
Universitat Autònoma
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CHAPTER 1

Introduction

The transformation of materials to adapt them to our needs is one of the most ancient

knowledges of human kind. Actually, the oldest ages were de�ned by the materials humans

used to fabricate their tools (stone, bronze, iron). Starting with an empirical knowledge,

which then led to scienti�c studies, material engineering has been important de�ning the

life style through history. Nowadays, the development of materials includes metallic alloys,

ceramics, plastics, semiconductors, biocompatible materials, textiles and composites, beside

many others.

In order to get a desired speci�c behaviour for any material, it is �rst necessary to understand

its properties. Given the great advances in the knowledge of the electronic structure of

materials in the early 20th century, the interest in semiconductors became more important

for applications in radars and as substitutes for the widely used vacuum tubes. As a result,

in 1947 Bardeen, Brattain and Shockley accomplish one of the most important inventions

of the last century, and perhaps of all time: the transistor. This solid state switching device

meant a revolutionary change of route in the fabrication of electronic devices, enabling more

compact and power e�cient designs, while increasing their operation speed. Transistors

are based on interfaces of di�erent materials, either two semiconductors or a semiconductor

and a metal, highlighting the importance of interfacial e�ects in materials. The intrinsic

poor conductivity of semiconductors can be enhanced by the addition of charge donors or

acceptors, while still being possible to �ne tune the electric current through an external gate

potential. This doping is made in high crystalline semiconductors by adding impurities of
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1.1. Graphene properties

other species with more (n-doped) or less (p-doped) electrons. Devices with non-uniform

concentrations of impurities produce interesting e�ects, specially when semiconductors with

di�erent dopants are joined together, resulting in charge redistribution at the interface, like

in p-n junctions of diodes, or n-p-n junctions of bipolar transistors.

The phenomena that take place at the interface of heterojunctions extend very little into

the bulk of the constituents materials. Instead, the e�ect take place at the atomic scale,

becoming important a deeper look to the fundamental composition of materials. The interest

to observe and understand the phenomena at the microscopic level lead to more advanced

measuring instruments. It is worth to remark the invention of the scanning tunnelling

microscope (STM) in 1981, that made possible the observation of individual atoms, and

eight years later their manipulation, which meant the beginning of nanotechnology. In the

same decade of 1980s, the discovery of fullerenes by Kroto, Smalley and Curl [1] marked

the importance of carbon materials in this newly created �eld. Nanotechnology intends to

provide the tools to design and control the properties of new materials at the lowest levels

of matter ever reached before, aiming to boost the development of novel technology.

Theoretical studies are very important to explain experimental observations and predict the

properties of materials. Density functional theory (DFT), developed by Hohenberg, Kohn

and Sham in the decade of 1960s, [2,3] is a theory based in quantum mechanics that de-

scribes the many-electron problem found in atomistic models, simplifying the mathematical

expressions that describe the system making it feasible to calculate their properties at a

moderate computational cost. Nowadays, DFT is one of the most popular methods for elec-

tronic structure calculations in physics, chemistry and materials science. It is an ideal tool

to study interfaces, and widely used to obtain vibrational, optical and mechanical, among

many others, properties of nanostructures. Even though DFT is a very powerful method,

sometimes it is necessary to sacri�ce accuracy in favour of computational e�ciency. Here

is where other methods come into play, like the tight binding (TB) approximations, which

can give reasonable accurate results with low computational cost.

1.1 Graphene properties

Graphene is a one atom thick layer of carbon atoms disposed in an hexagonal array that

resembles that of a honeycomb. Graphene, being an allotropic form of carbon, can be seen

as the structure from which other allotropic forms of carbon can be build up. Fullerenes [4]

are obtained by wrapping graphene, introducing curvature with pentagons and forming

closed spherical zero-dimensional (0D) nanostructures. Nanotubes [5] are obtained by rolling

graphene obtaining one-dimensional (1D) structures. Graphite is made up by stacking
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Chapter 1. Introduction

graphene layers forming a three-dimensional (3D) structure. Although graphene is the basic

building block to construct and understand many properties of these materials, it is the

youngest member of the family of C allotropes obtained experimentally. In fact, before its

isolation it was though that purely 2D materials were unstable. In 2004, Novoselov et al. [6]

achieved the observation and characterisation of single layers of graphene, noticing the great

potential that this material has for electronic devices. Since its discovery, a lot of e�ort has

been made in understanding the properties if this outstanding material.

The honeycomb lattice of graphene, shown in Figure 1.1, can be considered as two triangular

sublattices interpenetrated, resulting in a unit cell formed of two basis atoms. It is a common

practice to designate these two atomic sites as A and B sublattices. The four valence

electronic orbitals of C atoms in the lattice have sp2 hybridization, meaning that three

in-plane σ-bonds with covalent character are formed with the three nearest neighbours of

each atom, and another more delocalized orbital, the β-orbital, is formed with its axis of

symmetry being perpendicular to the lattice plane. The rigid σ-bonds contribute primarily

to the great strength of graphene, [7] while the β-orbitals play the main role in the electronic

properties. [8]

One of the most distinguishable characteristics of graphene is its band dispersion, which is

shown in Figure 1.1 (right). Graphene is a semimetal, i.e. a zero gap semiconductor. The

Fermi surface becomes a single point in reciprocal space, with a two-fold degeneracy. The

degeneracy comes from the formation of two symmetric valleys at the K and K0 points.

Close to the valleys, the dispersion relations can be well described by Dirac's relativistic

equation, considering electrons to have zero rest mass. [9] This results in a linear energy

dispersion of the form

E(k) = �~vFjkj; (1.1)

where vF is the Fermi velocity, and k is taken relative to K (or K0). Equation 1.1 is valid as

long as jkj ∝ jKj, which implies that the dispersion is linear only for energies close to EF.

A
B Carbon

Figure 1.1: Atomic model (left) and band structure (right) of
graphene. The Dirac cone in the band structure is encircled in
green.
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1.1. Graphene properties

As seen in Figure 1.1 (green circle), the bands close to K and K0 are shaped as cones, thus,

each valley is called a Dirac cone, and K and K0 are called Dirac points. A more detailed

description of the properties of graphene can be found in the review by Castro Neto et al. [10]

Substrates for graphene

In the ideal case of perfect graphene, the ballistic conductivity sets the mobility to values in

the order of 105 cm2V�1s�1 at room temperature and even higher than 106 cm2V�1s�1 at

low temperatures, using the Boltzmann theory of transport. [11] In free-standing graphene

samples the measured electrical mobilities are �2�105 cm2V�1s�1 at low temperatures, and

�1.2�105 cm2V�1s�1 for higher temperatures, [12,13] which are very close to the expected

ballistic behaviour. The problem with suspended graphene is that it imposes limitations on

functionality, is di�cult to fabricate and does not allow an easy way to measure the sam-

ples with scanning probe techniques. When using substrates, the transport properties are

degraded for several factors like electron-phonon interactions, the corrugation of graphene

sheets, defects and impurity scattering and grain boundaries. [14–20] Given that graphene is

just one atom thick, the in
uence of the supporting substrate cannot be neglected and plays

an important role modifying the intrinsic physical properties of graphene.

Many substrates have been used to grow or deposit graphene, like SiC, [21,22] metal sur-

faces, [23,24] mica [25] or SiO2. [6] The latter, being one of the most common, imposes several

limitations to the electronic transport in graphene. [14,26] In polarizable substrates, such as

SiO2 or SiC, electron charges in graphene couple to surface vibrational modes with po-

lar character from the substrate increasing the scattering of electrons. [17,27] Due to this

phonon scattering, the mobility using SiO2 as substrate could reach values of at most

4 � 104 cm2V�1s�1 at room temperature even for very clean samples, [26] which are dif-

�cult to obtain, and in practice, scattering defects further reduce the mobility to around

1�104 cm2V�1s�1. [6,28–30] The SiO2 surface is usually rough enough to introduce corrugation

in graphene having an important impact in its electronic properties, [18,31] with variations

in the height of the surface of �2 �A. [32] The appearance of charge inhomogeneities over

large areas in graphene samples, can be related to these topographic corrugations or to

charge-donating impurities trapped between graphene and the substrate. [18,31,33,34] These

inhomogeneities, known as electron-hole puddles, degrade the intrinsic transport properties

of graphene and have motivated the search for alternative substrates, to actually reach the

physical properties of the low carrier density region at the Dirac point.

Corrugations also produce charge inhomogeneities that lead to doping e�ects, [35,36] and

create long-range scattering potentials. [16] The strain emerging from the layer deformation

modi�es the interactions between electronic states, hybridizing β and σ orbitals. This e�ect
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Figure 1.2: Atomic model (left) and band structure (right) of
h-BN.

can be described in the simple TB model as a modulation in the hopping integrals, which

e�ectively represents a vector potential acting over the graphene lattice. [35] Hence, the cur-

vature in graphene generates a pseudo-magnetic �eld that gives rise to the appearance of

local Landau levels at zero energy. [36,37]

Charged impurities can be partially screened by using dielectric materials with high dielec-

tric constant � as substrate. According to the self-consistent theory developed by Adam et

al., [38] the conductivity increases for increasing �, suggesting the use of HfO2 to increase

the mobility by a factor of 5 with respect to that of SiO2. The enhancement of the mobility

with higher � was proven using di�erent solvents as top dielectric layer covering graphene. [39]

However, using high-� dielectrics does not seem to be the �nal solution, [40] as the surface

phonon modes arising from high-� dielectric counteract the enhancement of Coulomb scat-

tering reduction, [41] making substrates like HfO2 have less capabilities than SiO2. [42] To

minimize surface phonon scattering processes keeping the high-� dielectric to screen charge

impurities, a polymer bu�er has been used between graphene and HfO2. [43]

A more promising substrate for graphene has been found in h-BN due to its characteristics,

which are described in the next section, and in section 1.3, the e�ects that h-BN has on

graphene when used as substrate are mentioned.

1.2 h-BN properties

With the discovery of graphene and the advances in graphene synthesis and growth control,

the research of other 2D systems has been fostered. [44] In particular, hexagonal boron ni-

tride (h-BN) has emerged as a promising compound that can complement the properties of

graphene. The atomic structure of h-BN, shown in Figure 1.2 (left), is the same as graphene,

with boron atoms substituting the C atoms in one of the sublattices, and nitrogen atoms
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1.3. Graphene/BN hybrid nanostructures

substituting those of the other sublattice. Although h-BN is isostructural to graphene and

both materials have the same number of electrons per unit cell, they present very di�erent

properties. Because A and B sites are occupied by di�erent species a gap is opened. The

band structure of h-BN is shown in Figure 1.2 (right). As can be seen, h-BN is an insulator

with a large band gap of �6 eV, [45] making it a promising candidate for optical applications

in the UV range. [45–47] The σ-bonds between B and N have a more ionic character than

in graphene, and are strong enough to make h-BN have a great thermal and chemical sta-

bility. [48,49] In fact, thermal transport properties are comparable to those of graphene, [50]

making it suitable for thermal dissipation applications. Being h-BN non-centrosymmetric, it

presents interesting piezoelectric and 
exoelectric e�ects. [51,52] The chemical compatibility

between C, B and N and the superb characteristics of graphene and h-BN have attracted the

attention of many scienti�c research groups that try to get the best of both and to obtain

new properties not present in these materials separately.

1.3 Graphene/BN hybrid nanostructures

To exploit the properties of graphene, it is important to engineer its properties by tuning its

electronic and mechanical behaviours at will. Tuning of the gap is one of the central topics

for using graphene in electronic devices, and many attempts have been made by mechani-

cal, chemical and structural modi�cation. [53–55] Other approaches involve the formation of

graphene/BN heterostructures to modulate the gap, from which two types of system can be

distinguished:

� Coplanar hybrids.

� Stackings of graphene over h-BN.

Stackings

The characteristics of h-BN make it an appealing substrate for graphene electronics: a di-

electric material with large band gap, strong in-plane bonds, planar structure, low density

of charge traps and relatively inert surface without dangling bonds. [56] The roughness of

graphene over h-BN is only 2-30 pm, [57,58] and the mobility in exfoliated graphene can

reach values of 1:4� 105 cm2V�1s�1 at low temperatures. [56] At room temperature, mobil-

ities approaching the ballistic limit can also be obtained by encapsulating graphene on BN

with mobilities larger than 1�105 cm2V�1s�1. [59] Even for the more disordered CVD grown

graphene, the mobility using h-BN as substrate is 2:9 � 104 cm2V�1s�1 at low tempera-

tures. [60]

6



Chapter 1. Introduction

Moreover, very recently, the use of h-BN as a substrate for graphene has been boosted not

only because it is a clean way to sustain graphene, but due to the appearance of new phenom-

ena. While in-plane C/BN heterostructure yield 2D systems with 1D interface, deposition of

graphene over a h-BN substrate yield a 2D system with a 2D interface, and while interfacial

e�ects in the in-plane hybrids are mainly localized at the interface, the e�ects of stacking

graphene over h-BN extent over all the system, highlighting the importance of substrates.

An interesting substrate e�ect in graphene layers is the formation of moir�e patterns observed

with STM. [58,61] These moir�e patterns give rise to the formation of superlattices, and new

Dirac cones emerge at non-zero energies. [61] The modi�cation of the electronic structure of

graphene due to the h-BN substrate has allowed the study of a physical phenomenon not

observed experimentally before: the Hofstadter butter
y, a fractal spectrum that appears

when electrons move under the e�ect of an electric and magnetic �elds. [62–64]

Coplanar hybrids

Boron and nitrogen are in the same row of the periodic table than carbon, and they have

similar atomic radius. In C-based materials, this makes more feasible the substitution of

C atoms by B (p-doped) or N (n-doped) without signi�cantly distorting the crystalline

lattice. Thus, B and N have been the natural choice for doping graphitic materials like

fullerenes, [65,66] nanotubes (NT), [67–70] nanoribbons (NR) [71] and graphene. [72] Moreover,

the structural similarity and chemical compatibility between graphite and h-BN prompted

the idea of hybrid systems made of these two compounds, [73] with the �rst synthesised

materials being bulk alloys with layered hexagonal structure, containing C, B and N in

each layer. [74–76] Their exact atomic con�guration was not clear but were considered to be

hybrids with BC2N composition. [75] For B{C{N NT, the same composition was proposed [77]

and was soon con�rmed experimentally. [67,78] In the samples obtained by Stephan et al. [67]

and in many others that followed these, [79–84] evidence of phase segregation was found, with

zones of only C atoms and others with only BN or BC2N. The phase separation is explained

considering the bond strength of C{C and B{N, being energetically more favourable than

the C{B and C{N bonds, [85] such that segregated domains maximise the number of C{C

and B{N bonds over C{N and C{B. Notice that the interfaces present in these domain-

segregated systems correspond to junctions between a semimetal material (graphene) and

an insulator (BN), which could lead to new phenomena and devices. This motivated an

increase in the study of the electronic properties of NT with C/BN interfaces. [86–89]

Taking this same idea, single layer in-plane heterostructures of graphene and h-BN have

been recently studied. [90–95] The experimental feasibility of these hybrids was sustained by

the previous evidence of segregation in NT and in bulk alloys and supported by theoretical

7



1.4. Interfaces

models. [85,96,97] In fact, the �rst experimental attempts to obtain hybrid layers relied in

techniques initially developed to dope carbon NT. [98] Great progress has been achieved

in the last years to control the synthesis of lateral junctions, [99–105] although a precise and

well understood method is still missing. This highlights the importance of studying coplanar

hybrid systems in order to better understand the impact of interfacial e�ects in the electronic,

magnetic and transport properties of these novel nanomaterials.

Experimentally, a common method to obtain hybrid graphene/BN samples is chemical

vapour deposition (CVD), and can be done in a single stage using precursors for both

materials simultaneously, [98,100,103] in two stages to grow 
akes of one material and then

continue the growth of the second material, [104] or sequentially in two steps with an etching

in between the process. [99,105] Domains larger than 1 εm can be obtained, and at the bound-

aries of these domains a transition zone is formed. [99,100] This transition region is made of

an amorphous phase whose chemical composition is not clear and has widths of around

10 nm. In the method proposed by Lu et al., [106] the synthesised samples have triangular

BC2N domains, and instead of the amorphous transition regions, the crystalline domains are

surrounded by thin carbon NR of �5 �A. With this progress in improving the control of size,

shape and boundaries of the domains, it is clear that precise engineering of hybrid structures

will be available in the near future for device applications. Moreover, new possibilities arise

if the inclusion of other 2D materials is considered.

1.4 Interfaces

Heterojunctions are formed when joining two dissimilar materials and can give rise to new

physical phenomena at the interface. Junctions made of semiconductor-semiconductor and

metal-semiconductor materials are very important in modern electronic and optoelectronic

devices. There are many characteristics that come into play when de�ning the behaviour

of heterostructures, like the crystallographic orientation of the interface, the lattice strain

and polarity discontinuities, which are related to interfacial bound charges and electronic

reconstruction. While some e�ects are desirable to design devices, others are not convenient,

like the lattice mismatch between the two materials, which causes dislocations and strain at

the interface, leading to undesired e�ects as carrier recombination at the junction. [107,108]

The successful fabrication of heterostructures depends a lot on the capability of epitaxial

techniques to grow lattice-matched materials with high crystallinity.

When two semiconductors are joined together and thermodynamic equilibrium is reached,

the Fermi level (EF) will match in both materials resulting in a realignment of the electronic

bands close to the interface. The misalignment of the conduction and valence bands at both

8



Chapter 1. Introduction

sides of the interface forms a step barrier defining important characteristics of heterojunc-

tions. The properties of the two constituents will remain the same in the bulk, and the

important changes will occur in a very narrow region around the interface. The line-up of

the bands is determined by the band offsets, [109� 111] which represent the energy step at the

interface, as shown in Figure 1.3. The valence band offset can be defined as [112]

∆EVBO =
(
E

(2)
0 − E(2)

v

)
−
(
E

(1)
0 − E(1)

v

)
+ ∆Ṽ , (1.2)

where Ev and E0 are the maximum of the valence band and the vacuum level (or the average

electrostatic potential in the bulk), for each semiconductor. The term ∆Ṽ , is the difference

of the average electrostatic potential in each part of the heterojunction, and can be obtained

with macroscopic average techniques. [113]

Semiconductor 2Semiconductor 1

∆EVBO

Ec
(1)

Ev
(1)

E0

Ev
(2)

Ec
(2)

EF

E0

Figure 1.3: Diagram of a heterojunc-
tion, showing the valence band offset,
∆EVBO. The Fermi level is marked
with the dashed blue line.

A similar situation is present in metal-semiconductor

junctions. [111] In this case, instead of the top of the

valence band, the Fermi energy of the metal has to

be considered, and the term E0 − EF corresponds

to the work function of the metal. Electronic states

from the metallic component are induced into the

semiconductor and the band alignment leads to the

formation of a Schottky barrier. While this effect

is important for electronic devices, it is not always

convenient to have such barriers. To operate a

semiconductor-based device, some current is nec-

essary to apply power to the system. In this case,

the current is provided through a metallic contact

and the junction must present an ohmic behaviour

(i.e. behave according to Ohm’ s law). For metal-semiconductor interfaces, an acceptable

contact would present a small resistance compared to the total resistance of the semicon-

ductor device. To achieve this, the work function of the metal must be low enough or

the semiconductor highly doped, to allow the Fermi energy to lie in (or very close) to the

conduction or valence band of the semiconductor, forming a negligible Schottky barrier. [114]

Besides the traditional semiconductors largely studied since the first half of the last cen-

tury, oxides are examples where growth techniques have evolved dramatically in the last

two decades, allowing the fabrication of epitaxial heterojunctions of these materials with

atomistic precision, from which LaAlO3/SrTiO3 interfaces have become a prototypical sys-

tem. This kind of systems are insulating in the bulk and, surprisingly, the experimentally

observed effects at the interface have shown new physics that suggest applications for new
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devices. Among the interesting e�ects found in oxides it is worth mentioning the formation

of metallic interfaces with high-mobilites, [115,116] superconducting behaviour at low temper-

atures [117] and magnetic ordering. [118]

To understand many of the phenomena that take place in the two-dimensional (2D) interface

of crystalline materials, it is important to consider polarization e�ects. When a bulk system

is cut, the ionic character of the atoms that constitute the crystal may cause a polarization

discontinuity depending on the crystallographic orientation of the produced surface. [119,120]

The same is true in two-dimensional (2D) systems like h-BN, where the polarity plays a

very important role. In graphene/BN heterojunctions, the electronic behaviour of graphene

nanoribbons is changed due to interfacial e�ects which can be modulated by the piezoelectric

properties of h-BN.

