
Inexact Subgraph Matching Applied to
Symbol Spotting in Graphical Documents

A dissertation submitted by Anjan Dutta
at Universitat Autònoma de Barcelona to ful-
fil the degree of Doctor of Philosophy.

Director: Dr. Josep Lladós Canet.
Departament: Ciències de la Computació,
Escola d’Enginyeria, UAB.
PhD Program: Informàtica.

Bellaterra, March 24, 2014

Director Dr. Josep Lladós Canet
Dept. Ciències de la Computació & Centre de Visió per Computador
Universitat Autònoma de Barcelona

Thesis Prof. Dr. Jean-Marc Ogier
committee Laboratoire Informatique, Image et Interaction

Université de La Rochelle

Dr. Ernest Valveny
Dept. Ciències de la Computació & Centre de Visió per Computador
Universitat Autònoma de Barcelona

Dr. Pierre Héroux
Laboratoire LITIS
Université de Rouen

Dr. Francesc Serratosa
Enginyeria Informàtica i Matemàtiques
Universitat Rovira i Virgili

Dr. Maria Vanrell
Dept. Ciències de la Computació & Centre de Visió per Computador
Universitat Autònoma de Barcelona

European Prof. Dr. Luc Brun

evaluators École Nationale Supérieur d’Ingénieurs de Caen
Université de Caen Basse-Normandie

Prof. Dr. Jean-Yves Ramel
Polytech’Tours - LI Tours
Université de François - Rabelais, Tours

This document was typeset by the author using LATEX 2ε.

The research described in this book was carried out at the Centre de Visió per Com-
putador, Universitat Autònoma de Barcelona.

Copyright © 2014 by Anjan Dutta. All rights reserved. No part of this publica-
tion may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission in writing from the author.

ISBN:

Printed by Ediciones Gráficas Rey, S.L.

To my parents...

An idea that is not dangerous is
unworthy of being called as an idea at all

Oscar Wilde (1854 - 1900)

Highly organized research is
guaranteed to produce nothing new

Frank Herbert (1920 - 1986)

Acknowledgement

I would like to express my gratitude to some people, organizations and institutions
who have supported me during these years of my thesis and without them this thesis
would have not been completed.

First of all I would like to thank the Centre de Visiò per Computador (CVC) and
the Universitat Autònoma de Barcelona (UAB) for allowing me to pursue my doctoral
study and for providing me all the facilities. I would like to thank the Agéncia de
Gestio d’Ajuts Universitats i Recerca (AGAUR) for providing me a three years PhD
scholarship (2011 FIB 01022, 2012FI B1 00174 and 2013FI B2 00074) and a mobility
scholarship (2011 BE1 00169) for doing a three months research stay abroad, without
that for sure it would have not been possible.

I would like to gratefully and sincerely thank my supervisor Dr. Josep Lladós, first
of all for giving me an opportunity to do PhD and also for his guidance, understanding,
patience and most importantly, his friendship during this long journey. I am not
sure whether many PhD students are given the opportunity to develop their own
individuality and self-sufficiency by being allowed to work with such independence.
For everything you have done for me, Josep, I thank you so much.

I would like to specially thank my co-supervisor Dr. Umapada Pal, from whom
I got the inspirations for doing PhD. Thank you very much Sir for encouraging me
and extending me to such opportunities.

My special thanks to Prof. Em. Dr. Horst Bunke for having lot of fruitful
discussions, meetings, comments and ideas. Thank you very much Horst, without
you my thesis would have not been completed.

My sincere thanks to Prof. Dr. Xiaoyi Jiang of University of Münster, Germany,
who gave me the opportunity of spending my research stay in the Computer Vision
and Pattern Recognition Group where I have learnt lot of important things.

I would like to thank Prof. Dr. Koichi Kise and Dr. Masakazu Iwamura of Osaka
Prefecture University, Japan for giving me an opportunity of doing a research stay
there, where I have learnt some nice things.

During my Ph.D. I was fortunate to have several collaborations. I would like to
thank Klaus Broelemann of University of Münster, for collaborating with me. I would
like to thank Lluis-Pere de las Heras, David Fernández, Dr. Joan Mas, Dr. Gemma
Sanchez, Dr. Dimosthenis Karatzas, Dr. Oriol Ramos Terrades, Dr. Marçal Rusinyol,
Dr. Alicia Fornés, Dr. Albert Gordo of CVC for conducting fruitful collaborations
with me. I specially thank Alicia for collaborating with me from the beginning of my
days in CVC. Even my first paper from CVC was also resulted from the collaboration

i

ii ACKNOWLEDGEMENT

with her, thank you so much.
I express my gratitude to all my friends from CVC, especially, the ones who started

doing PhD with me: Jon, David, Lluis, Toni. Also Fran, Camp, Ivet, Joan, Yainuvis
and Alejandro with whom I have shared so many talks, lunches, coffees, parties and
now I consider as very good friends. Thank you so much guys, with your presence,
the feeling of the absence of my family in far India was minimized. My special thanks
to Bhaskar, Partha, Naveen, Elena, Carlos, Martin, Arindam, Pragna and Suman for
their company during different time in my whole stay in Barcelona.

I cordially thank to all the administrative and technical supporting personnel of
CVC for being patience in front of my extensive requirements, specially, Montse, Gigi,
Claire, Marc for helping me out of any office and technical work. For sure without
you it would have been much much difficult.

Finally my thanks, love and respect to those persons, very close to my heart, my
family in India. My thanks and regards to my parents for their unequivocal support
throughout, as always, for which my mere expression of thanks would never be enough.
My special thanks to Strutti for understanding me and extending her love, care and
support everyday.

Abstract

There is a resurgence in the use of structural approaches in the usual object recognition
and retrieval problem. Graph theory, in particular, graph matching plays a relevant
role in that. Specifically, the detection of an object (or a part of that) in an image
in terms of structural features can be formulated as a subgraph matching. Subgraph
matching is a challenging task. Specially due to the presence of outliers most of the
graph matching algorithms do not perform well in subgraph matching scenario. Also
exact subgraph isomorphism has proven to be an NP-complete problem. So naturally,
in graph matching community, there are lot of efforts addressing the problem of
subgraph matching within suboptimal bound. Most of them work with approximate
algorithms that try to get an inexact solution in approximate way. In addition, usual
recognition must cope with distortion. Inexact graph matching consists in finding
the best isomorphism under a similarity measure. Theoretically this thesis proposes
algorithms for solving subgraph matching in an approximate and inexact way.

We consider the symbol spotting problem on graphical documents or line draw-
ings from application point of view. This is a well known problem in the graphics
recognition community. It can be further applied for indexing and classification of
documents based on their contents. The structural nature of this kind of documents
easily motivates one for giving a graph based representation. So the symbol spotting
problem on graphical documents can be considered as a subgraph matching problem.
The main challenges in this application domain is the noise and distortions that might
come during the usage, digitalization and raster to vector conversion of those docu-
ments. Apart from that computer vision nowadays is not any more confined within
a limited number of images. So dealing a huge number of images with graph based
method is a further challenge.

In this thesis, on one hand, we have worked on efficient and robust graph rep-
resentation to cope with the noise and distortions coming from documents. On the
other hand, we have worked on different graph based methods and framework to solve
the subgraph matching problem in a better approximated way, which can also deal
with considerable number of images. Firstly, we propose a symbol spotting method
by hashing serialized subgraphs. Graph serialization allows to create factorized sub-
structures such as graph paths, which can be organized in hash tables depending on
the structural similarities of the serialized subgraphs. The involvement of hashing
techniques helps to reduce the search space substantially and speeds up the spotting
procedure. Secondly, we introduce contextual similarities based on the walk based
propagation on tensor product graph. These contextual similarities involve higher

iii

iv ABSTRACT

order information and more reliable than pairwise similarities. We use these higher
order similarities to formulate subgraph matching as a node and edge selection prob-
lem in the tensor product graph. Thirdly, we propose near convex grouping to form
near convex region adjacency graph which eliminates the limitations of traditional
region adjacency graph representation for graphic recognition. Fourthly, we propose
a hierarchical graph representation by simplifying/correcting the structural errors to
create a hierarchical graph of the base graph. Later these hierarchical graph struc-
tures are matched with some graph matching methods. Apart from that, in this thesis
we have provided an overall experimental comparison of all the methods and some
of the state-of-the-art methods. Furthermore, some dataset models have also been
proposed.

Resumen

Existe un resurgimiento en el uso de métodos estructurales para el problema de re-
conocimiento y recuperación por contenido de objetos en imágenes. La teoŕıa de
grafos, en particular la puesta en correspondencia de grafos (graph matching) juega
un papel relevante en ello. Aśı, la detección de un objeto (o una parte) en una imagen
se puede formular como un emparejamiento de subgrafos en términos de caracteŕısticas
estructurals. El matching de subgrafos es una tarea dif́ıcil. Especialmente debido a
la presencia de valores at́ıpicos, muchos de los algoritmos existentes para el match-
ing de grafos tienen dificultades en el escenario de matching de subgrafos. Además,
el apareamiento de subgrafos de manera exacta ha demostrado ser una problema
NP-completo . Aśı que hay una actividad intensa en la comunidad cient́ıfica para
proporcionar algoritmos eficaces para abordar el problema de manera suboptimal.
La mayoŕıa de ellos trabajan con algoritmos aproximados que tratan de obtener una
solución inexacta en forma aproximada. Además, el reconocimiento habitualmente
debe hacer frente a la distorsión. El emparejamiento de subgrafos de manera inex-
acta consiste en encontrar el mejor isomorfismo bajo una medida de similitud. Desde
el punto de vista teórico, esta tesis propone algoritmos para la solución al problema
del emparejamiento de subgrafos de manera aproximada e inexacta.

Desde un punto de vista aplicado, esta tesis trata el problema de la detección de
śımbolos en imágenes de documentos gráficos o dibujos lineales (symbol spotting).
Este es un problema conocido en la comunidad de reconocimiento de gráficos. Se
puede aplicar para la indexación y clasificación de documentos sobre la base de sus
contenidos. El carácter estructural de este tipo de documentos motiva de forma natu-
ral la utilización de una representación de grafos. Aśı el problema de detectar śımbolos
en documentos gráficos puede ser considerado como un problema de apareamiento de
subgrafos. Los principales desaf́ıos en este dominio de aplicación son el ruido y las
distorsiones que provienen del uso, la digitalización y la conversión de raster a vectores
de estos documentos. Aparte de que la visión por computador en la actualidad no
limita las aplicaciones a un número limitado de imágenes. Aśı que el paso a la escala
y tratar un gran número de imágenes en el reconocimiento de documentos gráficos es
otro desaf́ıo.

En esta tesis, por una parte, hemos trabajado en representaciones de grafos efi-
cientes y robustas para solucionar el ruido y las distorsiones de los documentos. Por
otra parte, hemos trabajado en diferentes métodos de matching de grafos para resolver
el problema del emparejamiento inexacto de subgrafos, que también sea escalable ante
un considerable número de imágenes. En primer lugar, se propone un método para de-

v

vi RESUMEN

tectar śımbolos mediante funciones de hash de subgrafos serializados. La organización
del grafo una vez factorizado en subestructuras comunes, que se pueden organizar en
tablas hash en función de las similitudes estructurales, y la serialización de las mismas
en estructuras unidimensionales como caminos, son dos aportaciones de esta parte de
la tesis. El uso de las técnicas de hashing ayuda a reducir sustancialmente el espacio
de búsqueda y acelera el procedimiento de la detección. En segundo lugar, presenta-
mos mecanismos de similitud contextual basadas en la propagación basada en caminos
(walks) sobre el grafo producto (tensor product graph). Estas similitudes contextuales
implican más información de orden superior y más fiable que las similitudes locales.
Utilizamos estas similitudes de orden superior para formular el apareamiento de sub-
grafos como una problema de selección de nodos y aristas al grafo producto. En tercer
lugar, proponemos agrupamiento perceptual basado en convexidades para formar re-
giones casi convexas que elimina las limitaciones de la representación tradicional de
los grafos de regiones para el reconocimiento gráfico. En cuarto lugar, se propone una
representación de grafo jerárquico mediante la simplificación/corrección de los errores
estructurales para crear un grafo jerárquico del grafo de base. Estos estructuras de
grafos jerárquicos integran en métodos de emparejamiento de grafos. Aparte de esto,
en esta tesis hemos proporcionado una comparación experimental general de todos
los métodos y algunos de los métodos del estado del arte. Además, también se han
proporcionado bases de datos de experimentación.

Resum

Existeix un ressorgiment en l’ús de mètodes estructurals per al problema de reconeix-
ement i recuperació per contingut d’objectes en imatges. La teoria de grafs, en partic-
ular, la posada en correspondència de grafs (graph matching) juga un paper rellevant
en això. En particular, la detecció d’un objecte (o una part) en una imatge es pot
formular com un aparellament de subgrafs en termes de caracteŕıstiques estructurals.
El matching de subgrafs és una tasca dif́ıcil. Especialment a causa de la presència
de valors at́ıpics, molts dels algoritmes existents per al matching de grafs tenen di-
ficultats en l’escenari de matching de subgrafs. A més, l’aparellament de subgrafs
de manera exacta s’ha demostrat ser una problema NP-complet. Aix́ı que hi ha una
activitat intensa a la comunitat cient́ıfica per proporcionar algoritmes eficaços per
abordar el problema de manera suboptimal. La majoria d’ells treballen amb algo-
ritmes aproximats que tracten d’obtenir una solució inexacta en forma aproximada.
A més, el reconeixement habitualment ha de fer front a la distorsió. L’aparellament
de subgrafs de manera inexacta consisteix a trobar el millor isomorfisme sota una
mesura de similitud. Des del punt de vista teòric, aquesta tesi proposa algoritmes
per a la solució al problema de l’aparellament de subgrafs de manera aproximada i
inexacta.

Des d’un punt de vista aplicat, aquesta tesi tracta el problema de la detecció de
śımbols en imatges de documents gràfics o dibuixos lineals (symbol spotting). Aquest
és un problema ben conegut a la comunitat de reconeixement de gràfics. Es pot aplicar
per a la indexació i classificació de documents sobre la base dels seus continguts. El
caràcter estructural d’aquest tipus de documents motiva de forma natural la utilització
d’una representació de grafs. Aix́ı el problema de detectar śımbols en documents
gràfics pot ser considerat com un problema d’aparellament de subgrafs. Els principals
desafiaments en aquest domini d’aplicació són el soroll i les distorsions que provenen
de l’ús, la digitalització i la conversió de ràster a vectors d’aquests documents. A
part que la visió per computador en l’actualitat no limita les aplicacions a un nombre
limitat d’imatges. Aix́ı que el pas a l’escala i tractar un gran nombre d’imatges en el
reconeixement de documents gràfics és un altre desafiament.

En aquesta tesi, d’una banda, hem treballat en representacions de grafs eficients
i robustes per solucionar el soroll i les distorsions dels documents. D’altra banda,
hem treballat en diferents mètodes de matching de grafs per resoldre el problema
de l’aparellament inexacte de subgrafs, que també sigui escalable davant d’un con-
siderable nombre d’imatges. En primer lloc, es proposa un mètode per a detectar
śımbols mitjançant funcions de hash de subgrafs serialitzats. L’organització del graf

vii

viii RESUM

una vegada factoritzat en subestructures comunes, que es poden organitzar en taules
hash en funció de les similituds estructurals, i la serialització de les mateixes en es-
tructures unidimensionals com ara camins, són dues aportacions d’aquesta part de
la tesi. L’ús de les tècniques de hashing ajuda a reduir substancialment l’espai de
cerca i accelera el procediment de la detecció. En segon lloc, presentem mecanismes
de similitud contextual basades en la propagació basada en camins (walks) sobre el
graf producte (tensor product graph). Aquestes similituds contextuals impliquen més
informació d’ordre superior i més fiable que les similituds locals. Utilitzem aquestes
similituds d’ordre superior per formular l’aparellament de subgrafs com una problema
de selecció de nodes i arestes al graf producte. En tercer lloc, proposem agrupament
perceptual basat en convexitats per formar regions quasi convexes que elimina les
limitacions de la representació tradicional dels grafs de regions per al reconeixement
gràfic. En quart lloc, es proposa una representació de graf jeràrquic mitjançant la
simplificació/correcció dels errors estructurals per crear un graf jeràrquic del graf de
base. Aquests estructures de grafs jeràrquics s’integren en mètodes d’aparellament de
grafs. A part d’això, en aquesta tesi hem proporcionat una comparació experimental
general de tots els mètodes i alguns dels mètodes de l’estat de l’art. A més, també
s’han proporcionat bases de dades d’experimentació.

Contents

Acknowledgement i

Abstract iii

Resumen v

Resum vii

1 Introduction 1

1.1 Graph matching in computer vision and pattern recognition 1

1.2 Graphics recognition and Focused retrieval 4

1.3 Motivation . 5

1.4 Objectives and Contributions . 6

1.5 Outline . 7

2 Graph Matching 9

2.1 Graphs and Subgraphs . 9

2.2 Graph matching . 10

2.3 Graph edit distance . 11

2.4 Graph indexing . 12

2.5 Graph embedding . 13

2.5.1 Explicit graph embedding . 13

2.5.2 Implicit graph embedding: graph kernels 13

2.6 Product graph . 14

2.7 State-of-the-art in graph matching . 15

2.8 Conclusions . 19

3 State-of-the-art in Symbol Spotting 21

3.1 Hidden Markov Models (HMMs) . 21

3.2 Graph-based approaches . 22

3.3 Raster features . 24

3.4 Symbol signatures . 26

3.5 Hierarchial symbol representation . 26

3.6 Conclusions . 27

ix

x CONTENTS

4 Symbol Spotting by Hashing Serialized Subgraphs 29
4.1 Introduction . 29
4.2 Methodology . 31

4.2.1 Framework . 32
4.2.2 Path description . 33
4.2.3 Locality Sensitive Hashing (LSH) 35
4.2.4 Voting scheme . 37

4.3 Experimental results . 39
4.3.1 Zernike moments versus Hu moment invariants 39
4.3.2 Experiments on the influence of parameters L and K 40
4.3.3 Symbol spotting experiments 41
4.3.4 Experiment on handwritten word spotting 48
4.3.5 Discussions . 50

4.4 Conclusions . 53

5 Product Graph based Inexact Subgraph Matching 55
5.1 Introduction . 55
5.2 Methodology . 58

5.2.1 Random walks . 59
5.2.2 Backtrackless walks . 60
5.2.3 Subgraph matching as a constrained optimization problem . . . 62

5.3 Experimental framework . 64
5.3.1 Exact subgraph matching . 64
5.3.2 Symbol spotting as an inexact subgraph matching problem . . 65

5.4 Conclusions . 75

6 Near Convex Region Adjacency Graph 77
6.1 Introduction . 77
6.2 Methodology . 79

6.2.1 Near Convex Region Adjacency Graph (NCRAG) 79
6.2.2 Approximate Edit Distance Algorithm (AEDA) 81

6.3 Experimental results . 82
6.3.1 Experiments on SESYD . 83
6.3.2 Experiments on FPLAN-POLY 84
6.3.3 Experiments on SESYD-DN . 84

6.4 Discussions . 84
6.5 Conclusions . 85

7 Hierarchical Graph Representation 87
7.1 Introduction . 87
7.2 Methodology . 89

7.2.1 Vectorization . 89
7.2.2 Hierarchical graph construction 90
7.2.3 Graph matching . 94

7.3 Experimental results . 97
7.4 Conclusions . 99

CONTENTS xi

8 Experimental Evaluation 101
8.1 Introduction . 101
8.2 Description of state-of-the-art methods 102
8.3 Experimental results . 104
8.4 Discussions . 106
8.5 Conclusions . 109

9 Conclusions 115
9.1 Summary and contributions . 115
9.2 Future Perspective . 116

A Datasets 119
A.1 SESYD (floorplans) . 119
A.2 FPLAN-POLY . 119
A.3 SESYD-DN . 121
A.4 SESYD-GN . 123
A.5 SESYD-VN . 123
A.6 GREC 2005 dataset . 124
A.7 ILPIso dataset . 125
A.8 L’Esposallas dataset . 125

Bibliography 129

xii CONTENTS

List of Tables

2.1 Summary table of different graph matching techniques. 18

3.1 Different families of symbol spotting research with their advantages
and disadvantages. 23

3.2 Comparison of the key existing works of symbol spotting. 25

4.1 Results with SESYD dataset . 45
4.2 Results with SESYD-VN dataset . 46
4.3 Results with SESYD-GN dataset . 47
4.4 Comparison with the state-of-the-art methods 51
4.5 Results of symbol recognition experiments 52
4.6 Comparative results on two databases FPLAN-POLY & SESYD . . . 52

5.1 Execution time of the exact graph matching experiment. 64
5.2 Overall results with three different settings. 72
5.3 Comparative results with Le Bodic et al. [8]. 75

6.1 Dataset wise mean results with NCRAG representation. 84
6.2 Comparison between a state-of-the-art method and the current method. 85

7.1 Results obtained by the proposed method and the comparison with
the previous version [12] and a previously proposed symbol spotting
method [26]. 98

8.1 Summary, abbreviations of the methods 102
8.2 Results . 107

xiii

xiv LIST OF TABLES

List of Figures

1.1 Graphs are everywhere: (a)-(b) natural scene, (c) social network, (d)
protein structure, (e) visual objects, (f) protein structures and (g)
graphical documents. Any visual objects can be represented by graphs.
(Figure credit: (a)-(b) Harchaoui and Bach [39], (c)-(d), (f) Google im-
ages, (e) Han et al. [38], (g) Le Bodic et al. [8]). 3

2.1 An edit path between two graphs. Node labels are represented by
different colours. 12

2.2 An example of Cartesian product graph. 14

2.3 An example of a strong product graph. 15

2.4 An example of a tensor product graph. 16

3.1 Pseudo 2-D Hidden Markov Model (Figure credit: Müller and Rigoll [66]) 22

3.2 Example of string growing in terms of the neighbourhood string simi-
larity (Figure credit: Lladós et al. [54]). 24

3.3 Definition of an F-signature (Figure credit: Tabbone et al. [95]). . . . 26

3.4 A dendogram showing the hierarchical decomposition of graphical ob-
ject (Figure credit: Zuwala and Tabbone [110]). 27

4.1 (a)-(d) Examples of floorplans from a real floorplan (FPLAN-POLY)
database, (e),(g),(i),(k) Zoomed portions of the selected parts respec-
tively shown in Figures 4.1a-4.1d show the difficulty of recognition
due to noise and superimposition of textual and graphical informa-
tion, (f),(h),(j) Actual instances of the symbols shown in (e),(g),(i)
respectively. 30

4.2 Symbol spotting framework for our method. 32

4.3 Hashing of paths provokes collisions in hash tables. 33

4.4 Illustration of voting: For each of the selected paths from the hash
table, we accumulate the votes to the nine nearest grids of each of the
2 terminal vertices of that path. 38

4.5 Precision-Recall plot showing the performance of the spotting method
with the Hu moment invariants and Zernike moments of order 6 to 10. 40

xv

xvi LIST OF FIGURES

4.6 (a) The precision-recall plot of the spotting method by varying L 1 to
20 and K 40 to 80. (b) The plot of the time taken by the method to
retrieve symbols for different values of L. 41

4.7 Examples of model symbols from the FPLAN-POLY dataset used for
our experiment. 42

4.8 Qualitative results of the method: first 20 retrieved regions obtained
by querying the symbol in Figure 4.7a in the FPLAN-POLY dataset. . 43

4.9 Qualitative results of the method: first 20 retrieved regions obtained
by querying the symbol in Figure 4.7b in the FPLAN-POLY dataset. . 43

4.10 Example of different isolated symbols: (a) armchair, (b) door2, (c)
sink4, (d) table3. 44

4.11 Qualitative results of the method: first 20 retrieved regions obtained by
querying the symbol shown in Figure 4.10a in the SESYD (floorplans16-
01) dataset. 45

4.12 Qualitative results of the method: first 20 retrieved regions obtained by
querying the symbol shown in Figure 4.10d in the SESYD (floorplans16-
05) dataset. 45

4.13 Qualitative results of the method: first 20 retrieved regions obtained by
querying the symbol shown in Figure 4.10g in the SESYD (floorplans16-
05) dataset. 46

4.14 Qualitative results of the method: first 20 retrieved regions obtained by
querying the symbol shown in Figure 4.10j in the SESYD (floorplans16-
01) dataset. 46

4.15 Precision-Recall plot generated by the spotting experiments with dif-
ferent levels of Gaussian noise. 48

4.16 An image from the marriage register from the fifth century from the
Barcelona cathedral, (a) The original image, (b) The binarized image
of 4.16a, (c) The image in 4.16b after preprocessing (eliminating black
border created due to scanning), (d) Graph constructed from the image
in 4.16c: the inset also shows the zoomed part of a word ’Ramon’. . . 49

4.17 The first 120 retrievals of the handwritten word ’de’ in the Marriage
documents of the Barcelona Cathedral. 50

4.18 Precision-Recall plot generated by the spotting methods proposed by
Luqman et al. [59], Qureshi et al. [77], Rusiñol et al. [84] and our
proposed method. 51

4.19 Qualitative results of the method: first 20 retrieved regions obtained
by querying the symbol 4.7c in the FPLAN-POLY dataset. 53

5.1 Outline of the proposed method: Step one: computation of the tensor
product graph (TPG), Step two: algebraic procedure to obtain contex-
tual similarities (CS), Step three: constrained optimization problem
(COP) for matching subgraph. 57

LIST OF FIGURES xvii

5.2 (a) An example symbol, (b) Graph representation of the symbol in (a)
considering the critical points (detected by the vectorization algorithm)
as the nodes and lines joining the critical points as the edges. Note the
spurious nodes and edges generated near the junctions and corners. It
is to be mentioned that in this case the vectorization is done by QGAR. 65

5.3 An illustration showing the details of dual graph representation. Here
a, b, c and d are dual nodes and we consider l = 1. For that reason
(b, a) and (b, c) are dual edges (shown in magenta and discontinuous
line) since the corresponding edges (shown in green and continuous
line) in the original graph are reachable with a shortest walk of length
1. There is no dual edge (b, d) since the shortest walk between the
corresponding edges of b and d is 2. Consider the details near the
junctions and corners. 66

5.4 Transitive closure. 67

5.5 Matchings: bed. 68

5.6 Matchings: door1. 68

5.7 Matchings: door2. 69

5.8 Matchings: sink1. 69

5.9 Matchings: sink4. 69

5.10 Matchings: sofa1. 70

5.11 Matchings: sofa2. 70

5.12 Matchings: table1. 70

5.13 Matchings: table2. 71

5.14 Matchings: tub. 71

5.15 Matchings: window1. 71

5.16 Matchings: window2. 72

5.17 Precision Recall curve. 72

5.18 Symbol spotting: bed. Green boxes are the true positives, the red ones
are false positives. 73

5.19 Symbol spotting: door1. Green boxes are the true positives, the red
ones are false positives. 73

5.20 Symbol spotting: door2. Green boxes are the true positives, the red
ones are false positives. 73

5.21 Symbol spotting: sink1. Green boxes are the true positives, the red
ones are false positives. 74

5.22 Symbol spotting: sink2. Green boxes are the true positives, the red
ones are false positives. 74

5.23 Symbol spotting: sofa1. Green boxes are the true positives, the red
ones are false positives. 74

5.24 Symbol spotting: sofa2. Green boxes are the true positives, the red
ones are false positives. 75

5.25 Symbol spotting: window2. Green boxes are the true positives, the red
ones are false positives. 75

xviii LIST OF FIGURES

6.1 Limitations of RAG and convex region based representation: (a) the
symbol door1 contains open region, (b) the symbol door2 also contains
open regions, (c) the symbol bed contains a region (region 1) which is
not convex, (d) the symbol table1 contains discontinuous boundaries. . 78

6.2 NCRAG representing (a) a part of a floorplan, (b) a symbol with open
region (door1), (c) a symbol with all closed regions (armchair). 80

6.3 Model symbols: (a)-(e) SESYD, (f) FPLAN-POLY: (a) armchair, (b)
bed, (c) door1, (d) door2, (e) table2, (f) television. 82

6.4 First ten retrievals of armchair. 82

6.5 First ten retrievals of bed. 82

6.6 First ten retrievals of door1. 82

6.7 First ten retrievals of television. 82

6.8 First 10 retrievals of table2 on the database of floorplans having dis-
continuous line noise. 83

6.9 Precision recall curve for different dataset. 83

6.10 Limitations of region based representation: (a) model symbol of sink3,
(b) sink3 as it appears in the document, (c) model symbol of sink4,
(d) sink4 as it appears in the document. 85

7.1 Examples of the structural distortions (spurious nodes, edges, discon-
tinuous edges) for a graphical symbol: (a) A graphical symbol called
table1, (b), (c) Graph representations of two different instances of the
symbol table1 when appeared in floorplans, these instances are cropped
from bigger graphs representing floorplans. Graph representation of
documents involves low level image processing viz. binarization, skele-
tonization, vectorization etc. which further add structural noise such
as spurious nodes, edges etc. The example shows how even a undis-
torted symbol can become distorted after represented with graph (note
the spurious nodes and edges near the junction and corners.). 88

7.2 Three cases for simplification. Displayed are the original nodes and
edges (black) and the simplified nodes and their edges (gray): (a) Merge
nodes (b) Remove dispensable node (c) Merge node and edge. 90

7.3 An example for removing nodes. Note that the possibility of removing
two adjacent nodes of w creates four different possible interpretations
of w, e.g. w̄1 stands for removing u but keeping x 93

7.4 Example for node labels for graphs based on angles between edges: (a)
for planar graphs and (b) for hierarchical graphs. Both will be labeled
with (90, 210, 60). 96

7.5 Model symbols in the SESYD dataset: (a) armchair, (b) bed, (c) sink1,
(d) sofa1, (e) sofa2, (f) table1, (g) table2. 96

7.6 Results of spotting bed, here the single instance of bed is correctly
detected, note that in this case the instance is also attached with thin
black pixel, (b) Results of spotting bed by the previous version of the
method [12], (c) Results of spotting bed by Dutta et al. [26]. 96

LIST OF FIGURES xix

7.7 (a) Results of spotting sofa2, here both the instances are correctly de-
tected among which one of them was partially attached with thick wall,
(b) Results of spotting sofa2 by the previous version of the method [12],
(c) Results of spotting sofa2 by Dutta et al. [26]. 97

7.8 Results of spotting table1, note that all the instances of the symbol
table1 are correctly detected even the ones attached with the walls. In
reality these walls are thin and hence less distorted during the vector-
ization, (b) Results of spotting table1 by the previous version of the
method [12], (c) Results of spotting table1 by Dutta et al. [26]. 97

7.9 Results of spotting table1, except one all the instances of the symbol
table1 are correctly detected. The one which is not detected is at-
tached with the thick black pixels, (b) Results of spotting table1 by
the previous version of the method [12], (c) Results of spotting table1
by Dutta et al. [26]. 97

7.10 Results of spotting table1, note that all the instances of the symbol
table1 are correctly detected even the one which is connected with thick
black pixels, (b) Results of spotting table1 by the previous version of
the method [12], (c) Results of spotting table1 by Dutta et al. [26]. . . 97

7.11 Results of spotting table1, here two of the symbols are not detected
and one of them are isolated but heavily distorted by the vectorization
algorithm, (b) Results of spotting table1 by the previous version of the
method [12], (c) Results of spotting table1 by Dutta et al. [26]. 98

8.1 (a) Initial image, (b) Vectorization results, (c) Zone of influence of a
quadrilateral, (d) Influence zone of the quadrilaterals and their cor-
responding sub-graphs respectively, (e) and (f) Graph representation.
(Figure credit: Qureshi et al. [77]). 103

8.2 An example of matching. S and G both contain a single edge, respec-
tively ij and kl. The following solution is represented on this figure:
xi,k = 1 (resp. xj,l = 1, yij,kl = 1), i.e. i (resp. j, ij) is matched with k
(resp. l, kl). Conversely, since i (resp. j) is not matched with l (resp.
k), xi,l = 0 (resp. xj,k = 0). (Figure credit: Le Bodice et al. [8]). . . . 104

8.3 Receiver operating characteristic (ROC) curves for different pattern
graphs obtained by the method based on hashing of serialized graphs. 107

8.4 Erroneous results. 108

8.5 Qualitative results: (a)-(e) bed, (f)-(j) door1 and (k)-(o) door2. 110

8.6 Qualitative results: (a)-(e) sink1, (f)-(j) sink2 and (k)-(o) sink3. . . . 111

8.7 Qualitative results: (a)-(e) sink4, (f)-(j) sofa1 and (k)-(o) sofa2. . . . 112

8.8 Qualitative results: (a)-(e) table1, (f)-(j) table2 and (k)-(o) table3. . . 113

8.9 Qualitative results: (a)-(e) tub, (f)-(j) window1 and (k)-(o) window2. . 114

A.1 Example of different isolated symbols: (a) armchair, (b) bed, (c) door1,
(d) door2, (e) sink1, (f) sink2, (g) sink3, (h) sink4, (i) sofa1, (j) sofa2,
(k) table1, (l) table2, (m) table3, (n) tub, (o) window1, (p) window2. . . 120

A.2 Example of floorplans from SESYD (a) floorplans16-01 (b) floorplans16-
02 and (c) floorplans16-03 subset. 120

xx LIST OF FIGURES

A.3 Example of floorplans from SESYD (a) floorplans16-04 (b) floorplans16-
05 and (c) floorplans16-06 subset. 120

A.4 Example of floorplans from SESYD (a) floorplans16-07 (b) floorplans16-
08 subset. 121

A.5 Example of floorplans from SESYD (a) floorplans16-09 (b) floorplans16-
10 subset. 121

A.6 Example of different query symbols from the FPLAN-POLY dataset. . 122
A.7 Example of floorplans from the FPLAN-POLY dataset. 122
A.8 Example of floorplans from the SESYD-DN dataset. 123
A.9 Example of floorplans from the SESYD-GN dataset with m = 0.30. . . 123
A.10 Example of floorplans from the SESYD-VN dataset. 124
A.11 Example of isolated images from the GREC-2005 dataset. 124
A.12 Example of pages from the marriage registers from the L’Esposalles

dataset: (a)-(b) indices, (c)-(d) register pages. 126

Chapter 1

Introduction

This thesis work has two basic aspects: (1) theoretical and (2) applied. From theo-
retical point of view, it mostly addresses the approximate inexact subgraph matching
algorithms: improvements in terms of performance, error tolerance, time complexity
and large scale compatibility. And from application point of view, it addresses a
typical problem of document image analysis (DIA): symbol spotting in graphical doc-
uments. By nature, the graphical documents can be represented by graphs in a robust
way but there are issues concerning distortions, noise etc. So from applied perspec-
tive, this work considers symbol spotting problem as a subgraph matching problem
and proposes different graph representation strategies for dealing with distortions,
noise etc.

