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Viatge a Itaca - Constantino Kavafis (Pau Riba)

Quan surts per fer el viatge cap a Itaca,

has de pregar que el cami sigui llarg,

ple d'aventures, ple de coneixences.

Els Lestrigons i els Ciclops,

'airat Posido, no te n'esfereeixis:

son coses que en el teu cami no trobaras,

no, mai, si el pensament se't manté alt, si una
emocio escollida

et toca l'esperiti el cos alhora.

Els Lestrigons i els Ciclops,

el fero¢ Posidd, mai no sera que els topis

si no els portes amb tu dins la teva anima,

si no és la teva anima que els dreca davant teu.

Has de pregar que el cami sigui llarg.

Que siguin moltes les matinades d'estiu

que, amb quina delectanga, amb quina joia!
entraras en un port que els teus ulls ignoraven;
que et puguis aturar en mercats fenicis

i comprar-hi les bones coses que s'hi exhibeixen,
corals i nacres, mabres i banussos

i delicats perfums de tota mena:

tanta abundor com puguis de perfums delicats;
que vagis a ciutats d'Egipte, a moltes,

per aprendre i aprendre dels que saben.

Sempre tingues al cor la idea d'ftaca.

Has d'arribar-hi, és el teu desti.

Pero no forcis gens la travessia.

Es preferible que duri molts anys

i que ja siguis vell quan fondegis a l'illa,

ric de tot el que hauras guanyat fent el cami,
sense esperar que t'hagi de dar riqueses [taca.

ftaca t'ha donat el bell viatge.
Sense ella no hauries pas sortit cap a fer-lo.
Res més no té que et pugui ja donar.

I sila trobes pobra, no és que taca t'hagi enganyat.

Savi com bé t'has fet, amb tanta experiéncia,

ja hauras pogut comprendre qué volen dir les Itaques.
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El viatge

Ara fa aproximadament uns vuit anys que un dia assolellat vaig trepitjar el IBB per
primer cop: vaig entrar-hi i vaig preguntar pel Doctor Daura, anava vestit més o
menys de forma elegant perque volia causar una bona impressio. A la secretaria
em varen indicar el cami, havia de baixar les escales i tombar a ma dreta, dos cops,

era la primera porta del passadis.

Vaig baixar les escales i em vaig trobar un home tot alt davant d'un laboratori fosc
en el que semblava que no hi havia ninga. Si miraves cap a dalt, a les finestres que
tocaven al sostre, només hi veies ampolles buides. Com qui no vol la cosa li vaig
tornar a fer la pregunta, “Perdoni, on és el despatx del Doctor Daura?” i la resposta
va ser “Qui el busca?”. Un cop em vaig haver presentat varem passar cap al seu
despatx. Aquell dia sols varen sortir de la seva boca tres frases, “Que vols?”, a la
qual li vaig respondre amb un rotllo impressionant, “Aqui no fem bioinformatica,
fem biologia computacional”, pero sincerament, aquest “petit detall”, a mi tampoc
m'importava gaire, el que volia era no tornar a trepitjar un laboratori “humit”, per
al final deixar anar un “tu m'interesses”. Poc temps després, vaig descobrir que al

laboratori fosc hi havia vida.

Recordo el primer dia de feina, o almenys el proposit que em vaig fer: el meus
companys m'havien de veure com una persona seriosa, no s'havia de notar que
m'agradava la festa i les dones com a tot bon eivissenc. Pero els gens em trairen. Al
cap de poc d'haver comencat, quan arribava al laboratori, en sortia una rossa i se'm
va escapar un “guau!”, crec que no va passar ni un segon perque de fons se sentis
“GERUPPA!”: ja tenia mal nom! I es va “oficialitzar” quan es va convertir en el meu

usuari en el sistema.

Aquest va ser el comencament de la meva aventura en aquestes terres. Una
aventura que m'ha portat a ports que desconeixia per a coneixer-vos a tots

vosaltres. Hem anat a fer tapes, celebrat fondues, treballat, rigut i plorat, anat de
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festa (i quines festes), apres coses que a vegades tenien a veure amb les ciéncies de

la vida i altres amb la ciéncia de viure, coses que han fet que avui jo sigui qui soc.
A tots vosaltres, Gracies.

Xavi, Juan, Dolores i Merce; gracies pel temps i la paciéncia que m'heu dedicat
(reconec que n'heu tingut molta amb mi) i, sobre tot, gracies per la oportunitat que

m'heu donat d'aprendre de vosaltres, és impagable.

[ ara toca anomenar a sa meva familia, gracies per ser sempre a es meu costat,

sense valtros no hagués fet res del que he fet.

Ara, si em perdoneu, haig de continuar el meu viatge, [taca m'espera, ens veiem en

arribar-hi.

Pau, octubre del 2013
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Summary

Summary

Understanding how peptides are selectively bound and presented by major
histocompatibility complex class I molecules (MHC class II or HLA class II in
humans) is of outmost importance for its broad implications in human health, from
infection to autoimmunity or cancer. The aim of this thesis was to develop a
computational strategy to identify HLA class Il binding patterns for a variety of
alleles and use this knowledge to predict their capacity to bind specific peptide
sequences. To make an effective use of the prediction algorithm, a web-based
platform for the analysis of large peptide or protein sets, including various

functionalities, was also devised.

In order to accomplish these objectives, the work was divided into three different
stages. The first stage consisted in the construction of a postgresql relational
database to store all the information required for and generated by the algorithms
developed. The required, uploaded information (subject to updates) consisted of
known HLA class II epitopes and the translated genomes of a list of pathogenic
bacterial species and human. In addition, the database was designed to include a
private section for the upload of user-owned epitope information, which the owner
may use in combination with the public data. In a second stage two predictors
were developed, one using position-specific scoring matrices (PSSMs) and the
other one using a support vector machine (SVM). PSSM development was
performed using an iterative optimisation protocol, starting from the alignment of
known epitopes to identify HLA class Il binding cores (9-residue segments) and
incorporating additional information such as allele conservation and non-binders
at different phases of the refinement. For SVM construction, the epitope core was
defined using the corresponding PSSM and the parameters for the SVM with a

radial-basis-function (RBF) kernel were set up individually for each molecule to
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Summary

get the best performance. In the third stage, two web pages were constructed, one
for each predictor. The servers share a common part in which the user can
introduce peptide or protein sequences in Fasta format to perform an analysis that
delivers both putative epitopes and their localization in a selected proteome. In
addition, the PSSM-based server allows the user to upload his/her own sequences

to elucidate new HLA class II binding patterns and perform predictions with them.
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Objectives

Objectives

The primary objective of this thesis has been to create a method and software to
predict peptide binding to HLA class Il molecules. The main characteristics of the

resulting web-based platform should be:
e Ease of use.
e (Capacity to perform unsupervised analyses.
e (Capacity to auto-update the background data.
e (Capacity to automatically discard ambiguous data.

e Enable users to:
> Analyse their own data sets, in a private manner if wanted.

> Derive patterns using a combination of private and public data, keeping

resulting patterns private if wanted.

> Use private and/or public patterns to perform predictions.
e Identify potential epitopes for selected HLA class II molecules in user-
provided lists of peptides or proteins and localise the same binding motifs in

a selected proteome (translated genome of pathogenic bacterial species or

human).

e Identify potential epitopes for selected HLA class II molecules in full

proteomes.

17
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Chapter 1. Introduction

Major histocompatibility complex and the immune

response

This section introduces the subject of this thesis, the MHC class II proteins and
their role in immunity. It is general knowledge immunology and should serve the
non-expert reader to situate these proteins in their functional context and visualise
the domain of application of the computational methods described in Chapters 2
and 3, core of this thesis. The text book Janeway’s Immunobiology [1] has been

used as main reference.

Immune response

An immune response is a body's integrated response against antigens (foreign
material). The fight against an infection by a pathogen may involve a body’s
response at two complementary levels: the innate immune response, which acts at
the first stages of the infectious process by restraining the penetration of the
pathogenic agent into the organism acting against conserved molecular patterns in
a non-specific and immediate manner, and the adaptive immune response,
developed as an adaptation to infection with the pathogen and providing a specific
response against it. A fundamental characteristic of the adaptive immune system is
that it can generate immunological memory, so that a fast and stronger response is
produced in subsequent infections by the same agent, i.e. providing protective
immunity against it. The cells in charge for the adaptive immune response are the
antigen-specific lymphocytes, i.e. B lymphocytes (B cells) and T lymphocytes (T
cells).

Activation of B and T cells

Lymphocytes require activation to perform their protective function. Lymphocytes

that have not yet been activated by antigen are known as naive lymphocytes, while
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Chapter 1. Introduction

those that have met the antigen and differentiated into fully functional
lymphocytes are known as effector lymphocytes. In addition to the binding of
antigen to lymphocyte receptors, lymphocyte responses require a second signal
that comes from cells carrying co-stimulatory molecules on their surface. In the
case of B cells, T cells perform this co-stimulation. After binding of an antigen to a
B-cell receptor (BCR) on the cell surface and appropriate co-stimulation by T cells,
the lymphocyte proliferates and differenciates into plasma cells, the effector form
of B lymphocytes. They produce antibodies, a secreted form of the BCR specific for
the same antigen. The BCR and antibody protein complexes are generically known
as immunoglobulins. On the other hand, activation of naive T cells is dependent on
specialised antigen-presenting cells (APCs) such as dendritic cells (most important
in this respect), macrophages and B cells. Stimulation by one of these cell types
together with binding of antigen to a T-cell receptor (TCR) may result in
proliferation and differentiation into one of several different types of effector T
lymphocytes: cytotoxic T cells, which kill cells that are infected with viruses or
other intracellular pathogens, helper T cells, which provide the essential additional
signals that activate antigen-stimulated B cells to differentiate and produce
antibody, and regulatory T cells, which supress the activity of other lymphocytes
and help control immune responses. During an immune response, some of the

activated B and T cells differenciate into memory cells.

CD8+ and CD4+ T cells

T lymphocytes are responsible for the so-called cell-mediated immune response of
adaptive immunity, which is needed to control infection by intracellular pathogens.
T lymphocytes are composed of two main classes, distinguished by carrying either
the CD8 or CD4 protein on their surface. These proteins help determining the way
T cells interact with other cells. Cytotoxic T cells carry CD8 (CD8+ T cells), while T
cells dedicated to the activation of other cells, as opposed to killing them, carry
CD4 (CD4+ T cells). The two major types of effector CD4+ T cells are called Ty1 and
Tu2. They are both involved in combating bacterial infections, albeit in different

ways. Tul cells activate infected macrophages so that they perform their
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Chapter 1. Introduction

bactericidal activity, but may also adopt a helper-T-cell role activating B cells to
produce antibody. Tx2 cells, on the other hand, are entirely dedicated to the latter

function.

T-cell receptors

T cells display thousands of identical antigen receptors on their surface, each one
consisting of two different polypeptide chains, a and f, linked by a disulfide bond.
The a:ff heterodimers are very similar in structure to the Fab fragment of an
immunoglobulin. Both chains of the TCR have an amino-terminal variable region
(V) with homology to an immunoglobulin V domain, a constant region (C) with
homology to an immunoglobulin C domain, a short segment connecting the C
domain to the membrane, similar to an immunoglobulin hinge region and
containing the cysteine residue that forms the inter-chain disulfide bond, a
transmembrane domain, and a short cytoplasmic tail. Both chains have

carbohydrate side chains attached to the C and V domains.

T cell recognition of antigen

In contrast to antigen recognition by B cells, which involves direct binding of BCRs
and antibodies to free, intact antigen, T cells recognise short protein fragments
resulting from antigen processing. The recognition by TCRs of peptides derived
from antigen requires that they are presented to the receptor by membrane
glycoproteins of the major histocompatibility complex (MHC) on the surface of
cells. The TCR interacts with the complex by making contacts with both the MHC
molecule and the antigen peptide. This introduces and extra dimension to antigen
recognition by T cells, known as MHC restriction, where recognition depends on
the right combination of peptide and MHC molecule. MHC restriction is one of the
basis for the phenomenon of alloreactivity, by which T cells respond to non-self or
allogenic MHC molecules, e.g. from transplants. There are two main types of MHC
molecules, called MHC class I and MHC class II, distinguished by their genome

localisation, structure, and target peptides. During antigen recognition, CD8 or CD4
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molecules (depending on the type of T cell) associate with the TCR on the T-cell
surface and bind to invariant sites on the immunoglobulin-like domains of the
MHC molecule, away from the peptide-binding site. They act as co-receptors
ensuring that the MHC:ligand complex is recognised by the right T-cell, i.e. a CD8+
T cell if the peptide is presented by an MHC class [ molecule and a CD4+ T cell if it

is presented by a MHC class Il molecule.

The major histocompatibility complex

The first MHC gene products were discovered on the surface of white blood cells,
becoming known as leukocyte antigens. This is why the human MHC is also
referred to as the human leukocyte antigen (HLA) complex. They were originally
studied for their ability to confer tolerance (histocompatibility) following tissue
grafts or, later, organ transplants, but their primary function is to provide
protection against pathogens. The MHC is a complex of polymorphic and co-
dominant genes. This means that most people are heterozygous for the MHC and
express two different forms of each molecule. In its extended definition, the MHC is
encoded along 7.6 Mb of the short arm of chromosome 6 in humans and contains
421 loci [2,3]. The genes are organized in clusters, facilitating the co-expression of
those proteins that are physically or functionally associated. In particular, the
classical MHC class I and MHC class II genes are found in clusters localised toward

the telomeric and centromeric regions of the extended MHC, respectively [3]:

e HLA class I supercluster: comprises the classical class I genes (HLA-A, -B
and -C). They are expressed in almost all cells and provide a mechanism to
display fragments of foreign proteins synthesized in the cytosol to CD8+ T
cells, enabling detection and clearing, for example, of cells expressing viral
or tumour proteins. This cluster also contains so-called non-classical class I
genes (HLA-E, -F, -G, HFE and 12 pseudogenes) and class I-like genes (MICA,
MICB, and 5 pseudogenes).

e HLA class II cluster: comprises the classical class Il genes (HLA-DP, -DQ, -

DR and pseudogenes). They are expressed by APCs and present fragments of
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proteins originating in intracellular vesicles to CD4+ T cells, enabling, for
example, the activation of macrophages infected by bacteria or the
activation of B cells after internalization of free antigen. This cluster also

contains so-called non-classical class Il genes (HLA-DM and -DO).

The combination of MHC genes presented by a single chromosome is known as the
MHC haplotype, and each haplotype confers different characteristics of peptide

recognition and presentation.

The MHC class I and class II functional protein complexes

The MHC class I molecule consists of an a chain encoded in the MHC and non-
covalently associated with a smaller chain, [32-microglobulin, which is not
polymorphic and is encoded in a different chromosome. The a chain has 3 domains
and is the only one to span the membrane. The membrane-bound a3 domain and
the B2-microglobulin closely resemble immunoglobulin domains. The a1 and a>
domains form the peptide-binding groove, which concentrates much of the

polymorphism of these molecules.

