

Escola d’Enginyeria

Departament d’Arquitectura de Computadors
i Sistemes Operatius

ARTFUL
Deterministically Assessing the

 Robustness against Transient Faults
 of Programs

Thesis submitted by João Artur Dias
Lima Gramacho in fulfillment of the
requirements for the degree of
Philosophiæ Doctor per the Universitat
Autònoma de Barcelona.

Bellaterra, May 2014

ARTFUL
Deterministically Assessing the

 Robustness against Transient Faults
 of Programs

Thesis submitted by João Artur Dias
Lima Gramacho in fulfillment of the
requirements for the degree of
Philosophiæ Doctor per the Universitat
Autònoma de Barcelona. This work was
advised by Dr. Dolores Isabel Rexachs
del Rosario.

Bellaterra, May 2014

__
Dr. Dolores Isabel Rexachs del Rosario

Thesis Advisor

From Oxford Online Dictionary

http://oxforddictionaries.com/definition/american_english/artful

artful

Syllabification: (art·ful)

Pronunciation: /ˈärtfəl/

Definition of artful

adjective

1 (of a person or action) clever or skillful, typically in a crafty or cunning way:

her artful wiles

2 showing creative skill or taste:

an artful photograph of a striking woman

From Foundation and Earth (by Isaac Asimov, Doubleday, 1986)

Chapter 21

The Search Ends

Perhaps it was because of the matter-of-fact way in which Daneel said it; or perhaps
because a lifetime of twenty thousand years made death seem no tragedy to one doomed
to live less than half a percent of that period; but, in any case, Trevize felt no stir of
sympathy.

“Die? Can a machine die?”

“I can cease to exist, sir. Call it by whatever word you wish. I am old. Not one sentient
being in the Galaxy that was alive when I was first given consciousness is still alive
today; nothing organic; nothing robotic. Even I myself lack continuity.”

“In what way?”

"There is no physical part of my body, sir, that has escaped replacement, not only once
but many times. Even my positronic brain has been replaced on five different occasions.
Each time the contents of my earlier brain were etched into the newer one to the last
positron. Each time, the new brain had a greater capacity and complexity than the old, so
that there was room for more memories, and for faster decision and action. But-"

“But?”

“The more advanced and complex the brain, the more unstable it is, and the more
quickly it deteriorates. My present brain is a hundred thousand times as sensitive as my
first, and has ten million times the capacity; but whereas my first brain endured for over
ten thousand years, the present one is but six hundred years old and is unmistakably
senescent. With every memory of twenty thousand years perfectly recorded and with a
perfect recall mechanism in place, the brain is filled. There is a rapidly declining ability
to reach decisions; an even more rapidly declining ability to test and influence minds at
hyperspatial distances. Nor can I design a sixth brain. Further miniaturization will run
against the blank wall of the uncertainty principle, and further complexity will but assure
decay almost at once.”

Acknowledgments

It was the beginning of 2006, when I first came to Europe for my first backpack trip,
when my mind started to change a lot. I was well employed in a big Brazilian mobile
company, with good professional opportunities in sight. To visit Europe and to visit my
friends living in Europe made me start questioning if that "big city, big company,
professional growth" was really what I wanted.

I took almost two years declining jobs offers to move from my home town in Brazil to
larger cities, thinking about what I really wanted, to finally figure out that I wanted to
fulfill my researcher needs, doing a Master, and maybe even doing a PhD. And if I had
to leave my home town, to be far from my family, I would like to go to a place without
many social problems Brazil has.

So, in June 2008, I left my home town, and also my home country, to move to
Barcelona, Spain, to start learning how to become a researcher (and also a teacher) at
CAOS (Computer Architecture and Operating Systems) department at UAB.

During the five years I was there, my life changed even more! I made new friends (my
"Barcelona family") and I also met (and married) my wife!

Now it is time to finish this formal researcher formation.

I would like to thank all fellows of CAOS (always helping each other), especially my
working group (always helping each other even more), and, in particular, I thank
Dolores Rexachs and Emilio Luque for their trust in my work. I will always remember
the researched values I learned from you... And I've started to spread these values
already!

Thank you, Dona Ana, Sérgio, Gabi, Anamel, Laís and all my family and friends that,
even far away, have always been by my side during this journey.

To my friends Eduardo, Fialho and Aprigio, I would like to thank the advices, the help
and the patience! You know that you can count on me!

Finally, I want to thank Graziela for her love, understanding, patience and the
motivation she gave me to finish this work.

Abstract

Computer chips are evolving to obtain more performance, using more transistors and
becoming denser and more complex. One side effect of such a scenario is that
processors are becoming less robust than ever against transient faults.

As on-chip solutions are expensive or tend to degrade processor performance, the efforts
to deal with these transient faults in higher levels, such as the operating system or even
by the programs, are increasing.

Software based fault tolerance approaches to deal with transient faults often use fault
injection experiments to evaluate the behavior of programs with and without their fault
detection proposals.

Using fault injection experiments to evaluate programs behavior in presence of transient
faults require running the program under evaluation and injecting a fault (usually by
flipping a single bit in a processor register) for a sufficient amount of times, always
observing the program behavior and if it ended presenting the expected result. One
problem with this strategy is that the fault injection space is proportional to the amount
of instructions executed multiplied by the amount of bits in the processor architecture
register file.

Instead of being exhaustive (it would be unfeasible), this approach consumes lots of
CPU time by running or simulating the program being evaluated as many times as
necessary to obtain a reasonable valid statistical approximation (usually just a few
thousand times). So, the time required to evaluate how a single program would behave
in presence of transient faults might be proportional to the time needed to run the
program for five thousand times.

In this work we present the concept of a program's robustness against transient faults
and also present a methodology named ARTFUL (from Assessing the Robustness
against Transient Faults) designed to, instead of using executions with fault injections,
deterministically calculate this robustness based on program’s execution trace over an
given processor architecture and on information about the used architecture.

Our approach was able to calculate the precise robustness of some benchmarks using
just the time need to run the evaluated program for tents of times in the best cases.

Resumen

Los procesadores están evolucionando para obtener más rendimiento, utilizando más
transistores y quedándose más densos y más complejos. Un efecto secundario de este
escenario es que los procesadores están cada vez menos robustos frente a fallos
transitorios.

Como soluciones basadas en los propios procesadores son caras o tienden a degradar el
rendimiento del procesador, los esfuerzos para hacer frente a estos fallos transitorios en
las capas superiores, como en el sistema operativo, o incluso en los programas, están
aumentando.

Propuestas de tolerancia a fallos basada en la capa de software para hacer frente a los
fallos transitorios comúnmente usan experimentos de inyección de fallos para evaluar el
comportamiento de los programas con y sin sus propuestas de detección de fallas.

Utilizar experimentos de inyección de fallos para evaluar el comportamiento de los
programas en presencia de fallos transitorios requiere ejecutar el programa evaluado
haciendo la inyección de un fallo (por lo general cambiando un solo bit en un registro
del procesador) por una cantidad suficiente de veces, siempre observando el
comportamiento del programa y si este ha finalizado presentando el resultado esperado.
Un problema con esta estrategia es que el espacio de inyección de fallos es proporcional
a la cantidad de instrucciones ejecutadas multiplicado por la cantidad de bits en el
archivo de registros de la arquitectura del procesador.

En lugar de ser exhaustivos (que sería inviable), este método consume mucho tiempo de
CPU ejecutando o simulando el programa que se está evaluando tantas veces como sea
necesario para obtener una aproximación estadística válida razonable (por lo general
sólo unos pocos miles de veces). Así, el tiempo requerido para evaluar cómo un solo
programa se comportaría en presencia de fallos transitorios podría ser proporcional al
tiempo necesario para ejecutar el programa cerca de cinco mil veces.

En este trabajo se presenta el concepto de robustez de un programa frete a fallos
transitorios y también presenta una metodología llamada ARTFUL diseñada para, en
lugar de utilizar las ejecuciones con inyecciones de fallos, hacer el cálculo de la robustez
de forma determinística, basada en una traza de ejecución del programa y en la
información sobre la arquitectura utilizada.

Nuestro método fue capaz de calcular la robustez precisa de algunos benchmarks
utilizando sólo el tiempo necesario para ejecutar el programa evaluado para decenas de
veces en los mejores casos.

Contents

Chapter 1 Introduction .. 17

1.1 Objective ... 19

1.2 Organization of this dissertation ... 20

Chapter 2 Transient Faults .. 23

2.1 Transient faults effects .. 24

2.2 Metrics used in transient faults studies ... 25

2.3 Evidence of soft errors .. 27

2.4 Possible outcomes of a transient fault ... 29

2.5 Possible outcomes of a soft error .. 31

2.5.1 Invalid instruction exception .. 31

2.5.2 Parity error during read cycle ... 32

2.5.3 Memory access violation .. 33

2.5.4 Change on a value... 33

2.6 Protection Mechanisms and Efficiency ... 33

Chapter 3 Fault Injection ... 35

3.1 Fault Injection Techniques .. 35

3.1.1 Physical Fault Injection .. 36

3.1.2 Fault Emulation .. 37

3.1.3 Hardware Emulation ... 38

3.1.4 Software Simulation ... 38

Chapter 4 Evaluating a Program Robustness .. 41

4.1 About the Amount of Executions.. 42

4.2 A Sample Program Evaluation .. 47

4.2.1 Exponentiation Program ... 48

4.2.2 Improved Exponentiation Program... 50

Contents

xvi

4.3 The Randomness Effect on the Fault Injection ... 54

Chapter 5 The ARTFUL Methodology ... 59

5.1 ARTFUL Methodology ... 59

5.1.1 Robust State .. 62

5.1.2 Going Multi Processes .. 65

5.2 Evaluating a Program Robustness with the ARTFUL Methodology 66

5.2.1 Information about the Processor Architecture .. 66

5.2.2 The Exponentiation Program .. 68

5.2.3 The Improved Exponentiation Program .. 71

Chapter 6 ARTFUL Tools .. 77

6.1 ARTFUL Tracer .. 78

6.2 ARTFUL Analyzer .. 80

Chapter 7 Experimental Evaluation ... 83

7.1 Using Executions with Fault Injection .. 83

7.2 Using ARTFUL Tools ... 86

7.3 Improving Efficiency .. 88

7.3.1 Simplification ... 88

7.3.2 PAS2P ... 106

Chapter 8 Conclusion and Future Work .. 117

8.1 Conclusion .. 117

8.1.1 Published Work... 118

8.2 Future Work .. 118

References ... 121

Chapter 1
Introduction

With the evolution of computer processors for better performance, computer chips
are using smaller components, having more transistors with higher density and operating
at lower voltage. All these factors turn computer processors less robust against transient
faults [Wang et al., 2004].

Transient faults are those faults that might occur once and may not happen again
the same way in a system lifetime. Transient faults in computer systems may occur in
processors, memory, internal buses and devices, often resulting in an inversion of a bit
state (i.e. single bit flip) on the faulty location [Baumann, 2005]. Transient faults in
computer systems commonly are effect of cosmic radiation, high operating temperature
and variations in the power supply subsystem [Constantinescu, 2005].

A transient fault may cause an application to misbehave (e.g. write into an invalid
memory position; attempt to execute an inexistent instruction). Such misbehaved
application will then be abruptly interrupted by the operating system fail-stop
mechanism. Nevertheless, the biggest risk happens when the transient fault bit-flip
causes an undetected data corruption, resulting in an incorrect application final result
that might not be ever noticed [Mukherjee, Emer and Reinhardt, 2005].

In High Performance Computing (HPC), the risk of having a transient fault grows
with the amount of computer processors working together [Oliner and Stearley, 2007].
So, the more computational power a HPC system has by adding more processors, the
bigger is the risk of an unnoticed data corruption produced by a transient fault
[Bronevetsky and Supinski, 2008].

Research about transient faults started with computers in hostile environments
like outer space [Dodd and Massengill, 2003], but official reports of transient faults’
effects in large computer installations became public since year 2000. Those reports
evidenced the risk of having transient fault in HPC because of its large number of
components working together. With the risk of having transient faults affecting
computation results, researchers needed the occurrence of those faults to study its effects
and also to test their work.

Chapter 1 – Introduction

18

Since transient faults occur in a very unpredictable way, to study the effects of
these faults in computers, operating systems and applications is a very common practice
to use an environment with fault injection capabilities [Arlat et al., 1990].

To study the effects of transient faults in applications running into computer
system, these fault injections capable environments will be used changing states of the
processor registers or changing data in memory, either randomly or based on a specific
design, depending on the purpose of injection. This study should result in knowledge
about the sensible parts of the program and in how effective a fault detection mechanism
can be.

The evaluation using executions with fault injection is an experimental approach
that is very time consuming and produces approximated results based on statistical data
collected. It is also known that the amount of executions to evaluate a program in a fault
injection campaign will affect the precision of the results obtained [Reis et al., 2005].

Just to state an example, besides the work needed to setup an environment capable
of performing fault injections, [Reis et al., 2006] had to execute a set of benchmarks for
a total of 1.03 million times, injecting only one fault into each execution, to obtain their
results. Even being able to distribute this huge amount of executions in multiples
processing units (a multicore environment or a cluster), the cost (in terms of CPU/hour)
was very high. It is important to notice that works based on executions with fault
injection rarely test multi processed programs. The complexity of performing fault
injections in a HPC environment (multiprocessors or clusters) discourages such
approach. Often, the fault injection experimental approach uses small benchmarks or the
significant fractions of the benchmarks.

So, after researching about fault injections and, more specifically, about fault
injections for evaluating the behavior of programs in presence of transient faults, we
started working on a possible alternative method.

This alternative method would be based on a model of the program execution: an
execution trace. Using a model of the program execution as the input to our method
would allow the analysis of alternatives without the need of executing the program
again. Changes on the trace would be enough to perform further evaluation.

This new method would try to address some key aspects of the evaluations using
executions with fault injection, like the need of performing fault injections and the non-
deterministic approach using statistical approximations to verify the measured metrics.

The new approach would evaluate the whole execution of a program running over
a given processor architecture, the equivalent to testing all possible fault injection points
in a program execution exhaustively. The use of a model of program execution based on
a trace give us useful information about the program execution: i.e. which are the most

Chapter 1 – Introduction

19

repetitive parts of the program, and how the program uses processor architecture
resources.

Also, this new method would try to address the efficiency of the process of
evaluating a program behavior once in presence of transient faults. By efficiency we
consider the amount of CPU/time needed to evaluate a program relative to the CPU/time
needed to effectively run the program.

Based on the related work, having to run a single program for five thousand times
[Reis et al., 2006] to provide an evaluation would be our baseline. We believed that
improving this process efficiency could lead to another benefit: to be able to evaluate
larger programs (not only the significant fractions of benchmarks, or benchmarks with
small workloads) and even parallel programs.

The proposed method was divided in two tasks: the generation of the program
execution trace (the generation of the model of the program execution), and the analysis
of the program execution trace. Our guess was that generating a program execution trace
and analyzing this trace should consume less CPU/hour than analyzing a program using
executions with fault injection.

1.1 Objective
After researching about related work we elaborated an algebraic formalization of

how to evaluate a program behavior in the presence of transient faults inspired in some
assumptions made by the authors when trying to improve the efficiency of their
experiments.

We use the concept of robustness against transient faults as the ability of a
program running over a given processor architecture, once in presence of a transient
fault, to keep running and give a correct result when finish or to stop the execution when
a soft error is detected and inform about it.

During our work we used the robustness concept as a metric, allowing us to
measure how a program’s robustness against transient faults once running over a given
processor architecture. A program’s robustness as a metric would vary from zero, i.e. the
minimal possible robustness, meaning that any transient fault will affect the program
result) to one, i.e. the maximum possible robustness, meaning that any transient fault
won’t affect the program execution or will be detected, assuring that the user will know
if a fault could affect the results.

Based on our algebraic formalization, and using a program execution trace as
input, we present in this work a methodology to deterministically calculate a program’s

Chapter 1 – Introduction

20

robustness against transient faults over a given processor architecture as a metric without
the necessity of executing the evaluated program using fault injections.

The proposed methodology is named ARTFUL (from Assessing the Robustness
against Transient Faults) and have three main characteristics:

1. Exhaustiveness: We aim to evaluate the whole program execution without
using statistical approximations, and doing so, we aim to present results
similar to an extensive fault injection campaign;

2. Precision: Because of the deterministic nature of our methodology, the
robustness of a program execution will be precisely calculated. Two
evaluations of the same program execution must provide exactly the same
robustness;

3. Efficiency: All the tasks needed to evaluate a program’s robustness in
widely used processor architecture for HPC should spend less time than
performing a fault injection campaign for the program.

The accomplishment of these three characteristics will highlight the benefits of
the ARTFUL methodology in comparison with evaluations using fault injection
campaigns.

1.2 Organization of this dissertation
This dissertation contains eight chapters, stating with this introduction.

The state of the art of this work is distributed in three chapters: Chapter 2, Chapter
3 and Chapter 4.

In Chapter 2, we present an overview about transient faults, concepts related to
transient faults research and explain why is important to study about transient faults.

Chapter 3 describes common fault injection methods, their main characteristics
and the utility of such methods.

In Chapter 4 we present some related work focusing in the amount of
experimentation needed to evaluate program’s behavior once in presence of a transient
fault. In order to provide the readers a glimpse of the whole process behind such kind of
evaluation, we designed a simple program robustness evaluation using extensive fault
injection campaigns. We also present a brief study about the randomness effect when not
using extensive fault injections campaigns (the most common case).

Chapter 5 describes the ARTFUL methodology and its formalizations. Also, this
chapter validates the methodology by comparing the evaluation made in Chapter 4 with
the evaluation using the ARTFUL method.

Chapter 1 – Introduction

21

All the evaluations in both Chapter 4 and Chapter 5 were made with a simple
program with just a few instructions and non-complex processor architecture. This was
necessary to accomplish the extensiveness of the fault injection campaigns and the use
of the ARTFUL methodology without complex tools, but these chapters do not discuss
efficiency (time needed to perform the evaluations).

In Chapter 6 we present the tools developed to help the robustness evaluation of
programs for the x64 processor architecture.

Chapter 7 contains the experimental evaluation of this work and also some of our
contributions. It starts with the evaluation of some benchmarks and a comparison
between a robustness evaluation using ARTFUL tools and using fault injection
campaigns.

Chapter 7 also presents two improvements we made in the tools to help us to
reduce the time needed to perform a robustness against transient faults evaluation of a
program running over the x64 processor architecture. The first one is based on the
possibility of simplifying repetitive sequences of instructions during the robustness
analysis. The second one uses an auxiliary performance prediction tool to predict the
robustness of the evaluated program. Both improvements are tested and the results of the
experimental evaluation are presented.

Finally, in Chapter 8 we state our conclusions and propose some future works.

Chapter 2
Transient Faults

Transient f aults are faults that do not reflect a per manent malfunction. A
permanent fault in some component will produce faults, errors or unexpected behavior
every time this faulty component is used. Transient faults, on the other hand, may occur
only once on the whole component lifetime because they are a result of external sources
influences, such as high-energy particles that cause voltage pulses in digital circuits, or
some internal sources like power supply noi se and temperature variation, for example
[Wang et al., 2004].

Radiation-induced t ransient f aults, for ex ample, arise from ene rgetic particles
(such a s neutrons f rom t he atmosphere) g enerating electron-hole pa irs a s they pass
through a semiconductor device. Transistor source and diffusion nodes can collect these
charges that may accumulate at an amount of charge suf ficient to invert the state of a
logic device, injecting a fault into the circuit’s operation (i.e. inverting a bit in a memory
position or in a processor register) [Mukherjee, 2008] as shown in Figure 1.

Figure 1 – Radiation particle strike

Transient faults started as a problem to those designing high-availability systems
and systems for electronic-hostile environments such as outer space [Wang et al., 2004],
but this situation has changed. As the process of miniaturization of components evolved,

Gate Gate Oxide

alpha or neutron strike

source drain

+
-+

-
+-

+
- +

-
+ -

Chapter 2 – Transient Faults

24

these com ponents become less robust against ex ternal i nfluences. As the i nfluence of
terrestrial radiation grew, many systems started to implement extensive error detection
and/or cor rection mainly f or on -chip memories. The major pr oblem i s that p rotecting
only m emory i s not enough f or m iniaturization s cales o f sub-65nm t echnologies a nd
lower.

The need for protection against transient faults effects in enterprise computing and
communication applications are motivating new on-chip mechanisms to protect latches
and flip-flops. Eventually, even some combinatorial logic protection will be necessary in
computer c hips as m ore and m ore transistors are being use d i n f uture technologies
[Mitra et al., 2006].

But, with the advent of multicore and manycore computer chips, the amount of
transistors and buses in a computer pr ocessor is so big t hat t he industry of computer
chips ex pects that the hi gher levels of a com puter s ystem (operating sy stem, par allel
computer f rameworks and even the applications) dea l w ith the possibility of t ransient
faults more often [Cappello et al., 2009].

2.1 Transient faults effects
A fault can generate one or more latent errors. An error is the manifestation of a

fault in a system. A l atent er ror becomes ef fective once the resource with the error is
used by the system to do som e computation. Also, an ef fective error of ten propagates
from one system co mponent t o ano ther, t hereby cr eating new errors. A f ailure i s the
manifestation of an error on the service provided by the system. A failure occurs when
the actual behavior of a system deviates from the specified one.

For example, corresponding to the states of the Figure 2:

1. If an energetic particle hits a memory cell it may produce fault;

2. Once this fault changes the state of the memory cell it generates an latent
error;

3. This error remains latent until the affected memory is read by some other
structure, becoming an effective error;

4. A failure occurs if the memory changed by the error i s read and affects
the operation of the system or application by changing its behavior.

Figure 2 – Fault, error and failure states.

Fault Latent error Effective error Failure
1

Latent errorLatent error
2

Effective errorEffective error
3 4

Chapter 2 – Transient Faults

25

Faults can be characterized by its duration as permanent, transient or intermittent.
A permanent fault will remain in a system until some corrective action is taken.
Intermittent faults are those that keeps appearing and disappearing under some
circumstances. As in permanent faults, identifying the faulty device and doing some
corrective action on it (e.g.: replacing it) may prevent appearing intermittent faults. On
the other hand, a transient fault appears, disappears and will probably never occur again
the same way in a system lifetime [Mukherjee, 2008].

The errors produced by transient faults are called soft errors. After observing a
soft error, there is no implication that the system is any less reliable than before. Soft
errors change the data but not change the physical circuit itself. If the data is rewritten,
the circuit will work perfectly again.

The soft error expression used in transient fault literature should not be confused
with errors of software applications (software programming errors).

2.2 Metrics used in transient faults studies
Current works about transient fault and soft errors use common fault tolerance

metrics, but also added some that easy the math of estimating a system possibility of
failure.

Time to failure (TTF) expresses the time to a fault or an error, even though it
refers specifically to failures. Mean time to failure (MTTF) of a component expresses
the amount of time elapsed between the last system startup or restart and then next error
of the component, as shown in Figure 3. MTTF of a component are commonly
expressed in years and it is obtained based on an averaged estimative of failure
prediction done by the component’s supplier.

The MTTF of a whole system (a group of components) can be obtained by
combining the MTTF of all its components, as shown in Equation 1 below [Mukherjee,
2008].

Equation 1 – MTTF of a given system.

MTTF𝑠𝑦𝑠𝑡𝑒𝑚 =
1

∑
1

MTTF𝑖

𝑛
𝑖=0

The use of the Failure In Time (FIT) term became more useful to engineers by its
addictive property. One FIT represent an error in a billion (109) hours. To compute a
system FIT is only necessary to add its components FIT, as shown in Equation 2 below
[Mukherjee, 2008]:

Chapter 2 – Transient Faults

26

Equation 2 – FIT rate of a given system.

FITrate𝑠𝑦𝑠𝑡𝑒𝑚 = ∑ FITrate𝑖

𝑛

𝑖=0

FIT rate and MTTF of a component are inversely related under certain conditions:

Equation 3 – Relation between FIT and MTTF.

MTTF (in years) =
109

FITrate × 24 hours × 365 days

There are more two commonly used terms used in fault tolerance literature: mean
time to repair (MTTR) and mean t ime between failures (MTBF). MTTR represent the
time needed to r epair an error on ce it i s detected. MTBF represents the av erage time
between the occurrences of two errors [Mukherjee, 2008]. The MTBF can be expressed
as MTBF = MTTF + MTTR as shown in Figure 3 adapted from [Mukherjee, 2008].

Figure 3 – Metrics and its relationships.

The estimation of FIT rate caused by soft errors are called soft error rate (SER).

Architectural Vulnerability Factor (AVF) [Mukherjee et al., 2003] is a metric that
quantifies both architecture-level and program-level reliability against transient faults. It
depends on both software and hardware where the program is being evaluated. So, for a
software l evel evaluation, designers cannot use A VF to m ake hardware-independent
statements about a program’s reliability.

In an effort t o des ign an ac curate method t o quantify software-level reliability,
[Sridharan and Kaeli, 2008] proposed the Program Vulnerability Factor (PVF), a metric
that quantifies t he software-level reliability inherent in a pr ogram. PVF c an be
calculated for any software resource and i s a pr operty of a dy namic exe cution of a

Time

System Start or
Re-start

Fault Detected
or Next

Expected Fault
System Start or

Re-Start

MTTF MTTR

MTBF

Some Point in
Time (tj)

TTF (tj)

Chapter 2 – Transient Faults

27

program. Therefore, PVF is impacted only by changes to the binary program or to the
workload use d and not b y changes i n the hardware (considering that t he processor
architecture is the same). PVF can be used to reason about the reliability of a program
without any knowledge of the target microarchitecture.

2.3 Evidence of soft errors
There are only f ew publications evidencing t he occurrence of so ft errors. A s

shown in Figure 4, the first evidences of soft errors were caused by contamination in the
chips production in late 70’s and 80’s.