1.1 Graph matching in computer vision and pattern
recognition

Let’s start giving a tentative answer of the question: What is pattern recognition
(PR)? Among all the existing answers, the one that fits best with the thesis and also
to this chapter is: “Pattern recognition is the scientific discipline of machine learning
(or artificial intelligence) that aims at classifying patterns (or data) into a number of
categories or classes”. But what is a pattern?

In 1985, Satoshi Watanabe [103] defined a pattern as “the opposite of chaos; it
is an entity, vaguely defined, that could be given a name”. In other words, a pattern
can be any entity of interest which one needs to or has interest to recognise and/or
identify: it is so worthy that one would like to know its name (its identity). Examples
of patterns are: a pixel in an image, a 2D or 3D shape, a typewritten or handwritten
character, the gait of an individual, a gesture etc.

In general, a pattern recognition system is an automatic system that aims at
classifying the input pattern into a specific class. It proceeds into two successive

1

2 INTRODUCTION

tasks: (1) the analysis (or description) that extracts the characteristics from the
pattern being studied and (2) the classification (or recognition) that enables us to
recognise an object (or a pattern) by using some characteristics derived from the first
task.

Through several decades the pattern recognition community has been trying to
use machines for solving various problem from various field. These include optical
character recognition [3], mail sorting [102], text categorization [47], handwritten text
recognition [75], writer identification [88], molecular structure analysis [36], fingerprint
recognition [29], face detection and recognition [7], image classification [9], action
recognition [76] and classification [71] and many more.

Methodologically, the field of pattern recognition is usually categorized into the
statistical and the structural approach. Structural pattern recognition allows one to
use powerful and flexible representation formalisms but offers only a limited repertoire
of algorithmic tools needed to solve classification and clustering problems. By con-
trast, the statistical approach is mathematically well founded and offers many tools,
but provides a representation formalism that is limited in its power and flexibility.
Hence, both the subfields are complementary to each other.

Graphs, strings are typical representation paradigm from the structural pattern
recognition community and widely used to represent complex structure in computer
vision and pattern recognition applications. The description of a visual object can
be further enhanced by an attributed relation between the nodes and edges. An
attributed relational graphs (or strings) are the graphs (or strings) whose nodes and
edges are associated by labels and parametric values which express some properties of
the object to represent. So, for instance, the two dimensional information in any image
plane can be well represented by the attributed graphs (see Figure 1.1). Moreover,
graph matching is a suitable strategy for the comparison, detection and recognition
of structural information. In general graphs can be matched by comparing the nodes
and the edges between them.

In computer vision and pattern recognition, the research community has divided
the graph matching methods into two broad categories: (1) exact graph matching
and (2) inexact graph matching. The exact matching requires a strict correspondence
among the two objects being matched or at least among their sub parts. Some
examples of exact algorithms are [17,20]. The inexact graph matching methods allow
some tolerance and in this case a matching can occur where two graphs being matched
can be structurally different to some extent. Some examples of inexact algorithms
are [17,18,104].

On the other hand, graph matching is proved to be an NP-hard problem [62]. For
that reason, in the research community there are substantial efforts for approximat-
ing the graph based algorithms so that a better solution can be obtained within a
reasonable time complexity [16].

1.1. Graph matching in computer vision and pattern recognition 3

(a) (b) (c)

(d) (e)

(f) (g)

Figure 1.1: Graphs are everywhere: (a)-(b) natural scene, (c) social net-
work, (d) protein structure, (e) visual objects, (f) protein structures and (g)
graphical documents. Any visual objects can be represented by graphs. (Fig-
ure credit: (a)-(b) Harchaoui and Bach [39], (c)-(d), (f) Google images, (e)
Han et al. [38], (g) Le Bodic et al. [8]).

4 INTRODUCTION

1.2 Graphics recognition and Focused retrieval

Even after the extreme advancement of the present digital era, paper document still
poses an important contribution in our regular workflow. Digitalization of those
documents is justified for the portability and preservation issues. However, developing
a system for browsing and querying collection of digital documents in an effective way
still remains as a big challenge.

Graphics recognition is a subfield of DIA, where the research community mainly
deals with graphics-rich documents, for example, maps, architectural drawings, en-
gineering drawings, circuit diagrams and schematics etc. The main research activity
concerns to propose methods and algorithms that can solve various analysis and
recognition problems in graphical documents, viz., raster-to-vector conversion, tex-
t/graphics separation, symbol spotting and recognition etc. As the other stream of
computer vision, neither DIA any more confined with limited number of images. It
often encounters lot of digital or digitized information in poorly formatted way. So the
main challenge lies in enriching the poorly structured information and add semantics.

Information spotting is a major branch of graphic recognition as well as of infor-
mation retrieval (IR) methods. It can be defined by locating a given query information
in a large collection of relevant data. In DIA, the research community is mainly fo-
cused on word spotting [57,78] for textual documents and symbol spotting for graphic
rich documents [97]. Here it is to be mentioned that textual information can also be
given a symbolic representation and approached by a symbol spotting technique. The
main application of symbol spotting is indexing and retrieval into large database of
graphical document images, e.g. finding a mechanical part into a database of engi-
neering drawings or a logo into a database of invoices or administrative documents
etc.

In general, symbol spotting can be defined as locating a given query symbol in
a large graphical document or a database of graphical document without explicitly
recognizing it. The desired output should be a ranked list of regions of interest likely
to contain the similar shapes to the queried one. Symbol spotting can be considered as
a specific application of content based image retrieval (CBIR), but differs in certain
ways. The main difference is that any standard retrieval approaches retrieves the
atomic documents leaving to the user the task of locating the real relevant information
within the provided results, whereas symbol spotting methodologies give a direct
access to the relevant information. The methods which give passages of interest within
the document instead of the whole document are called focused retrieval (FR) [48].
Additionally, spotting systems are usually queried by example. That is, the user crops
an object he wants to retrieve from the document database and this cropped image
acts as the input query of the spotting system. This prevents the spotting methods
to work on a specific set of model symbols and not to have an explicit learning stage
where the relevant features describing a certain model symbol can be trained.

1.3. Motivation 5

1.3 Motivation

Graphs are very effective tool to represent any visual objects and graph representation
can efficiently handle various affine transformations viz. rotation, translation, scaling
which is very useful for our purpose. Moreover, graphs have been widely adapted by
the research community as a robust tool since a long back, as a result lots of efficient
methods and algorithms are available to handle the graph based methods.

In spite of the progresses in the domain graph based methods in pattern recog-
nition, a problem of the approximate and inexact methods still exists resulting from
the consideration of outliers. This problem is often treated as a subgraph matching
problem which recognizes one graph as part of the other. This is justified since in
realistic computer vision applications due to the existence of background, occlusions
and geometric transformation of objects, outliers do exist in lot of scenarios. Sub-
graph matching is a very difficult task; exact subgraph matching is proved to be an
NP-complete problem. Moreover the issues concerning outliers and error tolerance in
case of computer vision have made it more challenging. And for that reason it has
drawn a huge attention of the research community and lot of research activity is going
on addressing it. There are lot of work addressing the problem of graph matching
with considerable effort for reducing the time complexity and making accurate ap-
proximation to obtain better results [16]. But not many of them work in subgraph
matching scenarios due to the issues concerning outliers/background etc [107].

In this work we have concentrated on symbol spotting in graphical documents,
mostly, in architectural line drawings and consider it as a subgraph matching problem.
The main motivation behind it is the nature of the graphical documents, which usually
have a relationship among the adjacent or nearby parts.

As being a part of real world entity, the graphical documents often suffer from
noise. Modelling these distortions and noise in graph level is a difficult job and de-
mands research activity. Also with the increase of improved imaging device the effort
for digitalizing documents has been increased, as a result DIA is no more confined
within a limited number of images. Graph based algorithms usually have a huge
time complexity, so handling a lot of data is further difficult job and also requires
investigation.

So the main motivation of this thesis is twofold. First comes from graph match-
ing point of view, where we work on faster approximate graph matching algorithms.
The second comes from the representation point of view where we address the dif-
ficulties representing graphical documents due to noise, distortions etc and work on
efficient graph representation for having stable representation paradigm in presence
of deformation.

6 INTRODUCTION

1.4 Objectives and Contributions

The main aim of this thesis work is twofold. First, theoretically, the main objective is
to propose an approximate subgraph matching algorithm that works in manageable
time complexity and can deal with considerable number of visual data. Second, from
application point of view, we consider the symbol spotting problem in graphical doc-
uments as a subgraph matching problem. As these documents are real instances, they
contain lot of noise and distortions which demand efficient representation paradigm.

To reach the main aim we have defined the following atomic objectives:

1. Inexact subgraph matching: Since the graph representation of real world ob-
ject employs the statistical description of object subparts, exact matching algo-
rithms do not fit with realistic applications. So to propose a subgraph matching
based symbol spotting method, we aim to work with inexact subgraph matching
algorithms.

2. Error tolerance: Most of the realistic data to some extend contains noise and/or
distortions, graphical documents are no exception of that. So the graph repre-
sentations should aim to tolerate the noise, distortions in the data.

3. Scalability: With the increase of improved imaging device the effort for digital-
izing documents has been increased, as a result DIA is no more confined within
a limited number of images. So to solve the problem of symbol spotting with
subgraph matching we aim to emphasise on the scalability issue.

4. Time complexity: As an application symbol spotting can be used for quick
indexing, retrieval and classification of graphical documents. For that reason
methodologically it demands a very fast processing of queries. So all the algo-
rithms should aim time efficiency.

To meet the above objectives, we have made the following contributions in this
thesis:

1. Symbol spotting by serialized subgraphs: Graph/Subgraph matching is con-
sidered as a computationally hard problem, so dealing a large collection of
graphical documents directly with graph is not efficient. Factorizing a graph
and then finding the common factorized substructures for the whole database
is effective since it can considerably reduce the computational burden for the
whole database. We factorize the graphs by finding the acyclic graph paths be-
tween each pair of connected nodes. Graph paths are serialized substructures,
which are efficient in terms of computation. At the same time the factorized
parts are helpful for recognizing partial/superimposed contents which is good
for error toleration. This work is presented in Chapter 4.

2. Product graph based inexact subgraph matching: A particular type of state-of-
the-art algorithms formulate the subgraph matching problem as an optimization
problem where they mainly work with pairwise (dis)similarities of the node and
edge attributes, which is not reliable in many cases. In this work we propose

1.5. Outline 7

a walk based way on tensor product graph to obtain higher order contextual
similarities and formulate subgraph matching as a node and edge selection
problem in the tensor product graph. Moreover, we propose a dual edge graph
representation which aims at tolerating noise and distortions in line drawings.
This work is discussed in Chapter 5.

3. Near convex region adjacency graph: Region based representation is a typical
type of representation where the information is represented by connecting the
adjacent regions. This kind of graph is called region adjacency graph (RAG).
But often all the necessary information cannot be represented with bounded
regions. It has been studied that mostly the interesting information can be
represented with convex regions or a combination of them. In this work we have
proposed a near convex grouping to create near convex regions and construct
a near convex region adjacency graph with them which solve the problem of
RAG. This work is explained in Chapter 6.

4. Hierarchical graph representation: Graph representation of graphical docu-
ments often suffer from noise viz. spurious nodes, spurious edges and their
discontinuity etc. In general this kind of structural errors occur during the
low-level image processing viz. binarization, skeletonization, vectorization etc
while transforming documents to graphs. In this work we solve this problem
by hierarchically merging/simplifying node-node and node-edge depending on
the distance. We introduce plausibilities to different simplifications and later
use these plausibility values while matching two hierarchical structures. This
work is described in Chapter 7.

1.5 Outline

The rest of the thesis is organized as follows:

• Chapter 2 presents the definitions, notations of graph theory, particularly the
ones that are necessary for our work to be described later. After that we present
a review of the state of the art methods for graph and subgraph matching.

• Chapter 3 presents a detailed review of the state of the art methods for symbol
spotting. This chapter classifies the symbol spotting methods into five broad
classes and gives an overview, pros and cons and examples of different category
of methods.

• Chapter 4 introduces a symbol spotting method by factorizing the graph rep-
resenting the graphical information in documents. The idea of graph factoriza-
tion to serialized subgraphs (graph paths) is introduced here. Locality sensitive
hashing (LSH) is used for creating a indexation structure for later fast retrieval.

• Chapter 5 presents a subgraph matching method using product graph and a
symbol spotting methodology is proposed using that. To cope with the struc-
tural errors a new dual graph based representation is proposed which is proved
to be effective in graphical documents.

8 INTRODUCTION

• Chapter 6 presents a region based graph representation to solve the limitations
of the approach encountered by factorization based method described in Chap-
ter 4. This chapter introduces near convex region adjacency graph (NCRAG)
which solves the limitations of the basic region adjacency graph (RAG) in
graphical documents.

• Chapter 7 addresses the structural errors encountered in the graphical docu-
ments. To solve the problem it proposes a hierarchical graph representation
which can correct the errors/distortions in hierarchical steps.

• Chapter 8 presents a unified experimental evaluation of all the proposed meth-
ods and comparisons with some state of the art methods.

• Chapter 9 concludes the thesis and defines the future direction of the work.

• App. A provides a brief description on the datasets that we have used in this
thesis work.

Chapter 2

Graph Matching

Graph is a powerful tool for any visual object representation. In this chapter, we will
discuss some of the key definitions regarding graphs. Graph comparison is a crucial
operation and it is needed for the sake of comparison of two objects represented with
graphs. This process can roughly be defined as graph matching. In pattern recog-
nition, the methods of graph matching are broadly divided into two categories viz.
exact and inexact. In this chapter we will discuss the concepts of exact and inexact
graph matching techniques. Also some of the key graph comparison approaches such
as graph edit distance, graph indexing, graph kernel and some related concepts will
be reviewed. As this thesis methodologically focuses on subgraph matching, at the
end of this chapter we will give a brief overviews and state-of-the-art reviews on the
other subgraph matching algorithms. Some of the definitions, concepts in this chapter
are written inspired from the PhD thesis of Dr. Jaume Gibert [32].

2.1 Graphs and Subgraphs

Definition 2.1 (Graph). Let LV and LE be any two sets of labels. An attributed
graph is a 4-tuple G = (V,E, α, β), where V is a finite set of nodes or vertices,
E ⊆ V × V is the set edges, α : V → LV is the node labelling function assigning a
label from the set LV to each of the nodes in V and β : E → LE is the edge labelling
function assigning a label from the set LE to each of the edges in E.

The number of nodes of a graph G is denoted by |V |. Edges of a graph are usually
identified by the pair of nodes they link. An edge e ∈ E can thus be represented as
e = (u, v), where u, v ∈ V are the nodes joined by the edge e. The number of edges
in a graph G is denoted by |E|. Based on the definitions of the labelling sets LV ,
LE and the labelling functions α, β, there also exist different types of graphs. For
instance, the graphs whose labelling sets are sets of discrete values is called discretely
attributed graphs. On the other hand the graphs whose labelling sets are any subset

9

10 GRAPH MATCHING

of Rd for d > 1, are called continuously attributed graphs. Moreover, LV and/or LE

can be empty sets, in that case the graphs are named as unattributed graphs.

Definition 2.2 (Directed Graph). A directed graph is a graph where all the edges
have a specific direction. For example, by the edge e = (u, v), we mean the edge e
is originated at the node u and terminated at the node v. The existence of an edge
e = (u, v) does not assure the existence of the edge e′ = (v, u).

Definition 2.3 (Undirected Graph). An undirected graph is a graph where for any
edge e = (u, v), there always exist an edge e′ = (v, u) such that β(e) = β(e′).

Definition 2.4 (Subgraph). Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be
two graphs. Then the graph G1 is said to be a subgraph of G2 and is denoted by
G1 ⊆ G2 if the following conditions hold.

• V1 ⊆ V2

• E1 = E2 ∩ V1 × V2

• α1(u) = α2(u),∀u ∈ V1

• β1(e) = β(e),∀e ∈ E1

From this definition, a subgraph of a graph can be obtained by removing some
nodes and all their incident edges. In this case the subgraph is called induced. If,
however, the second condition of the definition is substituted by E1 ⊆ E2, not only
the incident edges to the deleted nodes are removed but also some other edges have
to be removed. In this case the subgraph is called non-induced.

2.2 Graph matching

Given two attributed graphs, graph matching can roughly be defined as a process for
finding correspondence between the node and edge sets of two graphs that satisfies
some constraints. In pattern recognition, the research community has divided the
graph matching methods into two broad categories: (1) exact and (2) inexact graph
matching. The exact matching requires a strict correspondence among the two objects
being matched or at least among their sub parts. On the other hand the inexact graph
matching methods allow some tolerance for matching and in this case a matching can
occur where two graphs being matched can be structurally different to some extent.
This kind of graph matching also called as error tolerant subgraph matching.

As in all subfields of mathematics, also in graph theory the relation between two
objects or entities can be established in terms of a mapping. Depending on the nature
of mapping graph matching can also be of different types: graph isomorphism, graph
monomorphism and graph homomorphism, where graph isomorphism can be defined
as follows:

2.3. Graph edit distance 11

Definition 2.5 (Graph Isomorphism). Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2,
α2, β2) be two graphs. G1 is said to be isomorphic to G2, denoted by G1

∼= G2, if
there exist a bijection f : V1 → V2 such that for any u, v ∈ V1 and (u, v) ∈ E1 if and
only if ∃f(u), f(v) ∈ V2 and (f(u), f(v)) ∈ E2. In this case the two graphs G1 and
G2 are called isomorphic.

Similarly the graph homomorphism and monomorphism can also be defined de-
pending on the type of functions f .

A particular class of graph matching algorithms resulting from the consideration
of outliers is called subgraph matching. It can roughly be defined as recognizing one
graph as part of the other. Like graph matching, subgraph matching also includes
altogether subgraph homomorphism, isomorphism and monomorphism. Subgraph
isomorphism can be formally defined as follows:

Definition 2.6 (Subgraph Isomorphism). Let G1 = (V1, E1, α1, β1) and G2 = (V2,
E2, α2, β2) be two graphs. G1 is said to be isomorphic to a subgraph S2 of G2, denoted
by G1

∼= S2 ⊆ G2, if there exist an injection φ : V1 → V2 such that for any u, v ∈ V1,
(u, v) ∈ E1 if and only if ∃φ(u), φ(v) ∈ V2 and (φ(u), φ(v)) ∈ V2.

Later in this chapter we provide a detailed review and references of subgraph
matching algorithms.

2.3 Graph edit distance

Graph edit distance comes from the necessity of having a dissimilarity measure be-
tween two graphs. In pattern recognition when two objects are represented with
graphs, it is often needed to have a distance or similarity measure between them.
This is a very difficult task as graph can be multidimensional. The basic idea behind
graph edit distance is to define a dissimilarity measure between two graphs by the
minimum amount of edition needed to transform one graph to another [98]. To this
end, a number of edit operations e, consisting of the insertion, deletion and substitu-
tion of pair of nodes and edges together with merging of a series of nodes and edges
must be defined. Then for a pair of graphs G1 and G2, there exist a sequence of
edit operations or edit path p(G1, G2) = (e1, . . . , ek), (where each ei denotes an edit
operation) that transforms G1 to G2 or vice versa. The total distance measure of
editing a graph to another can be obtained by attaching an edit cost to each of the
edit operations and summing them up. In general, there might exist more than one
edit path that transform the graph G1 to G2, let P(G1, G2) be the set of all such
paths. One example of such paths p(G1, G2) ∈ P(G1, G2) is shown in Figure 2.1. The
edit distance between two graphs G1 and G2 is defined as the minimum total edit
cost of all such paths that transform G1 to G2. It is formally defined as follows:

Definition 2.7 (Graph edit distance). Given two graphs G1 = (V1, E1, α1, β1) and
G2 = (V2, E2, α2, β2), the graph edit distance between G1 and G2 is defined by:

12 GRAPH MATCHING

G
1

G
2

Figure 2.1: An edit path between two graphs. Node labels are represented
by different colours.

d(G1, G2) = min
(e1,...,ek)∈P(G1,G2)

k∑
i=1

c(ei)

where c(e) denotes the cost of an edit operation e.

There are many kind of algorithms to compute graph edit distance. Optimal
algorithms are based on combinatorial search procedures that explores all the possible
mappings of nodes and edges of one graph to the nodes and edges of the second
graph [13]. The major drawback of such approach is the time complexity which is
exponential to the size of the graphs. Then a number of suboptimal methods have
been proposed to make the graph edit distance less computationally demanding [69].
A linear programming method to compute the graph edit distance with unlabelled
edges is proposed in [49]. An efficient suboptimal algorithm for graph edit distance
computation is proposed based on bipartite optimization procedure in [80]. There
are also some effort going on towards quadratic time approximation of graph edit
distance [30].

2.4 Graph indexing

In the core of many graph related applications, lies a common and critical problem:
how to efficiently process graph queries and retrieve related graphs. In some cases,
the success of an application directly relies on the efficiency of the query processing
system. The classical graph query problem can be defined as: given a graph database
D = {g1, g2, . . . , gn} and a graph query q, find all the graphs in D, in which q is a
subgraph. It is inefficient to perform a sequential search on D and check whether q
is a subgraph of any graph gi ∈ D. Sequential search in such a manner is inefficient
because in this way one not only has to access the whole graph database but also has
to check subgraph isomorphism which is an NP-complete problem. Since generally
the size of D is huge, sequential searching in this manner is nearly impossible. This
creates the necessity to build graph indices in order to help the processing of graph
queries. XML query is a simple kind of graph query, which is usually built around path
expressions. There are various indexing methods available [35,50,89,91,105,108]. The
methods can be categorized in terms of the basic indexing unit such as graph paths [35],
frequent graph structure [105], subtree [89] and they are developed depending on the
type of applications.

2.5. Graph embedding 13

2.5 Graph embedding

The necessity of graph embedding comes from some of the major drawbacks of graph
based methods, that is the significantly increased complexity of many algorithms. For
example, the comparison between two vectors for identity can be done in linear time
complexity with respect to the length of the vectors. On the other hand, for testing
two graphs for isomorphism only the exponential algorithms are known today. Apart
from that some of the basic operations like weighted summation or multiplication etc.
of pair of entities in graph domain are not defined but these are elementary operations
in many classification and clustering algorithms. Graph embedding can roughly be
defined as the procedure of mapping graphs either explicitly or implicitly into high
dimensional spaces for the sake of performing basic mathematical operation required
by various statistical pattern recognition techniques. The graph embedding methods
are formally categorized as explicit graph embedding and implicit graph embedding.

2.5.1 Explicit graph embedding

Definition 2.8. Explicit graph embedding can be defined as the procedure of mapping
graphs from arbitrary graph domains G to a real vector space Rn by means of functions
such as ϕ : G → Rn.

The main aim of this kind of graph embedding is to provide an n-dimensional
vector for each graph G ∈ G such that the distance between the embedded vectors
xi and xj respectively of the graphs Gi and Gj is as close as possible to the distance
between Gi and Gj . There are many explicit graph embedding algorithms based on
different paradigms such as spectral properties [58], dissimilarity measures to selected
prototypes [14], node attribute statistics [33], fuzzy assignment [61] etc.

2.5.2 Implicit graph embedding: graph kernels

Definition 2.9. Implicit graph embedding methods are based on graph kernels. A
graph kernel is a function κ : G × G → R for that a mapping Φ : G → H to Hilbert
space H exists, such that κ(G1, G2) = 〈Φ(G1),Φ(G2)〉 for all G1, G2 ∈ G.

A graph kernel is a positive definite kernel on the set of graphs G. Graph ker-
nels can be defined on different substructures such as random walks [31], shortest
paths [11], cyclic patterns [41], backtrackless walks [4] etc. The idea behind random
walk kernel is to measure the similarity between graphs by counting the weighted
common random walks between the operand graphs. This can be done by comput-
ing the tensor product graph and using the property of the adjacency matrix of the
product graph.

14 GRAPH MATCHING

2.6 Product graph

A product graph is a graph generated from the graph product operation on two graphs.
In graph theory graph product is a binary operation that takes two graphs G1(V1, E1)
and G2(V2, E2) and produces a graph GX(VX , EX) with a vertex set VX as the Carte-
sian product V1 × V2 and an edge set EX depending on the criterion imposed during
the graph product operation. In graph theory we talk about different product graphs
depending on the definition of the edge set. In this section we will have a quick look
on different type of product graphs, before that let us consider the following example
which we will use to explain different definitions.

Let G1(V1, E1, LV1
, LE1

) and G2(V2, E2, LV2
, LE2

) be two graphs with sets of
vertices V1 = {1, 2, 3, 4, 5}, V2 = {1′, 2′, 3′} and sets of edges E1 = {(1, 2), (2, 1),
(1, 3), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 5), (5, 3), (4, 5), (4, 5)}, E2 = {(1′, 2′), (2′, 1′),
(1′, 3′), (3′, 1′), (2′, 3′), (3′, 2′)} (see Figure 2.2).

Definition 2.10. The simplest product graph is the Cartesian product graph. It is
defined as a product graph GX of two graphs G1(V1, E1) and G2(V2, E2) such that
the vertex set VX of GX is the Cartesian product V1 × V2 i.e.

VX = {(u1, u2) : u1 ∈ V1, u2 ∈ V2}

and the edge set is defined as:

EX = {((u1, u2), (v1, v2)) : u1 = v1 and (u2, v2) ∈ E2 or u2 = v2 and (u1, v1)

∈ E1, u1, v1 ∈ V1, u2, v2 ∈ V2}

An example of Cartesian product graph is shown in Figure 2.2.

1

2 3

4 5

1'

2' 3'
X

(1,1')

(4,1') (5,1')

(1,2')

(2,2')

(4,2') (5,2')

(1,3')

(3,3')

(5,3')

=

G
1

G
2

G
X

(2,1') (3,1')

(3,2') (2,3')

(4,3')

Figure 2.2: An example of Cartesian product graph.

Definition 2.11. The strong product graph GX of two graphsG1(V1, E1) andG2(V2, E2)
is a graph such that the vertex set VX of GX is the Cartesian product V1 × V2 i.e.

VX = {(u1, u2) : u1 ∈ V1, u2 ∈ V2}

2.7. State-of-the-art in graph matching 15

1

2 3

4 5

1'

2' 3'
X

(1,1')

(4,1') (5,1')

(1,2')

(2,2') (3,2')

(4,2') (5,2')

(1,3')

(3,3')

(4,3') (5,3')

=

G
1

G
2

G
X

(2,3')

(2,1') (3,1')

Figure 2.3: An example of a strong product graph.

and the edge set is defined as:

EX = {((u1, u2), (v1, v2)) : u1 = v1 or (u1, v1) ∈ E1 and u2 = v2 or

(u2, v2) ∈ E2, u1, v1 ∈ V1, u2, v2 ∈ V2}

An example of strong product graph is shown in Figure 2.3.

Definition 2.12. The tensor product graph GX of two graphs G1(V1, E1) and G2(V2,
E2) is a graph such that the vertex set VX of GX is the Cartesian product V1 × V2
i.e.

VX = {(u1, u2) : u1 ∈ V1, u2 ∈ V2}

and the edge set is defined as:

EX = {((u1, u2), (v1, v2)) : (u1, v1) ∈ E1 and (u2, v2) ∈ E2, u1, v1 ∈ V1,
u2, v2 ∈ V2}

An example of tensor product graph is shown in Figure 2.4.

Apart from the above instances, there are some other product graphs also, viz.,
lexicographical product graph, modular product graph, co-normal product graph etc. In
graph theory, mainly in artificial intelligence or machine learning the tensor product
graph has got popularity for computing walk based graph kernel. Tensor product
graph can also be called as direct product graph, Kronecker product graph, categorical
product graph, cardinal product graph etc.

2.7 State-of-the-art in graph matching

As this thesis mainly deals with subgraph matching algorithm, in this section we
will exclusively review the subgraph matching algorithms. Interested readers can find

16 GRAPH MATCHING

1

2 3

4 5

1'

2' 3'
X

(1,1')

(2,1') (3,1')

(4,1') (5,1')

(1,2')

(2,2') (3,2')

(4,2') (5,2')

(1,3')

(2,3') (3,3')

(4,3') (5,3')

=

G
1

G
2

G
X

Figure 2.4: An example of a tensor product graph.

a very robust and detailed review of various graph matching methods for pattern
recognition problem in [16]. In pattern recognition, the research community has
divided the graph matching methods into two broad categories: (1) exact and (2)
inexact graph matching. The exact matching requires a strict correspondence among
the two objects being matched or at least among their sub parts [21,100]. On the other
hand the inexact graph matching methods allow some tolerance for matching and in
this case a matching can occur where two graphs being matched can be structurally
different to some extent [54,73].

Most of the exact techniques rely on some kind of tree search with backtracking.
The basic idea is initially an empty matched list with pair of nodes is expanded with
new pair of matched nodes. Each pair of nodes is chosen if they satisfy some kind
of condition. For this kind of algorithm usually a set of heuristic is set which can
eliminate some kind of absurd matching. The algorithm backtracks in case it reaches
a partial condition where further expansion is not possible. The first algorithm in
this category was proposed by Ullman [100]. Cordella et al.proposed two algorithms
viz. VF [19] and VF2 [21] which also belong to this category. As it is mentioned
before this kind of algorithm is not efficient when one has to find different solutions.
Also determining the heuristic is also bit tricky, then also the algorithm can reach to
a unfruitful solution.

Exact matching problem can also be formulated as constraint satisfaction prob-
lem [53, 90]. This is a problem that has been studied deeply in discrete optimization
framework and operational research. As most of the optimization based techniques,
they aim to find local optima in approximated way and for that reason it is always
possible for these algorithms to stuck in a solution near to the local optima. Moreover,
optimization based techniques have high time complexity.

There are some subgraph matching algorithms aimed at reducing the matching
time of one input graph against a large library of graphs. The method proposed
by Messmer and Bunke in [65] can be classified in this category. Here a recursive
decomposition of each graph of the library is performed. This decompose the graphs

2.7. State-of-the-art in graph matching 17

into smaller subgraphs, until trivial, one node graphs are reached. The matching
process, then, exploits the fact that some of the parts are common to several graphs
in the library. This fact speeds up the matching procedure. Later a more impressive
algorithm was proposed by the same author where they builds a decision tree from
the graph library [64]. The main problem that has been noticed of these algorithms
is the space to store the built in libraries, which is exponential with respect to the
number of nodes.

There are lot of arguments supporting the exact and inexact matching methods.
Researchers often mention the characteristic of exact matching algorithms do not
fit with realistic applications. This is because the description of object (or part of
object) represented by graph is a vector resulted from some statistical analysis. So
researchers proposed inexact graph matching.

Tree search with backtracking can also be used for inexact subgraph matching
problem. Usually this kind of algorithms are directed by the cost of partial matching
obtained so far and a heuristic estimate of the matching cost for the remaining nodes.
One of the first algorithms of this branch was proposed by Tsai and Hu [98, 99].
In these papers they introduced the graph edit costs i.e. the costs for substituting,
deleting and inserting nodes and edges. The main idea of such family of methods
is to search for the minimum cost graph edit sequence that transform one graph to
another.