1.5 Objectives

Hybrid systems with graphene and h-BN in the stacked and co-planar con�gurations are

very actively developed areas of research and are considered to be very important for future

development of graphene-based technology. This thesis is focused in the study of in-plane

and stacked hybrids to get a better insight of the factors that could allow a better control of

their properties. To accomplish this, it is necessary a clearer understanding of the e�ects that

emerge as a consequence of joining these two compounds together. The principal objectives

of this thesis are:

� Explain the causes of the appearance of new features in the heterostructures.

� Model the heterostructures in a simple manner to have a more exposed description of

the systems.

� Analyse the behaviour of the hybrid systems under di�erent conditions.

In chapter 3, graphene over h-BN is analysed within DFT. Di�erent superlattices are consid-

ered to explore the changes changes in the atomic and electronic structure of graphene. The

features analysed include the formation of new Dirac points, renormalization of the Fermi

velocity and structural strains induced by the substrate. The case of graphene encapsulated

within two BN monolayers is also analysed. The strength of the potential is estimated from

the local energies �nding a dependence with the size of the moir�e. The parametrization of

the moir�e potential is then used in chapter 4 to calculate transport properties within the TB

model. The e�ect of lattice disorder is also included in the model. The mean free path and

resistivity are obtained for di�erent intensities of the disorder. The e�ect of increasing the

10
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disorder is studied focusing in the impact over the main and non-zero Dirac points. A brief

discussion about the Hofstadter butter
y is also presented giving place to future research in

order to understand the many interesting phenomena that occurs in this fractal spectrum.

In chapter 5, hybrid systems composed of graphene and h-BN are studied within DFT

for di�erent interfacial con�gurations. Then, a TB model is obtained parametrized from

DFT data. Due to the important impact of interfacial e�ects in the electronic structure

of in-plane hybrids, additional terms have to be included in the simple TB Hamiltonian

to properly represent edge states of graphene and h-BN. Changes in the behaviour of the

system due to variations in the values of the most relevant parameters are analysed. The

model is intended to work with any proposed geometry and for very large structures. This

opens the door to many future projects to study a variety of systems of experimental interest.

The model can be easily used for transport calculation of mixed C/BN domains.

In chapter 6, the electromechanical response in hybrid systems with zigzag interface is stud-

ied. Tensile and compressive strains are applied perpendicular and parallel to the interface.

The behaviour of this lateral junctions is dominated by the piezoelectric response of h-BN.

The gaps in this systems can be modulated by mechanical deformations and semiconductor-

half-metal and half-metal-semiconductor transitions are found. The piezoelectric e�ect is

also studied in hybrid systems of graphene and BC2N yielding an improved response over

h-BN. Tubular geometries are also considered, �nding an important magnetoelectricity ef-

fect.
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CHAPTER 2

Methodology

In this chapter, the theoretical background used throughout the thesis is exposed. All the

numerical simulations done here, are based on density functional theory (DFT) or tight

binding (TB) methods, which are explained in sections 2.2 and 2.3, respectively. These two

methods are widely used to model atomistic systems, and the di�erent characteristics and

advantages of each one make them appropriate for di�erent situations. DFT, an ab initio

method, is an accurate approach with a moderate computational cost, useful for small to

medium size (�100{1000 atoms) systems with a very high level of reliability for ground state

properties. On the other hand, the TB approximation is cheaper and is more suitable for

large, or very large (�106 atoms) systems with a less accurate description of the system,

but with the advantage that the model can be parametrized to �t the results of other more

elaborated methods or to experiments.

2.1 Solution to the Schr•odinger equation

The modelling of electrons can be done by solving the time-independent Schr•odinger equa-

tion

Ĥ	 = E	; (2.1)
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2.1. Solution to the Schr•odinger equation

where Ĥ represents the Hamiltonian operator, 	 is the many-body stationary wave function

of the system and E its eigen-energies. For molecular systems, which usually involves sev-

eral degrees of freedom (counting all the electrons and ions in the system), the eigenvalue

problem 2.1 can become very complicated. Several approximations have proven to simplify

the solution to the many-particle wave function.

The many body problem

In a system of interacting atoms consisting in N electrons, with mass me and charge �e,
and M ions, with mass Mj and charge Zje, the wave function depends on the coordinates

rj and Rj of electrons and ions, respectively:

	 = 	(r1; r2; : : : ; rN ; R1;R2; : : : ;RM ): (2.2)

For this system, the Hamiltonian operator is

Ĥ =T̂e + T̂N + V̂ee + V̂Ne + V̂NN

=� ~2

2me

NX
j=1

r2
j �

~2

2

MX
m=1

r2
m

Mm
+

1

2

X
j 6=m

e2

jrj � rmj

�
X
j;m

Zme
2

jrj �Rmj
+

1

2

X
j 6=m

ZjZme
2

jRj �Rmj
;

(2.3)

where the �rst two terms are the kinetic energy of electrons and ions, and the last three

terms, the electron-electron, nuclei-electron and nuclei-nuclei interactions. In such scenario,

the wave function of each particle are coupled among them, and the system has to be solved

simultaneously. In particular, the Coulomb interactions (V̂) make the Schr•odinger equation

to be inseparable for more than one particle and solving the system involves the solution of

a 3(N +M)-dimensional eigen-problem (not considering the spin degree of freedom).

The Born-Oppenheimer approximation

A �rst approximation to deal with Equation 2.3 is Born-Oppenheimer approximation, [121]

based on the fact that atomic nuclei are massive in comparison with electrons (around 103{

105 times more massive). It can be then assumed that heavy nuclei move so slow that can

be considered �xed. Within this approximation, the term T̂N is zero, and the problem is

reduced to solving the many-body problem of electrons in the presence of the ionic potential,
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by considering the electronic part of the Hamiltonian

Ĥe = � ~2

2me

NX
j=1

r2
j +

1

2

X
j 6=m

e2

jrj � rmj
�
X
j;m

Zme
2

jrj �Rmj
; (2.4)

and solving for the electronic wave functions  :

Ĥe (r1; r2; : : : ; rN ) = E (r1; r2; : : : ; rN ): (2.5)

If one is interested in including the dynamics of nuclei, a common solution is to treat the

ions as classical particles and solve the quantum mechanical wave function of electrons at

each position of the nuclei.

The problem of solving the electronic part of a system is still di�cult, and no analytic

solution exist for more than one electron (hydrogenic atoms). Other approximations have

been proposed to overcome this di�culty, having di�erent impact in the accuracy of the

predictions. Among the approximations to the many body problem, it is worth mentioning

the Hartree-Fock Theory, quantum Monte Carlo methods, many-body perturbation meth-

ods and DFT. The latter has become one of the most successful and popular methods for

electronic structure calculations, and the method in which an important part of this thesis

is based.

2.2 Density Functional Theory

DFT is a method for electronic structure calculations and is based on the theorem proposed

by Hohenberg and Kohn [2] which states that the total energy of a system, Etot, is a unique

functional of the electron density n(r). Thus, the problem of N electrons with 3N variables,

is changed to a problem with 3 spatial variables of n(r). Kohn and Sham [3] proposed a

way to construct and minimize the total energy functional Etot[n(r)]. In this section, the

fundamentals of DFT are explained in more detail, and an overview of the exchange and

correlations functionals, and the basis sets used in DFT calculations is given.

Hohenberg-Kohn Theorem

Consider a system of electrons subject to the in
uence of an external potential Vext(r). The

Hamiltonian is

Ĥ = T̂e + V̂ee + V̂ext: (2.6)
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2.2. Density Functional Theory

The ground state electronic density n0(r) is uniquely determined by the external potential,

and the inverse is also true. To proof this, a reductio ad absurdum demonstration is done.

Suppose that another potential, V 0ext (V 0ext � Vext 6= const), gives rise to the same ground

state density n(r). Each potential will lead to di�erent ground state wave functions,  and

 0. Since  0 is not the ground state of Ĥ, it follows that

E = h jĤj i < h 0jĤj 0i : (2.7)

The last term can be rewritten as

h 0jĤj 0i = h 0jĤ0j 0i+ h 0jĤ � Ĥ0j 0i

= E0 + h 0jV̂ext � V̂ 0extj 0i

= E0 +

Z �
Vext(r)� V 0ext(r)

�
n0(r)dr;

(2.8)

and substituting in Equation 2.7

E < E0 +

Z �
Vext(r)� V 0ext(r)

�
n0(r)dr: (2.9)

The primed and unprimed labels can be swapped to give

E0 < E +

Z �
V 0ext(r)� Vext(r)

�
n0(r)dr: (2.10)

Adding Equation 2.9 and Equation 2.10 results in the inconsistency E+E0 < E+E0. Thus,

Vext is uniquely de�ned by n0(r). In turn, the system described by Ĥ, which is �xed by

the external potential, is a unique functional of n0(r) (within a constant), and with the

knowledge of n0(r), all the properties of the system can be accessed.

Kohn-Sham equations

A procedure to treat DFT is based on an idea proposed by Khon and Sham, [3] where the

many-body problem is replaced by a non-interacting system of electrons in
uenced by an

e�ective potential, and the solution is given by the single-particle Schr•odinger equation. The

Hamiltonian in this case is given by

ĤKS = T̂s + V̂eff ; (2.11)

where T̂s is the kinetic energy operator for a system of non-interacting electrons, and V̂eff

represents the e�ective potential, both being functionals of the electronic charge density
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Choose trial vectors
n
 KS
j

o
0

Calculate n0(r) (Equation 2.16)

Construct the Hamiltonian

Solve Equation 2.15 to ob-

tain
n
 KS
j

o
k
, f�jgk and EkKS

Fill N states of the
eigen-energies f�jgk

Calculate the new nk(r) from
the �lled wave functions

Ek�1
KS � EkKS < "?

Done

k > kmax?

Mix nk and nk�1 for
numerical stability

k = k + 1

no

yes

no

yes

Figure 2.1: Flow chart of the DFT algorithm.
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n(r). The e�ective potential is de�ned as

Veff [n(r)] = Vext [n(r)] + VH [n(r)] + Vxc [n(r)] ; (2.12)

where VH is the classical Hartree potential

VH(r) = �e
Z

n(r)

jr� r0j
dr0; (2.13)

and

Vxc [n(r)] =
�Exc [n(r)]

�n(r)
; (2.14)

with Exc being the exchange-correlation energy functional, where all the interactions between

electrons are included. The eigenproblem becomes�
� ~2

2me
r2 + Veff(r)

�
 KS
j (r) = �KS

j  KS
j (r); (2.15)

where  KS
j and �KS

j are not the actual wave function and energy of the electrons, but auxiliary

quantities to calculate the electron density by

n(r) =
NX
j

�� KS
j (r)

��2 : (2.16)

The total energy functional is

EKS [n(r)] = Ts [n(r)] + EH [n(r)] + Exc [n(r)] +

Z
Vext(r)n(r)dr; (2.17)

and the ground state of the system can be found by minimizing EKS with respect to varia-

tions in the electron density, with the constraint that the number of electrons, N , remains

constant.

An overview of the DFT algorithm is shown in Figure 2.1. The process involves a self-

consistent cycle that goes on until a converged electronic density is obtained. The criterion

to decide whether n(r) is converged or not can vary, being a common one to compare the

Kohn-Sham total energies EKS of the present and previous cycles, and consider n(r) to be

converged if the di�erence is less than a certain (small) tolerance.
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Basis sets

To solve Equation 2.15, the wave functions  KS
j are usually expanded as a linear combination

of basis functions

 KS
j (r) =

X
�

c�j'�(r); (2.18)

where ε is the number of functions in the basis set, c�i are the expansion coe�cients to be

determined and f'�g forms the basis set. Within the Siesta code, [122] the basis functions

are taken as localized atom-centred orbitals. The basis orbitals are numerically generated

as radial functions that depend on the position with respect to the atom which they belong,

'�(r) � '�(r�R�) (R� is the ionic position), and are zero beyond a certain cuto� radius. [123]

The basis functions are products of a pure radial function and a spherical harmonic

'lmln� (r�) = Rln(r�)Ylml(r̂�): (2.19)

where r� = r � R�, r� = jr�j, and r̂� = r�=r�. The numbers l and ml have the usual

notation for the angular momentum quantum numbers, while n, in this context, is an index

to distinguish between orbitals with the same angular dependence. To each ionic core,

several basis function can be assigned, which determines the size of the basis for each atom.

To have an acceptable basis for certain chemical element, it must consider at least all the

shells that are occupied by electrons in its atomic ground state. Multiple-� basis can be

used by considering several orbitals with the same l and m quantum numbers, but with a

di�erent radial dependence. To further enhance the basis set, polarization orbitals have to

be included, by increasing l to a higher angular momentum.

In calculations for crystalline systems, the reciprocal space is sampled by a k -mesh, and the

Kohn-Sham equation has to be solved for each point in the mesh, adding an extra quantum

number: the crystal momentum k. In these periodic systems, the Bloch representation of

the wave functions is used:

 KS
jk (r) =

X
T�

c�j(k)eik�(rµ+T)'�(r�R� �T); (2.20)

where the atomic orbitals are periodically repeated to every other cell, with translations

given by lattice vector T.
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2.3 Tight Binding

The tight binding method is an approach to solve the Schr•odinger equation based on linear

combination of atomic orbitals. [124] The Hamiltonian matrix element between orbital '�

and orbital '� is

H�;�(k) =
X
T

eik�(Rν+T�Rµ)

Z
drλ��(r�R�)Ĥλ�(r�R� �T); (2.21)

and the overlap matrix is

S�;�(k) =
X
T

eik�(Rν+T�Rµ)

Z
drλ��(r�R�)λ�(r�R� �T): (2.22)

Considering an expansion of the eigenfunctions similar to that in Equation 2.20, the coe�-

cients are found by solving the equation

X
�

[H�;�(k)� �j(k)S�;�(k)] c�j(k) = 0: (2.23)

If the basis functions are orthonormal, the equation can be written as

X
�

H�;�(k)c�j(k) = �j(k)
X
�

c�j(k): (2.24)

The representation of the Hamiltonian in terms of localized orbitals, has the advantage that

the matrix elements become negligible for orbitals far away from each other. The terms

in the integral in Equation 2.21 can be divided into one-, two- and three-centre integrals.

While these integrals can be solved numerically, a simpli�ed approach, the semi-empirical

tight binding, considers a parametrized form of the matrix terms in the Hamiltonian:

H�;�(k) = "���� + 
��
X
T

e�ik�(Rν+T�Rµ); (2.25)

where ��� is the Kronecker delta,

"� =

Z
dr'��(r)Ĥ'�(r); (2.26)

and


�� =

Z
dr'��(r�R�)Ĥ'�(r�R� �T): (2.27)

The parameter "�, is related to the potential energy of the orbital '�, and depends only

on the type of orbital, while 
�� is related to the kinetic energy of electrons hopping from

orbital '� to orbital '� , and are considered to depend only on the distance between both
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orbitals.

2.4 Transport in the Kubo formalism

When a system in equilibrium is perturbed by, for instance, an optical, electric or thermal


uctuation, it will response to such external e�ect and evolve over time. The response can be

measured to obtain the correlation between the input perturbation and the output evolution

of the system. The e�ect of the perturbation will dissipate as the time passes, inducing


uctuations in the system around its equilibrium state. If the 
uctuations are considered

to be small, �rst order perturbation theory can be used to obtain the modi�cations of any

observable with respect to the unperturbed ground state. This change represent the linear

response of the system to the external perturbation. The Kubo approach is a technique

used to calculate the linear response in materials, which is suitable for the study of quantum

transport phenomena in disordered graphene-based materials. To calculate the conductivity,

the Kubo approach considers a small perturbation due to an electric �eld. Under this

perturbation, electrons will propagate along the system as a wave packet.

Considering the frequency-dependent longitudinal conductivity (along the x axis), the Kubo

formula is [125]

σ(!) =
2β~e2




Z +1

�1
dE

f(E)� f(E + ~!)

~!
Tr
h
V̂ yx �(E � Ĥ)V̂x�(E + ~! � Ĥ)

i
; (2.28)

where 
 is the volume of the system, f(E) is the Fermi-Dirac distribution function, V̂x is

the velocity operator, and a factor of two has been used for the spin degeneracy. In the

static electric limit, ! ! 0,

σDC = �e2

Z +1

�1
dE

@f(E)

@E
α(E) lim

t!1

@

@t
�X2(E; t); (2.29)

where α(E) is the density of states

α(E) =
Tr
h
�(E � Ĥ)

i



; (2.30)

and �X2(E; t) the mean square spreading of the wave packet

�X2(E; t) =
D
jX̂(t)� X̂(0)j2

E
E
; (2.31)
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whit X̂ the position operator. The zero-temperature limit, T ! 0, implies that �@f(E)
@E !

�(E � EF), so that

σDC(EF) = e2α(EF) lim
t!1

@

@t
�X2(EF; t): (2.32)

This last expression means that @
@t�X

2(EF ; t) should converge in the limit t!1 to de�ne

a meaningful conductivity. Thus, the propagation of the wavepacket needs to establish a

saturation regime before the conductivity can be safely calculated.

An e�cient real space implementation of the Kubo formula is the one developed by Roche

and Mayou. [126] In this approximation, Equation 2.32 is rewritten as

σDC = e2α(EF) lim
t!1

�
1

t



�X2(t)

�
E

�
; (2.33)

and


�X2(t)

�
E

is de�ned as



�X2(t)

�
E

=

Tr

�
�(E � Ĥ)

�
X̂(t)� X̂(0)

�2
�

Tr
h
�(E � Ĥ)

i : (2.34)

Using the time-reversal symmetry and the fact that trace is permutation invariant, the

numerator in the above expression is expressed as

Tr

�
�(E � Ĥ)

�
X̂(t)� X̂(0)

�2
�

=

= Tr
h�
eiĤt=~X̂ � X̂e�iĤt=~

�
�(E � Ĥ)

�
X̂e�iĤt=~ � e�iĤt=~X̂

�i
= Tr

�h
X̂; Û(t)

iy
�(E � Ĥ)

h
X̂; Û(t)

i�
;

(2.35)

where Û = e�iĤt=~ is the time evolution operator. The trace in Equation 2.34 is approxi-

mated by the expectation values on random-phase states, which are expanded in terms of

all the N orbitals of the basis set

j'RPi =
1p
N

X
j

e2i��j j'ji ; (2.36)

and the spread is �nally rewritten as



�X2(t)

�
E

=

(
'RP

����hX̂; Û(t)
iy
�(E � Ĥ)

h
X̂; Û(t)

i����'RP

√
D
'RP

����(E � Ĥ)
���'RP

E : (2.37)
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The quadratic spread is directly related to the di�usion coe�cient through

D(E; t) =



�X2(t)

�
E

t
; (2.38)

whose time dependence fully determines the transport mechanism. A more detailed deriva-

tion of the previous formulas and a deeper discussion of the transport regimes is presented

in the book by Foa et al. [125]
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CHAPTER 3

Graphene on h-BN substrate

3.1 Introduction

The Klein paradox is a relativistic process present in graphene in which electrons have a

high probability of tunnelling through strong barrier potentials. [127] The consequences of

this is that even at the charge neutrality point, where the graphene density of states (DOS)

vanishes, there is a minimum of conductivity of σmin = 4e2=βh, [128] where e is the electron

charge and h the Planck's constant. In order to control the transport of carriers in electronic

devices based on graphene, a gap must be induced to have the possibility to switch on and

o� the current. Early theoretical calculations using DFT with the LDA functional, predicted

that a gap of about 53 meV will be opened for graphene on h-BN. [129,130] These calculations

were done by considering a commensurate structure, where graphene and BN monolayers

were forced to have the same lattice constant. The e�ect induced in graphene by underneath

B and N atoms is di�erent for each species, with a lower electrostatic potential in the vicinity

of N atoms. Thus, a potential di�erence is set between the A and B sublattices in graphene

breaking the symmetry of the two inequivalent sites and opening a gap. Variations in the

stacking con�guration of both layers will change the adhesion energy and the magnitude of

the gap.