Figure 4 – Published evidences of soft errors.

Since 2000’s, the reports of soft errors in large computer installations such as
supercomputers and server farms are becoming more frequent. This happens because the
number of components in this kind of installations is very big (thousands of CPU and
terabytes of memory). Also, in this kind of installation i t commonly has powerful and
modern pr ocessors, w ith v ery hi gh l evel o f m iniaturization and h igh den sity of
transistors (and potentially less robust against transient faults).

For example, IBM has projected its Power 4 pr ocessor to be more robust against
transient f aults than usual des ktop pr ocessors. When usua l d esktop pr ocessors are
supposed to have an MTTF of 2 years, IBM Power 4 t argets an MTTF of 7 years a s
shown in Table 1 from [Mukherjee, Emer and Reinhardt, 2005].

YEAR

2000

1978

Intel first report:
Particle contamination

1986
IBM reported similar

problem with radioactive
contamination

1984

IBM first report:
Cosmic radiation

2000
2000

Sun Microsystems:
Transient faults in

UltraSPARC-II SRAM chips

2004

Cypress:
Transient faults crashing a

server farm

2004
2005

HP:
2048 CPU HPC system crashed

frequently because of cosmic ray
strikes

1980

1990

2004
2004
2003

Cisco Systems:
Cisco 12000 line cards may reset

after transient faults

2011

Oracle (formerly Sun Microsystems):
dynamic voltage frequency scaling (DVFS)

could cause a significant decrease in
microprocessor reliability

2011
2011
2010

Chapter 2 – Transient Faults

28

Table 1 – IBM Power 4 FIT per system effect.

Even knowing that a seven years MTTF is a low probability of failure, when we

start to analyze this MTTF numbers in high performance computing, where we have
hundreds or even thousands of processors working together to solve a problem, the
MTTF of an hypothetic supercomputer lower as more processors are added, as show in
Figure 5.

Figure 5 – MTTF of hypothetical IBM Power 4 based supercomputers.

Soft errors in microprocessor logic will soon become more common. In particular,
latches, which are used in a variety of internal data structures, make up a large fraction
of processor area and are a potentially vulnerable part for transient faults [Bronevetsky
and Supinski, 2008].

Further, soft errors are a critical concern in the operation of real large systems. A
128k-node BlueGene/L experiences one soft error in its L1 cache every 4-6 hours due to
radioactive decay in lead solder, the ASCI Q experienced 26.1 radiation induced CPU
failures per week. A similarly-sized Cray XD1 supercomputer is estimated to experience
109 soft errors per week in CPUs, memory and FPGAs, if placed at the same altitude as
the BlueGene/L [Bronevetsky and Supinski, 2008].

In a more recent work, driven by the concern about neutron induced soft errors
from Oracle (formerly Sun Microsystems), [Dixit and Wood, 2011] stated that Dynamic
Voltage Frequency Scaling (DVFS), a commonly used microprocessor energy reduction
technique, could cause a significant decrease in microprocessor reliability.

FIT System Effect Transient Fault Outcome
MTTF

(years)

114 Data Corruption Silent Data Corruption (SDC) 1000

4566 System-Kill Detectable Unrecoverable Error (DUE) 25

11415 Process-Kill Detectable Unrecoverable Error (DUE) 10

16095 7Total transient faults with some effect

Chapter 2 – Transient Faults

29

2.4 Possible outcomes of a transient fault
The Figure 6 was ada pted from [Mukherjee, Emer and Reinhardt, 2005] and

describes the possible outcomes of an energetic particle hit in a computer processor or
memory.

Figure 6 – Classification of possible outcomes of a transient fault.

The outcome 1 of Figure 6 indicates that the energetic particle hit was not capable
of generating a fault.

The latent error happen when the energetic particle hit is capable of flipping a bit
in a memory, in a processor register or even in a latch used for some purpose.

If this faulty bit isn’t read by the system or it is overwritten at some point in time
before using t he value changed by t he fault, t his latent er ror w ill nev er be noticed
(outcome 2 of Figure 6).

When the faulty bit is read by the system or one of its components, the soft error
becomes effective.

The effective soft error can pass unnoticed by the upper layers of the component
reading it if this bit is protected with detection and correction (outcome 3 of Figure 6).
This is the case of memories with error-correcting codes (ECC) for example. A common
type of memory device that uses ECC to improve its reliability is the dynamic random
access memories (DRAM), more vulnerable to transient faults because of i ts structural

Faulty bit is
read?

Bit has error
protection?

Latent error
will never be

noticed

Affects
program

outcome?

Effective error
corrected; not

a problem

Affects
program

outcome?

Effective error
not noticed;

not a problem

SDC
(Silent
Data

Corruption)

False DUE
(Detected

Unrecoverable
Error)

True DUE
(Detected

Unrecoverable
Error)

Energetic
particle capable

of flipping a
bit?

No fault

Color Classification

Fault

Latent error

Effective error

Failure

YES

YESNO NOYES

NO

NO

NO

YES

Detection only

Detection &
correction

1

2

3

False DUEFalse DUE
4

YES

5
Effective error Effective error Effective error Effective error

6
YESYES

7

Chapter 2 – Transient Faults

30

simplicity. They have extra memory bits that can be used by memory controllers to
record parity of bit segments.

If this faulty bit has only error detection, it produces a state called detected
unrecoverable error (DUE), avoiding the generation of incorrect outputs. In the case of a
DUE, the system or component that read the faulty bit knows that it has an error and has
no mechanism to correct it. The outcome 4 of Figure 6 represents a situation when the
soft error doesn’t affect the result generated by a program running on the system, a False
DUE. If the error detected doesn’t affect the program outcome, as the detection process
add some overhead on the system, it might be avoided to improve systems performance.

But if the soft error affects the result generated by a program running on the
system (outcome 5 of Figure 6), the system have to inform its upper layer (probably the
operating system) of the effective error, avoiding the program to continue in this
condition. As this error truly affects the program outcome, it is called True DUE. When
the faulty bit is allocated to an application, usually the operating system produces the
application interruption by an abnormal behavior (process kill), but the rest of the
operating system and the other applications on it keeps running normally. In the case of
this faulty bit has been allocated to the operating system, it might cause a situation
where the unrecoverable part of the system affected can only be restarted by a system
initialization (system kill), interrupting the operation of all applications running on it.

The major risk when a computer system is affected by a transient fault is when the
soft error has occurred in a component without protection. The faulty bit is read and can
be used by the program running on the system.

The outcome 6 of Figure 6 represents a situation when the undetected soft error
doesn’t affect the result generated by a program running on the system.

If the system uses the faulty bit in its operation without knowing that it was
changed, this system will have a silent data corruption (SDC), the most dangerous
outcome of a transient fault. The SDC (outcome 7 of Figure 6) will be processed by the
application running on the system or by the operating system and might cause
unpredicted consequences on the overall system behavior.

Currently, the industry specifies soft error rates of its components in terms of
SDC and DUE numbers. The total SER of a system or component can be expressed as a
sum of its SDC FIT and DUE FIT [Mukherjee, 2008] as shown in Table 1 previously
explained.

Chapter 2 – Transient Faults

31

2.5 Possible outcomes of a soft error
There are four main possible outcomes of soft errors in terms of DUE and SDC,

as shown i n Figure 7: a n i nvalid i nstruction exc eption [Lesiak, G awkowski and
Sosnowski, 2007], a parity er ror du ring t he r ead cy cle [Lesiak, G awkowski and
Sosnowski, 200 7], a memory ac cess v iolation [Lesiak, G awkowski and Sosnowski,
2007] and a change on a v alue produced by som e system co mponent or program
calculation [Shivakumar et al., 2002].

Figure 7 – Possible outcomes of soft errors.

2.5.1 Invalid instruction exception
An invalid instruction exception may occur when the processor cannot operate the

data f or a given instruction. For e xample, in a division of two num eric values, the
denominator ca nnot be equal t o z ero. This situation w ill throw a Division B y Zero
exception, usually aborting the program execution.

In t he example above, the denominator da ta might not be originally zero, but a
transient f ault m ay cor rupt t he denominator da ta, changing i t to z ero, t hrowing t he
invalid instruction exception.

In r are cases, a t ransient f ault m ay al so corrupt the instruction cod e to a
combination t hat t he processor ar chitecture cannot r ecognize, becoming unabl e t o
execute it.

Invalid
instruction
exception

Parity error
Memory
access

violation

Can generate
a “retry”

condition

Can generate
discard of a

cache

Can cause a fail-stop condition

Change on a result of an operation

Most dangerous!

Can lead to unpredictable results

SDC
(Silent Data Corruption)

True DUE
(Detected Unrecoverable Error)

Change in an
instruction

Change in
data

Change in an
address

Chapter 2 – Transient Faults

32

2.5.2 Parity error during read cycle
A parity error generated by a transient fault may occur on memory devices (main

computer memory or caches) or in buses lines.

It is common that buses lines that implement parity check in transmissions also
implement the possibility of the retransmission of the affected portion of data. The effect
of this situation on computer systems is a small delay in the transmission, but the system
keeps running normally.

When a soft error affects a memory position and the component affected uses
parity to detect such situation, the consequences of this error depends on where in the
memory hierarchy is the affected portion of memory.

If the parity error is in a portion of the main memory of the computer system it
might be possible to recover it in the following cases:

1. The operating system uses the virtual memory resources of the processor
and has copy of the affected portion of the memory stored in the swap
file. If the portion affected didn’t have been changed previously by
normal computation, the operating system can recover the affected page
from the swap file, restoring the previously known state of it.

2. The affected portion of the memory is a code segment of an application
and there are binaries of the application in another device. In this case, is
possible to the operating system read again the application’s binaries on
the other device and restore the affected portion of the memory.

If there is no source of a possible copy of the affected portion of the memory, the
operating system has two options: stop the operation of the application or raise an error
to the application, allowing the application try to recover itself.

When the parity error is detected in a cache memory, the possible scenarios are
very similar to the previously explained when affected the main memory: if the portion
of the cache memory affected didn’t have been changed previously by normal
computation, the memory controller can ask for a new copy of it to the main memory (or
to the upper cache level) and restore the previously known state of it.

But, in the case of this portion of the cache memory has been changed by normal
computation, the operating system may stop the operation of the application or raise an
error.

Chapter 2 – Transient Faults

33

2.5.3 Memory access violation
A soft error affecting a memory pointer can make an application try to get or put

data, or even to jump into a memory space that isn’t valid in the application’s scope.
Modern processors have protection against this kind of behavior, raising access violation
errors to the operating system.

Once noticed that an application is trying to access a memory location that doesn’t
exist or is of another process, the operating system stop the application execution
avoiding propagating the error to other parts of the system.

2.5.4 Change on a value
A single faulty bit is capable of generating a soft error that affect a component

operation by changing its expected result into an unexpected one.

This is the case of errors affecting internal processor components, for example.
Registers, pipeline, arithmetical logic unit (ALU), floating point unit (FPU), and almost
all components of a modern processor have some kind of memory portion (to store
intermediary results of its operations) and have some kind of buses to communicate to
the other processor components. All these auxiliary memories and internal buses are
possible targets of a transient fault.

A soft error in an internal component of a processor may pass unnoticed in
system’s operation if the component didn’t have protection and if its result didn’t violate
the application address-space and didn’t produce an invalid operation.

The SDC, the most common effect in this kind of outcome of soft errors, won’t
stop any application execution and might only be noticed by the users if the final result
generated by the application differs significantly from the usual result.

2.6 Protection Mechanisms and Efficiency
Measuring the amount of SDC a program execution might produce once running

over a given processor architecture in presence of transient faults is possible to evaluate
the program’s robustness against transient faults. As lower the amount of corruptions
found in the program execution, more we can recognize it robustness.

However, in [Reis et al., 2005] the authors evaluated some software based fault
detection/tolerance mechanisms and noticed the overhead in the program execution time
could be prohibitive.

Chapter 2 – Transient Faults

34

So, [Reis et al., 2005] proposed a new metric, the Mean Work to Failure
(MWTF), that consider balance between the benefit of the improvement in the program
robustness taking into account the overhead produced by the improvement mechanism.

Chapter 3
Fault Injection

Fault injection is mostly used for system dependability evaluation [Sosnowski et
al., 2006]. It was by the need to validate dependability properties of the fault tolerant
systems that the research about fault injection grew in importance [Kanawati, Kanawati
and Abraham, 1995].

A dependable computer system is capable of detect errors due to hardware or
software faults, isolate the errors cause (when possible) and recover from them
[Kanawati, Kanawati and Abraham, 1995]. In the case of the soft errors, there is no need
to isolate the errors cause because it is a transient situation that happened sometime
before the detection and probably won’t happen again the same way.

To obtain more confidence of the dependable properties of a system before its
deployment is important to do a validation by testing the system in the presence of
faults.

As the faults expected by the system dependability properties may not happen
often, it is a common practice to put the system under testing (SUT) in an environment
with fault injection campaigns. With fault injection, the system under test can be
evaluated in faulty conditions even if the real fault doesn’t happen.

A fault injection campaign consists of a set of experiments on the target system
with specific workloads, injecting a specific fault (or set of faults) at specific trigger
conditions. The target system behavior can be monitored and information (such as
results of application execution and operating system logs) can be recorded as
comprehensively as necessary and possible, to understand and evaluate the effects of the
injected faults [Fidalgo, Alves and Ferreira, 2006].

3.1 Fault Injection Techniques
Fault injections could be hardware-based or software-based and there are four

major techniques for fault injection as shown in Figure 8: physical fault injection

Chapter 3 – Fault Injection

36

software simulation, hardware emulation and fault emulation [Yu, G arzaran a nd Sn ir,
2009].

Figure 8 – Fault injection environments.

3.1.1 Physical Fault Injection
In the beginning of the studies about transient fault using fault injection, because

of the nature of the problem relative to energy particles striking processor and memories,
the approach to do the fault injection was using physical devices.

In the case of physical fault injection, the SUT is the actual tested fully functional
computer with its operating system and applications.

The f ault injection dev ice co uld be an electronic device that g enerates
disturbances into p rocessor or m emory pi ns or a device t hat e xposes t he SUT t o
radiation.

The problem with physical fault i njection i s that i t i s very unpredictable and
probably untraceable. Once made an injection, it is very difficult to verify what memory
or p art o f the p rocessor w as a ffected. A lso, the nec essary i nfrastructure to deal w ith
physical fault injection (like a radiation generator device) isn’t easy to obtain.

Even unusual, there is space for physical fault injection campaigns. Not only to
evaluate t he c omputer system robustness i n very hostile env ironments, l ike t he outer

Hardware based Software based

Physical fault
injection

Software
simulation

Hardware
emulation

Fault emulation

SUT is the real
hardware

SUT is an
engineering
prototype

SUT is
simulated

Forcing
voltage levels

at the chip
boundaries

Bombarding
with

radioactive
particles

SWIFI
(Software

Implemented
Fault Injection)

Debugging
capabilities of
hardware/OS

VHDL
SimpleScalar

Virtualization
or full system

simulation

Mostly of
architectural

research

SUT is the real
hardware

Chapter 3 – Fault Injection

37

space, but also to test how a computer system device will behave against radiation and in
non-optimal environmental operation conditions.

For example, IBM has a published test with its Power 6 processor soft error
tolerance using proton irradiation [Kudva et al., 2007]. In this analysis, the authors have
listed the architectural characteristics of IBM Power 6 processor and how those
characteristics affect the robustness of the processor against soft errors. The faults were
injected using a proton beam and observing its effects using an architectural verification
program.

Another example is the work performed in [Constantinescu, 2005] answering the
question: “Is silent data corruption a real threat?” In their work, the author tested ten
prototypes systems with operating temperature varying from -10ºC to 70ºC, and with
nominal voltage from -10% to +10% of the nominal voltage. The results were
impressive, with 9 of 10 of the tested systems presenting SDC.

Also, when testing the systems with electrostatic discharging [Constantinescu,
2005] the author achieved a corrupted result provided by a machine in a simple
operation of on-line adding, removing or replacing a hot-swappable disk drive.

3.1.2 Fault Emulation
In the case of the fault emulation, as in the case of the physical fault injection, the

SUT is a fully functional computer system.

Using processor and operating system debugging capabilities, the fault injector,
usually a concurrently running software specially developed to this purpose, stops the
execution of the application being tested, do the fault injection by changing processor
registers or the memory of the process running the tested application and then let the
process continue its operation.

One of the problems with the fault emulation approach is that the fault injector is
a concurrent process of the tested application. Because of this, it indirectly affects the
application being tested. As more complicated is the fault injection condition, tested
frequently by the fault injector to assure the correct moment to do the fault injection,
more influence into the tested application it generates.

A common approach using fault emulation is grid computing fault tolerance
research, where in major cases the fault injection is done by killing a working process
after some time. A simple operation (killing a process) with a simple trigger (after some
time of application execution) may not influence the application behavior significantly,
but limit the scope of the fault injection in transient faults studies.

For example, FAIL-FCI is a fault injection architecture designed for testing fault
tolerance in grid computing [Hoarau, Tixeuil and Vauchelles, 2007]. It is composed by

Chapter 3 – Fault Injection

38

three important parts: a compiler, which interprets the fault injection scenario and
generates a fault injection configuration file; a library, which distributes the fault
injection configuration file into the grid nodes; a daemon that interprets the fault
injection configuration file and compiles a fault injection tool specific for each grid
node. The fault injection scenario is described using FAIL, a language for fault
description capable of expressing complex and realistic fault scenarios.

3.1.3 Hardware Emulation
Fault injection using hardware emulation is used when testing changes into

processor and memory hierarchy architecture.

In this case, an emulator of the desired architecture is used, and the SUT is a
partial implementation of a computer system, often without operating system, because
those emulators don’t perform to do full system emulation with actual operating system
and actual applications.

Emulators based on VHDL models are used to propose techniques to let
processors and memory more robust against transient faults by changes in their internal
architectures. The experiments using those emulators and fault injection also often use
precompiled benchmark applications because of the difficulty to emulate an
environment capable of compile actual applications.

For example, MEPHISTO is an environment for fault tolerance experiments based
on VHDL hardware description language [Jenn et al., 1994]. MEPHISTO was designed
to estimate the coverage of fault tolerance mechanisms, to investigate different
mechanisms for mapping results from one level of abstraction to another and to validate
fault and error models applied during fault injection experiments. It uses changes into
the VHDL model replacing some components to fault injectable ones and interacts with
the VHDL simulator to apply the fault injection.

3.1.4 Software Simulation
The software simulation approach uses full system simulators to simulate a fully

featured actual computer system with all its components executing actual operating
systems and applications.

In this case, the SUT is a simulated computer system with its operating system
and applications.

As those full system simulators are fast enough to allow interactive execution, it is
possible to use a simulator to describe the SUT desired, install an actual operating
system (like Linux or Windows) into this simulated computer, install applications and
frameworks into this operating system.

Chapter 3 – Fault Injection

39

As the fault injection using software simulation is done outside of the SUT, it
doesn’t affect the application being tested. The fault injector can stop the simulation,
evaluate the trigger condition, operate a fault injection and then restart the simulation.
For the simulated computer system is like the time didn’t stopped.

Dealing with a full system simulator implies that the fault injector can use lots of
information to evaluate fault trigger conditions: from processor registers state to
memory hierarchy events, the fault injector can even do a very detailed depuration of the
fault injection conditions because it won’t affect the tested application at all.

A major step toward the development of fault-tolerant computer systems is the
validation of the dependability properties of these systems. Fault/error injection has been
recognized as a powerful approach to validate the fault tolerance mechanisms of a
system and to obtain statistics on parameters such as coverages and latencies.

After describing a methodology for flexible software based fault and error
injection, [Kanawati, Kanawati and Abraham, 1995] presented a tool called FERRARI,
that incorporates a technique to emulate transient errors and permanent faults in software
that were described in detail. The FERRARI tool was Unix based and didn’t used any
simulator, allowing the fault injection in actual programs running over the operating
system.

Designed to be modular and portable, NFTAPE [Stott et al., 2000] provided
mechanisms for fault-injection, triggering injections, producing workloads, detecting
errors, and logging results, but, unfortunately, it was also very intrusive and did not scale
well for large workloads.

Intending to be able to perform precise fault injections in current HPC mostly
used processor architecture, [Gramacho, 2009] developed an extension of HP’s and
AMD joint full system simulation environment, named COTSon [Argollo et al., 2009],
that allowed the injection of faults that change a single bit in processor registers and
memory of a simulated computer. With the developed fault injection system the authors
were able to evaluate the effects of single bit flip transient faults in an application,
analyze an application robustness against single bit flip transient faults and validate
some fault detection mechanism and strategies.

Chapter 4
Evaluating a Program Robustness

Experimental methods of injecting transient faults into a program during its
execution were proposed to test detection and protection mechanisms against transient
faults. On those methods, the program being evaluated is executed in an environment
able to inject a fault in a form of a bit flip on a program architectural state (usually a bit
in a processor register). At the end of the program execution, its result is evaluated to
check the effect caused by the fault into the execution.

The program architectural bits changed by the fault injections on executions
where the program finished correctly and presented the same result of a fault free
execution were classified as unACE (unnecessary for an Architecturally Correct
Execution).

On the other hand, the program architectural bits changed by the fault injections
on executions where the program didn’t finished correctly, or presented a result different
of the fault free execution one, were classified as ACE (necessary for an Architecturally
Correct Execution).

If the program being evaluated has some kind of fault detection mechanism
against transient faults the program architectural bits changed may trigger the fault
detection mechanism and lead the program to a fail stop avoiding the propagation of the
fault effect in the program execution. On those cases, instead of being classified as ACE,
as the execution finished doing a fail stop and noticed that a fault happened the program
architectural bit changed is classified as DUE (Detected Unrecoverable Error).

As changes in the ACE program architectural bits lead to an abnormal program
behavior and also could lead to a result different of the obtained by a fault-free
execution, it is common to classify those bits as SDC (Silent Data Corruption).

To evaluate how reliable a program is in presence of transient faults with a
sufficient large amount of executions with fault injection we can divide the amount of
executions that didn’t failed (those in which the program architectural bit changed was
classified as unACE or DUE) by total amount of executions with fault injection

Chapter 4 – Evaluating a Program Robustness

42

performed. Also, it is important to have a good distribution in which program
architectural bit is changed on each execution, since it is randomly chosen.

4.1 About the Amount of Executions
The authors of [Nicolescu, Savaria and Velazco, 2003] proposed a soft error

detection mechanism based on source code transformation rules. The new program
(compiled with the source code transformed with the fault detection mechanism) has the
same functionality as the original program but able to detect bit-flips in memory and
processor registers during an execution. The transformation is done using a tool made by
the authors called C2C Translator.

Evaluating programs with and without their fault detection mechanism, the
authors of [Nicolescu, Savaria and Velazco, 2003] perform a set of fault injection
experiments where on each execution a bit is flipped in processor registers, program
code memory region or program data memory region.

Each execution can be classified as: effect-less if the injected fault didn’t affect
the program behavior; software detection if the fault detection mechanism was triggered
by the injected fault; hardware detection if the fault injected triggered an hardware fault
detection mechanism; loss sequence if the program triggered the time-out condition of
an execution (the program was trapped in an infinite loop); incorrect answer if the
injected fault wasn’t detected and the program produced a result different of the
expected.

In order to obtain realistic results, the authors of [Nicolescu, Savaria and Velazco,
2003] scaled the amount of executions with fault injection based on the total amount of
processor cycles needed to execute the program chosen to be evaluated.

A total of 15208 executions with fault injection were performed with the original
program (without the proposed fault detection mechanism): 8000 to evaluate fails in
processor registers (0.65% of the total amount of cycles); 2208 to evaluate program
instructions (two executions per program instruction); and 5000 to evaluate program
data region (approximately 2.5 executions per byte used by the program).

With the program modified to detect soft errors the authors of [Nicolescu, Savaria
and Velazco, 2003] performed 37520 executions with fault injection: 37520 to evaluate
fails in processor registers (also 0.65% of the total amount of cycles); 8000 to evaluate
program instructions (also two executions per program instruction); and 10000 to
evaluate program data region (also approximately 2.5 executions per byte used by the
program).

Chapter 4 – Evaluating a Program Robustness

43

A total of 52728 executions with fault injection were performed in [Nicolescu,
Savaria and Velazco, 2003] to evaluate two programs (the original one and the changed
to detect soft errors), 26364 executions per program on average. The authors gave no
information about how many time was spent on executions.

In Error Detection by Duplicated Instructions (EDDI) [Oh, Shirvani and
McCluskey, 2002], the authors increased the robustness of programs during compilation,
copying instructions but using different processor registers and adding verification for
errors by comparing the value of the original processor register used by the program
with the value of the processor register used in the new generated instruction. The
overhead added this fault detection mechanism by the new instructions and verifications
keep below the double of the time spent by the original program to execute by taking
advantage on Instruction Level Parallelism (ILP) characteristics of superscalar
processors. So, the time spend by the program with the fault detection mechanism is
often less than two times the original program execution time.

The authors ensure that EDDI can detect errors in functional units, in control logic
or in communication buses with the processor, even being designed to detect single bit
flip in memory.

By using fault injection on code segment, the authors of [Oh, Shirvani and
McCluskey, 2002] used a simulator to execute eight benchmarks, 500 times each. On
each simulation a fault was injected at a randomly chosen time.

On the same work, the authors of [Oh, Shirvani and McCluskey, 2002] evaluated
a fault detection mechanism based on duplication at the application source code using
two different techniques. For each source code based fault detection mechanism, the
authors had to run the evaluated benchmarks with more simulations.

Executing a total of four evaluations (the original program, the program with
EDDI and the program with each of the source code based fault detection mechanism)
per each of the eight benchmarks evaluated and executing 500 simulations with fault
injection per evaluation, the authors of [Oh, Shirvani and McCluskey, 2002] have done a
total of 16000 simulations to accomplish their work. Again, the authors gave no
information about how many time was spent on simulations.

