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Chapter 1

Introduction

In the qualitative theory of real planar polynomial differential systems
two of the main problems are the determination of limit cycles and the
center-focus problem, i.e. to distinguish when a singular point is either a
focus or a center. In this work we provide normal forms for Hamiltonian
systems with cubic homogeneous nonlinearities which have a center at the
origin, and classify these systems with respect to the topological equivalence
of their global phase portraits on the Poincaré disk. This classification will
further allow to start the study of how many limit cycles can bifurcate
from the periodic orbits of the Hamiltonian centers with only linear and
cubic terms when they are perturbed inside the class of all cubic polynomial
differential systems. Before going any further we shall talk about some
preliminary concepts and definitions that we will use throughout this work.
For more details see [14].

1.1 Preliminary definitions

Let A be an open set in R2. We define a vector field of class Cr as a C2

map X : A → R2 where X(x, y) represents the tip of the vector whose tail
is at the point (x, y) ∈ A. The orbits of the vector field X are the solutions
ϕ(t) = (x(t), y(t)) of the differential equation

(ẋ, ẏ) = X(x, y), (1.1)

where the dot denotes the sderivative with respect to time t. Therefore when
we say “vector field X” and “differential system (1.1)” we mean the same
thing. Here x and y are called the dependent variables, and t is called the
independent variable. An orbit is called a periodic orbit if there exists a c > 0
such that ϕ(t) = ϕ(t+ c) for every t. A limit cycle is a periodic orbit which
has a neighborhood that does not contain any additional periodic orbit.

The flow of a vector field is defined as usual, see for instance page 3 of
[14]. The union of orbits of the vector field X constitute its phase portrait.
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A bifurcation diagram illustrates how the phase portrait of a vector field
depends on its parameters.

A point (x, y) is called a singular point (or an equilibrium point) if
X(x, y) = 0. If a singular point has a neighborhood that does not con-
tain any other singular point, then that singular point is called an isolated
singular point.

We define the linear part of X at a point as the Jacobian matrix of X
at that point. We say that a singular point is non–elementary if both of the
eigenvalues of the linear part of the vector field at that point are zero, and
elementary otherwise. If both of the eigenvalues of the linear part of the
vector field at an elementary singular point are real, then the singular point
is called hyperbolic. A non–elementary singular point is called degenerate if
the linear part is identically zero, otherwise it is called nilpotent.

The notion of center goes back to Poincaré, see [24]. He defined a center
for a vector field on the real plane as a singular point having a neighborhood
filled of periodic orbits with the exception of the singular point. If an analytic
system has a center, it is known that after an affine change of variables and
a rescaling of the time variable, it can be written in one of the following
three forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y),

called a linear type center ;

ẋ = y + P (x, y), ẏ = Q(x, y), (1.2)

called a nilpotent center ;

ẋ = P (x, y), ẏ = Q(x, y),

called a degenerate center, where P (x, y) and Q(x, y) are real analytic func-
tions without constant and linear terms, defined in a neighborhood of the
origin.

A saddle ,a node, a focus and a cusp are defined in the usual way, for
more details see for instance [14] pages 7 and 110. A separatrix of a saddle
is an orbit that tends to that saddle either as t → ∞, or t → −∞. Clearly
a saddle has four separatrices.

We now talk a little about the Poincaré compactification. Let S2 be the
set of points (s1, s2, s3) ∈ R3 such that s21 + s22 + s23 = 1. We will call this
set the Poincaré sphere. Given a polynomial vector field

X(x, y) = (ẋ, ẏ) = (P (x, y), Q(x, y)) (1.3)

in R
2 of degree d (where d is the maximum of the degrees of the polynomials

P and Q) it can be extended analytically to the Poincaré sphere by project-
ing each point x ∈ R

2 identified by (x1, x2, 1) ∈ R3 onto the Poincaré sphere
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using the straight line through x and the origin of R3. In this way we obtain
two copies of X: one on the northern hemisphere {(s1, s2, s3) ∈ S2 : s3 > 0}
and another on the southern hemisphere {(s1, s2, s3) ∈ S2 : s3 < 0}. The
equator S1 = {(s1, s2, s3) ∈ S2 : s3 = 0} corresponds to the infinity of R2.
The local charts needed for doing the calculations on the Poincaré sphere
are

Ui = {s ∈ S
2 : si > 0}, Vi = {s ∈ S

2 : si < 0},
where s = (s1, s2, s3), with the corresponding local maps

ϕi(s) : Ui → R
2, ψi(s) : Vi → R

2,

such that ϕi(s) = −ψi(s) = (sm/si, sn/si) for m < n and m,n 6= i, for
i = 1, 2, 3. The expression for the corresponding vector field on S

2 in the
local chart U1 is given by

u̇ = vd
[

−uP
(

1

v
,
u

v

)

+Q

(

1

v
,
u

v

)]

, v̇ = −vd+1P

(

1

v
,
u

v

)

; (1.4)

the expression for U2 is

u̇ = vd
[

P

(

u

v
,

1

v

)

− uQ

(

u

v
,

1

v

)]

, v̇ = −vd+1Q

(

u

v
,

1

v

)

; (1.5)

and the expression for U3 is just

u̇ = P (u, v), v̇ = Q(u, v), (1.6)

where d is the degree of the vector field X. The expressions for the charts Vi
are those for the charts Ui multiplied by (−1)d−1, for i = 1, 2, 3. Hence, to
study the vector field X, it is enough to study its Poincaré compactification
restricted to the northern hemisphere plus S1, which we denote by D call the
Poincaré disk. To draw the phase portraits we will consider the projection
π(s1, s2, s3) = (s1, s2) of the Poincaré disk onto the unit disk centered at the
origin.

Finite singular points of X are the singular points of its compactification
which are in D2 \ S1, and they can be studied using U3. Infinite singular
points of X are the singular points of the corresponding vector field on the
Poincaré disk D lying on S1. Clearly a point s ∈ S1 is an infinite singular
point if and only if so is −s ∈ S1, and the local behavior of one is the same as
the other multiplied by (−1)d−1. Hence to study the infinite singular points
it suffices to look only at U1|v=0 and at the origin of U2.

We say that two vector fields on the Poincaré disk D are topologically
equivalent if there exists a homeomorphism h : D → D which sends orbits
to orbits preserving or reversing the direction of the flow.
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A polynomial differential system (1.3) is called Hamiltonian if there ex-
ists a nonconstant polynomial H : R2 → R such that

ẋ = Hy, ẏ = −Hx,

where Hx denotes the partial derivative of H with respect to x. H is called
the Hamiltonian polynomial. For a Hamiltonian vector field on the Poincaré
disk the separatrices are (i) the separatrices of finite and infinite saddles, (ii)
the finite and infinite singular points, and (iii) all the orbits at infinity. Let
Σ be the set of all separatrices, Σ is a closed set in D. The open components
of DrΣ are called canonical regions. The union of Σ with an orbit from each
canonical region is called a separatrix configuration. . The next theorem of
Neumann [23] gives a characterization of two topologically equivalent vector
fields in the Poincaré disk.

Theorem 1 (Neumann’s Theorem). Two continuous flows in D with iso-
lated singular points are topologically equivalent if and only if their separatrix
configurations are equivalent.

This theorem implies that once a separatrix configuration of a vector
field in the Poincaré disk is determined, the global phase portrait of that
vector field is obtained up to topological equivalence.

Finally we mention without getting into too much detail an important
result that classifies the finite singular points of Hamiltonian planar poly-
nomial differential systems. For a detailed definition of the (topological)
index of a singular point see for instance Chapter 6 of [14], but for our in-
tents and purposes the following theorem known as the Poincaré Formula
provides enough information for the subject. Similarly a parabolic sector, a
hyperbolic sector and an elliptic sector are defined in the standard way, for
details see page 18 of [14]. A vector field is said to have the finite sectorial
decomposition property at a singular point p if either p is a center, a focus
or a node, or it has a neighborhood consisting of a finite union of parabolic,
hyperbolic or elliptic sectors.

Theorem 2 (Poincaré Formula). Let q be an isolated singular point having
the finite sectorial decomposition property. Let e, h, and p denote the number
of elliptic, hyperbolic, and parabolic sectors of q, respectively. Then the index
of q is (e− h)/2 + 1.

For details on Theorem 2 see page 179 of [14].

Proposition 3. Finite singular points of Hamiltonian planar polynomial
vector fields are either centers, or have a finite union of an even number of
hyperbolic sectors.

Proof. It is known that an analytic planar differential system has the finite
sectorial decomposition property, for details see [14]. Moreover, if the system
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is Hamiltonian, its flow preserves area, see [1]. So a singular point of a
Hamiltonian system cannot be a focus, or have elliptic or parabolic sectors.
Finally, since the index of a singular point formed by hyperbolic sectors is
1− h/2, with h being the number of its hyperbolic sectors, it follows that h
is even. For more details about the index, see [14].

1.2 Background and our main results

An algorithm for the characterization of linear type centers was provided
by Poincaré [25] and Lyapunov [20], see also Chazy [6] and Moussu [22]. For
an algorithm for the characterization of the nilpotent centers and some class
of degenerate centers see the works of Chavarriga et al. [5], Giacomini et al.
[16], Cima and Llibre [8], and Giné and Llibre [17].

The classification of centers for real planar polynomial differential sys-
tems started with the classification of centers for quadratic systems, and
these results go back mainly to Dulac [13], Kapteyn [18, 19] and Bautin [2].
In [28] Vulpe provides all the global phase portraits of quadratic polyno-
mial differential systems having a center. The bifurcation diagrams of these
systems were done by Schlomiuk [26] and Żo la̧dek [31]. There are many
partial results for the centers of planar polynomial differential systems of
degree larger than two. For instance the linear type centers for cubic sys-
tems of the form linear plus homogeneous nonlinearities were characterized
by Malkin [21], and Vulpe and Sibirski [29]. We must mention that in this
work we do not use their characterization, instead we introduce a different
set of normal forms. Some interesting results on some subclasses of cubic
systems are those of Rousseau and Schlomiuk [27], and the ones of Żo la̧dek
[32, 33]. For polynomial differential systems of the form linear plus homo-
geneous nonlinearities of degree greater than three the centers at the origin
are not characterized, but there are partial results for degrees four and five
for the linear type centers, see for instance Chavarriga and Giné [3, 4].

In this work we provide the global phase portraits on the Poincaré disk of
all Hamiltonian planar polynomial vector fields having only linear and cubic
homogeneous terms which have a linear type center or a nilpotent center at
the origin, together with their bifurcation diagrams. It is shown in [8] that
the degenerate centers of such vector fields are topologically equivalent to
1.18 of Figure 1.1. Hence this work completes the classification of the global
phase portraits on the Poincaré disk of all Hamiltonian planar polynomial
vector fields having only linear and cubic homogeneous terms which have a
center at the origin.

We note that the problem of finding the global phase portraits of all
Hamiltonian planar polynomial vector fields having only linear and cubic
homogeneous terms which have a linear type center at the origin has been
considered also in [15]. There the authors provide a general algorithm using
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polar coordinates for finding the phase portraits of Hamiltonian linear type
centers with arbitrary n–th order homogeneous nonlinearities. In addition,
as an application of this algorithm they provide the global phase portraits
of the Hamiltonian linear type centers having cubic nonlinearities. However,
while it differs from our work in terms of the tools used, there are also some
differences in the results obtained. They find the same global phase portraits
as us, except for the locations of the cusp points in their phase portraits 21
and 22 (which, in our case, correspond to the phase portraits 1.12 and 1.9
of Figure 1.1, respectively). According to our results, if we perturb linearly
the phase portraits 21 and 22 in the same class we should obtain the phase
portraits 17 and 20, respectively (which, in our case, correspond to the phase
portraits 1.11 and 1.8 of Figure 1.1, respectively). However this clearly is
not possible. We remark that for the Hamiltonian nilpotent centers of the
form linear plus cubic homogeneous terms there are no previous results.

We now state our main results. We first provide normal forms and the
global phase portraits in the Poincaré disk for all the Hamiltonian linear
type center or nilpotent centers of linear plus cubic homogeneous planar
polynomial vector fields. These results are summarized in Theorems 4 and
5, respectively.

Theorem 4. Any Hamiltonian linear type planar polynomial vector field
with linear plus cubic homogeneous terms has a linear type center at the
origin if and only if, after a linear change of variables and a rescaling of its
independent variable, it can be written as one of the following six classes:

(I) ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3

(II) ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

(III) ẋ = ax+ by − 3x2y + y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(IV) ẋ = ax+ by − 3x2y − y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(V) ẋ = ax+ by − 3µx2y + y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(VI) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

where a, b, β, µ ∈ R with b 6= 0 and β > 0. Moreover, the global phase
portraits of these six families of systems are topologically equivalent to the
following of Figure 1.1:

(a) 1.1 or 1.2 for systems (I);
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(b) 1.3 for systems (II);

(c) 1.4, 1.5 or 1.6 for systems (III);

(d) 1.1, 1.2, 1.7, 1.8 or 1.9 for systems (IV );

(e) 1.3, 1.10, 1.11 or 1.12 for systems (V );

(f) 1.13–1.23 for systems (V I).

We will prove Theorem 4 in Chapter 2.

Theorem 5. A Hamiltonian planar polynomial vector field with linear plus
cubic homogeneous terms has a nilpotent center at the origin if and only if,
after a linear change of variables and a rescaling of its independent variable,
it can be written as one of the following six classes:

(VII) ẋ = ax+ by, ẏ = −a
2

b
x− ay + x3, with b < 0,

(VIII) ẋ = ax+ by − x3, ẏ = −a
2

b
x− ay + 3x2y, with a > 0.

(IX) ẋ = ax + by − 3x2y + y3, ẏ =
(

c − a2

b+ c

)

x − ay + 3xy2, with either

a = b = 0 and c < 0, or c = 0, ab 6= 0, and a2/b− 6b > 0,

(X) ẋ = ax + by − 3x2y − y3, ẏ =
(

c − a2

b+ c

)

x − ay + 3xy2, with either

a = b = 0 and c > 0, or c = 0, a 6= 0, and b < 0,

(XI) ẋ = ax+by−3µx2y+y3, ẏ =
(

c− a2

b+ c

)

x−ay+x3+3µxy2, with either

a = b = 0 and c < 0, or c = 0, b 6= 0, and (a4 − b4 − 6a2b2µ)/b > 0,

(XII) ẋ = ax+by−3µx2y−y3, ẏ =
(

c− a2

b+ c

)

x−ay+x3+3µxy2, with either

a = b = 0 and c > 0, or c = 0, b 6= 0, and (a4 + b4 + 6a2b2µ)/b < 0,

where a, b, c, µ ∈ R. Moreover the global phase portraits of these six families
of systems are topologically equivalent to the following of Figure 1.1:

(a) 1.1 for systems (V II) and (X);

(b) 1.3 for systems (V III);

(c) 1.4, 1.5 or 1.6 for systems (IX);

(d) 1.3, 1.10, 1.11 or 1.12 for systems (XI);

(e) 1.13, 1.14, 1.15 or 1.18 for systems (XII).
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1.1 1.2 1.3 1.4

1.5 1.6 1.7 1.8

1.9 1.10 1.11 1.12

1.13 1.14 1.15 1.16

1.17 1.18 1.19 1.20

1.21 1.22 1.23

Figure 1.1: Global phase portraits of all Hamiltonian planar polynomial vector
fields having only linear and cubic homogeneous terms which have a linear type or
nilpotent center at the origin. The separatrices are in bold.
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We will prove Theorem 5 in Chapter 3.

Second we provide the bifurcation diagrams of the families of vector fields
(I)–(XII) of Theorems 4 and 5. The bifurcation diagrams for the centers
of Theorems 7 and 8 in the particular case when they are reversible were
also given in [15].

We note that the parameters of these families can be further simplified,
however, at this point such simplifications do not contribute to the proofs.
On the other hand, to obtain better and simpler bifurcation diagrams we
shall make use of those simplifications. Hence we make the following remark
before stating our next results.

Remark 6. Using the change of variables (u, v) = (x/
√
β, y/

√
β), the time

rescale dτ = βdt, and redefining parameters ā = a/β and b̄ = b/β, we can
assume β = 1 in the families of systems (I)–(V I). We also note that in the
families (III)–(V I) the cases with a < 0 are obtained from those with a > 0
simply by making the change (t, x) 7→ (−t,−x). Therefore we will assume
a ≥ 0 for these systems.

A system in class (XI) with a = c = 0 can be transformed to a system
inside the same class with a = b = 0 and c 6= 0 doing the change (x, y) 7→
(y, x), c 7→ b and µ 7→ −µ. Hence when c = 0 we can assume a 6= 0.
Similarly we can assume a 6= 0 in systems (XII) whenever c = 0 (in this
case the change of variables is (x, y) 7→ (−y, x)).

When a 6= 0, via the rescaling of the variables (x, y, t) 7→ (x/
√

|a|,
y/
√

|a|, |a|t) and the parameter b 7→ b/|a| we can assume a = 1 in the
families of systems (IX) − (XII).

Using Remark 6 we present our results on the bifurcation diagrams in
the following two theorems.

Theorem 7. The global phase portraits of Hamiltonian planar polynomial
vector fields with linear plus cubic homogeneous terms having a linear type
center at the origin are topologically equivalent to the following ones of Fig-
ure 1.1 using the notation of Theorem 4.

(a) For systems (I) the phase portrait is

1.1 when b < 0;

1.2 when b > 0.

(b) For systems (II) the unique phase portrait is 1.3.

(c) For systems (III) the phase portrait is

1.4 when b < 0;

1.5 when b > 0 and a = 0;

9



1.6 when b > 0 and a > 0.

The corresponding bifurcation diagram is shown in Figure 1.2.

(d) For systems (IV ) the phase portrait is

1.1 when b < 0;

1.2 when b > 0, D = 0 and a = 0, or when b > 0 and D > 0;

1.7 when b > 0, D < 0 and a = 0;

1.8 when b > 0, D < 0 and a > 0;

1.9 when b > 0, D = 0 and a > 0.

See (4.4) for the definition of D. The corresponding bifurcation dia-
gram is shown in Figure 1.3.

(e) For systems (V ) we can assume b > 0, and the phase portrait is

1.3 when µ ≤ 0, or when µ > 0 and D4 < 0, or when µ > 0, D4 = 0
and a = 0;

1.10 when µ > 0, D4 > 0 and a = 0;

1.11 when µ > 0, D4 > 0 and a > 0;

1.12 when µ > 0, D4 = 0 and a > 0.

See (4.12) for the definition of D4. The corresponding bifurcation di-
agram for the case µ > 0 is shown in Figure 1.4.

(f) For systems (V I) we can assume b > 0 whenever µ < −1/3, and the
phase portrait is

1.13 when µ < −1/3 and b 6=
√

1 + a2;

1.14 when µ < −1/3 and b =
√

1 + a2;

1.15 when µ = −1/3 and b < 0;

1.16 when µ = −1/3, b > 0 and b 6=
√

1 + a2;

1.17 when µ = −1/3 and b =
√

1 + a2;

1.18 when µ > −1/3 and b < 0;

1.19 when µ > −1/3, b > 0, D4 < 0, or when µ > −1/3, b > 0,
D4 = D3 = 0 and either a 6= 0 or µ 6= 1/3 or b 6= 1;

1.20 when 1/3−2a/(3
√

1 + a2) > µ > −1/3, D4 > 0 and b =
√

1 + a2,
or when µ > 1/3, b > 0, D4 > 0 and a = 0;

1.21 when µ > −1/3, b > 0, D4 > 0 and b 6=
√

1 + a2, or when
µ > 1/3 + 2a/(3

√
1 + a2), b =

√
1 + a2, D4 > 0 and a 6= 0;

1.22 when µ > −1/3, b > 0, D4 = 0 and D3 6= 0;

10



1.23 when a = 0, µ = 1/3 and b = 1.

See (4.26) and (4.39) for the definitions of D4 and D3, respectively.
The corresponding bifurcation diagrams are shown in Figures 5–9.

We will prove Theorem 7 in Chapter 4.

Theorem 8. The global phase portraits of Hamiltonian planar polynomial
vector fields with linear plus cubic homogeneous terms having a nilpotent
center at the origin are topologically equivalent to the following ones of Fig-
ure 1.1 using the notation of Theorem 5.

(a) For systems (V II) and (X) the unique phase portrait is 1.1.

(b) For systems (V III) the unique phase portrait is 1.3.

(c) For systems (IX) the phase portrait is

1.4 when b < 0;

1.5 when b = 0;

1.6 when b > 0.

(d) For systems (XI) we can assume b ≥ 0, and the phase portrait is

1.3 when b = 0 and µ ≤ 0, or when b > 0 and D < 0;

1.10 when b = 0 and µ > 0;

1.11 when b > 0 and D > 0;

1.12 when b > 0 and D = 0.

Here D = −b2 − 6b2µ + 4(1 − b4)µ3 + 3b2µ4, and the corresponding
bifurcation diagrams are shown in Figure 1.10.

(e) For systems (XII) the phase portrait is

1.13 when µ > −1/3 and b 6= 0, 1;

1.14 when µ < −1/3 and b = 0, 1;

1.15 when µ = −1/3;

1.18 when µ > −1/3.

The corresponding bifurcation diagrams are shown in Figure 1.11.

We will prove Theorem 8 in Chapter 5.

We remark that all the equations controlling the bifurcations of the
global phase portraits described in Theorems 7 and 8 are algebraic curves.
We must mention that essentially Chapters 2 and 3 are published in the jour-
nals J. Differential Equations and Advances in Mathematics, repectively (see
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[9] and [10]). The Chapters 4 and 5 are submitted to publication, see [11]
and [12].

As we mentioned at the beginning of this chapter, the normal forms, the
phase portraits and the bifurcation diagrams provided in Theorems 4, 5, 7
and 8 will lead to new studies in the number of limit cycles that bifurcate
from the periodic orbits of the families of differential systems (I)–(XII)
when they are perturbed inside the class of all cubic polynomial differential
systems. This last study was made for the quadratic polynomial differential
systems, see the paper [7] and the references quoted therein.

b

a

1.4

1.4

1.6

1.5
(0, 0)

Figure 1.2: Bifurcation diagram for systems (III).

b

a

1.1

1.1 1.2

1.2

1.7

D = 0

1/
√

3

1.9

1.8

(0, 0)

Figure 1.3: Bifurcation diagram for systems (IV ).
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D4

a

1.3

1.3

1.11

1.10

1.12

(0, 0)

Figure 1.4: Bifurcation diagram for systems (V ) with µ > 0.

b

a

1.41.3

1.3

1.3

1.3

b =
√

1 + a2

(0, 0)

Figure 1.5: Bifurcation diagram for systems (V I) with µ < −1/3 and b > 0.

b

a

1.15

1.15
1.171.16

1.16

1.16

1.16

b =
√

1 + a2

(0, 0)

Figure 1.6: Bifurcation diagram for systems (V I) with µ = −1/3.
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µ = 1/(3b2) µ = b2/3

1.23

−1/3

1/3

(0, 0)

1.20

1.20

1.211.21

1.19 1.19

1.19

1.191.19

1.19

b

µ

b = 1

Figure 1.7: Bifurcation diagram for systems (V I) with µ > −1/3 and a = 0.

D4

D3

1.19 1.19 1.21

1.22

1.22

(0, 0)

Figure 1.8: Bifurcation diagram for systems (V I) with µ > −1/3, a > 0 and
b 6=

√
1 + a2.

a

µ

1.21

1.20

1.19 1.19

−1/3

1/3

1 µ = 1/3 + 2a/(3
√

1 + a2)

µ = 1/3 − 2a/(3
√

1 + a2)

(0, 0)

Figure 1.9: Bifurcation diagram for systems (V I) with µ > −1/3, a > 0, b =√
1 + a2 and D4 > 0.
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1.11

1.12

1.3

1.3

1.3

1.10

F = 0

b

µµ

c

∅ ∅

D < 0

D = 0

D > 0

(b = 0) (b > 0)

Figure 1.10: The bifurcation diagrams for systems (XI) when b = 0 and when
b > 0. Note that when b > 0 we have c = 0. In the figure F = 1 − b4 − 6b2µ.

1.14

1.14

1.151.15

1.18 1.18

1.13 1.13

1.131.13

G = 0G = 0

b

µµ

c

∅

∅

∅

µ = − 1

3

µ = − 1

3

(b = 0) (b 6= 0)

Figure 1.11: The bifurcation diagram for systems (XII) when b = 0 and when
b 6= 0. Note that when b 6= 0 we have c = 0. In the figure G = 1 + b4 + 6b2µ.
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Chapter 2

Proof of Theorem 4

In this chapter we will prove Theorem 4. In Section 2.1 we will show
how we obtain the normal forms given in Theorem 4. The following sections
will be the dedicated to finding the global phase portraits of the families
of vector fields (I)–(V I). We note that throughout this work when we talk
about singular points we are talking only about real singular points unless
it is stated otherwise.

2.1 Obtaining the normal forms given in Theo-

rem 4

Using the normal forms of Theorem 4 it is easier to determine the phase
portraits of the Hamiltonian linear type centers at infinity. Then using the
information about the infinite singular points and the Poincaré–Hopf theo-
rem we will get information about the finite singular points, and eventually
obtain the global phase portraits of these vector fields.

Doing a linear change of variables and a rescaling of the independent
variable, planar cubic homogeneous differential systems can be classified
into the following ten classes, see [8]:

(i)
ẋ = x(p1x

2 + p2xy + p3y
2),

ẏ = y(p1x
2 + p2xy + p3y

2),

(ii)
ẋ = p1x

3 + p2x
2y + p3xy

2,
ẏ = αx3 + p1x

2y + p2xy
2 + p3y

3,

(iii)
ẋ = (p1 − 1)x3 + p2x

2y + p3xy
2,

ẏ = (p1 + 3)x2y + p2xy
2 + p3y

3,

(iv)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,
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(v)
ẋ = p1x

3 + (p2 − α)x2y + p3xy
2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + α)xy2 + p3y

3,

(vi)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2 + y3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(vii)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2 − αy3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(viii)
ẋ = p1x

3 + (p2 − 3µ)x2y + p3xy
2 + y3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
µ ∈ R.

(ix)
ẋ = p1x

3 + (p2 − 3αµ)x2y + p3xy
2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3,
µ > −1/3,
µ 6= 1/3,

(x)
ẋ = p1x

3 + (p2 − 3µ)x2y + p3xy
2 − y3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,
µ < −1/3,

where α = ±1. So for studying the cubic planar polynomial vector fields
having only linear and cubic terms, it is sufficient to add to the above ten
families of systems a linear part. This is due to the fact that the linear
changes of variables that are done to obtain the classes (i)–(x) are not affine,
they are strictly linear. The following propositions define the precise forms
of the vector fields that we will study.

Proposition 9. Let X be a cubic planar polynomial vector field having only
linear and cubic terms, such that its cubic homogeneous part is given by one
of the above ten forms (i)−(x). Then X is Hamiltonian with a Hamiltonian
polynomial of degree four if and only if p1 = p2 = p3 = 0.

Proof. We will give the proof only for class (x) since the other nine cases
can be proved in the same way.

Let X = (P (x, y), Q(x, y)) be a differential system in class (x) with some
arbitrary linear part, that is

ẋ = P (x, y) = ax+ by + p1x
3 + (p2 − 3µ)x2y + p3xy

2 − y3,

ẏ = Q(x, y) = cx+ dy + x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,

where a, b, c, d ∈ R. Let H be its Hamiltonian polynomial of degree 4. We
have

Hx = −Q, Hy = P,

where Hx denotes the partial derivative of H with respect to x. To find H,
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we first integrate Hy with respect to y and get

H(x, y) =

∫

P (x, y) dy + f(x)

= axy +
b

2
y2 + p1x

3y +
p2 − 3µ

2
x2y2 +

p3
3
xy3 − 1

4
y4 + f(x),

for some real polynomial f . Then the derivative of H with respect to x is

Hx(x, y) = ay + 3p1x
2y + (p2 − 3µ)xy2 +

p3
3
y3 + f ′(x),

where f ′(x) is the first derivative of the polynomial f . Equating Hx to −Q
we obtain the three equations

3p1 = −p1, p2 − 3µ = −p2 − 3µ,
p3
3

= −p3,

which hold if and only if p1 = p2 = p3 = 0.

Remark 10. We note that when the parameters p1, p2 and p3 are all zero,
systems (i) are not cubic. For this reason, we will restrict our attention to
classes (ii) − (x).

Proposition 11. The linearized systems at the origin corresponding to each
of the nine classes of Hamiltonian cubic planar polynomial vector fields hav-
ing only linear and cubic homogeneous terms which have a linear type center
at the origin can be chosen as

ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay,

where a, b, β ∈ R such that b 6= 0 and β > 0.

Proof. We will again give the proof only for systems (x) as the remaining
cases can be proved in the same way.

Let X be a differential system in class (x) plus a linear part and let it
be Hamiltonian. Then, by Proposition 9, X is

ẋ = ax+ by − 3µx2y − y3,

ẏ = cx+ dy + x3 + 3µxy2,

for some real constants a, b, c, d. The eigenvalues of the linear part of system
X at the origin are

λ1,2 =
a+ d±

√

(a+ d)2 − 4(ad− bc)

2
.

