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Abstract

This thesis is focused on multi-sensor event detection schemes in Wireless Sensor Network

(WSN). In the WSN, sensors individually take their observations, do some initial local pro-

cessing and then send the result to the fusion center. Apart from this information, the fusion

center may have prior information such as the known positions of sensors, the topology of

the network or structures, features and patterns present in the received observations. In

order to achieve better detection performance, the fusion center must exploit all this prior

information in the best possible way.

Keeping this in mind, in this thesis we focus on the exploitation of available a-priori

information with the aim of developing enhanced and robust detection mechanisms. For

instance, we exploit the fact that in most applications, the signal emitted from the event

becomes a local physical phenomenon that only a�ects a small subset of sensors. Moreover,

the a�ected sensors will be located close to the event as well as close to each other in the form

of a spatial cluster. Hence, novel detection schemes are presented with a two-fold motivation:

�rst, the exploitation of the relevant set of sensors, which helps in rejecting the noise; second,

to take advantage of the signal correlation by using a-priori information about the positions

of sensors.

Based on these results, we move one step further and concentrate on the exploitation of

both spatial and temporal correlation in the received observations. In this case, we propose

detection schemes that explore di�erent matrix structures embedded in the observed covari-

ance matrix, which naturally arise due to the underlying topologies of the multiple sensors.

Numerical results are presented for all of the proposed schemes that show important

advantages compared to traditional schemes.
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CHAPTER 1

Introduction

Event detection is one of the main purposes of most Wireless Sensor Network (WSN) applica-

tions [1]. For example WSNs for military applications are deployed to detect the invasion of

enemy forces, health monitoring sensor networks are deployed to detect abnormal patient be-

havior, �re detection sensor networks are deployed to set an alarm if a �re starts somewhere

in the monitored area. Similarly, in the �eld of cognitive radio, event detection involves the

collaborative detection of signals from licensed users, in order to detect empty gaps at which

unlicensed users can transmit[2, 3]. In this application the unlicensed users can be considered

as the sensors. Regardless of the speci�c application, the goal is to alert a centralized unit

about the occurrence of signi�cant events so that it can respond appropriately to them.

During the detection process in WSN, after taking their local observations and doing some

initial local processing, the sensors send the information to the fusion center. The fusion

center manages and fuses this information to make the �nal decision.

Managing multiple sensors for signal detection purposes is a challenging task for which

a wide range of di�erent strategies can be devised. For instance, centralized detection (as

shown in Fig. 1.1a) is the most straightforward and simple approach. It involves placing

all the intelligence of the network on a single point, where all sensor measurements will

be processed. Based on these received data, the fusion center will issue a global decision on

whether the event of interest was present or not. Certainly, this simple approach raises many

practical problems in terms of network reliability and bandwidth constraints. A step forward

for solving these drawbacks leads to the concept of decentralized detection as depicted in Fig.

1.1b. In this approach, sensors do perform some kind of pre-processing for data compression

or even single-decision making, and then they report their results to the fusion center [4],

[5],[6]. Resource constraints can be alleviated by using this approach, but there is still a

critical dependence on the fusion center. Since the fusion center based detection scheme can

largely resort to classical detection theory, many works focus on distributed detection [7].

However, it is matter of fact that some issues are still open in centralized detection, and thus

they demand attention from researchers.

Keeping the above facts into consideration, in this thesis we focus on the development

of fusion rules based on the soft information provided by randomly distributed sensors.

Speci�cally, we consider the fact that the fusion rule should exploit all of the available a-priori

known side information about the sensors, which often depends on the topology of a speci�c

1
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Figure 1.1: Schematic representation of detection schemes with fusion center
in WSN

network. Consequently, the fusion rule should take into account all features, structures and

patterns etc, that are inherently present in the received observations due to the underlying

topology of the WSN.

1.1 Motivation and objectives

In some application where the local sensors receive strong and reliable signals, the sensors

can readily make their local decisions and send them to the fusion center where the �nal

decision is made. The fusion of local decisions at the fusion center is termed as hard fusion
[8]. In other words, the hard decision fusion is the one in which, the local sensors make

a one-bit decision regarding the existence of the event, then this one-bit decision (0 or 1)

is forwarded to the fusion center for the global decision. The most common hard decision

rules are “OR”, “AND ” and “Counting” rules as given in Fig. 1.2. Nevertheless, in many

applications, the sensors may do some local processing of the observations instead of hard

decisions, and then they send their processed information to the fusion center for the �nal

decision. The combination of such soft information at the fusion center is known as the soft
fusion. The scheme based on the soft information fusion has applications in situations where

the local sensors receive week signals in the presence of harsh conditions (shadowing, low

signal-to-noise ratio etc) and local decisions are unreliable. It is demonstrated in [9] that soft

combination schemes have signi�cant performance improvement over the hard combination

in harsh working conditions. The drawback of soft data combination is due to the fact that

when each sensor transmits the real value of its sensing data to the fusion center, theoretically

in�nite bits are required. Hence, this results in a wide communication bandwidth. However,

this problem can be solved by quantization of local observations [9]. Nevertheless, when high

performance detection is required, it is better that instead of making one bit local decisions,
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Figure 1.2: Summary of multi-sensor fusion rules.

the sensors send quantized soft measurements to the fusion center. In the presence of this soft

information, the fusion center can easily utilize all of the available information and exploit

the side information for improved detection performance.

Keeping this in mind, we consider the fact that in order to bring decision about the

presence or absence of any event, the decision mechanism should process and exploit all

of the available information in the best possible way. Therefore, the fusion rule should not

only use the energy and power of the signal but also the available a-priori information. A-

priori information can be either the positions of the sensor nodes or the statistical topology

of the network in terms of the sensors, spatial and temporal correlations. Hence, the main
focus of this work is to develop detection mechanisms at the fusion center that take
into account the side information to enhance the robustness.

Before starting with the technical contents of this thesis, we will brie�y discuss some of

the existing traditional detection schemes that will be used as a reference herein. The most

popular detection schemes that have been previously considered include the energy detec-

tion, the matched �ltering and cyclostationary detection [10, 11, 12, 13]. These algorithms

have di�erent requirements and advantages/disadvantages. The detection performance of

these detection schemes depends on the available prior knowledge. For example if the signal

is �xed and a-priori known to the receiver, matched �ltering gives the optimum detection

performance. If the signal is unknown then the most popular and widely used scheme is the

energy based detection scheme. Unlike other methods, energy detection does not need any

information of the signal to be detected and is robust to unknown multipath fading [10, 11].

Moreover, if the signal is unknown, signal samples are often modeled as independent and

identically distributed (i.i.d.) random variables, and it that case the energy detector gives

the optimum performance. However, even though the energy detector doesn’t require the

desired signal to be known, it assumes the noise to be known. Hence, energy detection is

vulnerable to the noise uncertainty, because the method requires the exact knowledge of the

noise power [11, 14, 15, 16]. In practice, it is very di�cult to obtain accurate noise power

estimates. Therefore, one should look for mechanisms that take into account the fact that
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noise is unknown in practice. However, in many cases especially in practical communication

systems, received signals to sensors always contain distinctive features that can be exploited

for detection and that enable us to achieve a detection performance that substantially sur-

passes that of the energy detector. Perhaps even more importantly, known signal features can

be exploited to estimate unknown parameters such as the noise power. Therefore, making
use of known signal features or a-priori information can e�ectively circumvent the
problem faced by traditional energy based detection mechanisms.

Herein, the term feature detection refers to the exploitation of the known statistical

properties of the signal [13]. Depending on the application, the signal features referred to

may be manifested both in time and space. For instance, one of the features that can be

exploited as a side information is the correlation of the received observations. For example,

dense deployment of sensor nodes makes the observations highly correlated in the space

domain [17, 18]. The existence of spatial correlation implies that the readings from sensor

nodes which are geographically close to each other are expected to be largely correlated. In

addition to being spatially correlated, the received signal samples are usually correlated in

time due to the presence of temporal correlated channels, due to oversampling at the receiver

or because the transmitted signal was correlated in time[19, 20]. However, for the sake of

simplicity, many of the previous contributions ignore the correlation in the formulation of

detection schemes. On the other hand, many of the schemes consider the correlation as

a deleterious e�ect [21, 22]. Hence, these schemes focus on techniques to counteract (i.e.

whitening or decorrelation) correlation e�ects. However, the correlation can be considered

as a prior information or side information that can be used to avoid the pitfalls of the noise

uncertainty or to bring robustness to the detection process.

Beside the exploitation of spatio-temporal correlation, one should also take into account

the fact that for the case of dense sensor networks, the signal of emitted by the event of

interest will only e�ect a subset of sensors (i.e. those sensors located close to the event),

which will typically be closely spaced, forming a cluster, thus having highly correlated

observations [17]. This scenario is depicted in the upper picture of Fig. 1.3. Based on

intuition, we can see that since active sensors are in the form of clusters, their physically

closeness can provide us extra-information and this should be considered in the formulation

of the fusion rule.

Similarly, a particular case of interest is the one where multiple sensors are uniformly

and closely placed to each other in a single device (i.e. multi-antenna transceiver) and it

will be also interested to exploit a-priori information for such scenario. In addition, one

should also consider a WSN that consists of multiple distributed nodes where each node has

multiple antennas. Such setup can easily be considered in the �eld of cognitive radios since

multi-antenna receivers have already become an integral part of many cognitive radios. The

existence of such hardware setup/platform gives us the chance to consider multi-antenna

techniques for cooperative spectrum sensing. Hence, for this type of setup it will be inter-

esting to devise novel detection schemes that exploit the correlation structure of the received

observation for improved detection performance.
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Figure 1.3: Pictorial view of the event region.

1.2 Thesis outline and research contributions

Based on the above motivating discussions, the main contributions are organized as follow:

Chapter 2

In this chapter, we introduce the reader to the basics of hypothesis testing and we provide

a brief review of the fundamentals of the signal detection theory. These fundamentals are

presented with the aim of of facilitating the discussion for the reader in the remaining

chapters.

Chapter 3

Based on the fundamental principles of statistical signal processing, in this chapter we focus

on the centralized detection scheme, where the local sensors send soft information to the

fusion center. Since the centralized detection can largely resort to classical detection theory,

many existing results are already available. However, there are still some problems left for

centralized detection, especially in the case of composite hypothesis. We present detailed

discussion on multi-sensor composite hypothesis schemes. Moreover, we consider the fact

that the region where the event happens within a dense WSN usually spans across an area



6 CHAPTER 1. INTRODUCTION

which includes just a subset of all the sensors. In order to achieve detection schemes with

improved SNR, we propose mechanism to select the most relevant sensors and ignore rest

of the sensors in decisions making. The performance of the detection schemes is evaluated

by means of numerical simulations, showing important advantages with respect to the tradi-

tional schemes.

Partial results of this chapter have been presented in the following paper:

• S. Ali, J. A. Lopez-Salcedo, G. Seco-Granados, "Sensor-to-Sensor Assistance for Dis-

tributed Signal Detection", Proc. IEEE ICASSP, Dallas (USA), Mar 18 2010.

Chapter 4

In this chapter we exploit the spatial correlation information based on the spatial proximity of

sensors with each other. In order to use this information we focus on two di�erent detection

mechanisms. The �rst scheme is based on the use of the Generalized Likelihood Ratio Test

(GLRT) and model order selection techniques, leading to improved event detectors by incor-

porating the spatial correlation already present in measurements coming from neighboring

sensors through a novel concept of signature vectors. For the resulting detector, analytical

and simulation results are provided, showing a signi�cant gain in performance compared to

traditional approaches.

In the second part of this chapter, we present a novel quickest detection scheme to sequen-

tially detect the emergence of an event with the help of multiple sensors. In the proposed

scheme, we exploit the fact that the observations of the spatially proximal sensor nodes

are highly correlated due to correlated shadowing e�ects. However, we will see that when

it comes to infer the spatial correlation, the estimate of the spatially structured covariance

matrix is not feasible, since the proposed quickest detection scheme is a recursive method and

operates with single snapshot. Hence, we propose to model the spatial covariance structure

by using the a-priori information about the locations of the sensors. Moreover, the proposed

scheme also takes into account a scenario where only a subset of sensors are a�ected by

the event’s signal instead of the whole sensor �eld. Therefore, it takes into account both the

exploitation of the spatial structure and the selection of the subset of sensors in the process of

detection. Both analytical and numerical results are developed for the mean detection delay,

showing important advantages.

The results in this chapter have been published in the following two papers:

• S. Ali, G. Seco-Granados, J. A. Lopez-Salcedo, "Multi-sensor Quickest Detection by

Exploiting Radio Correlation", Proc. European Signal Processing Conference (EUSIPCO),
Sep 09 2013.

• S. Ali, J. A. Lopez-Salcedo, G. Seco-Granados, "Improved GLRT Based on the Exploita-

tion of Spatial Correlation Between Neighboring Sensors", Proc. 19th European Signal
Processing Conference (EUSIPCO), Aug 31 2011.
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Chapter 5

In this chapter, we adopt the concept of exploiting spatial correlation proposed in Chapter

4, to apply it to the system of cognitive radios that collaborate with each other with the aim

of detecting the random waveforms being emitted from licensed users. In order to do so,

we adopt and extend the proposed scheme in the previous chapter by considering the fact

that the signal is stochastic rather deterministic signal as it was in the previous chapter. We

derive a cognitive detector ( for collaborative spectrum sensing) based on the GLRT and the

use of spatial signatures. Adopting model order detection allows the detector at the base

station to operate with a rank-reduced version of the observed covariance matrix. Since the

estimation of this matrix may be a challenge in large-scale networks, we study the application

of shrinkage techniques to cope with the problem of having more sensors than available

observations. For the proposed detector, numerical results are drawn, showing a signi�cant

gain in performance compared to traditional approaches.

The results in this chapter are summarized in one journal paper:

• S. Ali, G. Seco-Granados, J. A. Lopez-Salcedo, "Spectrum Sensing with Spatial Sig-

natures in the Presence of Noise Uncertainty and Shadowing", EURASIP Journal on
Wireless Communications and Networking, vol 2013, Jun 03 2013.

Chapter 6

In Chapters 4 & 5, we exploited spatial proximity of sensors as a side information to design

robust multi-sensor detection schemes. Herein, we focus on exploiting the underlying spatial

and temporal features/patterns present in the received covariance matrix. Having this in

mind, �rst we propose a novel mechanism for spectrum sensing that leads us to exploit

the spatio-temporal correlation present in the received signal at a multi-antenna receiver.

We also extend and apply the proposed mechanisms to event detection in WSN. Towards

the end of this chapter, we present novel spectrum sensing mechanisms for a cognitive

radio network with multiple distributed radios where each radio has multiple antennas.

The proposed spectrum sensing scheme exploits the fact that when any primary signal is

present, measurements are spatially correlated due to inter-antennas and inter-radios spatial

correlation. In order to exploit this correlation, we propose novel detection schemes that

exploit the embedded inter-antennas and inter-radios structure in the received observations.

For all proposed mechanisms, we formulate the spectrum sensing scheme by adopting

the GLRT paradigm. Unfortunately, the GLRT degenerates in the of case in the case of high

dimensionality and small sample size. To circumvent this problem, then several extensions

are proposed that bring robustness to the GLRT in the limited sample support regime by

exploiting covariance structure and factoring the large spatio-temporal covariance matrix.

The performance of the proposed detectors is evaluated by means of numerical simulations,

showing important advantages.



8 CHAPTER 1. INTRODUCTION

The results in this chapter have been published in two conference papers and are currently

under review in one journal paper:

• S. Ali, M. Jansson, G. Seco-Granados, J. A. Lopez-Salcedo, "Kronecker-based Cooper-

ative Spectrum Sensing with Multi-Antenna Receivers", submitted to Elsevier Signal
Processing Feb. 2014.

• S. Ali, M. Jansson, G. Seco-Granados, J. A. Lopez-Salcedo, "Novel Collaborative Spec-

trum Sensing Based on Spatial Covariance Structure", Proc. European Signal Processing
Conference (EUSIPCO), Sep 09 2013.

• S. Ali, J. A. Lopez-Salcedo, G. Seco-Granados, "Exploiting structure of spatio-temporal

correlation for detection in wireless sensor networks", Proc. 20th European Signal
Processing Conference (EUSIPCO), Aug 2012.

Chapter 7

We conclude and present the possible extension of the present work.



CHAPTER 2

Elements of Detection Theory

In order to facilitate the discussions in the remaining chapters, in this chapter we discuss

some important concepts based on the classical signal detection theory. Applications of signal

detection theory are found in many areas, such as communications, event detection and auto-

matic control. For example, in communications applications detection and estimation provide

the theoretical and analytical basis for the design of e�ective communication receivers. In

general terms, the detection applications involve making inferences from observations that

are distorted or corrupted by the presence of some disturbing e�ect (e.g. noise).

H0

H1

SRC
Probability
Transition
Mechanism

Observation
Space

Decision Rule

Decision

Figure 2.1: Components of a detection theory problem

The basic components of detection theory are shown in Fig. 2.1. The �rst component is

the source that generates an event. In the simplest case this output is one of two choices. We

refer to them as hypotheses and label themH0 andH1. We can explain this with the help of

a simple example, i.e., signal detection in the presence of noise. In a typical signal detection

process the noise is the unwanted energy that interferes with the ability of the detector

(sensor) to detect the wanted signal (output of the source). Assume that for some physical

measurement a sensor produces an output observation x. The observation may have been

produced by the noise alone or by an impinging wanted or desired signal corrupted by noise.

These two possibilities are called the null hypothesis H0 and the alternative hypothesis H1,

respectively, and are commonly written in the compact notation :

H0 :x = noise alone,

H1 :x = signal+ noise.
(2.1)

9
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The second component of the problem is a probabilistic transition mechanism and the third is

an observation space [23]. The transition mechanism can be viewed as a device that knows

which hypothesis is true. Based on this knowledge, it generates a point in the observation

space according to some probability law. After observing the outcome in the observation

space we shall guess which hypothesis was true between the null (H0) and alternative (H1)

hypotheses . To decide between the null and alternative hypotheses one might apply some

threshold in such a way that if the signal crosses this threshold, it means that we have H1

true. Now we are faced with the practical question of where to set the threshold so as to

ensure that the number of decision errors is small. Note that there are two types of error

possible, PM , the error of missing the signal (decideH0 whileH1 was actually true) and PFA,

the error of false alarm (decide H1 while H0 was true). Considering these errors, there is

always a compromise between choosing a high threshold to make the average number of false

alarms small versus choosing a low threshold to make the average number of misses small.

To quantify this compromise it becomes necessary to specify the statistical distribution of x

under each of the hypotheses H0 and H1 and a robust decision rule. The latter is, therefore,
the fourth and most important component of any detection problem. In the following we

demonstrate how these four components of the detection theory �t together to form the total

decision or hypothesis-testing problem.

2.1 Simple binary hypothesis tests

Hypotheses H0 and H1 are called simple hypotheses when the statistical distributions of

the observations under H0 and H1 are completely known. That is to say, when these

distributions involve no unknown parameters such as signal amplitude, signal phase, or

noise power. In binary hypothesis testing, we consider the decision problem in which each

of two source outputs corresponds to a hypothesis. We assume that the observation space

corresponds to a set ofK observations: x1, x2, x3, ......, xK . Thus each set can be thought of

as a point in an Kdimensional space and can be denoted by a vector x

x =

2

6

6

6

6

4

x1

x2
...

xK

3

7

7

7

7

5

. (2.2)

Based on the received x, the probabilistic transition mechanism generates points in ac-

cordance with the two known probability densities fx|H1
(X | H1) and fx|H0

(X | H0). The

objective is to use these known probability densities to develop a suitable decision rule. Thus

each time the experiment is conducted one of four things can happen [23] :

1. H0 true; chooseH0.

2. H0 true; chooseH1.
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fx|H1
(X | H1)

fx|H0
(X | H0)

Say H0

Say H1

X1

X0

X0

Source

X : Observation Space

Figure 2.2: Observation space and decision regions

3. H1 true; chooseH1

4. H1 true; chooseH0

The �rst and third alternatives correspond to correct choices. The second and fourth alter-

natives correspond to errors. The purpose of a decision criterion is to attach some relative

importance to the four possible courses of action. It might be expected that the method

of processing the received data (x) would depend on the decision criterion we select. In

the following two subsections we discuss the two most important criterion, the Bayes and

the Neyman-Pearson. We show that for these criteria of special interest, the operations on

observation x are identical.

2.1.1 Bayes criterion

The Bayes test is based on two assumptions. The �rst is that the source outputs are governed

by probability assignments, which are denoted by p1 and p0, respectively, and called the a-

priori probabilities for hypotheses H0 and H1. These probabilities represent the observer’s

a-priori known information about the source before the experiment is conducted. The second

assumption is that a cost is assigned to each possible course of action. We denote the cost for

the four courses of action as C00, C10, C11, C01, respectively. The �rst subscript indicates the

hypothesis chosen and the second, the hypothesis that was true. Each time the experiment

is conducted a certain cost will be incurred. The aim will be to design our decision rule in

such a way that on the average the cost will be as small as possible. To do this we �rst write

an expression for the expected value of the cost. We see that there are two probabilities that
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we must average over; the a priori probability and the probability that a particular course of

action will be taken. Denoting the expected value of the cost as the riskR, we have:

R = C00p0Pr (sayH0 | H0 is true )

+ C10p0Pr (sayH1 | H0 is true )

+ C11p0Pr (say H1 | H1 is true )

+ C01p0Pr (say H0 | H1 is true ) ,

(2.3)

where Pr (.) denotes probability of an event. Because we have assumed that the decision rule

must say either H0 or H1, we can view it as a rule for dividing the total observation space

X into two parts, X0 and X1 , as shown in Fig. 2.2 . Whenever an observation falls in X0

we say H0, and whenever an observation falls in X1 we say H1. We can now write the the

expression for the risk in terms of the transition probabilities and decision regions :

R = C00p0

ˆ
X0

fx|H0
(X | H0) dX

+ C10p0

ˆ
X1

fx|H0
(X | H0) dX

+ C11p1

ˆ
X1

fx|H1
(X | H1) dX

+ C01p1

ˆ
X0

fx|H1
(X | H1) dX.

(2.4)

It is to be noted that for a K-dimensional observation space the integrals in (2.4) are

K-fold integrals. No doubt that in practice the biggest issue is ending up with the wrong

decision (i.e. miss detection and false alarm), hence, we shall easily assume throughout this

chapter that the cost of a wrong decision is higher than the cost of a correct decision. In

other words,
C10 > C00,

C01 > C11.

(2.5)

Now, to �nd the Bayes test we must choose the decision regions X0 and X1 in such a

manner that the risk will be minimized. Because we require that a decision be made, this

means that we must assign each pointX in the observation space X to either X0 or X1. Thus

X = X0 + X1 , X0 [ X1. (2.6)

Based on the above facts, we can rewrite (2.4) as:

R = p0C00

ˆ
X0

fx|H0
(X | H0) dX+ p0C10

ˆ
X�X0

fx|H0
(X | H0) dX

+ p1C11

ˆ
X1

fx|H1
(X | H1) dX+ p1C01

ˆ
X�X0

fx|H1
(X | H1) dX.

(2.7)
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From (2.7), we can observe that

ˆ
X
fx|H0

(X | H0) dX =

ˆ
X
fx|H1

(X | H1) dX = 1, (2.8)

then (2.7) will reduce to

R = p0C00 + p1C11

+

ˆ
X0

⇥�

p1 (C01 � C11) fx|H1
(X | H1)

 � �p0 (C10 � C00) fx|H0
(X | H0)

 ⇤

dX.

(2.9)

In (2.9), the �rst two terms represent the �xed cost. The term with integral represents

the cost controlled by those points X that we assign to X0. The assumption in (2.6) implies

that the two terms inside the brackets are positive [23]. Therefore, all values of X where

the second term is larger than the �rst should be included in X0 because they contribute a

negative amount to the integral. Similarly, all values of X where the �rst term is larger than

the second should be excluded from X0 (assigned to X1) because they would contribute a

positive amount to the integral. Values ofX where the two terms are equal have no e�ect on

the cost and may be assigned arbitrarily. We shall assume that these points are assigned to

H1 and ignore them in our subsequent discussion. Thus the decision regions are de�ned by

the statement:

If

p1 (C01 � C11) fx|H1
(X | H1) = p0 (C10 � C00) fx|H0

(X | H0) , (2.10)

assign X to X1 and consequently say that H1 is true. Otherwise assign X to X0 and

consequently say thatH0 is true. Alternatively, we may write

fx|H1
(X | H1)

fx|H0
(X | H0)

?H1
H0

p0 (C10 � C00)

p1 (C01 � C11)
. (2.11)

The quantity on the left is called the likelihood ratio and denoted by ⇤ (X)

⇤ (X) ,
fx|H1

(X | H1)

fx|H0
(X | H0)

. (2.12)

Because it is the ratio of two functions of a random variable, it is also a random variable.

We see that regardless of the dimensionality of X, ⇤ (X) is a one-dimensional variable.

Similarly, the quantity on the right of (2.11) is the threshold of the test and is denoted by

�B :

�B , p0 (C10 � C00)

p1 (C01 � C11)
. (2.13)

Thus Bayes criterion leads us to a likelihood ratio test (LRT)

⇤ (X) ?H1
H0

�B (2.14)
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We see that all the data processing is involved in computing ⇤ (X) in (2.14) and is not

a�ected by a priori probabilities or cost assignments. This invariance of the data processing

is of considerable practical importance. Frequently the costs and a priori probabilities are

merely educated guesses. The result in (2.14) enables us to build the entire processor and

leave �B as a variable threshold to accommodate changes in our estimates of a priori proba-

bilities and costs. As the decision to be drawn depends only on whether the ⇤ (X) exceeds

the threshold or not, any monotone increasing 1 operation can be performed on both sides of

(2.14) without a�ecting the values of observed data x that cause the threshold to be exceeded,

and therefore without a�ecting PD ( choose H1 and H1 was true or choose H0 and H0 was

true ) and PFA (choose H1 and H0 was true). Knowing this one should choose some sort of

transformation to simplify the �nal expression ⇤ (X). Most common is to take the natural

logarithm of both sides of (2.14) to obtain the log-likelihood ratio test:

log⇤ (X) ?H1
H0

log�B,

?H1
H0

�,

(2.15)

where � = log�B .

Before continuing our discussion of likelihood ratio tests in general and then compos-

ite hypothesis testing we shall discuss a second criterion and prove that it also leads to a

likelihood ratio test.

2.1.2 Neyman-Pearson criterion

In many physical situations it is di�cult to assign realistic costs or a priori probabilities. A

simple procedure to by-pass this di�culty is to concentrate on the problem of maximizing

PD for �xed PFA, where we have

PD =

ˆ
X1

fx|H1
(X | H1) dx, (2.16)

PFA =

ˆ
X1

fx|H0
(X | H0) dx. (2.17)

In general, we would like to make PFA, as small as possible and PD as large as possible.

However, for most problems of practical importance these are con�icting objectives. An

obvious criterion is to constrain one of the probabilities and maximize (or minimize) the

other. A speci�c statement of this criterion is called Nyeman-Pearson Criterion and can be

de�ne as [23]:

Neyman-Pearson criterion: Constrain PFA = ↵NP  ↵ and design a test to maximize

PD under this constraint.

This optimization problem can be solved by the method of Lagrange multipliers. In order

1A monotone decreasing operation would simply invert the sense of the threshold test.
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to do so we can construct the function [23]

FL = PD + � (PFA � ↵NP ) . (2.18)

Now to �nd the optimum solution, we need to maximize FL and then choose � to satisfy the

constraint criterion PFA = ↵NP . Substituting (2.16) and (2.17) into (2.18), we get

FL =

ˆ
X1

fx|H1
(X | H1) dx+ �

✓ˆ
X1

fx|H0
(X | H0) dx� ↵NP

◆

= ��↵NP +

ˆ
X1

�

fx|H1
(X | H1) + �fx|H0

(X | H0)
 

dx

. (2.19)

Remember that the design variable here is the choice of the region X1. The �rst term in

the second line of (2.19) does not depend on X1, so FL is maximized by maximizing the

value of the integral over X1. Since � could be negative, the integrand can be either positive

or negative, depending on the values of � and the relative values of fx|H0
(X | H0) and

fx|H1
(X | H1). The integral is therefore maximized by including in X1 all the points, and

only the points, in theK-dimensional space for which fx|H1
(X | H1) + �fx|H0

(X | H0) >

0, that is, X1 is all points x for which fx|H1
(X | H1) > ��fx|H0

(X | H0) [24]. This leads

directly to the decision rule

⇤ (X) =
fx|H1

(X | H1)

fx|H0
(X | H0)

?H1
H0

��, (2.20)

where we used �� , ��. We term (2.20) as likelihood ratio test and we can see that the

left hand side of (2.20) is similar to (2.14). The detection rule in (2.20) states that the ratio

of the two PDFs, each evaluated for the particular observed data x, should be compared to a

threshold. If that “likelihood ratio” exceeds the threshold, choose hypothesisH1, i.e., declare

a event to be present. If it does not exceed the threshold, choose H0 and declare that a event

is not present. It is to be noted that under the Neyman-Pearson optimization criterion, the

PFA cannot exceed the original design value and that fx|H1
(X | H1) and fx|H0

(X | H0)

should be known beforehand.

We see that similar to the Bayes criterion, all the data processing is involved in computing

⇤ (X) in (2.20). Similarly, as the natural logarithm is a monotonic function, and both sides of

(2.20) are positive, an equivalent test is

log⇤ (X) ?H1
H0

log��

?H1
H0

�

(2.21)

where we used � = log��.

Hence, we conclude that the LRT test arises as the solution to the hypothesis testing prob-

lem under both the Bayes Criterion and Neyman-Pearson criterion, whereas the di�erence is

just the threshold where to compare the LRT [24].
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2.1.3 General multivariate Gaussian

In the following chapters we will see that the focus of this thesis is to develop detection

mechanisms based on observations provided by multiple sensors. Hence, in the above we

have provided a general multivariate likelihood ratio rule that will facilitate most of our

discussion in the following chapters. We mentioned that to use the LRT, one should exactly

know the models of fx|H1
(X | H1) and fx|H0

(X | H0). In most detection problems, the

statistical models of the observations are Gaussian, hence, as an example, we particularize

the LRT introduced before to the speci�c case of Gaussian measurements. We consider that

under the hypothesisHi for i = {0, 1} we assume that x is a Gaussian random vector, which

is completely speci�ed by its mean vector and covariance matrix. We denote the mean vector

as:

E [x | Hi] =

2

6

6

6

6

4

E [x1 | Hi]

E [x2 | Hi]
...

E [xK | Hi]

3

7

7

7

7

5

,

2

6

6

6

6

4

µ1

µ2
...