However, no gap was found in early scanning tunnelling microscopy (STM) measurements. [58,61]

Instead, the formation of an incommensurate phase coming from the interference pattern of

both layers, known as moir�e pattern, was observed. These samples present di�erent local
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stacking con�gurations across the structure, inducing di�erent changes in the local potential.

If the average of the potential is zero, then no gap is expected. More recent experiments

evidenced a controversy about the appearance of a gap in graphene over h-BN, since in most

of the experiments the preservation of the zero-gap Dirac cone is evident, [58,61,63,64,131,132]

while few papers report a clear gap in transport measurements. [62,133] The gap opening in

the incommensurate state has been explained in terms of lattice relaxations and strains

coming from interactions with the substrate [133–135] and also as a many-body e�ect. [136]

One of the most remarkable peculiarities of graphene over h-BN, is the appearance of new

features in the DOS at energies that depend on the size of the moir�e. [61] These features

correspond to the formation of new Dirac points due to the superlattice potential induced

by the h-BN substrate. [137,138]

Studies of graphene over h-BN within DFT are usually done with small cells (4 atoms per

unit cell), and then extrapolations are done to treat larger systems containing up to several

thousands of atoms. [136,139,140] Calculations with very high energy resolution have to be done

in order to observe the dips that appear in the DOS induced by the h-BN substrate. This

requires very large k -samplings in the Brillouin zone (BZ) to achieve the required resolution,

imposing a limitation in the range of moir�e systems that can be studied with DFT.

In this chapter, the e�ects of BN monolayers as a substrate for graphene are studied by means

of DFT. Systems with as much as �1,000 atoms are considered. DOS with a large number

of k-points are calculated and changes with respect to pristine graphene are discussed. The

electronic band structures and atomic deformations are analysed. Then, estimations to the

strength of the potentials and changes in vF are discussed for graphene monolayers on BN.

Finallyn, systems with graphene encapsulated between two h-BN sheets are studied.

3.2 Moir�e patterns in graphene

The formation of moir�e patterns is not exclusive of h-BN substrates, and has been observed

over many other substrates. [23,24,141–143] In Figure 3.1 a moir�e pattern is shown. This pattern

is formed as a consequence of the lattice mismatch between graphene, with lattice constant

a0, and the substrate, with lattice constant a0(1 + �), and the twist angle between both

lattices (λ). The length of the lattice vector of the supercell is denoted as γ and, for

triangular superlattices, can be calculated from � and λ as [61]

γ =
(1 + �)a0p

2(1 + �)(1� cosλ) + �2
: (3.1)
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ϕ
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Figure 3.1: (a) Diagram of the unit cells of graphene and h-BN showing the different lattice
parameters and the rotational angle φ between the layers. (b) Moiŕe supercell with lattice
vectors of length λ. (c) Supercell BZ showing the high symmetry points.

The effect that the substrate has over graphene is that of an external periodic potential that

changes the periodicity of the system, from the original honeycomb lattice with two atoms,

to a superlattice with many more atoms (up to ∼6,000 C atoms for graphene over BN with

φ = 0◦). In real samples, the lattice mismatch between graphene on h-BN generally leads to

an incommensurate phase. Nevertheless, to study these systems with common DFT codes

that use periodic boundary conditions, finite size supercells have to be constructed from

an integer number of graphene and h-BN unit cells, enforcing a commensurated structure.

Being a1 and a2 the lattice vectors of graphene:

a1 = a0(1, 0) and a2 = a0

(
1
2 ,
√

3
2

)
, (3.2)

a triangular supercell is defined by the vectors [144]

RM1 = n1a1 + n2a2 and RM2 = −n2a1 + (n1 + n2)a2, (3.3)

where n1 and n2 are integers. The wavelength of the moiŕe pattern can be defined as

λ = a0

√
n2

1 + n2
2 + n1n2. (3.4)

To construct the moiŕe patterns for graphene on h-BN, suitable choices of the parameters n1

and n2 in Equation 3.3 have to be considered, so that the lattice parameter of h-BN (aBN =

a0(1 + δ)) is kept close to the experimental value of 2.50 Å, [145] while the lattice parameter

of graphene is fixed to the experimental value of 2.46 Å. From these considerations, it is

clear that only certain angles will be allowed for a certain tolerance of aBN.
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3.2. Moir�e patterns in graphene

It is possible to consider a moir�e pattern formed by vectors

RM1 = m1a1 +m2a2 and RM2 = �m2a1 + (m1 +m2)a2; (3.5)

with m1 and m2 being non-integer numbers m1 = n1=nM, m2 = n2=nM, where n2
M is an

integer number. In this case, the supercell is constructed by making a larger supercell

with vectors RSC1 = nMRM1 and RSC2 = nMRM2 containing n2
M moir�es. Even when

these supercells are larger than the moir�e itself, the wavelength γ is still de�ned by the

rotational angle λ and the lattice mismatch � as in Equation 3.1, satisfying the relation

γ = jRSC1j=nM = jRSC2j=nM, and the properties of the moir�e depend only on γ and not on

the size of the supercell. This construction of the moir�es is useful to �nd coincidence lattices

to any desired degree of accuracy of λ and aBN, by considering large enough lattice vectors.

High symmetry points for the reciprocal superlattice are de�ned in analogy to those in

graphene. Similar to the inequivalent points K and K0 in graphene, which are located at

the corners of the BZ, the points κ and κ0 are located at the corners of the superlattice BZ

(SBZ), and the three inequivalent µ points are located at the edges of the SBZ, as shown in

Figure 3.1(c). When 2n1 +n2 is a multiple of three, K and K0 are mapped to Γ. Otherwise,

they will be mapped onto κ and κ0.

Superlattice potentials in graphene have been extensively studied. [137,138,146–157] In general,

the external periodic potential can be expressed as the sum of a symmetric and an antisym-

metric parts, which, considering the linear dispersion of graphene near the K vector, can be

included in the low energy Hamiltonian as

Ĥ = ~vFk � σ + V (r)I + �(r)σz (3.6)

where vF is the Fermi velocity,

I =

"
1 0

0 1

#

is the 2� 2 unit matrix, and σ = (σx; σy) and σz are the 2� 2 Pauli matrices acting on the

A/B sublattice space:

σx =

"
0 1

1 0

#
; σy =

"
0 �i
i 0

#
and σz =

"
1 0

0 �1

#
:

The term V (r) stands for the symmetric part of the potential, and �(r) is the antisymmetric

mass term that breaks the sublattice symmetry. The potentials can be expanded as

V (r) =
X
G

VGe
iG�r and �(r) =

X
G

�Ge
iG�r;
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Chapter 3. Graphene on h-BN substrate

where VG and �G are the Fourier components of the potential whose magnitudes depend

on the modulus of the supercell reciprocal lattice vectors G alone. External potentials are

capable of changing the shape of the Dirac cone renormalizing the Fermi velocity anisotrop-

ically. When considering a one dimensional potential, vF becomes lower in the direction

perpendicular to the periodicity of the potential. [137,138] For potentials with triangular peri-

odicity, as those present in graphene over BN, the Fermi velocity renormalizes isotropically,

and using a perturbative approximation, it can be probed to be [137,152,156]

vF(G0) � v0
F

�
1� 6

(~v0
FG0)2

�
V 2
G0

+ �2
G0

��
(3.7)

where v0
F is the Fermi velocity of pristine graphene and only the lowest wavelength reciprocal

vectors with magnitude jGj = 4β=
p

3γ � G0 have been considered.

For systems where the geometry makes K to be mapped into �, the supercell zone folding

gives rise to the appearance of two-fold degenerated states above and below EF, which,

assuming a linear dispersion, correspond to energies at the µ point [61,138,152]

Eµ = �~vFG0=2 = �2β~vF=
p

3γ: (3.8)

Considering the substrate potential as a perturbation, the description of the band dispersion

for the above mentioned two-fold degenerated states, can be approximated by an anisotropic

two-dimensional Dirac equation at �nite energy close to µ as [152]

Eµ(δk) � ~vFG0

2
�

s
4~2v2

F�k
2
x + �2

G0
+

16V 2
G0
�k2
y

G2
0

; (3.9)

where δk = k�µ. Note that when �G0 6= 0 the degeneracy is broken and a gap is opened.

Similarly, at κ three degenerate levels appear at energies

Eκ = �~vFG0=
p

3 = �4β~vF=3γ; (3.10)

which are split into a singlet and a doublet if VG0 6= 0, and the doublet is further split if

�G0 is non-zero. [152] While Equations 3.8 to 3.10 are valid for systems where 2n1 +n2 = 3p,

p an integer, similar relations can be found for other geometries. [152]

In graphene over h-BN moir�es, the e�ect of these new Dirac points is re
ected as dips at

energies that correspond to those of Eµ. This has been observed experimentally in the dI=dV

curves obtained with scanning tunneling spectroscopy (STS) . [61] As seen in Equation 3.8, the

position in energy of these dips comes closer to EF as γ increases. What makes the systems

with h-BN specially interesting is that, due to the small lattice mismatch between graphene

and h-BN (� = 2%), the resulting moir�es can have large values of γ (�14 nm for λ = 0�)
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3.3. Systems and geometry speci�cations

giving values of Eµ very close to EF (�0.2 eV for the largest possible moir�e of 0�). Even

more, the large periodicities of these moir�e patterns enables the observation of the fractal

spectrum that emerges in presence of a magnetic �eld: the Hofstadter butter
y, [158] which

is a consequence of electrons moving through a periodic potential and a magnetic �eld.

The observation of this spectrum, requires magnetic �elds of the order of one magnetic


ux quantum (�0 = h=e = 4:13 � 1015 Wb). For ordinary crystals, which are relatively

small, that would require the use of very high magnetic �elds. However, for the moir�e

superlattices, because of their large size, the Hofstadter spectrum can be observed with

laboratory accessible magnetic �elds of 10{30 T. [62–64]

To study the moir�e superlattices theoretically

3.3 Systems and geometry speci�cations

AB BAAA

Figure 3.2: Di�erent stack con-
�gurations of graphene over h-
BN. Black, orange and blue cir-
cles represent C, B and N atoms,
respectively.

For single cell commensurable graphene over h-BN, the

three di�erent stacking con�gurations considered are

shown in Figure 3.2. The AA stacking corresponds to

C atoms over B and N atoms; in AB stacking B atoms

are below C atoms, and N atoms in the centre of the

hexagons of graphene; the BA stacking corresponds to N

atoms below C, and B in the centre of C hexagons. These

same stackings are present locally in certain regions of the

moir�e patterns, and local properties of each zone should

resemble that of its corresponding single cell system.

DFT calculations are performed for di�erent systems to

study the properties of the moir�e patterns, which are listed in Table 3.1. There are six

systems of graphene on h-BN monolayer, from which �ve have nM = 1 (22�, 11�, 7�, 5� and

3�), and one has nM = 2 (19�), which corresponds to four replicas of the moir�e pattern within

the supercell. The atomic structures of the moir�es with nM = 1 are shown in Figure 3.3.

Encapsulated graphenes are also considered (i.e. graphene between two h-BN monolayers).

Taking the system with λ = 22� an additional layer of h-BN is added and is denoted with the

label 22�j22�. A similar system is constructed with the top layer rotated by �60� (22�j�38�).

Additionally, two systems are constructed with di�erent twist angles for both layers of BN

(20�j26� and 6�j�16�).

DFT calculations are done using norm-conserving Troullier-Martins pseudopotentials. [159]

For a good description of the interactions between layers, van der Waals exchange-correlation

functional is used with the implementation done by Rom�an-P�erez and Soler [160] in the
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Chapter 3. Graphene on h-BN substrate

Siesta code. [122] The wavefunctions for the valence electrons are described using a linear

combination of pseudo-atomic numerical orbitals with a double-ζ polarized basis (DZP). [123]

11º

3º

5º

7º

22º

AB

BA

AA

Figure 3.3: Atomic structures of graphene over
h-BN with different twist angles. The different
stacking zones from Figure 3.2 are sketched for the
structure with φ = 3◦.

For the convergence of the density ma-

trix, a Monkhorst-Pack k -sampling [161]

equivalent to a 56 × 56 sampling in a

graphene unit cell is used. To clearly

observe the dips in the DOS, a more

dense k -mesh is used equivalent to a

sampling of 1100× 1100 k-points in a

unit cell of graphene, and the width of

the Gaussian smearing, which defines

the energy resolution, set to 6 meV, un-

less otherwise specified. The specific

k-samplings in each system are listed

in Table 3.2. Periodic boundary condi-

tions are used, and to avoid interactions

between the moiŕes in the z direction,

a vacuum space of >30 Å is imposed.

The structures with φ≥5◦ are relaxed

until the forces are smaller than 0.01

eV/Å, while the size of the cell is kept

fixed. An ionic relaxation of the 3◦system would mean a very expensive calculation. For this

reason, the interlayer distance is kept fixed to 3.29 Å in the 3◦ system, which corresponds

to the average separation of the other relaxed systems. For the specific interlayer distance

of each system after relaxation see Table 3.3.

3.4 Graphene over h-BN monolayer

Single cell systems

From the lattice matched systems shown in Figure 3.2, the most stable one is the AB

stacking. The AA and BA stackings are both 20 meV less favourable energetically than

the AB stacking. The interlayer distance between graphene and h-BN is 3.33 Å, 3.23 Å

and 3.32 Å for the AA, AB and BA stackings, respectively. The average of these interlayer

distances is 3.29 Å, which is the same average interlayer distance found in the moiŕe systems

after relaxation. The sublattice symmetry breaking induced by h-BN opens a gap at the
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3.4. Graphene over h-BN monolayer

Table 3.1: Speci�cations of the moir�e superlattices studied. The parameters shown are the
angle between layers (λ), the moir�e wavelength (γ), the lattice mismatch (�), the BN lattice
parameter (aBN), the number of moir�es in the supercell (n2

M), the parameters n1 and n2 for
each layer (G for the graphene layer, BN for the BN layer), the number of atoms per layer
and the total number of atoms in the system.

λ (�) γ (�A) � aBN (�A) n2
M Layer n1 n2 Atoms Total # atoms

22 6.51 0.000 2.46 1
G 1 2 14

28
BN 2 1 14

11 13.17 0.018 2.50 1
G 4 2 56

110
BN 3 3 54

7 19.53 0.016 2.50 1
G 6 3 126

248
BN 5 4 122

5 26.61 0.022 2.51 1
G 9 3 234

458
BN 8 4 224

3 41.09 0.020 2.51 1
G 15 3 558

1094
BN 14 4 536

19 7.68 0.027 2.53 4
G 5 2 78

152
BN 3 4 74

20 7.44 0.008 2.47 7 G 8 0 128
376

26 5.46 0.024 2.52 13
BN1 6 3 126
BN2 5 4 122

6 23.72 0.011 2.49 1 G 7 4 186
550�16 8.97 0.011 2.49 7

BN1 6 5 182
BN2 9 1 182
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Chapter 3. Graphene on h-BN substrate
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Figure 3.4: Band structure near the K point for the systems in Figure 3.2. The dark grey
dahsed line corresponds to pristine graphene.

Dirac cone, as can be seen in the band structures of Figure 3.4. The gap depends on

the stacking configuration and on the interlayer distance. [129] The resulting gaps are 107

meV, 59 meV and 50 meV for the AA, AB and BA stackings. These gaps are larger than

previously reported for the equilibrium interlayer distance due to the smaller separation in

our calculations compared to Ref. [129]. Even though, they agree with the corresponding

gaps reported by Giovannetti et al. [129] for the distances obtained in the present work.

Table 3.2: Sampling of k-points for
the different systems used in the self-
consistent cycle, and in the DOS cal-
culation. The different values n, rep-
resent a n × n sampling in the BZ.

Angle (◦) SCF DOS

22 21 416

20| 26 7 138

19 9 176

11 12 208

7 9 147

6| −16 6 114

5 6 102

3 3 67

As explained in section 1.1, the band energy of

graphene in the linear regime is E = ± � vF | k | , with

the plus (minus) sign corresponding to the conduction

(valence) band. The slope of the bands in Figure 3.4

are changed due to changes in the Fermi velocity, be-

ing larger in the AB stacking and smaller in the AA

stacking. The changes in vF are due to the interlayer

interaction, becoming lower for stronger interactions.

Moiŕe pattern systems

The DOS of the different systems of graphene on top

of h-BN monolayer show dips at different energies,

as seen in Figure 3.5(a). Besides the dips, new van

Hoove singularities can be observed around the dips.

As expected, the dips in the DOS come closer to EF

as the angle between the layers decreases. The wave-

length dependence of the energy of the dips can be
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3.4. Graphene over h-BN monolayer

seen in Figure 3.5(b), being inversely proportional to the length of the moir�e. The values of

the energy of the dips follow the relation 3.8 for Eµ in good agreement with experimental

data. [61] A notorious discrepancy with the expected value of Eµ is observed for λ = 22�, in

which case, the dip is far from the linear part of the energy dispersion, and the expression

for Eµ is not valid any more. The position of the dips for electrons and holes is mostly sym-

metric with respect to EF, with small variations in energy of at most 19 meV for λ = 22�.

For a better agreement with the energy values of the dip in the DOS, the Fermi velocity is

taken as v0
F = 0:86 � 106 m/s. This value is obtained by calculating the band structure of

pristine graphene with Siesta and �tting the bands near EF to a linear relation, and is in

good agreement with the single-particle Fermi velocity of graphene. [162]. Due to many-body

e�ects, vF is renormalized to � 1 � 106 m/s, [9,163] which better �ts the experimental data

in Ref. [61].

The correspondence of high symmetry points in the BZ between graphene and the super-

lattices are shown in Figure 3.6(a) and (b) for λ = 22�, 11� and 7�. The symmetries of the

systems with twist angles 5� and 3� are the same as those for 7�. The band structure for

λ = 22� is shown in Figure 3.6(c). In this case, K is mapped to κ, and M to µ. Without

the h-BN substrate, two-fold degenerated states are present in µ at energies �1:62 eV and

+1:52 eV (red lines in Figure 3.6(b)). The superlattice potential breaks these degeneracies

by opening a gap of 128 meV in the valence band and 24 meV in the conduction band.

Broken degeneracy is also present in κ around energies �2:48 eV where three-fold bands are

a�ected by the moir�e potential more strongly in the conduction band than in the valence

band. Figure 3.6(d) shows the bands for λ = 11�. Two-fold degenerate states are observed at

µ around �0:9 eV (black dashed circle in Figure 3.6(d)). These degeneracies are not broken

by the superlattice potential, and the only noticeable e�ect is a small shift with respect to

pristine graphene in the valence bands close to the degeneracy. States of BN appear in the

valence band for energies .�1:4 eV, and in the conduction band for energies &3:5 eV. The

bands from h-BN in the conduction band make di�cult to distinguish between graphene

and BN states, and hybridizations may occur between bands from both monolayers. At Γ,

six-fold degenerated bands in pristine graphene around �1:62 eV and +1:52 eV are split

into four and three sets of bands in the valence and conductions bands, respectively, with

the two extra bands in the conduction band coming from h-BN states. Each set of bands is

almost two-fold degenerated at Γ with gaps smaller than 9 meV breaking this degeneracy.

In the case λ = 7�, the main Dirac cone is mapped to Γ as shown in the band structure

of Figure 3.6(e). At µ, two sets of two-fold degenerate levels are present above and below

Eµ � �0:96 eV (black dashed circles in Figure 3.6(e)), whose degeneracy is not broken by

the underneath BN potential. Around Eκ = �1:21 eV (green dotted line in Figure 3.6(e)),

two sets of triple degenerate levels appear with broken degeneracy due to the potential. The
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Figure 3.5: (a) DOS for di�erent systems indicating the position of the dips for the di�erent
systems with arrows. The resolution of the DOS is 6 meV. (b) Position in energy of the dips
taken as the local minimum in the DOS. Black up triangles correspond to dips in the valence
band and grey down triangles to dips in the conduction band. For comparison, experimental
data from Ref. [61] is shown. The lines represent the dip dependence given by Equation 3.8,
taking vF as the single-particle (green dashed) and many-body (blue dash-dotted) Fermi
velocity. (c) PDOS for atoms localized at the AA (black) and AB (red) stacking zones for
λ = 7�. (d) The same as in (c) for λ = 5�. The resolution of the PDOS is 1 meV.

