r), is zero, but its trace is different from

zero.

We recall that in Proposition 2.2.1 (page 23) the normal form of a system possessing a semi–

elemental singular point is presented. However, we want this semi–elemental singular point to

be a triple node. The following result states the normal form for systems in QTN.

Proposition 5.3.1. Every system with a finite semi–elemental triple node n(3) can be brought via

affine transformations and time rescaling to the following normal form:

ẋ= 2xy+ky2,

ẏ= y− x2 +2mxy+ny2,
(5.3.1)

where m, n and k are real parameters.

Proof. We start with system (2.2.2). By Proposition 2.2.1, we set g = 0 and hℓ 6= 0 in order to have

a semi–elemental triple point at the origin. As the function g(x) =−2hℓx3+ o(x4) starts with odd

degree, it implies that the triple point is either a node or a saddle. If hℓ< 0, we shall have a triple

node. So, after applying the affine change (x, y) 7→ (
p
−hℓx, hy), we obtain h = 1, ℓ = −1 and, by

renaming the other coefficients, we complete the proof.

In view that the normal form (5.3.1) involves the coefficients m, n and k, which are real, the

parameter space is R
3 with coordinates (m, n, k).
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Remark 5.3.2. Instead of the normal form (5.3.1) we could have constructed another one in which

case we would have considered the closure of the family QTN. According to the normal form (2.2.2)

for semi–elemental singularities, for the existence of a triple singular point we must have hℓ < 0

(i.e. hℓ 6= 0). So, the closure would correspond to the cases: (i) h = 0 and ℓ 6= 0, (ii) h 6= 0 and

ℓ= 0, and (iii) h = ℓ= 0, which are related to either the presence of semi–elemental saddle–nodes

of multiplicity 4 or higher degeneracy, e.g. the presence of lines of singularities. This means that

the dimension of the bifurcation diagram would be greater than three. As our contact with the

technique was recent, we avoided using a normal form depending on more parameters than (5.3.1),

so that the analysis would be less complicated than the one described in [6].

Remark 5.3.3. After applying the change (x, y, t) 7→ (−x, y, t), we note that system (5.3.1) is sym-

metric in relation to the real parameters k and m (the usual reflection in the axes k and m). So, we

will only consider k ≥ 0 and m ≥ 0.

We note that in this study we use the concept of intersection number for curves described in

Section 1.6.

5.4 The bifurcation diagram of systems with a semi–elemental triple

node

We recall that, in view that the normal form (5.3.1) involves the coefficients m, n and k, which

are real, the parameter space here is R
3 with coordinates (m, n, k).

5.4.1 Bifurcation surfaces due to the changes in the nature of singularities

For systems (5.3.1) we will always have (0,0) as a finite singular point, a semi–elemental triple

node.

From Section 4.5 we get the formulas which give the bifurcation surfaces of singularities in

R
12, produced by changes that may occur in the local nature of finite and infinite singularities.

These bifurcation surfaces are all algebraic and they are the following:

Bifurcation surfaces in R
3 due to multiplicities of singularities

(S1) This is the bifurcation surface due to multiplicity of infinite singularities as detected by

the coefficients of the divisor D
R
(P,Q; Z) =

∑
W∈{Z=0}∩CP2 IW (P,Q)W, (here IW (P,Q) denotes the

intersection multiplicity of P = 0 with Q = 0 at the point W situated on the line at infinity, i.e.
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Z = 0) whenever deg(D
R
(P,Q; Z))> 0. This occurs when at least one finite singular point collides

with at least one infinite singular point. More precisely, this happens whenever the homogenous

polynomials of degree two, p2 and q2 in p and q, have a common root. The equation of this surface

is

µ= k2+4km−4n = 0.

(S5)1 This is the bifurcation surface due to multiplicity of infinite singularities as detected by

the coefficients of D
C
(C, Z) =

∑
W∈{Z=0}∩CP2 IW (C, Z)W, i.e. this bifurcation occurs whenever at a

point W of intersection of C = 0 with Z = 0 we have IW (C, Z) ≥ 2, i.e. when at least two infi-

nite singular points collide at W. This occurs whenever the discriminant of C2 = C(X ,Y ,0) =

Y p2(X ,Y )−X q2(X ,Y ) is zero. We denote by η this discriminant. The equation of this surface is

η=−32−27k2 −72km+16m2 +32km3 +48n+36kmn−16m2n−24n2+4m2n2+4n3 = 0.

The surface of C∞ bifurcation due to a strong saddle or a strong focus changing the

sign of their traces (weak saddle or weak focus)

(S3) This is the bifurcation surface due to finite weak singularities, which occurs when the trace

of a finite singular point is zero. The equation of this surface is given by

T4 = 8+k2+4n = 0,

where the invariant T4 is defined in Section 4.5. We note that this bifurcation surface can either

produce a topological change, if the weak point is a focus, or just a C∞ change, if it is a saddle,

except when this bifurcation coincides with a loop bifurcation associated with the same saddle, in

which case, the change may also be topological (for an example of this case we refer to Chapter 7).

The surface of C∞ bifurcation due to a node becoming a focus

(S6) This surface will contain the points of the parameter space where a finite node of the system

turns into a focus (and conversely). This surface is a C∞ but not a topological bifurcation surface.

In fact, when we only cross the surface (S6) in the bifurcation diagram, the topological phase

portraits do not change. However, this surface is relevant for isolating the parts where a limit cycle

1The numbers attached to these bifurcations surfaces do not appear here in increasing order. We just kept the same
enumeration used in [6] to maintain coherence even though some of the numbers in that enumeration do not occur
here.
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Figure 5.2: The 3−dimensional picture of the surface (S6) (when a finite node becomes a focus)

surrounding an antisaddle (different from the triple node) cannot exist. Using the expressions in

Section 4.5, the equation of this surface is given by W4 = 0, where

W4 = 64+48k2 +k4 +128km−64n+8k2n+16n2.

Remark 5.4.1. Even though we can draw a 3−dimensional picture of the algebraic bifurcation

surfaces of singularities in R
3 (see Figure 5.2, for an example), it is pointless to try to see a single

3−dimensional image of all these four bifurcation surfaces together in the space R3. As we shall see

later, the full partition of the parameter space obtained from all these bifurcation surfaces has 63

parts.

Due to Remark 5.4.1 we shall foliate the 3−dimensional bifurcation diagram in R
3 by planes

k = k0, k0 constant. We shall give pictures of the resulting bifurcation diagram on these planar

sections on an affine chart on R
2. In order to detect the key values for this foliation, we must find

the values of parameters where the surfaces intersect each other. As we mentioned before, we will

be only interested in non–negative values of k to construct the bifurcation diagram.

As the final bifurcation diagram is quite complex, it is useful to introduce colors which will be

used to talk about the bifurcation points:

(a) the curve obtained from the surface (S1) is drawn in blue (a finite singular point collides with

an infinite one);
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(b) the curve obtained from the surface (S3) is drawn in green (when the trace of a singular point

becomes zero);

(c) the curve obtained from the surface (S5) is drawn in red (two infinite singular points collide);

(d) the curve obtained from the surface (S6) is drawn in black (an antisaddle different from the

triple node is on the verge of turning from a node into a focus or vice versa); and

(e) the curve obtained from the surface (S7) is drawn in purple (the connection of separatrices).

The following set of eight results study the singularities of each surface and the simultane-

ous intersection points of the bifurcation surfaces, or the points or curves where two bifurcation

surfaces are tangent.

Lemma 5.4.2. Concerning the singularities of the surfaces, it follows that:

(i) (S1) and (S3) have no singularities;

(ii) (S5) has a curve of singularities given by 4m2+3n−6= 0;

(iii) (S6) has a singularity on the straight line (m,2,0) on slice k = 0. Besides, this surface re-

stricted to k = 0 is part of the surface (S5).

Proof. It is easy to see that the gradient of (S1) and (S3) is never null for all (m, n, k)∈R
3; so (i) is

proved. In order to prove (ii) we compute the gradient of η and we verify that it is null whenever

m = −3 3
p

k/2 and n = 2−3
3p

k2, for all k ≥ 0. It is easy to see that these values of m and n for

all k ≥ 0 lie on the curve 4m2 +3n−6 = 0. Finally, considering the gradient of the surface (S6),

it is identically zero at the point (0,2,0) which lies on the straight line (m,2,0) whenever k = 0.

Moreover, if k = 0, we see that the equation of (S6) is (−2+n)2, which is part of (S5), proving (iii).

Lemma 5.4.3. Surfaces (S1) and (S3) do not intersect on k = 0. For all k 6= 0, they intersect in the

point (−(4+k2)/2k,−2−k2/4, k).

Proof. By solving simultaneously both equations of the surfaces (S1) and (S3) for all k 6= 0, we

obtain the point (−(4+ k2)/2k,−2− k2/4, k). We also note that, if k = 0, there is no intersection

point.

Lemma 5.4.4. Surfaces (S1) and (S5) intersect at the points (−
p

2,0,0) and (
p

2,0,0) on k = 0,

and, for all k 6= 0, they intersect along the surface γ1(m, n) = −64+32m2 +16n− n2 = 0 and they

have a 2−order contact along the surface γ2(m, n)= 1+2m2 +2n+m2n+n2 = 0.
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Proof. By solving simultaneously both equations of the surfaces (S1) and (S5) for k = 0, we

obtain the two solutions m1 = −
p

2, n1 = 0 and m2 =
p

2, n2 = 0, proving the first part of the

lemma. For all k 6= 0, the simultaneous solutions of the equations are the three points: r1 = (−
p

2−

k/4,−
p

2k, k), r2 = (
p

2−k/4,
p

2k, k) and r3 = (−(4+k2)/2k,−2−k2/4, k). By computing the resultant

with respect to k of (S1) and (S5), we see that Resk[(S1), (S5)] = −16 γ1(m, n) (γ2(m, n))2, where

γ1(m, n) and γ2(m, n) are as stated in the statement of the lemma. It is easy to see that γ1(m, n)

has two simple roots which are r1 and r2, and r3 is a double root of (γ2(m, n))2. Then, the surfaces

intersect transversally along the curve γ1(m, n) and they have a 2−order contact along the curve

γ2(m, n).

Lemma 5.4.5. Surfaces (S1) and (S6) do not intersect on k =0. For all k 6= 0, they have a 2−order

contact along the surface 1+2m2 +2n+m2n+n2 = 0.

Proof. By solving the system formed by the equations of the surfaces (S1) and (S6), we find the

point r = (−(4+k2)/2k,−2−k2/4, k), for all k 6=0, which lies on the curve 1+2m2+2n+m2n+n2 = 0.

We claim that the surfaces (S1) and (S6) have a 2−order contact point at r. Indeed, we have just

shown that the point r is a common point of both surfaces. Applying the change of coordinates

given by n = (v+ km+ k2)/4, v ∈R, we see that the gradient vector of (S1) is ∇µ(r) = (0,0,0) while

the gradient vector of (S6) is ∇W4(r) = (0,0,8(−4+16/k2 +5k2)), whose last coordinate is always

positive for all k 6= 0. As it does not change its sign, the vector ∇W4(r) will always point upwards

in relation to (S1) restricted to the previous change of coordinates. Then, the surface (S6) remains

only on one of the two topological subspaces delimited by the surface (S1), proving our claim.

Lemma 5.4.6. If k = 0, the surfaces (S3) and (S5) intersect at the points (−2,−2,0) and (2,−2,0).

For all k 6= 0, they intersect at the points r1 = ((32k−k3−
√

(64−k2)3)/256,−2−k2/4, k), r2 = (−(4+

k2)/2k,−2−k2/4, k) and r3 = ((32k−k3 +
√

(64−k2)3)/256,−2−k2/4, k).

Proof. The result follows easily by solving the system formed by the equations of the surfaces.

Corollary 5.4.7. If k = 2
p

2, the points r1 and r2 of Lemma 5.4.6 are equal and they correspond

to the singularity of the surface (S5).

Proof. Replacing k = 2
p

2 at the expressions of the points r1, r2 and r3 described in Lemma 5.4.6,

we see that r1 = r2 and they are equal to the singularity (−3
p

2/2,−4,2
p

2) of the surface (S5).

Remark 5.4.8. We observe that the values k = 0 and k = 2
p

2 will be very important to describe

the bifurcation diagram due to the “rich” change on the behavior of the curves on specific surfaces

as we change the slices.
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Lemma 5.4.9. If k = 0, the surfaces (S5) and (S6) intersect along the straight line (m,2,0), for all

m ∈R. For all k 6= 0, they have a 2−order contact point at (−(4+k2)/2k,−2−k2/4, k).

Proof. Replacing k = 0 in the equations of the surfaces and solving them in the variables m

and n, we find that m ∈ R and n = 2, implying the existence of intersection along the straight

line (m,2,0), m ∈ R. For all k 6= 0, the solution of the equations of the surfaces is the point r =

(−(4+k2)/2k,−2−k2/4, k). We claim that the surfaces (S5) and (S6) have a 2−order contact point

at r. We shall prove this claim by showing that each one of the surfaces (S5) and (S6) remains

on only one of the half–spaces delimited by the plane (S1) and their unique common point is r.

Indeed, it is easy to see that the point r is a common point of the three surfaces. By applying

the change of coordinates given by n = (v+ km+ k2)/4, v ∈ R, as in the proof of Lemma 5.4.5, we

see that the surface (S6) remains on only one of the two topological subspaces delimited by the

plane (S1). On the other hand, numerical calculations show us that the surface (S5) is zero valued

around the point r and it assumes negative values otherwise, showing that (S5) remains on the

other half–space delimited by the plane (S1).

Lemma 5.4.10. The curve r(k) = (−3 3p
k/2,2−3

3p
k2, k) of (S5) (i.e. its set of singularities) cannot

belong to the part where W4 > 0 and µ< 0.

Proof. We consider the real continuous function g = (µW4)
∣∣
r(k) =

(
3p

k2 −2
)6 (

3p
k2+6

)
3p

k4, whose

zeroes are 0 and 2
p

2. It is easy to see that g is always positive in (0,2
p

2)∪ (2
p

2,∞), implying

that the functions µ and W4 calculated at r(k) cannot have different signs, proving the lemma.

Now we shall study the bifurcation diagram having as reference the values of k where signif-

icant phenomena occur in the behavior of the bifurcation surfaces.

According to Remark 5.4.8, these values are k = 0 and k = 2
p

2. So, we only need to add two

more slices with some intermediate values.

We take, then, the values:

k0 = 0, k1 = 1,

k2 = 2
p

2, k3 = 3.
(5.4.1)

The values indexed by positive even indices correspond to explicit values of k for which there

is a bifurcation in the behavior of the systems on the slices. Those indexed by odd ones are just

intermediate points (see Figures 5.3 to 5.6).

Notation 5.4.11. We now describe the labels used for each part of the bifurcation space. The sub-

sets of dimensions 3, 2, 1 and 0, of the partition of the parameter space will be denoted respectively
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by V, S, L and P for Volume, Surface, Line and Point, respectively. The surfaces are named using

a number which corresponds to each bifurcation surface which is placed on the left side of the let-

ter S. To describe the portion of the surface we place an index. The curves that are intersection of

surfaces are named by using their corresponding numbers on the left side of the letter L, separated

by a point. To describe the segment of the curve we place an index. Volumes and Points are simply

indexed (since three or more surfaces may be involved in such an intersection).

We consider an example: the surface (S1) splits into 5 different two–dimensional parts labeled

from 1S1 to 1S5, plus some one–dimensional arcs labeled as 1.iL j (where i denotes the other sur-

face intersected by (S1) and j is a number), and some zero–dimensional parts. In order to simplify

the labels in Figures 5.10 to 5.13 we see V1 which stands for the TEX notation V1. Analogously, 1S1

(respectively, 1.2L1) stands for 1S1 (respectively, 1.2L1). And the same happens with many other

pictures.

Some bifurcation surfaces intersect on k =0 or have singularities there. The restrictions of the

surfaces on k = 0 are: the surface (S5) has a singularity at the point (0,2,0) and it is the union

of a parabola and a straight line of multiplicity two, which in turn coincides with the bifurcation

surface (S6); the surface (S1) coincides with the horizontal axis and the bifurcation surface (S3)

becomes a straight line parallel to the horizontal line having intersection points only with the

surface (S5).

As an exact drawing of the curves produced by intersecting the surfaces with slices gives

us very small parts which are difficult to distinguish, and points of tangency are almost impos-

sible to recognize, we have produced topologically equivalent figures where parts are enlarged

and tangencies are easy to observe. The reader may find the exact pictures in the web page

http://mat.uab.es/∼artes/articles/qvftn/qvftn.html.

As we increase the value of k, other changes in the bifurcation diagram happen. When k = 1,

the surface (S5) has two connected components and a cusp point as a singularity which remains

on the left side of the surface (S6) until k = 2
p

2 (see Figure 5.4). At this value, the cusp point is

the point of contact among all the surfaces, as we can see in Figure 5.5, and when k = 3, the cusp

point of (S5) lies on the right side of surfaces (S6) and (S1) (see Figure 5.6 and Lemma 5.4.10).

In order to comprehend that the “movement” of the cusp point of the surface (S5) implies changes

that occur in the bifurcation diagram, we see that when k = 1 we have a “curved triangular” part

formed by the surfaces (S3) and (S5), the cusp point of (S5) and the points of intersection between

both surfaces. The “triangle” bounded by these elements yields 15 subsets: three 3−dimensional
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Figure 5.3: Slice of the parameter space when
k = 0

m

n

Figure 5.4: Slice of the parameter space when
k = 1

subsets, seven 2−dimensional ones and five 1−dimensional ones. In Figure 5.5 we see that the

“triangle” has disappeared and it has become a unique point which corresponds to the point of

contact of all the surfaces and the cusp point of surface (S5). Finally, when k = 3, the “triangle”

reappears and yields also 15 subsets of same dimensions, but different from the previous ones.

All other parts of the parameter space related to singular points remain topologically the same

with respect to the algebraic bifurcations of singularities when moving from Figures 5.4 to 5.6.

We recall that the black curve (S6) (or W4) means the turning of a finite antisaddle different

from the triple node from a node into a focus. Then, according to general results about quadratic

systems in Section 1.5, we could have limit cycles around such focus for any set of parameters

having W4 < 0.

Remark 5.4.12. Wherever two parts of equal dimension d are separated only by a part of dimen-

sion d −1 of the black bifurcation surface (S6), their respective phase portraits are topologically

equivalent since the only difference between them is that a finite antisaddle has turned into a fo-

cus without change of stability and without appearance of limit cycles. We denote such parts with

different labels, but we do not give specific phase portraits in pictures attached to Theorem 5.2.1
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Figure 5.5: Slice of the parameter space when
k = 2
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v14
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3s2
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Figure 5.6: Slice of the parameter space when
k = 3

for the parts with the focus. We only give portraits for the parts with nodes, except in the case of

existence of a limit cycle or a graphic where the singular point inside them is portrayed as a focus.

Neither do we give specific invariant description in Section 5.5 distinguishing between these nodes

and foci.

5.4.2 Bifurcation surfaces due to connections

We now place for each set of the partition on k = 3 the local behavior of the flow around all

the singular points. For a specific value of parameters of each one of the sets in this partition we

compute the global phase portrait with the numerical program P4 [3, 27]. In fact, many (but not

all) of the phase portraits in this work can be obtained not only numerically but also by means of

perturbations of the systems of codimension one.

In this slice we have a partition in 2−dimensional parts bordered by curved polygons, some of

them bounded, others bordered by infinity. From now on, we use lower–case letters provisionally

to describe the sets found algebraically so not to interfere with the final partition described with

capital letters.

For each 2−dimensional part we obtain a phase portrait which is coherent with those of all
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their borders. Except one part. Consider the segment 3s1 in Figure 5.6. On it we have a weak

focus and a Hopf bifurcation. This means that either in v5 or v6 we must have a limit cycle. In fact

it is in v6. The same happens in 3s2, so a limit cycle must exist either in v14 or v7. However, when

approaching 6s1 or 6s2, this limit cycle must have disappeared. So, either v7 or v14 must be split in

two parts separated by a new surface (S7) having at least one element 7S1 such that one part has

limit cycle and the other does not, and the border 7S1 must correspond to a connection between

separatrices. Numerically it can be checked that it is the part v7 the one which splits in V7 without

limit cycles and V15 with one limit cycle. It can also be analytically proved (see Proposition 5.4.13)

that the segment 5s4 must be split in two segments 5S4 and 5S5 by the 1−dimensional subset

5.7L1. The other border of 7S1 must be 1.3L1 for coherence. We plot the complete bifurcation

diagram in Figure 5.13. We also show the sequence of phase portraits along these subsets in

Figure 5.7.

Notice that the limit cycle which is “born” by Hopf on 3S1 either “dies” on 5S4 or “survives”

when crossing η= 0, if we do it through 5S5, and then it “dies” either on 7S1 or again by Hopf in

3S2.

Surface (S7), for a concrete k > 2
p

2, is a curve which starts on 1.3L1 and may either cut 5s4,

or not. We are going to prove that, at least for a concrete k0, (S7) must cut it, and consequently it

must do the same for an open interval around k0, thus proving the existence of subsets 5S4, 5S5

and 5.7L1 which have different phase portraits.

Proposition 5.4.13. The following statements hold:

(i) System (5.3.1) with (m, n, k)= (−29/2,−105/4,7) has an even number of limit cycles (counting

their multiplicities), and possibly this number is zero;

(ii) System (5.3.1) with (m, n, k)= (−49/2,−185/4,12) has an odd number of limit cycles (counting

their multiplicities), and possibly this number is one;

Proof. (i) We see that the system with rational coefficients

ẋ= 2xy+7y2, ẏ= y− x2 −29xy−
105

4
y2 (5.4.2)

is a representative of the red surface (S5) which belongs to the subset 5s4.

We have to show that there exists a hyperbola

H ≡ ax2+bxy+ y2 +dx+ ey+ f = 0
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V5 3S1 V6

5S4 5.7L1 5S5

V157S1V7

3S2V145S6

Figure 5.7: Sequence of phase portraits in slice k = 3. We start from v5. We recall that the phase portrait
3S1 is equivalent to the phase portrait V5 up to a weak focus (represented by a little black square) in place
of the focus. When crossing 3s1, we shall obtain the phase portrait V6 in subset v6. From this point we may
choose three different ways to reach the subset v7 by crossing 5s4: (1) from the phase portrait 5S4 to the
V7; (2) from the phase portrait 5.7L1 to the 7S1; and (3) from the phase portrait 5S5 to the V15, from where
we can move to V14. Finally, from V14 we can pass through 5S6 and reach V5

which isolates the focus of (5.4.2) on the region where H < 0 and x> 0, and with the property that

at each of its points the flow crosses the hyperbola in only one direction, as we can see in Figure

5.8. By proving the existence of this hyperbola, we shall prove that (5.4.2) has an even number of

limit cycles.

For convenience and making easier the calculations, we impose that the hyperbola passes

through two infinite singular points of (5.4.2) with the same tangencies of the affine separatrices.

With all these features we have just one free parameter which is used to force the hyperbola to

pass through a concrete finite point. In resume, we take a =1/14, b = 57/28,

d =
1

392

(√
148225e2+1+399e−1

)
, f =

e2−28de+ e
√

(28d− e)2

1516
√

(28d− e)2−110

and e =−324/10000.

This hyperbola has a component fully included in the fourth quadrant and it is easy to check
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5S4

Figure 5.8: The hyperbola in the phase portrait of 5S4

5S5

Figure 5.9: The hyperbola in the phase portrait of 5S5

that the scalar product of its tangent vector with the flow of the vector field does not change its

sign and the flow moves outwards the region H < 0. Since the focus is repellor, this is consistent

with the absence of limit cycles (or with an even number of them, counting their multiplicities).

(ii) We see that the system with rational coefficients

ẋ= 2xy+12y2, ẏ= y− x2 −49xy−
185

4
y2 (5.4.3)

is a representative of the red surface (S5) which belongs to the subset 5s4.

Analogously, we have to show that there exists a hyperbola H ≡ ax2+bxy+ y2+dx+ ey+ f = 0

which isolates the focus of (5.4.3) on the region where H < 0 and x > 0, and with the property

that at each of its points the flow crosses the hyperbola in only one direction, as we can see in

Figure 5.9. By proving the existence of this hyperbola, we shall prove that (5.4.3) has an odd

number of limit cycles.

By using the same technique as before, we take a =1/24, b = 97/48,

d =
1

1152

(√
1299600e2+1+1164e−1

)
, f =

e2−48de+ e
√

(48d− e)2

4516
√

(48d− e)2−190
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and e =−18663/100000.

This hyperbola has a component fully included in the fourth quadrant and it is easy to check

that the scalar product of its tangent vector with the flow of the vector field does not change its

sign and the flow moves inwards the region H < 0. Since the focus is repellor, this is consistent

with the presence of one limit cycle (or with an odd number of them, counting their multiplici-

ties).

Remark 5.4.14. We cannot be sure that this is all the additional bifurcation curves in this slice.

There could exist others which are closed curves which are small enough to escape our numerical

research. For all other two–dimensional parts of the partition of this slice whenever we join two

points which are close to two different borders of the part, the two phase portraits are topologically

equivalent. So we do not encounter more situations than the one mentioned above.

As we vary k in (2
p

2,∞), the numerical research shows us the existence of the phenomenon

just described, but for the values of k in [0,2
p

2), we have not found the same behavior.

In Figures 5.10 to 5.13 we show the complete bifurcation diagrams. In these figures, we have

colored in light yellow the parts with one limit cycle. In Section 5.5 the reader can look for the

topological equivalences among the phase portraits appearing in the various parts and the se-

lected notation for their representatives in Figure 5.1.

5.4.3 Other relevant facts about the bifurcation diagram

The bifurcation diagram we have obtained for QTN is completely coherent. By this, we mean

that if we take any two points in the parameter space and join them by a continuous curve,

along this curve the changes in phase portraits that occur when crossing the different bifurcation

surfaces we mention can be completely explained.

However, we cannot be sure that this bifurcation diagram is the complete bifurcation diagram

for QTN due to the possibility of “islands” inside the parts bordered by unmentioned bifurcation

surfaces. In case they exist, these “islands” would not mean any modification of the nature of the

singular points. So, on the border of these “islands” we could only have bifurcations due to saddle

connections or multiple limit cycles.

In case there were more bifurcation surfaces, we should still be able to join two representatives

of any two parts of the 63 parts found until now with a continuous curve either without crossing

such bifurcation surface or, in case the curve crosses it, it must do it an even number of times
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Figure 5.10: Complete bifurcation diagram for
slice k = 0
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Figure 5.11: Complete bifurcation diagram for
slice k = 1

without tangencies, otherwise one must take into account the multiplicity of the tangency, so the

total number must be even. This is why we call these potential bifurcation surfaces “islands”.

To give an example of such a potential “island”, we consider part V1 where we have a phase

portrait having a finite antisaddle, a saddle and two pairs of infinite antisaddles and one pair of in-

finite saddles. This phase portrait is topologically equivalent (modulo limit cycles and associating

to the triple node a simple antisaddle) with the phase portrait 9.1 from [4] where all structurally

stable quadratic vector fields were studied, (see the first phase portrait of Figure 5.14).

We note that in [4] it is proved that structurally stable (modulo limit cycles) quadratic vector

fields can have exactly 44 different phase portraits. In the case of system (5.3.1), we have a semi–

elemental triple node which topologically behaves like an elemental node, and the phase portraits

in generic parts on the bifurcation diagram will look like structurally stable ones. From those 44,

two have no singular points, one has no finite antisaddles and 33 have four finite singular points,

so obviously they cannot appear in QTN. From the remaining 8, only 7 appear in our description

of QTN. There are two potential reasons for the absence of the remaining case: (1) it cannot be

realized within QTN, or (2) it may live in such “islands” where the conditions for the singular
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Figure 5.12: Complete bifurcation diagram for
slice k = 2
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Figure 5.13: Complete bifurcation diagram for
slice k = 3

points are met, but the separatrix configuration is not the one that we have detected as needed

for the coherence.

For example, the structurally stable phase portrait 9.2 has so far not appeared anywhere,

but it could perfectly lie inside an “island” of V1 (or V11) where we have phase portrait 9.1. The

transition from 9.1 to 9.2 consists in the existence of a heteroclinic connection between the finite

saddle and one of the infinite saddles as it can be seen in Figure 5.14. We also show (in the middle

of this figure) the unstable phase portrait from which could bifurcate and also has the potential

to be on the bifurcation surface delimiting the “island”.

5.5 Completion of the proof of the main theorem

In the bifurcation diagram we may have topologically equivalent phase portraits belonging to

distinct parts of the parameter space. As here we have 63 distinct parts of the parameter space,

to help us identify or to distinguish phase portraits, we need to introduce some invariants and

we actually choose integer–valued invariants. All of them were already used in [39, 6]. These

integer–valued invariants yield a classification which is easier to grasp.
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9.1 9.2

Figure 5.14: Example of a potential “island” in the bifurcation diagram of family QTN

Definition 5.5.1. [6] We denote by I1(S) the number of the real finite singular points.

Definition 5.5.2. [6] We denote by I2(S) the sum of the indices of the real finite singular points.

Definition 5.5.3. [6] We denote by I3(S) the number of the real infinite singular points.

Definition 5.5.4. For a given infinite singularity s of a system S, let ℓs be the number of global

or local separatrices beginning or ending at s and which do not lie on the line at infinity. We have

0≤ ℓs ≤ 4. We denote by I4(S) the sequence of all such ℓs when s moves in the set of infinite singular

points of the system S.

In our case we have used the clockwise sense beginning from the top–most infinite singular

point in the pictures shown in Figure 5.1.

Definition 5.5.5. We denote by I5(S) a digit which gives the number of limit cycles.

As we have noted previously in Remark 5.4.12, we do not distinguish between phase portraits

whose only difference is that in one we have a finite node and in the other a focus. Both phase

portraits are topologically equivalent and they can only be distinguished within the C1 class. In

case we may want to distinguish between them, a new invariant may easily be introduced.

Theorem 5.5.6. Consider the family QTN of all quadratic systems with a semi–elemental triple

node. Consider now all the phase portraits that we have obtained for this family. The values of

the affine invariant I = (I1, I2, I3, I4, I5) given in the following diagram yield a partition of these

phase portraits of the family QTN.

Furthermore, for each value of I in this diagram there corresponds a single phase portrait; i.e.

S and S′ are such that I(S)= I(S′), if and only if S and S′ are topologically equivalent.

The bifurcation diagram for QTN has 63 parts which produces 28 topologically different phase

portraits as described in Table 5.5.1. The remaining 35 parts do not produce any new phase
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portrait which was not included in the 28 previous. The difference is basically the presence of

a strong focus instead of a node and vice versa.

The phase portraits having neither limit cycle nor graphic have been denoted surrounded by

parenthesis, for example (V1); the phase portraits having one limit cycle have been denoted sur-

rounded by brackets, for example [V6]; the phase portraits having one graphic have been denoted

surrounded by {}, for example {5S4}.

Proof of Theorem 5.5.6. The above result follows from the results in the previous sections and

a careful analysis of the bifurcation diagrams given in Section 5.4, in Figures 5.10 to 5.13, the

definition of the invariants I j and their explicit values for the corresponding phase portraits.

We first make some observations regarding the equivalence relations used in this study: the

affine and time rescaling, C1 and topological equivalences.

The coarsest one among these three is the topological equivalence and the finest is the affine

equivalence. We can have two systems which are topologically equivalent but not C1−equivalent.

For example, we could have a system with a finite antisaddle which is a structurally stable node

and in another system with a focus, the two systems being topologically equivalent but belonging

to distinct C1−equivalence classes, separated by a surface (S6 in this case) on which the node

turns into a focus.

In Table 5.5.2 we listed in the first column 28 parts with all the distinct phase portraits of

Figure 5.1. Corresponding to each part listed in column 1 we have in its horizontal block, all parts

whose phase portraits are topologically equivalent to the phase portrait appearing in column 1 of

the same horizontal block.

In the second column we have put all the parts whose systems yield topologically equivalent

phase portraits to those in the first column but which may have some algebro–geometric features

related to the position of the orbits.

In the third (respectively, fourth, and fifth) column we list all parts whose phase portraits have

another antisaddle which is a focus (respectively, a node which is at a bifurcation point producing

foci close to the node in perturbations, a node–focus to shorten, and a finite weak singular point).

Whenever phase portraits appear on a horizontal block in a specific column, the listing is done

according to the decreasing dimension of the parts where they appear, always placing the lower

dimensions on lower lines.
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Table 5.5.1: Geometric classification for the family QTN

I1 =





2 & I2 =





2 & I3 =





3 & I4 =





110110 (V3),
112110 (V7),

111111 & I5 =
{

1 [V15],
0 (V12),

110111 {7S1},

2 & I4 =





1212 & I5 =
{

1 [5S5],
0 (5S6),

1111 (5S1),
1131 {5S4},
1122 (5S10),
1121 {5.7L1},

1 & I4 =
{

11 & I5 =
{

1 [V6],
0 (V4),

0 & I3 =





3 & I4 =
{

111201 (V1),
101311 (V11),

2 & I4 =





1122 (5S2),
2041 (5S8),
1132 (5S9),

1 (V10),

1 & I2 =





1 & I3 =





3 & I4 =





110110 (1S1),
102110 (1S4),
101111 (1S3),

2 & I4 =





1200 (1.3L1),
1011 {1.3L2},
1111 (1.5L1),
1202 (1.5L2),

1 & I4 =
{

10 (1S2),
21 (P1).
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Table 5.5.2: Topological equivalences for the family QTN

Presented Identical Finite Finite Finite
phase under antisaddle antisaddle weak

portrait perturbations focus node–focus point

V1
V2, V9, V17

3S4, 3S5

V3
V16

6S4

V4

V5

6S3 3S1

5.5L2

P2

V6

V8
V7

6S1

V10

V13

3S3

5.5L1

V11

V12
V14

6S2 3S2

V15

1S1 1S5

1S2

1S3

1S4

5S1
5S13 5S11, 5S12

5.6L2, 5.6L3, 5.6L4

5S2
5S3, 5S14

3.5L2, 3.5L3

5S4

5S5

5S7
5S6

5.6L1 3.5L1

5S8

5S9

5S10

7S1

1.3L1

1.3L2

1.5L1 1.5L3

1.5L2

5.7L1

P1
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A22 V11 A23

Figure 5.15: The perturbations of phase portrait V11 yielding the structurally unstable phase portraits
A22 and A23

5.5.1 Proof of the main theorem

The bifurcation diagram described in Section 5.4, plus Table 5.5.1 of the geometrical invari-

ants distinguishing the 28 phase portraits, plus Table 5.5.2 giving the equivalences with the re-

maining phase portraits lead to the proof of the main statement of Theorem 5.2.1.

In [5] the authors are studying all phase portraits of quadratic systems having exactly one

saddle–node or one connection of separatrices. By using a similar technique as the one used in

[4] for the structurally stable ones, they have produced a complete list of topologically possible

structurally unstable systems of codimension one (modulo limit cycles), they have erased many

of them proving their impossibility and they have proved the existence of many others (180 just

before this work is published), and it remains 24 which escape up to now both the proof of their

impossibility and finding an example.

In the family QTN, system V11 yields an example of their “wanted” case A23. Indeed, by adding

a small perturbation of the form εx2 in a representative of the part V11 we obtain the following

system:

ẋ= 2xy+10y2 +εx2,

ẏ= y− x2 −2(3.7)xy−14y2,
(5.5.1)

whose finite singularities are a saddle–node, a node and a saddle, and infinite singularities are a

node, a saddle and a saddle–node
(1
1

)
SN. Depending on how we “split” the triple node of V11, we

may obtain two structurally unstable phase portraits, namely U
1
A,22 and U

1
A,23 as it may be seen

in Figure 5.15. Then, Corollary 5.2.3 is proved.



Chapter

6

The topological classification of

quadratic differential systems with a

finite and an infinite semi–elemental

saddle–nodes (A,B)

6.1 Motivation for the study

Recalling what was discussed in Section 5.1, we continue with the attempt of constructing

families of quadratic differential systems with codimension greater than one in order to obtain

by perturbations all the phase portraits containing elements of codimension one (see Section 5.1

to recall this background). Moreover, we continue classifying the quadratic systems possessing

semi–elemental singularities, as discussed in the end of Section 2.2.

Only one phase portrait of quadratic vector fields possessing a semi–elemental triple node

can yield a new codimension–one phase portrait after a small perturbation, according to Corol-

lary 5.2.3. See Chapter 5 for details.

However, this single case is not enough to cover all the missing proofs, so that we need to

advance and construct new families which could yield more codimension–one phase portraits.

With the intention to demonstrate that we may obtain all these missing phase portraits by

perturbation, we propose the study of a whole family of quadratic systems having a finite semi–
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elemental saddle–node and an infinite semi–elemental saddle–node
(0
2

)
SN. We shall see that this

family, denoted by QsnSN, can be split into three distinct subfamilies according to the position of

the infinite saddle–node. Moreover, we anticipate that one of these three subfamilies yields all of

the phase portraits of group (A) of codimension–one quadratic systems discussed on page 67.

The study of these three subfamilies will be divided into two chapters (Chapters 6 and 7). In

this study we follow the same pattern used in Chapter 5.

6.2 Statement of the results

In this section, we consider the set of all real planar quadratic systems which possess a finite

semi–elemental saddle–node sn(2) and an infinite semi–elemental saddle–node of type
(0
2

)
SN.

After the action of the affine group and time homotheties, we may suppose, without loss of gener-

ality, that the finite saddle–node is placed at the origin of the plane with the eigenvectors on the

axes. We denote this family by QsnSN.

The aim of this and the next chapter (Chapters 6 and 7) is studying the class QsnSN which is

the closure of the set of representatives of QsnSN in the parameter space of the specific normal

forms which shall be constructed later.

The condition of having a finite saddle–node of all quadratic systems implies that these sys-

tems may have up to two other finite singular points.

The family QsnSN can be divided into three different subfamilies according to the position of

the infinite saddle–node, namely: (A) with the infinite saddle–node in the horizontal axis, (B) with

the infinite saddle–node in the vertical axis and (C) with the infinite saddle–node in the bisector

of the first and third quadrants. In this chapter we give a partition of the classes QsnSN(A) and

QsnSN(B) according to the normal forms (6.3.1) and (6.3.2). In the normal form (6.3.1), the first

class QsnSN(A) is partitioned into 85 parts: 23 three–dimensional ones, 37 two–dimensional ones,

20 one–dimensional ones and 5 points. This partition is obtained by considering all the bifurcation

surfaces of singularities, one related to the presence of another invariant straight line rather than

the one stated in statement (a) of Theorem 6.2.1 and one related to connections of separatrices,

modulo “islands”. In the normal form (6.3.2), the second class QsnSN(B) is partitioned into 43

parts: 9 three–dimensional ones, 18 two–dimensional ones, 12 one–dimensional ones and 4 points,

which are all delimited by algebraic bifurcation surfaces.

It is worth mentioning that the partitions described above and the number of topological
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equivalence classes of phase portraits for each subfamily are due to the choice of a specific normal

form. According to Schlomiuk [50], these partitions do not necessarily contain all the phase por-

traits of the closure within the quadratic class of systems. It may happen that given two different

normal forms for a same family, one phase portrait may exist in the closure of one of them but not

in the closure of the other. However, the interior of the family in any normal form must contain

exactly the same phase portraits.

The results on these two subfamilies can also be found in the paper of Artés, Rezende and

Oliveira [10].

Theorem 6.2.1. There exist 38 topologically distinct phase portraits for the closure of the family of

quadratic vector fields having a finite saddle–node sn(2) and an infinite saddle–node of type
(0
2

)
SN

located in the horizontal axis (the direction defined by the eigenvector with null eigenvalue) and

given by the normal form (6.3.1) (class QsnSN(A)). The bifurcation diagram for this class is the

projective tridimensional space RP
3. All these phase portraits are shown in Figures 6.1 and 6.2.

Moreover, the following statements hold:

(a) The manifold defined by the eigenvector with null eigenvalue is always an invariant straight

line under the flow;

(b) There exist three phase portraits possessing limit cycle, and they are in the parts V11, V14 and

1S2;

(c) There exist six phase portraits with nondegenerate graphics, and they are in the parts V15, 1S1,

4S4, 5S3, 7S1 and 1.4L1;

(d) There exist ten phase portraits with degenerate graphics, and they are in the parts 9S1, 9S2,

1.2L2, 1.9L1, 5.9L1, 8.9L1, P1, P3, P4 and P5;

(e) Any phase portrait of this family can bifurcate from P1 of Figure 6.2;

(f) There exist 29 topologically distinct phase portraits in QsnSN(A).

Theorem 6.2.2. There exist 25 topologically distinct phase portraits for the closure of the family

of quadratic vector fields having a finite saddle–node sn(2) and an infinite saddle–node of type
(0
2

)
SN located in the vertical axis (direction defined by the eigenvector with non–null eigenvalue)

and given by the normal form (6.3.2) (class QsnSN(B)). The bifurcation diagram for this class is

the projective tridimensional space RP
3. All these phase portraits are shown in Fig. 6.3. Moreover,

the following statements hold:

(a) The manifold defined by the eigenvector with non–null eigenvalue is always an invariant

straight line under the flow;
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(b) There exist four phase portraits with nondegenerate graphic, and they are in the parts 1S4,

4S1, 1.4L2 and 1.5L1;

(c) There exist seven phase portraits with degenerate graphics, and they are in the parts 1.4L1,

1.9L1, 4.9L1, P1, P2, P3 and P5;

(d) There exists one phase portrait with a center, and it is in the part 4S1;

(e) There exists one phase portrait with an integrable saddle, and it is in the part 4S2.

(f) Any phase portrait of this family can bifurcate from P1 of Figure 6.3;

(g) There exist 16 topologically distinct phase portraits in QsnSN(B).

Corollary 6.2.3. (i) The phase portrait 5S2 from family QsnSN(A) in Figure 6.1 is equivalent

to the phase portrait 5S3 from family QsnSN(B) in Figure 6.3;

(ii) The phase portrait 1.2L2 from family QsnSN(A) in Figure 6.2 is equivalent to the phase

portrait 1.4L1 from family QsnSN(B) in Figure 6.3;

(iii) The phase portrait P1 from family QsnSN(A) in Figure 6.2 is equivalent to the phase portrait

P1 from family QsnSN(B) in Figure 6.3;

(iv) The phase portrait P3 from family QsnSN(A) in Figure 6.2 is equivalent to the phase portrait

P2 from family QsnSN(B) in Figure 6.3.

For the class QsnSN(A), from its 29 topologically different phase portraits, 9 occur in 3−dimen-

sional parts, 14 in 2−dimensional parts, 5 in 1−dimensional parts and 1 occur in a single 0−dimen-

sional part, and for the class QsnSN(B), from its 16 topologically different phase portraits, 5 occur

in 3−dimensional parts, 7 in 2−dimensional parts, 3 in 1−dimensional parts and 1 occur in a sin-

gle 0−dimensional part.

In Figures 6.1, 6.2 and 6.3 we have denoted all the singular points with a small disk. We have

plotted with wide curves the separatrices and we have added some orbits drawn on the picture

with thinner lines to avoid confusion in some required cases.

Remark 6.2.4. It is worth mentioning that a third subclass QsnSN(C) of QsnSN must be con-

sidered. This subclass consists of planar quadratic systems with a finite saddle–node sn(2) also

situated at the origin (with the eigenvectors in the axes) and an infinite saddle–node of type
(0
2

)
SN

in the bisector of the first and third quadrants and written in the normal form (7.3.1). This sub-

family will be studied in Chapter 7.
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V1 V3 V6 V9

V11 V12 V14 V15

V16 1S1 1S2 1S4

1S5 3S1 3S2 3S3

3S4
4S1 4S4 5S1

5S2 5S3
7S1 9S1

Figure 6.1: Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an infinite

saddle–node of type
(0
2

)
SN in the horizontal axis
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9S2 9S3 1.2L2 1.4L1

1.9L1 2.3L1 3.4L1
3.5L1

5.9L1 8.9L1 P1 P3

P4 P5

Figure 6.2: Continuation of Figure 6.1



6.2 Statement of the results 97

V1 V2 V3 V6 V7

1S1 1S2 1S3 1S4 4S1

5S1 5S3 9S1 9S2
1.4L1

1.4L2 1.5L1 1.9L1 4.9L1 5.9L1

5.9L2
P1 P2 P3 P4

Figure 6.3: Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an infinite

saddle–node of type
(0
2

)
SN in the vertical axis
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6.3 Quadratic vector fields with a finite saddle–node sn(2) and an

infinite saddle–node of type
(0

2

)
SN

According to Definition 2.1.1, a singular point r of a planar vector field X in R
2 is semi–

elemental, if the determinant of its Jacobian matrix, DX (r), is zero, but its trace is different from

zero.

We recall that in Proposition 2.2.1 (page 23) the normal form of a system possessing a semi–

elemental singular point is presented. However, we want this semi–elemental singular point to

be a saddle–node.

We note that in the normal form (2.2.2) we already have a semi–elemental point at the ori-

gin and its eigenvectors are (1,0) and (0,1) which condition the possible positions of the infinite

singular points.

Remark 6.3.1. We suppose that there exists a
(0
2

)
SN at some point at infinity. If this point is

different from either [1 : 0 : 0] of the local chart U1, or [0 : 1 : 0] of the local chart U2, after a

reparametrization of the type (x, y) → (x,αy), α ∈ R, this point can be replaced at [1 : 1 : 0] of the

local chart U1, that is, at the bisector of the first and third quadrants. However, if
(0
2

)
SN is at

[1 : 0 : 0] or [0 : 1 : 0], we cannot apply this change of coordinates and it requires an independent

study for each one of the cases, which are not equivalent due to the position of the infinite saddle–

node with respect to the eigenvectors of the finite saddle–node. See Section 3.2 for the notation.

6.3.1 The normal form adopted for the subclass QsnSN(A)

The following result presents the normal form adopted for systems in QsnSN(A).

Proposition 6.3.2. Every system with a finite semi–elemental double saddle–node sn(2) and an

infinite saddle–node of type
(0
2

)
SN located in the endpoints of the horizontal axis can be brought

via affine transformations and time rescaling to the following normal form

ẋ = gx2 +2hxy+ky2,

ẏ= y+ gxy+ny2,
(6.3.1)

where g, h, k and n are real parameters and g 6= 0.

Proof. We start with system (2.2.2). This system already has a finite semi–elemental saddle–

node at the origin (then g 6= 0) with its eigenvectors in the direction of the axes. The first step is to
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place the point
(0
2

)
SN at the origin of the local chart U1 with coordinates (w, z). For that, we must

guarantee that the origin is a singularity of the flow in U1,

ẇ= ℓ+ (−g+2m)w+ (−2h+n)w2 −kw3+wz,

ż = (−g−2hw−kw2)z.

Then, we set ℓ = 0 and, by analyzing the Jacobian of the former expression, we set m = g/2 in

order to have the eigenvalue associated to the eigenvector on z = 0 being null and obtain the

normal form (6.3.1).

In order to consider the closure of the family QsnSN(A) within the set of representatives of

QsnSN(A) in the parameter space of the normal form (6.3.1), it is necessary to study the case

when g = 0, which will be discussed later.

Remark 6.3.3. We note that {y= 0} is an invariant straight line under the flow of (6.3.1).

Systems (6.3.1) depend on the parameter λ= (g, h, k, n)∈R
4. We consider systems (6.3.1) which

are nonlinear, i.e. λ = (g, h, k, n) 6= 0. We also consider the affine transformation X = αx, Y = αy,

with α 6= 0, and we obtain

Ẋ =αẋ =α(gx2 +2hxy+ky2)=α

[
g

X 2

α2
+2h

XY

α2
+k

Y 2

α2

]
,

Ẏ =α ẏ=α(y+ gxy+ny2)=α

[
Y

α
+ g

XY

α2 +n
Y 2

α2

]
.

So,

Ẋ =α′gX 2 +2α′hXY +α′kY 2, Ẏ = y+α′gXY +α′nY 2,

for α′ = 1/α, α 6= 0.

Then, this transformation takes the system with parameters (g, h, k, n) to a system with pa-

rameters (α′g,α′h,α′k,α′n). Hence, instead of considering as parameter space R
4, we may con-

sider RP
3.

But, since for α′ =−1 all the signs change, we may consider g ≥ 0 in [g : h : k : n]. We now apply

the transformation (x, y, t) 7→ (−x, y, t). This transformation takes the system with parameters

(g, h, k, n) to the system with parameters (−g, h,−k, n), which is equivalent to (g,−h, k,−n). So,

we may also assume h ≥ 0.

Sinceg ≥ 0 and g2 +h2+k2 +n2 = 1, then g =
√

1− (h2+k2 +n2), where 0≤ h2+k2 +n2 ≤ 1.
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We can therefore view the parameter space as a half–ball B = {(h, k, n) ∈ R
3; h2 + k2 + n2 ≤

1, h ≥ 0} with base h = 0 and where two opposite points are identified on the equator. When h = 0,

we identify the point [g : 0 : k : n] ∈ RP
3 with [g : k : n] ∈ RP

2. So, the base of the half–ball B

(h = 0) can be identified with RP
2, which can be viewed as a disk with two opposite points on the

circumference (the equator) identified (see Figure 6.4).

h

h = 0

g = 0

Figure 6.4: The parameter space
Figure 6.5: Correspondence between planes
and ellipsoides

For g 6= 0, we get the affine chart:

RP
3 \{g = 0}↔R

3

[g : h : k : n] 7→
(

h

g
,
k

g
,
n

g

)
= (h, k, n)

[1 : h : k : n] 7→ (h, k, n).

The plane g = 0 in RP
3 corresponds to the equation h2+k2+n2 = 1 (the full sphere S

2) and the

line g = h = 0 in RP
3 corresponds to the equation k2 +n2 = 1 (the equator h = 0 of S2). However,

because of symmetry, we only need half sphere and half equator, respectively.

We now consider planes in R
3 of the form h = h0, where h0 is a constant. The projective

completion of such a plane in RP
3 has the equation h−h0 g = 0. So we see how the slices h = h0 need

to be completed in the ball (see Figure 6.5). We note that when g = 0 necessarily we must have

h =0 on such a slice, and thus the completion of the image of the plane h = h0, when visualized in

S
3, must include the equator.

The specific equations of the correspondence of the points in the plane h = h0 of R
3 (h0 a

constant) onto points in the interior of S
2 (B = {(h, k, n) ∈ R

3; h2 + k2 + n2 < 1}) follows from the
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bijection:

R
3 ↔B

(h, k, n)↔
(

h

c
,
k

c
,
n

c

)

with c =
√

h
2 +k

2 +n2 +1. That is, for each plane h = constant in R
3 , there corresponds an ellip-

soid h2(1+h2
0)/h2

0+k2 +n2 = 1 (see Figure 6.5).

The set defined by g = 0 and h = 1 corresponds to the border of the half sphere, while g = 0= h

is its equator.

In what follows we would have to make a similar study of the geometry of the different sur-

faces (singularities, intersections, suprema) involved in the bifurcation diagram as it has been

done in [6] or Chapter 5 [9]. The conclusion of such a study is that this bifurcation diagram has

only one singular slice, h = 0, plus a symmetry h 7→−h, so that the only needed slices to be studied

are h = 0 (singular) and h = 1 (generic). However, there is a much shorter and easier way to detect

the same phenomenon and this comes from the next result.

Proposition 6.3.4. By a rescaling in the variables, we may assume h = 0 or h = 1 in the normal

form (6.3.1).

Proof. If h 6= 0, we consider the rescaling in the variables given by (x, y) 7→ (x, y/h) and obtain

ẋ = gx2 +2xy+
k

h2 y2, ẏ= y+ gxy+
n

h
y2.

By recalling the coefficients k/h2 7→ k and n/h 7→ n, we obtain system (6.3.1) with h = 1. Moreover,

we must also consider the case when h =0.