µK

3

7

7

7

7

5

, µH
i

. (2.22)

Similarly, the covariance matrix under the hypothesisHi is denoted as:

⌃H
i

, E
h

(x� µH
i

) (x� µH
i

)H | Hi

i

. (2.23)

We de�ne the inverse of ⌃H
i

as:

Qi = ⌃
�1
H

i

. (2.24)

Using the above de�nitions wemaywrite the probability density functions of x on hypothesis

H1 as:

fx|H1
(X | H1) =

h

(2⇡)K/2 |⌃H1 |1/2
i�1

exp


�1

2
(x� µH1)

H Q1 (x� µH1i)

�

. (2.25)

Going through a similar set of de�nitions forH0, we obtain the probability density

fx|H0
(X | H0) =

h

(2⇡)K/2 |⌃H0 |1/2
i�1

exp


�1

2
(x� µH0)

H Q0 (x� µH0)

�

. (2.26)

Using the de�nition in (2.20), the likelihood ratio test follows easily:

⇤ (X) =
fx|H1

(X | H1)

fx|H0
(X | H0)

?H1
H0

�initial

=

h

(2⇡)K/2 |⌃H1 |1/2
i�1

exp
h

�1
2 (x� µH1)

H Q1 (x� µH1i)
i

h

(2⇡)K/2 |⌃H0 |1/2
i�1

exp
h

�1
2 (x� µH0)

H Q0 (x� µH0)
i

?H1
H0

�initial.

(2.27)
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Taking logarithms, we obtain

1

2
(x� µH0)

H Q0 (x� µH0)�
1

2
(x� µH1)

H Q1 (x� µH1i)

=?H1
H0

log�initial +
1

2
log |⌃H1 |�

1

2
log |⌃H0 | , �

(2.28)

We see that the test consists of �nding the di�erence between two quadratic forms. In many

cases of interest, the speci�c form of the log-likelihood ratio can be further rearranged to

isolate only those terms on the left hand side of the equation that explicitly depend on the

data samples x and moving all other constants to the right hand side. Equation (2.28) is such

a rearrangement of (2.27).

2.2 Composite binary hypothesis testing

In many real world problems, it is di�cult to precisely know the probability distributions of

the received observations under H0 and H1. Quite often, our models may involve unknown

parameters and then the hypothesis testing is called composite hypothesis testing. Hypothesis
testing problems discussed in the preceding sections are simple hypothesis-testing problems

because each of the two hypotheses were completely known. In that case an optimal detector

exists with the highest possible power PD for any �xed level PFA. This optimal detector is

called the most powerful (MP) test and is speci�ed by the ubiquitous likelihood ratio test

[25]. In the more common case where the signal and/or noise are described by unknown

parameters, at least one hypothesis is composite, and the resulting detectors have di�erent

performances for di�erent values of the parameters. Unfortunately, there seldom exists a

uniformly most powerful detector whose performances remain upper bounds for the entire

range of unknown parameters. Therefore, for composite hypotheses, other design strategies

beyond the Neyman-Pearson criterion or Bayes rule must generally be adopted to ensure

reliable detection performance.

In the case of composite hypothesis testing there are two major approaches. The �rst one

is to consider the unknown parameters as realizations of random variables and to assign a

prior PDF. The second is to estimate the unknown parameters for use in a likelihood ratio

test. The �rst method is termed as Bayesian approach and the second, is the GLRT. The

Bayesian approach employs the Bayesian philosophy. It requires prior knowledge of the

unknown parameters whereas the GLRT does not.

Hence, in the composite hypotheses testing, the general problem is to decide between

H0 and H1when the PDFs fx|H1
(X | H1) and fx|H0

(X | H0) depend on a set of unknown

parameters, which we will stack in a vector and refer to as ✓0 and ✓1, respectively. In the

following, we �rst discus the Bayesian approach followed by the GLRT. underH0, we assume

that the vector parameter
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2.2.1 Bayesian Approach

The Bayesian approach assigns prior PDFs to ✓0 and ✓1. In doing so it models the unknown

parameters as realizations of vector random variable. If the prior PDFs are denoted by f (✓0)

and f (✓1), respectively, the PDF of the data are

fx|H0
(X | H0) =

ˆ
fx|H0

(X | ✓0;H0) f (✓0) d✓0, (2.29)

fx|H1
(X | H1) =

ˆ
fx|H1

(X | ✓1;H1) f (✓1) d✓1, (2.30)

where fx|H0
(X | ✓0;H0) and fx|H1

(X | ✓1;H1)are the conditional PDFs of x, conditioned

on ✓0 and ✓1, assuming H0 and H1 are true, respectively. The unconditional PDFs

fx|H1
(X | H1) and fx|H0

(X | H0)are now completely speci�ed, no longer dependent on

the unknown parameters. With the Bayesian approach the optimal likelihood ratio detector

decides in favor of H1if

⇤ (X) =
fx|H1

(X | H1)

fx|H0
(X | H0)

=

´
fx|H1

(X | ✓1;H1) f (✓1) d✓1´
fx|H0

(X | ✓0;H0) f (✓0) d✓0
?H1

H0
�Bay. (2.31)

In (2.31) the required integrations are multidimensional with dimension equal to the un-

known parameter dimension, and this makes di�cult to end up with a closed-form solution.

2.2.2 GLRT

The GLRT replaces the unknown parameters by their maximum likelihood estimates. Al-

though there is no optimality associated with the GLRT, in practice it appears to work quite

well and some asymptotic optimality has been reported [25]. In general, the GLRT decides in

favor of H1if

⇤G (X) =
max
✓1

fx|H1
(X | ✓1;H1)

max
✓0

fx|H0
(X | ✓0;H0)

?H1
H0

�G,

=
fx|H1

⇣

X; ✓̂1,H1

⌘

fx|H0

⇣

X; ✓̂0,H0

⌘ ?H1
H0

�G,

(2.32)

where ✓̂1 is the maximum likelihood estimate of ✓1assumingH1as:

✓̂1 = arg max fx|H1
(X | ✓1;H1) , (2.33)

and ✓̂0 is the maximum likelihood estimate of ✓0assuming H0as:

✓̂0 = arg max fx|H0
(X | ✓0;H0) . (2.34)

Thus, the GLRT is like the clairvoyant detector except that instead of knowing the actual

parameter values, it estimates them from the measurement x, using maximum likelihood
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Figure 2.3: Typical Receiver Operating Characteristic (ROC) curves

[26]. Note that a true clairvoyant detector assumes perfect knowledge of an unknown

parameter [25, Chap 5-6].

2.3 Performance analysis techniques

The performance of detection schemes are typically analyzed in terms of probability of

detection PD and probability of false alarm PFA. In simple detection schemes, these two

probabilities often have closed form expression, and thus it is easy to develop explicit expres-

sions for these two detection metrics. However, for multi-sensor and composite detection

schemes no closed form expressions for the PD and PFA are usually available. In that case

numerical techniques are often required to analyze the performance of the detection schemes.

The most popular approach is based on the receiver operating characteristics (ROC) and

some metrics derived from this tool. We will brie�y introduce these metric in the following

subsections.

2.3.1 Receiver Operating Characteristics curve

A receiver operating characteristics (ROC) is a two-dimensional plot of the accuracy of a

speci�c signal detector. In particular, it is a technique for visualizing, organizing and selecting

detection schemes based on their performance. It has long been used in signal detection

theory to depict the tradeo� between correct detections PD and false alarm rates PFA of

a detector. In other words, the plot of the pair PFA and PD over the range of thresholds

�1 < � < 1 produces the ROC curve which completely describes the error rate of the

detector as a function of � [27][28].
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This accuracy information apparent in the shape of the curve is two-dimensional because

there are two kinds of events, and hence two kinds of accuracies possible. The �rst dimension

is PD of signal events, which is shown along the vertical axis. The second dimension is the

error rate of falsely identifying noise (i.e, PFA ) , which is shown along the horizontal axis

as shown in Fig. 2.3. Since success is good and error is bad, an ideal ROC curve will have

vertical values which grow at a faster rate than its horizontal values, resulting in a curve

shape which rises swiftly upward. As the decision threshold changes to become more and

more lenient, the error values for noise (horizontal values) must also grow large, catching up

with the success values for signals (horizontal values). This makes the curve bend over to the

right, until it touches the point (0,1). To be more speci�c, a good detectors have ROC curves

which have desirable properties such as concavity (negative curvature), monotone increase

in PD as PFA increases, high slope of PD at the point (PFA, PD) = (0, 0), etc [27][28].

2.3.2 Area under the ROC curve

Although the ROC curves fully characterize the performance, it is also desirable to have a

single and quantitative �gure of merit in order to compare di�erent detectors. The most

general measure to characterize the performance is the area under the curve (AUC). The

AUC summarizes the total accuracy of the detector in a way that accounts for both the gains

in PD and the losses in PFA. The number for AUC always ranges from 0.5 to 1.0, because

the very worst ROC curve (due to chance alone) lies along the positive diagonal and has the

corresponding area of 0.5. The very best ROC curve, passing through the “northwest” corner

point (0, 1), has an area of 1, or the unit square. So it varies between 0.5 (poor performance)

and 1 (good performance).

Next we need to know how to calculate AUC. To �nd the AUC, simply calculate the

trapezoidal area under each vertical slice of an empirical ROC curve having a straight line

segment as its top; then sum all the individual areas. For instance, if a binary detector

produces only a single data point, then there will be two trapezoidal regions total for which

to calculate area (one to the left of the point, and one to the right of the point). The process

for AUC is mathematically expressed as:

AUC (T ) =

ˆ 1

0
PD (T ) dPFA (T ) , (2.35)

where T indicates speci�c detector, PD indicates the probability of detection and PFA is

the probability of false alarm. To evaluate the performance curves numerically, we use the

algorithm proposed in [27], which calculates the area under curve on the basis of integrating

the areas of small trapezoidal bins. That is to say,

AUC (T ) =
X



P̄


D (T )�P


FA (T ) , (2.36)

where �P


FA (T ) = P

+1
FA (T )� P


FA (T ) and P̄


D (T ) =

P+1
D

(T )+P

D

(T )
2 .



CHAPTER 3

Multi-sensor Composite Hypothesis Testing

Once the fundamentals of signal detection have been introduced, it is time to move one

step further towards the purpose of this thesis, which is mainly related to signal detection

in WSN. To do so we will consider in this chapter the problem of multi-sensor hypothesis

testing, which is actually the scenario we �nd in a WSN composed of several sensors, and

where a single decision on their observed measurement has to be made. Due to noise and

other impairments, the output of a single sensor may be ambiguous and misleading in some

cases, but this uncertainty can be reduced using the contributions from multiple sensors.

Keeping this in mind, in this chapter we propose centralized multi-sensor detection schemes

that are based on the principles of the fundamental signal detection theory and model order

selection techniques [29, 30].

Since, the centralized multi-sensor detection can largely resort to classical detection the-

ory, one can �nd many previous contributions in the existing literature. However, there

are still some problems left for centralized detection, especially in the case of composite

hypothesis where the lack of information on the sensor/signal behaviour, can be inferred

from the measurements of neighboring sensors. Therefore, we present detailed discussion on

the multi-sensor composite hypothesis schemes. Apart from that, it is also important to point

out that, in most applications, the signal levels received at di�erent areas of the WSN may be

non-homogeneous, in the sense that the signal emitted from the source/target to be detected

may a�ect a small subset of sensors. These a�ected sensors will be normally located close to

the event (i.e., target, signal source, �re etc), and the rest of una�ected sensors observe very

weak signal power or only noise. If we want to detect e�ciently the emergence of such a

signal, it is important to use only the observations from the good sensors that contain useful

information and to suppress noise from the non-a�ected sensors. This leads us to say that

a key point in hypothesis testing for WSN involves sensor selection, in order to pick the

observations of the most relevant sensors for the detection rule. This selection brings us to

the concept of rank-reduction or dimension reduction which make possible to improve the

output SNR.

Keeping this fact into consideration, the main motivation of this chapter is to present a

detailed overview of the fundamentals on composite multi-sensor detection, while introduc-

21



22 CHAPTER 3. MULTI-SENSOR COMPOSITE HYPOTHESIS TESTING

ing the concept of rank-reduction through model order selection. To do so we will divide the

discussion to be conducted in this chapter into two approaches:

Approach 1: Multi-sensor detection scheme for deterministic signals

In the �rst approach (see Section 3.1) we will assume that the received signals at the sensors

are unknown deterministic signals. The deterministic approach is a simple case that sim-

pli�es the formulation, allows to get insights on multi-sensor detection, and can be related

to some practical cases of interest. For instance, in some applications of WSN, the local

sensors receive the physical quantity and they convert this into electrical signal that is

just a scalar values and unknown to the fusion center. Taking into account this, we just

consider the values as unknown deterministic. However, we consider that the noise has

Gaussian distribution without loss of generality. Hence, we discus the detection of unknown

deterministic signal in the presence of Gaussian noise both with known and unknown noise

powers. Next, in this category we propose detection techniques where the fusion center

selects the relevant sensors with help of model order selection techniques [29, 30] that leads

us to the concept of rank-reduction.

Approach 2: Multi-sensor detection scheme for stochastic signals

In many applications i.e., telecommunication, it is convenient to model the received signal

with some stochastic models. Detection plays a pivotal role in the telecommunication sys-

tems specially in the case of spectrum sensing in cognitive radios. Hence, in the second

category we consider the case of the detection of signals that are stochastic. Moreover, in

this category we also propose detection techniques where the fusion center select important

sensors that leads us to the concept of rank-reduction as it is in the previous category.

3.1 Multi-sensor detection scheme for deterministic signals

In this section we present the centralized detection scheme for multiple sensors in WSN that

collaboratively detect deterministic signals emitted from an event (i.e., source or target). We

assume that the WSN consists ofK sensors that are uniformly deployed in a �eld. Moreover,

we assume a single event that emits a signal with amplitude A and the sensors receive

attenuated and noisy versions of it. Hence, the received signal at the k-th sensor at time

n can be expressed as:
H0 : xk (n) = wk (n) ,

H1 : xk(n) = Ak + wk(n),
(3.1)

with k = 1, 2, 3, .....K as the sensor indexation. Similarly, the Gaussian distributed noise

disturbance is given by wk(n) ⇠ N �

0,�2
k

�

, and Ak = A/dk,t is the unknown received

amplitude at sensork with dk,t is the distance from the event to this sensor. For the sub-

sequent derivations, a set of N samples will be assumed to be available at the sensor as
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xk , [xk(0), xk(1), . . . , xk(N � 1)]T . The fusion center stacks all of the K received vectors

as X =
h

x1 x2 · · · xK

i

and process them for the detection of the event. In this

section we assume that the signal parameters {Ak}Kk=1 are unknown. Moreover, we further

divide the problem of detecting unknown deterministic signal into two cases:

1. Case Study # 1:- Detection of unknown deterministic signal in presence of known

noise.

2. Case Study # 2:- Detection of unknown deterministic signal in presence of unknown

noise.

Hence, based on these facts, in Section (3.1.1) we derive the centralized system for the

detection of unknown signal {Ak}Kk=1 with assumption that the noise powers are known.

In Section (3.1.2), we repeat the same by considering that the noise powers
�

�

2
k

 K

k=1
are

unknown.

3.1.1 Case Study #1: Unknown deterministic signal and known noise

In this case, we assume that the signal parameters {Ak}Kk=1 are unknown and the noise

powers
�

�

2
k

 K

k=1
are known to the fusion center. The assumption is valid in those cases

where the noise powers can be calibrated during the process of deployment of the wireless

sensor network and noise powers are not a�ected by the random environmental e�ects. Now,

in the presence of unknown parameters {Ak}Kk=1 the hypothesis testing cannot be solved

by using the optimal Neyman-Pearson criteria [25]. Therefore, we need to use a detection

schemes that jointly perform the estimation and detection of the unknown deterministic

signal. Hence, we discuss the GLRT that jointly performs the estimation and detection of

the unknown deterministic signal {Ak}Kk=1. The GLRT uses maximum likelihood estimate

(MLE) to �nd the unknown parameters, and for the detection problem (3.1) with unknown

{Ak}Kk=1 it can be formulated as:

LG,Kn(X) =
K
X

k=1

log

8

<

:

max
A

k

fx

�

xk;Ak,�
2
k,H1

�

fx

�

xk;�2
k,H0

�

9

=

;

?H1
H0

�, (3.2)

where subscript “Kn” is used to distinguish the known noise case, fx
�

xk;Ak,�
2
k,H1

�

and

fx

�

xk;�2
k,H0

�

are the parametrized likelihood functions under hypotheses H1 and H0,

respectively. The threshold � is used by assuring a given constant probability of false

alarm, PFA. By considering the fact that the noise is Gaussian and independent across

the time and the space dimensions, then the likelihood function under the hypothesis H1 ,

fx

�

xk;Ak,�
2
k,H1

�

can be written as:

fx

�

xk;Ak,�
2
k,H1

�

=
1

q

�

2⇡�2
k

�N
exp

(

� 1

2�2
k

N
X

n=1

(xk (n)�Ak)
2

)

(3.3)
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Once we know the likelihood function (3.3), the MLE of the unknown parameter Ak can be

found by di�erentiating logfx
�

xk;Ak,�
2
k,H1

�

with respect to Ak and equating it to zero.

Doing so we can �nd the MLE of Ak as: Âk = 1
N

PN
n=1 xk (n). On the other hand the

likelihood function under the hypothesisH0, fx
�

xk;�2
k,H0

�

can be written as:

fx

�

xk;�
2
k,H0

�

=
1

q

�

2⇡�2
k

�N
exp

(

� 1

2�2
k

N
X

n=1

x

2
k (n)

)

(3.4)

It is to be noted that the noise is assumed to be known, therefore, we have no unknown

parameter under the hypothesis H0. Based on the above facts, the �nal expression of the

GLRT (3.2) becomes:

LG,Kn(X) =
K
X

k=1

x̄

2
k

�

2
k

?H1
H0

�, (3.5)

where x̄k = 1
N

PN
n=1 xk (n).

Now by following the above steps one can observe that in order to derive the detector

(3.5), the fusion center needs to have all of the information from the local sensors. However,

a major hurdle is the communication bandwidth constraint. Because in centralized scheme

each local node transmits whole vector of samples {xk}Kk=1 to the fusion center. In order to

relax this requirement the k

th sensor should perform some local processing and instead of

sending the whole vector it should send a summary of the information to the fusion center.

In order to do so the detection scheme (3.5) can be implemented by using the following two

steps:

1. The k-th sensor calculates the mean x̄k which is su�cient statistic in this case and send

it to the fusion center.

2. The fusion center calculates
PK

k=1

�

x̄k/�
2
k

�2 for the �nal decision based on the re-

ceived {x̄k}Kk=1.

The process is further summarized in the form of an algorithm in 3.1 and shown in the Fig.

3.1

Algorithm 3.1 Implementation of LG,Kn(x) as a decentralized detection with
two steps method

1. Processing at the local sensors:

• At the k-th sensor we have N samples of the receive signal as: xk ,
[xk(0), xk(1), . . . , xk(N � 1)]T .

• Sensor k calculates x̄k which also sufficient statistic in this case
and sends it to the fusion center.

2. Processing at the fusion center:

• The fusion center finds
PK

k=1 x̄
2
k/�

2
k ?H1

H0
�.
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Figure 3.1: Two steps implementation of the GLRT for multi-sensor detection:
Unknown deterministic signal and known noise

3.1.2 Case Study #2: Unknown deterministic signal and unknown noise

In the composite hypothesis problems some of the parameters appearing in a hypothesis may

be unique to the hypothesis, such as amplitude or phase of a signal to be detected, whereas

other parameters, such as those of interference signals and noise may be common to both

hypotheses. Parameters which are common to all hypotheses are usually called nuisance
parameters. As their name indicates, parameters of this type are an inconvenience since they

do not play any role in determining which hypothesis is true.

In this chapter the example of nuisance parameters is noise powers as these are present in

both hypotheses. In Section 3.1.1, we assumed that the noise powers are known to the fusion

center. However, noise may change instantaneously due to the unknown environmental

impairments ( i.e., due to interference). It is because in practice the noise powers at local

sensors not only depend on the circuitry rather they also depend upon the environment and

they may instantaneously change. Moreover, the noise level also varies with presence and

absence of signal [31]. This variation could be due, e.g., to the receiver electronics. For

instance, when automatic gain control (AGC) is used, the noise factor depends on the signal

amplitude. This e�ect is a well-known problem for digital cameras where signal-dependent

noise is always present. More generally, any non-linearity in the electronics can modify the

noise power by creating products between the noise part and the signal part [31]. Hence, in

this type of situations, the assumption of known noise power or a-priori perfect estimation

will indeed degrade the detection performance. In such situations one must resort to joint

estimation of both noise and the unknown signal during the process of detection. Hence, in

the remaining of the present section we revisit the above detection systems while considering

unknown Gaussian noise. Keeping this in mind, in Section 3.1.2.1 we formulate multi-sensor

detection scheme based on the GLRT but without the assumption of known noise powers.

In the sequel, then in Section 3.1.2.2 we derive the multi-sensor detection scheme based on

the Rao and Wald formulations for the the case of unknown signal parameters and unknown
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noise powers.

3.1.2.1 GLRT

In this section, we discuss the problem of centralized detection of the unknown signal in the

presence of Gaussian noise with unknown powers
�

�

2
k

 K

k=1
at the local sensors. For this case

the GLRT expression(3.2) becomes:

LG,Un (X) =
K
X

k=1

log

8

>

>

<

>

>

:

max
�2
1,k,Ak

fx

⇣

xk;Ak,�
2
1,k,H1

⌘

max
�2
0,k

fx

⇣

xk;�2
0,k,H0

⌘

9

>

>

=

>

>

;

?H1
H0

�, (3.6)

where the subscript “Un” stands for the unknown noise power. Since, in practice the noise

powers at the sensor k are di�erent in the presence and absence of the target signal, therefore,

�

2
1,k, �

2
0,k for k = 1, 2, ...,K are the noise powers under hypothesesH1 andH0, respectively.

As it was in the previous section, the estimates of the unknown parameters under the hy-

pothesisH1 can be found by di�erentiating logfx
⇣

xk;Ak,�
2
1,k,H1

⌘

with respect to Ak and

�

2
1,k and equating it to zero. In the same way we can �nd the estimate of the unknown

�

2
0,k under hypothesis H0 by di�erentiating logfx

⇣

xk;�2
0,k,H0

⌘

with respect to �

2
0,k and

equating it to zero. Doing so the �nal expression of the GLRT (3.6) becomes

LG,Un (X) =
K
X

k=1

log

 

�̂

2
0,k

�̂

2
1,k

!

?H1
H0

�, (3.7)

where �̂2
0,k = 1

N

PN
n=1 x

2
k (n) and �̂

2
1,k = 1

N

PN
n=1

�

x

2
k (n)� x̄2

k

�

. By putting these values

in (3.7) we can achieve the following expression

LG,Un (X) =
K
X

k=1

log

 

1 +
x̄

2
k

�̂

2
1,k

!

?H1
H0

�,

=
K
X

k=1

Lk
G,Un (xk) ?H1

H0
�,

(3.8)

where Lk
G,Un (xk) = log

✓

1 +
x̄2
k

�̂2
1,k

◆

for k = 1, 2, · · · ,K is the local GLRT at sensor k.

This detector has the advantage that it does not need the knowledge of noise and it also

considers the fact that the noise power underH1 is di�erent from the noise power underH0.

In the same way as we discussed in section ??, the decentralized detection strategy can be

established as follow:

1. Every sensor node e.g k-th for k = 1, 2, .........,K , calculate Lk
G,Un (xk) .

2. AllK sensors send Lk
G,Un (xk) to the fusion center and the fusion center calculates (3.8)

for the �nal decision.
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In order to implement the two steps, we must assume that the local sensors have capabil-

ity to estimate their corresponding noise powers based on the N received samples to �nd
�Lk

G,Un (xk)
 K

k=1
in (3.8). The process of the two step method is summarized in algorithm

3.2 and is also given in Fig.3.2. The two steps method for (3.8) can be considered more

decentralized compared to the case of known noise power since herein the local sensors

need to estimate unknown noise powers locally.

Algorithm 3.2 Implementation of LG,Un(x) as a decentralized detection with
two steps method

1. Processing at the local sensors:

• The k-th sensor receives N samples as:

xk , [xk(0), xk(1), . . . , xk(N � 1)]T .

• Every sensor calculates
n

x̄2
k

�̂2
1,k

oK

k=1
and sends it to the fusion center.

2. Processing at the fusion center:

• The fusion center finds
PK

k=1 log
⇣

1 + x̄2
k

�̂2
1,k

⌘

?H1
H0

�.
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Figure 3.2: Two steps implementation of the GLRT for multi-sensor detection:
Unknown deterministic signal and unknown noise

3.1.2.2 Rao and Wald test statistics

The formulation of Rao test for our problem can be expressed as:

LR,Un (X) =
K
X

k=1

@logfx
⇣

xk;Ak,�
2
1,k,H1

⌘

Ak
|2A

k

=0,�2
1,k=�2

0,k

h

I�1
⇣

✓̃

⌘i

A
k

,A
k

(3.9)
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where ✓̃ =
h

Ak = 0, �̂2
0,k

iT
are the MLE of the unknown parameters under the hypothesis,

H0. In order to solve (3.9) we can �nd that
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where �̂2
0,k = 1

N kxkk2. Similarly, we can also write [25]
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where we can easily �nd IA
k

,A
k

⇣

✓̃

⌘

by using the expression [32, Chap. 3]:
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Similarly, we can easily verify that I�2
k

,A
k

⇣

✓̃

⌘

= IA
k

�2
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⇣
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By putting (3.10) and (3.13) in (3.9) we can write the decision rule based on the Rao test (3.9)

as:

LR,Un (X) =
K
X

k=1

x̄

2
k

�̂

2
0,k

?H1
H0

�. (3.14)

By comparing the Rao statistic (3.14) with the GLRT (3.8), we can see that in the case of the

unknown noise powers at the local sensor the two statistics are di�erent and the di�erence

lies in the denominator. However, we will see that this di�erence exist only in the case of

higher SNR. For low SNR the two test statistics can be proved to be equal. In order to prove

this we recall from the GLRT expression in (3.8) that

2Lk
G,Un (xk) = log
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2
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�̂

2
1,k
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= log
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B

@

1

1� x̄2
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�̂2
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1

C

A

.

(3.15)
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When x̄2
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[25, Example 6.10 ]. Hence, in the case x̄2
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�̂2
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⌧ 1

we can develop the relationship LR,Un(x) ' LG,Un(x). On the other hand for the same

detection problem, the Wald test decidesH1 if [25]
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where ✓̂1 is the estimate of the unknown parameters under the hypothesisH1. Solving (3.16)

by using (3.13), we get
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�. (3.17)
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, Â2
k = x̄

2
k. In order to facilitate the reader, we

summarize the �nal expressions of the detectors in table 3.1.

Name of detector Expression

GLRT ( known noise) LG,Kn(X) =
PK

k=1
x̄2
k

�2
k
?H1

H0
�

GLRT (unknown noise) LG,Un (X) =
PK

k=1 log
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1 + x̄2
k

�̂2
1,k
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?H1
H0

�

Rao (unknown noise) LR,Un (X) =
PK

k=1
x̄2
k

�̂2
0,k

?H1
H0

�

Wald (unknown noise) LW,Un (X) =
PK

k=1
x̄2
k

�̂2
1,k

?H1
H0

�

Table 3.1: Summary of detectors

3.1.2.3 Numerical example

In this section we will compare the detection schemes discussed above with a simple nu-

merical example by using Matlab simulations. As an example we consider a scenario with

K = 20 sensors that are randomly distributed in a square �eld. Regarding the assessment of

the detectors we will analyze their performance through the use of ROC. Herein, we use the

average SNR of all radio as: ̄ = 1
K

PK
k=1 i and the SNR of k � th sensor is k = ⇣

k�1
̄,

for k = 1, 2, ....,K . For a given average SNR ̄ and SNR gap ⇣ , we can generate the SNRs

of sensors. The match of the SNRs to the sensors can be random. In order to compare the

detection performance of the three detectors, we conducted three di�erent experiments by

considering ̄ = �12dB, ̄ = �18dB., ̄ = �22dB.
In the �rst experiment we �x the average SNR ̄ at: ̄ = �12dB and plot the ROC curves

for two di�erent values of the sample sizeN : asN = 3 andN = 6. The results are shown in

Fig. 3.3 that clearly show that the GLRT performs better compared to the Rao and Wald tests

for this speci�c case. Apart from this an interesting point to be noted is the performance of

the Rao test at di�erent values of N , as we can see that at a very small N , its performance is

worst than the performance of Wald test.
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Figure 3.3: ROC Curves to compare the performance of the GLRT, Rao Test
and Wald Test for the case of unknown deterministic signal and
unknown noise: Average SNR ̄ = �12dB.

In order to further analyze the three detectors, in the second experiment we �x the average

SNR ̄ at: ̄ = �18dB and plot the ROC curves for N = 5, N = 10 that are shown in Fig.

3.4. From the result in this �gure and Fig. 3.3 we can easily conclude that the performance

of the Rao test varies for di�erent values of N at a speci�c value of average SNR. From both

�gures, we can observe that with increasing N , the detection performance of the Rao test

reaches to the performance level of GLRT. Furthermore, in Fig. 3.4 it is also interesting to see

that the Rao and the GLRT perform better than the Wald test at N = 10, while at N = 5 the

performance of the Wald test is at par of the GLRT.
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Figure 3.4: ROC Curves to compare the performance of the GLRT, Rao test
and Wald test for the case of unknown deterministic signal and
unknown noise: Average SNR ̄ = �18dB.

For the plots in Fig. 3.5, we repeat the above experiment by lowering the average SNR

further at at: ̄ = �22dB. In this experiment the detection performance of the three detectors

is shown for two di�erent sample size N = 30 and N = 60. As expected the results in this

experiment show that for higherN and small average SNR, the three detection schemes yield

about the same performance and reaches to the level of the known noise GLRT LG,Kn (X).

The results also show that at very low SNR (̄ = �22dB), the performance of the Rao is

very much at par of the GLRT, which con�rms the analytical reasoning in Section 3.1.2.2.

Overall, the results obtained in these experiments show that as N !1, the performance of

the Rao and Wald detectors coincides with that of the GLRT, but for the �nite data records,

the performance of these detection schemes is not the same (sometimes the Rao detector

approaches the GLRT and sometimes it is the Wald detector the one approaching the GLRT).

In the end, their main advantage compared to the GLRT is that these can be easily derived.
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Figure 3.5: ROC Curves to compare the performance of the GLRT, Rao test
and Wald test for the case of unknown deterministic signal and
unknown noise: Average SNR ̄ = �22dB.

3.1.3 Rank-reduction approach

In some applications of a sensor network, the signal may be a local disturbance that only

a�ects a small subset of sensors. Due to limitations in the sensing range, only some sensors

would observe that signal and the rest would receive small signal or no signal at all, hence,

observing mostly noise. This is particularly valid in the detection of events in sensor network

spread over a large area, since the emitted signal power decays isotropically as a function of

distance, and it is a�ected by a signi�cant path loss attenuation due to the large area being

covered by the network, as well as by fading/shadowing e�ects. As a consequence, only

a subset of sensors will be able to receive enough power levels so as to easily detect the

presence of the event with a given detection performance [33]. The rest of sensors will

typically receive extremely weak power levels. This observation allows us to distinguish

between the so-called active and inactive sensors, respectively. If we want to detect e�ciently

the emergence of an event, it is important to use only the observations that contain useful

information and to suppress noise from the non-a�ected sensors. Therefore, the performance

of the signal detection technique can be improved by identifying the useful observation

samples among the set of all received measurements [30]. This process of important sensor

selection will lead us to the rank-reduced version of the original signal space. Hence, it will

allow us to bene�t from an equivalent SNR gain due the reduced dimensionality subspace.
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3.1.3.1 Rank-reduced signal model

In order to describe the signal model, we assume the case where sensors are not just in-

tercept or dumb sensors rather they do some local processing and send summary of the

observations to the fusion center. In other words, after receiving the N (n = 1, 2, ....., N)

samples of xk (n) = Ak + wk (n) for k = 1, 2, .....,K , each sensor calculates the mean as:

x̄k = 1
N

PN
n=1 xk (n) and dispatches it to the fusion center. The fusion center collects the

measurements of K sensors in a vector x = [x̄1, x̄2, · · · , x̄K ]T and the signal model at the

fusion center becomes
H0 : x = w,

H1 : x = s+w,

(3.18)

where s = [A1, A2, · · · , AK ]T ,w ⇠ N (0,⌃w)with⌃w = diag
⇥

�

2
1/N,�

2
2/N, · · · ,�2

K/N

⇤

,

as the noise is considered to be independent with distinct noise powers at di�erent sensors.