In order to have a linear type center at the origin, these eigenvalues must
be ±βi, for some β > 0, see [14]. So we have

a+ d±
√

(a+ d)2 − 4(ad− bc)

2
= ±βi. (2.1)
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From (2.1) we get that a+ d = 0, and hence we obtain

a2 + bc = −β2.

We see that b 6= 0, otherwise the left hand side would be non–negative.
Then we can solve for c and get c = −(a2 + β2)/b.

It can be easily shown that with this choice of parameters, X is Hamil-
tonian with the Hamiltonian

H(x, y) = −1

4
(x4 + y4) − 3µ

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

Since X is Hamiltonian, by Proposition 3, the origin cannot be a focus, and
hence it is a center.

Remark 12. In all of the nine vector fields (ii)− (x) we are going to study,
we can assume α = 1 because the Hamiltonian systems with α = −1 can
be obtained from those with α = 1 simply by the linear transformation
x 7→ −x.

In light of the above classification, propositions and remarks, the nine
systems that we are going to study become

(ii′) ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3,

(iii′) ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

(iv′) ẋ = ax+ by − 3x2y, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(v′) ẋ = ax+ by − x2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + xy2,

(vi′) ẋ = ax+ by − 3x2y + y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(vii′) ẋ = ax+ by − 3x2y − y3, ẏ = −a
2 + β2

b
x− ay + 3xy2,

(viii′) ẋ = ax+ by − 3µx2y + y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(ix′) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

(x′) ẋ = ax+ by − 3µx2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2,

where µ < −1/3 for systems (x′), whereas µ > −1/3 but different from
1/3 for systems (ix′). Hence these last two classes are the same except for
the domains of the parameter µ. In fact when µ = 1/3 systems (ix′) clearly
become systems (v′). Additionally in the following proposition we show that
when µ = −1/3, systems (x′) are transformed into systems (iv′).

Proposition 13. When µ = −1/3 systems (x′) become systems (iv′) via a
linear transformation.
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Proof. Consider systems (x′) with µ = −1/3:

ẋ = ax+ by + x2y − y3, ẏ = −a
2 + β2

b
x− ay + x3 − xy2.

We introduce the new variables (X,Y ) obtained by the linear transformation

(

X
Y

)

=

(

cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)(

x
y

)

=

(

(x− y)/
√

2

(x+ y)/
√

2

)

.

Hence we have

x = (X + Y )/
√

2, y = (Y −X)/
√

2.

Then we obtain

Ẋ =
a2 − b2 + β2

2b
X +

(a+ b)2 + β2

2b
Y − 2X2Y,

Ẏ = − (a− b)2 + β2

2b
X − a2 − b2 + β2

2b
Y + 2XY 2.

Finally, after a time rescale dT = 2/3 dt, and defining

A = 3
a2 − b2 + β2

4b
, B = 3

(a+ b)2 + β2

4b

we get the systems

Ẋ = AX +BY − 3X2Y, Ẏ = −A
2 + β2

B
X −AY + 3XY 2,

which are exactly systems (iv′). This ends the proof.

In short, we can remove the restrictions on the parameter µ from classes
(ix′) and (x′) so that not only they become the same class, but also they
include classes (iv′) and (v′), and we deduce that Hamiltonian planar poly-
nomial vector fields having only linear and cubic terms which have a linear
type center at the origin can be classified into the six vector fields (I)−(V I)
given in Theorem 4.

Remark 14. Because the right hand sides of each of the differential systems
(I)–(V I) are odd functions, the global phase portraits of these systems must
be symmetric with respect to the origin.
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2.2 Global phase portraits of systems (I)

Systems (I)

ẋ = ax+ by, ẏ = −a
2 + β2

b
x− ay + x3,

have the Hamiltonian

H1(x, y) = −1

4
x4 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

We first investigate the infinite singular points of these systems. Using
(1.4), we see that in the local chart U1 systems (I) become

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ 1,

v̇ = −v3 (bu+ a) .

When v = 0, there are no singular points on U1.

Next we will check whether the origin of the local chart U2 is a singular
point. In U2 we use (1.5) to get

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− u4,

v̇ = v3
(

a2 + β2

b
u+ a

)

− u3v,

(2.2)

and we see that the origin is a degenerate singular point. We need to do
blow-ups to understand the local behavior at this point. We perform the
directional blow-up (u, v) 7→ (u,w) with w = v/u and have

u̇ =u2w2

(

a2 + β2

b
u2 + 2au+ b

)

− u4,

ẇ = − uw3(au+ b).

We eliminate the common factor u between u̇ and ẇ, and get the systems

u̇ = uw2

(

a2 + β2

b
u2 + 2au+ b

)

− u3,

ẇ = −w3(au+ b).

(2.3)

When u = 0, the only singular point of systems (2.3) is the origin, which is
also degenerate. Hence we do another blow-up (u,w) → (u, z) with z = w/u,
eliminate the common factor u2, and get

u̇ = uz2
(

a2 + β2

b
u2 + 2au+ b

)

− u,

ż = −z3
(

a2 + β2

b
u2 + 3au+ 2b

)

+ z.

(2.4)
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When u = 0, the possible singular points of systems (2.4) are the origin and
(

0,±
√

1/2b
)

. The sign of the parameter b determines the existence of these

points, hence we need to analyze these points in two cases. We note that
the linear part of systems (2.4) at any point (0, z) on the (u, z) plane is

(

bz2 − 1 0
−3az3 −6bz2 + 1

)

. (2.5)

When b < 0, the points
(

0,±
√

1/2b
)

are not real. Hence the only

singular point is the origin which is a saddle because the eigenvalues of
(2.5) at the origin are ±1. Going back through the change of variables until
systems (2.2) as shown in Figure 2.1, we see that locally the origin of U2

consists of two hyperbolic sectors.

zz

uu

uuu

w

w

v

Systems (2.4) Systems (2.4) with
the common factor u2

Systems (2.3)

Systems (2.3) with
the common factor u

Systems (2.2)

Figure 2.1: Blow-up of the origin of U2 of systems (I) when b < 0.

When b > 0, however, all three singular points are real. The points
(

0,±
√

1/2b
)

are attracting nodes because the eigenvalues of (2.5) at these

points are −1/2 and −2. Again, tracing back the change of variables to
systems (2.2), see Figure 2.2, we see that the origin of U2 has two elliptic
and two parabolic sectors.

We now look at the finite singular points of systems (I). Using (1.6) we
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zz

uu

uuu

w

w

v

Systems (2.4) Systems (2.4) with
the common factor u2

Systems (2.3)

Systems (2.3) with
the common factor u

Systems (2.2)

Figure 2.2: Blow-up of the origin of U2 of systems (I) when b > 0.

find that the candidates are

(0, 0) and ±
(

− aβ

b3/2
,
β√
b

)

.

We know that the origin is a center. When b < 0 we do not have any other
finite singular points, and we get the global phase portrait 1.1 in Figure 1.1.

On the other hand when b > 0 there are two more finite singular points
which are saddles as the eigenvalues of the linear part of systems (I) at
these points is ±

√
2β. Since there are no more finite singular points, at

least one of the saddles must be on the boundary of the period annulus of
the center at the origin, and by symmetry, we conclude that both saddles
are on this boundary. Furthermore we observe that the Hamiltonian H1 is
quadratic on the y-axis. This means that the y-axis and the separatrices of
a saddle can have at most two intersection points because the Hamiltonian
is constant on the separatrices and H1|x=0 = h can have at most two roots
for any h ∈ R. Hence the separatrices passing through the saddles can cross
the y-axis exactly twice while forming the boundary of the period annulus
of the center at the origin. Since there are no singular points on the y-axis
other than the origin, the global phase portraits of systems (II) when b > 0
are topologically equivalent to 1.2 of Figure 1.1.

23



2.3 Global phase portraits of systems (II)

Systems (II)

ẋ = ax+ by − x3, ẏ = −a
2 + β2

b
x− ay + 3x2y,

have the Hamiltonian

H2(x, y) = −x3y +
a2 + β2

2b
x2 +

b

2
y2 + axy.

Note that we can assume b > 0 because the linear change y 7→ −y gives
exactly the same systems with b 7→ −b.

Again we will first find the infinite singular points. In the local chart U1

systems (II) are

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ 4u,

v̇ = −v3 (bu+ a) + v.

When v = 0, only the origin of U1 is singular. The eigenvalues of the linear
part of systems (II) at the origin are 4 and 1, meaning that it is a repelling
node.

Next, we should check the origin of U2, in which systems (II) become

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− 4u3,

v̇ = v3
(

a2 + β2

b
u+ a

)

− 3u2v.

(2.6)

We see that only the origin is singular and it is degenerate, hence we need
blow-up to understand the local behavior at this point. Doing the blow-up
(u, v) 7→ (u,w) with w = v/u and eliminating the common factor u we get
the systems

u̇ = uw2

(

a2 + β2

b
u2 + 2au+ b

)

− 4u2,

ẇ = −w3 (au+ b) − uw.

(2.7)

When u = 0, the only singular point of systems (2.7) is the origin, which is
again degenerate. So, we do another blow-up (u,w) 7→ (u, z) with z = w/u,
eliminate the common factor u, and obtain

u̇ = u2z2
(

a2 + β2

b
u2 + 2au+ b

)

− 4u,

ż = −uz3
(

a2 + β2

b
u2 + 3au+ 2b

)

+ 5z.

(2.8)
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When u = 0, the only singular point of systems (2.8) is the origin, and it is
a saddle. We trace the change of variables back to systems (2.6) as shown
in Figure 2.3, and we find out that the origin of U2 is an attracting node.

z

uuu

w v

Systems (2.8) Systems (2.7) Systems (2.6)

Figure 2.3: Blow-up of the origin of U2 of systems (II).

This finishes the study of the infinite singular points of systems (II),
and we now focus on the finite singular points. We know that the origin is
singular. In addition systems (II) have the finite singular points

±





√

2a+
√

4a2 + 3β2
√

3
,−

(a−
√

4a2 + 3β2)

√

2a+
√

4a2 + 3β2

3
√

3b



 .

The eigenvalues of the linear part of systems (II) at these points is

±
2
√

4a2 + 3β2 + 2a
√

4a2 + 3β2
√

3
,

which means that they are saddles as β > 0.

Now we will determine the global phase portraits according to this local
information. The two saddles must be on the boundary of the period annulus
of the center at the origin due to the symmetry of the systems. Also there
are no singular points other than the origin on the coordinate axes, on
either of which the Hamiltonian H2 is quadratic. Therefore by the same
argument used for systems (I), this means that the separatrices passing
through saddles cannot cross the coordinate axes anymore. Hence we obtain
a global phase portrait topologically equivalent to 1.3 of Figure 1.1.

2.4 Global phase portraits of systems (III)

Systems (III)

ẋ = ax+ by − 3x2y + y3, (2.9a)
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ẏ = −a
2 + β2

b
x− ay + 3xy2, (2.9b)

have the Hamiltonian

H3(x, y) =
y4

4
− 3

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

In U1 these systems become

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

− u2(u2 − 6),

v̇ = −v3 (bu+ a) − uv(u2 − 3).

(2.10)

When v = 0, there are three singular points on U1: (0, 0), (±
√

6, 0). The
linear part of systems (2.10) is

(

−4u(u2 − 3) 0
0 −u(u2 − 3)

)

.

Hence the singular points (
√

6, 0) and (−
√

6, 0) are attracting and repelling
nodes, respectively.

At the origin, however, the linear part is zero. Therefore to understand
the local behavior we do the blow-up (u, v) 7→ (u,w) with w = v/u. After
eliminating the common factor u between u̇ and ẇ, we obtain the systems

u̇ = −uw2

(

bu2 + 2au+
a2 + β2

b

)

− u(u2 − 6),

ẇ = w3

(

au+
a2 + β2

b

)

− 3w.

(2.11)

When u = 0, besides the origin systems (2.11) can have the singular points
(

0,±
√

3b/(a2 + β2)
)

. The linear part of systems (2.11) at the points (0, w)

is






−a
2 + β2

b
w2 + 6 0

aw3 3
a2 + β2

b
w2 − 3






.

When b < 0, we see that
(

0,±
√

3b/(a2 + β2)
)

are not real, hence the

only singular point is the origin, which is a saddle. As a result, it is shown
in Figure 2.4 that the origin of U1 consists of two hyperbolic sectors.

When b > 0, all three singular points are real. In addition to the saddle

at the origin, the points
(

0,±
√

3b/(a2 + β2)
)

are repelling nodes. Conse-

quently, this time the origin of U1 has two elliptic sectors and two parabolic
sectors, see Figure 2.5.
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w v

Systems (2.11) Systems (2.10)

Figure 2.4: Blow-up of the origin of U1 of systems (III) when b < 0.

uu

w v

Systems (2.11) Systems (2.10)

Figure 2.5: Blow-up of the origin of U1 of systems (III) when b > 0.

We have studied systems (III) on U1, and we now look at the origin of
U2, in which systems (III) are written as

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− 6u2 + 1,

v̇ = v3
(

a2 + β2

b
u+ a

)

− 3uv.

We see that the origin of U2 is not a singular point. Hence all the infinite
singular points are in U1 and V1.

Now we analyze the finite singular points of systems (III). However,
contrary to systems (I) and (II), the explicit expressions for the finite sin-
gular points of systems (III) in terms of the parameters a, b, β are com-
plicated, and therefore it is hard to analyze their existence and their local
phase portraits. For this reason we take a different approach, which we will
also use in determining the global phase portraits of the rest of the vector
fields: We first find the maximum number of finite singular points allowed
by these systems. Then, using the Poincaré Formula (see Theorem 2) for
the index of a singular point of a planar vector field, we count the indices of
the singular points of the systems that we have found up to this point on the
Poincaré sphere, namely the origins of the local charts U3 and V3 and the
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infinite singular points. The next step is to determine the possible number
and local phase portraits of the finite singular points of the systems using
the Poincaré-Hopf Theorem for vector fields in the 2–dimensional sphere.

Theorem 15 (Poincaré–Hopf Theorem). For every vector field on the sphere
S2 with a finite number of singular points, the sum of the indices of the sin-
gular points is 2.

For details about Theorem 15 see page 177 of [14].

We note that singular points with index 0 are hard to detect in our
method as they do not contribute to the total index of the singular points
of the vector fields on the Poincaré sphere. To overcome this difficulty we
present the following lemma, but first we make a remark and give some
definitions.

Remark 16. Nilpotent singular points of Hamiltonian planar polynomial
vector fields are either saddles, centers, or cusps (for more details see Chap-
ters 2 and 3 of [14], specifically Sections 2.6 and 3.5).

From Theorem 2 the following result follows easily.

Corollary 17. The index of a saddle, a center and a cusp are −1, 1 and
0, respectively.

We define energy levels of a Hamiltonian vector field as the level curves
of its Hamiltonian; and a hyperbolic saddle with a loop and a center inside
the loop as in Figure 2.6 will be called a center–loop.

Figure 2.6: A center–loop.

Using the next lemma we will be able to say that the only singular points
of systems (III)–(V I) which have index zero are cusps, and that if these
systems have global phase portraits with cusps, then in a neighborhood of
those systems they must have systems with more finite singular points than
the ones having cusps. Sometimes these provide contradictions in the sense
that those systems will be forced to have more singular points than the ones
that they can have.

Lemma 18. Let X0 be a real Hamiltonian planar polynomial vector field
having only linear and cubic terms. Then X0 can be written as

ẋ = a10x+ a01y + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

ẏ = b10x− a10y + b30x
3 − 3a30x

2y − a21xy
2 − 1

3
a12y

3.
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Suppose that p is an isolated singular point of X0 different from the origin.
Then there is a perturbation Xε of X0 such that Xε is also a real Hamiltonian
planar polynomial vector field having only linear and cubic terms, and that
p is a singular point of Xε. In addition if a210 + a01b10 < 0, that is if the
origin of X0 is a linear type center, then the following statements hold:

(a) If p is non–elementary, then it is nilpotent.

(b) If p is a non–elementary singular point of X0, then it is an elementary
singular point of Xε with ε 6= 0.

(c) If p is a cusp of X0, then for ε 6= 0 small enough the local phase
portrait of Xε at p is a center–loop.

Proof. Without loss of generality we can assume that p = (0, y0), otherwise
doing a rotation of the coordinates we can get its x-coordinate to be zero.
Then we can define Xε as

ẋ = a10x+ a01y + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

ẏ = b10x− a10y + b30x
3 − 3a30x

2y − a21xy
2 − 1

3
a12y

3 + εx.
(2.12)

It is easy to check that Xε is Hamiltonian with the Hamiltonian polynomial

Hε =
a03y

4 − b30x
4

4
+a30x

3y+
a21x

2y2

2
+
a12xy

3

3
+
a01y

2 − (b10 + ε)x2

2
+a10xy,

and that p = (0, y0) is a singular point of Xε.

Assume that a210 + a01b10 < 0. Note that this condition implies a01 6= 0.

We first prove (a). At (0, y0) system Xε becomes

ẋ = y0(a01 + a03y
2
0), ẏ = −y0(a10 +

1

3
a12y

2
0),

whereas Mε, the linear part of Xε at a point, is

(

a10 + a12y
2
0 a01 + 3a03y

2
0

b10 − a21y
2
0 + ε −a10 − a12y

2
0

)

. (2.13)

Since y0 6= 0, we have (0, y0) degenerate only if

a01 + a03y
2
0 = a01 + 3a03y

2
0 = 0, (2.14)

which requires a03 = 0. However, since a01 6= 0, equation (2.14) cannot be
satisfied. Therefore we conclude that a non–elementary singular point of Xε

must be nilpotent.

Now we prove (b). Assume that (0, y0) is a non–elementary singular
point of X0. We will prove that the eigenvalues of the linear part of Xε,
with ε 6= 0, are different from zero.
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The characteristic polynomial at a singular point of Xε is of the form
λ2+det(Mε). So the eigenvalues λ of the linear part of Xε at a singular point
are ±

√

− det(Mε). Since we have already assumed that the eigenvalues of
M0 at (0, y0) are zero, the only nonzero terms in the determinant of Mε at
the same point are those having a factor of ε. Hence the eigenvalues of Mε

at (0, y0) are

λ = ±
√

ε(3a03y
2
0 + a01), (2.15)

where ε 6= 0. Then the eigenvalues are zero only if we have (2.14), but we
have already shown that it is not possible. Therefore (0, y0) is an elementary
singular point of Xε.

Finally we prove statement (c). Assume that (0, y0) is a cusp of X0.
First we note that for ε 6= 0, due to (2.15), by a proper choice of sign of
ε we can assume that (0, y0) is a saddle of Xε. In addition, since (0, y0),
which was a cusp with index 0, is now a saddle having index -1, new singular
points must emerge in a neighborhood Wε of (0, y0) to keep the total index
of the vector field fixed. Because of the symmetry of the system, there can
be at most three new singular points in Wε so that the total number of finite
singular points does not exceed 9. Since Xε is Hamiltonian, these singular
points can only be saddles, centers or cusps. Therefore in Wε there are
additionally to the saddle at (0, y0) either (i) one center, (ii) one center and
one cusp, (iii) one center and two cusps, or (iv) two centers and one saddle.
Our claim is that (i) is the only realizable case and that (0, y0) is the saddle
of a center–loop.

Because of the continuity of system Xε with respect to ε, the new sep-
aratrices of (0, y0) must be arbitrarily close to (0, y0) for small ε, therefore
they cannot go to any other singular point outside Wε. Note that in all the
possibilities (i) − (iv), there exists a center with (0, y0) on the boundary of
its period annulus. Then we see that (0, y0) cannot be on the boundary of
the period annulus of the center at the origin. Otherwise we could find a
straight line l through the origin intersecting the boundary of the period
annulus of the new center twice, which would, in fact, have at least three
intersection points with the separatrices of (0, y0), the other being on the
boundary of the period annulus of the center at the origin, see Figure 2.7.
Then, due to the symmetry of the system with respect to the origin, there
would be six points on l all of which are on the same energy level. Clearly
this is not possible since the Hamiltonian Hε is a quartic polynomial.

If (0, y0) is not on the boundary of the period annulus of the center at
the origin, then there must be other saddles on that boundary. This means
that system X0 has at least five finite singular points. This immediately
eliminates the possibilities (iii) and (iv), otherwise the number of finite
singular points exceeds the maximum of 9. Furthermore, by the same argu-
ments used for (0, y0), the cusp in case (ii) would also lead to the existence
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Figure 2.7: The straight line through the origin intersects the separatrices six
times.

of more singular points. Therefore we dismiss case (ii) also, proving our
claim.

Now we apply this method step by step to systems (III) to find their
global phase portraits. We first find the maximum number of finite singular
points. To do this, we equate (2.9a) to 0, solve for x and get

x1,2 =
a±

√

a2 + 12by2 + 12y2

6y
. (2.16)

Note that when y = 0, (2.9b) is zero if and only if x = 0. But since we are
looking for finite singular points other than the origin, we can assume that
y 6= 0. Then, if we substitute (2.16) into (2.9b) we obtain

ẏ1,2 = −a
3 + 3aby2 + aβ2 ± (a2 + β2 − 3by2)

√

a2 + 12by2 + 12y2

6by
,

where ẏ1 and ẏ2 denote ẏ with x1 and x2 substituted, respectively. Then
the maximum number of roots of the product ẏ1ẏ2 will give us an upper
bound for the number of finite singular points. So we multiply ẏ1 and ẏ2
and obtain

−3y6 +
2a2 + 2β2 − 3b2

b
y4 − (a2 + β2)(a2 + β2 − 6b2)

3b2
y2

−β
2(a2 + β2)

3b
.

(2.17)

We see that (2.17) cannot be identically zero. This means that all the finite
singular points of systems (III) are isolated, and there are at most six of
them. In fact, if we multiply (2.17) by 3b2 and replace y2 by z, we get the
cubic polynomial

−9b2z3+3b(2a2+2β2−3b2)z2−(a2+β2)(a2+β2−6b2)z−bβ2(a2+β2). (2.18)

In order that (2.17) has six real roots, all the roots of (2.18) must be positive.
To find the maximum number of positive roots of the polynomial (2.18) we
use Descartes’ rule of signs:
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Theorem 19. The number of positive roots of a real polynomial is either
equal to the number of sign differences between consecutive nonzero coeffi-
cients, or is less than it by a multiple of 2, when the terms of the polynomial
are placed in descending or ascending order of exponents.

The terms of (2.18) are already ordered correctly, so there must be three
changes of sign between its coefficients to have all three roots positive. When
b > 0, since the constant term and the coefficient of z3 are both negative,
there cannot be three changes of sign. When b < 0, the constant term is
positive and the coefficient of z3 is negative. Thus to have three positive
roots the coefficients of z and z2 must be negative and positive, respectively.
So we must have

a2 + β2 − 6b2 > 0 and 2a2 + 2β2 − 3b2 < 0,

which is not possible since

2a2 + 2β2 − 3b2 > a2 + β2 − 6b2.

Therefore polynomial (2.18) cannot have three positive roots, and as a result
systems (III) have at most four finite singular points other than the origin.

We continue by counting the indices of the singular points. As we men-
tioned earlier, singular points with index 0 cannot be detected in the index
summation. Furthermore by statement (a) of Lemma 18, Remark 16 and
Corollary 17, we know that the only singular points of systems (III) hav-
ing index 0 are cusps. Therefore we need to obtain some other information
about possible cusps of these systems. Since a cusp is a non–elementary
singular point, we will check if such singular points exist. We claim that
systems (III) have at most two non–elementary singular points. To prove
it we need to show that (2.9a), (2.9b) and the determinant of the linear part
of systems (III) cannot simultaneously vanish at more than two points. We
note that the linear part of systems (III) is

M3 =





a− 6xy b− 3x2 + 3y2

3y2 − a2 + β2

b
−a+ 6xy



 .

We compute the Gröbner basis for these three polynomials and obtain a
set of sixteen polynomials, but due to their length we will only present the
ones that we shall use. We equate these sixteen polynomials to zero and see
that to determine the number of their solutions it is enough to consider only
two equations, which are

a2 − 6b2 + β2 − 9by2 = 0, (2.19)

162b3(3b2 + β2)x− a
(

2(a2 + β2)2 + b2(279b2 − 57a2 + 24β2)
)

y = 0. (2.20)
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From equation (2.19) we get that there are at most two solutions for y since
b 6= 0. In addition, equation (2.20) is only linear in x and its coefficient is
different from zero. Therefore we deduce that the determinant of M3 can
be zero at most in two singular points of systems (III), proving our claim.
As a result systems (III) have at most two cusps.

Having established the above claim, we continue counting the indices of
the singular points. Since the infinite singular points depend on the sign of
the parameter b, we need to investigate those two cases separately.

When b < 0, the infinite singular points on the Poincaré sphere are
(±

√
6, 0) and (0, 0) in U1, and also the corresponding points on V1. The

origins of U1 and V1 consist of two hyperbolic sectors, hence, by Theorem 2,
have index 0. The other four infinite singular points are nodes, hence each
has index 1. Among the finite singular points we only know that the origins
of U3 and V3 are centers with index 1. Hence, the known singular points
have total index 6 on the Poincaré sphere. By Theorem 15, the remaining
finite singular points, if any, must have total index -4. Thus, on the Poincaré
disk, the finite singular points other than the origin must have total index
-2. By statement (a) of Lemma 18, the finite singular points are either
elementary or nilpotent, hence they are either saddles, centers or cusps due
to Remark 16. We remind that systems (III) can have at most four finite
singular points other than the origin, and at most two of them are nilpotent.
Then according to Corollary 17, there must be either just two saddles, or
two saddles and two cusps so that they have total index -2. Now we analyze
these two cases.

If there were two saddles and two cusps, due to statement (c) of Lemma 18,
after a small perturbation, systems (III) would have four saddles and two
centers, which is more than the maximum number of finite singular points
allowed by the systems. Therefore, when b < 0, systems (III) have only
two finite saddles. Due to the symmetry of the vector fields, the saddles
are located on the boundary of the period annulus of the center at the ori-
gin. On the x-axis the Hamiltonian H3 is quadratic, hence the separatrices
through the saddles cannot cross the x-axis any more, therefore we get the
global phase portrait 1.4 of Figure 1.1.

When b > 0, on the other hand, the infinite singular points at the origins
of U1 and V1 consist of two elliptic and two parabolic sectors, hence each
have index 2. Together with the remaining nodes at infinity and the centers
at the origins of U3 and V3, they have total index 10 on the Poincaré sphere.
So, on the Poincaré disk, the remaining finite singular points must have
total index -4. Since there are at most four more singular points, there must
be four saddles due to Corollary 17. Then on the boundary of the period
annulus of the center at the origin there can be either two or four saddles.
Thus we again have two cases to analyze.

Suppose first that all of the four saddles are on the boundary of the
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period annulus of the center at the origin. Since b > 0, the flow around
the center at the origin is clockwise. Taking into account the fact that the
separatrices through the saddles cannot cross the x-axis anymore, the global
phase portrait 1.5 shown in Figure 1.1 is obtained. We note that when we set
a = 0 and b = β = 1, we get a global phase portrait topologically equivalent
to the portrait 1.5 of Figure 1.1.

Second, assume there are only two saddles on the boundary of the period
annulus of the center. We claim that these saddles cannot be connected to
any of the other saddles. If this were the case, that is if one of these saddles
were connected to another saddle p which is not on the boundary of the
period annulus of the center, then, on the quadrant of the xy-plane where p
lies, a straight line l through the origin passing sufficiently close to p would
have at least three intersection points with the separatrices which are on
the same energy level as p (one with the boundary of the period annulus of
the center and at least two with the separatrices of p), see Figure 2.8 for
an illustration. Taking into account the symmetry of the vector fields with
respect to the origin, the straight line l would have six intersection points
with the separatrices on the same energy level as p, see Figure 2.8. This
means that on the straight line l, which could be defined by y = cx for some
real number c, the equation H3 = H(p) would have six solutions. But this is
not possible as H3 is quartic. Therefore the saddles on the boundary of the
period annulus of the center has to be connected with the infinite singular
points. Due to the fact that the separatrices through these saddles cannot
cross the x-axis anymore and to the clockwise flow around the origin, we get
the global phase portrait 1.6 of Figure 1.1. A phase portrait in this case is
realized when −a = b = β = 1.

Figure 2.8: The straight line through the origin intersects the separatrices six
times.

2.5 Global phase portraits of systems (IV )

Systems (IV ) are defined by the equations

ẋ = ax+ by − 3x2y − y3, (2.21a)

ẏ = −a
2 + β2

b
x− ay + 3xy2, (2.21b)
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and they have the Hamiltonian

H4(x, y) = −y
4

4
− 3

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

In the local chart U1 systems (IV ) are written as

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ u2(u2 + 6),

v̇ = −v3 (bu+ a) + uv(u2 + 3).

(2.22)

When v = 0, the only singular point on U1 is (0, 0), which is degenerate.
Therefore to study the local behavior at the origin of U1 we do the blow-up
(u, v) 7→ (u,w) with w = v/u. Eliminating the common factor u between u̇
and ẇ, we obtain

u̇ = −uw2

(

bu2 + 2au+
a2 + β2

b

)

+ u(u2 + 6),

ẇ = w3

(

au+
a2 + β2

b

)

− 3w.

