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Abstract

Every day, videos and images are transmitted over the Internet. Image compression allows to reduce
the total amount of data transmitted and accelerates the delivery of such data. In video-on-demand
scenarios, the video has to be transmitted as fast as possible employing the available channel capacity.
In such scenarios, image compression is mandatory for faster transmission. Commonly, videos are
coded allowing quality loss in every frame, which is referred to as lossy compression. Lossy coding
schemes are the most used for Internet transmission due its high compression ratios. Another
key feature in video-on-demand scenarios is the channel capacity. Depending on the capacity a
rate allocation method decides the amount of data that is transmitted for every frame. Most rate
allocation methods aim at achieving the best quality for a given channel capacity. In practice, the
channel bandwidth may suffer variations on its capacity due traffic congestion or problems in its
infrastructure. This variations may cause buffer under-/over-flows in the client that causes pauses
while playing a video. The first contribution of this thesis is a JPEG2000 rate allocation method
for time-varying channels. Its main advantage is that allows fast processing achieving transmission
quality close to the optimal. Although lossy compression is the most used to transmit images and
videos in Internet, when image quality loss is not allowed, lossless compression schemes must be
used. Lossless compression may not be suitable in scenarios due its lower compression ratios. To
overcome this drawback, visually lossless coding regimes can be used. Visually lossless compression
is a technique based in the human visual system to encode only the visually relevant data of an
image. It allows higher compression ratios than lossless compression achieving losses that are not
perceptible to the human eye. The second contribution of this thesis is a visually lossless coding
scheme aimed at JPEG2000 imagery that is already coded. The proposed method permits the
decoding and/or transmission of images in a visually lossless regime.

Cada dia, videos e imagenes se transmiten por Internet. La compresién de imagenes permite
reducir la cantidad total de datos transmitidos y acelera su entrega. En escenarios de video-bajo-
demanda, el video debe transmitirse lo més rapido posible usando la capacidad disponible del canal.
En éstos escenarios, la compresion de imagenes es mandataria para transmitir lo mas rapido posible.
Comtnmente, los videos son codificados permitiendo pérdida de calidad en los fotogramas, lo que se
conoce como compresion con pérdida. Los métodos de compresién con pérdida son los mas usados

para transmitir por Internet dados sus elevados factores de compresion. Otra caracteristica clave
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en escenarios de video-bajo-demanda es la capacidad del canal. Dependiendo de la capacidad, un
método de asignaciéon de ratio asigna la cantidad de datos que deben ser transmitidos por cada
fotograma. La mayoria de estos métodos tienen como objetivo conseguir la mejor calidad posible
dado un ancho de banda. A la préactica, el ancho de banda del canal puede sufrir variaciones en
su capacidad debido a congestién en el canal o problemas en su infraestructura. Estas variaciones
pueden causar el desbordamiento o vaciado del buffer del cliente, provocando pausas en la reproduc-
cién del video. La primera contribucién de esta tesis es un método de asignacién de ratio basado
en JPEG2000 para canales variantes en el tiempo. Su principal ventaja es el procesado rapido con-
siguiendo una calidad casi 6ptima en la transmisién. Aunque la compresion con pérdida sea la mas
usada para la transmision de imagenes y videos por Internet, hay situaciones donde la pérdida de
calidad no estd permitida, en éstos casos la compresion sin pérdida debe ser usada. La compresion
sin pérdida puede no ser viable en escenarios debido sus bajos factores de compresién. Para superar
este inconveniente, la compresién visualmente sin pérdida puede ser usada. La compresién visual-
mente sin pérdida es una técnica que esta basada en el sistema de visién humano para codificar sélo
los datos de una imagen que son visualmente relevantes. Esto permite mayores factores de com-
presion que en la compresion sin pérdida, consiguiendo pérdidas no perceptibles al ojo humano. La
segunda contribucién de esta tesis es un sistema de codificacién visualmente sin pérdida para ima-
genes JPEG2000 que ya han sido codificadas previamente. El propdsito de este método es permitir

la decodificacién y/o transmisién de imdgenes en un régimen visualmente sin pérdida.

Cada dia, videos i imatges es transmeten per Internet. La compressié d’imatges permet reduir la
quantitat total de dades transmeses i accelera la seva entrega. En escenaris de video-sota-demanda,
el video s’ha de transmetre el més rapid possible utilitzant la capacitat disponible del canal. En
aquests escenaris, la compressié d’imatges es mandataria per transmetre el més rapid possible.
Comunament, els videos sén codificats permeten perdua de qualitat en els fotogrames, el que es
coneix com ha compressié amb perdua. Els metodes de compressié amb perdua sén els més utilitzats
per transmetre per Internet degut als seus elevats factors de compressié. Un altre caracteristica
clau en els escenaris de video-sota-demanda és la capacitat del canal. Dependent de la capacitat, un
metode de assignacié de rati assigna la quantitat de dades que es deu transmetre per cada fotograma.
La majoria d’aquests metodes tenen com a objectiu aconseguir la millor qualitat possible donat un
ample de banda. A la practica, Pample de banda del canal pot sofrir variacions en la seva capacitat
degut a la congesti6 en el canal o problemes en la seva infraestructura. Aquestes variacions poden
causar el desbordament o buidament del buffer del client, provocant pauses en la reproduccié del
video. La primera contribucié d’aquesta tesis es un metode d’assignaci6 de rati basat en JPEG2000
per a canals variants en el temps. La seva principal avantatja és el rapid processament aconseguint
una qualitat quasi optima en la transmissido. Encara que la compressié amb peérdua sigui la més
usada per la transmissié d’imatges i video per Internet, hi ha situacions on la perdua de qualitat
no esta permesa, en aquests casos la compressio sense perdua ha de ser utilitzada. La compressié
sense perdua pot no ser viable en alguns escenaris degut als seus baixos factors de compressié. Per

superar aquest inconvenient, la compressié visualment sense pérdua pot ser utilitzada. La compressié
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visualment sense peérdua és una teécnica basada en el sistema de visi6 humana per codificar només
les dades visualment rellevants. Aixo permet factors de compressié majors que els de la compressio
sense peérdua, aconseguint perdues no perceptibles a I'ull huma. La segona contribucié d’aquesta
tesis és un sistema de codificacié visualment sense pérdua per a imatges JPEG2000 préviament
codificades. El proposit d’aquest metode es permetre la descodificacié i/o transmissié de imatges

dins en un régim visualment sense pérdua.
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Chapter 1

Introduction

1.1 Introduction

Nowadays, millions of images and video sequences are captured, stored and trans-
mitted using mobile phones via the Internet. Also, services of video streaming are
becoming more popular. The streaming of videos, requires that the transmission and
processing of the images as fast as possible given the bandwidth of the network. In
such scenario, image compression is helpful since it reduces the amount of data that
have to be transmitted.

Compression also improves the quality of the video transmission in scenarios with
a network with limited capacity. In addition to compression, the transmission of video
sequences requires an algorithm that decides the amount of data that is delivered for
every frame. The main objective of most transmission algorithms is to achieve the best
image quality given a limited network capacity. In practice, most internet connections
has fluctuations in its capacity over time due traffic congestion or problems related
with the infrastructure. This may cause pauses when playing streamed video since
some algorithms may not take into account this situation.

The quality achieved by transmission algorithms is related with the compression
scheme that they employ. The most common coding schemes for image compression
are lossless and lossy compression. Lossless compression does not produce numeri-

cal losses in the recovered image, but the compression ratios that it achieves aren’t
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high. On the other hand, lossy compression, allows high compression ratios at the
expense of some quality losses. Most transmission schemes use lossy compression due
its high compression ratios, and fastest transmissions and processing than lossless
compression.

Recently, a coding scheme that fits between lossy and lossless compression has
appeared. It is commonly referred to as visually lossless since it produces images
that have no distortion visible to the human eye, though they may contain numerical
differences with the original image. This allows the achievement of high compression

factors.

1.2 Motivation

There exist two main coding systems for video coding: interframe, which exploits
dependencies between frames, and intraframe, which only exploits dependencies in the
same frame. The most advanced compression standards for interframe and intraframe
are H.264/AVC[h264] and JPEG2000[j2k], respectively.

This thesis proposes an approach for video transmission that handles time-varying
channels when transmitting video coded with the JPEG2000 standard. JPEG2000
standard was approved by the Joint Photographic Experts Group committee in 2000.
This standard consists in thirteen parts. The relevant parts for video coding and
transmission are Part 1, Part 3, and Part 9. Part 1 is the Core coding system, which
defines the coding scheme and the syntax of the codestream. Part 3 defines the file
syntax of JPEG2000 video. Part 9 describes the interactive transmission of images,
also known as JPEG2000 interative protocol (JPIP).

In addition to the transmission of video in time-varying channels, this work also
aims at improving the visual quality of images using visually lossless techniques. We
deal with the problem of images that are already encoded and has to be transmitted
using a visually lossless mode without re-encoding them. We do not want to re-
encode the images because this could be a drawback for large image repositories. In
this thesis we present a method able to decode and transmit JPEG2000 imagery in a

visually lossless mode.
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1.3 Contributions

The first contribution of this thesis is an algorithm that assigns the right amount
of data to every frame. The proposed method is based on the method called FAst
rate allocation through STeepest descent (FAST) algorithm, which achieves near op-
timal results when transmitting video but does not consider changes in the channel
bandwidth. Our contribution is an adaptation of the FAST algorithm that considers
possible changes in the channel capacity and prevents buffer under-/over-flows.

Our second objective is to improve the visual quality of transmitted JPEG2000
images. This objective has been divided in two tasks. First, the visually lossless
scheme proposed in by H. Oh, A. Bilgin, and M. Marcellin has been adapted in
scenarios where images have already been encoded without visually lossless methods.
To do so, a visually lossless decoder is proposed. It decodes the image until reaching
a specific threshold that indicates that all the visually relevant data are decoded. By
analyzing images from the visually lossless decoder, a method that does not require

the decoding of image to transmit visually lossless data is also proposed.

1.4 Memory structure

This thesis is presented as compendium of publications.It is structured as chapters
that contains our publications. The last chapter provides some conclusions and future
work.

The first contribution of this thesis is presented in Chapter 2 and has been pub-
lished in:

'L. Jimenez-Rodriguez, F. Auli-Llinas, and M.W. Marcellin, FAST rate allocation
for JPEG2000 video transmission over time-varying channels, IEEE Trans. Multime-
dia, vol. 15, Issue 1, pp. 15-26, Jan 2013."

The first part of the second contribution is described in Chapter 3.1 and corre-
sponds to the paper:

'L. Jimenez-Rodriguez, F. Auli-Llinas, M.W. Marcellin, and J. Serra-Sagrista, "Vi-
sually Lossless JPEG 2000 Decoder," in Proc. IEEE Data Compression Conference,
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Mar. 2013, pp. 161-170."

The second part of this contribution is issued in:

'L. Jimenez-Rodriguez, F. Auli-Llinas, and M.W. Marcellin, "Visually lossless
strategies to decode and transmit JPEG2000 imagery"', IEEE Signal Process. Lett.,
vol. 21, no. 1, pp. 35-38, Jan. 2014."