Hence, underH0 x ⇠ N (0,⌃w) and underH1 x ⇠ N (s,⌃w). The detection problem (4.1)

is nothing but to di�erentiate s 6= 0 from s = 0. The vector s contains the received unknown

deterministic amplitudes of received signals at the K sensors. In this vector the samples

corresponding to active sensors will be non-zero and rest of the samples will have extremely

weak values that will hardly contribute constructively in the detection performance. To be

more speci�c we are indeed in front of situation where vector s is a sparse vector. Hence, in

the following we take into e�ect this sparsity to model the detection scheme. If we assume

that there are K non-zero samples (samples corresponding to the non-active sensors) in s

then the model order of (4.1) is K and K can be any number in the range 1  K  K , and

it can be found by using model order selection technique [29]. Once we know K, then the

signal model can be expressed as:

x =

"

IK
0(K�K)⇥K

#

sK +w (3.19)

where sK is a vector containing only the K non-zero signals. It is important to mention

that the formulation in (3.19) assumes that the non-zero signal samples have been ordered.

We remark that this assumption is not valid in practice and we will relax it later-on in the

discussion. Similarly, it is clear by observing signal model (3.19) that it resembles the well

known classical linear model. It can also be inferred from (3.19) that it is a problem of rank-

reduction because the number of useful signal samples is smaller than the total number of

samples. Then for the rank-reduced version of the signal model (4.1) can be written as:

H0 : x = w,

H1 : x = TKsK +w
(3.20)

where TK =
h

IK 0(K�K)⇥K
iT

. The detection problem to be solved must cope with

the presence of a set of unknown parameters of unknown dimension K (i.e. unknown

length). The traditional GLRT will always implement the test statistic based on the maximum
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order K , and thus it always includes observation samples that contain only noise [30] when

indeed these observations should be discarded. This occurs because the multiple alternative

probability density functions (PDF) are a set of nested PDF families. The net e�ect is that

the test statistic will always overestimate the actual model order, thus including dimensions

of the signal subspace where almost no signal, but only noise is present. This results in a

reduction of the power of the detector to produce a desired result [30]. This problem will

occur whenever the number of signal components is unknown and that is why the GLRT

posses limitation in this type of detection problems. That is why K should �rst be estimated

and then GLRT is conducted based on the estimated model K̂.

3.1.3.2 Multifamily Likelihood Ratio Test

Estimation of the true model orderK and GLRT can be found jointly by using the multifamily

likelihood ratio test (MFLRT). MFLRT is proposed in [30] and is given by:

TMFLRT(x) = max
1iK

f

�

L̄G
i

(x)
�

?H1
H0

�. (3.21)

where f
�

L̄G
i

(x)
�

is a key transforming function used to accommodate di�erent signal mod-

els, with L̄G
i

(x) = 2 lnLG
i

(x) and LG
i

(x) as generalized likelihood ratio (GLR) while

considering i as the size of the vector of true signals. The GLR LG
i

(x) is found in section

3.1.3.3. In (3.21) � is the threshold. Function f

�

L̄G
i

(x)
�

is given as [30]:

f

�

L̄G
i

(x)
�

=
⇥

L̄G
i

(x)� i (ln (Gi(x)) + 1)
⇤

u (Gi(x)� 1) (3.22)

where Gi(x) =
L̄
G

i

(x)
i and u (x) is the unit step function. It is interesting to note that the

MFLRT extends the GLRT to allow testing with multiple alternative model orders.

3.1.3.3 Rank-Reduced Generalized Likelihood Ratio

Before introducing the proposed rank reduced GLRT to be used in (3.22), we present here the

test statistic based on the classical linear model, y = B✓ + v with ✓ as a p ⇥ 1 (i.e. p  K)

vector of unknown parameters, v as a vector that contains errors with PDFN (0,⌃v) andB

as a knownK⇥p observation matrix. This will facilitate us in �nding L̄G
i

(x). The likelihood

function when ✓ 6= 0 (H1) can be written as:

fy (Y; ✓,H1) =
1p

2⇡⌃v
exp



�1

2
(y �B✓)T ⌃�1

v (y �B✓)

�

(3.23)

and in the case when ✓ 6= 0 (H1), the likelihood function can be written as:

fy (Y;H0) =
1p

2⇡⌃v
exp



�1

2
yT⌃�1

v y

�

(3.24)
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Using this model for detecting the presence of ✓ 6= 0 (H1) against the case ✓ = 0 (H0) results

in the test statistic as [25, Theorem 7.1,p. 274]:

LG(y) = yT⌃�1
v PBy � 1

2
yTPB⌃

�1
v PBy (3.25)

where we used the fact that ✓̂ =
�

BHB
��1

BHy is the ML-estimate of ✓ with PB =

B
�

BHB
��1

BT as the projection matrix.

Based on (3.25) for the signal model (3.20) the expression for the GLR, LG
i

(x) to be used

in (3.21), can be written as:
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(x) = xT
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w,sortPT

i

xsort � 1
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xT
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(3.26)

where ⌃w,sort = diag
�

sort
⇥

�

2
1/N,�

2
2/N, · · · ,�2

K/N

⇤�

and we used the fact that while

considering that ⌃�1
w,sort is diagonal matrix then PT

i

⌃�1
w,sortPT

i

= ⌃�1
w,sortPT

i

and

PT
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= Ti
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i Ti
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Ii 0i⇥(K�i)

0(K�i⇥i) 0(K�i)⇥(K�i)

#

.

Note that xi is the vector containing �rst i samples of the sorted observation vector xsort

(i.e. xsort=sort(x)). In practice we don’t have knowledge of the ordering and thus �rst s is

estimated as ŝ =
�

TTT
��1

TTx , then the magnitudes of the elements in ŝ are sorted in

descending order and after that x is ordered according to ordered ŝ. The reason for this

sorting is that MFLRT assumes ordered true signal vector s. Based on the indexation of xsort

then we �nd ⌃w,sort from ⌃w. With this in mind, we can also write (3.26) as:

LG
i

(x) =
1

2
xT
sortPT

i

⌃�1
w,sortPT

i

xsort

=
1

2
xT
P,sort⌃

�1
w,sortxP,sort

(3.27)

where xP,sort = PT
i

xsort is the projected version of vector xsort, to space spanned by the

vector that contains the signal sample received at the active sensors. Based on PT
i

we can

write the simpli�ed version of the (3.27) as:

LG
i

(x) =
1

2

i
X

k=1

x̄2
k

�

2
k

(3.28)

The implementation of the process has been given in the form of algorithm (3.3)
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Algorithm 3.3 Implementation process of the proposed detector without spatial informa-
tion.

1. The received observations from the sensor field are stacked in vector x.

2. Take the absolute values|̂s| and sort |ŝ| in descending order.

3. Order x according to sorted |ŝ| to get xsort.

4. Based on the sorted xsort shuffle nu =
⇥

�

2
1/N,�

2
2/N, · · · ,�2

K/N

⇤

to get sort
ñu.

5. Find ⌃w,sort = diag (ñu)

6. Implement (3.21) by using (3.28) as:

• t hi
• while i 5 K do

– CalculatelnLGi (x) =
1
2x

T
sortPTi⌃

�1
w,sortPTixsort

– Obtain fi = f

�

L̄Gi(x)
�

as given in (3.22)
– Push fi onto K ⇥ 1 vector t

– i = i+ 1

– end while

• t =
⇥

f1, f2, · · · , fK

⇤

• TMFLRT(x) = max (t) ?H1
H0

� as in (3.21) and the index corresponding to
the maximum is K̂.

3.1.3.4 Numerical example

In this section, we present results of computer simulations to illustrate the comparison of the

detection performance of the rank reduced detector with the traditional GLRT. Experiments

are performed with a total number of K = 20 sensor nodes, which are randomly distributed

in the sensor �eld of size 12 sq-meters. As an example, two simpli�ed scenarios are depicted

in Fig.3.6a and Fig.3.7a. To make the scenarios resemble to more practical cases, we also

�x the sensing range for the sensor nodes to R = 3 meters. In both �gures, the event is

represented with thick black circle. The sensors that �nd the event within their sensing

ranges are denoted by "OOO", while "⇤⇤⇤" indicate those sensors that receive zero amplitude from

the event. Using procedure similar to Section 3.1.2.3 we use the average SNR of all sensors as:

̄ = �8dB. On the basis of these scenarios, we analyze the rank-reduced detector with the

help of ROC curves given in Fig.3.6b and 3.7b . In both �gures subscript “MFLRT” indicates

the detector that uses the sensor selection based on MFLRT.
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(b) ROC curves for scenario #1.

Figure 3.6: Experiment #1: ROC curves: Comparison of the MFLRT with the
traditional GLRT for unknown deterministic signal: Scenario #1
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Figure 3.7: Experiment #2: ROC curves: Comparison of the MFLRT with the
traditional GLRT for unknown deterministic signal: Scenario #2

Results in Fig.3.6b and 3.7b clearly show that the MFLRT-based detector has a better

ROC characteristic compared to the traditional GLRT. The MFLRT selects those sensors that

receive observations with better SNR, thus improving the overall SNR. Therefore, this rank-

reduced multi-sensor detection (MFLRT-based detector) leads to a better performance, when

the signal emitted from the event e�ects only a subset of sensors. Similarly, comparing

Fig.3.7b with Fig.3.6b, we can observe that the far location of the sensors from the target

degrades the performance of both detectors in experiment #2. However, the MFLRT-based

detector still outperforms the traditional GLRT. This suggests that the proposed algorithm 3.3

can achieve an improved detection performance without taking into account the topology of

sensors.
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3.2 Multi-sensor detection of stochastic signal

Stochastic processes play a fundamental role in mathematical models of phenomena occur-

ring in nature. In communication systems transmitted signal after random e�ects or any

electromagnetic emission from a physical event are mostly approximated with the stochastic

signals such as Gaussian [34]. The Gaussian signal approximation is also widely followed in

cooperative spectrum sensing that is based on the concept of multi-sensor detection scheme.

The Gaussian approximation in addition to resulting in tractable models and useful detectors,

is reasonable if the primary network employs orthogonal frequency division multiplexing

(OFDM) as modulation format [34]. Hence, it is important to extend our previous results to

the case of stochastic signals, particularly for the Gaussian case.

Keeping this in mind, in this section we assume a scenario where an event emits a

Gaussian signal of the form s0 (n) = N (0, P0). The event signal received at the k-th sensor

can be represented as: sk (n) = N (0, Pk), where Pk = P0
d2
t,k

with {dt,k}Kk=1 as the distance

between k-th sensor and the place where the event is happened. To be more speci�c the k-th

sensor receives the noisy observation {xk}Kk=1, where xk (n) = sk (n) + wk (n) in presence

of the event signal and xk (n) = wk (n) when the event signal is not present. Every sensor

dispatches xk to the fusion center. Hence, at time instant n the signal model at the fusion

center based on the signals collected throughK sensors is given as:

H0 : x (n) = w (n)

H1 : x (n) = s (n) +w (n)
(3.29)

where x (n) =
h

x1 (n) x2 (n) · · · xK (n)
iT

contains the noisy observations, s (n) =
h

s1 (n) s2 (n) · · · sK (n)
iT

contains the received signals and vector w contains the

samples of the additive noise. Based on these facts, we consider two cases for the detection

problem (3.29) as follow.

1. Case Study # 1:- The observations of the local sensors are conditionally independent

when conditioned on the hypothesisH1.

2. Case Study # 2 :-When the observations are correlated in the case of hypothesisH1.

3.2.1 Case Study#1: Uncorrelated signal

In the current section we assume that the signal at di�erent sensors are independent from

each other, therefore, s ⇠ N (0,⌃s) with

⌃s =

2

6

6

6

6

6

4

P1 0 · · · 0

0 P2
...

...
. . . 0

0 · · · 0 PK

3

7

7

7

7

7

5

. (3.30)
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The assumption of conditional independence of the sensor observations simpli�es the prob-

lem and makes it more tractable. Later on in Section 3.2.2 we will relax this assumption. In

the sequel, we assume that the noise at di�erent sensors is also independent but nonidentical

Gaussian distributed as: w(n) ⇠ N (0,⌃w) with

⌃w =

2

6

6

6

6

6

4

�

2
1 0 · · · 0

0 �

2
2

...
...

. . . 0

0 · · · 0 �

2
K

3

7

7

7

7

7

5

. (3.31)

We remark that, herein, we assume that the noise powers
�

�

2
k

 K

k=1
are known.

3.2.1.1 GLRT

We already know that in the presence of unknown parameters {Pk}Kk=1, the hypothesis

testing cannot be solved by using the optimal Neyman-Pearson criteria [25]. Therefore, once

again we need to use the GLRT. Since we consider independent noise as well as signal at

di�erent sensors, therefore, the parametrized log-LRT can be written as:

LG (X) =
K
X

k=1

log

8

<

:

max
P
k

fx (xk;Pk,H1)

fx (xk;H0)

9

=

;

?H1
H0

�,

=
K
X

k=1

Lk (xk) ?H1
H0

�,

(3.32)

where Lk (xk) , log

(

max
P

k

f
x

(x
k

;P
k

,H1)

f
x

(x
k

;H0)

)

and xk ,
h

xk (1) xk (2) · · · xk (N)
iT

is vector that contains the number of samples collected at k-th sensor. Similarly, X ,
h

x1 x2 · · · xK

i

. By solving Lk (xk) in (3.32), we can get the expression as:

Lk (xk) = �N

2
log
⇣

P̂k + �

2
k

⌘

� 1

2
⇣

P̂k + �

2
k

⌘

N
X

n=1

x

2
k (n)

+
N

2
log
�

�

2
k

�

+
1

2�2
k

N
X

n=1

x

2
k (n) ,

= �N

2
log

 

1

N

N
X

n=1

x

2
k (n)

!

� N

2

+
N

2
log
�

�

2
k

�

+
1

2�2
k

N
X

n=1

x

2
k (n) ,

= �N

2

⇢

log
✓

"k

�

2
k

◆

+ 1� "k

�

2
k

�

,

(3.33)
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where in (3.33) we used the fact that the MLE of Pk as: P̂k = 1
N

PN
n=1 x

2
k (n) � �

2
k and

"k = 1
N

PN
n=1 x

2
k (n). By putting (3.33) in (3.32), we get the �nal expression for the GLRT as:

LG (X) =
N

2

K
X

k=1

⇢

"k

�

2
k

� log
✓

"k

�

2
k

◆

� 1

�

?H1
H0

�

(3.34)

We can see that the only term that depends upon the observations is "k = 1
N

PN
n=1 x

2
k (n).

In this case it is also su�cient statistics. So instead sending the whole vector xk the k-

th sensor may send "k. Hence, we can implement the detection scheme (3.34) in the form

of decentralized detection scheme. In such scheme the local sensors perform some local

processing by calculating "k. After calculating "k each sensor dispatches the result to the

fusion center. The fusion center makes the �nal decision by using (3.34) to decide whether

the event signal is present or not. This two step method is summarized in algorithm 3.4.

Algorithm 3.4 Implementation of (3.34) as a decentralized detection with two steps method
1. Processing at the local sensors:

• The k-th sensor receives N samples as

xk , [xk(0), xk(1), . . . , xk(N � 1)]T

• Having xk, sensor {k}Kk=1 calculates "k = 1
N

PN
n=1 x

2
k (n) and sends it to

the fusion center.

2. Processing at the fusion center:

• The fusion center finds N
2

PK
k=1

n

"k
�2
k
� log

⇣

"k
�2
k

⌘

� 1
o

?H1
H0

�.

3.2.1.2 Rank-reduction approach

In Section 3.1.3, we have discussed that the event appears at a random position and it will

be surrounded by a given number of K  K active sensors (i.e. the ones which receive

detectable power). Hence, we need to give more importance to those sensors that have

strongest signal power. In order to do so, we can sort the sensors in descending order based

on the the strength of the signal power. The process is similar to algorithm 3.3 by using the

estimated dSNRs or
n

"
k

�2
k

oK

k=1
. Let lG = [L1 (x1) ,L2 (x2) , · · · ,LK (xK)] is a vector that

contains the local GLRTs, sorted in the descending order based on the estimated dSNRk = "
k

�2
k

.

Once we know the ordering of the sensor, the problem can be formulated as:

Lmax (X) = max
1KK

K
X

k=1

Lk (xk) ?H1
H0

� (3.35)
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However, as we discussed in Section 3.1.3.1 that the scheme in (3.35) will always implement

the test statistic based on the maximum orderK [30]. Therefore, K should �rst be estimated

and then the GLRT should be conducted based on the estimated model K̂ by using MFLRT.

Note that the implementation of the MFLRT is similar as in the case of section 3.1.3 but the

GLR LG
i

(x) should be replaced by:

Lk (xk) =
"k

�

2
k

� log
✓

"k

�

2
k

◆

� 1 (3.36)

The implementation process of the model order based detection scheme is given in algo-

rithm 3.5. We remark here that other model order selection techniques such as minimum

description length (MDL) and Akaike information criterion (AIC) can used to implement the

problem. Similarly, as it was in the case of Section 3.1.3, the detection scheme in algorithm

3.5 does not take into e�ect the fact the sensors are forming spatial cluster around the event.

Algorithm 3.5 Implementation process of the proposed detector

1. Sensor {k}Kk=1 receives xk 2 RN and it calculates "k = 1
N

PN
n=1 x

2
k (n).

2. Every sensor sends "k to the fusion center thus fusion center has
e =

⇥

"1 "2 · · · "K

⇤

.

3. With assumption of known noise power, we can find the SNR vector as:
e� =

h

"1
�2
1

"2
�2
2

· · · "K
�2
K

i

.

4. Order the SNR’s in vector e� in the descending order, we get ẽ�.

5. Based on the ordered ẽ�, find each element of

lG =
⇥ L1 (x1) L2 (x2) · · · LK (xK)

⇤

.

6. Based on lG the fusion center calculates the following steps:

• t hi
• while L 5 K do

– Find Tx =
PL

l=1 Ll (xk).
– Obtain fi = f (Tx) as given in (3.22)
– Push fi onto K ⇥ 1 vector t

– i = i+ 1

– end while

• t =
⇥

f1, f2, · · · , fK

⇤

• TMFLRT(x) = max (t) ?H1
H0

� as in (3.21) and the index corresponding to
the maximum is K̂.
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3.2.1.3 Numerical example

In this section, we present results based on computer simulations to illustrate the perfor-

mance of the GLRT LG (X) in (3.34) and detection scheme based on the MFLRT that is pre-

sented in presented in the algorithm 3.5. For the analysis to be conducted herein, experiments

are performed with a total number of K = 20 sensor nodes, which are randomly distributed

in the sensor �eld of size 12 sq-meters. In order to analyze the performance of detectors we

use the average SNR of all receivers as: ̄ = �8dB.
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Figure 3.8: ROC curves: Comparison of the MFLRT with the traditional GLRT
for unknown stochastic signal: Average SNR ̄ = �8dB

In this example the ROC curves are obtained for two di�erent values of N as: N =

{5, 15}. The results are plotted in Fig. 3.8 that show that the selection of the sensors with

the help of model order selection indeed improves the performance of the GLRT. We can

also see that for this speci�c detection problem, the performance of MFLRT is similar to

the GLRT implementation with the help minimum description length (MDL). Furthermore,

it can be seen that though performance of the detectors improves but the behavior of the

the detection schemes remains the same for two di�erent values of N . From the results it

can be concluded that as it was in the case of deterministic signal, when the e�ect of target

signal is non-uniform over the widely spread sensor �eld, then the rank-reduced multi-sensor

detection scheme clearly out-performs the traditional GLRT.

3.2.2 Case Study #2: Correlated signal

The assumption of conditional independence is not generally valid in practical situations

where the proximity of the sensors to one another will result in correlated observations

[14] [17]. This spatial correlation is a feature that can be used for detection since the noise
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processes at di�erent sensors can be safely assumed statistically independent. Hence, in this

section we formulate the detection schemes for the sensor network that exploit the spatial

covariance matrix of the received observations.

When the signal is present then at time instant n the received signal vector at the fusion

center (based on the signals collected through K sensors) is given as :x (n) = s (n) +

w (n). In the absence of signal we have x (n) = w (n). Therefore, the signal model can

be represented as:
H0 : x ⇠ N (0,⌃0)

H1 : x ⇠ N (0,⌃1)
(3.37)

Contrary to the signal model in Section 3.2.1, herein, we consider to relax the assumption

of the spatial independence. We assume that the signal at di�erent sensors are spatially

correlated, therefore, s ⇠ N (0,⌃s) and ⌃1 = ⌃s + ⌃0. The noise at di�erent sensors is

assumed to be independent but nonidentical Gaussian distributed as: w ⇠ N (0,⌃0) with

⌃0 , ⌃w = diag
⇣h

�

2
1 �

2
2 · · · �

2
K

i⌘

. Based on these facts we can easily infer that the

detection problem (3.37) is expected to focus on the exploitation of the inner structure of the

covariance matrix of the vector-valued {x (n), n = 1, 2, ...N }.

3.2.2.1 GLRT

The detection problem in (3.37) not only decides based on the presence or absence of the

signal energy but also takes into account whether the o�-diagonal elements of the sample

covariance matrix are zero or not. In order to test this phenomena a number of tests have

been presented in the �eld of statistics. Comprehensive details about multivariate tests of

this nature can be found in [35, 36]. The studies presented in these references are based the

multivariate statistics that deal with multivariate hypothesis testing for covariance matrices.

In the case when the covariance matrices are unknown, the most popular scheme that quan-

ti�es such hypothesis is based on di�erent variations of GLRT schemes. For the signal model

(3.37), the GLRT decides in favor ofH1 only if

⇤G (X) =
max
⌃1

fx (X,⌃1)

max
⌃0

fx (X,⌃0)
7H0

H1
�, (3.38)

where fx (X,⌃1) and fx (X,⌃1) are the likelihood function under hypothesis H0 and H1,

respectively, that can be represented as:

fx (X,⌃1) =
1

(2⇡ |⌃1|)
N

2

exp

(

�1

2

N
X

n=1

xT (n)⌃�1
1 x (n)

)

(3.39)

and

fx (X,⌃0) =
1

(2⇡ |⌃0|)
N

2

exp

(

�1

2

N
X

n=1

xT (n)⌃�1
0 x (n)

)

, (3.40)
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where |.| represents determinant of a matrix. The solution of (3.38) involves �nding

MLE of ⌃1 and ⌃0, that can be found by taking di�erentiation of logf (X,⌃1) and

logf (X,⌃0), respectively. The results are then equated to zero to achieve the MLE

⌃̂1 = 1
N

PN
n=1 x (n)xT (n) is a sample covariance matrix. As we assume that the N

snapshots of the observation vector x (n) are statistically independent in time, then the

maximum likelihood estimator is equal to the sample covariance matrix ⌃̂1. Similarly,

⌃̂0 = diag
⇣

1
N

PN
n=1 x (n)xT (n)

⌘

= ⌃̂1 � IK . Based on these results the solution of (3.38)

becomes

⇤G (X) =

�

�

�

⌃̂1

�

�

�

�

�

�

⌃̂1 � IK
�

�

�

7H0
H1

�. (3.41)

In practice, the GLRT is used based on the assumption that the sample size is large while the

sample dimension is small as whenN o K , it is an optimal detector. However, in case of the

small sample support the GLRT indeed su�ers from the ill-conditioning and singularity issue

of the sample covariance matrix. To cope with this problem, we present some alternative

tests that are ad-hoc in the sense that they are not derived based on the traditional detection

theory or hypothesis testing rules. These test are rather derived based on the underlying

principle that the statistical covariance matrices of signal and noise are generally di�erent.

This di�erence is used in the proposed methods to di�erentiate the signal component from

background noise.

3.2.2.2 Covariance absolute value detector

We have argued in the previous section that one way to mitigate the repercussions of a

singular sample covariance matrix, is to design detectors that avoid those matrix operations

that are vulnerable to the singularity of this matrix for instance, the determinant. Taking

into account this fact, the Covariance Absolute Value (CAV) detector proposed in [11] can be

used to avoid such problems. The CAV detector is a ratio between the sum of elements of the

sample covariance matrix and the sum of diagonal elements of that matrix as:

⇤CAV (X) =

PK
i

PK
j |rij |

PK
i abs |rii|

7H0
H1

�. (3.42)

Here |.| is for absolute value, whereas, rij is the i, jth element of sample covariance matrix.

The detector in (3.42) does not need any prior information of the signal, the channel nor the

noise power. The test statistic in (3.42) is robust against the high dimensionality and it does

not assume any prior information about the signal and noise distribution.
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3.2.2.3 Detector based on normalized Frobenius norm

The Frobenius norm of an arbitrary matrixA can be represented as:

kAkF =

s

X

i

X

j

[A]2i,j . (3.43)

Based on the Frobenius norm of the sample covariance matrix, we adopt the following test

to compare it with the asymptotically optimal GLRT (3.41). The test can be represented as:

⇤Frob (X) =

�

�

�

⌃̂1 � ⌃̂0

�

�

�

F
�

�

�

⌃̂1

�

�

�

F

7H0
H1

�. (3.44)

The detector (3.44) is also robust in front of the high dimensionality and small sample support,

and it does not assume any prior information about the signal and noise distribution.

3.2.2.4 Numerical example

In this section, the above mentioned covariance based detection schemes are compared with

each other by using numerical simulations. In order to analyze the performance of these

detectors we useK = 20 sensors uniformly distributed in the �eld. We use the average SNR

of all receivers similar to the Section 3.1.2.3. With these parameters we plot ROC curves in

Fig. 3.9 and Fig. 3.10. In order to see the e�ect of sample size N , in Fig. 3.9 we plot the ROC

curves for ⇤CAV (X) , ⇤Frob (X) and ⇤G (X) while considering two cases. In the �rst case we

use N = 20 and in the second case we use N = 60. Similarly, in Fig. 3.10 we repeat the

same experiment with ROC curves by introducing the e�ect noise power uncertainty. In the

literature, there are quite a few methods to add uncertainty to noise powers. Herein, in this

experiment we model the noise power uncertainty by generating the noise power at the kth

sensor as �2
k ⇠ U

✓

�2
n,k

↵
nu

,↵nu�
2
n,k

◆

, where ↵nu � 1 and ↵nu = 1means no noise uncertainty

[15]. In this plot we also compare the performance ⇤CAV (X) , ⇤Frob (X) and ⇤G (X) with

the energy detector

⇤Eng (X) =
1

NK

K
X

k=1

N
X

n=1

x

2
k (n) . (3.45)
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Figure 3.9: ROC curves: Comparison of the GLRT with CAV and Frobenius
detector for total number of sensors K = 20 and average SNR
̄ = �15dB.
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tor with the energy detector in the presence of uncertain noise,
total number of sensorsK = 20 and average SNR ̄ = �15dB.
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Figure 3.11: AUC curves: Comparison of the GLRT with CAV and Frobenius
detector for changing sample size (N ), total number of sensors
K = 20 and average SNR ̄ = �15dB.

The results in these two experiments clearly reveal that the GLRT ⇤G (X) outperforms,

⇤CAV (X) and ⇤Frob (X) only if the sample size is much higher than the number of sensors

K = 20. Similarly, results in 3.10 con�rm that energy detector cannot perform in the

presence of severe noise power uncertainty even we increase the N . This is due the e�ect

called “SNRwall”, which is the SNR below which robust detection is impossible for the given

detector [15]. On the contrary, it can be seen that in case of the other three detection

schemes increasing N results in increase in the performance in the presence of noise power

uncertainty. Hence they are robust against the noise uncertainty compared to the well known

energy detector. It is because these schemes use correlation as a side information jointly with

the signal energy present in the received observations. In order to further analyze the e�ects

of the sample sizeN , in 3.11 we plot the AUC plots. The results in this �gure clearly show and

con�rm that the GLRT performs very poorly when the sample support is small. However,

with increasing the sample support N the GLRT starts to outperform the other detectors.

Hence, we conclude that for the GLRT to perform good, the sample support should be larger

than the dimension of the signal vector. In other words N should be larger than the number

of sensors K , when this is not the case, the GLRT degenerates due to ill-conditioned sample

covariance matrix. Herein, we would like to remark that in the proceeding chapters, we

will address the issue of ill-conditioned sample covariance matrix and small sample support,

comprehensively. Apart from this, in Section 5 and 6, we will also analyze the e�ects of noise

power uncertainty in detail.





CHAPTER 4

Exploitation of Spatial Proximity through
Spatial Signatures

In the previous chapter we discussed the problem of �nding a set of relevant sensors, in such

a way that a rank reduced approach could be implemented, thus leading to an SNR gain.

In the present chapter we are moving one step further by actually exploiting the proximity

between neighboring sensors, since this a-priori information is also expected to provide a

more robust and improved and detection performance. Therefore, the main focus of this

chapter is to study this possible improvement in the detection performance of the multi-

sensor detection. In order to achieve this improvement, we assume that the positions of the

sensor nodes are known to the fusion center. This assumption is quite reasonable in practical

scenarios, because the nodes can easily learn its position information at the time of initial

calibration or with the help of the Global Positioning System (GPS) i.e., GPS-enabled wireless

sensor network [37][38]. By considering known positions, we can assume that the sensor-

to-sensor distances are known to the fusion center. We exploit this information (sensor-to-

sensor distances) as a side information to be incorporated in the detection rule with the aim

of improving the performance. Keeping this mind, we divide the content of this chapter into

two categories.

1. Exploitation of spatial correlation between neighboring sensors using spatial signa-

tures.

2. Multi-sensor quickest detection by exploiting spatial proximity.

4.1 Multi-sensor detection based on spatial signatures

We know from the previous discussions that a WSN typically consists of a large number of

inexpensive sensor nodes that are distributed over a large area. In largely deployed WSN,

the observations are often correlated in the space domain due to then spatial proximity

among sensors [17]. In spite of this, most existing detection techniques are based on energy

detection, thus ignoring this important cross-sensor correlation information between closely

located sensors [39]. This feature is relevant because the region where the events typically

happen within a dense WSN usually spans across an area comprising just a subset of all the

49



50 CHAPTER 4. EXPLOITATION OF SPATIAL PROXIMITY THROUGH SPATIAL SIGNATURES

sensor nodes. Those sensors far away from the event are typically unable to receive the

signal emitted from the event due to limited sensing ranges. In contrast, sensors closer to the

event will often be closely spaced, thus forming a cluster with highly correlated observations

[17]. The presence of this structure within the received samples at the fusion center may be

used to further improve the event detection performance. Previously, there have been some

attempts to incorporate correlated measurements into the formulation of signal detection

problems. However, many of these studies focus on the discrimination between correlated

and independent observations [35, Ch. 9-10]. However, these detectors typically focus on

detecting the presence of correlated data, as a possible indication that an event may be

present within the data. They do not focus, instead, on exploiting the actual correlation

structure that impinges onto the sensor �eld when an emitting target is present.