(2.23)

When u = 0, systems (2.23) have three possible singular points: (0, 0),
(

0,±
√

3b/(a2 + β2)
)

. Note that the linear part of systems (2.23) at the

points (0, w) is







−a
2 + β2

b
w2 + 6 0

aw3 3
a2 + β2

b
w2 − 3






.

We see that when b < 0, the points
(

0,±
√

3b/(a2 + β2)
)

are not real,

hence the only singular point in U1 is the origin, which is a saddle. We see
that the blow-up analysis gives the same result as in the case b < 0 of systems
(III), hence the origin of U1 has two hyperbolic sectors, see Figure 2.4.

When b > 0 all three solutions are real. In addition to the saddle at the
origin, the points

(

0,±
√

3b/(a2 + β2)
)

are repelling nodes. The blow-up of

the origin gives the same information as in the case b > 0 of systems (III),
and we see that the origin of U1 in this case has two elliptic sectors and two
parabolic ones, see Figure 2.5.

In U2 systems (IV ) are expressed as

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− 6u2 − 1,

v̇ = v3
(

a2 + β2

b
u+ a

)

− 3uv.
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The origin of U2 is not a singular point. Thus the only infinite singular
points on the Poincaré sphere are the origins of U1 and V1.

Now we investigate the finite singular points of these systems. We use
the same method that we explained in Section 2.4 in the study of systems
(III). We first find the maximum number of finite singular points allowed
by the systems. Equating (2.21a) to zero and solving for x gives

x1,2 =
a±

√

a2 + 12by2 − 12y4

6y
. (2.24)

Note that when y = 0 we have x = 0 due to (2.21b), so we can assume
y 6= 0. Then we substitute (2.24) into (2.21b) and obtain

ẏ1,2 = −a
3 + 3aby2 + aβ2 ± (a2 + β2 − 3by2)

√

a2 + 12by2 + 12y2

6by
.

Then the product ẏ1ẏ2 is

3y6−2a2 + 2β2 + 3b2

b
y4+

(a2 + β2)(a2 + β2 + 6b2)

3b2
y2−β

2(a2 + β2)

3b
. (2.25)

We see that (2.25) is not identically zero, hence it has at most six real roots.
Consequently systems (IV ) have at most six finite singular points except
the origin.

The next step is to count the indices of the finite and infinite singular
points of systems (IV ) on the Poincaré sphere. But we need to be careful
about the finite singular points which have index 0. Remembering that only
non–elementary singular points of systems (IV ) can have index 0, we will
show that there are at most two non–elementary singular points. Note that
the linear part M4 of systems (IV ) is

M4 =





a− 6xy b− 3x2 − 3y2

3y2 − a2 + β2

b
−a+ 6xy



 .

As we did for systems (III), we consider the three polynomials (2.21a),
(2.21b) and the determinant of M4. We compute their Gröbner basis and
obtain sixteen polynomials again. We equate these polynomials to zero and
see that the following two are enough for our analysis:

a2 + 6b2 + β2 − 9by2 = 0, (2.26)

162b3(3b2 − β2)x− a
(

2(a2 + β2)2 + b2(279b2 + 57a2 − 24β2)
)

y = 0. (2.27)

Observe that the coefficient of y2 in (2.26) is different from zero, therefore
there are at most two different y–coordinates for the non–elementary singu-
larities. Since (2.27) is linear in x, this means that unless the coefficient of
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x in (2.27) is zero, there are at most two non–elementary singular points.
When the coefficient of x in (2.27) is zero, that is β2 = 3b2, equation (2.27)
becomes

a
(

2(a2 + β2)2 + b2(207b2 + 57a2)
)

y = 0.

This yields a = 0 because we have y 6= 0. Then equations (2.26) and (2.21a)
become

9b(b− y2) = 0, y(b− 3x2 − y2) = 0,

respectively. This system also has at most two solutions, namely (0,±
√
b).

This shows that M4 can be zero in at most two points. As a result, by
statement (a) of Lemma 18, we conclude that systems (IV ) have at most
two nilpotent singular points.

We will now determine the number and local phase portraits of the finite
singular points by considering the indices of all the singular points of systems
(IV ) on the Poincaré sphere.

Case 1 (b < 0). When b < 0, the infinite singular points on the Poincaré
sphere are the origins of U1 and V1, each of which consists of two hyperbolic
sectors and hence has index 0 due to Theorem 2. Considering the finite
singular points, we know that the origins of U3 and V3 are centers, each
having index 1. So, for the moment, all the known finite and infinite singular
points have total index 2. Then by Theorem 15, the remaining finite singular
points on the Poincaré disk should have total index 0. Since the systems
have at most six finite singular points in addition to the origin, with at
most two of them non–elementary (hence nilpotent due to statement (a) of
Lemma 18), there are the following possibilities: (i) no more finite singular
points, (ii) two cusps, (iii) two saddles and two centers, or (iv) two saddles,
two centers and two cusps.

Case (iv) cannot occur because by Lemma 18, after a small perturbation,
each cusp will produce two singular points, leading to an excess of singular
points.

Consider case (iii). If we place the two saddles on the Poincaré disk, they
will be symmetric with respect to the origin and also be on the boundary
of the period annulus of the center at the origin. Moreover, these saddles
cannot be on the x-axis because when y = 0, equation (2.21b) is zero only
when x = 0. Since the infinite singular points have only hyperbolic sectors,
there are only two possible ways to construct the other two centers, see
Figure 2.9:

If the first picture of Figure 2.9 holds, then the x-axis intersects the
separatrices of the saddles four times, which is not possible because when
y = 0 the Hamiltonian H4 is only quadratic in x. If the second picture
holds, then a straight line through the origin passing sufficiently close to
the saddles will have six intersection points with these separatrices (see
Figure 2.7). This also is not possible because H4 is a quartic polynomial on
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Figure 2.9: Two saddles forming the two centers.

this line, and consequently there can be at most four such points. So case
(iii) of two saddles and two centers cannot exist.

Note that case (ii) is not realizable, otherwise Lemma 18 would require
case (iii) to be realizable too.

In short, when b < 0 there are no finite singular points on the Poincaré
disk except the origin, and the global phase portraits of systems (IV ) are
topologically equivalent to the phase portrait 1.1 of Figure 1.1.

Case 2 (b > 0). In this case, the infinite singular points, which are the
origins of U1 and V1, have two elliptic and two parabolic sectors. and each
has index 2. Together with the centers at the origins of U3 and V3, their
total index on the Poincaré sphere is 6. This means that in the Poincaré
disk, the remaining finite singular points must have total index -2. Then we
have the following three possibilities: (i) two saddles, (ii) two saddles and
two cusps, or (iii) four saddles and two centers.

Consider case (i). The two saddles are of course symmetric with respect
to the origin and are on the boundary of the period annulus of the center at
the origin. As in the case b < 0, they cannot be on the x-axis. Since H4 is
quadratic on the x-axis, the separatrices through these saddles cross the x–
axis exactly twice, and as a consequence the saddles must be connected with
the infinite singular points, and we obtain a global phase portrait which is
topologically equivalent to the phase portrait 1.2 of Figure 1.1. We remark
that for the values 2a = b = β = 1 a topologically equivalent phase portrait
is achieved.

Now consider case (iii). There may be either two or four saddles on the
boundary of the period annulus of the center at the origin. We analyze these
possibilities below.

Assume first that the four saddles are on the boundary of the period
annulus of the center at the origin. Because of the symmetry of the systems,
two of them will be above the x-axis and two will be below because the only
singular point lying on the coordinate axes is the origin. Remember that
the separatrices through the saddles cannot cross the x-axis anymore. So
there must be another separatrix connecting the saddles which are on the
same side of the x-axis, surrounding the centers. Moreover, the remaining
separatrices of the two saddles which are on the same side of the x-axis must
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go to different infinite singular points. If they went to the same point, then
the y-axis would intersect the separatrices of these saddles six times (three
below the x-axis and three above). However this is not possible since H4 is
quartic. Therefore we get the global phase portrait 1.7 shown in Figure 1.1.
Such a phase portrait is obtained if a = 0 and b = β = 1.

Assume now that only two of the saddles are on the boundary of the
period annulus of the center at the origin. Just as in the case b > 0 of
systems (III), the saddles on this boundary cannot be connected to other
saddles (see Figure 2.8). Then, taking into account that the separatrices
of the saddles on this boundary cannot cross the x-axis anymore, we see
that these saddles must be connected with the infinite singular points, and
the separatrices of these saddles are as shown in Figure 2.10. We next
claim that the centers must be inside the region enclosed by the separatrices
connecting the saddles on the boundary of the period annulus of the center
at the origin with the infinite singular points. Suppose this were not the
case, i.e. suppose that a center were in the region outside the this area,
see Figure 2.10. Because of the flow in these regions, one of the remaining
saddles must also be in the same region. Moreover, the saddle must be on
the boundary of the period annulus of this center. But then a straight line
through the origin passing sufficiently close to the saddle and intersecting
this boundary twice would also intersect another separatrix of the saddle
because of the flow. So, by symmetry, this straight line would have six
intersection points with the separatrices on the same energy level, which is
impossible. This proves our claim about the location of the centers. Then
again the remaining saddles must be on the boundaries of these centers.
Therefore the global phase portraits are equivalent to 1.8 of Figure 1.1. A
phase portrait in this case is realized when a = 2/5 and b = β = 1.

Figure 2.10: The center cannot be outside the region enclosed by the separatrices
of the saddles.
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Remark 20. In fact a center–loop may exist in any one of the vector fields
(I) − (V I) only if a straight line l1 passing through the origin and the
saddle of the center–loop intersects the separatrices of the saddle exactly
at one point, the saddle itself. Otherwise one can find another straight
line l2 passing through the origin and sufficiently close to the saddle of the
center–loop such that the number of intersection points is at least three, see
Figure 2.11. Then, by the symmetry of these systems, l2 would intersect
the separatrices on the same energy level at six points, which is impossible
because the systems are cubic.

l1
l2

l1l2
l2′

Figure 2.11: Center–loop configuration.

Finally we consider case (ii). Due to Lemma 18, case (ii) will produce
a system in case (iii) after a small perturbation. Consequently, the global
phase portraits in this case are topologically equivalent to 1.9 of Figure 1.1.
We note that as a result of the fact that systems (III) attain the phase
portraits 1.2 when a = 0.5, b = β = 1 and 1.8 when a = 0.4, b = β = 1, a
global phase portrait in case (ii) exists when b = β = 1 and a is between
0.4 and 0.5.

2.6 Global phase portraits of systems (V )

We remind that systems (V ) are

ẋ = ax+ by − 3µx2y + y3, (2.28a)

ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2, (2.28b)

with the Hamiltonian

H5(x, y) =
y4 − x4

4
− 3µ

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.
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As in the previous systems, we first investigate the infinite singular points
of systems (V ). In the local chart U1 we have

u̇ = − v2
(

bu2 + 2au+
a2 + β2

b

)

− u4 + 6µu2 + 1,

v̇ = − v3(bu+ a) − vu(u2 − 3µ).

(2.29)

When v = 0, the singular points are
(

±
√

3µ+
√

9µ2 + 1, 0
)

. Note that the

linear part of (2.29) when v = 0 is

(

−4u(u2 − 3µ) 0
0 −u(u2 − 3µ)

)

,

thus both of the eigenvalues of the two singular points are negative if u > 0,

and positive if u < 0. Hence the points
(

√

3µ+
√

9µ2 + 1, 0
)

and
(

−
√

3µ+
√

9µ2 + 1, 0
)

are attracting and repelling nodes respectively.

In U2 systems (V ) become

u̇ =v2
(

a2 + β2

b
u2 + 2au+ b

)

− u4 − 6µu2 + 1,

v̇ =v3
(

a2 + β2

b
u+ a

)

− vu(u2 + 3µ),

and we see that the origin is not a singular point. Hence systems (V ) have
four infinite nodes, all of which are on U1 and V1.

Now we shall discuss the finite singular points. This time we cannot find
a better upper bound for the number of finite singular points of systems (V )
than the one given by Bezout’s theorem which, in particular, says that there
are at most nine isolated finite singular points for a cubic planar differential
system. To see if there are any non–isolated singularities we compute the
resultant of (2.28a) and (2.28b) with respect to x and see that the numerator
is

b2(1 + 9µ2)2y9 + 3b(1 + 9µ2)(b2 − 2a2µ− 2β2µ+ 3b2µ2)y7

+3(b4 − 4b2β2µ+ 3a4µ2 + 6b4µ2 + 6a2β2µ2 + 3β4µ2 − 18a2b2µ3

−18b2β2µ3)y5 − b(a4 − b4 + a2β2 − 6a2b2µ+ 6b2β2µ− 9a2β2µ2

−9β4µ2)y3 − a2b2β2y,

which cannot be identically zero because the coefficient of y9 is always pos-
itive. Hence we conclude that all of the finite singular points, if there are
any, are isolated.

We know that the origin is a center, which leaves us with eight more
possible singularities. On the Poincaré sphere, the total index of the infinite
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singular points is 4. Together with the centers at the origins of U3 and V3,
the total index becomes 6. Thus, on the Poincaré disk, we need to get a
total index of -2 from the possible eight finite singular points.

We claim that systems (V ) have at most two nilpotent singularities in
the finite region of the Poincaré disk. For the proof it suffices to consider
the Gröbner basis of the polynomials (2.28a), (2.28b) and the determinant
of the linear part of the systems. A similar analysis that we have done in
systems (III) and (IV ) proves our claim.

Having established the above claim, we see that the finite singular points
of systems (V ) other than the origin can be either (i) two saddles, (ii) two
saddles and two cusps, (iii) four saddles and two centers, or (iv) four saddles,
two centers and two cusps.

Case (iv) cannot occur because due to Lemma 18, it would require an-
other case with two more finite singular points which is not possible.

Before studying the other cases we remark that without loss of generality
we can assume b > 0. More precisely, if we do the linear transformation
(x, y) 7→ (−y,−x), systems (V ) become

−ẏ = −ay − bx+ 3µy2x− x3,

−ẋ =
a2 + β2

b
y + ax− y3 − 3µyx2,

which can be rewritten as

ẋ = −ax− a2 + β2

b
y + 3µx2y + y3,

ẏ = bx+ ay + x3 − 3µxy2.

(2.30)

After defining ā = −a, µ̄ = −µ, and b̄ = −(a2 + β2)/b, we see that systems
(2.30) are essentially systems (V ). So we assume b > 0.

Consider case (i). The two saddles must be on the boundary of the
period annulus of the center at the origin. Their remaining separatrices
cannot cross the straight lines passing through the origin and the infinite

singular points, namely y = ±
√

3µ+
√

9µ2 + 1x, because the Hamiltonian
H5 is quadratic on these lines. Then, due to the flow at infinity and the
clockwise flow around the origin, we get a global phase portrait which is
topologically equivalent to 1.3 of Figure 1.1. We remark that this phase
portrait is achieved for the values a = b = β = 1 and µ = 0.

Similar to the previous systems, in case (iii) there are two possibilities.

Assume first that the four saddles are on the boundary of the period
annulus of the center at the origin. Since the infinite singular points are
nodes, the centers can only be created by connecting two adjacent saddles.
Since we have b > 0, the flow around the origin clockwise. In addition,
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the remaining separatrices of any of the saddles must lie on different sides
of the straight line passing through that saddle and the origin, otherwise
there would exist another straight line through the origin intersecting both
separatrices in six intersection points in the same energy level. Then the flow
at infinity ensures that the remaining two centers are formed by connecting
adjacent saddles which lie on the same side of the y-axis. Recalling from case
(i) that the remaining separatrices of these saddles cannot cross the lines

y = ±
√

3µ+
√

9µ2 + 1x passing through the origin and the infinite singular
points, we get the global phase portrait 1.10 of Figure 1.1. A topologically
equivalent phase portrait is actually realized when a = 0 and b = β = µ = 1,
for instance.

Assume now that only two of the saddles are on the boundary of the
period annulus of the center at the origin. These saddles cannot be con-
nected by a separatrix with each other since their separatrices cannot cross

the lines y = ±
√

3µ+
√

9µ2 + 1x anymore. Their remaining separatrices

can neither return to the same saddles (see Figure 2.7) nor go to one of
the other two saddles (see Figure 2.8). Therefore they must go to the in-
finite singular points like in case (i). Moreover, because of the symmetry
of systems (V ) and the flow that we have obtained so far, the only way to
have two more saddles and two centers is to have two center–loops. Due to
Remark 20 we made earlier, these center–loops can appear only in one of
the regions (1) or (2) indicated in Figure 2.12 (see also Figure 2.10). There-
fore the global phase portrait in this case must be topologically equivalent
to 1.11 of Figure 1.1. A realization of this phase portrait is achieved when
a = b = β = µ = 1.

(1)

(2)

(1)
(2)

Figure 2.12: Location of the center–loop in systems (V ).

Lastly we investigate case (ii). Since, by Lemma 18, case (ii) leads to a
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system in case (iii), we conclude that the global phase portraits of systems
(V ) in case (ii) are topologically equivalent to 1.12 of Figure 1.1. Due to
the fact that the global phase portrait 1.3 is obtained when a = b = β = 1
and µ = 0, and 1.11 when a = b = β = µ = 1, a realization of the phase
portrait 1.12 is ensured for a = b = β = 1 and for some µ between 0 and 1.

2.7 Global phase portraits of systems (V I)

Systems (V I)

ẋ = ax+ by − 3µx2y − y3, (2.31a)

ẏ = −a
2 + β2

b
x− ay + x3 + 3µxy2, (2.31b)

have the Hamiltonian

H6(x, y) = −y
4 + x4

4
− 3µ

2
x2y2 +

a2 + β2

2b
x2 +

b

2
y2 + axy.

In the local chart U1 systems (V I) are written as

u̇ = −v2
(

bu2 + 2au+
a2 + β2

b

)

+ u4 + 6u2µ+ 1,

v̇ = −v3(a+ bu) + vu(u2 + 3µ).

(2.32)

When v = 0, the candidates for singular points of systems (2.32) are
(

±
√

−3µ±
√

9µ2 − 1, 0
)

. Therefore, in U1 there are four singular points if

µ < −1/3, two if µ = −1/3, and none if µ > −1/3.

In U2 systems (V I) become

u̇ = v2
(

a2 + β2

b
u2 + 2au+ b

)

− u4 − 6u2µ− 1,

v̇ = v3
(

a+
a2 + β2

b
u

)

− vu(u2 + 3µ),

and we see that the origin is not a singular point. Hence all the infinite
singular points are in the local charts U1 and V1. The existence of these
singular points depend on the parameter µ, so we will investigate the phase
portraits of systems (V I) in the corresponding subcases.

We make two remarks here. The first one is that, we can show using
Gröbner basis that at most two of the finite singular points of systems (V I)
can be nilpotent, just as we did in the previous systems. Second, systems
(V I) have non–isolated finite singular points only when a = 0, µ = 1/3,
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and b = β > 0. The proof is as follows: The numerator of the resultant of
(2.31a) and (2.31b) with respect to x is

b2(3µ − 1)2(1 + 3µ)2y9 − 3b(3µ − 1)(1 + 3µ)(2a2µ+ 2β2µ+

+3b2µ2 − b2)y7 + 3
(

b4 − 4b2β2µ+ (3a4 − 6b4 + 6a2β2 + 3β4)µ2

+(18a2b2 + 18b2β2)µ3
)

y5 − b(a4 + b4 + a2β2 + 6a2b2µ− 6b2β2µ

+9a2β2µ2 + 9β4µ2)y3 + a2b2β2y.

(2.33)

For (2.33) to be identically zero, we need a = 0 so that the coefficient of y
is zero. Then (2.33) simplifies to

−b2(−1 + 3µ)2(1 + 3µ)2y9 + 3b(−1 + 3µ)(1 + 3µ)(−b2 + 2β2µ+ 3b2µ2)y7

−3(b2 − 3µβ2)(−b2 + β2µ+ 6b2µ2)y5 + b(b2 − 3µβ2)2y3.

Since b 6= 0, coefficients of y3 and y9 imply that we must have µ = 1/3 and
b2 = β2. But when a = 0 and µ = 1/3 (2.31a) becomes y(b − x2 − y2),
meaning that b must be positive, hence b = β. This finishes the proof.

Case µ < −1/3. In this case there are the four infinite singular points
(

±
√

−3µ±
√

9µ2 − 1, 0
)

in U1. The linear part of systems (2.32) on v = 0
is

(

4u(u2 + 3µ) 0
0 u(u2 + 3µ)

)

.

Hence
(

√

−3µ+
√

9µ2 − 1, 0
)

and
(

−
√

−3µ−
√

9µ2 − 1, 0
)

are repelling

nodes, whereas
(

√

−3µ−
√

9µ2 − 1, 0
)

and
(

−
√

−3µ+
√

9µ2 − 1, 0
)

are
attracting ones. We recall that the origins of U2 and V2 are not singular.

We will now study the finite singular points. When µ < −1/3, we
claim that, systems (V I) can have at most six finite singular points on U3

other than the origin. To prove our claim we first show that without loss
of generality we can assume b > 0. If we do the transformation (x, y) 7→
(

(x− y)/
√

2, (x+ y)/
√

2
)

= (X,Y ), i.e. rotation by π/4, then systems (V I)
become

Ẋ =
a2 − b2 + β2

2b
X +

(a+ b)2 + β2

2b
Y − 3 − 3µ

2
X2Y − 1 + 3µ

2
Y 3,

Ẏ = −(a− b)2 + β2

2b
X − a2 − b2 + β2

2b
Y +

3 − 3µ

2
XY 2 +

1 + 3µ

2
X3.

After the rescale dT = (1 + 3µ)/2 dt, which is well defined as µ < −1/3, we
finally get the systems

Ẋ =
a2 − b2 + β2

b(1 + 3µ)
X +

(a+ b)2 + β2

b(1 + 3µ)
Y − 3 − 3µ

(1 + 3µ)
X2Y − Y 3,

Ẏ = −(a− b)2 + β2

b(1 + 3µ)
X − a2 − b2 + β2

b(1 + 3µ)
Y +

3 − 3µ

(1 + 3µ)
XY 2 +X3.

(2.34)
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If we define the variables

ā =
a2 − b2 + β2

b(1 + 3µ)
, b̄ =

(a+ b)2 + β2

b(1 + 3µ)
, µ̄ =

1 − µ

1 + 3µ
,

then systems (2.34) can be rewritten as

Ẋ = āX + b̄Y − 3µ̄X2Y − Y 3,

Ẏ = − ā
2 + β2

b̄
X − āY + 3µ̄XY 2 +X3.

(2.35)

Note that µ̄ is monotone decreasing in µ, and that µ̄ < −1/3. Hence systems
(2.35) are essentially systems (V I) with bb̄ < 0, which proves our claim that
we can assume b > 0.

Now we will determine the maximum number of finite singular points.
First suppose that a = 0. Then systems (V I) becomes

ẋ = by − 3µx2y − y3, ẏ = −β
2

b
x+ x3 + 3µxy2.

If we solve for y in the equation ẋ = 0, we get either y = 0 or y =
±
√

b− 3µx2. When we substitute either of the latter two values of y into ẏ
we get

ẏ = x

(

(1 − 3µ)(1 + 3µ)x2 + 3bµ− β2

b

)

,

which is zero if and only if x = 0 since b > 0 and µ < −1/3. Substituting
y = 0 into ẏ, however, gives ẏ = x(x2 − β2/b), which is zero when x = 0 or
x = ±

√

β2/b. Therefore when a = 0, there are at most four finite singular

points other than the origin, namely (0,±
√

b− 3µx2), (±
√

β2/b, 0).

Now assume a 6= 0. If we equate (2.31a) to zero and solve for x we obtain

x1,2 =
a±

√

a2 + 12bµy2 − 12µy4

6µy
.

Note that when y = 0, (2.31a) becomes ẋ = ax which is zero only if x = 0
because a 6= 0. So we can assume y 6= 0. Since µ < −1/3, both x1 and x2
are well defined. If we substitute these into (2.31b) we get

ẏ1,2 =
1

216by3µ3
(

4a3b− 36ay2µ(−b2 + a2µ+ β2µ) − 36aby4µ(1 + 3µ2)

+
√

a2 + 12by2µ− 12y4µ
(

4a2b+ 12by4µ(−1 + 3µ)(1 + 3µ)

+ 12y2µ(b2 − 3a2µ− 3β2µ)
))

.

Then the maximum number of roots of the product ẏ1ẏ2 will be the maxi-
mum number of finite singular points of systems (V I) other than the origin.
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The numerator of the product ẏ1ẏ2 is

b2y9(3µ − 1)2(1 + 3µ)2 − 3by7(3µ − 1)(1 + 3µ)(2a2µ+ 2β2µ

+3b2µ2 − b2) + 3y5
(

b4 − 4b2β2µ+ µ2(3a4 − 6b4 + 6a2β2 + 3β4)

+µ3(18a2b2 + 18b2β2)
)

− by3(a4 + b4 + a2β2 + 6a2b2µ− 6b2β2µ

+9a2β2µ2 + 9β4µ2) + a2b2yβ2.

(2.36)

Note that this is exactly the negative of the resultant (2.33). Since y 6= 0,
we eliminate the common factor y, do the change the change z = y2, and
rewrite (2.36) as

b2(3µ− 1)2(1 + 3µ)2z4 − 3b(3µ − 1)(1 + 3µ)(2a2µ+ 2β2µ

+3b2µ2 − b2)z3 + 3
(

b4 − 4b2β2µ+ µ2(3a4 − 6b4 + 6a2β2 + 3β4)

+µ3(18a2b2 + 18b2β2)
)

z2 − b(a4 + b4 + a2β2 + 6a2b2µ− 6b2β2µ

+9a2β2µ2 + 9β4µ2)z + a2b2β2.

(2.37)

Then the maximum number of roots of (2.36) is equal to the maximum num-
ber of positive roots of (2.37), which can be determined by the Descartes’
rule of signs. We claim that (2.37) has less than four positive roots if
µ < −1/3. We now prove our claim.

The coefficient of z4 is positive. So (2.37) can have four positive roots
only if the coefficients of z3 and z2 are negative and positive, respectively.
This can happen if and only if

A = −b2 + 2a2µ+ 2β2µ+ 3b2µ2 > 0, (2.38)

B = −b4 + 4b2β2µ− 3
(

(a2 + β2)2 − 2b4
)

µ2 − 18b2(a2 + β2)µ3 < 0, (2.39)

because we have b > 0 and µ < −1/3. We see that A, when considered
as a polynomial in µ, has one negative and one positive root. Then, since
µ < −1/3 and limµ→−∞A = +∞, we have A > 0 if and only if µ is less
than the negative root

µ0 = −a
2 + β2

√

a4 + 3b4 + 2a2β2 + β4

3b2
.

On the other hand, if we apply Descartes’ rule of signs to B, again when
considered as a polynomial in µ, we see that B has only one negative root,
say µ1. So B > 0 when µ < µ1 because limµ→−∞B = +∞. In addition,
since B = −b4 < 0 when µ = 0, we have B < 0 when µ1 < µ < 0. If we
evaluate B at µ0, we get

1

3b4
(

6(a2 + β2)4 + b4(19a4 + 3b4 + 34a2β2 + 15β4)

+ 2
(

3(a2 + β2)3 + b4(5a2 + 3β2)
)
√

a4 + 3b4 + 2a2β2 + β4
)

> 0.
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This means that µ0 < µ1. But then, when A > 0, that is when µ < µ0,
we have B > 0, meaning that (2.38) and (2.39) cannot hold together. This
proves our claim, which in turn implies that systems (V I) can have at most
six finite singular points other than the origin.

Next we get more information about the finite singular points by consid-
ering the indices of all the singular points of the systems. We saw that when
µ < −1/3, systems (V I) have eight nodes for infinite singular points on the
Poincaré sphere. Together with the centers at the origins of the upper and
lower hemispheres, their total index is 10. Hence, the total index of the
remaining finite singular points on the Poincaré disk must be -4. Therefore
there must be either (i) four saddles, or (ii) four saddles and two cusps. But
by Lemma 18, case (ii) cannot exist. Hence we are only left with case (i).

We first assume that there are only two saddles on the boundary of the
period annulus of the center at the origin. As in systems (III), these saddles
cannot be connected with the other saddles, see Figure 2.8. So they must
be connected directly with an infinite singular point because there are no
other finite singular points. Moreover, the remaining separatrices of these

saddles cannot cross the straight lines y =
(

±
√

−3µ±
√

9µ2 − 1x
)

which
pass through the origin and the infinite singular points. This is due to the
fact that on these lines the Hamiltonian H6 becomes

x2

2

(

a2 + β2

b
+ b(−3µ ±

√

9µ2 − 1) ± 2a

√

−3µ±
√

9µ2 − 1

)

,

which is a quadratic polynomial in the variable x. In addition, there cannot

be any singular points on these lines. More precisely, on y = −
√

−3µ−
√

9µ2 − 1x

the finite singular points of systems (V I) are given by the equations

ẋ =

(

a+ b

√

−3µ−
√

9µ2 − 1

)

x

+
√

9µ2 − 1

√

−3µ−
√

9µ2 − 1x3 = 0

, (2.40a)

ẏ = −
(

a2 + β2

b
+ a

√

−3µ−
√

9µ2 − 1

)

x

+
√

9µ2 − 1(−3µ −
√

9µ2 − 1)x3 = 0

, (2.40b)

If we multiply (2.40a) by

√

−3µ −
√

9µ2 − 1 and subtract if from (2.40b)
we get

−a
2 + β2

b
+ b(3µ +

√

9µ2 − 1) = 0,

which holds only when x = 0 because we have b > 0 and µ < −1/3, which
implies y = 0. Similar calculations give the same result for the straight

line y =

√

−3µ−
√

9µ2 − 1x. Consequently we get a global phase portrait
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topologically equivalent to 1.13 of Figure 1.1. This phase portrait is realized
for the values a = b = β = −µ = 1.