6.3.2 The normal form adopted for the subclass QsnSN(B)

The following result states the normal form adopted for systems in QsnSN(B).

Proposition 6.3.5. Every system with a finite semi–elemental double saddle–node sn(2) and an

infinite saddle–node of type
(0
2

)
SN located in the endpoints of the vertical axis can be brought via

affine transformations and time rescaling to the following normal form

ẋ= gx2 +2hxy,

ẏ= y+ℓx2 +2mxy+2hy2,
(6.3.2)
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where g, h, ℓ and m are real parameters and g 6= 0.

Proof. Analogously to Proposition 6.3.2, we start with system (2.2.2), but now we want to place

the point
(0
2

)
SN at the origin of the local chart U2. By following the same steps, we set k = 0,

n =2h and we obtain the form (6.3.2).

For this family, we also study the case when g = 0 in order to consider the closure of the set

QsnSN(B) within the set of representatives of QsnSN(B) in the parameter space of the normal

form (6.3.2).

Remark 6.3.6. We note that {x= 0} is an invariant straight line under the flow of (6.3.2).

We construct the parameter space for systems (6.3.2) in the same way it was constructed for

systems (6.3.1), but now with respect to the parameter [λ]= [g : h :ℓ : m] ∈RP
3.

Analogously to the previous family, the bifurcation diagram for this family in R
3 shows only

one singular slice, h = 0, and a symmetry h 7→ −h. Then, only one generic slice needs to be taken

into consideration, and we choose h = 1, and this also can be proved in a much easier way with a

transformation similar to the previous case as it can be seen in the next result.

Proposition 6.3.7. By a rescaling in the variables, we may assume h = 0 or h = 1 in the normal

form (6.3.2).

Proof. If h 6= 0, we consider the rescaling in the variables given by (x, y) 7→ (x, y/h) and obtain

ẋ= gx2 +2xy, ẏ= y+ℓhx2+2mxy+2y2.

By recalling the coefficient ℓh 7→ ℓ, we obtain system (6.3.2) with h = 1. Moreover, we must also

consider the case when h = 0.

6.4 The bifurcation diagram of the systems in QsnSN(A)

In this section we describe the bifurcations surfaces which are needed for completing the study

of the family QsnSN(A).

6.4.1 Bifurcation surfaces due to the changes in the nature of singularities

For systems (6.3.1) we will always have the origin as a finite singular point, a double saddle–

node.
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From Chapter 4 we get the formulas which give the bifurcation surfaces of singularities in

R
12, produced by changes that may occur in the local nature of finite singularities and we also get

equivalent formulas for the infinite singular points. These bifurcation surfaces are all algebraic

and they are the following:

Bifurcation surfaces in RP
3 due to multiplicities of singularities

(S1) This is the bifurcation surface due to multiplicity of infinite singularities as detected by

the coefficients of the divisor DR(P,Q; Z) =
∑

W∈{Z=0}∩CP2 IW (P,Q)W, (here IW (P,Q) denotes the

intersection multiplicity of P = 0 with Q = 0 at the point W situated on the line at infinity, i.e. Z =

0) whenever deg((DR(P,Q; Z)))> 0. This occurs when at least one finite singular point collides with

at least one infinite point. More precisely this happens whenever the homogenous polynomials of

degree two, p2 and q2, in p and q have a common root. This is a quartic whose equation is

µ= g2(gk−2hn+n2)= 0.

(S3) Since this family already has a saddle–node at the origin, the invariant D is always zero.

The next T−comitant related to finite singularities is T. If this T−comitant vanishes, it may

mean either the existence of another finite semi–elemental point, or the origin being a point of

higher multiplicity, or the system being degenerate. The equation of this surface is

T= g4(h2− gk)= 0.

(S5) Since this family already has a saddle–node at infinity, the invariant η is always zero. In

this sense, we have to consider a bifurcation related to the existence of either the double infinite

singularity
(0
2

)
SN plus a simple one, or a triple one. This phenomenon is ruled by the T−comitant

M̃. The equation of this surface is

M̃ = 2h−n = 0.

The surface of C∞ bifurcation points due to a strong saddle or a strong focus changing

the sign of their traces (weak saddle or weak focus)

(S2) This is the bifurcation surface due to weak finite singularities, which occurs when the trace



104 The topological classification of QS with semi–elemental saddle–nodes (A,B)

of a finite singular point is zero. The equation of this surface is given by

T4 = g2(−4h2+4gk+n2)= 0.

We note that this bifurcation surface can either produce a topological change, if the weak point is

a focus, or just a C∞ change, if it is a saddle, except when this bifurcation coincides with a loop

bifurcation associated with the same saddle, in which case, the change may also be topological

(for an example of this case we refer to Chapter 7).

The surface of C∞ bifurcation due to a node becoming a focus

(S6) This surface will contain the points of the parameter space where a finite node of the system

turns into a focus. This surface is a C∞ but not a topological bifurcation surface. In fact, when

we only cross the surface (S6) in the bifurcation diagram, the topological phase portraits do not

change. However, this surface is relevant for isolating the parts where a limit cycle surrounding

an antisaddle cannot exist. According to results of Chapter 4, the equation of this surface is given

by W4 = 0, where

W4 = g4(−48h4 +32gh2k+16g2k2+64h3n−64ghkn−24h2n2+24gkn2 +n4).

Bifurcation surface in RP
3 due to the presence of another invariant straight line apart

from {y= 0}

(S4) This surface will contain the points of the parameter space where another invariant straight

line appears apart from {y= 0}. This surface is split in some parts. Depending on these parts, the

straight line may contain connections of separatrices from different saddles or not. So, in some

cases, it may imply a topological bifurcation and, in others, just a C∞ bifurcation. The equation of

this surface is given by

Het= h = 0.

These, except (S4), are all the bifurcation surfaces of singularities of systems (6.3.1) in the

parameter space and they are all algebraic. We shall discover another bifurcation surface not nec-

essarily algebraic and on which the systems have global connection of separatrices different from

that given by (S4). The equation of this bifurcation surface can only be determined approximately

by means of numerical tools. Using arguments of continuity in the phase portraits we can prove
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the existence of this not necessarily algebraic component in the part where it appears, and we can

check it numerically. We shall name it the surface (S7).

We shall foliate the 3−dimensional bifurcation diagram in RP
3 by the planes h = 0 and h = 1,

given by Proposition 6.3.4, plus the open half sphere g = 0 and we shall give pictures of the

resulting bifurcation diagram on these planar sections on a disk or in an affine chart of R2.

The following two results study the geometrical behavior of the surfaces, that is, their singu-

larities and their intersection points, or the points where two bifurcation surfaces are tangent.

In what follows we work in the chart of RP3 corresponding to g 6= 0, and we take g = 1. To do

the study, we shall use Figures 6.7 and 6.8 which are drawn on planes h = h0 of R3, h0 ∈ {0,1},

having coordinates (h0, k, n). In these planes the coordinates are (n, k) where the horizontal line

is the n–axis.

As the final bifurcation diagram is quite complex, it is useful to introduce colors which will be

used to talk about the bifurcation points. Although the colors are the same used in the study of

the triple node, here they play a different role as described below:

(a) the curve obtained from the surface (S1) is drawn in blue (a finite singular point collides with

an infinite one);

(b) the curve obtained from the surface (S2) is drawn in green (when two finite singular points

collide);

(c) the curve obtained from the surface (S3) is drawn in yellow (when the trace of a singular point

becomes zero);

(d) the curve obtained from the surface (S4) is drawn in purple (presence of an invariant straight

line). We draw it as a continuous curve if it implies a topological change or as a dashed curve

if not.

(e) the curve obtained from the surface (S5) is drawn in red (when three infinite singular points

collide);

(f) the curve obtained from the surface (S6) is drawn in black (an antisaddle is on the edge of

turning from a node to a focus or vice versa); and

(g) the curve obtained from the surface (S7) is also drawn in purple (same as for (S4)) since both

surfaces deal with connections of separatrices mostly.

Lemma 6.4.1. For g 6= 0 and h = 0, no surface, except (S6), has any singularity and all of the

surfaces coincide at [1 : 0 : 0 : 0].
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Proof. By setting g = 1 and restricting the equations of the surfaces to h = 0 we obtain: µ= k+n2,

T4 = 4k+ n2, T = −k, M̃ = −n, W4 = 16k2 +24kn2 + n4 and Het ≡ 0. It is easy too see that µ, T4,

T, M̃ and Het have no singularities as they are either a line, or a parabola, or null. Surface (S6)

is a quartic whose only singularity is at [1 : 0 : 0 : 0] (this is the union of two parabolas having a

common contact point). Besides, if we solve the system of equations formed by these expressions,

we obtain [1 : 0 : 0 : 0] as the unique solution.

Remark 6.4.2. Everywhere we mention “a contact point” we mean an intersection point between

two curves with the same tangency of even order. Everywhere we mention “an intersection point”

we mean a transversal intersection point (with different tangencies).

Lemma 6.4.3. For g 6= 0 and h = 1, no surface, except (S6), has any singularity. Moreover,

(i) the point [1 : 1 : 1 : 0] is a contact point among (S2), (S3) and (S6);

(ii) the point [1 : 1 : 1 : 1] is a contact point between (S1) and (S3);

(iii) the point [1 : 1 : 1 : 2] is an intersection point between (S3) and (S5);

(iv) the point [1 : 1 : 48/49 : 6/7] is an intersection point between (S1) and (S6);

(v) the point [1 : 1 : 8/9 : 2/3] is an intersection point between (S2) and (S6);

(vi) the point [1 : 1 : 0 :−6] is an intersection point between (S4) and (S6);

(vii) the point [1 : 1 : 0 :−2] is an intersection point between (S2) and (S4);

(viii) the point [1 : 1 : 0 : 0] is an intersection point between (S1) and (S4);

(ix) the point [1 : 1 : 0 : 2] is an intersection point among all the surfaces, except (S3). Besides, sur-

face (S6) is singular at this point, surface (S4) has a contact point with one of the components

of (S6) and (S1) has a contact point with the other component of (S6).

Proof. Analogously to Lemma 6.4.1, by restricting the equations of the surfaces to g = h = 1 and

solving the system of equation formed by pairs of the restricted expressions, we obtain the result.

Remark 6.4.4. Even though we are working in RP
3, we have seen that the study can be reduced

to the geometry of the curves obtained by intersecting the surfaces with this slice.

According to Proposition 6.3.4, we shall study the bifurcation diagram having as reference the

values h = 0 and h = 1 (see Figures 6.7 and 6.8) and also the value h =∞, which corresponds to

g = 0. We perform the bifurcation diagram of all singularities for h =∞ (g = 0) by putting g = 0

and in the remaining three variables (h, k, n), yielding the point [h : k : n]∈RP
2, we take the chart

h 6=0 in which we may assume h = 1.
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n

k

Figure 6.6: Slice of the parameter space for
(6.3.1) when h=∞

n

k

Figure 6.7: Slice of the parameter space for
(6.3.1) when h= 0

For these values of the parameters, system (6.3.1) becomes

ẋ= 2xy+ky2, ẏ= y+ny2, (6.4.1)

and the expressions of the bifurcation surfaces for (6.4.1) are given by

µ=T4 =T=W4 =Het= 0 and M̃ = 2−n. (6.4.2)

Remark 6.4.5. We note that {y= 0} is a straight line formed by an infinite number of singularities

for system (6.4.1). Then, the phase portraits of such a system must be studied by removing the

common factor of the two equations defining it and studying the linear system that remains. The

invariant polynomials for linear systems equivalent to the ones for quadratic systems that we use in

this study have not been defined, but they are trivial to use for a concrete normal form like (6.4.1).

The bifurcation curves of singularities (6.4.2) are shown in Figure 6.6. We point out that,

although we have drawn in blue the vertical axis k in Figure 6.6, it does not represent surface

(S1) since it is null by equations (6.4.2), but it has the same geometrical meaning as this surface,

i.e. a finite singular has gone to infinity.

The labels used for each part of the bifurcation diagram will follow the same pattern stated in

Notation 5.4.11.

Remark 6.4.6. We point out that the slice h =∞ is a bifurcation surface in the parameter space
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n

k

1s2

1s3

2s2

2s3

2s4

6s2

4s2 4s3 4s4

v4
v5

v10

v14

v1

2.3ℓ1

1.4ℓ1

v3

3s1

Figure 6.8: Slice of the parameter space for (6.3.1) when h= 1

and receives the label 9S. We have denoted the curved segments in which the equator splits as

8.9L j.

As an exact drawing of the curves produced by intersecting the surfaces with slices gives us

very small parts which are difficult to distinguish, and points of tangency are almost impossi-

ble to recognize, we have produced topologically equivalent pictures where parts are enlarged

and tangencies are easy to observe. The reader may find the exact pictures in the web page

http://mat.uab.es/∼artes/articles/qvfsn2SN02/qvfsn2SN02.html.

Remark 6.4.7. We consider g 6= 0. It is worth mentioning that if we compare the case of the slices

h = 0 and h = 1 (here we may take any other h > 0), we see that a region looking like a “cross”

appears on the slice h = 1 between (S3) (n = 1) and (S4) (n = 0) and also between (S5) (k = 2) and

k = 0. This “cross” exists on every slice given by h > 0 and, as we take h → 0, the region inside the

“cross” including the borders tends to the two axes. Furthermore, the rectangle in the middle of the

cross tends to [1 : 0 : 0 : 0].

We recall that the black surface (S6) (or W4) means the turning of a finite antisaddle from a

node to a focus. Then, according to the general results about quadratic systems, we could have

limit cycles around such point.

6.4.2 Bifurcation surfaces due to connections

We now describe for each set of the partition on g 6= 0 and h = 1 the local behavior of the flow

around all the singular points. Given a concrete value of parameters of each one of the sets in
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this slice we compute the global phase portrait with the numerical program P4 [27]. It is worth

mentioning that many (but not all) of the phase portraits in this paper can be obtained not only

numerically but also by means of perturbations of the systems of codimension one higher.

In this slice we have a partition in 2−dimensional parts bordered by curved polygons, some

of them bounded, others bordered by infinity. Provisionally, we use lower–case letters to describe

the sets found algebraically so as not to interfere with the final partition described with capital

letters. For each 2−dimensional part we obtain a phase portrait which is coherent with those

of all their borders, except in one part. Consider the set v1 in Figure 6.8. In it we have only a

saddle–node as finite singularity. When reaching the set 2.3ℓ1, we are on surfaces (S2), (S3) and

(S6) at the same time; this implies the presence of one more finite singularity (in fact, it is a cusp

point) which is on the edge of splitting itself and give birth to finite saddle and antisaddle. Now,

we consider the segments 2s2 and 2s3. By the Main Theorem of [61], the corresponding phase

portraits of these sets have a first–order weak saddle and a first–order weak focus, respectively.

So, on 2s3 we have a Hopf bifurcation. This means that either in v5 or v10 we must have a limit

cycle. In fact this occurs in v5. Indeed, as we have a weak saddle on 2s2 and we have not detected

a loop–type bifurcation surface intersecting this subset, neither its presence is forced to keep the

coherence, its corresponding phase portrait is topologically equivalent to the portraits of v4 and

v5. Since in v5 we have a phase portrait topologically equivalent to the one on 2s2 (without limit

cycles) and a phase portrait with limit cycles, this part must be split into two other ones separated

by a new surface (S7) having at least one element 7S1 such that one part has limit cycle and the

other does not, and the border 7S1 must correspond to a connection between separatrices. After

numerical computations we checked that the part v5 splits into V5 without limit cycles and V11

with one limit cycle, both of which can be seen in Figure 6.13.

The next result assures us the existence of limit cycle in any representative of the subset v14

and it is needed to complete the study of 7S1.

Lemma 6.4.8. In v14 there is always one limit cycle.

Proof. We see that the subset v14 is characterized by µ < 0, T4 < 0, W4 < 0, M̃ > 0, T > 0, k > 0

and n > 0. Any representative of v14 has the finite saddle–node at the origin with its eigenvectors

on the axes and two more finite singularities, a focus and a node (the focus is due to W4 < 0).

We claim that these two other singularities are placed in symmetrical quadrants with respect

to the origin (see Figure 6.9). In fact, by computing the exact expression of each singular point

(x1, y1) and (x2, y2) and multiplying their x−coordinates and y−coordinates we obtain k/µ and 1/µ,
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v14

Figure 6.9: The local behavior around each of the finite and infinite singularities of any representative of
v14. The red arrow shows the sense of the flow along the y−axis and the blue points are the focus and the
node with same stability

respectively, which are always negative since k > 0 and µ < 0 in v14. Besides, each one of them

is placed in an even quadrant since the product of the coordinates of each antisaddles is never

null and any representative gives a negative product. Moreover, both antisaddles have the same

stability since the product of their traces is given by µ/T4 which is always positive in v14.

The infinite singularities of systems in v14 are the saddle–node
(0
2

)
SN (recall the normal form

(6.3.1)) and a saddle. In fact, the expression of the singular points in the local chart U1 are (0,0)

and ((−2h+n)/k,0). We note that the determinant of the Jacobian matrix of the flow in U1 at the

second singularity is given by

−
(2h−n)2

(
2hn−k−n2

)

k2 =
M̃2µ

k2 ,

which is negative since µ< 0 in v14. Besides, this pair of saddles are in the second and the fourth

quadrant because its first coordinate (−2h+n)/k =−M̃/k is negative since M̃ > 0 and k > 0 in v14.

We also note that the flow along the y−axis is such that ẋ > 0.

Since we have a pair of saddle points in the even quadrants, each one of the finite antisaddles

is in an even quadrant, no orbit can enter into the second quadrant and no orbit may leave the

fourth one and, in addition, these antisaddles, a focus and a node, have the same stability, any

phase portrait in v14 must have at least one limit cycle in any of the even quadrants. Moreover, the

limit cycle is in the second quadrant, because the focus is there since a saddle–node is born in that

quadrant on 3s1, splits in two points when entering v3 (both of them remain in the same quadrant

since x1x2 = k/µ< 0 and y1 y2 = 1/µ< 0), the node turns into focus on 6s2 and the saddle moves to

infinity on 1s2 appearing as a node in the fourth quadrant when entering v14. Furthermore, by
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the statement (iv) of Section 1.5, it follows the uniqueness of the limit cycle in v14.

Now, the following result states that the segment which splits the subset v5 into the parts

V5 and V11 has its endpoints well–determined. We can visualize the image of this surface in the

plane h = 1 in Figure 6.13.

Proposition 6.4.9. The endpoints of the part of the curve 7S1 are 2.3ℓ1, intersection of surfaces

(S2) and (S3), and 1.4ℓ1, intersection of surfaces (S1) and (S4).

Proof. We write r1 = [1 : 1 : 0 : 2] and r2 = [1 : 1 : 1 : 0] for 2.3ℓ1 and 1.4ℓ1, respectively. If the

starting point were any point of the segments 2s2 or 2s3, we would have the following incoher-

ences: firstly, if the starting point of 7S1 were on 2s2, a portion of this subset must refer to a Hopf

bifurcation since we have a limit cycle in V11; and secondly, if this starting point were on 2s3, a

portion of this subset must not refer to a Hopf bifurcation which contradicts the fact that on 2s3

we have a first–order weak focus. Finally, the ending point must be r2 because, if it were located

on 4s3, we would have a segment between this point and 1.4ℓ1 along surface (S4) with two invari-

ant straight lines and one limit cycle, which contradicts the statement (v) of Section 1.5, and if it

were on 1s2, we would have a segment between this point and 1.4ℓ1 along surface (S1) without

limit cycle which is not compatible with Lemma 6.4.8 since µ= 0 does not produce a graphic.

In Figure 6.10 we show the sequence of phase portraits along the subsets pointed out in Fig-

ure 6.8.

We cannot be totally sure that this is the unique additional bifurcation curve in this slice.

There could exist others which are closed curves which are small enough to escape our numerical

research, but the one located is enough to maintain the coherence of the bifurcation diagram. We

recall that this kind of studies are always done modulo “islands”. For all other two–dimensional

parts of the partition of this slice whenever we join two points which are close to two different

borders of the part, the two phase portraits are topologically equivalent. So we do not encounter

more situations than the one mentioned above.

In Figures 6.11 to 6.13 we show the bifurcation diagrams for family (6.3.1). Since there are

two relevant values of h to be taken into consideration (according to Proposition 6.3.4) plus the

infinity, the pictures show all the algebraic bifurcation curves and all the nonalgebraic bifurcation

ones needed for the coherence of the diagram, which lead to a complete bifurcation diagram for

family (6.3.1) modulo islands. In Section 6.7 the reader can look for the topological equivalences

among the phase portraits appearing in the various parts and the selected notation for their
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V1

2.3L1

6S2 V4

2S2

V5

7S1

V11

2S3

V10

6S3

4S2

V7

4S3

V8

1S2

V14

1.4L1

2S1

2S4

1.2L1

Figure 6.10: Sequence of phase portraits in slice g = h = 1 from v1 to 1.4ℓ1. We start from v1. When
crossing 2.3ℓ1, we may choose at least seven “destinations”: 6s2, v4, 2s2, v5, 2s3, v10 and 6s3. In each one of
these subsets, but v5, we obtain only one phase portrait. In v5 we find (at least) three different ones, which
means that this subset must be split into (at least) three different parts whose phase portraits are V5, 7S1

and V11. And then we shall follow the arrows to reach the subset 1.4ℓ1 whose corresponding phase portrait
is 1.4L1
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9S1

4.9L1

P2

9S2 9S3

9S4 9S5 9S6

4.9L2 4.9L3

1.9L1 5.9L1

1.9L2
5.9L2

P3

P5

P4

8.9L1

8.9L2

k

n

Figure 6.11: Complete bifurcation diagram of QsnSN(A) for slice h=∞

representatives in Figures 6.1 and 6.2. In Figure 6.13, we have colored in light yellow the parts

with one limit cycle.

6.5 The bifurcation diagram of the systems in QsnSN(B)

Before we describe all the bifurcation surfaces for QsnSN(B), we prove the following result

which gives conditions on the parameters for the presence of either a finite star node n∗ (whenever

any two distinct nontrivial integral curves arrive at the node with distinct slopes), or a finite

dicritical node nd (a node with identical eigenvalues but Jacobian nondiagonal).

Lemma 6.5.1. Systems (6.3.2) always have an n∗, if m = 0 and h 6=0, or an nd, otherwise.

Proof. We note that the singular point (0,−1/(2h)) has its Jacobian matrix given by


 −1 0

−m/h −1


 .
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Figure 6.12: Complete bifurcation diagram of QsnSN(A) for slice h= 0
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Figure 6.13: Complete bifurcation diagram of QsnSN(A) for slice h= 1
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6.5.1 Bifurcation surfaces due to the changes in the nature of singularities

The invariants and T−comitants needed here are the same as in the previous system except

surfaces (S4) and (S6); so we shall only give the geometrical meaning and their equations plus a

deeper discussion on surface (S6). For further information about them, see Section 6.4.

Bifurcation surfaces in RP
3 due to multiplicities of singularities

(S1) This is the bifurcation surface due to the multiplicity of infinite singularities. This occurs

when at least one finite singular point collides with at least one infinite point. The equation of

this surface is

µ= 4h2(g2 +2hℓ−2gm)= 0.

(S3) This is the bifurcation surface is due to either the existence of another finite semi–elemental

point, or the origin being a higher multiplicity point, or the system being degenerate. The equation

of this surface is given by

T=−g2h2 = 0.

It only has substantial importance when we consider the planes g = 0 or h =0.

(S5) This is the bifurcation surface due to the collision of infinite singularities, i.e. when all three

infinite singular points collide. The equation of this surface is

M̃ = (g−2m)2 = 0.

The surface of C∞ bifurcation due to a strong saddle or a strong focus changing the

sign of their traces (weak saddle or weak focus)

(S2) This is the bifurcation surface due to weak finite singularities, which occurs when their trace

is zero. The equation of this surface is given by

T4 =−16h3ℓ= 0.

The surface of C∞ bifurcation due to a node becoming a focus

(S6) Since W4 is identically zero for all the bifurcation space, the invariant that captures if a

second point may be on the edge of changing from node to focus is W3. The equation of this surface
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is given by

W3 = 64h4(g4 +2g2hℓ+h2ℓ2 −2g3m)= 0.

These are all the bifurcation surfaces of singularities of the systems (6.3.2) in the parameter

space and they are all algebraic. We do not expect to discover any other bifurcation surface (nei-

ther nonalgebraic nor algebraic one) due to the fact that in all the transitions we make among

the parts of the bifurcation diagram of this family we find coherence in the phase portraits when

“traveling” from one part to the other.

Analogously to the previous class, we shall foliate the three–dimensional bifurcation diagram

in RP
3 by the planes h = 0 and h = 1, given by Proposition 6.3.7, plus the open half sphere g = 0

and we shall give pictures of the resulting bifurcation diagram on these planar sections on a disk

or in an affine chart of R2.

The following three results study the geometrical behavior of the surfaces, that is, their singu-

larities and the simultaneous intersection points among them, or the points where two bifurcation

surfaces are tangent, and the presence of a different invariant straight line in the particular case

when ℓ= 0.

In what follows we work in the chart of RP3 corresponding to g 6= 0, and we take g = 1. To do

the study, we shall use Figures 6.15 and 6.16 which are drawn on planes h = h0 of R3, h0 ∈ {0,1},

having coordinates (h0,ℓ, m). In these planes the coordinates are (ℓ, m) where the horizontal line

is the ℓ−axis.

We shall use the same set of colors for the bifurcation surfaces as in the previous case.

Lemma 6.5.2. All the bifurcation surfaces intersect on h = 0, with g 6= 0.

Proof. The equations of surfaces (S1), (S2), (S3) and (S6) are identically zero when restricted to

the plane h = 0, and the equation of (S5) is the straight line 2m−1 = 0, for all g 6= 0, h ≥ 0 and

m,ℓ ∈R.

Lemma 6.5.3. For h =1 (with g 6= 0), the surfaces have no singularities. Moreover,

(i) the point [1 : 1 :−2 : 1/2] is an intersection point between (S5) and (S6);

(ii) the point [1 : 1 : 0 : 1/2] is an intersection point among (S1), (S2), (S5) and (S6). Besides, the

intersection between (S1) and (S6) is in fact a contact point.

Proof. For g = h = 1, surface (S1) is the straight line 1+2ℓ−2m = 0, which intersects surface

(S5), which is a double straight line with equation −1+2m = 0, at the point [1 : 1 : 0 : 1/2]; surface
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(S6) is the parabola 1+2ℓ+ℓ2 −2m = 0 passing through the point [1 : 1 : 0 : 1/2] with a 2−order

contact with surface (S1); moreover, surface (S6) has another intersection point with surface (S5)

at [1 : 1 : −2 : 1/2]; surface (S2) is the straight line ℓ= 0, which intersects surfaces (S1), (S5) and

(S6) at the point [1 : 1 : 0 : 1/2].

Lemma 6.5.4. If ℓ= 0, the straight line {y= 0} is invariant under the flow of (6.3.2).

Proof. It is easy to check the result by substituting ℓ= 0 in (6.3.2).

According to Proposition 6.3.7, we shall study the bifurcation diagram having as reference the

values h =0 and h = 1 (see Figures 6.15 and 6.16) and also the value h =∞, which corresponds to

g = 0. We perform the bifurcation diagram of all singularities for h =∞ (g = 0) by putting g = 0

and in the remaining three variables (h,ℓ, m), yielding the point [h : ℓ : m]∈RP
2, we take the chart

h 6=0 in which we may assume h = 1.

For these values of the parameters, system (6.3.2) becomes

ẋ = 2xy, ẏ= y+ℓx2 +2mxy, (6.5.1)

and the expressions of the bifurcation surfaces for (6.5.1) are given by

µ= 8ℓ, T4 =−16ℓ, T= 0, M̃ = 4m2 and W3 = 64ℓ2. (6.5.2)

Remark 6.5.5. We note that {y= 0} is a straight line of singularities for system (6.5.1) when ℓ= 0.

To study the phase portraits of system (6.5.1), we proceed as stated in Remark 6.4.5.

The bifurcation curves of singularities (6.5.2) are shown in Figure 6.14.

Here we also give topologically equivalent figures to the exact drawings of the bifurcation

curves. The reader may find the exact pictures in the web page http://mat.uab.es/∼artes/articles/

qvfsn2SN02/qvfsn2SN02.html.

We recall that the black surface (S6) (or W3) means the turning of a finite antisaddle from a

node to a focus. Then, according to the general results about quadratic systems, we could have

limit cycles around such focus for any set of parameters having W3 < 0.

In Figures 6.17 to 6.19 we show the bifurcation diagrams for family (6.3.2). Since there are two

relevant values of h to be taken into consideration (according to Proposition 6.3.7) plus the infinity,

the pictures show all the algebraic bifurcation curves obtained by the invariant polynomials. We
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ℓ

m

Figure 6.14: Slice of parameter space for (6.3.2) when h=∞

ℓ

m

Figure 6.15: Slice of parameter space for (6.3.2)
when h= 0

ℓ

m

Figure 6.16: Slice of parameter space for (6.3.2)
when h= 1
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9S1

5.9L1

P2

4.9L1

9S2

9S49S3

5.9L2

1.9L2

4.9L2

1.9L1

P3

P4

ℓ

m

Figure 6.17: Complete bifurcation diagram of QsnSN(B) for slice h=∞

observe that nonalgebraic bifurcation curves were not needed for the coherence of the diagram. All

of these leads to a complete bifurcation diagram for family (6.3.2) modulo islands. In Section 6.7

the reader can look for the topological equivalences among the phase portraits appearing in the

various parts and the selected notation for their representatives in Figure 6.3.

6.6 Other relevant facts about the bifurcation diagrams

The bifurcation diagrams we have obtained for the families QsnSN(A) and QsnSN(B) are

completely coherent, i.e. in each family, by taking any two points in the parameter space and

joining them by a continuous curve, along this curve the changes in phase portraits that occur

when crossing the different bifurcation surfaces we mention can be completely explained.

Nevertheless, we cannot be sure that these bifurcation diagrams are the complete bifurcation

diagrams for QsnSN(A) and QsnSN(B) due to the possibility of “islands” inside the parts bor-

dered by unmentioned bifurcation surfaces. In case they exist, these “islands” would not mean

any modification of the nature of the singular points. So, on the border of these “islands” we could

only have bifurcations due to saddle connections or multiple limit cycles.

In case there were more bifurcation surfaces, we should still be able to join two representatives

of any two parts of the 85 parts of QsnSN(A) or the 43 parts of QsnSN(B) found until now with a

continuous curve either without crossing such bifurcation surface or, in case the curve crosses it, it

must do it an even number of times without tangencies, otherwise one must take into account the

multiplicity of the tangency, so the total number must be even. This is why we call these potential
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1S5

1.5L1
P1

1S4

1S31S6

1.5L2

1.8L1

1.8L2

ℓ

m

Figure 6.18: Complete bifurcation diagram of
QsnSN(B) for slice h= 0

1S1

5.6L1

V1

V2

V3V4

V5

V6

V7

V8

V9

1S2

8S1

8S2

5S1

5S2

5S3

1.4L1

6S1

6S3

6S2

ℓ

m

Figure 6.19: Complete bifurcation diagram of
QsnSN(B) for slice h= 1

bifurcation surfaces “islands”.

However, in none of the two families we have found a different phase portrait which could

fit in such an island. The existence of the invariant straight line avoids the existence of a double

limit cycle which is the natural candidate for an island (recall the item (iv) of Section 1.5), and also

the limited number of separatrices (compared to a generic case) limits greatly the possibilities for

phase portraits.

6.7 Completion of the proofs of Theorems 6.2.1 and 6.2.2

In the bifurcation diagram we may have topologically equivalent phase portraits belonging

to distinct parts of the parameter space. As here we have finitely many distinct parts of the pa-

rameter space, to help us identify or to distinguish phase portraits, we need to introduce some

invariants and we actually choose integer–valued invariants. All of them were already used in

[39, 6]. These integer–valued invariants, and sometimes symbol–valued invariants, yield a classi-

fication which is easier to grasp.

Definition 6.7.1. We denote by I1(S) the number of the isolated real finite singular points.

Definition 6.7.2. We denote by I2(S) the sum of the indices of the real finite singular points.
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Definition 6.7.3. We denote by I3(S) the number of the real infinite singular points. This number

can be ∞ in some cases.

Definition 6.7.4. For a given infinite singularity s of a system S, let ℓs be the number of global

or local separatrices beginning or ending at s and which do not lie on the line at infinity. We have

0≤ ℓs ≤ 4. We denote by I4(S) the sequence of all such ℓs when s moves in the set of infinite singular

points of the system S. We can start the sequence at anyone of the infinite singular points but all

sequences must be listed in a same specific order either clockwise or counter–clockwise along the

line of infinity.

In our case we have used the clockwise sense beginning from the saddle–node at the origin of

the local chart U1 in the pictures shown in Figures 6.1 and 6.2, and the origin of the local chart

U2 in the pictures shown in Figure 6.3.

Definition 6.7.5. We denote by I5(S) a digit which gives the number of limit cycles.

As we have noted previously in Remark 5.4.12, we do not distinguish between phase portraits

whose only difference is that in one we have a finite node and in the other a focus. Both phase

portraits are topologically equivalent and they can only be distinguished within the C1 class. In

case we may want to distinguish between them, a new invariant may easily be introduced.

Definition 6.7.6. We denote by I6(S) the digit 0 or 1 to distinguish the phase portrait which has

connection of separatrices outside the straight line {y = 0}; we use the digit 0 for not having it and

1 for having it.

Definition 6.7.7. We denote by I7(S) the sequence of digits (each one ranging from 0 to 3) such

that each digit describes the total number of global or local separatrices ending (or starting) at a

finite antisaddle.

The next three invariants are needed to classify the degenerate phase portraits.

Definition 6.7.8. We denote by I8(S) the index of the isolated infinite singular point when there

exists another infinite singular which is located in the extreme of a curve of singularities.

Definition 6.7.9. We denote by I9(S) a digit which gives the number of lines with an infinite

number of singularities.

Definition 6.7.10. We denote by I10(S) a symbol to represent the configuration of the curves of

singularities. The symbols are: “><” to represent a hyperbola, “∪” to represent a parabola and “×”

to represent two crossing lines.
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Theorem 6.7.11. Consider the family QsnSN(A) and all the phase portraits that we have ob-

tained for this family. The values of the affine invariant I = (I1, I2, I3, I4, I5, I6, I8, I9) given in the

following diagram yield a partition of these phase portraits of the family QsnSN(A).

Furthermore, for each value of I in this diagram there corresponds a single phase portrait; i.e.

S and S′ are such that I(S)= I(S′), if and only if S and S′ are topologically equivalent.

Theorem 6.7.12. Consider the family QsnSN(B) and all the phase portraits that we have ob-

tained for this family. The values of the affine invariant I = (I1, I2, I3, I4, I7, I8, I10) given in the

following diagram yield a partition of these phase portraits of the family QsnSN(B).

Furthermore, for each value of I in this diagram there corresponds a single phase portrait; i.e.

S and S′ are such that I(S)= I(S′), if and only if S and S′ are topologically equivalent.

The bifurcation diagram for QsnSN(A) has 85 parts which produce 38 topologically different

phase portraits as described in Tables 6.7.1 and 6.7.2. The remaining 47 parts do not produce any

new phase portrait which was not included in the 38 previous ones. The difference is basically the

presence of a strong focus instead of a node and vice versa.

Similarly, the bifurcation diagram for QsnSN(B) has 43 parts which produce 25 topologically

different phase portraits as described in Tables 6.7.4 and 6.7.5. The remaining 18 parts do not

produce any new phase portrait which was not included in the 25 previous ones. The phase por-

traits are basically different to each other under some algebro–geometric features related to the

position of the orbits.

The phase portraits having neither limit cycle nor graphic have been denoted surrounded by

parenthesis, for example (V1) (in Tables 6.7.1 and 6.7.4); the phase portraits having one limit cycle

have been denoted surrounded by brackets, for example [V11] (in Table 6.7.1); the phase portraits

having at least one graphic have been denoted surrounded by {}, for example {7S1} (in Table 6.7.1).

Proof. The above two results follow from the results in the previous sections and a careful analy-

sis of the bifurcation diagrams given in Sections 6.4 and 6.5, in Figures 6.11, 6.12, 6.13, 6.17, 6.18

and 6.19, the definition of the invariants I j and their explicit values for the corresponding phase

portraits.

We first make some observations regarding the equivalence relations used in this study: the

affine and time rescaling, C1 and topological equivalences.

The coarsest one among these three is the topological equivalence and the finest is the affine

equivalence. We can have two systems which are topologically equivalent but not C1−equivalent.
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For example, we could have a system with a finite antisaddle which is a structurally stable node

and in another system with a focus, the two systems being topologically equivalent but belonging

to distinct C1−equivalence classes, separated by the surface (S6) on which the node turns into a

focus.

In Table 6.7.3 (Table 6.7.6, respectively) we listed in the first column 38 parts (25 parts, re-

spectively) with all the distinct phase portraits of Figures 6.1 and 6.2 (Figure 6.3, respectively).

Corresponding to each part listed in column 1 we have in its horizontal block, all parts whose

phase portraits are topologically equivalent to the phase portrait appearing in column 1 of the

same horizontal block.

In the second column we have put all the parts whose systems yield topologically equivalent

phase portraits to those in the first column, but which may have some algebro–geometric features

related to the position of the orbits.

In the third (respectively, fourth, and fifth) column we list all parts whose phase portraits have

another antisaddle which is a focus (respectively, a node which is at a bifurcation point producing

foci close to the node in perturbations, a node–focus to shorten, and a finite weak singular point).

In the sixth column of Table 6.7.1 we list all phase portraits which have a triple infinite singularity

with multiplicity
(2
1

)
.

Whenever phase portraits appear on a horizontal block in a specific column, the listing is done

according to the decreasing dimension of the parts where they appear, always placing the lower

dimensions on lower lines.

6.7.1 Proof of the main theorem

The bifurcation diagram described in Section 6.4, plus Tables 6.7.1 and 6.7.2 of the geometrical

invariants distinguishing the 38 phase portraits, plus Table 6.7.3 giving the equivalences with the

remaining phase portraits lead to the proof of the main statement of Theorem 6.2.1. Analogously,

we have the proof of Theorem 6.2.2, but considering the description in Section 6.5 and Tables

6.7.4, 6.7.5 and 6.7.6.

To prove statements (d) and (e) of Theorem 6.2.2 we recall the Main Theorem of [61] and verify

that:

(i) Any representative of 4S1 is such that g 6= 0 (we may assume g = 1), h >0, ℓ= 0 and m > 1/2.

Then, we have: T4 = 0, T3 = 8h2(2m−1) 6= 0, T3F =−8h4(2m−1)3 < 0, F1 =F2 =F3F4 = 0,

which imply that it has a center c;
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Table 6.7.1: Geometric classification for the subfamily QsnSN(A): the nondegenerate parts

I1 =





3 & I2 =





2 & I3 =





2 & I4 =





2111 & I5 =
{

1 [V14],
0 (V12),

1111 & I6 =
{

1 {4S4},
0 (V15),

1 (5S3),

0 & I3 =





2 & I4 =





4111 & I5 =
{

1 [V11],
0 (V9),

2111 & I6 =
{

1 (4S1),
0 (V6),

3112 (V3),
2120 (V16),
3111 {7S1},

1 (5S2),

2 & I2 =





1 & I3 =





∞ {1.2L2},

2 & I4 =





2111 & I5 =
{

1 [1S2],
0 (1S4),

1111 & I6 =
{

1 {1.4L1},
0 (1S1),

2110 (1S5),

0 & I3 =





2 & I4 =





2111 & I6 =
{

1 (3.4L1),
0 (3S4),

3112 (3S1),
4111 (3S2),
2120 (3S3),
3111 (2.3L1),

1 (3.5L1),

1 & I3 =





∞ {P1},
2 (V1),
1 (5S1).

Table 6.7.2: Geometric classification for the subfamily QsnSN(A): the degenerate parts

I1 =





1 & I2 =





1 & I3 =





∞ {P3},

2 & I8 =
{

−1 {9S2},
1 (9S3),

1 {5.9L1},
−1 {9S1},

0 & I3 =





2 & I8 =





1 & I9 =
{

2 {P4},
1 {8.9L1},

0 {1.9L1},
1 {P5}.
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Table 6.7.3: Topological equivalences for the subfamily QsnSN(A)

Presented Identical Finite Finite Finite Triple
phase under antisaddle antisaddle weak infinite

portrait perturbations focus node–focus point point

V1
V2

1.3L1

V3
V4, V5

6S2 2S2

V6
V18a, V18b V7, V8, V19, V20

4S5 6S1, 6S7 2S1, 2S5

V9
V10

6S3 2S3

V11

V12
V13

6S4 2S4

V14

V15
V21 V17, V22

6S5, 6S6

V16

1S1 1S6

1S2

1S4
1S3

1.6L1 1.2L1

1S5

3S1

3S2

3S3

3S4

4S1
4S2, 4S3

4.6L1 2.4L1

4S4

5S1

5S2

5S3

7S1

9S1
9S4

4.9L1

9S2
9S5

4.9L2

9S3
9S6

4.9L3

1.2L2

1.4L1

1.9L1
1.9L2

P2

2.3L1

3.4L1 3.4L2

3.5L1

5.9L1 5.9L2

8.9L1 8.9L2

P1

P3

P4

P5
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Table 6.7.4: Geometric classification for the subfamily QsnSN(B): the nondegenerate parts

I1 =





3 & I2 =





2 & I3 =





2 & I4 =





1111 & I7 =





32 (V6),
31 (V7),
20 {4S1},

1121 (V3),
1 (5S1),

0 & I3 =





2 & I4 =
{

2120 (V2),
1121 {V1},

1 (5S3),

2 & I2 =





2 & I3 =
{

2 (9S1),
1 (5.9L1),

1 & I3 =





∞ {1.4L1},

2 & I4 =
{

1120 (1S2),
1111 (1S1),

0 & I3 =
{

2 (9S2),
1 (5.9L2),

1 & I3 =





∞ {P1},

2 & I4 =





2121 {1S4},
1111 {1.4L2},
1011 (1S3),

1 {1.5L1}.

Table 6.7.5: Geometric classification for the subfamily QsnSN(B): the degenerate parts

I1 =





1 & I3 =
{

∞ {P2},
2 {4.9L1},

0 & I10 =





>< {1.9L1},
∪ {P3},
× {P4},
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Table 6.7.6: Topological equivalences for the subfamily QsnSN(B)

Presented Identical Finite Finite Finite
phase under antisaddle antisaddle weak

portrait perturbations focus node–focus point

V1
V9

4S2

V2

V3
V4

6S3

V6
V5

6S1

V7
V8

6S2

1S1

1S2

1S3
1S6

1.4L3

1S4 1S5

4S1

5S1
5S2

5.6L1

5S3

9S1 9S3

9S2 9S4

1.4L1

1.4L2

1.5L1 1.5L2

1.9L1 1.5L3

4.9L1 4.9L2

5.9L1

5.9L2

P1

P2

P3

P4



128 The topological classification of QS with semi–elemental saddle–nodes (A,B)

(ii) Any representative of 4S2 is such that g 6= 0 (we may assume g = 1), h >0, ℓ= 0 and m < 1/2.

Then, we have: T4 = 0, T3 = 8h2(2m−1) 6= 0, T3F = 8h4(1−2m)3 > 0, F1 = F2 = F3F4 = 0,

which imply that it has an integrable saddle $.

We observe that the phase portraits 9S2 and 9S3 from family QsnSN(A) are not equivalent to

the phase portrait 4.9L1 from family QsnSN(B) because the isolated infinite singular point has

index 0 in the last phase portrait while its index is −1 and +1 in the first two phase portraits,

respectively. Moreover, 9S2 and 9S3 are not equivalent since they are different by the invariant

I8.

However, the phase portrait P3 from family QsnSN(A) is equivalent to the phase portrait

P2 from family QsnSN(B) since there are no invariant that distinguishes them. The same argu-

ment applies to prove that other two pairs of topologically equivalent phase portraits. This proves

Corollary 6.2.3.



Chapter

7

The topological classification of

quadratic differential systems with a

finite and an infinite semi–elemental

saddle–nodes (C)

7.1 Motivation for the study

In Chapter 6, none of the two subfamilies of quadratic systems studied has been able to yield

new phase portraits of codimension one. Regarding Remark 6.2.4, the subfamily of quadratic

systems possessing a finite semi–elemental saddle–node and an infinite semi–elemental saddle–

node
(0
2

)
SN located in the bisector of the first and third quadrants remains to be studied.

As the study of this last subfamily is quite complicated we dedicate this chapter for its analysis

and statement of the results. In advance, the subfamily QsnSN(C) yields all of the phase portraits

of group (A) of codimension–one quadratic systems discussed on page 67.

7.2 Statement of the results

In this section, we again consider the set of all real planar quadratic systems which possess

a finite semi–elemental saddle–node sn(2) and an infinite semi–elemental saddle–node of type
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(0
2

)
SN. After the action of the affine group and time homotheties, we may suppose, without loss

of generality, that the finite saddle–node is placed at the origin of the plane with the eigenvectors

on the axes. We denote this family by QsnSN.

In this chapter we conclude the study of the class QsnSN, which is the closure of the set

of representatives of QsnSN in the parameter space of the specific normal form which shall be

constructed later, by presenting the analysis of the subfamily QsnSN(C). The previous two sub-

families QsnSN(A) and QsnSN(B) were discussed in Chapter 6.

This subfamily QsnSN(C) is characterized by possessing the infinite semi–elemental saddle–

node
(0
2

)
SN in the bisector of the first and third quadrants. We refer to Remark 6.3.1 in order to

understand the difference among the three subfamilies.

In the normal form (7.3.1), the class QsnSN(C) is partitioned into 1034 parts: 199 three–

dimensional ones, 448 two–dimensional ones, 319 one–dimensional ones and 68 points. This par-

tition is obtained by considering all the bifurcation surfaces of singularities, one related to the

presence of invariant straight lines, one related to connections of separatrices, one related to the

presence of invariant parabola and one related to the presence of a double limit cycle, modulo

“islands”.

It is worth mentioning that the partitions described above and the number of topological

equivalence classes of phase portraits for each subfamily are due to the choice of a specific normal

form. According to Schlomiuk [50], these partitions do not necessarily contain all the phase por-

traits of the closure within the class of quadratic systems. It may happen that given two different

normal forms for a same family, one phase portrait may exist in the closure of one of them but not

in the closure of the other. However, the interior of the family in any normal form must contain

exactly the same phase portraits.

Theorem 7.2.1. There exist 371 topologically distinct phase portraits for the closure of the family

of quadratic vector fields having a finite saddle–node sn(2) and an infinite saddle–node of type
(0
2

)
SN located in the bisector of the first and third quadrants and given by the normal form (7.3.1)

(class QsnSN(C)). The bifurcation diagram for this class is the projective tridimensional space

RP
3. All these phase portraits are shown in Figures 7.1 to 7.11. Moreover, the following statements

hold:

(a) There exist 259 topologically distinct phase portraits in QsnSN(C);

(b) There exist 49 phase portraits possessing at least one simple limit cycle (or an odd number of

them taking into account their multiplicity), and they are in the parts V5, V17, V27, V33, V54,
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V80, V89, V90, V94, V99, V100, V117, V118, V134, V137, V168, V176, V178, V179, V180, V183, V194, 1S4,

1S12, 1S13, 1S16, 1S20, 1S58, 1S59, 1S60, 1S72, 2S49, 2S54, 2S61, 4S25, 4S26, 5S5, 5S22, 7S27,

7S28, 7S53, 7S56, 7S74, 7S81, 7S83, 1.4L3, 1.5L6, 1.7L4 and 2.5L13;

(c) There exists one phase portrait with at least one double limit cycle (or an odd number of them

taking into account their multiplicity), and it is in the part 10S1;

(d) There exist two phase portraits with at least two limit cycles (or an even number of them taking

into account their multiplicity), and they are in the parts V88 and V182;

(e) There exist 107 phase portraits with nondegenerate graphics (located in only one place in the

phase portrait), and they are in the parts V6, V53, V102, V107, V113, V138, V166, V168, V172,

V173, V174, V176, V183, V189, 1S5, 1S6, 1S14, 1S15, 1S21, 1S25, 1S26, 1S28, 1S30, 1S33, 1S36,

1S37, 1S40, 1S43, 1S44, 1S45, 1S55, 1S59, 1S60, 1S65, 1S66, 1S71, 2S62, 4S13, 4S36, 4S51,

5S23, 5S33, 7S1, 7S2, 7S7, 7S10, 7S17, 7S22, 7S27, 7S29, 7S31, 7S32, 7S33, 7S41, 7S42, 7S52,

7S57, 7S58, 7S70, 7S71, 7S72, 7S74, 7S77, 7S78, 7S79, 7S81, 7S83, 7S85, 1.1L2, 1.1L3, 1.1L4,

1.4L4, 1.4L5, 1.4L7, 1.4L8, 1.4L12, 1.4L13, 1.5L4, 1.5L5, 1.7L1, 1.7L2, 1.7L3, 1.7L5, 1.7L6,

1.7L18, 1.7L21, 1.7L28, 1.7L29, 1.7L32, 1.7L33, 2.7L18, 2.7L19, 2.7L20, 2.8L1, 2.8L2, 4.7L1,

5.7L1, 5.7L9, 5.7L14, 7.7L4, 7.7L5, P31, P43, P50, P52, P60 and P65;

(f) There exist 14 phase portraits with two disjoint graphics, and they are in the parts V169, V177,

1S53, 1S56, 1S57, 7S67, 7S75, 7S76, 7S82, 1.7L27, 1.7L30, 1.7L31, 7.7L6 and 7.7L7;

(g) There exist 7 phase portraits with degenerate graphics, and they are in the parts 1.2L8, 1.3L2,

P23, P57, P58, P64 and P65.

In Table 7.2.1 we compare the number of phase portraits possessing some geometrical features

such as for instance limit cycles or graphics between the class QsnSN(C) and its border.