In the previous chapter we exploited the fact that in order to detect e�ciently the emer-

gence of an event, it is important to use only the observations that contain useful information

and to suppress noise from the non-a�ected sensors. We have shown that the performance of

the signal detection technique can be improved by identifying the useful observation samples

among the set of all received measurements. Keeping this in mind, herein, we move one step

ahead to exploit the fact that the a�ected sensors will be located close to the event as well as

close to each other in the form of a spatial cluster. This spatial proximity present between the

a�ected sensors can be used to further improve the detection performance of the multi-sensor

detection schemes. Hence, in this Section a novel detector is presented. Not only it exploits

the selection of the useful set of samples in order to reject noise, but it also takes advantage of

the signal correlation occurring with an emitting target is present, based on the novel concept

of signatures. The concept of signatures would be somehow equivalent to steering vectors
in the �eld of array signal processing. Signatures are adopted herein as a way to capture

the structure of spatially correlated measurements between neighboring sensor nodes. Each

sensor node will have a signature vector representing its physical-layer connectivity with

the rest of the sensors in the �eld. As it will be shown later on, this approach is found to

signi�cantly improve the detection performance compared to traditional approaches.

4.1.1 Signal model

In order to describe the signal model, we assume the case where sensors are doing some

processing locally and they send summary of the observations to the fusion center. In other

words, after receiving the N samples of xk(n) = Ak + wk(n), the k-th, sensor calculates

the mean as: x̄k = 1
N

PN
n=1 xk (n) and dispatches it to the fusion center. The fusion center

collects the measurements of K sensors in a vector x = [x̄1, x̄2, · · · , x̄K ] and the signal

model at the fusion center becomes

H0 : x = w,

H1 : x = s+w,

(4.1)
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where s = [A1, A2, · · · , AK ], w ⇠ N (0,⌃w) with ⌃w = diag
⇥

�

2
1/N,�

2
2/N, · · · ,�2

K/N

⇤

.

Hence, under H0 x ⇠ N (0,⌃w) and under H1 x ⇠ N (s,⌃w). The detection problem

(4.1) is nothing but to di�erentiate s 6= 0 from s = 0. The vector s contains the received

unknown deterministic amplitudes of received at the K sensors. In this vector the samples

corresponding to active sensors will be non-zeros and rest of the samples will have extremely

weak values that will hardly contribute constructively in the detection performance. To be

more speci�c we are indeed in front of situation where vector s is a sparse vector. Hence, in

the following we take into e�ect this sparsity to model the detection scheme.

4.1.1.1 Signal model with spatial signatures

The active sensors are not only located close to the event but also located close to each other

and thus result in a spatial cluster. Due to this neigbouring or proximity, there will exist some

correlation structure. The main focus of this paper is to exploit this correlation structure and

design a signal detector at the fusion center based on the principle of GLRT. In order to do

so, a structure signal model is proposed on the concept of signatures. For the case of the i-th
sensor, its signature is a vector that contains the attenuation terms to all the K sensors, as if

the signal source was located at the i-th sensor position. Thus, the k-th signature is a (K⇥1)

vector hk as follows,

hk , [h(d1,k), . . . , h(dk�1,k), 1, h(dk+1,k), . . . , h(dK,k)]
T
. (4.2)

where h(dk,j) = e

��d
k,j , takes into account the attenuation loss due to the distance between

k-th and the j-th sensor locations, with � as the known path loss exponent. We assume

herein that the fusion center has complete knowledge of the positions of the sensors in the

network. Therefore, all of the K signatures present in the matrix H , [h1,h2 . . . ,hK ] are

known to the fusion center. Matrix H is assumed to be a full-rank K ⇥ K matrix with K

signatures as columns and we call it “signature matrix”. This spatial structure is re�ected in

the signatures matrix H, and that the signal vector s must be a linear combination of these

signatures as s = Ha. With such a spatial knowledge the following so called structured

signal model applies,

x = Ha+w (4.3)

where a is the K ⇥ 1 vector containing weights of each signature onto the received signal.

In other words, these weights ak , k = 1, 2, · · · · · · ,K can be understood as a kind of virtual

amplitudes that when linearly combined with the sensors signatures, they reproduce the

signal strength �eld captured by the whole WSN in the presence of an emitting source. That

is to say, the elements within a quantify the importance of each of the sensors signatures

in the reconstruction of the signal �eld emitted by the event. Therefore, by selecting the

largest weights, we are actually choosing the most relevant sensors on the basis of their

physical proximity to the event. The more the sensor is located closer to the event, the

more its signature vector will be aligned with s, and thus the larger the weight assigned to

this signature. By using this linear combination of signatures in (4.3), we are taking into
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account both the distances between neighboring sensors and the location of the sensors

with respect to the event, thus fully exploiting the spatial information contained within the

received signals.

In practice the event will typically appear in a random position within the sensor �eld, and

of course it will be surrounded by a given number of K active sensors (i.e. the ones which

receive non-zero amplitudes). It means that the important signatures are those which are

related to the signals from active sensors and rest of theK �K signatures could be ignored.

Thus we are in-front of detection problem where it is convenient to use rank-reduced version

of the signal model (4.3) as we have been doing in the previous chapter. As we need to select

the K signatures of active sensors with their corresponding unknown weights, K needs to

be estimated by model order selection. The K signatures are then stacked into matrix HK,
which is a reduced version of H. Similarly, the unknown weights are stacked in aK, the
reduced version of vector a.

4.1.2 Structured GLRT based on spatial signatures

Based on the results obtained in the previous chapter, in the case of spatial signal model (4.3),

assuming model order K = K , the GLR can be written as:

LG(x) = xT⌃�1
w PHx� 1

2
xTPH⌃

�1
w PHx

=
1

2
xTPH⌃

�1
w PHx

(4.4)

where PH = H
�

HHH
��1

HT is the projection matrix onto the space spanned by all of

the K signatures. The correlation-aware detector (4.4) matches the received measurements

with the expected correlation pattern implicitly contained within the projection matrix onto

the signatures space, PH . In the problem under study, only the signatures related to the K
active sensors are of importance and signatures of sensors that receive only noise should be

discarded. That is why we use reduced-rank version of signal model (4.3) to �nd GLR and we

use MFLRT to cope with issue of unknown K. To do so we �rst estimate theK ⇥ 1 vector of

signature weights a as â =
�

HHH
��1

HHx then we sort the magnitudes of elements in â

in descending order. After that signatures inH are ordered according to the sorted â. On the

basis of ordered H and ordered â, MFLRT is thus implemented. For MFLRT the GLR, after

assuming order size equal to i, can be formulated as [25]:

LG
i

(x) =
1

2
xTPH

i

⌃�1
w PH

i

x (4.5)

where PH
i

= Hi

�

HH
i Hi

��1
HT

i is the reduced-rank projection matrix onto the subspace

spanned by the i selected signatures. Here the resulting detector matches the received mea-

surements with the expected correlation pattern implicitly contained within the projection

matrix onto the subspace of active signatures, PH
i

. The energy of the resulting projection is

the one which is then compared to a threshold for determining whether the expected signal
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Algorithm 4.1 Implementation process of the proposed detector
1. The received observations from the sensor field are stacked in vector x.

2. Using already known full signature matrix H, we define x = Ha+w.

3. Estimate the the full virtual weights vector a as â =
�

HHH
��1

HHx

4. Take the absolute values|â| and sort |â| in descending order resulting in
ã = sort (|â|)

5. Shuffle the signature vectors in H according to the sorting of ã as H̃ =
sort (H).

6. Implement MFLRT by using (4.5) as:

• t hi
• while i 5 K do

– Find Hi=H̃(1 : i)

– Calculate PHi = Hi

�

HT
i Hi

��1
HT

i

– CalculatelnLGi (x) =
1
2x

TPHi⌃
�1
w PHix

– Obtain fi = f

�

L̄Gi(x)
�

as given in section 3.1.3.
– Push fi onto K ⇥ 1 vector t

– i = i+ 1

– end while

• t =
⇥

f1, f2, · · · , fK

⇤

• TMFLRT(x) = max (t) ?H1
H0

� and the index corresponding to the maximum is
K̂.

structure was contained on the data or not. Moreover, let us de�ne xP , PH
i

x then we can

write (4.5) as:

LG
i

(x) =
1

2
xT
P⌃

�1
w xP (4.6)

where xP is the projected version of the received observation vector x to the subspace

spanned by the signatures of the active sensors. This will indeed result in an SNR gain

due to the projection of the observation vector onto a reduced dimensionality subspace.

The proposed detector with the reduced-rank spatial signal model aims improvement in

the detection performance of the GLRT by including the spatial information in the form of

signatures. The implementation process of the proposed detector is summarized in Algorithm

4.1

4.1.3 Performance analysis

We �nd the performance of the proposed detector in terms of probability of detection (PD)

and probability of false alarm (PFA). For the model order K and using properties of the

projection matrix PHK , we can write the proposed detector (4.5) using the results for linear
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detectors in [25, Ch. 13]:

TK(x) = xT
⇣

H#
K
⌘T

HT
K⌃

�1
w HKH

#
Kx (4.7)

where H#
K =

�

HT
KHK

��1
HT

K is a (K ⇥ K) matrix corresponding to the Moore-Penrose

pseudoinverse matrix of HK. The expression in (4.7) can be further rearranged by de�ning

the (K ⇥ 1) vector, z , H#
Kx. In this way, the detector can be expressed as:

TK(x) = zTHT
K⌃

�1
w HKz (4.8)

Now z has Gaussian distribution as z ⇠ N
⇣

H#
KHa,

�

HT
K⌃

�1
w HK

��1
⌘

. Let us de�ne µz =

H#
KHa and Cz =

�

HT
K⌃

�1
w HK

��1 then the statistics of the proposed detector are:

TK(x) = zTC�1
z z ⇠

8

<

:

�

2
Ksp

forH0

�

02
Ksp

(�sp) forH1

. (4.9)

with �sp = aTHTPHKsp
⌃�1

w Ha = sTPHKsp
⌃�1

w s is the corresponding non-centrality

parameter. We have clearly indicated the estimated order by Ksp, indicating that the rank-

reduced dimension Ksp has been estimated by performing a model order selection technique

onto the full estimate of a. Indeed,Ksp with the subindex "sp" is related to the fact that spatial

information is being exploited. With the estimated model order Ksp, the expression for the

probability of false alarm and probability of detection becomes:

PFA(Ksp) = Q�2
Ksp

(�) ,

PD(Ksp) = Q�02
Ksp

(�
sp

) (�) .
(4.10)

One of the problems that appears in the calculation of the performance is that it depends upon

the model order Ksp, which is estimated by model order selection techniques based on noisy

input measurements. As a result, the estimated model order becomes a random variable,

which makes it very di�cult to analyze the performance in close-form. This problem is

also aggravated by the fact that the distribution of this random variable is unknown and

that is why it is not so trivial to �nd close-form analytical expression for the performance.

In [40], the asymptotic distribution of the model order for Akaike’s information criterion

(AIC) is obtained but the paper does not demonstrate the statistical optimality for practical

cases. On the other hand, in the case of the MFLRT there are no such results available for

the distribution of the estimated model order. The only way to proceed is to perform an

empirical analysis using histograms, which can be used to obtain the estimated distribution

of Ksp, herein refereed as fKsp(l). Using fKsp(l) the performance of MFLRT with (4.5) in term

of average probability of false alarm PFA and average probability of detection PD can be
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expressed as:

PFA , EKsp

⇥

PFA(Ksp)
⇤

=
Kmsx
X

l=1

PFA(l)fKsp(l),

PD , EKsp

⇥

PD(Ksp)
⇤

=
K

msx

X

l=1

PD(l)fKsp(l).

(4.11)

The performance of the proposed detector is also compared with the detector that uses no

spatial information that has been discussed in the previous chapter. The PDF of the detector

without spatial information is also chi-square and the expression for the probability of false

alarm and probability of detection is given as:

PFA(Kns) = Q�2
Kns

(�) ,

PD(Kns) = Q�02
Kns

(�
ns

) (�) ,
(4.12)

where the non-centrality parameter �ns = sHKns
⌃�1

w sKns . In the same way as explained

before, the performance in term of average probability of false alarm PFA and average

probability of detection PD is:

PFA , EKns [PFA (Kns)] =
K

max

X

l=1

PFA(l)fKns(l),

PD , EKns [PD(Kns)] =
K

max

X

l=1

PD(l)fKns(l),

(4.13)

where fKns(l) is the empirical probability distribution of estimated model order for a �xed

value of signal to noise ratio.

4.1.4 Numerical example

In this section, we present the results of computer simulations to illustrate the performance

of the detection schemes presented in the above sections. The performance of the proposed

detector is also compared with the detection techniques based on the signal model with no

spatial information (presented in the previous chapter). Experiments are performed with a

total number of K = 20 sensor nodes, which are randomly distributed in the sensor �eld

of size 12 sq-meters. This simpli�ed scenario is depicted in Fig.4.1. To make the scenario

resemble to more practical cases, we also �x the sensing range for the sensor nodes to R = 3

meters. Looking at Fig.4.1, the event is represented with the circle. The sensors that �nd the

event within their sensing ranges are denoted by "OOO", while "⇤⇤⇤" indicate those sensors that

receive zero amplitude from the event. On the basis of this scenario, we analyze the proposed

detector with the help of the receiver operating characteristics (ROC) curves and the curves

showing probability of detection (PD) vs SNR(dB). For the assessment of the detectors being

considered in this chapter, the SNRs at the di�erent sensors are allocated randomly. In order

to do so, we use the average SNR of all antennas as: ̄ = 1
K

PL
i=1 i and the SNR of kth
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sensors is i = ⇣

i�1
min where min is the minimum SNR among those of theK sensors. For

a given average SNR ̄ and SNR gap ⇣ , we can generate the SNRs of the sensors, though the

match of the SNRs to the sensors can be random.
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Figure 4.1: Field scenario showing a speci�c topology of sensors.

In Fig.4.2 as well in Fig.4.3 subscript “ns” indicates the unstructured MFLRT detector that

uses no spatial information and subscript “sp” represents the proposed structured MFLRT

detector which uses spatial information. It can be seen in Fig.4.2 that the proposed detector

has better ROC characteristic compared to the detector that uses no spatial information.

Similarly, we can also see that the performance with sensor selection improves with and

without spatial information compare to GLRT detector. The plot for GLRT is represented

“*” and blue color in the �gure. In Fig.4.3, the detection schemes are further analyzed with

the help of average probability of detection (PD) plotted against di�erent SNR values in dB.

These plots also show that detector with spatial information is superior to the detector which

is using no spatial information. Hence, if the sensor-to-sensor distances are known, then in

order to get improved performance this a-priori information should be used.
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Figure 4.2: ROC Curves: Comparison of the structured MFLRT with the
unstructured MFLRT and the traditional GLRT.
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Figure 4.3: Probability of detection (PD) vs. SNR[dB]: Comparison of the
structured MFLRT with the unstructured MFLRT.

4.2 Multi-sensor quickest detection

In Section 4.1, we proposed a new GLRT based detector for a centralized detection system.

The aim was to achieve an improvement in the detection performance by exploiting corre-

lation among neighboring sensor nodes. Prior information on the basis of sensor’s positions

has been incorporated by proposing a signal model based on signature matrix, which captures
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the correlation among di�erent sensors. On the contrary, here in this section we exploit the

prior information of the sensor positions in the context of quickest detection [41, 42, 43].

Most of the detection approaches discussed above and in the previous chapters are block-

based in the sense that the sensor nodes take a block of samples to decide on the activity

state of an event. The main goal of these block-based detection schemes is to maximize the

detection probability subject to constraints on the false alarm probability. However, while

detecting abrupt changes due to an event, apart frommaximizing the probability of detection,

the WSN should be able to detect the changes as quickly as possible. For example in cognitive

radio, the secondary users need to detect and quit the frequency band as quickly as possible

if the corresponding primary radio emerges [41]. In such dynamic applications, the multi-

sensor should continuously observe the region to detect the event quickly as possible based

on the possible change in the received observations. Therefore, a new detection framework is

required that focuses on minimization of the detection delay for a certain level of false alarm.

The above discussion leads us to the concept of multi-sensor sequential change detection

[44, 45] and a variant known as quickest detection as discussed in [41, 42, 43]. In sequential

change detection methods, the well-known Page’s cumulative sum (CUSUM) algorithm has

been shown to be optimal in the sense of minimizing the detection delay while maintaining

an acceptable level of false alarm [41, 44]. Moreover, the CUSUM algorithm has been pre-

viously adopted for the collaborative spectrum sensing by assuming that the observations

from multiple sensors are independent and identically distributed both in time as well as in

space [41, 45, 46]. To the best of our knowledge the previous work on multi-sensor quickest

detection either ignores the presence of the mutual correlation in the received observations

or consider it as a deleterious e�ect [47]. However, this spatial correlation is a feature that can

be used for detection as already mentioned in the previous section, since the noise processes

at di�erent nodes can be safely assumed statistically independent.

Taking into account the above discussions, we formulate the Multivariate Cumulative

SUM(MCUSUM) algorithm by exploiting the spatial correlation structure. Consequently, the

proposed scheme also considers the fact that due to the limited coverage of the signal emitted

from a weak intensity event, just a subset of sensors (in the form of a spatial cluster) are able

to receive power levels enough for reliable detection [48]. While considering the spatial

correlation, it is required that the information regarding the spatially structured covariance

matrix should be available. The MCUSUM is a recursive method that operates with single

sample, hence, the estimation of the unknown covariance matrix is not feasible [44]. In

order to overcome this hurdle we propose to model the spatial covariance structure by using

the a-priori spatial information based on the known sensor-to-sensor distances. Similarly,

to observe the change point and ignore noisy observations from the una�ected sensors (i.e.

sensors that receive the event signal with negligible power), the proposed detection method

selects observations from the set of relevant sensors only. Finally, to asses the performance of

the proposed scheme, we analyze the expression of the mean detection delay by adopting the

asymptotic results given in [49]. Simulations results are included to verify these analytical

expressions.
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4.2.1 Problem formulation and assumptions

We consider an infrastructure-based WSN where in order to observe the event, K sensors

continuously measure their total received power (in dBm)1. They normalize the measure-

ments by subtracting the respective mean noise powers (in dBm, assumed to be known) as in

[50], and relay the normalized measurements {xi}Ki=1 (in dBm) to the fusion center. Under

H0, the power at the output of the i-th local energy detector is simply the sum of noise

and interference powers. Consequently, due to the e�ect of the interferences, the total noise

power can be modeled as a independent log-normally distributed random variable with vari-

ance �2
n
i

(assumed to be known) [50]. Hence, under the null hypothesis {xi}Ki=1 (in dBm) are

independent Gaussian distributed random variables with zero means and variances
�

�

2
n
i

 K

i=1
.

Under H1, the total power at i-th sensor is the sum of the event signal power (modeled with

log-normal random variable having variance �2
s
i

, that quanti�es shadow fading) and the noise

power2. Given this, the total received power underH1 is equal to the sum of two independent

log-normally distributed random variables and the sum can be approximated as log-normal

random variable [51]. Based on this information, given H1, the measurements {xi}Ki=1 (in

dBm) are assumed to be Gaussian distributed with means µi , E [10log10 (1 + SNRi)] and

covariances �s
i

�s
j

⇢i,j + �

2
n
i

where ⇢i,j quanti�es correlation of shadowing between sensor

i and j [50]. Having said this, at time instant n, the observation vector received at the

fusion center can be represented as x (n) ,
h

x1 (n) x2 (n) · · · xK (n)
iT

and the

signal model can be written as:

H0 :x (n) = w (n) ,

H1 :x (n) = s(n) +w (n) ,
(4.14)

where s(n) ⇠ N (µs (n) ,⌃s) with i-th element of the mean vector µs (n) is µi and

i, j-th element of ⌃s is �s
i

�s
j

⇢i,j . Similarly, w (n) ⇠ N (0,⌃0) contains noise with

⌃0 = diag
n

�

2
n1

�

2
n2

· · · �

2
n
K

o

. Hence, under H0, x (n) ⇠ N (0,⌃0) and under H1,

x (n) ⇠ N (µs(n),⌃1) with ⌃1 = ⌃s +⌃0.

4.2.1.1 Selection of active sensors

We assume that the event will appear at an unknown random position and the signal power

emitted by the event decays isotropically and only a subset of sensors are a�ected due to it

[48]. This observation allows us to distinguish between the so-called active (a�ected) and
inactive (una�ected) sensors, respectively. For an improved detection performance intuition

suggests that the detection rule should rely on the observations of the K  K active sensors,

thus discarding the observations from the rest of inactive sensors. Keeping this in mind we

1In order to exploit the experimentally obtained shadowing correlation model based on a-priori sensor-to-
sensor distances, instead of random amplitudes, herein, we use signal model based on power in dBs.

2We are implicitly assuming that the noise includes interference and modeled as a independent log-normally
distributed.
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are in front of a detection problem where it is convenient to use a rank-reduced version of

the signal model in (6.4). To do so, we need to select the observations of the K most relevant

sensors. Herein, to simplify the mathematical exposition, we assume that the received signal

vector x (n) is already ordered such that the �rst K samples of x (n) correspond to the K
active sensors and the remaining Kc samples consist of only noise correspond to the inactive

sensors [30]. We believe that in practice, this assumption can be easily relaxed. For example

the signal samples (in dBm) in x (n) can be sorted by ordering the vector x(n) in descending

order. Further details about such a process can be found in [47, 30]. Similarly, another way

to relax the assumption is that the local sensors weight themselves locally based on their

received powers and the fusion center sorts the observations based the provided weights.

Adding further, the sensors can even perform local selection by comparing their received

powers with some prede�ned threshold and the quali�ed sensors declare themselves as

active sensors. Keeping these facts into considerations the rank-reduced signal model can

be written as:
H0 : x (n) = w (n) ,

H1 : x (n) = sK (n) +w (n) ,
(4.15)

where sK (n) = TKs(n) is an ordered vector that has the �rst K non-zero signal elements

corresponding to the received signals at the K active sensors and

TK =

"

IK 0K⇥(K�K)

0(K�K)⇥K 0(K�K)⇥(K�K)

#

(4.16)

Hence, we have sK (n) = N �

TKµs(n),TK⌃sTT
K
�

. For simplicity and without loss of

generality, we assume variables in w (n) are I.I.D, therefore �2
n
i

= �

2
n
j

= �

2
0 , so under H0

x (n) = N �

0,�2
0I
�

. Then under H1 we have x (n) ⇠ N �

TKµs (n) ,TK⌃sTK + �

2
0I
�

.

The detection problem (4.15) says that due to the emergence of an event signal, changes

occur both in the mean vector and covariance structure. Therefore, the quickest detection

technique should be capable of simultaneously monitoring the mean as well as the covariance

matrix. Furthermore, the proposed signal model also takes into account the rank-reduction

of the signal covariance matrix by introducing TK in (4.15). Therefore, in addition to the

spatial proximity information, the rank-reduced signal model (4.15) will indeed allow us to

bene�t from an equivalent signal to noise ratio gain due to selection of the active sensors.

4.2.2 Proposed quickest detection approach

In this section we present the proposed quickest detection scheme. In order to proceed we

de�ne a time n , N as the the discrete-time at which the change (ideally, it occurs at

time Nd) is detected. If N > Nd then the detection delay is � = N � Nd. Similarly, if

N < Nd, a false alarm has occurred with the average time between the false alarm is being

TFA = E0 [N ], where E0 denotes the average time taken before the change occurs (i.e. event
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emerges). Similarly, the worst case detection delay is de�ned as:

E1 [N ] = sup

N
d

�1

⇣

esssup E
h

N �Nd | N � Nd, {x (n)}Nd

n=1

i⌘

, (4.17)

where esssup denotes essential supremum. Under the Lorden’s criterion, the objective is

to �nd the stopping rule that minimizes the worst-case delay while maintaining the time

between the false alarms larger than a certain threshold, TFA � � [41]. An alternative

approach is to minimize the average detection delay,

T� = sup
N

d

�1
EN

d

[N �Nd | N � Nd] , (4.18)

which is asymptotically equivalent to the worst case delay [41]. Now, the algorithm that �nds

the minimum T� in this problem is the Page’s CUSUM Test (PCT) [41, 46, 45]. The stopping

time of the PCT is determined as:

T (q) = inf {n : Cn � q} , (4.19)

where q is a pre-determined threshold [44]. The cumulative statistic Cn can be recursively

calculated for n � 1 as follow:

Cn = max (Cn�1, 0) + Ln (x) , (4.20)

where C0 = 0, Ln (x) , loge
f1(x(n))
f0(x(n))

and fh (x (n)) with h = 0, 1 are likelihood functions

under the alternate hypotheses. Observing (4.20) we can see that the CUSUM algorithm �nds

the �rst n for which Cn � q > 0.

In the proposed MCUSUM based on the signal model (4.15), not only Nd but also Ka is

unknown, hence, it involves a nested likelihood ratio. Taking into e�ect these consideration,

the Log-likelihood ratio statistic to be used in (4.20) is given as:

Ln(x) = max
1LK

K
a

X

l=1

Log

(

Dl
exp

��1
2 x̃

T (n)�lx̃(n)
�

exp
��1

2x
T (n)⌃�1

0 x(n)
�

)

, (4.21)

where Dl =
p
det⌃0/

p

det⌃l,1, �l = ⌃�1
l,1 with ⌃l,1 = Tl⌃sTT

l + �

2
0I, and x̃(n) =

x(n)� µl,s(n) with µl,s(n) = Tlµs(n).

Now the recursive test (4.20) needs input in the form of Ln (x) (4.21) at every time instant

n, the estimation of the unknown covariance matrix ⌃l,1 is not feasible. Therefore, we

present a mechanism to �nd the unknown covariance matrix ⌃l,1 by assuming locations

of nodes are a-priori known [50]. In order to do so, �rst we assume the shadowing e�ects

at di�erent sensors have similar variances as �2
s
i

= �

2
s
j

= �

2
s , then we can write Tl⌃sTl =

�

2
sTl TT

l with  as the correlation matrix having elements ⇢i,j for i, j = 1, 2, ...K . Simi-

larly, the shadowing parameter �2
s is an experimentally obtained parameter that is dependent

on the propagation environment and it is assumed to be known [50, 52]. Moreover, in
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(4.21) the matrix �l can be considered as a concentration matrix or a precision matrix.

The elements of the precision matrix can be interpreted in terms of partial correlations and

partial variances. Partial correlation measures the degree of association between two random

variables. In our problem, in order to exploit this association we model the correlation

between two receivers with the help of the correlation model in [52] by exploiting the fact

that nodes locations are known. Hence, the correlation between i

th and j

th sensor can be

modeled as ⇢i,j = e

�ad
i,j [50, 52]. It is mentioned in [52], that for urban areas, at 1700

MHz a ⇡ 0.12 and for suburban areas at 900MHz a ⇡ 0.002. Moreover, in (4.21) we can

write x̃T (n)�lx̃(n) = Tr[�lx̃(n)x̃T (n)]. Keeping all these into e�ect, we can deduce that

the statistic (4.21) indeed matches the expected covariance matrix ⌃l,1 with the received

covariance matrix x̃(n)x̃T (n) as an additional detection metric jointly with the signal energy.

In other words, it takes into account both correlation and the reliability of information by

selecting the active sensors.

Finally, the proposed MCUSUM statistic is achieved by putting Ln(x) from (4.21) in (4.20).

The proposed quickest detection can be interpreted as a two dimensional MCUSUM as it

operates with the "max" operation both in the space and time. At every received observation

vector it selects the active sensors and exploits the spatial structure of the received observa-

tions by matching the received covariance matrix with the modeled one, as explained in the

previous paragraph.

4.2.3 Performance analysis

The performance of the quickest detector is normally de�ned by TFA and T� [45, 49].

For a particular detector larger TFA and smaller T� means better detection performance.

Consequently, to explain the advantages of sensor selection and exploitation of spatial struc-

ture, herein, we assume the case where the active sensors have been perfectly identi�ed.

Keeping this in mind, based on the well known result by Lorden [49], the expressions for the

asymptotic TFA and T� are given as [45]:

TFA = E0 [N ] � e

q as q !1 (4.22)

and

T� = E1 [N ] ⇠ q

D (fH1 k fH0)
as q !1, (4.23)

where for a speci�c L, fH1 (x) and fH0 (x) are the likelihood functions of the signal model

(4.15) under H1 and under H0, respectively. Similarly, D (fH1 k fH0) = E1 [Ln (x)] is the

Kullback-Leibler Divergence (KLD) between the two densities. The KLD between the two

densities is de�ned as:

D (fH1 k fH0) =

ˆ
fH1 (x) log

fH1 (x)

fH0 (x)
dx. (4.24)
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Note that E1 [Ln (x)] is always positive and E0 [Ln (x)] is always negative [44]. The asymp-

totic results from Lorden’s approach can be interpreted as for a constant TFA or q, T� is

inversely proportional to the KLD. It means that the higher is the value of D (fH1 k fH0),

the smaller will be T�. In order to analyze D (fH1 k fH0) of the proposed scheme, let us

suppose the exact number of the active sensors is K0, then the solution to the integral (4.24)

is [53, Chapter 10]:

D (fH1 k fH0) =
1

2
log

det (⌃0)

det
�

⌃K0,1

� +
1

2
Tr
�

⌃K0,1⌃
�1
0

�

�1

2
Tr
⇣

⌃K0,1⌃
�1
K,1

⌘

+
1

2
Tr
�

⌃�1
0 µK0,s(n)µ

T
K0,s(n)

�

, (4.25)

where ⌃K0,1 = TK0⌃sTT
K0 + �

2
0I and ⌃K,1 = TK⌃sTT

K + �

2
0I. Similarly, based on the

assumption that the number of active sensors K0 is perfectly known, we have the following

two cases.

Case 1. K = K0: Number of active sensors are perfectly selected,

D (fH1 k fH0) =
1

2
log

det (⌃0)

det
�

⌃K0,1

� � K

2

+
K0

2

�

2
s

�

2
0

+

 

1

2�2
0

K0
X

i=1

µ

2
i,s

!

.

(4.26)

Case 2. K = K , all sensors (active and inactive) are selected

D0
(fH1 k fH0) =

1

2
log

det (⌃0)

det (⌃K,1)
+

K0

2

�

2
s

�

2
0

� 1

2
Tr
⇣

⌃K0,1⌃
�1
K,1

⌘

+

 

1

2�2
0

K0
X

i=1

µ

2
i,s

!

,

(4.27)

where ⌃K,1 = ⌃s + �

2
0I.

Lemma 4.1. D0
(fH1 k fH0)  D (fH1 k fH0) and equality prevails when K0 = K .