On Software-Controlled Fault Tolerance [Reis et al., 2005], the authors present a
set of transient fault detection techniques based on software and also hybrid (based on
software and hardware). Each of the proposed techniques has a different cost/benefit
relation by improving robustness or performance.

The first technique presented by [Reis et al., 2005] if SWIFT (Software
Implemented Fault Tolerance) which increases an application robustness during
compilation time. SWIFT transformations of program insert redundant code using

Chapter 4 – Evaluating a Program Robustness

44

different processor registers and also insert validations only before flow control
instructions and writes on memory.

The other techniques presented on [Reis et al., 2005] are all hybrid. The set of
those hybrid techniques is called CRAFT (Compiler-Assisted Fault Tolerance). In
general, they increase the robustness even more than SWIFT and also improve the
performance of the program in comparison with software-only fault tolerance
techniques. CRAFT techniques are based on SWIFT and also redundant multi thread
(RMT) fault tolerance works.

The authors of [Reis et al., 2005] noticed that it was possible to adjust the
frequency of verifications used on both SWIFT and CRAFT, compromising a little of
robustness by gaining on program performance. To evaluate this balance (robustness per
performance), the authors started to fine grainy control the type of protection used and
the amount of protection inserted and used Mean Work to Failure (MWTF) metric to
compare the results. So, profiles were created to each application in order to define
where and how to apply a fault tolerance technique and to activate the redundant
execution. To this profiling technique they called PROFiT (Profile-Guided Fault
Tolerance).

To evaluate application robustness with and without the proposed fault tolerance
mechanisms, the authors of [Reis et al., 2005] executed fault injection experiments in a
simulator executing all programs to the end (they didn’t use partial execution and
verification of intermediate program states) using functional simulator and choosing
when and where to inject the fault randomly. The fault injection was done by flipping a
single bit. The authors classified fault injection simulation result in three ways: unACE
if the flipped bit wasn’t necessary to the correct architectural execution; DUE if the
flipped bit triggered a fault detection mechanism; or SDC it the flipped bit generated a
silence data corruption.

The authors of [Reis et al., 2005] used one benchmark to evaluate how many fault
injections should be necessary to have a significant statistical approximation of one
program evaluation. They executed 5000 fault injection simulations with the selected
benchmark and observed that the confidence interval of the average of the cases
classified as SDC was ±2.0% after 946 simulations, ±1.5% after 1650 simulations and
±1.0% after 3875 simulations. As they noticed that the SDC average stabilized fast they
assumed that 1000 fault injection simulations would be enough the evaluate a program
robustness with each fault tolerance technique, and this number could be increased to
achieve greater precision.

In a total of 10 sets of experiments (without fault tolerance, three variations of
SWIFT, three variations of CRAFT and three variations of PROFiT), the authors of
[Reis et al., 2005] evaluated the robustness of a subset of benchmarks from SPEC CPU

Chapter 4 – Evaluating a Program Robustness

45

2000, SPEC CPUINT95 and MediaBench by simulating 5000 executions with fault
injection (except for two SWIFT variations that used 1000 simulations). In each of
504000 simulated executions with fault injection a randomly chosen bit of one of 127
integer processor registers of IA64 processor architecture was flipped.

Because of the use of a simulator to execute de program with a fault injection, the
authors of [Reis et al., 2005] could save some simulation time on the executions where
the bit flipped was classified as unACE. On those cases, the simulation could be
interrupted when the simulator observed that the flipped bit was re-written with results
from processor logical unit or with a read operation before having it content used.

Continuing their research in fault tolerance for transient faults, the same authors
of [Reis et al., 2005] proposed Spot [Reis et al., 2006] a technique to dynamically insert
redundant instructions to detect errors generated by transient faults. This dynamically
insertion was made in runtime using instrumentation.

Besides using a different architecture from previous work (in [Reis et al., 2006]
they use a Intel Pentium D instead of Itanium and protect only the eight general purpose
32 bit registers of the architecture), in the new work the authors didn’t use simulators
anymore. All the analysis and fault injection work is done using an instrumentation tool.

By evaluating 16 benchmarks, the authors of [Reis et al., 2006] executed a total of
1.03 million fault injections to obtain their results (keeping 5000 executions with fault
injection per benchmark and configuration evaluated).

In ESoftCheck [Yu, Garzaran and Snir, 2009], the authors created a fault
detection mechanism based on SWIFT that analyses a program during compilation and
remove those verifications (with redundant code) that it assume that are unnecessary to
program robustness. In this way, they achieve with a defined method (there are no need
of profiling as in PROFiT) a program with high protection level and low performance
overhead.

To evaluate their results the authors of [Yu, Garzaran and Snir, 2009] have used
the Intel Pentium 4 processor and executed 2000 fault injection experiments per
benchmark evaluated (in a total of 12) and configuration evaluated (in a total of six).
The program evaluated was executed until the end on each of 144000 program
executions, changing a randomly chosen bit of a randomly chosen register at a randomly
chosen execution time. By the end of each execution, the program output was evaluated
to classify the result and evaluate de program robustness.

In all related work studied, the execution of a program in a transient fault injection
environment was classified using basically three labels: unACE, DUE and SDC. To
compute a program robustness using fault injection we only need to divide the amount
of unACE cases added with the DUE cases by the amount of executions made in the

Chapter 4 – Evaluating a Program Robustness

46

experiment. If all executions are classified as SDC, the robustness will be zero (the
minimal robustness allowed). On the other hand, if all executions are classified as
unACE or DUE, the robustness will be one (the maximum robustness allowed).

Figure 9 – Amount of executions with fault injections made in related work presented.

As shown in Figure 9, the robustness evaluation method using program
executions with fault injection need a sufficient large amount of executions varying the
fault conditions (time, register and bit) to have a representative statistical approximation
of the results.

Also, we know that by using a fault injection based evaluation of robustness, the
amount of executions to evaluate a program will affect the precision of robustness
obtained [Reis et al., 2005].

Finally, using simulators or dynamically instrumentation to inject fault on every
program execution will increase time needed on each execution in comparison with the
time spent by the program running directly in the architecture without instrumentation.

The Program Vulnerability Factor (PVF) metric [Sridharan and Kaeli, 2008] was
evaluated in [Sridharan and Kaeli, 2009] and the authors showed that PVF could be used
as a software only based metric for measuring the effects of transient faults into program
executions instead of using Architectural Vulnerability Factor (AVF) proposed in
[Mukherjee et al., 2003].

PVF [Sridharan and Kaeli, 2008] and robustness against transient faults
[Gramacho, Rexachs and Luque, 2011] are very similar concepts, but opposites by
definition. Where PVF quantifies the amount of vulnerabilities of a program, robustness
quantifies the portions of program executions that cannot be affected by a transient fault.
As metrics, a program robustness is equivalent to the inverse of the same program PVF
as show in Equation 4.

Chapter 4 – Evaluating a Program Robustness

47

Equation 4 – Robustness and PVF relation.

Robustness =
1

PVF

However, the PVF evaluation presented by the authors of [Sridharan and Kaeli,
2009] used simulators and samples of program executions, still estimating part of the
PVF for the evaluated programs.

Evaluating the PVF concept, the authors of [Döbel, Schirmeier and Engel, 2013]
found some limitations with the implementation of practical tools to calculate a program
PVF. Because of these limitations, they only evaluated one program compiled for the
x86 processor architecture with about 3.7 millions of instructions executed.

However, the comparison of the results of their limited PVF/robustness evaluation
with an exhaustive fault injection campaign demonstrated that these software based
concepts may serve as a starting point for estimating the vulnerability of programs
against transient faults.

In [Hari et al., 2012] and [Hari, Adve and Naeimi, 2012] the authors present a
comprehensive work about pruning techniques to reduce the amount of fault injections
experiments needed to evaluate a program robustness against transient faults.

Although using fault injection in very specific portions of the evaluated programs,
their experimental evaluation presented some limitations by not taking into account
dynamic linked libraries or float point registers.

4.2 A Sample Program Evaluation
In order to provide a glimpse of what is to evaluate a program robustness against

transient faults using fault injections we prepared a simple example.

The processor architecture we choose for this simple example was the 65C02,
primarily designed as a CMOS replacement for the 6502 processor and best known by
powering the Apple IIc and later the Apple IIe computer systems [Eyes and Lichty,
1992].

As shown in Table 2, the 65C02 processor have one 8-bit accumulator register
(A), two 8-bit index registers (X and Y), seven one-bit processor flags (Carry Flag, Zero
Flag, Interrupt Disable, Decimal Mode, Break Command, Overflow Flag and Negative
Flag), and one 8-bit stack pointer (SP) that we consider in our evaluation.

Chapter 4 – Evaluating a Program Robustness

48

Table 2 – 65C02 processor registers and their sizes.

4.2.1 Exponentiation Program
We developed a simple exponentiation program with only 21 program

instructions in its source code shown in Figure 10.
1 .ORG $0200 LDX exponent ; Load the exponent operand into X

2 BEQ PZERO ; If it is zero, the result will be one

3 DEX

4 LDA base ; Load the base operand into accumulator

5 BEQ ZERO ; If it is zero, the result will be zero

6 STA result ; Store the accumulator into the result

7 MULT1: STA mult ; Store the accumulator for multiplication

8 LDY base ; Load the base operand into Y

9 DEY

10 MULT2: CLC ; Clear carry

11 ADC mult ; Add the mult. result to the accumulator

12 DEY

13 BNE MULT2 ; Jump if is still multiplying

14 DEX ; Decrement X register (exponent)

15 BNE MULT1 ; Jump if is still operating the exponentiation

16 JMP FINISH

17 PZERO: LDA #$01 ; The result is 1 (zero on exponent operand)

18 JMP FINISH

19 ZERO: LDA #$00 ; The result is 0 (zero on base operand)

20 FINISH: STA result ; Store the result in byte labeled result

21 BRK ; Finish running the program

22 base: .DB $05 ; Base operand

23 exponent: .DB $03 ; Exponent operant

24 result: .DB $00 ; Result of the operation

25 mult: .DB $00 ; Auxiliary variable to multiplication

Figure 10 – Exponentiation program source code.

We executed the exponentiation program in a 65C02 simulator. It executed a total
of 51 instructions to perform the exponentiation with the input data of 5 as base operand
and 3 as exponent operand. The expected result of 125 was correctly stored into the
assigned memory location.

The fault injection space for the exponentiation program running in the 65C02
processor architecture was 1989 based on the amount of instructions executed and the
amount of bits on all registers evaluated for the processor architecture.

Register

A
c
c
u
m
u
l
a
t
o
r

X

I
n
d
e
x

Y

I
n
d
e
x

S
t
a
c
k

P
o
i
n
t
e
r

C
a
r
r
y

F
l
a
g

Z
e
r
o

F
l
a
g

I
n
t
e
r
r
u
p
t

D
i
s
a
b
l
e

D
e
c
i
m
a
l

M
o
d
e

B
r
e
a
k

C
o
m
m
a
n
d

O
v
e
r
f
l
o
w

F
l
a
g

N
e
g
a
t
i
v
e

F
l
a
g

Total

Size (in bits) 8 8 8 8 1 1 1 1 1 1 1 39

Chapter 4 – Evaluating a Program Robustness

49

Equation 5 – Fault injection space for the exponentiation program.

𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 = (𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑏𝑖𝑡𝑠)
𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 = (51 × 39) = 1989

With this small amount of executions with fault injection it was possible to
perform an exhaustive fault injection campaign to evaluate the exponentiation program
robustness against transient faults. Figure 11 presents a map with all 39 processor
registers bits and all 51 program instructions traced and the respective result of the
execution with fault injection.

Figure 11 – Exponentiation program fault injection results map.

Figure 12 shows the robustness obtained in this exhaustive fault injection
campaign. Even classifying the results as ok (the program finished and presented the
correct result), SDC (the program finished but presented an incorrect result) and loop

C Z I D B V N

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0

1 O S O O O

2 O O O O O O O O S L S S S L L L O O O O O O O O O O O O O O O O O S O S O O O

3 O O O O O O O O S L S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

4 O O O O O O O O S L S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

5 S S S S S S S S S L S S S L L L O O O O O O O O O O O O O O O O O S O S O O O

6 S S S S S S S S S L S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

7 S S S S S S S S S L S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

8 S S S S S S S S S L S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

9 S S S S S S S S S L S S S L L L S S L S S S S L O O O O O O O O O O O S O O O

10 S S S S S S S S S L S S S L L L S S L S S S S L O O O O O O O O O O O S O O O

11 S S S S S S S S S L S S S L L L S S L S S S S L O O O O O O O O S O O S O O O

12 S S S S S S S S S L S S S L L L S S L S S S S L O O O O O O O O O O O S O O O

13 S S S S S S S S S L S S S L L L S S S S S S S L O O O O O O O O O S O S O O O

14 S S S S S S S S S L S S S L L L S S S S S S S L O O O O O O O O O O O S O O O

15 S S S S S S S S S L S S S L L L S S S S S S S L O O O O O O O O S O O S O O O

16 S S S S S S S S S L S S S L L L S S S S S S S L O O O O O O O O O O O S O O O

17 S S S S S S S S S L S S S L L L S L S S S S S L O O O O O O O O O S O S O O O

18 S S S S S S S S S L S S S L L L S L S S S S S L O O O O O O O O O O O S O O O

19 S S S S S S S S S L S S S L L L S L S S S S S L O O O O O O O O S O O S O O O

20 S S S S S S S S S L S S S L L L S L S S S S S L O O O O O O O O O O O S O O O

21 S S S S S S S S S L S S S L L L L S S S S S S L O O O O O O O O O S O S O O O

22 S S S S S S S S S L S S S L L L L S S S S S S L O O O O O O O O O O O S O O O

23 S S S S S S S S S L S S S L L L L S S S S S S L O O O O O O O O S O O S O O O

24 S S S S S S S S S L S S S L L L L S S S S S S L O O O O O O O O O O O S O O O

25 S S S S S S S S S L S S S L L L O O O O O O O O O O O O O O O O O L O S O O O

26 S S S S S S S S S L S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

27 S S S S S S S S L S S S S L L L O O O O O O O O O O O O O O O O O S O S O O O

28 S S S S S S S S L S S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

29 S S S S S S S S L S S S S L L L O O O O O O O O O O O O O O O O O O O S O O O

30 S S S S S S S S L S S S S L L L S S L S S S S L O O O O O O O O O O O S O O O

31 S S S S S S S S L S S S S L L L S S L S S S S L O O O O O O O O O O O S O O O

32 S S S S S S S S L S S S S L L L S S L S S S S L O O O O O O O O S O O S O O O

33 S S S S S S S S L S S S S L L L S S L S S S S L O O O O O O O O O O O S O O O

34 S S S S S S S S L S S S S L L L S S S S S S S L O O O O O O O O O S O S O O O

35 S S S S S S S S L S S S S L L L S S S S S S S L O O O O O O O O O O O S O O O

36 S S S S S S S S L S S S S L L L S S S S S S S L O O O O O O O O S O O S O O O

37 S S S S S S S S L S S S S L L L S S S S S S S L O O O O O O O O O O O S O O O

38 S S S S S S S S L S S S S L L L S L S S S S S L O O O O O O O O O S O S O O O

39 S S S S S S S S L S S S S L L L S L S S S S S L O O O O O O O O O O O S O O O

40 S S S S S S S S L S S S S L L L S L S S S S S L O O O O O O O O S O O S O O O

41 S S S S S S S S L S S S S L L L S L S S S S S L O O O O O O O O O O O S O O O

42 S S S S S S S S L S S S S L L L L S S S S S S L O O O O O O O O O S O S O O O

43 S S S S S S S S L S S S S L L L L S S S S S S L O O O O O O O O O O O S O O O

44 S S S S S S S S L S S S S L L L L S S S S S S L O O O O O O O O S O O S O O O

45 S S S S S S S S L S S S S L L L L S S S S S S L O O O O O O O O O O O O O O O

46 S S S S S S S S L S S S S L L L O O O O O O O O O O O O O O O O O L O O O O O

47 S S S S S S S S L S S S S L L L O

48 S S S S S S S S O L O O O O O

49 S S S S S S S S O

50 S S S S S S S S O

51 O

O Ok S Silent Data Corruption L Loop

Registers/Bits

F
a
u
l
t

I
n
j
e
c
t
i
o
n

I
n
s
t
r
u
c
t
i
o
n

A X Y SP

Chapter 4 – Evaluating a Program Robustness

50

(the program didn’t finished after executing ten times the expected amount of
instructions), for the robustness evaluation both SDC and loop are considered as no
robust. In the left (Program) is the whole program (all registers) robustness. The
remaining columns present the robustness of each processor register evaluated.

Figure 12 – Robustness of exponentiation program using fault injection.

As three of the four 8-bits registers evaluated had a low robustness, the whole
program robustness scored below 50%. Also, the Decimal Mode flag, once changed by a
fault injection, altered the processor’s behavior in the arithmetic operations such as the
one presented in line 11 of the program source code in Figure 10.

4.2.2 Improved Exponentiation Program
In order to improve our exponentiation program robustness against transient faults

we changed its source code, protecting X index and Y index registers. As our protection
mechanism used the processor stack, the Stack Pointer became a problem from the
robustness point of view, and it was protected as well.

The protection mechanism was based on a simple software based duplication and
verification proposed by [Nicolescu, Savaria and Velazco, 2003].

Chapter 4 – Evaluating a Program Robustness

51

1 .ORG $0200 TSX ; Load the stack pointer into X

2 STX spcheck ; Store X into stack pointer check variable

3 LDX exponent ; Load the exponent into X register

4 LDY exponent ; Load the exponent into Y register

5 BEQ PZERO ; If it is zero, the result will be zero

6 DEX

7 DEY

8 LDA base ; Load the base operand into accumulator

9 BEQ ZERO ; If it is zero, the result will be zero

10 STA result ; Store the accumulator into the result

11 MULT1: PHX ; Push X register into stack

12 PHY ; Push Y register into stack

13 STX px ; Stores X register into px variable

14 CPY px ; Compare Y register with px variable

15 BNE FAULT ; Jump if X <> Y to FAULT

16 STA mult ; Store the accumulator for multiplication

17 LDY base ; Load the base operand into Y

18 LDX base ; Load the base operand into X

19 DEY

20 DEX

21 MULT2: CLC ; Clear carry

22 ADC mult ; Add the mult. result to the accumulator

23 DEY

24 DEX

25 BNE MULT2 ; Jump if is still multiplying

26 STX px ; Stores X register into px variable

27 CPY px ; Compare Y register with px variable

28 BNE FAULT ; Jump to FAULT if X <> Y

29 PLY ; Pull Y from stack

30 PLX ; Pull X from stack

31 DEX ; Decrement X register (exponent)

32 DEY ; Decrement Y register (exponent)

33 BNE MULT1 ; Jump if is still operating the exponentiation

34 STX px ; Stores X register into px variable

35 CPY px ; Compare Y register with px variable

36 BNE FAULT ; Jump to FAULT if X <> Y

37 TSX ; Load X with the original stack pointer

38 CPX spcheck ; Compare the original stack pointer with spcheck

39 BNE FAULT ; Jump to FAULT if X <> spcheck

40 JMP FINISH

41 PZERO: LDA #$01 ; The result is 1 (zero on exponent operand)

42 JMP FINISH

43 ZERO: LDA #$00 ; The result is 0 (zero on base operand)

44 FINISH: STA result ; Store the result in byte labeled result

45 BRK ; Finish running the program

46 FAULT: LDA #$FF ; Load the accumulator with the error code

47 STA result ; Store the error in byte labeled result

48 BRK ; Finish running the program by fault detection

49 base: .DB $05 ; Base operand

50 exponent: .DB $03 ; Exponent operant

51 result: .DB $00 ; Result of the operation

52 mult: .DB $00 ; Auxiliary variable to multiplication

53 px: .DB $00 ; Result of the operation

54 spcheck: .DB $00 ; Stack pointer check variable

Figure 13 – Improved exponentiation program source code.

We executed the improved exponentiation program in the 65C02 simulator. It
executed a total of 101 instructions to perform the exponentiation with the same input
data of 5 as base operand and 3 as exponent operand. The expected result of 125 was
correctly stored into the assigned memory location.

Chapter 4 – Evaluating a Program Robustness

52

The fault injection space for the improved exponentiation program running in the
65C02 processor architecture was 3939.

Equation 6 – Fault injection space for the improved exponentiation program.

𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 = (𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑠 𝑏𝑖𝑡𝑠)
𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 = (101 × 39) = 3939

With this still small amount of executions with fault injection it was possible to
perform an exhaustive fault injection campaign to evaluate the improved exponentiation
program robustness against transient faults. Figure 14 presents a map with all 39
processor registers bits and all 101 program instructions traced and the respective result
of the execution with fault injection.

Chapter 4 – Evaluating a Program Robustness

53

Figure 14 – Exponentiation program fault injection results map.

C Z I D B V N

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0

1 O D D D D D D D D O O O S O O O

2 O O O O O O O O D D D D D D D D O O O O O O O O D D D D D D D D O O O S O O O

3 O D D D D D D D D O O O S O O O

4 O O O O O O O O D D D D D D D D O O O O O O O O D D D D D D D D O O O S O O O

5 O O O O O O O O D O S O S O O O

6 O O O O O O O O D O O O S O O O

7 O O O O O O O O D O O O S O O O

8 O O O O O O O O D O O O S O O O

9 S S S S S S S S D O S O S O O O

10 S S S S S S S S D O O O S O O O

11 S S S S S S S S D O O O S O O O

12 S S S S S S S S D O O O S O O O

13 S S S S S S S S D O O O S O O O

14 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O S O O O

15 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O S O O O

16 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

17 S S S S S S S S D D D D D D D D O O O O O O O O D D D D D D D D O O O S O O O

18 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O S O O O

19 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

20 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

21 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O S O O O

22 S S S S S S S S D O O O S O O O

23 S S S S S S S S D O O O S O O O

24 S S S S S S S S D O O O S O O O

25 S S S S S S S S D S O O S O O O

26 S S S S S S S S D O O O S O O O

27 S S S S S S S S D O O O S O O O

28 S S S S S S S S D O S O S O O O

29 S S S S S S S S D O O O S O O O

30 S S S S S S S S D S O O S O O O

31 S S S S S S S S D O O O S O O O

32 S S S S S S S S D O O O S O O O

33 S S S S S S S S D O S O S O O O

34 S S S S S S S S D O O O S O O O

35 S S S S S S S S D S O O S O O O

36 S S S S S S S S D O O O S O O O

37 S S S S S S S S D O O O S O O O

38 S S S S S S S S D O S O S O O O

39 S S S S S S S S D O O O S O O O

40 S S S S S S S S D S O O S O O O

41 S S S S S S S S D O O O S O O O

42 S S S S S S S S D O O O S O O O

43 S S S S S S S S D O O O S O O O

44 S S S S S S S S D O O O S O O O

45 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O S O O O

46 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O S O O O

47 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

48 S S S S S S S S D D D D D D D D O O O O O O O O D D D D D D D D O O O S O O O

49 S S S S S S S S D O O O S O O O

50 S S S S S S S S D O O O S O O O

51 S S S S S S S S D O S O S O O O

52 S S S S S S S S D O O O S O O O

53 S S S S S S S S D O O O S O O O

54 S S S S S S S S D O O O S O O O

55 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O S O O O

56 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O S O O O

57 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

58 S S S S S S S S D D D D D D D D O O O O O O O O D D D D D D D D O O O S O O O

59 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O S O O O

60 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

61 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O S O O O

62 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O S O O O

63 S S S S S S S S D O O O S O O O

64 S S S S S S S S D O O O S O O O

65 S S S S S S S S D O O O S O O O

66 S S S S S S S S D S O O S O O O

67 S S S S S S S S D O O O S O O O

68 S S S S S S S S D O O O S O O O

69 S S S S S S S S D O S O S O O O

70 S S S S S S S S D O O O S O O O

71 S S S S S S S S D S O O S O O O

72 S S S S S S S S D O O O S O O O

73 S S S S S S S S D O O O S O O O

74 S S S S S S S S D O S O S O O O

75 S S S S S S S S D O O O S O O O

76 S S S S S S S S D S O O S O O O

77 S S S S S S S S D O O O S O O O

78 S S S S S S S S D O O O S O O O

79 S S S S S S S S D O S O S O O O

80 S S S S S S S S D O O O S O O O

81 S S S S S S S S D S O O S O O O

82 S S S S S S S S D O O O O O O O

83 S S S S S S S S D O O O O O O O

84 S S S S S S S S D O O O O O O O

85 S S S S S S S S D O O O O O O O

86 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O O O O O

87 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O O O O O

88 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O O O O O

89 S S S S S S S S D D D D D D D D O O O O O O O O D D D D D D D D O O O O O O O

90 S S S S S S S S D O O O O O O O

91 S S S S S S S S D O O O O O O O

92 S S S S S S S S D O O O O O O O

93 S S S S S S S S D O O O O O O O

94 S S S S S S S S O O O O O O O O D D D D D D D D D D D D D D D D O O O O O O O

95 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O D O O O O O

96 S S S S S S S S O O O O O O O O O O O O O O O O D D D D D D D D O O O O O O O

97 S S S S S S S S D D D D D D D D O

98 S S S S S S S S O D O O O O O

99 S S S S S S S S O

100 S S S S S S S S O

101 O

O Ok S Silent Data Corruption D Fault Detected

F
a
u
l
t

I
n
j
e
c
t
i
o
n

I
n
s
t
r
u
c
t
i
o
n

Registers/Bits

A X Y SP

Chapter 4 – Evaluating a Program Robustness

54

Figure 15 compares the robustness obtained in this exhaustive fault injection
campaign of the standard program and of the improved one.

Figure 15 – Robustness of improved exponentiation program.