Table 7.2.1: Comparison between the set QsnSN(C) and its border

QsnSN(C) border of QsnSN(C)
Distinct phase portraits 259 112

Phase portraits with exactly one limit cycle 39 10
Phase portraits with two/double limit cycles 2/1 0

Phase portraits with a finite
72 14

number of nondegenerate graphics
Phase portraits with an infinite

0 35
number of nondegenerate graphics

Phase portraits with degenerate graphics 0 7
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V1 V2 V3 V5 V6

V7 V9 V10 V13 V15

V17 V20 V21 V22 V23

V25 V27 V31 V33 V37

V41 V42 V44 V46 V49

V51 V53 V54 V61 V62

V64 V66 V69 V71 V78

Figure 7.1: Phase portraits for quadratic vector fields with a finite saddle–node sn(2) and an infinite

saddle–node of type
(0
2

)
SN in the bisector of first and third quadrants
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V80 V83 V84 V85 V88

V89 V90 V94 V99 V100

V102 V104 V107 V108 V109

V110 V113 V114 V117 V118

V121 V122 V123 V129 V134

V136 V137 V138 V140 V141

V142 V143 V144 V145 V147

Figure 7.2: Continuation of Figure 7.1
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V149 V154 V155 V165 V166

V168 V169 V170 V172 V173

V174 V176 V177 V178 V179

V180 V182 V183 V189 V190

V191 V192 V194 V198 1S1

1S2 1S4 1S5 1S6 1S7

1S8 1S9 1S12 1S13 1S14

Figure 7.3: Continuation of Figure 7.2
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1S15 1S16 1S18 1S19 1S20

1S21 1S23 1S24 1S25 1S26

1S27 1S28 1S30 1S33 1S35

1S36 1S37 1S40 1S43 1S44

1S45 1S52 1S53 1S55 1S56

1S57 1S58 1S59 1S60 1S64

1S65 1S66 1S67 1S68 1S69

Figure 7.4: Continuation of Figure 7.3
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1S71 1S72 1S74 2S1 2S2

2S3 2S4 2S5 2S6 2S10

2S11 2S12 2S13 2S16 2S17

2S18 2S19 2S21 2S23 2S24

2S30 2S31 2S41 2S45 2S48

2S49 2S51 2S52 2S53 2S54

2S56 2S59 2S61 2S62 4S1

Figure 7.5: Continuation of Figure 7.4
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4S3 4S6 4S8 4S9 4S13

4S15 4S16 4S20 4S25 4S26

4S29 4S31 4S32 4S33 4S36

4S42 4S44 4S51 5S1 5S2

5S3 5S5 5S9 5S12 5S13

5S22 5S23 5S26 5S28
5S33

5S36 7S1 7S2 7S3 7S4

Figure 7.6: Continuation of Figure 7.5
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7S6 7S7 7S8 7S9 7S10

7S15 7S16 7S17 7S22 7S23

7S26 7S27 7S28 7S29 7S31

7S32 7S33 7S37 7S38 7S41

7S42 7S44 7S45 7S52 7S53

7S55 7S56 7S57 7S58 7S60

7S61 7S62 7S63 7S64 7S65

Figure 7.7: Continuation of Figure 7.6
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7S67
7S68 7S69 7S70 7S71

7S72 7S74 7S75 7S76 7S77

7S78 7S79 7S81 7S82 7S83

7S85 10S1 1.1L1 1.1L2 1.1L3

1.1L4 1.1L6 1.1L7 1.2L5 1.2L7

1.2L8 1.3L2 1.4L1 1.4L3 1.4L4

1.4L5 1.4L7 1.4L8 1.4L12 1.4L13

Figure 7.8: Continuation of Figure 7.7
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1.4L14 1.5L1 1.5L2 1.5L3 1.5L4

1.5L5 1.5L6 1.5L7 1.7L1 1.7L2

1.7L3 1.7L4 1.7L5 1.7L6 1.7L7

1.7L9 1.7L18 1.7L20 1.7L21 1.7L27

1.7L28 1.7L29 1.7L30 1.7L31 1.7L32

1.7L33 2.3L1 2.3L2 2.3L3 2.3L4

2.3L6 2.3L7 2.4L1 2.4L3 2.4L5

Figure 7.9: Continuation of Figure 7.8
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2.4L6 2.4L7 2.4L9 2.5L1 2.5L3

2.5L4 2.5L10 2.5L11 2.5L13 2.7L1

2.7L2 2.7L3 2.7L4 2.7L5 2.7L7

2.7L9 2.7L11 2.7L16 2.7L17 2.7L18

2.7L19 2.7L20 2.8L1 2.8L2 2.8L3

4.4L1 4.4L3 4.7L1 5.7L1 5.7L2

5.7L9 5.7L11 5.7L14 7.7L1 7.7L4

Figure 7.10: Continuation of Figure 7.9
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7.7L5
7.7L6 7.7L7 P1 P4

P22 P23 P26 P30 P31

P39 P41 P43 P50 P52

P57 P58 P60 P64 P65

P68

Figure 7.11: Continuation of Figure 7.10
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Remark 7.2.2. Phase portrait P65 belongs to two different categories in Theorem 7.2.1 since some

of its graphics are nondegenerate.

Corollary 7.2.3. There exist 14 topologically distinct phase portraits which appear simultaneously

in at least two of the three families QsnSN(A), QsnSN(B) and QsnSN(C). The correspondences

are indicated in Table 7.2.2 and the phase portraits in each row are topologically equivalent.

Table 7.2.2: Topological equivalence among phase portraits from families QsnSN(A), QsnSN(B)
and QsnSN(C)

QsnSN(A) QsnSN(B) QsnSN(C)
V15 4S13

3S1 2.4L9

3S2 2.4L1

3S3 2.4L3

3S4 2.4L5

3.4L1 P22

5S2 5S3

V6 4S15

V7 4S44

9S1 2S41

5.9L1 2.5L10

1.2L2 1.4L1 1.3L2

P1 P1 P23

P3 P2 P57

Corollary 7.2.4. There exist 417 topologically distinct phase portraits in QsnSN.

Corollary 7.2.5. After applying a perturbation, some chosen phase portraits in Figures 7.1 to 7.11

yield all the topologically possible phase portrait of codimension–one from group (A) expected to

exist (see page 67 for the description of this group). So, the seven codimension–one phase portraits

from group (A) whose realizability was missing can be constructed after perturbations of some

chosen phase portraits from QsnSN(C); and three codimension–one phase portraits from group

(B) whose realizability was missing can be constructed after perturbations of some chosen phase

portraits from QsnSN(C).

For the class QsnSN(C), from its 259 topologically different phase portraits, 94 occur in three–

dimensional parts, 119 in two–dimensional parts, 42 in one–dimensional parts and 4 occur in a

single zero–dimensional part.
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In Figures 7.1 to 7.11 we have denoted all the singular points with a small disk. We have

plotted with wide curves the separatrices and we have added some orbits drawn on the picture

with thinner lines to avoid confusion in some required cases.

7.3 Quadratic vector fields with a finite saddle–node sn(2) and an

infinite saddle–node of type
(0

2

)
SN

We consider quadratic differential systems possessing a finite semi–elemental saddle–node

sn(2) and an infinite semi–elemental saddle–node of type
(0
2

)
SN located in the bisector of the first

and third quadrants.

The following result presents the normal form adopted for systems in QsnSN(C).

Proposition 7.3.1. Every system with a finite semi–elemental double saddle–node sn(2) with its

eigenvectors in the direction of the axes, with the eigenvector associated with the zero eigenvalue on

the horizontal axis, and an infinite saddle–node of type
(0
2

)
SN located in the endpoints of the bisec-

tor of the first and third quadrants can be brought via affine transformations and time rescaling

to the following normal form

ẋ= gx2 +2hxy+ (−g−2h+n)y2,

ẏ= y+ℓx2 + (2g+2h−2ℓ−n)xy+ (2h+ℓ+2(−g−2h+n))y2,
(7.3.1)

where g, h, ℓ and n are real parameters and g 6= 0.

Proof. We start with system (2.2.2). This system already has a finite semi–elemental saddle–node

at the origin (then g 6= 0) with its eigenvectors in the direction of the axes. The first step is to place

the point
(0
2

)
SN at the point [1 : 1 : 0] of the local chart U1 with coordinates (w, z). For that, we

must guarantee that the point [1 : 1 : 0] is a singularity of the flow in U1,

ẇ= ℓ+ (−g+2m)w+ (−2h+n)w2 −kw3+wz,

ż = (−g−2hw−kw2)z.

Then, we set n = g+2h+ k−ℓ−2m and, by analyzing the Jacobian of the former system after

the substitution in n, we set m = (g− k−2ℓ)/2 in order to have the eigenvalue associated to the

eigenvector on z = 0 being null. Finally, we apply the rotation k = n−g−2h in the parameter space



7.4 The bifurcation diagram of the systems in QsnSN(C) 145

and obtain the normal form (7.3.1). We note that this rotation is just to simplify the bifurcation

diagram.

In order to consider the closure of the family QsnSN(C) within the set of representatives of

QsnSN(C) in the parameter space of the normal form (7.3.1), it is necessary to study the case

when g = 0, which will be discussed later.

We construct the parameter space for systems (7.3.1) in the same way it was constructed for

systems (6.3.1) and (6.3.2), but now with respect to the parameter [λ] = [g : h : ℓ : n] ∈RP
3. Due to

the symmetry (x, y, t) 7→ (−x,−y, t) we have (g, h,ℓ, n) 7→ (−g,−h,−ℓ,−n), which implies that it is

sufficient to consider only g ≥ 0.

We observe that, except of an affine change of variables and a time rescaling, we can assume

g = 1 for the case g 6= 0.

Before we begin the study of the interactions among the bifurcation surfaces, the next result

assures the existence of invariant straight lines under certain conditions.

Lemma 7.3.2. For all g ∈ R, systems (7.3.1) possess the following invariant straight lines under

the specific condition:

(i) {x= 0}, if h = (n− g)/2;

(ii) {y= 0}, if ℓ= 0;

(iii) {y= x−1/n}, if ℓ= g and n 6= 0.

Proof. We consider the algebraic curves

f1(x, y)≡ x= 0, f2(x, y)≡ y= 0 and f3(x, y)≡ ny−nx+1= 0,

and, according to Definition 1.4.1, we show that the polynomials

K1(x, y)= gx+ (n− g)y, K2(x, y)= 1+ (2g+2h−n)x−2(g+h−n)y and K3(x, y)= ny

are the cofactors of f1 = 0, f2 = 0 and f3 = 0, respectively, after restricting systems (7.3.1) to the

respective conditions.

7.4 The bifurcation diagram of the systems in QsnSN(C)

In this section we describe the bifurcation surfaces which are needed for completing the study

of the family QsnSN(C).
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7.4.1 Bifurcation surfaces due to the changes in the nature of singularities

Most of the invariants and T−comitants needed here have already used in Chapters 5 and

6. So, we shall give only the geometrical meaning and their equations. For further information

about them, see Sections 5.4, 6.4 and 6.5.

Bifurcation surfaces in RP
3 due to multiplicities of singularities

(S1) This is the bifurcation surface due to multiplicity of infinite singularities involved with finite

singular points. This occurs when at least one finite singular point collides with at least one

infinite singular point. This is a quartic whose equation is

µ= n2(−g2 −2gh+2hℓ+ℓ2 + gn)= 0.

(S2) Since this family already has a saddle–node at the origin, the invariant D is always zero.

The next T−comitant related to finite singularities is T (see Proposition 4.5.9). If this T−comitant

vanishes, it may mean either the existence of another finite semi–elemental singular point, or the

origin being a singular point of higher multiplicity, or the system being degenerate. The equation

of this surface is

T=−12g2 (g2 +2gh+h2 − gn)= 0.

(S5) Since this family already has a saddle–node at infinity formed by the collision of two infinite

singularities, the invariant η is always zero. In this sense, we have to consider a bifurcation

related to the existence of either the double infinite singularity
(0
2

)
SN plus a simple one, or a

triple one. This phenomenon is ruled by the T−comitant M̃. The equation of this surface is

M̃ = (g+2h+ℓ−n)2 = 0.

The surface of C∞ bifurcation points due to a strong saddle or a strong focus changing

the sign of their traces (weak saddle or weak focus)

(S3) This is the bifurcation surface due to weak finite singularities, which occurs when the trace

of a finite singular point is zero. The equation of this surface is given by

T4 = n(−4g3 −8g2h−4g2ℓ−4ghℓ−8h2ℓ−4hℓ2+4g2n+4gℓn+ℓ2n)= 0.
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We note that this bifurcation surface can either produce a topological change, if the weak point is

a focus, or just a C∞ change, if it is a saddle. However, in the case this bifurcation coincides with

a loop bifurcation associated with the same saddle, the change is also topological, as we can see

in the analysis of systems (7.3.1) (see page 199).

The surface of C∞ bifurcation due to a node becoming a focus

(S6) This surface will contain the points of the parameter space where a finite node of the system

turns into a focus. This surface is a C∞ but not a topological bifurcation surface. In fact, when we

only cross the surface (S6) in the bifurcation diagram, the phase portraits do not change topolog-

ically. However, this surface is relevant for isolating the parts where a limit cycle surrounding an

antisaddle cannot exist. The equation of this surface is given by W4 = 0, where

W4 =n2(16g6 +64g5h+64g4h2−32g5ℓ−160g4hℓ−192g3h2ℓ−16g4ℓ2 +32g3hℓ2

+112g2h2ℓ2 −32gh3ℓ2+32g3ℓ3 +64g2hℓ3 +32h3ℓ3 +16h2ℓ4 −32g5n

−64g4hn+64g4ℓn+160g3hℓn+8g3ℓ2n−80g2hℓ2n+16gh2ℓ2n−40g2ℓ3n

−8ghℓ3n−16h2ℓ3n−8hℓ4n+16g4n2−32g3ℓn2+8g2ℓ2n2 +8gℓ3n2+ℓ4n2).

Bifurcation surface in RP
3 due to the presence of invariant straight lines

(S4) This surface will contain the points of the parameter space where an invariant straight line

appears (see Lemma 7.3.2). This surface is split in some parts. Depending on these parts, the

straight line may contain connections of separatrices from different points or not. So, in some

cases, it may imply a topological bifurcation and, in others, just a C∞ bifurcation. The equation of

this surface is given by

Inv= ℓ(ℓ− g) (g+2h−n) = 0.

These bifurcation surfaces are all algebraic and they, except (S4), are the bifurcation surfaces

of singularities of systems (7.3.1) in the parameter space. We shall discover other two bifurcation

surfaces not necessarily algebraic. On one of them the systems have global connection of separa-

trices different from that given by (S4) and on the other the systems possess double limit cycle.

The equations of these bifurcation surfaces can only be determined approximately by means of

numerical tools. Using arguments of continuity in the phase portraits we can prove the existence

of these components not necessarily algebraic in the part where they appear, and we can check
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them numerically. We shall name them surfaces (S7) (connection of separatrices) and (S10) (dou-

ble limit cycles).

Remark 7.4.1. On surface (S10), the respective systems have at least one double limit cycle. Al-

though this surface is obtained numerically, we can predict in which portion of the bifurcation dia-

gram it can be placed. It must be in the neighborhood of the points of the bifurcation diagram cor-

responding to a weak focus f (2) or a weak saddle s(1) which forms a loop. So, according to [61, Main

Theorem, item (b2)], the necessary condition for the existence of weak points of order two or higher

is governed by T4 =F1 = 0. The expression of F1 is given by F1 =−2g2−4gh+4gℓ+6hℓ+2gn−3ℓn.

We shall foliate the 3−dimensional bifurcation diagram in RP
3 by the planes n = n0, n0 con-

stant, plus the open half sphere g = 0 and we shall give pictures of the resulting bifurcation

diagram on these planar sections on a disk or in an affine chart of R2.

In what follows we work in the chart of RP
3 corresponding to g 6= 0, and we take g = 1. To

do the study, we shall use pictures which are drawn on planes n = n0 of RP3, having coordinates

[1 : h :ℓ : n0]. In these planes the coordinates are (h,ℓ) where the horizontal line is the h−axis.

As the final bifurcation diagram is quite complex, it is useful to introduce colors which will

be used to talk about the bifurcation surfaces. They are the same as described in Section 6.4, on

page 105, except for surface (S10) which is drawn in gray.

The following lemmas of this section study the geometrical behavior of the surfaces for g 6= 0

(the case g = 0 will be considered separately), that is, their singularities, their intersection points

and their extrema (maxima and minima) with respect to the coordinate n.

Lemma 7.4.2. For gn 6= 0, surface (S1) has no singularities and, for g 6= 0 and n = 0, it has two

straight lines of singularities given by [1 : h : 1 : 0] and [1 : h :−1−2h : 0].

Proof. We observe that, for gn 6= 0, surface (S1) with equation µ = n2(−1−2h+2hℓ+ℓ2 +n) = 0

is the union of a double plane and a conic with no singularities. So, the only singularities of

(S1) will be the intersection between these two components. In this sense, we set n = 0 and,

solving the expression of the conic with respect to ℓ, we find the straight lines [1 : h : 1 : 0] and

[1 : h :−1−2h,0].

Lemma 7.4.3. For g 6= 0, surface (S2) has no singularities. Moreover, this surface assumes its

minimum (with respect to the coordinate n) at h =−1.
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Proof. Setting g 6= 0, it follows straightforwardly from the expression of T =−12(1+2h+h2−n),

which is a parabola for each value of n. In addition, if we parametrize this surface, we obtain

[1 : h :ℓ : (1+h)2] which clearly has a minimum at h =−1, which corresponds to n =0.

Lemma 7.4.4. For gn 6= 0, surface (S3) has a straight line of singularities given by [1 : 1/2 : −2 : n].

Moreover, in this surface there exist two distinguished points: [1 : 1/2 : −2 : 2] and [1 : 1/2 : −2 : 9/4].

For g 6= 0 and n = 0, surface (S3) has two curves of singularities: the straight line [1 : h :−1−2h : 0]

and the hyperbola [1 : h :−1/h : 0], and they intersect at the points [1 :−1 : 1 : 0] and [1 : 1/2 :−2 : 0].

Proof. For gn 6= 0, surface (S3) is the union of a plane and a cubic. As the plane (namely, {n = 0})

has no singularities, we consider only the cubic C = 4n−8h−4+(4n−4h−8h2−4)ℓ+(n−4h)ℓ2 = 0.

Computing its derivatives, we obtain:

Ch ≡
∂C

∂h
=−4(2+ℓ+4hℓ+ℓ2),

Cℓ ≡
∂C

∂ℓ
=−2(2+2h+4h2 +4hℓ−2n−ℓn),

Cn ≡
∂C

∂n
=(2+ℓ)2,

and solving them (for g 6= 0) we get the straight line [1 : 1/2 :−2 : n] of singularities. We verify that

the determinant of the Hessian of C restricted to this straight line is identically zero. In addition,

calculating the discriminant of C with respect to h and ℓ, we obtain, respectively,

Discrimh(C)=16(2+ℓ)2(1−2ℓ+ℓ2 +2ℓn),

Discrimℓ(C)=16(2h−1)2(1+2h+h2 −n).

So, the resultant of both discriminants with respect to h is

Resh(Discrimh(C),Discrimℓ(C))= 65536(2+ℓ)8(1−2ℓ+ℓ2 +2ℓn)4,

which vanishes if, and only if, ℓ = −2 or n = (−1+2ℓ−ℓ2)/(2ℓ), implying that n = 9/4 (which is

obtained by evaluating the resultant on the line of singularities) is a distinguished point.

Now, we want to investigate the existence of a value of the parameter n = n0 at which the

cubic C factorizes, i.e. we want to rewrite C as one of the following forms:

C(h,ℓ, n0)= (h−h0)D2(h,ℓ) or C(h,ℓ, n0)= (ℓ−ℓ0)D2(h,ℓ),

where D2(h,ℓ) is a polynomial of degree 2 in the variables h and ℓ. For this, we rewrite the cubic
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C in the forms:

C1(h,ℓ, n0)=−4(1+2h−n0)−4(1+h+2h2 −n0)ℓ+ (−4h+n0)ℓ2, and

C2(h,ℓ, n0)=−4−4ℓ+4n0 +4ℓn0 +ℓ2n0−4(2+ℓ+ℓ2)h−8ℓh2.

As we are interested in the set of zeroes of C, we equalize to zero the coefficients of C1 and C2

in the variables ℓ and h, respectively, and obtain the systems:

1+2h−n0 = 0, 4+4ℓ−4n0 −4ℓn0−ℓ2n0 = 0,

1+h+2h2 −n0 = 0, and 2+ℓ+ℓ2 = 0,

n0−4h = 0, ℓ= 0.

Solving the systems above, we see that only the first one is possible and its unique solution

is h = 1/2, n0 = 2. Thus, we can factorize the cubic C as C(h,ℓ,2) = −2(2h−1)(2+2ℓ+2hℓ+ℓ2),

implying that n = 2 is also a distinguished value of the parameter n.

In the case g 6= 0 and n = 0, we have T4 ≡ 0. We denote by F the derivative of T4 with respect

to n, and under the conditions g 6= 0 and n =0, we obtain F =−4(1+2h+ℓ)(1+hℓ). So, 1+2h+ℓ= 0

and 1+hℓ= 0 are the singular curves of (S3) with n =0, which correspond to the projective curves

[1 : h :−1−2h : 0] and [1 : h :−1/h : 0]. In addition, it is easy to see that both curves intersect at the

points [1 :−1 : 1 : 0] and [1 : 1/2 :−2 : 0].

Lemma 7.4.5. For g 6= 0, surface (S4) has two straight lines of singularities given by [1 : (n−1)/2 :

0 : n] and [1 : (n−1)/2 : 1 : n].

Proof. For g 6= 0, we see that, by the expression Inv= ℓ(ℓ−1)(n−1−2h), surface (S4) is the union

of two parallel planes with a transversal one. The planes themselves have no singularities, so

that the singularities of (S4) consist of the intersections among them, which are the straight lines

[1 : (n−1)/2 : 0 : n] and [1 : (n−1)/2 : 1 : n].

Lemma 7.4.6. For g 6= 0, surface (S5) has no singularities.

Proof. For g 6= 0, it follows directly from the expression of M̃ = (1+2h+ℓ−n)2, which is a plane

for each value of n.

Lemma 7.4.7. For gn 6= 0, surface (S6) has two curves of singularities: [1 : (n − 1)/2 : 0 : n] (a

straight line) and [1 : (ℓ− 2)/ℓ : ℓ : 4(4− 7ℓ+ 2ℓ2 + ℓ3)/(ℓ(−4+ 4ℓ+ ℓ2))]. Moreover, the curve [1 :

(ℓ−2)/ℓ : ℓ : 4(4−7ℓ+2ℓ2+ℓ3)/(ℓ(−4+4ℓ+ℓ2))] assumes its extrema (with relation to the coordinate
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n) in the values ℓ=−4, ℓ= 1, ℓ= (−3±
p

41)/4 and ℓ= f −1(n0), where f = 4(4−7ℓ+2ℓ2+ℓ3)/(ℓ(−4+

4ℓ+ℓ2)) and n0 = (3− (1548−83
p

249)1/3/32/3−61/(3(1548−83
p

249))1/3)/2. For g 6= 0 and n = 0, its

singularities lie on the two straight lines [1 : h : 1 : 0] and [1 : h : −1−2h : 0] and on the two curves

[1 : (1−2ℓ±
p

1−4ℓ+5ℓ2 −2ℓ3)/ℓ2 : ℓ : 0].

Proof. For g 6= 0, by the expression of W4, surface (S6) is the union of a (double) plane with a

sixth–degree surface, which has singularities by its own. As the plane (namely, {n = 0}) has no

singularities, we consider only the sixth–degree surface

S =16+64h+64h2−32ℓ−160hℓ−192h2ℓ−16l2 +32hℓ2 +112h2ℓ2 −32h3ℓ2 +32ℓ3

+64hℓ3+32h3ℓ3 +16h2ℓ4 −32n−64hn+64ℓn+160hℓn+8ℓ2n−80hℓ2n+16h2ℓ2n

−40ℓ3n−8hℓ3n−16h2ℓ3n−8hℓ4n+16n2−32ℓn2+8ℓ2n2 +8ℓ3n2+ℓ4n2 = 0.

Computing the derivatives of S, we have:

Sh ≡
∂S

∂h
=8(ℓ−1)(−8−16h+12ℓ+32hℓ+8ℓ2 +4hℓ2 +12h2ℓ2 +4hℓ3

+8n−12ℓn−2ℓ2n−4hℓ2n−ℓ3n),

Sℓ ≡
∂S

∂ℓ
=4(−8−40h−48h2 −8ℓ+16hℓ+56h2ℓ−16h3ℓ+24ℓ2 +48hℓ2

+24h3ℓ2 +16h2ℓ3 +16n+40hn+4ℓn−40hℓn+8h2ℓn−30ℓ2n

−6hℓ2n−12h2ℓ2n−8hℓ3n−8n2+4ℓn2+6ℓ2n2 +ℓ3n2),

Sn ≡
∂S

∂n
=−2(16+32h−32ℓ−80hℓ−4ℓ2 +40hℓ2−8h2ℓ2 +20ℓ3 +4hℓ3

+8h2ℓ3 +4hℓ4−16n+32ℓn−8ℓ2n−8ℓ3n−ℓ4n).

Moreover, we calculate the resultant with respect to h of S with each one of its derivatives and

we obtain:

Rh
h ≡Resh(S,Sh)=−32768α2ℓ4(ℓ−1)3(16−96ℓ+224ℓ2 −256ℓ3 +144ℓ4 −32ℓ5 −32n+160ℓn

−296ℓ2n+248ℓ3n−88ℓ4n+8ℓ5n+16n2−64ℓn2 +120ℓ2n2−112ℓ3n2

+13ℓ4n2−16ℓ2n3+16ℓ3n3),

Rℓ
h ≡Resh(S,Sℓ)=32768α2ℓ4(−4+8ℓ−4ℓ2 +4n−4ℓn+ℓ2n)3(−4+8ℓ−4ℓ2 −2ℓn+ℓ2n),

Rn
h ≡Resh(S,Sn)=−4096α2ℓ4(ℓ−1)2(−16+80ℓ−144ℓ2 +104ℓ3 −16ℓ4 −8ℓ5 +32n−128ℓn

+152ℓ2n−32ℓ3n−24ℓ4n−2ℓ5n−16n2+48ℓn2 −40ℓ2n2+7ℓ4n2+ℓ5n2),
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where α ≡ −16+28ℓ−8ℓ2 −4ℓ3 −4ℓn+4ℓ2n+ℓ3n. Now, to assure that all the resultants above

vanish (and, hence, S and its derivatives), we must have ℓα= 0.

The case ℓ= 0: If ℓ= 0, then:

S =16(1+2h−n)2 = 0,

Sh =64(1+2h−n)= 0,

Sℓ =−32(1+2h−n)(1+3h−n)= 0,

Sn =−32(1+2h−n)= 0

if, and only if, n = 1+2h. So, we obtain a straight line of singularities given by [1 : (n−1)/2 : 0 : n].

The case α= 0: If α= 0, then

n =
4(4−7ℓ+2ℓ2 +ℓ3)

ℓ(−4+4ℓ+ℓ2)
, ℓ 6= 0, ℓ 6= 2(−1±

p
2), (7.4.1)

and

S =16(ℓ−1)(2−ℓ+hℓ)2(16−32ℓ+4ℓ2 −8hℓ2 +8ℓ3 +8hℓ3+5ℓ4 +2hℓ4

+ℓ5)
/

(ℓ2(−4+4ℓ+ℓ2))= 0,

Sh =32(ℓ−1)(2−ℓ+hℓ)(16−40ℓ+16ℓ2 −12hℓ2 +6ℓ3 +12hℓ3+4ℓ4 +3hℓ4

+ℓ5)
/

(ℓ2(−4+4ℓ+ℓ2))= 0,

Sℓ =32(2−ℓ+hℓ)(32−64ℓ+24hℓ+20ℓ2 −56hℓ2 +8h2ℓ2 +6ℓ3 +32hℓ3 −20h2ℓ3

+13ℓ4 −5hℓ4+10h2ℓ4 −4ℓ5 +5hℓ5+3h2ℓ5 −2ℓ6 +2hℓ6)
/

(ℓ2(−4+4ℓ+ℓ2))= 0,

Sn =−8(ℓ−1)(2−ℓ+hℓ)(−8+8ℓ+4ℓ2 +2hℓ2+ℓ3)
/
ℓ= 0

if, and only if, h = (ℓ−2)/ℓ. So, we obtain the curve of singularities given by

[
1 :

ℓ−2

ℓ
: ℓ :

4(4−7ℓ+2ℓ2 +ℓ3)

ℓ(−4+4ℓ+ℓ2)

]
.

We remark that the conditions in ℓ in equation (7.4.1) are not restrictions since α 6= 0 under

ℓ= 0 or ℓ= 2(−1±
p

2).

In order to find the extrema of the curve [1 : (ℓ−2)/ℓ : ℓ : 4(4−7ℓ+2ℓ2+ℓ3)/(ℓ(−4+4ℓ+ℓ2))], we

equalize the last coordinate to n and obtain the polynomial p =−4(ℓ−1)2(4+ℓ)+ℓ(−4+4ℓ+ℓ2)n.
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Computing its discriminant with respect to ℓ, we have:

Discrimℓ(p)= 256n(125−17n−9n2+2n3),

whose solutions are n = 0 and n = (3 − (1548 − 83
p

249)1/3/32/3 − 61/(3(1548− 83
p

249))1/3)/2 ≈

−3.40133804. . .. Besides, we consider the leading coefficient of p in ℓ and solve it with respect

to n, obtaining n = 4. This proves that p has degree 3 for every n, except when n = 4. Finally,

solving the equation p = 0 by substituting n by the singular values of n, we obtain ℓ = −4,

ℓ = 1, ℓ = (−3±
p

41)/4 and ℓ = f −1(n0), where f = 4(4−7ℓ+2ℓ2 +ℓ3)/(ℓ(−4+4ℓ+ℓ2)) and n0 =

(3− (1548−83
p

249)1/3/32/3−61/(3(1548−83
p

249))1/3)/2, which are the critical values of the curve

with respect to n.

Now, restricting W4 to g 6= 0 and n =0, its expression becomes

W4
∣∣
g 6=0,n=0 = 16(ℓ−1)(1+2h+ℓ)(−1−2h+2ℓ+4hℓ+h2ℓ2).

Under these conditions, ℓ−1= 0, 1+2h+ℓ= 0 and 1+2h−2ℓ−4hℓ−h2ℓ2 = 0 are the singular

curves of (S6) with n = 0, which correspond to the projective curves [1 : h : 1 : 0], [1 : h :−1−2h : 0]

and [1 : (1−2ℓ±
p

1−4ℓ+5ℓ2 −2ℓ3)/ℓ2 : ℓ : 0].

Lemma 7.4.8. For g 6= 0, the invariant F1 defined in Remark 7.4.1 has a straight line of singular-

ities given by [1 : (3n−4)/6 : 2/3 : n].

Proof. Computing the derivatives of F1, we have:

∂F1

∂h
= 2(3ℓ−2),

∂F1

∂ℓ
= 4+6h−3n,

∂F1

∂n
= 2−3ℓ,

and the unique solution of the homogenous systems formed by them is h = n/2−2/3, ℓ= 2/3. So,

we obtain the curve of singularities given by [1 : (3n−4)/6 : 2/3 : n].

Lemma 7.4.9. For g 6= 0, surfaces (S1) and (S2) intersect along the straight line [1 :−1 : ℓ : 0] and

the parabola [1 : h : −h : (1+ h)2]. Moreover, the curve [1 : h : −h : (1+ h)2] assumes its extremum

(with relation to the coordinate n) in the value h =−1 and, in addition, the contact along this curve

is even.

Proof. Solving the system of equations

(S1) : n2(−1−2h+2hℓ+ℓ2 +n)= 0, (S2) :−12(1+2h+h2−n)= 0,
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we obtain the two solutions h =−1, n = 0 and ℓ=−h, n = (1+h)2, which correspond to the curves

[1 : −1 : ℓ : 0] and [1 : h :−h : (1+h)2], respectively.

It is easy to see that the extremum of the coordinate n of the curve [1 : h : −h : (1+ h)2] is

reached at h =−1 and its minimum value is n = 0.

To prove the contact between both surfaces along the curve γ = [1 : h : −h : (1+h)2], we apply

the affine change of coordinates given by n =1+2h+h2−v, v ∈R. Under this transformation, the

gradient vector of (S2) along the curve γ is ∇T(γ) = [1 : 0 : 0 : −12], whereas the gradient vector of

(S1) along the curve γ is ∇µ(γ)= [1 : 0 : 0 :−1], whose last coordinate is always negative. As ∇µ(γ)

does not change its sign, this vector will always point to the same direction in relation to (S2)

restricted to the previous change of coordinates. Then, the surface (S1) remains only on one of the

two topological subspaces delimited by the surface (S2).

Lemma 7.4.10. For g 6= 0, surfaces (S1) and (S3) has the plane {n = 0} as a common component.

Besides, the surfaces intersect along the straight lines [1 : h : 1 : 0], [1 : h : −1−2h : 0] and [1 : h : 0 :

1+2h], the hyperbola [1 : h :−1/h : 0] and the curve [1 :−ℓ(ℓ+3)/4 : ℓ : (2−3ℓ+ℓ3)/2]. Moreover, this

last curve assumes its extrema (with relation to the coordinate n) in the values ℓ=±1 and ℓ=±2.

Proof. By the equations of both surfaces we observe that {n = 0} is a common plane for them.

As each one of the equations of the surfaces has two factors, we must combine them in pairs and

solve the systems we obtain. Thus,

• −1−2h+2hℓ+ℓ2+n = 0, n = 0: it gives the solutions ℓ= 1, n = 0 and h =−(ℓ+1)/2, n = 0,

which correspond to the curves [1 : h : 1 : 0] and [1 : h :−1−2h : 0], respectively;

• −4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n =0, n = 0: it gives the solutions h =−(ℓ+

1)/2, n = 0 and h =−1/ℓ, n = 0, which correspond to the curves [1 : h : −1−2h : 0] (repeated)

and [1 : h :−1/h : 0], respectively;

• −1−2h+2hℓ+ℓ2+n = 0, −4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n =0: it gives the

solutions h =−(ℓ+1)/2, n = 0; ℓ = 0, n = 1+2h and h =−ℓ(ℓ+3)/4, n = (2−3ℓ+ℓ3)/2, which

correspond to the curves [1 : h : −1−2h : 0] (repeated); [1 : h : 0 : 1+2h] and [1 : −ℓ(ℓ+3)/4 :

ℓ : (2−3ℓ+ℓ3)/2], respectively.

In order to find the extrema of the curve [1 :−ℓ(ℓ+3)/4 : ℓ : (2−3ℓ+ℓ3)/2], we equalize the last

coordinate to n and compute the discriminant of the obtained function:

Discrimℓ(2n−2+3ℓ−ℓ3)=−108(n−2)n,
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whose solutions are n = 0 and n =2. Finally, solving the equation 2n−2+3ℓ−ℓ3 = 0 by substituting

n by the zeroes of the discriminant, we obtain ℓ=±1 and ℓ=±2, which are the extrema values of

the curve with respect to n.

Lemma 7.4.11. For g 6= 0, surfaces (S1) and (S4) intersect along the straight lines [1 :−1/2 : ℓ : 0],

[1 : h : 0 : 0], [1 : h : 1 : 0], [1 : h : 0 : 1+2h] and [1 :−ℓ/2 : ℓ : 1−ℓ].

Proof. By solving the equations of both surfaces together, we obtain the five solutions h =−1/2, n =

0; ℓ= 0, n =0; ℓ= 1, n =0; ℓ= 0, n =1+2h and h =−ℓ/2, n =1−ℓ, which correspond to the straight

lines [1 :−1/2 : ℓ : 0]; [1 : h : 0 : 0]; [1 : h : 1 : 0]; [1 : h : 0 : 1+2h] and [1 :−ℓ/2 : ℓ : 1−ℓ], respectively.

Lemma 7.4.12. For g 6= 0, surfaces (S1) and (S5) intersect along the straight lines [1 : h :−1−2h : 0]

and [1 : (n−1)/2 : 0 : n].

Proof. As the equation of surface (S1) has two factors, we have to compute the intersection of

each one of them with the equation of surface (S5). Thus,

• 1+2h+ℓ−n = 0, n = 0: it gives the solution h =−(ℓ+1)/2, n = 0, which corresponds to the

curve [1 : h :−1−2h : 0];

• 1+2h+ℓ−n = 0, −1−2h+2hℓ+ℓ2+n = 0: it gives the solution h = (n−1)/2,ℓ= 0, which

corresponds to the curve [1 : (n−1)/2 : 0 : n].

Lemma 7.4.13. For g 6= 0, surfaces (S1) and (S6) has the plane {n = 0} as a common component.

Besides, the surfaces intersect along the straight lines [1 : h : 1 : 0], [1 : h : −1− 2h : 0] and [1 :

−(ℓ+1)/2 : ℓ : 0] and the curves [1 : h : −(1+2h± (1+ h)
p

(1+2h))/h2 : 0] and [1 : −ℓ(ℓ+7)/8 : ℓ :

(ℓ−1)2(ℓ+4)/4]. Moreover, this last curve assumes its extrema (with relation to the coordinate n)

in the values ℓ=−4, ℓ=−7/3, ℓ= 1 and ℓ= 8/3.

Proof. The proof of this lemma is analogous to the proof of Lemma 7.4.10. By the equations of

both surfaces we observe that {n = 0} is a common plane for them. As each one of the equations

of the surfaces has two factors, we must combine them in pairs and solve the systems we obtain.

Thus,

• −1−2h+2hℓ+ℓ2+n = 0, n = 0: it gives the solutions ℓ= 1, n = 0 and h =−(ℓ+1)/2, n = 0,

which correspond to the curves [1 : h : 1 : 0] and [1 : h :−1−2h : 0], respectively;

• 16+64h+64h2 −32ℓ−160hℓ−192h2ℓ−16ℓ2 +32hℓ2 +112h2ℓ2 −32h3ℓ2 +32ℓ3 +64hℓ3 +

32h3ℓ3+16h2ℓ4−32n−64hn+64ℓn+160hℓn+8ℓ2n−80hℓ2n+16h2ℓ2n−40ℓ3n−8hℓ3n−

16h2ℓ3n −8hℓ4n +16n2 −32ℓn2 +8ℓ2n2 +8ℓ3n2 +ℓ4n2 = 0, n = 0: it gives the solutions
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ℓ= 1, n = 0; ℓ=−1−2h, n =0 and ℓ=−(1+2h± (1+h)
p

(1+2h))/h2, n =0, which correspond

to the curves [1 : h : 1 : 0] (repeated); [1 : h : −1−2h : 0] (repeated) and [1 : h : −(1+2h± (1+

h)
p

(1+2h))/h2 : 0], respectively;

• −1−2h+2hℓ+ℓ2+n = 0, 16+64h+64h2−32ℓ−160hℓ−192h2ℓ−16ℓ2+32hℓ2+112h2ℓ2−

32h3ℓ2 + 32ℓ3 + 64hℓ3 + 32h3ℓ3 + 16h2ℓ4 − 32n − 64hn + 64ℓn + 160hℓn + 8ℓ2n − 80hℓ2n +

16h2ℓ2n−40ℓ3n−8hℓ3n−16h2ℓ3n−8hℓ4n+16n2−32ℓn2+8ℓ2n2+8ℓ3n2+ℓ4n2 = 0: it gives

the solutions h =−(ℓ+1)/2, n =0 and h =−ℓ(ℓ+7)/8, n = (ℓ−1)2(ℓ+4)/4, which correspond to

the curves [1 : h :−1−2h : 0] (repeated) and [1 :−ℓ(ℓ+7)/8 : ℓ : (ℓ−1)2(ℓ+4)/4], respectively.

In order to find the extrema of the curve [1 : −ℓ(ℓ+7)/8 : ℓ : (ℓ−1)2(ℓ+4)/4], we equalize the

last coordinate to n and compute the discriminant of the obtained function:

Discrimℓ(4n− (ℓ−1)2(ℓ+4)) = 16(125−27n)n,

whose solutions are n = 0 and n = 125/27. Finally, solving the equation 4n− (ℓ−1)2(ℓ+4) = 0 by

substituting n by the zeroes of the discriminant, we obtain ℓ = −4, ℓ = −7/3, ℓ = 1 and ℓ = 8/3,

which are the extrema values of the curve with respect to n.

Lemma 7.4.14. For g 6= 0, surfaces (S2) and (S3) intersect along the straight line [1 : −1 : ℓ : 0]

and the curve [1 : h : 2h/(h−1) : (1+h)2]. Moreover, they have a contact of order two along the curve

[1 : h : 2h/(h−1) : (1+h)2], and this curve has the straight line {h =1} as an asymptote.

Proof. The proof of this lemma is analogous to the proof of Lemma 7.4.12. As the equation of

surface (S3) has two factors, we have to compute the intersection of each one of them with the

equation of surface (S2). Thus,

• 1+2h+h2−n = 0, n =0: it gives the solution h =−1, n =0, which corresponds to the curve

[1 :−1 : ℓ : 0];

• 1+2h+h2−n = 0, −4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n = 0: it gives the solution

ℓ= 2h/(h−1), n = (1+h)2, which corresponds to the curve [1 : h : 2h/(h−1) : (1+h)2].

To prove the contact between both surfaces along the curve γ = [1 : h : 2h/(h−1) : (1+h)2], we

apply the affine change of coordinates given by n =1+2h+h2−v, v ∈R. Under this transformation,

the gradient vector of (S2) along the curve γ is ∇T(γ)= [1 : 0 : 0 : −12], whereas the gradient vector

of (S3) along the curve γ is ∇T4(γ)= [1 : 0 : 0 :−4(2h−1)2/(h−1)2], whose last coordinate is always

negative for all h 6=1. As ∇T4(γ) does not change its sign, this vector will always point to the same
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direction in relation to (S2) restricted to the previous change of coordinates. Then, the surface

(S3) remains only on one of the two topological subspaces delimited by the surface (S2).

Finally, it is easy to see that the curve [1 : h : 2h/(h−1) : (1+h)2] has an asymptote and it is the

straight line {h =1}, which corresponds to n = 4.

Lemma 7.4.15. For g 6= 0, surfaces (S2) and (S4) intersect along the parabolas [1 : h : 0 : (1+h)2]

and [1 : h : 1 : (1+h)2] and the straight line [1 : 0 : ℓ : 1]. Moreover, the curves [1 : h : 0 : (1+h)2] and

[1 : h : 1 : (1+h)2] assume their extremum (with relation to the coordinate n) in the value h =−1.

Proof. Solving the system of equations

(S2) : −12(1+2h+h2−n)= 0, (S4) : ℓ(ℓ−1)(−1−2h+n)= 0,

we obtain the three solutions ℓ= 0, n = (1+h)2, ℓ= 1, n = (1+h)2 and h = 0, n =1, which correspond

to the curves [1 : h : 0 : (1+h)2], [1 : h : 1 : (1+h)2] and [1 : 0 : ℓ : 1], respectively. It is easy to see that

the extrema of the coordinate n of the curves [1 : h : 0 : (1+h)2] and [1 : h : 1 : (1+h)2] are reached

at h =−1 and their minimum value is n =0.

Lemma 7.4.16. For g 6= 0, surfaces (S2) and (S5) intersect along the curve [1 : h : h2 : (1+ h)2].

Moreover, the curve [1 : h : h2 : (1+h)2] assumes its extrema (with relation to the coordinate n) in

the value h =−1.

Proof. Solving the system of equations

(S2) :−12(1+2h+h2−n)= 0, (S5) : (1+2h+ℓ−n)2 = 0,

we obtain the solution ℓ= h2, n = (1+h)2, which corresponds to the curve [1 : h : h2 : (1+h)2]. For

the extrema of this curve, see the proof of Lemma 7.4.9.

Lemma 7.4.17. For g 6= 0, surfaces (S2) and (S6) intersect along the straight line [1 : −1 : ℓ : 0]

and the curve [1 : h : 2h/(h−1) : (1+h)2]. Moreover, they have a contact of order two along the curve

[1 : h : 2h/(h−1) : (1+h)2] and this curve has the straight line {h = 1} as an asymptote.

Proof. The proof of this lemma is analogous to the proof of Lemma 7.4.12. As the equation of

surface (S6) has two factors, we have to compute the intersection of each one of them with the

equation of surface (S2). Thus,

• 1+2h+h2−n = 0, n =0: it gives the solution h =−1, n =0, which corresponds to the curve

[1 :−1 : ℓ : 0];
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• 1+2h+h2−n =0, 16+64h+64h2−32ℓ−160hℓ−192h2ℓ−16ℓ2+32hℓ2+112h2ℓ2−32h3ℓ2+

32ℓ3 +64hℓ3 +32h3ℓ3 +16h2ℓ4 −32n−64hn+64ℓn+160hℓn+8ℓ2n−80hℓ2n+16h2ℓ2n−

40ℓ3n−8hℓ3n−16h2ℓ3n−8hℓ4n+16n2−32ℓn2+8ℓ2n2+8ℓ3n2+ℓ4n2 = 0: it gives the solution

ℓ= 2h/(h−1), n = (1+h)2, which corresponds to the curve [1 : h : 2h/(h−1) : (1+h)2].

To prove the contact between both surfaces along the curve γ = [1 : h : 2h/(h−1) : (1+h)2], we

apply the affine change of coordinates given by n =1+2h+h2−v, v ∈R. Under this transformation,

the gradient vector of (S2) along the curve γ is ∇T(γ)= [1 : 0 : 0 : −12], whereas the gradient vector

of (S6) along the curve γ is ∇W4(γ) = [1 : 0 : 0 : −64h2(1+ h)2/(h−1)2], whose last coordinate is

always negative for all h 6= 1. As ∇W4(γ) does not change its sign, this vector will always point to

the same direction in relation to (S2) restricted to the previous change of coordinates. Then, the

surface (S6) remains only on one of the two topological subspaces delimited by the surface (S2).

For the proof of the asymptote of the curve [1 : h : 2h/(h − 1) : (1 + h)2], see the proof of

Lemma 7.4.14.

Lemma 7.4.18. For g 6= 0, surfaces (S3) and (S4) intersect along the straight lines [1 :−1/2 : ℓ : 0],

[1 : h : 0 : 0], [1 : h : 1 : 0], [1 : 1/2 : ℓ : 2], [1 : h : 0 : 1+2h] and [1 : −ℓ/4 : ℓ : (2−ℓ)/2] and the parabola

[1 : h : 1 : 8(1+h)2/9]. Moreover, this parabola assumes its extremum (with relation to the coordinate

n) in the value h =−1.

Proof. Solving the system of equations

(S3) : n(−4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2 +4n+4ℓn+ℓ2n)= 0, (S4) : ℓ(ℓ−1)(n−1−2h)= 0,

we obtain the solutions h = −1/2, n = 0; ℓ = 0, n = 0; ℓ = 1, n = 0; h = 1/2, n = 2; ℓ = 0, n = 1+2h;

h =−ℓ/4, n = (2−ℓ)/2 and ℓ= 1, n = 8(1+h)2/9, which correspond to the curves [1 : −1/2 : ℓ : 0]; [1 :

h : 0 : 0]; [1 : h : 1 : 0]; [1 : 1/2 : ℓ : 2]; [1 : h : 0 : 1+2h]; [1 : −ℓ/4 : ℓ : (2−ℓ)/2] and [1 : h : 1 : 8(1+h)2/9],

respectively.

Finally, we see that the extremum of the coordinate n of the curve [1 : h : 1 : 8(1+ h)2/9] is

reached at h =−1 and its minimum value is n = 0.

Lemma 7.4.19. For g 6= 0, surfaces (S3) and (S5) intersect along the straight lines [1 : h :−1−2h :

0], [1 : (n−1)/2 : 0 : n] and [1 : (3+n)/6 : 2(n−3)/3 : n].

Proof. As the equation of surface (S3) has two factors, we have to compute the intersection of

each one of them with the equation of surface (S5). Thus,
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• 1+2h+ℓ−n = 0, n = 0: it gives the solution h =−(ℓ+1)/2, n = 0, which corresponds to the

curve [1 : h :−1−2h : 0];

• 1+2h+ℓ−n =0, −4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n = 0: it gives the solutions

h = (n−1)/2,ℓ= 0 and h = (3+n)/6,ℓ= 2(n−3)/3, which correspond to the curves [1 : (n−1)/2 :

0 : n] and [1 : (3+n)/6 : 2(n−3)/3 : n], respectively.

Lemma 7.4.20. For g 6= 0, surfaces (S3) and (S6) has the plane {n = 0} as a common component.

Besides, the surfaces intersect along the curves [1 : h : −1−2h : 0], [1 : −1/ℓ : ℓ : 0], [1 : h : 1 : 0],

[1 : h : −(1+2h± (1+ h)
p

1+2h)/h2 : 0], [1 : h : 0 : 1+2h], [1 : ℓ/(ℓ−2) : ℓ : 4(ℓ−1)2/(ℓ−2)2] and

[1 : (−2+2ℓ+ℓ2)/(−4+2ℓ+ℓ2) : ℓ : 4(ℓ−1)2(2+ℓ)(4+ℓ)/(−4+2ℓ+ℓ2)2]. Moreover, the curve [1 :

ℓ/(ℓ−2) : ℓ : 4(ℓ−1)2/(ℓ−2)2] has the straight line {ℓ = 2} as an asymptote and corresponds to a

even contact between the surfaces, and the curve [1 : (−2+2ℓ+ℓ2)/(−4+2ℓ+ℓ2) : ℓ : 4(ℓ−1)2(2+

ℓ)(4+ℓ)/(−4+2ℓ+ℓ2)2] assumes its extrema (with relation to the coordinate n) in the values ℓ=−4,

ℓ=−2, ℓ= 1, ℓ=−3±
p

17, ℓ=−5±
p

21 and ℓ= 3−
p

21±4
√

2(13−2
p

21)/17.

Proof. By the equations of both surfaces we observe that {n = 0} is a common plane for them.

As each one of the equations of the surfaces has two factors, we must combine them in pairs and

solve the systems we obtain. Thus,

• −4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n =0, n = 0: it gives the solutions h =−(ℓ+

1)/2, n =0 and h =−1/ℓ, n =0, which correspond to the curves [1 : h :−1−2h : 0] and [1 : −1/ℓ :

ℓ : 0], respectively;

• 16+64h+64h2 −32ℓ−160hℓ−192h2ℓ−16ℓ2 +32hℓ2 +112h2ℓ2 −32h3ℓ2 +32ℓ3 +64hℓ3 +

32h3ℓ3+16h2ℓ4−32n−64hn+64ℓn+160hℓn+8ℓ2n−80hℓ2n+16h2ℓ2n−40ℓ3n−8hℓ3n−

16h2ℓ3n −8hℓ4n +16n2 −32ℓn2 +8ℓ2n2 +8ℓ3n2 +ℓ4n2 = 0, n = 0: it gives the solutions

ℓ= 1, n =0; ℓ=−1−2h, n =0 and ℓ=−(1+2h±(1+h)
p

1+2h)/h2, n =0, which correspond to

the curves [1 : h : 1 : 0]; [1 : h :−1−2h : 0] (repeated) and [1 : h :−(1+2h±(1+h)
p

1+2h)/h2 : 0],

respectively;

• −4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n =0, 16+64h+64h2−32ℓ−160hℓ−192h2ℓ−

16ℓ2+32hℓ2+112h2ℓ2−32h3ℓ2+32ℓ3+64hℓ3+32h3ℓ3+16h2ℓ4−32n−64hn+64ℓn+160hℓn+

8ℓ2n−80hℓ2n+16h2ℓ2n−40ℓ3n−8hℓ3n−16h2ℓ3n−8hℓ4n+16n2−32ℓn2+8ℓ2n2+8ℓ3n2+

ℓ4n2 = 0: it gives the solutions h = −(ℓ+ 1)/2, n = 0; ℓ = 0, n = 1 + 2h; h = ℓ/(ℓ− 2), n =

4(ℓ−1)2/(ℓ−2)2 and h = (−2+2ℓ+ℓ2)/(−4+2ℓ+ℓ2), n =4(ℓ−1)2(2+ℓ)(4+ℓ)/(−4+2ℓ+ℓ2)2,

which correspond to the curves [1 : h :−1−2h : 0] (repeated); [1 : h : 0 : 1+2h]; [1 : ℓ/(ℓ−2) : ℓ :
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4(ℓ−1)2/(ℓ−2)2] and [1 : (−2+2ℓ+ℓ2)/(−4+2ℓ+ℓ2) : ℓ : 4(ℓ−1)2(2+ℓ)(4+ℓ)/(−4+2ℓ+ℓ2)2],

respectively.

Now, we consider the curve [1 : (−2+2ℓ+ℓ2)/(−4+2ℓ+ℓ2) : ℓ : 4(ℓ−1)2(2+ℓ)(4+ℓ)/(−4+2ℓ+ℓ2)2].

Equalling its last coordinate to n, we obtain the curve n(−4+2ℓ+ℓ2)2 −4(ℓ−1)2(2+ℓ)(4+ℓ) = 0.

It is easy to see that the curve [1 : ℓ/(ℓ−2) : ℓ : 4(ℓ−1)2/(ℓ−2)2] has an asymptote (with respect

to the coordinate n) and it is the straight line {ℓ= 2}, which corresponds to n =4 (in fact, the limit

of 4(ℓ−1)2/(ℓ−2)2, as ℓ→∞, is 4).