Proof. To compare (4.26) and (4.27) and analyze the impact of only sensor selection, we

suppose ⌃s = �

2
sI in both of the equations. Therefore, Tr

⇣

�

TK0⌃sTT
K0 + �

2
0I
�

⌃�1
K,1

⌘

=

K0
�

2
s/
�

�

2
s + �

2
0

�

+K�

2
0/
�

�

2
s + �

2
0

�

,log
�

det (⌃0) /det
�

TK0
a
⌃sTT

K0 + �

2
0I
� 

= K0log
⇣

�2
0

�2
s+�2

0

⌘

and

log {det (⌃0) /det (⌃K,1)} = Klog
⇣

�2
0

�2
s+�2

0

⌘

. Putting these values in (4.26) and (4.27) we can

easily deduce that D0
(fH1 k fH0)  D (fH1 k fH0) for the caseK � K0.

By using the results of this lemma and the Lorden’s asymptotic approximation (4.23), it is

clear that by using sensor selection jointly with a-prior spatial information indeed enhances

the performance of the MCUSUM.
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Figure 4.4: Typical behaviour of the MCUSUM statistic Cn.

4.2.4 Numerical results

For the analysis we use K = 30 sensors uniformly distributed in a square �eld. The event

appears at a random location that emits some power. To comply with the discussions in

Section 3, we set the coverage of the event’s signal such that an unknown subset ofK sensors

receive non-zero powers from the event. Consequently, we �x �

2
0 = 2, �2

s = 1.5. The

behaviour of the adaptive multivariate CUSUM statistic Cn for the three schemes shown in

Figure 4.4. These results show the change in the log-likelihood ratios for the three schemes

before and after the emergence of the event. For all three cases the curves of MCUSUM

statistics show sudden increase right after the change in the distributions occurs at n = 50.

We can also see that for a certain value of q, the algorithm that uses jointly spatial information

and sensor selection has the quickest response to the change created by the event’s signal.

In Figure 4.5, with the help of monte-carlo simulations we present the normalized his-

tograms of the detection delays in responding to the change occurs. These histograms

also shows that the proposed sequential detection scheme based on the spatial information

performs better.

The results in Figure 4.6 con�rm the above numerical results where we plot the average

detection delay versus the changing value of the threshold q. As asymptotically TFA is ex-

ponential function of the threshold q, increasing q also means increase in TFA. In Figure 4.6,

we can see that increase in q (or TFA ) results in increase in the average detection delay

times of the three schemes. Similarly, it can be seen that the increase in the response time

of the proposed detection scheme is less than the scheme that assume no spatial structure.

Moreover, using observations of only active sensors further increase the performance.
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Figure 4.5: Normalized histograms of 20000 points of the detection delays for
thresholds q = 50 and q=100.
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Figure 4.6: Average detection delay time T� vs threshold q.





CHAPTER 5

Collaborative Spectrum Sensing with
Spatial Signatures

In the previous chapter we presented a detailed discussion on rank-reduced multi-sensor

detection schemes based on model order selection and exploitation of spatial correlation. In

the present chapter we adopt those concepts to applying them to the application of multi-

sensor based spectrum sensing to detect the presence of licensed user transmission. Due to

the rapid growth in the �eld of radio communication, most of the available spectrum has

already become congested and the assignment of frequencies to new services is currently a

critical problem. On the other hand, studies show that assigned frequencies are not occupied

all the time, implying that the traditional way of spectrum allocation has resulted in under

utilization of such a precious resource. In that sense, cognitive radio (CR) has the potential

to become the solution to the spectrum under utilization problem. The CR paradigm is based

upon the coexistence of both licensed and unlicensed users within the same frequency band,

in such a way that the latter are allowed to utilize the free spectrum holes left by former,

in a dynamic and opportunistic manner [54, 55]. This technology is being very actively

researched, and even regulatory and standard bodies have also begun to support the idea of

spectrum reuse [56, 57]. Among the various functions of a CR system, reliable sensing of

the spectrum of licensed or primary users (PU) is certainly of paramount importance. Such

a spectrum sensing is performed by unlicensed or secondary users (SU), either following a

single-sensor or a multi-sensor approach. The process of spectrum sensing with a single sen-

sor is fundamentally limited by local impairments, such as the noise level, the SNR wall [15]

and radio propagation e�ects such as path loss and fading experienced by this sensor, which

signi�cantly deteriorate its sensing performance [58]. In contrast, collaborative spectrum

sensing relies on the combination of measurements coming from multiple neighboring sen-

sors [59]. Therefore, collaborative approaches are able to circumvent most of the propagation

impairments of single-sensor spectrum sensing, due to the presence of diversity in the set of

measurements being processed at the fusion center [60]. It has to be taken into account that

for the case of large-scale sensor networks, the signal of the PU will only reach to a subset

of sensors (i.e. those sensors located close to the PU), which will typically be closely spaced,

thus forming a cluster having highly correlated observations [17].

Motivated by the above facts, we propose a modi�ed GLRT-based detector that achieves

the regularization of the unknown covariance matrix with the help of spatial signatures,

67
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the concept was preliminary introduced in the previous chapter. Herein, we extended it

to the problem of detecting Gaussian random waveforms emitted from a PU with unknown

covariance matrix. This is in contrast to the deterministic approach considered in the previ-

ous chapter, where an unknown but constant waveform was assumed to be transmitted by

the PU, and where ideal propagation conditions as well as perfect knowledge on the signal

parameters was also assumed. In that sense, the present contribution o�ers a much more re-

alistic approach by assuming the emission of Gaussian random waveforms, by including the

presence of shadowing and noise power uncertainty, and by taking into account the practical

problems that may arise in large-scale networks when estimating the unknown covariance

matrix of the PU. The latter is indeed related to the required number of observations to avoid

ill-conditioning in the estimation of this matrix, which is typically on the order of the number

of sensors [61]. Therefore, detection algorithms requiring the inverse or the determinant of

this matrix can no longer be applied for short observation periods. To cope with this practical

problem, the present work incorporates the concept of shrinkage estimation, a method that

is found to improve the stability of estimated covariance matrices with short data records

[61]. Simulation results have been obtained to compare the proposed detection schemes with

and without spatial signatures, as well as with and without shrinkage estimation, showing

that the introduction of spatial structures and shrinkage estimation signi�cantly improves

the overall detection performance.

The remaining of the chapter is organized as follows. In 5.1, the problem statement

and details about the signal model are presented. Section 5.2 presents the structured signal

model based on the concept of spatial signatures, and 5.3 introduces the proposed detection

algorithm. In 5.4 we brie�y discuss the shrinkage method for the estimation of the covariance

matrix. Finally, we present the simulation results in 5.5.

5.1 Problem statement

We consider herein a large cognitive radio network (CRN) where both primary and secondary

users coexist in the same geographical area. We assume an infrastructure-based secondary

network [16], where each cell consists of a single base station (BS) working as a fusion

center, and K SUs working as sensors. We also assume that sensors are deployed in the

region following a uniform distribution and that the sensors and PU remain stationary in

their position during the observation interval. The signal power emitted by the PU decays

isotropically as a function of distance, and it is a�ected by a signi�cant path loss attenuation

due to the large area being covered by the network, as well as by fading/shadowing e�ects.

As a consequence, only a subset of sensors will be able to receive enough power levels so as

to easily detect the presence of the PU with a given detection performance [33, 62]. The rest

of sensors will typically receive extremely weak power levels, and this observation allows us

to distinguish between the so-called active and inactive sensors, respectively. In the process

of collaborative spectrum sensing, the BS coordinates the opportunistic spectrum access of

SUs in its cell, by directing sensors to perform spectrum sensing periodically. At the end of
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each sensing period, all the sensors report their measurements to the BS, which makes the

�nal decision about the presence or absence of the PU [60]. Once the �nal decision is made at

the BS, it is broadcast back to SUs within the cell, in order to inform them about the presence

or an absence of the PU. Similarly to [37], we further assume that the BS knows the location

of the SUs, either through the use of positioning techniques, or through some calibration

process.

5.1.1 Signal model and test statistics at the SU

In the collaborative sensing system considered herein, we assume that sensors simply mea-

sure the PU signal power on a target frequency band using an energy detector, and they

report their sensing results to the BS [63]. This is a simplistic interpretation of collaborative

sensing, which indeed covers a much wider area [64], but it allows us to concentrate on the

speci�c problem of energy detection. Indeed, the energy detector is the simplest detector

that can be constructed in practice. It uses very limited a-priori information regarding the

signal, since the detection is based only on the signal power. In the sequel, we will consider

an observation interval of n = 1, 2, . . . , N sensing periods. During the n-th sensing period,

every SU captures a snapshot ofm = 1, 2, . . . ,M received signal samples in order to estimate

the received signal power. At the i-th sensor (i.e. SU), two hypotheses arise regarding the

existence of a PU signal on a given channel:

H0 : yi (m;n) = zi (m;n)

H1 : yi (m;n) = gi (m;n) + zi (m;n)
i = 1, 2, . . . ,K (5.1)

where zi(m;n) ⇠ N (0,�2
",i) are the i.i.d. samples encompassing the aggregate of random

disturbances a�ecting each sensor, whereas gi(m;n) are the received signal samples corre-

sponding to the random waveform emitted from the PU. Based on these samples, the energy

detector at sensor i for the n-th sensing period is given by:

Ti(n) =
1

M

yT
i (n)yi(n) =

1

M

M
X

m=1

y

2
i (m;n) (5.2)

where yi(n) , [yi(1;n), yi(2;n), . . . , yi(M ;n)]T .

It is interesting to note that the energy detector in (5.2) can fairly be approximated by

a Gaussian distribution in virtue of the central limit theorem (CLT), provided that M is

su�ciently large1. Moreover, it should also be taken into account that the overall noise

in a wireless receiver is often considered to be an ensemble of various e�ects, including not

only the thermal noise contribution, but also other degradations such as the presence of

interference signals from distant PUs or from other opportunistic SUs. Due to this fact, it is

1For instance, in the case of IEEE 802.22 WRANs, sensors measure the entire 6 MHz DTV channel at the
Nyquist rate during observation intervals of 1ms, and thus a total ofM = 6 ·103 samples are typically processed
per snapshot [63].
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very di�cult to determine the exact noise powers �2
",i, even if we calibrate the system [65]. In

some situations, this noise power uncertainty can cause the rise of the SNR wall, which can

be understood as the minimum SNR below which signal cannot be detected, thus hindering

the overall detection process [15]. Consequently, and from a practical point of view, it is of

interest to assume that �2
✏,i is unknown. A similar statement can be made for the power being

received from the PU at sensor i, which is referred herein as P",i , E
⇥|gi(m;n)|2⇤, and is

also considered to be unknown due to the unknown location of the PU and the presence of

shadowing/fading that may alter the actual received power from its nominal value.

With the above considerations, the test statistics for the energy detector at sensor i in

(5.2) can be modeled by the following Gaussian distribution [63]:

H0 : Ti(n) ⇠ N
 

�

2
",i,

2�4
",i

M

!

H1 : Ti(n) ⇠ N
0

@

P",i + �

2
",i,

2
⇣

P

2
",i + 2P",i�

2
",i

⌘

M

+
2�4

",i

M

1

A

(5.3)

where both �

2
",i and P",i are assumed to remain constant during the whole observation

interval of N sensing periods, and thus, they can be treated as unknown deterministic

parameters herein.

5.1.2 Signal model and test statistics at the BS

Every sensor calculates an estimate of its received power level according to (5.2), and trans-

mits this power estimate to the BS through a reporting channel. At the BS, the power

estimates received from theK sensors at the n-th sensing period are stacked into the (K⇥1)

vector x(n) , [x1(n), . . . , xK(n)]T , where xi(n) stands for the noisy and attenuated version

of Ti(n) after propagation through the reporting channel from sensor i to the BS [66].

Although the actual propagation e�ects of the K reporting channels are assumed to be

unknown herein, they are considered to remain constant within the observation interval

of N sensing periods. Therefore, the received signal model at the BS can still be expressed

as some noisy contribution under H0 and some signal plus noise contribution under H1, as

follows:
H0 : x (n) = w (n)

H1 : x (n) = s(n) +w (n)
(5.4)

for n = 1, . . . , N and with w(n) ⇠ N (µw,⌃w) a (K ⇥ 1) vector containing the reported

noise power levels at each sensor when no PU is present, whereas s(n) ⇠ N (µs;⌃s) is a

(K ⇥ 1) vector with the PU power levels. It is important to recall here that both w(n) and

s(n) are power measurements, and thus, {µw,µs} contain the mean noise powers and the

mean signal powers at each sensor, respectively, whereas {⌃w,⌃s} represent the variability
of the corresponding power estimates being reported by the sensors. At the BS, and because

of the disturbances that may appear due to propagation through the reporting channel, we
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will assume that power measurements underH0 are i.i.d. with some common variability �

2
w,

in such a way that⌃w = �

2
wIK for some unknown �

2
w, and IK the (K ⇥K) identity matrix.

Note also that both µsand ⌃s depend on the characteristics of the random waveform being

emitted by the PU and its position with respect to the K sensors. Finally, and for the sake of

clarity, we can express the signal model at the BS to be Gaussian distributed as follows:

H0 : x (n) ⇠ N (µ0,⌃0)

H1 : x (n) ⇠ N (µ1,⌃1)
(5.5)

where µ0 , µw and ⌃0 , ⌃w under the H0 hypothesis, whereas µ1 , µs + µw and

⌃1 , ⌃s+⌃w under theH1 hypothesis. In practice,⌃s will depart from a diagonal matrix,

and the correlation represented by non-diagonal elements in ⌃s will typically indicate the

presence of correlated shadowing e�ects in the received PU signal strengths [22].

5.2 Signatures-based problem formulation

5.2.1 Preliminaries

For an improved sensing performance, intuition suggests that the detection rule should rely

on the observations of active sensors, thus discarding observations from the rest of inactive

sensors. This approach can be understood as a kind of rank reduction method, in which

the removal of the most noisy dimensions of the received signal subspace is known to

substantially improve the overall signal-to-noise ratio. Moreover, since active sensors are

typically located close to the PU, and also close to each other forming a spatial cluster, this

side information should also be considered in the design of the detector. It is for this reason

that one of the key points of this thesis is the identi�cation of the set of active sensors, a

purpose that will be achieved through the help of model order selection techniques and the

spatial structure of the neighboring sensors. To this end, we propose a structured signal

model based on the concept of spatial signatures that was introduced in Section 4.1.1 of the

previous chapter.

5.2.2 Full structured signal model

By making explicit the role played by the spatial structure of the network, through the

dependence on spatial signature matrix H introduced in introduced in Section 4.1.1, the

values of s(n) in (5.4) can be expressed as s(n) = Ha(n). Then, the signal model in (5.4) can

be rewritten as:
H0 : x (n) = w (n)

H1 : x (n) = Ha(n) +w (n)
(5.6)

where a(n) ⇠ N (µa,⌃a) is a (K ⇥ 1) vector containing the random weights of each sig-

nature onto the received signal. That is to say, the elements within a(n) quantify the
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importance of each of the sensors signatures in the reconstruction of the signal �eld emitted

by the PU. Therefore, by selecting the largest weights, we are actually choosing the most

relevant sensors on the basis of their physical proximity to the PU. The more the sensor is

located closer to the PU, the more its signature vector will be aligned with s(n), and thus the

larger the weight assigned to this signature. By using this linear combination of signatures

in (5.6), we are taking into account both the distances between neighboring sensors and the

location of the sensors with respect to the PU, thus fully exploiting the spatial information

contained within the received signals. From a statistical point of view, the only di�erence

with respect to the unstructured signal model in (5.4)-(5.5) is that now, a speci�c structure is

imposed onto both µ1 and⌃1, with µ1 = Hµa and⌃1 = H⌃aHT +�

2
wIK . Finally, once we

have the signal model with the embedded spatial structure, the next step will be to select the

relevant signatures contributing to the received signal, which is discussed in Section 5.2.3.

5.2.3 Rank-reduced structured signal model

The PU will typically appear at an unknown and random position, and it will be surrounded

by a given number of K  K active sensors. We need to select the relevant signatures of

the active sensors so that the rest of K � K signatures can reasonably be ignored. In some

sense, we are in front of a detection problem where it is convenient to use a rank-reduced

version of the signal model in (5.6). To do so, we will select theKmost relevant signatures by

using model order selection techniques [29]. Once we select the set of K active sensors, then

their signatures will be stacked into a truncated (K ⇥ K) matrix HK. Similarly, the selected

weights will be stacked into a (K ⇥ 1) vector aK(n), which is the reduced version of vector

a(n) in (5.6). The resulting rank-reduced signal model can be written as:

H0 : x (n) = w (n)

H1 : x (n) = HKaK(n) +w (n)
(5.7)

where the random weights aK(n) are assumed to be Gaussian distributed with aK(n) ⇠
N (µaK ,⌃aK). Therefore, the di�erence with respect to the full structured model in (5.6) is

that µ1 = HKµaK and ⌃1 = HK⌃aKH
T
K + �

2
wIK , both depending on the unknown model

order K. In addition to the spatial information provided by the use of spatial signatures, the

rank-reduced version of matrix H will indeed allow us to bene�t from an equivalent SNR

gain due the projection of the received signal onto a reduced dimensionality subspace.

5.3 Detection algorithms

In our detection problem, there are unknown parameters under both hypotheses that prevent

us from adopting the well-known Neyman-Pearson detector. This obstacle is typically cir-

cumvented by adopting the GLRT approach, since it usually results in simple detectors with

good performance. The main principal drawback, however, occurs when the dimension of
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the unknown signal vector (i.e. the model order) is unknown [30]. In the signal model (5.7),

the model order (i.e. the number of K active sensors) is unknown, and thus we cannot use

the GLRT in straightforward manner. Instead, we need to modify the GLRT by using model

order selection techniques [29] in order to determine the appropriate value for K to be used.

5.3.1 Unstructured GLRT

Before discussing the structured detector that incorporates the MDL criterion and spatial

information into the traditional GLRT, herein, we derive the unstructured traditional GLRT

for the signal model 5.4 using the discussion in Section 3.2.2. In the detection problem to be

solved indicated in (5.5), we need to estimate the unknowns {µ0,⌃0} under H0, as well as

{µ1,⌃1} underH1. To do so, we will assume that the BS has available the measurements of

K sensors forN consecutive sensing periods, which are stacked into the (K⇥N ) matrixX ,
[x(1), . . . ,x(n)]. In these circumstances, the expression for the traditional or unstructured-

GLRT can be written as:

⇤UG (X) =
max
µ0,⌃0

fx (X;µ0,⌃0)

max
µ1,⌃1

fx (X;µ1,⌃1)
?H0

H1
� (5.8)

where � is a threshold that determines a given probability of false alarm. The estimates

of unknown parameters required in (5.8) are typically found by using maximum likelihood

estimation (MLE), because it is asymptotically an unbiased and e�cient estimator [35, Chap.

3]. Regarding the MLE of the unknown mean vector µ1, it can easily be found as:

µ̂1 = x̄ , 1

N

N
X

n=1

x (n) . (5.9)

By using [35, Lemma 3.2.1], the MLE of the covariance matrix ⌃1 can be written as:

⌃̂1 = ⌃̂x = R̂x � x̄x̄T (5.10)

where R̂x , 1
N

PN
n=1 x(n)x

T (n). The sample covariance matrix ⌃̂x of the received samples

at the BS and their mean vector x̄ are the su�cient statistics under hypothesisH1. Similarly

under hypothesisH0, the ML estimate of µ0 can be obtained as µ̂0 = x̄, and the ML estimate

of �2
w can be found as:

�̂

2
w =

1

K

Tr(⌃̂x) (5.11)

where Tr(·) is the trace operator. Replacing all of the unknowns with their estimates and

after some mathematical manipulations, the �nal expression for (5.8) turns out to be :

⇤UG (X) =
|⌃̂x|

h

1
KTr(⌃̂x)

iK
?H0

H1
�. (5.12)
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The test statistic in (5.12), which does not take into account any spatial information, is

nothing but the traditional Mauchly’s Sphericity test [35, Chap 10]. The detector operates

with the full sample covariance matrix ⌃̂x, and it neither considers the relevance of the active

sensors nor the spatial structure as a side information A modi�ed Sphericity test has been

proposed in [67, 68], by exploiting the fact that the signal covariance matrix may be of low-

rank dimensionality. However, the performance of this unstructured Sphericity test-based

detector can further be improved by incorporating spatial structure as a side information and

using only the particular observations sent by the active sensors. This fact will be introduced

later on in section 5.3.2.

5.3.2 Structured GLRT with spatial information

As we have already mentioned in Section 5.2.3, the key point in the proposed rank-reduced

signal model in (5.7) is the determination of the spatial model order L. Since L  K , the

detector with spatial information can operate with a reduced signal subspace by rejecting

those dimensions (i.e. those spatial signatures) where the PU signal contribution is almost

negligible. Therefore, some performance gain is expected compared to traditional unstruc-

tured signal detectors. The process of determining the optimal L is typically coupled with the

one of signal detection. In particular, the GLRT approach to cope with an unknown model

order decides that the signal is present if ,

⇤0
SG (X) = max

1lK
⇤SG,l(X) = max

1lK

8

>

<

>

:

max
µ0,�2

w0

fx

�

X;µ0,�
2
w0

�

max
µ

a

l

,⌃
a

l

,�2
w1

fx

�

X;µa
l

,⌃a
l

,�

2
w1

�

9

>

=

>

;

?H0
H1

� (5.13)

where, we use �2
w0

and �2
w1

for the variance of power estimates being received at the BS under

hypotheses H0 and H1, respectively. The denominator in (5.13) is the likelihood function of

the observation under H1, which includes the unknown model order K as an additional

parameter to be determined by searching the maximum of the GLRT from l = 1, . . . ,K . As

we know from the discussions in Chapter 4, that the problem with (5.13) is that it will always

implement the test statistic with maximum model order l = K . To cope with this problem,

we will consider the well-known minimum description length (MDL) criterion. With the help

of this selection technique, both the estimation of the true model order K and the evaluation

of the GLRT can be done jointly. The detector combining the structured-GLRT and the MDL

can be expressed as:

⇤SG (X) = min
1lK

{l logK � 2 log⇤SG,l(X)} ?H0
H1

� (5.14)

where l logK is a penalty function preventing the GLRT statistic to monotonically increase

with increasing model orders. In (5.14), ⇤SG,l(X) stands for the structured-GLRT statistic

while considering K̂ = l as the tentative model order, whose likelihood functions under

both H1 and H0 will be derived in Section 5.3.2.1. Finally, in Section 5.3.2.2, we will propose
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an algorithm to evaluate the structured-GLRT in (5.14) and take advantage of the available

spatial information embedded onto the signatures matrix.

5.3.2.1 Derivation of the structured-GLRT for the tentative model order K̂ = l

In this section, we will derive the expression for the structured-GLRT ⇤SG,l(X) required

in (5.14), which assumes a tentative model order K̂ = l for the parameters {µa
l

,⌃a
l

} in

the likelihood function under H1. Bearing in mind the Gaussian nature of the received

measurements at the BS, as already introduced in Section 5.2.3, the likelihood function in

the denominator of ⇤SG,l(X) in (5.13) is given by

fx

�

X; µa
l

,⌃a
l

,�

2
w1

�

= |⌃1,l|�
N

2 exp


�N

2
tr
⇣

⌃�1
1,l ⌃̂x

⌘

�

(5.15)

where the unknown parameter⌃a
l

is embedded into the covariance matrix⌃1,l, since⌃1,l =

Hl⌃a
l

HT
l + �

2
w1
I. The sample covariance matrix ⌃̂x has the expression:

⌃̂x =
1

N

N
X

n=1

(x (n)�Hlµa
l

) (x (n)�Hlµa
l

)T . (5.16)

The ML estimate of the unknown mean vector µa
l

is µ̂a
l

=
�

HT
l Hl

��1
HT

l x̄, where x̄ ,
(1/N)

PN
n=1 x (n). Substituting µ̂a

l

into (5.16) and using [35, Lemma 3.2.1], we can write

(5.16) as:

⌃̂x = R̂x � x̄x̄T + (x̄� x̄p) (x̄� x̄p)
T (5.17)

where x̄p = PH
l

x̄ and PH1,Hl

�

HT
l Hl

��1
HT

l is the projection matrix onto the l-

dimensional subspace spanned by Hl. The vector x̄p is therefore the projected version

of the mean vector x̄ onto the subspace spanned by the columns (i.e. signatures) ofHl. Next,

in order to �nd the ML estimate of ⌃̂a
l

we can apply the logarithm on both sides of (5.15),

take the derivative w.r.t. ⌃a
l

and equate to zero. By doing so, we get [69, Sec. 8.5 ],

⌃̂a
l

= H†
l

h

⌃̂x � �̂

2
w1
I
i

H†
l

T
(5.18)

whereH†
l,
�

HT
l Hl

��1
HT

l is the Moore-Penrose pseudoinverse and �̂

2
w1

is given by

�̂

2
w1

=
Tr
h

P?
H

l

⌃̂x

i

K � l + 1
(5.19)

with P?
H

l

, I � PH
l

the orthogonal projection matrix of PH
l

. In (5.19), the variance �

2
w1

of power estimates at the BS is estimated by using a vector that is the projected version of

the observation vector x (n) onto the noise subspace, since P?
H

l

⌃̂x = P?
H

l

⇣

R̂x � x̄x̄T
⌘

=

1
N

PN
n=1

h

P?
H

l

x (n)
i h

P?
H

l

x (n)
iT �P?

H
l

x̄
⇣

P?
H

l

x̄
⌘T

. Consequently, for the overall covari-
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ance matrix ⌃1,l,

⌃̂1,l = PH
l

h

⌃̂x � �̂

2
w1
I
i

PH
l

+ �̂

2
w1
I (5.20)

which can also be written as,

⌃̂1,l = PH
l

⌃̂xPH
l

+
1

K � l + 1
Tr
h

P?
H

l

⌃̂x

i

P?
H

l

. (5.21)

On the other hand, under hypothesisH0, we need to determine the unknown parameters
�

µ0,�
2
w0

 

required by likelihood function in the numerator of ⇤SG,l(X) in (5.13). Regarding

the the ML estimate of �2
w0
, it can be obtained as �̂2

w0
= 1

KTr
⇣

R̂x � x̄x̄T
⌘

' 1
KTr

⇣

⌃̂x

⌘

,

where we already used the fact that µ̂0 = x̄. With these results in mid, we can obtain the

expression for the structured-GLRT with tentative model order K̂a = l as:

⇤SG,l(X) '
�

�

�̂

2
w0
I
�

�

�N

2 exp
⇥�N

2

⇤

�

�

�

⌃̂l

�

�

�

�N

2 exp
⇥�N

2

⇤

=

�

�

�

⌃̂1,l

�

�

�

N

2

�̂

KN
w0

. (5.22)

Substituting ⌃̂1,l = PH
l

⌃̂xPH
l

+ �̂

2
w1
P?

H
l

and �̂

2
w0

= 1
KTr(⌃̂x), after some mathematical

manipulations, (5.22) becomes

⇤SG,l(X) '

�

�

�

PH
l

⌃̂xPH
l

+ 1
K�l+1Tr(P

?
H

l

⌃̂x)P?
H

l

�

�

�

N

2

h

1
KTr(⌃̂x)

i

KN

2

. (5.23)

The expression in (5.23) provides a closed-form expression for the structured-GLRT with

tentative model order L̂ = l. The main characteristic of this expression is that it selects

the most relevant spatial signatures and then on the basis of these signatures, it reduces

the rank of the covariance matrix of the observed measurements, ⌃x. This statement can be

explained by de�ning l , PH
l

⌃̂xPH
l

and noticing that l = PH
l

R̂xPH
l

�PH
l

x̄x̄TPH
l

,

which can be equivalently expressed by using the properties of projection matrices as l ,
1
N

PN
n=0 [PH

l

x (n)] [PH
l

x (n)]T � [PH
l

x̄] [PH
l

x̄]T . The expression of  l clearly shows

that it is indeed the sample covariance matrix of a vector achieved by projecting the received

observations x (n) onto the speci�c subspace being spanned by the signatures of active

sensors. This will indeed result in an SNR gain due to the projection of the observation

vector onto a reduced dimensionality subspace.

5.3.2.2 Implementation of the Structured-GLRT with MDL

The next step is to substitute the expression in (5.23) into (5.14), and perform the joint PU

signal detection and model order selection from l = 1, . . . ,K . To do so, we summarize

the implementation of the resulting detector in the pseudo-code description indicated in

Algorithm 5.1.
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Algorithm 5.1MDL-based structured GLRT
1. With the received observation vectors x(n), n = 1, 2, · · · , N , we calculate:

R̂x =
1

N

N
X

n=1

x (n)xT (n) and x̄ =
1

N

N
X

n=1

x (n)

2. Find µ̂a = H�1x̄.

3. Take the absolute values |µ̂a| and sort |µ̂a| in descending order, which
results in µ̃a = sort (|µ̂a|) .

4. Reorder the signature vectors in H according to the sorted µ̃a, to get
eH.

5. Implement the detector as:

• Initialize t = h i and l = 1.

• while l  K do:

– Set µal=eµa(1 : l).
– Set Hl= eH(1 : l).

– Calculate PHl = Hl

�

HT
l Hl

��1
HT

l .

– Calculate ⌃̂x in (5.16).
– Calculate ⇤SG,l(X) in (5.23).
– Push the result of l logK � 2 log⇤SG,l(X) onto the vector t.
– l = l + 1.

• end while

• ⇤SG(X) = min {t} ?H0
H1

� as in (5.14).

5.4 Improved estimation of the covariance matrix

Both the unstructured and the structured-GLRT detectors presented in this paper are found to

be based on the determinant of covariance matrices, which are typically estimated through

the sample covariance, as in (5.10) and (5.17), respectively. Therefore, and although it is

often taken for granted, a critical requirement for the GLRT detectors under study is that

the sample covariance matrices must be non-singular and positive de�nite. To this end, we

have to make sure that the number of available observations at the BS, given by N , is much

larger than the number of sensors K (i.e. N � K). However, in many sensor network

deployments we typically have a very large K , and thus, using a number of samples greater

than K is a requirement di�cult to ful�ll in practice. In these circumstances it is therefore

needed to estimate the covariance matrix with fewer samples while keeping a reasonable

detection performance. Stein in [70], introduced the concept of shrinkage applied to high-

dimensional estimators, and he derived the striking result that the performance of MLE can

always be improved upon by shrinking with a given factor ↵ (shrinkage intensity). This

improved covariance estimator is well-conditioned and always positive de�nite, even for

small sample sizes [61]. The basic principle of shrinking estimators is to shrink the variation
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of the eigenvalues in the sample covariance matrix, proceeding as follows:

⌃̆x = ↵F0 + (1� ↵) ⌃̂x , 0  ↵  1 (5.24)

where F0 is the target matrix, which is chosen to be positive de�nite (and therefore non

singular), well-conditioned and we assume it herein as F0 = 1
KTr(⌃̂x)IK . The interested

reader can �nd further details about the target matrix in [61]. Now for the expression in

(5.24), we need to choose an appropriate ↵, the shrinkage intensity parameter. In [71], the

authors discuss shrinkage methods that calculate the intensity parameter on the basis of

received observations. They present what they call an oracle approximating shrinkage (OAS)

estimator, which is an iterative method presented in Algorithm 5.2.