Chapter 2

JPEG2000 video transmission over

time-varying channels

2.1 FAST rate allocation for JPEG2000 video trans-

mission over time-varying channels
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FAST Rate Allocation for JPEG2000 Video
Transmission Over Time-Varying Channels

Leandro Jiménez-Rodriguez, Francesc Auli-Llinas, Member, IEEE, and Michael W. Marcellin, Fellow, IEEE

Abstract—This work introduces a rate allocation method for the
transmission of pre-encoded JPEG2000 video over time-varying
channels, which vary their capacity during video transmission
due to network congestion, hardware failures, or router satura-
tion. Such variations occur often in networks and are commonly
unpredictable in practice. The optimization problem is posed
for such networks and a rate allocation method is formulated to
handle such variations. The main insight of the proposed method
is to extend the complexity scalability features of the FAst rate
allocation through STeepest descent (FAST) algorithm. Extensive
experimental results suggest that the proposed transmission
scheme achieves near-optimal performance while expending few
computational resources.

Index Terms—JPEG2000, rate allocation, time-varying chan-
nels, video transmission.

I. INTRODUCTION

IDEO transmission has been a prominent research topic

for the last few decades. Its deployment in myriad appli-
cations, such as teleconferencing, video broadcasting, video-on-
demand, and surveillance systems, manifests the consolidation
of such technology in our everyday lives.

Three elements are key in the design of a video transmission
scheme: the coding system, the network characteristics, and the
requirements of the application. Two main families of coding
systems are currently available for the coding and transmission
of images and video: interframe and intraframe. H.264/AVC [1]
is the most advanced interframe standard that exploits depen-
dencies among frames to efficiently compress video. JPEG2000
[2] is the most advanced intraframe standard for the coding
of images and video without considering frame dependencies.
Both standards have been adopted in different scenarios, and
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both provide powerful tools for transmission of video over a
network.

The characteristics of the network establish channel prop-
erties such as constant or variable channel capacity [3] and
communication error rate [4], among others. The application
requirements may introduce several demands on the transmis-
sion scheme: servers that deliver pre-encoded video [5] can use
substantially different mechanisms than servers that encode and
transmit video on-the-fly [6]; decoders with limited resources
may raise challenging constraints [7]; and the use of smart
proxies [8] or peer-to-peer (P2P) networks [9], [10] triggers
new possibilities to efficiently transmit video.

Despite the large amalgam of scenarios created by the combi-
nation of these elements, all video transmission schemes pursue
the same goal: to provide the best possible video quality to the
end-user. When the distortion measure is mean squared error
(MSE), one of two criteria is typically selected to optimize the
quality of transmitted video [11]: 1) minimization of the average
MSE (MMSE); and 2) provision of (pseudo-)constant quality,
which is more commonly expressed as the minimization of the
maximum MSE (MMAX) [12]. Of the two, subjective experi-
ments suggest that MMAX may be more relevant perceptually
[13]. Although this has been extensively discussed in the litera-
ture [14], [15], and even hybrid approaches have been proposed
[16], video transmission schemes are generally focused on the
optimization of one of these two criteria depending on the re-
quirements of the application.

MMSE and MMAX are achieved by means of reducing/in-
creasing the number of bytes transmitted for each frame, which
is referred to as variable bitrate (VBR) video. Intuitively, VBR
video delivers more bytes for those frames that are more difficult
to compress (high spatial activity and/or motion) than for those
frames that are easier to compress. The process that decides the
number of bytes that are transmitted for each frame is called rate
allocation, which is a key piece of video transmission schemes.
Rate allocation methods must take into account the optimization
criterion together with the coding system, the network charac-
teristics, and the constraints imposed by the application.

This work considers a video-on-demand scenario that
transmits pre-encoded JPEG2000 video to clients over a
time-varying channel. To allow VBR video, the client has a
limited buffer capacity to absorb irregularities in the sizes of
compressed frames. We assume that the buffer size may vary
from client to client, and that the channel capacity may vary
over time in an unpredictable manner. We adopt JPEG2000 as
the coding system since its fine grain quality scalability facil-
itates rate allocation of pre-encoded video. Furthermore, it is
employed in many motion imagery applications, such as Digital
Cinema distribution, television production, and surveillance.

1520-9210/$31.00 © 2012 IEEE



The rate allocation algorithm introduced in this paper builds
on our previous approach FAst rate allocation through STeepest
descent (FAST) [17]. The main shortcoming of FAST is that,
as originally formulated, it can not absorb variations in channel
capacity during transmission. Such variations occur frequently
in real-world scenarios that transmit data over the Internet or
wide area networks due to congestion, irregularities in network
conditions, etc.

An important feature required in time-varying channels is that
the rate allocation method absorbs channel irregularities while
guaranteeing that the transmission does not violate any existing
buffer limits at the client. Important aspects of the optimiza-
tion problem are that the variations in channel capacity are not
known a priori, and that the server cannot interrupt the video
transmission to compute new frame rates when channel con-
ditions vary. The method introduced in this work extends two
particular features of FAST to deal with such variations: scala-
bility in terms of complexity, and the roughly linear relation be-
tween computational load and the number of frames. This per-
mits the introduction of efficient strategies that can handle vari-
ations in channel capacity without penalizing performance. Fur-
thermore, the proposed method preserves interesting features of
the original FAST algorithm such as optimization for MMSE or
MMAX, and low memory requirements.

The paper is organized as follows. Section II describes the
fundamentals of video transmission schemes. Section III estab-
lishes the optimization problem that arises in time-varying chan-
nels and describes the proposed algorithm. Section I'V assesses
the performance of the proposed algorithm through extensive
experimental results. Section V provides concluding remarks.

II. OVERVIEW OF VIDEO TRANSMISSION SCHEMES

The simplest scheme to transmit video is to use a constant
bit rate (CBR) policy that transmits the same rate (bits/frame)
for all frames of the video sequence. Although CBR schemes
maintain constant client buffer occupancy throughout the whole
transmission, the video quality is not optimized.

Using variable bit rate (VBR) policies can provide the op-
portunity to optimize video quality. Nonetheless, VBR schemes
introduce constraints to the optimization problem that have to
be addressed carefully. Specifically, let Rt**! be the total rate
(bits/sequence) used to satisfy a client request for a sequence,
and let N be the number of frames of the sequence. For now,
we assume that the channel capacity is fixed at constant W bits
per second and that the rendering pace is F frames per second
(fps). Then, R?°t*! is determined as R¥°**! = (W/F)- N. Sup-
pose that the codestream for the ith frame is scalable and can
be truncated at points j corresponding to increasing bitrates r;;
(bits/frame) and decreasing distortions d;;, with 1 <14 < N and
1 < j <@y, where J; is the number of truncation points avail-
able for frame 4. When the optimization criterion is MMSE, the
objective of the optimization problem is to find the truncation
points x = {z(1),z(2),...,2(N)} corresponding to bitrates
riz(iy and distortions d;,(;) that minimize the distortion, do not
exceed the bit budget, and respect the client buffer size, i.e.,

N
mxin Z din(i (1)
i=1
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such that
N
D risy < R @
i=1
and
. /total f
B < — F=D T
i=1
Rtotal
< BIIlaX _
- N
V1SN (3)

where B™i" and B™** denote the minimum and maximum ca-
pacity of the client buffer, respectively, with B™» < [pmax,
The middle expression of inequality (3), B(f) = R™"!/N - f—
Z{:l Tix(i)» Tepresents the buffer occupancy at the instant just
after frame f is rendered. As discussed above, the total available
transmission rate for the sequence is 12/°**| and the channel ca-
pacity W is assumed constant. So the rate transmitted per frame
rendering period can be expressed as W/F = Rt°*“! /N Tt is
worth noting that the frame period is constant (for example,
1/30 second, corresponding to F = 30 frames/second) even
though the time to transmit the data for each frame is variable
due to VBR encoding. Thus, data can be seen as entering the
buffer at the constant rate of R****! /N bits per frame period.
The total rate received up to frame f is therefore R¥*°**! /N . f.
On the other hand, each time a frame is rendered, its data are re-
moved from the buffer, emptying 7, ;) bits from the buffer for
frame ¢. Thus, the total rate emptied from the buffer up to frame
[ isexpressed as Zile Ti(i)- The difference between the filling
and emptying corresponds to the buffer occupancy, B(f) as ex-
pressed in the middle term of inequality (3). Recalling again
that 3( f) is the buffer occupancy just after frame f is removed
from the buffer, the right hand expression of (3) can be under-
stood. During the frame period that occurs after frame f is re-
moved, and before frame f + 1 is removed, R°**! /N bits will
be added to the buffer as described above. There must be room
in the buffer to accommodate these data, so the buffer occu-
pancy just after frame f is rendered must be no greater than
[pmax _ Rtotal/N.

In practice, a certain amount of buffering delay is required
to partially fill the buffer prior to any frames being rendered.
In order to avoid cluttering the notation by including this delay
and the resulting initial data in the buffer, we take ¢ = 0 be the
instant just before the first frame is rendered. Furthermore, we
take B(f) to be the buffer occupancy relative to the amount of
data initially buffered, say B®. The amount of data actually in
the buffer just after frame f is rendered is then B® + B(f). In
our experiments, we fill the buffer half way prior to rendering
the first frame. Thus, for a buffer size of S, we set BY = §/2,
Bmax = §/2 and Bt = —§/2,

With respect to the MMAX criterion, the formulation of the
optimization problem is the same except that the objective func-
tion (1) is replaced by

i (s d 4
min ( max im(.,;)) . 4)

X
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It has been shown that both optimization problems [i.e., that
of (1) (2) (3), and that of (4) (2) (3)] can be solved within the
same optimization framework [14], so some methods proposed
in the literature are able to address both MMSE and MMAX.

Many schemes for video transmission have been explored
since the mid-1990s [18], [19]. Three main approaches have
proven effective to tackle the optimization problem above:
dynamic programming techniques [7], Lagrange relaxation
methods [20], [21], and steepest descent algorithms [8], [22],
[23]. Commonly, dynamic programming techniques construct
a trellis structure that contains all solutions to the problem. The
application of the Viterbi algorithm over the trellis reaches the
optimal solution. The main disadvantage of this approach is that
it requires high memory resources to build the trellis, and high
computational load to search the trellis. Lagrange relaxation
methods reduce computational requirements by relaxing the
constraints of the optimization problem.

The use of steepest descent techniques leads to more effi-
cient rate allocation methods. The steepest descent algorithm
employed by our previous work FAST [17] selects a trivial
valid solution to the problem (potentially poor), and then
iteratively makes small changes to the solution following
some heuristic. The heuristic for the steepest descent when
the optimization criterion is MMSE is the Lagrange cost [24].
Generally speaking, the Lagrange cost measures the compres-
sion efficiency achieved at different truncation points of the
compressed codestream. In the JPEG2000 framework [2], the
Lagrange cost is embodied in the distortion-rate slope. If 7;;
and d;;, respectively, denote the rate and distortion at the jth
truncation point for frame i, the distortion-rate slope at this
point is defined as

5, = -y =i )

Tij ~ Tij-1)

Truncation points are represented as quality layers within the
JPEG2000 codestream. The distortion-rate slope of each layer
can be recorded within the codestream. If layer fragmentation
is desired, distortion-rate slopes at intra-layer fragmentation
points can be estimated using a linear form as described in [17].
Accordingly, more truncation points for frame ¢ can be added.
The use of .5;; allows FAST to exclude codestream segments
with low distortion-rate slopes (less valuable segments in
terms of rate-distortion performance), leaving room for those
segments with higher distortion-rate slopes. If heuristic S;; is
replaced by d;;, the objective of the algorithm is altered so that
it seeks the solution that has the lowest maximum distortion
(MMAX) [17].