The MHC class Il molecule consists of a non-covalent complex of two chains, a« and
B, each organised in two domains, a1 and az and 31 and (2. Both chains are encoded
within the MHC, span the membrane by C-terminal sequences consecutive to the
immunoglobulin-like a; and 32 domains and end with a short cytoplasmic tail. The
peptide-binding cleft is formed by two domains from different chains, al and 1.
As in the MHC class I molecule, the binding site is delimited by a [-sheet (floor)
and two o-helices (walls), but in this case the cleft is open at the ends, therefore
allowing the termini of the peptide to extend beyond the binding groove. Thus,
while MHC class [ molecules bind peptides of 8-13 amino-acid residues, peptides
that bind to MHC class Il molecules are not constrained in length and may be as

long as 30 residues.
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Antigen presentation pathways

Inside a host cell, an infectious organism can replicate either in the cytosol, which
communicates with the nucleus, or in the vesicular system, which communicates
with the extracellular system. The immune system has developed different paths
for the detection and elimination of pathogens from the cytosol and the vesicular
system, mediated by MHC class [ and CD8+ T cells in the first case and by MHC
class Il and CD4+ T cells in the second [4,5], although there is significant cross talk
between these two paths. Virus and certain bacteria replicate in the cytosol or in
the nuclear compartment, whereas many other bacteria and some parasites
replicate in the endosomes and lysosomes constituting the vesicular system.
Exogenous antigens from extracellular pathogens or other pathogen-infected cells
can also enter the vesicular system (by phagocytosis, receptor-mediated
endocytosis or pinocytosis) or the cytosol (by active translocation after

phagocytosis or receptor-mediated endocytosis) of specialised APCs.

Cytosolic processing and MHC class I presentation

Protein degradation in the cytosol is performed mainly by a large multi-catalytic
protease complex called proteasome. The proteasome is part of the ubiquitin-
dependent degradation pathway for cytosolic proteins. The implication of the
proteasome in the production of peptide ligands for MHC class I molecules has
been demonstrated by various means [6], although it is not clear whether the
proteasome is the only cytosolic protease capable of generating peptides for
transport into the endoplasmic reticulum (ER), where they will meet MHC class I
molecules. Chaperones protect these peptides from complete degradation in the
cytoplasm before translocation to the ER. However, many of these peptides are too
long to readily bind to MHC class [ molecules. Thus, while the C-terminal ends are
generally produced by cleavage in the proteasome, the N-terminal ends may be
shortened in the ER by an aminopeptidase called ERAAP (endoplasmic reticulum

aminopeptidase associated with antigen processing).
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The folding and assembly of MHC class I molecules takes place in the lumen of the
endoplasmic reticulum (ER), which they do not leave unless they bind their
antigen peptide. Newly synthesized MHC class I a chains that enter the ER bind to
the membrane-bound chaperon calnexin, which retains the polypeptide in a partly
folded state. When the [ chain binds this complex, the partially folded dimer
dissociates from calnexin and binds to a complex of proteins known as the MHC
class I loading complex. One component of this complex, calreticulin is also a
chaperon. A second component is the TAP associated protein tapasin (encoded by
a gen within the MHC), which forms a bridge between the MHC molecule and TAP
(transporter associated with antigen processing), an ATP-dependent peptide
transporter of the ABC family that transports peptides (with some level of
specificity) from the cytosol to the ER and which is also encoded in the MHC. A
third component is Erp57, a thiol oxidoreductase that may have a role in breaking
and reforming the disulfide bond in the az domain during peptide loading.
Calnexin, calreticulin and Erp57 are part of the cell’s general protein-quality
control system. The loading complex seems to be essential both to maintain the
MHC class I molecule in a state that can bind a peptide and to carry out a so-called
peptide-editing function, which consists in the exchange of low-affinity peptides
for higher affinity ones. The binding of a peptide to the heterodimer finally
releases it from the loading complex so that the MHC class [ molecule and its
bound peptide can be exported to the cell surface by vesicular transport. Most of
the peptides transported by TAP will not bind the MHC molecules in that cell and
will then be transported back to the cytosol by a different ATP-dependent

transport mechanism.

Endosomal processing and MHC class II presentation

Bacteria and parasites that replicate inside intracellular vesicles in macrophages
and extracellular pathogens and proteins that are internalised into endocytic
vesicles (e.g. BCR-mediated endocytosis of antigens by B cells), are reduced and
degraded by proteases within the vesicles. The material that enters the cells
through endocytosis is contained in endosomes, which become increasingly acidic

as they move to the interior of the cell, eventually fusing with lysosomes. The
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endosomes and lysosomes contain proteases that are activated at low pH, such as
the cathepsins (cysteine proteases) B, D, S and L, the last two of which play a
predominant role in antigen processing. Reduction of disulfide bonds to enable
digestion is carried out primarily by IFN-y-induced lysosomal thiol reductase
(GILT). Autophagy, by which cytosolic proteins and organelles are delivered to
lysosomes for degradation within the normal process of protein turnover, provides

one of the sources of cross-talk with the MHC class I pathway.

The biosynthetic pathway of MHC class Il molecules, like that of MHC class |, starts
with translocation of the nascent chains to the ER, and they must therefore be
prevented from binding to peptides transported into the ER lumen from the
cytosol or to polypeptides being synthesized by the cell. This is accomplished by
binding to a protein known as the MHC class Il-associated invariant chain (Ii),
which forms trimers. Each Ii subunit binds to an MHC class II a:3 heterodimer
blocking its groove. Assembly of this nine-chain complex requires calnexin. When
the assembly is completed, the complex is released from calnexin and transported
out of the ER. Ii has a second function, which is the delivery of the MHC class II
molecules to a specialised low-pH endosomal compartment called MIIC (MHC class
Il compartment), where peptide loading can occur. In this compartment, i is
cleaved by acid proteases such as cathepsin S in several steps. The initial cleavages
generate a truncated form of Ii that remains bound to the MHC class II molecule
and to the membrane. Subsequent cleavage releases the MHC class II molecule
from the membrane-associated fragment of Ii, leaving a short fragment called CLIP
(class II-associated invariant-chain peptide) still bound to the MHC molecule and
blocking the binding groove. By fusion of the MIIC with incoming endosomes the
MHC class II molecule eventually enters the cell's endosomal pathway and
encounters and binds peptides. The MIIC contains a special type of MHC class II
molecule, called HLA-DM in humans, which binds to empty MHC class II molecules
stabilising them. It catalyses the release of CLIP, the subsequent loading of
peptides and the already mentioned peptide-editing function. HLA-DM does not
bind itself peptides, as the region of the groove is closed in this molecule. Stable

complexes are finally transported to the cell surface. As with MHC class I
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molecules, MHC class II molecules in uninfected cells bind peptides derived from

self-proteins.

HLA class Il polymorphism

Two properties of the MHC make it difficult for pathogens to evade the immune
system. First, the MHC is polygenic: it contains several different MHC class I and
class Il genes, so that every person possesses a set of MHC molecules with different
peptide-binding specificities. Second, the MHC is highly polymorphic, i.e. there are
multiple variants (alleles) of each gene in the population as a whole (see Figure 1.1
for HLA allele nomenclature). The genes encoding the a and 8 chains of MHC class
II molecules are contiguous within the MHC [3]. There are three pairs of classical
MHC class II a- and -chain genes, called HLA-DR, HLA-DP and HLA-DQ. Although
both chains contribute to the formation of the peptide-binding groove and both
can be polymorphic, the 8 chains are much more polymorphic than the a chains.
The DR a-chain is encoded by the HLA-DRA locus and shows basically no
polymorphism (Table 1.1). The DR B-chain is encoded by four loci, HLA-DRB1
(most variable), HLA-DRB3, HLA-DRB4 and HLA-DRB5. However no more than two
functional loci are present on a single chromosome, i.e. DRB1 plus any one of the
three other DRB genes. In HLA-DQ both the a and (3 chains vary greatly and are
encoded by loci HLA-DQA1 and HLA-DQBI, respectively. In HLA-DP the a and f3
chains are encoded by loci HLA-DPA1 and HLA-DPBI, respectively. Thus, the three
sets of genes of one chromosome may give rise to four types of MHC class II
molecules (2 DR, 1 DQ and 1 DP), each with different peptide specificities. The high
polymorphism, with most individuals being heterozygous, and the co-dominant
expression of the MHC products, means that the number of MHC class Il molecules
expressed in an individual may actually double. The number of different MHC
molecules may be increased still further by the combination of a and B chains
encoded by different chromosomes, although not all combinations may form a
stable dimer. The number of MHC class Il molecules an individual may express is
nevertheless small compared to the vast number of antigens it may have to react

to. Therefore, MHC molecules need to have limited specificity.
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Hyphen used to separate Suffix used to denote

gene name from HLA prefix changes in expression
Separator " Field Separators

HLA-A*02:101:01:02N
E:l ] 9 ] '
HLA Prefix Gene Field 4; used to show
' differences in a
Field 1; allele group non-coding region

Field 2; specific HLA protein

Field 3; used to show a synonymous DNA
substitution within the coding region

© SGE Marsh 04/10

Figure 1.1. Nomenclature of HLA alleles [7,8]
(http://hla.alleles.org/nomenclature/naming.html). Image courtesy of
Prof. SGE Marsh, HLA Informatics Group, Anthony Nolan Research

Institute, London, UK.

Table 1.1. Classical HLA class II genes and allele and protein numbers at the IMGT/HLA
database (July 2013) [7].

Gene Alleles | Proteins | Description

HLA-DRA 7 2 DR a-chain

HLA-DRB1 = 1355 1005 DR B1l-chain determining specificities DR1, DR2, DR3,
DR4, DR5 etc.

HLA-DRB3 58 46 DR B3-chain determining DR52 and Dw24, Dw25, Dw26
specificities

HLA-DRB4 15 8 DR B4-chain determining DR53 specificity

HLA-DRB5 20 17 DR B5-chain determining DR51 specificity

HLA-DQA1 51 32 DQ a-chain

HLA-DQB1 415 277  DQ B-chain

HLA-DPA1 37 19 DP a-chain

HLA-DPB1 190 147 DP B-chain
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The products of individual MHC alleles can differ by up to 20 amino-acid residues
[7]. Most of the differences are found in exposed surfaces of the N-terminal
domains and in the peptide-binding groove in particular, thus conferring distinct
binding specificities to each resulting MHC class II molecule. Some of the
polymorphic residues in MHC molecules are located in the a-helices that flank the
peptide-binding groove, in the contact region with the TCR. This contributes,
together with induced differences in the conformation of the peptide, to the
different recognition of the same antigen peptide by different MHC class II

molecules (MHC restriction).

Peptide binding to MHC class Il molecules

Since the first MHC class II crystal structure was reported in 1993 [9,10], more
than 60 crystallographic structures of the antigen recognition domains of MHC
class Il molecules have been resolved and deposited in the PDB (Protein Data Bank
[11]), mostly with bound peptide. In particular, at the time of this writing (July
2013) the IEDB (Immune Epitope Database [12,13]) reports 37 HLA class
[I:peptide structures, 1 HLA-DP, 5 HLA-DQ and 31 HLA-DR. The different MHC
class Il molecules are highly conserved at the structural level, even across species.
First observations from the initial HLA-DR1 structures were that peptides bind in
an extended conformation (Figure 1.2) that projects from both ends of an open-
ended antigen-binding groove [9] and that pockets in the peptide-binding site
accommodate five of the peptide side chains, explaining specificity, while a
considerable number of hydrogen bonds between conserved DR1 residues and the
backbone of the peptide provide a universal mode of peptide binding distinct from
that used by MHC class [ [10,14]. MHC class II usually binds peptides 9 to 30
residues long. The extended conformation adopted by the 9-residue peptide core
results in the side chains of peptide residues at positions P1, P4, P6 and P9 being
directed into the MHC class II peptide-binding groove. The residues at these
positions in the peptide are termed anchor residues because the interactions of
their side chains with distinctive pockets in the binding groove further stabilize the

MHC class Il:peptide complex. Other peptide side chains may establish contacts
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with the binding groove, most notably at position P7, which is directed sideways
within the groove and can therefore be described as binding to a P7 pocket [15].
The binding pockets contain mostly polymorphic residues, such that different
alleles bind specific groups of residues in each pocket [16,17]. Despite this
selectivity component, however, the anchor positions tend to be highly degenerate,

making the prediction of class II epitopes difficult.

Figure 1.2. Example of peptide bound to an MHC class II

molecule [18]

The role of interactions between the peptide flanking regions (positions preceding
P1 and succeeding P9) and the MHC class II molecule is still unclear, but there exist
evidences that these segments, far from completely superfluous, can have an affect

on CD4+ T cell antigen recognition [19].

HLA class Il peptide databases

Advances in high-throughput immunoproteomics methods [20,21] have enabled
the generation of vast libraries of HLA ligands. Table 1.2 lists databases including
experimentally determined HLA class II ligands. Importantly, some of these

databases report both binding and non-binding peptides, an essential feature for
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the training of prediction algorithms. The Immune Epitope Database (IEDB) [22],
with over 67.000 peptides assayed for 186 HLA class II alleles (July 2013), has
quickly become the major reference and was the database chosen for the training

of the algorithms developed in this thesis.

Table 1.2. List of public databases containing HLA class II ligands.

Database name URL Ref.

SYFPEITHI http://www.syfpeithi.de/ [23]

AntiJen http://www.ddg-pharmfac.net/antijen/Antijen/ [24]
antijenhomepage.htm

MHCBN http://www.imtech.res.in/raghava/mhcbn [25]

EPIMHC http://imed.med.ucm.es/epimhc/ [26]

IEDB http://www.immuneepitope.org/ [22]

Prediction of HLA class 11 epitopes

The ability to predict HLA class Il epitopes in a protein or a proteome has a

number of fundamental medical applications [27]:

e Design of vaccines for cancer and infectious diseases by means of antigen
discovery. This can be achieved by using in-silico tools to perform a rapid
screening of whole genomes, specific proteomes (e.g. cancer proteomes) or
protein families. The aim of the screening is to search for proteins with
antigenic properties [28], reducing the time and cost of cell-based or in-vivo

screens.

e Design of new protein therapeutics, free of HLA class II epitopes, which is a
common problem of recombinant proteins. To this end, in-silico tools may be
used to search for MHC class Il motives in recombinant proteins with potential
use as therapeutics, enabling the design of mutant, non-reactive sequences,

thus preventing immune neutralisation of the therapeutic agent.
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e Antigen discovery in whole genomes or in specific proteomes (e.g. cancer
proteomes) for purposes other than vaccine design. For example, for the

understanding of immune processes.

e Discovery of cross-reactive HLA class II epitopes in the context of
autoimmunity. Cross-reactivity may be caused by allergenic proteins with high
homology to human proteins, i.e. in celiac disease, or by pathogen mimicry as a
result of an evolutive process to avoid host defences. These cases can be
detected by host-pathogen proteome comparisons to find homologue regions in

both organisms that could be recognized by MHC class Il molecules.

e Discovery of immunogenic determinants of self in the context of grafts and
transplants. This could be addressed computationally by the study of MHC

restriction, using the relevant MHC allele populations.

e Determination of HLA class II epitopes associated with IgE responses in the
context of allergy. The combination of methods for the identification of HLA
class II and antibody epitopes may be used in this context, as well as for the

development of vaccines inducing both CD4+ and antibody responses.

The identification of peptides that bind to MHC class II molecules is significantly
more complex than equivalent predictions for MHC class I. These difficulties are
due to the fact that the 9-residue peptide core is inserted in a longer sequence,
complicating its determination, and the range of amino acids that may occupy the
anchor positions is larger than in the MHC class I case. Many approaches have been
proposed in order to overcome this setback. In the iterative self-consistent
approach [29] a first alignment of 9-residue segments from the problem peptide
set is performed by fixing the P1 position (e.g. using a simple motif predictor, see
below). The resulting set of 9-residue sequences is then reduced until convergence
by using an iterative process in which, at each iteration, motives with the lower
scores are removed from the training set. Other approaches align peptides as
found in crystallographic structures or create an initial basis set of sequences

using a prediction method created previously.
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The uncertainty introduced by the unknown peptide length may be partly
alleviated in the future by current efforts toward the prediction of antigen pre-
processing for presentation to CD4+ T cells [30]. An efficient prediction of antigen
pre-processing would enable an early discrimination of peptides, as currently all
possible 9-residue sequences from a protein need to be considered. Knowing the
right sequence length would also allow the introduction of the potential effect of

flanking residues in the predictions of binding.