35



3.4. Graphene over h-BN monolayer

(a) (b)

-1

0

1
En

er
gy

 (e
V)

Γ μκ ΓΓ μκ Γ

-2

-1

0

1

2

En
er

gy
 (e

V)

μ

~~
0.7

0.8

0.9

1.0

-1.0

-0.9

-0.8

-0.7

En
er

gy
 (e

V)

κ

~~ ~~

ΣT T' μ

~~

En
er

gy
 (e

V)

κ

~~ ~~

-0.6

-0.5

-0.4

0.4

0.5

0.6

ΣT T'

Γ
M

K'

K

Γ μ κ'κ

Γ
μ

κ'

κ

Γ M K'K

Σ

T T'

ΓΓ μκ-4

-2

0

2

4

En
er

gy
 (e

V)

(c)

(d) (e)

(f) (g)

Figure 3.6: (a) BZ of graphene showing the location of high symmetry points of the supercells
with twist angles 22�, 11� and 7�. (b) Mapping of high symmetry points of graphene onto
the SBZ. Note that the BZ of graphene in (a) and the SBZ of the di�erent systems in (b)
are not in the same scale. (c)-(g) Band structure of the di�erent moir�es. Horizontal red
dash-dotted lines designate the energy of the dips in the DOS. Horizontal light green dotted
lines in (e)-(g) denote Eκ obtained from Equation 3.10. Vertical dark green dashed lines
represent the position where gaps open due to the superlattice potential.
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bands for 5� and 3� are shown in Figure 3.6(f) and (g), respectively, close to the κ and µ

points. The bands are similar to those of 7� with di�erent energy scales.

The breaking of degeneracies lowers the number of states leading to depletions in the DOS.

In the band structures of Figure 3.6, the position of the dips are marked as red dash-dotted

lines. While it is considered that the gaps at non-zero energies due to the superlattice

potential are located at the edge of the SBZ, of the systems studied here, only for 22� the

dip in the DOS comes from broken degeneracy at µ. For λ = 11� the only possibility for

the origin of the dip occurs close to 1=3 of the Γ{µ path. For the conduction band, two-fold

degenerate bands are found at this point for pristine graphene supercell, with the moir�e

potential breaking the degeneracy, as seen in the inset of Figure 3.6(d). For the valence

band there is no band crossings, and we could not determine the exact origin of the lowering

of states in the DOS, probably coming from bands avoiding each other along the Γ{µ path.

For λ = 7�, 5� and 3�, the gap opens close to µ in the path µ{Γ. The point in the SBZ

where this gap appears moves towards µ as the angle is decreased, and for larger systems it

can be expected to reach µ.

Atomic relaxation leads to in-plane and o�-plane displacements in both, graphene and h-BN.

In Figure 3.7(a), the corrugations of the graphene sheet for the di�erent relaxed systems

are shown. The maximum height is observed in the AA stacking zone (0.078 �A in the case

λ = 5�) while the minimum is in the AB stacking zone (�0:146 �A in the case λ = 5�). The

height of the BA zone is similar to that of the AA zone. In Figure 3.7(c), the maximum

and minimum o�-plane displacements are shown for each system, and the rms roughness of

graphene in each system are listed in Table 3.3. It can be seen that the buckling increases

with the size of the moir�e, in agreement with experimental observations of graphene over h-

BN in topographic measurements with STM. [57] For small systems, the sti�ness of the sheet

only allows a small modulation of the roughness, while in larger systems, since the area of

each stacking zone increases, the transition from one zone to the others is softer having more

freedom for out-of-plane displacements, and the layers try to reach the equilibrium distance

at each zone.

Since both layers are being relaxed, the interlayer distance is not only de�ned by the o�-

plane displacements of graphene. In Figure 3.8(a) the interlayer distance for each atom

in the graphene layer is shown for the case λ = 5�. The distance follows the single cell

equilibrium separation between layers, with 3.33 �A for the AA stacking, and 3.22 �A for the

AB stacking. The interlayer distance, then, has variations of 0.11 �A. The di�erence in the

amplitude of the interlayer distance and the amplitud of the buckling in graphene comes

from o�-plane displacements in the h-BN layer, which can be seen in Figure 3.8(b). The

BN sheet remains almost 
at except in AB stacking zones, where it moves away from the
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3.4. Graphene over h-BN monolayer
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Figure 3.7: (a) Atomic corrugation for the di�erent systems. The values are referenced to the
average height of graphene in each case. (b) In-plane atomic displacement for the di�erent
systems. Scale bars are in �A. Small black �lled circles represent the positions of N atoms,
while small empty circles represent those of B atoms. (c) Maximum (red up triangles) and
minimum (black down triangles) of the o�-plane distortions as a function of the wavelength.
(d) Maximum in-plane displacement as a function of the wavelength.
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Table 3.3: Interlayer distance between graphene and h-BN layers and the rms roughness of
graphene.

Angle (�) Distance (�A) RMS roughness (�A)

22 3.293 0.001

19 3.290 0.002

11 3.283 0.010

7 3.284 0.032

5 3.287 0.069

graphene sheet. It would be interesting to see what happens if the atomic positions of the

h-BN monolayer are kept �xed, as in the case of a thick h-BN substrate. although this

analysis is not presented here.

The atomic in-plane displacements of graphene for the di�erent moir�es are shown in Fig-

ure 3.7(b). Since the AB stacking is the most stable, atoms at this zone tend to rotate to

maximize the area of the AB stacking. This same behaviour was found within the contin-

uum theory of elasticity, [134] although the values of displacement are one order of magnitude

smaller in the present work. The displacement of C atoms can become larger if the h-BN

layer is not relaxed. Figure 3.8(c) shows that B and N atoms also rotate around the AB

zone but in the opposite direction than C atoms, and the in-plane displacements are even

larger than in graphene.

To investigate if there are compression and expansion of the graphene lattice depending

on the zones of the moir�e, the C{C distances were analysed, �nding that the variations in

all zones for λ = 5� are less than �0.1% of the nearest neighbour distance, dCC = 1:42

�A, showing that no important changes in the local lattice parameter are induced by the

superlattice potential. However, for the moir�es analysed here (λ � 5�) very small expansions

are expected within the continuum theory of elasticity, and the e�ect could become more

important for larger systems with λ < 1�. [134]

The controversial issue regarding the experimental observation of a gap in graphene over

h-BN [62,133] has motivated di�erent explanations. The strain and deformation of graphene

lattice are considered to be the most prominent factors in inducing the gap opening. [134–136]

Surprisingly, in the case of λ = 5�, o�-plane modulations has variations of up to 0.22 �A

without opening a noticeable gap within the DOS resolution of 6 meV (see Figure 3.5(a)).

Estimations to the angle dependent gap within the continuum theory of elasticity give values

of < 5 meV for 3�. [134,135] To look for these small gaps, a DOS with more resolution is needed.

Calculations of the DOS close to the Dirac point with k -samplings of 712�712 and 882�882

points are done for the systems with 5� and 7�, respectively, with a width of the Gaussians

of 1 meV. Even at this resolution, there is no evidence of a gap at zero energy. To analyse
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Figure 3.8: (a) Distance of C atoms to the h-BN layer. Small black �lled circles represent
the positions of N atoms, while small empty circles represent those of B atoms. (b) O�-plane
displacement of B and N atoms. (c) In-plane displacement of B and N atoms. In (b) and
(c), small empty circles represent the positions of C atoms. Scale bars are in �A.

if local gaps are opened, the projected DOS (PDOS) is obtained for di�erent regions of the

moir�es considering one hexagon of C atoms at each zone. In the PDOS for the AA and

AB stacking regions, shown in Figure 3.5(c){(d), no local gaps can be observed. The slope

of the PDOS is di�erent in each region and is related to the strength of the interaction

between graphene and the substrate. Considering the relation DOS(E) / jEj=v2
F, it follows

that vF is larger in the AB zone, while a stronger graphene/h-BN interaction is expected

in the AA zone. This agrees with the behaviour of vF for the single cell systems discussed

above, and with the experimental observation of space-dependent Fermi velocity in graphene

superlattices. [131] The di�erent Fermi velocities can be explained in terms of the corrugation-

induced strain [164,165] and vF renormalization due to varying charge concentration. [162] The

overall Fermi velocity is also changed depending on the wavelength. As seen in Figure 3.9,

the Fermi velocity, measured from the slope of the bands close to EF, decreases as the

wavelength of the moir�e increases, consistently with experimental observations of vF changes

for di�erent moir�e angles. [166] The reason for this decrease with the increase of the wavelength

is the stronger interlayer coupling for larger moir�es. For the case with λ = 3� (γ = 41 �A),

the Fermi velocity shown in Figure 3.9 is expected to decrease even more if atomic relaxation

is performed.

To quantify the strength of the substrate potential, the values of local energies are used,

which can be roughly estimated, in analogy to the Mulliken charges, from [167,168]

Ei =
X
��

α��H�� ; (3.11)
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Figure 3.9: Fermi velocity considering moir�es with di�erent γ. The blue dashed line represent
the Fermi velocity for pristine graphene.

where α̂ is the electronic density matrix, Ĥ is the Hamiltonian matrix, ε, � denote localized

atomic orbitals, and the sum include all the orbitals ε belonging to atom i. Only changes in

the local energies induced by the h-BN substrate are considered by taking �Ei = ECBN
i �EC

i ,

where ECBN
i and EC

i denote the local energies on C atoms in the moir�e pattern and in isolated

graphene, respectively. As an illustration, Figure 3.10(a) shows the energy pro�le for the

moir�e lattice with λ = 5�. This energy pro�le can be decomposed, following Equation 3.6,

into a symmetric and an antisymmetric part. The antisymmetric part �i can be obtained by

calculating the di�erence in energy for the A and B sites within each unit cell of the moir�e,

and the symmetric part is therefore Vi = �Ei ��i. The pro�le of the antisymmetric part

of the potential is shown in Figure 3.10(b). From the pro�les, intensities of the potential

for each part can be obtained. One very simple model for such potentials was proposed by

Sachs et al. [139] by considering �(r) as a sum of sine functions

�i =
1

2
[A sin(2βxi + '1) +B sin(2βyi + '2) + C] ; (3.12)

where xi and yi are the relative position of atom i within the moir�e cell, A and B are the

amplitudes of the potential and C is the average of the energy di�erence between A and

B sublattices, and is related to the gap of the system. Similarly, the symmetric part can

be represented with the same functional form with parameters A�, B� and C�, where A�

and B� are the amplitudes and C� represent a rigid shift in energy, which is found to be

0 for all the systems. Table 3.4 shows the values of the amplitudes for the symmetric and

antisymmetric parts for di�erent rotation angles. The strength of the potential increases

with the wavelength of the superlattice due to the stronger interlayer coupling for larger

systems. The parameter C remains always small, with vanishing values for 7� and 5�.

Lets focus now on the system with λ = 19� and n2
M = 4. Figure 3.11(a) shows the atomic
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3.4. Graphene over h-BN monolayer

(a) (b)

Figure 3.10: Pro�le of the symmetric (a) and antisymmetric (b) parts of the superlattice
potential for λ = 5�.

structure indicating the di�erent stacking zones. Since n2
M = 4, four zones with each type of

stacking are present in the supercell. Note that at the centre of the superlattice where one

would expect to �nd the AA stacking, the large twist angle completely distorts the stacking

and, even though the graphene and h-BN hexagons are one over the other, carbon atoms

do not eclipse none of the B or N atoms. The other AA zones are located at the edges

of the supercell, and in none of them a well de�ned AA stacking is observed. This is also

the case for the AB and BA stackings. For each stacking type, the four zones along the

supercell are dissimilar, but all of them resemble the corresponding stacking con�guration.

As can be observed in Figure 3.11(b), the DOS for this system does not show the clear dips

seen for the other systems. A closer look reveals small features, as can be seen in the inset

of Figure 3.11(b). These features have di�erent energies for the valence and conduction

bands. The energy for the valence band feature is �1:14 eV and that for the conduction

band is 1.42 eV. The small dip in the valence band is more closely related to the periodicity

of the supercell (15.36 �A), while the dip in the conduction band can be attributed to the

periodicity of the moir�e (7.68 �A). This can be seen more clearly in Figure 3.11(c), where a

comparison is made with the dips of the others systems. The dip from the moir�e potential is

weak because the moir�e symmetry is broken by the di�erences of the four zones of each type

in the supercell. Since by construction a supercell periodicity is imposed, a �ctitious dip

Table 3.4: Potential strength obtained from a �t of the local energies.

Angle (�) A (meV) B (meV) C (meV) A� (meV) B� (meV)

22 17 14 6 3 7

11 28 25 2 11 9

7 34 34 0 13 10

5 39 39 0 17 17
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Figure 3.11: (a) Atomic diagram of the system with φ = 19◦. (b) DOS for φ = 19◦. The
inset shows a zoom in to the zones marked with arrows. (c) Position in energy of the features
from the DOS in (b). The wavelength of the feature in the valence band (blue circle) is taken
as the size of the supercell, while for the feature of the conduction band (red circle) is taken
as the size of the moiŕe.

appears corresponding to this superperiodicity. Hence, for real samples with large angles,

the observation of the dips problematic not only because they appear at high energies, but

also because the disorder within the moiŕe blurs their effect in the DOS. As the angle is

decreased, different stacking zones of the same type become more alike and the effect of the

moiŕe is enhanced affecting the electronic structure of graphene dramatically.

3.5 Encapsulated graphene

In many experiments, graphene is deposited over h-BN and then covered again with h-BN,

leaving both layers at different angles with respect to the graphene lattice. The effect of

encapsulated graphene is studied in this section. The systems 22◦| 22◦ and 22◦| −38◦ are

similar, except that B and N are interchanged one of the layers, so that for 22◦| 22◦, B atoms

are over B and N over N, while in 22◦| −38◦, B atoms are over N atoms. The DOS of the two

systems are compared with the DOS of the non-encapsulated moiŕe in Figure 3.12(a). As

can be seen in the inset, the dips in the DOS become deeper due to the enhanced potential

of the two layers of h-BN that further increases the gap opening at µ . For the dip in the

conduction band, there is a shift in its position due to a decrease in vF, observed as an

increase in the slope of the DOS that lowers the energy of the dip (E µ ∝vF, DOS∝1/v2
F).

The dip in the valence band is hindered by BN bands and the effect of encapsulation is more

difficult to see. There is little difference in the DOS of both encapsulated systems, with

a small enhancement of the dips in the 22◦| 22◦ system, since the potential of both h-BN

sheets are in phase.
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Figure 3.12: (a) DOS of the systems 22◦ (black), 22◦| 22◦ (red) and 22◦| −38◦ (blue). The
inset is a zoom in to the dip in the conduction band. (b) DOS of the systems 20◦| 26◦(black)
and 6◦| −16◦ (red). (c) Position of the dips present in the DOS of the system 6◦| −16◦.
Horizontal dashed lines correspond to energies of the dips. Vertical dashed lines represent
different characteristic wavelengths of the system. Green dashed line represents the relation
in Equation 3.8. Grey squares are the positions of the dips for the systems in Figure 3.5(b).

The DOS for the systems 20◦| 26◦ and 6◦| −16◦ are shown in Figure 3.12(b). For these

systems two dips are expected coming from both moiŕe patterns. In the case of the system

20◦| 26◦, the energies at which the dips should appear according to Equation 3.8, are 2.8 eV

for 20◦ and 3.8 eV for 26◦, far above the linear regime of the band dispersion. At these

high energies, a dip induced by the h-BN substrate would be difficult to observe since there

appear bands from BN and C σ-orbitals. In the DOS of 20◦| 26◦, strong features can be seen

around ± 1.5 eV. As in the case of the non-encapsulated system with 22◦, lower dip energies

could be expected. Even though, the observed features can hardly be attributed to the dips

from the moiŕe superlattice, because similar features can be observed in other systems at

the same energies. In the case of 6◦| −16◦, similar depletions are present close to ± 1.5 eV.

The dip corresponding to −16◦ is difficult to identify due to its high energy as in the case

of the 20◦| 26◦ system. The dip that corresponds to the periodicity of the layer with twist

angle of 6◦ is clearly seen. Unexpectedly, another dip appears at an energy that does not

correspond to any of the two periodicities. In Figure 3.12(c), it can be seen that this dip

can be related to an artificial periodicity twice as large as the one of −16◦.

In Figure 3.13(a) and (b) the atomic structure of the system 6◦| −16◦ is shown, along with

the different stacking zones related to each of the two h-BN sheets. The off-plane atomic

displacements of this systems is shown in Figure 3.13(c). The displacements are smaller

than in the cases of non-encapsulated graphene (compared to 5◦ or even 7◦), since there is

a compromise between the coupling of graphene to both h-BN layers. Graphene is closer

to the 6◦ sheet in zones that correspond to AA stacking for −16◦ and AB stacking for 6◦;

and detaches from the 6◦ sheet in some zones close to AB stackings of the −16◦ sheet.
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Figure 3.13: (a) and (b), atomic diagram of the system 6◦| – 16◦showing the lower and upper
layer of h-BN, respectively. (c) Off-plane displacements of graphene in 6◦| – 16◦. Positive
values correspond to graphene approaching the 6◦ layer, while negative values correspond
to displacements closer to the −16◦ layer. (d) In-plane displacements of 6◦| – 16◦. In (c) and
(d), small black filled circles represent the positions of N atoms, while small empty circles
represent those of B atoms. Scale bars are in Å.

Figure 3.13(d) shows the in-plane atomic displacements for the system 6◦| −16◦ is shown.

Opposite to off-plane displacements, in-plane displacements are greatly enhanced compared

to non-encapsulated systems. The maximum displacements occur around the AB stacking

zone of the 6◦ sheet.

3.6 Conclusions

DFT calculations were done for moiŕe superlattices with different twist angles. The most

interesting systems are those with small angles where larger interlayer coupling and lattice

deformations can change the properties of graphene more dramatically. [133� 135] However,

angles close to zero represent a great challenge for DFT calculations because the number
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of atoms can increase to several thousands of atoms. Modern approaches for the calcula-

tion of large systems with thousands of atoms are useful to overcome these problem, like

the PEXSI technique implemented in Siesta. [169] Unfortunately, at the present time this

methodology lacks k -sampling, which is mandatory if such important features of the DOS

are to be analysed. Furthermore, to observe �ne details in the DOS, like the dips induced

by underneath h-BN, large k -samplings are needed to achieve high energy accuracy.

The dips in the DOS appear due to broken degeneracies at superlattice Dirac points. Unlike

the main Dirac point at K in pristine graphene, which corresponds to the dispersion of mass-

less particles, [9] the new Dirac points at �nite energies do exhibit gaps, thus, representing

the dispersion of massive relativistic particles.

Structural relaxations are quite signi�cant leading to o�-plane and in-plane modulations of

the atomic displacements up to 0.2 �A. Although when the buckling is important, no gap

opens at zero energy. However, many-body e�ects may play an important role in these

systems, [136] making conventional DFT unable to describe correctly the moir�e superlattices,

and many-body corrections must be included, as those provided by the GW approximation.