III. JPEG2000 VIDEO TRANSMISSION OVER
TIME-VARYING CHANNELS

A. Optimization Problem

We now address the optimization problem that arises in time-
varying channels. The capacity of a TCP/IP communication link
is commonly determined using the amount of data accepted by
the receiving node divided by the round trip time, i.e., W =

RWIN/RTT, where RWIN is the receive window and RTT
denotes the round-trip time [25, Ch. 3.7].

In general, this provides a reliable enough estimate of the
channel capacity (or TCP/IP throughput), which can be used by
applications such as the proposed rate allocation algorithm. Ev-
idently, each implementation may use different low-level rou-
tines to determine the channel capacity, although most are based
on the aforementioned principle. FAST-TVC then considers the
capacity as a parameter given by the network layer. Our expe-
rience indicates that most low-level network routines provide
estimates of the channel capacity that are reliable enough to
be used by applications. Although it may depend on each im-
plementation, in general these routines detect variations on the
channel bandwidth in fractions of a second, so the impact on
the convergence and performance of the proposed algorithm is
negligible.

For simplicity, we assume piecewise constant capacity. To
this end, let C' be the number of transmission intervals, each
with constant channel capacity, that occur during the transmis-
sion of a video sequence. Let W, 1 < ¢ < C, be the channel
capacity during transmission interval ¢ in bits/second. The total
rate available to satisfy the client request is then R'*** —
S, Riotal where RI'! is the total rate in transmission in-
terval ¢, i.e., R%! = W,- (7., —T.), with 7_ representing the
instant in time at which the channel capacity changes to W... For
simplicity, we assume that the channel capacity can only change
the instant just after a frame is rendered. We then seek the frame
truncation points x = {x(1),2(2),...,2(N)} to achieve

N
min Z diw(i) (6)
=1
subject to
N
Z’rim(i) S R/total (7)
i=1
and
. W, !
B §B¢+f(f_fc+l)_ZszT(z)
W,
< Bmax _ ¢
- F
VI fe<f<[feprand Ve, 1<e<C 3

where f. is the first frame rendered after 7, and B, is the initial
buffer occupancy for the cth transmission interval determined
as

fe—1

c—1
B. = ZWk (Teg1 —Te) - Z Tix (i) ©

k=1 =1

It is worth emphasizing that time 7, falls just after frame f,. —
1 is rendered. As in (3), the middle expression of the inequality
in (8) represents the buffer occupancy the instant just after frame
f isrendered. As in the previous section, replacing the objective
function (6) that seeks MMSE by that of (4), the optimization
criterion becomes MMAX.



B. Proposed Approach

The method proposed below to tackle the optimization
problem of (6)(7)(8) is named FAST for time-varying channels
(FAST-TVC). The main idea behind FAST-TVC is to use a
greedy approach that assumes that the channel capacity will
remain fixed throughout the entire transmission of the video.
This approach is reasonable, since in a real-time scenario
channel capacity changes are not known a priori. When a
change does occur, the rates of all non-transmitted frames are
recomputed, taking into account the buffer occupancy at the
time of the change, but assuming again that there will be no
further capacity changes. Assuming infinite computational
resources, this would mean simply executing, at each band-
width change, an instance of FAST with appropriate parameter
settings. The main difficulty of this approach is that, absent
infinite computational resources, the time required to compute
a new solution may be non-negligible and/or unpredictable.

To this end, let #. denote the time—not known a priori—re-
quired by the rate allocation algorithm to reach a solution. When
a variation on the channel occurs at 7., the server continues the
transmission of video from 7. to 7. + ¢, employing frame rates
as computed at the beginning of the previous transmission in-
terval ¢ — 1. This could violate the limits of the client buffer.
In practice, if ¢, is sufficiently small, the limits of the buffer are
not trespassed except in rare occasions. In such cases, if £. were
known, the server could compute a CBR strategy for use during
this period that would avoid buffer violations. This calculation
could be performed in negligible time. Instead of using the pre-
vious solution, a CBR strategy might always be employed from
7. to T, + t., though the result achieved in both cases is sim-
ilar since few frames are transmitted during this period. More
important is the fact that . determines the range of frames that
will be re-optimized in response to the bandwidth change, de-
noted by [f!, N]. If t. were known, [/ could be determined as
follows: Let f be the smallest f such that

c—1 f
ZWk'(,TIchl —T)+We-t. < Zrim(i)' (10)
k=1 i—1
Then
fl=rr+1 (11)

The left side of inequality (10) is the total number of bits
received at the client up to time 7. + ¢.. The right side is the
total number of bits received at the client up to and including
frame f. Therefore, frame f is the last frame that begins to
be received prior to time 7. + ., and so is the first frame to
finish being received at the client after 7. + t... Thus, f¥ cannot
be considered by the rate allocation algorithm because at the
moment the algorithm finishes execution f; is already partially
delivered. The frame after f* (i.e., f) is the first considered
by the algorithm since its transmission begins after 7. + #..
Fig. 1 shows an example that illustrates these quantities. In this
figure, the arrows above the horizontal line indicate the moment
at which the final bit of a frame is deposited into the buffer. The
arrows below the line indicate the moment at which a frame is
removed from the buffer to be rendered.
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Fig. 1. Example time line of frame arrival and frame rendering times.
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Fig. 2. Evaluation of the computational load versus the number of frames for

different video sequences, buffer sizes, and optimization criteria. (a) MMSE
optimization for “Batman.” (b) MMAX optimization for “Willow.”

Considering the quantities discussed above, the optimization
problem of (6)—(8) can be re-formulated to take into account the
time required by the rate allocation algorithm to reach a solution

as
N
min Z di,:l:('i,) (12)
i=fl
subject to
N -1
D i SR = (13)
i=f i=1
and
. W, f
B §B6+]:-(f_fc+1)_zf7zr(1)
W.
B = XV foS [ SN, (14)

Inequality (13) represents the rate constraint for the frames in
[f7, N]. The left side of this inequality is the number of bits to
be transmitted for these frames. The right side is the remaining
bit budget. Expression (14) is the buffer constraint, which is
repeated from expression (8).

Key to tackling the optimization problem is then to determine
t. before the algorithm is actually executed. We propose three
approaches to do so. The first approach uses a novel feature of
the original FAST algorithm: scalability in terms of complexity.
This type of scalability refers to the ability of the algorithm to
provide successively improved solutions (in terms of the chosen
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Fig. 3. Evaluation of the complexity scalability for the MMSE and MMAX criteria. (a) MMSE optimization for “Batman.” (b) MMAX optimization for “Willow.”

optimization criterion) as more time is spent in its execution.
Complexity scalability allows the server to stop the rate alloca-
tion procedure after a predetermined period of time. Thus, ¢, can
be set by the server arbitrarily, depending on the system load, or
by using any other indicator of the operating system. This ap-
proach is referred to as “constant £..”

As shown in the next section, the complexity of determining
frame rates varies significantly depending on the video se-
quence, the client buffer size, and the number of frames to
be optimized. Hence, the “constant #.” strategy may lead to
significant suboptimalities. The second approach is to estimate
the time that the rate allocation algorithm will need to finish the
execution as a function of the number of frames to be optimized.
The estimation is based on the roughly linear relation between
the computational load required by FAST and the number of
frames that are optimized. This can be seen from Fig. 2(a),
which depicts the time spent by FAST when optimizing
subsequences having different numbers of frames. Each subse-
quence is a clip from the “Batman” movie.! This figure reports
computational load for three different buffer sizes, which are
expressed as a percentage of R°**!. The optimization criterion
is MMSE. The time spent by the algorithm increases roughly
linearly with the number of frames. This observation also holds
for other video sequences and the MMAX optimization criteria
[see Fig. 2(b)]. Let 7" denote the time spent by the algorithm
when all N frames of the sequence are initially optimized at
the beginning of transmission interval ¢ = 1. The algorithm
execution time can then be approximated as ¢, = N’ - T/N,
with N’ denoting the number of non-transmitted frames at time
7.. This approach is referred to as “estimated ¢..” We note that
when employing this strategy, the algorithm is terminated at
time ¢/, even if it has not yet converged. Suboptimality due to
this is typically negligible.

Although the “estimated #.” strategy allows enough time for
the algorithm to reach the optimal solution, it does not provide
any mechanism to regulate the time spent by the rate allocation
procedure. This may be critical when, for instance, the system
load is high and resources have to be distributed among different
processes. Furthermore, the value of /. may be too large, jeopar-
dizing the client buffer as described above. Our third approach
combines both the “constant ¢.” and “estimated ¢.” strategies
to allow the server to regulate the time spent by the algorithm

ISee Section IV for a description of the video sequences and the experimental
setup employed herein.

without sacrificing performance significantly. The main insight
behind this approach comes from the observation that the per-
formance metric improves more rapidly at the beginning of ex-
ecution than when the algorithm is near convergence.

Fig. 3(a) depicts the MSE performance metric for solutions
provided by the FAST procedure as a function of the time spent
by the algorithm. This figure depicts results for a variety of sub-
sequence lengths when the buffer size is 1% of R***!. Similar
results hold for other buffer sizes and sequences. Both axes of
the figure are normalized to allow comparison among different
plots. Note that the average PSNR increases very rapidly at the
beginning of execution, reaching near-optimal performance in
half the time required by the algorithm to converge. Results are
similar for the MMAX criterion, and are reported in Fig. 3(b)
as the MSE standard deviation as a function of algorithm exe-
cution time.

These figures and our experience with other sequences indi-
cate that 60% and 80% of the total time is enough to reach a
solution very close to the optimal one, respectively for MMSE
and MMAX. This can be exploited by the server to set ¢, =
min(#/ . P - t.), where the first term #” is the maximum time
allowed by the server (which may depend on the system load
or other indicators). The second term P - ¢/, with P = 0.6
for MMSE and P = 0.8 for MMAX, is set to allow the algo-
rithm to reach a near-optimal solution without spending compu-
tational resources unnecessarily. This third strategy is referred
to as “weighted £..”

C. Algorithm

The optimization procedure that seeks the solution to
(12)(13)(14) is embodied in Algorithm 1. The algorithm as-
sumes that there is no significant delay between the change in
the channel capacity and its detection. As stated previously,
when the server first receives a request from a client, it com-
putes frame rates for all frames of the sequence. In the algorithm
this is carried out by the procedure “computeFrameRates” (line
7), which receives the first and last frame numbers for the sub-
sequence to be optimized, the channel capacity, buffer limits,
current buffer occupancy, and maximum execution time. The
procedure “computeFrameRates” is an implementation of the
original FAST algorithm as described in [17], which returns
solution x and execution time 7'. Frames are then transmitted
according to the current solution until the end of the sequence
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is reached or a change in the channel capacity occurs. When
the channel capacity changes, the algorithm sets ¢.« in line 17
using one of the three strategies described above. While frame
rates for the new channel capacity are being computed in line
20 using the maximum execution time ¢, frames until f/. are
transmitted in the loop of lines 21-24. This process is carried
out until all frames are transmitted.