Many bioinformatics tools are available for the prediction of HLA class II epitopes.
They are based on existing database knowledge on sequence and/or structure of
experimentally probed peptide binders and non-binders. The prediction
algorithms learn from this data by using different approaches, from
straightforward statistics (i.e. generating sequence motifs or position-specific
scoring matrices), to machine-learning techniques such as artificial neural
networks and support vector machines [31]. In the following paragraphs I

introduce the main concepts and available public servers.

There are different ways to classify prediction methods on the basis their output,
the kind of the data used or the mathematical approach. The output given by a
predictor may be used to divide the methods into two different categories.
Qualitative methods classify the epitopes as binders/non-binders or strong/weak
binders, the prediction being usually based on the presence/absence of certain
amino-acid residues at the anchoring positions. Quantitative methods, on the other
hand, return a numeric binding score meant to predict the peptide’s binding
affinity. If the methods are classified on the type of data used, they may be divided
in sequence-based methods, where binding patterns are elucidated using only the
amino-acid sequence, and structure-based methods, where both the peptide’s
amino-acid sequence and the structural features of the specific HLA class II
molecule are considered. Finally, methods may be classified on the basis of the
underlying mathematical approach. Within this classification, a first group of
methods make use of position-specific scoring matrices (PSSMs) [32], which are
two-dimensional matrices commonly used to represent motifs. In the current

context, PSSMs contain one column for each position of interest, i.e. the anchoring
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residues (P1, P4, P6, P7 and P9) or residues 1 to 9 if the entire epitope core is
considered, and one row for each symbol of the alphabet, i.e. the 20 amino acids.
The final score for the peptide results from adding the individual scores of each
amino acid in the query sequence for the corresponding position in the HLA class II
binding groove. This representation assumes that each residue of a peptide
independently contributes to HLA class II binding. Although the peptide length is
fixed, peptides of various sizes can be analysed by generating all possible 9-residue
sequences contained in them. A second group of prediction methods make use of
Hidden Markov Models (HMMs) [33], a technique commonly used for pattern
recognition. HMMs are statistical models in which the system is assumed to follow
a Markov process. The objective is to determine the unknown (hidden) parameters
of the model from the observable parameters. In this case, the observables are the
training peptide sequences, the number of states is optimised for the training data
set and transitions between states and their emission of symbols (amino acids) are
governed by probabilities reflecting the observed data. After the training phase,
the model is used to assign binding-likelihood values to query peptide sequences.
Advantages of HMMs are their capacity to treat peptides of varying sizes at once
(and discover multiple hidden binding patterns in them) and consider correlations
between adjacent residues (through the Markov transition probabilities). A third
group of methods use Artificial Neural Networks (ANNs) [34], which are also of
common use for classification and pattern recognition. An ANN consists of nodes
(computational elements) that receive signals via interconnecting arcs. An ANN
can be trained to recognize a pattern by strengthening signals (adjusting arc
weights) and by adjusting activation thresholds for individual nodes. The
advantages of ANNs are that they are adaptive, are effective with nonlinear data,
and are tolerant to a certain level of erroneous data. However, they need to
determine a large number of parameters and therefore require larger amounts of
binding data than simpler prediction methods. Unlike HMMs, they require, as with
PSSMs, the pre-alignment of the peptides. A fourth group of methods make use of
support vector machines (SVMs) [35]. A SVM is a classification technique that tries
to differentiate members of different populations in a sample by building hyper-

planes between them so as to discriminate between the characteristics of the
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different members in the sample. Their predictions are of similar accuracy to ANN
and HMM predictions, with the added advantage that they can be trained on
relatively small peptide datasets. A fifth group of methods make use of quantitative
structure-activity relationships (QSAR) [36]. The objective of the QSAR approach is
to establish a relationship between the chemical structure and the biological
response. To this end, the chemical structure is translated into a quantitative
description, followed by a statistical modelling. Thus, peptides may be described
by global and local (amino-acid level) descriptors of various sorts (of physical or
chemical nature) and the resulting models fitted to quantitative binding data (e.g.
IC50s). Excess of number of terms and descriptors may quickly lead to over-fitting
if large training sets are not available. Finally, structure-based approaches may use
a variety of techniques to assess peptide binding quantitatively, from molecular
modelling and simulation [37] to 3D-QSAR [38]. These latter type of methods are,

however, not amenable to fast, automated predictions.
The most popular web-servers oriented to epitope prediction are:

e SYFPEITHI [23] is an early database for MHC ligands and peptide motifs with
an associated MHC class I and II predictor. The predictor, probably the simplest

one still in function, was built with motif-based 20x9 PSSMs.

e Proped [39] is a TEPITOPE [40] web service. TEPITOPE was the first program
to use pocket profiles to extrapolate PSSM data from one HLA class Il molecule
to another, generating so-called virtual matrices. It can make predictions for 51
HLA-DR molecules. A recent extension, TEPITOPEpan [41], promises unlimited

coverage of HLA-DR molecules.

e Rankped [42] is another PSSM-based method. To derive the PSSMs, the peptide
core of each epitope was deduced from structural or sequence-similarity
alignments of peptides presented by the different MHC class Il molecules. Once
peptides were aligned, all repeated cores were collapsed to one and a profile

was created using PROFILEWEIGHT [43] or BLK2PSSM [44].

37



Chapter 1. Introduction

38

HLA-DR4Pred [45] is a predictor dedicated to the HLA-DR1*04:01 molecule. It
was trained using 1154 peptides (587 presented by HLA-DR1*04:01) spread
between 5 groups to perform cross-validation (5 training rounds using 4
groups as a training set and 1 as a test set during different rounds). Two
predictors were developed, one using a SVM approach and another one using
an ANN approach. In both cases the peptide is codified using a binary vector of
20 positions for each of the 9 core amino acids. The SVM was trained using
different kernels (linear, polynomial, RBF and sigmoid) and the RBF kernel was
finally selected for the server. The ANN was trained using standard feed-
forward backpropagation with 1 hidden layer. The number of cycles and loops

performed were fixed internally by the method.

ARB matrix [46], which stands for Average Relative Binding matrix, is a PSSM-
based predictor based on affinities rather than frequencies. Thus, the scoring-
matrix elements are in this case a function of the binding affinity (IC50) of
peptides having the specific amino acid at the specific position relative to the
affinity of all other peptides. After matrix generation, the scoring for the 9-
residue segments were fitted to IC50 values by means of different regression

techniques.

SVMHC [47] is a SVM predictor. The singularity here is that performance was
measured using the Matthews correlation (MC), which is often used in binary
classification to determine if the obtained results have a good correlation with

the expected ones.

SVRMHC [48] is a SVM regression method in which the produced model
depends only on a subset of the training data (marginal data points with scores
near the threshold are dismissed). Models were constructed for MHC class 11
molecules with IC50 values available for at least 50 peptides. Peptide cores
were first defined using the iterative self-consistent strategy. For each MHC
molecule, six different configurations were attempted resulting from three
different kernel functions (linear, polynomial and RBF) in combination with

two sequence encoding schemes (sparse encoding and 11-factor encoding).
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SMM-align [49] uses a Gibbs sampler method [50] to generate a 20x9 weight
matrix. SMM-align seeks to identify the weight matrix that optimally
reproduces the measured IC50 values for each peptide by using a Metropolis
Monte Carlo procedure. The peptide sequences are presented to SMM-align
using two sequence-encoding schemes, sparse encoding and Blosum50. The
final prediction score for a 9-residue peptide is then calculated as the average
of the sparse and Blosum encoded predictions. The threshold used for the
definition of peptide binders is an IC50 of 500 nM. This method uses the
peptide length as a training parameter input, i.e. it incorporates the flanking

residues to the prediction.

NN-align [51] is an ANN-based method that allows for simultaneous
identification of the MHC class II binding core and binding affinity. NN-align
was trained using an algorithm that allows for correction of bias in the training
data due to redundant binding core representation. Information on the

residues flanking the peptide-binding core is also incorporated.

NetMHClIpan [52] is another ANN-based method. The input sequences were
presented to the neural network in three distinct manners: sparse encoding,
Blosum50 encoding and a mixture of the two. Peptide flanking residues were
also incorporated (to a maximum of three per side). The binding core and
flanking residues in the peptide training set were identified with SMM-align.
Finally, the HLA sequence (contact residues) was also incorporated as input to
the ANN. Thus, starting from data on 14 HLA-DR molecules and taking both
peptide and HLA sequence information into account, NetMHClIIpan is meant to
generalize and predict peptide binding for any other HLA-DR molecule of

known sequence, similarly as TEPITOPEpan.

IEDB-AR [53] predicts peptide binding by generating a consensus score
between NN-align, SMM-align, TEPITOPE and NetMHClIpan scores.

MHC2pred [54] uses a standard SVM-based approach.
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Epitop [55] is a QSAR-based method that uses principal components analysis
(PCA) to construct a PSSM. It builds on the proteochemometrics approach [56],
which uses both protein and ligand descriptors (as opposed to standard QSAR
which makes only use of ligand descriptors). A single proteochemometric
model could potentially predict peptide binding to many MHC proteins. Amino
acids in the 9 core positions are encoded with 3 descriptors (volume, polarity
and hydrophobicity). HLA polymorphic residues as well as cross-terms
between adjacent peptide residues and between peptide-HLA residues are
incorporated. The model was derived using the iterative self-consistent

approach, were IC50s were used as target.

EpiDOCK [57] is the first structure-based prediction server. Three initial
crystallographic structures (of DR, DQ and DP molecules) were used as
templates for the modelling of a total of 23 HLA class Il molecules. Single
amino-acid substitutions were sued to construct a virtual combinatorial library
of peptides. AutoDock [58] and GOLD [59] were used to dock the peptides to
the HLA molecules. The resulting scores were use to generate a 20x9 PSSM for

each molecule.
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Abstract

Recent advances in proteomics have substantially increased the amount of
available data on peptides that bind to HLA class II. This has led to a significant
improvement in accuracy and coverage of bioinformatic predictions of HLA class II
binding peptides. The suite presented here represents another step in this
direction. We have created a web-based set of tools, following a scoring-matrix-
type approach, for the identification in query sequences of peptide motifs that bind
to specific HLA class II molecules and for the search of these motifs in entire
proteomes of microorganisms and human. This set of tools has been especially
devised to meet the needs of the immunologist, assisting the analysis of motifs in
antigen presentation by HLA class II in the contexts of infection, autoimmunity or
vaccine design. With this objective, the applications have been designed to: a)
maximise the versatility of the queries, with no restrictions on the amount or
length of input sequences to be evaluated for epitope prediction; b) enable the
scanning of over 240 microbial proteomes and the human proteome for predicted
motifs; c) enable a private use of the suite’s profile-development tools so that the
user may incorporate his/her own peptide libraries to derive new profiles or
improve existing ones, shortening the time between the acquisition of the
experimental data, the refinement of the resulting library and the determination of
binding motifs; d) enable the combined analysis of query sequences against all the
HLA class II molecules available in the suite, making it possible to eventually
analyse a full proteome for epitopes in relation to all HLA class II molecules in a
single shot; e) periodically expand the number and quality of HLA class II binding
profiles available for prediction by automatic updates incorporating new data from
reference databases. This service is freely accessible at

http://bioinf.uab.cat/hla2db.
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Introduction

Major histocompatibility complex (MHC) class II molecules ~human leukocyte
antigen or HLA class II in human- are cell-surface glycoproteins that present
(mostly) exogenous peptides to CD4+ T lymphocytes. MHC class II loci are
extremely polymorphic. Allelic variation between MHC class II molecules of
different individuals accounts for the differential ability to bind and display
antigenic peptides and plays also a major role in autoimmunity [1]. MHC class II
molecules are constituted by two chains, a and 3, each having two domains, a1 and
a2 and B1 and 2. The a2 and B2 immunoglobulin-like domains are bound to a
transmembrane region anchoring the MHC-II molecule to the cell membrane, while
the heterodimer of al and B1 forms the peptide-binding groove. Although both
chains contribute to the peptide-binding groove and both can be polymorphic, the
B chains are for unknown reasons much more polymorphic than the a chains.
There are three classical MHC class II molecules in human, HLA-DP, HLA-DQ and
HLA-DR, encoded by the HLA complex on chromosome 6. In HLA-DP the a and
chains are encoded by loci HLA-DPA1 and HLA-DPBI, respectively. In HLA-DQ both
the o and B chains are variable and are encoded by polymorphic loci HLA-DQA1
and HLA-DQBI1, respectively. A person often expresses two a-chain and two 3-
chain variants that may form 4 DQ isoforms. The basically invariant DR a-chain is
encoded by the non-polymorphic HLA-DRA locus. Different DR f-chains are
encoded by four loci, HLA-DRB1 (most variable), HLA-DRB3, HLA-DRB4 and HLA-
DRB5. However no more than two functional loci are present on a single

chromosome, i.e. DRB1 plus any one of the three other DRB genes.

The class II peptide-binding site is formed by one a-helix and four 3-strands from
each of the membrane-distal domains, al and 1. The sheet floors and helical walls
define a groove suitable for binding 9 peptide residues within a cleft that is open at
both ends, thus enabling the binding of a broad range of peptide lengths, typically
up to 30 residues. One fundamental feature of HLA molecules is their ability to
form stable complexes with a large number of different peptide sequences. This

capacity arises from the interaction between conserved HLA residues distributed
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along the binding groove and the peptide main chain, thus providing a certain level
of sequence-independent affinity for peptide ligands. The affinity and specificity of
binding is increased by the interaction of residue side chains at specific positions
in the peptide sequence (anchor residues) with various pockets within the binding
groove of the molecule. Thus, of the 9 core peptide residues binding the HLA
surface, residues at position 1, 4, 6, 7 and 9 typically occupy the corresponding
pockets -P1, P4, P6, P7 and P9- in the HLA groove. These pockets contain mostly
polymorphic residues, such that different alleles bind specific groups of residues in
each pocket [2, 3]. Despite this selectivity component, however, the anchor
positions tend to be highly degenerate, making the prediction of class II epitopes

difficult.

Advances in high-throughput immunoproteomics methods [4, 5] have enabled the
generation of vast libraries of MHC ligands [6-13]. These peptide libraries have
allowed the training of computational algorithms to recognize and predict MHC-
binding peptides, based solely on sequence or on sequence and structure [14, 15].
Sequence methods make use of pattern-recognition approaches. A pattern is a
representation of the over-populated amino acids in specific positions of the
peptide sequence. In the simplest implementation, predictions based on patterns
do not generate a score but two possible states, presence or absence of the pattern.
This simple approach, however, does neither discriminate positive patterns by
their affinity nor allow for compensating effects across pockets. This can be
overcome by use of a position-specific scoring matrix (PSSM), which assigns a
probability to each amino acid at each position enabling the calculation of a
combined score for the peptide. In general, this probability is derived directly from
normalised observed frequencies [7, 16], but may also incorporate experimental
affinity data (ICso values) [17, 18]. In some cases, the matrices have been built by
assembly of pre-classified pocket profiles, generated from multiple alignments of
HLA sequences and structural identification of pocket polymorphisms [19, 20].
Limitations of PSSMs include the inability to capture positional dependences
between amino acids (i.e. correlations) or to jointly analyse sequences of variable

length. Correlations may be accounted for, for example, by use of additional 20x20
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matrices describing the co-existence of atoms at given positions, in a QSAR-type

parameterisation procedure [21, 22].