Continuous optimization methods have also been used for inexact graph matching.
It consists in finding a matching matrix X, between a subset of the nodes of the
first graph and a subset of the nodes of the second graph. The desired matching
must optimize some function depending on the weights of the edges preserved by the
match. The elements of X are constrained to take the discrete values 0 and 1. One
of the first algorithms in this branch was proposed by Almohamad and Duffuaa [2].
Then based on different optimization methods different algorithms were proposed,
for example, graduated assignment graph matching [37], maximal clique finding [10,
73]. None of the above algorithms addressed the subgraph matching problem. Very
recently Le Bodic et al.proposed an integer linear programming based optimization
method exclusively for subgraph isomorphism [8]. The main problem of this kind of
optimization methods for graph matching is that they could stuck in a local optima.
There are some algorithms that can take care of this situation but this technique is
not feasible for all scenario. Also optimization methods are expensive and inefficient
for bigger graph.

Spectral methods for graph matching are based on the observation that the eigen-
values and the eigenvectors of the adjacency matrix of a graph are invariant with
respect to node permutations. Hence, if two graphs are isomorphic, their adjacency
matrix will have the same eigenvalues and eigenvectors. The method which is slightly
related to subgraph matching with spectral methods is presented by Shokoufandeh
and Dickinson [89]. The method is about indexing a hierarchical structure repre-
sented by a directed acyclic graph (DAG). They proposed to index each of the nodes
of DAG in terms of the topological properties encoded by the spectral method under
that node. To the best of knowledge we do not find many works in this category.

18 GRAPH MATCHING

T
a
b

le
2
.1

:
S

u
m

m
ary

tab
le

of
d

i�
eren

t
grap

h
m

atch
in

g
tech

n
iq

u
es.

M
e
th

o
d

H
e
u

ristic
R

isk
o
f

lo
c
a
l

o
p

tim
a

S
iz

e
c
o
n

-
stra

in
ts

In
e
x
a
c
t

m
a
tch

-
in

g
T

im
e

e
ffi

-
c
ie

n
t

U
llm

a
n

[1
0
0
]

an
d

C
o
rd

ella
[1

9
,2

1
]

3
3

7
7

3

L
a
rro

sa
a
n

d
V

a-
lien

te
[5

3
]

a
n

d
S

ol-
n

o
n

[9
0
]

7
3

-
7

7

M
essm

er
a
n

d
B

u
n

ke
in

[6
4
,6

5
]

7
7

3
7

3

T
sa

i
a
n

d
H

u
[9

8
,9

9]
3

7
7

3
3

A
lm

o
h

a
m

a
d

a
n
d

D
u

f-
fu

a
a

[2
]

7
7

7
3

3

B
o
m

ze
et

a
l.

[1
0
]

an
d

P
elillo

et
a
l.

[7
3
]

7
3

7
3

-

L
e

B
o
d

ic
et

a
l.

[8
]

7
7

3
3

7

S
h

o
ko

u
fa

n
d

eh
a
n

d
D

ick
-

in
so

n
[8

9
]

7
7

3
3

3

2.8. Conclusions 19

2.8 Conclusions

In the literature we encounter di�erent type of subgraph matching algorithms. But
there are lack of methods that can deal with a big dataset of graphs. Nowadays,
due to a huge development of imagery device the number of images in any of the
�eld of computer vision is not limited. So developing algorithms that can deal with
a substantial number of images with manageable time complexity is necessary. Also,
di�erent application �eld evolve di�erent problem from distortion, noise point of view.
Dealing these noisy data in the graph level is a challenging task. So this demands
some work on having stable graph representation tolerating the distortions. These
are the main motivations for working on the graph representations and algorithms in
this thesis.

20 GRAPH MATCHING

Chapter 3

State-of-the-art in Symbol Spotting

Symbol spotting has experienced a lot of interests among the graphics recognition
community. Here the main task starts by querying a given graphic symbol or model
object, usually cropped from a bigger document. The main aim is to search the model
object in a target document or set of target documents. In this dissertation we will
alternatively name the model object to be queried as model symbol or query symbol or
pattern and the corresponding graph representing them as query graph or model graph
or pattern graph. And the document or the set of documents where the user intends to
�nd the model symbol as input document or target document and the corresponding
graph as target graph or input graph. Most of the time the user is interested in getting
a ranked list of retrieved zones supposed to contain the queried symbol depending on
the similarity or dissimilarity measure. This Chapter contains a review of the state
of the art of symbol spotting methods. The major existing research can be classi�ed
into �ve broad families as in [83], which are listed in Table 3.1. We review those
families as follows:

3.1 Hidden Markov Models (HMMs)

HMMs are powerful tools to represent dynamic models which vary in terms of time or
space. Their major advantage in space series classi�cation results from their ability to
align a pattern along their states using a probability density function for each state.
This estimates the probability of a certain part of the pattern belonging to the state.
HMMs have been successfully applied for o�-line handwriting recognition [27, 28],
where the characters represent pattern changes in space whilst moving from left to
right. Also, HMMs have been applied to the problems of image classi�cation and
shape recognition [40]. M•uller and Rigoll [66] proposed pseudo 2-D HMMs to model
the two-dimensional arrangements of symbolic objects. This is one of the �rst few
approaches we can �nd for symbol spotting, where the document is �rst partitioned
by a �xed sized grid. Then each small cell acts as an input to a trained 2-dimensional

21

22 STATE OF THE ART IN SYMBOL SPOTTING

Figure 3.1: Pseudo 2-D Hidden Markov Model (Figure credit: M•uller and
Rigoll [66])

HMM to identify the locations where the symbols from the model database is likely
to be found. Previously, HMMs were also applied to word spotting, and this work is
an adaptation of HMMs for 2D shapes. The method does not need pre-segmentation,
and also it could be used in noisy or occluded conditions, but since it depends on
the training of a HMM, it loses one of the main assumptions of symbol spotting
methodologies.

3.2 Graph-based approaches

The methods based on graphs rely on the structural representation of graphical objects
and propose some kind of (sub)graph matching techniques to spot symbols in the
documents. Graph matching can be solved with a structural matching approach in
the graph domain or solved by a statistical classi�er in the embedded vector space of
the graphs. In both cases these techniques include an error model which allows inexact
graph matching to tolerate structural noise in documents. Because of the structural
nature of graphical documents, graph based representation has proven to be a robust
paradigm. For that reason graph matching based symbol spotting techniques has
drawn a huge attention of the researchers. There are an adequate number of methods
based on graphs [5, 8, 54, 55, 59, 63, 68, 77, 87]. In general the structural properties of
the graphical entities are encoded in terms of attributed graphs and then a subgraph
matching algorithm is proposed to localize or recognize the symbol in the document
in a single step. The (sub)graph matching algorithms conceive some noise models

3.2. Graph-based approaches 23

Table 3.1: Di�erent families of symbol spotting research with their advan-
tages and disadvantages.

Family Method Advantages Disadvantages

HMM [66]
segmentation-free;
Robust in noise

Needs training

Graph based

[5, 8, 26,
54,55,59,
63,68,77,
87]

Simultaneous symbol
segmentation and
recognition

Computationally ex-
pensive

Raster features [70,95]
Robust symbol repre-
sentation; Computa-
tionally fast

Ad-hoc selection of
regions; Ine�cient
for binary images

Symbol signa-
tures

[23,109]
Simple symbol de-
scription; Computa-
tionally fast

Prone to noise

Hierarchial
symbol repre-
sentation

[110]
Linear matching is
avoided by using an
indexing technique

Dendogram structure
is strongly dependent
on the merging crite-
rion.

to incorporate image distortion, which is de�ned as inexact (sub)graph matching.
Since (sub)graph matching is an NP-hard problem [62], these algorithms often su�er
from a huge computational burden. Among the methods available, Messmer and
Bunke in [63] represented graphic symbols and line drawings by Attributed Relational
Graphs (ARG). Then the recognition process of the drawings was undertaken in terms
of error-tolerant subgraph isomorphisms from the query symbol graph to the drawing
graph. Llad�os et al.in [54] proposed Region Adjacency Graphs (RAG) to recognize
symbols in hand drawn diagrams. They represented the regions in the diagrams by
polylines where a set of edit operations is de�ned to measure the similarity between
the cyclic attributed strings corresponding to the polylines.

In [5], Barbu et al.presented a method based on frequent subgraph discovery with
some rules among the discovered subgraphs. Their main application is the indexing of
di�erent graphical documents based on the occurrence of symbols. Qureshi et al. [77]
proposed a two-stage method for symbol recognition in graphical documents. In the
�rst stage the method only creates an attributed graph from the line drawing images
and in the second stage the graph is used to spot interesting parts of the image that

24 STATE OF THE ART IN SYMBOL SPOTTING

Figure 3.2: Example of string growing in terms of the neighbourhood string
similarity (Figure credit: Llad�os et al. [54]).

potentially correspond to symbols. Then in the recognition phase each of the cropped
portions from the images are passed to an error tolerant graph matching algorithm to
�nd the queried symbols. Here the procedure of �nding the probable regions restricts
the method only to work for some speci�c symbols, which violates the assumption of
symbol spotting. Locteau et al. [55] present a symbol spotting methodology based on
a visibility graph. There they apply a clique detection method, which corresponds to
a perceptual grouping of primitives to detect regions of particular interest.

In [87] Rusi~nol et al.proposed a symbol spotting method based on the decomposi-
tion of line drawings into primitives of closed regions. An e�cient indexing method-
ology was used to organize the attributed strings of primitives. Nayef and Breuel [68]
proposed a branch and bound algorithm for spotting symbols in documents, where
they used geometric primitives as features. Recently Luqman et al. [59] also pro-
posed a method based on fuzzy graph embedding for symbol spotting, a priori they
also used one pre-segmentation technique as in [77] to get the probable regions of
interest which may contain the graphic symbols. Subsequently, these ROIs are then
converted to fuzzy structural signatures to �nd out the regions that contain a symbol
similar to the queried one. Recently, Le Bodic et al. [8] proposed substitution-tolerant
subgraph isomorphism to solve symbol spotting in technical drawings. They repre-
sent the graphical documents with RAG and model the subgraph isomorphism as
an optimization problem. The whole procedure is performed for each pair of query
and document. The subgraph matching is done based on integer linear program-
ming based optimization technique. Moreover, since the method works with RAG, it
does not work well for the symbols having open regions or regions with discontinuous
boundary.

3.3 Raster features

Some of the methods work with low-level pixel features for spotting symbols. To
reduce the computational burden they extract the feature descriptors on some regions
of the documents. These regions may come from a sliding window or spatial interest

3.3. Raster features 25

T
a
b

le
3
.2

:
C

om
p

ar
is

on
of

th
e

ke
y

ex
is

ti
n

g
w

or
k
s

of
sy

m
b

ol
sp

ot
ti

n
g.

M
e
th

o
d

S
e
g
m

e
n
ta

ti
o
n

fr
e
e

R
o
b

u
st

in
n

o
is

e
T

ra
in

in
g

fr
e
e

T
im

e
e
ffi

c
ie

n
t

L
a
rg

e
d

a
ta

b
a
se

M
•u
ll

er
an

d
R

ig
ol

l
[6

6]
3

3
7

3
-

M
es

sm
er

an
d

B
u

n
ke

[6
3]

3
-

-
7

7

L
la

d
�os

et
a
l.

[5
4]

3
-

3
7

7

B
ar

b
u

et
a
l.

[5
]

3
-

3
7

7

Q
u

re
sh

i
et

a
l.

[7
7]

7
-

3
7

7

L
o
ct

ea
u

et
a
l.

[5
5]

3
7

3
3

7

R
u

si
~n
ol

et
a
l.

[8
7]

3
-

3
7

3

R
u

si
~n
ol

et
a
l.

[8
4]

3
-

3
3

3

T
ab

b
on

e
et

a
l.

[9
5]

7
7

3
3

-
L

eB
o
d

ic
et

a
l.

[8
]

3
7

3
7

7

26 STATE OF THE ART IN SYMBOL SPOTTING

Figure 3.3: Definition of an F-signature (Figure credit: Tabbone et al. [95]).

point detectors. These kinds of pixel features robustly represent the region of interest.
Apart from those methods mentioned, other methods find some probable regions for
symbols by examining the loop structures [77] or just use a text/graphic separation
to estimate the occurrence of the symbols [95]. After ad-hoc segmentation, global
pixel-based statistical descriptors [70, 95] are computed at each of the locations in
sequential order and compared with the model symbols. A distance metric is also
used to decide the retrieval ranks and to check whether the retrievals are relevant or
not. The one-to-one feature matching is a clear limitation of this kind of methods and
also the ad-hoc segmentation step only allows it to work for a limited set of symbols.

3.4 Symbol signatures

Like the previous category, this group of methods [23,85,109] also works with ad-hoc
segmentation, but instead of pixel features they compute the vectorial signatures,
which better represent the structural properties of the symbolic objects. Here vectorial
signatures are the combination of simple features viz. number of graph nodes, relative
lengths of graph edges etc. These methods are built on the assumptions that the
symbols always fall into a region of interest and compute the vectorial signatures
inside those regions. Since symbol signatures are highly affected by image noise,
these methods do not work well in real-world applications.

3.5 Hierarchial symbol representation

Some of the methods work with the hierarchical definition of symbols, in which they
hierarchically decompose the symbols and organize the symbols’ parts in a network or
dendogram structure [110]. Mainly, the symbols are split at the junction points and
each of the subparts are described by a proprietary shape descriptor. These subparts
are again merged by a measure of density, building the dendogram structure. Then
the network structures are traversed in order to find the regions of interests of the

3.6. Conclusions 27

Figure 3.4: A dendogram showing the hierarchical decomposition of graph-
ical object (Figure credit: Zuwala and Tabbone [110]).

polylines where the query symbol is likely to appear.

3.6 Conclusions

To conclude the literature review, some of the challenges of symbol spotting can be
highlighted from the above state-of-the-art reviews. First, symbol spotting is con-
cerned with various graphical documents viz. electronic documents, architectural
floorplans etc., which in reality suffer from noise that may come from various sources
such as low-level image processing, intervention of text, etc. So effi ciently handling
structural noise is crucial for symbol spotting in documents. Second, an example
application of symbol spotting is to find any symbolic object from a large amount of
documents. Hence, the method should be effi cient enough to handle a large database.
Third, symbol spotting is usually invoked by querying a cropped symbol from some
document, which acts as a query to the system. So it implies infinite possibilities of
the query symbols, and indirectly restricts the possibility of training in the system.
Finally, since symbol spotting is related to real-time applications, the method should
have a low computational complexity. We chose these five important aspects (segmen-
tation, robustness in noise, training free, computational expenses, robustness with a
large database) of symbol spotting to specify the advantages and disadvantages of the
key research, which is listed in Table 3.2.

28 STATE OF THE ART IN SYMBOL SPOTTING

Chapter 4

Symbol Spotting by Hashing
Serialized Subgraphs

In this chapter we propose a symbol spotting technique in graphical documents.
Graphs are used to represent the documents and an error tolerant (sub)graph match-
ing technique is used to detect the symbols in them. We propose a graph serialization
to reduce the usual computational complexity of graph matching. Serialization of
graphs is performed by computing acyclic graph paths between each pair of con-
nected nodes. Graph paths are one dimensional structures of graphs, handling which
is less expensive in terms of computation. At the same time they enable robust local-
ization even in the presence of noise and distortion. Indexing in large graph databases
involves a computational burden as well. We utilize a graph factorization approach
to tackle this problem. Factorization is intended to create a uni�ed indexed structure
over the database of graphical documents. Once graph paths are extracted, the entire
database of graphical documents is indexed in hash tables by locality sensitive hashing
(LSH) of shape descriptors of the paths. The hashing data structure aims to execute
an approximate k-NN search in a sub-linear time. We have performed detailed ex-
periments with various datasets of line drawings and compared our method with the
state-of-the-art works. The results demonstrate the e�ectiveness and e�ciency of our
technique.

4.1 Introduction

In this chapter we propose a symbol spotting technique based on a graph representa-
tion of graphical documents, especially various kinds of line drawings. When graphs
are attributed by geometric information, this also supports various a�ne transforma-
tions viz. translation, rotation, scaling etc. On the other hand, subgraph isomorphism
is proved to be a NP-hard problem [62], so handling a large collection of graphical doc-
uments using graphs is di�cult. To avoid computational burden, we propose a method

29

30 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

(a)

(b)

(c)

(d)

(e) (f) (g) (h) (i) (j) (k)

Figure 4.1: (a)-(d) Examples of oorplans from a real oorplan (FPLAN-
POLY) database, (e),(g),(i),(k) Zoomed portions of the selected parts respec-
tively shown in Figures 4.1a-4.1d show the di�culty of recognition due to noise
and superimposition of textual and graphical information, (f),(h),(j) Actual
instances of the symbols shown in (e),(g),(i) respectively.

based on the factorization of graphs. Informally, graph factorization can be de�ned
as the method to extract graph sub-structures from larger graphs. This is helpful to
�nd common subgraph structures from larger collections of graphs to de�ne indexing
keys in terms of such common subgraphs. This indexing structure is supposed to
reduce the search space by clustering similar subgraphs. In our case, factorization is
performed by splitting the graphs into a set of all acyclic paths between each pair of
connected nodes. The paths carry the geometrical information of a structure which
are considered as attributes. The decomposition of a graph into graph paths can be
seen as a serialization process where the complex two-dimensional graph structure
is converted to a one-dimensional string to reduce computational complexity, usually
present in subgraph matching algorithms. In this work we follow both factorization
and serialization to create an inexpensive and uni�ed structure. Graph factorization
creates a uni�ed representation of the whole database and at the same time it allows
for robust detection with a certain tolerance to noise and distortions (see Figure 4.1).
This also eases the segmentation-free recognition which is important for our purpose.

In this chapter, the shape descriptors of paths are compiled into hash tables by the
Locality-Sensitive Hashing (LSH) algorithm [34,44]. The hashing data structure aims
to organize similar paths in the same neighborhood into hash tables. The spotting of
the query symbol is then undertaken by a spatial voting scheme, which is formulated
in terms of the selected paths from the database.

However, the graph paths are indexed independently, ignoring any spatial rela-
tionship between them. Actually keeping the spatial relationship is not important for
the method since we consider all the acyclic paths between each pair of connected
nodes. Actually this fact better helps to incorporate the structural noise keeping the
spatial relationship among paths. This way the spatial relationship is maintained as

4.2. Methodology 31

the smaller paths are always subpaths of some longer paths and longer paths contain
more global structural information.

Since the method represents a database of graphical documents in terms of uni-
�ed representation of factorized substructures, it can handle a larger database of
documents which is important for real-world applications. Moreover, the factorized
substructures allow the method to handle structural noise up to a certain limit of
tolerance. The proposed method does not work with any kind of pre-segmentation
and training, which makes it capable of handling any possible combination of query
symbols.

The rest of the chapter is outlined as follows: We present our proposed method-
ology in Section 4.2, followed by a series of experiments in Section 4.3. Section 4.4
concludes the chapter with discussions on future works.

4.2 Methodology

Our graph representation considers the critical points detected by the vectorization
method as the nodes and the lines joining them as the edges. For our purpose we
use the vectorization algorithm proposed by Rosin and West [82]. To avoid the com-
putational burden we propose a method based on the factorization of graphs. The
factorization is performed by splitting the graphs into a set of all acyclic paths be-
tween each pair of connected nodes; the paths carry the geometrical information of
a structure as attributes. The factorization helps to create an uni�ed representation
of the whole database and at the same time it allows robust detection with certain
tolerance to noise and distortion. This also eases the segmentation-free recognition
which is important for our purpose. We have already mentioned that factorization of
graphs is used in kernel based methods and it's principle motive was to cope with dis-
tortions. But the kernel based method can not utilize the power of indexation which
is important for our case as we concentrate in spotting symbols in bigger datasets
e�ciently. So indexing the serialized subgraphical structures is a crucial part for our
application. Our method takes the advantage of the error tolerance as proposed by
the kernel based methods and at the same time the advantage of the indexation strat-
egy to make the searching e�cient. The shape descriptors of paths are compiled in
hash tables by the Locality-Sensitive Hashing (LSH) algorithm [34,44]. The hashing
data structure aims to organize similar paths in the same neighborhood in hash tables
and LSH is also proved to perform an approximate k-NN search in sub-linear time.
The spotting of the query symbol is then performed by a spatial voting scheme, which
is formulated in terms of the selected paths from the database. This path selection
is performed by the approximate search mechanism during the hash table lookup
procedure for the paths that compose the query symbol. The method is dependent
on the overall structure of the paths. This technique is able to handle the existence
of spurious nodes. And since we consider all the acyclic paths between each pair of
connected nodes, the detection or recognition of a symbol is totally dependent on the
overall structure of the majority of paths. This way the method is able to handle

32 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

OFFLINE
PART

PATH
COMPUTATION

PATH
DESCRIPTION

HASHING OF
PATH

DESCRIPTORS
GRAPH
PATHS

PATH
DESCRI
PTORS

HASH
TABLE

ONLINE
PART

QUERY

PATH
COMPUTATION

PATH
DESCRIPTION

HASH TABLE
LOOKUP VOTING

RESULTS

Figure 4.2: Symbol spotting framework for our method.

the problem of spurious nodes and edges. So the introduction of spurious edges and
nodes only increases the computational time in the o�ine part without hampering
the performance.

4.2.1 Framework

Our entire framework can be broadly divided into two parts viz. o�ine and online
(see Figure 4.2). The algorithms are respectively shown in Algorithm 4.2.1 and Al-
gorithm 4.2.2. The o�ine part (Algorithm 4.2.1) includes the computation of all the
acyclic graph paths in the database, description of those paths with some proprietary
descriptors and hashing of those descriptors using the LSH algorithm (see Figure 4.3).
Each time a new document is included in the database, the o�ine steps for this doc-
ument are repeated to update the hash table. To reduce the time complexity of the
o�ine part the path and description information of the previously added documents
are stored. On the other hand, the online part (Algorithm 4.2.2) includes the query-
ing of the graphic symbol by an end user, the computation of all the acyclic paths
for that symbol and description of them by the same method. Then a hash table
lookup for each of the paths in the symbol and a voting procedure, which is based
on the similarity measure of the paths, are also performed on the y to undertake
the spotting in the documents. The framework is designed to produce a ranked list
of retrievals in which the true positive should appear �rst. The ranking is performed
based on the total vote values (see Section 4.2.4) obtained by each retrieval.

Let us now describe the key steps of our framework in the following subsections.

Algorithm 4.2.1 Hash table creation

Require: A set D = fD1, . . . , Dng.
Ensure: A set T of hash tables.

//Let fall be the set of all path descriptors.

4.2. Methodology 33

Paths

…
…
...

…
…
...

Descriptors Hash TablesDatabase

0.51 0.54 0.60 0.76 0.85 0.38 0.08 0

0.73 0.33 0.83 0.37 0.82 0.17 0.12 0

0.87 0.04 0.68 0.73 0.43 0.37 0.97 0

0.39 0.44 0.15 0.32 0.31 0.89 0.24 0

0.31 0.40 0.70 0.14 0.87 0.08 0.46 0

0.51 0.54 0.60 0.76 0.85 0.38 0.08 0

0.73 0.33 0.83 0.37 0.82 0.17 0.12 0

0.39 0.44 0.15 0.32 0.31 0.89 0.24 0

1011010011001011001101

1011010011001011001101

1011001010100110011101

1011001010100110011101

1011000100110101001101

1011000011101000111001

1011000011101000111001

1011011001001100101011

…
…
...

Binary Codes

Figure 4.3: Hashing of paths provokes collisions in hash tables.

//Initialize fall
fall (�
for all Di of D do
Pi (acyclic paths (Di)
for all p of Pi do
f (descriptors of (p) // Zernike moments or Hu moment invariants
fall (fall [f

end for
end for
//Create the set of hash tables
T (LSH(fall)

4.2.2 Path description

Let D = fD1, D2, ..., Dng be the set of all documents in a database, and Gi(Vi, Ei, αi)
be the node attributed graph for the document Di. Here αi : Vi ! Lv is a function,
in this case Lv = N2, where the labels for each of the nodes is its position in terms of
a two-dimensional coordinate system.

Definition 4.1. Given an attributed graph Gi(Vi, Ei, αi), a graph path pk between
two connected nodes vr and vs in Gi is de�ned as the ordered sequence of vertices
(vr, ..., vs) starting from vr to vs.

Definition 4.2. An embedding function f of a graph path is de�ned as a function
f : P ! Rn, de�ned in the space of a graph path P and maps a path to an n-
dimensional feature space.

34 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

Let Pi = fp1, p2, ..., pni
g be the set of all graph paths in the document Di, where

ni is the total number of paths in the document Di. Therefore P = [iPi is the set of
all paths from all the documents in D. From the de�nition of a graph path, a path pk
can be represented as an ordered sequence of nodes i.e. pk = [(x1, y1), (x2, y2), ...] =
pk(x, y). So formally speaking, given a path pk(x, y) and a shape descriptor f : P !
Rn de�ned over the space of all graph paths, applying f to each of the graph paths in
P will generate a feature vector of dimension n. Below is the brief description of the
shape descriptors used in this work. We de�ne the embedding function f by means
of Zernike moments and Hu moment invariants.

Embedding function based on Zernike moments

Zernike moments are robust shape descriptors which were �rst introduced in [96] using
a set of complex polynomials. They are expressed as Amn as follows:

Amn =
m+ 1

π

∫
x

∫
y

pk(x, y)[Vmn(x, y)]∗dxdy, where x2 + y2 � 1 (4.1)

where m = 0, 1, 2, ...,1 and de�nes the order, pk(x, y) is the path being described
and � denotes the complex conjugate. Here n is an integer (that can be positive or
negative) depicting the angular dependence, or rotation, subject to the conditions
m � jnj = even, jnj � m and A∗mn = Am,−n is true. The Zernike polynomials
Vmn(x, y) can be expressed in polar coordinates as follows:

Vmn(x, y) = Vmn(r, θ) =

m−|n|
2∑

s=0

(�1)s
(m� s)!

s!(m+|n|
2 � s)!(m−|n|

2 � s)!
rm−2sexp(inθ) (4.2)

The �nal descriptor function fZernike(pk) for pk is then constructed by concate-
nating several Zernike coe�cients of the polynomials. Zernike moments have been
widely utilized in pattern or object recognition, image reconstruction, content-based
image retrieval etc. but its direct computation takes a large amount of time. Real-
izing this disadvantage, several algorithms [42] have been proposed to speed up the
accurate computation process. For line drawings, Lambert et al. [51, 52] also formu-
lated Zernike moments as computationally e�cient line moments. But in our case
the computation is performed based on the interpolated points of the vectorized data
using fast accurate calculations.

Embedding function based on Hu moment invariants

The set of seven Hu invariants of moments proposed in [43] involving moments up
to order three, are widely used as shape descriptors. In general the central (r + s)th
order moment for a function pk(x, y) is calculated as follows:

4.2. Methodology 35

µrs =
∑
x

∑
y

(x� �x)r(y � �y)s (4.3)

The function fHu(pk) describing pk is then constructed by concatenating the seven
Hu invariants of the above central moments. The use of centroid c = (�x, �y) allow the
descriptor to be translation invariant. A normalization by the object area is used to
achieve invariance to scale. The geometric moments can also be computed on the
contour of the objects by only considering the pixels of the boundary of the object.
As in the case of Zernike moments, these moments can also be calculated in terms
of line moments [51,52] for the objects represented by vectorized contours, which are
obviously e�cient in terms of computation.

4.2.3 Locality Sensitive Hashing (LSH)

In order to avoid one-to-one path matching [25], we use the LSH algorithm which
performs an approximate k-NN search that e�ciently results in a set of candidates
that mostly lie in the neighborhood of the query point (path). LSH is used to perform
contraction of the search space and quick indexation of the data. LSH was introduced
by Indyk and Motwani [44] and later modi�ed by Gionis et al. [34]. It has been proved
to perform an approximate k-NN search in sub-linear time and used for many real-
time computer vision applications.

Let f(pk) = (f1, ..., fd) 2 Rd be the descriptors of a graph path pk in the d-
dimensional space. This point in the d-dimensional space is transformed in a binary
vector space by the following function:

b(f(pk)) = (UnaryC(f1), ..., UnaryC(fd)) (4.4)

Here if C is the highest coordinate value in the path descriptor space then
UnaryC(fp) is a jCj bit representation function where jfpj bits of 1's are followed
by jC � fpj bits of 0's. Thus, the distance between two path vectors f(p1), f(p2) can
be computed by the Hamming distance between their respective binary representa-
tions b(f(p1)), b(f(p2)). Actually, Eqn. 4.4 allows the embedding of the descriptors fs
into the Hamming cube Hd′ of dimension d′ = Cd. The construction of the function
in Eqn. 4.4 assumes the positive integer coordinates of f , but clearly any coordinates
can be made positive by proper translation in Rd. Also the coordinates can be con-
verted to an integer by multiplying them with a suitably large number and rounding
to the nearest integers.

Now let h : f0, 1gd
′
! f0, 1g be a function which projects a point b 2 f0, 1gd

′
to

any of its d′ coordinate axes, and F be a set of such hash functions h(b), which can
be formally de�ned as:

F = fh(b)jh(b) = bi, i = 1, ..., d′g

36 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

where bi is the ith coordinate of b. The �nal hash functions Hs can be created
by randomly selecting at most K such bitwise hash functions h(h) and concatenating
them sequentially. This actually results in bucket indices in the hash tables. The LSH
algorithm then creates a set T of L hash tables, each of which is constructed based
on di�erent Hs. L and K are considered as the parameters to construct the hashing
data structures. Then given a descriptor fq of a query path (point), the algorithm
iterates over all the hash tables in T retrieving the data points that are hashed into
the same bucket. The �nal list of retrievals is the union of all such matched buckets
from di�erent hash tables.

The entire procedure can be better understood with the following example: let
f(p1) = (1, 6, 5), f(p2) = (3, 5, 2) and f(p3) = (2, 4, 3) be three di�erent descriptors
in a three-dimensional (d = 3) space with C = 6. Their binary representation after
applying the function in Eqn. 4.4 is:

b(f(p1)) = 100000 111111 111110

b(f(p2)) = 111000 111110 110000

b(f(p3)) = 110000 111100 111000

Now let us create an LSH data structure with L = 3 and K = 5. So, we can
randomly create 3 hash functions with at most 5 bits in each of them as follows:

H1 = fh5, h10, h16g
H2 = fh1, h9, h14, h15, h17g
H3 = fh4, h8, h13, h18g

This de�nes which components of the binary vector will be considered to create
the hash bucket index. For example, applying G2 to a binary vector results in a binary
index concatenating the �rst, ninth, fourteenth, �fteenth and seventeenth bit values
respectively. After applying the above functions to our data we obtain the following
bucket indices:

H1(f(p1)) = 011, H2(f(p1)) = 11111, H3(f(p1)) = 0110

H1(f(p2)) = 010, H2(f(p2)) = 11100, H3(f(p2)) = 0110

H1(f(p3)) = 010, H2(f(p3)) = 11110, H3(f(p3)) = 0110

Then for a query fpq = (3, 4, 5) we have

b(f(pq)) = 111000 111100 111110

H1(f(pq)) = 011, H2(f(pq)) = 11111, H3(f(pq)) = 0110

4.2. Methodology 37

Thus, we obtain f(p1) as the nearest descriptor to the query since it collides in
each of the hash tables.

Similarly, for each of the graph path descriptors in the query symbol, we get a set
of paths that belong to the database. Consequently, we get the similarity distances of
the paths in the vectorial space. This similarity distance is useful during the voting
procedure to spot the symbol and is used to calculate the vote values.

4.2.4 Voting scheme

A voting space is de�ned over each of the images in the database dividing them into
grids of three di�erent sizes (10 � 10, 20 � 20 and 30 � 30). Multiresolution grids
are used to detect the symbols accurately within the image and the sizes of them are
experimentally determined to have the best performance. This kind of voting scheme
helps to detect the regions of occurrence even though there is a lack of overlapping
between a certain pair of graph paths. It was mentioned earlier that the voting is
performed in the online step of the system when the user query is accepted with
a model symbol Sm. We factorize the graph representing Sm in the same way as
the documents and let us say PSm = pSm

1 , ..., pSm
t be the set of all paths of Sm and

FSm
= fpSm

1
, ..., fpSm

t
be the set of descriptors for the paths in PSm

. The searching

in the hash table is then performed in a path by path wise manner and consecutively
the voting is performed in the image space. For a particular model path, pSm

l 2 PSm
,

the LSH lookup procedure returns a union of several buckets (this is how the LSH is
constructed). Let us say Bl be the union of all buckets returned when queried with a
path pSm

l . In the next step, for each path fpBi
2 Bl we accumulate the votes to the

nine neighboring grids of each of the two terminals of fpBi
(see Figure 4.4). The vote

to a particular grid is inversely proportional to the path distance metric (in this case
the Euclidean distance between the Zernike moments descriptors) and is weighted by
the Euclidean distance to the centers of the respective grids (in Figure 4.4 the centers
of the grids are shown in red) from the terminal of the selected path. The grids
constituting the higher peaks are �ltered by the k-means algorithm applied in the
voting space with k=2. Here we only keep the cluster having the higher votes, all the
higher voted points from all the three grids are then considered for spatial clustering.
Here we compute the distances among all these points and use this distance matrix
to cluster the points hierarchically. Here we use a threshold th1 to cut the dendogram
and have the clusters. The selection of th1 is performed experimentally to give the
best performance. Each of the clusters of points is considered as a retrieval; the total
vote values of the grids in each cluster are considered for ranking the retrievals.