Algorithm 1: FAST-TVC

1: receive client request
2: ¢* « 1 /* current transmission interval */
3: fl. « 1 /* first frame transmitted in interval c* */

4: B« «— O /* buffer occupancy at the beginning of interval
c* ¥

S5: 4% < 1 /* currently transmitted frame */
6: W« — currentChannclCapacity

7: x, T « computeFrameRates(f/., N, W,., Bmin pmax,
Bc*7 OO)

8: repeat

9:  while the channel capacity remains constant AND 7* < N
do

10: transmit frame ¢ using 7« (i)
11: 7 e— i+ 1

12:  end while

13:  ifi* < N then

14: cFe—c+1

15: Wx «— currentChannclCapacity

16: N+ N —¢*

17: ter — estimatcAlgorithm Time(T, N')/* using
“constant t.,” “estimatedt.,” or “weightedt.” */

18: 11, «— according to (11) using t.«

19: B.» «— according to (9)

20: x « computcFramcRates( fl., N,W,., Bmin | pmax,
Be,ter)

21: while (in parallel with line 20) i* < f.. do

22: transmit frame 4 using 7« (i+)

23: et 1

24: end while

25: end if

26:until * > N
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Lagrange method when transmitting 2000 frames of the “StEM” sequence over
a time-varying channel. The optimization criterion is MMSE.
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Fig. 5. Frame-by-frame PSNR achieved by FAST-TVC, CBR, and the
Lagrange method for the “StEM” sequence. The optimization criterion is
MMSE. There are three transmission intervals. For each method, the first frame
transmitted after reoptimization (i.e., f; and f}) is marked by a dot.

IV. EXPERIMENTAL RESULTS

A. Coding Performance

FAST-TVC is assessed in terms of coding performance on
five different sequences. Each frame of each sequence is com-
pressed with 24 quality layers obtained by using the same 24 dis-
tortion-rate slope thresholds for each frame. Coding parameters
are: 5 levels of 9/7 wavelet transform, with codeblocks of size
64 x 64.Table I describes the characteristics of the five video
sequences employed in the experiments, as well as the trans-
mitted range of frames, the rendering pace, and the transmission
intervals. We first focus on the transmission of 2000 frames?2 of
the “StEM” sequence over a channel that changes its capacity
twice. The purpose of this first experiment is to appraise the
coding performance of FAST-TVC compared to other strategies
that obtain optimal performance, namely, the Viterbi algorithm
[7], and the Lagrange method [17]. As described in Section II,
the Viterbi algorithm is not practical since it requires enormous
computational resources. Nonetheless, it provides optimal per-
formance and provides a good reference to assess the perfor-
mance of FAST-TVC. The Lagrange method is also impractical
since it does not consider the restriction on the buffer size [ex-
pressions (3), (8), and (14)]. But, it yields the maximum perfor-
mance that could be achieved if there were no buffer limits. The

2This experiment uses only 2000 frames to allow the use of our Viterbi imple-
mentation. The execution time and memory requirements of longer sequences
exceed the resources of our servers.
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TABLE I
CHARACTERISTICS OF THE VIDEO SEQUENCES EMPLOYED IN THE EXPERIMENTS, AND CONDITIONS OF THE CHANNEL IN EACH
TRANSMISSION INTERVAL. FOR SIMPLICITY, ONLY THE LUMINANCE COMPONENT IS EMPLOYED (IMAGES ARE 8-BIT, GRAY SCALE)
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performance of the CBR strategy is also reported for compar-
ison purposes.

To provide an upper bound on the performance that can be
obtained, in this first experiment, the execution time required
by the algorithms is not considered (i.e., . is set to 0). The
resulting performance cannot be obtained in practice without
essentially infinite computational resources. Fig. 4 reports the
average MSE of all frames of the sequence for the aforemen-
tioned methods when the optimization criterion is MMSE.
Viterbi and FAST-TVC obtain virtually the same coding per-
formance regardless of the client buffer size. As expected, the
larger the buffer, the closer the performance of Viterbi and
FAST-TVC is to that of the Lagrange method. Similar results
hold for other video sequences and for the MMAX criterion.
These experiments suggest that, under these circumstances,
FAST-TVC achieves near-optimal performance.

Fig. 5 reports, for the same conditions as above and a buffer
size of 15%, the PSNR achieved for each frame. The first frame
transmitted in the second and third transmission intervals (i.e.,
f4 and f}) is marked with a dot in this figure. The quality of
frames within each transmission interval can be seen to depend
on its corresponding channel capacity. It is worth noting that,
for the buffer size shown, frames transmitted with FAST-TVC

have quality very similar to those transmitted with the Lagrange
method. Contrarily, the quality of the simple CBR strategy often
varies significantly from that of the Lagrange strategy.

As mentioned above, the first experiment reports results
when algorithm execution time is ignored (i.e., . = 0). The
aim of the next experiment is to assess the coding performance
of FAST-TVC in a more realistic scenario. This test transmits
24000, 40290, and 53580 frames, respectively, from the
“Batman”, “Willow”, and “Giants of Africa” video sequences.
The channel changes capacity 5, 5, and 29 times after the start
of transmission, respectively, for “Batman”, “Willow”, and
“Giants of Africa” (see Table I for more details). The three
strategies described in Section III to determine ¢., namely
“estimated £.,” “constant ¢.”, and “weighted ¢.,” are put into
practice in this experiment. Additionally, performance for the
CBR and Lagrange methods are also reported for comparison
purposes.

The results of this experiment are reported in Table II for
both the MMSE and MMAX criteria. The buffer sizes chosen
for MMAX are generally larger than those for MMSE since
MMAX commonly requires more buffer space to provide better
pseudo-constant quality [17]. The corresponding values of T'
and ¢, are reported in Table IV. For the “constant ¢.” strategy,



22 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 15, NO. 1, JANUARY 2013

TABLE III
CODING PERFORMANCE AND COMPUTATIONAL TIME EVALUATION FOR OPTIMIZING MMSE WITH THREE DIFFERENT BUFFER SIZES. RESULTS
ARE REPORTED AS AVERAGE MSE AND SECONDS FOR “TOY STORY” TRANSMITTED OVER A CHANNEL THAT CHANGES CAPACITY 30 TIMES
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Fig. 6. (a) Frame-by-frame PSNR and (b) transmitted rate achieved by FAST-TVC and CBR method for the “Toy Story” sequence. The optimization criterion is
MMSE.

t. is chosen so that the total time spent by the algorithm is lower strategy might produce when small values for ¢, are used. The
than that spent by the other two strategies. This choice of ¢, fixed part of the “weighted 7. strategy is chosen to be larger
illustrates the degradation on performance that the “constant¢.” than the variable part (i.e., ¢/ > P -¢.) to let this strategy
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COMPUTATIONAL TIME EVALUATION FOR FAST-TVC. THE FIRST COLUMN OF EACH CRITERIA REPORTS THE COMPUTATIONAL TIME (IN SECONDS) SPENT TO

OPTIMIZE ALL FRAMES OF THE SEQUENCE (i.e., 7"). THE FOLLOWING COLUMNS REPORT t.. THE LAST COLUMN REPORTS THE TOTAL TIME SPENT BY THE

ALGORITHM TO RE-COMPUTE FRAME RATES IN RESPONSE TO CHANNEL CAPACITY VARIATIONS (i.e.., > _1.)

achieve near-optimal performance. Evidently, whent” < P-t/,
the “weighted ¢.” strategy becomes equivalent to the “constant
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t.” strategy. Results for MMSE are reported as the average
MSE achieved for all frames of the sequence, while results for
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MMAX are reported via the MSE standard deviation of frames.
Table II presents the results for both criteria. For completeness,
results achieved for transmission of the “StEM” sequence are
also given in this table.

The results reported in Table II suggest that the three strate-
gies proposed to control the time spent by FAST-TVC achieve
significantly better results than the CBR strategy. The “esti-
mated ¢.” strategy achieves the best results, and “weighted
t.” is only 2% worse than “estimated Z.,” on average. Results
indicate that the larger the buffer size, the lower the average
MSE, or MSE standard deviation achieved for the MMSE
and MMAX criteria, respectively. This suggests that the use
of FAST-TVC (either “weighted ¢.” or “estimated ¢.”) with
large enough buffers would achieve virtually the same perfor-
mance as that achieved by the Lagrange method. On the other
hand, the “constant ¢.” strategy leads to lower performance
improvements. This is because ¢, is not selected considering
the characteristics of the video sequence, the number of frames
to be optimized or the channel conditions, which may give too
little time to the allocation algorithm to optimize the sequence.

The third test transmits the “Toy Story” video sequence over
a channel that changes capacity 29 times. This test employs
three buffer sizes and the MMSE criterion. The last column of
Table III reports the achieved results, in terms of average MSE.
These results correspond with previous experiments, suggesting
that the “weighted #.” strategy achieves virtually same perfor-
mance as that of the “estimated ¢.” strategy, while the larger
the buffer size the closer the solution to the Lagrange method.
Fig. 6(a) and (b) reports, respectively, the PSNR and the trans-
mitted rate achieved by FAST-TVC “weighted ¢, ”” and the CBR
policy for the same conditions as before with buffer sizes 0.5%
and 1%. The PSNR achieved by CBR is irregular, producing
quick quality changes among consecutive frames. The use of a
buffer and FAST-TVC obtains more regular PSNR. The larger
the buffer size, the fewer abrupt quality changes. The Lagrange
method (not depicted in the figure to avoid cluttering) achieves
only a slightly more regular PSNR than FAST-TVC with buffer
size 1%. The achievement of regular quality comes at the ex-
pense of more variable transmitted rate. Note in Fig. 6(b) that
the strategy with the largest variations on the transmitted frame
rate is FAST-TVC with buffer size 1%.

B. Computational Load

The proposed FAST-TVC algorithm is implemented in Java
and executed on a Java Virtual Machine v1.6 using GNU/Linux
v2.6. The server is an Intel Xeon E5520 CPU at 2.3 GHz.
Time results are reported as CPU processing time, in seconds.
Table IV reports the execution time spent by the three strate-
gies of FAST-TVC, for transmission of the video sequences
“StEM”, “Batman”, “Willow”, and “Giants of Africa” under the
same conditions as described above. Table III reports results for
“Toy Story”. The first column for each strategy reports the time
spent when the client request is received and all frames of the
sequence are optimized, i.e., 7. The following columns report
the execution time spent by the algorithm when a variation on
the channel occurs (i.e., ¢.). The last column reports the sum of
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Fig. 7. Computational time spent by the three strategies of FAST-TVC in re-
sponse to channel capacity variations (i.e., > t..) when optimizing the “Toy
Story” sequence for MMSE with three different buffer sizes.

all execution times excepting 7'. Recall that the percentage of
time given to the “weighted £.” strategy is 60% and 80% for
the MMSE and MMAX strategies, respectively.

Experimental results suggest that, even though the “weighted
t.” strategy spends 40% and 20% less time than the “estimated
t.” strategy, respectively, for MMSE and MMAX, its coding
performance is almost unaffected compared to “estimated ¢..”
As stated previously, these savings on computational load are
achieved due to the fast convergence of the rate allocation
algorithm.