To prove the contact between both surfaces along the curve γ= [1 : ℓ/(ℓ−2) : ℓ : 4(ℓ−1)2/(ℓ−2)2],

we apply the affine change of coordinates given by n = (4+8h+4ℓ+4hℓ+8h2ℓ+4hℓ2+v)/(2+ℓ)2,

v ∈R. Under this transformation, the gradient vector of (S3) along the curve γ is ∇T(γ)= [1 : 0 : 0 :

1], whereas the gradient vector of (S6) along the curve γ is ∇W4(γ) = [1 : 0 : 0 : (64(ℓ−1)2ℓ2)/((ℓ−

2)2(2+ℓ)2)], whose last coordinate is always positive for all ℓ 6= ±2. As ∇W4(γ) does not change

its sign, this vector will always point to the same direction in relation to (S3) restricted to the

previous change of coordinates. Then, the surface (S6) remains only on one of the two topological

subspaces delimited by the surface (S3).

In order to find the extrema of the curve [1 : (−2+2ℓ+ℓ2)/(−4+2ℓ+ℓ2) : ℓ : 4(ℓ−1)2(2+ℓ)(4+

ℓ)/(−4+2ℓ+ℓ2)2], we equalize the last coordinate to n and compute the discriminant of the ob-

tained function:

Discrimℓ(n(−4+2ℓ+ℓ2)2 −4(ℓ−1)2(2+ℓ)(4+ℓ)) =−4096n(−13500+13167n−4048n2+400n3),

whose solutions are n = 0, n = 4 and n = 3(102−7
p

21)/100. Finally, solving the equation n(−4+

2ℓ+ℓ2)2 −4(ℓ−1)2(2+ℓ)(4+ℓ) = 0 by substituting n by the zeroes of the discriminant, we obtain

ℓ=−4, ℓ=−2, ℓ= 1, ℓ=−3±
p

17, ℓ=−5±
p

21 and ℓ= 3−
p

21±4
√

2(13−2
p

21)/17, which are

the extremum values of the curve with respect to n.

Lemma 7.4.21. For g 6= 0, surface (S3) and surface (SF1) given by {F1 = 0} intersect along the

curves [1 : (1−2ℓ)/(3ℓ−2) : ℓ : 0], [1 : h : 0 : 1+2h] and [1 : (4−8ℓ+3ℓ2±
p

3
√

(2+ℓ)3(3ℓ−2))/(16−24ℓ) :

ℓ : (12−24ℓ+3ℓ2 ±
p

3
√

(2+ℓ)3(3ℓ−2))/(8−12ℓ)]. Moreover, this last curves assume their extrema

(with relation to the coordinate n) in the values ℓ=−2, ℓ= 7/10, ℓ= 1 and ℓ= (−7±5
p

5)/6.

Proof. Solving the system of equations

(S3) : n(−4−8h−4ℓ−4hℓ−8h2ℓ−4hℓ2+4n+4ℓn+ℓ2n)= 0, (SF1) :−2−4h+4ℓ+6hℓ+2n−3ℓn =0,
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we obtain the solutions h = (1−2ℓ)/(3ℓ−2), n = 0; ℓ = 0, n = 1+2h and h = (4−8ℓ+3ℓ2 ±
p

3×
√

(2+ℓ)3(3ℓ−2))/(16−24ℓ), n = (12−24ℓ+3ℓ2±
p

3
√

(2+ℓ)3(3ℓ−2))/(8−12ℓ), which correspond to

the curves [1 : (1−2ℓ)/(3ℓ−2) : ℓ : 0]; [1 : h : 0 : 1+2h] and [1 : (4−8ℓ+3ℓ2±
p

3
√

(2+ℓ)3(3ℓ−2))/(16−

24ℓ) : ℓ : (12−24ℓ+3ℓ2 ±
p

3
√

(2+ℓ)3(3ℓ−2))/(8−12ℓ)], respectively.

With the purpose to find the extrema of the curves [1 : (4−8ℓ+3ℓ2±
p

3
√

(2+ℓ)3(3ℓ−2))/(16−

24ℓ) : ℓ : (12−24ℓ+3ℓ2 ±
p

3
√

(2+ℓ)3(3ℓ−2))/(8−12ℓ)], we equalize the last coordinate to n:

(12−24ℓ+3ℓ2 ±
p

3
√

(2+ℓ)3(3ℓ−2))− (8−12ℓ)n = 0⇔

±
p

3
√

(2+ℓ)3(3ℓ−2)= (8−12ℓ)n−12+24ℓ−3ℓ2 ⇔

(±
p

3
√

(2+ℓ)3(3ℓ−2))2 = ((8−12ℓ)n−12+24ℓ−3ℓ2)2 ⇔

p ≡−64(3−3n+n2)+96(n−2)(2n−3)ℓ−48(n−3)(3n−4)ℓ2 −24(3n−8)ℓ3 = 0,

and compute the discriminant of the p:

Discrimℓ(p)= 7077888n2(4n−9)3,

whose solutions are n = 0 and n = 9/4. Besides, we consider the leading coefficient of p in ℓ and
solve it with respect to n, obtaining n =8/3, which corresponds to the value of the parameter n in

which the polynomial p turns from a cubic to a quadratic and after to a cubic polynomial. Finally,

solving the equations 12−24ℓ+3ℓ2±
p

3
√

(2+ℓ)3(3ℓ−2))−(8−12ℓ)n = 0 by substituting n by the

zeroes of the discriminant and the bifurcation value of p, we obtain ℓ = −2, ℓ = 7/10, ℓ = 1 and

ℓ= (−3±5
p

5)/6, which are the extrema values of the curve with respect to n.

Lemma 7.4.22. For g 6= 0, surfaces (S4) and (S5) intersect along the curves [1 : (n−1)/2 : 0 : n] and

[1 : n/2−1 : 1 : n].

Proof. Solving the system of equations

(S4) : ℓ(ℓ−1)(n−1−2h)= 0, (S5) : (1+2h+ℓ−n)2 = 0,

we obtain the solutions h = (n−1)/2,ℓ= 0 and h = n/2−1,ℓ= 1, which correspond to the curves
[1 : (n−1)/2 : 0 : n] and [1 : n/2−1 : 1 : n], respectively.

Lemma 7.4.23. For g 6= 0, surfaces (S4) and (S6) intersect along the curves [1 : −1/2 : ℓ : 0], [1 : h :

1 : 0], [1 : (n−1)/2 : 0 : n] and [1 : (n−1)/2 : −4(n−1)/(n−2)2 : n]. Moreover, the curve [1 : (n−1)/2 :

−4(n−1)/(n−2)2 : n] assumes its extrema (with relation to the coordinate n) in the value ℓ= 1.

Proof. Solving the system of equations
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(S4) :(ℓ−1)(n−1−2h)= 0,

(S6) :n2(16+64h+64h2−32ℓ−160hℓ−192h2ℓ−16ℓ2 +32hℓ2 +112h2ℓ2

−32h3ℓ2 +32ℓ3 +64hℓ3 +32h3ℓ3 +16h2ℓ4−32n−64hn+64ℓn+160hℓn

+8ℓ2n−80hℓ2n+16h2ℓ2n−40ℓ3n−8hℓ3n−16h2ℓ3n−8hℓ4n+16n2

−32ℓn2+8ℓ2n2+8ℓ3n2 +ℓ4n2)= 0,

we obtain the solutions h =−1/2, n = 0; ℓ= 1, n = 0; h = (n−1)/2,ℓ= 0 and h = (n−1)/2,ℓ=−4(n−

1)/(n−2)2, which correspond to the curves [1 : −1/2 : ℓ : 0]; [1 : h : 1 : 0]; [1 : (n−1)/2 : 0 : n] and

[1 : (n−1)/2 :−4(n−1)/(n−2)2 : n], respectively.

In order to find the extrema of the curve [1 : (n−1)/2 : −4(n−1)/(n−2)2 : n], we equalize the

third coordinate to ℓ and compute the discriminant of the obtained function:

Discrimn(ℓ(n−2)2 +4(n−1))=−16(ℓ−1),

whose solutions is ℓ= 1. Finally, solving the equation ℓ(n−2)2+4(n−1)= 0 by substituting ℓ= 1,

we obtain n = 0, which is the extremum value of the curve with respect to n.

Lemma 7.4.24. For g 6= 0, surfaces (S5) and (S6) intersect along the curves [1 : h : −1−2h : 0],

[1 : −(ℓ+1)/2 : ℓ : 0] and [1 :−(16−24ℓ+9ℓ2+ℓ3)/(8ℓ−6ℓ2) : ℓ : 4(ℓ−1)2(4+ℓ)/(ℓ(3ℓ−4))]. Moreover,

the curve [1 : −(16−24ℓ+9ℓ2+ℓ3)/(8ℓ−6ℓ2) : ℓ : 4(ℓ−1)2(4+ℓ)/(ℓ(3ℓ−4))] assumes its extrema (with

relation to the coordinate n) in the values ℓ=−4, ℓ= 1 and ℓ= f −1(n0), where f (ℓ) = 4(ℓ−1)2(4+

ℓ)/(ℓ(3ℓ−4)) and n0 = (130−4511/(208855+16956
p

471)1/3+ (208855+16956
p

471)1/3)/27.

Proof. As the equation of surface (S6) has two factors, we have to compute the intersection of

each one of them with the equation of surface (S5). Thus,

• 1+2h+ℓ−n = 0, n = 0: it gives the solution h =−(ℓ+1)/2, n = 0, which corresponds to the

curve [1 : h :−1−2h : 0];

• 1+2h+ℓ−n =0, 16+64h+64h2−32ℓ−160hℓ−192h2ℓ−16ℓ2+32hℓ2+112h2ℓ2−32h3ℓ2+

32ℓ3 +64hℓ3 +32h3ℓ3 +16h2ℓ4 −32n−64hn+64ℓn+160hℓn+8ℓ2n−80hℓ2n+16h2ℓ2n−

40ℓ3n−8hℓ3n−16h2ℓ3n−8hℓ4n+16n2−32ℓn2+8ℓ2n2+8ℓ3n2+ℓ4n2 = 0: it gives the solu-

tions h =−(ℓ+1)/2, n =0 and h =−(16−24ℓ+9ℓ2+ℓ3)/(8ℓ−6ℓ2), n =4(ℓ−1)2(4+ℓ)/(ℓ(3ℓ−4)),

which correspond to the curves [1 : −(ℓ+1)/2 : ℓ : 0] and [1 : −(16−24ℓ+9ℓ2+ℓ3)/(8ℓ−6ℓ2) :

ℓ : 4(ℓ−1)2(4+ℓ)/(ℓ(3ℓ−4))], respectively.
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In order to find the extrema of the curve [1 : −(16−24ℓ+9ℓ2 +ℓ3)/(8ℓ−6ℓ2) : ℓ : 4(ℓ−1)2(4+

ℓ)/(ℓ(3ℓ−4))], we equalize the last coordinate to n and compute the discriminant of the obtained

function:

Discrimℓ(nℓ(3ℓ−4)−4(ℓ−1)2(4+ℓ))= 16n(−2000+793n−130n2+9n3),

whose solutions are n = 0 and n = (130 − 4511/(208855 + 16956
p

471)1/3 + (208855 + 16956 ×
p

471)1/3)/27. Finally, solving the equation nℓ(3ℓ− 4)− 4(ℓ− 1)2(4+ ℓ) = 0 by substituting n by

the zeroes of the discriminant, we obtain ℓ=−4, ℓ= 1 and ℓ= f −1(n0), where f (ℓ) = 4(ℓ−1)2(4+

ℓ)/(ℓ(3ℓ−4)) and n0 = (130−4511/(208855+16956
p

471)1/3 + (208855+16956
p

471)1/3)/27, which

are the extrema values of the curve with respect to ℓ.

The purpose now is to find the slices in which the intersection among at least three surfaces

or other equivalent phenomena happen. Since there exist 25 distinct curves of intersections or

contacts between two any surfaces, we need to study 325 different possible intersections of these

surfaces. As the relation is very long, we will reproduce only a few of them deploying the different

algebraic techniques used to solve them. The full set of proves can be found on the web page

http://mat.uab.es/∼artes/articles/qvfsn2SN02/qvfsn2SN02.html.

Remark 7.4.25. In the next five lemmas we use the following notation. A curve of intersection or

contact between two surfaces will be denoted by solAByC, where A < B are the numbers of the

surfaces involved in the intersection or contact and C is a cardinal. Moreover, these four lemmas

illustrate the different techniques we use to solve the intersection among at least three surfaces or

other equivalent phenomena.

Lemma 7.4.26. Surfaces (S1), (S2) and (S3) intersect in slices when n =0 and n = 1.

Proof. By Lemmas 7.4.9 and 7.4.10, we have the curves

sol12y1=
[
1 : h :−h : (1+h)2

]
and sol13y2=

[
1 :−

ℓ(3+ℓ)
4

: ℓ :
2−3ℓ+ℓ3

2

]
.

Equalizing each corresponding coordinate:

h =−
ℓ(3+ℓ)

4
, −h = ℓ, (1+h)2 =

2−3ℓ+ℓ3

2
,

and solving the system above, we obtain the solutions h =−1,ℓ= 1 and h = ℓ= 0. Since the curves
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are parametrized by h and ℓ, we must substitute the solutions of the system in the expressions of

the curves and consider the value of the coordinate n. Then,

sol12y1
∣∣
h=−1,ℓ=1 = [1 :−1 : 1 : 0] and sol12y1

∣∣
h=ℓ=0 = [1 : 0 : 0 : 1],

implying that the values of n where the three surfaces intersect are n =0 and n =1.

Lemma 7.4.27. Surfaces (S1), (S2) and (S5) intersect in slices when n =0 and n = 1.

Proof. By Lemmas 7.4.9 and 7.4.16, we have the curves

sol12y1=
[
1 : h :−h : (1+h)2

]
and sol25y1=

[
1 : h : h2 : (1+h)2

]
.

Equalizing each corresponding coordinate:

h = h, −h = h2, (1+h)2 = (1+h)2,

and solving the system above, we obtain the solutions h = −1 and h = 0. Since the curves are

parametrized by h, we must substitute the solutions of the system in the expressions of the curves

and consider the value of the coordinate n. Then,

sol12y1
∣∣
h=−1 = [1 :−1 : 1 : 0] and sol25y1

∣∣
h=0 = [1 : 0 : 0 : 1],

implying that the values of n where the three surfaces intersect are n =0 and n =1.

Lemma 7.4.28. Surfaces (S1), (S3) and (S5) intersect in slice when n = 3.

Proof. By Lemmas 7.4.10 and 7.4.19, we have the curves

sol13y1= [1 : h : 0 : 1+2h] and sol35y2=
[
1 :

3+n

6
:

2(n−3)

3
: n

]
.

Equalizing each corresponding coordinate:

h =
3+n

6
,

2(n−3)

3
= 0, 1+2h = n,

and solving the system above, we obtain the solution h = 1, n = 3. Then, the value of n where the

three surfaces intersect is n = 3.
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Lemma 7.4.29. Surfaces (S3), (S5) and (S6) intersect in slices when n =6 and n = 9.

Proof. By Lemmas 7.4.19 and 7.4.24, we have the curves

sol35y2=
[
1 :

3+n

6
:

2(n−3)

3
: n

]
and sol56y1=

[
1 :

16−24ℓ+9ℓ2 +ℓ3

2ℓ(3ℓ−4)
: ℓ :

4(ℓ−1)2(4+ℓ)

ℓ(3ℓ−4)

]
.

Equalizing each corresponding coordinate:

3+n

6
=

16−24ℓ+9ℓ2 +ℓ3

2ℓ(3ℓ−4)
,

2(n−3)

3
= ℓ, n =

4(ℓ−1)2(4+ℓ)

ℓ(3ℓ−4)
,

and solving the system above, we obtain the solutions ℓ= 2, n =6 and ℓ= 4, n =9. Then, the values

of n where the three surfaces intersect are n =6 and n = 9.

Lemma 7.4.30. Surfaces (S1), (S4), (S5) and (S6) intersect in slice when n =1.

Proof. By Lemmas 7.4.12 and 7.4.23, we have the curves

sol15y1=
[
1 :

n−1
2

: 0 : n

]
and sol46y2=

[
1 :

n−1
2

:−
4(n−1)

(n−2)2
: n

]
.

Equalizing each corresponding coordinate:

n−1

2
=

n−1

2
, −

4(n−1)

(n−2)2
= 0, n = n,

and solving the system above, we obtain the solution n = 1. Then, the value of n where the four

surfaces intersect is n = 1.

The next result presents all the algebraic values of n corresponding to singular slices in the

bifurcation diagram. Its proof follows from Lemmas 7.4.26 to 7.4.30 and by computing all the

remaining 320 different possible intersections or contacts among three or more surfaces.

Lemma 7.4.31. The full set of needed algebraic singular slices in the bifurcation diagram of family

QsnSN(C) is formed by 20 elements which correspond to the values of n in (7.4.2)–(7.4.3).

n1 =9, n15 = 6, n17 =
1
27
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130−

4511
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p
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+ (208855+16956

p
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)
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p
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(
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√
1
α
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)(
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√
1
α
+22/3 3pα−2

)(
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√
1
α
+22/3 3pα+7

)2

(
3p2α2/3 +98 22/3

( 1
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)2/3 +14 3p2 3
√

1
α
+22/3 3pα+6

)2 , α= 61−9
p

29,

(7.4.2)
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n29 =2+
p

2, n31 = 3, n33 = 8/3, n37 = 9/4, n41 =
3

100
(102−7

p
21),

n45 =2, n55 = 1, n57 = 2−
p

2, n59 = 1/2, n83 = 0,

n85 =
1

2

(
3− (1548−83

p
249)1/3

32/3
−

61

(3(1548−83
p

249))1/3

)
, n87 =−∞.

(7.4.3)

The numeration in (7.4.2)–(7.4.3) is not consecutive since we reserve numbers for other slices

not algebraically determined and for generic slices.

Now we sum up the content of the previous lemmas. In (7.4.2)–(7.4.3) we list all algebraic

values of n where significant phenomena occur for the bifurcation diagram generated by singu-

larities. We first have the two extreme values for n, i.e. n =−∞ (corresponding to g = 0) and n = 9.

We remark that to perform the bifurcation diagram of all singularities for n = −∞ we set g = 0

and, in the remaining three variables (h,ℓ, n), yielding the point [h : ℓ : n] in RP
2, we take the

chart n 6= 0 in which we may assume n =−1.

In order to determine all the parts generated by the bifurcation surfaces from (S1) to (S10),

we first draw the horizontal slices of the three–dimensional parameter space which correspond to

the explicit values of n obtained in Lemma 7.4.31. However, as it will be discussed later, the pres-

ence of nonalgebraic bifurcation surfaces will be detected and the singular slices corresponding

to their singular behavior as we move from slice to slice will be approximately determined. We

add to each interval of singular values of n an intermediate value for which we represent the bi-

furcation diagram of singularities. The diagram will remain essentially unchanged in these open

intervals except the parts affected by the bifurcation. All the sufficient values of n are shown in

equation (7.4.4).

The values indexed by positive odd indices in equation (7.4.4) correspond to explicit values of n

for which there exists a bifurcation in the behavior of the systems on the slices. Those indexed by

even values are just intermediate points which are necessary to the coherence of the bifurcation

diagram.

Due to the presence of many branches of nonalgebraic bifurcation surfaces, we cannot point

out exactly neither predict the concrete value of n where the changes in the parameter space

happen. Thus, with the purpose to set an order for these changes in the parameter space, we

introduce the following notation. If the bifurcation happens between two concrete values of n,

then we add or subtract a sufficiently small positive value εi or ε∗
j

to/from a concrete value of

n; this concrete value of n (which is a reference value) can be any of the two values that define
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the range where the non–concrete values of n are inserted. The representation εi means that the

ni refers to a generic slice, whereas ε∗
j

means that the n j refers to a singular slice. Moreover,

considering the values εi, ε∗i , εi+1 and ε∗
i+1, it means that εi < ε∗

i
< εi+1 < ε∗

i+1 meanwhile they

belong to the same interval determined by algebraic bifurcations.

We now begin the analysis of the bifurcation diagram by studying completely one generic slice

and after by moving from slice to slice and explaining all the changes that occur. As an exact

drawing of the curves produced by intersecting the surfaces with the slices gives us very small

parts which are difficult to distinguish, and points of tangency are almost impossible to recognize,

we have produced topologically equivalent figures where parts are enlarged and tangencies are

easy to observe.

The reader may find the exact pictures as well as most of the proves of this chapter in the web

page http://mat.uab.es/∼artes/articles/qvfsn2SN02/qvfsn2SN02.html.

Remark 7.4.32. We follow the same pattern set out in Notation 5.4.11 to label the parts in the

bifurcation diagram for the family QsnSN(C). The slice n = ∞ (which is equivalent to n = −∞)

is also a bifurcation surface in the parameter space, as observed in Remark 6.4.6, and the labels

there should be 9S. However, as the comitant T vanishes for this value of the parameter (we will

see this later), all the parts in this slice are part of surface (S2) and, hence, they are labeled as 2S j

and 2.iL j. We have denoted the curved segments in which the equator splits as 2.8L j.

In Figure 7.12 we represent the generic slice of the parameter space when n = n0 = 10, showing

only the algebraic surfaces. We note that there are some dashed branches of surface (S3) (in

yellow) and (S4) (in purple). This means the existence of a weak saddle, in the case of surface

(S3), and the existence of an invariant straight line without connecting separatrices, in the case

of surface (S4); they do not mean a topological change in the phase portraits but a C∞ change.

In the next figures we will use the same representation for these characteristics of these two

surfaces.

With the purpose to explain all the changes in the bifurcation diagram, we would have to

present two versions of the picture of each slice: one of them without labels and the other with

labels in each new part (as we have done in Chapters 5 and 6).

However, as the number of slices is considerably large (see equation (7.4.4) – 88 slices to be

more precise) we would have to present about 176 pictures, which would occupy a large number

of pages.
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Then, we will present only the labeled drawings (just the “important part” in each slice) con-

taining the algebraic and nonalgebraic bifurcation surfaces. In the next section, we prove the

existence of such nonalgebraic surfaces and their necessity for the coherence of the bifurcation

diagram.

7.4.2 Bifurcation surfaces due to connections

We start this section explaining the generic slice when n = 10. In this slice we will make a

complete study of all its parts, whereas in the next slices we will only describe the changes. Some

singular slices will produce only few changes which are easy to describe, but others can produce

simultaneously many changes, even a complete change of all parts and these will need a more

detailed description.

As said in last section, in Figure 7.12 we present the slice when n =10 with only the algebraic

surfaces. We now place for each set of the partition on this slice the local behavior of the flow

around all the singular points. For a specific value of the parameters of each one of the sets in this

partition we compute the global phase portrait with the numerical program P4 [3, 27]. In fact,

all the phase portraits in this study can be obtained not only numerically but also by means of

perturbations of the systems of codimension one.

In this slice we have a partition in 2−dimensional parts bordered by curved polygons, some of

them bounded, others bordered by infinity. From now on, we use lower–case letters provisionally

to describe the sets found algebraically so not to interfere with the final partition described with

capital letters.

For each 2−dimensional part we obtain a phase portrait which is coherent with those of all

their borders. Except eight parts, which are shown in Figure 7.12 and named as follows:

• v5: the curved triangle bordered by yellow and blue curves and infinity;

• v8: the curved quadrilateral bordered by blue, yellow and black curves and infinity;

• v10: the curved triangle bordered by purple and yellow curves and infinity;

• v12: the pentagon bordered by yellow, purple, green and purple curves and infinity;

• v22: the quadrilateral bordered by two parallel purple and two parallel green curves;

• v27: the curved quadrilateral bordered by yellow, red and black curves and infinity;

• v33: the curved triangle bordered by yellow, red and black curves;

• v54: the curved triangle bordered by purple and yellow curves and infinity;
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4s1 4s2

4s4 4s5

v9

3s6

3s5
3.10ℓ1 2s5

2s14

2.4ℓ4

Figure 7.12: Slice of parameter space when n= 10 (only algebraic surfaces)
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We consider the segment 3s1 in Figure 7.12, which is one of the borders of part v5. On this seg-

ment, the corresponding phase portrait possesses a weak focus (of order one) and, consequently,

this branch of surface (S3) corresponds to a Hopf bifurcation. This means that either in v4 or in

v5 we must have a limit cycle; in fact it is in v5. The same happens on 3s2, one of the borders of

part v8, implying the existence of a limit cycle either in v8 or in v16; and in fact it is in v8.

However, in case of part v5, when approaching 1s5 and with the help of the program P4, the

limit cycle has already been lost; and in case of part v8, when approaching 3s3 and/or 6s4, the

limit cycle has also disappeared. After these remarks, each one of the parts v5 and v8 must be

split into two parts separated by a new surface (S7) having at least two elements (curves 7S1 and

7S3 in Figure 7.19) such that one part has limit cycle and the other does not, and the borders 7S1

and 7S3 correspond to a connection between separatrices. In spite of the necessity of these two

branches of surface (S7), there must exist at least one more element of this surface to make this

part of the diagram space coherent. We talk about the element 7S2 (see Figure 7.19) which also

corresponds to connection of separatrices but different from that happening on 7S1 and 7S3.

Numerically, it can be checked that part v5 splits into V5 with one limit cycle and V6 without

limit cycles, and part v8 splits into V7 and V8 without limit cycles and V17 with one limit cycle.

Even though parts V7 and V8 have no limit cycles, they provide topologically distinct phase por-

traits since the connection of separatrices on 7S3 (respectively, on 7S1) is due to the saddle–node
(0
2

)
SN and the finite saddle (respectively, is due to the saddle–node

(0
2

)
SN and an infinite sad-

dle), i.e. connection of separatrices from different points, whereas the connection on 7S2 is due

to a saddle itself (i.e. a loop–type connection). We plot the complete bifurcation diagram for these

two parts in Figure 7.19. We also show the sequence of phase portraits along these subsets in

Figure 7.13.

Now, we carry out the analysis of parts v10, v12 and v22. We consider part v9. The respective

phase portrait is topologically equivalent to the one in V8 with the focus turned into a node. On

4s1, the separatrix of the infinite saddle–node connects with a separatrix of the finite saddle

producing an invariant straight line linking the pair of infinite saddle–nodes. When entering part

v10, this connection is broken and the position of the separatrices of the infinite saddle–node

and the finite saddle is changed in relation to the position represented in V9. However, when

we approach 4s4, the phase portrait in a neighborhood of this segment is topologically different

from the one we described just after entering part v10. Indeed, the phase portrait in v10 near 4s1

possesses a “basin” passing through the saddle–node, i.e. two separatrices of the saddle–node end
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V4V5

V8 V17

V6

V7

3S17S1

1.7L1

7S2

7S3

1S4 1S31.3L1

3S2 V16

1S5

Figure 7.13: Sequence of phase portraits in parts v5 and v8 of slice n= 10. We start from v4. We recall that
the phase portrait 3S1 is equivalent to the phase portrait V4 up to a weak focus (represented by a little
black square) instead of the focus. When crossing 3s1, we shall obtain the phase portrait V5 in subset v5.
From this point we may choose three different ways to reach the subset v8 by crossing the blue curve: (1)
from the phase portrait 1.3L1 to the V17; (2) from the phase portrait 1S4 to the V17; and (3) from the phase
portrait 1.7L1 to the V7, V8, V17, 1S4, 7S2 and 7S3

at the same infinite singular point, whereas the phase portrait in v10 near 4s4 does not possess

the “basin” and each one of the same two separatrices of the saddle–node ends in different infinite

singular points.

As a result, there must exist at least one element 7S4 of surface (S7) dividing part v10 in

two “new” parts, V10 and V11, which represents a bifurcation due to the connection between a

separatrix of a finite saddle–node with a separatrix of a finite saddle. It is worth mentioning that

the segments 3s5 and 3s6 and the point 3.10ℓ1 refer to the presence of weak saddle (of order one

and two, respectively) which implies that part v12 is topologically equivalent to v10. Then, part v12
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must also be divided in V12 and V13 by an element 7S5 of surface (S7) with the same bifurcation

as 7S4. Coupled with this idea, we have parametrized the yellow surface, “walked” on it and found

that there exist a topological change in the phase portraits obtained.

In addition, we have done the same with the green surface (i.e. we have parametrized it)

and found that segment 2s5 also presents two distinct phase portraits and they are topologically

equivalent to the ones described above. This suggests that an element 7S6 of surface (S7) divides

part v22 in two “new” ones, V22 and V23, where 7S6 corresponds to a bifurcation due to the con-

nection between two separatrices from a finite and an infinite saddle–nodes. Therefore, we know

that 7S6 has one of its endpoints on 2s5 (dividing it in 2S5 and 2S6) and Lemma 7.4.33 assures

that the other endpoint is 2.4ℓ3.

Lemma 7.4.33. The endpoint of 7S6 (rather than the one which is on 2s5) is 2.4ℓ3.

Proof. Numerical tools evidence that the endpoint of 7S6, rather than the one which is on 2s5, is

2.4ℓ3. In what follows, we prove that this endpoint cannot be on segments 4s3 and 2s13.

If this endpoint were located on 4s3, there must exist an invariant straight line linking the

pair of infinite saddle–nodes producing a connection between their separatrices. On the other

hand, we would have two options. The first one would be that this endpoint of 7S6 should corre-

spond to a phase portrait in which the separatrices of the finite saddle–node connects with the

invariant straight line, which is itself a connection of two separatrices (see Figure 7.14(a) to visu-

alize the probable movement of the separatrices in 4S3), producing a triple connection of separa-

trices; in addition, the invariant straight line should remain, what would be a contradiction since

we would have three non–collinear infinite singular points involved in the “final” connection. And

the second option would be the birth of another finite singular point on this straight line which

would make the “new” connection possible, but in v22 there exists only one finite singular point.

Now, if the endpoint of 7S6 were located on 2s13, then another saddle–node should appear

in the finite part and it would send its separatrix associated to the null eigenvalue to an infinite

node and one of the other two separatrices would be received by the nodal sector of the other finite

saddle–node and the other separatrix would be received by the nodal part of an infinite saddle–

node. If there would exist an intersection between 7S6 and 2s13, then a separatrix of a finite

saddle–node would have to connect with the separatrix of an infinite saddle–node as sketched in

Figure 7.14(b). However, there exists a separatrix in the middle of these two that prevents this

connection before the connection between some of these two with the one from the middle. Then,

it is impossible to have an intersection between 7S6 and 2s13.
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4S3 2S13

(a) (b)

Figure 7.14: (a) The probable movement of the separatrices to form another connection in phase portrait
4S3. The straight line in red is produced by the connection of the separatrices of the infinite saddle–nodes
(the characteristic of 4S3) and the separatrices in blue of the finite saddle–node would tend to the straight
line and provoke a triple connection of separatrices having the invariant straight line remained; (b) The
probable movement of the separatrices to form a connection in phase portrait 2S13. In order to have a
phase portrait with characteristics of curve 7S6, it would be necessary that the separatrix in red of a finite
saddle–node connects with the separatrix of the infinite saddle–node in blue, but before it is necessary that
either the red or the blue separatrix connects with the green one

As shown above, the endpoint of 7S6 is not on 4s3 nor in 2s13 and this confirms the evidence

pointed out by the numerical calculations that 7S6 ends at 2.4ℓ3.

We plot the complete bifurcation diagram for these two parts in Figure 7.19. We also show the

sequence of phase portraits along these subsets in Figure 7.15.

We now perform the study of parts v27 and v33. We consider the segment 3s8 in Figure 7.12,

which is one of the borders of part v27. Analogously, on this segment, the corresponding phase

portrait possesses a weak focus (of order one) and, consequently, this branch of surface (S3) cor-

responds to a Hopf bifurcation. This means that either in v26 or in v27 we must have a limit cycle;

in fact it is in v27. The same happens on 3s9, one of the borders of part v33, implying the existence

of a limit cycle either in v32 or in v33; and in fact it is in v33.

However, approaching 6s11, the limit cycle has been lost, which implies the existence of at least

one more element of surface (S7) (curve 7S7 in Figure 7.20); furthermore, the phase portrait in a

small neighborhood of 6s11 is not coherent to that obtained just after making disappear the limit

cycle. If we fix a value of the parameter ℓ in order to be in this part and we make the parameter h

increase from 3s8 towards 6s11, then we obtain four topologically distinct phase portraits with no

separatrix connection inside part v27, which implies the existence of not only one but at least three

elements of surface (S7), the curves 7S7, 7S8 and 7S9 in Figure 7.20; such new phase portraits are

V27, with limit cycle, and V28, V29 and V30, without limit cycles (see Figure 7.16 for a sequence of
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V10 V12 V22

V11 V13 V23

3S6 2S5

4S3

7S4 7S5 7S6

3S7 2S6

2S13

3.7L1 2.7L1 2.4L3

Figure 7.15: Sequence of phase portraits in parts v10, v12 and v22 of slice n = 10. We start from v10. We
recall that the phase portraits V10, 3S6 and V12 are topologically equivalent due to a weak saddle. The same
happens to 7S4, 3.7L1 and 7S5, and to V11, 3S7 and V13. From V12, 7S5 and V13, we cross the segment 2s5,
where the finite saddle and finte node collide giving birth to a saddle–node, and we have three possibilites:
2S5, 2.7L1 and 2S16. Entering part v22, this just–born saddle–node disappears; this part was divided in
three and the respective phase portraits V22, 7S6 and V23 are topologically distinct among them, and they
tend to the phase portrait 2.4L3 either directly or passing through 4S3 and 2S13

phase portraits in these parts). As the segment 5s5 corresponds to changes in the infinite singular

points, the finite part of the phase portraits remain unchanged and these elements of surface (S7)

intersect 5s5. Consequently, v33 is also split into four parts having the same behavior in the finite

part with relation to the corresponding “new” parts in v27; such new phase portraits are V33, with

limit cycle, and V34, V35 and V36, without limit cycles, and the branches of surface (S7) which are

the continuation of the segments 7S7, 7S8 and 7S9 are, respectively, 7S10, 7S11 and 7S12.

Remark 7.4.34. One of the separatrices in the connection on the curves 7S7, 7S8, 7S9, 7S10, 7S11

and 7S12 is always from a finite saddle.
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V26 V27

V28

V29 V30

3S8

7S77S8

7S9

Figure 7.16: Sequence of phase portraits in part v27 of slice n = 10. We start from v26. We recall that
the phase portrait 3S8 is equivalent to the phase portrait V26 up to a weak focus (represented by a little
black square) in place of the focus. When crossing 3s8, we shall obtain the phase portrait V27 in subset v27

possessing a limit cycle. Then, on 7S7 two separatrices of the finite saddle connect themselves producing
a loop; this loop is broken and one of the separatrices of the saddle goes towards the focus and the other
comes from the nodal part of the saddle–node in V28; thus, that separatrix of the saddle coming from the
nodal sector of the saddle–node connects with one of the separatrices of the saddle–node producing another
separatrices connection on 7S8; after this connection is broken, the separatrix of the saddle–node goes
towards the focus and the separatrix of the saddle comes from the infinite saddle–node, characterizing
part V29; then, on 7S9 one more connection of separatrices is produced between the same separatrix of
the saddle and the separatrix of the infinite saddle–node; and, finally, on V30 this separatrices connection
is broken and the separatrix of the infinite saddle–node goes towards the focus and the separatrix of the
saddle comes from the infinite node

Lemma 7.4.35. The curve 7S7 has one of its ends at the point 2.3ℓ2.

Proof. Numerical analysis suggests that the curve 7S7, which corresponds to a loop–type bifur-

cation, has one of its ends at the point 2.3ℓ2. Indeed, if the starting point of 7S7 were any point

of segments 3s9 or 3s10, we would have the following incoherences. Firstly, if this starting point

were on 3s9, then a portion of this subset must not refer to a Hopf bifurcation, which contradicts

the fact that on 3s9 we have a weak focus of order one. Secondly, if the starting point were on 3s10,

then a portion of this segment must also refer to a Hopf bifurcation since we a limit cycle in V33,

which is also a contradiction.
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Since the subsets 3s10 and 6s7 correspond respectively to the presence of a weak saddle and

the node–focus bifurcation, they do not imply a topological change in the phase portrait. Under

these circumstances, the segments 7S11 and 7S12 intersect both subsets 3s10 and 6s7 causing

only C∞ changes in the phase portraits and they will end on segment 2s10 dividing it in three

new parts: 2S10, 2S11 and 2S12. The reason why they do not cross 2s10 is that, if they did so, the

connection of the separatrices would have to remain. However, in part v21 there exists only one

finite singular point (namely, sn(2)), i.e. the finite saddle and node that existed on the right side

of 2s10 have collapsed on this segment and become a complex point after crossing it. Following

this idea, Remark 7.4.34 has no sense in part v21. In Figure 7.17 we show the sequence of phase

portraits from part 2.3L2 to 2S12.

2S10

2S112S12

2.3L2 2.7L2

2.7L3

Figure 7.17: Sequence of phase portraits in part 2s10 of slice n = 10. We start from 2.3ℓ2. This part
produces only one phase portrait 2.3L2 which possesses finite saddle–node and a cusp (we remark that
this point is the intersection of many surfaces, inducing a degeneracy — the cusp point). On 2S10 the cusp
turns into a saddle–node having two of its separatrices sent from the nodal part of the remaining saddle–
node. At 2.7L2, one separatrix of one saddle–node connects with one separatrix of the other saddle–node
and, on 2S11, this connection is broken and we have the creation of two “basins” which intersect at the two
saddle–nodes. Then, on 2.7L3 a connection of separatrices is produced between the separatrix of the infinite
saddle–node and one separatrix of one of the finite saddle–nodes and, finally, on 2S12 this connection is
broken and we obtain the portrait above

Finally, we analyze part v54. We start in part v52. In this portion of the parameter space, the

corresponding phase portrait possesses the saddle–node and two foci in the finite part and saddle–

nodes and saddles at infinity. When we cross the curve 4s13, its phase portrait possesses {(x,0); x ∈

R} as an invariant straight line linking the infinite saddles. The presence of this invariant straight

line produces a connection of separatrices between one from a saddle and the other from the finite

saddle–node (the one associated to the null eigenvalue). Entering part v54, this invariant line
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disappears and the separatrices in question change position, which forces the separatrix of the

saddle–node start from its own nodal sector, forming a graphic.

On the other hand, we start from part v55. There, the corresponding phase portrait also pos-

sesses the saddle–node and two foci in the finite part and saddle–nodes and saddles at infinity. On

3s16, which is a common border of parts v54 and v55, the corresponding phase portrait possesses

a weak focus (of order one) and, consequently, this branch of surface (S3) corresponds to a Hopf

bifurcation. This means that either in v54 or in v55 we must have a limit cycle; in fact it is in v54.

After these remarks, we conclude that part v54 must be split into two parts separated by a new

surface (S7) having at least one element 7S17 (see Figure 7.20) such that one part has limit cycle

and the other does not, and the border 7S17 corresponds to a connection of two separatrices of the

same saddle–node in a loop, because the limit cycle disappears and one of the phase portraits in

v54 possesses a graphic attached to the saddle–node.

Lemma 7.4.36 assures that the segment 7S17 starts from (or ends at) 1.3ℓ2 and is not bounded.

Lemma 7.4.36. The segment 7S17 starts from (or ends at) 1.3ℓ2 and is not bounded.

Proof. If 7S17 started on 3s16, there would exist a portion of this segment without limit cycles,

which is a contradiction since it corresponds to a Hopf bifurcation. On the other hand, if 7S17

started on 4s13, two types of connection of separatrices should happen: the connection between

the separatrix of the infinite saddle with the separatrix of the finite saddle–node associated to

the null eigenvalue (creating an invariant straight line) and the loop–type connection in the finite

saddle–node. If both connections happen, there must exist a degenerate portion of 4s13 in which

this segment would start. Using numerical tools, we verify that 7S17 starts from 1.3ℓ2. Moreover,

using the same arguments, the segment 7S17 can end neither on 3s16 nor on 4s13, implying that

it is unbounded.

We can check numerically that part v54 splits into V53, without limit cycles, and V54, with limit

cycle. We plot the complete bifurcation diagram for these two parts in Figure 7.20. We also show

the sequence of phase portraits along these subsets in Figure 7.18.

Having analyzed all the parts pointed out on page 169 and explained the existence of all

possible nonalgebraic surfaces in there (modulo islands), we have finished the study of the generic

slice n = 10 for the family QsnSN(C). However, we cannot be sure that these are all the additional

bifurcation curves in this slice. There could exist others which are closed curves small enough

to escape our numerical research. For all other two–dimensional parts of the partition of this

slice, whenever we join two points which are close to different borders of the part, the two phase
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V55 3S16 V54 7S17

V534S13V52

Figure 7.18: Sequence of phase portraits in part v54 of slice n = 10. We start in v55, whose corresponding
phase portrait is V55. On 3s16, one of the foci becomes weak (represented as a small square in 3S16) and it
gives birth to a limit cycle when we enter part v54; see phase portrait V54. Then, on 7S17, two separatrices
of the saddle–node connect forming a loop, which “kills” the limit cycle. After that, we obtain the portrait
V53 in which there exists no connection of separatrices but only a graphic. A graphic remains when we lie
on 4s13, but the corresponding phase portrait 4S13 possesses an invariant straight line and connection of
separatrices. Finally, in v52 the graphic disappears and we obtain the phase portrait V52

portraits are topologically equivalent. So, we do not encounter more situations than the ones

mentioned above. In short, it is expected that the complete bifurcation diagram for n = 10 is the

one shown in Figures 7.19 and 7.20. In these and the next figures, we have colored in light yellow

the parts with one limit cycle, in light green the parts with two limit cycles, in black the labels

referring to new parts which are created in a slice and in red the labels corresponding to parts

which has already appeared in previous slices.

The next step is to decrease the values of n, according to equation (7.4.4), and make an anal-

ogous study for each one of the slices that we need to consider and also look for changes when

going from one slice to the next one.

For all values of n greater than zero, the second and third quadrants of the bifurcation diagram

remain unchanged (i.e., for all n > 0, there exist no topological bifurcations in the second and third

quadrants in the parameter space). So, as we move from n > 9 towards infinity, all the slices are

topologically equivalent to slice n = 10 and, at the limit to infinity, the bifurcation diagram tends

to be the one shown in Figure 7.21.

We now start decreasing the values of n in order to explain as much as we can the bifurcations
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Figure 7.19: Complete bifurcation diagram for slice n= 10 (second and third quadrants)
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Figure 7.20: Complete bifurcation diagram for slice n= 10 (first and fourth quadrants)
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n →∞
h

ℓ

Figure 7.21: The transition from n> 9 to infinity. The orange arrows show the movement the curves must
do as n→∞

in the parameter space.

We consider the curved triangles in the first quadrant of slice n = 10: V31, V32 and V33, all

having 2.3ℓ2 as a common vertex. As we move down from n = 10 to n = 9 (a singular slice), these

three triangles collapse in a single point (2.5L2) and, for values of n < 9, but very close to it, two

triangles V68 and V69 appear in the upper part limited by the red curve. In addition, as we have

already proved, there exist some elements of surface (S7) near these triangles and we either have

the purple bifurcations persisting next to the triangles, or not. The first possibility is true, because

after numerical analysis for values of n less than 9, but very close to it, we still verify the same

changes in the phase portraits as shown in the sequence in Figure 7.16. As the endpoint of the

curve 7S7 is 2.3ℓ2 (see Lemma 7.4.35) and this point collapses and reappears in the part over

the red curve, it is natural that 7S7 follows the same movement. However, the other elements

of surface (S7) in this part remain starting from the segment 2s10. These facts are illustrated in

Figures 7.22 to 7.35. For the transition of the slices drawn in these figures, it is clear that we need

at least 13 values of n (apart from n = 9) to have coherence in the bifurcation diagram. Those

values of n cannot be concretely determined, but we know they lie on the open interval between

n =6 and n =9.

Figures 7.26 to 7.35 illustrate needed slices for the coherence of the bifurcation diagram. The

intersection points between the purple curves with the green curve will “go up” in the sense of
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Figure 7.22: Slice of parameter space when n=
9 (see Figure 7.20)
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Figure 7.23: Slice of parameter space when n=
9−ε1 (see Figure 7.22)
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Figure 7.24: Slice of parameter space when n=
9−ε∗1 (see Figure 7.23)
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Figure 7.25: Slice of parameter space when n=
9−ε2 (see Figure 7.24)
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increasing ℓ and cross the intersection point between the red and green curves (this intersection

is renamed as different slices succeed). Consequently, the same will happen to the entire purple

segments. However, there exist other bifurcation curves intersecting these purple curves. Then,

the slices within these figures show step by step the movement of these purple curves until they

are all in the upper part limited by the red curve. Each one of Tables 7.4.1 to 7.4.7 presents the

“dead” and the “born” parts (of higher dimension in that slice) in the transition from one generic

slice to another passing through a singular slice in the middle of them from n = 10 to n = 9−ε7.

Table 7.4.1: Transition from slice n = 10 to n =9−ε1

“Dead” parts Parts in singular slice “Born” parts

V31, V32, V33 P1 V68, V69

Table 7.4.2: Transition from slice n = 9−ε1 to n =9−ε2

“Dead” parts Parts in singular slice “Born” parts

V34 P2 V70

Table 7.4.3: Transition from slice n = 9−ε2 to n =9−ε3

“Dead” parts Parts in singular slice “Born” parts

V38 P3 V71

Table 7.4.4: Transition from slice n = 9−ε3 to n =9−ε4

“Dead” parts Parts in singular slice “Born” parts

V41 P4 2S17

Table 7.4.5: Transition from slice n = 9−ε4 to n =9−ε5

“Dead” parts Parts in singular slice “Born” parts

V35 P5 V72

In Figures 7.36 to 7.39 we still remain in the first quadrant and they show the interaction

among the algebraic surfaces (S3), (S5) and (S6), and it is not necessary to consider nonalge-
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Figure 7.26: Slice of parameter space when n=
9−ε∗2 (see Figure 7.25)
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Figure 7.27: Slice of parameter space when n=
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Figure 7.29: Slice of parameter space when n=
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Figure 7.30: Slice of parameter space when n=
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Figure 7.31: Slice of parameter space when n=
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Figure 7.33: Slice of parameter space when n=
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Figure 7.34: Slice of parameter space when n=
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Table 7.4.6: Transition from slice n = 9−ε5 to n =9−ε6

“Dead” parts Parts in singular slice “Born” parts

V39 P6 V73

Table 7.4.7: Transition from slice n = 9−ε6 to n =9−ε7

“Dead” parts Parts in singular slice “Born” parts

V42 P7 2S18

braic bifurcation surfaces to keep the coherence. Neither their existence is needed in the fourth

quadrant shown in Figures 7.40 and 7.41. We observe that, even if n = 125/27 is a critical value

corresponding to a singular slice, the intersection produced here is not labeled as a point but a

line due to the fact that it is a contact point and, when we pass to the next (generic) slice, this con-

tact point becomes two transversal ones but its characteristic remains; so, there exists no sense in

changing its label. There will exist more situations like this in what follows. Tables 7.4.8 to 7.4.10

show the death and birth of parts from slice n = 9−ε7 to n = 114/25.

Table 7.4.8: Transition from slice n = 9−ε7 to n = 119/20. The “born” part V∗
44 is not new since it

will join later with V44 (see Figure 7.39)

“Dead” parts Parts in singular slice “Born” parts

V40 P8 V∗
44

Table 7.4.9: Transition from slice n = 119/20 to n = 21/4. The symbol ‘;’ means that no new part
was “born”

“Dead” parts Parts in singular slice “Born” parts

V36 5.6L2 ;

Table 7.4.10: Transition from slice n = 21/4 to n = 114/25. The symbol ‘;’ means that no part was
“dead”

“Dead” parts Parts in singular slice “Born” parts

; 1.6L2 V36

Returning back to the first quadrant, the point in gray corresponds to a weak saddle of second
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Figure 7.39: Slice of parameter space when n=
21/4 (see Figure 7.38)

order (see the point 3.10L2 in Figure 7.20). When n = 9/2, the curved triangle bordered by yellow

(plus the gray point), purple and red curves bordering V37 (3S13, 4S7, 5S9 and 3.10L2) collapses

and reappears creating new parts, as seen in Figures 7.42 and 7.43. Table 7.4.11 shows the “dead”

and “born” parts after this bifurcation.

Table 7.4.11: Transition from slice n =21/4 to n = 108/25

“Dead” parts Parts in singular slice “Born” parts

V37 P9 V75

Moving back to the forth quadrant to the continuation of the movement shown in Figures 7.40

and 7.41, the black curve produces the same movement as before but now contacting the yellow

curve, according to Figures 7.44 and 7.45, and Table 7.4.12 presents the new parts.

In Figure 7.46 we represent fourth quadrant of the slice of the parameter space when n = 4.

When n > 4, there exists a point of intersection among surfaces (S2), (S3) and (S6); more precisely,

the point 2.3L3 in Figure 7.23. According to Lemmas 7.4.14, 7.4.17 and 7.4.20, the expression of

this point (or, seen in the projective space, this curve) is [1 : h : 2h/(h−1) : (1+h)2]. As h → 1+, we
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Table 7.4.12: Transition from slice n = 114/25 to n = 401/100. The symbol ‘;’ means that no part
was “dead”

“Dead” parts Parts in singular slice “Born” parts

; 3.6L4 V76

have n → 4+ and 2.3L3 goes to +∞ (since the coordinate ℓ goes to +∞). An analogous argument

is applied to the point 3.6L4 in Figure 7.45 (the one in the left side) and we conclude it also

goes to −∞. Thus, we conclude that the segment 6S24 in Figure 7.45 breaks apart, obtaining the

configuration shown in Figure 7.46. Moreover, there exist two portions of collapsing of curves,

forming the points P10 and P11. Considering the next slice when n = 2304/625, the collapsed

curves separate and form three curved triangles: V77, V84 and V85. Furthermore, the expressions

for the points 2.3L3 and 3.6L4 now make sense and the points coincide at infinity and appear as

2.3L4 in the lower part of the slice. Together with them, four more elements of surface (S7) must

exist in order to keep the coherence of the bifurcation diagram. We plot a portion of the slice when

n = 2304/625 in Figure 7.47. See in Table 7.4.13 the parts which disappeared and were created

when we pass through slice n =4.

Table 7.4.13: Transition from slice n > 4 to n = 2304/645. The notation V∗
62 means that only one of

the two apparently disconnected parts of V62 in Figure 7.45 has died. Moreover, the point 2.7L5

in Figure 7.35 tends to P64 as n →∞ “killing” all the above volumes (and respective borders) and
2.7L6 comes from P64 (when n =−∞) “bringing” a new set of volumes and borders

“Dead” parts Parts in singular slice “Born” parts

V∗
62 P10 V77

V26, V27, V28, V29, V30,
P64

V78, V79, V80,
V68, V69, V70, V71, V72 V81, V82, V83

2.7L5 P64 2.7L6

V43 P11 V84, V85

In Figures 7.48 to 7.51 we show the movement of the gray point 3.10L3 and the purple straight

line containing segment 4S16, when n moves down from n = n27 ≈ 3.6349. . . to n = n31 = 3. Ta-

bles 7.4.14 and 7.4.15 presents the death and birth of parts in this transition.

When n = 3, surfaces (S3) and (S5) do not intersect transversally, possessing a point of contact,

as we can see in Figure 7.52 and in Table 7.4.16. We note that in the next slice when n = 14/5 there

exists another part with limit cycles (V87) as represented in Figure 7.53. In the sequence, we claim

that at n = 8/3 the point 3.10L4 goes to infinity (more precisely, to the point P64). Indeed, according
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Figure 7.47: Slice of parameter space when n= 2304/625 (see Figure 7.46)
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Figure 7.48: Slice of parameter space when n=
n27 ≈ 3.6349 . . . (see Figure 7.47)
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Figure 7.49: Slice of parameter space when n=
7/2 (see Figure 7.48)
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Figure 7.50: Slice of parameter space when n=
2+

p
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Figure 7.51: Slice of parameter space when n=
16/5 (see Figure 7.50)

Table 7.4.14: Transition from slice n = 2304/625 to n =7/2

“Dead” parts Parts in singular slice “Born” parts

3S12 P12 3S30

Table 7.4.15: Transition from slice n =7/2 to n = 16/5. The notation V∗
64 means that only one of the

two apparently disconnected parts of V64 in Figure 7.49 has died

“Dead” parts Parts in singular slice “Born” parts

V∗
64 P13 V86

to Lemma 7.4.21, the expression of this point is

[
1 :

4−8ℓ+3ℓ2 −
p

3
√

(2+ℓ)3(3ℓ−2)

16−24ℓ
: ℓ :

12−24ℓ+3ℓ2 −
p

3
√

(2+ℓ)3(3ℓ−2)

8−12ℓ

]
.