Other HLA class II binding predictors are based on Hidden Markov Models (HMMs)
[23] and machine-learning techniques, including artificial neural networks (ANNs)
[23, 24] and support vector machines (SVMs) [25]. Although in principle more
powerful, machine-learning techniques are particularly vulnerable to poorly
representative training sets and to noise (arising from the experimental
uncertainty of binding measurements and potential errors in peptide-database
annotations), two relevant issues in the context of many HLA class Il molecules. To
compensate for technique-specific limitations, some applications provide a

consensus from a combination of different methodologies [26, 27].

At a different level, structure-based approaches overcome the limitations of the
above-mentioned high-throughput methods (i.e. accounting for residue
correlations, variable sequence length, interactions outside the core region, etc.) by
evaluating on physical grounds the interaction between the peptide and the HLA
molecule, providing an estimate for the free energy of binding. These procedures
require, however, intensive computation and are therefore amenable only to the
study of small peptide sets. They also require previous knowledge of the structure
of the HLA molecule, although three-dimensional-structure modelling based on
homology templates is often a valid alternative for this family of proteins. The
structure of the complex with the peptide can be then derived with algorithms
such as pDOCK [28]. Binding affinity can be finally assessed using physically based
scoring functions trained on experimental data [29, 30] or empirical potentials and
statistical-mechanics expressions in combination with sampling algorithms such as

molecular-dynamics simulation [31].

Here we present HLA2db, a PSSM-based, unsupervised, online system for the
identification of HLA class Il binding motifs in polypeptide sequences. Its
functionality includes the identification and scoring of potential epitopes in query
sequences entered by the user (with no limitation in number of sequences or their
length) in relation to the selected HLA class Il molecule (18 HLA-DR, 8 HLA-DQ and

5 HLA-DP molecules are currently available). The selection may include a single
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HLA molecule, all HLA2db-available molecules individually, or all molecules
combined, the latter case providing the number of HLA molecules recognising each
predicted epitope. It can also scan microbial proteomes (currently 243) and the
human proteome for matches of the binding motifs identified within the input
sequences. By registering, the user may also upload private, experimentally
validated peptide sequences for the automatic generation / improvement of the
PSSM of a specific HLA molecule. The system performs its own checks to ensure
that the new sequences make a valid and significant contribution to the PSSM, and
the new PSSM is kept for the user’s private use in successive queries. A
maintenance system has been also set up, such that each time the internal
database is updated with the incorporation of new information from public
peptide libraries all the public PSSMs are automatically recalculated. By doing this,

the quality of the predictions shall progressively improve.

The service has been implemented to support vaccine and autoimmunity /
tolerance studies, allowing the screening of both microbial and human proteomes
for the presence of predicted HLA class II epitopes and providing information on
the level of promiscuity of these epitopes by performing the analysis against the
complete set of HLA molecules available. The robustness of the system is
illustrated by the possibility of entering a FASTA file [32] with the entire human
proteome and execute it against all 31 available HLA class Il molecules. This query,
which outputs its results in about 8 hours, provides a theoretical human auto-

immunome (restricted to the 31 HLA molecules).

Materials and methods

Data collection

Bacterial proteomes were obtained from PATRIC (Pathosystems Resource
Integration Center) [33] and corresponding sequences were downloaded from

Uniprot [34]. The human proteome was downloaded from HPRD (Human

55



Chapter 2. HLA2db

Proteome Reference Database) [35]. Epitope-presentation data was extracted from
Immune Epitope Database (IEDB). All this data was imported to a PostgreSQL

database-management system.

Each human and bacterial protein sequence was decomposed into 9-residue
segments by running a 9-residue window over the sequence with a 1-residue step.
For each 9-residue segment, the protein code (Uniprot) and starting position in the

protein sequence were stored.

IEDB entries that contain information on HLA class Il binding and refer to peptides
with no chemical modifications were selected. The corresponding information on
peptide residue sequence, qualitative binding measurement (positive or negative)
and binding HLA molecule was retrieved and stored. Repeated entries (from
different studies relating the same peptide to the same HLA class II protein) were
collapsed to a single one using the following rule: if the number of entries with
positive binding was larger than the number of entries with negative binding, the
peptide was annotated as positive; else, if the number of entries with negative
binding was larger, the peptide was annotated as negative; otherwise (i.e. the
number of entries with positive and negative binding were equal) the peptide was
discarded. The total number of positives and negatives incorporated per HLA

molecule for the construction of the current HLA2db release is given in Table 2.1.

Table 2.1. Initial set of binding and non-binding peptides, from IEDB, for each molecule in

the database (molecules ordered by number of binders).

Molecule No. of binders No. of non-binders
HLA-DRB1*01:01 6597 1800
HLA-DRB1*04:01 1997 1140
HLA-DRB1*07:01 1602 769
HLA-DRB1*15:01 1572 719
HLA-DRB5*01:01 1443 532
HLA-DRB1*11:01 1422 835
HLA-DRB1*03:01 1375 1272
HLA-DRB1*08:02 997 525
HLA-DRB4*01:01 994 403
HLA-DRB1*04:05 992 316
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Molecule

No. of binders

No. of non-binders

HLA-DRB1*09:01
HLA-DRB1*13:02
HLA-DRB1*04:04
HLA-DRB3*01:01
HLA-DQA1*05:01/DQB1*03:01
HLA-DQA1*05:01/DQB1*02:01
HLA-DPA1*02:01/DPB1*01:01
HLA-DQA1*03:01/DQB1*03:02
HLA-DRB1*12:01
HLA-DQA1*01:02/DQB1*06:02
HLA-DQA1*04:01/DQB1*04:02
HLA-DQA1*01:01/DQB1*05:01
HLA-DRB3*02:02
HLA-DPA1*03:01/DPB1*04:02
HLA-DPA1*01:03/DPB1*02:01
HLA-DPA1*02:01/DPB1*05:01
HLA-DQA1*05:01/DQB1*03:02
HLA-DPA1*01/DPB1*04:01
HLA-DRB1*04:07
HLA-DRB1*13:01
HLA-DRB1*04:02
HLA-DQA1*05:01/DQB1*04:01
HLA-DRB1*16:02
HLA-DPA1*02:01/DPB1*02:01
HLA-DQA1*05:01/DQB1*06:02
HLA-DQA1*01:04/DQB1*05:03
HLA-DPA1*02:01/DPB1*04:01
HLA-DPA1*02:01/DPB1*04:02
HLA-DRB1*01:02
HLA-DRB1*08:01
HLA-DQA1*03:01:02
HLA-DQA1*05:01/DQB1*06:04
HLA-DRB1*04:03
HLA-DPA1*01:03/DPB1*04:01
HLA-DPA1*02:01/DPB1*09:01
HLA-DRB1*11:04
HLA-DRB1*01:03
HLA-DQA1*01:02/DQB1*06:04
HLA-DPA1*02:01/DPB1*20:01
HLA-DRB1*04:06

974
906
804
750
612
577
423
415
364
345
344
317
234
217
209
188
180
176
155
137
124
119
118
115
99
94
90
88
78
74
68
67
59
49
46
44
42
42
42
38

299
406
389
677
200
262
190
247
254
91
100
349
177
171
144
281
187
162
4
180
202
37
3
22
76
27
155
109
37
38
24
39
120
30
18
41
11
22
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Molecule

No. of binders

No. of non-binders

HLA-DQA1*01:02/DQB1*05:02
HLA-DRB1*14:01
HLA-DQA1*01:02:04
HLA-DQA1*02:01/DQB1*02:02
HLA-DQA1*01:02:02
HLA-DQA1*05:01:01
HLA-DQA1*03:01/DQB1*03:01
HLA-DRB1*11:02
HLA-DRB1*11:03
HLA-DRB1*03:02
HLA-DPA1*01:03/DPB1*03:01
HLA-DRB1*03:03
HLA-DRB1*16:01
HLA-DRB1*13:03
HLA-DPA1*01:03/DPB1*04:02
HLA-DQA1*02:01/DQB1*02:01
HLA-DRB3*03:01
HLA-DRB1*15:02
HLA-DRB1*10:01
HLA-DRB1*14:02
HLA-DRB1*13:04
HLA-DRB1*03:05
HLA-DRB1*53:01
HLA-DRB5*02:02
HLA-DRB5*02:01
HLA-DQA1*05:01/DQB1*05:01
HLA-DQA1*03:01/DQB1*02:01
HLA-DQA1*05:01/DQB1*02:02
HLA-DPA1*01:03:01
HLA-DRB1*52:01
HLA-DRB1*04:11
HLA-DQB1*05:03
HLA-DQA1*03:01:01
HLA-DPA1*02:02/DQB1*03:19
HLA-DRB5*01:02
HLA-DRB4*01:03
HLA-DRB1*15:03
HLA-DRB1*08:04
HLA-DQA1*03:02/DQB1*04:01
HLA-DQA1*03:02/DQB1*03:03
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Molecule

No. of binders

No. of non-binders

HLA-DQA1*02:01:02
HLA-DQA1*01:04:03
HLA-DQA1*01:03/DQB1*06:03
HLA-DQA1*01:01:01
HLA-DPA1*02:01/DPB1*11:01
HLA-DRB1*13:05
HLA-DRB1*03:04
HLA-DQB1*05:02
HLA-DQA1*05:05/DQB1*03:01
HLA-DQA1*05:05:01
HLA-DQA1*05:01/DQB1*06:03
HLA-DQA1*05:01/DQB1*06:01
HLA-DQA1*05:01/DQB1*04:02
HLA-DQA1*04:01:02
HLA-DQA1*03:02:01
HLA-DQA1*03:01/DQB1*04:01
HLA-DQA1*02:01/DQB1*03:03
HLA-DQA1*01:03/DQB1*06:01
HLA-DQA1*01:03:01
HLA-DRB1*08:03
HLA-DQA1*05:01/DQB1*03:03
HLA-DQA1*03:02:03
HLA-DQA1*01:01/DQB1*05:03
HLA-DPA1*02:01/DPB1*03:01
HLA-DPA1*02:01:01

\]

OO0 00 O OR R IR R R R R RRRRRRRDNDNDNDN

w
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Identification of epitope core sequences from multiple-match 9-

residue segments

For each HLA class Il molecule in our database (i.e. with binding data retrieved

from IEDB) a preliminary analysis was performed of all peptides with annotated

positive binding. The aim of this analysis was to identify all sequences of 9 or more

residues shared by two or more peptides. In general, this will correspond to nested

sets, since the probability of finding a 9-residue sequence match in different

proteins is relatively small. To this end, a pairwise comparison between all

peptides was performed using the following procedure: peptide A is compared to
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peptide B; if they share a segment of 9 or more residues this segment is isolated
and compared to peptide C (for a match of 9 or more residues); this process is
continued until the comparison has run over all peptides and the segment has
reached a minimum common size of 9 residues. Once the common segment of A (if
any) is identified, the algorithm runs the comparisons starting from peptide B. The
process is iterated until the last peptide is used as reference for pairwise
comparisons. All different 9-residue segments resulting from this analysis are
labelled as putative epitope (core) sequences in relation to the specific HLA
molecule, thus constituting the initial dataset for profile development. Longer
segments found to be common to more than one peptide are discarded, since their
HLA binding positions cannot be unequivocally assigned. However, they will be

recovered at later stages of the global algorithm (Figure 2.1).

Definition of an initial binding profile

Amino-acid residues at positions 1, 4, 6, 7 and 9 of an epitope core sequence are
expected to bind the corresponding pockets in the binding groove of the HLA class
II molecule. Starting from the previous dataset of 9-residue core sequences
assigned to a specific HLA molecule, an initial binding profile was derived as
follows. First, the 9-residue core sequences were aligned on the basis of positions
1,4, 6,7, and 9 using ClustalW2 [36] with a percent identity for delay (MAXDIV) of
30% and a prohibitively high penalty for gap opening. After multiple alignment,
the largest group of fully aligned sequences were selected as initial set of core
sequences representing the binding profile. This strict selection of sequences was
chosen to avoid the inclusion of potentially miss-annotated peptides at the initial
stages of the process, by distinguishing the sequences that have similar
characteristics at the amino-acid-residue level from those that diverge from the
most common pattern. The global algorithm is such that these initially discarded

sequences can be recovered at later stages.

If at the end of this process the set contained 15 or more core sequences, each of
them coming from at least 2 original peptides, it was used as initial training set for

the construction of a seed position-specific scoring matrix (PSSM) from the
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Chapter 2. HLA2db

PSSM focusing and refinement

After the construction of the initial seed PSSM, three new sequence datasets were
generated for each HLA class II molecule. First, all IEDB peptides with annotated
positive binding were recovered. 90% of these peptides (randomly chosen) were
used to generate a positive-binding training set. The remaining 10% were kept as a
positive-binding test set. All IEDB peptides with annotated negative binding were
also taken and decomposed into 9-residue segments by running a 9-residue
window over the sequence with a 1-residue step. A number of these sequences
(randomly chosen) equal to the number of sequences in the positive-binding test
set were incorporated into a corresponding negative-binding test set. All
remaining segments were then incorporated into a negative-binding training set.

The positive and negative-binding test sets were combined into a single test set.

Using these datasets, the seed PSSM was evolved using the following two-phase
iterative procedure (Figure 2.2). At each round the three datasets are rebuilt by a

new random resampling of peptides.

1. PSSM focusing: In this phase, the bias introduced by the use of a small number of
core sequences in the construction of the seed PSSM is alleviated by considering

potential amino-acid substitutions as given by BLOSUM tables.

First, the seed PSSM is used to evaluate the sequences of the positive-binding
training set. All sequences from this set are decomposed into 9-residue segments
by running a 9-residue window over the sequence with a 1-residue step. The
evaluation of the resulting 9-residue sequences is performed by adding the scores

of all nine positions:
9
S;=2.5, (2.1)

where S is the segment score and S, the score of amino acid i in position p as given
by the PSSM table. For segments coming from the same original peptide, only the
segment with highest score is taken. These segments conform a new working list

of putative core sequences.
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Chapter 2. HLA2db

To introduce information on non-binding peptides, a negative-binding PSSM is
then generated from the frequencies observed in the negative-binding training set
and subtracted from the PSSM obtained with eq. (2.2), leading to a new master
PSSM.

As indicated, the training and test sets are then rebuilt by a new random
distribution of sequences and the procedure is iterated using BLOSUMS85. The
performance of the PSSM at each round is evaluated by running a prediction over
the epitopes of the test set (see Epitope prediction below) and calculating the area

under the curve (AUC) of the receiver operating characteristic (ROC) curve [37].

2. PSSM refinement: This phase consists of 20 rounds of PSSM re-generation. The
following equation is used to generate the PSSM at each round, following

otherwise the same scheme described for the focusing phase:

fobs
=log =2
Sip =log Iz (2.3)

Where fl.;’bs is the observed frequency of amino acid i at position p and fibg is the

background frequency of the amino acid in proteins.

Note that the main difference between the focusing and refinement phases is the
use of BLOSUM tables in the former to correct for low statistics. Of the 20 rounds

of refinement, the PSSM with largest AUC is selected.