Fig. 7 depicts the computational time spent by the three
strategies of FAST-TVC when transmitting “Toy Story” with
the same buffer sizes and channel conditions as used before.
Note that the larger the buffer, the more time required by the
strategies “weighted ¢.” and “estimated £.”. The “constant
t.” strategy spends the same computational time regardless of
the buffer size. It is worth noting that, under these conditions,
“constant ¢.” spends more time on average than “weighted ¢.”
when the buffer size is 0.5% although the solution achieved by
“weighted ¢, is better than that of “constant £.” (see Table III).
This is because “weighted £.” spends a variable amount of
time depending on the number of frames to be optimized. In
particular, less computational time is used by “weighted ¢.”
for capacity variations that occur near the end of the sequence
due to the smaller number of frames to be considered. This
indicates that distribution of the computational time carried
out by “weighted £.” is adequately balanced considering the
conditions of the channel and video sequence at the instant the
channel variation occurs.

V. CONCLUSIONS

Rate allocation is of paramount importance in video trans-
mission schemes to optimize video quality. Applications that
transmit video over local area networks, Internet, or dedicated
networks, may experience variations on channel conditions due
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to network saturation, TCP congestion, or router failures. This
work proposes a rate allocation algorithm for the transmission
of JPEG2000 video named FAST-TVC. The proposed method is
built on our previous FAST algorithm, extending and exploiting
some of its features. The main insight behind FAST-TVC is to
employ complexity scalability and the roughly linear relation
between computational load and number of frames to re-com-
pute frame rates once a variation on the channel capacity takes
place.

Experimental results indicate that FAST-TVC achieves virtu-
ally the same coding performance as that of the optimal Viterbi
algorithm (when the Viterbi algorithm is computationally fea-
sible). When the server needs to control the resources dedi-
cated to the rate allocation algorithm depending on system load
or other indicators, FAST-TVC can use one of three proposed
strategies. The first strategy is named “constant {.” and pro-
vides a constant execution time to the algorithm. Although this
strategy achieves a non-negligible gain in coding performance
with respect to a constant-rate strategy, results vary significantly
depending on the video sequence, buffer size, and channel con-
ditions. The second strategy is named “estimated £.” referring
to its ability to estimate the total time that FAST-TVC requires
to finish its execution. This allows FAST-TVC to achieve more
consistent results, but does not supply any mechanism to reduce
computational time when the server is busy. The “weighted ¢.”
strategy is a compromise between the previous two: it achieves
virtually same results as “estimated ¢.,” and reduces compu-
tational load significantly. Experimental results evaluating the
computational costs of FAST-TVC indicate that very few com-
putational resources are expended. These characteristics makes
FAST-TVC a suitable method for the transmission of pre-en-
coded JPEG2000 video in real-world applications.
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Abstract

Visually lossless coding is a method through which an image is coded with numerical losses
that are not noticeable by visual inspection. Contrary to numerically lossless coding, visually
lossless coding can achieve high compression ratios. In general, visually lossless coding is
approached from the point of view of the encoder, i.e., as a procedure devised to generate
a compressed codestream from an original image. If an image has already been encoded to
a very high fidelity (higher than visually lossless — perhaps even numerically lossless), it is
not straightforward to create a “just” visually lossless version without fully re-encoding the
image. However, for large repositories, re-encoding may not be a suitable option. A visually
lossless decoder might be useful to decode, or to parse and transmit, only the data needed for
visually lossless reconstruction. This work introduces a decoder for JPEG 2000 codestreams
that identifies and decodes the minimum amount of information needed to produce a visually
lossless image. The main insights behind the proposed method are to estimate the variance
of the codeblocks before the decoding procedure, and to determine the visibility thresholds
employing a well-known model from the literature. The main advantages are faster decoding
and the possibility to transmit visually lossless images employing minimal bitrates.

I. INTRODUCTION

The last decades have experienced astounding growth in the use of images due to
powerful capturing sensors such as those found in digital cameras, medicine instruments,
or remote sensing devices. This has resulted in large repositories of images that have to be
stored and transmitted, bringing new techniques and standards to compress such data sets
efficiently. In general, images are encoded using a lossy or lossless coding scheme that
permits the recovery of the original image with or without information loss, respectively.
Lossless, or numerically lossless, methods commonly achieve moderate compression
ratios, whereas lossy methods achieve higher compression ratios at the expense of image
fidelity. In the last years, a new image compression modality employing the best of
these two types of compression regimes has appeared. This modality is commonly called
visually lossless coding due to its ability to compress an image making use of lossy
coding techniques in such a way that the information loss is not noticeable by the human
visual system (HVS). The main advantage of visually lossless coding methods is that they
achieve compression ratios higher than those achieved by numerically lossless techniques,
but look to a human observer as if they were compressed losslessly, i.e., without any loss
in quality.

Typically, the first step in the implementation of a visually lossless coding scheme
is to model the HVS. One approach to do so is to employ the contrast sensitivity
function (CSF), which models the sensitivity of the human eye to contrast variations
as a function of spatial frequency. The CSF has been measured with psychophysical
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experiments in order to find the just-noticeable points (i.e., the visibility thresholds) of
a stimulus in a predefined contrast unit. The CSF varies depending on the age and the
visual acuity of the subject, as well as on the viewing conditions and the stimuli used
in the experiments [1], [2]. Typically, the stimuli employed to measure the sensitivity
are generated with transforms that simulate the neurons of the primary visual cortex
reception fields (V1) of the HVS. These reception fields are well described by the Gabor
filter [3], which is ideal for space-frequency localization, albeit at high computational
complexity. An alternative to the Gabor filter is to use the cortex transform proposed
by Watson [4], which is invertible, easy to implement, and models V1 accurately and
with adjustable parameters. Though being an appropriate tool to model the HVS, the
cortex transform is not suitable to image compression because it increases the number
of encoded coefficients [5]. Consequently, other transforms such as the discrete cosine
transform (DCT) or the discrete wavelet transform (DWT) are more commonly employed
in perceptual image compression.

The DWT is a decorrelation technique that has been utilized in vision models [6],
[7] due to its well-posed properties for the HVS such as linearity, invertibility, and
logarithmically spaced spatial frequencies divided in four orientations. Also, the DWT
is one of the most popular transforms employed to perform image compression due to
its decorrelation properties, which allow the attainment of high compression ratios. The
JPEG 2000 standard [8], for example, utilizes the DWT as the first stage of the coding
system. The use of the DWT in JPEG 2000 has permitted the deployment of techniques
compatible with the standard that are aimed at the perceptual coding of images [9],
[10]. These techniques yield improved visual quality, but are not able to ensure visually
lossless performance. In one of the early steps in this direction, Watson et al. measured
the visibility thresholds (VTs) for individual wavelet subbands using randomly generated
uniform noise as a substitute for quantization error [11]. The resulting VTs can then
be employed in wavelet-based coding schemes to code the coefficients in the wavelet
subbands until the threshold for that subband is reached.

Unfortunately, the use of uniform noise to obtain the VTs of [11] results in non-
visually lossless results when these VTs are employed in JPEG 2000 [12]. This is because
JPEG 2000 employs a dead-zone uniform scalar quantizer which results in non-uniform
quantization noise. Other approaches to obtain VTs (such as [13], [14]) achieve more
accurate thresholds, though they still assume uniform noise and/or uniform quantization.
A more suitable model of quantization noise for JPEG 2000 was proposed in [15].
Through that model, compressed images are produced that are indistinguishable from
the original ones. Furthermore, the coding scheme proposed in [15] achieves superior
compression ratios compared to previous visually lossless work done in the framework
of JPEG 2000 [16].

The main trend in perceptual image coding has pursued increased accuracy of the
HVS model to achieve higher compression ratios without affecting the perceptual quality
of images. The main advantages of visually lossless methods are that the images look
identical to the original ones, that the coding process can be faster because only the
visually relevant information is coded, and that images can be transmitted employing
less channel bandwidth. Nonetheless, there exist large repositories of images that have
already been encoded using numerically lossless or (very high fidelity) lossy methods.
Most perceptual coding methods in the literature are devised from the point of view of
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the encoder. Unless the encoder has specifically envisioned it [17], there is generally
no mechanisms to decode, or to parse and transmit, a visually lossless image from an
already compressed codestream without performing a full decoding and re-encoding. To
re-encode all images of large repositories may not be viable due to computational costs,
so in some cases the benefits of visually lossless coding methods can not be exploited.

The purpose of this work is to introduce a visually lossless decoder that is able to
identify and decode, or parse and transmit, only the information necessary to reconstruct
a visually lossless image from a codestream encoded using a conventional JPEG 2000
encoder. The main insights behind the proposed method are to employ variance estimates
that only require the decoding of codestream headers, and the use of the perceptual model
of [15] to determine VTs.

The paper is organized as follows. Section II overviews the model employed to deter-
mine the VTs, and describes the proposed visually lossless JPEG 2000 decoder. Section III
appraises the performance of the proposed method through experimental results that assess
decoding rate and computational time reduction. The last section summarizes this work
and draws lines of future research.

II. VISUALLY LOSSLESS DECODER FOR JPEG 2000
A. Determination of visibility thresholds

An important aspect behind the visually lossless method proposed in [15] is the model
of quantization distortion employed, which captures with high accuracy the quantization
error produced by a dead-zone uniform quantizer. Previous works assumed uniform
error over the interval (—A /2, A/2). Instead, [15] models the quantization error of high
frequency wavelet subbands (i.e., subbands containing the High-vertical Low-horizontal
frequencies (HL), or LH, or HH) by the probability density function (pdf)

1- [2gydy
g(d) + A if 0<|d <5
0 otherwise

where ¢(-) denotes the pdf of coefficients d in a wavelet subband. In [15], g(-) is
approximated as a Laplacian distribution with parameters 1 = 0 and variance o2. A
is the step size of the quantizer. The first term in the two first lines of (1) indicate
that the quantization error produced for coefficients within the deadzone interval (i.e.,
(—A,A)) is equal to the coefficients themselves, since they are reconstructed as zero.
The second term in the first line of (1) arises from assuming that wavelet coefficients with
|d| > A produce uniformly distributed errors. The resulting density function is depicted
in Fig. 1. The low-frequency subband (i.e., LL) is modeled similarly.

This model of quantization distortion is employed to determine VTs for wavelet
subbands. To do so, a stimulus image is generated by applying the inverse DWT to
wavelet data that contain simulated quantization distortions. The (simulated) quantization
distortion is generated in one wavelet subband employing the model of (1) for an assumed
coefficient variance and quantization step size A. The inverse DWT then produces an
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Fig. 1: Model of quantization distortion introduced in [15]. The pdf of wavelet coefficients
f(d) is modeled as a Laplacian distribution with parameters p = 0 and 0 = 50. The
step size of the quantizer is A = 5.

image with a distortion corresponding to quantization error for that subband, variance,
and step size. To determine the VT for the subband and variance, a two-alternative forced
choice method is used. In this method, the stimulus image and a mid-gray level image
are displayed together and a human subject must decide which is the stimulus image.
The experiment is iterated varying the step size A to find the largest A in which the
stimulus image can not be distinguished from the mid-gray level image. A is determined
after 32 iterations of the QUEST staircase procedure described in the Psychophysics
Toolbox [18].