Considering the last coordinate, we write

12−24ℓ+3ℓ2 −
p

3
√

(2+ℓ)3(3ℓ−2)

8−12ℓ
= n

and solve it with respect to n, obtaining three solutions. Now, if we substitute the value n = 8/3 in
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Figure 7.52: Slice of parameter space when n=
3 (see Figure 7.47)
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Figure 7.53: Slice of parameter space when n=
14/5 (see Figure 7.52)

these solutions, they are not defined, since 3n−8 is a factor in the three denominators, proving

our claim. The parameter space at this level is shown in Figure 7.54.

Table 7.4.16: Transition from slice n >3 to n = 14/5

“Dead” parts Parts in singular slice “Born” parts

V47 1.3L2 V87

However, when we move down the value of n, the expression above makes sense again and the

point reappears as 3.6L6 in the parameter space, but in the lower part (in the fourth quadrant),

according to Figure 7.55 (this figure is an ampliation of a portion of Figure 7.47). When this point

reappears, it “brings” the curves 7S22 (loop–type connection) and 7S25 (heteroclinic connection

between the finite saddle–node and the finite saddle), making them intersect 3S28. This phe-

nomenon can be verified by fixing n < 8/3, but sufficiently close to this value, and parameterizing

the segment 3S28 in the coordinate ℓ, for example, and for each value of h, we construct the phase

portrait with the program P4 and verify that the connections of separatrices which correspond to

the curves 7S22 and 7S25 occur on this segment. In addition, we must have an element of surface

(S10) which corresponds to a bifurcation of double limit cycle in order to keep the coherence in the

bifurcation diagram. Lemma 7.4.37 assures the existence of such surface.

Lemma 7.4.37. Segment 10S1 corresponds to a bifurcation of double limit cycle and its borders
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Figure 7.54: Slice of parameter space when n=
8/3 (see Figure 7.53)
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Figure 7.55: Slice of parameter space when n=
8/3−ε8 (see Figure 7.47)

are 3.10L6 and P64 (this last one from slice n =−∞).

Proof. We consider Figure 7.55. Part V80 first appeared in slice when n = 2304/625 and its corre-

sponding phase portrait possesses a limit cycle. We note that on the segments 3S28, 3S33, 3S34,

3S35 and on their linking points the phase portraits possess a weak focus of order at least one

and, consequently, they refer to a Hopf bifurcation. If we are in part V80 and cross the segment

3S28, we enter part V79 and the limit cycle is lost. Following this idea, the same should happen if

we cross the segment 3S33, but that is not what happens. After crossing this segment, the limit

cycle persisted when entering part V88. In fact the Hopf bifurcation creates a second limit cycle.

We can confirm this by moving along a different path. There exist no limit cycles in the phase

portraits of parts V81 and V76 and, after crossing the segments 3S34 and 3S35, respectively, we

enter in parts V89 and V90, whose corresponding phase portraits have a limit cycle. As the segment

7S28 is the continuation of 7S25, it refers to a heteroclinic connection of separatrices between the

finite saddle–node and the finite saddle, and it also possesses a limit cycle, since the separatrix

which enrolls in the limit cycle is not involved in the connection. Now, considering the segment

7S27, we know it is the continuation of 7S22 and, hence, a loop–type bifurcation happens on it. So,

we have two possibilities after crossing it and entering in part V88: either the limit cycle dies, or

another one is created. In fact the second possibility is which happens, since there already exist

at least one limit cycle in V88, confirming that there exist two limit cycles in the representatives
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of part V88.

We note that these two limit cycles are around the same focus, because there exists only one

focus in this portion of the parameter space. Then, as in part V79 we do not have limit cycles and

in V88 we have two of them (around the same focus), there must exist at least one element 10S1 of

surface (S10) dividing these two parts and corresponding to the presence of a double limit cycle.

Now, it remains to prove where 10S1 starts from. As we have already discussed, the point

3.10L4 (corresponding to the presence of a weak saddle of order two) went to infinity and returned

back in the lower part of the forth quadrant, being labeled as 3.10L6 and corresponding to the

presence of a weak focus of order two. With this in mind, it is more comprehensible that leaving

part V80 and crossing the yellow curves, we enter in two topologically distinct parts, one with

limit cycles and the other without them. The linking point 3.10L6 of the segments 3S28 and 3S33

is responsible for this, i.e. if we “walk” along the segment 3S28, which does not possess limit cycle,

and cross 3.10L6, the focus becomes weaker and a Hopf bifurcation happens, implying the birth of

a limit cycle in the representatives of 3S33. Then, by this argument and by numerical evidences,

the segment 10S1 starts from 3.10L6. Since surface (S10) has been born at P64 in slice n = 8/3,

this point is still a border of 10S1.

We show in Figure 7.56 an ampliation of the neighborhood in the parameter space of the point

3.10L6 with the corresponding phase portraits. Table 7.4.17 presents the “dead” and “born” parts

when we go from slice n =14/5 to n = 8/3−ε8.

Table 7.4.17: Transition from slice n = 14/5 to n = 8/3−ε8

“Dead” parts Parts in singular slice “Born” parts

3.10L4 P64 V88, V89, V90

We now continue moving down the values of n and the next important value to be considered is

n = n35 = 8/3−ε∗8 . At this level, the point 3.10L5 (see Figure 7.55) moves towards the intersection

between yellow and purple curves (3.7L6), which cannot be precisely determined, and crosses it.

This movement does not imply topological changes in the phase portraits since 3.10L5 corresponds

to a weak saddle of order two. We show the movement just described in Figures 7.57 and 7.58,

and in Table 7.4.18.

Considering the next singular slice, we analyze the case when n = 9/4. According to Lemma

7.4.4, in this value of n, surface (S3) has a line of singularities of degree of degeneration at least

three; in fact, when n =9/4, a branch of this surface becomes a cusp after the collision of the point
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Figure 7.56: Neighborhood in the parameter space of the point 3.10L6 with the corresponding phase
portraits: the existence of double limit cycle through a f (2)
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Table 7.4.18: Transition from slice n = 8/3−ε8 to n = 8/3−ε9

“Dead” parts Parts in singular slice “Born” parts

3S27 P14 3S36
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Figure 7.57: Slice of parameter space when n=
8/3−ε∗8 (see Figure 7.55)
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Figure 7.58: Slice of parameter space when n=
8/3−ε9 (see Figure 7.57)

2.3L4 (which is also a common point of surfaces (S2), (S6) and (S7); see Figure 7.58) with 3S20

(a projective line or a single point in each slice) which corresponds to two complex singular points

with null trace. In addition to this collision, the points 3.10L6 and 3.10L7 also collapse and make

part of this cusp point of surface (S3), as we can see in Figure 7.59. It is worth mentioning that

the corresponding phase portrait of this cusp point, P15, possesses a singularity (a nilpotent cusp)

that grasps simultaneously the properties of a weak saddle of order two and a weak focus of order

two; besides, this focus is in the edge of turning into a node. We also note that the part with two

limit cycles has remained at this level and it will “survive a bit longer”.

The next phenomenon is that the same branch of yellow curve produces itself a loop for values

of n < 9/4, but close to it, and we arrive at the Figure 7.60. We have verified that the purple curves

behaves as represented in Figure 7.60 and that the part of two limit cycles still persists. However,

the elements characterized by possessing a weak point of order two do not persist, since their

expression has no image for values of n ∈ (−2,9/4).

So, there may arise a question. If there exists no element implying the presence of a weak
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Figure 7.59: Slice of parameter space when n=
9/4 (see Figure 7.58)

2.3L5

3S37

V91

V92

3S38

3S39

7S29

3.7L10

3.3L1

V82

V83

V74

V76

V81

V78
V79

V88

V89
V90

3S30

7S25

3.7L9

7S27
10S1

3S34

3.7L8

3S36

Figure 7.60: Slice of parameter space when n=
11/5 (see Figure 7.59)

focus of order two, where does the bifurcation surface of double limit cycle start from? This starts

from a weak saddle of order one which produces a loop itself (as suggested in the description of

surface (S3) on page 147). In the case of planar differential systems, we know that the stability

of a homoclinic loop through a saddle is determined in first approximation by the trace of the

saddle. If the trace is nonzero, a loop bifurcation leads to the birth (or death) of a unique limit

cycle when the two separatrices of the saddle cross each other, and we strongly use this fact in

the results of this thesis. However, according to Joyal and Rousseau [36], when the trace of the

saddle point vanishes, we can have several limit cycles rising in a loop bifurcation (the authors

prove this phenomenon using the Poincaré return map in the neighborhood of the loop).

In simple words, when an elementary saddle forms a loop, the interior stability of the loop is

ruled by the trace of the saddle. It is unstable, if the trace is positive, and it is stable, if the trace

is negative. Thus, if along a set of parameters while the loop persists the trace changes its sign, a

limit cycle must bifurcate.

The most interesting phenomenon that happens in the family QsnSN(C) is the fact that we

can pass from a (generalized) Hopf bifurcation to a (generalized) loop bifurcation continuously as

we can see in Figures 7.58 to 7.60.

Remark 7.4.38. The terms “generalized” used twice above refer respectively to a Hopf bifurcation

associated with a weak focus of order two and a loop bifurcation associated with a weak saddle of
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order one.

We show in Figure 7.61 an ampliation of the neighborhood in the parameter space of the point

3.7L10 with the corresponding phase portraits. Table 7.4.19 shows the “dead” and “born” parts

when we go from slice n =8/3−ε9 to n = 11/5.

Table 7.4.19: Transition from slice n = 8/3−ε9 to n =11/5

“Dead” parts Parts in singular slice “Born” parts

V80 P15 V91, V92

In what follows, the point 3.7L9 moves towards the point 3.3L1, they intersect and new parts

are created as can be visualized in Figures 7.62 and 7.63. Table 7.4.20 shows the “dead” and “born”

parts when we go from slice n = 11/5 to n =11/5−ε10.

Table 7.4.20: Transition from slice n =11/5 to n = 11/5−ε10

“Dead” parts Parts in singular slice “Born” parts

V81 P16 V93

In Figures 7.64 to 7.67, we show the movement of the curves in yellow and purple when we

decrease n from n41 = 3(102−7
p

21)/100 (including this value) to n45 = 2, creating contact points

with other curves and after intersecting them transversally in two points. Tables 7.4.21 and 7.4.22

indicate the “dead” and “born” parts during this transition.

Table 7.4.21: Transition from slice n = 11/5− ε10 to n = 3(102−7
p

21)/100− ε11. The symbol ‘;’
means that no part was “dead”

“Dead” parts Parts in singular slice “Born” parts

; 3.6L8 V94

Table 7.4.22: Transition from slice n = 3(102−7
p

21)/100−ε11 to n = 2+ε12. The symbol ‘;’ means
that no part was “dead”

“Dead” parts Parts in singular slice “Born” parts

; 5.7L5 V95
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Figure 7.61: Neighborhood in the parameter space of the point 3.10L6 with the corresponding phase
portraits: the existence of double limit cycle through a s(1)
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Figure 7.65: Slice of parameter space when n=
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p
21)/100−ε11 (see Figure 7.64)
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Figure 7.66: Slice of parameter space when n=
2+ε∗12 (see Figure 7.65)
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Figure 7.67: Slice of parameter space when n=
2+ε12 (see Figure 7.66)

We recall that surface (S3) is the union of a plane and a cubic, and the proof of Lemma 7.4.4

assures that, if n = 2, this cubic can be factorized in a line plus a conic: −4(2h−1)(2+2ℓ+2hℓ+ℓ2).

It is to say that this surface changes its behavior when we move to n = 2 and some parts in the

bifurcation diagram die and others are created. See Figure 7.68 which illustrates the slice when

n = 2 (we only show the first and fourth quadrants) and Table 7.4.23 which indicates the “dead”

and “born” parts when we cross slice n = 2.

Table 7.4.23: Transition from slice n = 2+ε12 to n = 19/10. The notation V∗
56 means that only one

of the two apparently disconnected parts of V56 in Figure 7.67 has died

“Dead” parts Parts in singular slice “Born” parts

V44 3.4L6 V96

V48 3.4L7 V97, V98

V∗
56 3.4L8 V99

V65 P64 V101, V102, V103, V104

V76 3.4L9 V100

If we consider the next slice when n =19/10, the factorization is not possible and we obtain the

slice shown in Figure 7.69. We note that in the lower part of this slice the elements of surfaces (S7)

and (S10) intersect with an element of surface (S4). This fact was verified by “walking” along two

segments parallel to an element of surface (S4) containing 4S27 in this slice both left and right

sides. On the right side (upper part), starting from part V101, the phase portrait possesses a limit
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cycle and the separatrix which enrolls around it comes from the finite saddle–node. However, after

“walking down” a little more, we observed that the limit cycle died and the separatrix which goes

towards the focus comes from the finite saddle, implying that we have crossed a loop bifurcation.

A little below, a heteroclinic bifurcation between finite singularities also happens.

On the other hand, on the left side, starting from part V90 and going down, we first cross the

heteroclinic connection and, after, the loop connection, but in this case, instead of meaning the

death of the limit cycle, it means the birth of a second one. A little below, these two limit cycles

die in a double–limit–cycle bifurcation. A bit further down, we cross surface (S6), so the focus

becomes a node and no limit cycles are possible anymore. Also, surface (S4) crosses surface (S6)

forcing part V88 to be bounded now. Then, the only point where surface (S10) may end is 4.7L1, in

which we have two heteroclinic connections between the finite saddle and the finite saddle–node.

As it is shown in the paper of Dumortier, Roussarie and Rousseau [28], the graphic in 4.7L1 has

cyclicity two which is compatible with the fact that this part borders a part with two limit cycles

around the same focus and a part with double limit cycle. Figure 7.70 shows an ampliation of the

neighborhood in the parameter space of the point 4.7L1 with the corresponding phase portraits.

In what follows, this point 4.7L1 “goes up” in the sense of increasing ℓ along the segment of

surface (S4). The next singular slice to be considered is when it crosses the intersection 3.4L12

between yellow and purple curves (see Figure 7.71). In addition, the point 3.7L10 tends towards

4.7L1 and, after the bifurcation, all the parts of surface (S3) close to the new part 4.7L2 will be

below it. So, there is no more intersection between the weak–saddle phenomenon and the loop

phenomenon on the left side of vertical purple. This avoids the existence of part V88. Then, part

V88 must have shrunk as n tends to 19/10−ε∗13 and disappeared in P21. On the right side of the

vertical purple it still exists an intersection between weak–saddle and loop bifurcations (3.7L13),

but the loop takes place with the separatrices of the finite saddle–node and, thus, the weak saddle

is not related to any limit cycle (see Figure 7.72). Table 7.4.24 indicates the “dead” and “born” parts

in this transition.

Table 7.4.24: Transition from slice n =19/10 to n = 17/10

“Dead” parts Parts in singular slice “Born” parts

V88, V89, V90 P21 V105, V106

Now, it is the turn of the purple curve 7S31 (see Figure 7.69) to “go down” in the parameter

space, as shown in Figures 7.73 to 7.78. Firstly, part of it becomes tangent to the red curve 5S22 at
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Figure 7.68: Slice of parameter space when n= 2 (see Figures 7.47, 7.63 and 7.67)
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Figure 7.69: Slice of parameter space when n= 19/10 (see Figure 7.68)
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Figure 7.71: Slice of parameter space when n=
19/10−ε∗13 (see Figure 7.69)
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Figure 7.72: Slice of parameter space when n=
17/10 (see Figure 7.71)

the point 1.3L5 making disappear a portion of part V54; then, the tangency is lost and it continues

to move down contacting and intersecting the black and the blue curves yielding the curves 6.7L6

and 1.7L2, respectively. The first crossing produces new part V107, but the second crossing (see

Figure 7.78) does no produce a new part as we will see in the next step. Tables 7.4.25, 7.4.26 and

7.4.27 indicate the “dead” and “born” parts in the transition from slice n = 17/10 to n = 8/5.

Table 7.4.25: Transition from slice n = 17/10 to n = 17/10−ε14. The notation V∗
54 means that only

one of the two apparently disconnected parts of V54 in Figure 7.67 has died. The symbol ‘;’ means
that no part was created

“Dead” parts Parts in singular slice “Born” parts

V∗
54 1.3L5 ;

Table 7.4.26: Transition from slice n =17/10−ε14 to n =41/25. The symbol ‘;’ means that no part
was “dead”

“Dead” parts Parts in singular slice “Born” parts

; 6.7L6 V107

When we reach the value n = 1, some considerable changes happen to the behavior of the
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Figure 7.73: Slice of parameter space when n=
17/10−ε∗14 (see Figure 7.69)

V95

V53

V54

V87

V94

h

Figure 7.74: Slice of parameter space when n=
17/10−ε14 (see Figure 7.73)
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Figure 7.75: Slice of parameter space when n=
41/25+ε∗15 (see Figure 7.74)
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Figure 7.76: Slice of parameter space when n=
41/25 (see Figure 7.75)
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Table 7.4.27: Transition from slice n = 41/25 to n = 8/5. The symbol ‘;’ means that no part was
“dead”. The “born” part V∗

105 is not new since it will join later with V105 (see Figure 7.80)

“Dead” parts Parts in singular slice “Born” parts

; 1.7L2 V∗
105

1.7L2

V95

V53

V54

V87

V94

V87

V94

V100

V107

h

Figure 7.77: Slice of parameter space when n=
8/5+ε∗16 (see Figure 7.76)
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Figure 7.78: Slice of parameter space when n=
8/5 (see Figure 7.77)

curves. The purple vertical line and one component of the green lines collide (since their ex-

pressions have the common factor h) and all the elements which were in between of them have

collapsed in some parts of this vertical line. See Figure 7.79. However, they separate again for

n < 1 and many new parts appear between them, as shown in Figure 7.80. All these “dead” and

“born” parts are indicated in Table 7.4.28.

Table 7.4.28: Transition from slice n = 8/5 to n = 81/100. Compare Figures 7.69 and 7.80: all parts
between the two vertical lines collapse. The lines split again and generate new parts. Parts V88,
V89 and V90 had already disappeared some slices above

“Dead” parts Parts in singular slice “Born” parts

V46, V60, V62, V63, V64,
2.4L6, 2.4L7, 2.4L8 from V108 to V125V73, V74, V75, V78, V82,

V83, V91, V92, V93, V99

We note that most of the new parts in slice n =81/100 are concentred in the rectangle bounded
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by green, vertical purple and two horizontal purple curves (we call it Region 1), including elements

of nonalgebraic surfaces whose existence are necessary for the coherence of that part of the bifur-

cation diagram. Moreover, we remark that the rest of the changes will occur in the portion of the

parameter space in the right side of the vertical purple line (we call it Region 2).

In Region 1, the three intersection points among green, black and yellow curves (2.3L6), green

and blue curves (1.2L3), and green and red curves (2.5L7) are the continuation of the intersections

2.3L5, 1.2L2 and 2.5L6, respectively, but with a different ordering they were before. Moreover, the

purple segment 7S26 which separated parts V84 and V85 (see Figure 7.79) and which started from

an intersection of green and horizontal purple curves (P22), now it is called 7S38 and starts from

an intersection of horizontal purple and vertical purple curves (4.4L3, in the right top of Region

1), splitting parts V109 and V110. In addition, more elements of surface (S7) were necessary for

the coherence and their existence and shape was verified numerically; four of them refer to hete-

roclinic bifurcations (7S39, 7S40, 7S41 and 7S43) and one of them corresponds to loop bifurcation

(7S42).

In Region 2, at the level n = 81/100 all the algebraic curves remain and intersect at a single

point 1.3L7 together with an element of a heteroclinic bifurcation. But the two disjoint elements

of loop bifurcation 7S34 in Figures 7.72 and 7.78 which border two temporary disjoint parts of part

V105 will have a common point at P23 in Figure 7.79 and will remain joined and unlinked from

any other bifurcation surface. Segment 7S34 was purposely drawn in Figure 7.80 with a beak to

show its movement of separation from 1.3L7.

In Figures 7.81 to 7.84 we sketch the movement of the intersection between yellow and purple

3.4L14 along the vertical purple curve (S4) as it crosses surface (S6) and another component of

(S4). We note that the intersection shown in Figure 7.83 shows it having a tangency between

3S56 and 7S38. However, this could not be the case and we could have this transition needing

some more steps as a different crossing between 3S56 and 7S38 can happen. This intersection

cannot be detected algebraically. Anyway, since surface (S3) in this surroundings only means the

presence of a weak saddle and there is no possible loop, this has no effects in the number of

topologically different phase portraits. Tables 7.4.29 and 7.4.30 indicate the “dead” and “born”

parts in the transition from slice n =81/100 to n =9/25.

For the next slices, the intersection between purple and green 2.7L7, which is located in the

left top of Region 1, will “sweep” the segments from 2S24 up to 2S28. Consequently, surface 7S38

will also “sweep” most of the parts in Region 1, producing new phase portraits. Due to its nature
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Figure 7.79: Slice of parameter space when n= 1 (see Figures 7.69, 7.72 and 7.78)
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Figure 7.80: Slice of parameter space when n= 81/100 (see Figure 7.79)
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Figure 7.81: Slice of parameter space when n=
2−

p
2 (see Figure 7.80)
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Figure 7.82: Slice of parameter space when n=
9/16 (see Figure 7.81)
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Figure 7.83: Slice of parameter space when n=
1/2 (see Figure 7.82)
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Figure 7.84: Slice of parameter space when n=
9/25 (see Figure 7.83)
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Table 7.4.29: Transition from slice n =81/100 to n = 9/16

“Dead” parts Parts in singular slice “Born” parts

V98 P24 V126

Table 7.4.30: Transition from slice n =9/16 to n = 9/25

“Dead” parts Parts in singular slice “Born” parts

V97 P25 V127, V128

of being nonalgebraic, we cannot precise the order of the intersection and contact points with the

other curves, but any other order different from the one we present in Figures 7.85 to 7.106 will

not bring about new phase portraits rather than the ones which have been created. Moreover,

Tables 7.4.31 to 7.4.41 present the “dead” and “born” parts in the transition from slice n =9/25 to

n =1/25.

Table 7.4.31: Transition from slice n = 9/25 to n =81/40

“Dead” parts Parts in singular slice “Born” parts

2S24 P26 V129

Table 7.4.32: Transition from slice n =81/40 to n = 81/40−ε18

“Dead” parts Parts in singular slice “Born” parts

7S39 P27 V130, V131

Table 7.4.33: Transition from slice n =81/40−ε18 to n = 81/40−ε19

“Dead” parts Parts in singular slice “Born” parts

V110 P28 V132

Table 7.4.34: Transition from slice n =81/40−ε19 to n = 81/40−ε20

“Dead” parts Parts in singular slice “Born” parts

V111 P29 V133
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Figure 7.85: Slice of parameter space when n=
9/25−ε∗17 (see Figure 7.84)
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Figure 7.86: Slice of parameter space when n=
81/40 (see Figure 7.85)
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Figure 7.87: Slice of parameter space when n=
81/40−ε∗18 (see Figure 7.86)
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Figure 7.88: Slice of parameter space when n=
81/40−ε18 (see Figure 7.87)
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Figure 7.89: Slice of parameter space when n=
81/40−ε∗19 (see Figure 7.88)
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Figure 7.90: Slice of parameter space when n=
81/40−ε19 (see Figure 7.89)
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Figure 7.91: Slice of parameter space when n=
81/40−ε∗20 (see Figure 7.90)
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Figure 7.92: Slice of parameter space when n=
81/40−ε20 (see Figure 7.91)
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Figure 7.93: Slice of parameter space when n=
81/40−ε∗21 (see Figure 7.92)
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Figure 7.94: Slice of parameter space when n=
4/25 (see Figure 7.93)
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Figure 7.95: Slice of parameter space when n=
4/25−ε∗22 (see Figure 7.94)
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Figure 7.96: Slice of parameter space when n=
4/25−ε22 (see Figure 7.95)
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Figure 7.97: Slice of parameter space when n=
4/25−ε∗23 (see Figure 7.96)
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Figure 7.98: Slice of parameter space when n=
4/25−ε23 (see Figure 7.97)
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Figure 7.99: Slice of parameter space when n=
4/25−ε∗24 (see Figure 7.98)
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Figure 7.100: Slice of parameter space when
n= 4/25−ε24 (see Figure 7.99)
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Figure 7.101: Slice of parameter space when
n= 4/25−ε∗25 (see Figure 7.100)
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Figure 7.102: Slice of parameter space when
n= 9/100 (see Figure 7.101)
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Figure 7.103: Slice of parameter space when
n= 9/100−ε∗26 (see Figure 7.102)
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Figure 7.104: Slice of parameter space when
n= 9/100−ε26 (see Figure 7.103)
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Table 7.4.35: Transition from slice n = 81/40−ε20 to n =4/25

“Dead” parts Parts in singular slice “Born” parts

V114, V115 P30 V134, V135, V136

Table 7.4.36: Transition from slice n =4/25 to n = 4/25−ε22

“Dead” parts Parts in singular slice “Born” parts

V116 P31 V137, V138

Table 7.4.37: Transition from slice n =4/25−ε22 to n = 4/25−ε23

“Dead” parts Parts in singular slice “Born” parts

V117 P32 V139

Table 7.4.38: Transition from slice n =4/25−ε23 to n = 4/25−ε24

“Dead” parts Parts in singular slice “Born” parts

V119 P33 V140

Table 7.4.39: Transition from slice n = 4/25−ε24 to n =9/100

“Dead” parts Parts in singular slice “Born” parts

V121 P34 V141, V142

Table 7.4.40: Transition from slice n =9/100 to n = 9/100−ε26

“Dead” parts Parts in singular slice “Born” parts

2S27 P35 V143

Table 7.4.41: Transition from slice n = 9/100−ε26 to n =1/25

“Dead” parts Parts in singular slice “Born” parts

2S33 P36 V144

We now consider the slice when n = 0. At this level almost all the invariant polynomials we

use to describe the bifurcation diagram vanish and, hence, we need to consider other ones which
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Figure 7.105: Slice of parameter space when
n= 9/100−ε∗27 (see Figure 7.104)
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Figure 7.106: Slice of parameter space when
n= 1/25 (see Figure 7.105)

will play a similar role. For this value of n, systems (7.3.1) get the form:

ẋ= gx2 +2hxy+ (−g−2h)y2,

ẏ= y+ℓx2 + (2g+2h−2ℓ)xy+ (2h+ℓ+2(−g−2h))y2 ,
(7.4.5)

and for systems (7.4.5), we calculate

µ=T4 =W4 ≡ 0, T=−48(h+1)4(ℓ−1)2,

Inv=ℓ(1+2h)(1−ℓ), M̃ = (1+2h+ℓ)2.
(7.4.6)

Then, we need new comitants which indicate: (i) when a second finite singular point collides

with an infinite singular point, (ii) when a second finite singular point becomes weak and (iii)

when a second node turns into a focus. The next invariant polynomials we need are, respectively:

(i) µ1 =−4(g+h)2(g−ℓ) (drawn in blue);

(ii) B1 = 2g2 +2hℓ (drawn in yellow);

(iii) W7 =−12(g+h)4(g4 +2g3h−2g3ℓ−4g2hℓ−h2ℓ2) (drawn in black).

Moreover, by the time we were analyzing this slice, we verified that there exist some parts

in the bifurcation diagram corresponding to the presence of invariant parabolas passing through

the origin in the phase portraits. Lemma 7.4.39 assures the existence of two straight lines in the

bifurcation diagram with such a characteristic.
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Lemma 7.4.39. For g 6= 0 and n =0, phase portraits possess invariant parabolas passing through

the origin if either h = 0 or ℓ= 1/2.

Proof. We fix g = 1 and n = 0. First, we suppose h = 0. Then, systems (7.4.5) become

ẋ= x2 − y2, ẏ= y+ℓx2 + (2−2ℓ)xy+ (ℓ−2)y2. (7.4.7)

We look for invariant parabolas of the form

P = Ax2+By2 +Cxy+Dx+E y+F = 0,

but as it passes through the origin we set F = 0.

If C =Ux+V y+W is a cofactor of P , then

∂P

∂x
ẋ+

∂P

∂y
ẏ=C P ,

which is equivalent to

−DWx−E(W −1)y+ (2D+E−2DU −2AW)x2/2+ (C+2hD+E+2hE−EU−DV

−CW)xy+ (4B−2D−4hD−3E−4hE−2EV −2BW)y2/2+ (4A+C−2AU)x3/2

+ (4hA+B+2C+2hC−CU − AV )x2 y+ (−4A−8hA+4B+8hB−3C−2BU −2CV )xy2/2

+ (−3B−4hB−C−2hC−BV )y3 = 0.

Equating to zero all the coefficients of the previous equation and solving this system in the

variables A, B, C, D, E, U , V and W, we obtain the solution

A =−C/2, B =−C/2, D = 0, E =−C/(2ℓ), U = 2(ℓ−1), V = 2(ℓ−1), W = 1

and, hence,

P =−
C(ℓ(x− y)2 + y)

2ℓ
= 0 and C = 1−2(ℓ−1)x+2(ℓ−1)y.

Applying the change of coordinates x= X +Y , y=Y , renaming X ,Y by x, y and setting C = 2,

we see that P can be brought to the parabola

P =−
ℓx2 + y

ℓ
= 0.
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An analogous construction can be applied for the case ℓ = 1/2 and we obtain the invariant

parabola

P =−
2x+ (1+2h)x2 +2y

1+2h
= 0.

Remark 7.4.40. By Lemma 7.4.39, the straight lines {h = 0}∪ {ℓ= 1/2} in the bifurcation diagram

correspond to the presence of invariant parabolas passing through the origin in the phase portraits,

and they will be part of surface (S7) and colored in purple. Sometimes this invariant parabola will

not coincide with connection of separatrices, so these respective parts are drawn in dashed lines in

Figure 7.107, otherwise they are drawn in a continuous line.

Remark 7.4.41. For g 6= 0 and n = 0, the corresponding phase portraits on the line {h+ℓ= 0} in

the bifurcation diagram possess an infinite singular point of type
(̂1
2

)
E−H, which is a bifurcation

between the types
(̂1
2

)
PEP −H and

(̂1
2

)
E−PHP. Such a straight line is needed for the coherence of

the bifurcation diagram.

We observe that, since µ≡ 0 for g 6= 0 and n = 0 (i.e. this slice is entirely contained in surface

(S1)), all the “generic” parts on this slice are labeled as 1S j, the lines are labeled as 1.iL j and the

points as points. We could have also used surfaces (S3) or (S6) for the same reason, but we have

used (S1) for its higher relevance on singularities. In Figure 7.107, we present the slice when

n =0 with each part properly labeled.

In Table 7.4.42 we indicate the death of all volumetric parts from slice n = 1/25 to n =0 and in

Table 7.4.43, the birth of new parts at n =−1 from slice n = 0.

Since there exists no symmetry in the parameter n of foliation of the parameter space as this

happened to systems (5.3.1), (6.3.1) and (6.3.2), for systems (7.3.1) we need to consider negative

values for the parameter n according to (7.4.4). So, we consider the next generic slice when n =−1.

In Figure 7.108 we present this slice, but we note that the portion bordered by 4S51 and 4S52 (the

fourth quadrant) is presented only with the volume parts labeled. We show a zoom of this part in

Figure 7.109. In addition, the dashed vertical line in black represents the ℓ−axis and we draw it

only for reference.

We highlight that in part V182 there exist two limit cycles in the phase portrait, but each one

around different foci. Each one of the limit cycles can be created (or lost) either by Hopf bifurcation

on 3S70 or 3S75, or by loop bifurcation on 7S81 or 7S83.
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Figure 7.107: Slice of parameter space when n= 0 (see Figures 7.80 and 7.106)
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Table 7.4.42: Transition from slice n =1/25 to n = 0

“Dead” parts Parts in slice n =0 “Dead” parts Parts in slice n = 0 “Dead” parts Parts in slice n =0
V1 1S27 V52 1S47, 1S48, 1S49 V109 1.1L3

V2 1.5L1 V53 1S53, 1S56, 1S57 V112 P43

V3 1S26 V54 1S59, 1S60 V113 1.4L7

V4 1.7L10 V55 1S62, 1S63 V118 1S43

V5 1.7L10 V56 1S65, 1S66 V120 1.5L3

V6 1S25 V57 1.5L8 V122 1.5L3

V7 P38 V58 1.5L7 V123 1.5L3

V8 1.1L2 V59 1.5L7 V124 1S42

V9 1.1L2 V61 1.5L8 V125 1S51

V10 1S33 V66 1.5L8 V126 P43

V11 1S40 V67 1S64 V127 1S29

V12 1S34 V77 1.5L7 V128 1.1L3

V13 1S41 V84 P38 V129 P38

V14 1S50 V85 P38 V130 P38

V15 P38 V86 1S61 V131 1.1L3

V16 P38 V87 1.5L6 V132 1.1L3

V17 P38 V94 1.5L6 V133 P38

V18 P38 V95 1.5L5 V134 P38

V19 P38 V96 1S30 V135 P38

V20 1.1L1 V100 1.5L6 V136 P38

V21 P38 V101 1S58 V137 1S36

V22 1.1L6 V102 1S55 V138 1S37

V23 1.1L7 V103 1S54 V139 1.5L2

V24 1.1L8 V104 1S52 V140 1.5L2

V45 1S31, 1S32 V105 1.5L5 V141 1.5L2

V49 1.1L4, 1.1L5 V106 1.5L4 V142 1.5L2

V50 1.1L4, 1.1L5 V107 1.5L5 V143 1.7L20

V51 1S38, 1S39, 1S44, 1S45, 1S46 V108 1S28 V144 1S35
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Table 7.4.43: Transition from slice n =−1 to n = 0

“Dead” parts Parts in slice n =0 “Dead” parts Parts in slice n = 0
V145 1S30 V172 1S55

V146 1S29, 1S31, 1S32 V173 1.5L5

V147 1S27, 1S28 V174 1.5L5

V148 1.5L1 V175 1.5L5

V149 1.5L1 V176 1S56

V150 1.1L3, 1.1L4, 1.1L5 V177 1S57

V151 1.5L1 V178 1S58

V152 1S25, 1S26 V179 1.5L6

V153 1.1L2 V180 1.5L6

V154 1S33 V181 1.5L6

V155 1S40 V182 1S59

V156 1S41, 1S42 V183 1S60

V157 1S34, 1S35 V184 1S61

V158 1.5L2 V185 1.5L7

V159 1S36, 1S37, 1S43 V186 1.5L7

V160 1S38, 1S39, 1S44, 1S45, 1S46 V187 1.5L7

V161 1S47, 1S48, 1S49 V188 1S62

V162 1S50, 1S51 V189 1S63

V163 1S52 V190 1S64

V164 1S54 V191 1.5L8

V165 P50 V192 1.5L8

V166 1.5L4 V193 1.5L8

V167 1.5L4 V194 1S65

V168 1S53 V195 1S66

V169 1.4L13 V196 1.1L2

V170 1.7L28 V197 1.1L3

V171 1.7L27 V198 1.1L4, 1.1L5

There also exists the possibility of both limit cycles being created (or lost) at the same time

either by Hopf bifurcation on 3.3L4, or by loop bifurcation on 7.7L7. We present in Figure 7.110

the phase portraits in a neighborhood of V182.

In Figures 7.111 and 7.112 we present the movement of a branch of surface (S6) which con-

tacts another branch of the same surface and, then, they intersect transversally in two points.

Table 7.4.44 indicates the “dead” and “born” parts in this transition.

Following the values of n in (7.4.4), the last slice we need to described is when n =−∞. How-

ever, on page 182 we have already discussed about the behavior of the surfaces as n →∞. Due

to the symmetry in g (see page 145), the slices n =−∞ and n =∞ are symmetrical. These slices
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Figure 7.108: Slice of parameter space when n=−1 (see Figure 7.107)
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Figure 7.109: Slice of parameter space when n=−1 (zoom) (see Figure 7.108)
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Figure 7.111: Slice of parameter space when
n≈−3′4013 . . . (see Figure 7.108)

6.6L2

V199

6S62

6S61

V160

V161

V198

V160

6.6L2

ℓ

h

Figure 7.112: Slice of parameter space when
n=−4 (see Figure 7.111)
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Table 7.4.44: Transition from slice n =−1 to n =−4. The symbol ‘;’ means that no part was “dead”

“Dead” parts Parts in singular slice “Born” parts

; 6.6L2 V199

correspond to g = 0 and n 6= 0. Setting g = 0 and n =−1, systems (7.3.1) become

ẋ= 2hxy− (1+2h)y2, ẏ= y+ℓx2 + (1+2h−2ℓ)xy+ (2h+ℓ−2(1+2h))y2, (7.4.8)

for which we calculate

µ=ℓ(2h+ℓ), T≡ 0, T4 = ℓ(8h2 +ℓ+4hℓ), Inv=−ℓ2(1+2h),

M̃ =(2h+ℓ+1)2, W4 = ℓ3(16h2+32h3+ℓ+8hℓ+16h2ℓ).
(7.4.9)

As T vanishes as n →−∞, we need to consider the next comitant which is responsible for the

multiplicity of finite singular points (see Table 4.5.2). This next comitant is R= h2ℓ2, whose set of

zeroes will be called surface (S11) and colored in green. In Figure 7.113 we present the slice when

n =−∞ properly labeled.

In Table 7.4.45 we indicate the death of all volumetric parts from slice n =−4 to n =−∞ and in

Table 7.4.46, the birth of new parts at n = 10 from slice n =∞ (see Figure 7.21 where nonalgebraic

bifurcations and labels must be considered from Figure 7.113 with proper symmetry).

Since there is coherence between the generic slices bordering the most singular slices n = 1,

n = 0 and n = −∞ with their respective generic side slices, no more slices are needed for the

complete coherence of the bifurcation diagram. So, all the values of n in (7.4.4) are sufficient for

the coherence of the bifurcation diagram. Thus, we can affirm that we have described a complete

bifurcation diagram for family QsnSN(C) modulo islands, as discussed in Section 6.6.

7.5 Completion of the proof of the main theorem

In the bifurcation diagram we may have topologically equivalent phase portraits belonging to

distinct parts of the parameter space. As here we have 1034 distinct parts of the parameter space,

to help us identify or to distinguish phase portraits, we need to introduce some invariants and

we actually choose integer–valued, character and symbol invariants. Some of them were already

used in Chapters 5 and 6, but we recall them and introduce some needed ones. These invariants
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Figure 7.113: Slice of parameter space when n=−∞



234 The topological classification of QS with semi–elemental saddle–nodes (C)

Table 7.4.45: Transition from slice n =−4 to n =−∞

“Dead” parts Parts in slice n =−∞ “Dead” parts Parts in slice n =−∞
V145 2S38 V173 2S53

V146 2S36, 2S37 V174 P58

V147 2S39 V175 P58

V148 2S40 V176 P58

V149 2S42 V177 1.2L10

V150 2S41, 1.2L10 V178 2S49

V151 2S43 V179 2S54

V152 2S44 V180 P58

V153 1.2L8 V181 P58

V154 1.2L8 V182 P58

V155 1.2L8 V183 1.2L10

V156 1.2L8 V184 2S50

V157 1.2L8 V185 2S55

V158 P57 V186 P58

V159 P57 V187 P58

V160 1.2L9, 1.2L10 V188 P58

V161 1.2L9, 1.2L10 V189 1.2L10

V162 2S45 V190 2S51, 2S58

V163 2S46 V191 2S56, 2S57

V164 2S47 V192 2S59

V165 2S52 V193 2S60

V166 P58 V194 2S61

V167 P58 V195 2S62

V168 P58 V196 1.2L8

V169 1.2L10 V197 P57

V170 2.7L16 V198 1.2L9, 1.2L10

V171 2.7L17 V199 1.2L9

V172 2S48

yield a classification which is easier to grasp.

Definition 7.5.1. We denote by I1(S) the number of the real finite singular points. We note that

this number can also be infinity, which is represented by ∞.

Definition 7.5.2. We denote by I2(S) the sum of the indices of the isolated real finite singular

points.

Definition 7.5.3. We denote by I3(S) the number of the real infinite singular points.

Definition 7.5.4. For a given infinite singularity s of a system S, let ℓs be the number of global

or local separatrices beginning or ending at s and which do not lie on the line at infinity. We have
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Table 7.4.46: Transition from slice n =10 to n =∞

“Dead” parts Parts in slice n =−∞ “Dead” parts Parts in slice n =−∞
V1 2S58 V35 2S53

V2 2S57 V36 2S52

V3 2S59 V37 P57

V4 2S60 V38 P58

V5 2S61 V39 P58

V6 2S62 V40 1.2L9

V7 P58 V41 P58

V8 1.2L10 V42 P58

V9 1.2L10 V43 1.2L9

V10 1.2L10 V44 2S46

V11 1.2L10 V45 2S45

V12 1.2L10 V46 1.2L9

V13 1.2L10 V47 1.2L9

V14 2S36 V48 P57

V15 P58 V49 1.2L8

V16 P58 V50 1.2L8

V17 P58 V51 1.2L8

V18 P58 V52 1.2L8

V19 P58 V53 1.2L8

V20 2.11L3 V54 1.2L8

V21 2.11L2 V55 1.2L8

V22 P58 V56 2S44

V23 P58 V57 2S43

V24 2.11L1 V58 P57

V25 2S51 V59 P57

V26 2S50 V60 P57

V27 2S49 V61 2S42,
V28 2.7L18 V62 2S41

V29 2S48 V63 1.2L9

V30 2S47 V64 2S37

V31 2S56 V65 2S38

V32 2S55 V66 2S40

V33 2S54 V67 2S39

V34 2.7L19

0≤ ℓs ≤ 4. We denote by I4(S) the sequence of all such ℓs when s moves in the set of infinite singular

points of the system S. We start the sequence at the infinite singular point which receives (or sends)

the greatest number of separatrices and take the direction which yields the greatest absolute value,

e.g. the values 2110 and 2011 for this invariant are symmetrical (and, therefore, they are the same),

so we consider 2110.
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Definition 7.5.5. We denote by I5(S) the sequence of digits between parenthesis and separated by

commas, if there is more than one digit, denoting the number of limit cycles around foci.

Definition 7.5.6. We denote by I6(S) the sequence of digits (ranging from 0 to 5) between paren-

thesis and separated by commas, if there is more than one digit, meaning the existence or the

nonexistence of separatrices connection, where “0” means no separatrices connection, “1” means a

loop–type connection, “2” means a connection of separatrices from two finite singular points, “3”

means a connection of separatrices from one finite singular point to an infinite one, “4” means a

connection of separatrices from nonadjacent infinite singular points, and “5” means a connection

of separatrices from adjacent infinite singular points.

Definition 7.5.7. We denote by I7(S) the sequence of digits (ranging from 0 to 4) between parenthe-

sis and separated by commas which describes the number of local or global separatrices starting

or ending at the nodal sector of the finite saddle–node and at each finite antisaddle or each limit

cycle.

Definition 7.5.8. We denote by I8(S) the sequence of two digits (each one ranging from 0 to 2)

between parenthesis and separated by commas which describes the total number of local or global

separatrices linking the finite multiple singular points to the infinite multiple singular points in

each local chart. For example, “(1,0)” means that there exist only one separatrix linking the finite

multiple singular point to the infinite multiple singular point in the local chart U1 whereas there

exists no linking separatrix going to the local chart U2.

Definition 7.5.9. We denote by I9(S) a character from the set { f ,∞} describing the origin of the

orbits that arrive to a finite antisaddle, where “f ” means that all the separatrices arrive from finite

singular points and “∞” means that at least one separatrix arrives from an infinite singular point.

We observe that this invariant makes sense only in the case of the existence of only one antisaddle.

Definition 7.5.10. We denote by I10(S) a digit (ranging from 0 to 2) describing the connection

of separatrices involving the separatrices of finite saddle–nodes, where “0” means that the connec-

tion is produced by separatrices associated with nonzero eigenvalues, “1” means that one of the

separatrices in the connection is associated with a zero eigenvalue and “2” means that both of the

separatrices are associated with zero eigenvalues.

Definition 7.5.11. We denote by I11(S) an element from the set {a, N,SN} which describes the

singular point which would receive one or two separatrices of the finite elemental saddle, if the
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finite saddle–node disappears. Here, “a” means an antisaddle, “N” means an infinite node and

“SN” means
(0
2

)
SN.

Definition 7.5.12. We denote by I12(S) an element from the set {s, d} describing if the stability of

the focus inside a graphic is the same as or different from the nodal part of the finite saddle–node.

Definition 7.5.13. We denote by I13(S) an element from the set {S,SN} describing the origin of the

middle separatrix (of three) received by the nodal sector of the finite saddle–node. Here, “S” means

an infinite saddle and “SN” means
(0
2

)
SN.

Definition 7.5.14. We denote by I14(S) a character from the set { f ,∞} describing the nature of the

singular point which sends or receives a separatrix to or from a limit cycle.

Definition 7.5.15. We denote by I15(S) the sum of the indices of the isolated infinite multiple

singular points (considered in only one local chart).

Definition 7.5.16. We denote by I16(S) a character from the set {H,P}, where H determines that a

finite antisaddle sends (or receives) orbits to (from) a parabolic sector of a multiple infinite singular

point situated in the local chart where the parabolic sector is accompanied by other hyperbolic

sectors, and P denotes that the parabolic sector is the only sector of the infinite singular point in

that local chart. This invariant is needed to distinguish 1.5L3 from 1.5L4.

Definition 7.5.17. We denote by I17(S) a symbol to represent the configuration of the curves of

singularities. The symbols are: “−” to represent a straight line and “∪” to represent a parabola.

Definition 7.5.18. We denote by I18(S) a character from the set {n, y} describing the nonexistence

(“n”) or the existence (“y”) of graphics.

Definition 7.5.19. We denote by I19(S) a character from the set {c, s} describing the position of

the separatrix of the finite saddle–node associated with the eigenvector with zero eigenvalue which

arrives to (or leaves from)
(0
2

)
SN when this point receives 3 separatrices. We use “c” for the central

position and “s” for the lateral (side) position.

Definition 7.5.20. We denote by I20(S) a character from the set {s, d} describing if each point of

the pair of infinite saddle–nodes sends (or receives) two separatrices to/from the same or different

finite saddle–nodes. This invariant only makes sense in case of existence of two finite saddle–nodes.

As we have noted previously in Remark 5.4.12, we do not distinguish between phase portraits

whose only difference is that in one we have a finite node and in the other a focus. Both phase
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portraits are topologically equivalent and they can only be distinguished within the C1 class. In

case we may want to distinguish between them, a new invariant may easily be introduced.

Theorem 7.5.21. Consider the family QsnSN(C) and all the phase portraits that we have ob-

tained for this family. The values of the affine invariant I = (I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11,

I12, I13, I14, I15, I16, I17, I18, I19, I20) given in the following diagram yield a partition of these phase

portraits of the family QsnSN(C).

Furthermore, for each value of I in this diagram there corresponds a single phase portrait; i.e.

S and S′ are such that I(S)= I(S′), if and only if S and S′ are topologically equivalent.

The bifurcation diagram for QsnSN(C) has 1034 parts which produce 371 topologically dif-

ferent phase portraits as described in Tables 7.5.2 to 7.5.11. The remaining 663 parts do not

produce any new phase portrait which was not included in the 371 previous ones. The difference

is basically the presence of a strong focus instead of a node and vice versa and weak points.

The phase portraits having neither limit cycle nor graphic have been denoted surrounded by

parenthesis, for example (5S2); the phase portraits having one or two limit cycles have been de-

noted surrounded by brackets, for example [V80], possessing one limit cycle, and [[V88]], possessing

two limit cycles; the phase portraits having one or two graphics have been denoted surrounded

by {∗} or {{∗}}, for example {1S28} and {{1S57}}; the phase portraits having one limit cycle and one

graphic have been denoted surrounded by [{∗}], for example [{1S60}].

Proof of Theorem 7.5.21. The above result follows from the results in the previous sections and

a careful analysis of the bifurcation diagrams given in Section 7.4, in Figures 7.19 to 7.113, the

definition of the invariants I j and their explicit values for the corresponding phase portraits.

We recall some observations regarding the equivalence relations used in this study: the affine

and time rescaling, C1 and topological equivalences.

The coarsest one among these three is the topological equivalence and the finest is the affine

equivalence. We can have two systems which are topologically equivalent but not C1−equivalent.

For example, we could have a system with a finite antisaddle which is a structurally stable node

and in another system with a focus, the two systems being topologically equivalent but belonging

to distinct C1−equivalence classes, separated by the surface (S6) on which the node turns into a

focus.

In Tables 7.5.12 to 7.5.25 we listed in the first column 371 parts with all the distinct phase

portraits of Figures 7.1 to 7.11. Corresponding to each part listed in column 1 we have in its
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horizontal block, all parts whose phase portraits are topologically equivalent to the phase portrait

appearing in column 1 of the same horizontal block.

In the second column we have put all the parts whose systems yield topologically equivalent

phase portraits to those in the first column, but which may have some algebro–geometric features

related to the position of the orbits. In the third column we have presented all the parts which are

topologically equivalent to the ones from the first column having a focus instead of a node.

In the fourth (respectively, fifth; sixth; seventh; and eightieth) column we have listed all parts

whose phase portraits have a node which is at a bifurcation point producing foci close to the node

in perturbations, a node–focus to shorten (respectively, a finite weak singular point; belong to

disconnected parts; possess an invariant curve not yielding a connection of separatrices; and have

symmetry).

The last column refers to other reasons associated to different geometrical aspects and they

are described as follows:

(1) it possesses a sn(4) as a finite singular point;

(2) it possesses a
(2
1

)
N at infinity;

(3) 3S20 is the singularity of the surface (S3), i.e. of the invariant polinomial T4, where the two

finite complex singularities are weak;

(4) it possesses a
(̂1
2

)
E−H at infinity;

(5) the antisaddle is triple;

(6) it possesses a
(̂2
3

)
N at infinity;

Whenever phase portraits appear on a horizontal block in a specific column, the listing is done

according to the decreasing dimension of the parts where they appear, always placing the lower

dimensions on lower lines.

7.5.1 Proof of the main theorem

The bifurcation diagram described in Section 7.4, plus Tables 7.5.2 to 7.5.11 of the geomet-

rical invariants distinguishing the 371 phase portraits, plus Tables 7.5.12 to 7.5.31 giving the

equivalences with the remaining phase portraits lead to the proof of the main statement of Theo-

rem 7.2.1.

Moreover, the phase portraits P3 from family QsnSN(A), P2 from family QsnSN(B) and P57

from family QsnSN(C) are topologically equivalent since there exists no geometrical invariant
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that distinguishes them. It has been needed to have the curve at infinity filled up with an in-

finite number of singularities to have a common element in the three families. The same ar-

gument is applied to prove the equivalence of the two other triplets. Also, there are 10 more

cases of coincidences between phase portraits of family QsnSN(C) and one of either QsnSN(A)

or QsnSN(B) and we have discovered another equivalence between 5S2 from QsnSN(A) and 5S3

from QsnSN(B) which have no equivalence in QsnSN(C). This proves Corollary 7.2.3.

Now, summing all the topologically distinct phase portraits from families QsnSN(A), QsnSN(B)

and QsnSN(C) and subtracting the intersections among them, according to Corollary 7.2.3, we

obtain 38+ 25+ 371− 17 = 417 topologically distinct phase portraits in QsnSN, and we prove

Corollary 7.2.4.