Next we assume that all of the saddles are on the boundary of the period
annulus of the center at the origin. Because there are no other finite singular
points and the remaining separatrices of the saddles cannot cross the straight
lines passing through the origin and the infinite singular points, all the
saddles must go to the infinite singular points as shown in the global phase
portrait 1.14 of Figure 1.1. We note that for a = 0 and b = β = −µ = 1, one
obtains a topologically equivalent phase portrait. This finishes the study of
the case µ < −1/3.

Case µ = −1/3. The infinite singular points in this case are (±1, 0), and
they are degenerate. So we need blow-ups to understand the local behavior
at these points. We will show the computations for the study of the local
phase portrait of the point (1, 0), and the other point (−1, 0) can be studied
in the same way.

First we move (1, 0) to the origin by the shift u 7→ u + 1, and get the
systems

u̇ = u2(u+ 2)2 − v2
(

bu2 + 2(a+ b)u+ 2a+ b+
a2 + β2

b

)

,

v̇ = uv(u+ 1)(u+ 2) − v3(bu+ a+ b).

Now we do the blow-up (u, v) 7→ (u,w) with w = v/u and eliminate the
common factor u, we get the systems

u̇ = u(u+ 2)2 − uw2

(

bu2 + 2(a+ b)u+ 2a+ b+
a2 + β2

b

)

,

ẇ = −w(u+ 2) + w3

(

(a+ b)u+ 2a+ b+
a2 + β2

b

)

.

(2.41)

We see that in systems (2.41), when u = 0 we have ẇ = 0 if and only if
w = 0 or

w = ±
√

2b
√

(a+ b)2 + β2
.

So, on the w–axis, systems (2.41) have one singular point if b < 0, and three
otherwise. The linear part of systems (2.41) when u = 0 is









4 −
(

2a+ b+
a2 + β2

b

)

w2 0

−w + w3(a+ b) −2 + 3

(

2a+ b+
a2 + β2

b

)

w2









.

Hence the origin is a saddle, whereas the other two singular points, when
they exist (depending on the sign of the parameter b), are repelling nodes.
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Therefore the local phase portrait at the singular point (1, 0) of systems
(2.32), as in Figures 5 and 6, consists of two hyperbolic sectors when b < 0,
and two parabolic and two elliptic ones when b > 0.

Performing the same procedure for the point (−1, 0) reveals that the local
phase portrait of this point is the same as that of (1, 0) with the direction
of the flow reversed.

Now we analyze the finite singular points. We will show that in this
case systems (V I) can have at most six finite singular points other than the
origin when µ = −1/3 also. The maximum number of finite singular points
with y 6= 0 is given by the maximum number of roots of (2.36), which is four
because µ = −1/3. When y = 0, on the other hand, systems (V I) become

ẋ = ax,

ẏ = x

(

x2 − a2 + β2

b

)

,

which has at most two finite singular points other than the origin. Therefore
we conclude that there can be at most six additional finite singular points.

Next we count the indices of the singular points. Due the fact that
infinite singular points have different indices depending on the sign of b, we
investigate the cases b < 0 and b > 0 separately.

Case 1 (b < 0). In this case the infinite singular points and the centers at
the origins of U3 and V3 have a total index of 2 on the Poincaré sphere.
Hence, in the Poincaré disk, the total index of the remaining possible six
finite singular points must be 0. Then, other than the origin, there are either
(i) no more singular points, (ii) two cusps, (iii) two saddles and two centers,
(iv) two saddles, two centers and two cusps.

We can immediately eliminate case (iv) due to Lemma 18. On the other
hand, it is easy to see that the global phase portraits in case (i) are topo-
logically equivalent to the phase portrait 1.15 of Figure 1.1.

Consider case (iii). The two saddles must be on the boundary of the
period annulus of the center at the origin. Note that they cannot be located
on the straight lines y = ±x which pass through the origin and the infinite
singular points. On y = x, for instance, systems (V I) become

ẋ = (a+ b)x,

ẏ = −
(

a2 + β2

b
+ a

)

x,

and both polynomials are zero only when x = 0, which implies that the only
finite singular point on the straight line y = x is the origin. The same holds
for the straight line y = −x. Moreover, the remaining separatrices of these
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saddles neither can return the same point (see Figure 2.7), nor can cross
y = ±x because on the lines y = ±x the Hamiltonian H6 becomes

H6 =
(a± b)2 + β2

2b
x2,

which is only quadratic. This means that those separatrices must go to
infinite singular points, yet the infinite singular points only have hyperbolic
sectors. Therefore case (iii) is eliminated too.

Since case (ii) cannot exist without case (iii), the global phase portraits
of systems (V I) when µ = −1/3 and b < 0 are the ones in case (i).

Case 1 (b > 0). When b > 0 the total index of the infinite singular points
and the finite centers on the Poincaré sphere is 10. Hence the total index of
the remaining finite singular points on the Poincaré disk must be -4. Since
there are at most six such points, by Lemma 18 there can only be be four
saddles.

We first consider the possibility that only two of the saddles are on the
boundary of period annulus of the center at the origin. As always, these
saddles cannot be connected with the remaining two. So, they must go
to the infinite singular points. Remember that these saddles are not on the
straight lines y = ±x, and that their separatrices intersect these lines exactly
twice. Then, in accordance with the fact that the infinite singular points
have elliptic sectors, the global phase portrait follows, see 1.16 of Figure 1.1.
Setting a = b = β = 1 provides a realization of such a phase portrait.

If, on the other hand, all of the saddles are on the boundary of the center
at the origin, then due to the same reasons as in the previous case, the global
phase portrait 1.17 of Figure 1.1 is obtained. This phase portrait is achieved
for a = 0 and b = β = 1.

Case µ > −1/3. Finally, when µ > −1/3, systems (V I) have no infinite
singular points. As for the finite singularities, since we already have the
centers at the origins of U3 and V3 on the Poincaré sphere, the total index of
the remaining possible eight finite singular points on the Poincaré disk must
be 0. Hence we have the following possibilities: (i) no singular points, (ii)
two cusps, (iii) two saddles and two centers, (iv) two saddles, two centers,
and two cusps, (v) four saddles and four centers. Of course if µ = 1/3, there
are non–isolated singular points when a = 0 and b = β, but we will study
this case separately.

In case (ii), the cusps must be on the boundary of the period annulus of
the center at the origin. But by the proof of statement (c) of Lemma 18 we
know that this is not possible. As a result we discard case (ii).

Case (i) can occur only if b < 0 so that the flow around the origin and
the infinity match. Then we easily get the phase portrait 1.18 of Figure 1.1.
This phase portrait is realized when a = −b = β = µ = 1.

51



In case (iii) both of the saddles must be on the boundary of the period
annulus of the center at the origin as usual. Then, the centers can only be
created if different saddles are connected once again, otherwise there would
be six points on a straight line through the origin which are on the same
energy level, see Figure 2.7. Hence the phase portraits in this case turn out
to be topologically equivalent to 1.19 of Figure 1.1. One actually obtains an
equivalent phase portrait if a = b = β = 1 and µ = 0.

Next we consider case (v). Assume first that all four saddles are on the
boundary of the period annulus of the center at the origin. The remaining
separatrices of any of the saddles must be on different sides of the straight
line passing through that saddle and the origin, or else one could find a
straight line l through the origin, passing close enough to the saddle and
intersecting three of the separatrices of the saddle, which would, taking into
account the symmetry, lead to the existence of six points on l which are all
in the same energy level. Consequently we obtain the global phase portrait
1.20 of Figure 1.1. If we choose a = 0, b = β = 1 and µ = −1/4, we get a
topologically equivalent phase portrait.

Second, assume that only two of the saddles are on the boundary of
the period annulus of the center at the origin, name these saddles p1 and
p2. These saddles cannot be connected with the other saddles (which we
shall name q1 and q2), neither can they be the saddle of a center–loop (see
Figure 2.7 and Figure 2.8). Since there are no infinite singular points, their
remaining separatrices must coincide symmetrically with respect to the ori-
gin. Thus it remains to determine the locations and the separatrices of the
remaining two saddles q1 and q2, and the two centers. We claim that they
cannot be outside the region enclosed by the outer separatrices of p1 and p2.
We now prove this claim.

Assume on the contrary that q1 and q2 are outside the region enclosed
by the outer separatrices of p1 and p2. Then there are three possibilities,
see Figure 2.13.

Figure 2.13: Possible separatrix configurations for q1 and q2.

The first picture of Figure 2.13 cannot hold because there are six centers
instead of four. The second picture is also discarded due to the fact that
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a straight line through origin intersects the separatrices of q1 and q2 six
times, see Figure 2.7. In the last picture we have b < 0 because of the coun-
terclockwise flow at infinity. Then on the positive y-axis (2.31a) becomes
ẋ = by − y3 < 0, which contradicts the phase portrait. Hence our claim is
proved. Therefore we deduce that the global phase portraits in this case are
topologically equivalent to 1.21 of Figure 1.1. The values a = b = β = 1 and
µ = −1/4 provides a realization of such a phase portrait.

Consider case (iv). By Lemma 18 it would lead to the global phase
portraits in case (v). Therefore the only possibility is that the global phase
portraits in this case are topologically equivalent to 1.22 of Figure 1.1. The
facts that the global phase portrait 1.19 is obtained when a = b = β = 1
and µ = 0, and that 1.21 is achieved if a = b = β = 1 and µ = −1/4 lead to
the conclusion that the phase portrait 1.22 is realized when a = b = β = 1
for some µ between 0 and -1/4.

Finally we consider the case µ = 1/3, a = 0 and b = β. In this case
systems (V I) become

ẋ =y(β − x2 − y2),

ẏ =x(−β + x2 + y2).

We see that other than the origin, the circle x2 + y2 = β is a set of non–
isolated singular points, and that there are no more singularities. Conse-
quently the global phase portraits in this case are topologically equivalent to
1.23 of Figure 1.1 is easily obtained. This completes the proof of Theorem 4.
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Chapter 3

Proof of Theorem 5

In this chapter we will prove Theorem 5. We will provide the way to
obtain the normal forms which appear in Theorem 5 in Section 3.1, and the
global phase portraits of the families (V II)–(XII) in the remaining sections.

3.1 Obtaining the normal forms given in Theo-

rem 5

The cubic terms of the families of the vector fields (V II)–(XII) are
clearly the same as those of the families (I)–(V I). To obtain the complete
normal forms we only need to state and prove an analogous result to Propo-
sition 11.

Proposition 21. The linearized systems at the origin corresponding to each
of the ten classes of Hamiltonian cubic planar polynomial vector fields having
only linear and cubic homogeneous terms which have a nilpotent singular
point at the origin can be chosen to be either

ẋ = ax+ by, ẏ = −(a2/b)x− ay, (3.1)

or
ẋ = 0, ẏ = cx, (3.2)

where a, b, c ∈ R such that b, c 6= 0.

Proof. We will give the proof only for systems (x) because the remaining
cases can be proved in the same way.

Assume that X is a vector field in class (x) plus a linear part and that
it is Hamiltonian. Then by Proposition 9 the polynomial differential system
associated to X can be written as

ẋ = ax+ by − 3µx2y − y3,

ẏ = cx+ dy + x3 + 3µxy2,
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for some real constants a, b, c, d. Since X is Hamiltonian, we have d = −a.
The eigenvalues of the linear part of this system at the origin are

λ1,2 = ±
√

a2 + bc.

In order for the origin to be nilpotent, these eigenvalues must be equal to
zero. So, if b 6= 0 we get c = −(a2/b). If b = 0 we have a = 0 with c 6= 0
because the linear part of the system at the origin cannot be zero.

In order to write these vector fields in a more compact way, we will write
their corresponding linearized systems at the origin as

ẋ = ax+ by, ẏ =

(

c− a2

b+ c

)

x− ay,

with b + c 6= 0 and the condition that either c = 0 or a = b = 0. We note
that when a = b = 0 the y-axis is invariant for systems (V II) and (V III),
hence their origins are not centers in this case. Therefore we have c = 0 in
these two classes.

Having determined the forms of the vector fields that we are going to
study, using the following proposition we will find necessary and sufficient
conditions so that their origins are centers.

Proposition 22. If P and Q are homogeneous polynomials of degree m,
then systems (1.2) have a nilpotent center or a focus at the origin if and
only if m is odd and the coefficient of xm in Q is negative.

For more details about Proposition 22 and its proof see [5]. We note
that this proposition gives necessary and sufficient conditions in order that
families of systems (V II)–(XII) of Theorem 5 have a nilpotent center at
the origin. To be able to determine these conditions we need to apply a
linear change of variables provided in the following proposition.

Proposition 23. Systems in classes (V II)–(XII) can be written in the
form (1.2) after applying the change of variables

X = x, Y = ax+ by,

or
X = y, Y = cx,

when b 6= 0 or b = 0, respectively.

The relations between the parameters a, b, c and µ given in Theorem 5
are obtained as a result of Proposition 22, and we will prove them for each
family as we study their global phase portraits separately. We remark that
as the right hand sides of each of the vector fields in (V II) − (XII) are
odd functions, their phase portraits are also symmetric with respect to the
origin.

55



3.2 Global phase portraits of systems (V II)

Systems (V II) have the Hamiltonian

H7 = −x
4

4
+
a2x2

2b
+
by2

2
+ axy.

First we will apply Proposition 22 to find the necessary and sufficient condi-
tions for the origin to be a center. After doing the linear change of variables
suggested in Proposition 23 systems (V II) become

ẋ = y, ẏ = bx3.

Then by Proposition 22, we see that systems (V II) have a nilpotent center
at the origin if and only if b < 0.

Now we will find the global phase portraits of systems (V II) under the
restriction b < 0. We first investigate the infinite singular points of these
systems. Using (1.4), we see that in the local chart U1 systems (V II) become

u̇ = −v2
(

bu2 + 2au+ a2/b
)

+ 1,

v̇ = −v3 (bu+ a) .

When v = 0, there are no singular points on U1.

Next we will check whether the origin of the local chart U2 is a singular
point. In U2 we use (1.5) to get

u̇ = v2
(

(a2/b)u2 + 2au+ b
)

− u4,

v̇ = v3
(

(a2/b)u+ a
)

− u3v,
(3.3)

and we see that the origin is a singular point and that its linear part is zero.
We need to do blow-ups to describe the local behavior at this point. We
perform the directional blow-up (u, v) 7→ (u,w) with w = v/u and have

u̇ =u2w2
(

(a2/b)u2 + 2au+ b
)

− u4,

ẇ = − uw3(au+ b).

We eliminate the common factor u between u̇ and ẇ, and get the vector
field

u̇ = uw2
(

(a2/b)u2 + 2au+ b
)

− u3,

ẇ = −w3(au+ b).
(3.4)

When u = 0, because b < 0 the only singular point of systems (3.4) is
the origin, whose linear part is again zero. Hence we do another blow-up
(u,w) → (u, z) with z = w/u, eliminate the common factor u2, and get the
vector field

u̇ = uz2
(

(a2/b)u2 + 2au+ b
)

− u,

ż = −z3
(

(a2/b)u2 + 3au+ 2b
)

+ z.
(3.5)
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When u = 0, the unique singular point of systems (3.5) is the origin since
b < 0. The eigenvalues of the linear part of systems (3.5) at the origin are
±1, hence it is a saddle. Going back through the changes of variables until
systems (3.3) as shown in Figure 3.1, we see that locally the origin of U2

consists of two hyperbolic sectors.

zz

uu

uuu

w

w

v

Systems (3.5) Systems (3.5) with
the common factor u2

Systems (3.4)

Systems (3.4) with
the common factor u

Systems (3.3)

Figure 3.1: Blow-up of the origin of U2 of systems (V II) when b < 0.

We now look at the finite singular points of systems (V II) and see that
only the origin is singular, which is a center. Therefore the global phase
portraits of systems (V II) are topologically equivalent to the phase portrait
1.1 of Figure 1.1.

3.3 Global phase portraits of systems (V III)

Systems (V III) have the Hamiltonian

H8 = −x3y +
a2x2

2b
+
by2

2
+ axy.

Note that for systems (V III) we can assume b > 0 because the linear
change y 7→ −y gives exactly the same systems with the opposite sign of the
parameter b.
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To determine the necessary and sufficient conditions for the origin of
systems (V III) to be a center, using Proposition 23 we rewrite them as

ẋ = y − x3, ẏ = −4ax3 + 3x2y.

Then, by Proposition 22 the origin of systems (V III) is a center if and only
if a > 0. Therefore we assume a > 0 and begin the study of their phase
portraits with finding the infinite singular points.

In the local chart U1 systems (V III) are

u̇ = −v2
(

bu2 + 2au+ a2/b
)

+ 4u,

v̇ = −v3 (bu+ a) + v.

When v = 0, only the origin of U1 is singular. The eigenvalues at this point
are 4 and 1, meaning that it is a repelling node.

Next, we should check the origin of U2, in which systems (V III) become

u̇ = v2
(

(a2/b)u2 + 2au+ b
)

− 4u3,

v̇ = v3
(

(a2/b)u+ a
)

− 3u2v.
(3.6)

We see that the origin is singular and its linear part is zero. We need to do
blow-up for analyzing the local behavior at this point. Doing the blow-up
(u, v) 7→ (u,w) with w = v/u and eliminating the common factor u we get
the system

u̇ = uw2
(

(a2/b)u2 + 2au+ b
)

− 4u2,

ẇ = −w3 (au+ b) − uw.
(3.7)

When u = 0, the only singular point of systems (3.7) is the origin, whose
linear part is again zero. So, we do another blow-up (u,w) 7→ (u, z) with
z = w/u, eliminate the common factor u, and obtain

u̇ = u2z2
(

(a2/b)u2 + 2au+ b
)

− 4u,

ż = −uz3
(

(a2/b)u2 + 3au+ 2b
)

+ 5z.
(3.8)

When u = 0, the only singular point of systems (3.8) is the origin, which is
a saddle. We trace the changes of variables back to systems (3.6) as shown
in Figure 3.2, and we find out that the origin of U2 is an attracting node.

Having determined the infinite singular points of systems (V III), we

now compute their finite singular points, which are ±
(

√

4a/3,
√

4a3/27b2
)

plus the origin. The eigenvalues of the linear part of systems (V III) at
these two points are ±4

√
2a/

√
3, which means that they are saddles since

a > 0.
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Systems (3.8) Systems (3.7) Systems (3.6)

Figure 3.2: Blow-up of the origin of U2 of systems (V III) when a, b > 0.

Now we will determine the global phase portrait according to this local
information. The two saddles must be on the boundary of the period annu-
lus of the center at the origin due to the symmetry of the system. Also there
are no singular points other than the origin on the axes, on which the Hamil-
tonian H8 is quadratic and so the equations H8|x=0 = h or H8|x=0 = h have
at most two solutions for any h ∈ R. This means that the separatrices, on
which a Hamiltonian is constant, passing through saddles cannot cross the
axes anymore. Hence we obtain the global phase portrait 1.3 of Figure 1.1.

3.4 Global phase portraits of systems (IX)

We first study the case b = 0. Then systems (IX) become

ẋ = −3x2y + y3, ẏ = cx+ 3xy2, (3.9)

where c 6= 0, and they have the Hamiltonian

H1
9 (x, y) =

y4

4
− 3x2y2

2
− cx2

2
.

Using Proposition 23 we rewrite systems (3.9) as

ẋ = y + 3x2y/c, ẏ = cx3 − 3xy2/c.

Then by Proposition 22 the origin is a center if and only if c < 0. Hence we
assume that c < 0.

In U1 systems (3.9) become

u̇ = cv2 − u2(u2 − 6), v̇ = −uv(u2 − 3). (3.10)

When v = 0, there are three singular points on U1: (0, 0), (±
√

6, 0). The
linear part of systems (3.10) is

(

−4u(u2 − 3) 0
0 −u(u2 − 3)

)

.
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Hence the singular points (
√

6, 0) and (−
√

6, 0) are attracting and repelling
nodes, respectively.

At the origin, however, the linear part is zero. Therefore to describe
its local behavior we do the blow-up (u, v) 7→ (u,w) with w = v/u. After
eliminating the common factor u between u̇ and ẇ, we obtain the system

u̇ = cuw2 − u(u2 − 6), ẇ = −w(cw2 + 3). (3.11)

When u = 0, systems (3.11) have the singular points (0, 0),
(

0,±
√

−3/c
)

,

all of which are real since c < 0. The linear part of systems (3.11) at the
points (0, w) is

(

cw2 + 6 0
0 −3cw2 − 3

)

.

So, in addition to the saddle at the origin, the points
(

0,±
√

−3/c
)

are

repelling nodes. This time we see that the origin of U1 has two elliptic
sectors and two parabolic sectors, see Figure 3.3.

uu

w v

Systems (3.11) Systems (3.10)

Figure 3.3: Blow-up of the origin of U1 of systems (3.9) when c < 0.

We now look at the origin of U2, in which systems (3.9) are written as

u̇ = −cv2 − 6u2 + 1, v̇ = −uv(cv2 + 3).

We see that the origin of U2 is not a singular point. Hence all the infinite
singular points are in U1 and V1.

Besides the origin, systems (3.9) have the four finite singular points
(

±
√

−c/9,±
√

−c/3
)

on U3, which are real since c < 0. The eigenvalues

of the linear part of systems (3.9) are ±2c/3 at each of them, so they are
saddles.

We note that the Hamiltonian H1
9 has the same value at all of these

saddles since it is an even function. Then we claim that all four of them
must be on the boundary of the period annulus of the center at the origin.
If there were only two saddles on the mentioned boundary, then a straight
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line passing through the origin and sufficiently close to the saddles which
are not on this boundary would have at least six intersection points with
the separatrices of these saddles, which are on the same energy level, see
Figure 2.8. But this is impossible because H1

9 is only quartic. Hence the
claim is proved.

Moreover, the separatrices of these saddles cross the x-axis exactly twice
since H1

9 is quadratic in x when y = 0. Consequently we conclude that the
global phase portrait of systems (3.9) is topologically equivalent to 1.5 in
Figure 1.1.

Now we study systems (IX) when b 6= 0. In this case systems (IX)
become

ẋ = ax+ by − 3x2y + y3, ẏ = −(a2/b)x− ay + 3xy2, (3.12)

and they have the Hamiltonian

H2
9 (x, y) =

y4

4
− 3x2y2

2
+
a2x2

2b
+
by2

2
+ axy.

We use Proposition 23 to rewrite systems (3.12) as

ẋ = y − a(a2 − 3b2)x3

b3
+

3(a2 − b2)x2y

b3
− 3axy2

b3
+
y3

b3
,

ẏ = −a
2(a2 − 6b2)x3

b3
+

3a(a2 − 3b2)x2y

b3
− 3(a2 − b2)xy2

b3
+
ay3

b3
.

Then by Proposition 22 the origin is a center if and only if

a2/b− 6b > 0 and a 6= 0. (3.13)

Under these restrictions we first investigate the infinite singular points
of (3.12). In U1 systems (3.12) become

u̇ = −v2
(

bu2 + 2au+ (a2/b)
)

− u2(u2 − 6),

v̇ = −v3 (bu+ a) − uv(u2 − 3).
(3.14)

When v = 0 the singular points are (0, 0), (±
√

6, 0). The linear part of
systems (3.14) is

(

−4u(u2 − 3) 0
0 −u(u2 − 3)

)

.

Hence, just like the case b = 0, the singular points (
√

6, 0) and (−
√

6, 0) are
attracting and repelling nodes, respectively.

At the origin, however, the linear part is zero. We do the blow-up
(u, v) 7→ (u,w) with w = v/u, eliminate the common factor u between
u̇ and ẇ, and obtain the system

u̇ = −uw2
(

bu2 + 2au+ (a2/b)
)

− u(u2 − 6),

ẇ = w3
(

au+ (a2/b)
)

− 3w.
(3.15)
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When u = 0, systems (3.15) have the singular points (0, 0),
(

0,±
√

3b/a2
)

.

The linear part of systems (3.15) at the points (0, w) is

(

−(a2/b)w2 + 6 0

aw3 3(a2/b)w2 − 3

)

.

When b < 0, we see that
(

0,±
√

3b/a2
)

are not real, hence the only

singular point is the origin, which is a saddle. It is shown in Figure 3.4 that
the origin of U1 consists of two hyperbolic sectors.

uu

w v

Systems (3.15) Systems (3.14)

Figure 3.4: Blow-up of the origin of U1 of systems (IX) when b < 0.

When b > 0, all three singular points are real. In addition to the saddle

at the origin, the points
(

0,±
√

3b/a2
)

are repelling nodes. This time we

see that the origin of U1 has two elliptic sectors and two parabolic sectors,
see Figure 3.5.

uu

w v

Systems (3.15) Systems (3.14)

Figure 3.5: Blow-up of the origin of U1 of systems (IX) when b > 0.

We now look at the origin of U2, in which systems (3.12) are written as

u̇ = v2
(

(a2/b)u2 + 2au+ b
)

− 6u2 + 1,

v̇ = v3
(

(a2/b)u+ a
)

− 3uv.

Hence the origin of U2 is not a singular point.
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The finite singular points of systems (3.12) other than its origin are

p1,2 = ±
(

(3b−A)
√
B −A

6
√

6a
,

√
B −A√

6

)

,

p3,4 = ±
(

(3b+A)
√
B +A

6
√

6a
,

√
B +A√

6

)

,

where A =
√

12a2 + 9b2 and B = 2a2/b− 3b.

When b < 0, we see that the expression

(2a2/b− 3b)2 − (12a2 + 9b2) = 4a2b(a2/b− 6b) (3.16)

is negative due to (3.13). Hence B−A < 0 and B+A > 0. Therefore when
b < 0 systems (3.12) have only the two finite singular points p3 and p4 in
addition to the origin. The eigenvalues of the linear part of systems (3.12)
at these points are

±

√

4a4 + 15a2b2 + 9b4 + b(5a2 − 3b2)
√

12a2 + 9b2

3b

We observe that

(4a4 + 15a2b2 + 9b4)2 −
(

b(5a2 − 3b2)
√

12a2 + 9b2
)2

=

4a2(4a2 + 3b2)(a2 − 6b2)2 > 0.

Therefore p3 and p4 are saddles. By the symmetry of (3.12) they must be
on the boundary of the period annulus of the center at the origin. Since
the Hamiltonian H2

9 is quadratic on the x-axis, their separatrices can cross
the x-axis only twice. Consequently we obtain the phase portrait 1.4 of
Figure 1.1.

When b > 0, on the other hand, (3.16) is positive and

2a2/b− 3b > a2/b− 6b > 0.

Therefore all of the four finite singular points exist. We already saw that
p3 and p4 are saddles. Similar computations show that p1 and p2 are also
saddles. We observe that only two of these saddles can be on the boundary
of the period annulus of the center at the origin. This is due to the fact that
the Hamiltonian H2

9 of systems (3.12) is even and that we have

H2
9 (p1) =

2a4 + 30a2b2 − 9b4 − b(4a2 + 3b2)
√

12a2 + 9b2

72b2
,

H2
9 (p3) =

2a4 + 30a2b2 − 9b4 + b(4a2 + 3b2)
√

12a2 + 9b2

72b2
,

which are equal if and only if b = 0, which is not the case.
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By the same argument used for the case b < 0, we see that the saddles
which are on the boundary of the period annulus of the center at the origin
cannot be connected to any of the other saddles. Therefore the saddles on
this boundary have to be connected with the infinite singular points. Due to
the fact that the separatrices through these saddles cannot cross the x-axis
anymore and that the flow around the origin is clockwise, we get the global
phase portrait 1.6 shown in Figure 1.1.

3.5 Global phase portraits of systems (X)

As before we first consider the case b = 0. Then systems (X) become

ẋ = −3x2y − y3, ẏ = cx+ 3xy2, (3.17)

where c 6= 0, and they have the Hamiltonian

H1
10(x, y) = −y

4

4
− 3x2y2

2
− cx2

2
.

Using Proposition 23 we rewrite systems (3.17) as

ẋ = y + 3x2y/c, ẏ = −cx3 − 3xy2/c.

Then by Proposition 22 the origin is a center if and only if c > 0. Hence we
will investigate the case c > 0.