Algorithm 4.2.2 Spotting of query symbols in documents

Require: A model symbol (Sm) with the set of path descriptors fpSm
1
, . . . , fpSm

t
and

a set T of hash tables.
Ensure: A ranked list ROI = fR1, R2, . . . g of regions of interest.

//Search for the nearest buckets
for all fpSm

i
of fpSm

1
, . . . , fpSm

t
do

38 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

Figure 4.4: Illustration of voting: For each of the selected paths from the
hash table, we accumulate the votes to the nine nearest grids of each of the 2
terminal vertices of that path.

Bi ⇐ nearest bucket of fpSm
i
∈T

//Calculate the matching scores
for all fpBj

of Bi do

MSi, j ⇐ matching score of (fpSm
i

,fpBj
)

end for
end for
//Define and initialize the voting space
for all Dk ∈D do

// Grids of three different sizes
for all gsize of { [10 × 10], [20 × 20], [30 × 30]} do
GDk

gsize ⇐ �//Grids on documents

GV Dk
gsize ⇐ �//Vote values for the grids

end for
end for
//Voting
for all Bi of B1, ...,Bt do

for all fpBj
of Bi do

D ⇐ document of fpBj

[pt1, pt2] ⇐ two end points of fpBj

for all gsize of { [10 × 10], [20 × 20], [30 × 30]} do
for all pti of [pt1, pt2] do
GD(1 : 9) ⇐ Nine neighbouring grids of pti
CGgsize(1 : 9) ⇐ Centres of GD(1 : 9)
GDist(1 : 9) ⇐ distance between (CGgsize(1 : 9),pti)
GV D

gsize(G
D
gsize(1 : 9)) ⇐ GV D

gsize(G
D
gsize(1 : 9))+GDist(1 : 9) × 1

MSi, j

end for
end for

end for
end for

4.3. Experimental results 39

//Spotting
S ⇐ �
for all Dk ∈ D do

for all gsize ∈ {[10× 10], [20× 20], [30× 30]} do
[ClassDk

gsize(h), ClassDk
gsize(l)]=kmeans(GV Dk

gsize, 2)

//mean(GV Dk
gsize(Class

Dk
gsize(l)))≤mean(GV Dk

gsize(Class
Dk
gsize(h))),

//where GV Dk
gsize(Class

Dk
gsize(h)) are the higher voted grids

end for
GDk

all ⇐GDk

[10×10](Class
Dk

[10×10](h))∪GDk

[20×20](Class
Dk

[20×20](h))∪GDk

[30×30](Class
Dk

[30×30](h))

{(s1, total votes(s1)), (s2, total votes(s2)), . . .} ⇐ spatial clustering(GDk

all)
S ⇐ S ∪ {(s1, total votes(s1)), (s2, total votes(s2)), . . .}

end for
ROI = sort(S, key = total votes)

4.3 Experimental results

In this section we present the results of several experiments. The first experiment
is designed to see the efficiency between the Zernike moments and the Hu moment
invariants in a comparative way to represent the graph paths. The second experiment
is undertaken to show the variation of symbol spotting results by varying the L and
K parameters of the hash table creation. Then a set of experiments is performed to
test efficiency of the proposed method to spot the symbols on documents. For that
we use four different sets of images with varying difficulties. The last experiment
is performed to see the possibility of applying the proposed method to any other
information spotting methodologies; for that we test the method with handwritten
word spotting in some real historical handwritten documents. Next we present a
comparative study with state-of-the-art methods. For all these experiments we mainly
use two publicly available databases of architectural floorplans: (1) FPLAN-POLY
and (2) SESYD (floorplans), a description on both of them is available in App. A.
Apart from them we have used two more datasets: (1) SESYD-GN and (2) SESYD-
VN, specifications on them are also available in App. A.

4.3.1 Zernike moments versus Hu moment invariants

This test aims to compare the two description methods used to describe graph paths.
Finally, based on this experiment, the best method is used in the remaining ex-
periments. We compare the performance of the presented algorithm by using both
description methods. To undertake this experiment, we consider the FPLAN-POLY
database and perform the path description with Hu moment invariants and Zernike
moments with different orders (6 to 10). In Figure 4.5 we show a precision recall curve
showing the performance with different descriptions. This shows that the Zernike mo-
ments with any order outperforms the Hu moment invariants, on average there is a
gain of 6.3% precision for a given recall value. Finally, in this experiment, Zernike

40 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

moments with order 7 give the best trade-off in terms of performance. This gives the
imperative to perform the rest of the experiments with Zernike moments descriptors
with order 7.

Figure 4.5: Precision-Recall plot showing the performance of the spotting
method with the Hu moment invariants and Zernike moments of order 6 to
10.

4.3.2 Experiments on the influence of parameters L and K

Literally K is the maximum number of bits of the binary indices of different buckets
in a table. So increasing K will increase the number of random combinations of the
bit positions which ultimately increases the number of buckets in each of the hash
tables. This creates tables in which many buckets with only a few instances appear,
which separates the search space poorly. On the other hand, decreasing K will merge
different instances incorrectly. The number of hash tables (L) is another parameter to
play with, which indicates the number of tables to create for a database. Increasing L
will increase the search space, since LSH considers the union of all the tables, so after
a certain limit, increasing the number of tables will not improve the performance but
only increase the retrieval time. So choosing the proper combination of L and K for
a particular experiment is very important for efficient results.

In this experiment we chose a set of 10 floorplans from the FPLAN-POLY dataset
and created the hashing data structures by varying L from 1 to 20 and K from 40 to
80. The performance of the spotting method is shown in terms of the precision-recall
curves in Figure 4.6a, which shows similar performance for all the settings. But the
time taken by the spotting method increases proportionally with the increment of L

4.3. Experimental results 41

(a) (b)

Figure 4.6: (a) The precision-recall plot of the spotting method by varying
L 1 to 20 and K 40 to 80. (b) The plot of the time taken by the method to
retrieve symbols for different values of L.

(Figure 4.6b).

4.3.3 Symbol spotting experiments

In order to evaluate the proposed spotting methodology, we present four different
experiments. The first experiment is designed to test the method on the images of
real world floorplans. The second experiment is performed to check the algorithm
on a moderately large dataset which is a synthetically created benchmark. Then
the experiments are performed to test the efficiency of the method on the images of
handwritten sketch-like floorplans. Lastly we conducted some experiments to test the
method on some noisy images, where the kind of noise is very similar to the noise
introduced by scanning or any other low-level pre-processing.

The set of available query symbols for each dataset are used as queries to eval-
uate the ground truths. A particular retrieved symbol is regarded as true positive
the bounding region of the symbol will have at least 50% overlapping with the cor-
responding ground truth. For each of the symbols, the performance of the algorithm
is evaluated in terms of precision (P), recall (R) and average precision (AveP). In
general, the precision (P) and recall (R) are computed as:

P =
|ret ∩ rel|
|ret|

;R =
|ret ∩ rel|
|rel|

(4.5)

Here in Eqn. 4.5, the precision and recall measures are computed on the whole
set of retrievals returned by the system. That is, they give information about the

42 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

final performance of the system after processing a query and do not take into account
the quality of ranking in the resulting list. But IR systems return results ranked by a
confidence value. The first retrieved items are the ones the system believes that are
more likely to match the query. As the system provides more and more results, the
probability to find non-relevant items increases. So in this experimental evaluation
the precision value is computed as the P (rmax) i.e. the precision attained at rmax,
where rmax is the maximum recall attained by the system and average precision is
computed as:

AveP =

∑n=|ret|
n=1 P (n)× r(n)

|rel|
(4.6)

where r(n) is an indicator function equal to one, if the item at rank n is a relevant
instance or zero otherwise. The interested reader is referred to [86] for the definition
of the previously mentioned metrics for the symbol spotting problem. To examine
the computation time we calculate the per document retrieval time (T) for each of
the symbols. For each of the datasets the mean of the above mentioned metrics are
shown to judge the overall performance of the algorithm.

All the experiments described below are performed with the Zernike moments
descriptors with order 7 (dimension d=36). For LSH, the hashing data structures
are created with L=10 and K=60. These parameters are experimentally decided to
give the best performance. LSH reduces the search space significantly, for example
SESYD (floorplans16-01) consists of approximately 1,465,000 paths and after lookup
table construction, these paths are stored in 16,000 buckets, so compared to a one-
to-one path comparison, the search space is reduced by a factor of 90.

(a) (b) (c)

Figure 4.7: Examples of model symbols from the FPLAN-POLY dataset
used for our experiment.

4.3. Experimental results 43

Figure 4.8: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol in Figure 4.7a in the FPLAN-POLY dataset.

Figure 4.9: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol in Figure 4.7b in the FPLAN-POLY dataset.

Experiment on FPLAN-POLY with real-world images

We have tested our method with the FPLAN-POLY dataset. This experiment is
undertaken to show the efficiency of the algorithm on real images, which could suffer
from the noise introduced in the scanning process, vectorization etc.

The recall rate achieved by the method is 93% which shows the efficiency of the al-
gorithm in retrieving the true symbols. The average precision obtained by the method
is 79.52% which ensures the occupancy of the true positives at the beginning of the

44 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

ranked retrieval list. The precision value of the method is 77.87% which is more than
50% better than the precision reported by the latest state-of-the-art method [87] on
this dataset. This signi�es that the false positives are ranked worse than the correct
results. This fact is also clear from Figure 4.8, 4.9, where we show the qualitative re-
sults obtained by the method. Also the method is e�cient in terms of time complexity
since the average time taken to spot a symbol per document is 0.18 sec.

Scalability experiment on SESYD

We have also tested our method on the SESYD (oorplans) dataset. This experiment
is designed to test the scalability of the algorithm i.e. to check the performance of the
method on a dataset which is su�ciently large.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.10: Example of di�erent isolated symbols: (a) armchair, (b) door2,
(c) sink4, (d) table3.

The mean measurements for each of the sub-datasets are shown in Table 4.1. The
recall values for all the sub-datasets are quite good, although the average precisions
are less than in the previous experiments. This is due to the existence of the similar
substructures (graph paths) among di�erent symbols (for example, between the sym-
bols in Figure 4.10c and Figure 4.10d between the symbols in Figure 4.10e and Figure
4.10f, among the symbols in Figures 4.10a, 4.10b, 4.10h and 4.10i and etc). These sim-
ilarities negatively a�ect the vote values considered for ranking the retrievals. There
is an interesting observation regarding the average time taken for the retrieval proce-
dure, which is 0.07 sec. to retrieve a symbol per document image, which is much less
than the previous experiment. This is due to the hashing technique, which allows for
the collision of the same structural elements and inserts them into the same buck-
ets. So even though the search space increases due to hashing of the graph paths, it
remains nearly constant for each of the model symbols. This ultimately reduces the
per document retrieval time. To get an idea about the performance of the method, in
Figures 4.11, 4.12, 4.13 and 4.14, we present some qualitative results on the SESYD
dataset.

4.3. Experimental results 45

Table 4.1: Results with SESYD dataset

Database P R AveP T

floorplans16-01 41.33 82.66 52.46 0.07
floorplans16-02 45.27 82.00 56.17 0.09
floorplans16-03 48.75 85.52 71.19 0.07
floorplans16-04 54.51 74.92 65.89 0.05
floorplans16-05 53.25 91.67 67.79 0.08
floorplans16-06 52.70 78.91 60.67 0.07
floorplans16-07 52.78 83.95 65.34 0.07
floorplans16-08 49.74 90.19 58.15 0.08
floorplans16-09 51.92 77.77 47.68 0.07
floorplans16-10 50.96 83.01 63.39 0.08

mean 50.32 83.06 60.87 0.07

Figure 4.11: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 4.10a in the SESYD
(floorplans16-01) dataset.

Figure 4.12: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 4.10d in the SESYD
(floorplans16-05) dataset.

Experiment on SESYD-VN to test vectorial distortion

This experiment is undertaken to test the effectiveness of the algorithm on the hand-
written sketch-like floorplans. For this, we have considered SESYD-VN dataset (see

46 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

Figure 4.13: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol shown in Figure 4.10g in the SESYD
(floorplans16-05) dataset.

Figure 4.14: Qualitative results of the method: first 20 retrieved re-
gions obtained by querying the symbol shown in Figure 4.10j in the SESYD
(floorplans16-01) dataset.

Section A.5 for details). For this experiment we have created 3 levels of diffi culty (for
r = 5, 10, 15). For all the different distortions the same model symbols are used as
queries.

Table 4.2: Results with SESYD-VN dataset

Radius (r) P R AveP T

r=5 63.64 92.19 65.27 0.25
r=10 47.49 87.01 56.82 0.26
r=15 34.37 82.16 47.80 0.25

The measurements of the method are shown in Table 4.2. The recall value for
the dataset with minimum distortion (r = 5) is quite good, but it decreases with

4.3. Experimental results 47

the increment of distortion. The same incident is observed for average precision also.
The distortion also introduces many false positives which harms the precision. In this
experiment, the per document retrieval time of model symbols increases when com-
pared to the previous experiment. This is due to the increment of randomness in the
factorized graph paths which decreases the similarity among them. This compels the
hashing technique to create a large number of buckets and hence ultimately increases
the per document retrieval time.

Table 4.3: Results with SESYD-GN dataset

mean (m) variance (σ) P R AveP T

0.1 0.01 24.36 94.86 74.07 0.25
0.05 21.79 89.46 60.07 0.35
0.09 15.38 67.77 42.85 1.47

0.2 0.01 24.36 94.87 73.43 0.26
0.05 20.00 82.19 48.93 1.16
0.09 15.38 65.44 30.97 1.58

0.3 0.01 24.10 93.34 65.79 2.12
0.05 14.62 69.11 40.81 2.30
0.09 12.05 54.12 25.62 3.15

0.4 0.01 15.89 72.45 36.32 1.95
0.05 11.79 50.64 17.97 2.11
0.09 11.54 43.78 15.29 2.49

0.5 0.01 9.74 34.56 10.00 0.52
0.05 8.20 29.94 6.69 0.74
0.09 9.23 36.07 11.14 0.84

Experiment on SESYD-GN with noisy images

The last symbol spotting experiment is performed to test the e�ciency of the algo-
rithm on noisy images, which might be generated in the scanning process. For this,
we have considered the SESYD-GN dataset with the mean (m) of 0.1 to 0.5 with
step 0.1 and with variance (σ) 0.01 to 0.09 with step 0.04, which generates a total 15
sets of images with di�erent levels of noise (see Section A.4 for details). Practically,
the increment of variance introduced more pepper noise into the images, whereas the
increment of the mean introduced more and more white noise, which will detach the
object pixel connection. Here we do not apply any kind of noise removal technique
other than pruning, which eliminates isolated sets of pixels.

The mean measures of metrics are shown in Table 4.3 and the performance of
the method is shown in Figure 4.15 in terms of the precision recall curves. Clearly,
from the precision-recall curves, the impact of variance is more than that of the mean.
This implies that with the introduction of more and more random black pixels, there

48 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

Figure 4.15: Precision-Recall plot generated by the spotting experiments
with di�erent levels of Gaussian noise.

is a decrease in the performance, which is due to the distortion in the object pixels
that substantially a�ects the vectorization methods and changes the local structural
features of the graph paths. On the other hand, the increment of the mean introduces
white pixel noise which ultimately separates an object into di�erent parts and which
facilitates the loss of the local structural information. Increase in Gaussian noise
introduces local distortions (both with black and white pixels) which introduces extra
points, as well as discontinuity during the vectorization process. These random points
increase the time for computing the paths and also the number of buckets due to the
random structure of them. Since the increment of the mean after a certain stage
breaks a component into several pieces, the vectorization results in simple structures
of isolated components. These structures are quite similar, since in most of the
cases they are the straight lines or simple combination of straight lines which further
decrease the retrieval time as they reduce the number of buckets. This explains the
increase of retrieval time up to a certain stage and then again the decrease. The
increment of both mean and standard deviation of the Gaussian noise creates a lot of
discontinuity within the structure of objects; this creates lot of spurious parts after
vectorization. These parts are not distinctive among di�erent symbolic objects, which
explains the irregular shape of the precision recall curves with the increase of noise.

4.3.4 Experiment on handwritten word spotting

This experiment is performed to demonstrate the possibility of applying our method
to any other kind of information spotting system. For that we have chosen a handwrit-
ten word spotting application which also has received some popularity amongst the

4.3. Experimental results 49

(a) (b) (c) (d)

Figure 4.16: An image from the marriage register from the �fth century from
the Barcelona cathedral, (a) The original image, (b) The binarized image of
4.16a, (c) The image in 4.16b after preprocessing (eliminating black border
created due to scanning), (d) Graph constructed from the image in 4.16c: the
inset also shows the zoomed part of a word 'Ramon'.

research community. The experiment is performed on a set of 10 unsegmented hand-
written images taken from a collection of historical manuscripts from the marriage
register of the Barcelona cathedral (see Figure 4.16). Each page of the manuscripts
contains approximately 300 words. The original larger dataset is intended for retrieval,
indexing and to store in a digital archive for future access. We use skeletonization
based vectorization to obtain the vectorized documents. Before skeletonization, the
images undergo preprocessing such as binarization by Otsu's method [72] and re-
moval of the black borders generated in the scanning process. Then we construct the
graph from the vectorial information and proceed by considering this as a symbol
spotting problem. The retrieval results of the method on the handwritten images are
promising, which is also clear from the qualitative results shown in Figure 4.17. This
shows a very good retrieval of the word "de" with almost perfect segmentation. We
also observe some limitations of the method in spotting handwritten words, among
them, when a particular query word is split into several characters or components,
the method is more prone to retrieve the character, which is more discriminative with
respect to the other characters in the word. This is due to the non-connectivity of
the word symbol, which reduces the overall structural information. Another impor-
tant observation is that the computation of paths takes a substantial amount of time
for the handwritten documents, since handwritten characters contain many curves.
This generate more and more spurious critical points in the images, which ultimately
a�ects the path computation time.

50 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

Figure 4.17: The �rst 120 retrievals of the handwritten word 'de' in the
Marriage documents of the Barcelona Cathedral.

4.3.5 Discussions

We compare our results with three state-of-the-art methods respectively proposed
by Luqman et al. [59], Rusi~nol et al. [84] and Qureshi et al. [77]. The method put
forward by Luqman et al is based on graph embedding, the method due to Rusi~nol et
al.is based on the relational indexing of primitive regions contained in the symbol and
that proposed by Qureshi et al.is based on graph matching, where the methods due
to Luqman et al.and Qureshi et al. [59, 77] use a pre-segmentation technique to �nd
the regions of interest, which probably contain the graphic symbols. Generally this
kind of localization method works to �nd some region containing loops and circular
structures etc. Then a graph matching technique is applied either directly in the
graph domain or in the embedded space to each of the regions in order to match the
queried symbol. The method proposed by Rusi~nol et al. [84] works without any pre-
segmentation. For experimentation, we considered the images from a sub-dataset of
SESYD, The sub-dataset contains 200 images of oorplans. The mean measurements
at the recall value of 90.00% are shown in Table 4.4 and the performance of the
algorithm is shown in terms of the precision-recall plot in Figure 4.18. Clearly, the
proposed method dominates over the existing methods. For any given recall, the
precision given by our method is approximately 12% more than that reported by
Qureshi et al. [77], 10% more than that indicated by Rusi~nol et al. [84] and 6% more
than that resulted by Luqman et al. [59], which is a substantial improvement.

Finally, we use our algorithm as a distance measuring function between a pair of
isolated architectural symbols, let us say, S1 and S2. In this case we do not perform

4.3. Experimental results 51

Figure 4.18: Precision-Recall plot generated by the spotting methods pro-
posed by Luqman et al. [59], Qureshi et al. [77], Rusi~nol et al. [84] and our
proposed method.

Table 4.4: Comparison with the state-of-the-art methods

Methods P R AveP T

Qureshi et al. [77] 45.10 90.00 64.45 1.21
Rusi~nol et al. [84] 47.89 90.00 64.51 -
Luqman et al. [59] 56.00 90.00 75.70 -

Our method 70.00 90.00 86.45 0.07

any hashing, instead we simply factorize the symbols into graph paths and describe
them with some shape descriptors as explained in Section 4.2.2. Then we use these
descriptors to match a path of, say, symbol S1, to the most identical path of S2. So
the total distance between the symbols S1 and S2 is the sum of such distances, which
can be regarded as a modi�ed version of Hausdor� distance [30]:

∑
pi∈S1

min
pj∈S2

dist(pi, pj) +
∑

pj∈S2

min
pi∈S1

dist(pi, pj)

We use this total distance to select the nearest neighbours of the query symbol.
It is expected that for a pair of identical symbols, the algorithm will give a lower dis-
tance than for a non-identical symbol. This experiment is undertaken to compare our
method with various symbol recognition methods available in the literature. When
using the GREC2005 [24] dataset for our experiments, we only considered the set
with 150 model symbols. The results are summarized in Table 4.5. We have achieved
a 100% recognition rate for clear symbols (rotated and scaled) which shows that our

52 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

method can e�ciently handle the variation in scale and rotation. Our method out-
performs the GREC participants (results obtained from [24]) for degradation models
1, 2, 3 and 5. The recognition rate decreases drastically for models 4 and 6, this is
because the models of degradation lose connectivity among the foreground pixels. So
after the vectorization, the constructed graph can not represent the complete symbol,
which explains the poorer results.

Table 4.5: Results of symbol recognition experiments

Database Recognition rate

Clear symbols (rotated & scaled) 100.00
Rotated & degraded (model-1) 96.73
Rotated & degraded (model-2) 98.67
Rotated & degraded (model-3) 97.54
Rotated & degraded (model-4) 31.76
Rotated & degraded (model-5) 95.00
Rotated & degraded (model-6) 28.00

In general the symbol spotting results of the system on the SESYD database are
worse than the FPLAN-POLY (see Table 4.6). This is due to the existence of more
similar symbols in the collection, which often create confusion amongst the query
samples. But the average time for retrieving the symbols per document is much
lower than the FPLAN-POLY database. This is because of the hashing technique
that allows collision of the same structural elements and inserts them into the same
buckets. So even though the search space increases, due to hashing of the graph paths,
it remains nearly constant for each of the model symbols, which ultimately reduces
the per document retrieval time.

Table 4.6: Comparative results on two databases FPLAN-POLY & SESYD

Database P R AveP T

FPLAN-POLY 77.87 93.43 79.52 0.18
SESYD 50.32 83.06 60.87 0.07

Our system also produces some erroneous results (see Figures 4.8(002, 005, 006,
013, 015) and Figures 4.19(001, 002, 003, 004, 014, 019)) due to the appearance
of similar substructures in nearby locations. For example the symbol in Figures
4.7a contains some rectangular box like subparts. The paths from these derived
substructures of the symbol resemble some commonly occurring substructures (walls,
mounting boxes etc.) in a oorplan. This creates a lot of false votes, which explains
the retrieval of the false instances in Figure 4.8. Similarly, the subparts of the symbol
in Figure 4.7c resemble the subparts of some architectural symbols. This explains the
occurrence of the false retrievals in Figure 4.19.

4.4. Conclusions 53

Figure 4.19: Qualitative results of the method: first 20 retrieved regions
obtained by querying the symbol 4.7c in the FPLAN-POLY dataset.

4.4 Conclusions

In this chapter we have proposed a graph based approach for symbol spotting in graph-
ical documents. We represent the documents with graphs where the critical points
detected in the vectorized graphical documents are considered as the nodes and the
lines joining them are considered as the edges. The document database is represented
by the unification of the factorized substructures of graphs. Here the graph substruc-
tures are the acyclic graph paths between each pair of connected nodes. The factorized
substructures are the one-dimensional (sub)graphs which give efficiency in terms of
computation and since they provide a unified representation over the database, the
computation is substantially reduced. Moreover, the paths give adaptation to some
structural errors in documents with a certain degree of tolerance. We organize the
graph paths in hash tables using the LSH technique, this helps to retrieve symbols
in real-time. We have tested the method on different datasets of various kinds of
document images.

54 SYMBOL SPOTTING BY HASHING SERIALIZED SUBGRAPHS

Chapter 5

Product Graph based Inexact
Subgraph Matching

In literature, there are methods that formulate (sub)graph matching as an optimiza-
tion problem (OP) where the objective function is constructed from the pairwise
(dis)similarities of the node, edge attributes. These methods usually emphasise on
time e�cient approximation of the OP. In this work we use walk based propagation
of pairwise similarities on the tensor product graph (TPG) of two operand graphs to
obtain higher order contextual information. We do it by counting the total number
of weighted walks initiated from a certain node in TPG. We call them contextual
similarities (CS) of the pair of nodes that constitute a node of TPG. After that we
formulate the maximal common subgraph matching problem as a node and edge selec-
tion problem in TPG. To do that we use those CS to construct an objective function
and optimize it with a linear programming (LP) formulation. With experiment we
prove that the higher order CS add discriminations and allow one to e�ciently ap-
proximate the optimization problem with LP. Since TPG takes into account higher
order information, it is not surprise that we obtain more reliable similarities and bet-
ter discrimination between the nodes/edges. Moreover, in this chapter, we propose
a dual edge graph representation for line drawing images which solve the problem of
distortion, noise. We apply our subgraph matching method for spotting symbols in
line drawings represented by our dual graph representation.

5.1 Introduction

In this chapter we propose an inexact subgraph matching methodology based on
tensor product graph (TPG). Roughly, TPG can be seen as a di�erent form of asso-
ciation/a�nity graph, where each node of the graph is an ordered pair of nodes from
the two operand graphs. And two nodes are adjacent (or joined by an edge) if and
only if the member nodes are adjacent in the corresponding operand graphs. Given

55

56 PRODUCT GRAPH

two attributed graphs it is quite straight forward to formulate them as the similari-
ties (pairwise) and assign them as weights on the edges of TPG (step one in Figure
5.1). Now one can think of having a random walk from node to node considering
those weights on the edges as the plausibility to proceed to the next node and add
those plausibilities of the walks of di�erent length between di�erent pair of nodes,
and perform this traversal through the whole graph. A similar phenomenon is termed
as diffusion on graph and well known to capture higher order contextual information
between objects [15, 106]. Finally, we accumulate the plausibilities of having a walk
from each of the vertices, which we refer as contextual similarities (CS). This infor-
mation can be obtained by simple algebraic operation of the adjacency (or weight)
matrix of the product graph (step two in Figure 5.1). We formulate maximal com-
mon subgraph (MCS) matching as a node and edge selection problem in TPG. To
do that we use those CS and formulate a constrained optimization problem (COP)
to optimize a function constructed from the higher order similarity values (step three
in Figure 5.1). We solve the COP with a linear programming (LP) which is solvable
in polynomial time. In Section 5.3, with experiments we have shown that the higher
order contextual similarities allow us to relax the constrained optimization problem
in real world scenarios.

The main contributions of this chapter are threefold:

• First, we propose a random walk based way to obtain higher order contextual
similarities between nodes/edges that capture higher order information. These
similarities can be used instead of the pairwise similarities and give better
results in real scenario. We have proved the e�ectiveness of the proposal with
experimental study.

• Second, we formulate subgraph matching procedure as a node and edge se-
lection procedure in the product graph which further can be formulated as a
constrained optimization problem. For that we model a LP problem which
can be solved quite e�ciently with minimum number of outliers. Here we are
motivated by the ILP formulation in [8]. We proved with experiments that the
higher order CS allow one to relax the constrained optimization problem.

• The third contribution is application dependent, where we have considered sym-
bol spotting in graphical documents as an inexact subgraph matching problem
which is a widely used approach for spotting symbols in graphical documents.
The problem of robust graph representation for graphical documents is very
common and also di�cult. For example, famous graph representation tech-
nique such as region adjacency graph (RAG) can not handle the objects that
are not con�ned in well de�ned regions. On the other hand representing a
graphical document with a graph involves several low level image processing
steps, approximation etc. which introduce lot of structural noise. In this chap-
ter, motivated by dual graph of a plan graph representation, we introduce dual
graph of an edge graph representation to handle the structural distortions and
some limitations that can not be handled by popular graph representations.

The rest of the chapter is organized in four sections. In Section 5.2, we present a

5.1. Introduction 57

G 2(V 2,E2,α2,β2)

1'

2' 3'

4' 5'

G X (V X ,E X ,W X)

W X
CS

=(I−λW X)
−11or (1−λ

2
)(I−λW X +λ

2Q)
−11

max fx '
Ax '⩽b

0⩽x⩽1

f ←W X
CS

G1(V 1,E1,α1,β1)

1

2 3

4

(1,5')

(1,1')

(2,1')

(2,2') (2,3')

(2,4')

(3,1')

(3,2') (3,3')

(3,5')

(4,1')

(4,2') (4,3')

(4,4') (4,5')

(1,2') (1,3')

(2,5') (3,4')

(1,4')

Step one: TPG

Step two: CS

Step three: COP

Figure 5.1: Outline of the proposed method: Step one: computation of
the tensor product graph (TPG), Step two: algebraic procedure to obtain
contextual similarities (CS), Step three: constrained optimization problem
(COP) for matching subgraph.

58 PRODUCT GRAPH

product graph based subgraph matching methodology which includes the description
of having the CS and also the formulation of MCS as a COP. In Section 5.3 we present
the experimental results carried out to show the robustness of the method, apart from
that here we discuss the dual graph representation for graphical documents. At last
in Section 5.4 we conclude the chapter and possible future directions of this work are
presented.

5.2 Methodology

A very nice property of the adjacency matrix A of any graph G is that the (i; j)th
entry of An denotes the number of walks of length n from the node i to the node
j. One can bring the same analogy to an edge weighted graphs where each edge is
associated with weights in [0; 1] and can be considered as the plausibilities of moving
from one node to another. Then following the same idea the (i; j)th entry of Wn

denotes the plausibility of having a walk of length n from the node i to the node j.
To avoid the dependency on n one can consider all the walks upto the length in�nity
and add them up. Let SW be the sum of all such powers of W upto in�nity. In that
case the value of SW (i; j) signi�es the combined plausibility of reaching the node j
from the node i. Let SWc be the row wise summation of SW , then SWc is a column
vector and SWc(i) indicates the likelihood of starting a walk from the node i or in
other words it signi�es the plausibility of visiting the node i, which we refer as CS.
Here a higher entry reveals that the corresponding node is better connected with the
rest of the graph in terms of the weights on the edges.

The same procedure can be simulated on a TPG of two operand graphs and
can be used to capture higher order contextual information between pair of objects
represented as nodes. The process can be started by assigning the pairwise similarities
between nodes and edges as the weights on the corresponding edges of TPG, let
WX be such a weight matrix. Then simultaneous walking can be performed from
node to node taking the weights on the edges as the plausibilities to move from
one node to the next one. Let SWX be the sum of all such powers of WX upto
in�nity and let SWXc

be the row wise summation of SWX . Similar to the previous
explanation, here SWXc

(i) indicates the likelihood of starting a walk from the node
i and here a higher entry reveals that the node is better connected with the rest of
the TPG in terms of the weights on the edges. As the weights on the edges of TPG
come from the similarities of nodes and edges of the operand graphs, here a better
connected node of TPG supposed to constitute a promising pair of matched nodes.
Since the walking is performed through the edges of TPG, the accumulated weights
take into account contextual information. This procedure of accumulating weights
by considering connections between objects is proved to be more discriminative for
objects where contextual informations are important such as graph. This is also the
inner idea of graph diffusion, which is well known to capture higher order context
similarities and intrinsic relations when done with pair of objects [15,94,106]. In this
work we model the procedure of walking in two di�erent ways, which we describe
below.

5.2. Methodology 59

5.2.1 Random walks

The easiest way to get the contextual similarities between pair of objects through
graph is by propagating the pairwise similarity information with random walks on
TPG. Below we use I to denote the identity matrix and 1 to denote a column vector
whose all elements are set to 1. When it is clear from context we will not mention the
dimensions of these vectors and matrices. Let WX be the weight matrix of GX , then
the process of obtaining contextual similarities with random walks can be de�ned as:

SWX = lim
n!1

n∑
k=0

�kWXk
(5.1)

where

WXk
= W k

X (5.2)

Here � is a weighting factor to discount the longer walks, as they often contain
redundant or repeated information. In this chapter we always choose � = 1

a , where
a = min(�+(WX);��(WX)). Here �+(WX), ��(WX) are respectively the maxi-
mum outward and inward degree of WX [31].

The above summation converges for su�ciently small value of �. In that case, to
get rid of the iterative matrix multiplication procedures, one can consider the in�nite
sum as follows:

SWX = lim
n!1

n∑
k=0

�kWXk
= (I� �WX)�1 (5.3)

Then a vector containing the contextual similarities for all the nodes can be
obtained by a matrix-vector multiplication as follows:

WCS
X = (I� �WX)�11 (5.4)

Eqn. 5.4 can be e�ciently computed by solving (I � �WX)x = 1 by conjugate
gradient methods which allows to avoid the expensive matrix inversion. An entry
WCS

X (!1; !2) indicates the plausibility of having a random walk to any node from
the node (!1; !2) of TPG. Here since the weights on the edges of TPG are derived
from the pairwise similarities of node, edge attributes, a higher value in WCS

X (!1; !2)
reveals a better candidate for pairwise matching. Here it is to be noted that WX

CS

is a column vector, the comma separated double subscript is used just to ease the
understanding.