The entire procedure (focusing plus refinement) is performed 10 times
independently, each of them starting with a different (random) distribution of
sequences in the training and test sets. This replicates are performed to limit the
dependence of the final results on the initial random distribution. The resulting 10
PSSMs are then averaged to generate a new PSSM. If the AUC of this average PSSM
is below 70% it is discarded (i.e. the corresponding HLA class II molecule remains
with no associated PSSM), otherwise it is stored (i.e. the PSSM for the given HLA
class II molecule is established and will only be modified in later steps if its

performance can be improved).
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Pocket inheritance

Poorly performing PSSMs may be improved by making use of homology relations
at the level of binding pockets, a strategy used with success by other authors to
construct so-called virtual matrices [19, 20]. The implemented procedure consists

of the following steps.

Data pre-processing: This step involves a one-time analysis of binding pockets for
the generation of a similarity matrix. First, the binding pockets P1, P4, P6, P7 and
P9 of the three classical HLA class II types, DP, DQ and DR, were analysed for the
identification of the residues potentially involved in the interaction with the
epitope. The identification was performed manually by inspection of
representative three-dimensional structures (PDB entry codes 3LQZ, 1JK8 and
1A6A, for peptide-bound representatives of DP, DQ and DR, respectively;
http://www.rcsb.org) using pymol [38]. For DP and DQ both chains (alpha and
beta) where analysed, while for DR only the beta chain was considered. The
residues with side chain oriented to the pocket cavity and a distance to the
peptide’s anchoring residue not larger than 7 A were considered to be directly or
indirectly related to binding. To assign the corresponding residues in other
molecules, all DP, DQ and DR sequences available in IMGT/HLA [8] were
downloaded and multiple alignments were performed with ClustalW2 [36]. After
the binding residues had been identified for every pocket of every DP, DQ and DR
molecule, all binding pockets of the same type (P1, P4, P6, P7 or P9) were pairwise
compared. The comparison was performed using a measure of the
physicochemical distance between two pockets. This distance is calculated in a
four-dimensional space using the four principal components of a PCA (Principal
Component Analysis) of 237 physicochemical properties describing each of the 20
amino acids, as described by Venkatarajan and Braun [39]. A smaller distance
between pockets involves a higher physicochemical similarity. The resulting

matrix of similarities was stored for use within the PSSM-derivation algorithm.

Implementation, ie. creating new profiles from existing ones: After the initial

refinement phase described above, an attempt to improve the PSSMs is made by
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inheritance of pocket profiles (Figure 2.1). To this end, each HLA class II molecule
is evaluated for best matches of its pockets with (template) pockets of molecules
having an established PSSM. The match is evaluated as the similarity between the
query and template pockets (physicochemical distance) weighted by the
performance of the PSSM of the molecule that contains the template pocket. The
smaller the quotient between distance and template AUC the better the match. In
other words, at equal similarity, inheritance will proceed from the best-performing
PSSM. Best-matches for the five pockets of a given HLA class II molecule can be
then used to construct a five-column PSSM for this molecule by inheritance of the
corresponding columns from the PSSMs of the template HLAs. This PSSM is then
re-submitted to the refinement phase, where it develops again into a 9-column
PSSM. This pocket inheritance procedure is iterated three additional times (Figure
2.1) two enable the use of rescued molecules (with a PSSM overcoming the 70%

threshold) to rescue further molecules.

Epitope prediction

Epitope prediction is performed after each round of PSSM focusing and refinement
and is also available for online queries. To this end, the peptides in the test set,
when deriving a PSSM, or the user input sequences, when dealing with an online
query, are decomposed into 9-residue segments by running a 9-residue window
over each sequence with a 1-residue step. The evaluation of the 9-residue
segments is then performed by adding the scores of all nine positions as given by
the PSSM (eq. (2.1)). In the case of an online query, the service presents as output
all segments with a score Ss above a threshold value whose default corresponds to
the point of the ROC curve where the difference between specificity and sensitivity
is minimal. This tries to reflect the experimental situation, where a sequence can in
principle present different binding motifs with different affinities. When deriving a
PSSM, the segment scores are combined into a peptide score (for each peptide in
the test set) for further evaluation of the AUC of the PSSM. The peptide score Sp is

calculated using an empirical equation chosen to optimize the ROC (see Chapter 4):
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S, =%{1+§/155J (2.4)

where L is the peptide length, 9 refers to the segment length, the sum runs over the
number of 9-residue segments generated from the peptide (L-8) and A (=3) is a

fitted parameter.

Maintenance, growth and stability of the database

All steps of the algorithm described (Figure 2.1) have been automatised. This
enables both straightforward updates of HLA2db following relevant updates of the
parent databases (i.e. Uniprot [34] and HPRD [35] for proteomes and IEDB [13] for
experimentally determined epitopes) and the wunassisted generation or
improvement of PSSMs using epitope sequences uploaded by the user. The
derivation of a pocket-similarity matrix, which is the only manual step, should in
principle need no regular updates. Potential changes of format of the information
captured from the parent databases will be identified by implemented read-time

checks, and shall require limited re-programing of the corresponding routines.

The stability of the database and the prediction tool has been particularly
surveilled. At the data-integrity level, the potential corruption of PSSMs by
incorporation of poor quality data is avoided by i) the use of stringent criteria in
the initial filtering of uploaded epitope sequences (see Definition of an initial
binding profile above), and ii) the condition that only those data that improve the
ROC curve for an established PSSM are finally taken into account. At the execution
level, both stability and speed are favoured by the pre-processing of all proteome

sequences available within HLA2db.
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Results and discussion

HLA2db is a PSSM-based, unsupervised, online system for the identification of HLA
class II binding motifs in polypeptide sequences. Its functionality and

distinguishing elements are discussed here.

Query sequences

A main functionality of HLA2db is the identification and scoring of potential
epitopes in query sequences entered by the user in relation to a selected HLA class
II molecule. The sequences may be entered online or uploaded as a file in FASTA
format [32]. A sequence may contain up to 3 asterisks (*) as a wildcard indicating
that any amino acid can be present at the specified positions. A distinguishing
characteristic of this tool, relative to other available servers, is the possibility to
enter any number of sequences of any length. For example, a full proteome may be
uploaded for a one-shot analysis against a specific HLA class II molecule or,

alternatively, against all available molecules (see Immunome calculation below).

Available HLA class Il molecules

In the current release, HLA2db is able to evaluate sequences for binding to 31
different HLA class II molecules (18 HLA-DR, 8 HLA-DQ and 5 HLA-DP) with a
reasonably high predictive power (Table 2.2). The criterion used to flag an HLA
molecule as available is that the prediction performance of its associated PSSM
must be characterised by a ROC curve with an AUC value equal or higher than
70%. Lower values generally originate from an insufficient number of known
epitope sequences for the derivation of a profile describing the molecule’s binding
preferences or to the presence of noise in the data, due to experimental
uncertainties or miss-annotations in the reference epitope database. The inherent
capacity of HLA class II molecules to associate to large peptide repertoires
particularly stresses the requirement of sufficiently representative peptide sets for

the training of any type of predictor. The (rapid) growth of the amount of epitope
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data at IEDB should translate in both the improvement of HLA2db’s predictive
power for molecules already available and the incorporation of new molecules

flagged as available.

A very important aspect of the implemented algorithm is the possibility to use the
profiles derived for HLA molecules for which there is sufficient peptide-binding
data available to derive the profiles for additional molecules by exploiting binding-
pocket homologies. In the current release, this feature has enabled the inclusion of

17 of the total 31 molecules available.

When performing a query, the selection may include a single HLA molecule, all
available molecules individually, or all molecules combined. The first option
outputs the 9-residue segments from the query sequences that are predicted to be
epitopes for the selected HLA molecule. Although a molecule-dependent default
value for the score cut-off is suggested (corresponding to the point of the ROC
curve where the difference between specificity and sensitivity is minimal) the user
may choose a different threshold. To facilitate the choice, the minimum and
maximum scores are also indicated. Higher values correspond to a higher
specificity (fewer false positives) and a lower sensitivity (more false negatives).
The second option provides an equivalent output including the predictions for all
HLA molecules available in the database. In this case, the choice of the score cut-off
is limited to using default values, values corresponding to 90% specificity or values
corresponding to 90% sensitivity. The third option provides an alternative output,
consisting on the number of HLA molecules that recognise each predicted epitope,
enabling a rapid assessment of epitope promiscuity. The choice of the score cut-off

is in this case also limited to default, 90% specificity or 90% sensitivity.
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Table 2.2. Statistics for the set of HLA class Il molecules available in HLA2db.

Score
Molecule AUC threshold Sensitivity Specificity Accuracy PPV NPV
HLA-DPA1*01:03/DPB1*02:01 0.87 2.99 0.80 0.80 0.80 0.85 0.73
HLA-DPA1*02:01/DPB1*01:01 0.87 3.10 0.83 0.82 0.83 0.91 0.69
HLA-DPA1*02:01/DPB1*02:01 0.84 410 0.88 0.88 0.88 0.97 0.60
HLA-DPA1*02:01/DPB1*05:01 0.85 3.29 0.79 0.79 0.79 0.72 0.85
HLA-DPA1*03:01/DPB1*04:02 0.88 3.35 0.84 0.83 0.83 0.86 0.80
HLA-DQA1*01:01/DQB1*05:01 0.85 3.30 0.77 0.78 0.78 0.76 0.79
HLA-DQA1*01:02/DQB1*06:02 0.83 3.33 0.78 0.80 0.78 0.93 0.49
HLA-DQA1*03:01/DQB1*03:02 0.81 3.21 0.75 0.74 0.74 0.83 0.64
HLA-DQA1*04:01/DQB1*04:02 0.82 3.26 0.77 0.77 0.77 0.92 0.50
HLA-DQA1*05:01/DQB1*02:01 0.76 2.96 0.70 0.71 0.71 0.84 0.52
HLA-DQA1*05:01/DQB1*03:01 0.80 3.17 0.74 0.73 0.74 0.89 0.48
HLA-DQA1*05:01/DQB1*03:02 0.74 3.37 0.70 0.69 0.70 0.69 0.71
HLA-DQA1*05:01/DQB1*04:01 0.80 3.60 0.82 0.82 0.82 0.93 0.59
HLA-DRB1*01:01 0.71 3.72 0.66 0.66 0.66 0.88 0.35
HLA-DRB1*03:01 0.74 3.29 0.68 0.68 0.68 0.70 0.66
HLA-DRB1*04:01 0.75 3.51 0.69 0.69 0.69 0.79 0.56
HLA-DRB1*04:02 0.80 3.40 0.74 0.74 0.74 0.64 0.82
HLA-DRB1*04:04 0.82 3.31 0.75 0.75 0.75 0.86 0.60
HLA-DRB1*04:05 0.74 3.42 0.68 0.68 0.68 0.87 0.40
HLA-DRB1*07:01 0.75 3.43 0.69 0.69 0.69 0.82 0.51




Score

Molecule AUC threshold Sensitivity Specificity Accuracy PPV NPV
HLA-DRB1*08:02 0.73 3.26 0.67 0.67 0.67 0.79 0.52
HLA-DRB1*09:01 0.74 3.15 0.69 0.68 0.69 0.88 0.40
HLA-DRB1*11:01 0.77 3.57 0.71 0.71 0.71 0.80 0.59
HLA-DRB1*12:01 0.77 3.31 0.70 0.70 0.70 0.77 0.62
HLA-DRB1*13:01 0.82 3.61 0.75 0.75 0.75 0.69 0.80
HLA-DRB1*13:02 0.75 3.33 0.69 0.70 0.69 0.84 0.50
HLA-DRB1*15:01 0.76 3.25 0.68 0.69 0.68 0.83 0.50
HLA-DRB3*01:01 0.74 3.36 0.68 0.68 0.68 0.71 0.66
HLA-DRB3*02:02 0.85 3.22 0.80 0.80 0.80 0.84 0.75
HLA-DRB4*01:01 0.70 3.58 0.65 0.65 0.65 0.82 0.43
HLA-DRB5*01:01 0.75 3.22 0.69 0.68 0.68 0.85 0.44

The statistics have been evaluated using the entire set of epitope sequences (see Table 2.1).

AUC: area under the receiver-operating-characteristic (ROC) curve; gives the probability that the PSSM will rank a randomly chosen positive
binder higher than a randomly chosen negative one.

Score threshold: score separating binders from non binders; corresponds to the point of the ROC curve where the difference between sensitivity
and specificity is minimal; all following quantities refer to this point.

Sensitivity: number of true positives relative to the sum of true positives and false negatives; high sensitivity indicates few false negatives.
Specificity: number of true negatives relative to the sum of false positives and true negatives; high specificity indicates few false positives.
Accuracy: sum of true positives and true negatives relative to the total.

Positive predictive value (PPV) or precision: number of true positives relative to the sum of true and false positives.

Negative predictive value (NPV): number of true negatives relative to the sum of true and false negatives.
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Scanning of proteomes

A distinguishing aspect of HLA2db is the possibility to scan a database of bacterial
proteomes (currently from a list of 243) and the human proteome for matches of
the binding motifs identified within the query sequences. This is simply achieved
by selecting the proteome of interest. In addition to the list of predicted epitopes
and their scores, the output will then indicate the proteins of the selected
proteome that contain each of the binding motifs identified (positions 1, 4, 6, 7 and
9 of an epitope). A link to the corresponding Uniprot entry is given for the motif-

containing protein.

Integrating user data to generate a new profile or improve an

existing one

By logging into the server, the user may also upload private, experimentally
validated peptide sequences for the automatic generation / improvement of the
PSSM for a specific HLA molecule. The system performs its own checks to ensure
that the new sequences make a valid and significant contribution to the PSSM (see
Materials and methods) and, if so, the new PSSM is kept for the user’s private use

in successive queries.

Three potential situations are envisaged. In the first one, the user would upload
additional sequences for a molecule already available in HLA2db. These sequences
would then be combined with the IEDB sequences used to generate the public
PSSM to create a new data set for further PSSM development. Nevertheless, a new
PSSM would only be established if it showed a performance superior to that of the
public one. In the second situation, the user would upload additional sequences for
a molecule present at HLA2db but not available, i.e. with AUC < 70%. As in the
previous case, the user sequences would be combined with the IEDB ones for
further PSSM development. A new PSSM would in this case be established only if it
presented an AUC = 70% at the end of the process. In the third situation, the user

would upload a significant number of sequences for a molecule not present in

72



Chapter 2. HLA2db

HLAZ2db (i.e. neither at IEDB). In such case PSSM development would proceed from
scratch with the user’s data set alone, subject to the same procedures and criteria

used for the public ones.

The user may still decide that a PSSM improved with his/her private data can be
made publicly available. This can be done by contacting the server manager at the

address provided.

Additional services available to the registered user are the possibility to consult
various data relative to the profile, including the PSSM table, a WebLogo

representation [40] and performance statistics (incl. the ROC curve).