Algorithm 5.2 The Oracle approximating shrinkage estimator (OAS)

1. Initialize ↵ and �target.

2. Implement the shrinkage estimation as:

• while covariance matrix estimation error � > �target do:

– Calculate ⌃̆(k)
x = ↵

(k)F0 +
�

1� ↵

(k)
�

⌃̂x.

– Calculate ↵

(k+1) =
(1� 2

K )Tr(⌃̆(k)
x

b⌃
x

)+Tr2(⌃̆(k)
x

)
(N+1� 2

K )Tr
⇣
⌃̆

(k)
x

b⌃
x

⌘
+(1�N

K )Tr2
⇣
⌃̆

(k)
x

⌘

• end while

In Algorithm 5.2 �Target, represents a speci�ed threshold for the covariance matrix esti-

mation error. The algorithm stops once the estimation error turns out to be less than this

threshold, reaches to the following stable value of the shrinkage parameter,

↵approx ⇡ min

8

<

:

�

1� 2
K

�

Tr(⌃̂2
x) + Tr2(⌃̂x)

�

N + 1� 2
K

�

h

Tr(⌃̂2
x) + Tr2(⌃̂x)

i

, 1

9

=

;

. (5.25)

In our detection schemes, we use ↵approx in (5.25), the approximate value of the shrinkage

parameter in the covariance matrix estimation process indicated in (5.24).

5.5 Simulation results

The motivation of this section is to assess the performance of the proposed structured-

GLRT detector in (5.14) and (5.23), which takes advantage of the novel concept of spatial

signatures introduced in Section 5.2, and whose implementation is described in the pseudo-

code description of Algorithm 5.1. For the analysis to be conducted herein, we consider

a wireless sensor network with a total of K = 30 sensors deployed in a squared �eld. The

sensors are randomly placed within the �eld following a uniform distribution, and we assume

that the PU appears at an unknown position. We have tested the detectors considered in this
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Figure 5.1: ROC curves (��� = 0): �X = 3 dB, N = 100, M = 250, P0 = �7
dB and �f = 0 dB

paper for many di�erent uniformly distributed topologies of K sensors, and we have found

that the results have similar characteristics for di�erent random topologies.

For the signal generation, we are assuming a quasi-static block-fading channel in which

both the PU received power and the noise power at each sensor, do remain constant within

the observation interval of N measurements. For a given observation interval, the PU

received power at sensor i is given by P✏,i = P0d
��
i 10X�

/10, where P0 is the power at

a reference distance from the PU, � is the signal decay exponent with typical values from

2 � 5, di is the Euclidean distance between the PU and sensor i, and X� is the value of

the log-normal shadowing. From one observation interval to the following, we allow the

shadowing to vary according toX� ⇠ N (0,�2
X), with �X the dB-spread [63]. Regarding the

noise power at sensor i, we are assuming �

2
" = 10��

/10 for all sensors, with �� modeling

the log-normal noise uncertainty as �� ⇠ N (0,�2
�

�

), from one observation interval to

the following [72]. For the variability of power measurements at the BS, we are assuming

�

2
w = 2�4

"

M +�

2
f , as in (5.3), plus an additional disturbance �2

f due to the noisy reporting links.

Regarding the assessment of the detectors being considered in this chapter, we will ana-

lyze their performance with and without the shrinkage estimation through the use of receiver

operating characteristic (ROC) curves. Although the ROC curves fully characterize the per-

formance, it is also desirable to have a single and quantitative �gure of merit in order to

compare di�erent detectors. This metric is typically the area under the ROC curve (AUC),

which varies between 0.5 (poor performance) and 1 (good performance).
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Figure 5.2: ROC curves (��� = 3): �X = 3 dB, N = 100, M = 250, P0 = �7
dB and �f = 0 dB

Experiment 1: ROC curves for the detection schemes

In Figure 5.1 and 5.2, we evaluate the ROC curves for the proposed detection schemes by

setting the PU transmit power P0 = �7 dB, so that the mean received power in the sensor

�eld turns out to be �37 dB. In Figure 5.1 , we present the result in the absence of noise

power uncertainty (i.e. ��
�

= 0 dB) and in Figure 5.2 we plot the ROC curve for the case

of ��
�

= 3 dB. From these results, it can be observed that at a lower probability of false

alarm, the structured-GLRT ⇤SG(X) outperforms the unstructured one, ⇤UG (X), specially

in the case of severe noise power uncertainty in Figure 5.2. Similarly, results also show

that shrinkage estimation indeed improves the performance, which is more signi�cant in the

case of ⇤UG (X). In the case of the structured detector ⇤SG(X), there are no signi�cant

changes in performance due to the inclusion of shrinkage estimation. The reason for this

is that with spatial signatures, we are indeed using a subspace of reduced dimension as we

select the important samples in the received observations. Due to this selection, it indeed

automatically shrinks the variance of the eigenvalues of the sample covariance matrix ⌃̂x.

That is why, further shrinkage of the covariance matrix does not bring signi�cant changes in

the detection result. In spite of that, it is clearly evident from the plot that the performance

of the detector with the spatial signatures is better than the detector that is not using any

spatial structure.

Experiment 2: E�ects of noise power uncertainty

In Figure 5.3 and , we show the AUC plots to analyze the e�ects of noise power uncertainty

(i.e. ��
�

). The AUC plots clearly show that between ��
�

= 0 and ��
�

= 3 dB, both detectors
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Figure 5.3: AUC curves to assess the e�ects of noise power uncertainty: �X = 0
dB, N = 100,M = 250, P0 = �7 dB and �f = 0 dB

are robust against the noise power uncertainty, and ⇤SG(X) even shows robustness up to

�� = 5 dB. Indeed, the impact of noise power uncertainty is more severe in the case of low

SNR [72] and ⇤SG(X) is able to counteract this situation by increasing the system’s SNR

by selecting the samples of active sensors. It can also be inferred from the results that the

performance of the detection schemes improves by using shrinkage estimation, though the

improvement is very very small in the case of ⇤SG(X). In this experiment, we have also

analyzed the impact of noise power uncertainty on a energy detector at single node. We

remark here that we selected a sensor that is located close to the PU and it receives signal

with high SNR. In spite of that, we can see that the performance of the energy detector at a

single node is severely e�ected by noise uncertainty, thus con�rming the advantages of the

proposed approach of collaborating sensing with spatial information.

Experiment 3: E�ect of shadowing present in the channel between PU and
the SUs

In this experiment, we analyze the e�ect of shadowing present in the channel between PU

and the SUs. We analyze the two detection schemes for di�erent values of shadowing,

quanti�ed by the parameter �X . For this analysis, we consider two di�erent SNR regimes

(low- and high-SNR), and noise power uncertainties calibrated by ��
�

. In Figure 5.4 and 5.5

we plot the AUC curves for low SNR regime. Figure 5.4 is for ��
�

= 0 dB, and Figure 5.5

for ��
�

= 3 dB. The results show that by using spatial signatures and shrinkage estimation,

the detection performance improves. Interestingly, in the low-SNR regime both detection

schemes perform better as the shadow fading becomes more variable (i.e. higher �X ). This
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Figure 5.4: AUC curves to assess the e�ects of shadowing with ��� = 0 dB:
N = 100 andM = 250, P0 = �16 dB and �f = 0 dB.
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Figure 5.5: AUC curves to assess the e�ects of shadowing with ��� = 3 dB:
N = 100 andM = 250, P0 = �16 dB and �f = 0 dB.



5.5 Simulation results 83

0 2 4 6 8 10 12
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Shadowing Variance ,σ
X
 [dB]

A
re

a
 u

n
d
e
r 

R
O

C
 c

u
rv

e
, 
A

U
C

 

 

Λ
SG

(X)

Λ
SG

(X),Shrinkage

Λ
UG

(X)

Λ
UG

(X),Shrinkage

Figure 5.6: AUC curves to assess the e�ects of shadowing with ��� = 0 dB::
N = 100 andM = 250, P0 = �16 dB and �f = 0 dB.

is because of the heavy-tailed distribution of the primary signal strength, due to the log-

normally-distributed shadow fading [73]. Therefore, in the case of low-SNR and large dB-

spread, �X , the detection performance is found to improve. Similarly, in Figure 5.6 and

Figure 5.7 we plot the AUC curves for the high-SNR regime. Figure 5.6 is for ��
�

= 0 dB,

and Figure 5.6 for ��
�

= 3 dB. Here again, we can see that by using spatial signatures

and shrinkage estimation, the detection performance improves, too. The behavior of the

unstructured detector ⇤UG(X) is the same as it is in the case of low-SNR. In this experiment,

it is also interesting to note that the e�ect of shrinkage estimation over ⇤SG(X) is negligible,

since the plots with and without shrinkage are indistinguishable. On the other hand, the

performance of ⇤UG(X) signi�cantly increases due to introduction of shrinkage approach.

Experiment 4: E�ect of sample support available to estimate covariance ma-
trix

In this �nal experiment, we analyze the two detectors, for di�erent values of the number of

samplesN , used to estimate the covariance matrices. The results are shown in Figure 5.8 and

Figure 5.9, for noise power uncertainty ��
�

= 0 dB and ��
�

= 3 dB, respectively. We can

see that the performance of ⇤SG(X) is better than ⇤UG(X). The interesting observation is

that in the case of ⇤SG(X), for ��
�

= 0, there are no signi�cant changes in the performance

by introducing the shrinkage estimation. In the case of traditional GLRT, the shrinkage esti-

mation indeed improves the detection process, while considering small number of samples,

N .
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Figure 5.7: AUC curves to assess the e�ects of shadowing with ��� = 3 dB::
N = 100 andM = 250, P0 = �16 dB and �f = 0 dB.
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Figure 5.8: AUC curves to analyze the e�ects of sample size N : ��� = 0 dB,
�X = 3 dB,M = 250, P0 = �7 dB and �f = 0 dB.
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Figure 5.9: AUC curves to analyze the e�ects of sample size N : ��� = 3 dB,
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CHAPTER 6

Multi-antenna and Multi-sensor Detection

In the literature it has been widely recognized that multiple antennas can o�er space diversity

and improve the spectrum sensing performance [74, 75]. Hence, in this chapter, we present

novel spectrum sensing techniques for cognitive radio (CR) users that are equipped with

multiple antennas. We present two novel schemes, the �rst one is for the case of a single

user equipped with multiple antennas and the second one is for a cooperative approach (i.e.

multi-user) with multiple sensors, where each sensor is equipped with multiple antennas.

For the single user case, we exploit the fact that the presence of any primary signal should

result in spatial correlation in the observations received at di�erent antennas of the user

terminal [10, 76]. In addition to being spatially correlated, the received signal samples are

usually correlated in time due to presence of temporal correlated channel, oversampling

of the received signal or time correlation of the transmitted signal [19, 20]. This spatio-

temporal correlation is a feature that can be used for detection purposes, since the remaining

(i.e. undesired) noise processes at di�erent antennas can be safely assumed statistically

independent both in time and space.

Spectrum sensing methods that only exploit the spatial structure of the received signal

covariance matrix have been of great interest in recent time [74]. The majority of these

schemes are based on the multivariate statistical inference theory [36, 35] and interested

readers can �nd a comprehensive details in [35, Ch. 9-10], which discusses in detail mul-

tivariate detectors for testing the independence of random observations with the help of

the Generalized Likelihood Ratio Test (GLRT) on the basis of covariance matrices. These

GLRT-based detectors typically end up with a simple quotient between the determinant of

the sample covariance matrix and the determinant of its diagonal version, and these tests

have been widely applied to the detection of signals especially in the context of cognitive

radios [10, 76].

Through careful study on various existing spectrum sensing techniques, one can conclude

that the signal’s temporal correlation is not fully exploited in most of these techniques. In

fact in most of the the existing spectrum sensing techniques, the temporal correlation is

ignored or considered as a deleterious e�ect. One of the reasons is that temporal correlation

often makes it di�cult to achieve tractable solutions. However, the exploitation of temporal

correlation jointly with spatial correlation can provide us extra side information to enhance

the detection performance. Hence, it will be interesting to �nd ways to devise detection

87
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mechanisms that exploit temporal correlation with tractable solutions. Considering these

facts into consideration, the main focus of this work is to devise a multi-antenna detector that

robustly exploits spatio-temporal correlation. In order to do so we propose a signal model

that leads us to tractable detection schemes while exploiting the temporal correlation jointly

with spatial correlation. In the proposed signal model, we consider the concept of correlated

block-fading channel where the channel is temporally correlated inside sub-blocks of samples

and independent between sub-blocks [19].

Based on the proposed signal model, we adopt the GLRT formulation that makes a deci-

sion based on whether the spatio-temporal sample covariance matrix is diagonal or not [34].

To make the discussion and notation simple, we call this GLRT scheme as spatio-temporal

GLRT (ST-GLRT). Compared to the traditional spatial covariance based GLRT, the ST-GLRT

provides some improved performance. It is because the ST-GLRT scheme exploits temporal

correlation as an additional feature on top of spatial correlation and energy. However, since

the GLRT involves the estimation of unknown parameters (i.e. covariance matrix), it depends

on the sample size and the dimensionality. In practice, the GLRT is used based on the

assumption that the sample size is large while the sample dimension is small. When this is

not the case, the GLRT degenerates due to the singular and ill-conditioned sample covariance

matrix [77, 78]. In the case of the ST-GLRT, we have to deal with both the spatial and temporal

dimensions, and hence, the over all data dimension is even larger. Hence, the ST-GLRT has

some limitations when the detection process requires quick decision and the sample support

is small, as it is in the case of detection of primary signals in cognitive radio. Thus, although

for the large sample support, the ST-GLRT can certainly achieve an improved detection

performance, for small sample support it has some limitations that deserve a detailed study.

In order to bring robustness to the ST-GLRT, one may assume the existence of some under-

lying structure based on the spatial and temporal components of the covariance matrix. By

using this prior information, we can reduce the demand for large sample support. Having said

this, convenient structures that can be assumed for the spatio-temporal modeling of multi-

antenna measurements are those given by persymmetric and Kronecker product structures

[79, 80, 81]. In [34], the authors exploited the Toeplitz structure of the covariance matrix

by assuming wide-sense stationarity. Doing so they proposed an approximated GLRT in the

frequency domain that leads to robustness against the small sample support. Contrary to that

work, in the present work we rather focus on exploiting the covariance structures without

assuming approximation in the frequency domain. In particular, we will take advantage of

the result in [80] which states that by exploiting the persymmetric structure, the number

of independent vector measurements required for the covariance matrix estimator can be

decreased by up to a factor of two. This will certainly bring down the demand for high

sample support required for the ST-GLRT not to degenerate. Hence, we take advantage of

the use of the persymmetric structure to modify the ST-GLRT and provide robustness against

the repercussions of small sample support and large dimensional data.

Recently, the concept of exploiting the Kronecker structure of the covariance matrix has

received a lot of interest in statistics [82, 83]. The formulations of the maximum likelihood
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(ML) method for estimating the covariance matrix based on the Kronecker product has been

previously discussed in [82, 83]. Similarly, in the cases where the correlation structure is not

separable by using the Kronecker product, [84] discusses details about the nearest Kronecker

product approximations. In this paper we use the Kronecker structure to modify the ST-GLRT

by taking advantage of the inherent spatio-temporal structure of the received observations.

In order to do so, we adopt and extend our earlier work [85] by using the Kronecker product

to e�ciently exploit the space-time correlation in a multi-antenna spectrum sensing scheme.

In addition to the Kronecker product based factorization, we also assess the e�ects of ex-

ploring the persymmetric property of the covariance matrix, thus exploiting the fact that

factored matrices have additional persymmetric structure [81]. Therefore, by exploiting the

Kronecker product structure jointly with the persymmetric structure, the performance of

detection schemes can further be improved in terms of e�ciency of the number of sample

to estimate the covariance matrix. Apart from the single user can with multiple antenna, we

also exploit spatio-temporal correlation in the case of a WSN that monitors environmental

e�ects in large region.

Towards the end of chapter we propose a spectrum sensing scheme with multiple dis-

tributed users where each user has multiple antennas. For both of these cases we start by

adopting the traditional GLRT. Then we propose the proposed detection schemes for both

of these two cases. In the the second part of this chapter, we consider a novel spectrum

sensing for a cognitive radio network with multiple distributed radios where each radio has

multiple antennas. The proposed spectrum sensing scheme exploits the fact that when any

primary signal is present, measurements are spatially correlated due to inter-antennas and

inter-users spatial correlation. The use of multiple antennas for detection at the multiple

distributed radios has been previously discussed in [86, 87]. However, the detection schemes

in these papers ignore the inter-radios spatial correlation. In contrast we consider a more

general detection problem based on joint exploitation of inter-antennas and inter-users spa-

tial structure. In order to exploit this correlation we propose two novel detectors that are

robust against the high dimensionality of data and small sample support. The proposed

detectors exploit the embedded spatial structure and decompose the large covariance matrix

into inter-user and inter-antennas matrices by using single-pair and multi-pairs Kronecker

products.

Finally, for each case to compare the proposed methods with the traditional techniques,

numerical results are drawn. These results illustrate that the proposed detection schemes

indeed out perform the traditional approaches especially in the case of small sample support.

6.1 Single-user multi-antenna Spatio-temporal GLRT

There are two kinds of techniques for spectrum sensing that take advantage of spatial di-

versity. One is cooperative spectrum sensing which involves single antenna multiple users

(i.e. sensor nodes, radios) to detect the spectrum together, as we have seen in the previous
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chapters. Each user conducts its own operation on the signal and transmits the result to

a fusion center (base station) through signaling channel, and then the fusion center will

combine the results from di�erent users. The other approach is multi-antenna spectrum

sensing [20, 10], which is performed by one user, and thus no signaling overhead is required.

In this section we present novel detectors for spectrum sensing for a single user equipped

with multi-antenna.

1
2

L

Channel

Primary User

Secondary User

Figure 6.1: System model for a single user equipped with multiple antennas.

6.1.1 Problem statement

Herein, we address the problem of detecting the presence of a primary user by a single

cognitive radio that is equipped with L antennas as shown in Fig 6.1. We assume no prior

knowledge about the primary transmission, or the noise processes except that the noise is

spatio-temporally independent. We focus on a practical scenario where due to the presence

of a primary user (PU) signal, the received signals at the L antennas are correlated in space as

well as time. Moreover, we assume uniform linear array (ULA), hence, the spatial correlation

structure is represented by a L ⇥ L symmetric Toeplitz matrix Cs. Similarly, we take

into consideration that the received signal samples are correlated in time due to presence

of temporal correlated channel, oversampling of the received signal or time correlation of

the transmitted signal [19]. Hence, the consecutive received samples of the L ⇥ 1 vector

x (n) , n = 1, · · · , NT at L antennas of a user are temporally correlated, where x (n) ,
[x1 (n) , x2 (n) , · · · , xL (n)]T and NT is total number received samples. The exploitation of

temporal correlation jointly with spatial correlation can provide us extra side information

to enhance the detection performance. In order to devise detection mechanisms that exploit

temporal correlation with tractable solutions, the proposed technique can be described as

follow:

1. We consider to split the received block of NT vectors x (n) into M sub-blocks where

each block contains N samples of vector x (n), as shown in the Fig. 6.2.
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2. We assume that the consecutive vectored samples within each sub-block are considered

to be temporally correlated with N ⇥N temporal correlation matrix Ct.

3. Independence is assumed between consecutive sub-blocks.

In the proposed mechanism, we consider to take into account the concept of correlated block-

fading single input multiple output (SIMO) channel. The main feature of the correlated block-

fading model is that the the channel is correlated in each block that contains N sample.

However, the fading channel is independent between consecutive blocks [19, 88].

1

M

DATA

Sub Block Sub Block Sub Block

N = NT /M

X(m) 2 CL⇥N
m = 1, 2, . . . . . . .,M

1 2 M

NT = MxN

X(1) X(2) X(M)

XT 2 CL⇥NT

L

2

Figure 6.2: Schematic representation of the proposed methodology for slicing
the observation block intoM sub-blocks

6.1.2 Problem formulation and proposed signal model

In order to proceed, we need the distribution of {x (n)}NT

n=1. We take it to be zero-mean

complex Gaussian. In addition to resulting in tractable models and useful detectors, this

assumption is reasonable if the primary network employs orthogonal frequency division

multiplexing (OFDM) as modulation format1 [34]. Based on the above facts, under the

alternate hypotheses the vector sample x (n) can be represented as:

H0 :x (n) = w (n) , n = 1, · · · , NT ,

H1 :x (n) = s(n) +w (n) , n = 1, · · · , NT ,

(6.1)

where s(n) is the vector with the samples of the primary signal at the L antennas at time

n and w (n) is the the additive noise vector. To process the data for the decision making,

the SU collects NT consecutive samples of vector x (n). Based on the proposed three steps

1We begin with the complex base-band signal sampled at the speci�c Nyquist rate.
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approach discussed above, the received NT vector samples are divided into M blocks and

each block consists of N vector samples, such that MN = NT . Let us de�ne the m-th block

as:

X (m) =

2

6

6

6

6

4

x1 (m) x1 (2m) · · · x1 (Nm)

x2 (m) x2 (2m) · · · x2 (Nm)
...

...
. . .

...

xL (m) xL (2m) · · · xL (Nm)

3

7

7

7

7

5

=

2

6

6

6

6

4

xT
1 (m)

xT
2 (m)
...

xT
L (m)

3

7

7

7

7

5

, (6.2)

where the i-th row, xi (m) = [xi (1m) , xi (2m) , · · · , xi (Nm)]T for m = 1, .....,M , con-

tains N -samples at the i-th antenna. Let us de�ne a vector z (m) , vec (X (m)). The

covariance matrix of the LN ⇥ 1 vector z (m) under hypothesisH1 is

⌃1 = E
⇥

zzH
⇤

=

2

6

6

6

6

4

⌃11 ⌃12 · · · ⌃1N

⌃21 ⌃22 · · · ⌃1N
...

...
. . .

...

⌃N1 ⌃N2 · · · ⌃NN

3

7

7

7

7

5

2 CLN⇥LN
, (6.3)

where the sub-block covariance matrices ⌃ik = E
⇥

xixT
l

⇤ 2 CL⇥L, 1  i, l  N in ⌃1

capture all space-time second order information about the random vectors {xi}Li=1. Thus,

the hypothesis testing problem becomes

H0 :z ⇠ CN (0,⌃0) ,

H1 :z ⇠ CN (0,⌃1) ,
(6.4)

where CN (0,⌃h) h = 0, 1, denotes the complex Gaussian distribution with zero mean and

covariance ⌃h. Based on the assumption about the noise powers at the L antennas of the

user, we can classify the detection problem (6.4) into two categories. If the noise powers

at the antennas are considered to be the same, the multi-antenna cognitive radio is called

calibrated cognitive radio. In this case, under H0, ⌃0 = �

2
wI 2 CLN⇥LN with �

2
w as the

common noise power at di�erent antennas. However, here in this work we focus on the most

generic case of uncalibrated multiple antennas user, hence, ⌃0 = ⌃A,0 ⌦ IN⇥N or

⌃0 =

2

6

6

6

6

6

4

�

2
1 0 · · · 0

0 �

2
2

...
...

. . . 0

0 · · · 0 �

2
L

3

7

7

7

7

7

5

⌦ IN⇥N , (6.5)

where �2
i , i = 1, 2, ...., L is noise power at i-th antenna of the array. The diagonal structure

of ⌃0assumes that when no PU signal is present, the observations are uncorrelated in both

spatial and temporal dimensions.
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6.1.3 GLRT based on Spatio-Temporal correlation

In this section, we derive a spectrum sensing scheme that exploits both the spatial and

temporal correlation. Since, the parameters {⌃0,⌃1} under both hypotheses hence need

to adopt the GLRT approach, the test statistic of ST-GLRT can be formulated as:

⇤ST (Z) =
max
⌃0

fz (Z;⌃0)

max
⌃1

fz (Z;⌃1)
?H0

H1
�, (6.6)

where fz (Z,⌃0) and fz (Z;⌃1) are the likelihood functions under hypothesis H0 and H1,

respectively. Similarly, we assume that we have M independent blocks of the data X, or

equivalently vector z,Z =
h

z (1) z (2) , · · · , z (M)
i

available. In order to solve GLRT

(6.6) we have to derive the maximum likelihood estimates of the parameters for each of

the hypotheses. Note that the maximum likelihood estimates is asymptotically an unbiased

and e�cient estimator [25]. The expression for the likelihood function fz (Z;⌃1) under

hypothesisH1 can be written as:

fz (X;⌃1) =
1

(⇡)MLN |⌃1|M
exp

n

�M tr
⇣

⌃�1
1 ⌃̂1

⌘o

, (6.7)

where ⌃̂1 = 1
N

PM
m=1 z(m)zH(m). As we have assumed independence between the M

sub-blocks, the M snapshots of the observation vector z (m) are statistically independent

and the maximum likelihood estimator is equal to the sample covariance matrix ⌃̂1. Under

the alternate hypothesis the expression for fz (Z,⌃0) is

fz (Z,⌃0) = fz (Z;⌃A,0 ⌦ IN⇥N )

= (⇡)�
1
2MLN |⌃A,0 ⌦ IN⇥N |�M exp

"

�
M
X

m=1

z(m)
�

⌃�1
A,0 ⌦ IN⇥N

�

zH(m)

#

,

(6.8)

Now we can write fz (Z;⌃A,0 ⌦ IN⇥N ) = fx (XM ;⌃A,0, IN⇥N ) [89] and the expression

for fx (XM ;⌃A,0, IN⇥N ) can be written as:

fz (Z,⌃0) = fx (XM ;⌃A,0, IN⇥N )

= (⇡)�
1
2MLN |⌃A,0|�MN |IN⇥N |�ML

exp

"

�
M
X

m=1

tr
�

⌃�1
A,0X (m) IN⇥NXH (m)

 

#

,

(6.9)

whereXM =
h

X (1) X (2) , · · · , X (M)
i

. By using (6.9) we can get MLE of⌃A,0 as:

⌃̂A,0 = diag
⇣

1
MN

PM
m=1X (m)XH (m)

⌘

[90] and thus ⌃̂0 = ⌃̂A,0⌦IN⇥N . In case, user is

equipped with calibrated antennas, then the only unknown parameter underH0 is the noise

power �2
w , and therefore �̂2

w = 1
KN tr

⇣

⌃̂1

⌘

[47]. To solve (6.6), in the case of uncalibrated
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case we have to replace ⌃0 and ⌃1 by ⌃̂0 and ⌃̂1, respectively. Doing so, and solving (6.6)

we can get the �nal expression of the GLRT as:

⇤ST (Z) =

�

�

�

⌃̂1

�

�

�

�

�

�

⌃̂0

�

�

�

?H0
H1

�, (6.10)

Note that the detection scheme in (6.10) assumes no structure for the covariance matrix,

except that the covariance matrix is symmetric and non-singular. Furthermore, we remark

that in the case of calibrated case the only di�erence is present in the denominator of (6.10)

as instead of
�

�

�

⌃̂0

�

�

�

, we will have 1
KN tr

⇣

⌃̂1

⌘

, thus the detection scheme for calibrated case

can be expressed as: ⇤T (Z) =
�

�

�

⌃̂1

�

�

�

/

1

KN

tr
⇣

⌃̂1

⌘

.

Before concluding the discussion in this section, as a reference we present the traditional

GLRT, that only exploits the spatial correlation and ignores the temporal correlation. By as-

suming the fact that the vector samples x (n) , n = 1, · · · , NT are temporally uncorrelated,

the GLRT scheme for the detection problem (6.1) can be formulated as:

⇤T (XN
T

) =

max
⌃

A,0

fx

⇣

XN
T

;⌃H0
A

⌘

max
⌃

A,1

fx

⇣

XN
T

;⌃H1
A

⌘ ?H0
H1

�, (6.11)

where fx
⇣

XN
T

;⌃H0
A

⌘

and fx
⇣

XN
T

;⌃H1
A

⌘

are the likelihood functions,⌃H0
A and⌃H1

A rep-

resent the covariance matrices under hypothesis H0 and H1, respectively. Similarly, matrix

XN
T

=
h

x (1) x (2) , · · · , x (NT )
i

2 CL⇥N
T contains all of the available samples of

vector x. Solving (6.11), the �nal expression of the detector based on the traditional GLRT

formulation can be written as:

⇤T (XN
T

) =

�

�

�

⌃̂H1
A

�

�

�

�

�

�

⌃̂H0
A

�

�

�

?H0
H1

�, (6.12)

where ⌃̂H1
A = 1

N
T

PN
T

n=1 x(n)x
H(n) is a sample covariance matrix. As under the hypothesis

H0, when we assume uncalibrated case and only noise is present, thus the estimate of

the diagonal matrix can be expressed as: ⌃̂H0
A = diag

⇣

⌃̂H1
A

⌘

[90]. The detector (6.12)

only exploits the energy and spatial-correlation across the L antennas of the receiver. This

scheme completely ignore the information provided by the temporal correlation. Compared

to (6.12), the ST-GLRT (6.10) promises improved detection performance since it uses temporal

correlation as an additional detection metric. With the help of computer simulations, we

compare the two detection schemes for cognitive enabled receiver with L = 4 antennas with

the help of AUC plots as shown in the Fig.6.3.
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Figure 6.3: AUC curves: Comparison of the ST-GLRT ⇤ST (Z) with the tradi-
tional GLRT ⇤TR (XNT ) for di�erent sizes of the sample support
(M), number of vector samples per sub-block N = 15 and number
of antennas L = 4 .

In Fig. 6.3 we can see that for the case where the sample support (M ) is su�cient

enough, the ST-GLRT clearly outperforms the traditional GLRT scheme in presence of similar

conditions. However, in the case when M < NL , we can see that the ST-GLRT completely

collapses. In order to circumvent this limitation in the following sections we propose some

modi�cations in the proposed ST-GLRT by exploiting the presence of some inherent struc-

tures in the space-time correlation.

6.1.4 GLRT exploiting persymmetric structure

In order to solve the detection problem (6.4) with unknown covariance matrices, a critical

requirement for the detectors based on the GLRT is that the sample covariance matrices

must be non-singular and positive de�nite [83]. To this end, we have to make sure that the

number of available observations given by M , is much larger than LN (i.e. M � LN ).

However, in quick spectrum sensing, a number of samples greater than LN is a requirement

di�cult to ful�ll in practice [91]. Hence, the motivation of the remaining discussion is

to bring robustness against this small sample support. Note that in (6.10) we assume no

prior knowledge about the spatio-temporal structure of the covariance matrix except that

it is symmetric. Hence, it is completely blind detector. One way to achieve the robustness

against the small sample support is to look for possible a-priori known patterns/structures

in the large spatio-temporal covariance matrix. Using this prior information in particular the

persymmetric structure, more e�cient detection schemes can be devised.