For the sake of understandability, let us illustrate the method using a simple

60 PRODUCT GRAPH

example. Let us take a very simple weight matrix W as follows:

W =

 0 w12 w13

w21 0 w23

w31 w32 0

where wij denotes the similarity between the nodes i and j. Now the summation upto
iteration 2 is:

W1 +W2 =

w12w21 + w13w31 w12 + w13w32 w13 + w12w23

w21 + w23w31 w21w12 + w23w32 w23 + w21w13

w31 + w32w21 w32 + w31w12 w31w13 + w32w23

Here it is clear that the exponentiation plus the summation procedure takes into
account information from the context to determine the strength of a particular edge.
For example, to determine the strength of the edge (1; 2), it considers the weights
on the edges (1; 3) and (3; 2). An actual occurrence of a pattern graph in the target
graph creates higher similarities in the neighbourhood, this also e�ects the connected
nodes. This formulation enhances the pairwise similarities with more information
from context. On the other hand, in this formulation the e�ect of occurrence of an
outlier gets minimized. Now the ith entry of the row wise summation of W1 + W2

gives the plausibility of initiating a walk of length two from the node i. As explained
before, here a higher entry reveals how well a node is connected with rest of the TPG
in terms of similarities. In other words, it gives a similarity measures of the pair of
nodes in the operand graphs.

The main problem of the random walk based procedure is that it backtracks an
edge in case of a undirected graph and reduce the discriminations. To solve this limita-
tion, backtrackless walks, a variation of random walks have been recently proposed [4].
In the next section we describe how to adapt this to our approach.

5.2.2 Backtrackless walks

A similar formulation as random walks can also be done with backtrackless walks [4].
The backtrackless walks are also random walks but do not backtrack an edge and
for that a variation of exponentiation is available [92]. Let WX be the weight matrix
of GX , then the process of obtaining contextual similarities with backtrackless walks
can be de�ned as:

SWX = lim
n!1

n∑
k=1

�kWXk
(5.5)

where

WXk
=

WX if k = 1

W 2
X � (QX + I) if k = 2

WXk−1
WX �WXk−2

QX if k � 3

(5.6)

5.2. Methodology 61

Here QX is a diagonal matrix where the ith or (i; i)th element is equal to the ith
or (i; i)th element of W 2

X minus one. Here also � serves the same purpose. The above
summation in Eqn. 5.5 converges for su�ciently small value of �. In that case, to
get rid of the iterative matrix multiplication procedures, one can consider the in�nite
sum as follows (for derivation see appendix):

SWX = lim
n!1

n∑
k=1

�kWXk
= (1� �2)(I� �WX + �2QX)�1 (5.7)

Then the weight vector for each node can be obtained by a matrix-vector multi-
plication as follows:

WCS
X = (1� �2)(I� �WX + �2QX)�11 (5.8)

Similar to Eqn. 5.4, Eqn. 5.8 can also be computed by solving (I � �WX +
�2QX)x = 1 and then multiplying the solution by (1� �2).

Here also the phenomena regarding context can be explained with the same ex-
ample as follows:

W =

 0 w12 w13

w21 0 w23

w31 w32 0

where wij denotes the similarity between the nodes i and j. Then QX can be written
as follows:

QX =

w12w21 + w13w31 � 1 0 0

0 w12w21 + w23w32 � 1 0

0 0 w13w31 + w23w32 � 1

Now the summation of the series upto the iteration 2 of W is:

W1 +W2 =

 0 w12 + w13w32 w13 + w12w23

w21 + w23w31 0 w23 + w21w13

w31 + w32w21 w32 + w31w12 0

Here also it is clear that the exponentiation plus the summation procedure also takes
into account contextual information to determine the strength of a particular edge
and in each iteration it eliminates the tottering e�ect (by eliminating the loops) with
the special algebraic formulation in Eqn. 5.6. An actual occurrence of a pattern graph
in the target graph creates higher pairwise similarities in the neighbourhood, this also
e�ects the connected nodes. This formulation enhances the pairwise similarities with
more information from context/connection. On the other hand, in this formulation an
occurrence of an outlier gets minimized. Now the ith entry of the row wise summation
of W1 +W2 gives the plausibility of having a walk of length two from the node i. As

62 PRODUCT GRAPH

before, here a higher entry reveals how well a node is connected with rest of the TPG
in terms of similarities. It gives a similarity measures of the pair of nodes in the
operand graphs.

We use the contextual similarities obtained in the steps explained above to for-
mulate maximal common subgraph matching algorithm as a constrained optimization
problem.

5.2.3 Subgraph matching as a constrained optimization prob-
lem

We formulate a maximal common subgraph matching as a node, edge selection prob-
lem in TPG. To do that we use the CS obtained in the previous step to construct a
maximization problem and solve it with a LP formulation. We construct two vectors
SV and SE as follows:

SV (u1; u2) = WCS
X (u1; u2); (u1; u2) 2 VX

SE((u1; u2); (v1; v2)) =
WCS

X (u1; u2)

�+(u1; u2)
+
WCS

X (v1; v2)

�+(v1; v2)
; (u1; u2) 2 VX

Here �+(u1; u2) denotes the maximum outward degree of the node (u1; u2) 2 VX ,
SV contains the higher order a�nities of all the nodes (u1; u2) 2 VX and SE contains
that for all the edges ((u1; u2); (v1; v2)) 2 EX . Here it is to be clari�ed that both of
SV and SE are row vectors, the comma separated double subscripts are just to ease
the understanding. Now clearly the dimension SV is jVX j and that of SE is jEX j.
We formulate the maximal common subgraph (MCS) matching problem as a node,
edge selection problem in the product graph. This can be formulated as a constrained
optimization problem which maximize a function of higher order similarities of the
nodes and edges. We construct the objective function as follows:

f(x; y) = SV x
0 + SEy

0 (5.9)

where x and y are row vectors containing variables denoting the probabilities
of matching (selecting) the nodes and edges in the product graph respectively. For
example, xu1,u2 denote the probability of matching the node u1 2 V1 with the node
u2 2 V2. Similarly, yu1u2,v1v2 denote the probability of matching the edge (u1; v1) 2
E1 with the edge (u2; v2) 2 E2. x and y contain probabilities as the optimization
problem in Eqn. 5.9 is solved with linear or continuous programming with the domain
[0; 1].

Now let us introduce a set of constraints on the variables to satisfy the maximal
common subgraph matching problem between the operand graphs G1 and G2 in TPG
GX .

• Pattern node constrain Each node u1 2 V1 can be matched with at most L
number of nodes u2 2 V2 i.e.there can be at most L number of nodes (u1; u2) 2

5.2. Methodology 63

VX for each u1 2 V1. ∑
u22V2

xu1,u2
<= L; 8u1 2 V1

Here L is the number of instances of the pattern graph to be searched in the
target graph.

• Pattern edge constrain Each edge (u1; v1) 2 E1 can be matched with at
most L number of edges (u2; v2) 2 E2 i.e.there can be at most L number of
edges ((u1; u2); (v1; v2)) 2 EX for each (u1; v1) 2 E1∑

(u2,v2)2E2

yu1u2,v1v2
<= L; 8(u1; v1) 2 E1

Here L is the number of instances of the pattern graph to be searched in the
target graph.

• Target node constrain Each node u2 2 V2 can be matched with at most
one node in u1 2 V1 i.e.there can be at most one node (u1; u2) 2 VX for each
u2 2 V2. ∑

u12V1

xu1,u2
<= 1; 8u2 2 V2

• Target edge constrain Each edge (u2; v2) 2 E2 can be matched with at most
one of edge (u1; v1) 2 E1 i.e.there can be at most one edge ((u1; u2); (v1; v2)) 2
EX for each (u2; v2) 2 E2∑

(u1,v1)2E1

yu1u2,v1v2 <= 1; 8(u2; v2) 2 E2

• Outward degree constrain The outward degree of a node (u1; u2) 2 VX is
bounded above by the minimum of the outward degree of the node u1 2 V1 and
u2 2 V2 i.e.the number of outgoing edges from the node (u1; u2) 2 VX is less
than or equal to the minimum of the number of outward degree of the nodes
u1 2 V1 and u2 2 V2.∑

(v1,v2)2VX

yu1u2,v1v2
<= xu1,u2

:min (�+(u1);�+(u2)); 8(u1; u2) 2 VX

• Inward degree constrain The inward degree of a node (v1; v2) 2 VX is
bounded above by the minimum of the inward degree of the node v1 2 V1 and
v2 2 V2 i.e.the number of incoming edges to the node (v1; v2) 2 VX is less than
or equal to the minimum of number of inward degree of the nodes v1 2 V1 and
v2 2 V2.∑

(u1,u2)2VX

yu1u2,v1v2
<= xv1,v2

:min (��(v1);��(v2)); 8(v1; v2) 2 VX

64 PRODUCT GRAPH

Table 5.1: Execution time of the exact graph matching experiment.

tvn 50 100 250 500
pvn rw btlw pw rw btlw pw rw btlw pw rw btlw pw
10 0.03 0.04 0.03 0.12 0.13 0.11 0.52 0.49 0.46 1.73 1.77 2.17
20 0.13 0.012 0.14 0.43 0.41 0.46 1.83 1.80 2.10 13.24 13.21 15.34
50 0.77 0.75 0.78 2.99 2.91 3.20 21.72 21.67 33.23 292.60 291.98 475.24

• Domain constrain Finally, we restrict all the variables to be in between [0; 1].

xu1,u2
2 [0; 1]; 8(u1; u2) 2 VX

yu1u2,v1v2
2 [0; 1]; 8((u1; u2); (v1; v2)) 2 EX

For having a node-node and edge-edge correspondence between the pattern and
target graph, we consider all the non-zero values of the variables in x and y and
consider it as matchings.

5.3 Experimental framework

We have performed two di�erent experiments. The �rst one is designed to show
the functionality of our proposed subgraph matching algorithm in an exact subgraph
matching scenario. The second experiment is more focused on an application of in-
exact or error tolerant subgraph matching perspective. Here we convert the symbol
spotting problem in graphical documents as a subgraph matching problem and apply
the proposed product graph based subgraph matching algorithm for spotting symbols.
All the experiments are done in a workstation with Intel Xeon 2.67GHz processor and
12GB of RAM. Our unoptimized Matlab code that we have been used for the experi-
mentations is available in http://www.cvc.uab.es/˜adutta/ProductGraph.

5.3.1 Exact subgraph matching

For this experiment we have considered the two synthetic subset of the ILPIso dataset
(see Section A.7 for details), these two subsets contain graphs that are connected
i.e.they do not have any isolated nodes. We run our subgraph matching algorithm
with all the pattern-target pairs with L = 1.

We use the Euclidean distance to compute the node and edge distance while
computing the product graph and given the distance d between two nodes (or edges),
the similarity between them is computed as s = e�d. For each pair we perform the
subgraph matching in three di�erent node, edge similarity settings: (1) higher order
similarities with random walks, (2) higher order similarities with backtrackless walks
and (3) pairwise similarities. As expected our proposed subgraph matching algorithm
solved all the pair of instances with all the three di�erent settings. Table 5.1 contains

5.3. Experimental framework 65

(a)

(b)

Figure 5.2: (a) An example symbol, (b) Graph representation of the symbol
in (a) considering the critical points (detected by the vectorization algorithm)
as the nodes and lines joining the critical points as the edges. Note the
spurious nodes and edges generated near the junctions and corners. It is to
be mentioned that in this case the vectorization is done by QGAR.

a comparison of average time (average over ten consecutive runs) taken to solve each
pair of instances with the edge probability of 0:1 for three di�erent settings.

In this experiment it is observed that with the increase in the number of nodes
of the operand graphs the required time to solve a problem increases which is well
expected. And also it is observed that for bigger operand graphs considering higher
order contextual similarities gives bene�ts in terms of time. We explain this phenom-
ena as an advantage of contextual similarities which adds more discrimination to the
node and edge labels.

5.3.2 Symbol spotting as an inexact subgraph matching prob-
lem

For this experiment we have considered the two subsets (floorplans16-05 and floorplans16-
06) of SESYD (oorplans) dataset (see Section A.1 for details).

E�cient graph representation of graphical documents is a popular but di�cult
problem in the graphics recognition �eld. The steps converting a document to a
graph involve several low level image processing such as binarization, skeletonization,
polygonization etc., which introduce structural noise such as spurious nodes, edges
(see Figure 5.2).

66 PRODUCT GRAPH

a

c

b

d

Figure 5.3: An illustration showing the details of dual graph representation.
Here a, b, c and d are dual nodes and we consider l = 1. For that reason (b, a)
and (b, c) are dual edges (shown in magenta and discontinuous line) since
the corresponding edges (shown in green and continuous line) in the original
graph are reachable with a shortest walk of length 1. There is no dual edge
(b, d) since the shortest walk between the corresponding edges of b and d is 2.
Consider the details near the junctions and corners.

Dual graph representation

To resolve this problem we consider a variation of dual graph representation. Orig-
inally dual graph of a plane graph GF is a graph that has vertex corresponding to
each face of GF and an edge joining two neighbouring faces sharing a common edge
in GF . We bring the same analogy to our problem. Initially we have edge graphs GE

where each critical point (obtained by the vectorization algorithm) is represented as
node and the line joining each pair of nodes as edge (as shown in Figure 5.2b). In
our dual graph representation we assign a node to each edge of GE . Any pair of dual
nodes (nodes of dual graph) are joined by a dual edge (edge of dual graph) if the
corresponding edges in the edge graph are reachable from each other with a shortest
walk of length l. Lets call this graph representation as dual edge graph representation.

Let G1 = (V1, E1, α1, β1) and G2 = (V2, E2, α2, β2) be respectively the attributed
dual edge graphs for the pattern and the target. Here α1 : V1(u) → Rm× 7 is a node
labelling function and is defined as the set of seven Hu moments invariants [43] of the
acyclic graph paths joining the extremities of an edge in the edge graph (m is total
number of paths). α2 is also defined in same way in V2. β1 : E1(u1, v1) → R3 is an
edge labelling function and is constructed of three components:

• normalized angle (angle divided by 180◦) between two edges (of the edge graph)

5.3. Experimental framework 67

171

228

229 230

231

232

233
234

235

244
245

250

251

252

253

254

255

256
257258

259

(a)

171

228

229 230

231

232

233

234

235

244
245

250

251

252

253

254

255

256

257258

259

(b)

Figure 5.4: Transitive closure.

joined by the dual edge.

• the ratio of the two edges (of the edge graph) joined by the dual edge.

• the ratio of the distance between the mid points of the two edges (of the edge
graph) and the total length of the edges joined by the dual edge.

Similarly, �2 is de�ned in E2.

The above representation fails when the extremities of a certain edge (of the edge
graph) are not connected with other graph paths. In that case the corresponding dual
node loses local discrimination as shown in Figure 5.4a. We resolve this di�culty by
connecting those nodes in the edge graph by a relation inspired by the transitive
closure of a graph. In general, transitive closure of a graph G = (V;E) is also a
graph G? = (V;E?) such that E? contains an edge (u; v) if and only if G contains a
path (of at least one edge) from u to v. In our case, we only join those u, w so that
w = arg maxv dsp(u; v). Here dsp(u; v) denotes the minimum number of nodes to be
traversed to reach v from u.

Given the dual edge graph representation of the oorplan (target) and the symbol
(pattern) we compute the product graph between them. For computing the distance
between the dual nodes we use a modi�ed version of Hausdor� distance as follows [30]:

d(A;B) =
∑
a2A

min
b2B

dm(a; b) +
∑
b2B

min
a2A

dm(a; b)

Here dm(a; b) denotes the distance of a 2 A from b 2 B and d(A;B) denotes
the distance between the sets A and B. Since the node label in our dual edge graph

68 PRODUCT GRAPH

representation is a set of Hu moments, we use this particular distance computation.
For having the distance between the edges we use the Euclidean distance. Given the
distance d between two nodes (or edges) we obtain the similarity between them as
e�d. Given the contextual similarities we perform the optimization based maximal
subgraph matching to obtain the correspondences in target graph. Here also all the
experiments were done with L = 1.

Initially we show the node-node matching for di�erent pattern graphs from Figure
5.5 to 5.16 in pattern graph wise manner. In the above �gures the left sub �gures
show the correspondences obtained by the context similarities due to random walks,
the ones in the middle show that for backtrackless walks and those in the right show
the same for pairwise similarities. Here it is clear that the context similarities really
enhance the truly matched nodes, as in the case of random, backtrackless walks the
most of the obtained correspondences focus to the actual instance. After obtaining
the correspondences, we perform a simple clustering to group the neighbouring dual
nodes to obtain a bounding box for comparing with the ground truths.

12
3 456
78 9

10 11

12

131415

16

1718
1920

21
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12
3 456
78 9

10 11

12

131415

16

1718
1920

21
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12
3 456
78 9

10 11

12

131415

16

1718
1920

21
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.5: Matchings: bed.

1234
5678

9101112

1314151617
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1234
5678

9101112

1314151617
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1234
5678

9101112

1314151617
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.6: Matchings: door1.

Performance evaluation and results

The decision whether a retrieved subgraph is true or false is done by overlapping the
bounding boxes, that is, if B be the rectangular bounding box for a retrieval and
T be the bounding box of its corresponding ground truth, B is considered true if

5.3. Experimental framework 69

1

2

34

5

6 7

8

9

10

1112

13

14
1516171819202122232425262728 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1

2

34

5

6 7

8

9

10

1112

13

14
1516171819202122232425262728 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1

2

34

5

6 7

8

9

10

1112

13

14
1516171819202122232425262728 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.7: Matchings: door2.

12 34567891011121314151617181920212223242526272829303132
3334353637383940

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12 34567891011121314151617181920212223242526272829303132
3334353637383940

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12 34567891011121314151617181920212223242526272829303132
3334353637383940

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.8: Matchings: sink1.

12345678 9 10
1112131415161718192021222324
2526 2728293031

32333435363738394041424344454647 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12345678 9 10
1112131415161718192021222324
2526 2728293031

32333435363738394041424344454647 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12345678 9 10
1112131415161718192021222324
2526 2728293031

32333435363738394041424344454647 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.9: Matchings: sink4.

B\T
B[T � 0:5. For quantitative evaluation, we have computed the usual metrics for
evaluating a retrieval system such as precision (P), recall (R), F-measure (F) and
average precision (AP). For detailed de�nitions of all such metrics, one can have a
look to the paper [86]. To get an idea about the time complexity we have also shown
the meantime (T) of matching a pattern graph in a target graph.

The results obtained are listed in Table 5.2. From the results it is clear that the
method really performs well with contextual similarities than the pairwise similarities
and there is not much di�erence between the higher order similarities learned from
random walk based and backtrackless walks. As the �rst experiment it is also observed
here that the average time taken by the method is signi�cantly lower than the pairwise

70 PRODUCT GRAPH

12

3

45678

9 10 11

12
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12

3

45678

9 10 11

12
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12

3

45678

9 10 11

12
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.10: Matchings: sofa1.

1

2

3

4

5

6 7

8

9

10

11

121314

15

16
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1

2

3

4

5

6 7

8

9

10

11

121314

15

16
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1

2

3

4

5

6 7

8

9

10

11

121314

15

16
12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.11: Matchings: sofa2.

1
2

3

4

5
6

7

8
9

1011

12
13

14 15

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1
2

3

4

5
6

7

8
9

1011

12
13

14 15

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1
2

3

4

5
6

7

8
9

1011

12
13

14 15

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.12: Matchings: table1.

similarities. We explain this phenomena as a bene�t of using higher order similarities,
which add more discrimination to the nodes and edges. Our method works quite well
except for sink3, sofa1, table1, window1. The failures occur when the pattern graph
has more than one component (for example sink3) and when there are many instances
of the same symbol (table1, sofa1 and window1).

Some of the qualitative results are shown in 5.18 to 5.25 in symbol wise manner.
In each of the �gures the left one is obtained by using the context similarities due to
random walks, the middle one is obtained due to backtrackless walks and right one
is obtained with pairwise similarities. In the �gures, the bounding boxes with green
border indicate the true positives and the ones with red border signify false positive.

5.3. Experimental framework 71

12
3 4

5
67

8

9
1011

12 13
14

15

16

17

18 19
20

21

22

23

24

252627
28

29
3031

3233 3435 363738 39

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12
3 4

5
67

8

9
1011

12 13
14

15

16

17

18 19
20

21

22

23

24

252627
28

29
3031

3233 3435 363738 39

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12
3 4

5
67

8

9
1011

12 13
14

15

16

17

18 19
20

21

22

23

24

252627
28

29
3031

3233 3435 363738 39

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.13: Matchings: table2.

12 3

4

567

8
9

10
111213141516171819

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12 3

4

567

8
9

10
111213141516171819

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

12 3

4

567

8
9

10
111213141516171819

12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.14: Matchings: tub.

1 234
5 678910 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1 234
5 678910 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

1 234
5 678910 12 34

56

7

89

101112

13

14 15 1617181920

21

22

23

24 2526272829

30
31

32
33

34

3536
37

38 39
40

41
42 43

4445
46

4748

4950

51
52

53

5455

5657585960616263
64

65
66
6768

69
70

71

72

73

74

7576

7778

79

80
81

82

83

84

85
86

87
88899091

92939495

96

97

98

99100101

102

103

104
105

106107

108
109

110

111

112
113

114

115

116

117

118

119

120121122
123
124

125
126127128

129
130

131
132

133134
135

136
137

138139
140

141142
143
144

145

146

147148

149
150151152 153

154155
156

157
158159160

161
162

163164165
166

167168
169
170171 172173

174

175176
177178

179

180

181182

183184

185186 187

188 189

190191

192

193
194

195

196197198199
200

201

202

203204
205

206

207

208209210211212

213

214

215

216

217
218

219
220

221
222

223224

225
226227

228
229230231232 233234235236237

238

239240

241

242

243244

245

246

247248249250251252253254255256257258259260261

262
263264

265

266

267
268

269

270
271

272273

274
275276
277

278279
280

281282

283

284
285

286
287

288

289

290 291292

293
294295296297298299300301302303304305306307308309310

311312313 314315316317318319320
321 322

323324325326327328329

330
331

332333334335336337338339

340341342343344
345346347348349350

351352353354355356357358359 360361362363364365366367368369370371372373374375

376 377378

379

380 381

382

383384

385

386387

388

389 390 391

392393394395396397398399400
401402403404

405406

407

408409

410 411412413414415416

417

418419420421422

423424425

426

427

428

429430

431432433
434

435

436
437438439440441442443444445446447448449450451

452

Figure 5.15: Matchings: window1.

Each of the retrieved bounding boxes are also accompanied with a similarity value.
The similarity value for each of the bounding boxes is the summation of all the
similarity of matched nodes. This similarity value is used to rank the retrievals. Rest
of the qualitative results are available in http://www.cvc.uab.es/˜adutta/
ProductGraph.

To have a comparison between a state-of-the-art method, we have a considered
the method by Le Bodicet al. [8]. For the comparisons the same oorplans are rep-
resented with RAG as done by the authors in the paper and each of the nodes is
attributed with 24 Zernike moments and each of the edges is attributed by the ra-
tio of the areas of the regions joined by the edges and distance between the cen-

72 PRODUCT GRAPH

12 34 56 789
10 11121314151617 12 345

67

891011

1213

1415 1617
18

19 20 21
22

23

24
2526

27
28 293031 32

33
34

35
36

3738

39
40

4142

43
44

4546
4748

495051
52 5354

5556

57

58
596061

6263
6465666768697071

72
73

74
7576777879808182838485

86
87

88
8990

91
92

9394

95

96

97

98

99

100

101

102

103
104

105

106

107
108

109110111112

113

114

115

116
117

118119

120
121 122

123

124

125
126127

128

129130131132

133

134

135

136

137138

139140141
142
143

144
145146147

148
149

150
151

152153
154

155
156

157158
159

160161
162
163

164165166

167

168

169

170
171172173 174

175
176177

178

179180
181182

183

184

185
186

187
188189190

191
192

193194195
196

197198
199
200201

202

203

204205206

207

208209 210

211 212

213214

215

216217

218219220

221222

223 224
225

226

227
228

229

230231
232

233234
235236237

238

239

240

241

242
243

244
245

246
247

248249

250
251

252
253254

255
256257258259 260261262263264

265

266267

268

269

270271

272

273

274275276277278279280281282283284285286287288

289
290291

292

293

294
295

296

297
298

299300

301
302303
304

305306
307

308309

310

311
312

313
314

315

316

317 318319

320
321322323324325326327328329330331332333334335336337

338339340 341342343344 345346347 348349350 351352353

354355356357358359360 361362363364365366367

368
369

370371372373374375376377

378379380381382
383384385386387388

389390391392393394395396397 398399400401402403404405406407408409410411412413

414415416

417

418

419420
421

422

423

424425

426427428 429 430

431432433434435436437438439
440441442443

444

445446

447

448449

450 451452453454455456

457

458459460461462

463464465

466

467

468

469470

471472473
474

475

476
477478479480481482483484485486487488489490491

492

12 34 56 789
10 11121314151617 12 345

67

891011

1213

1415 1617
18

19 20 21
22

23

24
2526

27
28 293031 32

33
34

35
36

3738

39
40

4142

43
44

4546
4748

495051
52 5354

5556

57

58
596061

6263
6465666768697071

72
73

74
7576777879808182838485

86
87

88
8990

91
92

9394

95

96

97

98

99

100

101

102

103
104

105

106

107
108

109110111112

113

114

115

116
117

118119

120
121 122

123

124

125
126127

128

129130131132

133

134

135

136

137138

139140141
142
143

144
145146147

148
149

150
151

152153
154

155
156

157158
159

160161
162
163

164165166

167

168

169

170
171172173 174

175
176177

178

179180
181182

183

184

185
186

187
188189190

191
192

193194195
196

197198
199
200201

202

203

204205206

207

208209 210

211 212

213214

215

216217

218219220

221222

223 224
225

226

227
228

229

230231
232

233234
235236237

238

239

240

241

242
243

244
245

246
247

248249

250
251

252
253254

255
256257258259 260261262263264

265

266267

268

269

270271

272

273

274275276277278279280281282283284285286287288

289
290291

292

293

294
295

296

297
298

299300

301
302303
304

305306
307

308309

310

311
312

313
314

315

316

317 318319

320
321322323324325326327328329330331332333334335336337

338339340 341342343344 345346347 348349350 351352353

354355356357358359360 361362363364365366367

368
369

370371372373374375376377

378379380381382
383384385386387388

389390391392393394395396397 398399400401402403404405406407408409410411412413

414415416

417

418

419420
421

422

423

424425

426427428 429 430

431432433434435436437438439
440441442443

444

445446

447

448449

450 451452453454455456

457

458459460461462

463464465

466

467

468

469470

471472473
474

475

476
477478479480481482483484485486487488489490491

492

12 34 56 789
10 11121314151617 12 345

67

891011

1213

1415 1617
18

19 20 21
22

23

24
2526

27
28 293031 32

33
34

35
36

3738

39
40

4142

43
44

4546
4748

495051
52 5354

5556

57

58
596061

6263
6465666768697071

72
73

74
7576777879808182838485

86
87

88
8990

91
92

9394

95

96

97

98

99

100

101

102

103
104

105

106

107
108

109110111112

113

114

115

116
117

118119

120
121 122

123

124

125
126127

128

129130131132

133

134

135

136

137138

139140141
142
143

144
145146147

148
149

150
151

152153
154

155
156

157158
159

160161
162
163

164165166

167

168

169

170
171172173 174

175
176177

178

179180
181182

183

184

185
186

187
188189190

191
192

193194195
196

197198
199
200201

202

203

204205206

207

208209 210

211 212

213214

215

216217

218219220

221222

223 224
225

226

227
228

229

230231
232

233234
235236237

238

239

240

241

242
243

244
245

246
247

248249

250
251

252
253254

255
256257258259 260261262263264

265

266267

268

269

270271

272

273

274275276277278279280281282283284285286287288

289
290291

292

293

294
295

296

297
298

299300

301
302303
304

305306
307

308309

310

311
312

313
314

315

316

317 318319

320
321322323324325326327328329330331332333334335336337

338339340 341342343344 345346347 348349350 351352353

354355356357358359360 361362363364365366367

368
369

370371372373374375376377

378379380381382
383384385386387388

389390391392393394395396397 398399400401402403404405406407408409410411412413

414415416

417

418

419420
421

422

423

424425

426427428 429 430

431432433434435436437438439
440441442443

444

445446

447

448449

450 451452453454455456

457

458459460461462

463464465

466

467

468

469470

471472473
474

475

476
477478479480481482483484485486487488489490491

492

Figure 5.16: Matchings: window2.

Table 5.2: Overall results with three di�erent settings.

P R F AP T

random 69.90 84.95 78.78 81.10 33.43
backtrackless 70.56 86.29 80.10 82.98 33.37

pairwise 61.60 72.81 64.94 60.21 53.60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

random walks

backtrackless walks

pairwise similarities

Figure 5.17: Precision Recall curve.

tre of the regions. The implementation of the method was taken from the web-
site http://litis-ilpiso.univ-rouen.fr/ILPIso. In each of the target
documents a single pattern symbol was queried for �ve instances. A retrieved in-
stance is classi�ed as true/false depending on the same overlapping criteria as the
proposed method. The results obtained are listed in the �rst row of Table 5.3. The

5.3. Experimental framework 73

Figure 5.18: Symbol spotting: bed. Green boxes are the true positives, the
red ones are false positives.

Figure 5.19: Symbol spotting: door1. Green boxes are the true positives,
the red ones are false positives.

Figure 5.20: Symbol spotting: door2. Green boxes are the true positives,
the red ones are false positives.

method can perfectly retrieve all the instances of the symbol named sink1, sink2,
sink3, sofa2, table1, tub, window1, window2. The method fails completely for door1,
door2 as the region adjacency graph can not represent them in stable way. For sink4,
we observe there are some instability among the regions in the pattern and target

74 PRODUCT GRAPH

Figure 5.21: Symbol spotting: sink1. Green boxes are the true positives,
the red ones are false positives.

Figure 5.22: Symbol spotting: sink2. Green boxes are the true positives,
the red ones are false positives.

Figure 5.23: Symbol spotting: sofa1. Green boxes are the true positives,
the red ones are false positives.

graphs. For table2 and table3 the optimization did not �nish for many cases and the
cases when the optimization �nished they either have partial or wrong detection.

5.4. Conclusions 75

Figure 5.24: Symbol spotting: sofa2. Green boxes are the true positives,
the red ones are false positives.

Figure 5.25: Symbol spotting: window2. Green boxes are the true positives,
the red ones are false positives.

5.4 Conclusions

In this work we have proposed a product graph based subgraph matching approach.
We have used the walk based similarity propagation through edges to have higher
order similarities between the nodes and edges. With experiments we have proved
that the higher order similarities are more robust than the pairwise similarities. Since
higher order similarities add more discrimination to nodes and edges the optimization
performs faster than the pairwise one. In this chapter we have also formulated a
maximal common subgraph matching problem as an optimization problem and solved
it with a linear programming relaxation.

Table 5.3: Comparative results with Le Bodic et al. [8].

P R F AP T

Le Bodicet al. 65.44 58.23 59.11 57.75 27.29
Our approach 70.56 86.29 80.10 82.98 33.37

76 PRODUCT GRAPH

Since the optimization is solved using a LP, mostly in inexact cases (eg. symbol
spotting experiment) we do not get a one-one mapping between the nodes-nodes and
edges-edges. Instead we have performed a simple grouping to cluster the nodes and
rank them depending on the total similarity. In future it will be interesting to add a
density maximization based module that would discard the outliers and automatically
clusters the inlier [101].

Chapter 6

Near Convex Region Adjacency
Graph

This chapter deals with a subgraph matching problem in Region Adjacency Graph
(RAG) applied to symbol spotting in graphical documents. RAG is a very important,
e�cient and natural way of representing graphical information with a graph but this
is limited to cases where the information is well de�ned with perfectly delineated
regions. What if the information we are interested in is not con�ned within well
de�ned regions? This chapter addresses this particular problem and solves it by
de�ning near convex grouping of oriented line segments which results in near convex
regions. Pure convexity imposes hard constraints and can not handle all the cases
e�ciently. Hence to solve this problem we have de�ned a new type of convexity of
regions, which allows convex regions to have concavity to some extend. We call this
kind of regions as Near Convex Regions (NCRs). These NCRs are then used to create
the Near Convex Region Adjacency Graph (NCRAG) and with this representation
we have formulated the problem of symbol spotting in graphical documents as a
subgraph matching problem. For subgraph matching we have used the Approximate
Edit Distance Algorithm (AEDA) on the neighborhood string, which starts working
after �nding a key node in the input or target graph and iteratively identi�es similar
nodes of the pattern graph in the neighborhood of the key node. The experiments
are performed on arti�cial, real and distorted datasets.