In [15], VTs were measured in this fashion for a small set of different values of
variance in each subband. A piecewise linear function was then employed to model VTs
for different values of variance. In this work, we have employed the same procedure
to determine the VTs for a set of variance values in each wavelet subband. However,
instead of employing a piecewise linear model for other values of variance, we employ
the following logarithmic function

0-270-72nin
9 Bl_ C’%Laz — 1
VT(U ) - (VTmaw - VTmzn) . 1— B 1 + VTmzn ) (2)

where VT,,,, is the VT determined experimentally for the maximum variance o2,

employed for the subband, and VT,,;, is the VT determined experimentally for the
minimum variance o2,,. B determines the shape of the logarithmic function, and is
selected to fit the VTs of the subband. Similar to [15], we have determined 5 VTs for
each subband corresponding to o = 5,50, 100, 175, and 300. The parameter B has then
been selected to fit the experimentally achieved thresholds.

Fig. 2 depicts the VTs determined for two different wavelet subbands together with the
resulting models obtained via (2). Results for other subbands are similar. Table I reports
the model parameters obtained for all subbands corresponding to 5 levels of irreversible
9/7 wavelet transform. Subbands HL and LH are reported together since the same VTs
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Fig. 2: Modeling of the VT's determined for wavelet subbands generated by the irreversible
9/7 CDF wavelet transform defined in JPEG 2000. The green points are the VTs
determined for five different levels of variance, with the green bars showing £1 standard
deviation. The red plot depicts the model of Equation (2).

TABLE I: Parameters employed in Equation (2) for each wavelet subband and decom-
position level.

HH HL/HL
Level | VT in | VTmae | B | VTmin | VTmae | B

1 6.74 16.04 | 15 [ 4.00 981 [ 25
1.83 270 [ 30 | 128 174 | 50
1.22 1.63 | 60 | 0.96 1.24 | 100
1.07 141 [ 120 | 0.93 1.12 | 200
1.06 138 [240 | 0.74 0.97 | 400

(S SN OS] \S]

are achieved for both. As in [15], the LL subband is assigned a single VT regardless of
the variance. The value employed here is 0.81.

B. Decoding procedure

The main stages of a typical JPEG 2000 encoder implementation are: data transfor-
mation, data coding, rate-distortion optimization, and codestream re-organization. The
first stage transforms the image samples through a wavelet transform and quantizes
wavelet coefficients employing a deadzone uniform scalar quantizer with step size A.
The quantization indices are then grouped in small sets, called codeblocks, that are coded
in the second stage by means of a fractional bitplane coding engine that carries out three
coding passes per bitplane. One bitplane is defined as the collection of bits from all indices
corresponding to the same position of their binary representation. JPEG 2000 and most
modern image coding systems code wavelet data in a bitplane-by-bitplane fashion due to
its inherent embedding and excellent coding performance. In JPEG 2000 each codeblock
is coded independently, producing a quality progressive bitstream that can be truncated

165



at certain points. Rate-distortion optimization is commonly used to attain a target rate for
the final codestream, or to construct quality layers. The main idea behind the optimization
process of JPEG 2000 is to selectively include the bitstream segments of codeblocks in
the final codestream employing a rate-distortion criterion. The final stage codes auxiliary
information and organizes the final codestream using a progression order.

Commonly, the decoding procedure decodes the bitstream corresponding to a codeblock
from the most significant bitplane of the codeblock to the least significant bitplane, or until
the last coding pass included in the codestream for that codeblock is reached. Rather than
decoding all available coding passes from the codeblock, the proposed method stops the
decoding procedure upon reaching that bitplane which lies just below the VT determined
for that subband. Specifically, let the bitplanes be numbered starting with 0 for the least
significant. Then, decoding (starting with the most significant bitplane) is terminated
after decoding the earliest bitplane P such that A2” < VT(o?), with A denoting the
quantization step size of the subband. In practice, the decoder computes P as

P = {logz 3)

VT(0?)

el
Evidently, if the codestream does not contain enough coding passes to reach bitplane
P, the decoder stops the procedure at the last available coding pass and then visually
lossless quality can not be guaranteed.

The main difficulty to apply the above procedure in practice is that the variances of
the codeblocks are not available from the compressed codestream. Variances are not
needed to decode the image and so to keep them in the codestream would unnecessarily
increase its length. Variances could be estimated via decoding of the whole codestream,
but this largely defeats the purpose of the present work. So an alternative estimate of
these variances is required. It is important that the employed approach does not require
the inclusion of additional information in the codestream since our goal is to obtain a
decoder able to handle already encoded images. One piece of information relevant to the
variance of a codeblock that can be obtained without decoding any bitplane data is the
bitplane number of the most significant bitplane M, which is coded in the headers of
the codestream. As seen below, M can be used to provide a reasonable estimate for the
variance of a codeblock.

Fig. 3 reports the average variance for codeblocks found in the wavelet subbands for
a large collection of wavelet-transformed images. Each point in the plot corresponds to
the average variance of codeblocks in one wavelet subband that have the same value of
M. The results indicate that the variance of codeblocks is strongly related to the wavelet
subband and to the bitplane number of the most significant bitplane of the codeblock.
Note, for instance, that the average variance of codeblocks with M < 4 is almost zero for
all subbands, and then the variance increases exponentially as M grows. The proposed
decoder employs the average variances reported in Fig. 3 as estimates.

In summary, the proposed decoder works as follows. First, the bitplane number of the
most significant bitplane M for a given codeblock is extracted from the codestream
headers. Second, the variance of the codeblock is estimated through a lookup table
containing the average variances reported in Fig. 3. The wavelet subband of the codeblock
and M are used as the indices of this lookup table. Third, the VT for the codeblock is
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Fig. 3: Evaluation of the variance of wavelet coefficients in codeblocks depending on their
most significant bitplane M, for wavelet subbands produced by 5 levels of decomposition
with the irreversible 9/7 CDF wavelet transform. Results are reported as the average
variance of all codeblocks with same M, for the 24 images reported in Section III
Decomposition levels 4 and 5 are not depicted since the average variances obtained are
higher than 500.

computed using the variance estimate and Equation (2). Fourth, the last bitplane P that
the coding engine has to decode for that codeblock is computed via Equation (3). Fifth,
the codeblock is decoded from bitplane M to bitplane P. This process is repeated for
each codeblock to be decoded.

III. EXPERIMENTAL RESULTS

The experimental results carried out to assess the performance of the visually lossless
JPEG 2000 decoder employ 24 images from different image corpora. All images are 8
bit, grayscale, with different sizes. Table II reports in the first two columns the images
employed in this experiment as well as their sizes. We have not employed large images
because the validation procedure described below requires the visualization of 3 versions
of the same image simultaneously on the screen. The visually lossless decoder has been
implemented in our JPEG 2000 codec BOI [19]. Coding parameters are: 5 levels of
wavelet transform, codeblock size of 64x64, and a single quality layer codestream.
The results for numerically lossless compression are achieved employing the reversible
5/3 CDF wavelet transform, whereas the remaining results are achieved employing the
irreversible 9/7 CDF wavelet transform. The base quantization step size corresponding
to bitplane 0 when the 9/7 filter-bank is used are chosen according to the Ly-norm of the
synthesis basis vectors of the subband.

The first test validates that the images decoded by the proposed method are visually
lossless. A three-alternative forced-choice (3AFC) procedure is used. In this procedure
two original images and one decompressed image are displayed side by side on the screen
with the position of the decoded image selected randomly. A subject is asked to choose
the image which looks different. For each image, the test is repeated 5 times and the
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image [ size [[ NL ][ coder decoder [[ [15] |
barbara 512 x 512 || 4.66 2.00 -0.02 1.73
boat 512 x 512 || 4.01 1.90 -0.09 -
frog 621 x 498 || 6.25 3.74 +0.08
goldhill 512 x 512 || 4.84 2.51 -0.17 -
lena 512 x 512 4.32 1.87 -0.07 1.43
baboon 512 x 512 || 6.11 3.49 -0.07 2.70
mountain 640 x 480 || 6.70 3.85 -0.03 -
peppers 512 x 512 || 4.62 2.20 -0.23 1.61
zelda 512 x 512 || 3.99 1.56 -0.06 -
Woman 600 x 800 || 3.10 1.12 -0.04
Portrait 600 x 750 || 4.69 2.07 -0.15
Flowers 600 x 800 || 3.35 1.34 -0.13
Cafeteria 600 x 750 6.10 3.27 -0.02
Fishing goods | 600 x 800 || 4.72 2.31 -0.18
Fruit Basket 600 x 750 || 4.48 1.98 -0.22
Japanese goods | 600 x 800 || 5.07 2.64 -0.13
Tableware 600 x 750 || 4.50 1.73 -0.09
Field fire 600 x 800 || 4.53 222 -0.06
Bicycle 600 x 750 || 5.07 2.34 -0.10
Pier 600 x 800 || 4.79 2.37 -0.09
Orchid 600 x 750 || 3.53 1.08 -0.11
Threads 600 x 800 || 4.13 1.86 -0.08
Musicians 600 x 750 5.52 2.61 -0.11
Candle 600 x 750 || 6.15 3.23 -0.17 -
[ average [ [[ 497 ] 2.65 0.0 [ - ]

TABLE II: Evaluation of the decoding rate achieved by the proposed decoder compared
to a visually lossless encoder that uses same VTs. Results from [15] and results for
numerically lossless (NL) encoding are also reported. All results are in bps.

subject has an unlimited time to examine the images. No viewing distance is enforced.
A success ratio of 1/3 would indicate that the images are visually lossless.

The 3AFC test is performed with a HP ZR2440w monitor that has an In-Plane Switch-
ing (IPS) panel, resolution of 1920x 1200, static contrast ratio of 1:1000, brightness of 350
cd/m?, and a dot pitch of 0.27mm. A total of 10 subjects participated in the validation test,
making a total of 1200 validations. Images are first compressed with JPEG 2000 to a very
high fidelity using the irreversible wavelet transform. Then, the decoder decompresses
the visually relevant information from the codestream, discarding the remaining data.
The mean frequency at which observers selected the correct image in this test was 0.343
with a standard deviation of 0.034. The achieved mean frequency is within one standard
deviation of 1/3 and no outliers were detected, which suggest that the decoder produces
visually lossless images.

Next, in the second test, the rate achieved by the proposed decoder is compared against
the rate achieved by an encoder that uses the same method as that described for the
decoder but using the real variances of the codeblocks. This test compares the accuracy
of the variance estimates. The fourth column of Table II reports the rate achieved by
the encoder, whereas the fifth column reports the difference between the decoder and
encoder rates. Positive values in the fifth column indicate that the decoding rate is larger
than the encoding rate. The achieved results suggest that the decoder is able to estimate
variances with sufficient precision, resulting in a decoding rate only 0.10 bps less than
that achieved by the encoder. The third and sixth columns of this table provide the results
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[ imag [ NL | proposed [[ speed up |

barbara 0.216 0.144 1.50
boat 0.212 0.139 1.53
frog 0.250 0.214 1.17

goldhill 0.216 0.161 1.34
lena 0.212 0.138 1.54

baboon 0.227 0.195 1.16

mountain 0.253 0.210 1.20

peppers 0.218 0.148 1.47
zelda 0.202 0.122 1.66

‘Woman 0.251 0.155 1.62

Portrait 0.278 0.191 1.46

Flowers 0.255 0.163 1.56

Cafeteria 0.312 0.237 1.32

Fishing goods 0.295 0.207 1.43
Fruit Basket 0.274 0.191 1.43
Japanese goods | 0.296 0.217 1.36
Tableware 0.280 0.181 1.55

Field fire 0.287 0.207 1.38

Bicycle 0.295 0.209 1.41
Pier 0.291 0.212 1.37

Orchid 0.257 0.139 1.85

Threads 0.277 0.196 1.41

Musicians 0.301 0.216 1.39

Candle 0.314 0.174 1.81

[ average [ 0261 [ 0182 [ 146 |

TABLE III: Evaluation of the computational time employed by a numerically lossless
(NL) decoder and the proposed visually lossless decoder. Results are reported in seconds.

achieved by a numerically lossless JPEG 2000, and those achieved in [15] for some of
the images.