It is evident the robustness improvement of the program, jumping from 46,91% to
78,83%. In fact, all registers presented an improvement in their respective robustness,
except for the Accumulator presenting a tiny (almost unnoticeable) decrease. All the
protected registers in the improved program version (X, Y and Stack Pointer) topped
100% of robustness.

4.3 The Randomness Effect on the Fault Injection
Let’s suppose now that we didn’t want to evaluate the improved version

exhaustively. How many executions with fault injection should be necessary to evaluate
the robustness against transient faults of our program?

We used the confidence interval suggested by [Reis et al., 2005] of 2% to limit the
amount of executions.

The next step was to choose a random algorithm and some random seeds to select
where to inject the faults.

The algorithm selected was the Mersenne Twister [Matsumoto and Nishimura,
1998], a pseudo random number generator optimized for use with Monte Carlo
simulations.

Chapter 4 – Evaluating a Program Robustness

55

We used ten random sequences to compare themselves in respect of the amount of
executions with a single fault injection until obtaining 2% of standard deviation of the
evaluated robustness and also in respect of the error from the evaluated robustness
exhaustively.

In Figure 16 we show that the more efficient seed we used (Seed5) was able to
obtain the robustness with only 948 executions. The less efficient seed in this set of
experiments (Seed3) took 3630 executions to obtain the robustness. The less efficient
seed needed almost four times the amount of executions of the more efficient one. We
cannot predict how efficient a random seed will be for our set of experiments before
running the executions with fault injection.

The evaluated robustness for each random seed used is show in Figure 17 and the
error of the evaluated robustness in comparison with the robustness obtained with an
exhaustive fault injection campaign is shown in Figure 18. There is no direct relation
between the amount of executions and the error obtained. We could think that a larger
amount of experiments will always generate a robustness with lower error, but there is
no evidence of this direct relation. The lower error we obtained (Seed1) wasn’t the one
that used the larger amount of executions (Seed3). Also, the larger error we obtained
(Seed2) wasn’t the one that used the smallest amount of executions (Seed5).

Chapter 4 – Evaluating a Program Robustness

56

Figure 16 – Amount of execution with fault injection until 2% of standard deviation.

Figure 17 – Robustness evaluated until 2% of standard deviation.

Figure 18 – Error in the evaluated robustness in comparison with the exhaustively obtained.

Chapter 4 – Evaluating a Program Robustness

57

Figure 19 – Robustness average until 2% of standard deviation.

Chapter 4 – Evaluating a Program Robustness

58

Chapter 5
The ARTFUL Methodology

To better understand the proposed methodology, it is necessary to take into
account the concept of robustness against transient faults as the ability of a program,
once in presence of a transient fault, to keep running and give a correct result when
finish or to stop the execution when a soft error is detected and inform about it.

We consider that a program running over an determined architecture will have a
robustness against transient faults represented as a number that can vary from zero (0%)
to one (100%), where zero implies no robustness at all (the program fails on every
possible cases) and one implies the best possible robustness (the program presents the
correct result or detects the transient fault on every possible cases).

5.1 ARTFUL Methodology
The main objective of the ARTFUL methodology is to provide a deterministic

way of evaluating a program robustness against transient faults when executed over a
given architecture.

Designed to be used as a replacement for the fault injection campaigns, the
ARTFUL methodology will provide definitions and formulas allowing a deterministic
calculation of a program robustness corresponding an exhaustively evaluated robustness
using fault injection campaigns.

In a robustness evaluation we classify the results of a single program execution
with a single bit flip fault injection as unACE (no noticeable effects), DUE (the fault
was detected by a fault detection mechanism) or SDC (the program failed to present a
correct result), the Equation 7 presents the formula for the whole experiment evaluation.

Equation 7 – Total tested bits of a robustness against transient faults evaluation.

𝑢𝑛𝐴𝐶𝐸 𝑏𝑖𝑡𝑠 + 𝐷𝑈𝐸 𝑏𝑖𝑡𝑠 + 𝑆𝐷𝐶 𝑏𝑖𝑡𝑠

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑡𝑠
= 1

Chapter 5 – The ARTFUL Methodology

60

The robustness can be calculated by separating the robust results (correct result or
fault detected) from the non-robust results (SDC). The Equation 8 shows how the
robustness can be calculated from the formula presented in Equation 7.

Equation 8 – Robustness formula based on unACE and DUE bits.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 =
𝑢𝑛𝐴𝐶𝐸 𝑏𝑖𝑡𝑠 + 𝐷𝑈𝐸 𝑏𝑖𝑡𝑠

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑡𝑠
= 1 −

𝑆𝐷𝐶 𝑏𝑖𝑡𝑠

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑡𝑠

We need two things in order to know how many architectural state bits are in an
evaluation (the amount of tested bits), one from the architecture and other from the
program.

From the architecture we will need the amount of bits that could be changed by a
fault during each processor instruction executed by the program.

From the program, we will need the amount of instructions it executes to produce
its results.

Equation 9 – Generic amount of tested bits formula.

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑡𝑠 = 𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 × 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟

As our methodology is based on Software Implemented Fault Injection (SWIFI)
methods, the amount of bits that can be changed by a fault during each processor
instruction executed by the program can be easily calculated by summing all processor
register’s size.

We define a set named ProcRegA with all processor registers that we will consider
in our evaluation and a non-numerical finite sequence RegSizeA representing the size in
bits of each processor register in ProcRegA. The relation between ProcRegA set and
RegSizeA sequence is defined by the function fRegSize.

Equation 10 – Tested bits per instruction formula.

𝑃𝑟𝑜𝑐𝑅𝑒𝑔𝐴 = {𝑟𝑒𝑔1, 𝑟𝑒𝑔2, … , 𝑟𝑒𝑔𝑛𝑟𝑒𝑔(𝐴)}
𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒: 𝑃𝑟𝑜𝑐𝑅𝑒𝑔𝐴 ↦ ℕ

𝑅𝑒𝑔𝑆𝑖𝑧𝑒𝐴 = (𝑟𝑒𝑔𝑠𝑖𝑧𝑒𝑟𝑒𝑔1
, 𝑟𝑒𝑔𝑠𝑖𝑧𝑒𝑟𝑒𝑔2

, … , 𝑟𝑒𝑔𝑠𝑖𝑧𝑒𝑟𝑒𝑔𝑛𝑟𝑒𝑔(𝐴)
)

𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 = ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)

𝑛𝑟𝑒𝑔(𝐴)

𝑟=1

In order to calculate the amount of instructions executed by the program we need
at least one execution trace of the program running over the defined architecture.

A program execution trace is represented as a non-numerical finite sequence
Traceprog×A defined by the function fprog. The fprog function returns the processor

Chapter 5 – The ARTFUL Methodology

61

instruction executed by the program in a given point of its execution. The instruction
must be a member of the ProcInsA set that contains all possible processor instructions.

Equation 11 – Amount of instructions in a program trace formula.

𝑃𝑟𝑜𝑐𝐼𝑛𝑠𝐴 = {𝑖𝑛𝑠1, 𝑖𝑛𝑠2, … , 𝑖𝑛𝑠𝑛𝑖𝑛𝑠(𝐴)}
𝑓𝑝𝑟𝑜𝑔: ℕ ↦ 𝑃𝑟𝑜𝑐𝐼𝑛𝑠𝐴

𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴 = (𝑖𝑛𝑠1, 𝑖𝑛𝑠2, … , 𝑖𝑛𝑠𝑛𝑖𝑛𝑠(𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴))

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟 = 𝑛𝑖𝑛𝑠(𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴)

At this point we have defined the first part of our formula to calculate a program
robustness against transient faults when running over a given architecture:

Equation 12 – Preliminary robustness formula.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝐴 =
𝑢𝑛𝐴𝐶𝐸 𝑏𝑖𝑡𝑠 + 𝐷𝑈𝐸 𝑏𝑖𝑡𝑠

𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴) × ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)𝑛𝑟𝑒𝑔(𝐴)
𝑟=0

Let’s consider now robust state as a property of a processor register in a given
point of a program execution. This register property will be represented by a vector of
logical states (true or false) with as many states as the amount of bits of the processor
register, and it will be defined by the frstate function that we will explain better later.

Equation 13 – Robust state function definition.

𝑓𝑟𝑠𝑡𝑎𝑡𝑒: 𝑃𝑟𝑜𝑐𝑅𝑒𝑔𝐴 × ℕ ↦ 𝔹

An element of a register robust state vector being true implies that the register bit
represented by the element is classified as unACE in the given execution point of the
program. In this way we know that any change in this register bit in this given execution
point of the program won’t be propagated to the final program result.

Similarly, an element of a register robust state vector being false implies that the
register bit represented by the element is classified as ACE (we don’t know yet if DUE
or SDC) in the given execution point of the program. In this way we know that any
change in this register bit in this given execution point of the program can be propagated
to the final program result.

In order to know how many robust state vector elements are true (to know how
many bits of a register robust state are classified as unACE in a given point of program
execution) we will need the fabits function. This function needs a logical states vector as
input parameter and will return the amount of logical states of the vector that have its
value as true.

Chapter 5 – The ARTFUL Methodology

62

Equation 14 – Active bits function definition.

𝑓𝑎𝑏𝑖𝑡𝑠: 𝔹 ↦ ℕ

With the two previously presented functions we are able to present the single
process version of our general robustness formula.

Equation 15 – Robustness of a single trace program execution over a given architecture.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝑝𝑟𝑜𝑔×𝐴 =
∑ ∑ 𝑓𝑎𝑏𝑖𝑡𝑠(𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟,𝑛))

𝑛𝑟𝑒𝑔(𝐴)
𝑟=0

𝑛𝑖𝑛𝑠(𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴)

𝑛=1

𝑛𝑖𝑛𝑠(𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴) × ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)𝑛𝑟𝑒𝑔(𝐴)
𝑟=0

Up to this point, a program’s robustness against transient faults when running
over a determined architecture will be the sum of the amount of bits classified as unACE
of each processor register r of the given architecture A in every point n of the program
prog execution present on trace Traceprog×A, divided by the sum of the amount of bits of
each processor register multiplied by the amount of instructions present in the trace
Traceprog×A.

5.1.1 Robust State
To define our frstate function we will use the method presented by [Reis et al.,

2005] to save simulation time on those cases where the fault injection was applied in a
processor register that had its value overwritten by a new one before any read of the
content changed by the fault injection.

Table 3 – Basic block sample with processor instructions.

In the example presented in Table 3 with a basic block sample of one of the

programs used in our experimental evaluation, it is possible to notice that we can
evaluate if a processor register’s bits are important in a given point by only observing
program’s instruction sequence.

For example, as the at instruction in address 0x401a68 load the r9 processor
register with a given value, any change done in r9 before the execution of this

Address Instruction Register Use unACE

0x401a40 mov r13, 0x3ff0000000000000 write on r13 r13, r12, r11, r10, r9

0x401a4a mov r12, 0x3ff0000000000000 write on r12 r12, r11, r10, r9

0x401a54 mov r11, 0x3ff0000000000000 write on r11 r11, r10, r9

0x401a5e mov r10, 0x3ff0000000000000 write on r10 r10, r9

0x401a68 mov r9, 0x3ff0000000000000 write on r9 r9

0x401a72 add ecx, 0x1 read and write on ecx

0x401a75 mov qword ptr [rdx], r13 read on rdx and r13

0x401a78 mov qword ptr [rdx+0x8], r12 read on rdx and r12 r13

0x401a7c mov qword ptr [rdx+0x10], r11 read on rdx and r11 r13, r12

0x401a80 mov qword ptr [rdx+0x18], r10 read on rdx and r10 r13, r12, r11

0x401a84 mov qword ptr [rdx+0x20], r9 read on rdx and r9 r13, r12, r11, r10

0x401a88 add rdx, 0x28 read and write on rdx r13, r12, r11, r10, r9

0x401a8c cmp ecx, ebx read on ecx and ebx r13, r12, r11, r10, r9

0x401a8e jnz 0x401a40 r13, r12, r11, r10, r9

Chapter 5 – The ARTFUL Methodology

63

instruction will be discarded. So, if a fault injection mechanism injects a fault on any of
r9 bits between the executions of the instructions at address 0x401a40 and 0x401a68 the
program result will not be affected and the bit changed by the fault injection will be
classified as unACE.

On the other hand, after r9 be loaded by the instruction at address 0x401a40, as
the loaded value will be used by the instruction at address 0x401a84, the r9 integrity
must be kept in the interval between the load (write operation on register) and the use of
the loaded value (read operation on register).

As the presented basic block represent a loop, while the program execution stay in
the loop, the next instruction that will manipulate r9 after the execution of the instruction
in address 0x401a84 will be one that will change its value (a write operation on r9,
exactly the instruction at address 0x401a68) and, so, the integrity of the register value in
this interval is no longer needed anymore.

By the previously analyzed situation we can assume that, once knowing that a
register will have its value replaced by a new one (after a write operation on the register)
the registers bits can be classified as unACE on every instruction executed before the
one with the write operation, until an instruction that read the content of the register be
found.

The easiest way to analyze the execution of a program in search of those relations
between uses of processor registers in read or write operations is by looking the program
execution trace Traceprog×A in reverse order, beginning by the last executed program
instruction and following the trace until the first program instruction executed.

In this way, every time we find an instruction that write content to a processor
register we can turn the logical states of the register’s robust state vector elements to true
(classify as unACE) until find an instruction that read the register content.

On the other hand, every time we find an instruction that read content from a
processor register we can turn the logical states of the register’s robust state vector
elements to false (classify as ACE) until find an instruction that write content on the
register.

If a given processor instruction operates a register for both read and write (e.g. as
an increment operation), as our analysis is done in program trace instructions backwards,
we first evaluate the write operation and then the read operation.

In our methodology we also need to know how each processor instruction deals
with processor register bits for read and write. So, we will use a set named ProcInsRegA,
which contains all ordered pairs of a processor instruction combined with a processor
register.

Chapter 5 – The ARTFUL Methodology

64

Equation 16 – Processor instructions and registers relation set.

𝑃𝑟𝑜𝑐𝐼𝑛𝑠𝑅𝑒𝑔𝐴 = {(𝑖𝑛𝑠1, 𝑟𝑒𝑔1), … , (𝑖𝑛𝑠𝑛𝑖𝑛𝑠(𝐴), 𝑟𝑒𝑔𝑛𝑟𝑒𝑔(𝐴))}

For each pair in ProcInsRegA set we must have an element in two non-numerical
sequences: WrittenBits, defined by the fwbits function and ReadBits, defined by the frbits
function.

The fwbits function returns a vector of logical states with all states that represent
processor register bits written by the instruction with true as value.

Equation 17 – Written bits function definition.

𝑓𝑤𝑏𝑖𝑡𝑠: 𝑃𝑟𝑜𝑐𝐼𝑛𝑠𝐴 × 𝑃𝑟𝑜𝑐𝑅𝑒𝑔𝐴 ↦ 𝔹

The frbits function returns a vector of logical states with all states that represent
processor register bits read by the instruction with true as value.

Equation 18 – Read bits function definition.

𝑓𝑟𝑏𝑖𝑡𝑠: 𝑃𝑟𝑜𝑐𝐼𝑛𝑠𝐴 × 𝑃𝑟𝑜𝑐𝑅𝑒𝑔𝐴 ↦ 𝔹

Knowing how a processor instruction operated a given processor register for read
and write, and also because our analysis is done by evaluating a program trace
backwards, by the truth table presented in Table 4 we deduced a formula to the frstate of a
given processor register in a given point of program trace.

Table 4 – Truth table of the frstate function

For every processor register and for every program instruction except the last one,

the robust state of a given register reg in a given point n of a program execution trace
Traceprog×A will be the result of the robust state of the next point in program execution
trace (the previously analyzed instruction) operated with a logical OR with the bits
written by the analyzed instruction and then operated with a local AND with the
negation of the bits read by the analyzed instruction.

Equation 19 – Robust state formula for all but last trace instructions.

1 ≤ 𝑛 < 𝑛𝑖𝑛𝑠(𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴); 𝑖 = 𝑓𝑝𝑟𝑜𝑔(𝑛)
𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑛) = [𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑛 + 1) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)] ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)

Previous

Robust

State f wbits f rbits

New

Robust

State Description

TRUE TRUE TRUE FALSE Wasn't important, write on it, read from it, change to being important

TRUE TRUE FALSE TRUE Wasn't important, write on it, keep don't being important

TRUE FALSE TRUE FALSE Wasn't important, read from it, change to being important

TRUE FALSE FALSE TRUE Wasn't important, didn't operate, keep don't being important

FALSE TRUE TRUE FALSE Was important, write on it, read from it, keep being important

FALSE TRUE FALSE TRUE Was important, write on it, change to not important

FALSE FALSE TRUE FALSE Was important, read from it, keep being important

FALSE FALSE FALSE FALSE Was important, didn't operate, keep being important

Chapter 5 – The ARTFUL Methodology

65

When the program finishes its execution we can assume that a change in any of
processor registers won’t affect the program result anymore. So, we define a function
named fendstate that returns a vector with a robust state of a given register with all logical
states as true (all register bits classified as unACE).

Equation 20 – End state function definition.

𝑓𝑒𝑛𝑑𝑠𝑡𝑎𝑡𝑒: 𝑃𝑟𝑜𝑐𝑅𝑒𝑔𝐴 ↦ 𝔹

The frstate function for each program executed instruction will need the robust state
of the next executed program instruction (the previously analyzed program execution
trace instruction). In the particular case of the last instruction executed by the program,
the frstate will need the fendstate.

Equation 21 – Robust state formula for the last traced instruction.

𝑛 = 𝑛𝑖𝑛𝑠(𝑇𝑟𝑎𝑐𝑒𝑝𝑟𝑜𝑔×𝐴); 𝑖 = 𝑓𝑝𝑟𝑜𝑔(𝑛)
𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑛) = [𝑓𝑒𝑛𝑑𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)] ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)

With all the presented functions in this section it is possible to calculate a
program’s robustness against transient faults when executed over a determined
architecture by calculating the precise amount of unACE bits of the program execution
trace. This calculation, by the presented methodology, can be done in a single loop
evaluating every program trace instruction backwards.

5.1.2 Going Multi Processes
After performing a good number of evaluations of serial programs, as the main

field of our research is High Performance Computing (HPC) and most of the problems
in HPC are solved by parallel programs (either by multiple processes or threads in a
single computer or by processes distributed among distinct processing nodes), we aimed
to extend our robustness concept to a program that have multiple execution threads.

In this case, each execution thread or process must generate its own trace.

For the robustness evaluation, we now take into account that the amount of
instructions executed by the program is the sum of the amount of instructions executed
by each thread/process.

Also, as how the threads/processes communicate each other is indifferent for our
methodology (at the end it will all result in reading and writing in memory regions) we
will calculate the robustness of each instruction of each trace generated by the program
execution, consolidating all in a single program robustness.

So, we had to slightly change our robust state formula by adding the multiple
trace possibility:

Chapter 5 – The ARTFUL Methodology

66

Equation 22 – Robust state formula for all but last trace instructions of a given program.

1 ≤ 𝑛 < 𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒(𝑡)); 𝑖 = 𝑓𝑝𝑟𝑜𝑔(𝑡, 𝑛)
𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑡, 𝑛) = [𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑡, 𝑛 + 1) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)] ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)

The last instruction of each program trace had also to be slightly changed:

Equation 23 – Robust state formula the last traced instructions.

𝑛 = 𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒(𝑡)); 𝑖 = 𝑓𝑝𝑟𝑜𝑔(𝑡, 𝑛)
𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑡, 𝑛) = [𝑓𝑒𝑛𝑑𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)] ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖, 𝑟𝑒𝑔)

Finally, we had to change our general robustness formula to let it represent a multi
threaded/processed robustness with all its components, including the possibility of
multiple traces.

Equation 24 – Robustness of a multi trace program execution over a given architecture.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠𝑝𝑟𝑜𝑔×𝐴 =
∑ ∑ ∑ 𝑓𝑎𝑏𝑖𝑡𝑠(𝑟, 𝑡, 𝑛)𝑛𝑟𝑒𝑔(𝐴)

𝑟=0
𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒(𝑡))

𝑛=1

𝑛𝑡𝑟𝑎𝑐𝑒𝑠(𝑒𝑥𝑒𝑐𝑝𝑟𝑜𝑔×𝐴)

𝑡=1

∑ 𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒(𝑡)) × ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)𝑛𝑟𝑒𝑔(𝐴)
𝑟=0

𝑛𝑡𝑟𝑎𝑐𝑒𝑠(𝑒𝑥𝑒𝑐𝑝𝑟𝑜𝑔×𝐴)

𝑡=1

For a serial program, the result of the given formula will be exactly the same as
the formula presented in Equation 15.

5.2 Evaluating a Program Robustness with the
ARTFUL Methodology
We prepared an evaluation to explain in details how the ARTFUL methodology

can be used in practice. This evaluation will use the two programs evaluated with fault
injections in section 4.2: the simple exponentiation program for the 65C02 processor
architecture and the improved version against transient faults of the same program.

5.2.1 Information about the Processor Architecture
In order to evaluate a program robustness against transient faults using the

ARTFUL methodology we must have some information about the processor architecture
the program in running on.

The set of 65C02 processor registers is, as shown in Table 2:

Equation 25 – 65C02 processor registers set.

𝑃𝑟𝑜𝑐𝑅𝑒𝑔65C02 = {A, X, Y, SP, C, Z, I, D, B, V, N}

Also, as show Table 2, the 65C02 processor registers sizes are:

Chapter 5 – The ARTFUL Methodology

67

Equation 26 – 65C02 processor registers size sequence.

𝑅𝑒𝑔𝑆𝑖𝑧𝑒65C02 = (𝑟𝑒𝑔𝑠𝑖𝑧𝑒A, 𝑟𝑒𝑔𝑠𝑖𝑧𝑒X, 𝑟𝑒𝑔𝑠𝑖𝑧𝑒Y, 𝑟𝑒𝑔𝑠𝑖𝑧𝑒SP, … , 𝑟𝑒𝑔𝑠𝑖𝑧𝑒N)
𝑅𝑒𝑔𝑆𝑖𝑧𝑒65C02 = (8,8,8,8,1,1,1,1,1,1,1)

So, for the 65C02 processor architecture, the amount of bits per instruction
executed is:

Equation 27 – Bits per instruction of the 65C02 processor.

𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 = ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)

𝑛𝑟𝑒𝑔(65C02)

𝑟=1

= 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(A) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(X)+𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(Y) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(SP) +
𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(C) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(Z) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(I) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(D) +

𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(B) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(V) + 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(N)
𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 = 8 + 8 + 8 + 8 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 39

The 65C02 processor architecture instruction set has 70 instructions. These
instructions are described by a total of 212 distinct OpCodes depending on the registers
used and the addressing mode [The Western Design Center, Inc., 1981-2003].

For our methodology purposes, we have to put in the processor instructions set the
212 distinct OpCodes, as each of them has its own way of dealing with processor
registers.

Equation 28 – 65C02 processor instructions set.

𝑃𝑟𝑜𝑐𝐼𝑛𝑠65C02 = {BRK00, … , BBS7FF}

Chapter eighteen of [The Western Design Center, Inc., 1981-2003] contains
detailed information about each 65C02 OpCode. This detailed information contains, for
example, the registes read by the processor to execute the instruction represented by an
opCode and the registers written by the processor once executed the instruction
represented by an opCode.

The above described information is enough to construct the 65C02 processor
instruction set described in Equation 28.

Chapter 5 – The ARTFUL Methodology

68

5.2.2 The Exponentiation Program
Let’s consider the robustness formula we presented in section 5.1 prepared to

evaluate de robustness of our exponentiation program (prog = exp) running over the
65C02 processor architecture (A = 65C02):

We must obtain the program execution trace and some information about the
processor architecture to calculate the amount of bits we will test (the same as the “fault
injection space” in the fault injection experiments).

Figure 20 shows the trace generated with the simulator.

Figure 20 – Exponentiation program execution trace.