In U1 systems (3.17) become

u̇ = cv2 + u2(u2 + 6), v̇ = uv(u2 + 3). (3.18)

When v = 0, the only singular point is the origin and its linear part is zero.
Therefore to study its local behavior we do the blow-up (u, v) 7→ (u,w) with
w = v/u. Eliminating the common factor u between u̇ and ẇ, we obtain the
system

u̇ = cuw2 + u(u2 + 6), ẇ = −w(cw2 + 3). (3.19)

When u = 0, systems (3.19) have the unique singular point (0, 0) since
c > 0 and it is a saddle. Hence we see that the origin of U1 consists of two
hyperbolic sectors, see Figure 3.4.

In U2 systems (3.17) are expressed as

u̇ = −cv2 − 6u2 − 1, v̇ = −uv(cv2 + 3).

The origin of U2 is not a singular point. Hence the infinite singular points
are only the origins of U1 and V1.

The finite singular points of (3.17) are (0, 0) and
(

±
√

−c/9,±
√

−c/3
)

on U3. But because c > 0, only the origin is real. As a result we conclude
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that the global phase portrait of systems (3.17) is topologically equivalent
to 1.1 in Figure 1.1.

Now we study systems (X) when b 6= 0. In this case systems (X) are
written as

ẋ = ax+ by − 3x2y − y3, ẏ = −(a2/b)x− ay + 3xy2, (3.20)

and they have the Hamiltonian

H2
10(x, y) = −y

4

4
− 3x2y2

2
+
a2x2

2b
+
by2

2
+ axy.

We apply Proposition 23 to systems (3.17) and get

ẋ = y +
a(a2 + 3b2)x3

b3
− 3(a2 + b2)x2y

b3
+

3axy2

b3
− y3

b3
,

ẏ =
a2(a2 + 6b2)x3

b3
− 3a(a2 + 3b2)x2y

b3
+

3(a2 + b2)xy2

b3
− ay3

b3
.

Then by Proposition 22 the origin is a center if and only if b < 0 and
a 6= 0. Therefore we impose these two conditions on (3.20) and begin with
investigating its infinite singular points.

In U1 we have

u̇ = −v2
(

bu2 + 2au+ (a2/b)
)

+ u2(u2 + 6),

v̇ = −v3 (bu+ a) + uv(u2 + 3).
(3.21)

When v = 0 the only singular point of (3.21) is the origin, at which the
linear part of the system is zero. We do the blow-up (u, v) 7→ (u,w) with
w = v/u, eliminate the common factor u and obtain the system

u̇ = −uw2
(

bu2 + 2au+ (a2/b)
)

+ u(u2 + 6),

ẇ = w3
(

au+ (a2/b)
)

− 3w.
(3.22)

When u = 0, the only singular point of systems (3.22) is the origin, which
is a saddle. It is shown in Figure 3.4 that the origin of U1 consists of two
hyperbolic sectors.

The origin of U2, in which systems (3.20) are written as

u̇ = v2
(

(a2/b)u2 + 2au+ b
)

− 6u2 − 1,

v̇ = v3
(

(a2/b)u+ a
)

− 3uv,

is clearly not a singular point.

Next we consider the finite singular points of systems (3.20) which are

p1,2 = ±
(

(3b+A)
√
B −A

6
√

6a
,

√
B −A√

6

)

,

p3,4 = ±
(

(3b−A)
√
B +A

6
√

6a
,

√
B +A√

6

)

,
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where A =
√
−12a2 + 9b2 and B = 2a2/b+ 3b. Due to our assumption that

b < 0, we observe that

B −A < B +A =2a2/b+ 3b+
√

−12a2 + 9b2

<2a2/b+ 3b+
√

9b2

=2a2/b < 0

Therefore the origin is the only finite singular point of systems (3.20) and
we easily see that their global phase portrait is topologically equivalent to
1.1 of Figure 1.1.

3.6 Global phase portraits of systems (XI)

When b = 0, systems (XI) become

ẋ = −3µx2y + y3, ẏ = cx+ x3 + 3µxy2, (3.23)

where c 6= 0, and they have the Hamiltonian

H1
11(x, y) =

y4 − x4

4
− 3µx2y2

2
− cx2

2
.

Using Proposition 23 we rewrite systems (3.23) as

ẋ = y + 3µx2y/c+ y3/c, ẏ = cx3 − 3µxy2/c.

Then by Proposition 22 the origin is a center if and only if c < 0. Therefore
we assume c < 0.

As in the previous systems, we first investigate the infinite singular points
of systems (3.23). In the local chart U1 we have

u̇ =cv2 − u4 + 6µu2 + 1,

v̇ = − vu(u2 − 3µ).
(3.24)

When v = 0, the real singular points are
(

±
√

3µ +
√

9µ2 + 1, 0
)

, and the

linear part of (3.24) is
(

−4u(u2 − 3µ) 0
0 −u(u2 − 3µ)

)

,

Hence the points
(

√

3µ +
√

9µ2 + 1, 0
)

and
(

−
√

3µ+
√

9µ2 + 1, 0
)

are

respectively attracting and repelling nodes of systems (3.24).

In U2 systems (3.23) become

u̇ = − cv2u2 − u4 − 6µu2 + 1,

v̇ = − vu(cv2 + u2 + 3µ),
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and we see that the origin is not a singular point. Hence systems (XI) have
four infinite singular points, all of which are nodes on U1 and V1.

The finite singular points of systems (3.23) are the origin, ±
(√−c, 0

)

and
pi = ±

(

±
√

−c/(1 + 9µ2),
√

−3cµ/(1 + 9µ2)
)

.

with i = 1, 2, 3, 4. We observe that when µ < 0 the points pi do not exist,
and when µ = 0 they are equal to ±

(√−c, 0
)

. As a result, systems (3.23)
have three finite singular points when µ ≤ 0, and seven when µ > 0. We
note that the linear part of systems (3.23) is

M1
11 =

(

−6µxy 3y2 − 3µx2

c+ 3x2 + 3µy2 6µxy

)

.

We first consider the case µ ≤ 0. We know that the origin is a center.
The eigenvalues of M1

5 at ±
(√−c, 0

)

are ±c√−6µ. This means that these
points are hyperbolic saddles when µ < 0, but are degenerate when µ = 0.
But M1

11 is not identically zero at these points since

c+ 3x2 + 3µy2 = −2c > 0.

So they are nilpotent. Due to the fact that nilpotent singular points of
Hamiltonian vector fields are either saddles, centers or cusps, and that the
number of singular points is fixed for µ ≤ 0, we conclude that the points
±
(√−c, 0

)

are saddles also when µ = 0.

Then the global phase portrait in this case is topologically equivalent to
1.3 of Figure 1.1. This is because the two saddles must be on the boundary of
the period annulus of the center at the origin. Their remaining separatrices
cannot cross the straight lines passing through the origin and the infinite

singular points, namely y = ±
√

3µ+
√

9µ2 + 1x, because the Hamiltonian

H1
11 = −cx2/2 is quadratic on these lines. Then taking into account the

flow at infinity we obtain the global phase portrait.

Secondly we look at the case µ > 0. In this case the points ±
(√−c, 0

)

are centers. In addition, each pi is a saddle because the eigenvalues of M1
11

at these points are ±2c
√

3µ/
√

1 + 9µ2. Since the Hamiltonian of systems
(3.23) is even, H1

11(pi) is constant for all i. Then, by the same same argument
that we used in systems (IX) (see Figure 2.8), we deduce that every pi must
be on the boundary of the period annulus of the center at the origin.

Since the infinite singular points are nodes, the centers can only be cre-
ated by connecting two adjacent saddles. The flow around the origin is
clockwise because c < 0. In addition, the remaining separatrices of any of
the saddles must lie on different sides of the straight line passing through
that saddle and the origin, otherwise there would exist another straight line
through the origin intersecting both separatrices in six intersection points in
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the same energy level. Then the flow at infinity ensures that the remaining
two centers are formed by connecting adjacent saddles which lie on the same
side of the plane with respect to the y-axis. Recalling from the case µ ≤ 0
that the remaining separatrices of these saddles cannot cross the straight
lines passing through the origin and the infinite singular points, we get the
global phase portrait 1.10 in Figure 1.1.

Having established the case b = 0, we now investigate the case b 6= 0 in
which systems (XI) are written as

ẋ = ax+ by − 3µx2y + y3, (3.25a)

ẏ = −(a2/b)x− ay + x3 + 3µxy2, (3.25b)

and they have the Hamiltonian

H2
11(x, y) =

y4 − x4

4
− 3µx2y2

2
+
a2x2

2b
+
by2

2
+ axy.

We remark that without loss of generality we can assume b > 0. If we
do the linear transformation (x, y) 7→ (−y,−x), systems (XI) become

−ẏ = −ay − bx+ 3µy2x− x3,

−ẋ = (a2/b)y + ax− y3 − 3µyx2,

which can be rewritten as

ẋ = −ax− (a2/b)y + 3µx2y + y3,

ẏ = bx+ ay + x3 − 3µxy2.
(3.26)

After defining ā = −a, µ̄ = −µ, and b̄ = a2/b, we see that systems (3.26)
are basically systems (XI) with b 7→ −b whenever a 6= 0. But when a = 0,
systems (3.25) are just systems (3.23) with the axes interchanged and µ 7→
−µ. Hence we know that they have a center at the origin if and only if
b < 0 with a global phase portrait topologically equivalent to 1.3 and 1.10
of Figure 1.1 when µ ≥ 0 and µ < 0, respectively. Therefore we need to
investigate the case a 6= 0, and we can assume b > 0.

Using Proposition 23 we rewrite systems (3.25) as

ẋ =y − a(a2 − 3b2µ)x3

b3
+

3(a2 − b2µ)x2y

b3
− 3axy2

b3
+
y3

b3
,

ẏ = − (a4 − b4 − 6a2b2µ)x3

b3
+

3a(a2 − 3b2µ)x2y

b3
− 3(a2 − b2µ)xy2

b3
+
ay3

b3
.

Therefore, by Proposition 22, we impose on systems (3.25) the two condi-
tions

a4 − b4 − 6a2b2µ > 0 and b > 0. (3.27)
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The infinite singular points of systems (3.25) are the same as those of

(3.23), an attracting node
(

√

3µ+
√

9µ2 + 1, 0
)

and a repelling node
(

−
√

3µ+
√

9µ2 + 1, 0
)

on U1, and the corresponding points on V1. The origin
of U2 is not a singular point.

The explicit expressions for the finite singular points in terms of the
parameters a, b, β are lengthy. For this reason we follow the approach we
used for systems (III)–(V I). We first find the maximum number of finite
singular points allowed by the system. We equate (3.25a) to zero, solve for
x and get

x1,2 =
a±

√

a2 + 12bµy2 + 12µy4

6µy
. (3.28)

Note that when y = 0, (3.25b) is zero if and only if x = 0 since a 6= 0. So we
conclude that the only finite singular point on the x-axis is the origin, which
we know is a center. Hence we can assume that y 6= 0. Then it remains to
study the case µ = 0 separately, which we will consider later on, but we first
assume that µ 6= 0.

If we substitute (3.28) into (3.25b) we obtain

ẏ1,2 = − 1

54bµ3y3

(

a
(

a2b+ 9µ(b2 − a2µ)y2 + 9bµ(1 − 3µ2)y4
)

±
√

a2 + 12bµy2 + 12µy4
(

a2b+ 3µ(b2 − 3a2µ)y2 + 3bµ(1 + 9µ2)y4
)

)

,

where ẏ1 and ẏ2 denote ẏ with x1 and x2 substituted, respectively. Then the
maximum number of roots of the product ẏ1ẏ2 will give an upper bound for
the number of finite singular points. So we multiply ẏ1 and ẏ2 and obtain

−1

27b2µ3
(

b2(1 + 9µ2)y6 + 3b(1 + 9µ2)(b2 − 2a2µ+ 3b2µ2)y4

+ 3(b4 + 3a4µ2 + 6b4µ2 − 18a2b2µ3)y2

− b(a4 − b4 − 6a2b2µ)
)

.

(3.29)

We see that (3.29) cannot be identically zero because its constant term is
different from zero due to (3.27), so it has at most six real roots. This means
that for µ 6= 0, all the finite singular points of systems (3.25) are isolated and
that there are at most six of them without taking into account the origin.

If µ = 0, on the other hand, systems (3.25) are written as

ẋ = ax+ by + y3, ẏ = −(a2/b)x− ay + x3.

We can easily compute its finite singular points and see that besides the ori-
gin it has only two, namely ±

(

b1/3
√

(1 − b4/3)/b,−
√

(1 − b4/3)/b
)

. There-
fore we conclude that systems (3.25) have at most six finite singular points.
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Next we will count the indices of the known singular points, both finite
and infinite, and then deduce some conditions on the remaining finite sin-
gular points of the system. We remind that when determining the finite
singular points by considering their total index, those with index zero are
hard to detect. To overcome this difficulty we present the following lemma,
which is inspired from Lemma 18. The difference between Lemma 18 and
Lemma 24 is that the former applies to vector fields with a linear type center
at the origin, and the latter applies to those with a nilpotent center. We
recall that a center–loop is a center inside the loop as in Figure 2.6.

Lemma 24. Let X0 be a real Hamiltonian planar polynomial vector field
having only linear and cubic terms. Then X0 can be written as

ẋ = a10x+ a01y + a30x
3 + a21x

2y + a12xy
2 + a03y

3,

ẏ = b10x− a10y + b30x
3 − 3a30x

2y − a21xy
2 − 1

3
a12y

3.

Suppose that p is an isolated singular point of X0 different from the origin.
Then there is a perturbation Xε of X0 such that Xε is also a real Hamiltonian
planar polynomial vector field having only linear and cubic terms, and that
p is a singular point of Xε. In addition, if a210 + a01b10 = 0 but a01 6= 0 then
the following statements hold:

(a) If p is non–elementary, then it is nilpotent.

(b) If p is a non–elementary singular point of X0, then it is an elementary
singular point of Xε with ε 6= 0.

(c) If p is a cusp of X0, then for ε 6= 0 small enough such that εa01 < 0,
the origin of Xε is a linear type center and the local phase portrait of
Xε at p is a center-loop.

Proof. As we did in the proof of Lemma 18 without loss of generality we
can assume p = (0, y0), and define Xε as (2.12). The proofs of statements
(a) and (b) are the same as those of Lemma 18. The proof of statement (c)
is almost the same except some details which we point out below. So we
assume that (0, y0) is a cusp of X0 and that εa01 < 0.

First of all, the eigenvalues of the linear part of Xε at the origin are
±√

εa01, which are purely imaginary by assumption. Since Xε is Hamilto-
nian we conclude that the origin is a linear type center.

Second, due to the facts that (0, y0) is a singular point and y0 6= 0, we
have a01 = −a03y20. Then the eigenvalues of the linear part of (2.12) at
(0, y0) are

±
√

ε(3a03y20 + a01) = ±
√

ε(−2a01),

see (2.13) and (2.15). Hence (0, y0) is a saddle by assumption. Then the rest
of the proof is exactly the same as the proof of statement (c) of Lemma 18.
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With the help of this lemma, we will be able to detect possible cusps
of the vector fields by studying the center–loops of the Hamiltonian linear
type centers obtained by the perturbation in statement (c) of Lemma 24.

We continue determining the finite singular points of systems (3.25). By
Theorem 2, the four nodes at infinity and the centers at the origins of U3

and V3 have total index 6 on the Poincaré sphere. Then by Theorem 15,
the remaining finite singular points on the Poincaré disk have to have total
index -2.

By statement (a) of Lemma 24, these singular points are either elemen-
tary or nilpotent. Hence they are either centers, saddles or cusps. We claim
that at most two finite singular points of systems (3.25) which are different
from the origin are nilpotent. To prove this claim we compute the Gröbner
basis for the polynomials (3.25a), (3.25b) and the determinant of the linear
part of systems (3.25). Recall that y 6= 0. We obtain sixteen polynomials,
two of which suffice to prove our claim. One is a quadratic polynomial only
in the variable y, where the coefficient of y2 is

5(1 + µ2)(−1 + 3µ2)2(1 + 9µ2)2, (3.30)

and the other is a polynomial in the variables x and y, linear in x with the
coefficient a(1 + 9µ2).

We know that a 6= 0 due to (3.27). Therefore when (3.30) is not zero,
systems (XI) can have at most two nilpotent singular points. When (3.30)
is zero, i.e. µ2 = 1/3, we see that the Gröbner basis consists only of the
two polynomials y2 and ax+ by. Therefore systems (XI) have at most two
nilpotent singular points in any case, and this proves our claim.

In short, by Corollary 17, finite singular points of systems (3.25) other
than the origin can be either (i) two saddles, (ii) two saddles and two cusps,
or (iii) four saddles and two centers.

Consider case (i). The two saddles must be on the boundary of the
period annulus of the center at the origin. Their remaining separatrices
cannot cross the straight lines passing through the origin and the infinite

singular points, namely y = ±
√

3µ+
√

9µ2 + 1x, because the Hamiltonian

H2
11 is quadratic on these lines. Then, due to the flow at infinity, we get a

global phase portrait which is topologically equivalent to 1.3 of Figure 1.1.
We remark that this phase portrait is achieved for the values a = 2, b = 1
and µ = 1/4.

In case (iii) we claim that there can be at most two saddles on the
boundary of the period annulus of the origin. We will prove this by com-
puting the Gröbner basis for the polynomials ẋ, ẏ and H2

11 − h for some
h ∈ R and showing that H2

11 may attain the same value at no more than
two singular points.
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For future reference, we first consider the cases h = 0 and µ = 0. When
h = 0, one of the polynomials in the Gröbner basis is y3(a4 − b4 − 6a2b2µ)2,
which implies that the only singular point where H2

11 vanishes is the origin
(see (3.27)). So we assume h 6= 0.

When µ = 0 the Gröbner basis contains the polynomial

9b5h(a4 + h2)y2 + hb2(b8 − 2a8 + a4b4) + h2(4b8 − a8 + 9a4b4)

+b2h3(2a4 + 11b4) − b4h4,

which has at most two roots since the coefficient of y2 is not zero. Then,
because (3.25a) is linear in x when µ = 0, we deduce that there can be at
most two roots in R2 Hence we can also assume µ 6= 0.

We now prove our claim but we will not provide every detail because of
the length of the polynomials. The Gröbner basis of the previously men-
tioned three polynomials contains 37 even polynomials that do not contain
x, of which 23 are quadratic and 12 are quartic. In addition, there is a poly-
nomial which is linear in x, and the coefficient of x is 4ah 6= 0 (see (3.27)).
So if we can show that the above mentioned 37 polynomials have at most
two roots, then the proof will be finished.

If the coefficient of y2 of at least one of these 23 polynomials is nonzero,
then we are done. If not, we obtain two conditions: one from calculating
the resultants of pairs of these 23 coefficients with respect to h, and the
other from equating the coefficient of the simplest of these 23 polynomials
to zero and solving for h. Then we see that the discriminant of one of the 12
polynomials in the Gröbner basis which are quartic even polynomials in y
is zero, and its coefficient of y4 is nonzero. This means that this polynomial
can have at most two distinct roots, and the claim is proved.

Having established the property that only two of the saddles can be on
the boundary of period annulus of the center at the origin, we observe that
the remaining separatrices of these saddles either go to infinity or go back
to the one of these saddles in one of the ways shown in Figure 2.9 (see
Figure 2.8 also).

The first figure cannot be realized due to the fact that (3.25a) does
not change on the positive y-axis since b > 0. We see that the second
figure cannot be achieved either, see Figure 2.7. Hence we conclude that
the remaining saparatrices of these saddles go to infinite singular points, of
course without crossing the straight lines passing through the origin and the
infinite singular points.

Because of the symmetry of systems (3.25) and the flow near infinity,
the remaining finite singular points must be symmetric with respect to the
origin, and also there must be a saddle on the boundary of the period annulus
of each of the centers, creating a center–loop. We observe that a center–
loop may exist only if a straight line l1 passing through the origin and the
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saddle of the center–loop intersects the separatrices of this saddle at exactly
on point, namely the saddle itself, see Remark 20 and Figure 2.11. Hence
there is only one way, up to topological equivalence, for the center–loops of
systems (3.25) to be formed, and we obtain the global phase portrait 1.11 of
Figure 1.1. For a = 5, b = 1 and µ = 1/4 such a phase portrait is a realized.

Finally we consider case (ii). By statement (c) of Lemma 24, systems
(3.25) become Hamiltonian linear type centers which have a center–loop.
We already know by our previous work that the global phase portrait of
these perturbed systems is topologically equivalent to 1.11 in Figure 1.1
also. Therefore the only possible global phase portrait in this case is the
portrait 1.12 of Figure 1.1. The particular global phase portrait examples
that we provided for the cases (i) and (iii) ensure that the phase portrait
1.2 is actually realized when b = 1 and µ = 1/4 for some a ∈ (2, 5).

3.7 Global phase portraits of systems (XII)

When b = 0, systems (XII) become

ẋ = −3µx2y − y3, ẏ = cx+ x3 + 3µxy2, (3.31)

and they have the Hamiltonian

H1
12(x, y) = −y

4 + x4

4
− 3µx2y2

2
− cx2

2
.

Using Proposition 22 we see that systems (3.31) have a center at the
origin if and only if c > 0.

In the local chart U1 systems (3.31) are written as

u̇ = cv2 + u4 + 6u2µ+ 1,

v̇ = uv(u2 + 3µ).
(3.32)

When v = 0, the possible singular points of systems (3.32) are the four

points
(

±
√

−3µ±
√

9µ2 − 1, 0
)

. Therefore, in U1 there are four singular

points if µ < −1/3, two if µ = −1/3, and none if µ > −1/3.

In U2 systems (3.31) become

u̇ = −cu2v2 − u4 − 6u2µ− 1,

v̇ = −uv(u2 + cv2 + 3µ),

and we see that the origin is not a singular point. Hence all the infinite
singular points are on the local charts U1 and V1. The existence of these
singular points depend on the parameter µ, so we will investigate the phase
portraits in the corresponding subcases.
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The finite singular points of systems (3.31) are the origin, ±
(√−c, 0

)

and
pi = ±

(

±
√

c/9µ2 − 1),
√

−3cµ/(9µ2 − 1)
)

. (3.33)

with i = 1, 2, 3, 4, for µ 6= ±1/3. The points ±
(√−c, 0

)

are not real since
c > 0. When µ > −1/3 none of the pi are real, whereas they are all real and
are saddles when µ < −1/3.

In addition, when µ = −1/3 systems (3.31) become

ẋ = y(x2 − y2), ẏ = cx+ x(x2 − y2),

hence the only singular point is the origin since c > 0. Similarly when
µ = 1/3 only the origin is a singular point.

In short, systems (3.31) do not have any finite singular points other than
the origin if µ ≥ −1/3, however, they the points pi for i = 1, 2, 3, 4 otherwise.

We first assume that µ < −1/3. Then all of the four singular points on

U1 are real such that
(

√

−3µ+
√

9µ2 − 1, 0
)

and
(

−
√

−3µ−
√

9µ2 − 1, 0
)

are repelling nodes, whereas the other two points
(

√

−3µ−
√

9µ2 − 1, 0
)

and
(

−
√

−3µ+
√

9µ2 − 1, 0
)

are attracting ones.

We have H1
12(pi) = H1

12(p(i+1)) for i = 1, 2, 3 because the Hamiltonian
is an even function. Then all of them must be on the boundary of the
period annulus of the center at the origin, see Figure 2.8. The remaining
separatrices of the saddles cannot cross the straight lines passing through
the origin and the infinite singular points because H1

12 = −cx2/2 on these
lines. Therefore all these separatrices must go to the infinite singular points
as it is shown in the global phase portrait 1.14 of Figure 1.1.

Next we assume that µ = −1/3. The linear part of systems (3.32) at
both singular points (±1, 0) is zero. So we need blow-ups to understand the
local behavior at these points. We will do the computations for the point
(1, 0), and the other point (−1, 0) can be studied in the same way.

First we move (1, 0) to the origin by the shift u 7→ u + 1, and get the
system

u̇ = cv2 + u2(u+ 2)2, v̇ = uv(u+ 1)(u+ 2).

Now if we do the blow-up (u, v) 7→ (u,w) with w = v/u and eliminate the
common factor u, we get the system

u̇ = u(u+ 2)2 + cuw2, ẇ = −w(u+ cw2 + 2). (3.34)

We see that since c > 0, the only singular point of systems (3.34) when
u = 0 is the origin, which is a saddle. Therefore the singular point (1, 0) of
systems (3.32) has two hyperbolic sectors, see Figure 3.4.
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Performing the same procedure for the point (−1, 0) reveals that the
local behavior around this point is the same as that of (1, 0). Since there
are no finite singular points in this case, we get the global phase portrait
1.15 of Figure 1.1.

Finally, when µ > −1/3 systems (3.31) have neither infinite nor finite
singular points. Since c > 0, we get the global phase portrait 1.18 of Fig-
ure 1.1.

We have finished studying systems (XII) in the case b = 0, and now we
assume that b 6= 0. Then systems (XII) are written as

ẋ = ax+ by − 3µx2y − y3, (3.35a)

ẏ = −(a2/b)x− ay + x3 + 3µxy2, (3.35b)

and they have the Hamiltonian

H2
12(x, y) = −y

4 + x4

4
− 3µx2y2

2
+
a2x2

2b
+
by2

2
+ axy.

By Propositions 22 and 23 the origin is a center if and only if

a4 + b4 + 6a2b2µ

b
< 0. (3.36)

The infinite singular points of systems (3.35) are the same as those of
systems (3.31).

We will study the finite singular points in the same way as we did in the
case b 6= 0 of systems (XI). We first find an upper bound for the number of
finite singular points. We equate (3.35a) to zero and solve for x and obtain

x1,2 =
a±

√

a2 + 12bµy2 − 12µy4

6µy
,

if µ 6= 0 (we will handle the case µ = 0 separately). Note that the only sin-
gular point of systems (3.35) on the x-axis is the origin, so we can assume
y 6= 0. If we substitute these into (3.35b) and multiply the two respective
functions, we obtain a polynomial in y of degree six which cannot be iden-
tically zero. This means that systems (3.35) have at most six other finite
singular points on the Poincaré disk when µ 6= 0.

When µ = 0 the center condition (3.36) requires that b < 0. If we
compute the finite singular points of systems (3.35) in this case we see that
only the origin is singular. Therefore we conclude that, in any case, systems
(3.35) have at most six finite singular points.

We will now determine the global phase portraits of systems (3.35) by
considering the different values of µ that lead to different phase portraits at
infinity.
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When µ < −1/3, the infinite singular points on U1 are the repelling

nodes
(

√

−3µ +
√

9µ2 − 1, 0
)

and
(

−
√

−3µ−
√

9µ2 − 1, 0
)

, and the at-

tracting nodes
(

√

−3µ−
√

9µ2 − 1, 0
)

and
(

−
√

−3µ+
√

9µ2 − 1, 0
)

. Then
the infinite singular points and the centers at the origins of U3 and V3 have
total index 10 in the Poincaré sphere. Hence the remaining finite singular
points in the Poincaré disk must have total index -4. As we did for systems
(XI), using Gröbner bases and statement (a) of Lemma 24 we see that there
can be at most two finite nilpotent singular points. Then the possibilities
are: (i) four saddles, and (ii) four saddles and two cusps.

By statement (c) of Lemma 24, case (ii) would require the existence
of a Hamiltonian linear type center with eight inifinite singular points and
center–loops in the finite region. We know from Theorem 4 that such a
vector field does not exist. Therefore we discard case (ii).

In case (i) there can be either two or four saddles on the boundary of
the period annulus of the center at the origin. In both cases, the remaining
separatrices of these saddles cannot cross the straight lines passing through
the origin and the infinite singular points as in the case b = 0. Therefore we
conclude that the global phase portrait is topologically equivalent to either
1.14 (with 2a = 2b = −µ = 2) or 1.13 (with 2a = b = −µ = 2) of Figure 1.1.

We now look at the case µ = −1/3. We remark that the center condition
(3.36) becomes equivalent to b < 0 and a2 6= b2. We saw that the infinite
singular points (±1, 0) on U1 have two hyperbolic sectors. Therefore the
total index of the infinite singular points and the centers at the origins of U3

and V3 is 2 on the Poincaré sphere. Hence, in the Poincaré disk, the total
index of the remaining possible six finite singular points must be 0. Then,
other than the origin, there are either (i) no more singular points, (ii) two
cusps, (iii) two saddles and two centers, (iv) two saddles, two centers and
two cusps.

We claim that only case (i), whose global phase portrait is topologically
equivalent to 1.15 of Figure 1.1, is realizable. We can immediately eliminate
case (iv) by Lemma 24 because a Hamiltonian linear type center with four
infinite singular points and center–loops does not exist as it is shown in
Theorem 4. Case (ii) is also easily eliminated by Lemma 24, see Figure 2.7.
So it only remains to show that case (iii) cannot be realized.

Since the infinite singular points have hyperbolic sectors, the finite region
of a phase portrait in case (iii) must be one of the two possibilities shown
in Figure 2.9. The first figure is not possible due to the fact that (3.35a)
does not change sign on the positive y-axis since b < 0. The second figure
is clearly not possible either, see Figure 2.7. Hence the claim is proved and
the case µ = −1/3 is finished.