Compared to the numerically lossless method, the proposed decoder achieves signif-
icantly lower decoding rate. The codec introduced in [15] achieves higher compression
ratios than those achieved by the proposed method. This is caused because [15] employs
coding passes, instead of bitplanes, to decide when to stop the coding process, utilizes
the real (sample) variance and distortion produced in each codeblock, and incorporates
masking techniques to enhance the efficiency of the perceptual model. We note that, as
originally formulated, these techniques can only be used in the encoder.

The third test is aimed to evaluate the computational time savings achieved when
the proposed method is employed. Computational time results are obtained with an Intel
Core2 Duo CPU at 3 GHz. BOI is implemented in Java and is executed on a JVM version
1.6. Table III reports the computational time spent by the bitplane coding procedure,
which is also called tier-1 in JPEG 2000, when decoding the image numerically losslessly,
and visually losslessly. On average, the proposed decoder is approximately 46% faster
than numerically lossless decoding. These results suggest that the proposed JPEG 2000
visually lossless decoder is able to accelerate the decoding process without penalizing
the visual quality of the decoded image.

IV. CONCLUSIONS

Visually lossless coding prevents quality losses while achieving high compression
ratios. In general, visually lossless coding methods assume that the original image is
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available. If the image is already coded, however, most methods are not able to identify
the visually relevant information within the codestream without fully re-encoding the
image. In this work we propose a method for the decoding of JPEG 2000 codestreams
to produce visually lossless images. The main advantage of the proposed method is that
it does not require re-encoding and so it can be employed to accelerate the decoding
procedure or to transmit the image employing less bitrate than conventional methods.
Future research is focused on the improvement of the perceptual model for the decoder
by incorporating masking techniques as well as the inclusion of the proposed method in
a JPIP-compliant server.
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Visually Lossless Strategies to Decode
and Transmit JPEG2000 Imagery

Leandro Jiménez-Rodriguez, Francesc Auli-Llinas, Member, IEEE, and Michael W. Marcellin, Fellow, IEEE

Abstract—Visually lossless coding allows image codecs to
achieve high compression ratios while producing images without
visually noticeable distortion. In general, visually lossless coding is
approached from the point of view of the encoder, so most methods
are not applicable to already compressed codestreams. This paper
presents two algorithms focused on the visually lossless decoding
and transmission of JPEG2000 codestreams. The proposed strate-
gies can be employed by a decoder, or a JPIP server, to reduce
the decoding or transmission rate without penalizing the visual
quality of the resulting images.

Index Terms—Human visual system, JPEG2000, visibility
thresholds, visually lossless coding.

I. INTRODUCTION

ISUALLY lossless coding refers to the ability of an image

coding system to identify and encapsulate the information
of an image that is visually relevant to a human observer. Often,
this is achieved by determining visibility thresholds (VTs) for
the human visual system (HVS) that are introduced into the
coding system to preserve the visually relevant information [1].
In the context of transform coding, the VT for a particular trans-
form coefficient is the maximum absolute error between the
original and the coded coefficient that results in just impercep-
tible distortion in the image.

The use of visually lossless coding has several advantages.
First, images coded in this regime look to a human observer
as if they were compressed losslessly. Second, visually lossless
compression achieves higher compression ratios than numeri-
cally lossless compression [2]. Third, combined with transmis-
sion protocols, visually lossless coding enhances the interactive
image transmission by reducing response times [3].

Early attempts toward visually lossless coding employed the
Gabor filter and the cortex transform. Currently, the discrete
wavelet transform (DWT) is more commonly employed due
to its suitability for both perceptual models and image coding
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schemes. In one of the first applications of the DWT to per-
ceptual coding, Watson et al. measured the VTs for individual
wavelet subbands based on the HVS contrast sensitivity func-
tion using randomly generated uniform noise as a substitute for
quantization error [1]. These VTs were then employed to code
the coefficients of each subband until the threshold for that
subband was reached. The thresholds from [1] were introduced
in the framework of JPEG2000 in [4], but the resulting images
were not strictly visually lossless. This stems from the fact that
JPEG2000 employs a deadzone quantizer, which introduces
non-uniform quantization noise. Other approaches to obtain
VTs such as [5] achieve more accurate thresholds, though they
still assume uniform quantization, rather than deadzone quanti-
zation. A more suitable model for the quantization noise caused
by the quantizer of JPEG2000 was proposed in [6]. When
that model is applied to JPEG2000, the resulting compressed
images are indistinguishable from the original ones at superior
compression ratios.

Despite numerous studies on visually lossless codecs, the
focus of most work has been on the encoder side. To the best of
our knowledge, there are no methods to decode, or to parse and
transmit, a visually lossless image from an already compressed
(very high fidelity, or even numerically lossless) codestream.
Since most methods are devised from the point of view of the en-
coder, an obvious approach would be to perform a full decoding
and re-encoding. In situations where it is desirable to main-
tain the original (super-visually-lossless) quality, the re-encoded
codestream could include side information to allow subsequent
parsing of a visually lossless version. In a layered system such
as JPEG2000, the re-encoded codestream could be constructed
so that decoding or transmitting the first n layers would guar-
antee a visually lossless image. Nevertheless, there may exist
large repositories of images encoded using numerically lossless
or very high fidelity lossy methods. In such repositories, re-en-
coding may not be viable due to high computational costs. Thus,
visually lossless decoding or parsing is of great interest.

Motivated by the discussion above, this work introduces
strategies to decode or transmit the information necessary
to reconstruct a visually lossless image from a codestream
previously encoded using a conventional JPEG2000 encoder.
Clearly, this is not possible unless the original codestream
contains sufficient information to produce a visually lossless
image in the first place. The goal pursued here is to provide
visually lossless quality while decoding or transmitting the
smallest subset possible from the original codestream. The pro-
posed strategies employ the perceptual model of [6] to produce
techniques that can be employed in a JPEG2000 decoder or in
a JPIP server.

1070-9908 © 2013 IEEE
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Section II of this paper overviews the model of [6] and de-
scribes the proposed strategies. Section III assesses the perfor-
mance of the proposed methods through experimental results,
while the last section concludes with some remarks.

II. PROPOSED STRATEGIES

A. Visually Lossless Encoding

The model of distortion produced by the JPEG2000 dead-
zone quantizer [6] is employed to determine VTs for wavelet
subbands. To do so, a stimulus image is generated by applying
the inverse DWT to wavelet data that contain simulated quan-
tization distortions for an assumed coefficient variance o2 and
quantization step size A. The inverse DWT then produces an
image with a distortion corresponding to quantization error for
that subband, variance, and step size. To determine the VT for
the assumed subband and variance, a two-alternative forced
choice method is used. In this method, the stimulus and a
mid-gray level image are displayed together and a human sub-
ject decides which is the stimulus. The experiment is iterated
varying A to find the largest A for which the stimulus is not
distinguished from the mid-gray level image, which is then the
VT for that subband and variance, denoted as VT (a?).

In a JPEG2000 encoder, each subband of the DWT is quan-
tized using an initial step size A;. In this work, the initial step
size for a given subband is set equal to the square root of the
energy gain factor [4, Ch. 4.3.2] for that subband, although
other choices are allowed by the standard. After quantization,
the wavelet subbands are divided into small sets of coefficients
called codeblocks. Each codeblock is coded employing three
coding passes per bitplane called significance propagation
(SPP), magnitude refinement (MRP), and cleanup (CP) [4]. A
bitplane is defined as the collection of bits from all quantized
coefficients corresponding to the same position of their binary
representation. In the encoder of [6], the above perceptual
model is applied in each codeblock as follows. First, VT (o)
is computed employing the variance of the coefficients within
codeblock B. At the end of each coding pass, the maximum
absolute error produced by the partially transmitted coefficients
is computed as D = n}gg{ﬂw — w|), with w and @ denoting the
original and the recollqstructed coefficient, respectively. When
D < VT(c}), the encoding procedure is stopped.

B. Application to the Decoder

In a JPEG2000 decoder, the bitstream corresponding to a
codeblock is decoded from the most significant bitplane of the
codeblock to the least significant bitplane, until the last coding
pass included in the bitstream for that codeblock is reached. The
first difficulty that arises when attempting to apply the percep-
tual model in the decoder is that the variance for the codeblock
is not available since the image is already encoded. So an esti-
mate for o3 is needed. One piece of information relevant to the
variance of a codeblock is the bitplane number of the most sig-
nificant bitplane of the codeblock, denoted as A, which is coded
in the headers of the codestream. Empirical evidence indicates
that variance estimates can be obtained via M . Fig. 1 depicts the
average variance of codeblocks found in three different wavelet
subbands. Results for other subbands are similar. Each point in
the plots corresponds to the average variance of codeblocks in
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Fig. 1. Average variance of codeblocks having the same A in different sub-
bands. Results are obtained for the images of Section III using the irreversible
9/7 DWT. Similar results are obtained for other subbands.

one wavelet subband that have the same value of M. The re-
sults indicate that the variance of codeblocks is strongly related
to the wavelet subband and to M. Note, for instance, that the
average variance of codeblocks with M < 4 is almost zero for
all subbands, and then increases exponentially as M grows. The
proposed strategy employs these average variances as estimates,
denoted as 6%.

Another difficulty that arises is that D cannot be computed
at the decoder because the original image is not available. The
proposed strategy upper bounds the maximum absolute error at
the end of a coding pass in bitplane P by noting that the effective
(embedded) quantization step size of a coefficient, after bit P of
its magnitude representation has been decoded, is A;2F. This
fact, together with the knowledge of whether any coefficient
from the codeblock is in the deadzone of the effective quantizer,
can be used to upper bound the maximum absolute error as

A;2F ifpass=CP | ..o .
D — A28+ otherwise }lf Jw=0 0
A2 if pass = SPP

A;2P~1 otherwise } otherwise

Masking effects can also help to reduce the (de)coding rate
without sacrificing visual quality. We adopt the strategy de-
scribed in [6], in which the VT for a codeblock is multiplied by
a masking factor o, &« > 1 when self- and/or texture-masking
are present. Since the masking factor is computed from quan-
tized coefficients, its implementation in the decoder presents no
problems.