As our program execution over the given architecture produces only one
execution trace, we can simplify the robustness formula to the following:

Address Instruction

1 0x0200 AE 2F 02 LDX $022F

2 0x0203 F0 1D BEQ $0222

3 0x0205 CA DEX

4 0x0206 AD 2E 02 LDA $022E

5 0x0209 F0 1C BEQ $0227

6 0x020B 8D 30 02 STA $0230

7 0x020E 8D 31 02 STA $0231

8 0x0211 AC 2E 02 LDY $022E

9 0x0214 88 DEY

10 0x0215 18 CLC

11 0x0216 6D 31 02 ADC $0231

12 0x0219 88 DEY

13 0x021A D0 F9 BNE $0215

14 0x0215 18 CLC

15 0x0216 6D 31 02 ADC $0231

16 0x0219 88 DEY

17 0x021A D0 F9 BNE $0215

18 0x0215 18 CLC

19 0x0216 6D 31 02 ADC $0231

20 0x0219 88 DEY

21 0x021A D0 F9 BNE $0215

22 0x0215 18 CLC

23 0x0216 6D 31 02 ADC $0231

24 0x0219 88 DEY

25 0x021A D0 F9 BNE $0215

26 0x021C CA DEX

27 0x021D D0 EF BNE $020E

28 0x020E 8D 31 02 STA $0231

29 0x0211 AC 2E 02 LDY $022E

30 0x0214 88 DEY

31 0x0215 18 CLC

32 0x0216 6D 31 02 ADC $0231

33 0x0219 88 DEY

34 0x021A D0 F9 BNE $0215

35 0x0215 18 CLC

36 0x0216 6D 31 02 ADC $0231

37 0x0219 88 DEY

38 0x021A D0 F9 BNE $0215

39 0x0215 18 CLC

40 0x0216 6D 31 02 ADC $0231

41 0x0219 88 DEY

42 0x021A D0 F9 BNE $0215

43 0x0215 18 CLC

44 0x0216 6D 31 02 ADC $0231

45 0x0219 88 DEY

46 0x021A D0 F9 BNE $0215

47 0x021C CA DEX

48 0x021D D0 EF BNE $020E

49 0x021F 4C 29 02 JMP $0229

50 0x0229 8D 30 02 STA $0230

51 0x022C 00 BRK

OpCodes

Chapter 5 – The ARTFUL Methodology

69

Equation 29 – Exponentiation robustness over 65C02 processor generic formula.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠exp×65C02 =
∑ ∑ 𝑓𝑎𝑏𝑖𝑡𝑠(𝑟, 𝑡, 𝑛)𝑛𝑟𝑒𝑔(65C02)

𝑟=0

𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒exp×65C02)

𝑛=1

𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒exp×65C02) × ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)𝑛𝑟𝑒𝑔(65C02)
𝑟=0

Our exponentiation program execution trace has 51 instructions executed. We can
now replace this information in the left side of our formula denominator:

Equation 30 – Exponentiation robustness over 65C02 processor with traced instructions.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠exp×65C02 =
∑ ∑ 𝑓𝑎𝑏𝑖𝑡𝑠(𝑟, 𝑡, 𝑛)𝑛𝑟𝑒𝑔(65C02)

𝑟=0

𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒exp×65C02)

𝑛=1

51 × ∑ 𝑓𝑅𝑒𝑔𝑆𝑖𝑧𝑒(𝑟)𝑛𝑟𝑒𝑔(65C02)
𝑟=0

We also have the right side of the denominator of the formula solved from section
5.2.1 where we calculated the amount of bits that would be tested on each trace
instruction. So, the robustness formula can be written as:

Equation 31 – Exponentiation robustness over 65C02 processor with the two denominator items.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠exp×65C02 =
∑ ∑ 𝑓𝑎𝑏𝑖𝑡𝑠(𝑟, 𝑡, 𝑛)𝑛𝑟𝑒𝑔(65C02)

𝑟=0

𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒exp×65C02)

𝑛=1

51 × 39

That gives us an amount of bits tested of 1989.

Equation 32 – Exponentiation robustness over 65C02 processor with the denominator calculated.

𝑟𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠exp×65C02 =
∑ ∑ 𝑓𝑎𝑏𝑖𝑡𝑠(𝑟, 𝑡, 𝑛)𝑛𝑟𝑒𝑔(65C02)

𝑟=0

𝑛𝑖𝑛𝑠(𝑡𝑟𝑎𝑐𝑒exp×65C02)

𝑛=1

1989

Chapter 5 – The ARTFUL Methodology

70

Figure 21 – Registers robust bits over the trace instructions of the original exponentiation program.

Figure 21 shows the 65C02 registers robust bits obtained using the ARTFUL
methodology. If compared with Figure 12 that presents the robustness of the same
program but evaluated with executions with fault injection, the two figures shows
exactly the same robustness points.

C Z I D B V N

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0

1 0 1 1 1

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

9 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

11 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

12 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

14 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

15 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

16 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

17 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

18 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

19 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

21 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

22 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

23 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

24 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

30 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

31 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

32 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

33 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

34 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

35 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

36 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

37 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

38 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

39 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

40 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

41 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

42 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

43 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

44 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

45 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

48 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

49 0 0 0 0 0 0 0 0 1

50 0 0 0 0 0 0 0 0 1

51 1

T
r
a
c
e

i
n
s
t
r
u
c
t
i
o
n

Registers Robust Bits

A X Y SP

Chapter 5 – The ARTFUL Methodology

71

Figure 22 – Comparison between the evaluated exponentiation program robustness using

 fault injection and the ARTFUL methodology.

For this example program with this given input parameters the evaluated
robustness using executions with fault injections and using the ARTFUL methodology
was exactly the same. But this is not a common this to happen, as we will present in the
next section.

5.2.3 The Improved Exponentiation Program
Without considering that the code are trying to protect the program execution

from transient faults, the evaluation of the improved exponentiation program robustness
against transient faults using the ARTFUL methodology will present a worse robustness
than the original program. The evaluated robustness in this case was 29.80%.

Chapter 5 – The ARTFUL Methodology

72

Figure 23 – Registers robust bits over the trace instructions of the improved exponentiation program

using partial ARTFUL methodology.

C Z I D B V N

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

3 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

5 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1

6 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1

7 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1

8 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1

9 0 1 0 1 0 1 1 1

10 1 1 1 0 1 1 1

11 0 1 1 1 0 1 1 1

12 0 1 1 1 0 1 1 1

13 0 1 1 1 0 1 1 1

14 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

18 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

19 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

20 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

21 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

22 0 1 1 1 0 1 1 1

23 0 1 1 1 0 1 1 1

24 0 1 1 1 0 1 1 1

25 0 1 1 0 1 1 1

26 0 1 1 1 0 1 1 1

27 0 1 1 1 0 1 1 1

28 0 1 0 1 0 1 1 1

29 0 1 1 1 0 1 1 1

30 1 1 0 1 1 1

31 0 1 1 1 0 1 1 1

32 0 1 1 1 0 1 1 1

33 0 1 0 1 0 1 1 1

34 0 1 1 1 0 1 1 1

35 0 1 1 0 1 1 1

36 0 1 1 1 0 1 1 1

37 0 1 1 1 0 1 1 1

38 0 1 0 1 0 1 1 1

39 0 1 1 1 0 1 1 1

40 1 1 0 1 1 1

41 0 1 1 1 0 1 1 1

42 0 1 1 1 0 1 1 1

43 0 1 0 1 0 1 1 1

44 0 1 1 1 0 1 1 1

45 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

46 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

47 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

49 0 1 1 1 0 1 1 1

50 1 1 1 0 1 1 1

51 0 1 0 1 0 1 1 1

52 0 1 1 1 0 1 1 1

53 0 1 1 1 0 1 1 1

54 0 1 1 1 0 1 1 1

55 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

56 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

57 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

59 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

60 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

61 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

62 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

63 0 1 1 1 0 1 1 1

64 0 1 1 1 0 1 1 1

65 0 1 1 1 0 1 1 1

66 0 1 1 0 1 1 1

67 0 1 1 1 0 1 1 1

68 0 1 1 1 0 1 1 1

69 0 1 0 1 0 1 1 1

70 1 1 1 0 1 1 1

71 0 1 1 0 1 1 1

72 0 1 1 1 0 1 1 1

73 0 1 1 1 0 1 1 1

74 0 1 0 1 0 1 1 1

75 0 1 1 1 0 1 1 1

76 0 1 1 0 1 1 1

77 0 1 1 1 0 1 1 1

78 0 1 1 1 0 1 1 1

79 0 1 0 1 0 1 1 1

80 1 1 1 0 1 1 1

81 0 1 1 0 1 1 1

82 0 1 1 1 1 1 1 1

83 0 1 1 1 1 1 1 1

84 0 1 0 1 1 1 1 1

85 0 1 1 1 1 1 1 1

86 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

87 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

88 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

90 1 1 1 1 1 1 1

91 0 1 1 1 1 1 1 1

92 0 1 0 1 1 1 1 1

93 0 1 1 1 1 1 1 1

94 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

95 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

96 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

98 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

99 0 0 0 0 0 0 0 0 1

100 0 0 0 0 0 0 0 0 1

101 1

Registers Robust Bits

A X Y SP

T
r
a
c
e

i
n
s
t
r
u
c
t
i
o
n

Chapter 5 – The ARTFUL Methodology

73

The improved program became sensitive to faults into Stack Pointer and also have
more instructions executed.

Figure 24 – Comparison between the improved exponentiation robustness evaluated with fault

injections and with partial ARTFUL methodology.

However, considering the protection we coded into the improved exponentiation
program we can assume that we have protected the X index, the Y index and the Stack
Pointer as shown in section 4.2.2, we obtained almost the same results as the fault
injection campaign.

Chapter 5 – The ARTFUL Methodology

74

Figure 25 – Registers robust bits over the trace instructions of the improved exponentiation program

using the full ARTFUL methodology.

C Z I D B V N

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0

1 0 1 1 1

2 1 0 1 1 1

3 1 0 1 1 1

4 1 0 1 1 1

5 1 0 1 0 1 1 1

6 1 0 1 1 1

7 1 0 1 1 1

8 1 0 1 1 1

9 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

10 0 0 0 0 0 0 0 0 1 0 1 1 1

11 0 0 0 0 0 0 0 0 1 0 1 1 1

12 0 0 0 0 0 0 0 0 1 0 1 1 1

13 0 0 0 0 0 0 0 0 1 0 1 1 1

14 0 0 0 0 0 0 0 0 1 0 1 1 1

15 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

16 0 0 0 0 0 0 0 0 1 0 1 1 1

17 0 0 0 0 0 0 0 0 1 0 1 1 1

18 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

19 0 0 0 0 0 0 0 0 1 0 1 1 1

20 0 0 0 0 0 0 0 0 1 0 1 1 1

21 0 0 0 0 0 0 0 0 1 0 1 1 1

22 0 0 0 0 0 0 0 0 1 0 1 1 1

23 0 0 0 0 0 0 0 0 1 0 1 1 1

24 0 0 0 0 0 0 0 0 1 0 1 1 1

25 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

26 0 0 0 0 0 0 0 0 1 0 1 1 1

27 0 0 0 0 0 0 0 0 1 0 1 1 1

28 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

29 0 0 0 0 0 0 0 0 1 0 1 1 1

30 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

31 0 0 0 0 0 0 0 0 1 0 1 1 1

32 0 0 0 0 0 0 0 0 1 0 1 1 1

33 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

34 0 0 0 0 0 0 0 0 1 0 1 1 1

35 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

36 0 0 0 0 0 0 0 0 1 0 1 1 1

37 0 0 0 0 0 0 0 0 1 0 1 1 1

38 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

39 0 0 0 0 0 0 0 0 1 0 1 1 1

40 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

41 0 0 0 0 0 0 0 0 1 0 1 1 1

42 0 0 0 0 0 0 0 0 1 0 1 1 1

43 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

44 0 0 0 0 0 0 0 0 1 0 1 1 1

45 0 0 0 0 0 0 0 0 1 0 1 1 1

46 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

47 0 0 0 0 0 0 0 0 1 0 1 1 1

48 0 0 0 0 0 0 0 0 1 0 1 1 1

49 0 0 0 0 0 0 0 0 1 0 1 1 1

50 0 0 0 0 0 0 0 0 1 0 1 1 1

51 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

52 0 0 0 0 0 0 0 0 1 0 1 1 1

53 0 0 0 0 0 0 0 0 1 0 1 1 1

54 0 0 0 0 0 0 0 0 1 0 1 1 1

55 0 0 0 0 0 0 0 0 1 0 1 1 1

56 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

57 0 0 0 0 0 0 0 0 1 0 1 1 1

58 0 0 0 0 0 0 0 0 1 0 1 1 1

59 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

60 0 0 0 0 0 0 0 0 1 0 1 1 1

61 0 0 0 0 0 0 0 0 1 0 1 1 1

62 0 0 0 0 0 0 0 0 1 0 1 1 1

63 0 0 0 0 0 0 0 0 1 0 1 1 1

64 0 0 0 0 0 0 0 0 1 0 1 1 1

65 0 0 0 0 0 0 0 0 1 0 1 1 1

66 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

67 0 0 0 0 0 0 0 0 1 0 1 1 1

68 0 0 0 0 0 0 0 0 1 0 1 1 1

69 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

70 0 0 0 0 0 0 0 0 1 0 1 1 1

71 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

72 0 0 0 0 0 0 0 0 1 0 1 1 1

73 0 0 0 0 0 0 0 0 1 0 1 1 1

74 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

75 0 0 0 0 0 0 0 0 1 0 1 1 1

76 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

77 0 0 0 0 0 0 0 0 1 0 1 1 1

78 0 0 0 0 0 0 0 0 1 0 1 1 1

79 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1

80 0 0 0 0 0 0 0 0 1 0 1 1 1

81 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1

82 0 0 0 0 0 0 0 0 1

83 0 0 0 0 0 0 0 0 1

84 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

85 0 0 0 0 0 0 0 0 1

86 0 0 0 0 0 0 0 0 1

87 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

88 0 0 0 0 0 0 0 0 1

89 0 0 0 0 0 0 0 0 1

90 0 0 0 0 0 0 0 0 1

91 0 0 0 0 0 0 0 0 1

92 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

93 0 0 0 0 0 0 0 0 1

94 0 0 0 0 0 0 0 0 1

95 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

96 0 0 0 0 0 0 0 0 1

97 0 0 0 0 0 0 0 0 1

98 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

99 0 0 0 0 0 0 0 0 1

100 0 0 0 0 0 0 0 0 1

101 1

1 Robust 0 No Robust 1 Robust by code protection

Registers Robust Bits

A X Y SP

T
r
a
c
e

i
n
s
t
r
u
c
t
i
o
n

Chapter 5 – The ARTFUL Methodology

75

Figure 25 only differ from Figure 14 by not being able to recognize some faults at
the Zero Flag that were detected in the fault injection campaign, even assuming that we
didn’t protected this processor register with our detection mechanism.

Figure 26 – Comparison between the improved exponentiation robustness evaluated with fault

injections and with full ARTFUL methodology.

So, in Figure 26, comparing our methodology evaluation with the exhaustive fault
injection campaign, the only difference in the chart is the Zero Flag. All other processor
registers had the same robustness. The ARTFUL evaluation calculated a robustness of
78,55% against 78,83% of the exhaustive fault injection campaign.

In this aspect we can state that our methodology has a pessimist approach by not
being able to recognize some side effects of the fault detection mechanisms as the one
that allowed the Zero Flag faults to be detected.

Chapter 6
ARTFUL Tools

One of our primary objectives was to make the process of evaluating a program
robustness against transient faults using the ARTFUL methodology more efficient than
evaluating with executions with fault injection from the CPU time needed to perform the
evaluation.

First of all, we needed to choose a processor architecture to work on. We choose
the x64 processor architecture because…

Table 5 presents the x64 processor registers we considered in our evaluations:
Sixteen 64 bits general purpose integer registers and sixteen 128 bits Streaming SIMD
Extensions (SSE) floating point registers [Advanced Micro Devices, Inc., 2002-2013].
With all this registers, the amount of bits per instruction for this processor architecture is
3072.

The amount of instructions and combination of OpCodes the x64 processor
architecture is about 1040, almost five times the amount of OpCodes of the 65C02
processor architecture we used in Chapter 4 and in Chapter 5. Because of this large
amount, we will not present here a table with all possible OpCodes and affected registers
of the x64 processor architecture.

Chapter 6 – ARTFUL Tools

78

Table 5 – x64 processor architecture registers.

Our evaluation is divided in two steps: the trace generation and the trace analysis.

Up to now there is no way of doing the evaluation in only one step. This is because the
second step (trace analysis) depends on all data generated in the first step (trace
generation) but will evaluate its contents backwards (from the last generated data to the
first generated data).

6.1 ARTFUL Tracer
The trace generation step comprehends all activities of the methodology regarding

obtaining program information to perform the analysis.

From the methodology point of view, the trace generation should log all
instructions executed by the program in a single trace. This trace should have all
instructions executed by the program in the order they were executed.

Register
Size

(in bits)
Purpose

RAX 64 General Purpose Integer Register

RBX 64 General Purpose Integer Register

RCX 64 General Purpose Integer Register

RDX 64 General Purpose Integer Register

RSI 64 General Purpose Integer Register

RDI 64 General Purpose Integer Register

RBP 64 General Purpose Integer Register

RSP 64 General Purpose Integer Register

R8 64 General Purpose Integer Register

R9 64 General Purpose Integer Register

R10 64 General Purpose Integer Register

R11 64 General Purpose Integer Register

R12 64 General Purpose Integer Register

R13 64 General Purpose Integer Register

R14 64 General Purpose Integer Register

R15 64 General Purpose Integer Register

XMM0 128 SSE Float Point Register

XMM1 128 SSE Float Point Register

XMM2 128 SSE Float Point Register

XMM3 128 SSE Float Point Register

XMM4 128 SSE Float Point Register

XMM5 128 SSE Float Point Register

XMM6 128 SSE Float Point Register

XMM7 128 SSE Float Point Register

XMM8 128 SSE Float Point Register

XMM9 128 SSE Float Point Register

XMM10 128 SSE Float Point Register

XMM11 128 SSE Float Point Register

XMM12 128 SSE Float Point Register

XMM13 128 SSE Float Point Register

XMM14 128 SSE Float Point Register

XMM15 128 SSE Float Point Register

Total 3072

Chapter 6 – ARTFUL Tools

79

From the implementation point of view, the trace generation logs all basic blocks
executed by the program being evaluated in the order they are executed and also logs all
instructions executed in each basic block.

In the implemented trace generation tool we divided the trace information in two
distinct files: the basic block information (BBI) file and the packed basic block (PBB)
sequences file, as shown in Figure 27.

Figure 27 – Program trace generation outputs: the BBI and the PBB files.

The BBI file has detailed information about all basic blocks: the address of the
basic block in memory, the amount of instructions the basic block has, how many times
during trace generation the basic block was executed and detailed information about its
instructions. The basic block information file size is proportional to the amount of
unique basic blocks recognized during the trace generation.

The current implemented trace generation tool stores all information about how
the instructions affect the registers in the BBI file instead of having this information
statically in some kind of processor architecture information table. Fortunately, the
dynamic instrumentation tool (PIN [Luk et al., 2005]) we used to develop our trace
generation tool has in its API ways to analyze instructions and collect information about
read and written registers.

Once having all instructions information in the BBI file, our tool saves all basic
blocks executed by the program during the trace generation in the order they have been
executed in the PBB file.

== Trace ==

B0

== Compression Level 1 ==

B0=A0,A1:4,A2

== Compression Level 0 ==

A0=BB0,BB1,BB2,BB6

A1=BB3,BB4:4,BB5

A2=BB2,BB7

== End Of Trace ==

Program Execution/Trace Generation

B
B

0

B
B

1

B
B

2

B
B

3

B
B

4

B
B

4

B
B

4

B
B

4

B
B

5

B
B

3

B
B

4

B
B

4

B
B

4

B
B

4

B
B

5

B
B

3

B
B

4

B
B

4

B
B

4

B
B

4

B
B

5

B
B

2

B
B

7

B
B

3

B
B

4

B
B

4

B
B

4

B
B

4

B
B

5

B
B

6

Packed Basic Block Sequences File

BB0: address 0x400; instructions 2; counter 1

instrA; read(<reglistRA>);write(<reglistWA>)

instrB; read(<reglistRB>);write(<reglistWB>)

BB1: address 0x405; instructions 3: counter 1

instrC; read(<reglistRC>);write(<reglistWC>)

instrD; read(<reglistRD>);write(<reglistWD>)

instrE; read(<reglistRE>);write(<reglistWE>)

BB2: address 0x40a; instructions 3: counter 2

instrF; read(<reglistRF>);write(<reglistWF>)

instrG; read(<reglistRG>);write(<reglistWG>)

instrH; read(<reglistRH>);write(<reglistWH>)

BB3: address 0x411; instructions 3: counter 4

instrI; read(<reglistRI>);write(<reglistWI>)

instrJ; read(<reglistRJ>);write(<reglistWJ>)

instrK; read(<reglistRK>);write(<reglistWK>)

BB4: address 0x417; instructions 2: counter 16

instrL ; read(<reglistRL>);write(<reglistWL>)

instrM ; read(<reglistRM>);write(<reglistWM>)

…

Basic Block Information File

Trace Analysis

Chapter 6 – ARTFUL Tools

80

The very first implementation of the trace generation tool didn’t perform any kind
of compression in the PBB file. But, once we started generating traces of program
executions we noticed that a very small program could have tens of millions of basic
blocks executions, and small programs might have billions of basic blocks executions.
These amounts grew as the evaluated programs executed for more time (with larger
workloads).

We implemented an on-the-fly simple compression algorithm in our trace
generation tool trying to avoid huge files with the basic block sequences executed.

The implemented compression algorithm creates buffers to store sequences of
identifiers for each compression level.

At each compression level, as the basic blocks are executed, the identifier of the
basic block (for the first compression level) or the identifier of the sequence of basic
blocks from the lower compression level are stored in a buffer until an identifier lower
than the last stored one arrives. Finding a jump to a lower sequence identifier triggers
the delimitation of a single sequence.

The compression algorithm will then seek for the current buffered sequence in the
list of known sequences. If it finds a match, it will store only the matched sequence
identifier (and not the whole sequence information) in the upper compression level. If it
didn’t find a match, it will store the buffered sequence as a new sequence in the list of
known sequences. Then, the compression algorithm will clean the current buffer and
will let the trace generation keep running.

Also, when a sequence happen to occur repeatedly (mostly in loops at the
program execution), the compression algorithm will put only one occurrence of the
sequence identifier on the PBB file and will also put a counter with the amount of times
that the sequences repeated itself.

In Figure 27 we have a sample of a hypothetical packed basic block sequence
trace with two levels of compression. There are cases of repetition in both presented
compression levels: of a sequence of basic blocks in compression level one and of basic
blocks in compression level zero.

6.2 ARTFUL Analyzer
The trace analysis step uses all architecture information (about its instructions and

how the instructions affects the architecture registers) and the trace of the program
execution to evaluate the program robustness against transient faults.

From the methodology point of view, the trace analysis must evaluate every
instruction executed by the program in the inverse order they were executed, calculating

Chapter 6 – ARTFUL Tools

81

the robust state for all architecture registers bits and storing the amount of bits
considered robust to inform the whole program robustness.

In the implemented trace analysis tool we first read the BBI file and create a table
with all basic blocks instructions and affected registers (both by reading and writing).

After finishing reading the BBI file, the analysis tool reads the PBB file, storing
the sequences information in memory. Once finished reading the PBB file, the analysis
begins by replacing recursively the sequences of the higher compression levels by
sequences of lower compression levels until arriving at a basic block unit, when it
performs the robustness evaluation for the basic block instructions.

Chapter 7
Experimental Evaluation

In order to realize our first experimental evaluation of the ARTFUL tools we
designed a set of experiments to calculate the robustness against transient faults of five
programs both using fault injection executions and using both ARTFUL Tracer and
Analyzer.

The selected programs are part of the NAS Parallel Benchmark [Bailey et al.,
1991] in its version 3.3. Because of the amount of executions needed to realize this
experimental work we choose to evaluate the serial (non-parallel) versions of BT, CG,
FT, LU and SP benchmarks with their smallest class (S) [NASA Website, 2012].

All five benchmark programs used in this experimental work were compiled using
GNU C and Fortran in their version 4.4.1, with static linkage of libraries used by the
programs and with maximum code optimization during compilation (O3).

The computing nodes used in the experiments have Linux Ubuntu Server
operating system in version 9.10 with 64 bits kernel in version 2.6.31. The hardware of
all computing nodes used have one 2 GHz AMD Athlon 64 X2 processor with 2
gigabytes of memory.

7.1 Using Executions with Fault Injection
The fault injection environment used in this part of the experimental evaluation

uses a tool based on Intel PIN [Luk et al., 2005] to flip a single randomly chosen bit of a
randomly chosen processor register in an also randomly chosen point of a program
execution.

For each one of the evaluated programs we made 8,000 executions with fault
injection. The amount of executions was defined with the objective of achieve at least
2% of confidence interval of the average cases classified as unACE.

In Table 6 we present the execution time of each benchmark program.

Chapter 7 – Experimental Evaluation

84

Table 6 – Benchmarks basic collected information.

Also, we present in Table 6 the amount of instructions executed by each program

and the amount of states to evaluate in order to exhaustively cover all possible bit flips
in processor registers (amount of instructions executed multiplied by the sum of the
amount of bits of all processor registers took into account during the evaluation, in this
particular case equal to 3072).

Figure 28 presents the average robustness calculated with the results of the fault
injection executions of the selected programs.

Only one of the evaluated programs, the BT benchmark, didn’t achieve 1.5% of
standard deviation with 8,000 executions with fault injection.

The CPU time needed to calculate the robustness against transient fault using fault
injection executions depends on the fault injection environment used to inject the faults.

The best theoretical amount of time needed can be calculated by multiplying the
amount of executions the experiment intends to do (8,000 in our case) by the amount of
time needed to execute de program being evaluated once.

Perhaps, the environment we used in our experimentation using fault injections
uses dynamic instruction instrumentation during the program execution and adds some
overhead to the program execution.

In Table 7 we present the amount of time we spent to realize all executions with
fault injection in our fault injection environment and also how many executions we
needed to achieve 2% of standard deviation in robustness.

Table 7 – Benchmark programs fault injection data.

Benchmark

Execution

Time

(in Seconds)

Binary Code

Instructions

Instructions

Executed

Amount of

States to Evaluate

BT 0,19 25.337 521.847.689 1.603.116.100.608

CG 0,16 11.376 357.952.094 1.099.628.832.768

FT 0,28 11.137 666.494.276 2.047.470.415.872

LU 0,08 28.452 187.912.097 577.265.961.984

SP 0,08 21.138 212.261.609 652.067.662.848

Benchmark

Execution

Time

(in Seconds)

Execution Time

Using Dynamic

Instrumentation

(in Seconds)

Fault Injection Time

Using Dynamic

Instrumentation

(in Seconds)

Robustness

(Amount of

unACE Cases)

Stantard

Deviation

after 8,000

Executions

Executions to

2% of Standard

Deviation

BT 0,19 21,73 87.661 55,41% 2,23% 6.346

CG 0,16 11,28 45.749 56,05% 1,31% 3.301

FT 0,28 12,12 49.602 62,34% 1,13% 2.456

LU 0,08 21,31 85.548 39,14% 1,31% 2.019

SP 0,08 16,68 67.043 44,94% 1,68% 3.350

Chapter 7 – Experimental Evaluation

85

Figure 28 – Fault injection executions and the average evaluated robustness.