The parametrization of the moir�e potential is very useful to model in a simple way the e�ect

of the h-BN substrate. The parametrization could be used, then, in large scale calculations

within TB to study larger systems than those allowed with DFT. Although the substrate

induced potential is not the only important e�ect in the moir�e superlattices, it is a good

starting point to model graphene over h-BN. Other parameters, like β{σ hybridizations due

to curvature, or hopping renormalizations could also be obtained from DFT data.
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CHAPTER 4

Transport in moiré patterns

4.1 Introduction

The low-energy physics of graphene has drawn attention since its discovery. [6,9] In presence

of electron-hole puddles (produced by screened trapped charges), the electronic conductivity

exhibits an almost temperature independent minimum at the Dirac point which contradicts

the scaling theory of localization in two-dimensional systems. [170] This theory establishes a

dependence between the conductance and the size of the system in disordered systems, and

for two-dimension (2D) excludes a metallic state. [171] Although h-BN couples only weakly

to graphene, the 1.8% lattice mismatch between them, and any rotational orientation of

their lattices give rise to moir�e patterns that have been observed by scanning tunnelling

microscopy (STM). [58,61] The presence of these patterns suggests that h-BN generates a

superimposed periodic potential on graphene, signi�cantly modifying its electronic spec-

trum, as evidenced by the formation of two electron-hole symmetric high-energy secondary

Dirac points. [138] These superlattice features have been observed as dips in the density of

states (DOS) with scanning tunnelling spectroscopy (STS), revealed in both atomic scale

spectroscopic (STS) measurements [61] and as peaks in the resistivity in mesoscopic trans-

port measurements. [62–64,172] These same measurements revealed the fractal spectrum that

arises in presence of an external magnetic �eld: the Hofstadter butter
y. [158] The zero-�eld

resistivity �ngerprints of those secondary Dirac points remain however elusive, varying sig-

ni�cantly from sample to sample, with values ranging from a few k
 to about 15 k
. The
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4.2. Tight binding model for moir�e superlattices

ratio between primary and secondary Dirac point resistivity is also not understood, sample-

dependent, and the e�ects of disorder induced localization e�ects have not been studied.

Anderson localization can emerge in strongly disordered systems where charge carriers are

trapped by the highly scattering medium, and the only allowed di�usion is via quantum

jumps. [173] The conditions that induce this type of localization have been studied in graphene

and graphene nanoribbons. [174] The model is based on a random distribution of impurities

4.2 Tight binding model for moir�e superlattices

The e�ect from a substrate of h-BN is represented by adding superlattice terms to the

Hamiltonian. One very important term for the construction of an e�ective Hamiltonian is

a modulated potential that has the same periodicity of the moir�e. In general, this poten-

tial has two components: a symmetric and an antisymmetric part with respect to sublat-

tice sites (see Equation 3.6). Both parts are related to the formation of new Dirac points

and renormalization of the Fermi velocity (vF), [137,138,152,156] while the antisymmetric part

has the additional e�ect of opening local gaps, [139] and breaking degeneracies in the band

structure, [152] which cause the appearance of dips in the DOS. The symmetric part can be

considered as additional disorder and, for simplicity, only the antisymmetric potential is

considered here.

The moir�e potential can be included in the Hamiltonian as a mass term:

Ĥ =
X
�

�
"0 + 1

2π��

�
j�i h�j+ 
0

X
h�;�i

j�i h�j ; (4.1)

where j�i represents localized orbitals, "0 is the on-site energy (taken as zero), 
0 = 2:7

eV is the hopping parameter and π = 1 (π = �1) for A (B) sublattice. �� is the moir�e

potential, which is considered to have the simple form proposed by Sachs et al.: [139]

�� = A sin

�
2βx�
γ

+ λ1

�
+B sin

�
2βy�
γ

+ λ2

�
+ C; (4.2)

where x� and y� are the components of the position of orbital j�i, considered to be along

the lattice vectors of the supercell and γ is the wavelength of the moir�e. The parameters

A and B are the amplitudes of the potential, and C is the average value of the modulated

mass term and is related to the band gap width of the system. The parameters λ1 and λ2

represent phases related to the relative displacement of graphene and h-BN layers and have

no important in
uence in the modelling of the moir�e superlattices.
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Figure 4.1: (a) Amplitudes of �� taken as A + B, as a function of the moir�e wavelength.
Black circles correspond to DFT local energies. Red circle represents the value for the largest
moir�e (� 13:5 nm) given in Ref. [139], and the blue circle is this same value multiplied by 3.
Dotted green line is a power law �tting with y = 43:5x0:56. (b) DOS computed from the TB
model including the moir�e potential. The values of the amplitude are those of the original
paper [139] (red line) and with a threefold magni�cation (blue line). The �lled grey curve
represents the DOS for pristine graphene. (c) DOS from DFT considering λ = 11�, and
reducing the interlayer distance by 0 �A (black), 0.2 �A (red) and 0.4 �A (blue), with respect
to the equilibrium distance.

In chapter 3, moir�es with di�erent wavelengths were considered using DFT. The wavelengths

of the moir�es are de�ned by the rotation angle between graphene and h-BN (λ), and the

lattice mismatch (� = a0=aBN � 1, a0 and aBN are graphene and h-BN lattice constants,

respectively). In order to obtain an energy landscape of the moir�e patterns, local atomic

energies were obtained for systems with twist angles of 5�, 7�, 11� and 21�. From these

landscapes, the amplitudes of the potential were extracted �nding that the strength of the

potential is wavelength-dependent. The amplitudes obtained are shown in Table 4.1 and

plotted in Figure 4.1(a). The value of C is found to be very small, and therefore taken

as C = 0 unless stated otherwise. As the wavelength increases, the interlayer coupling

increases resulting in stronger potentials, and the amplitude easily becomes larger than

previously reported. [139]

Secondary Dirac points are more easily accessible by gating when they occur at energies

close to the Fermi energy, EF. Since the position in energy of these secondary Dirac points

(Edip) is angle dependent, increasing with larger angles, it is better to focus on the transport

properties of the graphene/h-BN structure with the largest possible moir�e periodicity, i.e.

when λ = 0�, which has a wavelength of � 13:5 nm. This system is out of reach for

�rst principles simulations since it represents a structure with around 12,000 atoms. For

this system, Sachs et al. [139] proposed the values A = 18:6 meV and B = 42 meV, which

were obtained from DFT calculations considering a single cell of graphene on top of h-BN

with di�erent stacking con�gurations. The supercell potential from DFT local energies,

calculated in the previous chapter, shows that the amplitudes are larger even for the system

with λ = 5�, which is considerably smaller than that with λ = 0�. Using a power law
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Table 4.1: Potential strength obtained from a �t of the DFT local energies of systems with
di�erent twist angles.

Angle (�) A (meV) B (meV)

22 17 14

11 28 25

7 34 34

5 39 39

�tting, the amplitudes of the system with λ = 0� are estimated to have a strength of the

modulated mass term three times larger than the amplitudes in Ref. [139] (see Figure 4.1(a)).

To better contrast the superlattice potential e�ects with experimental transport data, the

values A = 56 meV and B = 126 meV are hence used in the TB model. Notice that in STM

measurements, the tip can induce a compressive strain, which is found to increase the e�ect

of the superlattice potential, as shown in Figure 4.1(c). Here, the DFT DOS is calculated

for a moir�e with λ = 11�. As the interlayer distance is reduced, the dips become deeper and

the van Hoove singularities around the dips more pronounced. A reduction in vF due to the

enhancement of the substrate potential, leads to a shift in energy of the position of the dips,

becoming closer to EF. Additionally, the potential becomes stronger due to encapsulation of

graphene within h-BN layers, as explained in chapter 3 (see Figure 3.12(a)). Such variability

in the values of A and B translates into changes in the depth of the dips in the DOS related

to the secondary Dirac points, which is demonstrated in Figure 4.1(b).

4.3 Computational methodology

Transport calculations are done following the Kubo-Greenwood formalism using a real-space

implementation that has been validated for disordered graphene calculations. [174,175] The

quantum wave packet dynamics and Kubo conductivity are calculated using the order N

Lanczos approach. [125,174–176]. The DC-conductivity σ(E; t) for energy E and time t is given

by

σ(E; t) = e2α(E)�X2(E; t)=t; (4.3)

where e is the electron charge, α(E) is the DOS and �X2(E; t) is the mean quadratic

displacement of the wave packet at energy E and time t, given by

�X2(E; t) =
Tr
�
�(E � Ĥ)jX̂(t)� X̂(0)j2

�
Tr[�(E � Ĥ)]

: (4.4)

A key quantity in the analysis of the transport properties is the di�usion coe�cientD(E; t) =

�X2(E; t)=t. D(E; t) exhibits di�erent regimes depending on the nature of the studied
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system. In the di�usive regime, a transition from a short-time ballistic motion to a saturation

regime occurs, giving a maximum in D(E; t). The mean free path, `e, is extracted from

`e(E) =
Dmax(E)

2v(E)
; (4.5)

where v(E) is the initial velocity of the wave packet derived at short times. The maximum

of the di�usion coe�cient, Dmax(E), can also be obtained in systems that present localized

regimes, in contrast to ballistic systems, where no maximum is found. In the localized

regime, contributions from quantum interferences are evidenced by a time-dependent decay

of D(E; t) for long elapsed times. The semi-classical conductivity is given by

σsc =
1

2
e2α(E)Dmax(E); (4.6)

and the semi-classical resistivity Rsc = 1=σsc(E). The spin degree of freedom is included as a

factor of two for σ and α. The length of the moir�e superlattice is taken to be 55a0 = 13:5 nm.

The entire simulation system considered is constructed by repeating the moir�e cell 60 times

in each direction, which gives a total of 21,780,000 atoms, and a length of the simulation

cell lattice vector of � 812 nm. The energy resolution of the di�erent quantities calculated

is 0.54 meV. The number of recursion steps used in the Lanczos method is 4,000, while the

number of Chebyshev polynomials to represent the time evolution operator is 110.

To represent the disorder in the graphene sample, an additional random modulation of the

potential pro�le is introduced on top of the above described TB model by taking on-site

energies at random within [�W
0=2;W
0=2], a common model for short range scattering

potentials. [170,177] A strength of W = 0:5 is considered for Anderson disorder. The Gaussian

potential is de�ned by a chosen density of Coulomb impurities (0:125%) and a long range

scattering potential, following commonly used parameters to mimic screened charges trapped

in the substrate. [175,178–181] The contributions from NI impurities randomly distributed at

positions ri is given by renormalized on-site energies at orbital � with

"� =

NIX
i=1

�ie
� |rα−ri|

2

2ξ2 ; (4.7)

where π = 0:426 nm, de�nes the e�ective potential range, while �i are chosen at random

within [�W
0=2;W
0=2], with W monitoring the total disorder strength. Two represen-

tative values, W = 1 and W = 2, are chosen to introduce weak and strong intervalley

scattering, respectively. The results presented are obtained by averaging over six di�erent

random con�gurations, both for Anderson disorder and Gaussian impurities. Note that the

energy scales for the disorder considering the Anderson model (�0.67 eV) and the Gaussian

model (2.7 eV) are much larger than the modulation of the symmetric part of the moir�e
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potential V (r) in Equation 3.6 (34 meV, for 5�), which can therefore be neglected as an

additional long-range and sublattice-symmetric contribution. The same criterion cannot be

applied to the antisymmetric part, since its e�ect is not hidden except for very large values

of W , as shown below.

4.4 Mean free path

Figure 4.2 compares the mean free paths computed for graphene on top of h-BN and without

the moir�e potential, both with superimposed short range Anderson (a) and long range

Gaussian disorder potentials (b). The mean free paths, in both types of disorder, are

generally lower in presence of the moir�e potential, being this more clearly seen away from

EF. Peaks can be observed at energies �Edip, with a more prominent amplitude in the case

of short range disorder, becoming even larger than in the case without the h-BN potential.

Notice that for most of the chosen disorder parameters, localization e�ects remain extremely

weak, as evidenced by a saturation behaviour of the di�usion coe�cient shown in the inset

of Figure 4.2(a) for the case of Anderson disorder. For the Gaussian disorder with W = 1,

the di�usion remains ballistic for E = 0 and di�usive for E = Edip (see Figure 4.5(b)).

For a stronger disorder, an almost energy-independent `e(E) � 10 nm is obtained as seen

in Figure 4.2(b) for Gaussian impurities and W = 2. For such disorder strength, as seen

in the inset of Figure 4.2(b), the di�usion coe�cient shows strong decay after reaching its

maximum value, pinpointing the emergence of quantum interferences.

For 2D systems, it is expected a localized behaviour to emerge at long enough length

scales. [182] Even for small disorder, the perturbative localization length is estimated as

πloc ' `e exp(βσsc=G0), [174,182] where G0 is the conductance quantum. For the moir�e su-

perlattices with low enough disorder, the transport regime at the secondary Dirac points

as well as at the primary Dirac point remain far from a strong insulating regime given the

large values of the `e(E) 2 [80 nm; 1 εm]. The estimations suggest localization lengths of

several microns. Therefore, a description of the temperature-dependent conductivity within

the Mott's variable-range hopping model is limited to very small temperatures. [183]

4.5 Resistivity

The corresponding behaviours of the semi-classical resistivity are reported in Figure 4.3.

The changes of the mean free path in the vicinity of the high-energy Dirac points are

transformed into a reinforcement of the resistivity, which stems from the strongly reduced

DOS. In addition to the standard zero-energy peak of the longitudinal resistivity, two satellite
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Figure 4.2: Mean free path for disordered graphene without (dotted blue) and including the
moir�e potential ��. (a) Case with Anderson disorder for W = 0:5 (solid black), and (b)
Gaussian long range disorder for W = 1 (solid black) and W = 2 (solid green). Rescaled
DOS are shown as dashed red lines. Inset (a): D(E = 0; t) (black circles) and D(E = Edip; t)
(red squares) for Anderson disorder with moir�e potential (�lled) and without moir�e potential
(empty). Inset (b) : D(E = 0; t) (black circles) and D(E = Edip; t) (red squares) for the
case W = 2. The dashed lines correspond to the maximum di�usion for each case.
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Figure 4.3: Resistivity with (solid black) and without (dotted blue) moir�e potential. (a)
Case with Anderson disorder (W = 0:5). (b) Case with Gaussian potential (W = 1). The
rescaled DOS is shown for comparison (dashed red). Inset (b): Resistivity for the case
W = 2 using the semiclassical expression (dashed) and the quantum resistivity at time
t = 10 ps (solid).

resistivity peaks are formed in presence of the substrate-induced moir�e potential, in clear

agreement with experimental results. [62–64]

The satellite resistivity peaks remain therefore observable as long as quantum interferences

are negligible, whereas the emergence of localization e�ects is concomitant to the vanishing

of transport signatures of the secondary Dirac points. This can be seen when varying the

disorder strength from W = 1 to W = 2. For W = 2, as seen in the inset of Figure 4.2(b),

the di�usion coe�cient exhibits a marked time-dependent decay after initial saturation,

evidencing the signi�cant contribution of quantum interferences induced by intervalley scat-

tering. [184] The corresponding resistivities reported in the inset of Figure 4.3(b), show no

traces of secondary Dirac point, but an increasing resistivity with enhancement of coherent

localization e�ects (dashed line gives Rsc whereas solid lines denotes the quantum resistivity

computed at a length scale longer than `e, that is including localization contribution).

An increase in disorder translates into a degradation of the moir�e �ngerprints in the re-

sistivity close to the secondary Dirac points. Eventually, the dips in the DOS can not be

seen for both, Anderson and Gaussian disorders, as shown in Figure Figure 4.4(a) and (b),

respectively. This enhancement of disorder brings reinforcement of quantum interferences
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and localization e�ect. For Anderson disorder (Figure 4.4(a)), it can be seen a shift in Edip,

coming from the reduction of vF as the disorder increases. In Figure 4.4(c) the resistivity is

plotted for di�erent values of W considering Gaussian disorder. The enhancement of the re-

sistivity comes with a broadening of the principal peak that eventually eclipses the features

at the dip energies. Figure 4.4(d) shows the quantum resistivity for short and long times.

The time of 1 ps corresponds to the maximum of the di�usion coe�cient at the main Dirac

point. At this energy the resistivity increases for long times due to quantum interferences,

while at the energy of the secondary peaks the quantum e�ects are not important.

To address the dependence of the results with the strength of the potential, parameters that

correspond to a weaker mass term modulation (A+B = 80 meV) are also considered. The

resistivity considering these parameters is shown in Figure 4.4(e) (red line). The e�ect of

the moir�e potential is still notorious even with these smaller amplitudes. The intensity of

the resistivity peak at the main Dirac point is comparable to that of the secondary peaks.

Although the �ngerprints remain, the values for the peaks in the resistivity are smaller to

those reported experimentally. [63,64,172]

4.6 E�ect of a band gap

The possible formation of a band gap is a debated issue, both experimentally and theo-

retically. Although, Hunt et. al. [62] reported transport measurements in moir�e patterns of

graphene on h-BN with small twist angles that suggest an angle-dependent band gap open-

ing of up to 30 meV, the work by Ponomarenko et al. [64] does not support the idea of band

gaps induced by the superlattice potential.

In absence of many-body corrections, commensurate layers are predicted to exhibit large

band gaps due to AB sublattice symmetry breaking, in the order of 30 meV. [129] On the

other hand, in the incommensurate case the gap is found to be considerably small. [139,155]

As discussed in the previous chapter, DFT calculations for the moir�e patterns studied do

not show traces of any signi�cant gap opening due to the underlaying h-BN monolayer. The

contribution of many-body e�ects reinforces the formation of a wider band gap in single

cell systems, which has been extrapolated to larger supercells. [136] More work is needed to

con�rm the global modi�cations of the graphene band structure in presence of the moir�e

potential and accounting for many-body corrections (such as those which go beyond standard

DFT, including the GW corrections), although the computational cost of such calculations

makes this unfeasible at this time for large moir�e supercells. Another explanation to the

gaps observed experimentally, are lattice distortions in graphene, [133–135] arising from a

55



4.6. E�ect of a band gap

-0.2 -0.1 0 0.1 0.2
Energy (eV)

0

2

4

6

8

10

12

R
es

is
ti

vi
ty

 (
kΩ

)

W=1.0
W=1.5
W=2.0

-0.2 -0.1 0 0.1 0.2
Energy (eV)

0

5

10

15

R
es

is
ti

vi
ty

 (
kΩ

)

t=10 ps
t=1 ps

W=1.5

-0.2 -0.1 0 0.1 0.2
Energy (eV)

0

0.5

1

1.5

2

2.5

3

R
es

is
ti

vi
ty

 (
k
Ω

)

(a) (b)

(c)

-0.2 -0.1 0 0.1 0.2
Energy (eV)

0

0.5

1

D
.O

.S
.

W=0.5
W=1.0
W=1.5

-0.2 -0.1 0 0.1 0.2
Energy (eV)

0

0.5

1

D
.O

.S
.

W=1.0
W=1.5
W=2.0

(d) (e)

Figure 4.4: (a) DOS for the case with Anderson disorder, considering di�erent strengths
of the disorder: W = 0:5 (black), 1.0 (red) and 1.5 (blue). (b) DOS for the Gaussian
potential, with values of the disorder strength of W = 1:0 (black), 1.5 (red) and 2.0 (blue).
Dashed lines are the DOS for disordered graphene without the moir�e potential. (c) Semi-
classical resistivity considering Gaussian long range potential with W = 1 (dashed blue),
W = 1:5 (solid red) and W = 2 (dotted black). (d) Kubo conductivity at t = 1 ps (red)
and t = 10 ps (black), with Gaussian disorder and W = 1:5. (e) Semi-classical resistivity
considering Gaussian long range potential with W = 1. Dotted blue corresponds to the case
without moir�e. Solid red line is the resistivity using the original values of the potential from
Ref. [139], while solid black is the system with values of the amplitude three times larger.
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Figure 4.5: (a) Semi-classical resistivity with Gaussian long range potential for W = 1, and
considering C = 0 meV (red) and C = 30 meV (black). (b) Diffusion coefficients for gapped
(black) and ungapped (red) systems for energies E = 0 (circles) and E = Edip (squares).

competition between elastic and adhesion energies, becoming more important in systems

with small misalignment angles (< 1◦).

Within the model of modulated potential used here, the parameter C is responsible for the

gap opening. To explore the consequences of a small gap in graphene under the moiŕe poten-

tial induced by h-BN, a finite value for C of 30 meV is considered. As seen in Figure 4.5(a),

the opening of a gap primarily affects the principal peak at the Dirac point, increasing the

resistivity around this energy by one order of magnitude, while the features around the

secondary resistivity peaks remain mostly unchanged. In Figure 4.5(b) the diffusion coeffi-

cients for systems with and without a gap are shown. At the main Dirac point, the diffusion

changes from the ballistic regime to the diffusive regime as an effect of the finite gap. On the

other hand, the diffusion coefficients at the energy of the dips remains the same if non-zero

values of C are considered.