6.1 Introduction

Many of the symbol spotting methods have proposed some sort of subgraph matching
as the solution, where pattern graphs represent the query symbols and the target
graphs represent the graphical documents. Often this kind of methods use the Region
Adjacency Graph (RAG) as the way of representing graphical information [6, 8, 54],
where a region is roughly de�ned as a white connected component. This is well

77

78 NCRAG

justified since RAG allows to capture regionwise contextual information. RAG has
also been widely used for classification [39] and object detection and recognition [45,
93] in other fields of computer vision. The main advantage of RAG is that it is
natural and robust, and allows one to capture region wise contextual information,
which encode higher order representation. But it is not always representative when
the region boundaries are not clearly defined or they have some discontinuities (as in
the symbol door1 and door2 respectively in Figure 6.1a and Figure 6.1b and in the
synthetically distorted example of symbol table1 in Figure 6.1d). So to solve these
problems, in this chapter we define Near Convex Region Adjacency Graph (NCRAG)
where the regions must not be clearly and continuously bounded, but can be nearly
convex. This is done by near convex grouping of the oriented line segments and
defining the convexity of the regions. Then we use this NCRAG representation to
solve the problem of subgraph matching and apply it for symbol spotting in graphical
documents. The first step of the method is to create two NCRAGs, one from a
graphical document and the other from a symbol and then in the second step apply
the Approximate Edit Distance Algorithm (AEDA) for subgraph matching.

(a) (b) (c) (d)

Figure 6.1: Limitations of RAG and convex region based representation: (a)
the symbol door1 contains open region, (b) the symbol door2 also contains
open regions, (c) the symbol bed contains a region (region 1) which is not
convex, (d) the symbol table1 contains discontinuous boundaries.

Convexity of objects is a very important property and it has been shown that
most of the objects, even though they are not fully convex, can be decomposed into
multiple convex parts [46]. Also it is important to note that often the object of interest
is almost convex. So the property of convexity has already been studied in the field of
computer vision and pattern recognition for object detection and recognition [56] and
recently it has also been studied in document analysis for symbol spotting [6, 8, 67].
But, as it has been mentioned before, the object of interest might not always be
perfectly convex but include some concavity in some parts (as the region 1 of the
symbol bed in Figure 6.1c). Of course, such regions can be split into multiple strictly
convex parts as it is studied in [45,46] but it is inefficient dealing with a large number
of smaller purely convex parts rather than few near convex parts. Also small concavity
provides discrimination in the representation of objects, so it is an important property
to be considered for description. Convexity or near convex decomposition has also
been studied in [79] very recently. Hence representing the graphical documents with

6.2. Methodology 79

NCRAG seems worthwhile and useful.

The main contributions of the work in this chapter are: (1) Formulation of NCRs
using the near convex grouping of a set of oriented line segments which not necessarily
have to be closed and the use of these NCRs to construct the NCRAGs. This NCRAG
is able to handle concavity within the convex regions and at the same time it is as
expressive as RAG. (2) Application of the Approximate Edit Distance Algorithm
(AEDA) [69] to solve the problem of subgraph matching for faster symbol spotting
in graphical documents. The method does not need any learning or o�ine step and
can be computed in reasonable time as shown in Table 6.1 and Table 6.2.

The rest of the chapter is organized into four sections. In Section 6.2 we explain
the detailed methodology. Section 6.3 shows the experimental results. In Section 6.4
we provide a detailed discussion about limitations of this kind of representation and
compare the results with a previously proposed method and note the improvements.
At last in Section 6.5 we conclude the chapter and discuss future directions of work.

6.2 Methodology

The �rst step of the method is to create two NCRAGs, one from the target graphical
document and the other from the query symbol. Formally we de�ne an NCRAG as
a graph G(V;E; �; �), where V is the set of nodes and E � V � V is the set of edges
of the graph G and are de�ned as follows:

V = fvi : vi is a convex region (nearly) in the documentg

E = f(vi; vj) : vi; vj 2 V and vi; vj are adjacent regionsg

� : V ! Rn is the node labeling function, in this case, the Hu moments invariants
concatenated with the Euler number and solidity of each of the regions. Therefore, the
node label has the dimension nine and all values are normalized between 0 and 1. � :
E ! R is the edge labeling function, in this case, the ratio of the length of the common
boundary to the length of the larger boundary between the two regions connecting
the edge. Given two NCRAGs, the symbol spotting problem can be formulated as
a subgraph matching problem, where the task is to �nd an instance of the smaller
query symbol graph in the larger document graph. Let us denote the NCRAG of the
query symbol as the pattern graph G1 and that of the document as the input or target
graph G2. As the second step, for matching the subgraph we have used the e�cient
AEDA proposed by Neuhaus and Bunke in [69]. These two steps are explained in the
subsequent subsections.

6.2.1 Near Convex Region Adjacency Graph (NCRAG)

This step starts working on the vectorized images which contain the approximated line
segments. Here each line segment is considered as two oriented line segments where
an oriented line segment is de�ned as a line segment where one endpoint is considered

80 NCRAG

(a) (b) (c)

Figure 6.2: NCRAG representing (a) a part of a oorplan, (b) a symbol
with open region (door1), (c) a symbol with all closed regions (armchair).

as its �rst endpoint [46]. If li is an oriented line segment, then we consider li,1 as
it's �rst endpoint and li,2 is its second. Let us consider their coordinates as (xi1; yi1)
and (xi2; yi2) respectively. Just to clarify, if li and lj are two consecutive oriented line
segments coinciding end-to-end then the coordinate (xi2; yi2) and (xj1; yj) denote the
coordinates of the same point. Now let Sn = fl1; l2; : : : ; lng be a sequence of oriented
line segments and Li be the length of the segment li and i be the gap between li,2
and li+1,1. Then according to the original algorithm [46] we have:

Li,n =
nX

i=1

Li; i,n =
nX

i=1

i (6.1)

The saliency measurement of the convex group Sn can be de�ned as:

Saliency(Sn) =
Li,n

Li,n + i,n
(6.2)

The saliency parameter helps to incorporate the erroneous gaps that might be gener-
ated during binarization or vectorization as we have shown in one of our experiments
in Section 6.3. Before adding any oriented line segment to a sequence, the saliency
measurement of the sequence is checked. In case the saliency of the sequence is less
than tsal the current line segment is added to the sequence.

The convexity of the group Sn is de�ned as:

Convexity(Sn) =
area(Sn)

area(CHSn)
(6.3)

where CHSn is the convex hull of Sn. Since any group Sn is not guaranteed to be
closed, its area is computed as:

area(Sn) =

Pn
i=1(xi1yi2 − xi2yi1) + (xi2y((i+1)%n)2 − x((i+1)%n)1yi2)

2
. (6.4)

Like the saliency measurement, before adding any oriented line segment to a sequence
Sn, its convexity together with Sn is checked and if it is less than tconv, it is added
to the sequence.

6.2. Methodology 81

To make the idea clear it is to be mentioned that for e�cient computation, for
each oriented line segment li, the original algorithm precomputes the list of all other
oriented line segments List(li) with which it is mutually convex and sorts them ac-
cording to the distance. Secondly, it also precomputes the angle that is turned when
going from one oriented line segment to another. Since we take into account the con-
vexity of a sequence Sn we only sort the list according to the distance and check the
saliency and convexity of the current sequence together with the line segment to be
added before adding it to Sn. These NCRs are then used to create NCRAG. Figure
6.2 shows some results of the NCRAG construction. Construction of the NCRAG can
be done in time complexity of O(m2logm+m2), where m is the number of oriented
line segments.

6.2.2 Approximate Edit Distance Algorithm (AEDA)

The AEDA starts by �nding a similar node in G2(V2; E2; �2; �2) to a node in G1(V1;
E1; �1; �1). These nodes are called the key nodes [69]. The similarity of the nodes
is inversely proportional to the Euclidean distance of the node labels, and the edge
labels of the graph are not taken into account here. Then the algorithm looks at the
neighborhood nodes considering the key nodes as the center nodes. The neighborhood
nodes are then arranged in clockwise order to create a string. Here the connectivity
information between the neighborhood nodes is taken into account. If any two nodes
are connected the corresponding edge label is concatenated with the incident node
label and form the attributed string. After having constructed the attributed string,
cyclic string edit distance is applied to get the node-to-node correspondences. Then
each of the nodes in each correspondence is considered as a key node and the previous
steps are repeated. This algorithm continues working until it gets new correspon-
dences. In the cyclic string the edge label is augmented with the originating node
and the cost function is de�ned as:

� j�1 � �2j+ (1� �) j�1 � �2j ; where 0 � � � 1:

where � and � are, respectively, the node and edge labels. For the original algorithm
the readers are referred to [69].

For each node in G1 we consider n key nodes in G2 and perform the AEDA.
Therefore for a single pattern graph G1, we perform n �m iterations of the AEDA
in G2, where m is the number of nodes in G1. In this case, n should be greater than
the actual number of instances of the query symbol in a graphical document to get
all the relevant instances. Here it is to be mentioned that greater values of n might
produce more false positives but the system produces a ranked list of the relevant
retrievals. So it does not hamper the performance, since the true positives suppose
to appear at the beginning of the ranked list of retrieved symbols. The edge label is
only used when we perform the cyclic string matching on the strings obtained from
the neighborhood subgraphs by considering the nodes in clockwise order. At the end,
we obtain a distance measure between a retrieved subgraph and the pattern graph
by calculating the distance of the node labels. Later we use this distance to rank the
retrieved subgraphs.

82 NCRAG

(a) (b) (c) (d) (e) (f)

Figure 6.3: Model symbols: (a)-(e) SESYD, (f) FPLAN-POLY: (a) arm-
chair, (b) bed, (c) door1, (d) door2, (e) table2, (f) television.

Figure 6.4: First ten retrievals of armchair.

Figure 6.5: First ten retrievals of bed.

Figure 6.6: First ten retrievals of door1.

Figure 6.7: First ten retrievals of television.

6.3 Experimental results

Experiments are carried out to show (1) the robustness of the algorithm for construct-
ing NCRAG and (2) the e�ciency of the AEDA for subgraph matching in NCRAG.
We have considered two di�erent datasets: (1) SESYD (oorplans) and (2) FPLAN-
POLY for experiments. For the details on these datasets one can have a look to App.
A. To get the line segments, the vectorization algorithm of Qgar1 is applied. For each
of the symbols the performance of the algorithm is evaluated in terms of precision
(P), recall (R) and average precision (AveP). To have an idea about the computa-
tion time we calculate the per document retrieval time (T) required for each of the
symbols with each document. For each of the datasets the mean of the above men-
tioned metrics is shown (Table 6.1) to judge the overall performance of the algorithm.
Throughout our experiments we have chosen tsal = 0:95, tconv = 0:8 and � = 0:6;

1www.qgar.com

6.3. Experimental results 83

we run a set experiments varying these parameters, then the best values for these
parameters are chosen to give the best performance.

Figure 6.8: First 10 retrievals of table2 on the database of oorplans having
discontinuous line noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision−Recall curve

Recall

P
re

ci
si

on

SESYD

FPLAN−POLY

SESYD (discont.)

Figure 6.9: Precision recall curve for di�erent dataset.

6.3.1 Experiments on SESYD

In this experiment we have only considered the subset called oorplans16-01. Each
of the NCRAGs of each of the oorplans approximately contains 150 NCRs, whereas
each of the query symbols contains 3-6 NCRs. The quantitative results are shown
in the �rst row of Table 6.1. The high recall values for this dataset show that the
algorithm works pretty well for most of the symbols. There are some cases of failure
or partial detection, the reason of which will be discussed in Section 6.4. Qualitative
results are shown in Figs. 6.4 to 6.6, which, respectively, include symbols with closed,
near convex and open regions.

84 NCRAG

6.3.2 Experiments on FPLAN-POLY

Here we have used all the oorplans and 10 randomly chosen model symbols from
this dataset. In this dataset each oorplan image contains approximately 110 NCRs,
whereas a query symbol contains 4-8 NCRs. The recall value obtained in this dataset is
also very good which is shown in Table 6.1. Qualitative results of querying television
are shown in Fig. 6.7 (note the disappearance of some boundaries). The results
obtained in this dataset is slightly better than SESYD. The reason is mentioned in
the discussions part (Section 6.4). The parameter tsal has less inuence on SESYD
and FPLAN-POLY dataset, since the line segments are end-to-end coinciding.

6.3.3 Experiments on SESYD-DN

This experiment is performed to prove the robustness of the algorithm constructing
the NCRAG. To do that we have taken SESYD-DN dataste, the details of which are
also described in App. A. After vectorizing the images from the dataset, we apply
the algorithm to spot the symbol on it. The quantitative and qualitative results are
respectively shown in the Table 6.1 (3rd row) and Fig. 6.8 (note the white gaps on
the black edges). Here the parameter tsal poses an important role and to be tuned
according to the existing gap in edges. The method fails when the drawn white lines
remove substantial portion of a symbol. The precision recall curve (Fig. 6.9) shows
the performance of the method for these three datasets, from that it is clear that the
method performs worse in case of the discontinuous edges than the other two.

Table 6.1: Dataset wise mean results with NCRAG representation.

Symbol P R F AveP T (secs)

SESYD (oorplans16-01) 62.33 95.67 74.76 70.66 0.57
FPLAN-POLY 64.56 96.32 76.21 73.68 0.65
SESYD (discont.) 56.33 91.75 70.81 64.65 0.59

6.4 Discussions

Although NCRAG is capable of capturing contextual information well in terms of
regions, there are some serious limitations of NCRAG or, more generally, of the RAG
based representation. One problem is shown in Fig. 6.10, where there are two symbols
called sink3 and sink4 and the di�erence between them when they appear in a model
symbol (Fig. 6.10(a),(c)) and in a document (Fig. 6.10(b),(d)). This is due to the
di�erence in stroke width in images. Particularly, in the example of sink3 when it
appears in the document it looses the thin peripheral portion in the left of the region
and also small circular part detaches the upper right corner part of the square. These
create some di�erence in the regions but apparently they appear the same with our

6.5. Conclusions 85

high level vision. The dissimilarity in regions also changes the NCRAG representation.
As a result it partially �nds some nodes of a graph and results in partial detection or
complete loss. Hence it lowers the similarity score and precision. Since in FPLAN-
POLY the query symbol is generated by cropping the oorplan image, there is no
discrepancy like that. This explains the slight better results in FPLAN-POLY.

(a) (b) (c) (d)

Figure 6.10: Limitations of region based representation: (a) model symbol
of sink3, (b) sink3 as it appears in the document, (c) model symbol of sink4,
(d) sink4 as it appears in the document.

Table 6.2: Comparison between a state-of-the-art method and the current
method.

Symbol P R F AveP T (secs)

Dutta et al. [26] 41.33 82.66 51.24 52.46 0.07
Current method 62.33 95.67 74.76 70.66 0.57

As we have used the same dataset (oorplans16-01 of SESYD) as the method
proposed in [26], we can do a direct comparison between the results. Table 6.2 shows
the results obtained by these two methods. Clearly the NCRAG based representation
improves the performance remarkably. This was expected since this kind of represen-
tation takes into account contextual information. But at the same time it has some
limitations as explained above. Also the time complexity of the proposed method is
quite high compared to the other one. Since [26] uses an indexation technique of the
serialized subgraphical structure, the online part of the method is quite fast. But it
is to be noted that the method needs an o�ine steps to create the indexation or hash
table. The interested readers are referred to [26] for detailed comparisons of di�erent
symbol spotting methods.

6.5 Conclusions

In this chapter we have proposed a near convex grouping approach to create NCRAG
on graphical documents. Then this representation has been used for spotting sym-
bols on graphical documents with the application of the e�cient AEDA. We have

86 NCRAG

shown the results of the proposed method on three di�erent sets of images and the
results obtained are quite satisfactory. We have also compared results with a previ-
ously proposed method and noticed the methodological di�erences and performance
improvement. At the end we have shown some limitations of this kind of region based
representation.

Chapter 7

Hierarchical Graph Representation

Graph representation of graphical documents often su�er from noise viz. spurious
nodes, spurious edges and their discontinuity etc. In general these errors occur during
the low-level image processing viz. binarization, skeletonization, vectorization etc
while transforming documents to graphs. Hierarchical graph representation is a nice
and e�cient way to solve this kind of problem by hierarchically merging node-node and
node-edge depending on the distance. The current version of the work is an extended
version of the work presented in [12]. In [12], the hierarchical graph was created by
hierarchically merging di�erent entities depending on some thresholds on the distance.
This chapter introduces plausibilities to the nodes, edges of the hierarchical graphs
as a function of distance between the entities and proposes a modi�ed algorithm for
matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help
to improve the performance of the matching algorithm on two hierarchical structures.
To show the potential of this approach, we conduct an experiment with the SESYD
dataset.

7.1 Introduction

Documents often su�er from noise, as a results the representation with graphs also
results in distorted graphs, for example with spurious nodes, spurious edges and
discontinuity in them etc (see Figure 7.1). Hierarchical graph representation can be
a way of solving this kind of structural errors hierarchically where the node-node
and node-edge are merged hierarchically depending on the node-node or node-edge
distance [12].

The main motivation of the work comes from [1], where the authors used the
hierarchical representation of the segmented image regions and later used an ap-
proximated maximal clique �nding algorithm on the association graph of the two
hierarchical graphs to match the two hierarchical representations [10, 74]. In partic-
ular, the aforementioned work was applied to match two di�erent natural images for

87

88 HIERARCHICAL GRAPH REPRESENTATION

(a)

(b)

(c)

Figure 7.1: Examples of the structural distortions (spurious nodes, edges,
discontinuous edges) for a graphical symbol: (a) A graphical symbol called
table1, (b), (c) Graph representations of two di�erent instances of the symbol
table1 when appeared in oorplans, these instances are cropped from bigger
graphs representing oorplans. Graph representation of documents involves
low level image processing viz. binarization, skeletonization, vectorization etc.
which further add structural noise such as spurious nodes, edges etc. The
example shows how even a undistorted symbol can become distorted after
represented with graph (note the spurious nodes and edges near the junction
and corners.).

classi�cation.

The graph representation of documents is followed by some inter-dependent pre-
processing steps viz. binarization, skeletonization, polygonal approximation etc. These
low level pre-processing steps result in the vectorized documents which often contain
some structural errors. In this work our graph representation considers the critical
points as the nodes and the lines joining them as the edges. So often the graph
representation contains spurious nodes, edges, disconnection between nodes etc (see
Figure 7.1). The present version of the work is an extension of the work in [12]
where we dealt with this kind of distortions in the graph level, to do that we pro-
posed hierarchical representation of graphs because the hierarchical representation of
graphs allows to incorporate the various segmentation errors hierarchically. But the
node-node or node-edge merging was performed depending on a hard threshold which
resulted in some loss of information. In this work we assign plausibilities to the nodes
as a function of the distance and use them as a a measurement for matching.

The rest of the chapter is organized into four sections. In Section 7.2 we present
the methodology of sub graph matching. Section 7.3 contains the detailed experi-
mental results. After that, in Section 7.4, we conclude the chapter and discuss future
work.

7.2. Methodology 89

7.2 Methodology

An essential part for graph-based symbol spotting methods is the representation of
the graphical objects. This representation often contains low-level vectorization errors
that will a�ect later graph matching methods. In this section we present a hierar-
chical representation that overcomes these problems by covering di�erent possible
vectorizations and estimating their plausibilities.

First we will give a brief overview of the initial vectorization and some errors that
can occur due to it. Afterwards we will describe our hierarchical representation and
how this representation overcomes the vectorization errors.

7.2.1 Vectorization

Graph representation of documents follows some pre-processing steps, vectorization
is one of them. Here vectorization can be de�ned as approximating the binary images
to a polygonal representation. In our method we have used the Rosin-West algorithm
[82] which is implemented in the Qgar package1. This algorithm works without any
parameter except one to prune the isolated components. The algorithm produces a
set of critical points and the information whether any two points are connected. Our
graph representation considers the critical points as the nodes and the lines joining
them as the edges.

Vectorization errors

The resulting graph can contain vectorization errors. Reasons for that can be inaccu-
rate drawings, artefacts in the binarization or errors in the vectorization algorithm.
There are di�erent kinds of vectorization errors that can occur. Among these, we
concentrated on the following ones:

Gaps In the drawing there can be small gaps between lines that ought to be
connected. Reasons for that can be inaccurate drawings as well as mistakes in the
binarization. The result can either be two unconnected nodes at the border of the
gap or a node on one and an edge on the other side of the gap. Beside caused by
errors, gaps can also be drawn intentionally to separate nearby symbols.

Split nodes On the other hand, one original node can be split into two or more
nodes. This can happen, if lines in the drawing do not intersect exactly at one point.
Another reason are artefacts from the skeletonization step. Nearby nodes that seem
to be a split node can be the result of �ne details instead of vectorization errors.

Dispensable nodes The vectorization can create nodes of order two that divide a
straight edge into two or more parts. One reason for these nodes are small inaccuracies
in the drawing that cause a local change in direction. For a later symbol spotting,

1http://www.qgar.org/

90 HIERARCHICAL GRAPH REPRESENTATION

(a) (b) (c)

Figure 7.2: Three cases for simplification. Displayed are the original nodes
and edges (black) and the simplified nodes and their edges (gray): (a) Merge
nodes (b) Remove dispensable node (c) Merge node and edge.

these nodes are often undesired and should be removed. Nevertheless, in some cases
such structures reflect details of the symbol. Examples of these errors can be seen in
Figure 7.1.

Though all these errors can be corrected in a post-processing step, a simple post-
processing causes other problems: often it is not clear for the system whether a
situation is an error or intentional. To deal with this uncertainty, we introduce a
hierarchical representation that will be described in the next section.

7.2.2 Hierarchical graph construction

This section describes the construction of hierarchical graph that is able to cover
different possible vectorizations. This enables a later graph matching algorithm to
deal with the uncertainties whether a part of the graph is intentionally made or caused
by a vectorization error.

The basic idea of our approach is to extend a given graph G so that it contains the
different possibilities of interpretation. These possibilities are connected hierarchically
and assigned with a plausibility measure. The hierarchy allows us to embed the
constraint just to match one interpretation into the graph matching. In Section 7.2.3
we will give further details for the graph matching, the hierarchical constraint and
how to use plausibilities for the matching.

In order to create different possible vectorizations, we take the initial vectorization
represented in G and simplify it step by step. For this purpose, we identify three
cases that allow a simplification. These three cases will be motivated in the following.
Afterwards the plausibilities are introduced and based on this a formal definition of
our simplification steps is given.

Nearby nodes. Both gaps in drawing as well as split nodes result in nodes near to
each other and can be solved by merging these nodes. Since nearby nodes can also
be the result of correct vectorization, e.g. due to two nearby symbols, we store both
versions and hierarchically connect the merged node with the basic nodes. The merged

7.2. Methodology 91

nodes inherit all connection of its basic nodes. Figure 7.2 (a) shows an example for
such a merging step.

Dispensable nodes. In case of dispensable nodes, the vectorization error can be
solved be removing the node. Again, a hierarchical structure can store both versions.
As described before we only consider dispensable nodes that have two neighbours.
The simpli�ed versions of these neighbours are directly connected. This is shown
in Figure 7.2 (b). Applying this rule multiple times allows us to remove chains of
dispensable nodes.

Nodes near to edges. The third simpli�cation is the merging of nodes with nearby
edges. In this way the second kind of gaps can be corrected. To merge a node with
an edge, the edge has to be divided into two edges by a copy of the node. This can
be seen for an example in Figure 7.2 (c).

Plausibility

The aim of these plausibilities is to measure the likelihood of a certain simpli�cation
to be correct. By doing so, we can prioritize matching of likely structures and still
keep the ability of matching unlikely ones. To compute the plausibility for a certain
simpli�cation we identify basic features and describe the plausibility as function of
these features. The features are described in the following:

Merging nodes. The plausibility for merging very near nodes is high and it de-
creases with increasing distance between the nodes. Thus, the distance between the
nodes is taken as feature to measure the plausibility.

Removing nodes. Removing a node means to merge two edges. We consider the
removal as plausible if the resulting edge is similar to the two original edges. There
di�erent features that can be used to measure this similarity. One possibility is the
angle between bot edges. If the angle is near to 180o, the resulting edge will be near to
the original edges. Another measurement is the distance of the node to the resulting
edge, either absolute or relative to the length of the edge. For our experiments we
used the angle feature.

Merging nodes with edges. Similar to merging nodes, we take the distance of the
edge to the node as feature for the plausibility.

To measure the plausibility for the three previously mentioned cases, we de�ne
three functions

1. function �1 : V � V ! R to measure the plausibility for merging two nodes.

2. function �2 : V ! R to measure the plausibility for removing a node.

3. function �3 : V � E ! R to measure the plausibility for merging a node with
an edge.

For the concrete implementation we used exponential functions applied to the

92 HIERARCHICAL GRAPH REPRESENTATION

features, e.g.
�1(u; v) = �1 exp(��1 � d(u; v))

The functions �2 and �3 are de�ned analogous, replacing d(u; v) by the respective
features.

Our approach also allows other plausibility measurements. Note that our previous
work [12] without plausibilities can be seen as a special case of this work by choosing
binary measurements, i.e.

�1(u; v) =

(
1 if d(u; v) < T1

0 otherwise

The plausibilities are used to identify possible simpli�cations. For this purpose we
de�ne a threshold T0 and only perform hierarchical simpli�cations for constellations
that have a plausibility greater than a T0.

Recursive definition

Based on the previous motivation now we will give a recursive de�nition of our hi-
erarchical graphs that reects the construction algorithm based on the vectorization
outcome.

The result of the vectorization is an undirected graph G(VG; EG; �G) where VG
is the set of nodes, EG � VG� VG is the set of edges and �G : VG ! R2 is a labelling
function that maps the nodes to their coordinates in the plane.

A hierarchical graph has two kinds of edges: undirected neighbourhood edges and
directed hierarchical edges. Hierarchical edges represent simpli�cation operations,
i.e. they link nodes from the original graph arising from the vectorization to succes-
sor nodes representing simpli�ed vectorizations. In addition, each node is assigned
with a plausibility value. Formally, we de�ne a hierarchical graph H as a �ve tuple
H(V;EN ; EH ; �; p) with the neighbourhood edges EN � V �V , the hierarchical edges
EH � V � V and plausibility values p : V ! R.

Note that there is a di�erence between the plausibility of a node (given by the
function p) and the plausibility of a simpli�cation (given by �i, i = 1; 2; 3). The reason
for this di�erence is, that a plausible simpli�cation with implausible nodes results in
implausible nodes.

Furthermore, given two nodes u; v 2 V let u v denote that v is a hierarchical
successor of u and L(u) denote the set of all predecessors of u that belong to G:
L(u) = fv 2 VGjv ug. Based on these functions and formulations we can de�ne
the hierarchical simpli�cation H(G) = H(V;EN ; EH ; �; p) of G by the following rules:

Initial. As initialization for the recursion, G is a subgraph of H. We de�ne a base
plausibility p(v) = 1 for all initial nodes v 2 VG.

Merging. For u; v 2 V with �1(u; v) > T0 there is a merged node w 2 V with

7.2. Methodology 93

Figure 7.3: An example for removing nodes. Note that the possibility of re-
moving two adjacent nodes of w creates four different possible interpretations
of w, e.g. w̄1 stands for removing u but keeping x

• w is a hierarchical successor of u and v:
∀s ∈V : s � w ⇔ s � u∨s � v∨s ∈ { u, v }

• w has all neighbours of u and v except u and v:
∀s ∈V : (s, w) ∈EN ⇔ ((s, u) ∈EN ∨(s, v) ∈EN)∧s �∈{ u, v }

• w lies in the center of its leaf nodes:
α(w) = 1

| L(w)|
∑

s∈L(w) α(s)

• The plausibility of w is defined by δ1 and the plausibilities of u and v:
p(w) = δ1(u, v)p(u)p(v)
If there are different ways to create w, we assign the maximal plausibility to w.

Removing. For a dispensable node u ∈ V with δ2(u) > T0 there exist two neigh-
bour nodes v, w ∈ VG, i.e. (u, v), (u,w) ∈ EN . Since v and w can have hierarchical
successors from other simplifications, these have to be included in the definition: for
all vi : (vi, u) ∈ EN ∧ v ∈ L(vi) there exists a v̄i. In the same way a set of w̄j is
defined.

• v̄i hierarchical successor of vi: (vi, v̄i), (wj , w̄j) ∈EH

• to cover all possibilities, there is neighbourhood connection between all of v̄i
and all w̄j . Furthermore, the v̄i has the same connections as vi with exception
of the removed node u:
(s, v̄i) ∈EN ⇔ ((s, vi) ∈EN ∧s �= u)∨∃j : s = wj . (analogous for wj)

• The coordinates do not change: α(vi) = α(v̄i), α(wj) = α(w̄j)

• p(v̄i) = δ2(u)p(vi)

94 HIERARCHICAL GRAPH REPRESENTATION

In this de�nition the successors of u and w have to be included. The reason for
this can be seen in the example in Figure 7.3: if the removing is done iteratively,
removing u will lead to �v and �w1. A subsequent removal of x has to create �w2 and
�w12 in order to cover both possibilities: just remove x and remove u and x. This will

give a plausibility of:

p(�w12) = �2(x)p(�w1) = �2(x)�2(u)p(w)

Node/Edge merging. For u 2 V; e = (v; w) 2 E with �3(u; e) > T0 there exist
simpli�cations �u; �v; �w with

• �u; �v; �w are hierarchically above u; v; w:
8s 2 V : s �u, s u _ s = u (analogue for v,w)

• �u intersects the edge between �v and �w:
8s 2 V : (s; �u) 2 EN , ((s; u) 2 EN _ s 2 f�v; �wg

• The coordinates do not change: �(u) = �(�u), �(v) = �(�v) and �(w) = �(�w)

• p(�u) = �3(u; e)p(u) (analog for v,w)

Based on these recursive rules, we construct the smallest hierarchical graph that
satis�es these rules, i.e. no additional nodes are added. Here it is to be noted that
the hierarchical simpli�cation H(G) of the graph G always contains the graph G.

7.2.3 Graph matching

In this section we will describe how to make use of the hierarchical graph representa-
tion described in the previous section for subgraph matching in order to spot symbols
on technical drawings. Graph matching has a long history in pattern recognition and
there exist several algorithms for this problem [16]. Our approach is based on solving
maximal weighted clique problem in association graphs [10]. In this section we will
�rst give a brief overview over the graph matching algorithm. This method relies on
similarities between nodes. Hence, we will present a geometric node similarity for
hierarchical graphs afterwards.

Given two hierarchical graphs Hi(V i; Ei
N ; E

i
H ; �

i; pi); i = 1; 2, we construct the
association A. Each node of A consists of a pair of nodes of H1 and H2, representing
the matching between these nodes. Two nodes (u1; u2), (v1; v2) 2 H1 � H2 are
connected in A, if the matching is consistent with each other. For hierarchical graphs
we de�ne the constraints for edges in A: ui and vi are di�erent, not hierarchically
connected and if u1 and v1 are neighbour, this also holds for u2 and v2. By forbidding
the matching of hierarchically connected nodes, we force the matching algorithm to
select one version of the vectorization. The �rst and the third constraint keep the
structure between both subgraphs same.

We use replicator dynamics [10] to �nd the maximal weighted clique of the as-
sociation graph and, hence, the best matching subgraphs of H1 and H2. Based on

7.2. Methodology 95

the results of this, we perform the following steps to spot symbols. Let us consider
H1 be the pattern or model graph and H2 be the target graph where we want to
spot the instances of H1. First of all we perform n iterations and in each iteration
we perform the replicator dynamics to �nd the correspondences of the H1 to H2.
Since the replicator dynamics only provide a one-to-one matching, in each iteration
we obtain the correspondences from the nodes of H1 to the nodes of H2. So for m
nodes in H1 we get m nodes in H2. But it is not constrained that these m nodes in
H2 will belong to the same instance of H1. So to obtain the di�erent instances of the
H1 we consider each of the m nodes in the H2 and all the neighbourhood nodes of a
node which can be reached within a k graph path distance. The graph path distance
between two nodes is calculated as the minimum total number of nodes between the
two nodes. Let us denote this set of nodes as V 2

s and consider all the hierarchical
and neighbourhood edges connecting the nodes in V 2

s as in H2, this forms a subgraph
which we can denote as H2

s (V 2
s ; E

2
sN ; E

2
sH ; �

2
s; p

2
s). We again apply the replicator dy-

namics to get the best matching subgraph and compute the bounding box around the
nodes of best correspondences. The bounding box gives the best matching region of
interest expected to contain instance of a query symbol.

The complexity of replicator dynamics is O(jAj2) (see [1]). Since we perform n
iterations, we get a complexity of O(n � jAj2). In order to reduce the computation
time we use the fact that the symbols are much smaller than oorplans. We create
overlapping parts of the oorplan and perform the matching between the symbol
and the parts. These parts have to be big enough to ensure that the symbols are
completely included in at least one part. Then the construction of the hierarchical
graph takes about 2 or 3 seconds for an average oorplan, the matching takes several
minutes.

Node attributes

The graph matching algorithm operates on the association graph with similarity labels
for the nodes. To use this algorithm, we have to de�ne the similarity between two
nodes of the hierarchical graph. Since the matching reects geometric structures, we
use geometric attributes for the similarity.