In the family QsnSN(C), all the phase portraits corresponding to parts of volume yield all

the topologically possible phase portraits of codimension one from group (A) (see page 67 for the

description of this group). Many of them had already been discovered being realizable, and others

which realization was missing have been found within the perturbations of family QsnSN(C). In

the next example we perturbe one phase portrait from family QsnSN(C) and obtain one phase

portrait of codimension one which was missing. Also three new phase portraits of group (B) can

be found from perturbations of family QsnSN(C).

Example 7.5.22. Phase portrait V177 yields an example of the “wanted” case A66 of codimension

one. Indeed, by adding the small perturbation x2/100 in a representative of the part V177 we obtain

the following system:

ẋ = x2 +12xy/5−22y2/5+ x2/100, ẏ= y− x2/10+28xy/5−13y2/2, (7.5.1)

and, hence, the infinite saddle–node
(0
2

)
SN splits into a saddle and a node, and we obtain the phase

portrait A66 of codimension one, as shown in Figure 7.114.

By applying perturbations to the phase portraits of family QsnSN(C) we obtain the “wanted”

new phase portraits of codimension one in Table 7.5.1. Then, Corollary 7.2.5 is proved.
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A66
V177

Figure 7.114: The perturbation of phase portrait V177 yielding the structurally unstable phase portrait
A66

Table 7.5.1: New codimension–one phase portraits obtained after perturbations

Phase portrait from QsnSN(C) Splitting
(0
2

)
SN Splitting sn(2)

V29 A49 B33

V35 — B34

V36 — B36

V102 A44 —
V170 A50 —
V172 A37 —
V174 A73 —
V177 A66 —
2S34 A51 —
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Table 7.5.2: Geometric classification for the family QsnSN(C)

I1=





1 & I2=





−1 {2.8L1},

0 & I3=





1 (5S2),

2 & I4=





1110 {P43},
2100 (P39),

2101 & I18=
{

y (1.1L4),
n (1.1L7),

2111 (7S6),
2120 (7S26),

2210 & I18=
{

y (1.1L3),
n (4S20),

2211 (V23),
3101 {1.1L2},
3110 (4S3),
3120 (V84),

3200 & I8=
{

(1,0) (1.1L1),
(0,2) (1.1L6),

3211 & I8=
{

(1,0) (V20),
(0,2) (V22),

3220 (V85),
4120 (V21),
5211 (V1),

∞ {P23},

1 & I3=





1 (P68),

2 & I4=





1110 {2.8L2},
1111 (1.2L5),
2100 (2.8L3),
2120 (1.2L7),

2 & I2=





−1 & I4=





2210 {1.4L5},
3101 {1.7L18},

3201 & I8=
{

(1,0) {1S40},
(1,2) {1S30},

3310 {1S28},
4201 {1S33},

0 & I3=A1 (next page)

1 & I3=A2 (next page)

2 & I3=A3 (next page)

3 & I2=A4 (next page)

∞ & I2=A5 (next page)
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Table 7.5.3: Geometric classification for the family QsnSN(C) (cont.)

I1=





A1[
I1=2,
I2=0

]
& I3=





1 & I4=





11 {P60},

21 & I5=





(0) & I6=
{

(0) (2.5L11),
(2) (P4),

(1) [2.5L13],
22 (2.5L4),

31 & I7=
{

(0,2) (2.5L3),
(1) (P1),

41 (2.5L1),

2 & I4=





2111 & I6=





(3) & I7=
{

(1) (2.7L16),
(1,2) (2.4L5),

(2,3) (P22),

2120 & I7=
{

(1) (2.7L17),
(1,2) (2.4L3),

2121 & I6=





(0) & I20=
{

s (2S13),
d (2S21),

(2) (2.4L7),
(3,3) (P26),

2211 & I6=





(0) (2S45),
(1) {2.7L18},
(3) (2.7L5),

2221 & I6=
{

(0) (2S18),
(2) (2.4L6),

3120 & I6=





(0) (2S52),
(1) {2.7L19},
(3) (2.7L3),

3121 & I7=
{

(1,0) (2.7L7),
(0) (P30),

3130 (2S12),
3131 (2S24),

3211 & I5=





(0) & I6=





(0) & I7=
{

(1,0) (2S51),
(2,0) (2S48),

(2) & I7=
{

(1,0) (2.7L4),
(3,0) (2.7L1),

(3) (2.4L9),
(1) [2S49],

A6 (next page)

2 & I2=
{

1 & I3=A2 (next page)

2 & I3=A3 (next page)

3 & I2=A4 (next page)

∞ & I2=A5 (next page)
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Table 7.5.4: Geometric classification for the family QsnSN(C) (cont.)

I1=





A6


I1=2,
I2=0,
I3=2


 & I4=





3212 (2.3L4),
3220 (2S53),
3221 (2.7L9),
3231 (2.3L7),
3232 (2S30),

3311 & I8=
{

(2,0) (2S17),
(3,0) (2S6),

3321 (2S19),
4111 (2.4L1),

4120 & I5=





(0) & I6=
{

(0) (2S56),
(2) (2.7L2),

(1) [2S54],

4121 & I6=
{

(0) (2.3L6),
(3) (2.7L11),

4131 (2.3L1),
4141 (2S3),

4211 & I7=
{

(0,2) (2S16),
(1) (2.3L3),

4212 (2S5),
4220 (2S11),
4221 (2S23),
4231 (2S31),

5120 & I7=
{

(1,2) (2.3L2),
(0,2) (2S10),

5121 (2S4),
5211 (2S1),
6120 (2S2),

2 & I2=





A2[
I1=2,
I2=1

]
& I3=





1 & I4=





21 & I7=
{

(0,2) (P41),
(1,1) {P50},

22 & I6=





(0) & I7=
{

(0,3) (1.5L2),
(2,1) {1.5L5},

(1) {P52},

31 & I16=
{

H {1.5L4},
P (1.5L3),

32 & I5=





(0) & I7=
{

(0,2) (1.5L1),
(1,1) (1.5L7),

(1) [1.5L6],
A

′
2 (next page)

2 & I3=A3 (next page)

3 & I2=A4 (next page)

∞ & I2=A5 (next page)
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Table 7.5.5: Geometric classification for the family QsnSN(C) (cont.)

I1=





A
′
2[

I1=2,
I2=1

]
& I3=





2 & I4=





1110 & I7=
{

(0,2) {1.4L7},
(1,1) {1.4L13},

2100 & I7=
{

(0,2) (1.7L20),
(1,1) {1.7L28},

2101 & I7=





(0,3) {1S37},
(1,0) {{1.7L31}},

(1,2) & I8=
{

(1,0) (1S52),
(2,0) {1S45},

(2,1) {{1S57}},

2111 & I5=





(0) & I6=





(0) & I7=





(0,4) (1S69),
(1,3) (1S7),
(2,2) (1S6),
(3,1) {1S14},

(1) {1.7L2},

(3) & I7=





(0,2) (1.4L14),

(1,1) & I9=
{

f (1.4L1),
∞ (1.4L4),

(1,3) {1.4L8},
(2,2) {1.4L12},

(3,5) {{P31}},
(1) [1.4L3],

2120 & I7=
{

(0,2) (1.7L9),
(1,1) (1.7L32),

2121 & I5=





(0) & I6=





(0) {1S44},

(3) & I7=





(0,1) (1.7L7),
(0,3) {1.7L21},
(1,2) {{1.7L27}},

(5) {1.7L3},
(1) [1.7L4],

2200 & I6=





(0) & I7=
{

(0,3) (1S35),
(2,1) {1S55},

(1) {1.7L29},
A7 (next page)

∞ {1.3L2},
2 & I2=2 & I3=A3 (next page)

3 & I2=A4 (next page)

∞ & I2=A5 (next page)
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Table 7.5.6: Geometric classification for the family QsnSN(C) (cont.)

I1=





A7


I1=2,
I2=1,
I3=2


 & I4=





2211 & I5=





(0) & I8=
{

(1,1) (1S68),
(2,0) (1S8),

(1) [1S12],

3101 & I5=





(0) & I8=
{

(0,2) {1S25},
(1,1) {1S66},

(1) [{1S60}],

3111 & I5=





(0) & I6=





(0) & I7=
{

(0,3) (1S67),
(2,1) (1S9),

(3) {1.7L6},
(1) [1S13],

3120 & I6=





(0) & I7=





(0,3) (1S24),
(1,2) (1S19),
(2,1) {1S71},

(1) {1.7L33},

3121 & I5=





(0) & I6=





(0) & I7=





(1,1) & I18=
{

y {1S15},
n (1S18),

(1,3) {{1S56}},
(2,2) {{1S53}},
(3,1) {1S43},
(4,0) {1S36},

(1) {{1.7L30}},
(1) [1S16],

3200 & I5=





(0) & I7=
{

(0,2) (1S27),
(1,1) (1S64),

(1) [1S58],
3211 {1.7L5},

3221 & I5=
{

(0) (1S23),
(1) [1S20],

4111 {1.7L1},

4120 & I5=





(0) & I7=
{

(0,2) (1S1),
(1,1) (1S74),

(1) [1S72],

4121 & I5=





(0) & I7=





(0,1) (1S2),
(0,3) {1S26},
(2,1) {1S65},

(1) & I18=
{

y [{1S59}],
n [1S4],

4211 {1S21},
5111 {1S5},

2 & I2=2 & I3=A3 (next page)

3 & I2=A4 (next page)

∞ & I2=A5 (next page)
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Table 7.5.7: Geometric classification for the family QsnSN(C) (cont.)

I1=





A3[
I1=2,
I2=2

]
& I3=





1 (2.5L10),

2 & I4=





1111 (2S41),
2111 {2.7L20},

2121 & I5=
{

(0) (2S59),
(1) [2S61],

3111 {2S62},

A4

[I1=3]
& I2=





0 & I3=





1 & I4=





21 & I7=
{

(0,2) (5.7L11),
(1,1) (5.7L2),

22 (5S9),

31 & I6=





(0) & I7=





(0,3) (5S26),

(2,1) & I18=
{

y {5S33},
n (5S13),

(1) {5.7L1},
(2) {5.7L14},

41 & I5=





(0) & I7=





(0,2) (5S1),
(1,1) (5S3),
(2,1) (5S36),

(1) [5S5],

2 & I4=





2111 & I6=





(3) (4S8),
(1,5) {7.7L4},
(2,3) (4.4L3),

2120 (4S6),

2121 & I6=





(0) & I8=
{

(1,1) (V49),
(2,0) (V46),

(2) (4S33),
(3,3) (7.7L1),

2211 & I6=





(2) & I7=
{

(0,3) (7S65),
(2,1) (7S33),

(3) & I10=





0 & I11=
{

N (7S63),
SN (7S9),

1 (7S68),
(2,2) {4.7L1},
(2,3) (4.4L1),

2221 & I6=





(0) & I7=





(1,3) & I11=
{

N (V155),
SN (V44),

(2,2) (V104),

(2) & I7=
{

(0,2) (4S32),
(1,1) (4S29),

3120 & I10=





0 (7S69),

1 & I11=
{

N (7S16),
SN (7S61),

A8 (next page)

2 & I3=A9 (next page)

∞ & I2=A5 (next page)
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Table 7.5.8: Geometric classification for the family QsnSN(C) (cont.)

I1=





A8


I1=3,
I2=0,
I3=2


 & I4=





3121 & I5=





(0) & I6=





(0) (V122),

(3) & I7=
{

(0,2) (7S37),
(1,1) (7S38),

(1) [V118],

3130 & I7=





(1,3) & I11=
{

N (V37),
SN (V165),

(2,2) (V123),
3131 (V110),

3211 & I5=





(0) & I6=





(0) & I7=
{

(0,4) (V154),
(3,1) (V102),

(1) {7S32},

(2) & I7=





(0,2) & I8=





(0,0) & I11=
{

a (4S42),
N (7S64),

(1,0) (7S4),

(1,1) & I8=





(0,0) (7S70),

(1,0) & I10=





0 & I11=
{

a (4S16),
SN (7S8),

1 (7S71),
(2,0) (7S23),

(3) (4S31),

(1) & I10=
{

0 [4S26],
1 [7S28],

3212 & I5=





(0) & I12=
{

s {7S22},
d {7S29},

(1) [{7S27}],

3221 & I7=





(0,1) & I8=
{

(0,1) (7S44),
(1,1) (7S45),

(1,4) (4S9),
3231 {7S52},
3232 (V129),

3311 & I5=





(0) & I8=





(1,0) & I9=





f & I11=





N (V143),

SN & I19=
{

c (V170),
s (V71),

∞ & I11=
{

a (V145),
N (V13),

(2,0) (V64),
(1) [V90],

3321 & I5=





(0) & I7=
{

(0,2) (V108),
(1,1) (V78),

(1) & I12=
{

s [V80],
d [10S1],

(2) [[V88]],
A

′
8 (next page)

3 & I2=2 & I3=A9 (next page)

∞ & I2=A5 (next page)
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Table 7.5.9: Geometric classification for the family QsnSN(C) (cont.)

I1=





A
′
8


I1=3,
I2=0,
I3=2


 & I4=





4111 (4S1),
4120 (7S62),

4121 & I5=





(0) & I6=





(0) (V66),
(1) {7S41},

(3) & I8=
{

(1,1) (7S55),
(2,0) (7S3),

(1) & I6=
{

(0) [V100],
(3) [7S53],

4131 {7S2},

4141 & I5=
{

(0) (V15),
(1) [V17],

4211 & I6=





(0) & I7=





(0,3) & I7=
{

f (V144),
∞ (V147),

(2,1) & I11=
{

a {V172},
SN (V69),

(1) & I11=
{

a {7S77},
SN {7S7},

4212 & I5=





(0) & I7=
{

(0,2) (V10),
(1,1) (V83),

(1) [V89],

4220 & I11=
{

N (V42),
SN (V142),

4221 & I7=
{

(0,2) (V109),
(1,1) (V114),

4231 & I5=





(0) & I8=
{

(1,0) (V136),
(2,0) (V7),

(1) [V134],

5120 & I6=





(0) & I7=





(0,3) (V141),

(2,1) & I11=
{

a {V173},
N (V41),

(1) & I11=
{

a {7S78},
N {7S10},

5121 & I5=





(0) & I7=
{

(0,2) (V9),
(1,1) (V121),

(1) [V117],

5211 & I5=





(0) & I11=
{

a (V190),
SN (V25),

(1) & I11=
{

a [V178],
SN [V27],

6120 & I5=





(0) & I6=





(0) & I7=





(0,2) (V2),

(1,1) & I11=
{

a (V191),
N (V31),

(2) (7S15),

(1) & I11=
{

a [V179],
N [V33],

3 & I2=2 & I3=A9 (next page)

∞ & I2=A5 (next page)
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Table 7.5.10: Geometric classification for the family QsnSN(C) (cont.)

I1=





A9[
I1=3,
I2=2

]
& I3=





1 & I5=





(0) & I6=





(0) & I7=





(0,2,3) (5S28),
(1,1,3) (5S12),
(2,1,2) {5S23},

(1) {5.7L9},
(1) [5S22],

2 & I4=





1111 & I5=





(0) & I6=





(0) & I7=





(0,3,4) (V149),
(2,1,4) (V61),

(3,1,3) & I13=
{

S (V107),
SN {V53},

(1) & I13=
{

S {7S31},
SN {7S17},

(3) & I7=





(0,2,3) (4S44),
(1,1,3) (4S15),
(2,1,2) {4S13},

(1) & I6=





(0) & I13=
{

S [V94],
SN [V54],

(3) [4S25],

2111 & I5=





(0) & I6=





(0) & I7=





(1,2,3) & I8=
{

(1,0) (V198),
(2,0) (V62),

(2,2,2) (V51),

(3) & I8=
{

(0,1) {4S51},
(1,1) (4S36),

(3,5) & I7=
{

(0,0,2) {{7.7L6}},
(1,0,1) {7.7L5},

(1) [V99],

2121 & I5=





(0) & I6=





(3) & I7=
{

(0,1,2) (7S72),
(1,1,1) (7S60),

(5) & I11=
{

s {{7S67}},
d {7S42},

(1) & I7=
{

(0,1,2) [7S56],
(1,1,1) [{7S74}],

3111 & I6=





(3) & I7=
{

(0,1,2) {7S58},
(1,1,1) {{7S75}},

(5) & I7=
{

(0,0,3) {7S57},
(2,0,1) {{7S76}},

(1,5) {{7.7L7}},

3121 & I5=





(0) & I6=





(0) & I7=





(0,1,3) (V140),

(1,1,2) & I8=





(1,1) & I18=
{

1 {V166},
2 {{V169}},

(2,1) {V113},
(2,1,1) {V174},

(1) {7S79},

(1) & I6=





(0) & I7=





(0,1,3) [V137],
(1,1,2) [{V168}],
(2,1,1) [{V176}],

(1) [{7S81}],

A10 (next page)

∞ & I2=A5 (next page)
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Table 7.5.11: Geometric classification for the family QsnSN(C) (cont.)

I1=





A10


I1=3,
I2=2,
I3=2


 & I4=





4111 & I5=





(0) & I6=





(0) & I18=
{

1 {V138},
2 {{V177}},

(1) {{7S82}},

(5) & I7=
{

(0,2,0) {7S1},
(1,1,0) {7S85},

(1) [{7S83}],

4121 & I5=





(0) & I7=
{

(0,2,1) (V3),
(1,1,1) (V192),

(1) & I7=





(0,2,1) [V5],

(1,1,1) & I14=
{

f [V180],
∞ [V194],

(1,1) [[V182]],

5111 & I5=





(0) & I7=
{

(0,1,2) {V6},
(1,1,1) {V189},

(1) [{V183}],

A5

[I1=∞]
& I2=





0 & I15=





0 {P58},

1 & I17=
{

− {P65},
∪ {P64},

1 & I3=
{

2 {1.2L8},
∞ {P57}.
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Table 7.5.12: Topological equivalences for the family QsnSN(C)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
V1

V2

V3
V4

6S1 3S1

V5

V6

V7

V9

V19 V8, V18

6S3, 6S4 3S3, 3S4

3.6L1

V10

V12

3S5, 3S6

3.10L1

V13
V11, V14

3S7 4S4

V15
V16

6S2 3S2

V17

V20 2.11L3
(1)

V21 1.2L1
(2), 2.11L2

(1)

V22

V23

V24

4S15 3S20
(3)

1.2L2
(2), 2.11L2

(1)

V25
V26

6S5 3S8

V27
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Table 7.5.13: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

V31
V32

6S6 3S9

V33

V37

V43 V36, V40

6S9, 6S10 3S12, 3S13

3.6L2

V41
V34, V38

6S7 3S10

V42
V35, V39

6S8 3S11

V44

V45, V73, V96 V30, V72

6S11, 6S22 3S23, 3S24, 3S26, 3S43

3.6L3 3.10L4

V46

V47, V63

3S14, 3S15 4S11

3.10L2

V49

V48, V75, V97 V50, V98

6S12, 6S30 3S25, 3S44, 3S45 4S12, 4S24

3.4L7, 3.6L8

V51
V52

6S13

V53

V54

V61

V55, V56, V57

V58, V59

6S15, 6S16, 6S17 3S16, 3S32, 3S426S18, 6S19

3.6L7, 6.6L1
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Table 7.5.14: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

V62
V60

6S14 3S46

V64

V65 V74, V76

6S23, 6S24
3S17, 3S18, 3S27

3S30, 3S35, 3S41

3.6L4, 3.6L5 3.3L2, 3.10L3, 3.10L5

P12

V66

V67 V77, V86

6S25, 6S28 3S19, 3S31, 3S48, 3S49

3.3L3, 3.6L6

V69
V28, V68

6S20 3S21

V71
V29, V70

6S21 3S22

V78

V79, V91

6S26 3S28, 3S37

3.10L6

V80 3S33

V83

V81, V82

6S27 3S29, 3S34, 3S36, 3S39

3.3L1, 3.10L7

V84 1.2L3
(2)

V85 1.2L4
(2)

V88

V89
V92

3S38

V90
V93

3S40
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Table 7.5.15: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

V94
V87

6S29

V99

V100
V101

3S47

V102
V105

3S50

V104
V103, V106 V125, V126

6S31 3S51 4S37, 4S38

V107
V95

6S32

V108
V127

3S57

V109

V128 V131, V132

6S39, 6S40 3S58, 3S59

3.6L10

V110

V126 V111, V112

6S33, 6S37 3S52, 3S56

3.6L9

V113

V114
V115, V116

6S34 3S53

V117

V118

V121
V119

6S35 3S54

V122
V120

6S36 3S55

V123
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Table 7.5.16: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

V129
V130, V133

6S38 3S60

V134

V136
V135

6S41 3S61

V137

V138

V140
V139

6S42 3S62

V141

V142

V143

V144

V145
V144

3S63

V147

V148

3S64, 3S56

3.10L8

V149

V153, V158 V151, V152

V196, V197 V159

6S43, 6S44 4S45, 4S466S46, 6S47

V154
V157

3S67

V155
V156, V162, V163 V164

6S49 3S66 4S50, 4S52

V165

V166
V167

6S50 3S68
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Table 7.5.17: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
V168

V169

V170 V171

V172

V173

V174
V175

6S51 3S69

V176

V177

V178

V179 3S72

V180
V181

6S52 3S70

V182

V183

V189
V195

6S59 3S76

V190
V184

6S54 3S71

V191
V185

6S55

V192

V186, V187, V193

6S53, 6S56 3S73, 3S74

6S57, 6S60 3S77, 3S78

3.6L11, 3.6L12 3.3L46.6L2
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Table 7.5.18: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

V194
V188

6S59 3S76

V198

V150 V160, V161, V199

6S45, 6S48 4S476S61, 6S62

6.6L3

1S1

1S2
1S3

1.6L1 1.3L1

1S4

1S5

1S6

1S7

1S8
1S10

1.6L2 1.3L3

1S9
1S11

1.6L3 1.3L4

1S12

1S13

1S14

1S15

1S16

1S18
1S17

1.6L4 1.3L6

1S19 1S70

1S20

1S21

1S23
1S22

1.6L5 1.3L8
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Table 7.5.19: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
1S24

1S25 1.7L10
(4)

1S26

1S27

1S28
1S29

1.3L11

1S30
1S31, 1S32

1.3L12 1.7L24

1S33
1S34

1.3L10

1S35

1S36

1S37 1.7L11
(4)

1S40
1S41, 1S50

1.3L9 1.4L10

1S43

1S44
1S47

1.6L7

1S45

1S38, 1S39 1S48, 1S491S46 1.6L8, 1.6L9
1.7L22, 1.7L23 1.7L12

(4), 1.7L13
(4)

1.7L25, 1.7L26

P48 P46
(4)

1S52
1S42, 1S51 1S54

1.6L6 1.4L9, 1.4L11

1S53

1S55

1S56

1S57 1.7L14
(4)
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Table 7.5.20: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
1S58

1S59

1S60 1.7L15
(4)

1S64
1S61

1.6L10 1.3L13

1S65
1S62

1.6L11 1.3L14

1S66
1S63

1.6L12 1.3L15 1.7L16
(4), 1.7L17

(4)

P53
(4), P55

(4)

1S67

1S68

1S69

1S71

1S72

1S74
1S73

1.6L13 1.3L17

2S1 2S8

2S2 2S9

2S3

2S4 2S26

2S5 2S20

2S6
2S7 2S15

2.4L2

2S10 2S32

2S11 2S33

2S12 2S27



7.5
C

om
pletion

of
th

e
proof

of
th

e
m

ain
th

eorem
261

Table 7.5.21: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

2S13
2S14

2.4L4

2S16 2S35

2S17 2S34

2S18
2S28, 2S29

2.4L10

2S19 2S22

2S21

2S22

2S23 2S25

2S24

2S30

2S31

2S41
2S42, 2S44 2S43

2.6L1 2.4L13

2S45
2S36, 2S46 2S47

2S37
(5), 2S38

(5)

2S39
(5), 2S40

(5)

2.6L2 2.3L8, 2.3L12 2.4L11, 2.2L12, 2.4L14

P67
(5)

2S48

2S49

2S51
2S50 2S58

(5)

2.6L3 2.3L10

2S52

2S53
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Table 7.5.22: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
2S54

2S56
2S55 2S57

(5)

2.6L4 2.3L11

2S59
2S60

2.6L5 2.3L12

2S61

2S62

4S1
4S2

3.4L1

4S3

4S6
4S7

3.4L2

4S8
4S10, 4S18, 4S23

3.4L4, 3.4L11

4S9
4S22

3.4L6

4S13

4S15
4S14

4.6L1 3.4L8

4S16

4S17 4S19, 4S21

4.6L2, 4.6L3
3.4L3, 3.4L5

3.4L9, 3.4L10

P13 P20

4S20

4S25

4S26
4S27

3.4L12
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Table 7.5.23: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

4S29
4S30 4S28

4.6L4 3.4L13

4S31
4S41

3.4L17

4S32
4S40

3.4L16

4S33

4S39 4S34, 4S35

4.6L5, 4.6L6 3.4L14, 3.4L15

P24

4S36

4S42
4S43

3.4L18

4S44
4S48 4S49

4.6L7 4.4L5

4S51

5S1

5S2

5S20, 5S21

5.7L4 4.5L3

P38
(6), P63

(1)

5S3
5S4

5.6L1 3.5L1

5S5 5S34

5S9

5S8, 5S10, 5S16 5S7, 5S15 5S24, 5S25

5S18, 5S19 5S17 5S31, 5S32

5.7L10
5.7L3, 5.7L6 5.6L4, 5.6L5

3.5L3, 3.5L4 4.5L1, 4.5L25.7L7, 5.7L12 3.5L5, 3.5L6

P5 P6, P8 P9
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Table 7.5.24: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

5S12
5S11

5.6L2 3.5L7

5S13
5S6, 5S14

5.6L3 3.5L2

5S22

5S23

5S26

5S28
5S29 5S27, 5S30

5.6L6, 5.6L7 4.5L4

5S33

5S36
5S35

5.6L8 3.5L8

7S1

7S2

7S3

7S4
7S5

3.7L1

7S6

7S7

7S8
7S18 7S19

6.7L3 3.7L4

7S9
7S20 7S21

6.7L4 3.7L5

7S10

7S15
7S11, 7S13

6.7L1 3.7L2

7S16
7S12, 7S14

6.7L2 3.7L3
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Table 7.5.25: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
7S17

7S22 3.7L7

7S23

7S24, 7S25

3.7L6 6.7L5 3.7L8, 3.7L9, 3.7L11

P14, P16

7S26

7S27

7S28
7S30

3.7L12

7S29 3.7L10

7S31
7S36

3.7L12

7S32
7S34

3.7L13

7S33
7S35

3.7L14

7S37

7S43 7S48, 7S49

6.7L10, 6.7L11 3.7L16, 3.7L17

P28

7S38
7S39, 7S40

6.7L7 3.7L15

7S41

7S42

7S44
7S46, 7S50

6.7L9 3.7L18

7S45
7S47, 7S51

6.7L8 3.7L19
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Table 7.5.26: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
7S52

7S53

7S55
7S54

6.7L12 3.7L20

7S56

7S57

7S58

7S60
7S59

6.7L13 3.7L21

7S61

7S62

7S63

7S64

7S65
7S66

3.7L22

7S67

7S68

7S69

7S70

7S71

7S72
7S73

6.7L14 3.7L23

7S74

7S75

7S76

7S77
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Table 7.5.27: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
7S78

7S79
7S80

6.7L15 3.7L24

7S81

7S82

7S83

7S85
7S84

6.7L16 3.7L25

10S1

1.1L1

1.1L2

1.1L3

1.1L4
1.1L5

P47

1.1L6

1.1L7
1.1L8

P40

1.2L5
1.2L6

P66

1.2L7

1.2L8 1.2L9, 1.2L10

1.3L2
1.3L5, 1.3L7, 1.3L16

P18, P45

1.4L1
1.4L2

P19 P10

1.4L3
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Table 7.5.28: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
1.4L4

1.4L5

1.4L7 P44
(4)

1.4L8

1.4L12

1.4L13 P49
(4)

1.4L14

1.5L1

1.5L2

1.5L3

1.5L4

1.5L5

1.5L6

1.5L7
1.5L8

P56 P54

1.7L1

1.7L2

1.7L3

1.7L4

1.7L5

1.7L6

1.7L7
1.7L8

P32 P33

1.7L9

1.7L18
1.7L19

P37

1.7L20
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Table 7.5.29: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
1.7L21

1.7L27

1.7L28

1.7L29

1.7L30

1.7L31 P51
(4)

1.7L32

1.7L33

2.3L1

2.3L2

2.3L3

2.3L4
2.3L5

P15

2.3L6

2.3L7

2.4L1

2.4L3

2.4L5

2.4L6 2.4L8

2.4L7

2.4L9

2.5L1 2.5L2

2.5L3 2.5L9

2.5L4

2.5L5, 2.5L6

2.5L7, 2.5L8

P7, P35 P11

2.5L10
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Table 7.5.30: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)

2.5L11
2.5L12, 2.5L14 2.5L15 2.5L16

(5)

P59 P62 P61

2.5L13

2.7L1 2.7L6

2.7L2 2.7L12

2.7L3 2.7L13

2.7L4 2.7L15

2.7L5 2.7L14

2.7L7 2.7L8

2.7L9 2.7L10

2.7L11

2.7L16

2.7L17

2.7L18

2.7L19

2.7L20

2.8L1

2.8L2

2.8L3

4.4L1
4.4L2

P17

4.4L3
4.4L4

P25

4.7L1
4.7L2

P21

5.7L2
5.7L4 5.7L5 5.7L13

P3 P2

5.7L9
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Table 7.5.31: Topological equivalences for the family QsnSN(C) (cont.)

Presented Identical Finite Finite Finite Disconnected Possessing
phase under antisaddle antisaddle weak parts invariant curve Symmetry Other reasons

portrait perturbations focus node–focus point (no separatrix)
5.7L11

5.7L14

7.7L1
7.7L3 7.7L2 5.7L13

P27 P29

7.7L4

7.7L5

7.7L6

7.7L7

P1

P4 P36

P22

P23

P26

P30

P31

P39

P41

P43

P50

P52

P57

P58

P60

P64

P65

P68



272 The topological classification of QS with semi–elemental saddle–nodes (C)



Chapter

8

The complete classification of

quadratic differential systems with

invariant hyperbolas

8.1 Introduction and statement of main results

Quadratic systems with an invariant algebraic curve have been studied by many authors. For

example, Schlomiuk and Vulpe [52, 56] have studied quadratic systems with invariant straight

lines, Qin Yuan-xum [48] has investigated the quadratic systems having an ellipse as limit cy-

cle, Druzhkova [24] has presented the necessary and sufficient conditions for the existence and

the uniqueness of an invariant algebraic curve of second degree in terms of the coefficients of

quadratic systems and Cairó and Llibre [18] have studied the quadratic systems having invariant

algebraic conics in order to investigate the Darboux integrability of such systems.

The motivation for studying the systems in the quadratic class is not only because of their

usefulness in many applications but also for theoretical reasons, as discussed by Schlomiuk and

Vulpe in the introduction of [52]. The study of nondegenerate quadratic systems could be done

using normal forms and applying the invariant theory.

Here we consider quadratic differential systems, i.e. systems (1.4.1) with m = 2. We always as-

sume that the polynomials P and Q are coprime. Otherwise, doing a rescaling of the time, systems

(1.4.1) can be reduced to linear or constant systems. Quadratic systems under this assumption are
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called nondegenerate quadratic systems.

Definition 1.4.1 of algebraic invariant curve will be very useful in this chapter since our pur-

pose is to classify all nondegenerate quadratic systems possessing an invariant hyperbola.

The main goal of this chapter is to investigate nondegenerate quadratic systems having in-

variant hyperbolas and this study is done applying the invariant theory. More precisely, denoting

by QSf the class of all quadratic systems possessing a finite number of singularities (finite and

infinite), in this chapter we provide necessary and sufficient conditions for a quadratic system

in QSf to have invariant hyperbolas. We also determine the invariant criteria which provide the

number and multiplicity of such hyperbolas.

Definition 8.1.1. We say that an invariant conic

Φ(x, y)= p+ qx+ ry+ sx2+2txy+uy2 = 0, (s, t, u) 6= (0,0,0), (p, q, r, s, t,u)∈C
6

for a quadratic vector field X has multiplicity m, if there exists a sequence of real quadratic

vector fields Xk converging to X, such that each Xk has m distinct (complex) invariant conics

Φ
1
k
= 0, . . . ,Φm

k
= 0, converging to Φ = 0 as k → ∞, and this does not occur for m+1. In the case

when an invariant conic Φ(x, y)= 0 has multiplicity one we call it simple.

The main results of this chapter are stated in the following theorem. They can also be found

in the paper of Oliveira, Rezende and Vulpe [44].

Theorem 8.1.2. (A) The conditions η ≥ 0, M 6= 0 and γ1 = γ2 = 0 are necessary for a quadratic

system in the class QSf to possess at least one invariant hyperbola.

(B) Assume that for a system in the class QSf the condition γ1 = γ2 = 0 is satisfied.

(B1) If η > 0, then the necessary and sufficient conditions for this system to possess at least

one invariant hyperbola are given in Figure 8.1, where we can also find the number and

multiplicity of such hyperbolas.

(B2) In the case η = 0 and M 6= 0, the corresponding necessary and sufficient conditions for

this system to possess at least one invariant hyperbola are given in Figure 8.2, where

we can also find the number and multiplicity of such hyperbolas.

(B3) In the case of the existence of a family (F ) (F ∈ {F1, . . . ,F5}) of invariant hyperbolas, we

give necessary and sufficient conditions which characterize the geometric properties of

this family (including the number of singularities) (see Remark 8.1.4).

(C) Figures 8.1 and 8.2 actually contain the global bifurcation diagram in the 12−dimensional

space of parameters of the systems belonging to family QSf, which possess at least one in-
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variant hyperbola. The corresponding conditions are given in terms of invariant polynomials

with respect to the group of affine transformations and time rescaling.

Remark 8.1.3. In the case of the existence of two hyperbolas, we denote them by H
p, if their

asymptotes are parallel, and by H , if there exists at least one pair of nonparallel asymptotes. We

denote by Hk (k = 2,3) a hyperbola with multiplicity k; by H
p

2 a double hyperbola, which, after

perturbation, splits into two H
p; and by H

p
3 a triple hyperbola which splits into two H

p and one

H .

Remark 8.1.4. (i) Consider the three families Φs(x, y)= 2s−r(x− y)+2xy= 0, s ∈ {−1,0,1}, r ∈R

of hyperbolas. These are three distinct families (see Figure 8.3) which we denote, respectively,

by F1, F2 and F3. We observe that, for each one of the three families, any two hyperbolas

have distinct parallel asymptotes.

(ii) Consider the two families Φ̃s(x, y)= (4−sq)/2+qx+sy+2xy= 0, s ∈ {0,1}, (q ∈R) of hyperbolas.

These families are distinct and we denote them, respectively, by F4, F5 (see Figure 8.4). We

observe that, for each family, any two hyperbolas have only one common asymptote.

The invariants and comitants of differential equations used for proving our main result are

obtained following the theory of algebraic invariants of polynomial differential systems developed

by Sibirsky and his disciples which is discussed in Chapter 4.

8.1.1 The main invariants and comitants associated with invariant hyperbolas

Using the elements of the minimal polynomial basis given in Section 4.4, we construct the

affine invariants, T−comitants and CT−comitants associated with invariant hyperbolas.

γ1(a)=A2
1(3A6+2A7)−2A6(A8 + A12),

γ2(a)=9A2
1A2(23252A3 +23689A4)−1440A2 A5(3A10+13A11)−1280A13(2A17+ A18

+23A19−4A20)−320A24(50A8+3A10 +45A11−18A12)+120A1 A6(6718A8

+4033A9+3542A11 +2786A12)+30A1 A15(14980A3 −2029A4−48266A5)

−30A1A7(76626A2
1−15173A8 +11797A10+16427A11 −30153A12)

+8A2A7(75515A6−32954A7)+2A2 A3(33057A8 −98759A12)−60480A2
1 A24

+ A2A4(68605A8−131816A9 +131073A10+129953A11)−2A2(141267A2
6

−208741A5A12+3200A2 A13),
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Figure 8.1: The existence of invariant hyperbola: the case η> 0
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Figure 8.2: The existence of invariant hyperbola: the case η= 0

Figure 8.3: The families of invariant hyperbolas Φs(x, y)= 2s−r(x−y)+2xy=0 (r∈R, s∈ {−1,0,1})

Figure 8.4: The families of invariant hyperbolas Φ̃s(x, y) = (4− sq)/2+ qx+ sy+ 2xy = 0 (q ∈ R,
s ∈ {0,1})
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γ3(a)=843696A5 A6A10+ A1(−27(689078A8 +419172A9−2907149A10 −2621619A11)A13

−26(21057A3 A23+49005A4 A23−166774A3 A24+115641A4A24)).

γ4(a)=−9A2
4(14A17+ A21)+ A2

5(−560A17 −518A18+881A19 −28A20+509A21)

− A4(171A2
8 +3A8(367A9 −107A10)+4(99A2

9 +93A9 A11+ A5(−63A18−69A19

+7A20 +24A21)))+72A23 A24,

γ5(a)=−488A3
2 A4+ A2(12(4468A2

8 +32A2
9 −915A2

10+320A9 A11−3898A10A11−3331A2
11

+2A8(78A9 +199A10+2433A11))+2A5(25488A18 −60259A19−16824A21)

+779A4 A21)+4(7380A10 A31−24(A10+41A11)A33+ A8(33453A31 +19588A32

−468A33 −19120A34)+96A9(−A33+ A34)+556A4A41 − A5(27773A38+41538A39

−2304A41 +5544A42)),

γ6(a)=2A20−33A21,

γ7(a)=A1(64A3−541A4)A7+86A8 A13+128A9 A13−54A10A13−128A3 A22+256A5A22

+101A3 A24−27A4 A24,

γ8(a)=3063A4 A2
9−42A2

7(304A8+43(A9 −11A10))−6A3 A9(159A8+28A9 +409A10)

+2100A2 A9A13+3150A2 A7A16+24A2
3(34A19−11A20)+840A2

5A21 −932A2A3A22

+525A2 A4A22+844A2
22 −630A13A33,

γ9(a)=2A8 −6A9+ A10,

γ10(a)=3A8 + A11,

γ11(a)=−5A7 A8+ A7 A9+10A3 A14,

γ12(a)=25A2
2 A3+18A2

12,

γ13(a)=A2,

γ14(a)=A2 A4+18A2 A5−236A23+188A24,

γ15(a, x, y)=144T1T2
7 −T3

1(T12+2T13)−4(T9T11+4T7T15+50T3T23+2T4T23+2T3T24 +4T4T24),

γ16(a, x, y)=T15,

γ17(a, x, y)=T11,

γ̃18(a, x, y)=C1(C2,C2)(2) −2C2(C1,C2)(2),

γ̃19(a, x, y)=D1(C1,C2)(2)− ((C2,C2)(2),C0)(1),

δ1(a)=9A8 +31A9+6A10,

δ2(a)=41A8 +44A9+32A10,
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δ3(a)=3A19−4A17,

δ4(a)=−5A2 A3+3A2 A4 + A22,

δ5(a)=62A8 +102A9−125A10,

δ6(a)=2T3 +3T4,

β1(a)=3A2
1 −2A8−2A12,

β2(a)=2A7 −9A6,

β3(a)=A6,

β4(a)=−5A4 +8A5,

β5(a)=A4,

β6(a)=A1,

β7(a)=8A3 −3A4−4A5,

β8(a)=24A3 +11A4+20A5,

β9(a)=−8A3 +11A4 +4A5,

β10(a)=8A3 +27A4−54A5,

β11(a, x, y)=T2
1 −20T3 −8T4,

β12(a, x, y)=T1,

β13(a, x, y)=T3,

R1(a)=−2A7(12A2
1 + A8+ A12)+5A6(A10 + A11)−2A1(A23− A24)+2A5(A14+ A15)

+ A6(9A8 +7A12),

R2(a)=A8 + A9−2A10,

R3(a)=A9,

R4(a)=−3A2
1 A11+4A4 A19,

R5(a, x, y)=(2C0(T8−8T9 −2D2
2)+C1(6T7 −T6)− (C1,T5)(1)+6D1(C1D2−T5)−9D2

1C2),

R6(a)=−213A2 A6+ A1(2057A8 −1264A9+677A10 +1107A12)+746(A27 − A28),

R7(a)=−6A2
7 − A4 A8+2A3 A9−5A4 A9+4A4 A10−2A2 A13,

R8(a)=A10,

R9(a)=−5A8 +3A9,

R10(a)=7A8 +5A10+11A11,

R11(a, x, y)=T16.
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8.1.2 Preliminary results involving the use of polynomial invariants

Considering the GL−comitant C2(a, x, y)= y p2(a, x, y)− x q2(a, x, y) as a cubic binary form of x

and y, we calculate

η(a)=Discrim[C2,ξ], M̃(a, x, y)=Hessian[C2],

where ξ= y/x or ξ= x/y. Following [57], we have the next assertion.

Lemma 8.1.5. The number of distinct roots (real and imaginary) of the polynomial C2(a, x, y) 6≡ 0

is determined by the following conditions:

(i) 3 real, if η> 0;

(ii) 1 real and 2 imaginary, if η< 0;

(iii) 2 real (1 double), if η= 0 and M̃ 6= 0;

(iv) 1 real (triple), if η= M̃ = 0.

Moreover, for each one of these cases the quadratic systems (1.5.1) can be brought via a linear

transformation to one of the following canonical systems (SI )− (SIV ):





ẋ = a+ cx+d y+ gx2+ (h−1)xy,

ẏ = b+ ex+ f y+ (g−1)xy+hy2;
(SI )





ẋ = a+ cx+d y+ gx2+ (h+1)xy,

ẏ = b+ ex+ f y− x2+ gxy+hy2;
(SII )





ẋ = a+ cx+d y+ gx2+hxy,

ẏ = b+ ex+ f y+ (g−1)xy+hy2;
(SIII )





ẋ = a+ cx+d y+ gx2+hxy,

ẏ = b+ ex+ f y− x2+ gxy+hy2.
(SIV )

Proof. We consider the polynomial C2 = y p2(x, y)− x q2(x, y) 6≡ 0 as a cubic binary form. It is

well–known that there exists g ∈ GL(2,R), g(x, y) = (u,v), such that the transformed binary form

gC2(a, x, y)= C2(a, g−1(u,v)) is one of the following 4 canonical forms:

(i) xy(x− y); (ii) x(x2+ y2); (iii) x2 y; (iv) x3.

We note that each of such canonical forms corresponds to one of the cases enumerated in the

statement of Lemma 8.1.5. On the other hand, applying the same transformation g to an initial
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system (1.5.1) and calculating its polynomial C2(a(g), u,v) for the transformed system, Defini-

tion 4.4.1 implies the following relation:

C2(a(g), u,v)= det(g)C2(a, x, y)= det(g)C2(a, g−1(u,v))=λC2(a, g−1(u,v)),

where we may consider λ = 1 (via a time rescaling). Therefore, considering the expression for

C2(x, y) = y p2(x, y)− x q2(x, y), we construct the canonical forms of quadratic homogeneous sys-

tems having their polynomials C2 the indicated canonical forms (i)− (iv) and we arrive at the

systems (SI )− (SIV ), respectively. This completes the proof of Lemma 8.1.5.

Lemma 8.1.6. If a quadratic system (1.5.1) possesses a nonparabolic irreducible conic, then the

conditions γ1 = γ2 = 0 hold.

Proof. According to [19], a system (1.5.1) possessing a second order nonparabolic irreducible curve

as an algebraic particular integral can be written in the form

ẋ = aΦ(x, y)+Φ
′
y(gx+hy+k), ẏ= bΦ(x, y)−Φ

′
x(gx+hy+k),

where a, b, g, h, k are real parameters and Φ(x, y) is the conic

Φ(x, y)≡ p+ qx+ ry+ sx2+2txy+uy2 = 0. (8.1.1)

A straightforward calculation gives γ1 = γ2 = 0 for the above systems and this completes the proof

of the lemma.

Assume that a conic (8.1.1) is an affine algebraic invariant curve for quadratic systems (1.5.1),

which we rewrite in the form:

ẋ = a+ cx+d y+ gx2+2hxy+ky2 ≡ P(x, y),

ẏ= b+ ex+ f y+ lx2+2mxy+ny2 ≡Q(x, y).
(8.1.2)

Remark 8.1.7. Following [38], we construct the determinant

∆=

∣∣∣∣∣∣∣∣∣∣

s t q/2

t u r/2

q/2 r/2 p

∣∣∣∣∣∣∣∣∣∣

,
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associated with the conic (8.1.1). By [38], this conic is nondegenerate (i.e. it could not be presented

in C[x, y] as a product of lines) if, and only if, ∆ 6= 0.

In order to detect if an invariant conic (8.1.1) of a system (8.1.2) has the multiplicity greater

than one, we shall use the notion of k-th extactic curve Ek(X ) of the vector field X associated with

systems (8.1.2). This curve is defined in the paper [20, Definition 5.1] as follows:

Ek(X )= det




v1 v2 . . . vℓ

X (v1) X (v2) . . . X (vℓ)
. . .
. . . . . .
. . .

Xℓ−1(v1) Xℓ−1(v2) . . . Xℓ−1(vℓ)




,

where v1,v2, . . . ,vl are the basis of Cn[x, y], the C−vector space of polynomials in Cn[x, y] and

ℓ= (k+1)(k+2)/2. Here X 0(vi)= vi and X j(v1)= X (X j−1(v1)).

Considering Definition 8.1.1 of multiplicity of an invariant curve and according to [20], the

following statement holds:

Lemma 8.1.8. If an invariant curve Φ(x, y) = 0 of degree k has multiplicity m, then Φ(x, y)m

divides Ek(X ).

We shall apply Lemma 8.1.8 in order to detect additional conditions for a conic to be multiple.

According to Definition 1.4.1 of invariant curve (see page 14) and considering the cofactor

K =Ux+V y+W ∈R[x, y], the following identity holds:

∂Φ

∂x
P(x, y)+

∂Φ

∂y
Q(x, y)=Φ(x, y)(Ux+V y+W).

This identity yields a system of 10 equations for determining the 9 unknown parameters p, q, r,

s, t, u, U , V , W:

Eq1 ≡ s(2g−U)+2ℓt = 0,

Eq2 ≡ 2t(g+2m−U)+ s(4h−V )+2ℓu = 0,

Eq3 ≡ 2t(2h+n−V )+u(4m−U)+2ks = 0,

Eq4 ≡ u(2n−V )+2kt =0,

Eq5 ≡ q(g−U)+ s(2c−W)+2et+ℓr =0,

(8.1.3)
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Eq6 ≡ r(2m−U)+ q(2h−V )+2t(c+ f −W)+2(ds+ eu)= 0,

Eq7 ≡ r(n−V )+u(2 f −W)+2dt+kq =0,

Eq8 ≡ q(c−W)+2(as+bt)+ er− pU = 0,

Eq9 ≡ r( f −W)+2(bu+at)+dq− pV = 0,

Eq10 ≡ aq+br− pW = 0.

(8.1.4)

8.2 The proof of the Main Theorem

Assuming that a quadratic system (8.1.2) in QSf has an invariant hyperbola (8.1.1), we con-

clude that this system must possess at least two real distinct infinite singularities. So, according

to Lemmas 8.1.5 and 8.1.6, the conditions η≥ 0, M̃ 6= 0 and γ1 = γ2 = 0 have to be fulfilled.

In what follows, supposing that the conditions γ1 = γ2 = 0 hold, we shall examine two families

of quadratic systems (8.1.2): systems with three real distinct infinite singularities (corresponding

to the condition η> 0) and systems with two real distinct infinite singularities (corresponding to

the conditions η= 0 and M̃ 6= 0).

8.2.1 Systems with three real infinite singularities and θ 6= 0

In this case, according to Lemma 8.1.5, systems (8.1.2) could be brought via a linear transfor-

mation to the following family of systems:

ẋ = a+ cx+d y+ gx2+ (h−1)xy,

ẏ= b+ ex+ f y+ (g−1)xy+hy2.
(8.2.1)

For this systems we calculate

C2(x, y)= xy(x− y), θ =−(g−1)(h−1)(g+h)/2 (8.2.2)

and we shall prove the next lemma.

Lemma 8.2.1. Assume that for a system (8.2.1) the conditions θ 6= 0 and γ1 = 0 hold. Then, this

system could be brought via an affine transformation to the for

ẋ= a+ cx+ gx2+ (h−1)xy, ẏ= b− cy+ (g−1)xy+hy2. (8.2.3)
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Proof. Since θ 6= 0, the condition (g−1)(h−1)(g+h) 6= 0 holds and, due to a translation, we may

assume d = e =0 for systems (8.2.1). Then, we calculate

γ1 =
1

64
(g−1)2(h−1)2D1D2D3,

where

D1 = c+ f , D2 = c(g+4h−1)+ f (1+ g−2h),

D3 = c(1−2g+h)+ f (4g+h−1).

So, due to θ 6= 0 (i.e. (g−1)(h−1) 6= 0), the condition γ1 = 0 is equivalent to D1D2D3 = 0. We claim

that, without loss of generality, we may assume D1 = c+ f = 0, as the other cases could be brought

to this one via an affine transformation.

Indeed, assume first D1 6= 0 and D2 = 0. Then, as g+ h 6= 0 (due to θ 6= 0), we apply to sys-

tems (8.2.1) with d = e =0 the affine transformation

x′ = y− x− (c− f )/(g+h), y′ =−x (8.2.4)

and we get the systems

ẋ′ = a′+ c′x′+ g′x′2+ (h′−1)x′y′, ẏ′ = b′+ f ′y′+ (g′−1)x′y′+h′y′2. (8.2.5)

These systems have the following new parameters:

a′ =
[
c2h− f 2 g+ c f (g−h)− (a−b)(g+h)2

]
/(g+h)2,

b′ =−a, c′ = (cg−2 f g− ch)/(g+h),

f ′ = (c− f − cg+2 f g+ f h)/(g+h), g′ = h, h′ = 1− g−h.

(8.2.6)

A straightforward computation gives

D
′
1 = c′+ f ′ =

[
c(g+4h−1)+ f (1+ g−2h)

]
/(g+h)=D2/(g+h)= 0

and, hence, we replace the condition D2 = 0 by D1 = 0 via an affine transformation.

Suppose now D1 6= 0 and D3 = 0. Then, we apply to systems (8.2.1) the affine transformation

x′′ =−y, y′′ = x− y+ (c− f )/(g+h)
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and we get the systems

ẋ′′ = a′′+ c′′x′′+ g′′x′′2+ (h′′−1)x′′y′′, ẏ′′ = b′′+ f ′′y′′+ (g′′−1)x′′y′′+h′′y′′2,

having the following new parameters:

a′′ =−b, b′′ =
[
f 2 g− c2h+ c f (−g+h)+ (a−b)(g+h)2

]
/(g+h)2,

c′′ = (c− f − cg+2 f g+ f h)/(g+h),

f ′′ = (cg−2 f g− ch)/(g+h), g′′ = 1− g−h, h′′ = g.

We calculate

D
′′
1 = c′′+ f ′′ =

[
c(1−2g+h)+ f (4g+h−1)

]
/(g+h)=D3/(g+h)= 0.

Thus, our claim is proved and this completes the proof of the lemma.