Finally, when µ > −1/3, systems (3.35) have no infinite singular points.
Then the remaining possible six finite singular points on the Poincaré disk
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must have total index 0. Hence we have the following possibilities: (i) no
singular points, (ii) two cusps, (iii) two saddles and two centers, (iv) two
saddles, two centers, and two cusps. Observe that these are exactly the same
possible cases that we had when µ = −1/3.

We claim that (3.35) do not have any additional finite singular points in
this case and that its global phase portrait is 1.18 of Figure 1.1. We prove
our claim in the next paragraph. We note that the center condition (3.36)
is equivalent to b < 0 when µ > −1/3.

We can eliminate cases (ii) and (iii) by the same reasoning that we
used for µ = −1/3. Considering case (iv) we see that a Hamiltonian linear
type center which has no infinite singular points but has center–loops exists,
whose global phase portrait is topologically equivalent to the first figure in
Figure 3.6. This suggests that a global phase portrait in case (iv) may exist
only if it is topologically equivalent to the second figure in Figure 3.6. But
(3.35a) is strictly negative on the positive y-axis since b < 0. Hence (3.35)
cannot have such a phase portrait. This proves our claim, finishing the proof
of Theorem 5.

Figure 3.6: A possible cusp for systems (XII) when b 6= 0.
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Chapter 4

Proof of Theorem 7

In this chapter we prove Theorem 7. Statement (a) follows directly from
the result obtained in Section 2.2. Furthermore systems (II), up to topo-
logical equivalence, have a unique global phase portrait. However Chapter 2
provides very little information to obtain the full bifurcation diagrams for
the families (III)–(V I). Therefore in this chapter we focus on these fam-
ilies. We note that the explicit expressions of the finite singular points of
these families are complicated, making difficult to study their local phase
portraits or even their existence on the parameter space. Therefore we will
follow different approaches in determining the bifurcation diagrams.

4.1 Bifurcation diagram for systems (III)

In Section 2.4 it is shown that each phase portrait of systems (III) is
topologically equivalent to the phase portrait 1.4 of Figure 1.1 when b < 0,
and to either 1.5 or 1.6 when b > 0. Thus we only need to determine the
bifurcation values of parameter a in the case b > 0 leading to either the
phase portrait 1.5 or the phase portrait 1.6. So we assume b > 0. We make
the following remark.

Remark 25. There can be at most two finite saddles at a fixed energy
level in the phase portrait 1.6. Indeed if in the phase portrait 1.6 all four
saddles were at the same energy level, then a straight line through the origin
passing close enough to the saddles that are not on the boundary of the
period annulus of the center at the origin would intersect the separatrices
of these saddles six times. Since these separatrices are at the same energy
level this clearly cannot happen as H3 is quartic, and H3(x, cx)−h can have
at most four roots for any h ∈ R.

As a result of Remark 25 we see that the phase portraits 1.5 and 1.6
have four and two finite saddles at a fixed energy level, respectively. We will
use this observation to distinguish the two phase portraits.
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The number of singular points at the same energy level is equal to the
number of solutions N of the system of equations ẋ = ẏ = H3 − h = 0 for
some h ∈ R. We note that h > 0 at any singular point besides the origin
because

H3 −
yẋ− xẏ

4
=
x2 + (ax+ by)2

4b
> 0.

To find N we compute the Gröbner basis of the three polynomials (2.9a),
(2.9b) and H3 − h, and obtain a set of 23 polynomials. Due to the size of
these polynomials we will only mention in this paper the ones which are
enough for our purpose. We remark that since b > 0 systems (V ) don’t have
any finite singular points on the coordinate axes other than the origin, so
we will assume xy 6= 0 in our calculations.

There are two polynomials in the Gröbner basis which do not contain
the variable x, and they are quadratic in y of the form my2 + n, where m
and n are functions of the parameters a and b. The coefficient of y2 in these
polynomials are 6hp1 and 3hp2, where

p1 = 1 − 90h + 1728h2 + 5832b2h2 + 13824h3,

p2 = 11 + 3a2 − 18b2 − 336h − 972b2h− 2304h2.

We claim that these coefficients cannot vanish simultaneously. In fact if we
calculate the resultant of p1 and p2 with respect to h we obtain

4a6 + a4(12 − 45b2) + 3a2(4 − 3b2 + 36b4) + 4(1 + 3b2)3, (4.1)

up to a positive constant. If we consider (4.1) as a polynomial in a2 we see
that its the discriminant with respect to a2 is

−(1 + 3b2)3(16 + 39b2 + 72b4)2 < 0.

Hence it has a unique real root. In addition it has at least one negative root
due to Descartes’ rule of signs because 4 − 3b2 + 36b4 > 0. Then the only
real root of (4.1), when considered as a polynomial in a2, is negative and
consequently it cannot be zero for real a. Therefore p1 and p2 cannot be
zero at the same time. Since h > 0, our claim is proved. Consequently the
singular points which are at the same energy level must be on two vertical
lines on the real plane.

There is another polynomial in the Gröbner basis which is linear in the
variable x, and the coefficient of x is 27a(1+a2). So if a 6= 0 we have N = 2.
If a = 0 we can simply calculate the finite singular points besides the origin
of systems (III) which are

(

±1

3

√

1 + 3b2

b
,±
√

1

3b

)

.
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Since the Hamiltonian H3 is even these four points are at the same energy
level, so we have N = 4.

In short we have shown that when b > 0 a global phase portrait of
systems (III) is topologically equivalent to the phase portraits 1.5 and 1.6
of Figure 1.1 when a = 0 and a > 0, respectively. Consequently we obtain
the bifurcation diagram shown in Figure 1.2.

4.2 Bifurcation diagram for systems (IV )

According to Section 2.5 a global phase portrait of systems (IV ) is topo-
logically equivalent to the phase portrait 1.1 of Figure 1.1 when b < 0. How-
ever there are four possibilities when b > 0, namely the phase portraits 1.2,
1.7, 1.8 and 1.9 of Figure 1.1. So we will only focus on the case b > 0. Note
that besides the origin the phase portrait 1.2 has two finite singular points,
1.9 has four, and 1.7 and 1.8 both have six finite singular points. Moreover
we observe that there are four saddles at the same energy level in the phase
portrait, whereas an argument similar to the one used in Remark 25 proves
that there are at most two finite saddles at a fixed energy level in the phase
portrait 1.8. We are going to use these two basic properties to distinguish
them.

We will first study the case a = 0 because it appears as a critical value
in our calculations. In this case we can easily calculate the finite singular
points of systems (IV ) which are the origin, (0,±

√
b), and whenever 3b2 > 1

the additional four points
(

±1

3

√

3b2 − 1

b
,±
√

1

3b

)

. (4.2)

Note that when 3b2− 1 = 0 we get 1/3b = b, and there are only two distinct
singular points.

The linear part of systems (IV ) with a = 0 is

M4 =

(

−6xy b− 3x2 − 3y2

−1/b+ 3y2 6xy

)

,

The eigenvalues of M4 at the singular points (4.2) are the same, so they are
saddles because there are at most two centers or cusps. Furthermore, since
H4 is even these saddles are at the same energy level. Thus a global phase
portrait systems (IV ) with a = 0 and b > 0 is topologically equivalent to
the phase portrait 1.2 of Figure 1.1 if b ≤ 1/

√
3, and to 1.7 if b > 1/

√
3.

We now assume a > 0 for the rest of this section. To find the number of
finite singular points of systems (IV ) we solve for x in the equation ẋ = 0
and get

x1,2 =
a±

√

a2 + 12by2 − 12y4

6y
.
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Note that when y = 0 (2.21a) becomes ax, so the only singular point on the
x–axis is the origin. Since we are looking for singularities other than the
origin we assume y 6= 0. We substitute x1 and x2 into (2.21b) and obtain
ẏ1 and ẏ2, respectively:

ẏ1,2 =
−a− a3 − 3aby2 ∓ (1 + a2 − 3by2)

√

a2 + 12by2 − 12y4

6by
.

We claim that the number of distinct real roots N of the product ẏ1ẏ2

3y6 − 2 + 2a2 + 3b2

b
y4 +

(1 + a2)(1 + a2 + 6b2)

3b2
y2 − 1 + a2

3b
(4.3)

is in one–to–one correspondence with the number of finite singular points
M of systems (IV ). We now prove our claim.

Let y0 be a real root of (4.3). The corresponding x-coordinate x0 is
unique depending on whether y0 is a root of ẏ1 or ẏ2, unless y0 is a common
root of ẏ1 and ẏ2 such that a2 + 12by2 − 12y4 6= 0. But if y0 is a common
root of ẏ1 and ẏ2, then we have

ẏ1 + ẏ2 = −a(1 + a2 + 3b2y20)

3by0
6= 0

for any y0 ∈ R because a 6= 0. Therefore ẏ1 and ẏ2 cannot have a common
root, and we have M ≤ N .

On the other hand we have M < N only if a2 + 12by20 −12y40 < 0 so that
x0 is complex. If we define

s1 = − a− a3 − 3aby20 ,

s2 =1 + a2 − 3by20 ,

s3 =a2 + 12by20 − 12y40 ,

then y0 is root of (4.3) if and only if s21 − s3s
2
2 = 0. For x0 to be complex

we need s3 < 0, which implies s1 = s2 = 0. But we see that s1 − as2 =
2a(1+a2) 6= 0, which is a contradiction. Thus s3 cannot be negative, and as
a result we obtain M = N , proving the claim. We note that since systems
(IV ) have at least two finite singular points different from the origin, (4.3)
must have at least two distinct real roots.

We will study the root classification of (4.3) using [30], where the author
provides in particular the root classification of an arbitrary sextic polynomial
of the form

x6 + px4 + qx3 + rx2 + sx2 + t

We first need to compute the “discriminant sequence” {D1, . . . ,D6}
where

D1 = 1, D2 = −p, D3 = 24rp− 8p3 − 27q2,
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D4 = 32p4r − 12p3q2 + 96p3t + 324prq2 − 224r2p2 − 288ptr − 120qp2s

+ 300ps2 − 81q4 + 324tq2 − 720qsr + 384r3,

D5 = − 4p3q2r2 − 1344ptr3 + 24p4q2t+ 144pq2r3 + 1440ps2r2 + 162q4tp

− 5400rts2 + 1512prtsq + 16p4r3 − 192p4t2 + 72p5s2 − 128r4p2

+ 256r5 + 1875s4 − 64p5rt+ 592p3tr2 + 432rt2p2 − 616rs2p3

+ 558q2p2s2 + 1080s2tp2 − 2400ps3q − 324pt2q2 − 1134tsq3

+ 648q2tr2 + 1620q2s2r − 1344qsr3 + 3240qst2 + 12p3q3s− 1296pt3

− 27q4r2 + 81q5s+ 1728t2r2 − 56p4rsq − 72p3tsq + 432r2p2sq

− 648rq2tp2 − 486prq3s,

D6 = − 32400ps2t3 − 3750pqs5 + 16q3p3s3 − 8640q2p3t3 + 825q2p2s4

+ 108q4p3t2 + 16r3p4s2 − 64r4p4t− 4352r3p3t2 + 512r2p5t2

+ 9216rp4t3 − 900rp3s4 − 17280t3p2r2 − 192t2p4s2 + 1500tp2s4

− 128r4p2s2 + 512r5p2t+ 9216r4pt2 + 2000r2s4p+ 108s4p5

− 1024p6t3 − 4q2p3r2s2 − 13824t4p3 + 16q2p3r3t+ 8208q2p2r2t2

− 72q3p3str + 5832q3p2st2 + 24q2p4ts2 − 576q2p4t2r − 4536q2p2s2tr

− 72rp4qs3 + 320r2p4qst− 5760rp3qst2 − 576rp5ts2 + 4816r2p3s2t

− 120tp3qs3 + 46656t3p2qs− 6480t2p2s2r + 560r2qp2s3 − 2496r3qp2st

− 3456r2qpst2 − 10560r3s2pt+ 768sp5t2q + 19800s3rqpt+ 3125s6

− 46656t5 − 13824r3t3 + 256r5s2 − 1024r6t+ 62208prt4 + 108q5s3

− 874q4t3 + 729q6t2 + 34992q2t4 − 630prq3s3 + 3888prq2t3

+ 2250rq2s4 − 4860prq4t2 − 22500rts4 + 144pr3q2s2 − 576pr4q2t

− 8640r3q2t2 + 2808pr2q3st+ 21384rq3st2 − 9720r2q2s2t

− 77760rt3qs+ 43200r2t2s2 − 1600r3qs3 + 6912r4qst− 27540pq2t2s2

− 27q4r2s2 + 108q4r3t− 486q5str + 162pq4ts2 − 1350q3ts3

+ 27000s3qt2.

Then we will determine the “sign list” [sign(D1), . . . , sign(D6)] of the dis-
criminant sequence, where the sign function is

sign(x) =







1 if x > 0,
0 if x = 0,
−1 if x < 0.

And finally we need to construct the associated “revised sign list” [r1, . . . , r6]
which will give all the information about the number of real and complex
roots of our polynomial. Given any sign list [s1, . . . , sn], the revised sign list
[r1, . . . , rn] is obtained as follows:
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If sk 6= 0 we write rk = sk.

If [si, si+1, . . . , si+j ] is a section of the given sign list such that si+1 =
· · · = si+j−1 = 0 with sisi+j 6= 0, then in place of [ri+1, . . . , ri+j−1] we
write the (j − 1)-tuple

[−si,−si, si, si,−si,−si, si, si,−si, . . .].

Note that in this way there are no zeros between nonzero elements of the
revised sign list.

The elements of the discriminant sequence of polynomial (4.3) are

D2 =
A

3b
, D3 =

8AB2

27b3
, D4 = −32(1 + a2)B2C

243b4
,

D5 =
16a2(1 + a2)2CD

6561b6
, D6 =

64a4(1 + a2)3D2

531441b9
,

where

A = 2 + 2a2 + 3b2, B = 1 + a2 − 3b2,

C = −2(1 − 3b2)2 + a2(2 + 21b2) + 4a4,

D = 4(1 − 3b2)3 + 3a2(4 + 3b2 + 36b4) + 3a4(4 + 15b2) + 4a6. (4.4)

We will determine the cases in which (4.3) has six or four distinct real
roots, and consequently the case with two distinct real roots will follow.

It is given in [30] that (4.3) has six distinct real roots if and only if the
revised sign list of its discriminant sequence is [1, 1, 1, 1, 1, 1]. Since A > 0,
(4.3) has six distinct real roots if and only B 6= 0 and C,D < 0. We see
that D ≤ 0 only if 1 − 3b2 < 0, in which case

D − (a2 − 2 + 6b2)C = 9a2(2 + 2a2 + 2b2) > 0.

This means that if D ≤ 0 then C < 0 also. In addition when B = 0, that is
a =

√
1 − 3b2 and 1−3b2 > 0, we have D > 0. Consequently we have B 6= 0

if D ≤ 0. Therefore we deduce that (4.3) has six distinct real roots if and
only if D < 0.

We remind that systems (IV ) have two global phase portraits with six
finite singular points which are not topologically equivalent, namely the
phase portraits 1.7 and 1.8 of Figure 1.1. We will prove below that systems
(IV ) with D < 0 and a > 0 cannot have four finite saddles at the same
energy level, hence, as we mentioned in the beginning of this section, their
phase portraits cannot be topologically equivalent to 1.7.

To determine the number of finite singular points at an energy level we
look for the number of solutions of the system of three equations ẋ = ẏ = 0
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and H4 = h for h ∈ R. As we have shown for systems (III), we have
h > 0 at finite singular points of systems (IV ). We calculate the Gröebner
basis of the polynomials ẋ, ẏ and H4 − h and obtain 23 polynomials. The
polynomials and the calculations are almost the same as those for systems
(III). Among these 23 polynomials only three are enough for our study:
one that is linear in the variable x with the coefficient 27a(1 + a2) > 0, and
two that do not contain the variable x and they are of the form my2 + n.
The coefficients of y2 in these two polynomials are

6h(−1 + 90h − 1728h2 + 5832b2h2 − 13824h3),

3h(11 + 3a2 + 18b2 − 336h + 972b2h− 2304h2).

We know that h > 0. Then we need to check if the remaining non–constant
factors can be zero simultaneously. The resultant of these two factors is

1253826625536D < 0.

Therefore at least one of these polynomials is not identically zero. Taking
into account the third polynomial which is linear in x, we deduce that this
system of equations have at most two solutions. As a result all the global
phase portraits of systems (IV ) when D < 0 and a > 0 are topologically
equivalent to 1.8 of Figure 1.1.

Now we study when (4.3) has four distinct real roots. According to
[30] the revised sing list of the discriminant sequence must be [1, 1, 1, 1, 0, 0]
because we have D6 ≥ 0. Hence we need B 6= 0, C < 0 and D = 0. We
have already seen that B 6= 0 and C < 0 whenever D = 0. Therefore (4.3)
has four distinct real roots if and only if D = 0.

As a result of the above analysis and the fact that (4.3) has at least two
distinct real roots, it follows easily that (4.3) has two distinct real roots if
and only if D > 0.

We observe that when a = 0 we have D = 4(1 − 3b2)3. Hence we
can summarize our results as follows: When b < 0 then the global phase
portraits of systems (IV ) are topologically equivalent to 1.1 of Figure 1.1.
When b > 0 the systems (IV ) have the global phase portrait 1.2 of Figure 1.1
when D > 0 or D = a = 0, 1.7 if D < 0 and a = 0, 1.8 if D < 0 and a > 0,
and finally 1.9 if D = 0 and a > 0. Therefore we obtain the bifurcation
diagram shown in Figure 1.3.

4.3 Bifurcation diagram for systems (V )

Due to Theorem 4 the global phase portraits of systems (V ) are topolog-
ically equivalent to the phase portraits 1.3, 1.10, 1.11 or 1.12 of Figure 1.1.
Note that besides the origin the phase portrait 1.3 has two finite singular
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points, 1.12 has four, and 1.10 and 1.11 both have six finite singular points.
Moreover there are four finite saddles at the same energy level in 1.10, while
there can be at most two saddles at a fixed energy level in 1.11 (see Re-
mark 25). We will use these facts to determine the bifurcation points for
these phase portraits. We recall that we can assume b > 0 for systems (V ),
see Section 2.6 for details.

As we did for systems (IV ) we study the case a = 0 separately. In
this case the finite singular points besides the origin are (±1/

√
b, 0), and

whenever 3µ > b2 the four points

(

±
√

1 + 3b2µ

b(1 + 9µ2)
,±
√

3µ− b2

b(1 + 9µ2)

)

. (4.5)

Note that when 3µ = b2 the four singular points in (4.5) coincide with
(±1/

√
b, 0).

The linear part of systems (V ) with a = 0 is

M5 =

(

−6µxy b− 3µx2 + 3y2

−1/b+ 3x2 + 3µy2 6µxy

)

.

The eigenvalues of M5 at the four singular points in (4.5) are the same. Since
there are at most two centers or cusps, these singular points are saddles, and
they are at the same energy level because H5 is even. Therefore a global
phase portrait of systems (V ) with a = 0 is topologically equivalent to the
phase portrait 1.3 of Figure 1.1 if 3µ ≤ b2, and to 1.10 otherwise. This
finishes the study of the case a = 0 and in the rest of this section we will
assume that a > 0.

We start by determining the number of finite singular points of systems
(V ) as a function of the parameters a, b, µ. If we equate (2.28a) to zero,
solve for x and substitute both roots into (2.28b) we obtain two functions of
y. If multiply them we get a polynomial of degree eight instead of six, which
was the case for systems (IV ). Consequently it is more difficult to study the
number of distinct real roots of this polynomial as a guide to determine the
number of finite singular points of systems (V ). Instead we use the fact that
systems (V ) are symmetric with respect to the origin, and look for pairs
of finite singular points different from the origin which lie on straight lines
passing through the origin. Therefore we study systems (V ) on the y–axis,
and on the lines y = cx for c ∈ R r {0}. We can assume c 6= 0 due to the
fact that when c = 0 we have y = 0, and (2.28a) becomes ax, which means
that the only singular point is the origin. We will identify the lines y = cx
by the parameter c.

On the y–axis (2.28b) becomes −ay, which means that the only singular
point is the origin. So we assume x 6= 0 and impose y = cx to rewrite
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systems (V ) as

ẋ = (a+ bc)x+ c(c2 − 3µ)x3, (4.6a)

ẏ = −1 + a2 + abc

b
x+ (1 + 3µc2)x3. (4.6b)

We equate (4.6a) to zero, solve for x and get

x = ±
√

−a− bc

c(c2 − 3µ)
. (4.7)

We see that (4.7) are not defined if µ > 0 and c = ±√
3µ. So we will now

find out if there are singular points on these lines that are different from the
origin.

If c =
√

3µ then (4.6a) becomes (a+ b
√

3µ)x 6= 0 because a, b, µ > 0 and
x 6= 0. Thus the only singular point on this line is the origin. If c = −√

3µ
then (4.6a) becomes (a− b

√
3µ)x, which is zero if and only if a = b

√
3µ, in

which case equating (4.6b) to zero and solving for x gives

x = ± 1
√

b(1 + 9µ2)
= ± b3/2√

a4 + b4
, (4.8)

which are real and nonzero. Therefore when c = −√
3µ there are singular

points other than the origin if and only if a = b
√

3µ. We will keep this in
mind and continue looking for singular points with c 6= −√

3µ.

We substitute (4.7) into (4.6b) and obtain

±
√
−a− bc(abc4 + (1 + a2 + 3b2µ)c3 + (b2 − 3(1 + a2)µ)c+ ab)

b(c(c2 − 3µ))3/2
.

This means that at a singular point we must have

P5(c) = abc4 + (1 + a2 + 3b2µ)c3 + (b2 − 3(1 + a2)µ)c+ ab = 0

because −a− bc = 0 yields x = 0. Moreover in order that x defined in (4.8)
are real and nonzero, the roots of P must satisfy

Q5(c) = (−a− bc)c(c2 − 3µ) > 0

so that (4.7) are real and nonzero. Then each real root of P5 will yield a
pair of finite singular points different from the origin. Here the index 5 is a
reminder that we are studying systems (V ).

We will study the number of distinct real roots of P5 using [30], where
the elements of the discriminant sequence of an arbitrary quartic polynomial

a0x
4 + a1x

3 + a2x
2 + a3x+ a4
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are given as

D1 = 1, D2 = 3a21 − 8a2a0,

D3 = 16a20a4a2 − 18a20a
2
3 − 4a0a

3
2 + 14a0a3a1a2 − 6a0a4a

2
1 + a22a

2
1

− 3a3a
3
1,

D4 = 256a30a
3
4 − 27a20a

4
3 − 192a20a3a

2
4a1 − 27a41a

2
4 − 6a0a

2
1a4a

2
3

+ a22a
2
3a

2
1 − 4a0a

3
2a

2
3 + 18a2a4a

3
1a3 + 144a0a2a

2
4a

2
1

− 80a0a
2
2a4a1a3 + 18a0a2a

3
3a1 − 4a32a4a

2
1 − 4a31a

3
3 + 16a0a

4
2a4

− 128a20a
2
2a

2
4 + 144a20a2a4a

2
3.

(4.9)

By using them we will be able to determine the exact number of distinct
real roots of P5.

Note that the number of real roots of Q5 are different when µ ≤ 0 and
µ > 0. We will investigate these separately.

Case µ ≤ 0. In this case we have Q5 > 0 if and only if c ∈ (−a/b, 0), see
Figure 4.1. On the other hand we have P5(0) = ab > 0 and P5(−a/b) =
a(3b2µ − a2)/b3 < 0, so P5 has at least one root in (−a/b, 0). In fact we
observe that P5 has either two or zero negative roots due to Descartes’
rule of sign. Additionally it has at least one root in (−∞,−a/b) because
limc→−∞ P5 = ∞. Therefore when µ ≤ 0 P5 has exactly one real root in
(−a/b, 0), and systems (V ) have only two finite singular points other than
the origin.

−a
b

(0,0)
c

Figure 4.1: A rough graph of Q5(c) when µ ≤ 0.

Case µ > 0. Now Q5 has the four roots c = 0, c = −a/b and c = ±√
3µ.

Moreover

P5(−a/b) =
a(3b2µ− a2)

b3
, P5(0) = ab,

P5(±
√

3µ) = b(a± b
√

3µ)(1 + 9µ2),

(4.10)
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at these points. Since the roots c = −a/b and c = −√
3µ are independent

of each other we will investigate this case in three subcases comparing a/b
to

√
3µ.

When a/b <
√

3µ we have Q5 > 0 if and only if c ∈ (−√
3µ,−a/b) ∪

(0,
√

3µ), see Figure 4.2. Thus we will look for the number of real roots P5

in these intervals.

−a
b

(0,0)

−√
3µ

√
3µ

c

Figure 4.2: A rough graph of Q5(c) when µ > 0 and a/b <
√

3µ.

We have P5(−√
3µ) < 0 and P5(−a/b) > 0, see (4.10). Since P5 has at

most two negative roots and limc→−∞ P5 = ∞, P5 has exactly one simple
root in (

√
3µ,−a/b).

On the other hand we have P5(0) > 0 and P5(
√

3µ) > 0. We claim that
P5 cannot have a real root greater that

√
3µ. This is due to the fact that

the first derivative of P5 with respect to c,

P ′

5(c) = 4abc3 + 3(1 + a2 + 3b2µ)c2 + b2 − 3(1 + a2)µ, (4.11)

has at most one positive root. If P5 had a real root greater than
√

3µ then it
would have at least two positive critical points because P5(

√
3µ) > P5(0) and

limc→∞ P5 = ∞. Therefore if P5 has a positive root then it is in (0,
√

3µ).

In short when a/b <
√

3µ, P5 has at least two real simple roots (the
negative ones), and exactly one of its real roots (the smallest) makes (4.7)
complex.

When a/b >
√

3µ everything is the same as in the case a/b <
√

3µ, ex-
cept that the roles of the roots c = −a/b and c = −√

3µ are exchanged, see
Figure 4.3. More precisely we have Q5 > 0 if and only if c ∈ (−a/b,−√

3µ)∪
(0,

√
3µ). In addition P5(−a/b) < 0 and P5(−√

3µ) > 0 so that P5 has one
negative root in (−a/b,−√

3µ), and a smaller one in (−∞,−a/b). Moreover
P5(

√
3µ) > P5(0) > 0, and hence any positive root of P5 is in the interval

(0,
√

3µ) because it has at most one positive critical point, see (4.11). There-
fore P5 has at least two real simple roots, and exactly one of them leads to
a pair of complex singular points when a/b >

√
3µ.
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−a
b

(0,0)

−√
3µ

√
3µ

c

Figure 4.3: A rough graph of Q5(c) when µ > 0 and a/b >
√

3µ.

Finally when a/b =
√

3µ we see that Q5 > 0 only when c ∈ (0, a/b),
see Figure 4.4. Hence no negative root of P5 satisfies Q5 > 0. We recall
that when a/b =

√
3µ there are extra singular points on the line y = cx

with c = −√
3µ = −a/b. Also P5(−a/b) = 0, and thus c = −a/b is a

root of P5. Moreover P ′

5(−√
3µ) = 6µ + b2(1 + 9µ2) > 0 so that it is a

simple root. Then since P5 has either two or zero negative roots, it has
another negative root different from −a/b. By the same argument used in
the previous two subcases, all the positive roots of P5 are in (0,

√
3µ), and

they satisfy Q5 > 0. Therefore P5 again has at least two simple roots with
the property that exactly one of them correspond to complex finite singular
points.

−a
b

(0,0)

a

b

c

Figure 4.4: A rough graph of Q5(c) when µ > 0 and a/b =
√

3µ.

In short we have shown that in any case P5 has at least two simple real
roots when µ > 0. Then according to [30] P5 has two, three or four distinct
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real roots if and only if D4 < 0, D4 = 0 and D4 > 0, respectively, where

D4 = − b2(27a2 + 108a4 + 162a6 + 108a8 + 27a10 + 4b4 + 18a2b4

+ 216a4b4 − 54a6b4 + 27a2b8) + 36b4(3a2 − 1)2
(

(1 + a2)2

− b4
)

µ− 54b2(2 + 11a2 + 24a4 + 26a6 + 14a8 + 3a10 − 6b4

+ 32a2b4 + 50a4b4 + 12a6b4 + 2b8 + 3a2b8)µ2

+ 108
(

(1 + a2)2 − b4
)

(1 + 4a2 + 6a4 + 4a6 + a8 − 8b4

+ 8a2b4 + 16a4b4 + b8)µ3 − 243b2(−4 − 11a2 − 4a4 + 14a6

+ 16a8 + 5a10 + 12b4 + 38a2b4 + 40a4b4 + 14a6b4 − 4b8

+ 5a2b8)µ4 + 2916b4
(

(1 + a2)2 − b4
)

(1 + a2)2µ5

+ 2916b6(1 + a2)3µ6,

(4.12)

see (4.9). Since there are no additional finite singular points at exactly
one simple root of P5, systems (V ) have two, four and six additional finite
singular points besides the origin whenever D4 < 0, D4 = 0 and D4 > 0,
respectively.

Note that the phase portraits 1.10 and 1.11 have the same number of
singular points. We observe that there are four finite singular points at a
fixed energy level in 1.10. So we will check if the Hamiltonian H5 can attain
the same value at four distinct finite singular points.