In summary, the proposed strategy for the decoder is as fol-
lows. First, the bitplane number of the most significant bitplane
M for codeblock B is extracted from the codestream headers.
Second, the variance of the codeblock 4% is estimated through
a lookup table containing the average variances computed for
a large corpus of images. Third, the VT for the codeblock is
computed using the estimated variance 6% . Fourth, the decoding
process begins and, at the end of each coding pass, the maximum
error D’ and the masking factor « are computed.!. Decoding for
codeblock I3 is stopped when D' < a'VT(6%). Evidently, if the
codestream does not contain enough coding passes to achieve
D' < aVT(6%), the decoder stops the procedure after decoding

IA slight increment in coding performance can be achieved by re-estimating
the codeblock variance at the end of each coding pass using partially recon-
structed coefficients.
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Fig. 2. Percentage of codeblock bitstream needed to reach the VT. Results are
for the images of Section III when using the irreversible 9/7 DWT and 32 x 32
codeblocks.
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the last available coding pass and then visually lossless quality
cannot be guaranteed.

C. Application to JPIP Servers

The application of the visually lossless decoding procedure
discussed above to a JPIP server is complicated by the fact that
partial decoding of the file is required. It is preferable that the
server not be required to decode any bitplane data, so that nei-
ther D’ nor o can be computed. The only useful information
about the codeblock that is then available is M, the number of
coding passes, and the length of the bitstream generated for the
codeblock, denoted as .

Experiments indicate that M and [ are good indicators of the
amount of data that have to be transmitted to produce a visually
lossless image. This can be seen as follows. Fig. 2 depicts the
percentage of a codeblock bitstream required to reach its VT.
The horizontal axis of the figure is [, whereas the vertical axis
is the percentage of [, denoted as ¢, that is required to reach the
VT. Each point in the scatter plot corresponds to one codeblock
in the HH; subband having M = 4. When [ is small, ¢ is
also small. As [ increases, ¢ increases, until reaching a point at
which ¢ does not grow more. Similar behavior holds for other
subbands and AMs.

Results corresponding to Fig. 2 are upper bounded for each
wavelet subband (and each value of M) by the function

(/)/ — {;l+¢m1n

The parameters s, ¢nin, and ¢yax employed in the upper bound
(as functions of M) are reported in Table I. The solid line in
Fig. 2 depicts the upper bound of (2) for the corresponding sub-
band and value of M. This upper bound to the actual value of ¢

if ] < lnax
otherwise

2)

was computed over a wide corpus of images, being (2) an overly
conservative estimate to assure visually lossless.

The results of Fig. 2 were generated using initial step sizes
as discussed in Section II-A and by including all coding passes
of each codeblock bitstream. Since all images are assumed to
have been previously encoded by “non-aware” JPEG2000 en-
coders, different initial step sizes may have been employed,
and codeblocks may have some missing coding passes (due to
rate allocation procedures, etc.). In the case of missing coding
passes (only), the resulting difference in [ is approximated by
noting that missing passes correspond to the least significant
bitplanes, which are nearly incompressible. Thus, the length of
such coding passes is well approximated by one bit per coeffi-
cient per bitplane. In the case of different initial step sizes, the
resulting difference in/ can be approximated by log, of the ratio
between the true and the assumed step size, in units of bits per
coefficient. The true step size can be read from the codestream
headers.

In summary, the proposed strategy for the JPIP server is as
follows. First, M and ! are extracted (or in the case of /, es-
timated as needed) from the codestream headers. Second, the
percentage of each codeblock bitstream that needs to be trans-
mitted to achieve a visually lossless image is computed via (2).
Third, the server transmits the corresponding portions of the
codeblock bitstreams to the client. Fourth, the client decodes
data until reaching the end of each codeblock bitstream segment.
The decoder must be aware that the end of a bitstream segment
may not coincide with the end of a coding pass, so it must stop
when all bytes are consumed (see [7]).

III. EXPERIMENTAL RESULTS

Experimental results are reported in Table II (all images are
8 bit, grayscale). The JPEG2000 coding parameters employed
are: 5 levels of DWT, and codeblocks of size 32 x 32. The re-
versible 5/3 DWT is employed for numerically lossless results,
otherwise the irreversible 9/7 DWT is used. A three-alternative
forced-choice (3AFC) procedure is used to validate the results,
using the same procedures and viewing conditions as those in
[6]. The 3AFC test is performed with a HP ZR2440w monitor
that has an IPS panel, contrast ratio of 1:1000, brightness of
350 cd/m?, and a dot pitch of 0.27 mm. A total of 12 subjects
participated in the validation test. When the images are visually
lossless, the probability of correct response for the 3AFC test
should be 1/3. The 95% confidence intervals for the mean fre-
quency at which observers selected the correct image in this test
are reported in the first row of the table. When the appropriate
confidence interval contains 1/3, the images are visually loss-
less for these viewing conditions.

Table II includes compression results (in bps) for the strategy
of Section II-B (labeled “decoder”) and for the strategy of
Section II-C (labeled “server”). Also included for comparison
are results for numerically lossless encoding, and for the en-
coder based procedure of [6] (labeled “encoder”). The 3AFC
results achieved by the “encoder,” “decoder,” and “server”
strategies suggest that each produces visually lossless images.
The rates achieved by the decoder are always only slightly
larger than those of the encoder. These small differences are
due to the use of estimates for the variance and maximum
absolute distortion in each codeblock. On the other hand, due
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to the conservative upper bounds employed for ¢ in the server
strategy, its rates are larger than those of the encoder strategy,
though still substantially lower than for numerically lossless.
Thus, it is of interest to consider less conservative strategies.

As mentioned previously, the upper bounds employed above
were computed from a very large corpus of imagery containing
images of different types. As the upper bounds apply to every
image in this corpus, the proposed system is very robust to
images with different statistical properties. A less conservative
strategy that might lead to lower encoding rates for certain
image types would be to compute different upper bounds for
different classes of imagery. We do not pursue this strategy
here due to space constraints, as well as our preference for
a universal scheme that does not rely on prior knowledge of
image types. Rather, the final two columns in the table represent
alternate strategies, which decrease the file size significantly,
but do not guarantee visually lossless quality. In particular,
the strategy labeled “server -40%” is the same strategy as
“server” but reduces ¢’ by 40%, resulting in an average rate
similar to that achieved by the “decoder” strategy. Observers
found that most images are visually lossless (and all have very
high quality) for this strategy, so it may be good enough when
strictly visually lossless is not required. The strategy labeled
“server -2BP” omits the coding passes from the two least
significant bitplanes of codestreams produced by the “server”
strategy, which also produces slightly visible distortion in some
images. For completeness, the PSNR and SSIM achieved for
each image is also reported in Table II. Visually lossless images
are achieved from 30 to 45 dB, all with SSIM values higher
than 0.99.

IV. CONCLUSIONS

In general, visually lossless coding methods are done from the
perspective of the encoder, and assume that the original image
is available. If the image is already coded, most methods cannot
identify the visually relevant information within the codestream
without fully re-encoding the image. We propose strategies for
the decoding and transmission of JPEG2000 codestreams that
produce visually lossless images. The proposed strategies can
be employed in a decoder, transcoder, or JPIP server to reduce
the decoding or transmission rate without penalizing the visual
quality of the images.
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Chapter 4

Conclusions

4.1 Summary

Compression is commonly employed to transmit images and video over the Internet.
In most Internet connections the channel capacity is not constant due congestion or
infrastructure. In video-on-demand scenarios this may become a problem, leading
to pauses while playing a movie. This problem has been considered in this thesis in
transmission schemes that use intraframe coding.

FAst rate allocation through STeepest descent (FAST) is an algorithm which pro-
vides near optimal transmission performance assigning a specific rate for every frame
of a JPEG2000 compressed video sequence. This thesis proposes and adaptation of
the FAST algorithm that considers that the channel capacity may vary at any time of
the transmission. Results obtained with the proposed method suggest that the mod-
ified algorithm provides near optimal performance without causing under-/over-flow
to the clients buffer.

The most common image coding schemes are lossless and lossy compression. Loss-
less compression has no quality losses but its compression ratios aren’t high. On the
other hand, lossy compression ratios are high but the expense of losing image quality.
In some scenarios higher compression ratios than those achieved with lossless com-
pression are required without allowing losses in the image quality. In these scenarios,

another coding scheme could be used: visually lossless. Visually lossless encodes only
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the visually relevant data, obtaining high compression ratios without any perceptible
quality loss. When the images have not been encoded in visually lossless regimes,
they may have to be re-encoded to obtain a visually lossless compression. This may
be a problem for large image repositories.

This thesis proposes a method that allows to decode or transmit JPEG2000 com-
pressed images in visually lossless regime. The proposed method is based on a well-
known visually lossless scheme, but adapting it to the circumstances of the decoder.
For transmitting visually losslessly JPEG2000 images, this thesis also proposes a
model that allows to discard almost all the non-visually relevant data of the code-
stream. This model does not need to decode the image. Results obtained for both
the decoder and the transmission scheme suggest that the images decoded and trans-
mitted using these methods are visually lossless while reducing significantly the rate
decoded/transmitted..

4.2 Future work

The research presented in this thesis has used JPEG2000 gray scale images. One
line of future work that has been started at the time of writing this text is the
implementation of the visually lossless methods for color images.

A second line of future work is to implement a visually lossy compression method.
The main idea behind such a coding regime is to use visual metrics to code the image
instead of using numerically-based metrics such as the mean square error. The insight
acquired with the visually lossless schemes proposed in this thesis may be a good basis

to start from.



Appendix A

Acronyms

3AFC three-Alternative Forced-Choice

CBR Constant Bit Rate

CSF Contrast Sensitivity Function

CP Cleanup Pass

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

FAST FAst rate allocation through STeepest descent
FAST-TVC FAST for time-varying channels
HVS Human Visual System

JPIP JPEG2000 Interactive Protocol
MMAX Minimization of the MAXimum MSE
MMSE Minimization of the average MSE
MRP Magnitude Refinement Pass

NL Numerically Lossless

SPP Significance Propagation Pass

V1 primary Visual cortex reception fields
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VBR Variable Bit Rate
VT Visibility Threshold



Every day, videos and images are transmitted over the Internet. Image compression
allows to reduce the total amount of data transmitted and accelerates the delivery of
such data. In video-on-demand scenarios, the video has to be transmitted as fast as
possible employing the available channel capacity. In such scenarios, image compression
is mandatory for faster transmission. Commonly, videos are coded allowing quality loss
in every frame, which is referred as lossy compression. Lossy coding schemes are the
most used regime for Internet transmission due its high compression ratios. Another
key feature in video-on-demand scenarios is the channel capacity. Depending on the
capacity a rate allocation method decides the amount of data that is transmitted for
every frame. Most rate allocation methods aim to achieve the best quality for a given
channel capacity. In practice, the channel bandwidth may suffer variations on its
capacity due traffic congestion or problems in its infrastructure. This variations may
cause buffer under-/over-flows in the client that causes pauses while playing a video.
The first contribution of this thesis is a JPEG2000 rate allocation method for time-
varying channels. Its main advantage is that allows fast processing achieving
transmission quality close to the optimal. Although lossy compression is the most used
to transmit images and videos in Internet, when image quality loss is not allowed,
lossless compression schemes must be used. Lossless compression may not be suitable
in scenarios due its lower compression ratios. To overcome this drawback, visually
lossless coding regimes can be used. Visually lossless compression is a technique based
in the human visual system to encode only the visually relevant data of an image. It
allows higher compression ratios than lossless compression achieving losses that are
not perceptible to the human eye. The second contribution of this thesis is a visually
lossless coding scheme aimed at JPEG2000 imagery that is already coded. The
proposed method permits the decoding and/or transmission of images in a visually
lossless regime.
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