4.7 Effect of a magnetic field

The effect that a static magnetic field has in graphene on top of h-BN is discussed in the

following. A magnetic field perpendicular to the plane of graphene is applied and varied up

to ∼12 T. The DOS at each value of the magnetic field is calculated. The obtained spectra

are shown in Figure 4.6. The usual Landau levels from graphene are clearly observed.

Additionally to these Landau level, more features appear due to the effect of the substrate

potential. It can be distinguished four additional sets of lines, two in the valence band,

and two in the conduction band, represented as red and green line in Figure 4.6(f). The

sets above and below EF are symmetric, and we focus in the part of the spectrum below
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the Fermi level (Figure 4.6(b) and (d)). The red line in Figure 4.6(f) represents gaps that

correspond to the dip in the DOS at zero �eld. This gap is split and has a linear dependence

with the magnetic �eld. The green lines are originated from Van Hove singularities close

to the dip at zero �eld. Their dependence with the magnetic �eld is also linear. Massless

relativistic particles under the e�ect of a magnetic �elds have an energy dependence that

is quadratic, as observed for the main Landau levels of graphene. On the other hand,

features in the spectrum coming from the substrate potential, do not behave as massless

Dirac fermions. This is evidence that gaps opening at non-zero energies, has to be described

as non-relativistic (Schr•odinger) particles.

The e�ect of disorder is also considered by adding to the on-site energies the e�ect of long

range Gaussian potential, with a strength of W = 1. As in the case of the DOS at zero �eld,

the features of the superlattice potential are blurred and for strong disorders it is expected

that the �ngerprints of the moir�e pattern are completely erased.

4.8 Conclusion

Fundamental transport features in graphene induced by a Moir�e superlattice potential have

been unravelled. At the energy of the superlattice (secondary) Dirac points, an increase

of both the mean free paths and resistivity has been obtained, con�rming experimental

data but also quantifying the role of superimposed disorder in tuning the relative resistivity

between primary and secondary Dirac points. The long localization lengths deduced from the

mean free path indicate a modest contribution of quantum interferences and weak intervalley

scattering. In contrast, whenever static disorder leads to mean free paths in the order of

10 nanometers, sizable quantum interferences develop and jeopardize the identi�cation of

satellite resistivity peaks.
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(c) (d)
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Figure 4.6: Hofstadter butter
ies spectrum of moir�e superlattice under the e�ect of a mag-
netic �eld for di�erent values of the intensity of the potential. (a) and (b) A+B = 60 meV.
(c)-(e) A+B = 180 meV. (b) and (d) are zoom in to the zone of the dip in the conduction
band of (a) and (c), respectively. In (e), besides the moir�e potential, Gaussian disorder
with W = 1:0 is included.(f) Schematic representation of the features in the spectrum.
Black lines: relativistic Landau levels from graphene. Red lines: gaps from the superlattice
potential. Green lines: Landau levels from the superlattice potential.
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CHAPTER 5

Tight binding model for coplanar hybrids

5.1 Introduction

The intrinsic properties of graphene make it a promising material for technological appli-

cations in electronics. [185] In order to use graphene as the principal component in devices

traditionally fabricated with semiconductors, the semimetallic condition of graphene must

be lifted. There are several forms to induce a gap, from which superlattice patterning [50,53]

and dimensional con�nation [186,187] are some examples. Etching techniques are a com-

mon strategie to design antidot superlattices and nanoribbons (NR) to induce a gap in

graphene. [188–191] The threshold for the resolution in these techniques is the design of fea-

tures as small as �10 nm. Patterning graphene in a smaller scale is di�cult with this

approach and even if it becomes possible in the future, the obtained structures would be

mechanically unstable and di�cult to manipulate.

Another method to open a gap is to embed graphene into another supporting material.

Graphene and h-BN have very similar lattice parameters (2.46 �A for graphene and 2.50 �A

for h-BN) making them compatible for the synthesis of heterostructures. In recent years,

the improvement of growth techniques, principally by chemical vapour deposition (CVD),

has allowed the synthesis of coplanar hybrid sheets of graphene and h-BN. [98–100,103,104]

Remarkably, using this same technique, graphene NR (GNR) can be obtained embedded

in a BC2N alloy, with widths of the ribbons of �5 �A. [106] Theoretically, graphene/h-BN

hybrid systems have probed to be capable of tuning the gap of graphene, becoming larger
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as the concentration of BN increases. [92,94,192] Also, it has been found that the properties

of these hybrids depend on the geometry of the interfaces. For triangular domains of h-BN

on graphene, the system becomes metallic, as this geometry introduces holes or electrons,

depending on whether B or N are in excess. [92,93] The e�ect of doping comes with the

appearance of partially �lled bands that can give rise to magnetic ordering at the interface

C atoms. [92,93]

Interfacial e�ects have a primal role in graphene/h-BN heterostructures. The modelling of

such systems is important to understand and explore the properties that arise with di�erent

concentrations and geometries. Since the characteristics of these hybrids are sensitive to

interface termination, a suitable theoretical model to describe all the cases is valuable.

The objective of this chapter is to get a tight binding (TB) model capable of describing in-

plane interfaces between graphene and h-BN. To understand the phenomena that take place

in these interfaces, the properties of edge states in GNR and boron nitride NR (BNNR)

are �rst revised in section 5.2. The form of the TB Hamiltonian and how to obtain it from

DFT calculations is then discussed in sections 5.3 and 5.4. In section 5.5, a TB model for

pristine graphene and h-BN is obtained, while in section 5.6 the model is extended to hybrid

systems, studying several cases of these systems.

5.2 Edge states in graphene and h-BN nanoribbons

Just as in bulk materials the presence of surfaces is unavoidable (as in�nite crystals do not

exist), in two-dimensional (2D) materials, the appearance of edges is inevitable and at the

nanoscale the properties of these edges can become dominant over the whole structure. In

honeycomb lattices, the basic shapes of the edges are zigzag and armchair, depending on

the crystallographic direction of the edge. As shown in Figure 5.1(a), the direction of zigzag

edges is aZ = �a1 + a2, and that of armchair edges is aA = a1 + a2 . All other edge shapes,

referred as chiral edges, can be modelled as a combination of zigzag and armchair edges.

Therefore, by studying the basic types of edges we expect to be able to make a generalisation

for any other shape.

If the dimension of the layer is reduced to a one-dimensional (1D) system, by further cutting

the layers exposing two edges, nanoribbons are obtained. In Figure 5.1(b) NR with the two

basic edge shapes are shown. The lowering of dimensionality comes with the appearance

of new properties mostly determined by the kind of termination of the edges, which can

become dominant over the properties of the inner part of the layer when the thickness of

the ribbon is su�ciently small. Hence, an important structural parameter is the width of
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Figure 5.1: (a) Unit cells of an hexagonal lattice in real (left) and reciprocal (right) space.
Blue arrows represent lattice vectors and red arrows are the directions of periodicity of
zigzag (aZ;a

�
Z) and armchair (aA;a

�
A) ribbons. (b) Schematic of NR with zigzag (left) and

armchair (right) edges. The parameter n refers to the number of chains in the ribbon. The
unit cells are marked with a green dashed box, and the lattice vectors with red arrows.

the ribbon, characterised by the number n of dimers that form the chains of atoms (see

Figure 5.1(b)).

The Brillouin zone (BZ) of the NR is de�ned by the 1D reciprocal vector, whose orientation

is determined by the edge type. In Figure 5.1(a), the real space unit cell and the �rst BZ of

an hexagonal lattice are shown. For armchair ribbons, the reciprocal lattice vector (a�A) is

in the direction of the M point. In the case of zigzag ribbons, the reciprocal lattice vector

(a�Z) is in the direction of the K point.

Unlike CNT, where there are families of metallic and semiconductor tubes depending on the

chiral direction, [186] GNR lose the semimetallic character and are all semiconductors. [187,193,194]

The dependence of the gap with the width of the ribbon varies with the edge type. For

armchair GNR (AGNR) three families can be distinguished with di�erent width depen-

dences. [187] As seen in Figure 5.2(a), the families are sorted depending on n: the gap is

smallest for ribbons satisfying n = 3p+2, p a positive integer; becomes larger for the n = 3p

family; and is largest when n = 3p + 1. As p increases, independently of the family, the

gap tends to zero corresponding to the limit of semimetallic graphene. For zigzag GNR

(ZGNR), the gaps are smaller than AGNR and also tend to zero for wider ribbons, as shown

in Figure 5.2(b). Even though the K point of graphene is in the Γ{X path of ZGNR,

with X = aZ=2, the semimetallic character is lost by electron-electron interaction at the

63



5.2. Edge states in graphene and h-BN nanoribbons

edges, leading to a gap opening and the appearance of magnetic coupled states between the

edges. [187,195,196] The band structure of a ZGNR with n = 8 is shown in Figure 5.2(d). The

bands are all spin-degenerated though edge states for each spin are spatially separated at

each edge. The magnetic ground state, shown in Figure 5.2(c), is antiferromagnetic where

spins at each edge have the same alignment but with antiparallel orientation between edges.

When applying an in-plane homogeneous electric �eld E , as the one shown in Figure 5.2(c),

the resulting potential di�erence (�V = EwZ) across the ribbon shifts the bands near the

Fermi level (EF) The e�ect of this shift is shown schematically in Figure 5.2(e) (yellow

arrows). The right edge (�-spin occupied) is shifted to lower energies, since the potential

is negative in that zone. In the same manner, the left edge (�-spin occupied) is shifted to

higher energies. The result is a gap opening of the �-spin band while the gap of the �-spin

band decreases. For su�ciently strong electric �eld, the unoccupied �-spin band, located at

the right edge, starts to populate with electrons completely closing the gap for one of the

spins (�), while for the other (�) the bands remains as a semiconductor. [197] This peculiar

behaviour is known as half-metallicity, and has an important role in spin-based electronics,

or spintronics, [198] making GNR potentially useful for new devices and applications.

In h-BN NR (BNNR), besides the edge states of the ribbons, the polarization plays an

important role. In Appendix B, expressions for the formal bulk polarization, Pbulk, are

introduced. Taking electrons as point charges located at their corresponding Wannier centres

(see Appendix A for an introduction to Wannier functions), it is possible to de�ne a set of

Wannier ions, [120] from the nominal valence charge placed at the positions of each ionic core

within the crystal. Considering this for h-BN, the charge of B is +3e, and that of N is �3e.

Pbulk is a multivalued quantity, since there are in�nite many choices for the unit cell and

the basis of atoms. In Figure 5.3(a), three di�erent unit cells for h-BN are shown, and their

corresponding values of polarization are presented in Figure 5.3(b). In presence of edges,

the bound charge is calculated as σb = Pbulk � n̂, where n̂ is a vector normal to the edge,

and Pbulk is calculated taking a conveniently chosen unit cell. For the cell used in zigzag

BNNR (ZBNNR), shown in Figure 5.3(c), the polarization is Pbulk = e=a0(
p

3; 1), where a0

is the lattice constant. This type of ribbons have the edges terminated with di�erent species,

one with B and the other with N. Thus, the bound charge has opposite signs at each edge,

with values σb = �1e=a0. In the case of armchair BNNR (ABNNR), Pbulk = e=a0(0;�2),

and the edge is perpendicular to the polarization, as shown in Figure 5.3(d), resulting in a

non-polar edge.

ZBNNR can present metallic states if bare edges are considered. [199–201] This give raise

to magnetic ordering at the edges, with the ground state, shown in Figure 5.3(e), being

antiferromagnetic at the B edge, and ferromagnetic at the N edge. [200–202] The metallicity

disappears by passivating the edges, becoming insulators with a decreasing gap for wider
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Figure 5.2: (a) Band gaps for AGNR with di�erent widths wA = na0=2, using TB and DFT.
(b) Band gaps for ZGNR using DFT, with widths wZ =

p
3na0=2. Data in (a) and (b) taken

from Ref. [187]. (c) Magnetic ground state for ZGNR. Red arrows denote �-spin localized
edge states, while blue arrows denote the same for �-spin. The yellow arrow indicate the
direction of the in-plane electric �eld E . (d) Band structure of a ZGNR with n = 8. (e)
Schematic partial DOS for the left (L) and right (R) edges in (c), with red zones denoting
�-spin only states, blue zones �-spin only states, and black zones spin degenerated states.
The cases with E = 0 (left panel) and E 6= 0 (right panel) are presented.
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Figure 5.3: (a) h-BN lattice with three equivalent unit cells. Blue atoms represent N,
while orange atoms represent B. (b) Polarizations corresponding to different choices of unit
cells. The colour of each diamonds representing the polarization vectors corresponds with
the colour of the unit cells in (a). (c) and (d), schematic showing zigzag and armchair
edges, respectively, with the yellow arrows denoting the bulk polarization. The green lines
are parallel to the edges in each case, and the vector n̂ is normal to the edge. In (c), σb
represents the bound charge at the edges. (e) Magnetic ground state of ZBNNR with bare
edges. Red arrows denote α -spin localized edge states, while blue arrows denote the same
for β-spin. (f) Band structure of a ZBNNR with n = 8. (g) Electronic gap of BNNR. Black
circles correspond to ABNNR, and red squares to ZBNNR. Dashed blue lines denote the
gap at the K point (EK

g ) and at the M point (EM
g ) for pristine h-BN. Data taken from

Ref. [204].

ribbons. [203� 205] As shown in Figure 5.3(f), the highest valence band of ZBNNR is composed

of π -orbitals from edge N atoms, and the lowest conduction band comes from π∗-orbitals

of edge B atoms. According to DFT calculations, the gap can become even smaller to the

one in h-BN sheets (denoted as EK
g in Figure 5.3(g)). To compensate the bound charges

present at the edges of ZBNNR a charge transfer from the N edge to the B edge lowers

the conduction band (localised at the B edge) and raises the valence band (localised at the

N edge) decreasing the gap. The potential generated by the bound charges at the edges

can be modelled as an exponential function that decays far from the edges. [205] In the case

of ABNNR, for wide ribbons, the gap approaches EM
g , the gap of a h-BN layer at the M

point, [203,204] which corresponds to the direction of periodicity of armchair edges.

With these different characteristics for graphene and BN NRs, heterostructures made from

both materials can present varied interfacial effects. Planar hybrid systems share many

properties with NT made of B-C-N, that were theoretically studied in the 1990’ s. [77,206� 208]

In NT with highly homogeneous BC2N mixing, the electronic properties depend not only
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Chapter 5. Tight binding model for coplanar hybrids

on the amount of C and BN, but in the structural atomic arrangement, with the most

stable structures being semiconductors. [77,207] In phase separated NT, the gap is mainly

determined by the amount of C, since states around EF are mostly localized in the C part,

and to a lesser but not negligible extent, in the �rst rings of the BN part. [208] More recently,

the electronic and magnetic properties of these hybrids have been studied in more detail,

�nding that these systems can be semimetallic, [87,88] half-metallic [89], and present magnetic

states at the interfaces. [86]

Very similar behaviour is found when joining GNR and BNNR to form hybrid 1D ribbons.

The orbitals of C atoms at the interface mix with either B or N, forming hybridized β

and β� bands, [209] changing the character of valence and conduction bands near EF. In

armchair junctions, the band gap changes with respect to AGNR, resulting in larger gaps

for the n = 3p + 2 family (which has the smallest gaps in AGNR) due to the interfacial

charge reconstruction, which changes the potential near edge atoms. [210] For zigzag hybrid

NR, the e�ect of the interface can lead to semiconductor, half-metallic and metallic band

structures. [211,212] This same features are present in 2D systems of periodically repeated

strips of graphene and BN, where half-semimetallicity and gap opening have also been

found. [90–92,94]

In zigzag interfaces, the gap of the hybrid system will depend on the widths of both,

graphene and BN, becoming smaller for wider ribbons (with a more important contribu-

tion of graphene to the closing of the gap, since its gaps decay to zero more quickly than

in ZBNNR). Being ZBNNR polar, and ZGNR non-polar, there is a polar discontinuity at

the interface, which gives an excess interfacial bound charge that can be calculated by the

interface theorem, formulated by Vanderbilt and King-Smith, [119,213] which states that

(P1 �P2) � n̂ = σb: (5.1)

As graphene has inversion symmetry, the bulk polarization is taken as zero. Thus, the

bound charge at the interface is σint = �e=a0, being positive at the C-B interface, and

negative at the C-N edge. This form of determining the interface charge of coplanar hybrids

of polar compounds with hexagonal lattice has been used previously, showing that at the

zigzag edges, there forms a one-dimensional electron/hole gas. [214] Mobile electrons from

ZGNR will tend to screen this excess charge at the interface, by transferring electrons from

one edge to the other, changing the potential pro�le across the ribbon, which produce and

e�ective electric �eld capable of induce half-metallicity when it is strong enough to produce

a Zener-like breakdown. For wider ZGNR, the gap is so small for both spins that it is very

easy to close it in the hybrid systems, becoming metallic. [91]
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5.3 Model Hamiltonian

The DFT description of hybrid graphene/BN systems provides an accurate picture of the

physics inside the metal/semiconductor junction obtained. The counterpart is the required

computational cost which limits the size of systems that can be studied to a few hundred

atoms. This is an issue when attempting to simulate the systems observed experimentally,

where large samples are grown, and the e�ects of disorder, grain boundaries and random

distribution of features like electron puddles or interfaces are important. For these large

systems, simpler models are useful. The TB model is capable of such simple representation

preserving the fundamental behaviour of the heterostructures by including the appropriate

parametrization.

The electronic properties of graphene are described correctly with very simple TB models,

reproducing faithfully many properties like the linear dispersion at the K point. [5,8,215,216]

Graphene has four valence electrons, three of which form tight σ-bonds which lie far below

the Fermi level. The fourth electron forms the β-bonds that mostly determine the electronic

behaviour of the system. [8] A simple model with one β (bonding) and one β� (anti-bonding)

bands per unit cell gives a good representation for graphene. The elements of the model

Hamiltonian matrix take this form:

H�� = "�0��� +
X
R



(rαβ)
�� eik�rαβ ; (5.2)

where the �rst term stands for the on-site energy of orbital j�i, and the second term rep-

resents the electron hopping between orbital j�i at position r�, and orbital j�i at position

r�+T, being r�� = r��(r�+T) the distance between both orbitals, and T a lattice vector.

This same model can be used for h-BN by using two di�erent on-site energies "�0 for the

sublattice A and B sites. [217] Many systems have been studied using this simple TB, bilayer

graphene [218–220], h-BN bilayers [221] and graphene on top of h-BN. [130,222]

The parameter 
�� in Equation 5.2 is the hopping integral which re
ects the interactions

between di�erent atomic orbitals. An accurate description for both, graphene and h-BN,

can be obtained by including up to third-nearest-neighbour interactions, thus, the parameter



(rαβ)
�� can take the values 


(0)
�� , 


(1)
�� and 


(2)
�� , which represent �rst-, second- and third-nearest

neighbour hoppings, respectively, and all other interactions are neglected. The di�erent

hoppings are shown schematically in Figure 5.4. If only low energy electronic levels are

required (close to EF), then longer range interactions can be ignored working only up to

�rst or second nearest neighbours.
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Chapter 5. Tight binding model for coplanar hybrids

Due to the simpli�ed nature of the TB model, the physics is not always well represented.

For instance, the band structure of GNR is not in agreement with DFT calculations due

to the erroneous modelling of edge states, and it is not possible to obtain the gap opening

in ZGNR unless a Hubbard term is added to the Hamiltonian. [223–225] The Hubbard model

considers on-site repulsion of electrons with di�erent spin at doubly occupied orbitals, and

can be included in the Hamiltonian as HU = U
P

i ni"ni#,
[226] where U is the interaction

energy, ni� is the number operator and the sum is over all the orbitals.

For AGNR, as can be seen in Figure 5.2(a), the TB gap does not follow the DFT trend

for none of the three families, and notoriously, the family n = 3p + 2 is always semimetal-

lic. [187,195,227–229] To better represent edge states, explicit changes in the hopping integral

between β-orbitals for edge atoms should be considered. [187,230] In armchair hybrids of GNR

and BNNR, a exponentially decaying potential has been used to describe the e�ect of charge

redistribution in C atoms close to the interface. [210]

a2

a1

δ2
δ1

δ3 A

B

γ(0)αβ

γ(1)αβ

γ(2)αβ

x
y

Figure 5.4: Hexagonal lattice showing
the lattice vectors a1 and a2 (blue),
vectors to nearest neighbour δj (red)
and the hoppings 
�� (green) for �rst-,
second- and third nearest neighbours.