Immunome calculation

The immunome is described as the set of epitopes derived from a proteome
(human or pathogen) that are presented to the host immune system in the context
of MHC class I and class Il molecules or that engage antibodies, eliciting an immune
response [41]. Following this idea, HLA2Zdb enables the evaluation of all possible 9-
residue segments obtained from a full fragmentation of a proteome, scoring them
against the complete list of HLA class II molecules available. This is achieved by
uploading a FASTA file containing the full proteome of interest and selecting the
“All molecules individually” or “All molecules combined” options. The output will
then provide the list of 9-residue segments from the proteome that are predicted
to bind at least one of the available HLA molecules. The output format will depend
on the HLA-selection option, as explained above, and the number of epitopes and
confidence of the prediction will depend on the chosen score cut-off, as also
explained. If the user chooses the same species for proteome scanning, the output
will, in addition, indicate the protein (with link to Uniprot) to which each of the

predicted epitopes belongs.
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HLA2db in the context of other predictors

The statistics provided in Table 2.2 may only be taken as an internal test. Proper
comparison to the performance of other available predictors requires an
independent test set with a significant number of sequences per HLA class II
molecule (independent meaning that it has not been used in the training of the
predictors). Evaluations of predictors using fresh data sets (before deposition in
databases) have been recently performed, for example, by Wang and collaborators
[26, 27]. As they point out, the limited number of available epitope sequences for
most HLA class II molecules makes it unwise to discard part of the data when
training the algorithms with the purpose of having and independent test set.
During the development of the PSSMs, we have used a strategy based on random
resampling of the epitope-sequence dataset for the generation of the training and
test sets at each training/evaluation step in the algorithm. The evaluation of the
final PSSMs, which statistics are reported in Table 2.2, is then performed using the
full set o epitope sequences. Therefore, Table 2.2 provides an indication of the

capacity of our predictor to explain the data on which it has been trained.

IEDB has become a standard reference repository of epitope sequences for HLA
class II molecules. One should therefore expect the predictor described here to
have a performance similar to other PSSM-based predictors that use this
repository as reference and somewhat lower than predictors based on artificial
intelligence algorithms [27]. Nevertheless, the HLA2db server offers a number of
functionalities, highlighted above, that are not standardly found in other servers

and may be relevant to the immunologist.

References

1. Hammer ], Sturniolo T, Sinigagua F (1997) HLA Class II Peptide Binding
Specificity and Autoimmunity. In: Frank ]. Dixon, editor. Advances in

Immunology. Academic Press, Vol. 66. pp. 67-100.

74



Chapter 2. HLA2db

10.

Rammensee HG, Friede T, Stevanoviic S (1995) MHC ligands and peptide
motifs: first listing. Imnmunogenetics 41: 178-228. doi:10.1007/BF00172063.

Bondinas GP, Moustakas AK, Papadopoulos GK (2007) The spectrum of HLA-
DQ and HLA-DR alleles, 2006: a listing correlating sequence and structure
with function. Immunogenetics 59: 539-553. doi:10.1007/s00251-007-0224-
8.

Schirle M, Weinschenk T, Stevanovi¢ S (2001) Combining computer algorithms
with experimental approaches permits the rapid and accurate identification of
T cell epitopes from defined antigens. Journal of Immunological Methods 257:

1-16.d0i:10.1016/50022-1759(01)00459-8.

Purcell AW, Gorman J]J (2004) Immunoproteomics Mass Spectrometry-based
Methods to Study the Targets of the Immune Response. Mol Cell Proteomics 3:
193-208. doi:10.1074/mcp.R300013-MCP200.

Brusic V, Rudy G, Harrison LC (1998) MHCPEP, a database of MHC-binding
peptides: Update 1997. Nucl Acids Res 26: 368-371.
doi:10.1093/nar/26.1.368.

Rammensee H, Bachmann ], Emmerich NP, Bachor OA, Stevanovi¢ S (1999)
SYFPEITHI: database for MHC ligands and peptide motifs. Inmunogenetics 50:
213-210.

Robinson ], Waller M], Parham P, Bodmer ]G, Marsh SGE (2001) IMGT/HLA
Database — a sequence database for the human major histocompatibility

complex. Nucleic Acids Res 29: 210-213. d0i:10.1093/nar/29.1.210.

Schonbach C, Koh JLY, Flower DR, Wong L, Brusic V (2002) FIMM, a database
of functional molecular immunology: update 2002. Nucl Acids Res 30: 226-
229.d0i:10.1093 /nar/30.1.226.

Sathiamurthy M, Hickman H d., Cavett ] w., Zahoor A, Prilliman K, et al. (2003)
Population of the HLA Ligand Database. Tissue Antigens 61: 12-109.
doi:10.1034/j.1399-0039.2003.610102.x.

75



Chapter 2. HLA2db

11.

12.

13.

14.

15.

16.

17.

18.

19.

76

McSparron H, Blythe M]J, Zygouri C, Doytchinova IA, Flower DR (2003) JenPep:
A Novel Computational Information Resource for Immunobiology and

Vaccinology. ] Chem Inf Comput Sci 43: 1276-1287. doi:10.1021/ci030461e.

Lata S, Bhasin M, Raghava GP (2009) MHCBN 4.0: A database of MHC/TAP
binding peptides and T-cell epitopes. BMC Research Notes 2: 61.
doi:10.1186/1756-0500-2-61.

Salimi N, Fleri W, Peters B, Sette A (2012) The immune epitope database: a

historical retrospective of the first decade. Immunology 137: 117-123.
doi:10.1111/j.1365-2567.2012.03611.x.

Lafuente E, Reche P (2009) Prediction of MHC-Peptide Binding: A Systematic
and Comprehensive Overview. Current Pharmaceutical Design 15: 3209-3220.

doi:10.2174/138161209789105162.

Tong JC, Tan TW, Ranganathan S (2007) Methods and protocols for prediction
of immunogenic epitopes. Brief Bioinform 8: 96-108.

doi:10.1093/bib/bbl038.

Reche PA, Glutting J-P, Zhang H, Reinherz EL (2004) Enhancement to the
RANKPEP resource for the prediction of peptide binding to MHC molecules
using profiles. Immunogenetics 56: 405-419. doi:10.1007/s00251-004-0709-
7.

Bui H-H, Sidney ], Peters B, Sathiamurthy M, Sinichi A, et al. (2005) Automated
generation and evaluation of specific MHC binding predictive tools: ARB
matrix applications. Immunogenetics 57: 304-314. doi:10.1007/s00251-005-
0798-y.

Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding
affinity using SMM-align, a novel stabilization matrix alignment method. BMC

Bioinformatics 8: 238. d0i:10.1186/1471-2105-8-238.

Sturniolo T, Bono E, Ding ], Raddrizzani L, Tuereci O, et al. (1999) Generation

of tissue-specific and promiscuous HLA ligand databases using DNA



Chapter 2. HLA2db

20.

21.

22.

23.

24,

25.

26.

27.

microarrays and virtual HLA class II matrices. Nat Biotech 17: 555-561.

doi:10.1038/9858.

Singh H, Raghava GPS (2001) ProPred: prediction of HLA-DR binding sites.
Bioinformatics 17: 1236-1237. doi:10.1093 /bioinformatics/17.12.1236.

Doytchinova IA, Blythe M], Flower DR (2002) Additive Method for the
Prediction of Protein-Peptide Binding Affinity. Application to the MHC Class I
Molecule HLA-A*0201. ] Proteome Res 1: 263-272. d0i:10.1021/pr015513z.

Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: a server for
quantitative prediction of peptide-MHC binding. Nucl Acids Res 31: 3621-
3624.d0i:10.1093 /nar/gkg510.

Zhang GL, Khan AM, Srinivasan KN, August ]JT, Brusic V (2005) MULTIPRED: a
computational system for prediction of promiscuous HLA binding peptides.

Nucl Acids Res 33: W172-W179. doi:10.1093 /nar/gki452.

Nielsen M, Lund O (2009) NN-align. An artificial neural network-based
alignment algorithm for MHC class II peptide binding prediction. BMC
Bioinformatics 10: 296. d0i:10.1186/1471-2105-10-296.

Doénnes P, Kohlbacher O (2006) SVMHC: a server for prediction of MHC-
binding peptides. Nucl Acids Res 34: W194-W197. d0i:10.1093 /nar/gkl284.

Wang P, Sidney ], Dow C, Mothé B, Sette A, et al. (2008) A Systematic
Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a
Consensus Approach. PLoS Comput Biol 4: e1000048.
d0i:10.1371/journal.pcbi.1000048.

Wang P, Sidney ], Kim Y, Sette A, Lund O, et al. (2010) Peptide binding
predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11: 568.
doi:10.1186/1471-2105-11-568.

77



Chapter 2. HLA2db

28.

29.

30.

31.

32.

33.

34.

35.

36.

78

Khan JM, Ranganathan S (2010) pDOCK: a new technique for rapid and
accurate docking of peptide ligands to Major Histocompatibility Complexes.

Immunome Res 6: S2. doi:10.1186/1745-7580-6-S1-S2.

Tong JC, Zhang GL, Tan TW, August ]JT, Brusic V, et al. (2006) Prediction of
HLA-DQ3.2 Ligands: evidence of multiple registers in class Il binding
peptides. Bioinformatics 22: 1232-1238. doi:10.1093 /bioinformatics/btl071.

Bordner AJ (2010) Towards Universal Structure-Based Prediction of Class II
MHC Epitopes for Diverse Allotypes. PLoS ONE 5: e14383.
doi:10.1371/journal.pone.0014383.

Muixi L, Carrascal M, Alvarez I, Daura X, Marti M, et al. (2008) Thyroglobulin
Peptides Associate In Vivo to HLA-DR in Autoimmune Thyroid Glands. ]
Immunol 181: 795-807.

Pearson WR, Lipman D] (1988) Improved tools for biological sequence
comparison. PNAS 85: 2444-2448.

Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, et al. (2011)
PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus
on Human Pathogenic Species. Infect Immun 79: 4286-4298.
doi:10.1128/1A1.00207-11.

The UniProt Consortium (2011) Reorganizing the protein space at the
Universal Protein Resource (UniProt). Nucleic Acids Research 40: D71-D75.
doi:10.1093 /nar/gkr981.

Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009)
Human Protein Reference Database—2009 update. Nucl Acids Res 37: D767-
D772.do0i:10.1093 /nar/gkn892.

Thompson ]D, Higgins DG, Gibson T] (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673-4680. d0i:10.1093 /nar/22.22.4673.



Chapter 2. HLA2db

37.

38.

39.

40.

41.

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognition Letters
27:861-874.d0i:10.1016/j.patrec.2005.10.010.

The PyMOL Molecular Graphics System, Version 1.2r3pre (n.d.). Schrédinger,
LLC.

Venkatarajan MS, Braun W (2001) New quantitative descriptors of amino
acids based on multidimensional scaling of a large number of physical-
chemical properties. | Mol Model 7: 445-453. d0i:10.1007 /s00894-001-0058-
5.

Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: A Sequence
Logo Generator. Genome Res 14: 1188-1190. doi:10.1101/gr.849004.

De Groot AS (2006) Immunomics: discovering new targets for vaccines and
therapeutics. Drug Discovery Today 11: 203-209. doi:10.1016/S1359-
6446(05)03720-7.

79






Chapter 3. sdHLA2

Chapter 3. A Support Vector Machine for the
prediction of MHC class II epitopes based on

amino-acid distances

81






Chapter 3. sdHLA2

Abstract

The identification of MHC class II epitopes is a fundamental step in many studies of
immunological processes, including immune responses to infection and undesired
processes such as transplant rejection and the development of autoimmunity.
Identifying MHC class Il epitopes experimentally is, however, time and resource
consuming and computational approaches have emerged as a powerful prediction
aid. Many methods have been used to this end, some of the most successful being
based on support vectors machines (SVMs). Building on our previous work on HLA
class II epitope prediction, we have developed sdHLa2, and algorithm and web
server that combines that makes use of position-specific scoring matrices (PSSMs)
to develop SVMs. The sdHLAZ web server has been designed to: a) maximise the
versatility of the queries, with no restrictions on the amount or length of input
sequences to be evaluated for epitope prediction, and b) enable the scanning of
over 240 microbial and the human proteome for predicted motifs. sdHLAZ is freely

accessible at http://bioinf.uab.cat/sdhla2

Introduction

The proteins coded by the major histocompatibility complex (MHC) class II
-human leukocyte antigen or HLA class Il in human- play an important role in the
immune response to infection by presenting exogenous epitopes to CD4+ T
lymphocytes, but have also a major participation in undesired processes such as
those leading to autoimmunity [1]. Peptide presentation by HLA class Il molecules
has therefore implications in both health and disease, and understanding and
being able to predict the affinity of HLA class II proteins for specific peptides has
been one of the priorities of the field. Recent advances in high-throughput
immunoproteomics methods [2,3] have allowed the identification of large sets of
epitopes now available in databases [4-10] and which can be used to train

different prediction services [11-20].
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Here we present sdHLA, an unsupervised, online system for the identification of
HLA class II binding motifs in polypeptide sequences using a support vector
machine. Its functionality includes the identification and scoring of potential
epitopes in query sequences entered by the user (with no limitation in number of
sequences or their length) in relation to the selected HLA class II molecule (18
HLA-DR, 8 HLA-DQ and 5 HLA-DP molecules are currently available). The selection
may include a single HLA molecule, all sdHLA2 available molecules individually, or
all molecules combined, the latter case providing the number of HLA molecules
recognising each predicted epitope. It can also scan microbial proteomes
(currently 243) and the human proteome for matches of the binding motifs
identified within the input sequences. A maintenance system has been also set up,
such that each time the internal database is updated with the incorporation of new
information from public peptide libraries the SVMs for all molecules are
automatically recalculated. By doing this, the quality of the predictions shall

progressively improve.

The service has been implemented to support vaccine and autoimmunity /
tolerance studies, allowing the screening of both microbial and human proteomes
for the presence of predicted HLA class II epitopes and providing information on
the level of promiscuity of these epitopes by performing the analysis against the

complete set of HLA molecules available.

Implementation

Data collection

Epitopes were downloaded from the Immune Epitope Database (IEDB) [10]. They
were then filtered and classified as positive and negative binders according to
IEDB annotations and following the criteria described in Chapter 2. For positive
binders, the 9-residue peptide core (binding segment) was determined using the

PSSMs developed previously (see Chapter 2). Negative binders were fragmented
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into 9-residue segments by running a 9-residue window over the sequence with a
1-residue step. For each HLA class Il molecule, positive and negative binders were
distributed randomly between a test set (10% of positive binders and the same
number of negative binders) and a training set (all positive and negative binders

not contained in the test set).

SVM generation

A Support Vector Machine [21] is a supervised-learning algorithm that separates
different populations in a sample by constructing a hyperplane or set of
hyperplanes in a high-dimensional space. Is a type of linear classifier, i.e. makes the
classification decision based on the value of a linear combination of the
characteristics (features) of the object to be classified, which are presented to the
machine in a vector called a feature vector. A fundamental property of SVMs is that
they simultaneously minimize the empirical classification error and maximize the
geometric margin (minimum distance between the objects and the hyperplane).
Objects on the margin are called the support vectors. As the sample is often not
linearly separable in the original space, SVMs make use of the so-called kernel
trick, by which the original space is (generally non-linearly) transformed into a
new (much higher-dimensional) space in which the data can be classified linearly.
The trick consists on using an algorithm that only requires dot products between
the vectors in the new space and choosing the mapping such that these high-
dimensional dot products can be computed within the original space by means of a
kernel function. Common non-linear functions include the polynomial, sigmoidal
and radial-basis-function (RBF) kernels, the latter being the most popular. The
effectiveness of an SVM depends on the selection of kernel, the kernel's
parameters, and the soft-margin parameter C, which is determines the trade-off

between misclassification and simplicity of the decision surface.