Chapter 7 – Experimental Evaluation

86

The amount of time needed to realize a program set of executions using our fault
injection environment was calculated assuming that the program executes, on average,
half of its instructions with the dynamic instrumentation overhead and the other half
without any overhead. This is because, once the fault is injected, the environment let the
program run until the end without any interference.

7.2 Using ARTFUL Tools
In Table 8 we present the time we spent generating the traces and the time to

analyze those traces and calculate the robustness with the ARTFUL methodology tools.
Also, the table presents the calculated robustness and the total time needed to calculate a
program’s robustness (time to generate the trace plus time to analyze the trace).

Table 8 – Benchmark programs data using ARTFUL tools.

The time spent on generating a program trace depends on the program being

analyzed algorithm. On the other hand, the time spent on the analysis of the program
trace is proportional to the amount of instructions executed by the analyzed program.

As we already predicted, in Figure 29 we present that the calculated robustness
using our methodology is always lower than the calculated using fault injection
executions or it can be higher (but almost the same) depending on the amount of
executions done to calculate de robustness using fault injection and the random number
generator and seed used. Our methodology will score a lower robustness because the
approach of using fault injection is more data dependent than our proposal and can mask
possible DUE and SDC as unACE as explained previously Chapter 4.

Benchmark
Trace Generation Time

(in seconds)

Robustness

Analysis Time

(in seconds)

Robustness

Total Robustness

Evaluation Time

(in seconds)

BT 6,69 413,96 29,88% 420,65

CG 13,27 237,84 57,35% 251,11

FT 6,18 442,65 49,71% 448,83

LU 4,12 139,26 28,93% 143,38

SP 6,01 151,93 39,18% 157,94

Chapter 7 – Experimental Evaluation

87

Figure 29 – ARTFUL methodology vs. fault injection robustness’s.

On the analysis of the CPU time spent during the robustness calculation using the
proposed methodology in Figure 30, we used on average almost 60% of the time needed
to run enough experiments using the best theoretical fault injection method and achieve
2% of standard deviation in the statistical approximation. Also, comparing the CPU time
spent during t he robustness calculation us ing t he proposed methodology w ith t he real
fault injection environment used based on dy namic instrumentation to inject the faults,
we needed on average only 1.22% o f the t ime needed to achieve 2% of st andard
deviation in the fault injection statistical approximation.

Figure 30 – Time spent on calculating robustness’s.

All the times collected in our experimental evaluation took in account the use of
only one CPU core to all activities without any kind of parallelism. We know that the
executions with f ault i njection are i ndependent a nd cou ld exploit m any cor es i n

Chapter 7 – Experimental Evaluation

88

processor nodes to minimize the total time needed to calculate a program’s robustness
against transient faults.

Fortunately, the calculations of each processor register’s robustness in the
proposed methodology are independent. In this way, we can also take benefit of
parallelism to speed up our robustness against transient fault analysis (we could
parallelize the analysis of this experimental evaluation in 32 independent threads as we
evaluated the robustness of 32 of the processor registers of the experimented
architecture).

7.3 Improving Efficiency
In order to improve the efficiency of the robustness evaluation by reducing the

amount of time needed to perform the whole evaluation (program trace generation plus
trace analysis) we worked in two distinct lines: one based on compression and trying to
avoid the calculation of repetitive program parts; other based on using a prediction tool
for parallel program executions to estimate the parallel program robustness against
transient faults.

7.3.1 Simplification
The idea of using some kind of simplification during the analysis step started

when we were doing proofs of concept of our methodology with architectures and
programs simple enough to allow running the whole methodology (both the trace
generation and the analysis step) by hand.

We noticed that, once in a loop, where a sequence of instructions are repeated a
given amount of times, there were a coincidence in the robustness evaluated for the set
of instruction of the sequence in all the repetitions except the first analyzed.

So we supposed that, if we could prove that this coincidence was in fact a
simplification, it could be done without affecting two of our methodology characteristics
(exhaustiveness and precision) reducing significantly the amount of time needed to
perform the robustness evaluation.

7.3.1.1 Analytical Proof
Even noticing the potential of the coincidence in some proof of concept

evaluations and trace analyses, we studied the simplification using our analytical
definition of the robustness presented in Chapter 5 in order to prove that we could really
simplify some parts of the robustness evaluation without affecting the precision or the
exhaustiveness of the evaluation, key characteristics of our methodology.

Chapter 7 – Experimental Evaluation

89

One of the key concepts of the robustness evaluation using our methodology is (2)
the robust state frstate function of an architecture A register reg in a given point n of a
program prog trace execution Traceprog×A, shown in section 5.1.1.

This function needs three things to be evaluated. The first is the robust state of the
register reg in the previously evaluated trace point (the next instruction in the execution
trace as the analysis is performed backwards).

Also, the frstate function need to know the bits that the instruction i at the point n in
the execution trace Traceprog×A reads (read operation, frbits) and writes (write operation,
fwbits) to perform its operation.

7.3.1.1.1 Single Instruction Repetition Sequence
Consider a program execution trace over a given architecture with n executed

instructions. Consider also that this trace has a sequence with the instruction i1 that is
repeated k times, with its last repetition at the trace point x. Figure 31 shows a sample of
the considered trace.

Figure 31 – Program trace with a single instruction repetition sequence.

For the instruction evaluated just before the beginning of the sequence with the
repetition (trace point x+1), we have:

Equation 33 – Robust state before evaluating the instruction repetition.

𝑠𝑥+1 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 + 1)
𝑠𝑥+1 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 + 2) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖𝑛𝑠𝐷, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖𝑛𝑠𝐷, 𝑟𝑒𝑔)

So, for the first instruction i1 evaluated (the last executed of the sequence) we can
calculate its robust state based on the robust state sx+1, as follows:

Equation 34 – Robust state of the first evaluated instruction in the repetition.

𝑠𝑥 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥)
𝑠𝑥 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 + 1) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)

𝑓𝑊 = 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔); 𝑓𝑅 = 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)
𝑠𝑥 = (𝑠𝑥+1 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅

Then, to the second instruction i1 evaluated we can calculate its robust state based
on the robust state sx of the first instruction i1 of the sequence, as follows:

n

insG

n–1

insF

x+2

insE

x+1

insD

x

i1

x–1

i1

x–2

i1

x–(k–2)

i1

x–(k–1)

i1

x–k

insC

2

insB

1

insA

Trace point

Instruction

Program Execution/Trace Generation

Trace Analysis

… … …

Chapter 7 – Experimental Evaluation

90

Equation 35 – Robust state of the second evaluated instruction in the repetition.

𝑠𝑥−1 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 1)
𝑠𝑥−1 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)

= (𝑠𝑥 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅

= (((𝑠𝑥+1 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅) ∨ 𝑓𝑊) ∧∼ 𝑓𝑅
 = (𝑠𝑥+1 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅 by absorption

𝑠𝑥−1 = 𝑠𝑥

The robust state sx-1 for the second occurrence of the instruction i1 of the
sequence, once calculated, resulted to be the same as the first evaluated one (sx). This
happened because both evaluations were done with the same instruction i1, and so used
the same fwbits and frbits, what lead to an absorption of the redundant items in the equation.

Indeed, for the third instruction i1 evaluated, as for all the rest of them until the
trace point x-(k-1), all robust states will be the same as the first occurrence of i1.

Equation 36 – Robust state of the third evaluated instruction in the repetition.

𝑠𝑥−2 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 2)
𝑠𝑥−2 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 1) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)

= (𝑠𝑥−1 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅

= (((𝑠𝑥 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅) ∨ 𝑓𝑊) ∧∼ 𝑓𝑅
 = (𝑠𝑥 ∨ 𝑓𝑊) ∧∼ 𝑓𝑅 by absorption

𝑠𝑥−2 = 𝑠𝑥

7.3.1.1.2 Many Distinct Instructions Repetition Sequence
Consider now another program execution trace over a given architecture with n

executed instructions.

Consider also that this trace has a sequence with two distinct instructions i1 and i2
that are repeated k times, with the last repetition of the instruction i1 at the trace point x.
Figure 32 shows a sample of the considered trace.

Figure 32 – Program trace with a two distinct instructions repetition sequence.

Beginning with the same assumptions of the previously evaluated scenario, for the
first occurrences of i1 and i2 we have two write them as functions of the sx+1 robust state,
as follows:

n

insD

x+1

insC

x

i1

x–1

i2

x–2

i1

x–3

i2

x–4

i1

x–5

i2

x–(2k–2)

i1

x–(2k–1)

i2

x–2k

insB

1

insA

Trace point

Instruction
… … …

last analyzed third analyzed second analyzed first analyzed

Chapter 7 – Experimental Evaluation

91

Equation 37 -

𝑠𝑥 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥)
𝑠𝑥 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 + 1) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)

𝑓𝑊1 = 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔); 𝑓𝑅1 = 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)
𝑠𝑥 = (𝑠𝑥+1 ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1

Equation 38 -

𝑠𝑥−1 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 1)
𝑠𝑥−1 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)

𝑓𝑊2 = 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔); 𝑓𝑅2 = 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)
𝑠𝑥−1 = (𝑠𝑥 ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2

𝑠𝑥−1 = (((𝑠𝑥+1 ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1) ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2

For the second occurrences of i1 and i2 we can resolve their robust state as
function of sx+1 as follows:

Equation 39 -

𝑠𝑥−2 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 2)
𝑠𝑥−2 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 1) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)

= (𝑠𝑥−1 ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1

= (((((𝑠𝑥+1 ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1) ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2) ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1

 = (((sx+1 ∨ fW2) ∧∼ fR2) ∨ fW1) ∧∼ fR1 by absorption

Equation 40 -

𝑠𝑥−3 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 3)
𝑠𝑥−3 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 2) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)

= (𝑠𝑥−2 ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2

= (((((𝑠𝑥+1 ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2) ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1) ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2

 = (((sx+1 ∨ fW1) ∧∼ fR1) ∨ fW2) ∧∼ fR2 by absorption

𝑠𝑥−3 = 𝑠𝑥−1

In the second occurrence of the first instruction evaluated i1 (Equation 39) it
wasn’t possible to simplify its robust state yet because there was no way to reduce it
more until finding something we’ve already calculated.

However, we could write the second instruction evaluated i2 (Equation 40) as a
function of the last instruction evaluated before the sequence, with the same formula as
its first occurrence.

Chapter 7 – Experimental Evaluation

92

This behavior is slightly different of the repetition of only one instruction in the
previously presented example, and will not allow us to simplify the robust states of the
first occurrence of the repetition in the rest of the occurrences.

Starting in the third occurrence of i1 (X) and i2 (X), all the instructions present in
the repetition can be simplified, as follows:

𝑠𝑥−4 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 4)
𝑠𝑥−4 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 3) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖1, 𝑟𝑒𝑔)

= (𝑠𝑥−3 ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1

= (((((𝑠𝑥+1 ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1) ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2) ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1

 = (((sx+1 ∨ fW2) ∧∼ fR2) ∨ fW1) ∧∼ fR1 by absorption

𝑠𝑥−4 = 𝑠𝑥−2

𝑠𝑥−5 = 𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 5)
𝑠𝑥−5 = (𝑓𝑟𝑠𝑡𝑎𝑡𝑒(𝑟𝑒𝑔, 𝑥 − 4) ∨ 𝑓𝑤𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)) ∧∼ 𝑓𝑟𝑏𝑖𝑡𝑠(𝑖2, 𝑟𝑒𝑔)

= (𝑠𝑥−4 ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2
= (𝑠𝑥−2 ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2

= (((((𝑠𝑥+1 ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2) ∨ 𝑓𝑊1) ∧∼ 𝑓𝑅1) ∨ 𝑓𝑊2) ∧∼ 𝑓𝑅2

 = (((sx+1 ∨ fW1) ∧∼ fR1) ∨ fW2) ∧∼ fR2 by absorption

𝑠𝑥−5 = 𝑠𝑥−3 = 𝑠𝑥−1

With all these analyses we proved that, for a given sequence of instructions that
repeats itself a given amount of times, we can use the result obtained in the calculation
of the first two sequences analyzed to simplify the robust state (and so, the robustness)
of all the rest of the occurrences of the sequence.

7.3.1.2 Key Factors in the Implementation
In order to exploit the potential of the simplification we needed to observe and

recognize patterns where sequences of instructions repeated themselves in a program
trace.

Fortunately, our trace compression algorithm performed such recognition during
the trace generation step with the basic blocks. Also, our trace compression algorithm
stored the repetition information in the PBB file.

In this way, our trace generation tool needed no further modification in order to
collect more information to help possible simplifications during the analysis step. All the

Chapter 7 – Experimental Evaluation

93

information about repetitions of sequences of basic blocks (and their instructions) was
already in the trace because of our goal of saving disk space.

The only modification we did in our robustness analysis tool was, once
recognizing repetition information on the evaluated PBB trace, if the repetition was
performed for more than two times, to cache all the information about the second
iteration of the repetition and to multiply this cached information by the amount of times
left to perform the evaluation of the whole set of iterations. Figure 33 shows an example
of a trace analysis using simplification.

Figure 33 – Example of a PBB trace analysis with simplification.

In the example, we have a hypothetical trace with two potential simplification
points. One in the basic block sequence B0 at compression level one with four
repetitions of the basic block sequence A1 and other in the basic block sequence A0
with four repetitions of the basic block BB4.

As the trace analysis starts at the basic block sequence B0, the analysis program
will calculate the robust state for all architecture registers at basic blocks BB7 and BB2
(basic block sequence A2).

BB0

BB1

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB7

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB pattern A1#1

BB pattern A1#2

BB0

BB1

BB2

BB3

BB4

BB5

BB3

rstate0

rstate1

rstate2

rstate3

rstate4

rstate5

rstate6

rstate7

rstate8

rstate9

rstate10

rstate11

rstate12

rstate13

rstate14

rstate15

rstate16

rstate17

rstate18

rstate19

rstate26

rstate27

rstate28

rstate29

rstate20

rstate21

rstate22

rstate23

rstate24

rstate25

BB4

BB4

BB4

BB4

BB4

BB3

BB4

BB4

BB4

BB4

BB5

BB3

BB4

BB4

BB4

BB4

BB5

(rstate15-20 = rstate9-14)

(rstate21-26 = rstate9-14)

BB4#1

BB4#2

BB4#3

BB4#4

BB4#1

BB4#2

BB4#3

BB4#4

BB pattern A1#3

BB pattern A1#4

(rstate13 = rstate11)

(rstate12 = rstate11)

(rstate7 = rstate5)

(rstate6 = rstate5)

BB6

rstate30

Packed Basic Block File

T
ra

c
e

 A
n

a
ly

s
is

P
ro

g
ra

m
 E

x
e

c
u

ti
o

n
/T

ra
c
e

 G
e

n
e

ra
ti
o

n

== Trace ==

B0

== Level 1 ==

B0=A0,A1:4,A2

== Level 0 ==

A0=BB0,BB1,BB2,BB6

A1=BB3,BB4:4,BB5

A2=BB2,BB7

== End Of Trace ==

Chapter 7 – Experimental Evaluation

94

Then, the analysis program will find the repetition pattern of the basic block
sequence A1 and it will perform the first iteration of this repetition. It will calculate the
robust state for the basic block BB5 and will find another repetition sequence (now for
the basic block BB4). As the program performs the analysis recursively, there is no
problem of having a sequence being simplified inside other simplification.

The trace analysis will perform the analysis of the first occurrence of BB4, will
perform and cache the analysis of the second occurrence of BB4 and will simplify the
cached result by two times.

After this, the analysis program will calculate the robust state for basic block BB3
and will finish the first occurrence of the basic block sequence A1.

For the second occurrence of the basic block sequence A1, the trace program will
cache the evaluation of BB5, of BB4 (with its own simplification) and BB3. Then, the
analysis program will simplify the cached result by two times and will finish the
evaluation by calculating the robust state of the basic block sequence A0 (basic blocks
BB6, BB2, BB1 and BB0).

This implementation (as the simplification concept presented for our methodology
supposes) will generate for a given program trace the exactly same result for the
robustness evaluation as the program analysis without simplification, but it may reduce
significantly the time needed to perform the robustness analysis against transient fault of
a given program trace.

7.3.1.3 NAS Parallel Benchmarks Evaluation
For this section we calculated the robustness against transient faults of nine

programs, with five distinct workloads each, using ARTFUL methodology tools with
and without simplification.

The selected programs are part of the NAS Parallel Benchmark (NPB) [Bailey et
al., 1991] in its version 3.3.1. We selected to evaluate the serial versions of Block Tri-
diagonal solver (BT), Conjugate Gradient (CG), Embarrassingly Parallel (EP), discrete
3D fast Fourier Transform (FT), Integer Sort (IS), Lower-Upper Gauss-Seidel solver
(LU), Multi-Grid on a sequence of meshes (MG), Scalar Penta-diagonal solver (SP) and
Unstructured Adaptive mesh (UA) benchmarks with their S, W, A, B and C classes
[NASA Website, 2012].

In comparison with the data presented in section Chapter 7, where we evaluated
only the S class of five benchmarks (BT, CG, FT, LU and SP), we are scaled our
robustness analysis from programs that execute in tents of seconds (0.16 on average) to
programs that execute in hundreds of seconds (683.47 on average).

Chapter 7 – Experimental Evaluation

95

All nine benchmark programs used in this section were compiled using GNU C
and Fortran in their version 4.4.6, with maximum code optimization during compilation
(O3).

All the computing nodes used in this set of experiments have CentOS version 6
operating system with 64 bits kernel version 2.6.32. The hardware of all computing
nodes used in this work has eight 1.6 GHz AMD Opteron processors with eight cores
each and 256 gigabytes of RAM.

Table 9 and Table 10 show a summary of the numbers we obtained with this set
of experiments. The tables contain: the program used in the evaluation (Benchmark), the
workload used in the evaluation (Class), the standard program execution time without
any kind of interference (Execution Time), how much time took to generate the traces
(Trace Generation Time), the size of the basic block information trace file (BBI File
Size), the amount of unique basic blocks recognized by the trace generator (Unique
Basic Blocks), the size of the packed basic block sequences file (PBB File Size), the
total amount of instructions that were traced during the trace generation step
(Instructions Executed), the percentage of the instructions that were executed by the
program and not by some library (Program Influence), the robustness calculated
(Robustness), the time spent on the robustness analysis without simplification (Analysis
Time Without Simplification), the time spent on the robustness analysis with
simplification (Analysis Time With Simplification) and the amount of instructions that
the analyses could simplify (Simplified Instructions).

Chapter 7 – Experimental Evaluation

96

Table 9 – Summary of experimental evaluation results for NPB (1/2).

B
e
n
c
h
m
a
r
k

W
o
r
k
l
o
a
d

(
C
l
a
s
s
)

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

T
r
a
c
e

G
e
n
e
r
a
t
i
o
n

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

B
B
I

F
i
l
e

S
i
z
e

(
i
n

M
b
y
t
e
s
)

U
n
i
q
u
e

B
a
s
i
c

B
l
o
c
k
s

P
B
B

F
i
l
e

S
i
z
e

(
i
n

M
b
y
t
e
s
)

I
n
s
t
r
u
c
t
i
o
n
s

E
x
e
c
u
t
e
d

b
y

t
h
e

B
e
n
c
h
m
a
r
k

BT S 0,12 4,30 3,24 4.166 0,10 523.995.891

BT W 4,21 55,73 3,25 4.170 0,10 17.217.054.499

BT A 97,61 1.165,33 3,26 4.194 0,10 374.989.775.193

BT B 413,01 4.723,00 3,28 4.175 0,10 1.615.068.999.753

BT C 1.695,96 19.024,00 3,29 4.171 0,10 6.612.381.481.454

CG S 0,10 9,40 1,75 3.710 1,81 379.751.162

CG W 0,76 54,15 1,75 3.706 7,70 2.510.616.217

CG A 3,18 266,07 1,74 3.698 27,05 10.101.436.998

CG B 108,13 3.577,29 1,75 3.710 170,52 279.455.264.831

CG C 253,75 10.373,00 1,75 3.711 435,66 753.648.354.488

EP S 1,82 105,30 1,73 3.671 58,43 3.543.251.551

EP W 3,66 207,78 1,73 3.667 113,76 7.086.152.780

EP A 29,29 1.730,08 1,73 3.669 834,10 56.683.093.108

EP B 117,09 7.099,00 1,86 3.917 3.179,85 226.733.672.790

EP C 468,36 29.367,00 1,87 3.924 12.181,01 906.914.579.684

FT S 0,20 4,20 1,72 3.639 0,08 700.790.731

FT W 0,38 7,36 1,72 3.651 0,08 1.527.659.555

FT A 6,25 97,06 1,72 3.642 0,08 27.508.731.558

FT B 72,86 1.241,39 1,71 3.653 0,09 317.781.421.201

FT C 355,54 7.267,00 1,82 3.861 0,12 1.419.089.585.765

IS S 0,02 1,00 1,09 2.234 0,04 28.187.780

IS W 0,33 4,03 1,09 2.233 0,04 450.210.674

IS A 2,75 26,50 1,07 2.206 0,04 3.600.001.741

IS B 11,54 104,93 1,07 2.210 0,04 14.399.286.913

IS C 48,97 429,56 1,06 2.211 0,04 57.596.415.431

LU S 0,10 2,70 3,65 4.313 0,10 183.783.055

LU W 8,69 111,40 3,52 4.306 0,10 29.731.132.471

LU A 65,91 727,47 3,57 4.337 0,10 195.286.219.236

LU B 297,98 3.100,34 3,55 4.336 0,10 815.837.775.233

LU C 1.326,01 12.511,00 3,55 4.320 0,10 3.339.256.715.227

MG S 0,01 1,70 1,94 3.784 0,10 32.032.457

MG W 0,45 9,22 1,94 3.793 0,11 1.791.271.812

MG A 4,18 54,62 1,94 3.802 0,12 14.044.248.666

MG B 14,51 128,35 1,94 3.793 0,12 49.910.756.229

MG C 134,86 900,32 1,93 3.804 0,13 395.275.263.604

SP S 0,10 3,73 2,92 4.264 0,10 219.096.456

SP W 8,72 260,16 2,95 4.271 0,10 31.143.833.781

SP A 59,01 1.539,73 2,94 4.281 0,10 187.254.308.059

SP B 272,55 6.101,00 2,94 4.280 0,10 771.573.262.708

SP C 1.138,18 25.128,00 2,95 4.286 0,10 3.157.545.842.543

UA S 0,70 18,32 5,17 5.845 0,82 2.446.467.394

UA W 4,25 97,45 5,26 5.960 7,96 14.377.904.873

UA A 39,72 887,08 5,28 5.967 117,63 111.067.994.805

UA B 175,39 4.603,00 5,28 5.968 559,13 470.340.024.288

UA C 729,63 20.800,00 5,43 6.250 2.041,21 1.932.283.092.641

Chapter 7 – Experimental Evaluation

97

Table 10 – Summary of experimental evaluation results for NPB (2/2).

B
e
n
c
h
m
a
r
k

W
o
r
k
l
o
a
d

(
C
l
a
s
s
)

P
r
o
g
r
a
m

I
n
f
l
u
e
n
c
e

R
o
b
u
s
t
n
e
s
s

A
n
a
l
y
s
i
s

T
i
m
e

W
i
t
h

D
e
d
u
c
t
i
o
n

(
i
n

s
e
c
o
n
d
s
)

A
m
o
u
n
t

o
f

D
e
d
u
c
e
d

I
n
s
t
r
u
c
t
i
o
n
s

BT S 99,9171% 40,32% 315,00 5,50 98,38432%

BT W 99,9972% 38,83% 10.313,00 9,16 99,91532%

BT A 99,9998% 38,00% 225.035,00 9,10 99,99612%

BT B 99,9999% 36,84% 969.158,48 * 9,65 99,99905%

BT C 99,9999% 36,50% 3.967.908,25 * 9,63 99,99977%

CG S 99,8865% 63,29% 228,00 10,40 95,66392%

CG W 99,9815% 63,08% 1.505,81 59,13 96,20491%

CG A 99,9954% 62,74% 6.065,00 188,59 96,99172%

CG B 99,9995% 62,78% 167.696,90 * 2.011,00 98,83503%

CG C 99,9998% 62,70% 452.253,03 * 4.415,08 99,05249%

EP S 30,1605% 74,51% 2.187,50 2.001,60 8,73643%

EP W 30,1571% 74,51% 4.873,00 4.017,00 8,73096%

EP A 30,1554% 74,51% 35.039,00 32.065,00 8,72579%

EP B 30,1554% 73,71% 147.519,98 * 128.140,00 8,72547%

EP C 30,1561% 73,74% 590.066,83 * 513.007,00 8,72569%

FT S 95,6037% 57,30% 413,40 1,22 99,74990%

FT W 95,9872% 57,93% 901,55 1,74 99,83285%

FT A 96,4578% 56,24% 16.158,00 2,14 99,98881%

FT B 99,9970% 55,11% 187.499,96 * 4,72 99,99763%

FT C 99,9973% 55,74% 837.302,68 * 15,17 99,99828%

IS S 99,7169% 66,52% 16,82 0,20 99,51034%

IS W 99,9807% 67,24% 266,70 0,20 99,96788%

IS A 99,9976% 67,24% 2.409,41 0,20 99,99599%

IS B 99,9993% 67,79% 8.561,00 * 0,19 99,99899%

IS C 99,9997% 67,79% 34.243,55 * 0,20 99,99975%

LU S 99,7529% 38,04% 111,10 4,30 96,49928%

LU W 99,9983% 34,86% 17.829,00 8,75 99,95334%

LU A 99,9997% 34,05% 116.309,00 9,09 99,99261%

LU B 99,9999% 33,75% 491.204,53 * 9,05 99,99824%

LU C 99,9999% 33,86% 2.010.519,82 * 9,15 99,99957%

MG S 99,2524% 64,07% 19,22 0,73 97,19477%

MG W 99,9866% 61,43% 1.062,64 0,98 99,93263%

MG A 99,9982% 61,01% 8.243,00 1,04 99,99026%

MG B 99,9994% 60,15% 29.777,01 * 2,36 99,99286%

MG C 99,9999% 59,93% 235.823,19 * 2,64 99,99898%

SP S 99,7982% 49,35% 132,50 2,50 98,37803%

SP W 99,9983% 46,79% 18.584,00 3,19 99,98478%

SP A 99,9997% 46,45% 111.944,00 3,21 99,99744%

SP B 99,9999% 45,94% 463.490,96 * 3,21 99,99938%

SP C 99,9999% 45,91% 1.896.766,03 * 3,23 99,99985%

UA S 99,8481% 52,81% 1.473,80 183,70 87,65023%

UA W 98,7710% 52,58% 8.614,00 1.103,33 87,44490%

UA A 94,8764% 53,41% 66.454,00 11.536,00 82,99920%

UA B 90,3040% 54,60% 282.562,47 * 67.057,00 76,75120%

UA C 87,0591% 55,66% 1.160.842,50 * 329.929,00 72,18357%

A
n
a
l
y
s
i
s

T
i
m
e

W
i
t
h
o
u
t

D
e
d
u
c
t
i
o
n

(
i
n

s
e
c
o
n
d
s
)

Chapter 7 – Experimental Evaluation

98

All the evaluated programs in this set of experiments were very predictable, with
exception for the EP and UA benchmarks. This “unpredictability” is reflected directly in
the efficiency of t he compression w e obtained during t he PBB f ile generation by
recognizing repetitive sequence patterns of basic blocks.