In a non-hierarchical planar graph, a single node can be labelled by the sequence
of adjacent angles which sum up to 360�. Figure 7.4 (a) gives an example for such a
labelling. This naive approach will cause some problems for hierarchical graph since
nodes can have several hierarchically connected neighbours. Thus, the number of
possible vectorizations has a strong inuence on the node description. Because the
number of possibilities is also a�ected by the level of distortion of the original image,
such an approach is not robust to distortion.

To reduce the inuence of the hierarchical structure and the distortion on the
node labelling, we use only edges to nodes that have no predecessor connected with
the central node. An example for that can be seen in Figure 7.4 (b): though the
central node is connected to four nodes, only three edges are used to compute the
node label.

96 HIERARCHICAL GRAPH REPRESENTATION

(a) (b)

Figure 7.4: Example for node labels for graphs based on angles between
edges: (a) for planar graphs and (b) for hierarchical graphs. Both will be
labeled with (90, 210, 60).

(a) (b) (c) (d) (e) (f) (g)

Figure 7.5: Model symbols in the SESYD dataset: (a) armchair, (b) bed,
(c) sink1, (d) sofa1, (e) sofa2, (f) table1, (g) table2.

To compute the similarity between two node labels, we define an editing distance
on these labels. The editing operations are rotating one edge, i.e. lowering one angle
and rising another one, removing one edge, i.e. merging two angles, and rotating the
whole description. The last operation is cost-free and makes the similarity rotation-
invariant. The cost for rotating an edge is set to the angle of rotation. The cost for
removing an edge is set to a fixed value.

Using this editing distance, we can define the similarity between nodes. This
similarity is based on the nodes and their direct neighbourhood, but do not take into
account the plausibilities of the nodes. In order to prefer matchings between plausible
nodes, we multiply the similarity between two nodes with their plausibilities to get
the weight for the corresponding node in the association graph.

(a) (b) (c)

Figure 7.6: Results of spotting bed, here the single instance of bed is correctly
detected, note that in this case the instance is also attached with thin black
pixel, (b) Results of spotting bed by the previous version of the method [12],
(c) Results of spotting bed by Dutta et al. [26].

7.3. Experimental results 97

(a) (b) (c)

Figure 7.7: (a) Results of spotting sofa2, here both the instances are cor-
rectly detected among which one of them was partially attached with thick
wall, (b) Results of spotting sofa2 by the previous version of the method [12],
(c) Results of spotting sofa2 by Dutta et al. [26].

(a) (b) (c)

Figure 7.8: Results of spotting table1, note that all the instances of the
symbol table1 are correctly detected even the ones attached with the walls.
In reality these walls are thin and hence less distorted during the vectorization,
(b) Results of spotting table1 by the previous version of the method [12], (c)
Results of spotting table1 by Dutta et al. [26].

(a) (b) (c)

Figure 7.9: Results of spotting table1, except one all the instances of the sym-
bol table1 are correctly detected. The one which is not detected is attached
with the thick black pixels, (b) Results of spotting table1 by the previous
version of the method [12], (c) Results of spotting table1 by Dutta et al. [26].

(a) (b) (c)

Figure 7.10: Results of spotting table1, note that all the instances of the
symbol table1 are correctly detected even the one which is connected with
thick black pixels, (b) Results of spotting table1 by the previous version of
the method [12], (c) Results of spotting table1 by Dutta et al. [26].

7.3 Experimental results

Since the work still is in progress, we have conducted a short experiment to check the
performance of the algorithm. Our experiments were conducted on the images taken

98 HIERARCHICAL GRAPH REPRESENTATION

(a) (b) (c)

Figure 7.11: Results of spotting table1, here two of the symbols are not
detected and one of them are isolated but heavily distorted by the vectoriza-
tion algorithm, (b) Results of spotting table1 by the previous version of the
method [12], (c) Results of spotting table1 by Dutta et al. [26].

from the SESYD (floorplans) dataset (see App. A). For this short experiment we
have taken the first twenty images from the subset floorplan16-01 and three model
symbols: bed, sofa2 and table1. Some qualitative results of spotting the symbols bed,
sofa2 and table1 are shown in Figure 7.8 to Figure 7.7. The results of the present
method is also compared with the previous version [12] and also with a previously
proposed symbol spotting method by Dutta et al. [26]. In Figure 7.8 to Figure 7.7,
the sub figures with label (a) show the results obtained by the current method, the
sub figures with label (b) show the results obtained by the previous version of the
method [12] and those with label (c) show the results obtained by the Dutta et al. [26].
For all the cases we have only considered the same smaller subset of images and query
symbols. The quantitative results are listed in the Table 7.1 where the first row shows
that for current version of the method, the second row shows that for previous version
of the method [12], the third row shows graph-matching with a planar graph (with
the preprocessing of this paper) and the last row shows the quantitative results by
the method proposed by Dutta et al. [26]. The present version of the method has
obtained a precision of 100% and recall of 88.75%. High precision proves that all the
spotted instances of the symbol is correct. The obtained recall value indicates that
the system loses some of the instances and from our investigation we can say that
this kind of mis-detections often occur when the symbol is attached to a thick portion
of black pixel. Vectorization methods specially perform worse with black thick pixels
and creates lot of distortion in the vectorized information. The previous version of
the method had obtained the precision and recall respectively as 32.99% and 77.55%,
clearly the present version has gained an improvement.

Table 7.1: Results obtained by the proposed method and the comparison
with the previous version [12] and a previously proposed symbol spotting
method [26].

Method P R F

Current version 88.75 100.00 94.04
Previous version [12] 32.99 77.55 46.29
Without Hierarchy 54.55 90.00 67.92
Dutta et al. [26] 69.19 67.28 68.22

7.4. Conclusions 99

7.4 Conclusions

In this chapter we have proposed an extension of the previously proposed hierarchical
graph representation. We have introduced plausibilities to the nodes of the hierar-
chical graph, these plausibilities help to better match the hierarchical substructures
through the computation of the association graph. The present method still has some
scope of improvement, as we have shown in the experimental results that all kind
distortions particularly heavy distortions viz. connected to thick black walls and etc
still can not be solved. So the future work will address the further improvement of the
method regarding noise. With the improvement, the construction of the hierarchical
graph for this kind of graph representation is becoming complex and time taking.
So another direction of future work will also concern about constructing hierarchi-
cal graph for di�erent kind of graph representation. We have investigated that the
hierarchical matching algorithm used by us sometime fails to �nd local optima and
hence the solution is erroneous. We further investigated that a little modi�cation of
the matching algorithm provides much better results. Therefore improvement of the
hierarchical matching will also be considered as a future work.

100 HIERARCHICAL GRAPH REPRESENTATION

Chapter 8

Experimental Evaluation

The main purpose of this chapter is to provide an overall experimental evaluation
and comparison of all the proposed methodologies and some of the state-of-the-art
methods proposed in the literature. Among the state-of-the-art methods we have con-
sidered those which work with graph based techniques and apply their algorithms for
symbol spotting in graphical documents. To have a uni�ed experimental framework
we con�gure a symbol spotting system on graphical documents especially on architec-
tural oorplans. The evaluation of a particular method is basically done depending
on the capability of spotting symbols on the graphical document.

8.1 Introduction

In the previous four chapters we have provided individual experiments corresponding
to the di�erent contributions of the thesis. In this chapter we provide an integrated
evaluation scheme. Experimental evaluation is an important step to judge the be-
haviour of algorithms. An experimental study should reveal the strengths and weak-
nesses of the methods under test. The analysis of these strong points and drawbacks
should determine which method is the most suitable for a certain use case and pre-
dict its behaviour when using it in applications with real data. In this chapter, we
experimentally evaluate the proposed and some of the state-of-the-art algorithms and
provide an overall comparisons among them.

Before going to the results part, in the next section we have provided a brief
description of the state-of-the-art algorithms on symbol spotting considered for the
comparison. For referencing the algorithms we use some abbreviations of the names
which are listed in Table 8.1.

The rest of the chapter is divided into four sections, where Section 8.2 is dedicated
for describing in brief the state-of-the-art methods that we have considered for exper-
imental evaluation and comparison. The experimentation is described in Section 8.3.

101

102 EXPERIMENTS

Table 8.1: Summary, abbreviations of the methods

Abbreviation Method

SG
Symbol spotting by hashing of serialized subgraphs
(Chapter 4).

PG Product graph based subgraph matching (Chapter 5).
NCRAG Near convex region adjacency graph (Chapter 6).

HGR Hierarchical graph representation (Chapter 7).
SSGR Symbol spotting using graph representations [77]
FGE Subgraph spotting through fuzzy graph embedding [60].

ILPIso
Integer linear program for substitution tolerant subgraph
isomorphism [8].

Section 8.4 contains discussions on the obtained results by various methods. After
that in Section 8.5 the chapter is concluded.

8.2 Description of state-of-the-art methods

This section contains brief descriptions of the three state-of-the-art methods:

Symbol spotting using graph representations [77]: The algorithm was
proposed by Qureshi et al. [77]. The proposed strategy has two main steps. In the
�rst step, a graph based representation of a document image is generated that includes
selection of description primitives (nodes of the graph) and relation of these features
(edges) (see Figure 8.1). In the second step the graph is used to spot interesting parts
of the image that potentially correspond to symbols. The sub-graphs associated to
selected zones are then submitted to a graph matching algorithm in order to take
the �nal decision and to recognize the class of the symbol. The experimental results
obtained on di�erent types of documents demonstrates that the system can handle
di�erent types of images without any modi�cation.

Subgraph spotting through fuzzy graph embedding [60]: Here the au-
thor present a method for spotting subgraph in a graph repository. Their proposed
method accomplishes subgraph spotting through graph embedding. They have done
an automatic indexation of a graph repository during an o�-line learning phase; where
they (i) split the graphs into 2-node subgraphs, which are primitive building-blocks
of a graph, (ii) embed the 2-node subgraphs into feature vectors by employing pro-
posed explicit graph embedding technique, (iii) cluster the feature vectors in classes
by employing a classic agglomerative clustering technique, (iv) build an index for the
graph repository and (v) learn a Bayesian network classi�er. The subgraph spotting
is achieved during the on-line querying phase; where they (i) further split the query
graph into 2-node subgraphs, (ii) embed them into feature vectors, (iii) employ the
Bayesian network classi�er for classifying the query 2-node subgraphs and (iv) re-

8.2. Description of state-of-the-art methods 103

(a) (b)

(c) (d) (e)

(f)

Figure 8.1: (a) Initial image, (b) Vectorization results, (c) Zone of influence
of a quadrilateral, (d) Influence zone of the quadrilaterals and their corre-
sponding sub-graphs respectively, (e) and (f) Graph representation. (Figure
credit: Qureshi et al. [77]).

104 EXPERIMENTS

trieve the respective graphs by looking-up in the index of the graph repository. The
graphs containing all query 2-node subgraphs form the set of result graphs for the
query. Finally, they employ the adjacency matrix of each resultant graph along with
a score function, for spotting the query graph in it. The proposed subgraph spotting
method is equally applicable to a wide range of domains; o�ering ease of query by
example (QBE) and granularity of focused retrieval.

Integer linear program for substitution tolerant subgraph isomorphism [8]:
This paper tackles the problem of substitution-tolerant subgraph isomorphism which
is a speci�c class of error-tolerant isomorphism. This problem aims at �nding a sub-
graph isomorphism of a pattern graph S in a target graph G. This isomorphism
only considers label substitutions and forbids vertex and edge insertion in G. This
kind of subgraph isomorphism is often needed in pattern recognition problems when
graphs are attributed with real values and no exact matching can be found between
attributes due to noise.

The proposal to solve the problem of substitution-tolerant subgraph isomorphism
relies on its formulation in the Integer Linear Program (ILP) formalism. Using a
general ILP solver, the approach is able to �nd, if one exists, a mapping of a pattern
graph in to a target graph such that the topology of the searched graph is kept and
the editing operations between the label shave a minimal cost. The proposed sub-
graph matching has been applied for spotting symbols in graphical documents where
document and symbol images are represented by vector-attributed Region Adjacency
Graphs built from a segmentation process.

Figure 8.2: An example of matching. S and G both contain a single edge,
respectively ij and kl. The following solution is represented on this �gure:
xi,k = 1 (resp. xj,l = 1, yij,kl = 1), i.e. i (resp. j, ij) is matched with k (resp.
l, kl). Conversely, since i (resp. j) is not matched with l (resp. k), xi,l = 0
(resp. xj,k = 0). (Figure credit: Le Bodice et al. [8]).

8.3 Experimental results

For the experiments we choose two di�erent subsets from the SESYD dataset, viz.
floorplans16-05 and floorplans16-06. One can �nd a details on SESYD in Section

8.3. Experimental results 105

A.1. These two particular subsets have been chosen keeping in mind the execution
ability of di�erent methods. This is because some of the graph based methods use
special kind of vectorization algorithms which can not handle all kind of graphical
structures such as thick walls etc.

Since in each of the individual chapters a detailed experimentations have already
been documented for each of the proposed methods with di�erent parameter settings,
in this chapter we only mention the best results obtained by a particular method
(by a particular parameter settings). This implies the best results from each of the
method is considered for the experimental comparison. The results obtained by the
methods SSGR [77] and FGE [60] are directly taken from the paper [60], where the
authors had performed a comparison. And for the ILPIso method proposed by Le
Bodic et al., the implementation was downloaded from the project web page1.

For all the methods proposed in this thesis and the ILPIso [8], a particular re-
trieved symbol is considered as true positive if it has a 50% overlapping with its
corresponding ground truth. This signi�es that if R be the bounding box of a re-
trieved symbol and T be the bounding box of the corresponding ground truth then
the retrieved symbol is considered true positive if and only if R∩T

R∪T >= 0.5.

Three of the proposed methods viz. SG, PG, NCRAG and ILPIso are designed
to provide a ranked list of retrievals. The HGR method does not provide a ranked
list in this way. This is because this method works with a node attributes which take
into account the angles and does not reect similarity of shapes. To have an idea how
a particular method can rank the true positives with respect to the false positives, we
draw the receiver operating characteristic (ROC) curves obtained from the ranked list
of retrievals of di�erent symbols (see Figure 8.3). The ROC curves usually reveal how
well a method can rank the true positives before the false positives, these curves are
basically a test of the (dis)similarity functions designed inside each of the algorithms.

The quantitative results obtained by di�erent methods are listed in the Table 8.2.
We have mainly used the traditional measurements for a retrieval system such as pre-
cision (P), recall (R), F-measure (F) and average precision (AveP). The details of
these measurements for symbol spotting application can be found in [86]. For having
an idea on the time complexity of each of the methods we have also provided a mean
time measurement for spotting instances of a query symbol in a single target docu-
ment. Here it is to be mentioned that the mentioned time duration only includes the
time taken in the online phase. The time taken for the necessary feature extraction,
preprocessing, construction of graphs etc is not considered in this study as they are
done in o�ine phase. One can consider the F-measure value for a very high level
overview of the performance of the methods. But we believe that deciding the winner
or looser is not the only aim of an experimental study. There are separate advantages
and disadvantages of each methods.

1http://litis-ilpiso.univ-rouen.fr/ILPIso

106 EXPERIMENTS

8.4 Discussions

The SG method performs quite well for symbols with complex structures such as bed,
door2, sink1, sink2, sink4, table2, table3 etc. This is quite justi�ed since the complex

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: bed
ROC SG(AUC: 92.56%, EER: 11.43%)

ROC NCRAG(AUC: 99.24%, EER: 7.41%)
ROC PG(AUC: 99.99%, EER: 0.20%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(a) bed

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: door1
ROC SG(AUC: 84.50%, EER: 22.34%)

ROC NCRAG(AUC: 97.47%, EER: 4.49%)
ROC PG(AUC: 89.80%, EER: 13.07%)

ROC ILPIso(AUC: 0.00%, EER: 100.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(b) door1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: door2
ROC SG(AUC: 97.57%, EER: 5.00%)

ROC NCRAG(AUC: 99.68%, EER: 0.53%)
ROC PG(AUC: 100.00%, EER: 0.00%)

ROC ILPIso(AUC: 0.00%, EER: 100.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(c) door2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: sink1
ROC SG(AUC: 92.78%, EER: 16.96%)

ROC NCRAG(AUC: 98.81%, EER: 1.19%)
ROC PG(AUC: 100.00%, EER: 0.00%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(d) sink1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: sink2
ROC SG(AUC: 99.99%, EER: 0.03%)

ROC NCRAG(AUC: 97.43%, EER: 2.57%)
ROC PG(AUC: 100.00%, EER: 0.00%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(e) sink2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: sink3
ROC SG(AUC: 65.61%, EER: 34.39%)

ROC NCRAG(AUC: 97.64%, EER: 2.74%)
ROC PG(AUC: 96.74%, EER: 8.81%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(f) sink3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: sink4
ROC SG(AUC: 100.00%, EER: 0.00%)

ROC NCRAG(AUC: 69.76%, EER: 30.24%)
ROC PG(AUC: 100.00%, EER: 0.00%)

ROC ILPIso(AUC: 0.00%, EER: 100.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(g) sink4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: sofa1
ROC SG(AUC: 60.50%, EER: 36.78%)

ROC NCRAG(AUC: 98.18%, EER: 4.08%)
ROC PG(AUC: 90.60%, EER: 17.73%)

ROC ILPIso(AUC: 71.42%, EER: 49.35%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(h) sofa1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: sofa2
ROC SG(AUC: 65.22%, EER: 43.20%)

ROC NCRAG(AUC: 76.07%, EER: 29.43%)
ROC PG(AUC: 99.95%, EER: 0.23%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(i) sofa2

8.4. Discussions 107

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: table1
ROC SG(AUC: 37.89%, EER: 57.83%)

ROC NCRAG(AUC: 81.71%, EER: 26.64%)
ROC PG(AUC: 98.92%, EER: 5.72%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(a) table1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: table2
ROC SG(AUC: 93.31%, EER: 9.85%)

ROC NCRAG(AUC: 89.22%, EER: 10.94%)
ROC PG(AUC: 99.93%, EER: 0.74%)

ROC ILPIso(AUC: 0.00%, EER: 100.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(b) table2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: table3
ROC SG(AUC: 99.30%, EER: 2.22%)

ROC NCRAG(AUC: 49.84%, EER: 58.00%)
ROC PG(AUC: 99.98%, EER: 0.02%)

ROC ILPIso(AUC: 0.00%, EER: 100.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(c) table3

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: tub
ROC SG(AUC: 91.45%, EER: 11.41%)

ROC NCRAG(AUC: 98.98%, EER: 1.34%)
ROC PG(AUC: 100.00%, EER: 0.00%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(d) tub

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: window1
ROC SG(AUC: 86.75%, EER: 14.71%)

ROC NCRAG(AUC: 79.67%, EER: 22.66%)
ROC PG(AUC: 96.12%, EER: 8.47%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(e) window1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positve rate

tr
ue

 p
os

itv
e

ra
te

 (
re

ca
ll)

Symbol: window2
ROC SG(AUC: 96.19%, EER: 7.33%)

ROC NCRAG(AUC: 85.17%, EER: 19.03%)
ROC PG(AUC: 100.00%, EER: 0.00%)

ROC ILPIso(AUC: 100.00%, EER: 0.00%)

ROC SG
ROC NCRAG
ROC PG
ROC ILPIso
ROC rand.

(f) window2

Figure 8.3: Receiver operating characteristic (ROC) curves for di�erent pat-
tern graphs obtained by the method based on hashing of serialized graphs.

Table 8.2: Results

Methods P R F AveP T

SG (Chapter 4) 54.19 83.98 65.87 65.43 0.07s
PG (Chapter 5) 70.56 86.29 80.10 82.98 33.37s

NCRAG (Chapter 6) 61.89 82.87 70.85 70.65 0.72s
HGR (Chapter 7) 30.11 33.76 31.83 - 48m24s

SSGR [77] 41.00 80.00 54.21 64.45 -
FGE [60] 56.00 100.00 71.79 75.50 -
ILPIso [8] 65.44 58.23 59.11 57.75 27.29s

parts provide enough discrimination to a particular class. As we will observe in the
next part, that this phenomenon is quite common for the other methods too. The

108 EXPERIMENTS

SG method returns false positives while the query symbol contains a subpart of the
other symbol. For example, it retrieves false door1 because door1 also occurs inside
door2 and it detects part of door2. For the same reason it retrieves false sink3 as it
belongs as a subpart in sink2. This problem is also mentioned in Chapter 4 and this is
because the paths are indexed independently and there is no higher level organization
of the serialized structures. This method also performs worse for very simple and
frequently occurring structure such as sofa1, sofa2, table1, tub and window1. One
of the advantages of this method is the execution time in the online phase which is
quite less and can be considered as a bene�t of the indexation technique. However,
the indexation phase in the o�ine stage usually takes nearly two hours to create the
hash table for this particular dataset.

The overall results obtained by the PG method is quite good. It has achieved
the highest precision, F-measure and average precision values. A problem of this
method results in from the computation of the bounding box to decide the position
of the occurrence of an instance which is presently done by grouping the adjacent
dual nodes. This way occurrence of a false dual node often creates bigger bounding
box, as shown in Figure 8.4a (the red bounding box) while spotting door1. In our
performance evaluation bigger bounding boxes are classi�ed as false positives, this
explains the bad results for door1. This method also performs worse in case of sofa1
but this is due to the occurrence of similar structure in di�erent parts other than the
actual occurrences as shown in Figure 8.4b.

0.48

8.16

0.97

1.63

6.89

(a) door1 : erroneous results obtained
by PG method

4.08

0.30

0.12

0.460.230.06

1.69

0.41

0.571.19

(b) sofa1 : erroneous results obtained
by PG method

Figure 8.4: Erroneous results.

The results obtained by the NCRAG method is also good. Even the method
worked very well for the di�cult symbol sofa1. It is observed that this method is bit
sensitive to the selection of the key regions. A region, which is adjacent to the most of
the other regions in a symbol, can be a good candidate for a key region. Otherwise, a
wrong expansion often results in with a lower cost. This problem is observed for the
symbol sink4 and table3. A similar problem also occurs for symmetric symbol such
as table1 where a �nding a discriminating region is di�cult. The issues concerning

8.5. Conclusions 109

the variation of the regions of the pattern and target graphs have been reported in
Chapter 6, have not been observed in this dataset.

The HGR method worked only with six query symbols and they are bed, door1,
door2, sofa1, sofa2 and table1. The reason of failure for the other symbols might be
due to the node attributes which are not stable in many scenario and also getting
robust node attributes for this kind of unlabelled graphs is not easy. But for the
successful symbols the method works quite good, the false retrievals are substantially
less for this method. We can not provide a ranked list of retrieved symbols because in
this case obtaining a similarity value for each of the retrievals is not straight forward
for the nature of the node attributes.

We are not able to comment on the detailed results obtained by the method
SSGR and FGE as the results are taken from the paper for quantitative comparisons.
The ILPIso method proposed by Le Bodic et al.performed quite well with most of
the scenario, as it obtained 100% F-measure for seven pattern graphs. As the other
methods there is a usual problem with the occurrence of the same symbol as part
of the other such as sofa1 occurs in table2. Apart from that, the method can not
provide any true retrievals for door1, door2 etc. This is because of the kind graph
representation used by the method, as region adjacency graph can not provide robust
representation for these two symbols due to the existence of an open region. The
method does not �nd any true instances for sink4, table3, may be this is because of
the discrepancy of the regions in pattern and target graphs as mentioned for NCRAG
method. The method does not �nish the search procedure with table2 and the search
procedure has to be aborted manually after 60 minutes.

We have also provided some of the qualitative results for all the �ve methods,
which are shown from Figure 8.5 to Figure 8.9.

8.5 Conclusions

In this chapter we have provided an overall experimental evaluation of all the pro-
posed methods and some of the state-of-the-art methods. We have tried to �gure out
the advantages and disadvantages of di�erent methods. The discussions on di�erent
methods can reveal in which scenario which kind of methodology �ts better. There
is not any single method which can resolve all the problems. This fact indicates the
need of certain future work for di�erent methodologies, at the same time, it points
out a direction to investigate on combining more than one symbol spotting systems.

110 EXPERIMENTS

(a
)
S
G

(b
)
N
C
R
A
G

(c)
H
G
R

(d
)
P
G

(e)
IL

P
Iso

(f)
S
G

(g
)
N
C
R
A
G

(h
)
H
G
R

(i)
P
G

(j)
IL

P
Iso

(k
)
S
G

(l)
N
C
R
A
G

(m
)
H
G
R

(n
)
P
G

(o
)
IL

P
Iso

F
ig

u
re

8
.5

:
Q

u
alitative

resu
lts:

(a)-(e)
bed

,
(f)-(j)

d
oo

r1
an

d
(k

)-(o)
d
oo

r2
.

8.5. Conclusions 111

(a
)
S
G

(b
)
N
C
R
A
G

(c
)
H
G
R

(d
)
P
G

(e
)
IL

P
Is
o

(f
)
S
G

(g
)
N
C
R
A
G

(h
)
H
G
R

(i
)
P
G

(j
)
IL

P
Is
o

(k
)
S
G

(l
)
N
C
R
A
G

(m
)
H
G
R

(n
)
P
G

(o
)
IL

P
Is
o

F
ig

u
re

8
.6

:
Q

u
al

it
at

iv
e

re
su

lt
s:

(a
)-

(e
)

si
n

k1
,

(f
)-

(j
)

si
n

k2
an

d
(k

)-
(o

)
si

n
k3

.

112 EXPERIMENTS

(a
)
S
G

(b
)
N
C
R
A
G

(c)
H
G
R

(d
)
P
G

(e)
IL

P
Iso

(f)
S
G

(g
)
N
C
R
A
G

(h
)
H
G
R

(i)
P
G

(j)
IL

P
Iso

(k
)
S
G

(l)
N
C
R
A
G

(m
)
H
G
R

(n
)
P
G

(o
)
IL

P
Iso

F
ig

u
re

8
.7

:
Q

u
alitative

resu
lts:

(a)-(e)
sin

k4
,

(f)-(j)
so

fa
1

an
d

(k
)-(o)

so
fa

2
.

8.5. Conclusions 113

(a
)
S
G

(b
)
N
C
R
A
G

(c
)
H
G
R

(d
)
P
G

(e
)
IL

P
Is
o

(f
)
S
G

(g
)
N
C
R
A
G

(h
)
H
G
R

(i
)
P
G

(j
)
IL

P
Is
o

(k
)
S
G

(l
)
N
C
R
A
G

(m
)
H
G
R

(n
)
P
G

(o
)
IL

P
Is
o

F
ig

u
re

8
.8

:
Q

u
al

it
at

iv
e

re
su

lt
s:

(a
)-

(e
)

ta
bl

e1
,

(f
)-

(j
)

ta
bl

e2
an

d
(k

)-
(o

)
ta

bl
e3

.

114 EXPERIMENTS

(a
)
S
G

(b
)
N
C
R
A
G

(c)
H
G
R

(d
)
P
G

(e)
IL

P
Iso

(f)
S
G

(g
)
N
C
R
A
G

(h
)
H
G
R

(i)
P
G

(j)
IL

P
Iso

(k
)
S
G

(l)
N
C
R
A
G

(m
)
H
G
R

(n
)
P
G

(o
)
IL

P
Iso

F
ig

u
re

8
.9

:
Q

u
alitative

resu
lts:

(a)-(e)
tu

b,
(f)-(j)

w
in

d
o
w

1
an

d
(k

)-(o
)

w
in

d
o
w

2
.

Chapter 9

Conclusions

Throughout the dissertation several methods for subgraph matching applied to sym-
bol spotting have been presented. This chapter summarizes each main chapter by
revisiting their contributions, strengths and weaknesses. Finally, a brief overview of
the future research possibilities in the area of subgraph matching and symbol spotting
is discussed.

9.1 Summary and contributions

In this thesis work we have presented four di�erent methods for symbol spotting on
graphical documents represented as graphs. Chapter 1 has introduced the main idea
of structural pattern recognition, graphs as a tool of structural pattern recognition
and the problem of symbol spotting.

Chapter 2 has introduced some useful de�nitions, concepts of graph matching
and a brief state-of-the-art methods are discussed. These were necessary since all
our symbol spotting methods are based on graph representation and use graph based
methodologies to solve the problem.

In Chapter 3, an overview of the state-of-the-art methods have been presented.
Here we have divided the main methods of symbol spotting into �ve di�erent cate-
gories. Literature review in each of these categories have been presented along with
the advantages, disadvantages in di�erent scenarios.

We have introduced the �rst approach to symbol spotting by hashing serialized
graphs in Chapter 4. The major contribution in this work is to serialize the planar
graphs and form one dimensional graph paths. Graph paths are used to index a given
database. The main motivation of this work came from the idea of graph indexing,
which is a popular approach for applications dealing with large number of graphs.
We model the structure of a path by o�-the-shelf shape descriptor and we have used
locality sensitive hashing for indexing those individual paths.

115

116 CONCLUSIONS

Chapter 5 has presented a subgraph matching technique based on product graph
and it has been used for spotting symbols on graphical documents. The main contri-
bution was the introduction of higher order contextual similarities which are obtained
by propagating the pairwise similarities. The next contribution of this work was to
formulate subgraph graph matching as a node, edge selection problem of the product
graph. For that we constructed a constrained optimization problem whose objective
function was created from the higher order contextual similarities.

In the Chapter 6, we have introduced near convex region adjacency graph. The
main contribution was the introduction of near convex regions and forming a graph
representation based on that. There are certain drawbacks of region adjacency graph
(RAG), for example, the information that are not bounded in regions can not be
represented by RAG. This contribution solves the limitation.

Chapter 7 has presented a hierarchical graph representation of line drawing graph-
ical documents. Certain line drawings often su�er from structural errors or distor-
tions. Hierarchical graph representation is a way to solve those structural errors in
hierarchical simpli�cation.

Finally in Chapter 8, we have provided an experimental evaluation of all the pro-
posed methods and some state-of-the-art methods and advantages and disadvantages
have been pointed out.

In general, in this thesis we have proposed several inexact subgraph matching al-
gorithms which intend to solve the problem of inexact subgraph matching in a better
approximated way. Di�erent graph representations have been used and the purpose
of them was to tolerate the structural noise and distortions and bring stability in
the representation. Also a hierarchical graph representation is proposed to simplify/-
correct the structural errors in step-by-step manner. Detailed experimentations were
performed to evaluate each of the methods and for comparison with some state-of-
the-art algorithms and for that some model of datasets also have been proposed.

9.2 Future Perspective

There are ideas that have come out from di�erent contributions of this thesis but
could not be evaluated due to the time constraints. The future perspective of this
thesis can be listed as follows:

• Since indexation of the serialized substructures was successful as shown in this
thesis (Chapter 4), a very good continuation of this work can be done by factor-
izing the graphs into two dimensional structures and making hash/indexation
structure of them. Here also we can use some kind of graph embedding to trans-
fer those factorized subgraphs into a vector space and do the same procedure
as the Chapter 4.

• In Chapter 5, we have proposed higher order contextual similarities by prop-
agating the pairwise similarities through random walk. This is an idea that

9.2. Future Perspective 117

crept in from random walk graph kernel. There are other kernel methods such
as graphlet kernel, shortest path kernel etc. that measure the graph similarities
by counting di�erent common substructures such as graphlet, short path etc.
It would be interesting to bring these ideas for the purpose of having contextual
similarities and then apply the optimization technique as used in Chapter 5.

• Chapter 7 described a hierarchical graph representation which corrects the
structural errors appeared in the base graph. In this particular work we con-
sider a graph representation where we consider the critical points as the nodes
and the lines joining them as the edges. As a consequence, the hierarchical
graph representation resulted in become huge with lot of nodes/edges, these
make problem while matching these hierarchical structures. The hierarchical
graph representation is a very good idea for correcting the errors/distortions.
It would be interesting to consider a di�erent graph representation which con-
siders more higher order entities as nodes/edges and then take into account
the hierarchical graph representation of that. This could make the matching
module faster and easier.

• In this thesis we have proposed di�erent graph representations aimed to tolerate
structural noise and distortions etc. At the same time there are di�erent graph
matching methods have been proposed. It would be interesting to evaluate each
of the graph representations for each of the graph matching techniques. This
needs the adaptation of the data structures to our matching methodologies,
which demands some work.

• As it has been seen in the experimental evaluation chapter (Chapter 8) that
some of the methods work very well on some speci�c class of pattern graph.
This phenomenon evokes the idea of combining di�erent methods to produce
a uni�ed system that can provide the best results depending on the majority
voting. This of course needs some more research and also some engineering
work which would need some more time.

118 CONCLUSIONS

Appendix A

Datasets

Through out this thesis work we have used several datasets, sometime they consist of
oorplans with di�erent variation, sometime isolated graphical objects or historical
handwritten documents. Some of the datasets are generated by us to perform some
speci�c experimentations. In this chapter we give a description on all of them. And
also when they are created by us we explain a brief methodology, motivation for
the creation. The rest of this chapter is divided into nine sections, each of which is
dedicated for each of the datasets.

A.1 SESYD (floorplans)

This dataset is a collection of synthetically generated oorplans and isolated graphic
symbols [22]1. It contains 16 isolated symbols which can be seen in Figure A.1. Apart
from that it has 10 di�erent subsets of oorplans, each of which contains 100 oorplan
images. All the oorplans in a subset are created upon a same oorplan template by
putting di�erent isolated symbols in di�erent feasible places with random orientations
and scales. From Figure A.2 to Figure A.5, we have shown some example images from
this dataset. This dataset also contains ground truths, where it indicates the position
of the bounding boxes of each of the isolated symbols in the corresponding oorplans.