A SVM was generated for each HLA class Il molecule using the SVM light PERL
module [22]. The amino acids at positions 1 to 9 of the peptide core were codified
using the first four vectors of a principal-components analysis (PCA) by

Venkatarajand and Braun [23], which describes the 20 amino acids using 237
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different physico-chemical features. The SVM server was trained in two different
steps. First, linear, sigmoidal, polynomial and RBF kernels were tested by using a
bench of parameters with the HLA-DRB1*04:01 molecule as test case, as explained
in [24]. Performance was measured using the receiver operating characteristic
(ROC) curve [25]. The best performance was reached with the RBF kernel, which
was the used to train the SVMs for the remaining molecules. The RBF kernel has a
single parameter called gamma (y), which weights the influence of each object in
the final model. Although the value of y is ideally -1/n, it is often selected together
with C by a grid search with exponentially growing sequences. All parameter
combinations were evaluated using a ROC curve and those with the best
performance were chosen for implementation in the web server (see statistics in
Table 3.1). As discussed in Chapter 2, the statistics provided in Table 3.1 may only
be taken as an internal test. Proper comparison to the performance of other
available predictors requires the availability of an independent test set with a

significant number of sequences per HLA class Il molecule.
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Table 3.1. Statistics for the set of HLA class Il molecules available in sdHLA2.

Score
Molecule AUC threshold Sensitivity Specificity | Accuracy PPV NPV C Y
HLA-DPA1*01:03/DPB1*02:01 0.97 -0.06 0.97 0.97 0.97 0.98 0.95 8 3
HLA-DPA1*02:01/DPB1*01:01 0.97 0.40 0.96 0.96 0.96 0.98 0.91 5 2
HLA-DPA1*02:01/DPB1*02:01 0.85 1.00 0.97 0.92 0.96 0.98 0.85 8 1
HLA-DPA1*02:01/DPB1*05:01 0.98 0.00 0.97 0.92 0.94 0.89 0.98 9 6
HLA-DPA1*03:01/DPB1*04:02 0.97 -3.01 0.96 0.97 0.96 0.97 0.95 6 7
HLA-DQA1*01:01/DQB1*05:01 0.98 -0.42 0.94 0.94 0.94 0.94 0.95 6 2
HLA-DQA1*01:02/DQB1*06:02 0.96 1.00 0.98 0.96 0.98 0.99 0.94 6 2
HLA-DQA1*03:01/DQB1*03:02 0.98 0.13 0.96 0.96 0.96 0.97 0.93 7 2
HLA-DQA1*04:01/DQB1*04:02 0.96 0.66 0.96 0.96 0.96 0.99 0.88 5 1
HLA-DQA1*05:01/DQB1*02:01 0.97 0.07 0.96 0.96 0.96 0.98 0.91 5 6
HLA-DQA1*05:01/DQB1*03:01 0.97 0.22 0.97 0.97 0.97 0.99 0.92 10 2
HLA-DQA1*05:01/DQB1*03:02 0.97 -0.49 0.95 0.95 0.95 0.95 0.95 5 1
HLA-DQA1*05:01/DQB1*04:01 0.89 -0.73 0.95 0.95 0.95 0.98 0.86 10 6
HLA-DRB1*01:01 0.97 1.00 0.96 0.96 0.96 0.99 0.88 9 10
HLA-DRB1*03:01 0.98 0.00 0.97 0.95 0.96 0.96 0.97 7 8
HLA-DRB1*04:01 0.98 0.00 0.95 0.97 0.96 0.98 0.92 9 9
HLA-DRB1*04:02 0.97 -0.31 0.96 0.96 0.96 0.94 0.98 4 2
HLA-DRB1*04:04 0.98 0.02 0.98 0.98 0.98 0.99 0.96 4 8
HLA-DRB1*04:05 0.98 0.45 0.97 0.97 0.97 0.99 0.91 2 3
HLA-DRB1*07:01 0.98 0.00 0.96 0.96 0.96 0.98 0.92 8 7




Score

Molecule AUC threshold Sensitivity Specificity Accuracy PPV NPV C Y
HLA-DRB1*08:02 0.99 -0.01 0.95 0.96 0.96 0.98 0.92 9 4
HLA-DRB1*09:01 0.98 0.82 0.97 0.97 0.97 0.99 0.91 5 3
HLA-DRB1*11:01 0.98 0.00 0.96 0.96 0.96 0.98 0.94 3 5
HLA-DRB1*12:01 0.98 -0.09 0.96 0.96 0.96 0.97 0.94 3 3
HLA-DRB1*13:01 0.96 0.00 0.94 0.93 0.94 0.92 0.95 9 4
HLA-DRB1*13:02 0.98 0.00 0.97 0.97 0.97 0.98 0.93 7 8
HLA-DRB1*15:01 0.98 0.00 0.96 0.96 0.96 0.98 0.91 9 7
HLA-DRB3*01:01 0.98 0.00 0.95 0.95 0.95 0.96 0.95 5 6
HLA-DRB3*02:02 0.98 0.05 0.97 0.99 0.98 0.99 0.96 6 7
HLA-DRB4*01:01 0.97 1.00 0.97 0.97 0.97 0.99 0.92 3 10
HLA-DRB5*01:01 0.98 0.09 0.96 0.96 0.96 0.99 0.91 8 6

The statistics have been evaluated using the entire set of epitope sequences (see Table 2.1).

AUC: area under the receiver-operating-characteristic (ROC) curve; gives the probability that the SVM will rank a randomly chosen positive binder
higher than a randomly chosen negative one.

Score threshold: score separating binders from non binders; corresponds to the point of the ROC curve where the difference between sensitivity
and specificity is minimal; all following quantities refer to this point.

Sensitivity: number of true positives relative to the sum of true positives and false negatives; high sensitivity indicates few false negatives.
Specificity: number of true negatives relative to the sum of false positives and true negatives; high specificity indicates few false positives.
Accuracy: sum of true positives and true negatives relative to the total.

Positive predictive value (PPV) or precision: number of true positives relative to the sum of true and false positives.

Negative predictive value (NPV): number of true negatives relative to the sum of true and false negatives.

C: soft-margin parameter of the SVM; y: single parameter of the RBF kernel.
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Conclusion

As explained above, our method uses a codification based on amino-acid
descriptors, corresponding to a series of physical and chemical characteristics of
each amino acid, which prevents the system from over-learning (as compared to
binary descriptions of amino acids). Moreover, the performance of the method will
rapidly improve as the number and quality of the peptides found at repositories
increases, as SVM performance is known to depend heavily on the size of the
training set. As shown in Table 3.1, the SVMs developed here have a very high
capacity to recognise patterns already seen during training, relative to the PSSM-
based predictor described in Chapter 2, which uses the same pool of training and
test peptides. As already discussed in Chapter 2, proper statistical validation will
however require the availability of new independent peptide sets. Besides the SVM
being intrinsically a more powerful method than that based on PSSMs, in this case
SVM development profited from the knowledge already captured by the PSSMs, as
the output from the first method was used to feed the training set of 9-residue

peptides for the second one.
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Coherence of the original epitope dataset

Data extraction, manipulation and analysis are key points to any project
attempting to make predictions by training algorithms on existing data. Given the
high amount of data used in the work presented here, it would be clearly
impossible to check this data manually before using it to train an algorithm for the
prediction of HLA class Il presentation. Yet, scientists working with databases are
generally aware of the existence of miss-annotated or incoherent data in these
repositories. Indeed at the meeting of the European Federation of Immunological
Societies in Berlin (September 2009), Dr A. Sette, from Immune Epitope Database
(IEDB), requested the collaboration of researchers to correct possible errors in this

database.

Contradictory information is often found in databases as a result of difficulties in
comparing the different types of measurements used to generate the data. In the
case of HLA class Il peptide presentation this mostly arises from the use of
different techniques to measure binding (Table 4.1), potentially leading to
contradictory conclusions for the same HLA class II - epitope pair. Mistakes can
also result from typos introduced at the time of incorporating new data to the
database. We have estimated the percentage of miss-annotated peptides at IEDB to
be around 10% by revising all HLA-DRB1*04:01 peptides contained in this
database. The most common mistake detected is an unclear relation between the
given quantitative cut-off and the qualitative assignment of peptide presentation.

Some examples are given in Table 4.2.

Another source of mistakes may result from sample miss-definition. HLA
nomenclature was thought to name genes instead of proteins, emphasizing silent
mutations. For this reason, some times a single peptide may seem to be presented
by different HLA molecules that in fact are the same, resulting in the decrease of
sample size and limiting any statistical test performance. In the present study this
problem has been addressed by considering only information related to the

protein (gene locus, serologic family and codifying allele) and discarding the rest.
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Table 4.1. Different test and measurement units used by HLA class II studies [1].

Assay Type Assay Response Assay Units
Cell bound MHC - Fluorescence Association (or direct binding) EC50 nM
Cell bound MHC - Fluorescence Association (or direct binding) Ka M-1
Cell bound MHC - Fluorescence Association (or direct binding) Kon (nM-! s-1)
Cell bound MHC - Fluorescence Association (or direct binding) t1/2 (min)
Cell bound MHC - Fluorescence Competition (or equilibrium binding)  IC50 nM
Cell bound MHC - Fluorescence Competition (or equilibrium binding) | Kd nM
Cell bound MHC - Fluorescence Dissociation Koff (s1)
Cell bound MHC - Fluorescence Dissociation t1/2 (min)
Cell bound MHC - Radioactivity Competition (or equilibrium binding)  IC50 nM
Cell bound MHC - Radioactivity Competition (or equilibrium binding) | Kd nM
Cell bound MHC - Radioactivity Dissociation t1/2 (min)
Cell bound MHC - T cell response = Competition (or equilibrium binding) | IC50 nM
Lysate - Radioactivity Association (or direct binding) EC50 nM
Lysate - Radioactivity Competition (or equilibrium binding) | Kd nM
Lysate - Radioactivity Dissociation Koff (s1)
Lysate - Radioactivity Dissociation t1/2 (min)
Purified MHC - Fluorescence Association (or direct binding) EC50 nM
Purified MHC - Fluorescence Association (or direct binding) Kon (nM-! s-1)
Purified MHC - Fluorescence Association (or direct binding) EC50 nM
approximating Kd
Purified MHC - Fluorescence Competition (or equilibrium binding)  IC50 nM
Purified MHC - Fluorescence Competition (or equilibrium binding) | Kd nM
Purified MHC - Fluorescence Competition (or equilibrium binding)  IC50 nM
approximating Kd
Purified MHC - Fluorescence Dissociation Koff (s1)
Purified MHC - Fluorescence Dissociation t1/2 (min)
Purified MHC - Fluorescence Dissociation Tm (°C)
Purified MHC - Radioactivity Competition (or equilibrium binding)  IC50 nM
Purified MHC - Radioactivity Competition (or equilibrium binding) | Kd nM
Purified MHC - Radioactivity Competition (or equilibrium binding)  IC50 nM
approximating Kd
Purified MHC - Radioactivity Dissociation t1/2 (min)
Purified MHC - X-ray Structure (crystal, NMR, etc.) Angstroms

Crystallography

Finally, mistakes can be introduced by incorrect donor genotyping. Heterozygous

individuals for HLA class II genes, displaying to different haplotypes, represent a
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particularly difficult case when trying to discriminate which molecule is

responsible for presenting a certain peptide.

Table 4.2. Example of miss annotated peptides at the Databases.

Qualitative

Sequence value Problem found |Correction |Reference
SPFGQAAAGDKPS Negative [c50 value Annotated as [2]

missed negative
TDVNRYRYSNNYEAIPHIS Positive A percentage Qualitative [3]

was taken as an  value was

IC50 value changed
SKPKVYQWFDLRK ? Not found Removed [4]

from the list

KSKKHMNHDGEKKKVKKLKD  Positive Incoherent Corrected [5]

relation between using IC50

QV and the Ic50

The presence of all these potential sources of errors in data retrieved from
databases implies that some type of control system needs to be applied before
calculations, in order to eliminate incoherences and ensure the best possible
performance. This is especially the case when one attempts to implement a non-
supervised server, capable of periodically auto-downloading new data from the
databases and rebuilding the predictor. We have dealt with miss-annotations by
eliminating or re-annotating all those entrances suspicious to be in incorrect. After
doing this (see Materials and Methods in Chapter 2) prediction performance
improved around a 10%. Clearly, when applying strict criteria to perform the
initial filtering there is a risk to discard valid data. This can be a problem when the

amount of data is already very limited.

The argumentation given above suggests a need for protocol standardization.
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Protein-data storage and retrieval

The development of new techniques for genome sequencing and analysis has
increased the amount of information available in a relative short time (Figure 4.1),
calling for the development of new techniques to store and retrieve data in an
acceptable run time. This goal can be achieved either by increasing computational

resources or improving data organization.

Complete microbkial proteome entries in UniProtKB/Swiss-Prot
3sek —mm—m—mr——m—-r—mr—m—"——r—+——"+——"¥FT"—"———F"——F"—F"——]"+——

bhacteria

| B

archaea

380k vy _
250k [ .
200k | / -

158k | | -

number of entries

108k - P :

S8k T B

a R T I | —— 1 1 1 1
ceaa ceal ceaz 2ea3 26864 288s 2866 2eaz ceas cea9 ca1a 211
Year

Figure 4.1. Increase of UniprotKB/Swiss-prot database in the last 11 years.

As we expected a continuous growth of our internal database as more sequences
become available in public databases, optimizing data storage has been a
cornerstone of our work. We addressed this issue by testing different techniques
to reduce the required storage support, emphasizing data codification and

optimizing the indexation of epitope motifs.

Different initiatives were taken into account. On the one hand, in the PSSM
approach the scores for each binding motif are not stored, but calculated in real
time. When asterisks are introduced in the sequence only the scores for resulting

peptides in which an asterisk occupies an anchoring position are calculated. On the
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other hand, all possible epitope motifs in a protein are coded as a number using a

function.

Data codification and organisation

Data storage is crucial to the performance of the application. The storage must
satisfy both a quick data retrieval and a minimum disk space. Those objectives are

fulfilled by data storage optimization.

A motif can be codified in two different ways. The simplest one is storing the
character corresponding to each amino acid in the motive. Alternatively, one can
also store it as a numeric code. Storing motifs with characters costs 1 byte per
character, i.e. 5 bytes per motive. Storing the motif as an integer represents 32 bits
of memory (4 bytes). Despite this difference may seem small, when using large
datasets it becomes significant. In addition, this type of codification optimizes table
indexation, and reduces the virtual memory needed for preforming a query,

increasing search velocity.

Codification of bacterial and human proteomes

Each human and bacterial protein sequence was decomposed into 9-residue
segments by running a 9-residue window over the sequence with a 1-residue step.
The putative-motif code (PMC) for the 9-residue segment was coded using the

following equation

PMC=1+A9+20'A7+20°A6+20°A4+20" A1 (4.1)

where An is a code (assigned arbitrarily from 1 to 20) to an amino acid at the

anchoring position 7.

For each 9-residue segment, the protein code (Uniprot), starting position in the

protein sequence and PMC were stored.
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Database schema

A database is an organized collection of data. Nowadays, these collections are
stored in a digital format using complex software for their management, known as
database management systems (DBMS). The data collection together with the
DBMS is called a database system. In choosing a DBMS we looked for a good
balance between data-retrieval velocity and storage optimisation. Although MySQL
was a clear initial option, we finally moved to PostgreSQL because of its capacity to

use functions to create indexes.

Database design is critical for effective data storage and retrieval. To achieve this
goal, data was grouped and codified in different tables. As seen in Figure 4.2 for
the PSSM case, tables were divided according to data content and functionality.
The Processed-data repository contains all information resulting from data
calculations. The Raw-data repository contains all data collected from on-line
databases. Tables under Users control are exclusively dedicated to the
management and control of the data of registered users. Finally, Database-

management tables control database updates.