Figure 34 to Figure 37 show the relation between workloads and the amount of
instructions executed and simplified.

Figure 34 – Instructions executed and analyzed for NPB – the good cases.

The optimal behavior of a program for our simplification purposes are presented
in B T, I S, LU and SP charts in Figure 34. Thes e programs, once scaling out t he
workload, have a significant increase in the instructions executed, but the increase in the

Chapter 7 – Experimental Evaluation

99

amount of instructions analyzed keep always around one. This means that the analysis
time for t hese programs with si mplification i s almost constant, ev en with larger
workloads, as showed in Table 9 and Table 10.

A non -optimal but very g ood beha vior o f p rograms for our simplification
purposes were obtained with CG, FT and MG programs shown in Figure 35. They kept
increasing t he amount o f executed instructions more than increasing t he amount of
analyzed i nstructions. This means that the benefit of simplification is better for l arger
workloads.

Figure 35 – Instructions executed and analyzed for NPB – the not bad cases.

The EP program shown in Figure 36 presented an equal increase in the amount of
instructions executed and in the amount of instructions analyzed. In this case, the benefit
of si mplification ha s a constant pr oportion w ith the am ount of i nstructions executed
(around 8.7%) as shown in Table 9 and Table 10.

The worst s cenario f or o ur si mplification i s what w e obtained with t he UA
program ev aluation, show n i n Figure 37. The i ncrease of t he amount of i nstructions
analyzed w as g reater than t he increase of the amount of instructions executed. T his
means that we are losing simplification capacity for larger workloads.

Chapter 7 – Experimental Evaluation

100

Figure 36 –

Figure 37 – Instructions executed and analyzed for NPB – the bad cases.

Because of a limitation in our experimental environment allowing a program to
run only up to three days, unfortunately, the accurate numbers about Class C EP and UA
programs analyses with simplification are unavailable.

However, even in the worst cases presented in this set of experiments, the analysis
time using simplification w ill al ways be equal or bet ter t he analysis time without
simplification.

Also, in the w orst result we obt ained, the time needed t o generate t he p rogram
trace and analyze it w ithout any si mplification w as equi valent t o run t he evaluated
program for l ess than 2,800 t imes (1,880 t imes on av erage without s implification and
170 times on average with simplification).

Our cu rrent analysis tool s cored abou t 1.6 millions o f instructions analyzed per
second. This number can be used for predicting the analysis time without simplification
once obtained the program trace. In fact, for all classes B and C presented in Table 9 and
Table 10, the numbers of t he analysis time without si mplification (with an *) w ere
estimated.

Figure 38 shows t he robustness ev aluated of ea ch pr ogram of t his set o f
experiments with almost all the workloads proposed.

It i s noticeable that t he smaller w orkloads tend to pr esent a robustness slightly
different of those w ith the larger w orkloads. H owever, t he standard d eviation f ound
between the smaller and the larger workloads were all lower than 3%.

Chapter 7 – Experimental Evaluation

101

Figure 38 – Robustness for NPB.

This low deviation implies that we could evaluate the robustness of the smaller
workloads to test the programs with fault detection and protection mechanisms. These
evaluations with the smaller workload should test enough of the program/algorithm to
the evaluation be considered valid also for the same program/algorithm with larger
workloads.

7.3.1.4 SPEC CPU2000 Benchmarks Evaluation
For this section we calculated the robustness against transient faults of all SPEC

CPU2000 benchmarks [Standard Performance Evaluation Corporation, 2007], with two
distinct workloads each, using ARTFUL methodology tools with and without
simplification.

Even been retired back in 2007, the SPEC CPU2000 is a benchmark set largely
used for experiments using simulators.

All 26 benchmark programs used in this section were compiled using GNU C and
Fortran in their version 4.4.6, with maximum code optimization during compilation
(O3).

All the computing nodes used in this set of experiments have CentOS version 6
operating system with 64 bits kernel version 2.6.32. The hardware of all computing
nodes used in this work has eight 1.6 GHz AMD Opteron processors with eight cores
each and 256 gigabytes of RAM.

Table 11 and Table 12 show a summary of the numbers we obtained with this set
of experiments. The tables contain: the program used in the evaluation (Benchmark), the
workload used in the evaluation (“t” for a small test workload; “r” for a reference
workload), the standard program execution time without any kind of interference
(Execution Time), how much time took to generate the traces (Trace Generation Time),
the size of the basic block information trace file (BBI File Size), the amount of unique

Chapter 7 – Experimental Evaluation

102

basic blocks recognized by the trace generator (Unique Basic Blocks), the size of the
packed basic block sequences file (PBB File Size), the total amount of instructions that
were traced during the trace generation step (Instructions Executed), the percentage of
the instructions that were executed by the program and not by some library (Program
Influence), the robustness calculated (Robustness), the time spent on the robustness
analysis without simplification (Analysis Time Without Simplification), the time spent
on the robustness analysis with simplification (Analysis Time With Simplification) and
the amount of instructions that the analyses could simplify (Simplified Instructions).

Chapter 7 – Experimental Evaluation

103

Table 11 – Summary of experimental evaluation results for SPEC (1/2).

B
e
n
c
h
m
a
r
k

W
o
r
k
l
o
a
d

E
x
e
c
u
t
i
o
n

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

T
r
a
c
e

G
e
n
e
r
a
t
i
o
n

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

B
B
I

F
i
l
e

S
i
z
e

(
i
n

M
b
y
t
e
s
)

U
n
i
q
u
e

B
a
s
i
c

B
l
o
c
k
s

P
B
B

F
i
l
e

S
i
z
e

(
i
n

M
b
y
t
e
s
)

I
n
s
t
r
u
c
t
i
o
n
s

E
x
e
c
u
t
e
d

b
y

t
h
e

B
e
n
c
h
m
a
r
k

164.GZIP t 0,72 134,77 1,44 2.955 36,02 2.199.854.877

164.GZIP r 23,31 4.764,00 1,44 2.935 984,55 67.786.449.431

168.WUPWISE t 2,36 238,89 2,15 4.350 6,28 10.890.307.710

168.WUPWISE r 76,06 8.518,00 2,16 4.362 6,31 375.252.013.209

171.SWIM t 0,16 7,27 2,16 4.200 0,12 407.431.780

171.SWIM r 67,31 1.238,02 2,28 4.364 1,77 202.678.687.528

172.MGRID t 4,94 117,90 2,12 4.150 0,15 18.213.573.464

172.MGRID r 123,31 2.975,87 2,22 4.261 0,79 455.332.034.734

173.APPLU t 0,07 5,81 3,96 4.480 0,14 244.733.911

173.APPLU r 98,56 4.526,00 3,95 4.471 0,30 309.344.484.149

175.VPR t 0,51 90,67 2,41 5.087 58,89 1.200.306.989

175.VPR r 44,62 5.841,00 3,17 6.436 2.367,03 66.282.330.326

176.GCC t 0,52 124,26 15,32 39.361 33,44 1.332.080.434

176.GCC r 8,48 1.065,91 15,42 39.640 52,59 23.127.069.920

177.MESA t 0,64 83,98 2,35 4.351 0,60 2.783.304.645

177.MESA r 64,13 5.646,00 2,11 4.145 69,17 234.053.132.033

178.GALGEL t 0,74 44,15 4,77 7.856 1,10 3.418.320.099

178.GALGEL r 71,04 1.983,62 4,77 7.843 5,63 303.217.945.968

179.ART t 0,72 40,13 1,13 2.319 0,06 1.719.273.390

179.ART r 24,40 2.255,07 1,25 2.586 0,21 54.485.996.407

181.MCF t 0,07 12,23 1,37 2.926 7,66 115.342.323

181.MCF r 61,23 4.215,00 1,37 2.921 608,81 44.750.047.001

183.EQUAKE t 0,27 21,29 1,81 3.017 1,97 739.364.983

183.EQUAKE r 105,68 1.050,94 1,90 3.157 6,83 90.490.804.068

186.CRAFTY t 1,14 262,04 3,31 6.943 77,68 3.150.883.466

186.CRAFTY r 48,33 13.552,00 3,42 7.163 2.722,14 139.353.806.057

187.FACEREC t 3,63 102,91 2,94 5.629 9,25 4.779.027.741

187.FACEREC r 126,09 6.204,00 2,96 5.660 309,35 259.033.771.886

188.AMMP t 2,84 235,94 2,58 4.351 11,92 5.222.917.578

188.AMMP r 100,46 10.294,00 2,56 4.454 445,65 318.032.699.535

189.LUCAS t 1,27 186,99 1,87 3.278 10,49 5.815.761.632

189.LUCAS r 65,01 4.269,00 2,67 3.717 115,37 226.779.381.088

191.FMA3D t - 2,87 3,38 6.814 0,26 5.732.824

191.FMA3D r 125,36 2.665,65 4,55 8.044 45,29 225.704.844.554

197.PARSER t 0,98 229,23 4,12 10.043 64,40 2.532.769.846

197.PARSER r 128,21 23.319,00 4,29 10.399 1.325,04 267.830.255.714

200.SIXTRACK t 2,71 300,66 6,32 10.446 11,25 9.518.123.545

200.SIXTRACK r 101,37 4.627,12 6,37 10.485 12,12 549.824.854.514

252.EON t 0,02 5,32 4,05 7.249 0,76 59.132.405

252.EON r 14,37 2.029,95 4,12 7.359 59,03 47.239.649.567

253.PERLBMK t 4,37 9,46 3,75 9.282 0,48 4.753.025

253.PERLBMK r 9,02 1.964,81 5,92 14.481 61,20 28.534.480.080

254.GAP t 0,27 64,62 4,07 9.349 13,03 723.721.055

254.GAP r 49,65 11.346,00 4,28 9.595 357,63 182.690.386.754

255.VORTEX t 1,89 348,67 6,66 14.072 7,72 7.864.055.624

255.VORTEX r 24,24 4.831,00 6,67 14.059 86,22 101.226.204.184

256.BZIP2 t 1,95 163,33 1,43 2.836 85,02 8.890.045.237

256.BZIP2 r 25,96 4.566,00 1,47 2.919 1.905,13 79.505.798.714

300.TWOLF t 0,08 11,78 3,24 6.542 4,12 203.483.885

300.TWOLF r 139,12 13.162,00 3,44 6.917 3.606,20 297.811.272.751

301.APSI t 1,85 53,67 3,81 6.348 1,04 5.718.539.651

301.APSI r 118,77 2.938,82 4,01 6.633 1,77 341.547.636.231

Chapter 7 – Experimental Evaluation

104

Table 12 – Summary of experimental evaluation results for SPEC (2/2).

B
e
n
c
h
m
a
r
k

W
o
r
k
l
o
a
d

P
r
o
g
r
a
m

I
n
f
l
u
e
n
c
e

R
o
b
u
s
t
n
e
s
s

A
n
a
l
y
s
i
s

T
i
m
e

W
i
t
h

S
i
m
p
l
i
f
i
c
a
t
i
o
n

(
i
n

s
e
c
o
n
d
s
)

A
m
o
u
n
t

o
f

S
i
m
p
l
i
f
i
e
d

I
n
s
t
r
u
c
t
i
o
n
s

164.GZIP t 99,4318% 85,46% 1.343,68 774,79 43,12%

164.GZIP r 99,0896% 85,09% 41.872,50 * 29.852,00 28,51%

168.WUPWISE t 99,9985% 66,98% 6.577,00 294,98 95,57%

168.WUPWISE r 99,9998% 64,78% 231.797,65 * 2.510,31 98,90%

171.SWIM t 83,6046% 46,59% 246,61 37,23 85,45%

171.SWIM r 99,5553% 41,86% 125.197,05 * 537,80 99,62%

172.MGRID t 99,9563% 21,18% 10.875,00 9,98 99,91%

172.MGRID r 99,9570% 21,17% 281.264,04 * 240,69 99,92%

173.APPLU t 97,1514% 47,47% 147,99 15,20 90,09%

173.APPLU r 99,9843% 44,06% 191.085,78 * 105,65 99,94%

175.VPR t 95,3157% 84,72% 738,61 712,94 3,50%

175.VPR r 99,0651% 78,81% 40.943,39 * 34.338,00 15,56%

176.GCC t 94,2315% 86,96% 831,14 699,34 16,28%

176.GCC r 78,7260% 81,44% 14.285,87 * 3.033,44 78,97%

177.MESA t 34,3162% 79,07% 1.725,48 48,53 97,21%

177.MESA r 94,1862% 69,64% 144.577,42 * 119.629,00 16,53%

178.GALGEL t 70,6120% 59,49% 2.042,09 68,10 96,77%

178.GALGEL r 67,7932% 57,55% 187.301,35 * 627,71 99,66%

179.ART t 99,6596% 69,03% 1.023,46 4,74 99,56%

179.ART r 99,9782% 65,26% 33.656,65 * 21,96 99,94%

181.MCF t 93,9946% 81,93% 70,49 38,99 45,63%

181.MCF r 99,0018% 80,43% 27.642,64 * 11.114,00 59,44%

183.EQUAKE t 49,5511% 72,87% 507,49 171,08 62,47%

183.EQUAKE r 95,0348% 55,34% 55.897,25 * 4.978,00 90,91%

186.CRAFTY t 99,9690% 87,54% 1.947,18 1.876,99 3,71%

186.CRAFTY r 99,9985% 87,85% 86.080,51 * 82.065,00 4,73%

187.FACEREC t 67,8621% 65,91% 2.896,07 710,14 76,47%

187.FACEREC r 85,3654% 67,68% 160.008,25 * 25.622,00 84,10%

188.AMMP t 91,9953% 64,58% 3.163,27 620,88 80,70%

188.AMMP r 98,4288% 54,91% 196.452,60 * 35.518,00 81,66%

189.LUCAS t 76,0025% 61,41% 3.543,74 638,75 82,14%

189.LUCAS r 84,5493% 49,76% 140.084,33 * 5.525,00 96,06%

191.FMA3D t 8,8999% 86,44% 3,95 3,18 21,96%

191.FMA3D r 93,8861% 60,20% 139.420,58 * 9.943,00 92,93%

197.PARSER t 95,9409% 86,25% 1.550,47 1.020,75 35,35%

197.PARSER r 97,0723% 86,32% 165.441,95 * 124.875,00 24,77%

200.SIXTRACK t 80,9245% 62,31% 5.799,00 2.578,82 56,13%

200.SIXTRACK r 99,6573% 37,07% 339.633,38 * 8.332,00 97,51%

252.EON t 95,1603% 77,70% 36,60 31,56 14,27%

252.EON r 99,7377% 77,65% 29.180,50 * 17.586,00 39,19%

253.PERLBMK t 63,7579% 86,78% 3,35 2,78 19,57%

253.PERLBMK r 93,4172% 88,03% 17.626,09 * 8.965,00 49,82%

254.GAP t 92,2895% 87,04% 448,60 361,58 19,94%

254.GAP r 99,9690% 84,00% 112.850,03 * 49.985,00 55,67%

255.VORTEX t 98,2349% 86,92% 4.871,00 2.752,34 49,32%

255.VORTEX r 98,7383% 86,29% 62.528,64 * 26.047,00 58,74%

256.BZIP2 t 99,9903% 80,94% 5.292,00 864,63 84,21%

256.BZIP2 r 99,9725% 84,00% 49.111,68 * 22.359,00 54,39%

300.TWOLF t 96,0373% 83,40% 124,99 116,20 7,13%

300.TWOLF r 99,8505% 81,77% 183.961,58 * 133.629,00 26,72%

301.APSI t 96,0335% 60,33% 3.419,48 182,61 94,79%

301.APSI r 99,5750% 61,03% 210.978,05 * 429,98 99,80%

A
n
a
l
y
s
i
s

T
i
m
e

W
i
t
h
o
u
t

S
i
m
p
l
i
f
i
c
a
t
i
o
n

(
i
n

s
e
c
o
n
d
s
)

Chapter 7 – Experimental Evaluation

105

Figure 39 – Robustness evaluation time for SPEC.

Figure 40 – Amount of simplified instructions for SPEC.

Figure 41 – Robustness for SPEC.

1
.
2
6
3
,
3

2
2
6
,
2

2
7
8
,
1

2
5
,
9

3
0
0
,
1

 1
.
5
7
5
,
7

1
.
5
8
3
,
8

2
0
7
,
0

1
5
1
,
7

6
2
,
3

7
3
1
,
7

7
1
2
,
5

1
.
8
7
6
,
3

2
2
4
,
0

3
0
1
,
7

6
5
0
,
2

1
.
2
7
5
,
5

1
.
0
6
2
,
5

1
.
8
4
4
,
0

2
,
8

1
.
5
7
8
,
5

1
.
6
4
0
,
7

5
2
7
,
2

1
.
5
9
9
,
8

1
2
7
,
7

1
.
4
8
5
,
0

1
4
5
,
0

2
6
,
4

2
6
,
1

4
7
,
0

9
0
0
,
5

4
8
3
,
4

1
.
9
5
3
,
5

3
6
,
8

9
3
,
3

2
5
0
,
4

5
7
,
0

1
.
9
7
8
,
4

2
5
2
,
4

4
5
6
,
0

1
5
0
,
7

1
0
0
,
6

1
.
1
5
5
,
9

1
2
7
,
8

1
.
3
6
5
,
1

1
.
2
1
1
,
7

1
.
2
3
5
,
3

1
.
2
7
3
,
8

1
.
0
3
7
,
2

1
.
0
5
5
,
1

2
8
,
4

1

10

100

1000

10000

1
6
4
.
G
Z
I
P

1
6
8
.
W
U
P
W
I
S
E

1
7
1
.
S
W
I
M

1
7
2
.
M
G
R
I
D

1
7
3
.
A
P
P
L
U

1
7
5
.
V
P
R

1
7
6
.
G
C
C

1
7
7
.
M
E
S
A

1
7
8
.
G
A
L
G
E
L

1
7
9
.
A
R
T

1
8
1
.
M
C
F

1
8
3
.
E
Q
U
A
K
E

1
8
6
.
C
R
A
F
T
Y

1
8
7
.
F
A
C
E
R
E
C

1
8
8
.
A
M
M
P

1
8
9
.
L
U
C
A
S

1
9
1
.
F
M
A
3
D

1
9
7
.
P
A
R
S
E
R

2
0
0
.
S
I
X
T
R
A
C
K

2
5
2
.
E
O
N

2
5
3
.
P
E
R
L
B
M
K

2
5
4
.
G
A
P

2
5
5
.
V
O
R
T
E
X

2
5
6
.
B
Z
I
P
2

3
0
0
.
T
W
O
L
F

3
0
1
.
A
P
S
I

R
o
b
u
s
t
n
e
s
s

E
v
a
l
u
a
t
i
o
n

T
i
m
e

(
R
e
l
a
t
i
v
e

t
o

P
r
o
g
r
a
m

E
x
e
c
u
t
i
o
n

T
i
m
e
)

Test Ref

4
3
,
1
2
%

9
5
,
5
7
%

8
5
,
4
5
%

9
9
,
9
1
%

9
0
,
0
9
%

3
,
5
0
%

1
6
,
2
8
%

9
7
,
2
1
%

9
6
,
7
7
%

9
9
,
5
6
%

4
5
,
6
3
%

6
2
,
4
7
%

3
,
7
1
%

7
6
,
4
7
%

8
0
,
7
0
%

8
2
,
1
4
%

2
1
,
9
6
%

3
5
,
3
5
%

5
6
,
1
3
%

1
4
,
2
7
%

1
9
,
5
7
%

1
9
,
9
4
%

4
9
,
3
2
%

8
4
,
2
1
%

7
,
1
3
%

9
4
,
7
9
%

2
8
,
5
1
%

9
8
,
9
0
%

9
9
,
6
2
%

9
9
,
9
2
%

9
9
,
9
4
%

1
5
,
5
6
%

7
8
,
9
7
%

1
6
,
5
3
%

9
9
,
6
6
%

9
9
,
9
4
%

5
9
,
4
4
%

9
0
,
9
1
%

4
,
7
3
%

8
4
,
1
0
%

8
1
,
6
6
%

9
6
,
0
6
%

9
2
,
9
3
%

2
4
,
7
7
%

9
7
,
5
1
%

3
9
,
1
9
%

4
9
,
8
2
%

5
5
,
6
7
%

5
8
,
7
4
%

5
4
,
3
9
%

2
6
,
7
2
%

9
9
,
8
0
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
6
4
.
G
Z
I
P

1
6
8
.
W
U
P
W
I
S
E

1
7
1
.
S
W
I
M

1
7
2
.
M
G
R
I
D

1
7
3
.
A
P
P
L
U

1
7
5
.
V
P
R

1
7
6
.
G
C
C

1
7
7
.
M
E
S
A

1
7
8
.
G
A
L
G
E
L

1
7
9
.
A
R
T

1
8
1
.
M
C
F

1
8
3
.
E
Q
U
A
K
E

1
8
6
.
C
R
A
F
T
Y

1
8
7
.
F
A
C
E
R
E
C

1
8
8
.
A
M
M
P

1
8
9
.
L
U
C
A
S

1
9
1
.
F
M
A
3
D

1
9
7
.
P
A
R
S
E
R

2
0
0
.
S
I
X
T
R
A
C
K

2
5
2
.
E
O
N

2
5
3
.
P
E
R
L
B
M
K

2
5
4
.
G
A
P

2
5
5
.
V
O
R
T
E
X

2
5
6
.
B
Z
I
P
2

3
0
0
.
T
W
O
L
F

3
0
1
.
A
P
S
I

A
m
o
u
n
t

o
f

S
i
m
p
l
i
f
i
e
d

I
n
s
t
r
u
c
t
i
o
n
s

Test Ref

8
5
,
5
%

6
7
,
0
%

4
6
,
6
%

2
1
,
2
%

4
7
,
5
%

8
4
,
7
%

8
7
,
0
%

7
9
,
1
%

5
9
,
5
% 6
9
,
0
%

8
1
,
9
%

7
2
,
9
%

8
7
,
5
%

6
5
,
9
%

6
4
,
6
%

6
1
,
4
%

8
6
,
4
%

8
6
,
3
%

6
2
,
3
%

7
7
,
7
% 8
6
,
8
%

8
7
,
0
%

8
6
,
9
%

8
0
,
9
%

8
3
,
4
%

6
0
,
3
%

8
5
,
1
%

6
4
,
8
%

4
1
,
9
%

2
1
,
2
%

4
4
,
1
%

7
8
,
8
%

8
1
,
4
%

6
9
,
6
%

5
7
,
6
%

6
5
,
3
%

8
0
,
4
%

5
5
,
3
%

8
7
,
9
%

6
7
,
7
%

5
4
,
9
%

4
9
,
8
% 6
0
,
2
%

8
6
,
3
%

3
7
,
1
%

7
7
,
7
% 8
8
,
0
%

8
4
,
0
%

8
6
,
3
%

8
4
,
0
%

8
1
,
8
%

6
1
,
0
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
6
4
.
G
Z
I
P

1
6
8
.
W
U
P
W
I
S
E

1
7
1
.
S
W
I
M

1
7
2
.
M
G
R
I
D

1
7
3
.
A
P
P
L
U

1
7
5
.
V
P
R

1
7
6
.
G
C
C

1
7
7
.
M
E
S
A

1
7
8
.
G
A
L
G
E
L

1
7
9
.
A
R
T

1
8
1
.
M
C
F

1
8
3
.
E
Q
U
A
K
E

1
8
6
.
C
R
A
F
T
Y

1
8
7
.
F
A
C
E
R
E
C

1
8
8
.
A
M
M
P

1
8
9
.
L
U
C
A
S

1
9
1
.
F
M
A
3
D

1
9
7
.
P
A
R
S
E
R

2
0
0
.
S
I
X
T
R
A
C
K

2
5
2
.
E
O
N

2
5
3
.
P
E
R
L
B
M
K

2
5
4
.
G
A
P

2
5
5
.
V
O
R
T
E
X

2
5
6
.
B
Z
I
P
2

3
0
0
.
T
W
O
L
F

3
0
1
.
A
P
S
I

R
o
b
u
s
t
n
e
s
s

Test Ref

Chapter 7 – Experimental Evaluation

106

7.3.2 PAS2P
PAS2P [Wong, Rexachs and Luque, 2010] instruments a MPI program and

executes parallel programs in a base machine, producing a trace log. The collected data
is used to characterize the computation and communication behavior of the program. In
order to obtain a machine-independent program model, the trace is logged using a
logical global clock according to causality relations between communication events.