At a singular point of systems (V ) H5 reduces to

H5(x, y) − yẋ− xẏ

4
=
x2 + (ax+ by)2

4b
. (4.13)

If we substitute y = cx in (4.13) we get

G5(c, x) =

(

1 + (a+ bc)2
)

x2

4b
.

Then using (4.7) we can rewrite G5 as

F5(c) = −(a+ bc)
(

1 + (a+ bc)2
)

4bc(c2 − 3µ)
.

We recall that there are additional singular points on the line c = −√
3µ

if and only if a/b =
√

3µ, and that (4.7) is not well defined at c = −√
3µ.

Thus to calculate H5 at the additional singular points on the line c = −√
3µ

we must use G5, while we can use F5 for all the other singular points.
Therefore H5 can attain the same value at four singular points only if one
of the following holds:

(i) If F5 attains the same value at two distinct real roots of P5 which are
different from −√

3µ.
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(ii) If a/b =
√

3µ and F5(c) = G5(−a/b,±b3/2/
√
a4 + b4) for a real root

c 6= −a/b of P5 (see (4.8)).

We claim that none of these two cases holds. The proof is as follows.

To show that (i) cannot hold we assume on the contrary that c1 and c2
are two distinct real roots of P5 which satisfy

F5(c1) − F5(c2) =
(c1 − c2)E5(c1, c2)

4bc1c2(c21 − 3µ)(c22 − 3µ)
= 0,

where

E5(c1, c2) = a(1 + a2)(c22 − 3µ) + c1c2
(

a(1 + a2 + 9b2µ) + bc2(1 + 3a2

+ 3b2µ)
)

+ c21
(

a(1 + a2) + bc2(1 + 3a2 + 3b2µ+ 3abc2)
)

Since c1 6= c2 we have F5(c1) = F5(c2) if and only if E5(c1, c2) = 0.
To find a necessary condition on the parameters a, b, µ so that we have
P5(c1) = P5(c2) = E5(c1, c2) = 0 we compute the resultant R(c2) of P5(c1)
and E5(c1, c2) with respect to c1, and then compute the resultant of R(c2)
and P5(c2) with respect to c2. Doing so we obtain

−a10b10(1 + 2a2 + a4 + b4)2(a2 − 3b2µ)7(1 + 9µ2)2D3
4 , (4.14)

which is equal to zero only if a2 = 3b2µ because we have a, b > 0 and D4 > 0
when systems (V ) have six finite singular points. But when a2 = 3b2µ we
have E5(c1, c2) = 0 only if either c1 = −√

3µ = −a/b or c2 = −a/b, which
cannot be in case (i). More precisely if we set µ = a2/3b2 we get

P5(c) =
(a+ bc)P̄5(c)

b2
, E5(c1, c2) = −(a+ bc1)(a+ bc2)Ē5(c1, c2)

b2
,

where

P̄5(c) = −b3 + a(1 + a2)c− b(1 + a2)c2 − ab2c3,

Ē5(c1, c2) = −a(1 + a2) + b(1 + a2)(c1 + c2) + 3ab2c1c2.

If we impose c1, c2 6= −a/b, then P5(c1) = P5(c2) = E5(c1, c2) = 0 if and
only if P̄5(c1) = P̄5(c2) = Ē5(c1, c2) = 0. But if we calculate the resultant
R̄(c2) of P̄5(c1) and Ē5(c1, c2) with respect to c1, and then the resultant of
R̄(c2) and P̄5(c2) with respect to c2 we get

− a3b18D4

(2a2 + a4 + b4)2
6= 0.

Therefore (4.14) cannot be zero, and hence (i) cannot hold.
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On the other hand if (ii) holds then substituting µ = a2/3b2 gives

F5(c) =
b
(

1 + (a+ bc)2
)

4c(a− bc)
, G5

(

−a
b
,± b3/2√

a4 + b4

)

=
b2

4(a4 + b4)
= h.

Since a root c of P5 which is different from −a/b must satisfy F5(c) = h, we
must have P̄5(c) = 0. However, the resultant of P̄5 and F5 − h with respect
to c is

−b
2(2a2 + a4 + b4)3(1 + 2a2 + a4 + b4)

64(a4 + b4)3
6= 0.

This disproves (ii). Hence when a, µ > 0 at most two singular points can be
at the same energy level, and systems (V ) cannot have the phase portrait
1.10 of Figure 1.1. This completes the case µ > 0.

We note that when a = 0 we have D4 = 4(1 + 3b2µ)3(3µ − b2)3, so the
sign of D4 is enough to determine the phase portraits. Therefore we can
summarize our results as follows: when µ ≤ 0 a global phase portrait of
systems (V ) is topologically equivalent to 1.3 of Figure 1.1; when µ > 0
then it is equivalent to 1.3 if D4 < 0 or D4 = 0 and a = 0, to 1.10 if D4 > 0
and a = 0, to 1.11 if D4 > 0 and a 6= 0, and to 1.12 if D4 = 0 and a 6= 0.
Hence when µ ≤ 0 there is a unique phase portrait, and when µ > 0 we
obtain the bifurcation diagram shown in Figure 1.4.

4.4 Bifurcation diagram for systems (V I)

Due to Section 2.7 a global phase portrait of systems (V I) is topologically
equivalent to the phase portraits 1.13 and 1.14 of Figure 1.1 if µ < −1/3,
to 1.15–1.17 if µ = −1/3, and to 1.18–1.23 if µ > −1/3. Therefore we will
determine the bifurcation points of the global phase portraits of systems
(V I) when µ < −1/3, µ = −1/3 and µ > −1/3 separately.

Case µ < −1/3. First of all we note that without loss of generality we can
assume in this case that b > 0. Indeed, if we rotate the coordinate axes by
π/4 via the linear transformation (x, y) 7→

(

(x−y)/
√

2, (x+y)/
√

2
)

= (u, v)
then systems (V I) become

u̇ =
a2 − b2 + 1

2b
u+

(a+ b)2 + 1

2b
v − 3(1 − µ)

2
u2v − 1 + 3µ

2
v3,

v̇ = −(a− b)2 + 1

2b
u− a2 − b2 + 1

2b
v +

3(1 − µ)

2
uv2 +

1 + 3µ

2
u3.

If we further rescale the independent variable by dτ = (1 + 3µ)/2 dt then
we get

u̇ =
a2 − b2 + 1

b(1 + 3µ)
u+

(a+ b)2 + 1

b(1 + 3µ)
v − 3(1 − µ)

1 + 3µ
u2v − v3,
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v̇ = −(a− b)2 + 1

b(1 + 3µ)
u− a2 − b2 + 1

b(1 + 3µ)
v +

3(1 − µ)

1 + 3µ
uv2 + u3.

An finally after defining the parameters

ā =
a2 − b2 + 1

b(1 + 3µ)
, b̄ =

(a+ b)2 + 1

b(1 + 3µ)
, µ̄ =

1 − µ

1 + 3µ
,

we get the systems

u̇ = āu+ b̄v − 3µ̄u2v − v3,

v̇ = − ā
2 + 1

b̄
u− āv + 3µ̄uv2 + u3.

(4.15)

We see that dµ̄/dµ = −4/(1 + 3µ)2 < 0 and limµ→−∞ µ̄ = −1/3, hence
µ̄ < −1/3 whenever µ < −1/3. As a result systems (4.15) are basically
systems (V I) with b 7→ −b, proving that we can assume b > 0.

We remind that systems (V I) can have two different global phase por-
traits when µ < −1/3, namely 1.13 and 1.14 of Figure 1.1. Both phase
portraits have the same number of singular points. But the difference be-
tween them is that there are four finite singular points at the same energy
level in 1.14, whereas there are only two in 1.13 because otherwise using the
same arguments used in Remark 25 we can find a straight line through the
origin that intersects the separatrices of the saddles six times. So we will
investigate when there can be four finite singular points at a fixed energy
level.

When a = 0 the finite singular points of systems (V I) besides the origin
are (±1/

√
b, 0) and (0,±

√
b). We also have

H6

(

± 1√
b
, 0

)

=
1

4b2
, H6

(

0,±
√
b
)

=
b2

4
. (4.16)

Hence the four singular points are on the same energy level if and only if
b = 1. Therefore a global phase portrait of systems (V I) with µ < −1/3
and a = 0 is topologically equivalent to 1.13 of Figure 1.1 if b 6= 1, and to
1.14 if b = 1.

We now assume a > 0 and consider finite singular points of systems (V I)
which are different from the origin in pairs lying on the straight lines y = cx
with c ∈ R r {0}. We note that there are no finite singular points on the
coordinate axes because a > 0. We will again identify each line y = cx with
its parameter c.

We substitute y = cx in systems (V I) and we get

ẋ = (a+ bc)x− c(c2 + 3µ)x3, (4.17a)

ẏ = −1 + a2 + abc

b
x+ (1 + 3µc2)x3. (4.17b)
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Then we equate (4.17a) to zero and solve for x to obtain

x = ±
√

a+ bc

c(c2 + 3µ)
. (4.18)

We see that (4.18) are not defined if c = ±√−3µ. However, when
c =

√−3µ we get from (4.17a) that ẋ = (a + b
√−3µ)x 6= 0, and there

are no additional singular points on this line. When c = −√−3µ we have
ẋ = (a − b

√−3µ)x, which is zero if and only if a = b
√−3µ. But if we

substitute c = −√−3µ and a = b
√−3µ in (4.17b) then the roots of ẏ

become
x = ±1/

√

b(1 − 9µ2) (4.19)

which are complex because µ < −1/3. Therefore (4.18) are well–defined at
the singular points.

We proceed as we did for systems (V ). We can substitute (4.18) into
(4.17b) to get

±
√
a+ bc

(

abc4 + (1 + a2 − 3b2µ) + (3(1 + a2)µ− b2)c− ab
)

b
(

c(c2 + 3µ)
)3/2

.

Therefore at a singular point different from the origin we must have

P6(c) = abc4 + (1 + a2 − 3b2µ) + (3(1 + a2)µ − b2)c− ab = 0 (4.20)

and
Q6(c) = (a+ bc)c(c2 + 3µ) > 0. (4.21)

Now that we know the necessary and sufficient conditions for a point to
be a finite singular point of systems (V I) with µ < −1/3, we check if four
singular points can be at the same energy level. We follow the same way we
used for systems (V ).

At a singular point H6 can be written exactly as (4.13). Then we sub-
stitute y = cx and obtain

G6(c, x) =

(

1 + (a+ bc)2
)

x2

4b
, (4.22)

If we further substitute (4.18) in G6 we get

F6(c) =
(a+ bc)

(

1 + (a+ bc)2
)

4bc(c2 + 3µ)
. (4.23)

Thus systems (V I) with µ < −1/3 have four finite singular points at the
same energy level if and only if P6 has two distinct real roots c1 and c2 such
that F6(c1) = F6(c2) and Q6(c1,2) > 0. We now prove that this is possible
if and only if b =

√
1 + a2.
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Assume that P6(c1) = P6(c2) = 0 but c1 6= c2. We have

F6(c1) − F6(c2) =
(c1 − c2)E6(c1, c2)

4bc1c2(c21 + 3µ)(c22 + 3µ)
= 0,

if and only if E6(c1, c2) = 0 where

E6(c1, c2) = a(1 + a2)(c22 + 3µ) + c1c2
(

a(1 + a2 − 9b2µ)

+ bc2(1 + 3a2 − 3b2µ)
)

+ c21
(

a(1 + a2)

+ bc2(1 + 3a2 − 3b2µ+ 3abc22)
)

.

(4.24)

If we calculate the resultant R(c2) of P6(c1) and E6(c1, c2) with respect to
c1, and then the resultant of P6(c2) and R(c2) we obtain

a10b10(1 − 9µ2)2(a2 + 3b2µ)7
(

b4 − (1 + a2)2
)2
D3

4 , (4.25)

where

D4 = − b2(27a2 + 108a4 + 162a6 + 108a8 + 27a10 − 4b4

− 18a2b4 − 216a4b4 + 54a6b4 + 27a2b8) − 36b4(3a2 − 1)2
(

(1 + a2)2 + b4
)

µ+ 54b2(2 + 11a2 + 24a4 + 26a6 + 14a8

+ 3a10 + 6b4 − 32a2b4 − 50a4b4 − 12a6b4 + 2b8 + a2b8)µ2

− 108
(

(1 + a2)2 + b4)(1 + 4a2 + 6a4 + 4a6 + a8 + 8b4

− 8a2b4 − 16a4b4 + b8)µ3 − 242b2(−4 − 11a2 − 4a4 + 14a6

+ 16a8 + 5a10 − 12b4 − 38a2b4 − 40a4b4 − 14a6b4 − 4b8

+ 5a2b8)µ4 − 2916b4(1 + a2)2
(

(1 + a2)2 + b4)µ5

+ 2916b6(1 + a2)3µ6.

(4.26)

We remark that we denote (4.26) by D4 because it coincides with the fourth
element of the discriminant sequence of P6(c), see (4.9). Since a, b > 0
we see that (4.25) is zero only if (i) D4 = 0, (ii) µ = −a2/(3b2), or (iii)
b =

√
1 + a2. We now analyze these three cases.

We first prove that (i) cannot hold, that is D4 6= 0. We observe that D4

is equal to the “standard” discriminant of P6(c). Hence we can prove that
(i) cannot hold by showing that all the roots of P6 are simple. The roots of
Q6 are 0, −a/b and ±√−3µ. If we evaluate P6 at these points we get

P6(0) = −ab, P6(−a/b) = −a(a2 + 3b2µ)/b3,

P6(±
√

−3µ) = b(a± b
√

−3µ)(9µ2 − 1).
(4.27)

If a/b <
√−3µ then Q6 is positive if and only if c ∈ (−∞,−√−3µ) ∪

(−a/b, 0)∪(
√−3µ,∞), see Figure 4.5. Since a, b > 0 we have P6(−√−3µ) <

0, P6(−a/b) > 0, P6(0) < 0 and P6(
√−3µ) > 0, see (4.27). Since P6
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−a
b

(0,0)−√−3µ
√−3µ

c

Figure 4.5: A rough graph of Q6(c) when µ < 0 and a/b <
√−3µ.

is a quartic polynomial in c it has four simple roots, two of which satisfy
Q6 > 0 as expected because the global phase portraits have four finite
singular points.

If a/b >
√−3µ then we have Q6(c) > 0 if and only if c ∈ (−∞,−a/b) ∪

(−√−3µ, 0)∪(
√−3µ,∞), see Figure 4.6. In this case we have P6(−a/b) < 0,

P6(−√−3µ) > 0, P6(0) < 0 and P6(
√−3µ) > 0. Hence P6 has four simple

roots again, and exactly two of its roots are in the region where Q6 > 0.

−a
b (0,0)

−√−3µ
√−3µ

c

Figure 4.6: A rough graph of Q6(c) when µ < 0 and a/b >
√−3µ.

Finally if a/b =
√−3µ, we have Q6(c) > 0 unless c ∈ {−a/b}∪[0,

√−3µ],
see Figure 4.7. We see that P6 has at least one positive root with Q6 < 0.
In addition P6(−a/b) = 0, and thus at least two distinct roots of P6 do not
satisfy Q6 > 0. But since we know that P6 has exactly two distinct roots
with Q6 > 0, we conclude that each root of P6 is simple.

In any case P6 has four simple real roots, therefore D4 6= 0 and (i) does
not hold.

We now consider (ii). Note that the conditions P6(c1) = P6(c2) = 0 and
E6(c1, c2) = 0 do not implyQ6(c1,2) > 0. We claim that when µ = −a2/(3b2)
the resultant (4.25) vanishes only if Q6(c1)Q6(c2) = 0. We now prove this
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b
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Figure 4.7: A rough graph of Q6(c) when µ < 0 and a/b =
√−3µ.

claim by showing that if we do not allow Q6(c1)Q6(c2) = 0 then (4.25)
cannot be zero. The proof is as follows.

If we substitute µ = −a2/(3b2) in P6 and E6 we obtain

P6(c) = − (a+ bc)P̄6(c)

b2
,

E6(c1, c2) = − (a+ bc1)(a+ bc2)Ē6(c1, c2)

b2
,

(4.28)

where

P̄6(c) = b3 + a(1 + a2)c2 − b(1 + a2)c22 − ab2c3,

Ē6(c1, c2) = −a(1 + a2) + b(1 + a2)(c1 + c2) + 3ab2c1c2.
(4.29)

Since we have Q6(−a/b) = 0 (see Figure 4.7), systems (V I) have four finite
singular points at the same energy level if and only if P̄6(c1) = P̄6(c2) =
Ē6(c1, c2) = 0. But if, as we did above, calculate first the resultant R̄(c2)
of P̄6(c1) and Ē6(c1, c2) with respect to c1, and then the resultant of P̄6(c2)
and R̄(c2) with respect to c1 we get

−a3b12(a2 + 8a4 + 18a6 + 16a8 + 5a10 + 4b4 + 30a2b4 + 48a4b4

+22a6b4 − 27a2b8)3,
(4.30)

which is different from zero because when µ = −a2/(3b2) we have

D4 =
(2a2 + a4 − b4)2

b6
(a2 + 8a4 + 18a6 + 16a8 + 5a10 + 4b4

+ 30a2b4 + 48a4b4 + 22a6b4 − 27a2b8) 6= 0

(4.31)

This finishes the proof of our claim, and hence there cannot be four finite
singular points at the same energy level when (ii) holds.

97



Finally we consider (iii). We remark that in this case we have a2/b2 =
1 − 1/b2 < 1 whereas −3µ > 1, and thus cases (ii) and (iii) are disjoint. If
we substitute b =

√
1 + a2 in (4.20) we get

P6(c) =
√

1 + a2(c2 − 1)
(

a+
√

1 + a2(1 − 3µ)c+ ac2
)

. (4.32)

Since we have a/b < 1 <
√−3µ, the roots c = ±1 of (4.32) make Q6 < 0,

see Figure 4.5. In addition we know that P6 has two distinct roots with
Q6 > 0, so they must be the remaining two roots, which are

c1,2 =

√
1 + a2(3µ − 1) ±

√

(1 + a2)(1 − 3µ)2 − 4a2

2a
. (4.33)

Indeed, substituting (4.33) into (4.24) gives E6 = 0. Therefore we conclude
that systems (V I) with µ < −1/3 have four singular points at the same
energy level if and only if 1 + a2 = b2.

We observe that when a = 0 the condition 1 + a2 = b2 translates into
b = 1, which is the unique case in which systems (V I) have four finite
singular points at a fixed energy level. Consequently we have proved that
systems (V I) with µ < −1/3 have the global phase portrait 1.14 of Figure 1.1
if b =

√
1 + a2, and the phase portrait 1.13 otherwise. Therefore we obtain

the bifurcation diagram shown in Figure 1.5.

Case µ = −1/3. In [9] it is shown that if b < 0 the unique phase portrait
is 1.15 of Figure 1.1. So we study the case b > 0, in which a global phase
portrait of systems (V I) is topologically equivalent to either 1.16 or 1.7 of
Figure 1.1. As in the case µ < −1/3, these two phase portraits differ in
the sense that in 1.17 there exists an energy level at which there are four
finite singular points, whereas 1.16 has at most two finite singular points
at a fixed energy level. This follows from applying the argument used in
Remark 25. Therefore we will study the number of finite singular points at
a fixed energy level of systems (V I) with µ = −1/3.

When a = 0 the finite singular points of systems are the same as in the
case µ < −1/3 and they are at the same energy level if and only if b = 1,
see (4.16). Thus a global phase portrait is topologically equivalent to 1.17
of Figure 1.1 if b = 1, and to 1.16 otherwise.

Assume now that a > 0. Following the same way we used in the case
µ < −1/3, we rewrite systems (V I) by substituting µ = −1/3 in (4.17) and
we get

ẋ = (a+ bc)x− c(c2 − 1)x3, (4.34a)

ẏ = −1 + a2 + abc

b
x− (c2 − 1)x3. (4.34b)

98



In addition (4.18) becomes

x = ±
√

a+ bc

c(c2 − 1)
. (4.35)

It is easy to check that on the lines c = ±1 the only singular point is
the origin. Since we are looking for singular points other than the origin,
we suppose c 6= ±1 and substitute (4.35) into (4.34b) to obtain

∓
√
a+ bc(c2 − 1)

(

ab+ (1 + a2 + b2)c+ abc2
)

b
(

c(c2 − 1)
)3/2

. (4.36)

Since we want x 6= 0, the roots of (4.36) we are interested in are

c1,2 = −1 + a2 + b2 ±
√

(1 + a2 + b2)2 − 4a2b2

2ab
. (4.37)

We notice that c1 and c2 in (4.37) are real and distinct. Due to the fact that
systems (4.34) have at least four finite singular points, (4.37) must make
(4.35) real and nonzero. Now we will check if these four singular points can
be at the same energy level.

When µ = −1/3 we see that (4.23) becomes

F6(c) =
(a+ bc)

(

1 + (a+ bc)2)
)

4bc(c2 − 1)

Then we have

F6(c1) − F6(c2) = −(1 + a2 − b2)
√

(1 + a2 + b2)2 − 4ab2

4b2
,

which is zero if and only if b =
√

1 + a2. We remind that when a = 0 the
four singular points are at the same energy level if and only if b = 1, which
coincides with b =

√
1 + a2.

In short we have the following result: When b < 0 systems (V I) with
µ = −1/3 have the global phase portrait 1.15 of Figure 1.1, and when
b > 0 their global phase portraits are topologically equivalent to 1.17 if
b =

√
1 + a2, and to 1.16 otherwise. Thus the bifurcation diagram shown in

Figure 1.6 is obtained.

Case µ > −1/3. Due to [9] a global phase portrait of systems (V I) in this
case is topologically equivalent to one of the phase portraits 1.18–1.23 of
Figure 1.1. Due to the direction of the flow at infinity the unique global
phase portrait when b < 0 is clearly 1.18, so we only need to study systems
(V I) with b > 0. It is also shown in [9] that the global phase portrait 1.23
is obtained if and only if a = 0, b = 1 and µ = 1/3. Hence we will focus on
the phase portraits 1.19–1.22.

99



In order to distinguish these phase portraits, we will use the properties
that allowed us to distinguish the phase portraits of the previous families
of systems. More precisely, the phase portrait 1.19 has four finite singular
points, 1.22 has six, and 1.20 and 1.21 both have eight finite singular points
besides the origin. Moreover 1.20 has four finite saddles at some fixed energy
energy level, whereas 1.21 has at most two. This is again due to the same
argument used in Remark 25.

As we did for the previous systems we will study the cases a = 0 and
a > 0 separately. We note that this time the case a = 0 is a little more
complicated so we will further divide the case µ > −1/3 into the two corre-
sponding subcases.

Subcase a = 0. The finite singular points of systems (V I) other than the
origin are (±1/

√
b, 0) and (0,±

√
b), and the additional four points

(
√

1 − 3b2µ

b(1 − 9µ2)
,

√

b2 − 3µ

b(1 − 9µ2)

)

(4.38)

if µ < 1/3, 1 − 3b2µ > 0 and b2 − 3µ > 0, or if µ > 1/3, 1 − 3b2µ < 0 and
b2 − 3µ < 0. Note that when (1 − 3b2µ)(b2 − 3µ) = 0 the singular points
in (4.38) coincide with (±1/

√
b, 0) or (0,±

√
b). We also point out that if

1 − 3b2µ = b2 − 3µ = 0 then we have b = 1 and µ = 1/3, and thus there are
infinitely many singular points (see the phase portrait 1.23).

We see that when a = 0 systems (V I) with µ > −1/3 have either four
or eight finite singular points besides the origin. When it has four finite
singular points, clearly their phase portraits are topologically equivalent
to 1.19. When it has eight finite singular points, there are two possibilities,
namely the phase portraits 1.20 and 1.21. We now analyze these two possible
cases.

The eigenvalues of the linear part of systems (V I) with a = 0 at each of
the singular points (4.38) are

±
√

4(1 − 3b2µ)(b2 − 3µ)

b2(9µ2 − 1)
.

Hence they are centers if µ < 1/3, and saddles if µ > 1/3. Consequently
the remaining finite singular points (±1/

√
b, 0) and (0,±

√
b) are saddles if

µ < 1/3, and centers if µ > 1/3. Now we shall check if the Hamiltonian H6

can attain the same value at all the saddles.

When µ < 1/3 we have H6(±1/
√
b, 0) = 1/4b2 and H6(0,±

√
b) = b2/4

at the saddles. Therefore we have the phase portrait 1.20 if and only if
b = 1, and 1.21 otherwise.
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When µ > 1/3, at each of the the singular points (4.38) the Hamiltonian
becomes

1 + b4 − 6b2µ

4b2(1 − 9µ2)
,

hence we only have the phase portrait 1.20.

In short when a = 0 we obtain the bifurcation diagram shown in (1.7).

Subcase a > 0. The calculations in this case are very similar to the case
µ < −1/3, so we will often refer to the ones in the case µ < −1/3.

Since a > 0 there are no additional finite singular points on the y−axis,
so we substitute y = cx with c 6= 0 as usual and obtain systems (4.17). We
solve for x by equating (4.17a) to zero and obtain (4.18). This time, however,
we see that there are additional singular points on the line c = −√−3µ if and
only if a = b

√−3µ because (4.19) are real when −1/3. Therefore similar to
what we did for systems (V ) we will keep this in mind and look for singular
points with c 6= √−3µ. Then (4.18) are well-defined, and we can substitute
them in (4.17b) to see that we must have P6 = 0 (see (4.20)) and Q6 > 0
(see (4.21)) at the finite singular points.

The roots of Q6 in this case are 0, −a/b, and additionally ±√−3µ when-
ever µ < 0. At these points P6 becomes as in (4.27). Moreover the graph of
Q6 is roughly the one shown in Figure 4.8 if µ ≥ 0, the one in Figure 4.5 if
µ < 0 and a < b

√−3µ, the one in Figure 4.6 if µ < 0 and a > b
√−3µ, and

the one in Figure 4.7 if µ < 0 and a = b
√−3µ. We will show now that any

root of P6 that is different from c = −√−3µ satisfy Q6 > 0. We recall that
c = −√−3µ is a root only when a = b

√−3µ. As a result we will conclude
that the number of additional finite singular points of systems (V I) in this
case is equal to the number of real distinct roots of P6.

−a
b (0,0)

c

Figure 4.8: A rough graph of Q6(c) when µ ≥ 0.

We see that P6(
√−3µ) < 0, and that P6 has exactly one positive real

root. Since limc→∞ P6 = ∞, this positive root is greater than
√−3µ, and

hence satisfies Q6 > 0. Therefore it remains to show that P6 does not have
a negative root
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(i) in (−a/b, 0) when µ ≥ 0,

(ii) in (−√−3µ,−a/b) when µ < 0 and a < b
√−3µ,

(iii) in (−a/b,−√−3µ) when µ < 0 and a > b
√−3µ.

To determine if a polynomial has a root in some interval we will use the
following lemma.

Lemma 26. If a polynomial p(x) of degree n has a real root in an interval
(α, β), then the polynomial (1 + x)n(p ◦ h)(x) with h(x) = (α+ βx)/(1 + x)
has a positive root.

Proof. Clearly (1 + x)n(p ◦ h)(x) is a polynomial. We have h(0) = a and
limx→∞ h(x) = b. In addition h′(x) = (b − a)/(1 + x2) > 0 so that h is
bijective. Therefore if p(x) = 0 for some point x0 ∈ (α, β) then p(h(x1)) = 0
for x1 = h−1(x0) > 0.

To study roots of type (i) we define h(c) = (−a/b)/(1 + c). Since the
degree of P6 is four we have

(1 + c)4P6(h(c)) = − a

b3
(

a2 + 3b2µ+ (a2 + a4 + b4 + 9b2µ+ 6a2b2µ)c

+ 3b2(b2 + 3µ + 3a2µ)c2 + 3b2(b2 + µ+ a2µ)c3 + b4c4
)

,

which does not have a positive root due to Descartes’ rule of signs. Hence
P6 does not have a root of type (i).

We remark that in Lemma 26 although we chose h(x) = (α+βx)/(1+x),
we could as well choose h(x) = (β + αx)/(1 + x). Thus P6 has a root of
type (ii) if and only if it has a root of type (iii), so we only study (ii). To
simplify notation will write m =

√−3µ. Hence we have 0 < m < 1, a > bm
and

(1 + c)4P6(h(c)) = −a− bm

b3
S(c),

where

S(c) =b4(1 −m4) + b2(3b2 + 2m2 + 2a2m2 − 4abm3 − b2m4)c

+ 3b(b3 + am+ a3m+ bm2 − a2bm2 − ab2m3)c2

+ (a2 + a4 + b4 + 4abm + b2m2 − 2a2b2m2)c3

+ a(a+ bm)c4

We claim that S does not have a positive root, and we now prove this claim
by showing that the sign of the coefficients of the monomials in S are all
positive. The constant term and the coefficient of c4 are clearly positive, so
we look at the coefficients of c, c2 and c3.
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The coefficient of c3, which we denote by k3, is

a2 + a4 + b4 + 4abm+ b2m2 − 2a2b2m2 > a2 + a4 + b4 − 2a2b2

= a2 + (a2 − b2)2 > 0

because 0 < m < 1.