Tables contained in the Processed-data repository are: Fs, including all the
statistical data for each HLA molecule processed and the user who submitted the
calculation. PSSMs table is where PSSMs resulting from calculations are stored.
Each field in this table is assigned to a particular user (ALL for public data), so
that public and private data do not mix. This section also contains all the tables
oriented to provide proteomic support to the service. These are Sp, Names and
Local. The Sp table contains the names of species in the database and their
Uniprot taxon identification (taxid). This information is related to the Names
table by the taxid, which also contains the protein Swiss-prot code and the name
for each analysed protein. Local table contains all putative motifs and their
position in the proteins. The Pockets table contains the amino acids conforming
the pockets of all examined HLA class II sequences. Finally, the Pocomp table

stores the distances resulting from comparing pockets of different molecules.
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Processed data repository

-.

)
—_—
User Control

Database management

Raw data repository

Figure 4.2. Schema of HLA2db (PSSM-based) database organisation.
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The Raw-data repository contains all sequences of proteins and epitopes as
downloaded from databases. This information is contained in the Molec and

Epitopes tables, respectively.

A group of tables related to user management and database updates was also set
up. Under the User control section two tables have been implemented, Preusers
and Users. The first one stores information on users once a registration request
has been received. If a confirmation is received, the information is finally stored
in the Users table, otherwise it is deleted. Finally, the Update table contains the
date of the last database update.

Binding-motif calculation procedure

Peptide binding core

As mentioned in the introduction, the length of peptides binding to HLA class II
varies form 8 to 30 residues, from which only 9 residues occupy the protein’s
binding grove. The definition of this peptide core is therefore central to the work
presented here, as the statistical analysis on which both the PSSM and SVM

approaches rely depend directly on it.

The actual peptide length depends on the protein processing taking place before
presentation [6]. An interesting characteristic of this process is the possibility of
producing peptides with the same core but different ends, as a result of the action
of proteases with cleavage preferences. These peptides are known as nested sets.
This property allows us to define the peptide core by identifying the common part
between two or more peptides (see Materials and Methods in Chapter 2). Note that
this can be extended to other potentially existing peptides binding to the same HLA
molecule and having the same 9-residue core but originating from a different
protein (generally an ortholog). Although this would not be strictly a nested set,

our protocol does not distinguish between these two cases.
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In contrast with the iterative self-consistent method (see Introduction), which
strongly depends on the knowledge on the amino acid at P1, our technique is less
prone to the introduction of noise and less information dependent. In the one
hand, using nested sets to find the epitope core is independent of any previous
knowledge and allows finding new amino acids able to bind to P1. On the other
hand, it reduces the inclusion of non-binding core sequences at early stages of the
training, which is crucial to the correct development of the refinement and the

final result.

In comparison to the alignment of sequences resulting from extracting information
from crystallographic structures, our method is less specific but the amount of data

available is much more extense, facilitating a wider coverage of HLA molecules.

Computation phases

Dataset enrichment with Blosum tables

When using the nested-set-like approach mentioned in the previous section for the
identification of peptide cores, the number of available peptides per HLA class II
molecule becomes relatively small. This is especially so because we discard any
peptides not entering one of these nested-set-like groups (see Materials and
Methods in Chapter 2). To be able to deal with HLA molecules ending up with an
insufficient number of representative peptides for a statistically significant

analysis, a methodology based on BLOSUM tables was developed.

Blosum tables are a group of two-dimensional matrices resulting from computing
the amino-acid exchange probability in aligned proteins with a certain degree of
divergence (the percent identity is given as an appendix number to the Blosum
name). Each time an amino-acid substitution occurs in a conserved protein region,
the new amino acid should have similar properties to ensure the conservation of
protein structure and function. Therefore, the more often an exchange between

two amino acids exist, the more similar they are. Thus, the elements of a Blosum
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matrix can be interpreted as a degree of similarity between amino-acid pairs, being

the higher scores for the more similar and exchangeable amino acids.

Here, Blosum tables are used to find new putative core sequences with an
exchangeable amino acid at the anchoring positions with those resulting from
peptide comparison. Once this correlation is done, a PSSM can be computed, which
is used to perform the first prediction of cores from the training set of peptide
binders. This process is repeated in 3 rounds (focusing rounds), and the resulting

tables are not yet considered for the final predictor.

In contrast with iterative self-consistent method, which scans the proteome to find
9-residue sequences with a certain amino acid at P1, to then perform a statistical
analysis to evaluate each nonamer and exclude from the training set those with
lower score until convergence, our method starts from few specific peptide cores
to move to larger sets, allowing to find new amino acids that may eventually fit
into a pocket without previous experimental evidence. This capacity to find new
potential relations between pockets and amino acids becomes even more evident
when comparing to methods taking crystallographic information to perform the

statistics.

Predictor training

Why should the sequences be unique?

A PSSM reflects the frequency of a certain amino acid at each of the 9 positions in
the core, and is the nexus between rounds. In this sense, the inclusion of repeated
core sequences in the sample used to perform the statistics could lead to
overweighting those amino acids in the repeated sequence, resulting in matrix

corruption and a decrease of the prediction performance.
What is the meaning of the formulae used for PSSM construction?

The specific characteristics of the method developed here are partly dictated by
the formulae used to construct the PSSM and make the predictions. The calculation

was performed in two different ways depending on the phase of the process (see
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Materials and Methods in Chapter 2). In the focusing phase, amino-acid
frequencies at each position were corrected using BLOSUM tables. In the
refinement phase, the PSSM was refined using a statistical formula. To this end, 22
different formulae were tested. The performance obtained with each formula was
measured using the area under the curve (AUC) in a Receiver Operating

Characteristic (ROC) curve during various rounds of prediction - calculus.

The equation chosen to calculate the statistics derives from a binomial
distribution, and measures the relation between the frequency of each amino acid
in the sample and its frequency in nature (see eq. (2.3) in Chapter 2). That is, it
considers existence or non-existence of the amino acid at the position and, in the
former case, whether it is above or below the expected frequency (in nature). A

logarithmic function is used to increase the differences between values.

This equation works with small samples provided the frequencies are limited to
single positions, i.e. synergies or correlations between amino acids at different
positions in the sequence are ignored. It is for this reason that a second approach

based on SVMs was later implemented.

Formulae derived from a normal distribution or from G or Chi-square were also
evaluated but, as expected, were found inappropriate. In addition, BLOSUM-based
calculations were seen to fail when used as unique approach. Although there is a
correlation between amino-acid properties and epitope presentation, it does not
take into account pocket characteristics as conformation and flexibility, which are

also determinant for binding.
Data corruption, over-learning and convergence

A predictor needs to be trained to gain the ability to discriminate different cases. In
an ideal situation, the initial set provides all possible cases that could occur in
nature and the training would be a one-step calculation. Unfortunately, the most
common scenario is to have a set of data more or less representative of the real
population. Here, training deals with the dangers of over-learning and matrix

corruption.
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Data corruption occurs when the data from which statistics are calculated is miss-
annotated. In those cases, sequences considered positive are classified as negative
and vice-versa. This can easily occurs with low affinity epitopes that are on the
boundary between presented and non-presented. As a result, the method’s
discrimination capability is affected, being reflexed as a decrease of the AUC value
in a ROC curve. This is caused because the miss-annotated sequences introduce a
bias into the PSSM that is fixed at following rounds, being the error amplified.
Normally, data fixation occurs from the third to the fifth rounds (see Figure 4.3A),

at which point the learning process should be stopped [7, 8].
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Figure 4.3. Examples of the two possible scenarios in the evolution of the AUC in a ROC
curve during a learning process: corrupted sample (upper panel) and non-corrupted

sample (lower panel).

A second scenario is data convergence (Figure 4.3B). It happens when data
discrimination cannot be improved any further. This may happen if the initial

dataset is sufficiently large to fully describe the underlying population or, on the
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contrary, if the dataset is too small to show the native diversity, leading also to a
situation in which positions are over-fixed and the method looses the possibility of
finding cases not included in the training set. Over-fixing positions can be avoided
simply by stopping the process before right when convergence occurs, which is

normally at the fifth round [7, 8].

Over-learning is another problem and is usually connected to early convergence.
To avoid it, the statistics must be performed on a large sample displaying the
native population diversity, allowing the construction of both a training and a test
set [7]. Another possible initiative to minimize over-learning is to allow the
algorithm to have enough freedom to report not only the patterns seen in the
training set but also patterns similar to those. When starting from a sufficiently
large dataset, over-learning can be avoided by setting a threshold that equilibrates

the sensitivity and specificity of the method.

An approach taken to partially avoid these problems was to re-build all sets at each
step of the processing. This way, almost all peptides in the repository were used to
feed both the train and test sets. Once this procedure was set up, it became
apparent that the result was highly dependent on the quality of the sets at the very
initial rounds. For this reason, the process was repeated 20 times, with initial
random distribution of peptides in the training and test sets (see Materials and

Methods in Chapter 2). This way the process gained stability.
Are some pockets more important than the others?

The idea that some pockets are more important than others is wide spread among
immunologists. To tests this hypothesis a formula that reflects the possible

differences between pockets was tested:

S =>fS (4.2)

where S is the score for the 9-residue core, S; is the score for the amino acid at
position i and f; is obtained from a G-test (see below) if i=1,4,6,7,9 (anchoring

positions) and is set equal to 1 otherwise. This equation weights the score of each
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amino acid bind at each position according to pocket importance. It was calculated
by measuring the deviation of the distribution of amino acids in each pocket from
the distribution in nature by using a G-test. We made the assumption that the
higher the difference between the expected (from distribution in nature) and
observed frequencies, i.e. the larger the G-test value, the more important the

pocket is and, accordingly, the higher its weight in the final score.

Contrary to our expectation, the inclusions of these weight factors in the formula
produced a decrease of the performance of the method, reflected by a decrease of
the AUC of the ROC. This result may have two different interpretations. A first one
is that the PSSM may already incorporate implicitly this information. In this case,
the inclusion of the weight factors in eq. (4.2) would result in over-weighting. A
second one is that epitope presentation may not depend as strongly as often
assumed on specific positions but, rather, on the global energetics of the
interaction between peptide and binding groove, including entropic effects.
Indeed, everything we know today about molecular interactions goes in this
direction. After this result, we decided not to introduce weight factors to

distinguish the relevance of the different pockets in the binding groove.
Why do we use a positive- and a negative-binding PSSM?

PSSMs for positive and negative binders were separately constructed and
subtracted (negative from positive). The objective was double, to reduce the
background noise from amino acids with similar frequencies in both tables and to
make the differences between good and bad binders more evident in the learning

process.

Why does the prediction improve by considering the different possible binding motifs

in a peptide and their lengths?

One of the initial objectives of this work was to adjust the score predicted for
binding to existing IC50 measurements. This objective has not been fulfilled. This
can be due to many factors, among them the already discussed intrinsic error of

experimental measurements of binding, illustrated by different values reported for
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the same peptide. As a matter of fact, the actual binding properties of a peptide will
result from the combination of all its potential binding modes, with appropriate
thermodynamic weights. This is because a peptide longer than 9 residues can
potentially present more than one binding motif. Our approach follows this precise
reasoning, such that in analysing a given peptide the scores of all possible binding
motifs are added and normalised by the length of the peptide. The normalisation
factor is introduced to take implicitly into account the larger loss of entropy of the
longer sequences, which is negative to binding. When using this approach, the
prediction performance increases (see Table 4.3), suggesting that this is indeed an

effect present in nature.

Table 4.3. Example comparison of prediction performance considering only the 9-residue

segment with the larger score or the normalised sum for all segments.

HLA type Largest score Normalised sum of scores
DRB1*0101 0.68 0.73
DRB1*0301 0.64 0.68
DRB1*0401 0.66 0.67
DRB1*0404 0.73 0.76
DRB1*0405 0.69 0.72
DRB1*0701 0.75 0.77
DRB1*0802 0.66 0.68
DRB1*1101 0.75 0.79
DRB1*1302 0.67 0.68
DRB1*1501 0.64 0.69
DRB4*0101 0.65 0.75
DRB5*0101 0.75 0.78
Mean | 0.69 | 0.72
Min 0.64 0.67
Max 0.75 0.79

Why does the molecule rescue work?

HLA class II molecules are highly structurally conserved. In line with previous
approaches [8] we considered the possibility of finding news patterns by using

combinations of those previously described. To implement this idea it was
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necessary to decide on a measure of pocket similarity. With this objective, the
study by Venkarajam and Braun [9] was used. They performed a principal
components analysis (PCA) to describe the 20 amino acids using 237 different
physico-chemical features. We decided to use the four principal eigenvectors from
this PCA to represent describe the amino acids. The distance in this four-
dimensional space between the amino acids conforming two equivalent pockets in
two different HLA molecules can then be measured (see Materials and Methods in
Chapter 2). The smaller the distance between the two pockets, the higher their
similarity. If one of these pockets is already represented in a PSSM, the

corresponding column can be inherited by the second molecule.
5-residue vs. 9-residue profiles

It is widely accepted that only the five anchoring positions are relevant for peptide
binding to HLA class II. The corresponding pockets are named P1, P4, P6, P7 and
P9 (see Introduction). Building on this hypothesis, when constructing the PSSMs
we initially based our calculations on only these positions in the peptide. However,
comparison with PSSMs built using the 9 residues of the peptide core showed that
the performance of the resulting 9-column matrices was superior. This suggests
that all 9 residues occupying the binding groove are relevant to binding, as
discussed previously. This was further supported by results from the support
vector machines. Generation of SVMs with the five anchoring positions and with all
nine positions showed that the 9-residue-based SVMs required lower space
complexity than 5-residue-based ones. In the example given in Table 4.4 we can
see that both cases had the same performance with an AUC around 74% for HLA-
DRB1*04:01, but the parameter values for the 9-residue model were smaller than
the parameters for the 5-residue model. This is important because the larger the
values of gamma and C in a SVM model, the more complex are the hyperplanes

separating the populations and the more difficult to interpret the results.
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Table 4.4. Comparison between the performances of the SVM fed with sequences of nine

residues or only with the five anchoring residues

Positions g c AUC

5 2 49 0.74

9 2 25 0.74
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Conclusions

Conclusions

. An internal database of MHC class II epitopes has been built. The system
incorporating peptides into this database is able to deal, to a certain extent,

with miss-annotations and ambiguities.

. An algorithm to automatically generate HLA class II epitope profiles starting

from the experimental data gathered in this database has been established.

. Two predictors of binding of peptides to 31 HLA class II molecules have been
developed, one based on position-specific scoring matrices and one based on
support vector machines. Both predictors can be trained without any expert

supervision.

. A database that helps researchers to localize the list of predicted epitopes in a

variety of proteomes (243 pathogenic bacteria and human) has been set up.

. A new tool that helps researchers train PSSMs for new HLA class Il molecules or

improve existing ones based on the user’s own peptide datasets has been set

up.

. The training of both the PSSM- and SVM-based methods shows that the binding
of peptides to HLA class II molecules depends not only on the amino acids
present at the anchoring positions of the peptide core (1, 4, 6, 7 and 9), but on

the entire 9-residue sequence.

. Binding of a peptide to HLA class II cannot be reduced to the best-binding core

but it will be a function of all potential binding arrangements, i.e. peptides
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presented in vivo may contain more than one 9-residue segment with the

capacity to bind to the HLA molecule.
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