Once PAS2P generates the logical trace, it processes the trace using a technique
that searches for similarity to identify and extract the most relevant phases and assign
them a weight based on the number of times they occur. The signature will be defined
by a set of phases and weights.

The execution of the signature in different target systems allows us to measure
each phase execution time, and predict the program execution time in each target
machine by extrapolating each phase’s execution time using the obtained weights.

It is important to notice that the signature creation and execution is a two-step
process:

1. The first step is the analysis of the program, the building of the model and
subsequent extraction of its phases and weights.

2. The second step is the prediction method where PAS2P executes the
signature in a target machine to measure the phases’ execution time and
predict the program execution time.

7.3.2.1 Parallel application model
To create the signature, first PAS2P build a model (Machine-Independent Model)

of the application and then use that model to perform the predictions.

By instrumenting the MPI program, PAS2P obtain a program communication and
computation trace that contains all the communications events between processes and
computation time elapsed between MPI primitives.

In this context, an event will be a message sent or a message received. With this
information we build the program model and use it to study at what point of the program
the most computing time is spent (relevant phases), and how many times those phases
are repeated (weights).

In the Figure 42 (a) we show an example of a hypothetic program trace generated
by PAS2P, with the phases recognized as P0, P1, P2, P3, P4, P5, P6 and P7.

The result of the PAS2P trace analysis is presented on Figure 42 (b), showing all
program phases ordered by its relevancy in the total program execution time. In this

Chapter 7 – Experimental Evaluation

107

example PAS2P has detected that only two of the program phases (P1 and P2) are the
most relevant to the execution time prediction.

Figure 42 - PAS2P trace generation (a), analysis (b) and signature execution (c)

In the last step of its analysis PAS2P determines a way of executing the minimum
fraction of the program, as shown in Figure 42 (c), which allows measuring the time
needed to execute an amount of those phases assumed most relevant. PAS2P will try to
determine the measurement start and finish by leaving some warming up phases before
the measurement. PAS2P will also try to run a maximum of 100 phase’s repetitions to be
able to calculate a good average time for one phase. These measured averages will be
used with the weights of each phase to predict the total program execution time.

7.3.2.2 Performance Prediction
The executable signature runs the parallel program from the beginning and

measures the time spent from the point a phase begins until its end. When a phase has
been measured, PAS2P continues the program execution until a new relevant phase is
found.

The signature repeats this method and proceeds to execute all constituent phases.
When the last phase has been measured, the signature finalizes its execution that is often
just a small fraction of the whole program execution.

The prediction of the program total execution time is a matter of adding the
multiplication of each phase execution time by its weight as:

PET = ∑ 𝑃ℎ𝑎𝑠𝑒𝑇𝑖 × 𝑊𝑖

𝑘

𝑖=1

Where PET is the predicted execution time, k is the number of phases, PhaseTi is
the phase i execution time and Wi is the phase i weight.

7.3.2.3 Evaluating a PAS2P Signature Robustness

………P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P4 P5 P6 P1 P1 P1 P1

… ……P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P4 P5 P6P1 P1 P1 P1

99.5% of total program running time

a)

b)

…P1 P1 P1 P1 P2 P2 P2

<10% of total program running time

c)

0.5%

Interrupt program execution

Measurement of P1 Measurement of P2

100% of total program running time

P7P0

P0

P0 P7

Chapter 7 – Experimental Evaluation

108

In order to combine both the robustness evaluation methodology and PAS2P
methodology we changed the trace generation tools (the one that generates the basic
block information for the robustness analysis and the one that generates PAS2P phase’s
information) to cooperate during their execution.

In Figure 43 we present an example of a basic block trace activity associated to
the phases analysed by PAS2P during the hypothetical program execution.

In this example, P0 to P7 are PAS2P recognized phases of the program and BB0
to BB19 are basic blocks executed by the program.

The basic blocks trace activity shown in Figure 3 will have all basic blocks
executed by the complete execution of the evaluated program.

The analysis of this trace can calculate either the whole program execution
robustness or a per basic block robustness. In both cases the robustness evaluated will be
informed after analysing the whole basic block trace file.

Our strategy to combine both methodologies (and tools) was to make PAS2P
inform the basic block tracing tool about the beginning and the end of each measured
phase.

Figure 43 – Basic block trace and PAS2P analysis phase’s example.

With this interaction between the tools, the trace generated with basic block
information stores two new types of information:

1. A phase start tag in the beginning of every phase being measured by
PAS2P;

2. A phase finish tag in the end of every phase being measured by PAS2P.

In Figure 44 we present a trace activity of a PAS2P signature execution. During
this evaluation, PAS2P will inform the basic block tracing tool by shared memory the

…

………P1 P1 P1 P1 P2 P2 P2 P2 P2 P3 P4 P5 P6 P1 P1 P1 P1

100% of total program running time

P7P0

…

BB0

BB1

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

PAS2P analysis

Basic block trace activity

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB10

…

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB6

BB11

BB12 BB13

BB14

BB15

BB16

BB17

BB18 BB19

Chapter 7 – Experimental Evaluation

109

phase that is starting or finishing its measurement. The basic block tracing tool, then, put
this information as tags in the trace.

Figure 44 – Basic block trace of a PAS2P signature execution.

The tool that performs the robustness evaluation based on a basic block trace had
to be changed too. The new version computes the program robustness the same way as
before, but also presents a summary information of the specific robustness of each
program phase tagged by PAS2P.

With this summary, and multiplying it by each phase weight informed by the
PAS2P analysis, we could predict the whole program robustness with just a fraction of
its real execution (the execution of the PAS2P signature). The robustness analysis is
performed individually for each process of the parallel program.

The current version of the methodology treats each parallel program process as an
individual program that starts, runs and finishes its execution. One basic block trace is
generated per each programs processes executed.

7.3.2.4 Experimental Evaluation
In order to realize our experimental evaluation we designed a set of experiments

to calculate the robustness against transient faults of five programs. The ARTFUL
methodology is applied to both the standard program execution and the PAS2P signature
execution of the program being evaluated.

The selected programs are part of the NAS Parallel Benchmark [Bailey et al.,
1991] in its version 3.3. Because PAS2P required an MPI based parallel application, we
choose to evaluate the MPI versions of BT, CG, FT, LU and SP benchmarks with their
B class [NASA Website, 2012].

…

…P1 P1 P1 P1 P2 P2 P2

<10% of total program running time

Interrupt program execution

Measurement of P1 Measurement of P2

P0

BB0

BB1

PAS2P signature execution

Basic block trace activity

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB2

BB3

BB4

BB4

BB4

BB4

BB5

BB6

P1s

P1f

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

BB7

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB8

BB9

P2s

P2f

Chapter 7 – Experimental Evaluation

110

All five benchmark programs used in this experimental work were compiled using
GNU C and Fortran i n their version 4.4.1 , with static linkage of l ibraries used by t he
programs and with maximum code optimization during compilation (O3). Also, all five
benchmarks were compiled to run dividing they work between four computing nodes.

The four c omputing nodes use d i n t he experiments have Linux Ubuntu Se rver
operating system in version 9.10 with 64 bits kernel in version 2.6.31. The version of the
OpenMPI library used was 1.4.3. The hardware of all computing nodes used have one 2
GHz AMD Athlon 64 X2 processor with 2 gigabytes of memory.

In the first step of our experimental design we’ve generated all PAS2P signatures
of t he programs being ev aluated. We a lso tested t he PAS2P prediction tool j ust t o
evaluate the prediction of the execution time of the programs.

Figure 45 – Execution time comparison between complete program and PAS2P signature.

Figure 46 – PAS2P execution time prediction error.

Chapter 7 – Experimental Evaluation

111

Figure 45 shows the time (wall clock) needed (on average) to completely execute
the programs (without any instrumentation) and the time needed to execute the PAS2P
signature.

Figure 46 shows the er ror i n the pr edicted ex ecution t ime of the ev aluated
programs by comparing it with the standard program execution time.

Figure 47 shows t he trace generation ov erhead (also in com parison with t he
standard program executions) of the evaluated programs.

The average error of t he pr edicted execution t ime was 2.88% (1.81% without
taking into account the FT benchmark) and the average overhead in the execution time
was 9.84% (4.12% without taking into account the FT benchmark).

Figure 47 – PAS2P trace generation time overhead.

In bot h Figure 46 and Figure 47, t he FT benc hmark pr esented a particular
behaviour, scoring worse than the other programs evaluated. The problem with the FT
benchmark is that the workload used to evaluate the program was small enough to allow
the PAS2P p rediction t ool t o f ind phases w ith enough r epetitions t o have an accurate
evaluation.

So, PAS2P had to execute pr oportionally more instructions of t he program and
achieved a worse prediction of the FT benchmark execution time. As we will show in
section 5.3, this is not a problem to the robustness prediction.

The second step of our experimental work consisted of, once obtained the PAS2P
signature, generating the basic block trace of the complete programs executions and of
the PAS2P signature executions.

Chapter 7 – Experimental Evaluation

112

Figure 48 – Trace generation time for complete program and PAS2P signature.

Figure 49 – Packed basic block trace size for complete program and PAS2P signature.

Figure 48 shows that t he trace generations of t he PAS2P si gnatures w ere
considerably faster than the trace generations of the whole programs execution.

Even spending less time by tracing the PAS2P signatures than tracing the whole
programs, the size of t he basic block t races (in by tes) sh own i n Figure 49 presents a
reduction of less than 10% on average.

This occurs because of:

1. Our bas ic block t racing t ool compresses the traced d ata based on bas ic
block sequence repetitions on the fly during the trace generation (not after
the trace is generated);

2. In the experiments for this work, the portion of the trace file that contains
the bas ic b lock sequences (more i nfluenced by PAS2P) represented on
average 22.9% of the whole trace file, meanwhile the portion of the trace

Chapter 7 – Experimental Evaluation

113

file w ith the i nformation about the a rchitecture instructions in the bas ic
blocks (less influenced by PAS2P) represented 77.1%.

Figure 50 – Trace analysis time for complete program and PAS2P signature.

In Figure 50 we pr esent the t ime needed to calculate t he robustness of t he
evaluated programs and its respective PAS2P signatures.

The LU b enchmark ac hieved the best g ain in t ime saving of t he robustness
analysis. It ne eded onl y 3.57% of t he time spent by t he standard program ana lysis to
complete its work.

The worst case, as we could foresee, was achieved by the FT benchmark (45.3%).

On av erage, the traces ana lysis of t he PAS2P s ignatures n eeded 16.25% o f t he
time required to analyse the whole programs traces (8.99% without the FT benchmark).

As we previously mentioned, the basic block trace size of the PAS2P signatures
weren’t significantly smaller than the whole programs basic block traces. However, the
amount of i nstructions an alysed in e ach case of r obustness ana lysis for t he PAS2P
signatures were significantly smaller (Figure 51).

Chapter 7 – Experimental Evaluation

114

Figure 51 – Amount of instructions analyzed for complete program and PAS2P signature.

Figure 52 – Normalized time spent for complete program and PAS2P signature.

The r obustness ana lysis of t he PAS2P s ignatures n eeded, on av erage, 4.07%
(1.94% without the FT benchmark) of the instructions of the whole program analysis to
accomplish its work.

In Figure 52 we compare the t ime needed to perform the whole ana lysis of the
programs’ robustness: with and without PAS2P.

The PA S2P Sig nature A nalysis time takes into a ccount n ot onl y the r obustness
trace and t he analysis, but al so the PA S2P si gnature g eneration time and the PAS2P
trace analysis time.

While the whole program r obustness analysis needed 216 t imes t he programs
execution time (on average), using PAS2P and evaluating the robustness of the PAS2P
signatures needed 23 times the programs execution time (14 without the FT benchmark).

Chapter 7 – Experimental Evaluation

115

After evaluating the time needed to calculate the robustness’s we compared the
results of the ca lculated r obustness (Figure 53) and t he robustness prediction of t he
PAS2P signatures (Figure 54).

Figure 53 – Per process robustness for complete program execution.

Figure 54 – Per process robustness for PAS2P signature execution.

Chapter 7 – Experimental Evaluation

116

Figure 55 – Robustness prediction error.

The results obtained with the prediction of the PAS2P signatures’ robustness were
very accurate in comparison with the numbers obtained for the complete programs’
executions.

All the PAS2P signatures robustness’s predictions achieved an error lower than
4% as show in Figure 55.

As the FT benchmark was the program that needed more execution than the others
when running its PAS2P signature, its robustness evaluation took into account more real
information and needed less extrapolation, scoring the best robustness prediction of this
set of experiments with an error lower than 0.1%.

Chapter 8
Conclusion and Future Work

8.1 Conclusion
We started researching about transient faults and how they affect a program

execution about five years ago, back in 2008.

In the beginning, we studied about software based fault injections, trying to
understand the effects that transient faults could cause in program executions in HPC
systems.

One thing that we learned in the first years was that evaluating a program’s
robustness against transient faults using software based fault injection environments is a
very expensive task given the amount of CPU time needed to obtain a statistical
approximation of the desired result. Even using any type of parallelism!

With this limitation in our thoughts, we started the last part of this five years
journey with the motivation to make the process of evaluating a program robustness
against transient faults feasible for common HPC processor architectures and also for
parallel programs. We wanted to be able to execute not only tiny benchmarks (of
fractions of benchmarks as some fault injection campaigns suggests), but larger
benchmarks, including using parallel frameworks like Messaging Passing Interface
(MPI).

In our work we proposed a methodology to precisely calculate a program
robustness against transient faults that was equivalent to an exhaustive fault injection
campaign and performing all the evaluation with developed tools for both serial and
parallel programs in a time significantly smaller than using fault injection campaigns
most of the times.

The methodology allowed us to work in a simplification method, that reduced the
amount of instructions needed to be evaluated without affecting the calculated
robustness, keeping its precision.

Chapter 8 – Conclusion and Future Work

118

8.1.1 Published Work
ARTFUL methodology main concepts [Gramacho, Rexachs and Luque, 2011]

presented in Chapter 5 were published at the 2011 International Conference on Parallel
and Distributed Processing Techniques and Applications, Las Vegas, USA.

After publishing the main concepts of our methodology, we start working
improving the methodology tools efficiency both by the parallel evaluation with
prediction using PAS2P presented in 7.3.2 and by the simplification method presented at
7.3.1.

The work about the use of PAS2P to predict parallel program robustness against
transient faults is accepted for be published at the International Journal of Computational
Science and Engineering, Special Issue on Frontiers in Computer Science and
Technology 2012.

The work about the simplification was presented at the 11th IEEE International
Symposium on Parallel and Distributed Processing with Applications (ISPA-13), in
Melbourne, Australia.

8.2 Future Work
It is possible to improve even more the efficiency of the robustness evaluation

considering that the robustness for each processor register is calculated independently.
So, using a multithreaded ARTFUL Analyzer might improve significantly the amount of
time needed to calculate the program robustness against transient faults.

Also in the efficiency improvement field, it is possible to prove our methodology
with other tools for tracing the program execution. There are other instrumentation tools
like Dyninst that might reduce the trace generation time.

Still in the efficiency improvement field, we believe that there are space to
improve the compression algorithm we used in out trace generation to compress even
more the trace in the “not so bad” and “bad” cases presented in section 7.3.1.3 during
the NPB evaluation. This improvement will also provide gains in the analysis time, as
more we compress more we can simplify the robustness calculation.

We believe that is possible to work in a way to recognize the fault
detection/protection mechanisms coded in the programs and automatically use this
information to differentiate a registers that is being used but is protected by the program
itself. This evaluation is currently performed manually.

Finally, we believe that is possible to mix our methodology with a database of
known software based fault detection/tolerance mechanisms to aid the program

Chapter 8 – Conclusion and Future Work

119

developers on choosing the best way to reduce the risk of having their program results
affected by a transient fault without compromising valuable resources like CPU time
proving each mechanism with executions with fault injection.

References

Advanced Micro Devices, Inc. (2002-2013) AMD64 Architecture Programmer’s
Manual Volume 3: General-Purpose and System Instructions.

Argollo, E., Falcon, A., Faraboschi, P., Monchiero, M. and Ortega, D. (2009) 'COTSon:
infrastructure for full system simulation', SIGOPS Oper. Syst. Rev., vol. 43, no. 1, pp.
52-61.

Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., Martins, E. and
Powell, D. (1990) 'Fault injection for dependability validation: a methodology and some
applications', Software Engineering, IEEE Transactions on, vol. 16, no. 2, Feb, pp. 166-
182.

Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V. and Weeratunga, S.K. (1991) The NAS Parallel Benchmarks,
Technical Report RNR-94-007, 1994th edition, NASA Ames Research Center.

Baumann, R. (2005) 'Soft errors in advanced computer systems', Design & Test of
Computers, IEEE, vol. 22, no. 3, May-June, pp. 258-266.

Bronevetsky, G. and Supinski, B.d. (2008) 'Soft error vulnerability of iterative linear
algebra methods', ICS '08: Proceedings of the 22nd annual international conference on
Supercomputing, 155-164.

Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B. and Snir, M. (2009) 'Toward
Exascale Resilience', International Journal of High Performance Computing
Applications, vol. 23, no. 4, pp. 374-388.

Constantinescu, C. (2005) 'Dependability benchmarking using environmental test tools',
Reliability and Maintainability Symposium, 2005. Proceedings. Annual, 567-571.

Dixit, A. and Wood, A. (2011) 'The impact of new technology on soft error rates',
Reliability Physics Symposium (IRPS), 2011 IEEE International, 5B.4.1-5B.4.7.

Döbel, B., Schirmeier, H. and Engel, M. (2013) 'Investigating the Limitations of PVF
for Realistic Program Vulnerability Assessment', 5th Workshop on Design for
Reliability (DFR 2013).

References

122

Dodd, P.E. and Massengill, L.W. (2003) 'Basic mechanisms and modeling of single-
event upset in digital microelectronics', Nuclear Science, IEEE Transactions on, vol. 50,
no. 3, June, pp. 583-602.

Eyes, D. and Lichty, R. (1992) Programming the 65816 (Including the 6502, 65C02 and
65802), The Western Design Center, Inc.

Fidalgo, A.V., Alves, G.R. and Ferreira, J.M. (2006) 'Real time fault injection using a
modified debugging infrastructure', On-Line Testing Symposium, 2006. IOLTS 2006.
12th IEEE International, 6.

Gramacho, J. (2009) Analyzing the effects of transient faults into applications, Degree
dissertation, Universitat Autònoma de Barcelona.

Gramacho, J., Rexachs, D. and Luque, E. (2011) 'A Methodology to Calculate a
Program's Robustness against Transient Faults', International Conference on Parallel and
Distributed Processing Techniques and Applications, 645-651.

Hari, S.K.S., Adve, S.V. and Naeimi, H. (2012) 'Low-cost program-level detectors for
reducing silent data corruptions', IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012), vol. 0, pp. 1-12.

Hari, S.K.S., Adve, S.V., Naeimi, H. and Ramachandran, P. (2012) 'Relyzer: Exploiting
application-level fault equivalence to analyze application resiliency to transient faults',
Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems.

Hoarau, W., Tixeuil, S. and Vauchelles, F. (2007) 'FAIL-FCI: Versatile fault injection',
Future Generation Computer Systems, vol. 23, no. 7, pp. 913-919.

Jenn, E., Arlat, J., Rimen, M., Ohlsson, J. and Karlsson, J. (1994) 'Fault injection into
VHDL models: the MEFISTO tool', Fault-Tolerant Computing, 1994. FTCS-24. Digest
of Papers., Twenty-Fourth International Symposium on, Austin, TX, USA, 66 - 75.

Kanawati, G.A., Kanawati, N.A. and Abraham, J.A. (1995) 'FERRARI: a flexible
software-based fault and error injection system', Computers, IEEE Transactions on, vol.
44, no. 2, February, pp. 248-260.

Kudva, P.a.K.J.W., Sanda, P.N., McBeth, R., Schumann, J. and Kalla, R. (2007) 'Fault
Injection Verification of IBM POWER6 Soft Error Resilience', Proceedings of the
Workshop on Architectural Support for Gigascale Integration.

Lesiak, A., Gawkowski, P. and Sosnowski, J. (2007) 'Error Recovery Problems',
Dependability of Computer Systems, 2007. DepCoS-RELCOMEX '07. 2nd International
Conference on, 270-277.

References

123

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J. and Hazelwood, K. (2005) 'Pin: building customized program analysis tools with
dynamic instrumentation', Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, New York, NY, USA, 190-200.

Matsumoto, M. and Nishimura, T. (1998) 'Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator', ACM Trans. Model.
Comput. Simul., vol. 8, no. 1, January, pp. 3-30.

Mitra, S., Zhang, M., Seifert, N., Mak, T.M. and Kim, K.S. (2006) 'Soft Error Resilient
System Design through Error Correction', Very Large Scale Integration, 2006 IFIP
International Conference on, 332-337.

Mukherjee, S. (2008) Architecture Design for Soft Errors, Morgan Kaufmann.

Mukherjee, S.S., Emer, J. and Reinhardt, S.K. (2005) 'The Soft Error Problem: An
Architectural Perspective', HPCA '05: Proceedings of the 11th International Symposium
on High-Performance Computer Architecture, 243-247.

Mukherjee, S.S., Weaver, C., Emer, J., Reinhardt, S.K. and Austin, T. (2003) 'A
Systematic Methodology to Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor', MICRO 36: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture, Washington, DC, USA, 29.

NASA Website (2012) Problem Sizes and Parameters in NAS Parallel Benchmarks., 19
March, [Online], Available:
http://www.nas.nasa.gov/publications/npb_problem_sizes.html.

Nicolescu, B., Savaria, Y. and Velazco, R. (2003) 'SIED: Software Implemented Error
Detection', DFT '03: Proceedings of the 18th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems, 589.

Oh, N., Shirvani, P.P. and McCluskey, E.J. (2002) 'Error detection by duplicated
instructions in super-scalar processors', Reliability, IEEE Transactions on, vol. 51, no. 1,
March, pp. 63-75.

Oliner, A. and Stearley, J. (2007) 'What Supercomputers Say: A Study of Five System
Logs', Dependable Systems and Networks, 2007. DSN '07. 37th Annual IEEE/IFIP
International Conference on, 575-584.

Reis, G.A., Chang, J., August, D.I., Cohn, R. and Mukherjee, S.S. (2006) 'Configurable
Transient Fault Detection via Dynamic Binary Translation', Proceedings of the 2nd
Workshop on Architectural Reliability.

Reis, G.A., Chang, J., Vachharajani, N., Rangan, R. and August, D.I. (2005) 'SWIFT:
software implemented fault tolerance', Code Generation and Optimization, 2005. CGO
2005. International Symposium on, March, pp. 243-254.

http://www.nas.nasa.gov/publications/npb_problem_sizes.html

References

124

Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I. and Mukherjee, S.S.
(2005) 'Design and Evaluation of Hybrid Fault-Detection Systems', ISCA '05:
Proceedings of the 32nd annual international symposium on Computer Architecture,
148-159.

Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I. and Mukherjee, S.S.
(2005) 'Software-controlled fault tolerance', ACM Trans. Archit. Code Optim., vol. 2, no.
4, pp. 366-396.

Shivakumar, P., Kistler, M., Keckler, S.W., Burger, D. and Alvisi, L. (2002) 'Modeling
the Effect of Technology Trends on the Soft Error Rate of Combinational Logic', DSN
'02: Proceedings of the 2002 International Conference on Dependable Systems and
Networks, 389-398.

Sosnowski, J., Gawkowski, P., Zygulski, P. and Tymoczko, A. (2006) 'Enhancing Fault
Injection Testbench', Dependability of Computer Systems, 2006. DepCos-RELCOMEX
'06. International Conference on, 78-83.

Sridharan, V. and Kaeli, D.R. (2008) 'Quantifying software vulnerability', Workshop on
Radiation Effects and Fault Tolerance in Nanometer Technologies.

Sridharan, V. and Kaeli, D.R. (2009) 'Eliminating microarchitectural dependency from
Architectural Vulnerability', High Performance Computer Architecture, 2009. HPCA
2009. IEEE 15th International Symposium on, 117-128.

Standard Performance Evaluation Corporation (2007) SPEC CPU2000, 07 June,
[Online], Available: http://www.spec.org/cpu2000/ [12 August 2013].

Stott, D.T., Floering, B., Burke, D., Kalbarczpk, Z. and Iyer, R.K. (2000) 'NFTAPE: a
framework for assessing dependability in distributed systems with lightweight fault
injectors', Computer Performance and Dependability Symposium (IPDS 2000), Chicago,
IL, 91-100.

The Western Design Center, Inc. (1981-2003) W65C02S 8–bit Microprocessor.

Wang, N.J., Quek, J., Rafacz, T.M. and Patel, S.J. (2004) 'Characterizing the Effects of
Transient Faults on a High-Performance Processor Pipeline', DSN '04: Proceedings of
the 2004 International Conference on Dependable Systems and Networks, Washington,
DC, USA, 61.

Wong, A., Rexachs, D. and Luque, E. (2010) 'Extraction of Parallel Application
Signatures for Performance Prediction', High Performance Computing and
Communications (HPCC), 2010 12th IEEE International Conference on, 223 -230.

Yount, C.R. and Siewiorek, D.P. (1996) 'A Methodology for the Rapid Injection of
Transient Hardware Errors', IEEE Trans. Comput., vol. 45, no. 8, pp. 881-891.

http://www.spec.org/cpu2000/

References

125

Yu, J., Garzaran, M.J. and Snir, M. (2009) 'ESoftCheck: Removal of Non-vital Checks
for Fault Tolerance', CGO '09: Proceedings of the 2009 International Symposium on
Code Generation and Optimization, Washington, DC, USA, 35-46.