Lemma 8.2.2. A system (8.2.3) possesses an invariant hyperbola of the indicated form if, and only

if, the respective conditions are satisfied:

I. Φ(x, y)= p+qx+ry+2xy ⇔ B1 ≡ b(2h−1)−a(2g−1)= 0, (2h−1)2+(2g−1)2 6= 0, a2+b2 6= 0;

II. Φ(x, y)= p+ qx+ ry+2x(x− y) ⇔ either

(i) c =0, B2 ≡ b(1−2h)+2a(g+2h−1)= 0, (2h−1)2+ (g+2h−1)2 6= 0, a2+b2 6= 0;

(ii) h = 1/3, B
′
2 ≡ (1+3g)2(b−2a+6ag)+6c2(1−3g)= 0, a 6= 0;

III. Φ(x, y)= p+ qx+ ry+2y(x− y) ⇔ either

(i) c =0, B3 ≡ a(1−2g)+2b(2g+h−1) = 0, (2g−1)2 + (2g+h−1)2 6= 0, a2+b2 6= 0;

(ii) g = 1/3, B
′
3 ≡ (1+3h)2(a−2b+6bh)+6c2(1−3h)= 0, b 6= 0.

Proof. Since for systems (8.2.3) we have C2 = xy(x− y) (i.e. the infinite singularities are located at

the “ends" of the lines x= 0, y= 0 and x− y= 0), it is clear that if a hyperbola is invariant for these

systems, then its homogeneous quadratic part has one of the following forms: (i) kxy, (ii) kx(x−

y), (iii) ky(x− y), where k is a real nonzero constant. Obviously we may assume k = 2 (otherwise,

instead of hyperbola (8.1.1), we could consider 2Φ(x, y)/k = 0).

Considering equations (8.1.3), we examine each one of the above mentioned possibilities.
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(i) Φ(x, y)= p+ qx+ ry+2xy: in this case we obtain

t = 1, q = r = s = u = 0, U = 2g−1, V = 2h−1, W = 0,

Eq8 = p(1−2g)+2b, Eq9 = p(1−2h)+2a,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq10 = 0.

Calculating the resultant of the nonvanishing equations with respect to the parameter p, we

obtain

Resp (Eq8,Eq9)= a(1−2g)+b(2h−1)=B1.

So, if (2h−1)2+(2g−1)2 6= 0, then the hyperbola exists if, and only if, B1 = 0. We may assume 2h−

1 6= 0, otherwise the change (x, y,a, b, c, g, h) 7→ (y, x, b,a,−c, h, g) (which preserves systems (8.2.3))

could be applied. Then, we get

p = 2a/(2h−1), b = a(2g−1)/(2h−1), Φ(x, y)=
2a

2h−1
+2xy= 0

and, clearly, for the irreducibility of the hyperbola, the condition a2 +b2 6= 0 must hold. This com-

pletes the proof of the statement I. of the lemma.

(ii) Φ(x, y)= p+ qx+ ry+2x(x− y): since g+h 6= 0 (due to θ 6= 0), we obtain

s =2, t =−1, r = u = 0, q =4c/(g+h), U = 2g, V = 2h−1, W =−hq/2,

Eq8 = 4a−2b−2gp+4c2(g−h)/(g+h)2,

Eq9 = p(1−2h)−2a, Eq10 = 2c(2a−hp)/(g+h),

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = 0.

1) Assume first c 6=0. Then, considering equations Eq9 = 0 and Eq10 = 0, we obtain p(3h−1)=

0. Taking into account the relations above, we get the hyperbola

Φ(x, y)= p+4cx/(g+h)+2x(x− y)= 0

which evidently is degenerate if p = 0. So, p 6= 0 and this implies h = 1/3. Then, from equation

Eq9 = 0, we obtain p = 6a. Since θ = (g−1)(3g+1)/9 6= 0, we have

Eq9 = Eq10 = 0, Eq8 =−2B
′
2/(3g+1)2.
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So, equation Eq8 = 0 gives B
′
2 = 0 and then systems (8.2.3) with h = 1/3 possess the hyperbola

Φ(x, y)= 6a+
12c

3g+1
x+2x(x− y)= 0,

which is nondegenerate if, and only if, a 6=0.

2) Suppose now c =0. In this case, it remains only two nonvanishing equations:

Eq8 = 4a−2b−2gp = 0, Eq9 = p(1−2h)−2a = 0.

Calculating the resultant of these equations with respect to the parameter p, we obtain

Resp (Eq8,Eq9)= b(1−2h)+2a(g+2h−1)=B2.

If (1−2h)2 + (g+2h−1)2 6= 0 (which is equivalent to (1−2h)2 + g2 6= 0), then the condition B
′
2 = 0

is necessary and sufficient for a system (8.2.3) with c =0 to possess the invariant hyperbola

Φ(x, y)= p+2x(x− y) = 0,

where p is the parameter determined from equation Eq9 = 0 (if 2h−1 6= 0), or Eq8 = 0 (if g 6= 0).

We observe that the hyperbola is nondegenerate if, and only if, p 6= 0 which, due to the mentioned

equations, is equivalent to a2+b2 6= 0.

Thus the statement II. of the lemma is proved.

(iii) Φ(x, y) = p + qx+ ry+ 2y(x − y): we observe that, due to the change (x, y,a, b, c, g, h) 7→

(y, x, b,a,−c, h, g) (which preserves systems (8.2.3)), this case could be brought to the previous one

and, hence, the conditions could be constructed directly applying this change. This completes the

proof of Lemma 8.2.2.

In what follows the next remark will be useful.

Remark 8.2.3. Consider systems (8.2.3). (i) The change (x, y,a, b, c, g, h) 7→ (y, x, b,a,−c, h, g) which

preserves these systems replaces the parameter g by h and h by g. (ii) Moreover, if c =0, then hav-

ing the relation (2h−1)(2g−1)(1−2g−2h) = 0 (respectively, (4h−1)(4g−1)(3−4g−4h)= 0) due to

a change we may assume 2h−1= 0 (respectively, 4h−1= 0).

To prove the statement (ii) it is sufficient to observe that, in the case 2g−1 = 0 (respectively,

4g−1= 0), we could apply the change given in the statement (i) (with c =0), whereas, in the case



288 The topological classification of QS with invariant hyperbolas

1−2g−2h = 0 (respectively, 3−4g−4h = 0), we apply the change

(x, y,a, b, g, h) 7→ (y− x,−x, b−a,−a, h,1− g−h),

which conserves systems (8.2.3) with c =0.

Next, we determine the invariant criteria which are equivalent to the conditions given by

Lemma 8.2.2.

Lemma 8.2.4. Assume that for a quadratic system (8.1.2) the conditions η> 0, θ 6= 0 and γ1 = γ2 = 0

hold. Then, this system possesses at least one invariant hyperbola if, and only if, one of the following

sets of the conditions are satisfied:

(i) If β1 6= 0 then either

(i.1) β2 6= 0, R1 6= 0;

(i.2) β2 = 0, β3 6= 0, γ3 = 0, R1 6= 0;

(i.3) β2 =β3 = 0, β4β5R2 6= 0;

(i.4) β2 =β3 =β4 = 0, γ3 = 0,R2 6= 0;

(ii) If β1 = 0 then either

(ii.1) β6 6= 0, β2 6= 0, γ4 = 0, R3 6= 0;

(ii.2) β6 6= 0, β2 = 0, γ5 = 0, R4 6= 0;

(ii.3) β6 = 0, β7 6= 0, γ5 = 0, R5 6= 0;

(ii.4) β6 = 0, β7 = 0, β9 6= 0, γ5 = 0, R5 6= 0;

(ii.5) β6 = 0, β7 = 0, β9 = 0, γ6 = 0, R5 6= 0.

Proof. Assume that for a quadratic system (8.1.2) the conditions η > 0, θ 6= 0 and γ1 = 0 are ful-

filled. According to Lemma 8.2.1, due to an affine transformation and time rescaling, this system

can be brought to the canonical form (8.2.3), for which we calculate

γ2 =−1575c2(g−1)2(h−1)2(g+h)(3g−1)(3h−1)(3g+3h−4)B1,

β1 =− c2(g−1)(h−1)(3g−1)(3h−1)/4,

β2 =− c(g−h)(3g+3h−4)/2.

(8.2.7)

The case β1 6= 0

According to Lemma 8.1.6, the condition γ2 = 0 is necessary for the existence of an invariant

hyperbola. Since θβ1 6= 0, the condition γ2 = 0 is equivalent to (3g+3h−4)B1 = 0.
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The subcase β2 6= 0. Then, (3g+3h−4) 6= 0 and the condition γ2 = 0 gives B1 = 0. Moreover, the

condition β2 6= 0 yields g−h 6= 0 and this implies (2h−1)2+(2g−1)2 6= 0. According to Lemma 8.2.2,

systems (8.2.3) possess an invariant hyperbola, which is nondegenerate if, and only if, a2+b2 6= 0.

On the other hand, for these systems we calculate

R1 =−3c(a−b)(g−1)2(h−1)2(g+h)(3g−1)(3h−1)/8

and we claim that, for B1 = 0, the condition R1 = 0 is equivalent to a = b = 0. Indeed, as the

equation B1 = 0 is linear homogeneous in a and b, as well as the equation a− b = 0, calculating

the respective determinant we obtain −2(g+h) 6= 0 due to θ 6= 0. This proves our claim and hence

the statement (i.1) of Lemma 8.2.4 is proved.

The subcase β2 = 0. Since β1 6= 0 (i.e. c 6=0), we get (g−h)(3g+3h−4) = 0. On the other hand, for

systems (8.2.3) we have

β3 =−c(g−h)(g−1)(h−1)/4

and we consider two possibilities: β3 6= 0 and β3 = 0.

The possibility β3 6= 0. In this case, we have g−h 6= 0 and the condition β2 = 0 implies 3g+

3h−4 = 0, i.e. g = 4/3− h. So, the condition (2h−1)2 + (2g−1)2 6= 0 for systems (8.2.3) becomes

(2h−1)2 + (6h−5)2 6= 0 and obviously this condition is satisfied.

For systems (8.2.3) with g = 4/3−h we calculate

γ3 =22971c(h−1)3(3h−1)3B1, R1 = (a−b)c(h−1)3(3h−1)3/6,

β1 =− c2(h−1)2(3h−1)2/4, β3 =−c(h−1)(3h−2)(3h−1)/18.

So, due to β1 6= 0, the condition γ3 = 0 is equivalent to B1 = 0. Moreover, if in addition R1 = 0 (i.e.

a−b =0), we get a = b =0, because the determinant of the systems of linear equations

3B1 = a(5−6h)−3b(2h−1)= 0, a−b =0

with respect to the parameters a and b equals 4(3h−2) 6= 0 due to the condition β3 6= 0. So, the

statement (i.2) of the lemma is proved.
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The possibility β3 = 0. Due to β1 6= 0 (i.e. c(g − 1)(h − 1) 6= 0), we get g = h and for sys-

tems (8.2.3) we calculate

γ2 =6300c2h(h−1)4(3h−2)(3h−1)2B1,

θ =−h(h−1)2, β1 =−c2(h−1)2(3h−1)2/4,

β4 =2h(3h−2), β5 =−2h2(2h−1).

So, due to the condition θβ1 6= 0, we obtain that the necessary condition γ2 = 0 is equivalent to

B1(3h−2)= 0 and we shall consider two cases: β4 6= 0 and β4 = 0.

1) The case β4 6= 0. Therefore, 3h−2 6= 0 and this implies B1 = 0. Considering Lemma 8.2.2, the

condition (2h−1)2+ (2g−1)2 6= 0 for g = h becomes 2h−1 6= 0. So, for the existence of an invariant

hyperbola the condition β5 6= 0 is necessary. Moreover, this hyperbola is nondegenerate if, and only

if, a2 +b2 6= 0. Since, for these systems, we have

R2 = (a+b)(h−1)2(3h−1)/2, B1 =−(2h−1)(a−b)

and we conclude that, when B1 = 0, the condition R2 6= 0 is equivalent to a2 + b2 6= 0 and this

completes the proof of the statement (i.3) of the lemma.

2) The case β4 = 0. Then, due to θ 6= 0, we get h = 2/3 and arrive at the 3−parametric family of

systems

ẋ = a+ cx+2x2/3− xy/3, ẏ= b− cy− xy/3+2y2/3. (8.2.8)

For these systems we calculate

γ3 =7657cB1/9, β1 =−c2/36, R2 = (a+b)/18,

where B1 = (b− a)/3. Since for these systems the condition (2h−1)2 + (2g−1)2 = 2/9 6= 0 holds,

according to Lemma 8.2.2, we conclude that the statement (i.4) of the lemma is proved.

The case β1 = 0

Considering (8.2.7) and the condition θ 6= 0, we get c(3g−1)(3h−1) = 0. On the other hand, for

systems (8.2.3) we calculate

β6 =−c(g−1)(h−1)/2
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and we shall consider two subcases: β6 6= 0 and β6 = 0.

The subcase β6 6= 0. Then, c 6= 0 and the condition β1 = 0 implies (3g−1)(3h−1) = 0. Therefore,

due to Remark 8.2.3, we may assume h = 1/3 and this leads to the following 4−parametric family

of systems

ẋ= a+ cx+ gx2−2xy/3, ẏ= b− cy+ (g−1)xy+ y2/3, (8.2.9)

which is a subfamily of (8.2.3). According to Lemma 8.2.2, the above systems possess a nondegen-

erate hyperbola if, and only if, either B1 = a(1−2g)−b/3= 0 and a2+b2 6= 0 (the statement I.), or

B
′
2 = (1+3g)2(b−2a+6ag)+6c2(1−3g) = 0 and a 6= 0 (the statement II.). We observe that in the

first case, when a(1−2g)−b/3= 0, the condition a2+b2 6= 0 is equivalent to a 6= 0.

On the other hand, for these systems we calculate

γ4 =−16(g−1)2(3g−1)2B1B
′
2/81, β6 = c(g−1)/3,

β2 =c(g−1)(3g−1)/2, R3 = a(3g−1)3/18.

So, we consider two possibilities: β2 6= 0 and β2 = 0.

The possibility β2 6= 0. In this case, (g−1)(3g−1) 6= 0 and the conditions γ4 = 0 and R3 6= 0 are

equivalent to B1B
′
2 = 0 and a 6= 0, respectively. This completes the proof of the statement (ii.1).

The possibility β2 = 0. Due to the condition β6 6= 0, we get g = 1/3 and this leads to the

following 3−parametric family of systems

ẋ = a+ cx+ x2/3−2xy/3, ẏ= b− cy−2xy/3+ y2/3. (8.2.10)

Since c 6= 0 (due to β6 6= 0), according to Lemma 8.2.2, these systems possess a nondegenerate

invariant hyperbola if, and only if, one of the following sets conditions are fulfilled:

B1 = (a−b)/3= 0, a2+b2 6= 0;

B
′
2 = 4b = 0, a 6= 0; B

′
3 = 4a =0, b 6=0.

We observe that the last two conditions are equivalent to ab =0 and a2+b2 6= 0.
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On the other hand, for systems (8.2.10) we calculate

γ5 =16B1B
′
2B

′
3/27, R4 = 128(a2−ab+b2)/6561.

It is clear that the condition R4 = 0 is equivalent to a2+b2 = 0. So, the statement (ii.2) is proved.

The subcase β6 = 0. Since θ 6= 0 (i.e. (g−1)(h−1) 6= 0), the condition β6 = 0 yields c =0. Therefore,

according to Lemma 8.2.2, systems (8.2.3) with c =0 possess a nondegenerate invariant hyperbola

if, and only if, one of the following sets of conditions holds:

B1 ≡ b(2h−1)−a(2g−1)= 0, (2h−1)2 + (2g−1)2 6= 0, a2+b2 6= 0;

B2 ≡ b(1−2h)+2a(g+2h−1)= 0, (2h−1)2 + (g+2h−1)2 6= 0, a2+b2 6= 0;

B3 ≡ a(1−2g)+2b(2g+h−1) = 0, (2g−1)2 + (2g+h−1)2 6= 0, a2+b2 6= 0.

Considering the following three expressions

α1 = 2g−1, α2 = 2h−1, α3 = 1−2g−2h,

we observe that the condition (2h−1)2 + (2g−1)2 6= 0 (respectively, (2h−1)2 + (g+2h−1)2 6= 0;

(2g−1)2 + (2g+h−1)2 6= 0) is equivalent to α2
1 +α2

2 6= 0 (respectively, α2
2 +α2

3 6= 0; α2
1 +α2

3 6= 0).

On the other hand, for these systems we calculate

γ5 =−288(g−1)(h−1)(g+h)B1B2B3,

θ =− (g−1)(h−1)(g+h)/2,

β7 =2α1α2α3, β9 = 2(α1α2 +α1α3 +α2α3),

R5 =36(bx−ay)
[
(g−1)2x2+2(g+h+ gh−1)xy+ (h−1)2 y2]

.

We observe that, if α1 =α2 = 0 (respectively, α2 =α3 = 0; α1 =α3 = 0), then the factor B1 (respec-

tively, B2; B3) vanishes identically. Considering the values of the invariant polynomials β7 and

β9, we conclude that two of the factors αi (i = 1,2,3) vanish if, and only if, β7 =β9 = 0. So, we have

to consider two subcases: β2
7+β2

9 6= 0 and β2
7+β2

9 = 0.

The possibility β2
7 +β2

9 6= 0. In this case, due to θ 6= 0, the conditions γ5 = 0 and R5 6= 0 are

equivalent to B1B2B3 = 0 and a2 + b2 6= 0, respectively. So, by Lemma 8.2.2 there exists at least
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one hyperbola and, hence, the statements (ii.3) and (ii.4) are valid.

The possibility β2
7 +β2

9 = 0. As it was mentioned above, in this case two of the factors αi (i =

1,2,3) vanish. Considering Remark 8.2.3, without loss of generality, we may assume α1 =α2 = 0.

Thus, we have g = h =1/2 and we get the family of systems

dx

dt
= a+ x2/2− xy/2,

d y

dt
= b− xy/2+ y2/2. (8.2.11)

Since c = 0 and the conditions of the statement I. of Lemma 8.2.2 are not satisfied for these sys-

tems, according to Lemma 8.2.2, the above systems possess a nondegenerate invariant hyperbola

if, and only if, a2+b2 6= 0 and either B2 = a = 0 or B3 = b = 0. For systems (8.2.11) we calculate

γ6 =−9B2B3, R5 = 9(bx−ay)(x+ y)2

and we conclude that the statement (ii.5) of the lemma holds.

As all the cases are examined, Lemma 8.2.4 is proved.

The next lemma is related to the number of the invariant hyperbolas that quadratic systems

with η> 0 and θ 6= 0 could have.

Lemma 8.2.5. Assume that for a quadratic system (8.1.2) the conditions η> 0, θ 6= 0 and γ1 = γ2 = 0

are satisfied. Then, this system possesses:

(A ) two nondegenerate invariant hyperbolas if, and only if, either

(A1) if β1 = 0, β6 6= 0, β2 6= 0, γ4 = 0, R3 6= 0 and δ1 = 0, or

(A2) if β1 = 0, β6 = 0, β7 6= 0, γ5 = 0, R5 6= 0 and β8 = δ2 = 0, or

(A3) if β1 = 0, β6 =β7 = 0, β9 6= 0, γ5 = 0, R5 6= 0 and δ3 = 0, β8 6= 0;

(B) three nondegenerate invariant hyperbolas if, and only if, β1 = 0, β6 = β7 = 0, β9 6= 0, γ5 = 0,

R5 6= 0 and δ3 =β8 = 0.

Proof. For systems (8.2.3) we have

β6 =− c(g−1)(h−1)/2, θ =−(g−1)(h−1)(g+h)/2,

β1 =− c2(g−1)(h−1)(3g−1)(3h−1)/4.
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The case β6 6= 0

Then, c 6= 0 and, according to Lemma 8.2.2, we could have at least two hyperbolas only if the

conditions given either by the statements I. and II.; (ii) (i.e. B1 = B
′
2 = 0 and h = 1/3), or by the

statements I. and III.; (ii) (i.e. B1 = B
′
3 = 0 and g = 1/3) are satisfied. Therefore, the condition

(3g−1)(3h−1)= 0 is necessary. This condition is governed by the invariant polynomial β1. So, we

assume β1 = 0 and, due to Remark 8.2.3, we may consider h = 1/3. Then, we calculate

γ4 =−16(g−1)2(3g−1)2B1B
′
2/81, β1 = 0,

θ =(g−1)(1+3g)/9 6= 0, β2 = c(g−1)(3g−1)/2.

Solving the systems of equations B1

∣∣∣
h=1/3

=B
′
2 = 0 with respect to a and b we obtain

a =
6c2(3g−1)

(1+3g)2
≡ A0, b =−

18c2(2g−1)(3g−1)

(1+3g)2
≡ B0.

In this case, we get the family of systems

ẋ= A0 + cx+ gx2−2xy/3, ẏ= B0 − cy+ (g−1)xy+ y2/3, (8.2.12)

which possess two nondegenerate invariant hyperbolas:

Φ1(x, y)=−
36c2(3g−1)

(1+3g)2
+2xy= 0,

Φ2(x, y)=−
36c2(3g−1)

(1+3g)2
+

12c

1+3g
x+2x(x− y) = 0,

where c(3g−1) 6= 0, due to a 6= 0. Thus, for the nondegeneracy of the hyperbolas above, the condi-

tion c(3g−1) 6= 0 (i.e. β2 6= 0) is necessary.

Since the condition γ4 = 0 gives B1B
′
2 = 0, it remains to find out the invariant polynomial

which, in addition to γ4, is responsible for the relation B1 = B
′
2 = 0. We observe that in the case

B1 = 0 (i.e. b = 3a(1−2g)) we have

δ1 = (3g−1)
[
a(1+3g)2 −6c2(3g−1)

]
/18= (3g−1)B′

2/18.

It remains to observe that in the considered case we have R3 = a(3g−1)3/18 6= 0 and that, due to

the condition β2 6= 0 (i.e. c(3g−1) 6= 0), Lemma 8.2.2 assures we could not have a third hyperbola
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of the form Φ(x, y) = p+ qx+ ry+2y(x− y) = 0. This completes the proof of the statement (A1) of

the lemma.

The case β6 = 0

Then, c =0 and we calculate for systems (8.2.3)

β7 =2α1α2α3, β9 = 2(α1α2 +α1α3 +α2α3), β8 = 2(4g−1)(4h−1)(3−4g−4h),

where α1 = 2g−1, α2 = 2h−1 and α3 = 1−2g−2h.

The subcase β7 6= 0. Then, α1α2α3 6= 0 and we consider two possibilities: β8 6= 0 and β8 = 0.

The possibility β8 6= 0. We claim that in this case we could not have more than one hyperbola.

Indeed, as c = 0, we observe that all five polynomials Bi (i = 1,2,3), B
′
2 and B

′
3 are linear (and

homogeneous) with respect to a and b and the condition a2+b2 6= 0 must hold. So, in order to have

nonzero solutions in (a, b) of the equations

U = V = 0, U ,V ∈ {B1,B2,B3,B′
2,B′

3}, U 6= V

it is necessary that the corresponding determinants det(U ,V ) = 0. We have for each couple, re-

spectively:

(ω1) det(B1,B2)=−(2h−1)(4h−1)= 0;

(ω2) det(B1,B3)=−(2g−1)(4g−1) = 0;

(ω3) det(B2,B3)= (1−2g−2h)(3−4g−4h) = 0;

(ω4) det(B1,B′
2)

∣∣
h=1/3 = (3g+1)2/3;

(ω5) det(B1,B′
3)

∣∣
g=1/3 = (3h+1)2/3;

(ω6) det(B′
2,B3)

∣∣
{c=0, h=1/3} = (1+3g)2(6g−1)(12g−5)/3 = 0;

(ω7) det(B2,B′
3)

∣∣
{c=0, g=1/3} = (1+3h)2(6h−1)(12h−5)/3= 0;

(ω8) det(B′
2,B′

3)
∣∣
{h=1/3, g=1/3} =−16 6= 0.

(8.2.13)

We observe that the determinant (ω8) is not zero. Moreover, since β7 6= 0 and β8 6= 0, we deduce

that none of the determinants (ωi) (i = 1,2,3) could vanish.

On the other hand, for systems (8.2.3) with c = 0 we have θ = (g−1)(3g+1)/9 in the case h = 1/3
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and θ = (h−1)(3h+1)/9 in the case g = 1/3. Therefore, due to θ 6= 0, in the cases (ω4) and (ω5) we

also could not have zero determinants.

Thus, it remains to consider the cases (ω6) and (ω7). Considering Remark 8.2.3, we observe

that the case (ω7) could be brought to the case (ω6). So, assuming h =1/3 we calculate

β7 = 2(2g−1)(6g−1)/9, β8 =−2(4g−1)(12g−5)/9, θ= (g−1)(3g+1)/9,

and, hence, the determinant corresponding to the case (ω6) could not be zero due to θβ7β8 6= 0.

This completes the proof of our claim.

The possibility β8 = 0. In this case, we get (4g−1)(4h−1)(3−4g−4h) = 0 and, due to Re-

mark 8.2.3, we may assume h = 1/4. Then, det(B1,B2) = 0 (see the case (ω1)) and we obtain

B1 = (2a−b−4ag)/2=−B2 = 0. Since in this case we have

δ2 =2(2g−1)(4g−1)(b−2a+4ag), β7 = (2g−1)(4g−1)/2,

we conclude that, due to β7 6= 0, the condition 2a− b−4ag = 0 is equivalent to δ2 = 0. So, setting

b = 2a(1−2g), we arrive at the family of systems

ẋ= a+ gx2 −3xy/4, ẏ= 2a(1−2g)+ (g−1)xy+ y2 /4. (8.2.14)

These systems possess the invariant hyperbolas

Φ
′′
1(x, y)=−4a+2xy= 0, Φ

′′
2(x, y)= 4a+2x(x− y)= 0,

which are nondegenerate if, and only if, a 6=0. Since for these systems we have

R5 = 9a(2x−4gx− y)
[
16(g−1)2x2 +8(5g−3)xy+9y2]

/4,

the condition a 6=0 is equivalent to R5 6= 0. On the other hand, for these systems we calculate

B3 =−2a(2g−1)(4g−1), B
′
3

∣∣
h=1/4 = 49a/24

and, due to β7R5 6= 0, we get B3B
′
3 6= 0, i.e. systems (8.2.14) could not possess a third hyperbola.

This completes the proof of the statement (A2).
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The subcase β7 = 0. Then, (2g−1)(2h−1)(1−2g−2h) = 0 and, due to Remark 8.2.3, we may

assume h = 1/2. So, by Lemma 8.2.2, we must have g(2g−1) 6= 0 and this is equivalent to β9 =

−4g(2g−1) 6= 0. Herein, we have det(B1,B2)= 0 and we obtain B1 = a(1−2g)= 0 and B2 = 2ag =

0. This implies a = 0, which is equivalent to δ3 = 16a2 g2(2g−1)2 = 0 due to β9 6= 0. So, we get the

family of systems

ẋ = gx2 − xy/2, ẏ= b+ (g−1)xy+ y2/2 (8.2.15)

which possess the following two hyperbolas

Φ1(x, y)=−
2b

2g−1
+2xy= 0, Φ2(x, y)=−

b

g
+2x(x− y)= 0.

These hyperbolas are nondegenerate if, and only if, b 6= 0 which is equivalent to R5 = 9bx
[
4(g−

1)2x2+4(3g−1)xy+ y2]
6= 0.

For the above systems we have B3 = b(4g−1) and B
′
3 = 25b/4. Since b 6= 0, only the condition

B3 = 0 could be satisfied and this implies g = 1/4. It is not too hard to find out that in this case we

get the third hyperbola:

Φ3(x, y)=−4b+2y(x− y) = 0.

We observe that for the systems above β8 =−2(4g−1)2 and, hence, the third hyperbola exists if,

and only if, β8 = 0. So, the statements (A3) and (B) are proved.

Since all the possibilities are examined, Lemma 8.2.5 is proved.

8.2.2 Systems with three real infinite singularities and θ = 0

Considering (8.2.2) for systems (8.2.1), we get (g − 1)(h − 1)(g + h) = 0 and we may assume

g =−h, otherwise in the case g = 1 (respectively, h = 1) we apply the change (x, y, g, h) 7→ (−y, x−

y,1−g−h, g) (respectively, (x, y, g, h) 7→ (y−x,−x, h,1−g−h)), which preserves the quadratic parts

of systems (8.2.1).

So, g = −h and for systems (8.2.1) we calculate Ñ = 9(h2 −1)(x− y)2. We consider two cases:

Ñ 6= 0 and Ñ = 0.

The case Ñ 6= 0

Then, (h−1)(h+1) 6= 0 and due to a translation we may assume d = e =0 and this leads to the

family of systems

ẋ = a+ cx−hx2+ (h−1)xy, ẏ= b+ f y− (h+1)xy+hy2. (8.2.16)
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Remark 8.2.6. We observe that due to the change (x, y,a, b, c, f , h) 7→ (y, x, b,a, f , c,−h) which con-

serves systems (8.2.16) we can change the sign of the parameter h.

Lemma 8.2.7. A system (8.2.16) with (h−1)(h+1) 6= 0 possesses at least one nondegenerate invari-

ant hyperbola of the indicated form if, and only if, the following conditions are satisfied, respec-

tively:

I. Φ(x, y)= p+ qr+ ry+2xy ⇔ c+ f = 0, E1 ≡ a(2h+1)+b(2h−1)= 0, a2 +b2 6= 0;

II. Φ(x, y)= p+ qr+ ry+2x(x− y) ⇔ c− f = 0 and either

(i) (2h−1)(3h−1) 6= 0, E2 ≡ 2c2(h−1)(2h−1)+ (3h−1)2(b−2a+2ah−2bh)= 0, a 6=0;

(ii) h = 1/3, c =0, a 6= 0, 4a−b ≥0;

(iii) h = 1/2, a = 0, b+4c2 6= 0;

III. Φ(x, y)= p+ qr+ ry+2y(x− y) ⇔ c− f = 0 and either

(i) (2h+1)(3h+1) 6= 0, E3 ≡ 2c2(h+1)(2h+1)+ (3h+1)2(a−2b−2bh+2ah)= 0, b 6= 0;

(ii) h =−1/3, c =0, b 6=0, 4b−a ≥ 0;

(iii) h =−1/2, b = 0, a+4c2 6= 0.

Proof. As it was mentioned in the proof of Lemma 8.2.2 (see page 285), we may assume that

the quadratic part of an invariant hyperbola has one of the following forms: (i) 2xy, (ii) 2x(x−

y), (iii) 2y(x− y). Considering the equations (8.1.3), we examine each one of these possibilities.

(i) Φ(x, y)= p+ qx+ ry+2xy: in this case, due to Ñ 6= 0 (i.e. (h−1)(h+1) 6= 0), we obtain

t = 1, q = r = s = u = 0, U =−2h−1, V = 2h−1, W = c+ f ,

Eq8 = p(1+2h)+2b, Eq9 = p(1−2h)+2a, Eq10 =−p(c+ f ),

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = 0.

Since in this case the hyperbola has the form Φ(x, y)= p+2xy, it is clear that p 6= 0, otherwise we

get a degenerate hyperbola. So, the condition c+ f = 0 is necessary.

Calculating the resultant of the nonvanishing equations with respect to the parameter p we

obtain

Resp (Eq8,Eq9)= 2[a(2h+1)+b(2h−1)]= 2E1.

Since (2h−1)2 + (2h+1)2 6= 0, we conclude that an invariant hyperbola exists if, and only if,
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E1 = 0. Due to Remark 8.2.6, we may assume 2h−1 6= 0. Then, we get

p = 2a/(2h−1), b = a(2h+1)/(2h−1), Φ(x, y)=
2a

2h−1
+2xy= 0

and, clearly, for the nondegeneracy of the hyperbola, the condition a 6= 0 must hold.

This completes the proof of the statement I. of the lemma.

(ii) Φ(x, y)= p+ qx+ ry+2x(x− y): since (h−1)(h+1) 6= 0 (due to N 6= 0), we obtain

s = 2, t =−1, r = u =0, U =−2h, V = 2h−1, W = (4c+hq)/2,

Eq6 = 2(c− f ), Eq8 = 4a−2b+2hp− cg−hq2/2,

Eq9 = p(1−2h)−2a, Eq10 =−2cp+aq−hpq/2,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = 0.

(8.2.17)

We observe that the equation Eq6 = 0 implies the condition c− f = 0.

1) Assume first (2h−1)(3h−1) 6= 0. Then, considering the equation Eq9 = 0, we obtain p =

2a/(1−2h). As the hyperbola Φ(x, y)= p+qx+2x(x− y)= 0 has to be nondegenerate, the condition

p 6= 0 holds and this implies a 6= 0. Therefore, from

Eq10 =
a(4c− q+3hq)

2h−1
= 0,

due to 3h−1 6= 0, we obtain q = 4c/(1−3h) and, then, we get

Eq8 =
2E2

(2h−1)(3h−1)2
= 0.

So, we deduce that the conditions c− f = 0, E2 = 0 and a 6= 0 are necessary and sufficient for the

existence of a nondegenerate hyperbola of systems (8.2.16) in the case (2h−1)(3h−1) 6= 0.

2) Suppose now h =1/3. Then, considering (8.2.17), we have Eq9 = (p−6a)/3= 0, i.e. p = 6a 6=0

(otherwise, we get a degenerate hyperbola). Therefore, the equation Eq10 =−12ac =0 yields c =0.

Herein, the equation Eq8 = 0 becomes Eq8 =
[
12(4a−b)−q2]/6= 0 and obviously for the existence

of a real solution for the parameter q of hyperbola the condition 4a−b ≥0 must be satisfied.

Thus, in the case h = 1/3, we have at least one nondegenerate hyperbola if, and only if, the

conditions f = c =0, 4a−b ≥ 0 and a 6= 0 hold.
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3) Assume finally h = 1/2. In this case, we get Eq9 =−2a = 0, i.e. a = 0, and we have

Eq8 =−2b+ p− cq− q2/4= 0, Eq10 =−p(8c+ q)/4= 0, Φ(x, y)= p+ qx+2x(x− y).

Therefore, p 6= 0 and we obtain q = −8c and p = 2(b+4c2) 6= 0. This completes the proof of the

statement II. of the lemma.

(iii) Φ(x, y) = p + qx+ ry+ 2y(x− y): we observe that, due to the change (x, y,a, b, c, f , h) 7→

(y, x, b,a, c, f ,−h) (which preserves systems (8.2.16)), this case could be brought to the previous

one and, hence, the conditions could be constructed directly applying this change.

Thus, Lemma 8.2.7 is proved.

We shall construct now the affine invariant conditions for the existence of at least one invari-

ant hyperbola for quadratic systems in the considered family.

Lemma 8.2.8. Assume that for a quadratic system (8.1.2) the conditions η > 0, θ = 0, Ñ 6= 0 and

γ1 = γ2 = 0 hold. Then, this system possesses at least one nondegenerate invariant hyperbola if, and

only if, one of the following sets of the conditions are satisfied:

(i) If β6 6= 0 then either

(i.1) β10 6= 0, γ7 = 0, R6 6= 0;

(i.2) β10 = 0, γ4 = 0, β2R3 6= 0;

(ii) If β6 = 0 then either

(ii.1) β2 6= 0, β7 6= 0, γ8 = 0, β10R7 6= 0;

(ii.2) β2 6= 0, β7 = 0, γ9 = 0, R8 6= 0;

(ii.3) β2 = 0, β7 6= 0, β10 6= 0, γ7γ8 = 0, R5 6= 0;

(ii.4) β2 = 0, β7 6= 0, β10 = 0, R3 6= 0, γ7 6= 0, γ10 ≥ 0;

(ii.5) β2 = 0, β7 6= 0, β10 = 0, R3 6= 0, γ7 = 0;

(ii.6) β2 = 0, β7 = 0, γ7 = 0, R3 6= 0.

Proof. Assume that for a quadratic system (8.1.2) the conditions η > 0, θ = 0 and Ñ 6= 0 are

fulfilled. As it was mentioned earlier, due to an affine transformation and time rescaling, this

system could be brought to the canonical form (8.2.16), for which we calculate

γ1 =(c− f )2(c+ f )(h−1)2(h+1)2(3h−1)(3h+1)/64,

β6 =(c− f )(h−1)(h+1)/4, β10 =−2(3h−1)(3h+1).
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The subcase β6 6= 0. By Lemma 8.1.6, for the existence of a nondegenerate invariant hyperbola

of systems (8.2.16), the condition γ1 = 0 is necessary and this condition is equivalent to (c+ f )(3h−

1)(3h+1)= 0. We examine two possibilities: β10 6= 0 and β10 = 0.

The possibility β10 6= 0. Then, we obtain f =−c (this implies γ2 = 0) and we have

γ7 =8(h−1)(h+1)E1.

Therefore, due to β6 6= 0, the condition γ7 = 0 is equivalent to E1 = 0. So, we have a = λ(2h−1),

b =−λ(2h+1) (where λ 6= 0 is an arbitrary parameter) and, then, we calculate

R6 =−632λc(h−1)(h+1).

Since β6 6= 0, we deduce that the condition R6 6= 0 is equivalent to a2+ b2 6= 0. This completes the

proof of the statement (i.1) of the lemma.

The possibility β10 = 0. Then, we have (3h−1)(3h+1) = 0 and, by Remark 8.2.6, we may

assume h =1/3. Then, we get the 4−parametric family of systems

ẋ= a+ cx− x2/3−2xy/3, ẏ= b+ f y−4xy/3+ y2/3, (8.2.18)

for which we calculate γ1 = 0 and

γ2 =44800(c− f )2(c+ f )(2c− f )/243, β6 =−2(c− f )/9, β2 =−4(2c− f )/9.

Since β6 6= 0 (i.e. c− f 6= 0), by Lemma 8.1.6, the necessary condition γ2 = 0 gives (c+ f )(2c− f )= 0.

We claim that for the existence of an invariant hyperbola the condition 2c− f 6= 0 (i.e. β2 6= 0) must

be satisfied. Indeed, setting f = 2c we obtain β6 = 2c/9 6= 0. However, according to Lemma 8.2.7,

for the existence of a hyperbola of systems (8.2.18), it is necessary the condition (c+ f )(c− f )= 0,

which for f = 2c becomes −3c2 = 0. The obtained contradiction proves our claim.

Thus, the condition β2 6= 0 is necessary and, then, we have f =−c. By Lemma 8.2.7, in the case

h =1/3 we have an invariant hyperbola (which is of the form Φ(x, y)= p+ qx+ ry+2xy= 0) if, and

only if, E1 = (5a−b)/3= 0 and a2+b2 6= 0.
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On the other hand, for systems (8.2.18) with f =−c we calculate

γ4 =−4096c2
E1/243, β6 =−4c/9, R3 =−4a/9.

So, the statement (i.2) of the lemma is proved.

The subcase β6 = 0. Then, f = c (this implies γ2 = 0) and we calculate

γ8 =42(h−1)(h+1)E2E3, β2 = c(h−1)(h+1)/2, β7 =−2(2h−1)(2h+1),

β10 =−2(3h−1)(3h+1), R7 =−(h−1)(h+1)U(a, b, c, h)/4,

where U(a, b, c, h)= 2c2(h−1)(h+1)−b(h+1)(3h−1)2+a(h−1)(3h+1)2.

The possibility β2 6= 0. Then, c 6=0 and we shall consider two cases: β7 6= 0 and β7 = 0.

1) The case β7 6= 0. We observe that in this case, for the existence of a nondegenerate hyperbola,

the condition β10 6= 0 is necessary. Indeed, since f = c 6= 0 and (2h−1)(2h+1) 6= 0, according to

Lemma 8.2.7 (see the statements II. and III.), for the existence of at least one nondegenerate

invariant hyperbola it is necessary and sufficient (3h−1)(3h+1) 6= 0 and either E2 = 0 and a 6= 0,

or E3 = 0 and b 6= 0.

We claim that the condition a 6=0 (when E2 = 0), as well as the condition b 6= 0 (when E3 = 0), is

equivalent to U(a, b, c, h) 6= 0. Indeed, as E2, as well as E3, and U(a, b, c, h) are linear polynomials

in a and b, then the equations E2 =U(a, b, c, h)= 0 (respectively, E2 =U(a, b, c, h)= 0) with respect

to a and b gives a = 0 and b = 2c2(h−1)/(3h−1)2 (respectively, b = 0 and a =−2c2(h+1)/(3h+1)2).

This proves our claim.

It remains to observe that the condition E2E3 = 0 is equivalent to γ8 = 0. So, this completes the

proof of the statement (ii.1) of the lemma.

2) The case β7 = 0. Then, by Remark 8.2.6, we may assume h = 1/2 and, since f = c, by

Lemma 8.2.7, for the existence of a nondegenerate hyperbola of systems (8.2.16) (with h = 1/2

and f = c), the conditions a = 0 and b+4c2 6= 0 are necessary. On the other hand, we calculate

γ9 =3a/2, R8 = (7a+b+4c2)/8

and clearly these invariant polynomials govern the above conditions. So, the statement (ii.2) of

the lemma is proved.
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The possibility β2 = 0. In this case we have f = c =0.

1) The case β7 6= 0. Then, (2h−1)(2h+1) 6= 0.

a) The subcase β10 6= 0. In this case (3h−1)(3h+1) 6= 0. By Lemma 8.2.7, we could have an

invariant hyperbola if, and only if, E1E2E3 = 0. On the other hand, for systems (8.2.16) with f =

c =0 we have

γ7γ8 =−336(h−1)2(1+h)2E1E2E3,

R5 =36(bx−ay)(x− y)
[
(1+h)2x− (h−1)2 y

]

and, therefore, the condition R5 6= 0 is equivalent to a2 + b2 6= 0. This completes the proof of the

statement (ii.3) of the lemma.

b) The subcase β10 = 0. Then, we have (3h − 1)(3h + 1) = 0 and, by Remark 8.2.6, we may

assume h = 1/3. By Lemma 8.2.7, we could have an invariant hyperbola if, and only if, either the

conditions I. or II.; (ii) of Lemma 8.2.7 are satisfied. In this case we calculate

γ7 =−64E1/9, γ10 = 8(4a−b)/27, R3 =−4a/9

and, hence, the condition R3 6= 0 implies the nondegeneracy of the hyperbola. Therefore, in the

case γ7 6= 0 the condition γ10 ≥ 0 must hold and this leads to the statement (ii.4) of the lemma,

whereas for γ7 = 0 the statement (ii.5) of the lemma holds.

2) The case β7 = 0. Then, (2h−1)(2h+1)= 0 and, by Remark 8.2.6, we may assume h =1/2. By

Lemma 8.2.7, we could have an invariant hyperbola if, and only if, either the conditions E1 = 2a =0

and b 6= 0 (see statement I.), or a = 0 and b 6=0 (see statement II.; (iii) of the lemma) are fulfilled.

As we could see, the conditions coincides and, hence, by this lemma we have two hyperbolas: the

asymptotes of one of them are parallel to the lines x= 0 and y= 0, whereas the asymptotes of the

other hyperbola are parallel to the lines x= 0 and y= x.

On the other hand, for systems (8.2.16) (with h =1/2 and f = c =0) we calculate

γ7 =−12a, R3 = (5a−b)/16

and this leads to the statement (ii.6) of the lemma.

Since all the possibilities are considered, Lemma 8.2.8 is proved.

Lemma 8.2.9. Assume that for a quadratic system (8.1.2) the conditions η > 0, θ = 0, Ñ 6= 0 and

γ1 = γ2 = 0 are satisfied. Then, this system possesses:
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(A ) three distinct nondegenerate invariant hyperbolas (1 H and 2 H
p) if, and only if, β6 = β2 =

β10 = γ7 = 0, β7R3 6= 0 and γ10 > 0;

(B) two distinct nondegenerate invariant hyperbolas if, and only if, β6 = 0 and either

(B1) β2 6= 0, β7 6= 0, γ8 = 0, β10R7 6= 0 and δ4 = 0 (⇒ 2 H ), or

(B2) β2 6= 0, β7 = 0, γ9 = 0, R8 6= 0 and δ5 = 0 (⇒ 2 H ), or

(B3) β2 = 0, β7 6= 0, β10 6= 0, γ7γ8 = 0, R5 6= 0 and β8 = δ2 = 0 (⇒ 2 H ), or

(B4) β2 = 0, β7 6= 0, β10 = 0, γ7 6= 0, R3 6= 0 and γ10 > 0 (⇒ 2 H
p), or

(B5) β2 = 0, β7 = 0, γ7 = 0, R3 6= 0 (⇒ 2 H );

(C ) one double (H
p

2 ) nondegenerate invariant hyperbola if, and only if, β6 =β2 = 0, β7 6= 0, β10 =

0, γ7 6= 0, R3 6= 0 and γ10 = 0.

Proof. For systems (8.2.16) we calculate

β6 =(c− f )(h−1)(h+1)/4, β7 =−2(2h+1)(2h−1),

β10 =−2(3h+1)(3h−1), β2 =
[
(c+ f )(h2−1)−8(c− f )h)

]
/4.

(8.2.19)

According to Lemma 8.2.7, in order to have at least two nondegenerate invariant hyperbolas, the

condition c− f = 0 must hold. This condition is governed by the invariant polynomial β6 and in

what follows we assume β6 = 0 (i.e. f = c).

The case β2 6= 0. Then, we have c 6=0 and the conditions given by the statement I. of Lemma 8.2.7

could not be satisfied.

The case β7 6= 0. We observe that in this case, due to c 6= 0, we could have two nondegenerate

invariant hyperbolas if, and only if, (3h−1)(3h+1) 6= 0 (i.e. β10 6= 0), E2 = E3 = 0 and ab 6= 0. The

systems of equations E2 = E3 = 0 with respect to the parameters a and b gives the solution

a =−
2c2(1+h)3(2h−1)

(3h−1)2(1+3h)2
≡ a0, b =−

2c2(h−1)3(1+2h)

(3h−1)2(1+3h)2
≡ b0, (8.2.20)

which exists and ab 6=0 due to the condition (2h−1)(2h+1)(3h−1)(3h+1) 6= 0.

In this case systems (8.2.16) with a = a0 and b = b0 possess the following two hyperbolas

Φ
(1)
1 (x, y)=

4c2(1+h)3

(3h−1)2(1+3h)2
−

4c

3h−1
x+2x(x− y) = 0,

Φ
(1)
2 (x, y)=

4c2(h−1)3

(3h−1)2(1+3h)2
−

4c

1+3h
y+2y(x− y) = 0.
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Since c 6=0, by Lemma 8.2.7, we could not have a third invariant hyperbola.

Now, we need the invariant polynomials which govern the condition E2 = E3 = 0. Firstly, we

recall that for these systems we have γ8 = 42(h−1)(h+1)E2E3 and, hence, the condition γ8 = 0 is

necessary. In order to set E2 = 0, we use the following parametrization:

c = c1(3h−1)2, a = a1(2h−1)

and, then, the condition E2 = 0 gives b = 2(h−1)(a1+ c2
1). Herein, for systems (8.2.16) with

f = c = c1(3h−1)2, a = a1(2h−1), b = 2(h−1)(a1+ c2
1)

we calculate

E3 = 3
[
2c2

1(1+h)3+a1(1+3h)2
]
, δ4 = (h−1)(2h−1)E3/2

and, hence, the condition E3 = 0 is equivalent to δ4 = 0.

It remains to observe that in this case R7 = −3a1(h−1)4(h+1)/4 6= 0, otherwise a1 = 0 and,

then, the condition δ4 = 0 implies c1 = 0, i.e. c = 0 and this contradicts to β2 6= 0. So, we arrive at

the statement (B1) of the lemma.

The case β7 = 0. Then, (2h−1)(2h+1)= 0 and, by Remark 8.2.6, we may assume h = 1/2. In

this case, by Lemma 8.2.7, in order to have at least two hyperbolas, the conditions II.; (iii) and

III.; (i) have to be satisfied simultaneously. Therefore, we arrive at the conditions

a =0, b+4c2 6= 0, E3 = (50a−75b+24c2)/4= 0

and, as a = 0, we have b = 24c2/75 and b+4c2 = 108c2/25 6= 0 due to β2 6= 0. So, we get the family

of systems

ẋ = cx− x(x+ y)/2, ẏ= 8c2/25+ cy− y(3x− y)/2 (8.2.21)

which possess the following two hyperbolas

Φ
(2)
1 (x, y)= 216c2/25−8cx+2x(x− y)= 0, Φ

(2)
2 (x, y)=−8c2/25−8cy/5+2y(x− y)= 0.

These hyperbolas are nondegenerate due to β2 6= 0 (i.e. c 6= 0).

We need to determine the affine invariant conditions which are equivalent to a = E3 = 0. For
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systems (8.2.16) with f = c and h = 1/2 we calculate

γ9 = 3a/2, δ5 =−3(25b−8c2)/2

and obviously these invariant polynomials govern the mentioned conditions. It remains to observe

that for systems (8.2.21) we have R8 = 108c2/25 6= 0 due to β2 6= 0. This completes the proof of the

statement (B2) of the lemma.

The case β2 = 0. Then, c =0 and, by Lemma 8.2.7, systems (8.2.16) with f = c = 0 could possess at

least two nondegenerate invariant hyperbolas if, and only if, one of the following sets of conditions

hold:
(φ1) E1 = E2 = 0, (2h−1)(3h−1) 6= 0, a 6= 0;

(φ2) E1 = E3 = 0, (2h+1)(3h+1) 6= 0, b 6= 0;

(φ3) E2 = E3 = 0, (2h−1)(2h+1)(3h−1)(3h+1) 6= 0, ab 6= 0;

(φ4) E1 = 0, h = 1/3, a 6= 0, 4a−b ≥0;

(φ5) E1 = a =0, h =1/2, b 6= 0;

(φ6) E1 = 0, h =−1/3, b 6= 0, 4b−a ≥0;

(φ7) E1 = b =0, h =−1/2, a 6=0.

(8.2.22)

As for systems (8.2.16) with f = c =0 we have

β7 =−2(2h+1)(2h−1), β10 =−2(3h+1)(3h−1),

we consider two subcases: β7 6= 0 and β7 = 0.

The subcase β7 6= 0. Then, (2h+1)(2h−1) 6= 0 and we examine two possibilities: β10 6= 0 and

β10 = 0.

1) The possibility β10 6= 0. In this case (3h+1)(3h−1) 6= 0. We observe that, due to f = c = 0,

all the polynomials E i are linear (homogeneous) with respect to the parameters a and b. So, each

one of the sets of conditions (φ1)–(φ3) could be compatible only if the corresponding determinant

vanishes, i.e.

det(E1,E2)⇒ −(2h−1)(3h−1)2(4h−1)= 0,

det(E1,E3)⇒ (2h+1)(3h+1)2(4h+1)= 0,

det(E2,E3)⇒ −3(3h−1)2(3h+1)2 = 0,

(8.2.23)
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otherwise we get the trivial solution a = b = 0. Clearly, the third determinant could not be zero

due to the condition β10 6= 0, i.e. the set of conditions (φ3) is incompatible in this case. As regarding

the conditions (φ1) (respectively, (φ2)), we observe that they could be compatible only if 4h−1= 0

(respectively, 4h+1= 0).

On the other hand, we have β8 =−6(4h−1)(4h+1) and we conclude that,[ for the existence of

two hyperbolas in these case the condition β8 = 0 is necessary.

Assuming β8 = 0, we may consider h =1/4 due to Remark 8.2.6 and we obtain

E1 = (3a−b)/2=−16E2 = 0.

So, we get b = 3a and we arrive at the systems

ẋ= a− x2/4−3xy/4, ẏ= 3a−5xy/4+ y2/4, (8.2.24)

which possess the following two invariant hyperbolas

Φ
(3)
1 (x, y)=−4a+2xy= 0, Φ

(3)
2 (x, y)= 4a+2x(x− y)= 0.

Clearly, these hyperbolas are nondegenerate if, and only if, a 6= 0.

On the other hand, for systems (8.2.16) with f = c =0 and h =1/4 we have

γ7 =−15(3a−b), γ8 = 15435(3a−5b)(3a−b)/8192,

δ2 =−6(3a−b), R5 = 9(bx−ay)(25x−9y)(x− y)/4.