96 CHAPTER 6. MULTI-ANTENNA AND MULTI-SENSOR DETECTION

6.1.4.1 Persymmetric-block-Toeplitz structure

In this section we establish the fact that the spatio-temporal covariance matrix ⌃1 has a

persymmetric-block-Toeplitz structure. Toeplitz structured matrices belong to a sub-class of

persymmetric matrices and a matrix is said to be Toeplitz matrix if its entries are constant

on each diagonal [92]. Similarly, as matrix is a block-Toeplitz if its blocks are constant

on each block diagonal. Similarly, a spatial process with equidistant observations (as in

the case of ULA) and with a stationary covariance function yields a symmetric Toeplitz

covariance matrix [84]. Moreover, if there is a regular temporal component (random spatial

vector) with stationary covariance in time, the resulting space-time covariance matrix has an

additional block Toeplitz structure. In our problem, we assume that the received (L⇥N)

signal block at the structured antenna array as a multichannel auto-retrogressive process

with (N ⇥N) temporal correlation matrixCt, which is Toeplitz [93]. Similarly, the antenna

spatial structure is represented by the Toeplitz correlation matrix Cs [93][94]. In particular,

if the L elements of a linear array are symmetrically spaced with respect to the phase center

(so that the lth element and the (L + 1�l)th element are at the same distance from the array

phase center) the covariance matrix is persymmetric. Keeping the persymmetric nature of the

matrices Ct and Cs in mind, the spatio-temporal covariance matrix ⌃1 can be assumed as a

persymmetric-block-Toeplitz [95]. Therefore, we have the following persymmetry condition

satis�ed [96]

⌃1 = J1⌃1J1, (6.13)

where (LN ⇥ LN) matrix

J1 =

2

6

6

6

6

6

4

0 · · · 0 1
... · · · 1 0

0
...

1 0 · · · 0

3

7

7

7

7

7

5

(6.14)

denotes the reversal matrix. Based on these considerations, in Section 6.1.4.2 we present

the modi�ed GLRT that exploits the persymmetric property of the block Toeplitz covariance

matrix.

6.1.4.2 Persymmetric GLRT(P-GLRT)

The di�erence in the formulation of the GLRT with the persymmetric comes due to the con-

straint (6.13). Therefore, the formulation of the GLRT based on the persymmetric covariance

matrix can be represented as:

⇤PS (Z) =
max
⌃0

fz (Z;⌃0)

max
⌃1

fz (Z;⌃1)
?H0

H1
�

s.t ⌃1 = J1⌃1J1

. (6.15)
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Comparing (6.15) to (6.6), we can see that the di�erence lies only in the denominator. In order

to exploit the persymmetry of ⌃1 we need to use the forward-backward (FB) log-likelihood

[97] which is combination of the forward looking and the backward looking log-likelihood

functions. The forward looking log-likelihood logfz (Z;⌃1) can be written as:

logf (F )
z (Z;⌃1) = �MLN log⇡ �M log |⌃1|�M

 

M
X

m=1

zH(m)⌃�1
1 z(m)

!

, (6.16)

Now by dropping constant terms and using zH(m)⌃�1
1 z(m) = tr

�

⌃�1
1 z(m)zH(m)

 

, (6.16)

can be written as:

logfz (Z;⌃1) = �log |⌃1|� tr
n

⌃�1
1 ⌃̂1

o

, (6.17)

where ⌃̂1 = 1
N

PN
n=1 z(m)zH(m). Similarly, with constraint ⌃1 = J1⌃1J1 the backward

looking log-likelihood logf (B)
z (Z;⌃1) can be written as [97]:

logf (B)
z (Z;⌃1) = �log |⌃1|� tr

n

⌃�1
1 J1⌃̂1J1

o

. (6.18)

Adding (6.17) and (6.18), gives us the forward-backward log-likelihood as:

1

2
logf (FB)

z (Z;⌃1) = �log |⌃1|� tr
n

⌃�1
1 ⌃̂PS,1

o

, (6.19)

where

⌃̂PS,1 =
1

2

⇣

⌃̂1 + J1⌃̂1J1

⌘

. (6.20)

The covariance matrix estimator (6.20) is called forward-backward sample covariance matrix

[97]. An exact theory indicating the performance of the estimator as a function of number

of independent vectors z(m) , m = 1, 2, · · · ,M to estimate the covariance matrix ⌃1 is

not available. However, a qualitative discussion shows that the sample covariance matrix

(6.20) allows the demand for required samples decreased by approximately a factor of two

[80, 92]. Similarly, it is reported in [98] that the ⌃̂PS,1 has consistently lower variance than

the variance of ⌃̂1. Solving (6.15) and using (6.20), the �nal expression for the modi�ed GLRT

becomes

⇤PS (Z) =

�

�

�

⌃̂1 + J1⌃̂1J1

�

�

�

�

�

�

⌃̂0

�

�

�

?H0
H1

�. (6.21)

where ⌃̂0 = ⌃̂A,0 ⌦ IN⇥N . Please note that in the case of calibrated antennas the only

di�erence lies in the denominator of (6.21) as instead of det
�

�

�

⌃̂0

�

�

�

, we will have 1
KN tr

⇣

⌃̂1

⌘

.

Compared to the detection scheme in (6.10), the new one in (6.21) has an improved per-

formance at small sample support the number of independent vector measurements required

for the covariance matrix estimator can be decreased by up to a factor of two [80]. In Fig.

6.4, we compare the detector ⇤PS (Z) in (6.21) with the frequency domain detector proposed

in [34]. We can see that the frequency domain scheme performs slightly better than the time

domain persymmetric detection scheme for sample size M < 60. In conclusion, we can say
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that the exploitation of inherent structure of covariance matrix both in frequency and time

domain, leads us to robustness against the small sample support compared to the ST-GLRT

in (6.10).
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Figure 6.4: AUC curves: Comparison of the P-GLRT ⇤PS (Z) with the ST-GLRT
⇤ST (Z) for di�erent sizes of the sample support (M), number of
vector samples per sub-block N = 15, number of antennas L = 4
and average SNR̄ = �8dB

6.1.5 GLRT based on the Kronecker product

In Section 6.1.3, we have presented the ST-GLRT approach for the detection problem in (6.4)

and argued that it degenerates due to the singularity issue that arises in detection problems

with small samples sizesM and large LN . In order to counteract this issue, then we modi�ed

the ST-GLRT by exploiting the persymmetric properties of the covariance matrix. Similarly,

we have also discussed that the spatio-temporal covariance matrix ⌃1 has block-Toeplitz

structure. Moreover, in [99, 100], it is reported that the block-Toeplitz structure can be

factored by Kronecker product of two matrices. Taking this into e�ect, we factorize the

covariance matrix ⌃1 into a purely spatial and a purely temporal components based on the

Kronecker product as [83]:

⌃1 = ⌃A ⌦⌃T. (6.22)

In (6.22), the sub-matrix ⌃A captures the spatial correlation between the observations re-

ceived at di�erent antennas and sub-matrix ⌃T captures the time correlation between N

columns vector in block X where we have the relation vec (X) = z. Herein, we remark that

the covariance structure (6.22) makes an implicit assumption that the temporal correlation

structure remains the same at all spatial locations (elements of antenna). Similarly, the spatial

correlation structure remains the same during time 1 : N .
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6.1.5.1 KR-GLRT

In this section, we apply the Kronecker product based factorization to derive the modi�ed

GLRT that can be expressed as:

⇤KR(Z) =
max
⌃0

fz (Z;⌃0)

max
⌃T,⌃A

fz (Z;⌃A ⌦⌃T)
?H0

H1
�. (6.23)

In order to solve (6.23), under hypothesis H1, we need to estimate the unknown covariance

matrices ⌃A and ⌃T by using maximum likelihood estimation (MLE) paradigm. Under H1,

the likelihood function fz (Z;⌃A ⌦⌃T) can be written as:

fz (Z;⌃A ⌦⌃T) = (⇡)�
1
2MLN |⌃A ⌦⌃T|�M

exp

"

�
M
X

m=1

z(m)
�

⌃�1
A ⌦⌃�1

T

�

zH(m)

#

, (6.24)

Now we can write fz (Z;⌃A ⌦⌃T) = fx (XM ;⌃T,⌃A) [89] and we have the expression

fx (XM ;⌃A,⌃T) = (⇡)�
1
2MLN |⌃A|�MN |⌃T|�ML

exp

"

�
M
X

m=1

tr
�

⌃�1
T XH (m)⌃�1

A X (m)
 

#

, (6.25)

To �nd the matrices⌃A and⌃T that satisfy max
⌃T,⌃A

fX (XM ;⌃A,⌃T) , a common approach is

to take derivative of logfX (XM ;⌃A,⌃T)

logfX (XM ;⌃A,⌃T) = �N log |⌃A|� Llog |⌃T|

� 1

M

M
X

m=1

tr
�

⌃�1
T XH (m)⌃�1

A X (m)
 

(6.26)

with respect to⌃A (⌃T) keeping⌃T (⌃A) �xed. Equating the result of the derivative to zero

and after simple mathematical operations, the estimators under the hypothesis H1 can be

written as [83]:

⌃̂T =
1

LM

M
X

m=1

XT (m) ⌃̂�1
A X (m) , (6.27)

⌃̂A =
1

NM

M
X

m=1

X (m) ⌃̂�1
T XT (m) . (6.28)

Expression (6.27) and (6.28) suggest that ⌃̂T and ⌃̂A can be achieved using an iterative

method such as the Flip-Flop algorithm. The Flip-Flop algorithm is obtained by alternately

maximizing logfx (XM ;⌃A,⌃T) w.r.t. ⌃A keeping the last available estimate of ⌃T �xed

and viceversa. In [83], numerical experiments have been reported which indicate that the

Flip-Flop algorithm performs very well and is much faster than a more general purpose
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Algorithm 6.1ML based Non-Iterative Flip-Flop
• Choose a starting value for ⌃̂0

A as IL⇥L

• Estimate ⌃̂1
T from (6.27) with ⌃̂A = ⌃̂0

A.

• Find the following

1. Estimate ⌃̂A from (6.28) with ⌃̂1
T.

2. Estimate ⌃̂T from (6.27) with ⌃̂A from previous step.

optimization algorithm such as Newton–Raphson [83]. In [82], it has been discussed that

for the case of large enoughM , there is no need to iterate the algorithm. Taking into account

this fact, we adopt non-iterative Flip-Flop approach and only perform the the steps given in

Algorithm 6.2. To begin with, we use an initial value of ⌃̂0
A = IL⇥L . On the other hand

under H0, we have the estimate of ⌃0 as ⌃̂0 = ⌃̂A,0 ⌦ IN⇥N . Having all of the maximum

likelihood based estimates, and solving (6.23), we can get the expression:

⇤KR(Z) =

�

�

�

⌃̂T

�

�

�

L �
�

�

⌃̂A

�

�

�

N

�

�

�

⌃̂0

�

�

�

?H0
H1

�. (6.29)

Note that in the case of calibrated antennas the only di�erence is present in the denominator

of (6.29) as instead of
�

�

�

⌃̂0

�

�

�

, we will have 1
LN tr

⇣

⌃̂1

⌘

.

The main advantage of the proposed GLRT (6.29) over the traditional is that under H1

instead of 1
2LN(LN + 1) parameters, it has only 1

2L (L+ 1) + 1
2N (N + 1) parameters to

estimate. Furthermore, the dimensions of these two covariance matrices ⌃T and ⌃A are

much smaller than the dimension of full covariance matrix⌃1, that is why the computations

are much less demanding. Another important point to note that the detector (6.29) takes into

account the Kronecker structure as an extra feature jointly with spatio-temporal structure

and the energy in the received observations. Keeping these facts in mind, the KR-GLRT

(6.29) indeed promises a performance improvement compared to the unstructured ST-GLRT

(6.10).

6.1.5.2 Flip-Flop Algorithm with Least Square Estimation

In every iteration of algorithm 6.2, to calculate (6.28) and (6.27), the inverse of the covariance

matrices is required which involves a signi�cant complexity. Keeping this in mind and using

results of [101, Theorem 4.1], we propose the Flip-Flop algorithm based on Least Square

Estimation (LSE) to �nd ⌃̂T and ⌃̂A. Since, we know that the GLRT is meant to �nd the

unknown covariance matrix with the help of the MLE, it would be therefore an abuse of

language to call the detector (6.29) with the LSE as a GLRT. It can be rather considered as an
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ad-hoc alternative. The expressions for ⌃̂T and ⌃̂A in LS paradigm can be written as:

⌃̂T =
(M � 1)�1

Tr
⇣

⌃̂2
A

⌘

M
X

m=1

XH (m) ⌃̂AX (m) , (6.30)

⌃̂A =
(M � 1)�1

Tr
⇣

⌃̂2
T

⌘

M
X

m=1

X (m) ⌃̂TX
H (m) , (6.31)

where Tr (A) denotes the trace of matrix A. In the LS case, the Kronecker product of ⌃A

and ⌃T is actually �tted to the sample covariance matrix by minimizing the di�erence in

Frobenius norm with respect to ⌃A and ⌃T as:

min
⌃A,⌃T

�

�

�

⌃̂1 �⌃A ⌦⌃T

�

�

�

2

F
. (6.32)

The derivation process of (C.8) and (C.9) based on solving (6.32) is given in the Appendix C.

Moreover, the steps in the algorithm based on the LS are the same as given in Algorithm 6.2.

The only di�erence is that instead of (6.27) and (6.28), it uses (C.8) and (C.9). Furthermore,

LS paradigm can be used without assuming any prior information or that the probability

distribution of the received signal should be known.

In Fig. 6.5, we compare the performance of the KR-GLRT, while estimating the two

matrices ⌃A and ⌃T with the help of MLE and LSE, respectively. In order to plot these

ROC curves, we assume L = 4 antennas with SNRs {�5.8dB,�5.65dB,�5.5dB,�6.0dB}.
The received mean power at the 4 antennas is 0dB. The rest of the parameters are given in

the caption of the �gure. From this experiment, we �nd that in the uncalibrated case where

noise powers at di�erent antennas are nonidentical, the MLE slightly outperforms the LSE

methodology. However, the LSE based ad hoc methodology has slightly less computational

complexity.

6.1.6 GLRT based on the Kronecker and persymmetric structure

In section 6.1.4, we have assumed that the covariance matrix ⌃1 has a persymmetric-block-

Toeplitz structure. Keeping this in mind, in this section we assess the possible improvement

in the detection performance of (6.29) by exploiting the fact that the factored matrices ⌃T

and ⌃A have individual persymmetric structure. We show that it is possible to account for

the persymmetric structure by a simple modi�cation of the �ip-�op algorithm. Hence, for

the estimation of the covariance matrix under H1, we explore both the Kronecker structure

and the persymmetric structures. Once we know ⌃T and ⌃A are having the persymmetric

structure, then the maximum likelihood based estimators for the persymmetric Kronecker

based GLRT (6.35) are found by considering the following constraints under hypothesisH1,

⌃A = JL⌃AJL, (6.33)
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Figure 6.5: ROCCurves: Comparison of the KR-GLRT (MLE) with the KR-GLRT
(LSE) for number of vector samples per sub-block N = 10, number
of antennas L = 4, sample sizeM = 40, noise uncertainty ↵nu = 1
and shadowing e�ect �dB-Spread = 4.

⌃T = JN⌃TJN, (6.34)

where JL and JN are the reversal matrices of dimensions (L⇥ L) and (N ⇥N), respectively.

The modi�ed version of KR-GLRT (6.23) that we denote as PK-GLRT here, can be written as:

⇤PK(Z) =
max
⌃0

fz (Z;⌃0)

max
⌃T,⌃A

fz (Z;⌃T ⌦⌃A)

s.t
⌃A = JL⌃AJL

⌃T = JN⌃TJN

(6.35)

We see that in the expression (6.35), under hypothesis H0 the solution is the same as in the

cases of (6.15), (6.21) and (6.23). The di�erence lies in the case of hypothesis H1, where we

need to solve
max
⌃A,⌃T

logfZ (Z;⌃T ⌦⌃A) ,

s.t
⌃A = JL⌃AJL

⌃T = JN⌃TJN

(6.36)

In (6.36), we used the fact that maximum of logfz (Z;⌃T ⌦⌃A) and fz (Z;⌃T ⌦⌃A) is

placed at the same value of the unknown parameters to be estimated [25]. To �nd the

maximizer with the constraints ⌃A = JL⌃AJL and ⌃T = JN⌃TJN we need to develop

the likelihood function in the form of forward-backward (FB) log-likelihood. From Section

6.1.4 we know that the FB is combination of the forward looking and the backward looking

log-likelihood. In the case of using Kronecker product, the forward looking log-likelihood
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function for estimating ⌃T can be written as:

logfF
z (Z;⌃T ⌦⌃A) = �N log |⌃A|� Llog |⌃T|

� 1

M

M
X

m=1

tr
�

⌃�1
T XH (m)⌃�1

A X (m)
 

.

(6.37)

or, the forward looking log-likelihood function for estimating ⌃A can be written as:

logfF
z (Z;⌃T ⌦⌃A) = �N log |⌃A|� Llog |⌃T|

� 1

M

M
X

m=1

tr
�

⌃�1
A X (m)⌃�1

T XH (m)
 

.

(6.38)

Similarly, using the discussion in 6.1.4, the backward looking log-likelihood can be written

logfB
z (Z;⌃T ⌦⌃A) = �N log |⌃A|� Llog |⌃T|

� 1

M

M
X

m=1

tr
�

⌃�1
T JNX

H (m)⌃�1
A X (m)JN

 

.

(6.39)

or
logfB

z (Z;⌃T ⌦⌃A) = �N log |⌃A|� Llog |⌃T|

� 1

M

M
X

m=1

tr
�

⌃�1
A JLX (m)⌃�1

T XH (m)JL
 

.

(6.40)

Adding (6.37) and (6.39), or (6.38) and (6.40) give us logfBF
z (Z;⌃T ⌦⌃A), the Kronecker

product based forward-backward log-likelihood. As mentioned before the approach is to use

a cyclic maximization and alternate between maximizing with respect to ⌃T and ⌃A, while

keeping the other variable �xed. In the �rst step, we �x ⌃A and �nd ⌃T that maximizes

logfBF
z (Z;⌃T ⌦⌃A) (obtained through adding (6.37) and (6.39)). Taking into account the

results in [89] and the concept of forward-backward estimation in Section 6.1.4, the estimator

of the persymmetric ⌃T can be found as :

⌃̂PS,T =
1

2ML

M
X

m=1

n

XH (m) ⌃̂�1
PS,AX (m) + JN

⇣

XH (m) ⌃̂�1
PS,AX (m)

⌘

JN

o

. (6.41)

Similarly, by following the same process with �xed ⌃T, the estimator of the persymmetric

⌃A can be written as:

⌃̂PS,A =
1

2MN

M
X

m=1

n

X (m) ⌃̂�1
PS,TX

H (m) + JL

⇣

X (m) ⌃̂�1
PS,TX

H (m)
⌘

JL

o

. (6.42)

As it was in the case of expressions (6.27) and (6.28), both of the expressions (6.41) and (6.42)

suggest that ⌃̂PS,T and ⌃̂PS,A can be estimated using an iterative method such as the Flip-Flop

algorithm, as shown in algorithm 6.2. Considering (6.41) and (6.42), the �nal expression for
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Algorithm 6.2 Non-Iterative Flip-Flop (persymmetric)
• Choose a starting value for ⌃̂0

A as IL⇥L

• Estimate ⌃̂1
T from (6.27) with ⌃̂1

A = ⌃̂0
A.

• Find the following

1. Estimate ⌃̂PS,A from (6.42) with ⌃̂1
T.

2. Estimate ⌃̂PS,T from (6.41) with ⌃̂PS,A from step 1.

the GLRT function (6.35) can be written as:

⇤PK(Z) =

�

�

�

⌃̂PS,T

�

�

�

K �
�

�

⌃̂PS,A

�

�

�

N

�

�

�

⌃̂0

�

�

�

?H0
H1

�. (6.43)

The advantage of (6.43) over (6.29) is that underH1 instead of 1
2L(L+1)+ 1

2N(N+1) param-

eters, it has approximately only (2L� 1) + (2N � 1) parameters to estimate. In conclusion,

by exploiting the underlying structure of the covariance matrix⌃1 via the persymmetric ML

estimates of covariance matrices ⌃T and ⌃A, it further increases the robustness of (6.29) at

small sample support. Here once again we remark that in the case of calibrated case the only

di�erence is present in the denominator of (6.43) as instead of
�

�

�

⌃̂0

�

�

�

, we will have 1
KN tr

⇣

⌃̂1

⌘

.

6.1.7 Numerical results

In this Section we present numerical results to analyze the proposed detection schemes that

are discussed in the preceding sections. For the analysis to be conducted herein, we use the

receiver operating characteristic ROC curve and the area under the ROC curve (AUC), which

varies between 0.5 (poor performance) and 1 (good performance) [27].

For the assessment of the detectors being considered in this chapter, the SNRs at the

di�erent antennas are allocated randomly. We use the average SNR of all antennas as: ̄ =
1
K

PL
i=1 i and the SNR of ith antenna is i = ⇣

i�1
min where min is the minimum SNR

among those of the L antennas. For a given average SNR ̄ and SNR gap ⇣ , we can generate

the SNRs of the antennas, though the match of the SNRs to the sensors can be random.

Moreover, we assume that the receiver is equipped with L = 4 antennas and the number of

vector samples in a sub-block is N = 15. The remaining parameters for every experiment

are described in the captions of the corresponding diagrams, accordingly.

In in the �rst experiment, we simulate with help of the Matlab, the ROC curves in order

to compare the performance of the proposed schemes to the traditional schemes. In this

experiment we plot ROC curves for two di�erent cases. In the �rst case we assume that the

unknown noise powers at di�erent antennas are perfectly estimated and there is no noise

power uncertainty. The ROC plots are given in Fig.6.6. In the second part of this experiment

shown in Fig. 6.7, we repeat the same experimental setup for the case when the noise power
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uncertainty is present. Note that we model the noise power uncertainty by generating the

noise power at the
�

l

th
 L

l=1
antenna as �

2
w,l ⇠ U

✓

�2
n,l

↵
nu

,↵nu�
2
n,l

◆

, where ↵nu � 1 and

↵nu = 1 means no noise uncertainty [15]. From the results it is clear that the proposed

schemes clearly outperform traditional schemes. Moreover, from the experiment we can

also conclude that the noise power uncertainty slightly deteriorates the performance of all

detectors. To further analyze the e�ect of the sample support, noise power uncertainty and

shadowing parameters, we need to have a single and quantitative �gure of merit. Hence,

next we use AUC curves to see these e�ects on the detection performance of the spectrum

sensing schemes
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Figure 6.6: ROC curves: Comparison of detection schemes for sample support
size M = 100, number of vector samples per sub-block N = 15,
number of antennas L = 4, shadowing e�ect �dB�Spread = 4, noise
uncertainty↵nu = 1 and average SNR ̄ = �8dB.
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Figure 6.7: ROC curves: Comparison of detection schemes for sample support
size M = 100, number of vector samples per sub-block N = 15,
number of antennas L = 4, shadowing e�ect �dB�Spread = 4, noise
uncertainty↵nu = 2 and average SNR ̄ = �8dB.

In Fig. 6.8, we plot the AUC plots to analyze the e�ects of sample size in the presence

shadowing, with and without the e�ects of of noise power uncertainty. In Fig. 6.8, the

curves with dashed lines represent the case where both shadowing and the e�ects of noise

power uncertainty, ↵nu = 1.5. On the other hand the curves with solid lines show the

case with no noise power uncertainty (i.e. ↵nu = 1). From these plots, it can be concluded

that the proposed schemes ⇤KR(Z) and ⇤PK(Z) are robust against the small sample support

both in the presence and absence of noise power uncertainty. Particularly, in the region

20  M  80 , the detectors ⇤KR(Z) and ⇤PK(Z) clearly outperform the other detectors.

We can also see that in the small sample regime ⇤PK(Z) performs better than ⇤KR(Z). The

obvious reason for this is that underH1 instead of 1
2L(L+1)+ 1

2N(N+1) parameters in the

case of ⇤KR(Z), the detection scheme ⇤PK(Z) has approximately only (2L� 1) + (2N � 1)

parameters to estimate. For N = 15, L = 4, Table 6.1 lists the number of parameters to be

estimated by di�erent spectrum sensing scheme under hypothesisH1.
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Table 6.1: For N = 15, L = 4, number of parameters to be estimated for the
covariance matrix under hypothesisH1.

S.No Detection scheme Number of parameters to be estimated

1 ⇤ST(Z) 1836
3 ⇤KR(Z) 130
4 ⇤PK(Z) 36
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Figure 6.8: AUC curves: To asses the e�ects of number of samples M , with
number of vector samples per sub-block N = 15, number of
antennas L = 4, shadowing �dB�Spread = 4, and average SNR̄ =
�8dB.

In order to con�rm the results listed in the Table 6.1, we simulate the normalized minimum

square error (MSE) of the estimator of the covariance matrix under hypothesisH1, expressed

as :

RMSE =

v

u

u

u

t

1

Javg

Javg
X

j=2

�

�

�

⌃̂1 �⌃1

�

�

�

2

F

k⌃1k2F
. (6.44)

The plot of the normalized MSE is given in Fig 6.9.

In Fig.6.10, we show the AUC plots to analyze the e�ect of shadowing (i.e. �dB�Spread) both

in the presence and absence of noise uncertainty, ↵nu = 1.5 and ↵nu = 1, respectively. It is

evident from thee results that the e�ects of shadowing are very small on the performance of

the detection schemes. However, we can see that incrementing �dB�Spread, a slight improve-

ment occurs in the performance of the detection schemes ⇤TR (Z), ⇤ST (Z) and ⇤PS (Z). The

most obvious reason for this interesting outcome can be the heavy-tailed distribution of the

primary signal strength due to the log-normally-distributed shadow fading that behave in

such a way at lower SNR [73].
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Figure 6.9: Normalized MSE of the estimator of the covariance matrix under
the hypothesis H1.
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Figure 6.10: AUC curves: To asses the e�ect of shadowing �dB�Spread with
sample size M = 80, number of vector samples per sub-block
N = 15, number of antennas L = 4, noise uncertainty ↵nu = 1.5
and average SNR ̄ = �8dB

In the �nal experiment that is depicted in Fig. 6.11, we show the AUC plots to analyze

the e�ects of noise power uncertainty. The results show a robust behaviour for the detection

schemes against the noise power uncertainty. Once again, we observe that the performance

of the proposed schemes ⇤KR(Z) and ⇤PK(Z) is better than other schemes that do not exploit

the underlying structure of the received signal.
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Figure 6.11: AUC curves: To asses the e�ects of noise uncertainty ↵nu with
sample sizeM = 80, number of vector samples per sub-blockN =
15, number of antennas L = 4, e�ect of shadowing �dB�Spread = 4
and average SNR̄ = �8dB.

6.1.8 Application to single-user (virtual) multi-antenna detection

In Section 6.1.5 we have presented Kronecker based detection schemes to exploit spatio-

temporal correlation for a single receiver (user) equipped with multi-antennas. In the present

subsection we extend that scheme to the case of single-antenna sensors in a WSN, by con-

sidering the fact that a set of single-antenna sensors could be thought as the elements of a

single-user multi-antenna device. Keeping this in mind, the problem can be formulated using

the tools of multi-antenna signal processing explained in previous subsections.

6.1.8.1 Problem formulation

We consider an infrastructure based sensor network where a fusion center is supposed

to receive observations from total K single-antenna sensor nodes and it makes the �nal

decision about the presence of any event in the �eld. Furthermore, we assume that the

signal emitted by the presence of the event can be modeled as an electromagnetic �eld

that can be measured by a radio-frequency receiver. At the start of the detection process,

the fusion center sends an inquiry message to all of the K sensors, asking them to send

their observations. After receiving this signal from the fusion center, each sensor takes

measurements (total M measurements each consist of N samples) and send them to the

fusion center. At m-th measurement stage, samples collected from K sensors are stored in



110 CHAPTER 6. MULTI-ANTENNA AND MULTI-SENSOR DETECTION

the K ⇥N matrixX (m) ,
h

x (m) x (2m) · · · x (Nm)
i

as:

X (m) =

2

6

6

6

6

4

x1 (m) x1 (2m) · · · x1 (Nm)

x2 (m) x2 (2m) · · · x2 (Nm)
...

...
. . .

...

xK (m) xK (2m) · · · xK (Nm)

3

7

7

7

7

5

=

2

6

6

6

6

4

xT
1 (m)

xT
2 (m)
...

xT
K (m)

3

7

7

7

7

5

(6.45)

where the k-th row, xk (m) = [xk (nm) , xk (nm) , · · · , xk (nm)]T , contains N -samples

received at the k-th sensor in them-th measurement stage. By considering K sensors as

if they were the multi-antennas of the previous sections, we can see that matrix X in this

problem is similar to the one in Section 6.1.2 Hence, we can use the Kronecker based detection

scheme in Section 6.1.5 by considering that ⌃S = ⌃A, where ⌃S quanti�es correlation

between the rows of matrixX in (6.45). Apart from this, in this problem we also compare the

result of Kronecker based detection scheme with some ad hoc tests. For instance, we recall

CAV detector presented in Chapter 3, that is nothing but a ratio between the sum of elements

of the spatio-temporal sample covariance matrix and the sum of diagonal elements of that

matrix as:

⇤2(Z) =

PNK
i

PNK
j

�

�

�

⇢

(i,j)
1

�

�

�

PNK
i

�

�

�

⇢

(i,i)
0

�

�

�

?H1
H0

� (6.46)

where ⇢(i,j)1 is (i, j)-th element of the spatio-temporal sample covariance matrix ⌃̂1 and ⇢
(i,i)
0

(i, i)-th diagonal element of ⌃̂0 = diag⌃̂1. Inspired by CAV detector (6.46), based on spatial

and temporal covariance matrices achieved through algorithm 6.1, we propose

⇤4 (Z) =

⇣

PK
i

PK
j

�

�

�

⇢

(i,j)
S

�

�

�

⌘ ⇣

PN
i

PN
j

�

�

�

⇢

(i,j)
T

�

�

�

⌘

PKN
i

�

�

�

⇢

(i,i)
0

�

�

�

?H1
H0

� (6.47)

where ⇢

(i,j)
S and ⇢

(i,j)
T are (i, j)-th elements of spatial sample covariance matrix ⌃̂S and

temporal sample covariance matrix ⌃̂T, respectively. Similarly, ⇢(i,i)0 are (i, i)-th diagonal

elements of ⌃̂0. Motivated by the John’s U-statistic [77], here we also propose another ad

hoc test statistic that uses the two separate spatial and temporal sample covariance matrices.

The expression for this Ad hoc test is

⇤5 (Z) =
1

KN

tr
⇣

 ̂S � IK
⌘2

tr
⇣

 ̂T � IN
⌘2

?H1
H0

�

(6.48)

where  ̂S = ⌃̂
S

1
K

tr(⌃̂
S

)
and  ̂T = ⌃̂

T

1
N

tr(⌃̂
T

)
. The detectors in (6.46), (6.47) and (6.48) do not

involve determinants so they have robustness against the high dimensionality and they also

do not assume any prior information about the signal and noise distribution.
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6.1.8.2 Numerical example

For simulation we consider a WSN, where sensors are uniformly spread and we assume that

the event appears at an unknown position. We analyze the performance of the detection

approaches for di�erent values ofM , the number of samples by using AUC curves.
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Figure 6.12: AUC curves: To asses the e�ects sample size M on the detection
schemes for number of sensorsK = 15, temporal dimension N = 5
and emitted power P0 = �20dB.