A.2 FPLAN-POLY

This dataset is a collection of real oorplans and isolated symbols [86]2. It contains
42 oorplan images which are basically parts of bigger real oorplans. Being the
parts of real oorplans, the images contain distortions, text-graphic interference, etc.

1http://mathieu.delalandre.free.fr/projects/sesyd
2http://www.cvc.uab.es/˜marcal/FPLAN-POLY

119

120 DATASETS

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure A.1: Example of di�erent isolated symbols: (a) armchair, (b) bed,
(c) door1, (d) door2, (e) sink1, (f) sink2, (g) sink3, (h) sink4, (i) sofa1, (j)
sofa2, (k) table1, (l) table2, (m) table3, (n) tub, (o) window1, (p) window2.

Figure A.2: Example of oorplans from SESYD (a) oorplans16-01 (b)
oorplans16-02 and (c) oorplans16-03 subset.

Figure A.3: Example of oorplans from SESYD (a) oorplans16-04 (b)
oorplans16-05 and (c) oorplans16-06 subset.

This dataset basically contains the vectorized images, where all the images of this
database have been converted by using a raster-to-vector algorithm implemented in

A.3. SESYD-DN 121

Figure A.4: Example of oorplans from SESYD (a) oorplans16-07 (b)
oorplans16-08 subset.

Figure A.5: Example of oorplans from SESYD (a) oorplans16-09 (b)
oorplans16-10 subset.

the QGar3 library. This dataset provides 38 isolated symbols for querying purpose,
some of them are shown in the Figure A.6. Ground truths are also available which
relate query symbol with their location in the respective oorplans.

A.3 SESYD-DN

This dataset has been generated by us on the original SESYD (oorplans) dataset. It
has been done by randomly drawing white horizontal lines of 2-3 pixels width. This
generates random discontinuity of black pixels. The main motivation of generating
this dataset was to show the advantage of the proposed NCRAG representation over
the traditional RAG representation. Two sample images from this dataset are shown
in Figure A.8. Since the introduction of this kind of noise does not hamper the
position of pixels we use the original ground truth provided in the SESYD dataset
for the correspondences of isolated symbols to the target documents. The noise is
only generated on the oorplans and not on the isolated symbols. This is to test the
stability of the representation.

3http://www.qgar.org

122 DATASETS

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure A.6: Example of di�erent query symbols from the FPLAN-POLY
dataset.

Figure A.7: Example of oorplans from the FPLAN-POLY dataset.

A.4. SESYD-GN 123

Figure A.8: Example of oorplans from the SESYD-DN dataset.

A.4 SESYD-GN

This dataset has also been generated on the SESYD (oorplans) dataset. For this
we used the Gaussian noise at di�erent levels by varying the mean (m) and variance
(σ). Practically, the increment of variance introduced more pepper noise into the
images, whereas the increment of the mean introduced more and more white noise,
which will detach the object pixel connection. This kind of noise nearly simulates
documents su�ered due to scanning or some other low level image processing. Exam-
ple of images can be seen in Figure A.9. This noise model is only applied only on the
oorplans. Here also we consider the original ground truths from the dataset for the
correspondence.

(a) σ = 0.10 (b) σ = 0.40 (c) σ = 0.70 (d) σ = 1.00

Figure A.9: Example of oorplans from the SESYD-GN dataset with m =
0.30.

A.5 SESYD-VN

As the previous two, this dataset has also been created by us and it has been done on
the SESYD (oorplans) dataset. Here we introduced vectorial noise and it has been
done by randomly shifting the primitive points (critical points detected by the vector-
ization process) within a circle of radius r. We vary r to get di�erent level of vectorial
distortions. This kind of noise simulate the documents containing handwritten sketch.
Figure A.10 shows some example of images from this dataset.

124 DATASETS

(a) r = 5 (b) r = 10 (c) r = 15

Figure A.10: Example of floorplans from the SESYD-VN dataset.

The Matlab codes and a subset of all the three datasets created by us are available
in the link: http://www.cvc.uab.es/˜adutta/datasets.

A.6 GREC 2005 dataset

This dataset is a collection of degraded isolated symbols and created with the motiva-
tion for conducting a symbol recognition contest in the IAPR Workshop on Graphics
Recognition in the year 2005 [24]4. The dataset comes with upto 150 different model
symbols with six degradation models. The tests are available in four different config-
urations from rotation and scaling point of view: (1) not rotated and not scaled, (1)
not rotated but scaled (3) rotated but not scaled and (4) rotated and scaled.

(a) degrada-
tion model1

(b) degrada-
tion model2

(c) degrada-
tion model3

(d) degrada-
tion model4

(e) degrada-
tion model5

(f) degrada-
tion model6

Figure A.11: Example of isolated images from the GREC-2005 dataset.

4http://symbcontestgrec05.loria.fr/finaltest.php

A.7. ILPIso dataset 125

A.7 ILPIso dataset

This dataset is composed of synthetic and real sets of graphs and is published by Le
Bodic et al. [8]5. There are four synthetic datasets, all of which are node and edge
attributed and contain set of pattern graphs, target graphs and ground truths that
relate the pattern graphs with the target graphs. Two of these sets contain simple
graphs that may contain isolated nodes. One of these two contains pairs of pattern,
target graphs containing exact mapping between the corresponding vertices/edges
i.e.there are perfect equality of labels. The other one contains pairs of pattern, target
graphs where the mappings between the nodes/edges are disturbed by Gaussian noise
(m = 0, σ = 5). The other two datasets of the synthetic category have the same char-
acteristic except there is no isolated nodes i.e.all the nodes at least have a neighbour.
The real dataset contains 16 pattern graphs and 200 target graphs. Pattern graphs
are the RAG representation of the isolated symbols and target graphs are the same
for the oorplans. The ground truth �les are also available which relate the pattern
graphs with the target graphs with region to region correspondence.

A.8 L’Esposallas dataset

This dataset is a collection of pages compiled from marriage licence books conserved at
the archives of Barcelona cathedral [81]6. The original marriage register is composed
of 291 books/volumes with information of 600,000 marriages celebrated in 250 parishes
in between 1451 and 1905. The dataset has three partitions: (1) the indices, (2) the
marriage record and (3) the segmented lines. At present the indices part of this
dataset contains only the indices of two volumes and the marriage record part is
taken from a single volume. Some examples of indices and register pages are visible
in Figure A.12.

5litis-ilpiso.univ-rouen.fr/ILPIso
6http://dag.cvc.uab.es/the-esposalles-database

126 DATASETS

(a) (b) (c) (d)

Figure A.12: Example of pages from the marriage registers from the
L'Esposalles dataset: (a)-(b) indices, (c)-(d) register pages.

List of Publications

This dissertation has led to the following communications:

Journal Papers

• Anjan Dutta, Josep Llad�os and Umapada Pal. \A symbol spotting approach
in graphical documents by hashing serialized graphs". In Pattern Recognition
(PR), 46(3), pp. 752-768, March 2013.

• Josep Llad�os, Mar�cal Rusi~nol, Alicia Forn�es, David Fern�andez and Anjan Dutta.
\On the Inuence of Word Representations for Handwritten Word Spotting in
Historical Documents". In International Journal of Pattern Recognition and
Arti�cial Intelligence (IJPRAI), 26(5), August 2012.

Book Chapters

• Anjan Dutta, Josep Llad�os and Umapada Pal. \Bag-of-GraphPaths for symbol
Recognition and Spotting in Line Drawings". In Graphic Recognition. New
Trends and Challenges. Lecture Notes in Computer Science, Vol. 7423, pp.
208-217, 2013.

• Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang, and Josep Llad�os. \Hierarchical
graph representation for symbol spotting in graphical document images". In
the Proceedings of the 14th International Workshop on Statistical, Structural
and Syntactic Pattern Recognition (S+SSPR,'2012), pp. 529-538, Miyajima-
Itsukushima, Hiroshima, November, 2012.

127

128 LIST OF PUBLICATIONS

Conference Contributions

• Anjan Dutta, Josep Llad�os, Horst Bunke and Umapada Pal. \Near Convex
Region Adjacency Graph and Approximate Neighborhood String Matching for
Symbol Spotting in Graphical Documents". In the Proceedings of the 12th In-
ternational Conference on Document Analysis and Recognition (ICDAR,'2013),
pp. 1078-1082, Washington DC, USA, August, 2013.

• Anjan Dutta, Josep Llad�os, Horst Bunke and Umapada Pal. \A Product graph
based method for dual subgraph matching applied to symbol spotting". In the
Proceedings of the 10th IAPR Workshop on Graphics Recognition (GREC,'2013),
pp. 7-11, Bethlehem, PA, USA, August, 2013.

• Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang and Josep Llad�os. \Hierarchical
Plausibility-Graphs for Symbol Spotting in Graphical Documents". In the Pro-
ceedings of the 10th IAPR Workshop on Graphics Recognition (GREC,'2013),
pp. 13-18, Bethlehem, PA, USA, August, 2013.

• Anjan Dutta, Jaume Gibert, Josep Llad�os, Horst Bunke and Umapada Pal.
\Combination of Product Graph and Random Walk Kernel for Symbol Spot-
ting in Graphical Documents". In the Proceedings of the 21st International
Conference on Pattern Recognition (ICPR,'2012), pp. 1663-1666, Tsukuba,
Japan, November, 2012.

• Anjan Dutta, Josep Llad�os and Umapada Pal. \Symbol Spotting in Line Draw-
ings Through Graph Paths Hashing". In the Proceedings of the 11th Interna-
tional Conference on Document Analysis and Recognition (ICDAR,'2011), pp.
982-986, Beijing, China, September, 2011.

• Anjan Dutta, Josep Llad�os and Umapada Pal. \Bag-of-GraphPaths for symbol
Recognition and Spotting in Line Drawings". In the Proceedings of the 9th
IAPR Workshop on Graphics Recognition (GREC,'2011), pp. 49-52, Seoul,
South Korea, September, 2011.

• Anjan Dutta, Josep Llad�os and Umapada Pal. \A Bag-of-Paths based Se-
rialized Subgraph Matching for Symbol Spotting in Line Drawings". In the
Proceedings of the 5th Iberian Conference on Pattern Recognition and Image
Analysis (IbPRIA,'2011), Lecture Notes in Computer Science (LNCS 6669),
Jordi Vitri�a, Jo~ao M. Sanches, Mario Hern�andez (Eds.), pp. 620-627, Las Pal-
mas de Gran Canaria, Spain, June, 2011.

Bibliography

[1] Narendra Ahuja and Sinisa Todorovic. From region based image representa-
tion to object discovery and recognition. In Edwin R. Hancock, Richard C.
Wilson, Terry Windeatt, Ilkay Ulusoy, and Francisco Escolano, editors, Pro-
ceedings of the International Workshop on Structural, Syntactic and Statistical
Pattern Recognition (SPR + SSPR), volume 6218 of Lecture Notes in Computer
Science, pages 1{19. Springer Berlin / Heidelberg, 2010.

[2] H. A. Almohamad and S. O. Du�uaa. A linear programming approach for the
weighted graph matching problem. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 15(5):522{525, 1993.

[3] N. Arica and F.T. Yarman-Vural. Optical character recognition for cursive
handwriting. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 24(6):801{813, 2002.

[4] F. Aziz, R.C. Wilson, and E.R. Hancock. Backtrackless walks on a graph. IEEE
Transactions on Neural Networks and Learning Systems (TNNLS), 24(6):977{
989, 2013.

[5] E. Barbu, P. Heroux, S. Adam, and E. Trupin. Frequent graph discovery:
Application to line drawing document images. Electronic Letters on Computer
Vision and Image Analysis, 5(2):47{54, 2005.

[6] A. Barducci and S. Marinai. Object recognition in oor plans by graphs of
white connected components. In Proceedings of the International Conference
on Pattern Recognition (ICPR), pages 298{301, 2012.

[7] G. M. Beumer, Q. Tao, A. M. Bazen, and R. N J Veldhuis. A landmark paper in
face recognition. In Proceedings of the International Conference on Automatic
Face and Gesture Recognition (ICAFGR), pages 78 { 83, 2006.

[8] Pierre Le Bodic, Pierre H�eroux, S�ebastien Adam, and Yves Lecourtier. An in-
teger linear program for substitution-tolerant subgraph isomorphism and its
use for symbol spotting in technical drawings. Pattern Recognition (PR),
45(12):4214{4224, 2012.

[9] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based
image classi�cation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1{8, 2008.

129

130 BIBLIOGRAPHY

[10] I.R. Bomze, M. Pelillo, and V. Stix. Approximating the maximum weight clique
using replicator dynamics. IEEE Transactions on Neural Network (TNN),
11(6):1228 { 1241, 2000.

[11] K.M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In Pro-
ceedings of the IEEE International Conference on Data Mining (ICDM), pages
8 pp.{, 2005.

[12] Klaus Broelemann, Anjan Dutta, Xiaoyi Jiang, and Josep Llad�os. Hierarchi-
cal graph representation for symbol spotting in graphical document images. In
Georgy Gimel'farb, Edwin Hancock, Atsushi Imiya, Arjan Kuijper, Mineichi
Kudo, Shinichiro Omachi, Terry Windeatt, and Keiji Yamada, editors, Pro-
ceedings of the International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition (SPR + SSPR), volume 7626 of Lecture Notes in Computer
Science, pages 529{538. Springer Berlin / Heidelberg, 2012.

[13] H Bunke and G Allermann. Inexact graph matching for structural pattern
recognition. Pattern Recognition Letters (PRL), 1(4):245 { 253, 1983.

[14] Horst Bunke and Kaspar Riesen. Improving vector space embedding of graphs
through feature selection algorithms. Pattern Recognition (PR), 44(9):1928 {
1940, 2010.

[15] Ronald R. Coifman and St�ephane Lafon. Di�usion maps. Applied and Compu-
tational Harmonic Analysis, 21(1):5 { 30, 2006.

[16] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph match-
ing in pattern recognition. International Journal of Pattern Recognition and
Artificial Intelligence (IJPRAI), 18(3):265{298, 2004.

[17] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm
for matching large graphs. In Proceedings of the International Workshop on
Graph-Based Representations in Pattern Recognition (GbRPR), pages 149{159,
2001.

[18] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. An e�cient algorithm
for the inexact matching of arg graphs using a contextual transformational
model. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 3, pages 180{184, 1996.

[19] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of
the vf graph matching algorithm. In Proceedings of the International Conference
on Image Analysis and Processing (CIAP), pages 1172{1177, 1999.

[20] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. Fast graph matching for
detecting cad image components. In Proceedings of the International Conference
on Pattern Recognition (ICPR), volume 2, pages 1034{1037, 2000.

[21] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 26(10):1367{1372, 2004.

BIBLIOGRAPHY 131

[22] Mathieu Delalandre, Tony Pridmore, Ernest Valveny, Herv�e Locteau, and Eric
Trupin. Building synthetic graphical documents for performance evaluation. In
Graphics Recognition. Recent Advances and New Opportunities, pages 288{298.
Springer Berlin/Heidelberg, 2008.

[23] Philippe Dosch and Josep Llad�os. Vectorial Signatures for Symbol Discrimina-
tion, chapter Vectorial Signatures for Symbol Discrimination, pages 154{165.
Springer Berlin / Heidelberg, 2004.

[24] Philippe Dosch and Ernest Valveny. Report on the second symbol recognition
contest. In Wenyin Liu and Josep Llad�os, editors, Graphics Recognition. Ten
Years Review and Future Perspectives, volume 3926 of Lecture Notes in Com-
puter Science, pages 381{397. Springer Berlin / Heidelberg, 2006.

[25] Anjan Dutta, Josep Llad�os, and Umapada Pal. A bag-of-paths based serialized
subgraph matching for symbol spotting in line drawings. In Proceedings of the
Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA), pages
620{627, 2011.

[26] Anjan Dutta, Josep Llad�os, and Umapada Pal. A symbol spotting approach in
graphical documents by hashing serialized graphs. Pattern Recognition (PR),
46(3):752{768, 2013.

[27] A. El-Yacoubi, M. Gilloux, R. Sabourin, and C.Y. Suen. An hmm-based ap-
proach for o�-line unconstrained handwritten word modeling and recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
21(8):752{760, 1999.

[28] S. Espa~na-Boquera, M.J. Castro-Bleda, J. Gorbe-Moya, and F. Zamora-
Martinez. Improving o�ine handwritten text recognition with hybrid hm-
m/ann models. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 33(4):767{779, 2011.

[29] V. Espinosa-Duro. Minutiae detection algorithm for �ngerprint recognition.
IEEE Aerospace and Electronic Systems Magazine, 17(3):7{10, 2002.

[30] Andreas Fischer, ChingY. Suen, Volkmar Frinken, Kaspar Riesen, and Horst
Bunke. A fast matching algorithm for graph-based handwriting recognition.
In Walter G. Kropatsch, Nicole M. Artner, Yll Haxhimusa, and Xiaoyi Jiang,
editors, Proceedings of the International Workshop on Graph-Based Represen-
tations in Pattern Recognition (GbRPR), volume 7877 of Lecture Notes in Com-
puter Science, pages 194{203. Springer Berlin/Heidelberg, 2013.

[31] Thomas G•artner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hard-
ness results and e�cient alternatives. In Proceedings of the Conference on Learn-
ing Theory (COLT), pages 129{143, 2003.

[32] Jaume Gibert. Vector Space Embedding of Graphs via Statistics of Labelling
Information. PhD thesis, Universitat Aut�onoma de Barcelona, 2012.

132 BIBLIOGRAPHY

[33] Jaume Gibert, Ernest Valveny, and Horst Bunke. Graph embedding in vector
spaces by node attribute statistics. Pattern Recognition (PR), 45(9):3072 {
3083, 2012. <ce:title>Best Papers of Iberian Conference on Pattern Recognition
and Image Analysis (IbPRIA'2011)</ce:title>.

[34] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In Proceedings of the International Conference on Very
Large Data Bases (VLDB), pages 518{529, San Francisco, CA, USA, 1999.

[35] R. Giugno and D. Shasha. Graphgrep: A fast and universal method for querying
graphs. In Proceedings of the International Conference on Pattern Recognition
(ICPR), volume 2, pages 112{115, 2002.

[36] T. Gnanasambandan, S. Gunasekaran, and S. Seshadri. Molecular structure
analysis and spectroscopic characterization of carbimazole with experimental
(ft-ir, ft-raman and uv-vis) techniques and quantum chemical calculations.
Journal of Molecular Structure (JMS), 1052(0):38 { 49, 2013.

[37] Steven Gold and Anand Rangarajan. A graduated assignment algorithm for
graph matching. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 18(4):377{388, 1996.

[38] Lin Han, Francisco Escolano, Edwin R. Hancock, and Richard C. Wilson.
Graph characterizations from von neumann entropy. Pattern Recognition Let-
ters (PRL), 33(15):1958 { 1967, 2012.

[39] Z. Harchaoui and F. Bach. Image classi�cation with segmentation graph ker-
nels. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1{8, June 2007.

[40] Y. He and A. Kundu. 2-d shape classi�cation using hidden markov model.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
13(11):1172{1184, November 1991.

[41] Tam�as Horv�ath, Thomas G•artner, and Stefan Wrobel. Cyclic pattern kernels
for predictive graph mining. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), KDD '04, pages
158{167, New York, NY, USA, 2004. ACM.

[42] Khalid Hosny. Fast computation of accurate zernike moments. Journal of Real-
Time Image Processing (JRTIP), 3:97{107, 2008.

[43] Ming-Kuei Hu. Visual pattern recognition by moment invariants. IRE Trans-
actions on Information Theory, 8(2):179{187, 1962.

[44] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the ACM Symposium
on Theory of Computing (ACMSTOC), pages 604{613, 1998.

[45] David W. Jacobs. Grouping for recognition, 1989.

[46] David W. Jacobs. Robust and e�cient detection of salient convex groups. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 18(1):23{
37, January 1996.

BIBLIOGRAPHY 133

[47] Thorsten Joachims. Text categorization with suport vector machines: Learning
with many relevant features. In Proceedings of the European Conference on
Machine Learning (ECML), pages 137{142. Springer-Verlag, 1998.

[48] Sha�q Rayhan Joty and Sheikh Sadid-Al-Hasan. Advances in focused retrieval:
A general review. In Proceedings of the IEEE International Conference on
Computer and Information Technology (ICCIT), pages 1{5, 2007.

[49] D. Justice and A. Hero. A binary linear programming formulation of the graph
edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 28(8):1200{1214, 2006.

[50] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local similarity
for indexing paths in graph-structured data. In Proceedings of the International
Conference on Data Engineering (ICDE), pages 129 {140, 2002.

[51] G. Lambert and J. Noll. Discrimination properties of invariants using the line
moments of vectorized contours. In Proceedings of the International Conference
on Pattern Recognition (ICPR), volume 2, pages 735{739, 1996.

[52] Georg Lambert and Hua Gao. Line moments and invariants for real time pro-
cessing of vectorized contour data. In Image Analysis and Processing, volume
974 of Lecture Notes in Computer Science, pages 347{352. Springer Berlin /
Heidelberg, 1995.

[53] Javier Larrosa and Gabriel Valiente. Constraint satisfaction algorithms
for graph pattern matching. Mathematical Structures in Computer Science
(MSCS), 12(4):403{422, 2002.

[54] Josep Llad�os, E. Mart��, and Juan Jos�e Villanueva. Symbol recognition by error-
tolerant subgraph matching between region adjacency graphs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI), 23(10):1137{
1143, 2001.

[55] Herv�e Locteau, S�ebastien Adam, �Eric Trupin, Jacques Labiche, and Pierre
H�eroux. Symbol spotting using full visibility graph representation. In Pro-
ceedings of the International Workshop of Graphics Recognition (GREC), 2007.

[56] D G Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial Intelligence (AI), 31(3):355{395, March 1987.

[57] Shijian Lu, Linlin Li, and Chew Lim Tan. Document image retrieval through
word shape coding. IEEE Transactions on Pattern Analysis and Machine In-
telligence (TPAMI), 30(11):1913{1918, 2008.

[58] Bin Luo, Richard C. Wilson, and Edwin R. Hancock. Spectral embedding of
graphs. Pattern Recognition (PR), 36(10):2213 { 2230, 2003.

[59] M.M. Luqman, T. Brouard, J.-Y. Ramel, and J. Llad�os. A content spotting
system for line drawing graphic document images. In Proceedings of the Inter-
national Conference on Pattern Recognition (ICPR), pages 3420{3423, August
2010.

134 BIBLIOGRAPHY

[60] M.M. Luqman, J. Ramel, J. Llados, and T. Brouard. Subgraph spotting through
explicit graph embedding: An application to content spotting in graphic doc-
ument images. In Proceedings of the International Conference on Document
Analysis and Recognition (ICDAR), pages 870{874, 2011.

[61] Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Llad�os, and Thierry
Brouard. Fuzzy multilevel graph embedding. Pattern Recognition (PR),
46(2):551 { 565, 2013.

[62] Kurt Mehlhorn. Graph algorithms and NP-completeness. Springer-Verlag New
York, Inc., New York, NY, USA, 1984.

[63] B. Messmer and H. Bunke. Automatic learning and recognition of graphical
symbols in engineering drawings. In Rangachar Kasturi and Karl Tombre,
editors, Graphics Recognition Methods and Applications, volume 1072 of Lecture
Notes in Computer Science, pages 123{134. Springer Berlin / Heidelberg, 1996.

[64] B.T. Messmer and H. Bunke. A decision tree approach to graph and subgraph
isomorphism detection. Pattern Recognition (PR), 32(12):1979 { 1998, 1999.

[65] B.T. Messmer and H. Bunke. E�cient subgraph isomorphism detection: a de-
composition approach. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 12(2):307{323, 2000.

[66] Stefan M•uller and Gerhard Rigoll. Engineering drawing database retrieval us-
ing statistical pattern spotting techniques. In Graphics Recognition Recent Ad-
vances, volume 1941 of Lecture Notes in Computer Science, pages 246{255.
Springer Berlin / Heidelberg, 2000.

[67] N. Nayef and T.M. Breuel. Statistical grouping for segmenting symbols parts
from line drawings, with application to symbol spotting. In Proceedings of
the International Conference on Document Analysis and Recognition (ICDAR),
pages 364{368, 2011.

[68] Nibal Nayef and Thomas M. Breuel. A branch and bound algorithm for graphi-
cal symbol recognition in document images. In Proceedings of the International
Workshop on Document Analysis System (DAS), pages 543{546, 2010.

[69] Michel Neuhaus and Horst Bunke. An error-tolerant approximate matching
algorithm for attributed planar graphs and its application to �ngerprint classi-
�cation. In Proceedings of the International Workshop on Statistical, Structural
and Syntactic Pattern Recognition (SPR +SSPR), pages 180{189, 2004.

[70] Thi-Oanh Nguyen, S. Tabbone, and A. Boucher. A symbol spotting approach
based on the vector model and a visual vocabulary. In Proceedings of the Inter-
national Conference on Document Analysis and Recognition (ICDAR), pages
708{712, July 2009.

[71] J.C. Niebles and Li Fei-Fei. A hierarchical model of shape and appearance
for human action classi�cation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1{8, 2007.

BIBLIOGRAPHY 135

[72] Nobuyuki Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics (TSMC), 9(1):62{66, January
1979.

[73] Marcello Pelillo. Relaxation labeling networks for the maximum clique problem.
Journal of Artificial Neural Network (JANN), 2(4):313{328, August 1996.

[74] Marcello Pelillo, Kaleem Siddiqi, and Steven W. Zucker. Matching hierarchical
structures using association graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 21(11):1105{1120, 1999.

[75] R. Plamondon and S.N. Srihari. Online and o�-line handwriting recognition:
a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 22(1):63{84, 2000.

[76] Ronald Poppe. A survey on vision-based human action recognition. Image and
Vision Computing (IVC), 28(6):976 { 990, 2010.

[77] Rashid Qureshi, Jean-Yves Ramel, Didier Barret, and Hubert Cardot. Spot-
ting symbols in line drawing images using graph representations. In Wenyin
Liu, Josep Llad�os, and Jean-Marc Ogier, editors, Graphics Recognition. Recent
Advances and New Opportunities, volume 5046 of Lecture Notes in Computer
Science, pages 91{103. Springer Berlin / Heidelberg, 2008.

[78] Toni M. Rath and R. Manmatha. Word image matching using dynamic time
warping. In Proceedings of the IEEE International Conference on Computer Vi-
sion and Pattern Recognition (CVPR), volume 2, pages 521{527, Los Alamitos,
CA, USA, 2003. IEEE Computer Society.

[79] Zhou Ren, Junsong Yuan, Chunyuan Li, and Wenyu Liu. Minimum near-
convex decomposition for robust shape representation. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), pages 303{310,
November 2011.

[80] Kaspar Riesen, Michel Neuhaus, and Horst Bunke. Bipartite graph match-
ing for computing the edit distance of graphs. In Francisco Escolano and Mario
Vento, editors, Proceedings of the International Workshop on Graph-Based Rep-
resentations in Pattern Recognition (GbRPR), volume 4538 of Lecture Notes in
Computer Science, pages 1{12. Springer Berlin Heidelberg, 2007.

[81] Ver�onica Romero, Alicia Forn�es, Nicol�as Serrano, Joan Andreu S�anchez, Ale-
jandro H. Toselli, Volkmar Frinken, Enrique Vidal, and Josep Llad�os. The
{ESPOSALLES} database: An ancient marriage license corpus for o�-line
handwriting recognition. Pattern Recognition (PR), 46(6):1658 { 1669, 2013.

[82] Paul L Rosin and Geo� AW West. Segmentation of edges into lines and arcs.
Image and Vision Computing (IVC), 7(2):109 { 114, 1989.

[83] M. Rusi~nol. Geometric and Structural-based Symbol Spotting. Application to
Focused Retrieval in Graphic Document Collections. PhD thesis, Universitat
Aut�onoma de Barcelona, 2009.

136 BIBLIOGRAPHY

[84] M. Rusi~nol, A. Borr�as, and J. Llad�os. Relational indexing of vectorial primitives
for symbol spotting in line-drawing images. Pattern Recognition Letters (PRL),
31(3):188{201, 2010.

[85] M. Rusi~nol and J. Llad�os. Symbol Spotting in Technical Drawings Using Vecto-
rial Signatures, chapter Symbol Spotting in Technical Drawings Using Vectorial
Signatures, pages 35{46. Springer Berlin / Heidelberg, 2006.

[86] M. Rusi~nol and J. Llad�os. A performance evaluation protocol for symbol spot-
ting systems in terms of recognition and location indices. International Journal
on Document Analysis and Recognition (IJDAR), 12(2):83{96, 2009.

[87] M. Rusi~nol, J. Llad�os, and G. S�anchez. Symbol spotting in vectorized techni-
cal drawings through a lookup table of region strings. Pattern Analysis and
Applications (PAA), 13:1{11, 2009.

[88] L. Schomaker. Advances in writer identi�cation and veri�cation. In Proceed-
ings of the International Conference on Document Analysis and Recognition
(ICDAR), volume 2, pages 1268{1273, 2007.

[89] A. Shokoufandeh, D. Macrini, S. Dickinson, K. Siddiqi, and S.W. Zucker. Index-
ing hierarchical structures using graph spectra. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 27(7):1125{1140, 2005.

[90] Christine Solnon. Alldi�erent-based �ltering for subgraph isomorphism. Artifi-
cial Intelligence (AI), 174(12-13):850 { 864, 2010.

[91] H. Sossa and R. Horaud. Model indexing: the graph-hashing approach. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 811 {814, June 1992.

[92] H.M. Stark and A.A. Terras. Zeta functions of �nite graphs and coverings.
Journal on Advances in Mathematics (JAM), 121(1):124 { 165, 1996.

[93] Minsoo Suk and Tai-Hoon Cho. An object-detection algorithm based on the
region-adjacency graph. Proceedings of the IEEE, 72(7):985{986, July 1984.

[94] Martin Szummer and Tommi Jaakkola. Partially labeled classi�cation with
markov random walks. In Advances in Neural Information Processing Systems,
pages 945{952. MIT Press, 2002.

[95] S. Tabbone, L. Wendling, and K. Tombre. Matching of graphical symbols in
line-drawing images using angular signature information. International Journal
on Document Analysis and Recognition (IJDAR), 6(2):115{125, 2003.

[96] Michael Reed Teague. Image analysis via the general theory of moments. Jour-
nal of the Optical Society of America (JOSA), 70(8):920{930, August 1980.

[97] Karl Tombre and B. Lamiroy. Pattern recognition methods for querying
and browsing technical documentation. In Proceedings of the Iberoamerican
Congress on Pattern Recognition (CIARP), 2008.

BIBLIOGRAPHY 137

[98] Wen-Hsiang Tsai and King-Sun Fu. Error-correcting isomorphisms of attributed
relational graphs for pattern analysis. IEEE Transactions on Systems, Man and
Cybernetics (TSMC), 9(12):757{768, 1979.

[99] Wen-Hsiang Tsai and King-Sun Fu. Subgraph error-correcting isomorphisms
for syntactic pattern recognition. IEEE Transactions on Systems, Man and
Cybernetics (TSMC), 13(1):48{62, 1983.

[100] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of ACM
(JACM), 23(1):31{42, 1976.

[101] Chao Wang, Lei Wang, and Lingqiao Liu. Improving graph matching via density
maximization. In Proceedings of the IEEE Conference on Computer Vision
(ICCV), December 2013.

[102] Ching-Huei Wang and SargurN. Srihari. A framework for object recognition in a
visually complex environment and its application to locating address blocks on
mail pieces. International Journal of Computer Vision (IJCV), 2(2):125{151,
1988.

[103] S. Watanbe. Pattern recognition: human and mechanical. Wiley, 1985.

[104] R.C. Wilson and E.R. Hancock. Structural matching by discrete relaxation.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
19(6):634{648, 1997.

[105] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: a frequent structure-
based approach. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 335{346, 2004.

[106] Xingwei Yang, L. Prasad, and L.J. Latecki. A�nity learning with di�usion on
tensor product graph. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 35(1):28{38, 2013.

[107] Xu Yang, Hong Qiao, and Zhi-Yong Liu. Partial correspondence based on
subgraph matching. Neurocomputing, 122:193 { 197, 2013.

[108] Shijie Zhang, Meng Hu, and Jiong Yang. Treepi: A novel graph indexing
method. In Proceedings of the IEEE International Conference on Data Engi-
neering (ICDE), pages 966{975, 2007.

[109] Wan Zhang and Liu Wenyin. A new vectorial signature for quick symbol index-
ing, �ltering and recognition. In Proceedings of the International Conference
of Document Analysis and Recognition (ICDAR), volume 1, pages 536 {540,
September 2007.

[110] Daniel Zuwala and Salvatore Tabbone. A Method for Symbol Spotting in Graph-
ical Documents, pages 518{528. Springer Berlin / Heidelberg, 2006.

138 BIBLIOGRAPHY