The coefficient of c2, denoted by k2, has exactly one positive root due
to Descartes’ rule of signs when considered as a polynomial in m. Moreover
that root is greater than 1 due to the facts that when m = 1 we have

k2 = 3b(b3 + a+ a3 + b− a2b− ab2)

= 3b
(

(a+ b)(a2 − ab+ b2) + a+ b− ab(a+ b)
)

= 3b(a+ b)
(

1 + (a− b)2
)

> 0,

and that it is negative for large m > 0. Therefore k2 is positive for 0 < m <
1.

Finally the coefficient k1 of c is also positive because of the same reasons:
it has a exactly one positive root when considered as a polynomial in m; it
is negative for large m > 0; and when m = 1 it becomes 2

(

1 + (a− b)2
)

> 0.
This proves that S does not have a positive root, which in turn implies that
P6 has no root of types (ii) or (iii).

In short the number of finite singular points other than the origin is
double the number of distinct real roots of P6. Since we know that the phase
portraits 1.19–1.22 have at least four finite singular points additional to the
origin, P6 must have at least two real distinct roots. Therefore, according
to [30], a global phase portrait of systems (V I) in this case is topologically
equivalent to 1.19 of Figure 1.1 if D4 < 0 or D4 = D3 = 0, to 1.22 if D4 = 0
and D3 6= 0, and to 1.20 or 1.21 if D4 > 0, where D4 is given in (4.26) and

D3 = 3b2(+1 + 5a2 + 7a4 + 3a6 − 6a2b4) − 9(1 + a2)(1 + 3a2 + 3a4

+ a6 + 3b4 − 5a2b4)µ+ 27b2(3 + 3a2 − 3a4 − 3a6 + 3b4

+ 5a2b4)µ2 − 81b4(3 + 6a2 + 3a4 + b4)µ3 + 243(1 + a2)b6µ4,

(4.39)

see (4.9).

Note that when D4 > 0 there are two phase portraits. We know that
there are four saddles at a fixed energy level in 1.20, but there are at most two
in 1.21. Hence following the exact same steps that we used in distinguishing
the phase portraits 1.13 and 1.14 of systems (V I) with µ < −1/3, we deduce
that the phase portrait 1.20 is achieved only if (4.25) is zero. So we should
investigate whether (4.25) can be zero.

We have D4 6= 0. When µ = 1/3 we have

P6(c) = (1 + c2)(−ab+ c+ a2c− b2c+ abc2),
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and hence the phase portrait is topologically equivalent to 1.19. So it re-
mains to study the cases µ = −a2/(3b2) and b =

√
1 + a2.

When µ = −a2/(3b2), we have −1/3 < µ < 0. Moreover, due to the
results obtained in the case µ < −1/3, if there are four finite singular points
at the same energy level then two of these singular points must be on the
line c = −a/b (see (4.28), (4.29) and (4.30)). The Hamiltonian H6 at the
singular points when c = −a/b is given by (4.22). The x–coordinates of the
singular points when c = −a/b are (4.19), and at these singular points the
Hamiltonian becomes

G6(c) =
b2

4(b4 − a4)
= h.

Note that 0 < a2/b2 = −3µ < 1 so that b4 − a4 > 0. Now we should check
if there are other singular points at which H6 = h. For the singular points
that are not on the line c = −a/b we have H6 = F6 (see (4.23)), and these
singular points satisfy P̄6 = 0 (see (4.29)). Hence we are looking for points
that satisfy P̄6 = F6 − h = 0. If we calculate the resultant of P̄6 and F6 − h
we obtain

−b
2
(

b4 − (1 + a2)2
)

(2a2 + a4 − b4)

(64(b4 − a4)3)
,

which is zero if and only if b =
√

1 + a2, see (4.31). Note that this is the
last condition that makes (4.25) zero, so now we will study this final case.

If we substitute b =
√

1 + a2 in (4.20) we get (4.32). We have seen that
the roots (4.33) are at the same energy level. What remains to be done is
to determine when these points are saddles and when they are centers. For
reasons of simplicity we study the local phase portraits of the singular point
on the lines c = ±1. If we evaluate (4.24) at (1,−1) we obtain

−4a(1 + a2)(1 + 3µ) 6= 0 (4.40)

because a > 0. So the singular points on these lines cannot be at the same
energy level. Hence we will deduce that if these singular points are centers
then (4.33) are saddles and we have the phase portrait 1.20 of Figure 1.1,
and if they are saddles then we have 1.21.

The linear part of systems (4.17) when b =
√

1 + a2 is

(

a− 6µcx2
√

1 + a2 − 3c2x2 − 3µx2

−
√

1 + a2 + 3x2 + 3µc2x2 −a+ 6µcx2

)

. (4.41)

When c = ±1 the x–coordinates of the singular points are obtained by
(4.18). Then we see that the determinant of (4.41) is

d1 =
4
(

1 − 3a(a+
√

1 + a2)(1 − µ) − 3µ)
)

1 + 3µ

104



when c = 1, and it is

d2 =
4
(

1 − 3a(a−
√

1 + a2)(1 − µ) − 3µ)
)

1 + 3µ

when c = −1. If we multiply them we get

d1d2 =
16
(

(1 − 3µ)2 − 3a2(1 − µ)(1 + 3µ)
)

(1 + 3µ)2
.

We observe that if we substitute b =
√

1 + a2 in D4 we obtain

4(1 + a2)3
(

(1 − 3µ)2 − 3a2(1 − µ)(1 + 3µ)
)3
. (4.42)

Since we assume D4 > 0 we have d1d2 > 0, so meaning that they are different
from zero and they have the same sign. Due to the fact that the eigenvalues
of the linear part M of a Hamiltonian system is of the form ±

√

− det(M),
where det(M) denotes the determinant of M , we deduce that the singular
points that are on the lines c = ±1 are saddles if d1 < 0, and are centers if
d1 > 0.

Since d1 is linear in µ we can solve d1 = 0 and get

µ0 = 1/3 + 2a/(3
√

1 + a2).

So we have d1 > 0 and d1 < 0 for µ < µ0 and µ > µ0, respectively. On the
other hand if we equate (4.42) to zero and solve for µ we get

µ1,2 = 1/3 ∓ 2a/(3
√

1 + a2),

Note that µ0 = µ2 and −1/3 < µ1 < µ0. Hence (4.42) is positive if and only
if µ < µ1 or µ > µ0. Thus whenever D4 > 0 we have d1 > 0 if µ < µ1, and
d1 < 0 if µ > µ0. Therefore we get the global phase portrait 1.20 if µ < µ1,
and 1.21 if µ > µ0. This finishes the analysis of the subcase a > 0.

Before summarizing our results for the case µ > −1/3, we comment on
the relation between the subcases a = 0 and a > 0. When a = 0 we have
µ0 = µ1 = 1/3, and the condition b =

√
1 + a2 becomes b = 1. So for µ < µ1

the conditions to have the phase portrait 1.20 when a = 0 can be obtained
by substituting a = 0 in those when a > 0. However, for µ > µ0, (4.40)
becomes zero if a = 0, meaning that the saddles are at the same energy level
as well as the centers, and we get the phase portrait 1.20 again. On the
other hand, when a = 0 we have

D4 = 4(b2 − 3µ)3(1 − 3b2µ)3,

D3 = 3(b2 − 3µ)(1 − 3b2µ)3.

So the conditions for the phase portrait 1.19 when a = 0 can also be obtained
by substituting a = 0 in those when a > 0. And finally the conditions for
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the phase portrait 1.22 when a > 0 can also be extended to a = 0 due the
fact that when a = 0 we do not have D4 = 0 and D3 6= 0, and also we do
not have the phase portrait 1.22.

In short we obtain when b < 0 a global phase portrait is topologically
equivalent to 1.18 of Figure 1.1. When b > 0 a global phase portrait is
topologically equivalent to 1.19 if D4 < 0, or D4 = D3 = 0 but either
a 6= 0, µ 6= 1/3 or b 6= 1; to 1.20 if D4 > 0, b =

√
1 + a2 and µ < µ1, or

D4 > 0, a = 0 and µ > 1/3; to 1.21 if D4 > 0 and b 6=
√

1 + a2, or D4 > 0,
b =

√
1 + a2, a 6= 0 and µ > µ0; to 1.22 if D4 = 0 but D3 6= 0; and to 1.23

if a = 0, µ = 1/3 and b = 1. Therefore we obtain the bifurcation diagrams
shown in Figures 5–9.
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Chapter 5

Proof of Theorem 8

In this chapter we prove Theorem 8. Observe that each of the classes
(V II), (V III) and (X) have a unique global phase portrait. Also the bifur-
cation diagram of the phase portraits of systems (IX) is easy and it follows
directly from Section 3.4. Consequently it remains to prove the last two
statements of Theorem 8, and we will prove them in the following sections.

5.1 Bifurcation diagram for systems (XI)

Recall that for systems (XI) we have b ≥ 0. According to Section 3.6
when a = b = 0 systems (XI) have the global phase portraits (up to topo-
logical equivalence) 1.3 and 1.10 of Figure 1.1 when µ ≤ 0 and µ > 0
respectively. On the other hand, when b > 0 there are three possible phase
portraits: 1.3, 1.11 and 1.12 of Figure 1.1. However, the information ob-
tained in Chapter 3 is not enough to determine exactly when each phase
portrait is achieved by these systems.

We see that each of these three phase portraits has a different number of
finite singular points, hence we will use this property to distinguish them.
The explicit expressions of the finite singular points are complicated, and
since we are only interested in the number of finite singular points we will
make use of Yang’s work [30] on the number of real roots of polynomials
depending on their coefficients.

When b > 0, by Remark 6 systems (XI) can be written as (3.25). More-
over the center condition (3.27) becomes

1 − b4 − 6b2µ > 0. (5.1)

We equate (3.25a) to zero, solve for x and get

x1,2 =
1 ±

√

1 + 12bµy2 + 12µy4

6µy
. (5.2)
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We see that (5.2) is not defined when µy = 0, so we need to address this
case separately.

When y = 0 we have (3.25a) equal to zero if and only if x = 0, so
we can assume y 6= 0 because we are not interested in the origin. On the
other hand, when µ = 0 we can easily calculate the finite singular points
of systems (3.25) and see that other than the origin there are only two,
namely ±

(

b1/3
√

(1 − b4/3)/b,−
√

(1 − b4/3)/b
)

. Note that these points are
real because when µ = 0 inequality (5.1) yields b < 1. Therefore when µ = 0
the global phase portrait of systems (3.25) is topologically equivalent to 1.5
of Figure 1.1.

Now we can assume µy 6= 0, substitute (5.2) into (3.25b) and obtain

ẏ1,2 =
1

54bµ3y3

(

b+ 9µ(b2 − µ)y2 + 9bµ(1 − 3µ2)y4

±
√

1 + 12bµy2 + 12µy4
(

b+ 3µ(b2 − 3µ)y2 + 3bµ(1 + 9µ2)y4
)

)

,

where ẏ1 and ẏ2 denote ẏ with x substituted by x1 and x2 respectively. Each
root of ẏ1 and ẏ2 will be paired with at most one x by (5.2). Therefore the
number of roots of ẏ1 and ẏ2 provides important information on the number
of finite singular points of systems (3.25). So we compute the product ẏ1ẏ2
and obtain the sextic polynomial

− 1

27b2µ3
(

b2(1 + 9µ2)2y6 + 3b(1 + 9µ2)(b2 − 2µ + 3b2µ2)y4

+ 3(b4 + 3µ2 + 6b4µ2 − 18b2µ3)y2 − b(1 − b4 − 6b2µ)
)

.

(5.3)

Then we study the relation between the number of roots of (5.3) and the
number of finite singular points of systems (3.25).

First we claim that the number of finite singular points cannot be less
than the number of roots of (5.3). Now we prove our claim. If we define

s1 =b+ 3µ(b2 − 3µ)y2 + 3bµ(1 + 9µ2)y4,

s2 =b+ 9µ(b2 − µ)y2 + 9bµ(1 − 3µ2)y4,

s3 =1 + 12bµy2 + 12µy4,

then we have ẏ1,2 = (s2 ± √
s3s1)/54bµ3y3, and polynomial (5.3) can be

rewritten as
1

2916b2µ6y6
(s22 − s3s

2
1). (5.4)

The number of finite singular points are less than the number of roots of
(5.3) only when s3 < 0 because then (5.2) become complex. If s3 < 0 then
(5.4) is zero if and only if s1 = s2 = 0. But if we subtract s2 from s1 we
obtain

6bµ
(

− b+ (9µ2 − 1)y2
)

y2. (5.5)
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Since b > 0 and µy 6= 0, (5.5) is zero if and only if y = ±
√

b/(9µ2 − 1),
where 9µ2 − 1 must be positive. Then we substitute these y into s1 and s2,
and see that they are roots of these two polynomials provided that we have

1 − 9µ2 + 54b2µ3 = 0. (5.6)

We note that equation (5.6) further requires µ > 0 because we have 9µ2−1 >
0. But this means that s3 > 0, and this is a contradiction to the assumption
that s3 < 0. Hence we conclude that s3 ≥ 0, so x1,2 are real whenever y is
a root of (5.3), and this proves the claim.

Second we consider the case in which the number of finite singular points
could be greater than the number of roots of (5.3). This is only possible
when ẏ1 and ẏ2 have common roots which produce distinct x in (5.2), so we
must have s3 > 0 and s1 = s2 = 0 for a common root. We have seen that
this occurs if and only if equation (5.6) is satisfied with µ > 1/3. Moreover
in this case the number of common roots of s1 and s2 is two due to the fact
that they have the same constant terms whereas their second order terms
are different since µ 6= 0.

In short the number of finite singular points of systems (3.25) is equal
to the number of real roots of polynomial (5.3) unless 1 − 9µ2 + 54b2µ3 = 0
and µ > 1/3, in which case there are two more singular points.

As we mentioned earlier we will determine the number of roots of (5.3)
following [30], as we did for systems (IV ) in Section 4.2. We compute the
discriminant sequence of the polynomial (5.3) and get

D2 =
3A

b(1 + 9µ2)
, D3 =

216AB

b3(1 + 9µ2)3
, D4 =

2596BC

b4(1 + 9µ2)6

D5 =
3888CDE2

b6(1 + 9µ2)10
, D6 =

46656D2E4F

b9(1 + 9µ2)14
,

where

A = − b2 + 2µ− 3b2µ2,

B = (−4b2 + µ+ 6b2µ2 + 9b4µ3)µ,

C = − b2 + 2(1 − 4b4)µ− 27b2µ2 − 18(1 − 2b4)µ3 + 9b2(7 + 2b4)µ4

+ 54(2 + 9b4)µ5 − 81b2(7 − 2b4)µ6 − 486b4µ7,

D = − b2 − 6b2µ2 + 4(1 − b4)µ3 + 3b2µ4,

E = 1 − 9µ2 + 54b2µ3,

F = 1 − b4 − 6b2µ.

Observe that we have F > 0 due to (5.1), and b(1 + 9µ2) > 0. Hence the
sign list of this discriminant sequence is determined only by the signs of A,
B, C, D and E. Note that D6 ≥ 0.
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We have seen that systems (3.25) have six finite singular points other
than the origin when

(i) polynomial (5.3) has six real distinct roots,

(ii) it has four real distinct roots provided that E = 0 and µ > 1/3, see
(5.5).

According to [30] the only revised sign list in case (i) is [1, 1, 1, 1, 1, 1].
Hence we need Di > 0 for all i = 1, . . . , 6. Since A must be positive we get
µ,B,C,D > 0. We also have E 6= 0. We plot the graphs of A = 0, B = 0,
C = 0, D = 0, E = 0 and F = 0 in Figure 5.1 in the first quadrant of the
(b, µ)–plane in order to study these inequalities. It is not difficult to prove
that the curve F = 0 does not intersect E = 0, and that it intersects each
of the remaining curves only once. Also note that µ > 1/3 when E = 0.

Since we are only interested in the case F > 0, which is to the left of
the curve F = 0 in Figure 5.1, we are not interested in the component
of the curve C = 0 which does not pass through the origin. We see that
D is positive on the left and negative on the right of the curve D = 0 in
Figure 5.1. Moreover we have A,B,C > 0 whenever D,F > 0. Therefore
case (i) characterized by the conditions D > 0 and E 6= 0.

Due to [30] the unique revised sign list in case (ii) is [1, 1, 1, 1, 0, 0], so
we need A,B,C > 0. Figure 5.1 shows that these three inequalities and
the equality E = 0 are satisfied only when D > 0. Hence case (ii) is
characterized by the conditions D > 0 and E = 0.

We have shown that systems (3.25) have six finite singular points other
than the origin independent of E, and that their global phase portraits are
topologically equivalent to 1.11 of Figure 1.1 if and only if D > 0.

Now we study systems (3.25) having four finite singular points different
from the origin. This can be achieved if and only if

(iii) either (5.3) has four real distinct roots provided that E 6= 0,

(iv) or (5.3) has two real distinct roots and E = 0.

Hence the possible revised sign lists that we need to study are [1, 1, 1, 1, 0, 0]
and [1, 1, 0, 0, 0, 0] corresponding to cases (iii) and (iv) respectively.

In case (iii) we need A,B,C > 0 and D = 0. We again have µ > 0
because A > 0. From Figure 5.1 we see that when F > 0 and D = 0 we
have A,B,C > 0 unless µ =

√

5/27. On the other hand case (iv) requires
B = E = 0, which is possible only when µ =

√

5/27, at which we have
D = 0. Therefore whether µ =

√

5/27 or not, systems (3.25) have four finite
singular points additional to the origin if and only if D = 0. Consequently
the global phase portrait is 1.12 of Figure 1.1 if and only if D = 0.
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A = 0

B = 0

B = 0

C = 0

C = 0

C = 0

D = 0

E = 0

E = 0

F = 0

(0, 0)
b

µ

4

√

3

125

√

2 −
√

3

1

3

√

5

27

√

1

3

1

1

Figure 5.1: The graphs of A = 0, B = 0, C = 0, D = 0 and E = 0 on the
(b, µ)–plane.
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Finally it only remains to study systems (3.25) having only two addi-
tional finite singular points, in which case their global phase portraits are
topologically equivalent to 1.3 of Figure 1.1. But as a trivial result of the
above study this case can be realized if and only if D < 0.

In light of all the information that we obtained, for systems (XI) we get
the bifurcation diagram given in Figure 1.10.

5.2 Bifurcation diagram for systems (XII)

In Section 3.7 it is shown that for µ = −1/3 and µ > −1/3, the global
phase portraits of systems (XII) are topologically equivalent to 1.15 and
1.18 of Figure 1.1, respectively. When µ < −1/3, the unique global phase
portrait is 1.14 of Figure 1.1 if b = 0, but there are two possibilities if b 6= 0:
1.14 and 1.13. We are going to distinguish these last two phase portraits
using the facts that systems (XII) are Hamiltonian and that there are four
finite singular points on the same energy level in the former but only two in
the latter, see Remark 25.

When b 6= 0, due to Remark 6 systems (XII) are written as (3.35), and
the center condition (3.36) becomes

1 + b4 + 6b2µ

b
< 0, (5.7)

We remind that systems (3.35) have the Hamiltonian

H2
12(x, y) = −x

4 + y4

4
− 3µx2y2

2
+
x2

2b
+
by2

2
+ xy.

Assume µ < −1/3. We are going to look for the number N of distinct
real solutions of the three equations ẋ = 0, ẏ = 0 and H2

12 − h = 0, where
h ∈ R r {0}. Note that h 6= 0 because the only singular point of systems
(3.35) at which H2

12 = 0 is the origin. Indeed, evaluating H2
12 at a singular

point (x0, y0) of systems (3.35) we get

H2
12(x0, y0) = H2

12(x0, y0) − y0ẋ− x0ẏ

4
=

(x0 + by0)
2

4b
= h,

due to the fact that ẋ = ẏ = 0 at (x0, y0). Then we have h = 0 if and only
if x0 + by0 = 0. But when x0 = −by0 we obtain

ẋ = −(1 + 3b2µ)y30 = 0,

ẏ = −b(b2 + 3µ)y30 = 0.

If y0 6= 0, then, since b 6= 0, we need to have 1 + 3b2µ = 0 = b2 + 3µ. Hence
we get b2 = −3µ and 1 − 9µ2 = 0, which is not possible because µ < −1/3.
So we have y0 = x0 = 0.
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In order to simplify our calculations we multiply H2
12 by 4 and calculate

the Gröbner basis of the three polynomials ẋ, ẋ and 4H2
12 − h. We see that

it consists of 27 polynomials in the variables x and y. Due to the length
of these polynomials we cannot present all of them here but we provide all
the necessary information that we get from them. First of all there are 21
polynomials that do not contain x, and they are of degrees varying between
two and six in y. In particular, 7 of these polynomials are of the form py2+q,
where p and q are constants in terms of the parameters b and µ. Second,
there is another polynomial that is linear in x such that the coefficient of x is
809238528h, which is different from zero. This means that whenever p 6= 0
in one of the 7 polynomials of the form py2+q we have N ≤ 2, and therefore
at most two singular points of systems (3.35) are on the same energy level.

We pick 4 of these 7 polynomials and call them P1, P2, P3 and P4. Due
to the length of these polynomials, we will only provide the coefficients of
their quadratic terms:

p1 = h(b4 − 1)2
(

− 27b2(b4 − 1)2 + 16(b4 + 1)3h− 48b2(b4 + 1)2h2

+ 48b4(b4 + 1)h3 − 16b6h4
)

,

p2 = h(b4 − 1)
(

10368(b4 − 1)3 + 24(192µ + 1399b2 − 846b6 − 233b10

− 256b14)h+ 4(b4 − 1)(520 + 5759b4 + 4345b8)h2 − 2(155b2 − 5046b6

+ 6139b10 + 864b14 + 6336µ)h3 + (b4 − 1)(1592 + 13109b4 + 3731b8)h4

+ (5577b2 − 466b6 − 3399b10 + 880b14 + 7776µ)h5 − 2(b4 − 1)(721

+ 2240b4 + 1151b8)h6 − 4(656b2 + 203b6 − 861b10 + 152b14 + 450µ)h7

+ 4(b4 − 1)(153 + 230b4 + 445b8)h8 + 16(74b2 + 43b6 − 118b10 + 4b14

+ 9µ)h9 − 32(b4 − 1)(b4 − 2)(6b4 − 1)h10 + 64(b4 − 1)b2(3b4 + 2)h11

− 64(b4 − 1)b4h12
)

,

p3 = h(b4 − 1)
(

96(−149 + 328b4 − 369b8 + 126b12 − 192b2µ) + 2(24419b2

− 15526b6 − 2429b10 − 3584b14 + 8640µ)h − (5136 − 14383b4

+ 26286b8 − 29327b12 − 36864b2µ)h2 + (6053b2 + 10182b6 − 20571b10

− 8144b14 − 37440µ)h3 + 2(b4 − 1)(4923 + 21104b4 + 11621b8)h4

+ 4(4688b2 + 2065b6 − 6775b10 + 520b14 + 1494µ)h5 − 4(b4 − 1)

(523 − 494b4 + 1527b8)h6 − 16(254b2 + 145b6 − 402b10 + 12b14

+ 27µ)h7 + 32(b4 − 1)(6 − 47b4 + 18b8)h8 − 192(b4 − 1)b2(2 + 3b4)h9

+ 192(b4 − 1)b4h10
)

,

p4 = h
(

254016(b4 − 1)(119b2 − 78b6 + 23b10 + 192µ) − 96(13289 + 46216b4

− 329710b8 + 282592b12 − 37475b16 − 479808b2µ+ 329280b6µ

− 225792µ2)h+ 2(5152135b2 − 3602421b6 + 34453b10 + 2916057b14

− 2091776b18 + 13070016µ − 5844672b4µ)h2 + (7140592 + 9690755b4
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− 24071593b8 − 1663991b12 + 10710573b16 − 3612672b2µ

− 27095040µ2)h3 − (12340399b2 − 11814493b6 − 7892771b10

+ 9122145b14 − 551056b18 + 9119808µ − 5507136b4µ)h4

− 2(1165263 − 456814b4 − 917952b8 − 250482b12 + 761041b16

− 2709504µ2)h5 − 4(b4 − 1)(683024b2 − 241779b6 − 455259b10

+ 45544b14 + 94590µ)h6 + 4(b4 − 1)2(45471 − 694b4 + 137435b8)h7

+ 16(b4 − 1)(22918b2 + 11021b6 − 33866b10 − 292b14 − 657µ)h8

+ 32(b4 − 1)2(146 + 6131b4 + 438b8)h9 − 4672(b4 − 1)2b2(2 + 3b4)h10

+ 4672(b4 − 1)2b4h11
)

,

where pi is the coefficient of the quadratic term of the polynomial Pi.

We compute the resultant of p1 and p2 with respect to h, remove the
nonzero constant and the repeating factors, and obtain

r1 =b(b4 − 1)(1 + 2b2 − b4)(1 − 2b2 − b4)(32 − 155b2 + 138b4 − 155b6 + 32b8)

(32 + 155b2 + 138b4 + 155b6 + 32b8)(128 + 87b4 + 128b8)
(

b2 − 6b2µ2 + 4(1 + b4)µ3 − 3b2µ4
)

,

When r1 6= 0, due to the properties of the resultant we know that the
coefficients p1 and p2 cannot be zero simultaneously, and as a result N ≤ 2.
Therefore we are going to study the number N when r1 = 0.

Since b 6= 0, we begin with b4 − 1 = 0. If b = 1, systems (3.35) become

ẋ = x+ y − 3µx2y − y3, ẏ = −x− y + x3 + 3µxy2. (5.8)

Then we can explicitly calculate their finite singular points and we get

(0, 0), ± (
√

M1M2(1 − 3µ),
√

M1), and ± (
√

M2M1(1 − 3µ),
√

M2),

where

M1,2 = 1 ±
√

3(3µ2 − 2µ− 1)

1 − 3µ
.

Observe that

3µ2 − 2µ − 1 > 3

(

−1

3

)2

− 2

(

−1

3

)

− 1 = 0

and

3(3µ2 − 2µ − 1) = 9µ2 − 6µ − 3 < 9µ2 − 6µ + 1 = (1 − 3µ)2

whenever µ < −1/3, hence M1,2 are positive. In addition, it is easy to check
that we have H2

12 = (3µ+ 1)/
(

4(3µ − 1)
)

at the finite singular points other
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than the origin. This means that systems (5.8) have four finite singular
points which are on the same energy level, and therefore their global phase
portraits are topologically equivalent to 1.14 of Figure 1.1.

If b = −1 then we have

1 + b4 + 6b2µ

b
= −2 − 6µ > 0

whenever µ < −1/3, which means that systems (3.35) cannot have a center
at the origin (see (5.7)). So we have b 6= −1.

Now we study the case 1 + 2b2 − b4 = 0. Solving for b yields b =

±
√

1 +
√

2. When we substitute these values into p1 (note that p1 is an
even polynomial in the variable b), equate it to zero and solve for h, we
obtain h = 1/

√
2. Then we substitute both of these b and h into p4 and get

4741632(µ2 − 2
√

2µ− 1),

which is greater than zero for µ < −1/3. This means that when 1+2b2−b4 =
0 we have p4 6= 0, hence N ≤ 2.

If 1− 2b2 − b4 = 0, we can show by repeating the same calculations that
we did in the case with 1 + 2b2 − b4 = 0 that N ≤ 2.

Next is the case 32 − 155b2 + 138b4 − 155b6 + 32b8 = 0. Following the
same steps as in the last two cases is a little cumbersome here due to the
higher degree of this polynomial in b. Instead we calculate the resultant
of p1 and p3 with respect to h, and see that the only factor that does not
appear in r1 is

r2 = 4218421248 − 204309374976b4 + 3256825307355b8 − 5943760217597b12

− 1853261127177b16 − 373307956717041b20 + 1715045088159217b24

− 2179298014880247b28 + 357602721621501b32 − 81806891966683b36

+ 3902515292160b40 − 354375696384b44 + 7247757312b48 .

Then we calculate the resultant of 32− 155b2 + 138b4 − 155b6 + 32b8 and r2
with respect to b and see that it is not zero. Therefore in this case even if
p1 = p2 = 0, we have p3 6= 0, and consequently we have N ≤ 2.

The next two factors in r1 cannot be zero for real b, so it only remains
to study the case w = b2 − 6b2µ2 + 4(1 + b4)µ3 − 3b2µ4 = 0. However, this
case is not possible because for µ < −1/3 we have

w < b2 − 6b2
(

−1

3

)2

+ 4(1 + b4)

(

−1

3

)3

− 3b2
(

−1

3

)4

= − 4

27
(b4 − 1)4 ≤ 0.

As a result of the above analysis we conclude that when µ < −1/3
systems (3.35) have the global phase portrait 1.14 of Figure 1.1 if and only
if b = 1. Therefore we obtain the bifurcation diagram for systems (XII) as
shown in Figure 1.11.
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[31] H. Żo la̧dek, “Quadratic systems with center and their perturbations”,
J. Differential Equations 109 (1994), 223–273.
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