In Fig.6.12 we analyze the the detection schemes forK = 15,N = 5. In the �gure LG1(Z)

and LG3(Z) represent detectors obtained by using ⇤ST(Z) and ⇤KR(Z), respectively. The

results show that by increasing the value of M , of course the detection performances of all

detectors increase, but the proposed schemes perform better than the traditional schemes. For

example for a speci�c value of AUC, lets say AUC = 0.9, the proposed detectors LG3(Z) =

⇤3 (Z) , LG4(Z) = ⇤4 (Z) and LG5(Z) = ⇤5 (Z) need M  50, while the traditional GLRT

LG1(Z) = ⇤1 (Z) and LG2(Z) = ⇤2 (Z) need M � 100.

From these results we can conclude that the proposed detection schemes ⇤3 (Z), ⇤4 (Z)

and ⇤5 (Z) are performing better than the traditional schemes ⇤1 (Z), ⇤2 (Z). The obvious

reason for this enhancement at small sample support regime is the exploitation of underlying

spatio-temporal structure, that results in reduction of the number of parameters (elements)

to be estimated in the unknown covariance matrix. Amongst the proposed detectors, ⇤4 (Z)

and ⇤5 (Z) show more robustness as the AUC curves reach to the reasonable high value at a

very small M . It is because, they not only take advantage of the exploitation of covariance

structure but also avoid matrix operations that are sensitive to the singularity of a matrix.

Therefore, they show more robustness against the high dimensionality and small sample

support compared to the other scheme presented in this subsections.
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6.2 Multi-user multi-antenna spectrum sensing

In this section, we present a novel spectrum sensing for a cognitive radio network with

multiple distributed radios where each radio has multiple antennas. We consider that the

cognitive network has K secondary users, each user is equipped with L antennas. The

proposed spectrum sensing scheme exploits the fact that when any primary signal is present,

measurements are spatially correlated due to inter-antennas and inter-users spatial correla-

tion.

6.2.1 Problem formulation

In the presence of the primary signal, the received signal at the output of L antennas of k-th

user can be expressed as: xk (n) = sk(n)+wk (n) , n = 1, · · · , N , where L⇥1 vector sk(n)

contains the samples of the primary signal received and vector wk (n) consists of additive

noise at time n. The k-th user sends xk (n) to the fusion center (i.e. base station, central

controller) via ideal links2. The fusion center stacks the received signal vectors {xk (n)}Kk=1

in the KL ⇥ 1 vector x (n) as shown in Figure 6.13. Hence, the hypothesis testing can be

represented as:
H0 :x (n) = w (n) , n = 1, · · · , N,

H1 :x (n) = s(n) +w (n) , n = 1, · · · , N,

(6.49)

where

x (n) =
⇥

xT
1 (n) ,xT

2 (n) , · · · ,xT
K (n)

⇤T 2 CKL⇥1
,

s (n) =
⇥

sT1 (n) , sT2 (n) , · · · , sTK (n)
⇤T 2 CKL⇥1

,

and

w (n) =
⇥

wT
1 (n) ,wT

2 (n) , · · · ,wT
K (n)

⇤T 2 CKL⇥1
.

We have the covariance matrix ⌃1 = E
⇥

xxH
⇤

as:

⌃1 = E
⇥

xxH
⇤

=

2

6

6

6

6

4

⌃11 ⌃12 · · · ⌃1K

⌃21 ⌃22 · · · ⌃1K
...

...
. . .

...

⌃K1 ⌃K2 · · · ⌃KK

3

7

7

7

7

5

2 CKL⇥KL
, (6.50)

where the covariance matrices ⌃k,k = E

⇥

xkxH
k

⇤ 2 CL⇥L, 1  k  K capture the

spatial correlation present in the signal received at L antennas of the k-th user. Similarly,

the non-zero o�-diagonal blocks ⌃k,j = E

h

xkxH
j

i

2 CL⇥L, 1  k, j  K capture the

spatial correlation between proximal users. Consequently, in order to simplify the detection

2In the network of cognitive-enabled femto-cells, already existing wired network can be considered as ideal
links between the fusion center and the users [3]
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Figure 6.13: Schematic representation of the proposed multi-sensor, multi-
antenna methodology.

problem, we need the distribution of x (n). We take it to be zero-mean Gaussian as in

addition to resulting in tractable models and useful detectors, this assumption is reasonable

for instance if the primary user employs orthogonal frequency division multiplexing (OFDM)

as a modulation format 3 [34]. Hence, the hypothesis testing problem becomes:

H0 :x ⇠ CN (0,⌃0)

H1 :x ⇠ CN (0,⌃1)
(6.51)

where CN (0,⌃h) h = {0, 1}, denotes the complex Gaussian distribution with zero mean

and covariance ⌃h. Under H0, ⌃0 is an unknown diagonal matrix, since in the absence

of the primary signal the observations are assumed to be white. For this problem, we will

next present the traditional detector, and then derive the proposed improved detector by

introducing the pair Kronecker product.

6.2.2 Conventional GLRT

In this section, we adopt the GLRT for the detection problem introduced in (6.51) since it is

asymptotically an optimal detector. Later on it will be as a bench mark to be compared with

the other proposed techniques. For the detection problem (6.51), the GLRT statistic can be

3We begin with the complex base-band signal sampled at the speci�c Nyquist rate.
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formulated as:

⇤T (X) =
max
⌃0

fx (X;⌃0)

max
⌃1

fx (X;⌃1)
?H0

H1
�, (6.52)

where fx (X,⌃0) and fx (X;⌃1) are likelihood functions under hypothesis H0 and H1,

respectively. Similarly, X =
h

x (1) x (2) , · · · , x (N)
i

is the matrix that contains all

of the available samples ofKL⇥ 1 vector x. Solving (6.52) we can get the �nal expression of

the GLRT as:

⇤T (X) =

�

�

�

⌃̂1

�

�

�

�

�

�

⌃̂0

�

�

�

?H0
H1

�, (6.53)

where ⌃̂1 = 1
N

PN
n=1 x(n)x

H(n) is the maximum likelihood estimator (MLE) of ⌃1. Simi-

larly, under the alternate hypothesis, we assume that only noise is present and⌃0 is diagonal

matrix, then ⌃̂0 = diag
⇣

1
N

PN
n=1 x(n)x

H(n)
⌘

. In practice, the GLRT is used based on the

assumption that the sample size N is large while the sample dimensions {K,L} are small.

However, when the sample support is limited (in particular, when N  KL) , the GLRT

degenerates due to the ill-conditioning of the estimated covariance matrix [79]. A way to

reduce these limitations will be presented next.

6.2.3 GLRT based on Kronecker product

The GLRT based detection scheme in (6.52) assumes no structure for the covariance matrix,

except that the covariance matrix is symmetric. However, in order to circumvent the issue of

ill-conditioning problems, one may assume an a-priori suitable structure on the covariance

matrix [79]. Hence, we propose two detection techniques in Sections 6.2.3.1 and 6.2.3.2

that exploit the embedded correlation structure based on the single-pair Kronecker product

(SPKP) and multi-pairs Kronecker product (MPKP), respectively.

6.2.3.1 SPKP-GLRT

In Section 6.1.2, we have discussed that the (KL ⇥ 1) vector x(n) contains K sub-vectors of

dimension (L⇥ 1) corresponding to the arrays at theK di�erent SUs. Consequently, we see

that the covariance matrix ⌃1 has mainly two types of spatial correlation structures. Inter-

receiver correlation structure appears between the SUs due to their proximity, and inter-

antenna correlation appears between samples from the antenna elements of the same SU.

Moreover, by assuming the fact that the spatial correlation structure of arrays at di�erent

SUs is similar, the observation matrixX can be considered as a matrix normal with separable

structure [82, 84].

Keeping the above facts and discussion in [79, 84] into considerations, the overall (inter-

antenna plus inter-receiver) spatial covariance ⌃1 can be represented with the help of the

SPKP model as:

⌃1 = ⌃S ⌦⌃A (6.54)
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where ⌃S 2 CK⇥K and ⌃A 2 CL⇥L capture the inter-users and inter-antennas spatial

correlation, respectively. By using the results of (6.54) the SPKP-GLRT can be expressed as:

⇤SPKP (XN ) =
max
⌃0

fx (XN ;⌃0)

max
⌃S,⌃A

fx (XN ;⌃A ⌦⌃S)
?H0

H1
�. (6.55)

Solving (6.55), under the hypothesisH1, we need to estimate covariance matrices⌃S and⌃A

by using the MLE paradigm. The MLEs under the hypothesisH1, can be written as [102]:

⌃̂A =
1

KN

N
X

n=1

X (n) ⌃̂�1
S XH (n) , (6.56)

⌃̂S =
1

LN

N
X

n=1

XH (n) ⌃̂�1
A X (n) . (6.57)

The non-iterative Flip-Flop approach to �nd ⌃̂A and ⌃̂S based on expressions (6.56) and (6.57)

is given in Algorithm 6.3 with an initial value of ⌃̂0
S = IK⇥K . Finally, solving (6.55), we can

get the expression:

⇤SPKP(X) =

�

�

�

⌃̂A

�

�

�

K �
�

�

⌃̂S

�

�

�

L

�

�

�

⌃̂0

�

�

�

KL
?H0

H1
�. (6.58)

The main advantage of the SPKP-GLRT in (6.58) over the traditional GLRT in (6.10) is that

under H1, instead of 1
2KL(KL + 1) parameters, it has only 1

2K (K + 1) + 1
2L (L+ 1)

parameters to estimate. Therefore, the dimensions of ⌃A and ⌃S are much smaller than

the dimension of the full covariance matrix⌃1, thus allowing a relaxation on the sample size

that is required to avoid ill-conditioning of the MLE estimate ⌃̂1. Hence, the SPKP model

is a good approximation that captures important information about the correlations and ⌃̂1

found under (6.22) is generally positive de�nite for N > max(K,L) [89].

Algorithm 6.3ML based Non-Iterative Flip-Flop

1. Choose a starting value for ⌃̂0
S as IK⇥K

2. Estimate ⌃̂1
A from (6.56) with ⌃̂0

S.

3. Find the following

• Estimate ⌃̂S from (6.57)with ⌃̂1
A.

• Estimate ⌃̂A from (6.56) with ⌃̂S.
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6.2.3.2 MPKP-GLRT

In Section 6.2.3.1, we have approximated ⌃1 in the form of two smaller covariance matrices

through the SPKP model (6.22). The aforementioned SPKP model can also be written as:

⌃1 = ⌃A⌦
PK

k=1 �kSk, where Sk , vkvH
k is an orthonormal basis component represented

as a singular matrix [103]. Furthermore, by using the identityB⌦(O+D) = B⌦O+B⌦D,

we can write⌃1 =
PK

k=1⌃A⌦�kSk =
PK

k=1 �k⌃A⌦Sk. The expression makes it obvious

that each spatial component Sk has the same inter-antenna covariance matrix. Hence, the

SPKP covariance model is based on a very rigid assumption since it assumes similar inter-

antenna spatial covariance structures at di�erent SUs. However, in a more realistic case,

di�erent SUs are likely to have di�erent inter-antenna spatial covariance. Therefore, to relax

this rigid assumption and better explain the separation of inter-receiver and inter-antenna

correlation, we consider a more general multi-pair Kronecker product (MPKP) model as:

⌃1 =
K
X

k=1

Ak ⌦ Sk. (6.59)

Note that by setting Ak = �k⌃A we can see how (6.59) subsumes the SPKP model.

Moreover, it is to be noted that the inter-receiver correlation components {Sk}Kk=1 are

(K ⇥ K) rank-1 matrices and their corresponding inter-antenna correlation matrices Ak

are full rank (L ⇥ L) matrices. The estimate of Sk or the spatial orthogonal components

the {vk}Kk=1 can be found by singular value decomposition (SVD) of the (LN ⇥ K) matrix

XV =
⇥

XT (1) ,XT (2) , · · · ,XT (N)
⇤T as: XV = U VH[103]. Where U is a (LN ⇥K)

orthogonal matrix,  is a (K ⇥K) diagonal matrix with singular values {⌘k}Kk=1 of XV as

diagonal elements and V is a (K ⇥ K) orthogonal matrix of the spatial components. Each

row of VH is vk that forms Sk as: Sk = vkvH
k for the model (6.59). Similarly, the estimate

of Ak can be found based on the MLE paradigm as [103]:

Âk =
1

N

N
X

n=1

X (n) ŜkX
H (n) , (6.60)

and Ŝk = vkvH
k . Hence, we can write ⌃̂1 =

PK
k=1 Âk ⌦ Ŝk and the MPKP-GLRT becomes:

⇤MPKP (XN ) =

�

�

�

PK
k=1 Âk ⌦ Ŝk

�

�

�

�

�

�

⌃̂0

�

�

�

?H0
H1

�. (6.61)

Compared to the SPKP-GLRT in (6.58), the MPKP-GLRT in (6.61) can better account for the

di�erent inter-antenna structures, since it is not constrained to the assumption of identical

inter-antenna correlation at di�erent SUs. However, the computational cost of the detec-

tion scheme (6.61) is slightly higher than the (6.58). This is because the number of free

parameters in the covariance matrix to be estimated under hypothesis H1 has increased to

L

2 + LK (K � 1) /2 [103].
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Figure 6.14: AUC curves ( Solid lines for ↵nu = 1 and dashed lines for ↵nu =
2): To assess the e�ects of the sample size (N ), with shadowing
�dB�Spread = 6 and average SNR̄ = �15dB.

6.2.4 Numerical results

For the analysis to be conducted herein, we consider a wireless network with a total of K =

10 SUs (equipped with L = 4 antennas) randomly deployed to detect a PU that appears at an

unknown position. The spatial correlation between the antennas of a SU is modeled herein

as ci,j = ⇢

|i�j|, with {i, j} = 1, · · · , L. Moreover, 0 < ⇢ < 1 with ⇢ = e

�232(d�
c

)2 , which

is called correlation coe�cient between two adjacent antennas, and it relies on the angular

spread , the wavelength �c and the distance d between two adjacent antennas [104]. Finally,

the spatial correlation between SUs due to the correlated shadowing e�ects is modeled based

on the model given in [50].

In order to analyze the performance of the proposed detectors, we use the area under the

ROC curve (AUC), which varies between 0.5 (poor performance) and 1 (good performance).

Moreover, we de�ne the average SNR of all SUs as: ̄ = 1
K

PK
i=1 i and the SNR of i-th SU is

i = ⇣

i�1
min where min is the minimum SNR among those of the SUs. For a given average

SNR ̄ and SNR gap ⇣ , we can generate the random SNRs of the SUs.

In Fig. 6.14, we show the AUC plots to analyze the e�ects of the sample size N in the

presence of noise power uncertainty and shadowing. We model the noise power uncertainty

by generating the noise power at k-th SU as �2
w,k ⇠ U

✓

�2
n,k

↵
nu

,↵nu�
2
n,k

◆

, where ↵nu � 1, and

↵nu = 1 means no noise uncertainty. The dashed lines represent AUC curves for ↵nu = 2

and solid lines represent the case when ↵nu = 1. With these considerations, the results

clearly show that ⇤MPKP and ⇤SPKP outperform the traditional ⇤T with a smaller sample

support. Moreover, we also compare the results of these three detectors with energy detector
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given as:

⇤Eng (XN ) =
N
X

n=1

K
X

k=1

L
X

l=1

|xk,l (n)|2 . (6.62)

We can see that the energy detector performs better in the absence of the noise power

uncertainty, however, it has poor performance in the presence of noise power uncertainty.

Interestingly, we can also observe that in the presence of noise power uncertainty, the in-

crease of sample size has very small impact on the performance of the energy based detection

scheme ⇤ENG.

In Fig.6.15, we show the AUC plots to analyze the e�ect of shadowing (i.e. �dB�Spread).

From the result we can see that the e�ect of the shadowing is very small over the detec-

tion performance of the detection schemes as the presented spectrum sensing schemes are

cooperative. However, in the case of ⇤ENG, the detection performance slightly increases

with the increase in the �dB�Spread. The most obvious reason for this can be the heavy-tailed

distribution of the primary signal strength due to the log-normally-distributed shadow fading

that behave in such a way at lower SNR [73].

In Fig. 6.16, we show the AUC plots to analyze the e�ects of noise power uncertainty.

Once again, we can see that ⇤MPKP and ⇤SPKP have superior performance than ⇤T. More-

over, we can observe the proposed schemes are robust against the noise power uncertainty

compare to ⇤ENG.
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6.2.5 Application to multi-user (virtual) multi-antenna detection

The focus of this subsection is to use the tools already shown for the multi-user multi-antenna

case, to a di�erent scenario of multiple single-antenna devices in aWSN as shown in Fig. 6.17.

In order to do so, the clusters in Fig. 6.17 can be understood as a multi-antenna device.

6.2.5.1 Proposed Methodology

In the proposed method we consider to slice the whole �eld of K sensors equally, into Lc

clusters and the number of clusters Lc should be sub-multiple of K . Consequently, the total

received vector x (n) 2 RK is sliced into Lc sub-vectors as: xl (n) 2 RK
c : l = 1, 2, · · · , Lc

in a way that the l-th sub-vectors correspond to l-th cluster as elaborated in Fig. 6.17.
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Figure 6.17: Schematic representation of the slicing process of a sensor �eld
and the observation vector.

Once we have these sub-vectors of the received observation x (n) then all of the sub-

vectors are stacked into a Kc ⇥ Lc matrix Xp(n) = {x1 (n) ,x2 (n) , · · · ,xL
c

(n)} 2
RK

c

⇥L
c . The elements present in each column of the matrix Xp(n) are spatially correlated

and this correlation is quanti�ed by inter-cluster covariance matrix ⌃K
c

. Similarly, the

cross-correlation between the columns of the matrix Xp(n) is quanti�ed by intra-cluster

covariance matrix ⌃L
c

. Now considering the fact that the sensors are placed in a uniform

grid, we can infer that the covariance structure of the columns of matrix Xp(n) remains the

same as the topology of the Kc sensors in all of the Lc clusters is the same as if the clusters

are uniform antenna arrays as in Section 6.2.2. This leads us to say that Xp(n) is indeed

comply with the matrix X in the case of multi-user multi-antenna scheme in Section 6.2.2.

Hence, this motivates to use ⇤SPKP (X) in (6.55) for the detection problem in the present

section.

6.2.5.2 Numerical results

For the purpose of simulation we consider a sensor network, where K = 36 sensors are

placed in the uniform grid. For the simulations we consider Lc = 4 clusters, that are basically

located in the form of four quadrants of a cartesian co-ordinate system and each cluster

consists of Kc = 9 sensors. Furthermore, we assume that the event appears at the center

(x = 0, y = 0).
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Figure 6.18: AUC curves: To assess the e�ects of the sample size for total
number of sensors,K= 36.

In Fig 6.18 we plot AUC curves to analyze the detectors, for di�erent values of the number

of samples N used to estimate the covariance matrices. It is to noted that ⇤Proposed (X)

represents detection scheme (6.55) for the problem under observation. As it was expected,

the results con�rm that the performance of the proposed scheme is better even in the case

of very small N compared to the traditional GLRT. From the experiment it can be concluded

that whenN < K , the traditional GLRT completely collapse and the proposed schemes have

reasonable good performance even under N < K regime. Another interesting conclusion

can be drawn from the overall results is that the performance of proposed scheme with MLE

paradigm is slightly better than the LSE paradigm.





CHAPTER 7

Conclusions

The aim of this contribution has been to achieve robust centralized multi-sensor detection

schemes based on the exploitation of available prior information. In this context, we have

exploited the fact that in dense WSN, the signal is typically a local phenomenon that only

a�ects a small subset of sensors. These a�ected sensors will normally be located close to

the event as well as close to each other in the form of a spatial cluster. Based on this

intuition, novel detection schemes have been presented with a two-fold motivation: �rst,

the exploitation of the relevant set of sensors, which helps in rejecting the noise; second,

to take advantage of the signal correlation occurring by using a-priori information about

the positions of sensors through a signature matrix, which captures the correlation among

di�erent sensors. From the in-depth analysis of such scheme, we have found that it improves

the detection performance with respect to conventional multi-sensor detection schemes. We

have also applied the proposed scheme to collaborative spectrum sensing and the aim has

been to achieve an improvement in the sensing performance. The performance of the pro-

posed spectrum sensing scheme has been tested under harsh conditions, such as the presence

of severe noise, shadowing e�ects and noise power uncertainties due to the presence of

interferences. The simulation results have con�rmed the convenience of this novel approach,

showing a superior performance, robustness against noise power uncertainty and shadowing

e�ects, compared to traditional detectors that ignore sensor selection and spatial information.

Similarly, we have also focused on exploiting the expected structure and patterns in the

received covariance matrix due to the underlying topology. In this regard, we have proposed

novel detection schemes that exploit the spatio-temporal correlation present in the received

observations at the multi-antenna receiver. We have also extended the concept of exploiting

such correlation to the case of event detection in WSN. Moreover, we have proposed several

collaborative spectrum sensing schemes that exploit the spatial correlation present in the

received observations at sensors (secondary users), each of them equipped with multiple

antennas. For all these proposed schemes, �rst we have adopted the traditional GLRT based

on the observed covariance matrix that is considered to be asymptotically an optimal detector.

However, we have observed that the GLRT performs poorly when the sample support is

small. To cope with this, we have proposed several extensions that bring robustness against

the sample support. The proposed schemes exploit the inherent structure of the received

covariance matrix such as persymmetry and the Kronecker product of matrices. The perfor-
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mance of the proposed schemes has been evaluated in presence of uncertain additive noise

and shadowing with the help of numerical simulations. The results have shown that the

proposed detection schemes consistently have better detection performance in the case when

the sample size is much smaller than the dimensionality of data.

Future work

As most of the work in this thesis assumes that the links between the sensors and the

fusion center are ideal, hence, a possible extension could be to analyze these schemes by

incorporating the actual channel e�ects that exist between the sensors and the fusion center.

In the case of detection schemes based on the spatial signatures, we have assumed that

the sensor to sensor distances are perfectly estimated. However, in practice the estimation

of these distances could be erroneous, therefore, it will be interesting to analyze the perfor-

mance of these schemes by including the e�ects of these errors. Another possible extension

could be to extend the concept of spatial signatures to the distributed detection system, where

instead of fusion center, each local sensor has the knowledge of signatures of the neigbouring

sensors. Similarly, the focus of these schemes has been to exploit the spatial proximity

while dealing with soft information, therefore, we would also be interested to exploit this

known spatial proximity while considering exchange of one bit hard information between

the sensors and the fusion center.

In the case of the multi-antenna, multi-sensor detection schemes that exploit the inherent

structures and patterns in the observed covariance matrices, a possible next step could be

to compare the detection performance of these schemes for practically obtained signals i.e.,

OFDM signals. Moreover, the results obtained for these schemes can also be applied to the

spoo�ng detection in a GNSS receiver equipped with multiple antennas.
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APPENDIX A

Matrix Di�erentiation

Let us de�ne the derivative of f (X) with respect to N ⇥ P matrix X as:

@f (X)

@X
=

✓

@f (X)

@xi,j

◆

(A.1)

then we have the following results

1. @aTx
@x = a

2. @xTx
@x = 2x

3. @xTAx
@x = 2Ax

4. @xTAy
@x = Ay

5. @|X|
@x

i,j

= Xi,j if all elements of N ⇥ P matrix X are distinct, where Xi,j is the (i, j)-th

cofactor ofX .

6. @|X|
@x

i,j

=

8

<

:

Xi,i i = j

2Xi,j i 6= j

if X is symmetric.

7. @Tr(XY)
@X =

8

<

:

YT elements of N ⇥ Pmatrix X are distinct.

Y +YT � diag (Y) ifX is symmetric.

8. @X�1

@x
i,j

=

8

<

:

�X�1Ji,iX�1
i = j

�X�1 (Ji,j + Jj,i)X�1
i 6= j

ifX is symmetric.

where Ji,j is matrix with 1 at i, j-th location and zeros elsewhere.
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APPENDIX B

Kronecker Product and Persymmetric
Matrices

List of some important properties of the Kronecker product and the persymmetric matrices.

Persymmetric matrix

An arbitrary matrix A is called symmetric, if A = AT (i.e. ai,j = aj,i) and skew-symmetric,

if AT = �A. Similarly, persymmetric matrix is a square matrix which is symmetric in the

northeast-to-southwest diagonal. In other words, if a symmetric matrix is rotated by 90°, it

becomes a persymmetric matrix. Moreover, symmetric persymmetric matrices are sometimes

called bisymmetric matrices [105].

De�nition B.1. LetA = (ai,j) be anNA⇥NA matrix. Then matrixA to be a persymmetric

matrix requires that

aij = an�j+1,n�i+1for all i, j. (B.1)

Let J 2 RN
A

⇥N
A be the counter-identity matrix which is also called exchange matrix.

Then persymmetry can also be expressed by

JAJ = AT
. (B.2)

Based on this persymmetry property, a matrix is a symmetric persymmetric, if it is symmetric

about both diagonals, i.e.,

JAJ = AT = A (B.3)

or component-wise

ai,j = aj,i = an+1�i,n+1�j . (B.4)

Note that a matrix with the property JAJ = A is called centrosymmetric. Therefore,

symmetric persymmetric or symmetric centrosymmetric are the same. The set of all symmet-

ric persymmetricNA⇥NA matrices is closed under addition and under scalar multiplication.

Similarly, a matrix A is called symmetric skew-persymmetric if JAJ = �AT = �A.

Furthermore, a persymmetric determinant is the determinant of a persymmetric matrix. A

matrix for which the values on each line parallel to the main diagonal are constant, is called a
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Toeplitz matrix. It should be noted that the Toeplitz structured matrices belong to a subclass

of the persymmetric matrices [81, 80, 92].

Kronecker Product

In mathematics, the Kronecker product, denoted by ⌦ is an operation on two matrices of

arbitrary size resulting in a block matrix. It is a generalization of the outer product (which

is denoted by the same symbol) from vectors to matrices, and gives the matrix of the tensor

product with respect to a standard choice of basis. The Kronecker product should not be

confused with the usual matrix multiplication, which is an entirely di�erent operation [101].

De�nition B.2. If A = (ai,j) is an NA ⇥NA matrix and B = (ai,j) is a MB ⇥MB matrix,

then the Kronecker productA⌦B is theMBNA ⇥NAMB block matrix:

A⌦B =

2

6

6

6

6

6

4

a1,1B a1,2B · · · a1,N
A

B

a2,1 a2,2
...

...
. . .

aN
A

,1B · · · aN
A

,N
A

B

3

7

7

7

7

7

5

(B.5)

Obviously, the same de�nition holds if A and B are either complex-valued matrices

or real-valued matrices. The Kronecker product has a rich and very pleasing algebra that

supports a wide range of fast, elegant, and practical algorithms. Several trends in scienti�c

computing suggest that this important matrix operation will have an increasingly greater

role to play in the future[81]. First, the application areas where Kronecker products abound

are all thriving. These include signal processing, image processing, semide�nite program-

ming, and quantum computing[101]. Here, in this work we take advantage in reducing the

computational cost of GLRT that exploit correlation present in the received observations.

Important properties

Here we list three important properties about the Kronecker Product of two matrices.

• IfA and B are invertible matrices, then

(A⌦B)�1 = A�1 ⌦B�1 (B.6)

• IfA and B are square matrices, then

(A⌦B)T = AT ⌦BT (B.7)

• IfA is an NA ⇥NA matrix and B is aMB ⇥MB matrix

|A⌦B| = |A|MB |B|NA (B.8)
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• IfA is an NA ⇥NA matrix and B is aMB ⇥MB matrix

(aA)⌦B = a (A⌦B) = A⌦ (aB) (B.9)

Lemma B.3. The Kronecker product of two symmetric persymmetric matricesA andB is again
symmetric persymmetric.

Proof. Let JA and JB denote the exchange matrices which correspond to the size of A and

B, respectively. Then the exchange matrix JA⌦B of A ⌦ B is given by JA⌦B = JA ⌦ JB .

Therefore,

(JA ⌦ JB) (A⌦B) (JA ⌦ JB) = (JAAJA)⌦ (JBBJB) = AT ⌦BT = A⌦B (B.10)





APPENDIX C

Derivation of the Least Square Estimate of
the Kronecker Product of Covariance

Matrices

Let X 2 RK⇥N is matrix normal. We assume that we have M realizations of X. Let us

de�ne the
�

m

th
 M

m=1
realization as:

X (m) ,

2

6

6

6

6

4

x1 (m) x1 (2m) · · · x1 (Nm)

x2 (m) x2 (2m) · · · x2 (Nm)
...

...
. . .

...

xK (m) xK (2m) · · · xK (Nm)

3

7

7

7

7

5

=

2

6

6

6

6

4

xT
1

xT
2
...

xT
K

3

7

7

7

7

5

(C.1)

Similarly, de�ne a vector z (m) , vec {X (m)}. The covariance matrix of theKN⇥1 vector

z under hypothesisH1 is

⌃ = E
⇥

zzT
⇤

=

2

6

6

6

6

4

⌃11 ⌃12 · · · ⌃1K

⌃21 ⌃22 · · · ⌃1K
...

...
. . .

...

⌃K1 ⌃K2 · · · ⌃KK

3

7

7

7

7

5

2 RKN⇥KN (C.2)

The estimate of ⌃ can be found as:

⌃̂ =
1

M

M
X

m=1

z(m)zT (m). (C.3)

In case theX 2 RK⇥N is matrix normal with separable structure then we can write [106]

⌃ = ⌃A ⌦⌃B, (C.4)

where the sub-matrix ⌃A captures the correlation between the elements of each column of

X and sub-matrix ⌃B captures the correlation between N columns vector in block X. The

expression for the Least Square estimators of ⌃̂A and ⌃̂B are derived based on minimization

of the the LS-cost function,
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APPENDIX C. DERIVATION OF THE LEAST SQUARE ESTIMATE OF THE KRONECKER PRODUCT OF

COVARIANCE MATRICES

�

�

�

⌃̂� ⌃̂A ⌦ ⌃̂B

�

�

�

2
= Tr

�

⌃A⌃
T
B
�

+ Tr
�

⌃2
B
�

Tr
�

⌃2
A
�

� 2

N � 1

M
X

m=1

Tr
n

X(m)⌃B (X (m))T ⌃A

o

,

(C.5)

and the solutions for ⌃̂B and ⌃̂A are found by di�erentiating (C.5) using results in [107] and

subsequently equating the �rst derivative to zero. For the case of ⌃̂A, this yields

d⌃A

n

k⌃�⌃A ⌦⌃Bk2
o

= 2Tr
�

⌃2
B
�

Tr (⌃Ad⌃A)

� 2

N � 1

M
X

m=1

Tr
�

X(m)⌃BX
T (m) d⌃A

 

.

(C.6)

Equating to zero and after some algebraic manipulation, we get

(Tr⌃B)
2⌃A � 1

N � 1

M
X

m=1

X(m)⌃BX
T (m) = 0. (C.7)

Arranging the above equation yields

⌃̂A =
(M � 1)�1

Tr
⇣

⌃̂2
B

⌘

M
X

m=1

XT (m) ⌃̂BX (m) , (C.8)

and similar derivations can be performed to �nd:

⌃̂B =
(M � 1)�1

Tr
⇣

⌃̂2
A

⌘

M
X

m=1

X (m) ⌃̂AX
T (m) , (C.9)

Using (C.8) and (C.9), we get ⌃̂ = ⌃̂A ⌦ ⌃̂B.