We observe that the conditions E1 = E2 = 0 and a 6= 0 are equivalent to γ7 = 0 and R5 6= 0. However,

in order to insert this possibility in the generic diagram (see Figure 8.1), we remark that these

conditions are equivalent to γ7γ8 = δ2 = 0 and R5 6= 0.

It remains to observe that for the systems above we have E3 = 147a/8 6= 0 and, hence, we could

not have the third hyperbola. So, the statement (B3) of the lemma is proved.

2) The possibility β10 = 0. In this case (3h+1)(3h−1)= 0 and, without loss of generality, we may

assume h = 1/3 due to the change (x, y,a, b, h) 7→ (y, x, b,a,−h), which conserves systems (8.2.16)

with f = c =0 and transfers the conditions (φ6) to (φ4).
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So, h =1/3 and we arrive at the conditions

E1 = (5a−b)/3= 0, 4a−b ≥ 0, a 6= 0,

which imply b = 5a and 4a−b =−a ≥0. Then, setting a =−3z2 ≤ 0 we get the family of systems

ẋ=−3z2− x2/3−2xy/3, ẏ=−15z2−4xy/3+ y2/3, (8.2.25)

which possess the following three invariant hyperbolas

Φ
(4)
1 (x, y)=18z2+2xy = 0, Φ

(4)
2,3(x, y)=−18z2 ±6zx+2x(x− y)= 0.

These hyperbolas are nondegenerate if, and only if, z 6= 0 and the hyperbolas Φ
(4)
2,3(x, y) = 0 have

parallel asymptotes, i.e. we have two hyperbolas H
p. Since for systems (8.2.25) we have E3 =

−140z2 6= 0, we deduce that these systems could not have an invariant hyperbola with the asymp-

totes y= 0 and y= x.

Remark 8.2.10. We claim that, if the conditions (φ4) are satisfied except the condition E1 = 0,

then the corresponding systems possess exactly two distinct nondegenerate invariant hyperbolas if

4a− b > 0 and a 6= 0, and these hyperbolas collapse and we get a hyperbola of multiplicity two if

4a−b =0.

Indeed, providing that the conditions of Remark 8.2.10 hold and setting a new parameter z as

follows: 4a−b =3z2 ≥ 0, we arrive at the family of systems

ẋ= a− x2/3−2xy/3, ẏ= 4a−3z2 −4xy/3+ y2/3. (8.2.26)

These systems possess the following two invariant hyperbolas

Φ̂
(4)
2,3(x, y)= 6a±6zx+2x(x− y)= 0,

which are nondegenerate if, and only if, a 6=0. We observe that, if in addition the condition 5a−b =

a+3z2 = 0 (i.e. a =−3z2) holds, we get the family of systems (8.2.25). We also observe that the two

hyperbolas Φ̂2,3(x, y) = 0 are distinct if z 6= 0 (i.e. 4a− b > 0) whereas in the case 4a− b = 0 these

hyperbolas collapse and we get a hyperbola of multiplicity two.

Thus, we arrive at the following statement:
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• if E1 6= 0, 4a−b > 0 and a 6=0 we have 2 invariant hyperbolas H
p;

• if E1 6= 0, 4a−b = 0 and a 6=0 we have one double invariant hyperbola H
p

2 .

• if E1 = 0, 4a−b > 0 and a 6=0 we have 3 invariant hyperbolas (two of them being H
p);

To determine the corresponding invariant conditions, for systems (8.2.16) with c = f = 0 and

h =1/3 we calculate

γ7 =−64(5a−b)/27, γ10 = 8(4a−b)/27, R3 =−4a/9.

Considering the conditions above, it is easy to observe that the corresponding invariant conditions

are given by the statements (B4), (C ) and (A ), respectively.

The subcase β7 = 0. Then, (2h+1)(2h−1) = 0 and, by Remark 8.2.6, we may assume h =

1/2. Considering (8.2.23), we conclude that only the case (φ5) could be satisfied and we get the

additional conditions: a = 0, b 6= 0. Therefore, we arrive at the family of systems

ẋ=−x2/2− xy/2, ẏ= b−3xy/2+ y2/2, (8.2.27)

which possess the following two hyperbolas

Φ
(5)
1 , (x, y)=−b+2xy= 0, Φ

(5)
2 (x, y)= 2b+2x(x− y)= 0.

We observe that the condition a = 0 is equivalent to γ7 = −12a = 0. As regarding the condition

b 6= 0, in the case a = 0, it is equivalent to R3 = −b/16 6= 0. Since for these systems we have

E3 = 75b/4 6= 0, we deduce that we could not have a third nondegenerate invariant hyperbola. This

completes the proof of the statement (B5) of the lemma.

Since all the cases are examined, Lemma 8.2.9 is proved.

The case Ñ = 0

As θ = −(g−1)(h−1)(g+h)/2 = 0, we observe that the condition Ñ = 0 implies the vanishing

of two factors of θ. We may assume g = 1 = h, otherwise in the case g+h=0 and g−1 6=0 (respec-

tively, h−1 6= 0) we apply the change (x, y, g, h) 7→ (−y, x− y,1− g−h, g) (respectively, (x, y, g, h) 7→

(y− x,−x, h,1− g−h)) which preserves the form of systems (8.2.1).
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So, g = h =1 and due to an additional translation systems (8.2.1) become

ẋ= a+d y+ x2, ẏ= b+ ex+ y2. (8.2.28)

Lemma 8.2.11. A system (8.2.28) possesses at least one nondegenerate invariant hyperbola of the

indicated form if, an only if, the respective conditions are satisfied:

I. Φ(x, y)= p+ qr+ ry+2xy ⇔ d = e = 0 and a−b =0;

II. Φ(x, y)= p+ qr+ ry+2x(x− y) ⇔ d = 0, M1 ≡ 64a−16b− e2 = 0, 16a+ e2 6= 0;

III. Φ(x, y)= p+ qr+ ry+2y(x− y) ⇔ e = 0, M2 ≡ 64b−16a−d2 = 0, 16b+d2 6= 0.

Proof. As it was mentioned in the proof of Lemma 8.2.2 (see page 285), we may assume that

the quadratic part of an invariant hyperbola has one of the following forms: (i) 2xy, (ii) 2x(x−

y), (iii) 2y(x− y). Considering the equations (8.1.3), we examine each one of these possibilities.

(i) Φ(x, y)= p+ qx+ ry+2xy: in this case we obtain

t = 1, s = u = 0, p = (4b+ q2+ qr)/2, U = 1, V = 1, W =−(q+ r)/2,

Eq9 = (4a−4b− q2+ r2)/2, Eq10 = 4aq+4b(q+2r)+ q(q+ r)2,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq8 = 0.

Calculating the resultant of the nonvanishing equations with respect to the parameter r we obtain

Resr (Eq9,Eq10)= (a−b)(4b+ q2)2/4.

If b =−q2/4, then we get the hyperbola Φ(x, y)= (r+2x)(q+2y)/2= 0, which is degenerate.

Thus, b = a and we obtain

Eq9 =−(q− r)(q+ r)/2= 0, Eq10 = (q+ r)(8a+ q2+ qr)/4= 0.

It is not too difficult to observe that the case q+ r 6= 0 (then q = r) leads to degenerate hyperbola

(as we obtain b = a =−q2/4, see the case above). So, q =−r and the above equations are satisfied.

This leads to the invariant hyperbola Φ(x, y) = 2a− rx+ ry+2xy = 0. Considering Remark 8.1.7,

we calculate ∆=−(4a+ r2)/2. So, the hyperbola above is nondegenerate if, and only if, 4a+ r2 6= 0.
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Thus, any system belonging to the family

ẋ= a+ x2, ẏ= a+ y2 (8.2.29)

possesses an 1−parametric family of nondegenerate invariant hyperbolas Φ(x, y) = 2a− r(x− y)+

2xy= 0, where r ∈R is a parameter satisfying the relation 4a+ r2 6= 0. This completes the proof of

the statement I. of the lemma.

(ii) Φ(x, y)= p+ qx+ ry+2x(x− y): in this case we obtain

s = 2, t =−1, u =0, p = (8a−4b+4de−2e2+ q2)/4,

r = 2d− e− q, U = 2, V = 1, W =−(2e+ q)/2, Eq7 =−2d

and, hence, the condition d = 0 is necessary. Then, we calculate

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq8 = 0,

Eq9 =−4a+b− (2e2+6eq+3q2)/4,

Eq10 =
[
16a(e+ q)−4b(4e+3q)+ (2e+ q)(q2−2e2)

]
/8

and

Resq (Eq9,Eq10)=−(64a−16b− e2)(4a−4b− e2)2/256.

1) Assume first 64a−16b− e2 = 0. Then, b = 4a− e2/16 and we obtain

Eq9 =−3(e+2q)(3e+2q)/16= 0, Eq10 =−(3e+2q)(64a+4e2− eq−2q2)/32= 0.

1a) If q =−3e/2, then all the equations vanish and we arrive at the invariant hyperbola

Φ(x, y)=−2a+ e2/8+ e(−3x+ y)/2+2x(x− y)= 0

for which we calculate ∆= (16a+ e2)/8. Therefore, this hyperbola is nondegenerate if, and only if,

16a+ e2 6= 0.

1b) In the case 3e+2q 6=0 we have q =−e/2 6= 0 and the equation Eq10 = 0 implies e(16a+e2)=

0. Therefore, due to e 6=0 we obtain 16a+ e2 = 0. However, in this case we have the hyperbola

Φ(x, y)=−(16a+3e2)/8− e(x+ y)/2+2x(x− y)= 0,
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whose determinant equals (16a+ e2)/8 and, hence, the condition above leads to a nondegenerate

hyperbola.

2) Suppose now 4a−4b− e2 = 0, i.e. b = a− e2/4. Herein, we obtain

Eq9 =−3
[
4a+ (e+ q)2

]
/4= 0, Eq10 = q

[
4a+ (e+ q)2

]
/8= 0

and the hyperbola

Φ(x, y)= 2x(x− y)+ qx− (e+ q)y+ (4a− e2+ q2)/4= 0,

for which we calculate ∆ =−[4a+ (e+ q)2
]
/4. Obviously, the condition Eq9 = 0 implies ∆ = 0 and,

hence, the invariant hyperbola is degenerate. So, in the case d = 0 and 4a −4b − e2 = 0, sys-

tems (8.2.28) could not possess a nondegenerate invariant hyperbola and the statement II. of the

lemma is proved.

(iii) Φ(x, y) = p + qx + ry + 2y(x − y): we observe that due to the change (x, y,a, b, d, e) 7→

(y, x, b,a, e, d) (which preserves systems (8.2.28)) this case could be brought to the previous one

and, hence, the conditions could be constructed directly applying this change.

Thus Lemma 8.2.11 is proved.

Lemma 8.2.12. Assume that for a quadratic system (8.1.2) the conditions η> 0 and θ= Ñ = 0 hold.

Then, this system could possess either a single nondegenerate invariant hyperbola or a family of

these hyperbolas. More precisely, it possesses:

(i) one irreducible invariant hyperbola if, and only if, β1 = 0, R9 6= 0 and either (i.1) β2 6= 0 and

γ11 = 0, or (i.2) β2 = γ12 = 0;

(ii) a family of such hyperbolas if, and only if, β1 =β2 = γ13 = 0.

Moreover, the family of hyperbolas corresponds to (F1) (respectively, (F2); (F3)) (see Figure 8.3) if

R9 < 0 (respectively, R9 = 0; R9 > 0).

Proof. For systems (8.2.28) we calculate

β1 =4de, β2 =−2(d+ e),

γ11 =19de(d+ e)+ eM1+dM2,

R9
∣∣
d=0 =

[
5(16a+ e2)−M1

]
/2,

R9
∣∣
e=0 =

[
5(16b+d2)−M2

]
/2.
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By Lemma 8.2.11, the condition de =0 (i.e. β1 = 0) is necessary for a system (8.2.28) to possess an

invariant hyperbola.

The subcase β2 6= 0. Then, d2+ e2 6= 0 and considering the values of the above invariant polyno-

mials, by Lemma 8.2.11, we deduce that the statement (i.1) of the lemma is proved.

The subcase β2 = 0. In this case we get d = e =0 and we calculate

γ13 = 4(a−b), R9 = 8(a+b), γ12 =−128(a−4b)(4a−b)=M1M2/2.

Therefore, by Lemma 8.2.11, in the case γ12 = 0 we arrive at the statement (i.2), whereas for

γ13 = 0 we arrive at the statement (ii) of the lemma.

It remains to observe that, if systems (8.2.28) possess the mentioned family of invariant

hyperbolas, then they have the form (8.2.29), depending on the parameter a. We may assume

a ∈ {−1,0,1} due to the rescaling (x, y, t) 7→ (|a|1/2x, |a|1/2 y, |a|−1/2t). In such a way, we arrive at the

three families mentioned in Remark 8.1.4.

8.2.3 Systems with two real distinct infinite singularities and θ 6= 0

For this family of systems, by Lemma 8.1.5, the conditions η = 0 and M̃ 6= 0 are satisfied

and, then, via a linear transformation and time rescaling, systems (8.1.2) could be brought to the

following family of systems:

ẋ= a+ cx+d y+ gx2+hxy,

ẏ= b+ ex+ f y+ (g−1)xy+hy2.
(8.2.30)

For this systems we calculate

C2(x, y)= x2 y, θ =−h2(g−1)/2 (8.2.31)

and, since θ 6= 0, due to a translation we may assume d = e = 0. So, in what follows we consider

the family of systems

ẋ= a+ cx+ gx2+hxy,

ẏ= b+ f y+ (g−1)xy+hy2.
(8.2.32)

Lemma 8.2.13. A system (8.2.32) could not posses more than one nondegenerate invariant hy-

perbola. And it possesses one such hyperbola if, an only if, c+ f = 0, G1 ≡ a(1−2g)+2bh = 0 and
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a 6=0.

Proof. Since C2 = x2 y, we may assume that the quadratic part of an invariant hyperbola has

the form 2xy. Considering equations (8.1.3) and the condition θ 6= 0 (i.e. h(g − 1) 6= 0), for sys-

tems (8.2.32) we obtain

t = 1, s = u = q = r = 0, p = a/h, U = 2g−1, V = 2h, W = c+ f ,

Eq8 = (a−2ag+2bh)/h =G1/h, Eq10 =−a(c+ f )/h,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq7 = Eq9 = 0.

Since the hyperbola (8.1.1) in this case becomes Φ(x, y) = a/h + 2xy = 0, the condition a 6= 0 is

necessary in order to have a nondegenerate invariant hyperbola. Then, the equation Eq10 = 0

implies c+ f = 0 and the condition Eq8/h = 0 yields G1 = 0. Since h 6= 0, we set b = a(2g−1)/(2h)

and this leads to the family of systems

ẋ = a+ cx+ gx2+hxy, ẏ=
a(2g−1)

2h
− cy+ (g−1)xy+hy2, (8.2.33)

which possess the following nondegenerate invariant hyperbola

Φ(x, y)=
a

h
+2xy= 0.

This completes the proof of the lemma.

Next, we determine the corresponding affine invariant conditions.

Lemma 8.2.14. Assume that for a quadratic system (8.1.2) the conditions η = 0, M̃ 6= 0 and θ 6=

0 hold. Then, this system possesses a single nondegenerate invariant hyperbola (which could be

simple or double) if, and only if, one of the following sets of the conditions holds:

(i) β2β1 6= 0, γ1 = γ2 = 0, R1 6= 0: simple;

(ii) β2 6= 0, β1 = γ1 = γ4 = 0, R3 6= 0: simple if δ1 6= 0 and double if δ1 = 0;

(iii) β2 =β1 = γ14 = 0, R10 6= 0: simple if β7β8 6= 0 and double if β7β8 = 0.

Proof. For systems (8.2.32) we calculate

γ1 =(2c− f )(c+ f )2h4(g−1)2/32, β2 = h2(2c− f )/2.

According to Lemma 8.1.6, for the existence of a nondegenerate invariant hyperbola the condition

γ1 = 0 is necessary and, therefore, we consider two cases: β2 6= 0 and β2 = 0.
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The case β2 6= 0

Then, 2c− f 6= 0 and the condition γ1 = 0 implies f =−c. So, we calculate

γ2 =14175c2h5(g−1)2(3g−1)G1, β2 = 3ch2/2,

β1 =−3c2h2(g−1)(3g−1)/4, R1 =−9ach4(g−1)2(3g−1)/8

and we examine two subcases: β1 6= 0 and β1 = 0.

The subcase β1 6= 0. Then, the necessary condition γ2 = 0 (see Lemma 8.1.6) gives G1 = 0 and,

by Lemma 8.2.13, systems (8.2.32) possess an invariant hyperbola. We claim that this hyperbola

could not be double. Indeed, since the condition θ 6= 0 holds, we apply Lemma 8.2.5 which provides

necessary and sufficient conditions in order to have at least two hyperbolas. According to this

lemma, the condition β1 = 0 is necessary for the existence of at least two hyperbolas. So, it is

clear that in this case the hyperbola of systems (8.2.33) could not be double due to β1 6= 0. This

completes the proof of the statement (i) of the lemma.

The subcase β1 = 0. Due to β2 6= 0 (i.e. c 6=0), we have g = 1/3 and, then, γ2 = 0 and

γ4 =16h6(a+6bh)2/3= 48h6
G

2
1 , R3 = 3bh3/2.

Therefore, the condition γ4 = 0 is equivalent to G1 = 0 and in this case R3 6= 0 gives b 6= 0 which

is equivalent to a 6= 0. By Lemma 8.2.13, systems (8.2.32) possess a nondegenerate hyperbola. We

claim that this hyperbola is double if, and only if, the condition a =−12c2 holds.

Indeed, as we would like after some perturbation to have two hyperbolas, then the respective

conditions provided by Lemma 8.2.5 must hold. We calculate:

β1 = 0, β2 = 3ch2/2, β6 = ch/3, γ4 = 0, δ1 =−(a+12c2)h2/4

and, since β6 6= 0 (due to β2 6= 0), we could have a double hyperbola only if the identities provided

by the statement (A1) are satisfied. Therefore, the condition δ1 = 0 is necessary and, due to θ 6= 0

(i.e. h 6=0), we obtain a =−12c2.

So, our claim is proved and we get the family of systems

ẋ=−12c2+ cx+ x2/3+hxy, ẏ= 2c2/h− cy−2xy/3+hy2, (8.2.34)
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which possess the hyperbola Φ(x, y)=−12c2/h+2xy= 0. The perturbed systems

ẋ=−
18c2(2h+ε)(3h+ε)

(3h−ε)2
+ cx+ x2/3+ (h+ε)xy,

ẏ=
6c2(3h+ε)

(3h−ε)2
− cy−2xy/3+hy2, |ε|≪ 1

(8.2.35)

possess the following two distinct invariant hyperbolas:

Φ
ε
1(x, y)=−

36c2(3h+ε)

(3h−ε)2
+2xy = 0, Φ

ε
2(x, y)=−

36c2(3h+ε)

(3h−ε)2
−

12cε

3h−ε
y+2y(x+εy) = 0.

It remains to observe that the hyperbola Φ(x, y) = −12c2/h + 2xy = 0 could not be triple, be-

cause in this case for systems (8.2.34) the necessary conditions provided by the statement (B)

of Lemma 8.2.5 to have three invariant hyperbolas are not satisfied: we have β6 6= 0.

Thus the statement (ii) of the lemma is proved.

The case β2 = 0

Then, f = 2c and this implies γ1 = 0. On the other hand, we calculate

γ2 =−14175ac2(g−1)3(1+3g)h5, β1 =−9c2(g−1)2h2/16

and, since f = 2c, according to Lemma 8.2.13, the condition c = 0 is necessary in order to have a

nondegenerate invariant hyperbola. The condition c = 0 is equivalent to β1 = 0 and this implies

γ2 = 0. It remains to detect invariant polynomials which govern the conditions G1 = 0 and a 6= 0.

For c =0 we have

γ14 =80h3[a(1−2g)+2bh
]
= 80h3

G1, R10 =−4ah2.

So, for β1 = β2 = 0, γ14 = 0 and R10 6= 0, systems (8.2.33) (with c = 0) possess the invariant hyper-

bola Φ(x, y)= a/h+2xy= 0.

Next, we shall determine the conditions under which this hyperbola is simple or double. In

accordance with Lemma 8.2.5, we calculate:

β1 =β6 = 0,β7 =−8(2g−1)h2.

We examine two possibilities: β7 6= 0 and β7 = 0.
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The possibility β7 6= 0. According to Lemma 8.2.5, for systems (8.2.33) with c = 0 could be satis-

fied only the identities given by the statement (A2). So, we have to impose the following conditions:

γ5 =β8 = δ2 = 0.

We have β8 =−32(4g−1)h2 = 0, which implies g = 1/4. Then, we obtain γ5 = δ2 = 0 and we get the

family of systems

ẋ= a+ x2/4+hxy, ẏ=−a/(4h)−3xy/4+hy2, (8.2.36)

which possess the hyperbola Φ(x, y) = a/h+2xy = 0. On the other hand, we observe that the per-

turbed systems

ẋ = a+
ε

2h
+ x2/4+ (h+ε)xy, ẏ=−a/(4h)−3xy/4+hy2, (8.2.37)

possess the following two distinct invariant hyperbolas:

Φ
ε
1(x, y)= a/h+2xy= 0, Φ

ε
2(x, y)= a/h+2y(x+εy)= 0.

Since β7 6= 0, according to Lemma 8.2.5, the hyperbola Φ(x, y)= a/h+2xy= 0 could not be triple.

The possibility β7 = 0. In this case we get g = 1/2 and this implies γ8 = δ3 = 0. Hence, the identi-

ties given by the statement (A3) of Lemma 8.2.5 are satisfied. In this case we obtain the family of

systems

ẋ = a+ x2/2+hxy, ẏ=−xy/2+hy2, (8.2.38)

which possess the hyperbola Φ(x, y) = a/h+2xy = 0. On the other hand, we observe that the per-

turbed systems

ẋ= a+ x2/2+ (h+ε)xy, ẏ=−xy/2+hy2, (8.2.39)

possess the following two distinct invariant hyperbolas:

Φ
ε
1(x, y)=

2a

2h+ε
+2xy= 0, Φ

ε
2(x, y)= a/h+2y(x+εy)= 0.

Since for systems (8.2.38) we have β8 = −32h2 6= 0, according to Lemma 8.2.5, the hyperbola

Φ(x, y)= a/h+2xy= 0 could not be triple.

It remains to observe that the conditions of the statement (B) of Lemma 8.2.5 in order to have

three invariant hyperbolas could not be satisfied for systems (8.2.33) (i.e. the necessary conditions
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for these systems to possess a triple hyperbola). Indeed, for systems (8.2.33) we have

β7 =−8(2g−1)h2, β8 =−32(4g−1)h2, θ =−(g−1)h2/2

and, hence, the conditions β7 = 0 and β8 = 0 are incompatible due to θ 6= 0.

As all the cases are examined, we deduce that Lemma 8.2.14 is proved.

8.2.4 Systems with two real distinct infinite singularities and θ = 0

By Lemma 8.1.5, via a linear transformation, systems (8.1.2) could be brought to the sys-

tems (8.2.30) for which we have

θ =−h2(g−1)/2, β4 = 2h2, Ñ = (g2 −1)2x2 +2h(g−1)xy+h2 y2. (8.2.40)

We shall consider to cases: Ñ 6= 0 and Ñ = 0.

The case Ñ 6= 0

Since θ = 0, we obtain h(g−1) = 0 and (g2 −1)2 +h2 6= 0. So, we examine two subcases: β4 6= 0

and β4 = 0.

The subcase β4 6= 0. Then, h 6= 0 (this implies Ñ 6= 0) and we get g = 1. Applying a translation

and the additional rescaling y → y/h, we may assume c = f = 0 and h = 1. So, in what follows we

consider the family of systems

ẋ = a+d y+ x2 + xy, ẏ= b+ ex+ y2. (8.2.41)

Lemma 8.2.15. A system (8.2.41) possesses a nondegenerate invariant hyperbola if, and only if,

e =0, L1 ≡ 9a−18b+d2 = 0 and a+d2 6= 0.

Proof. Since C2 = x2 y, we determine that the quadratic part of an invariant hyperbola has the

form 2xy. Considering equations (8.1.3) for systems (8.2.41), we obtain

t =1, s = u =0, r =2d, p = 2b+2de+dq+ q2/2,

U = 1, V = 2, W =−(q+ r)/2, Eq5 = e,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq8 = 0.
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Therefore, the condition Eq5 = 0 yields e =0 and, then, we have

Eq9 = 2a−4b+2d2− q2, Eq10 = aq+b(4d+ q)+ q(2d+ q)2/4.

Clearly, in order to have a common solution of the equations Eq9 = Eq10 = 0 with respect to the

parameter q, the condition

Resq (Eq9,Eq10)= (a+d2)2(9a−18b+d2)/2= 0

is necessary. We claim that the condition a + d2 = 0 leads to a degenerate hyperbola. Indeed,

setting a =−d2, we get Eq9 =−(4b+ q2)= 0. On the other hand, we get the hyperbola

Φ(x, y)= 2b+dq+ q2/2+ qx+2d y+2xy= 0

for which, by considering Remark 8.1.7, we calculate ∆ = −(4b+ q2)/2. Therefore, the equation

Eq9 =−(4b+ q2)= 0 leads to a degenerate invariant hyperbola. This proves our claim.

So, a+ d2 6= 0 and we set b = (9a+ d2)/18. Then, Eq9 = 0 gives (4d −3q)(4d +3q)= 0 and we

examine two subcases: q = 4d/3 and q =−4d/3.

1) Assuming q = 4d/3, we get Eq10 = 4d(a+d2) = 0. Since a+d2 6= 0, we have d = 0 and this

leads to the family of systems

ẋ= a+ x2 + xy, ẏ= a/2+ y2. (8.2.42)

These systems possess the invariant hyperbola Φ(x, y)= a+2xy= 0.

2) Suppose now q =−4d/3. This implies Eq10 = 0 and we obtain the systems

ẋ = a+d y+ x2+ xy, ẏ= (9a+d2)/18+ y2, (8.2.43)

which possess the invariant hyperbola

Φ1(x, y)= (3a−d2)/3−2d(2x−3y)/3+2xy= 0.

Its determinant ∆ equals −(a + d2) and, hence, the hyperbola is nondegenerate if, and only if,

a+d2 6= 0.
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It remains to observe that the family of systems (8.2.42) is a subfamily of the family (8.2.43)

(corresponding to d = 0) and this completes the proof of the lemma.

The subcase β4 = 0. This implies h =0 and the condition Ñ 6= 0 gives g2 −1 6= 0. Using a transla-

tion, we may assume e = f = 0 and we arrive at the family of systems

ẋ = a+ cx+d y+ gx2, ẏ= b+ (g−1)xy. (8.2.44)

Lemma 8.2.16. A system (8.2.44) possesses at least one nondegenerate invariant hyperbola if, and

only if, d = 0, 2g−1 6= 0 and either

(i) 3g−1 6= 0, K1 ≡ c2(1−2g)+a(3g−1)2 = 0 and b 6= 0, or

(ii) g = 1/3, c = 0, a ≤0 and b 6= 0.

Moreover, in the second case we have two hyperbolas (H p), if a < 0, and we have one double

hyperbola (H p
2 ), if a = 0.

Proof. We assume that the quadratic part of an invariant hyperbola has the form 2xy and con-

sidering equations (8.1.3), for systems (8.2.44) we obtain

t = 1, s = u = q =0, U = 2g−1, V = 0, W = c− gr/2,

Eq7 = 2d, Eq8 = 2b+ p(1−2g), Eq9 = 2a− cr+ gr2/2,

Eq10 = br− cp+ gpr/2, Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = 0.

Therefore, the condition Eq7 = 0 yields d = 0 and we claim that the condition 2g−1 6= 0 must hold.

Indeed, supposing g = 1/2, the equation Eq8 = 0 yields b = 0 and then

Eq9 = 2a+ r(r−4c)/4= 0, Eq10 = p(r−4c)/4= 0.

Since p 6= 0 (otherwise we get a degenerate hyperbola), we obtain r = 4c. However, in this case

Eq9 = 0 implies a = 0 and we arrive at degenerate systems. This completes the proof of our claim.

Thus, we have 2g−1 6= 0 and, then, the equation Eq8 = 0 gives p = 2b/(2g−1) and we obtain:

Eq10 = b(2c+ r−3gr))/(1−2g).
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Since in this case the hyperbola is of the form

Φ(x, y)=
2b

2g−1
+ ry+2xy= 0,

it is clear that the condition b 6= 0 must hold and, therefore, we get 2c+ r(1−3g)= 0.

1) Assume first 3g−1 6= 0. Then, we obtain r =2c/(3g−1) and the equation Eq9 = 0 becomes

Eq9 =
2

(3g−1)2
[
c2(1−2g)+a(3g−1)2

]
=

2

(3g−1)2
K1 = 0.

The condition K1 = 0 implies a = c2(2g−1)/(3g−1)2 and we arrive at the family of systems

ẋ=
c2(2g−1)

(3g−1)2
+ cx+ gx2, ẏ= b+ (g−1)xy, (8.2.45)

possessing the invariant hyperbola

Φ(x, y)=
2b

2g−1
+

2c

3g−1
y+2xy = 0,

which is nondegenerate if, and only if, b 6= 0.

2) Suppose now g = 1/3. In this case the equation Eq10 = 0 yields c = 0 and, then, we get

p = −6b and the equation Eq9 = 0 becomes Eq9 = (12a+ r2)/6 = 0. Therefore, for the existence

of an invariant hyperbola, the condition a ≤ 0 is necessary. In this case, setting a =−3z2 ≤ 0, we

arrive at the family of systems

ẋ=−3z2 + x2/3, ẏ= b−2xy/3, (8.2.46)

possessing the following two invariant hyperbolas

Φ1,2(x, y)=−6b±6z y+2xy= 0,

which are nondegenerate if, and only if, b 6= 0. Clearly, these hyperbolas coincide (and we obtain

the double one) if z = 0.

Lemma 8.2.17. Assume that for a quadratic system (8.1.2) the conditions η = 0, M̃ 6= 0, θ = 0

and Ñ 6= 0 are satisfied. Then, this system could possess either a single nondegenerate invariant

hyperbola, or two distinct (H p) such hyperbolas, or one triple invariant hyperbola. More precisely,
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it possesses:

(i) one nondegenerate invariant hyperbola if, and only if, either

(i.1) β4 6= 0, β3 = γ8 = 0 and R7 6= 0 (simple, if δ4 6= 0, and double, if δ4 = 0), or

(i.2) β4 = β6 = 0, β11R11 6= 0, β12 6= 0 and γ15 = 0 (simple, if γ2
16 + δ2

6 6= 0, and double, if

γ16 = δ6 = 0);

(ii) two distinct nondegenerate invariant hyperbolas (H p) if, and only if, β4 =β6 = 0, β11R11 6= 0,

β12 = γ16 = 0 and γ17 < 0 (both simple);

(iii) one triple nondegenerate invariant hyperbola (which splits into three distinct hyperbolas, two

of them being (H p)) if, and only if, β4 =β6 = 0, β11R11 6= 0, β12 = γ16 = 0 and γ17 = 0.

Proof. Assume that for a quadratic system (8.1.2) the conditions η= 0, M̃ 6= 0, θ = 0 and Ñ 6= 0 are

satisfied.

The case β4 6= 0. As it was shown earlier, in this case via an affine transformation and time

rescaling, the system could be brought to the form (8.2.41), for which we calculate

γ1 =−9de2/8, β3 =−e/4,

and, by Lemma 8.2.15, the condition β3 = 0 is necessary in order to have an invariant hyperbola.

In this case we obtain

γ8 = 42(9a−18b+d2)2 = 42L
2
1 , R7 =−L1/8− (a+d2)/3

and, considering Lemma 8.2.15, for β3 = γ8 = 0 we get systems (8.2.43) possessing the hyperbola

Φ(x, y)= (3a−d2)/3−2d(2x−3y)/3+2xy = 0. To detect its multiplicity we apply Lemma 8.1.8 setting

k = 2. So, in order to have the polynomial Φ(x, y) as a double factor in Ek, we force its cofactor in

E2 to be zero along the curve Φ(x, y)= 0 (i.e. we set y= (−3a+d2+4dx)/(6(d+ x))). We obtain

E2

Φ(x, y)
=

(a+d2)4(81a+17d2)

211312(d+ x)10 (7d+15x)(3a+d2+4dx+6x2)10 = 0

and, since a+d2 6= 0 (see Lemma 8.2.15), we get 81a+17d2 = 0. So, we obtain the family of systems

ẋ =−17d2/81+d y+ x2 + xy, ẏ=−4d2/81+ y2, (8.2.47)
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which possess the invariant hyperbola: Φ(x, y)=−44d2/81−4dx/3+2d y+2xy= 0. The perturbed

systems

ẋ =−
d2(17−2ε+ε2)

(ε2 −9)2
+d y+ x2 + (1+ε)xy, ẏ=−

4d2

(ε2 −9)2
+ y2, (8.2.48)

possess the two hyperbolas:

Φ
ε
1(x, y)=−

4d2(11−4ε+ε2

(ε2 −9)2(1+ε)
−

4d

(1+ε)(3+ε)
x+

2d

1+ε
y+2xy = 0,

Φ
ε
2(x, y)=

4d2(11+4ε+ε2

(ε2 −9)2(ε−1)
−

4d

(1−ε)(3−ε)
x−

6d

ε−3
y+2y(x+εy) = 0.

We observe that for systems (8.2.43) we have δ4 = (81a+17d2)/6 and β7 =−8. Therefore, if δ4 = 0,

the invariant hyperbola is double and, by Lemma 8.2.5, it could not be triple due to β7 6= 0. This

completes the proof of the statement (i.1) of the lemma.

The case β4 = 0. Then, we arrive at the family of systems (8.2.44), for which we have

β6 =d(g2−1)/4, Ñ = 4(g2 −1)x2, β11 = 4(2g−1)2x2, β12 = (3g−1)x,

So, due to Ñ 6= 0, the necessary conditions d = 0 and 2g−1 6= 0 (see Lemma 8.2.16) are equivalent

to β6 = 0 and β11 6= 0, respectively.

The subcase β12 6= 0. In this case 3g−1 6= 0 and, then, by Lemma 8.2.16, a nondegenerate

invariant hyperbola exists if, and only if, K1 = 0 and b 6= 0. On the other hand, for systems (8.2.44)

with d = 0 we calculate

γ15 = 4(g−1)2(3g−1)K1x5, R11 =−3b(g−1)2x4

and, hence, the above conditions are governed by the invariant polynomials γ15 and R11. So, we

get systems (8.2.45) possessing the hyperbola Φ(x, y)= 2b/(2g−1)+2cy/(3g−1)+2xy = 0.

According to Lemma 8.1.8, we calculate the polynomial E2 and we observe that E2 contains

the polynomial Φ(x, y) as a simple factor.

In order to have this polynomial as a double factor in E2, we force its cofactor in E2 to be zero
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along the curve Φ(x, y)= 0 (i.e we set y= b(3g−1)/((2g−1)(c− x+3gx))). We obtain

E2

Φ(x, y)
=

288b3(g−1)[c+ (3g−1)x]3

(2g−1)3(3g−1)16

[
c(2g−1)+ g(3g−1)x

]10×

[
c2(31−87g+62g2)+6c(3g−2)(3g−1)2x+ (3g−1)3(4g−1)x2]

= 0

and, since (2g−1)(3g−1) 6= 0, we get c =0 and either g = 1/4 or g = 0. However, in the second case

we get degenerate systems. So, g = 1/4 and we arrive at the family of systems

ẋ = x2/4, ẏ= b−3xy/4, (8.2.49)

which possess the hyperbola Φ(x, y)=−4b+2xy= 0. On the other hand, the perturbed systems

ẋ=−2bε+εxy+ x2/4, ẏ= b−3xy/4 (8.2.50)

possess the two invariant hyperbolas

Φ
ε
1(x, y)=−4b+2xy= 0, Φ

ε
2(x, y)=−4b+2y(x+εy) = 0.

It remains to determine the invariant polynomials which govern the conditions c = 0 and g = 1/4.

We observe that for systems (8.2.45) we have γ16 =−c(g−1)2x3/2 and δ6 = (g−1)(4g−1)x2/2.

To deduce that the hyperbola Φ(x, y) = −4b + 2xy = 0 could not be triple it is sufficient to

calculate E2 for systems (8.2.49):

E2 =−
135x15

65536
Φ(x, y)2(5b−3xy)(17b−7xy)

and to observe that the cofactor of Φ(x, y)2 could not vanish along the curve Φ(x, y)= 0. This leads

to the statement (i.2) of the lemma.

The subcase β12 = 0. Then, g = 1/3 and, by Lemma 8.2.16, at least one nondegenerate invari-

ant hyperbola exists if, and only if, c = 0, a ≤ 0 and b 6= 0. On the other hand, for systems (8.2.44)

with d = 0 and g = 1/3 we calculate

γ16 =−2cx3/9, γ17 = 32ax2/9, R11 =−4bx4/3

Therefore, the condition c = 0 (respectively, b 6= 0; a ≤ 0) is equivalent to γ16 = 0 (respectively,

R11 6= 0; γ17 ≤ 0).
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1) The possibility γ17 < 0. By Lemma 8.2.16, in this case we arrive at systems (8.2.46) with

z 6= 0 possessing the two hyperbolas Φ1,2(x, y) = −6b±6z y+2xy = 0. We claim that none of the

hyperbolas could be double. Indeed, calculating E2 (see Lemma 8.1.8), we obtain:

E2 =−
2560(x2 −9z2)6

177147
Φ1Φ2(2bx− x2 y−3yz2)(3bx2 − x3 y+27bz2 −27xyz2).

So, each hyperbola appears as a factor of degree one. Imposing the cofactor of Φ1 (respectively,

Φ2) to vanish along the curve Φ1(x, y) = 0 (respectively, Φ2(x, y) = 0), i.e. setting x = 3(b− zy)/y

(respectively, x= 3(b+ zy)/y), we obtain

E2

Φ1,2
= 3732480b6z2(b∓2yz)10/y13 6= 0

due to bz 6= 0. This proves our claim and we arrive at the statement (ii) of the lemma.

2) The possibility γ17 = 0. In this case we have z = 0 and this leads to the systems

ẋ = x2/3, ẏ= b−2xy/3, (8.2.51)

possessing the hyperbola Φ(x, y) =−6b+2xy = 0. Calculating E2 for this systems, we obtain that

Φ(x, y) is a triple factor of E2. According to Lemma 8.1.8, this hyperbola could be triple. And, in

fact, it is triple as it is shown by the following perturbed systems:

ẋ=−12b2ε2 + x2/3, ẏ= b−2xy/3+3bε2 y2, (8.2.52)

possessing the three invariant hyperbolas:

Φ1,2 =−6b±6bε y+2xy = 0, Φ3 =−6b+2y(x−3bε2 y).

So, we arrive at the statement (iii) of Lemma 8.2.17 and this completes the proof of this lemma.

The case Ñ = 0

Considering (8.2.40), the condition Ñ = 0 implies h = 0 and g = ±1. On the other hand, for

(8.2.30) with h = 0 we have β13 = (g−1)2x2/4 and we consider two cases: β13 6= 0 and β13 = 0.
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The subcase β13 6= 0. Then, g − 1 6= 0 (this implies g = −1) and due to a translation we may

assume e = f = 0. So, we get the following family of systems

ẋ= a+ cx+d y− x2, ẏ= b−2xy. (8.2.53)

Lemma 8.2.18. A system (8.2.53) possesses at least one nondegenerate invariant hyperbola if, and

only if, d = 0, 16a+3c2 = 0 and b 6=0.

Proof. We again assume that the quadratic part of an invariant hyperbola has the form 2xy and

considering equations (8.1.3) for systems (8.2.53), we obtain

t =1, s = u = q = 0, p =−2b/3, r =−c/2, U =−3,

V = 0, W = c+ r/2, Eq7 = 2d, Eq9 = (16a+3c2)/8,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = Eq10 = 0.

Therefore, the conditions Eq7 = 0 and Eq9 = 0 yield d = 0 and 16a+3c2 = 0. In this case we get

the systems

ẋ=−3c2/16+ cx− x2, ẏ= b−2xy, (8.2.54)

which possess the invariant hyperbola

Φ(x, y)=−2b/3− cy/2+2xy= 0.

Obviously, this hyperbola is nondegenerate if, and only if, b 6= 0. So, Lemma 8.2.18 is proved.

The subcase β13 = 0. Then, g = 1 and due to a translation we may assume c = 0. So, we get the

following family of systems

ẋ = a+d y+ x2, ẏ= b+ ex+ f y. (8.2.55)

Lemma 8.2.19. A system (8.2.55) could not possess a finite number of hyperbolas. And it possesses

a family of nondegenerate invariant hyperbolas if, and only if, d = e =0 and 4a+ f 2 = 0.

Proof. Considering equations (8.1.3) and the fact that the quadratic part of an invariant hyper-
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bola has the form 2xy, for systems (8.2.55) we calculate

t = 1, s = u = 0, U = 1, V = 0, W = f − r/2,

Eq5 = 2e, Eq7 = 2d, Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = 0.

Therefore, the conditions Eq5 = 0 and Eq7 = 0 yield d = e =0 and, then, we have

Eq8 = 2b− p− f q+ qr/2, Eq9 = (4a+ r2)/2, Eq10 = aq+br− p(2 f − r)/2.

The equations Eq8 = Eq10 = 0 have a common solution with respect to the parameter q only if

Resq(Eq8,Eq10)=−2ab+ p(a+ f 2)− f r(b+ p)+ r2(2b+ p)/4= 0.

On the other hand, in order to have a common solution of the above equations with respect to r,

the following condition is necessary:

Resr

(
Eq9,Resq(Eq8,Eq10)

)
= (4a+ f 2)(4ab2+ f 2 p2)/4= 0.

We claim, that the condition 4a+ f 2 = 0 is necessary for the existence of a nondegenerate invariant

hyperbola.

Indeed, supposing 4a+ f 2 6= 0, we deduce that the condition 4ab2+ f 2 p2 = 0 must hold.

1) Assume first f 6= 0. If b = 0, then we get p = 0 and the equation Eq10 = 0 gives aq = 0. In

the case q = 0 we obtain a degenerate hyperbola. If a = 0, then the equation Eq9 = 0 implies r = 0

and we again get a degenerate hyperbola.

Thus, b 6= 0 and, hence, a ≤ 0. We set a =−z2 ≤ 0 and, consequently, r = ±2z and p = ±2bz/ f .

It is not too hard to convince ourselves that all four possibilities lead either to degenerate hyper-

bolas, or to the equality 4a+ f 2 = 0, which contradicts our assumption.

2) Suppose now f = 0. This implies ab = 0 and, since b 6= 0 (otherwise we get degenerate

systems), we have a = 0 and this again contradicts to 4a+ f 2 6= 0. This completes the proof of our

claim.

Thus, 4a+ f 2 = 0 and, setting a =− f 2/4, we arrive at the family of systems

ẋ=− f 2/4+ x2, ẏ= b+ f y, (8.2.56)
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which possess the following family of invariant hyperbolas

Φ(x, y)= (4b− f q)/2+ qx+ f y+2xy= 0,

depending on the free parameter q. Since the corresponding determinant ∆ (see Remark 8.1.7)

for this family equals f q−2b, we conclude that all the hyperbolas are nondegenerate, except the

hyperbola, for which the equality f q−2b =0 holds. Thus, the lemma is proved.

We observe that in the above systems we may assume b = 1. Indeed, if b = 0, then f 6= 0

(otherwise we get a degenerate system) and, therefore, due to the translation y → y+ b′/ f with

b′ 6= 0 and the addition rescaling y→ b′y, we get b′ = 1. Moreover, in this case we may assume f ∈

{0,1} due to rescaling (x, y, t) 7→ ( f x, f y, t/ f ) when f 6= 0. This leads to the two families of hyperbolas

mentioned in Remark 8.1.4.

Lemma 8.2.20. Assume that for a quadratic system (8.1.2) the conditions η= 0, M̃ 6= 0 θ = 0 and

Ñ = 0 hold. Then, this system could possess either a single nondegenerate invariant hyperbola, or

a family of such hyperbolas. More precisely, this system possess

(i) one simple nondegenerate invariant hyperbola if, and only if, β13 6= 0, γ10 = γ17 = 0 and

R11 6= 0;

(ii) one family of nondegenerate invariant hyperbolas if, and only if, β13 = γ9 = γ̃18 = γ̃19 = 0.

Moreover, the family of hyperbolas corresponds to (F4) (respectively, (F5)) (see Figure 8.4), if γ17 6= 0

(respectively, γ17 = 0).

Proof. Assume that for a quadratic system (8.1.2) the conditions η = 0, M̃ 6= 0 θ = 0 and Ñ = 0

hold.

The subcase β13 6= 0. In this case we consider systems (8.2.53) for which we calculate

γ10 =14d2, R11 =−12bx4 +6dxy2(cx+d y), γ17 = 8(16a+3c2)x2 −4d y(14cx+9d y).

So, for γ10 = γ17 = 0 and R11 6= 0 we get systems (8.2.54) possessing the hyperbola Φ(x, y)=−2b/3−

cy/2+2xy= 0. We claim that this hyperbola is a simple one. Indeed, calculating E2, we obtain that

the polynomial Φ(x, y) is a factor of degree one in E2. So, setting y=−4b/(3(c−4x)) (i.e. Φ(x, y)≡ 0),

we get
E2

Φ(x, y)
=−2−245b3(c−4x)3(3c−4x)12/3 6= 0
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due to b 6= 0. So, the hyperbola above could not be double and this proves our claim. Thus the

statement (i) of lemma is proved.

The subcase β13 = 0. Then, we consider systems (8.2.55) and we calculate

γ9 =−6d2, γ̃18 = 8ex4, γ̃19 = 4(4a+ f 2)x.

So, the conditions d = e =0 are equivalent to γ9 = γ̃18 = 0 and 4a+ f 2 = 0 is equivalent to γ̃19 = 0.

Considering Lemma 8.2.19 we arrive at the statement (ii).

It remains to observe that for systems (8.2.55) with d = e = 0 and a = − f 2/4 we have γ17 =

8 f 2x2 and this invariant polynomial governs the condition f = 0.

As all the cases are examined, Lemma 8.2.20 is proved.

To complete the proof of Theorem 8.1.2 we remark that both generic families of quadratic

systems (with three and with two distinct real infinite singularities) are examined and now we

could compare the obtained results with the statements of Theorem 8.1.2.

So, comparing the statements of Lemmas 8.2.4, 8.2.5, 8.2.8, 8.2.9 and 8.2.12 with the condi-

tions given by Figure 8.1, it is not too difficult to conclude that the statement (B1) of Theorem 8.1.2

is valid.

Analogously, comparing the statements of Lemmas 8.2.14, 8.2.17 and 8.2.20 with the condi-

tions given by Figure 8.2, we deduce that the statement (B2) of Theorem 8.1.2 is valid.

Since the type of each of the five families F1–F5 is determined inside the proof of the respec-

tive lemma, we conclude that the Theorem 8.1.2 is completely proved.
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Chapter

9

Final considerations

The object of study of this thesis was the family of quadratic differential systems in the plane

and the main goal was to classify three families of such systems. Essentially here we consider two

classification problems: one is on the topological classification of some families of quadratic sys-

tems and the other is to classify the family of quadratic systems possessing invariant hyperbolas

with respect to their number and their multiplicity.

For both problems, we used the theory of affine invariant polynomials (comitants and invari-

ants) developed by Sibirsky and his former students, especially by Vulpe. This theory has been

used by many researchers in the field of the quadratic class of differential systems. One of the

reasons why invariant polynomials are widely used is because of the possibility of constructing

algebraic or semi–algebraic sets of objects having a specific geometric property. Then, building a

“bridge” between geometry and algebra of quadratic systems, we have the control of all possible

algebraic bifurcation in its parameter space under some geometrical restriction.

In the case of the topological classification of phase portraits, due to the normal form adopted

for each one of the families, we have worked with three–parametric and four–parametric sys-

tems, but the bifurcation diagram is always tridimensional. The normal form we used for systems

possessing a finite semi–elemental triple node belonging to the class QTN possesses three param-

eters and its bifurcation diagram is R
3, whereas the normal forms we used for systems possessing

a finite semi–elemental saddle–node and an infinite saddle–node of type
(0
2

)
SN belonging to the

class QsnSN possess four parameters and their bifurcation diagram is RP
3. It is worth mention-

ing that not all the bifurcations in the parameter space were purely algebraic; we detected the
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presence of many nonalgebraic bifurcations referring mainly to connection of separatrices.

As an illustration, the table below shows the number of regions in the bifurcation diagram

and the number of topologically distinct phase portraits of different families of quadratic systems

using the theory of affine invariant polynomials as well as the number of some geometric objects

present in the phase portraits (limit cycles and graphics).

QW2 QTN QsnSN(A) QsnSN(B) QsnSN(C) QsnSN

Parts in the
373 63 85 43 1034 senseless

bifurcation diagram

Topologically distinct
126 28 38 25 371 417

phase portraits

Phase portraits with
17 3 3 0 49 52

one limit cycle

Phase portraits with
3 (1,1) 0 0 0

1 (2)
2

two limit cycles 1 (1,1)

Phase portraits with
19 4 6 4 118 128

nondegenerate graphics

Phase portraits with
0 0 10 7 7 21

degenerate graphics

In the table above, when a phase portrait possesses two limit cycles, we exhibit their number

followed by their configuration by denoting i ( j), where i is the number of phase portraits with

two limit cycles and ( j) is their configuration as for example ( j) could be (1,1) (one limit cycle

around each one of the two foci) or (2) (two limit cycles around only one focus).

In the other case, the classification was in the sense of giving necessary and sufficient con-

ditions in terms of affine invariant polynomials for the existence and multiplicity of invariant

hyperbolas in quadratic differential systems. The parameter space considered here is R
12, but af-

ter affine transformations and time homotheties, we reduce this dimension to five. The problem

about hyperbolas we considered here can be extended so as to include all conics. Our purpose is to

classify all quadratic differential systems possessing invariant irreducible conics, and to achieve

this goal it remains to find out necessary and sufficient conditions for the existence of invari-

ant ellipses and invariant parabolas in quadratic systems. This is a joint work with Vulpe and

Schlomiuk and it will be finished in the next years.
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Now, being more specific in the case of topological classification of phase portraits, the fami-

lies we analyzed and presented in this thesis are themselves interesting because of the degree of

complexity of their study. Moreover, the results we obtained contribute to the topological classifi-

cation of the whole class of quadratic systems. We are aware that our efforts to this classification

correspond to a small grain in the vast class of quadratic systems, but we believe it is not in vain.

However, although we have indirectly contributed to the topological classification of quadratic

differential systems, we have enriched the specific case of classifying topologically all the unstable

quadratic systems of codimension one. The main way to do this is to consider phase portraits of

quadratic systems of higher codimension and submit them to perturbations in order to obtain

codimension–one phase portraits. The stage of this research was already advanced, but the proof

of the realization or nonrealization of some topological possible phase portraits was missing. With

this study, it was possible to decrease the number of the missing cases, but it was not sufficient to

cover all of them.

In order to annihilate these missing cases, we intend to analyze other families of quadratic

systems which are worth studying, namely: (i) with a finite semi–elemental triple saddle; (ii)

with a finite node with one direction (nd) and an infinite saddle–node of type
(0
2

)
SN; (iii) with a

weak focus of order one and an infinite saddle–node of type
(0
2

)
SN; and (iv) with a finite saddle–

node and an infinite saddle–node of type
(1
1

)
SN. However, we cannot guarantee that we will finish

the study of the unstable quadratic systems of codimension one by analyzing the families above;

we may need to consider other families different from these ones with other specific geometric

characteristics which may lead to the desired cases.
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