In this work, to model the e�ect of polarization pro-

duced by edge e�ects in BNNRs, the on-site term

is modi�ed to include an electrostatic potential. In

this way, the new position-dependent on-site en-

ergy becomes

"�(r) = "�0 � e�(r) (5.3)

where � is an e�ective potential, [231] which is con-

sidered to be a decaying function that vanishes in

the centre of the ribbon, as explained later in sec-

tion 5.6.

As shown in Figure 5.4, the honeycomb lattice is

taken to be formed by unit cell vectors a1 = a0(1; 0)

and a2 = a0

�
1
2 ;
p

3
2

�
, and atoms within the unit

cell at positions rA = 1
3a1 + 1

3a2 for atoms in the

A sublattice, and rB = 2
3a1 + 2

3a2 for those in the B sublattice. The values of r�� for the

three �rst-nearest neighbours are siδj , with i = A;B; sA = 1, sB = �1 and j = 1; 2; 3;

δ1 = a0

�
1
2 ;

1
2
p

3

�
, δ2 = a0

�
�1

2 ;
1

2
p

3

�
and δ3 = a0

�
0;� 1p

3

�
. For the six second-nearest

neighbours, r��I is �a0 (1; 0), �a0

�
1
2 ;
p

3
2

�
and �a0

�
1
2 ;�

p
3

2

�
; and for the three third-

nearest neighbours, a0

�
si+1

2 ; si�3
2
p

3

�
, a0

�
si�1

2 ; si+3
2
p

3

�
and a0

�
si�3

2 ; si�3
2
p

3

�
.
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5.4 Hamiltonian in WF basis

The parameters for the TB are computed from the Hamiltonian expressed in the basis of

Wannier functions (WF) basis, which are obtained from wannierisation of the Bloch states

calculated from �rst principles. The DFT calculations are done using norm-conserving

Troullier-Martins pseudopotentials, [159] and the PBE generalized gradient approximation [232]

as implemented in the Siesta code. [122] The wavefunctions for the valence electrons are de-

scribed using a linear combination of pseudo-atomic numerical orbitals with a double-�

polarized basis (DZP). [123] A Monkhorst-Pack k -sampling [161] of 48�48 is used for the pris-

tine systems. A vacuum space of �40 �A between layers is taken to prevent interactions

between them under periodic boundary conditions. The atomic positions are relaxed until

the forces are smaller than 0.01 eV/�A. Once the density matrix is converged the expansion

coe�cients of the Bloch wave functions obtained from the Siesta Kohn-Sham Hamiltonian,

c�n, (see subsection 2.2.3) can be used to obtain the unitary matrix Umn(k) necessary for

the construction of WF (see Appendix A). This is done via Mmn = humkjun;k+bi and

Amn = humkjgni, the overlap matrices between the periodic part of the electronic wavefunc-

tions, and the trial orbitals gn, respectively, as described in Ref. [233]:

Mmn(k;b) =
X
��

X
T

c��m(k)c�n(k + b)eik�(T�rµ+rν)M��(T;b) (5.4)

and

Amn(k) =
X
�

c��m(k)
X
T

e�ik�(T+rµ)A�n(T); (5.5)

where

M��(T;b) =

Z
'��(r + T� r� + r�)e�ib�r'�(r)d3r (5.6)

and

A�n(T) =

Z
'��(r�T� r�)gn(r)d3r: (5.7)

For both, graphene and BN, a good choice for the trial functions gn(r) is to represent the

electronic orbitals as sp2 and pz. Then, for each unit cell with two atoms, there are three

sp2 and two pz orbitals. This gives a total of �ve basis functions, of which four are occupied

states and one is an empty state, enough to achieve a good description of the valence bands

and the �rst conduction band. Since the �rst conduction band crosses higher energy bands,

a band disentanglement procedure is used [234] following the prescription implemented in the

Wannier90 code [235] for maximally localised WF (MLWF). The inner window is taken from

the lowest σ-band up to EF. The outer window is set to include the inner window plus the

β� conduction band. This is pictured in Figure 5.5(a).
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Figure 5.5: (a) Bands from Siesta (grey) and with Wannier interpolation (dashed red) for
graphene (left) and BN (right). The outer and inner windows considered for the Wannierisa-
tion are shown. (b) Graphene (left) and BN (right) structures showing the final positions of
the Wannier centres as red spheres for pz orbitals and blue spheres for sp2 orbitals. (c) TB
bands for graphene (left) and BN (right) using the parameters obtained from Wannier90
and considering first- (dotted black), second- (dashed red) and third-nearest neighbours
(solid blue). The bands from Siesta are also shown (in grey) for comparison.

The unitary matrix Umn(k) is found by minimising the gauge dependent part of the spread

functional using Equation A.5 and Equation A.6, which involve the use of the overlap matrix

Mmn. For disentanglement, Udis
mn(k) is found by minimising the gauge invariant part of the

spread functional. Having the unitary matrices, the Hamiltonian in the basis of MLWF is

ĤW(k) =
(̂
U(k)

)† (̂
Udis(k)

)†
Ĥ(k)Ûdis(k)Û(k) (5.8)

where Hmn(k) = εnkδmn, and εnk are the eigenenergies of the Kohn-Sham Hamiltonian

from Siesta. This Hamiltonian can be seen as a representation of the interactions between

localised functions that, by construction of the trial orbitals, have great resemblance with

the chemical σ- and π -bonds of graphene and BN. Consequently the relevant TB parameters

can be straightforwardly extracted from this Hamiltonian.

5.5 Graphene and h-BN parameters

Let us first analyse the simplest systems, i.e. pristine graphene and h-BN. To start the

minimisation, sp2 trial orbitals are placed at the centres of the bonds between atoms, and

pz orbitals at the same position as atoms. In the case of π -orbitals, the final positions remain
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5.5. Graphene and h-BN parameters

at the centres of the atoms. For graphene, the MLWF with σ-bond character are localised

midway between the two atoms comprising the unit cell, highlighting the covalent nature of

the bonding. Di�erently, for BN the centres of this type of MLWF are located closer to N

atoms, evidencing an ionic type of interaction, where B is the cation and N the anion. The

�nal positions of the MLWF are sketched in Figure 5.5(b). The spread of the pz orbitals in

the �nal minimisation is 0.932 �A2 for both C atoms in graphene, and 2.111 �A2 for B atoms

and 1.033 �A2 for N in h-BN; for sp2 orbitals, the spread is 0.615 �A2 in graphene, and 0.593

�A2 in BN.

The band structures obtained with Wannier interpolation in both systems, are in excellent

agreement with those obtained with Siesta, as can be seen in Figure 5.5(a). From the

Wannierised bands, only the two bands closest to EF, namely the β and β� bands, are taken

for the TB model.

Table 5.1: Tight binding parameters for
graphene and BN, taken from the Hamil-
tonian in the basis of Wannier functions.
Values in parenthesis are those obtained
with Quantum Espresso. All data in
eV.

C B N

"�0

0:39 4:32 0:28

(0:41) (4:47) (0:37)


��0

�2:89 �2:46 �2:46

(�2:72) (�2:63) (�2:63)


��1

0:23 �0:11 0:09

(0:20) (0:01) (0:19)


��2

�0:25 �0:11 �0:11

(�0:23) (�0:19) (�0:19)

The value of the on-site energy "�0 depends on

the zero-energy reference. To have a common

reference the values obtained from the wannieri-

sation ("W
� ) are shifted to "�0 = "W

� �EF �E0,

where the Fermi level EF is taken as the high-

est energy of the valence band, and E0 is the

vacuum level. The TB parameters obtained

from the Hamiltonian in MLWF basis are listed

in Table 5.1. For comparison, values obtained

with MLWF constructed from calculations using

the Quantum Espresso package [236] are also

shown. The TB bands are compared to those

obtained with Siesta in Figure 5.5(c). The

best description is attained with the inclusion

of third-nearest neighbours interactions, and as

can be seen, considering only �rst-nearest neigh-

bours results in a less accurate description far from EF. For both, graphene and BN, the

bands near the K point are very accurate, while close to the M point, the dispersion dif-

fers noticeably from that of the DFT calculations. In order to improve the description at

the M point, long-range interactions between β-orbitals should be considered, which mean

taking into account neighbour orbitals as far apart as >5 �A, corresponding to sixth-nearest

neighbours, which is not practical in a simpli�ed TB model.
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5.6 Hybrid systems parameters

Systems with zigzag and armchair edges

The �rst hybrid systems studied are constructed by joining graphene and BN nanoribbons

so that heterojunctions with zigzag or armchair interfaces are obtained. A diagram of the

systems is shown in Figure 5.6(a). Periodic boundary conditions are used, with the x parallel

to the interfaces and z perpendicular to the layer. To describe edge states, a dense k-sampling

along the interface is needed. Here, a 67�1 Monkhorst-Pack sampling is used for the hybrid

systems. The number of C zigzag or armchair chains in the system is labelled nC, while nBN

designates those for BN. For notation purposes, let ZnC;nBN and AnC;nBN be the systems with

zigzag and armchair interfaces, respectively, composed of a ribbon of graphene with nC rows,

and a ribbon of BN of nBN rows. Systems with compositions in the range of 5 � nC � 9 and

5 � nBN � 12 have been studied in the case of zigzag interfaces. For armchair systems, values

of 9 � nC � 12 and 12 � nBN � 15 are used. In the case of zigzag ribbons, the supercell is

de�ned by lattice vectors aZ
1 = a0(1; 0) and aZ

2 = a0

�
0;
p

3
2 (nC + nBN)

�
. For the armchair

case, aA
1 = a0

�p
3; 0
�

and aA
2 = a0

�
0; nC+nBN

2

�
. The di�erent values of the lattice parameter

for pristine graphene and h-BN, give rise to strains between domains in the superlattices

formed. After full relaxation, the cell parameter a0 takes values between that of BN (2.52

�A) and graphene (2.47 �A), being larger for systems with larger size of the BN region, and

smaller for those with more C. This tendency can be seen in Figure 5.6(b) for the case of

zigzag hybrids, where the norm of the vector aZ
1 is plotted as a function of the di�erence

between the number of zigzag rows of C and BN. Furthermore, the relaxation induces an

inhomogeneity in the lattice parameter breaking the C3 symmetry, as the competition in

strains between graphene and BN acts mainly in the x axis, having more freedom to expand

or shrink in the y direction.

As can be seen in Figure 5.6(c), the interatomic distance between carbon atoms has one

behaviour for the bonds oriented parallel to the y axis, and other for the bonds that have also

a component in the x axis. Near the edges the distances are modi�ed mainly to compensate

the charge redistribution. In the middle, the C{C distance along y are shorter, and hence

more alike the C{C distance in pristine graphene, due to the freedom above mentioned.

In the BNNR, the distribution of B{N bond distance parallel to y is asymmetric, with a

noticeable decrease in distance near the N edge.

In Figure 5.7(a), the macroscopic average [113] of the electronic charge density (�αe) and the

e�ective potential ( �Veff ) are displayed for the armchair system A12;12, and in Figure 5.7(b)

for the zigzag system Z9;9. The average electronic charge density far from the interface in
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Figure 5.6: (a) Diagram of the hybrid systems consisting of nanoribbons of graphene and
BN joined by the zigzag (left) and armchair (right) interface. The systems are defined by
the number of rows of each material, denoted nC for graphene and nBN for BN. The unit cell
is enclosed in the dashed green box. (b) Size of the cell in the x direction as a function of the
difference between nC and nBN, considering all the zigzag systems studied. (c) Interatomic
distances for the Z9,9 system. Dash-dotted lines in (b) and (c) correspond to the lattice
parameter and interatomic distance, respectively, in pristine graphene and h-BN.

both, zigzag and armchair systems is 0.430 electrons/Å3 for graphene and 0.423 electrons/Å3

for BN. Despite the fact that each region has the same number of electrons per unit cell,

the difference in charge density is due to the different lattice parameters, being smaller

in graphene, hence having a more dense packaging of the electrons. This was verified by

counting the number of electrons in a single unit cell (two atoms) obtaining 8 electrons/unit

cell all across the flat regions of the charge density. At the interface of armchair ribbons,

there is a soft change in the charge density due to charge redistribution at the C– B and

C– N bonds as seen in Figure 5.7(a). Following Equation 1.2, the band offset of graphene

and h-BN can be obtained from the macroscopic profile of the potential for the armchair

systems as

∆EVBO =
(
E(G)
v − E(G)

0

)
−
(
E(BN)
v − E(BN)

0

)
+ ∆Ṽ , (5.9)

resulting in a band offset of 1.28 eV, while the difference in the potential ∆Ṽ is 0.12 eV.

In the zigzag case, abrupt changes in the charge density can be observed at the interface

(Figure 5.7(b)). The accumulation of electrons in the C-N side and a depletion in the C-B

interface comes from the bound charges of the polarization discontinuity. To counteract the

effect of BN polarization, free carriers from graphene must screen out the bound charges

by moving electrons from the C– N side to the C– B side. The result is a lack of electrons
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Figure 5.7: (a) Macroscopic average of the electronic charge density (blue) and effective
potential (red) across the y direction for the system A12,12 (b) The same as in (a) for the
system Z9,9. (c) Macroscopic average of the total charge for Z9,9. (d) Hirshfeld atomic
charges for Z9,9. The ticks at the bottom mark the positions of atoms within the cell.

in the net charge at the C– N interface and an excess of electron in the net charge at the

C– B interface as can be seen in Figure 5.7(c). This same behaviour is shown by a Hirshfeld

population analysis [237] of the atomic charges, as seen in Figure 5.7(d). The C atoms at the

interfaces have a charge of ± 0.07| e| . Interfacial N has a charge of −0.20| e| , which is 0.07| e|
higher than the Hirshfeld charge in pristine h-BN (−0.27| e| ). In the other hand, interfacial

B has a charge of 0.21| e| , with a difference with respect to pristine h-BN of −0.06| e| , which

means there is a difference of 0.01| e| between B and N interfacial charges. Comparing the

charges of all C atoms with those of B and N, there is a charge transfer of 0.03| e| from

BN to graphene, part of which should come from the lack of electrons at the B edge. The

localized charges at the interface cause a change in the potential as seen in Figure 5.7(b),

and is essential to model the electronic properties of hybrid systems with zigzag interface.

The potential has a maximum at the C– B interface, with less charge, and a minimum at the

C– N interface, with more charge.

The effect of interfacial reconstruction is more remarkable in zigzag systems, so special care

must be taken to consider the physics that rule their properties. The charges at the 1D

interfaces can be simplistically seen as two lines of charge, placed at ± L/2 and having a

linear charge density ± Qλ. This is schematized in Figure 5.8(a). The problem of a line

of charge is a well known problem in electrostatics, [238] that in this case with two opposite

charged lines results in the potential:

Φ (x) =
Qλ

2π ε0
ln

(
L+ 2x

L− 2x

)
, (5.10)

where ε0 is the vacuum permittivity. This potential is plotted in Figure 5.8(a), and has

75



5.6. Hybrid systems parameters

L

−Qλ +Qλ

x

Φ[    ]

L

−Q +Q

x

a

x[a]

Φ[    ]

−2

2

(a) (b)

Qλ
2πϵ0

1

2

3

-3

-2

-1

Q
2πaϵ0

1

2

3

-3

-2

-1

Figure 5.8: (a) Parallel charged lines with opposite charges (�Q�) situated at �L=2. (b)
Discretized problem with point charges �Q situated at �L=2. At each side, the charges are
equally spaced a distance a. The value L = 8a is considered. Two di�erent damping factors
(γ) of the screened potential are used, γ = 7a (red) and γ = 2a (blue).

similar shape to the one shown in Figure 5.7(a). The di�erences in the functional shape

come from the fact that the potential from the DFT calculation corresponds to a periodically

repeated array of linear charges, which have some spatial spread (more similar to a cylindrical

charge distribution) and acts over di�erent materials, each one with its own permittivity,

which leads to a di�erent screening due to valence electrons in each region. For the model to

be computationally e�cient, instead of considering an in�nite line, it is better to discretize

the problem considering an in�nite array of point charges along the interfacial axis, as shown

in Figure 5.8(b). The position of the point charges is taken to be midway the C{B and C{N

interfacial bonds.

Due to the semi-metallicity of graphene, the electric �eld in this region will be damped by the

redistribution of valence electrons. The screened Poisson equation describes systems with

this kind of screened Coulomb interactions, and here is considered to model the interfacial

potential. The screened potential for an arrange of point charges has the form

�(r) =
X
i

Qi
4β�0ri

e�
ri
λ (5.11)

where Qi are the charges, ri is the distance between r and the charge Qi, and γ is a damping

factor related to the mobility of electrons in the material. The functional form of this type of

potential is plotted in Figure 5.8(b). The case in Figure 5.8(a) corresponds to Equation 5.11

in the case of γ!1 and [taking the sum/summing] over an in�nite number of point charges

(assuming L ≥ a). The potential pro�le of the graphene part in Figure 5.7(a), looks more
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Figure 5.9: On-site energy values as a function of the atomic positions for the systems (a)
Z9;9, (b) Z5;5 and (c) A12;12. Black circles correspond to C atoms, red circles to B and
blue circles to N. Green squares are the on-site terms "�(r) with the functional form in
Equation 5.12 and the parameters from Table 5.2. The values �"�0 for the di�erent species
are shown in dashed lines.

like the screened potential with short γ, since the availability of electrons to screen the

potential is large. The e�ect of the potential can be included in the on-site term of the TB

Hamiltonian as in Equation 5.3, considering the sum of two screened-like potentials with

opposite signs, corresponding to both interfaces:

"�(r) = �"�0 +

nqX
i

AB
�

jr� rB
i j
e�
|r−rBi |
λα �

nqX
i

AN
�

jr� rN
i j
e�
|r−rNi |
λα (5.12)

Table 5.2: Parameters obtained from the
�t to the on-site energies of the zigzag sys-
tems.

C B N

�"�0 (eV) 1:13 4:22 �0:76

AB
� (eV��A) 0:61 0:46 0:46

AN
� (eV��A) 0:54 0:62 0:62

γ� (�A) 6:78 12:56 12:56

which represent the diagonal term for an atom

of species � at position r, with �"�0 being the

on-site energy in absence of the potential; AB
�

and AN
� the amplitudes of the potential for that

species in the B and N interfaces, respectively;

rB
i and rN

i the positions of the charges at the

C{B and C{N interfaces, respectively; γ� the

damping factor; and the sum is done for all nq

charges, in the unit cell and in all periodically

repeated neighbour cells within the cuto� radius

rcut. The parameter rcut is taken so that changes in the on-site term due to point charges

far away are less than 0.02 eV, which gives rcut �10 �A. The amplitudes of the potential for

B and N are taken to be equal (AB
B = AB

N and AN
B = AN

N) as well as their damping lengths

(γB = γN).

The parameters AB
� , AN

� , γ� and �"�0 are �tted to the data from the diagonal of the Wannier

Hamiltonian using the simplex algorithm. [239] As shown in Figure 5.9, the on-site energies
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from HW are in good agreement with the form of the potential in Equation 5.12, and the

�tted values reproduce well these on-site energies. The obtained parameters for the on-

site potential are shown in Table 5.2. Although the on-site energies are �tted from zigzag

systems, it gives a good description for edges with any chirality.

Table 5.3: Summary of the parame-
ters considered in the non-spin polar-
ized TB model.

Parameter Units Value

�"C0 eV 0:00

O
n

-s
it

e

�"B0 eV 3:09

�"N0 eV �1:89

AP eV��A 0:56

γC �A 6:78

γBN �A 12:56

mC eV/�A 3:72

1s
t

n
n

.

mBN eV/�A 3:11

bC eV �12:14

bBN eV �10:68



(0)
CB eV �2:68



(0)
CN eV �2:79



(1)
CC eV 0:23

2n
d

n
n

.



(1)
BB eV 0:14



(1)
NN eV 0:18



(1)
CB eV 0:19



(1)
CN eV 0:19



(2)
CC eV �0:24

3r
d

n
n

.



(2)
BN eV �0:15



(2)
CB eV �0:16



(2)
CN eV �0:18

For systems with armchair edges, the charge rear-

rangement at the interface changes the potential lo-

cally, as can be observed in Figure 5.7(b), where the

potential remains 
at in the central part of both,

AGNR and ABNNR, but presents small 
uctua-

tions near the edges. This is re
ected in the values

of the on-site terms in the Wannier Hamiltonian

which are almost constant except near the inter-

face. As seen in Figure 5.9(c), the on-site terms for

armchair hybrids can also be well represented with

the potential model of Equation 5.12, which is a

generalization for all interfaces between graphene

and h-BN.

The value of the reference energy in the on-site en-

ergies for the TB model is completely arbitrary,

and for easiness, a shift is applied to the on-site

values so �"C0 = 0 eV. As a �nal consideration for

the potential and to simplify the model, the am-

plitudes AX
� are taken as a single value obtained

from the average of those presented in Table 5.2

and denoted in the following as AP. The �nal val-

ues for the on-site energies and the parameters of

the potential are listed in Table 5.3.

The values of the nearest neighbour hoppings vary

from system to system and inside each system

changes for each pair of atoms. In the graphene

region, 

(0)
CC has values from �3:04 to �2:81 eV for

all the considered systems, while 

(0)
BN is in the range

�2:96 to �2:79 eV. In Figure 5.10(a), the hopping

energies for nearest neighbours are plotted as they

change along the ribbons for the system Z9;9. The dependence of 

(0)
�� with the position

resembles that in Figure 5.6(c) for the interatomic distances. Since the hopping parameter
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Figure 5.10: (a) Hopping energies as a function of the position along the y axis for the system
Z9,9. (b) Hopping energies as a function of the interatomic distance between neighbour
atoms for C, considering all zigzag and armchair systems. (c) The same as in (b) for B– N
neighbours. The dotted lines are best linear fits for all the hoppings.

depends on the distance between atoms and the specificities of each orbital, small variations

are present in all the systems due to the anisotropies of the cell and atomic relaxation,

and the chemical environment of each atom within the ribbon. In Figure 5.10(b) and Fig-

ure 5.10(c), the values of the hopping parameter between C-C and B-N are plotted as a

function of the atomic distance. It is observed a general tendency where | γ(0)
αβ | decreases as

the interatomic distance increases. Although a precise description of the hopping is only

possible by considering the specific characteristics of the orbitals of each atom, considering

the hopping to depend linearly with the distance is enough to get a practical approximation.

The linear fit is done considering the expression

γ
(0)
αβ = mαa0 + bα, (5.13)

which only applies for C– C and B– N hoppings, and mB = mN = mBN and bB = bN = bBN.

Considering the different hoppings among all atoms in the structure to depend on their

distances requires a structural relaxation, which is impractical. Thereby, the hopping is

taken as a single value (for each type of species) that depends only on the chosen lattice

parameter a0, which varies according to the amount of C and BN in the system, as in

Figure 5.13(b). Below, it will be shown that the band structure of hybrid systems are not

affected importantly by the details of the hopping parameter. The values for the other

hoppings (C– B, C– N) are taken as the average among all the systems considered and are

shown in Table 5.3.

The model is tested for the A11,13, Z5,5 and Z9,9 systems. The band structure of the system

A11,13 is shown in Figure 5.11(a). It can be observed that the valence and conduction

bands are in better agreement with DFT close to EF than they are for higher energies. The
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Figure 5.11: Comparison of DFT and TB bands for the (a) A12,12, (b) Z5,5 and (c) Z9,9

systems. The bands from Siesta are shown in grey, and those of TB in red. (d) Bands of
Z9,9 using the Hamiltonian of Wannier90 with a cut-offof 3, 4, 5 and 6 Å. (e) Bands of
Z9,9 using different values of AP.
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Chapter 5. Tight binding model for coplanar hybrids

di�erences between the Siesta bands and TB bands are larger for the unoccupied bands,

which are more dispersive with TB, while the TB occupied bands, although being more

localized than in DFT, are in better agreement than the unoccupied bands. The gap with TB

is 0.41 eV in good agreement with the 0.46 eV gap given by Siesta. If the interface potential

is not taken into account, i.e. AP = 0, the gap would be 0.61 eV, showing that the potential

has an important e�ect over the gap. In Figure 5.11(f), the energy gaps for di�erent armchair

systems are shown. It can be observed that the gap tends to be smaller as nC increases. The

smallest gaps are obtained for systems that satisfy nC = 3p+2, as in isolated AGNR. [187] To

examine the in
uence of the interface potential, the di�erence of the TB gap with AP = 56 eV

and AP = 0 eV is obtained for di�erent armchair systems, as shown in Figure 5.11(h).

For nC = 2, the gap di�erence is maximum, and decreases as nC becomes larger. For

systems with nC = 3p, the interface potential has little e�ect in the value of the gap.
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Figure 5.12: Band structure of
Z9;9 considering spin polariza-
tion. The bands correspond to
calculations made with Siesta
(left) and TB (right). Red and
blue bands represent � and �
spin components, respectively.

The band structure of the system Z5;5 is shown in Fig-

ure 5.11(b). This system is semiconductor with a small

DFT band gap of 0.05 eV. Using TB with AP = 0:56 eV,

the gap is 0.11 eV which is an improvement over the gap of

1.09 eV using AP = 0 eV. As in the armchair case, the TB

occupied bands are in better agreement with DFT than

the unoccupied ones. The di�erent TB gaps for zigzag

systems are shown in Figure 5.11(g). The gap decreases

as both, nC and nBN increases, with a faster decay for

nC. A comparison between the gap with and without the

interfacial potential is shown in Figure 5.11(i) as the dif-

ference of both cases. The gap di�erence is smaller as nC

increases, but has the opposite tendency for nBN. With

larger values of nBN the polarity increases, and the e�ect

of the interface potential is more important. For larger

values of nC, the gap without the potential term decreases

approaching to zero and the error in the gap decreases.

For the system Z9;9, the gap of graphene is small enough

and the polarization from BN strong enough to close the

gap becoming semimetal, as can be observed in the band

structure of Figure 5.11(c). The bands close to EF are found to be very sensitive to long

range interactions. The e�ect of considering hoppings to atoms farther than third nearest

neighbours is investigated. For this, the Wannier Hamiltonian is truncated to include only

the elements whose WF are within a certain cut-o� radius rcut. The bands near EF of the
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system Z9;9 considering di�erent rcut are shown in Figure 5.11(d). For rcut � 4 �A, which

corresponds to taking into account up to 4th nearest neighbours, the bands are very similar

to what is obtained with the TB model including the interface potential and third nearest

neighbours interactions. Note that in the Wannier Hamiltonian, the di�erent hoppings,

which depend on geometric details, are explicitly taken into account, and in the TB model

they are not, making no signi�cant di�erence and validating our assumption of taking the

hopping as a single value for the di�erent species. For rcut = 5 �A the bands are already in

very good agreement with those of Siesta, but that requires considering up to 6th nearest

neighbours interactions.

Table 5.4: Parameters
used in the spin polar-
ized calculation.

Parameter Value

UC (eV) 5:20

UBN (eV) 4:50

AN (eV��A) 0:75

AB (eV��A) 0:45

γC (�A) 5:50

γBN (�A) 12:56

The speci�cations of the potential at the interface are also impor-

tant for the description of the bands close to the Fermi level. In

Figure 5.11(e), the band structures of the system Z9;9 using dif-

ferent values of AP are shown. The values considered are around

AP = 0:56 eV��A, the one obtained from the �t. If the strength of

potential is increased, the bands near EF become more localised

being more noticeable for the highest valence band. The most

important contributions to this band are from C and B orbitals of

the interface where mobile electrons attempt to screen the bound

charge from BN. [91] If the potential is increased, more electrons

are going to participate in the screening and the localization at

the C-B edge will increase. On the other hand, if the potential is

decreased, the system becomes semiconductor as the induced electric �eld will not be strong

enough to close the gap. The gap keeps opening up to the point where the potential is zero

and the gap is that of the ZGNR. From this, it is clear that the electronic properties of

these hybrid layers can be changed by varying the interface potential. One way to do this

is by applying strain taking advantage of the piezoelectric properties of BN. Thus, zigzag

systems that are initially semiconductor can become semimetallic as an e�ect of straining

the lattice along the y axis. The subject of piezoelectricity in hybrid systems will be treated

in chapter 6.

The e�ect of spin polarization is important in these systems, as previously discussed, and

for the system Z9;9 it is primordial, since in its ground state the system is half-metallic, as

can be observed in the band structure of Figure 5.12. In the TB model, the Hubbard term

should be added to consider the on-site repulsion of electrons with di�erent spin. By doing

this, slightly di�erent parameters must be considered to get a better �t to the spin-polarized

band structure. Electron-electron interactions are localized features that take place mainly

at the edge and would only a�ect the parameters of the screened potential. The values listed

in Table 5.4 are found to give good results. Note that the amplitudes of the potential, AN
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and AB, should be di�erent, and taking an average (as done in the non-spin-polarized case)

leads to wrong results. Since the bands for each spin are localized at opposite edges, the

potential at each side will primarily a�ect only one of the spins, hence, it is important to

consider di�erently the potential for each spin channel.

Systems with non-regular edges

Apart from zigzag and armchair edges, it is interesting to study systems with other edge type.

The TB model previously described, is intended to work not only with zigzag and armchair

interfaces, but with all types and shapes of interfaces. To explore the transferability of the

model, systems with non-regular edges are studied. The di�erent systems are schematized

in Figure 5.13 (left). In all the systems, the number of B atoms is di�erent to the number

of N atoms. Thus, all are n- or p-doped systems, depending on whether there is more N or

B, respectively. The di�erent systems are labelled S1 to S4, and to distinguish between B-

and N-rich systems the su�xes -B and -N are used. All the systems have mostly zigzag-

like interfaces. System S1 is formed by non-regular strips of graphene and BN. The BN

nanodomain of system S2 has armchair-like interfaces, besides the zigzag ones. Systems S3

and S4 are composed of triangular domains of BN in graphene. Using AP = 0:56 eV��A,

the bands crossing the Fermi level of all the Sn-B systems, are more localized than those

obtained with DFT. A value of 0.3 eV��A is in better agreement with �rst principles. The

inclusion of the interface potential represents a crucial improvement in the band structure

of systems S1-B and S2-B. In systems S3-B and S4-B the inclusion of the potential is not

so crucial but represents an improvement in the band structure. In the systems Sn-N,

considering di�erent values for the strength of the potential at each side makes the band

structures to be in better agreement with DFT, and the values AB
� = 0:5 eV��A and AN

� = 0:8

eV��A are good choices to improve the bands. As in the case of B-rich systems, changes in

the band structure due to the interface potential are more noticeable for the S1-N and S2-N

systems. From these results, the failures of the model can be predicted, and the parameters

readjusted to improve the results. In B-rich systems it is preferable to decrease the strength

of the potential, while in N-rich systems it is better to increase it. This is in accordance

with the Hirshfeld analysis of charges, which shows that at the B edge the interfacial charge

is lower than in the N edge.

5.7 Conclusions

The properties of hybrid systems of graphene and BN are highly dependent on interfacial

e�ects. The bound charge from the zigzag edges of h-BN induces a potential that mobile
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Figure 5.13: Systems with non standard edges. (a) Irregular strips of graphene and h-BN.
(b) Graphene with nanodomains of h-BN with zigzag and armchair-like edges. (c) and (d)
Triangular domains of h-BN in graphene of different sizes. From left to right: schematic
of the systems showing the unit cell (green box) and the zigzag (red) and armchair-like
(blue) interfaces; the BZ showing the path followed in the band structure calculations; band
structures of Sn-B systems; band structures of Sn-N systems. The band structures show
those obtained with Siesta and with TB using different values of the potential. Dotted
green lines denote important features in the bands obtained with Siesta.
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electrons from graphene tend to screen. This is represented in the TB model as a screened

Coulomb potential that is added to the diagonal terms of the Hamiltonian. Suitable values

for the di�erent parameters of the potential are given. The band structures of di�erent

systems, with regular (zigzag and armchair) and irregular edges, are calculated with the

TB model and compared with DFT, being in very good agreement. It is found that B-rich

systems require smaller values for the amplitudes of the potential, while the opposite happens

for N-rich systems. The case of spin polarized systems is also considered and appropriate

values for the repulsion terms are given.

Due to its simple form, this model is suitable to study large scale systems. Electronic

transport calculations could be done in systems designed with the characteristics present in

experimental samples, reproducing the domain size, geometry and compositions observed in

synthesised hybrid systems. Even more, a wider systematic study of di�erent systems could

reveal the most promising geometries, and serve as a guide for experimentalist to pattern

graphene/h-BN in a more convenient way. Synthesized
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CHAPTER 6

Strain engineering interfacial properties in

coplanar C/BN hybrids

6.1 Introduction

Great experimental e�orts are being devoted to tune and control the growth of hybrid

systems made of C and BN, [84,98–100,103] which are also being intensively studied by �rst

principles simulations. [87,88,90,91,95,240–242] Due to the energetics of the bonds between C, B

and N, [85] it is expected a phase segregation in hybrid graphene/h-BN systems forming well

separated domains of C and BN. Moreover, high-resolution scanning tunneling microscopy

images show that zigzag interfaces are preferably formed in these systems. [100,103] As ex-

plained in chapter 5, the polarity of the h-BN NR (BNNR) gives an interfacial dipole, hence

producing an e�ective electric �eld that acts on the graphene NR (GNR), [91] which, in

turn, can become half-metallic by application of a su�ciently large in-plane electric �eld

perpendicular to the edges of the GNR. [197] These characteristics make zigzag-edged het-

erostructures (both planar and tubular) particularly appealing for spintronic applications.

Due to the low atomic number of carbon, spin-orbit interactions are weak, hence, carbon-

based materials are expected to have long spin-relaxation times, which are fundamental

to preserve the spin state. Many devices have been designed to study the spin injection

into graphene [243] and carbon nanotubes [244], the magnetoresistance in graphene nanorib-

bons [245,246], or graphene-based spin transistors, [247] using ferromagnetic electrodes to set
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the spin orientation. However, electric �eld control of spin transport in a carbon-based nan-

odevice has advantages over magnetic-�eld control, like a reduced power consumption or an

enhanced miniaturization, and hence, magnetoelectric e�ects in these carbon-nanostructures

are of much interest. In addition to the half-metallicity induced by transversal external elec-

tric �elds on free-standing GNR [197], magnetoelectric couplings were predicted for bilayer

GNR on silicon substrates by electric bias control of charge carrier, [248] and as means to

favor antiferromagnetic over ferromagnetic con�gurations in doped ribbons. [249] Similarly,

control of magnetism through mechanical deformation would be valuable for applications.

Both, graphene and h-BN, have remarkable mechanical strength and 
exibility, and are

able to sustain huge elastic structural deformations. Although strain-modulation of band-

gaps have been studied before, [55,250] little is known about the coupling of mechanical and

electrostatic properties of hybrid C/BN nanostructures. This becomes critical taking into

account that in non-centrosymmetric dielectric crystals, such as h-BN, application of me-

chanical strains gives rise to polarization �elds, as response of the direct piezoelectric e�ect.

Remarkable piezoelectric and 
exoelectric properties in h-BN have been theoretically pre-

dicted, [51,52,251] and pose an alternative route for controlling electronic properties in hybrid

C/BN heterostructures.

In this chapter, zigzag-edged interfaces between C and BN domains are studied to demon-

strate electromechanical control of the charge and spin densities. It will be shown that the

interfacial bound charges and associated electric �elds can be tuned by application of an

external mechanical force (stress) on the system, through direct piezoelectric e�ect. The

modulation of the charge at the interface gives the possibility to transform a semiconducting

heterostructure into a half-metal. The case of C/BC2N heterostructures is also considered,

yielding similar results to the C/BN case. The inverse e�ect (application of an external elec-

tric �eld to induce a mechanical deformation) goes together with a magnetoelectric response,

that is estimated to be comparable to that of prototypical Cr2O3.

6.2 Computational methodology

Hybrid systems with zigzag interfaces are considered, having nC zigzag rows of C, and nBN

zigzag rows of BN, with the interface along the x axis (see Figure 6.1). For notation purposes,

the systems are labelled as CnC/BNnBN . Periodic boundary conditions are considered, and a

vacuum layer of � 40 �A along the normal direction to the sheet is included to avoid spurious

interactions between periodic images. Di�erent chemical compositions and domains sizes

are studied within ab initio density functional theory, using the spin-polarized generalized-

gradient approximation, [232] as implemented in the SIESTA code. [122] Troullier-Martin type
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pseudopotentials [159] and numerical atomic orbitals with double-� plus polarization [123] were

used to describe the electronic valence states. In Figure 6.1 a diagram of tensile and com-

pressive strain �elds is shown. In the case of tensile strain, the superlattice periodicity of the

planar systems is �xed imposing strains along the y axis, while relaxing the atomic positions.

Compressive strains, on the other hand, result in non-planar ground-state geometries that

are modelled with periodic out-of-plane displacements

uz(y) = A sin(k � r + '); (6.1)

where k is the corrugation wave vector and ' is a phase. Compressive strains along both, the

armchair (perpendicular to the interface) and zigzag (parallel to the interface) directions are

considered, thus, k takes the values 2βŷ=γ? or 2βx̂=γk. To model the systems with strains

along the zigzag direction, a supercell of 4 unit cells repeated in the x direction is used. γk

and γ? are de�ned by the length of the supercell in the x and y directions, respectively

(see Figure 6.1), while the amplitude A is determined by structural relaxation of the atoms.

The atomic positions are optimized until the forces are lower than 0.02 eV/�A. An accurate

description of the boundary electronic states requires a smooth sampling of the reciprocal

space, and typically Monkhorst-Pack grids of at least 67 � 1 � 1 are used to sample the

Brillouin zone.

Piezoelectric constants

In dielectric materials without inversion symmetry, an electric moment is developed by

application of stress. This is known as the direct piezoelectric e�ect. Inversely, when an

electric �eld is applied to a crystal, it can develop a deformation in the crystalline structure,

in what is known as the converse piezoelectric e�ect. Both phenomena are characterized

by the third-rank piezoelectric tensors, which relate the stress, σij , and strain "ij , with the

polarization of the crystal, P, and the applied electric �eld, E. The components of the

piezoelectric tensors are calculated as

di;jk =

�
@Pi
@σjk

�
=

�
@"jk
@Ei

�
; (6.2)

ei;jk =

�
@Pi
@"jk

�
= �

�
@σjk
@Ei

�
; (6.3)

where i, j, k denote Cartesian components. For the purposes of this chapter, we are in-

terested in variations of the polarization with changes in the strain, which are captured by

ei;jk, and in the following only the coe�cients of this tensor are considered. Due to the D3h

symmetry of h-BN, the piezoelectric response is characterized by a single element of the
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piezoelectric tensor, ey;yy = eyy.
[251] To obtain eyy, the polarization of h-BN under di�erent

strains is calculated with Siesta using the geometric Berry phase approach, [252] resulting

in a piezoelectric constant of 2:06� 10�10 C/m, in good agreement with the values reported

by Naumov et al. [51] (� 2:68 � 10�10 C/m), Duerloo et al. [251] (1:38 � 10�10 C/m), and

L�opez-Su�arez et al. [253] (3:08� 10�10 C/m).

6.3 Tensile strain

The tensile strain �eld is depicted in Figure 6.1(a). Di�erent superlattices are considered

with sizes of the C and BN domains in the range 3 � nC � 9 and 3 � nBN � 10. Strains as

large as 15% are applied to the di�erent systems. Larger strains break the layer at the C{B

edge. The relevant bands close to the Fermi level (EF) are the bonding C{B (βB), and anti-

bonding C{N (β�N), which are mainly localized at carbon atoms close to the B and N edges,

respectively (see Figure 6.4). [91] In the half-metallic phase, these two edge states become

spin-polarized with antiferromagnetic coupling due to the intrinsic electrostatic potential

induced by the polar BN interface. The di�erence in formal polarization values between

graphene and h-BN domains gives rise to bound charges at the edges of BN, which are

partially compensated by charge carriers from graphene, resulting in the C atom at the

B edge (CB) to be negatively charged, while the C atom at the N edge (CN) is positively

charged.

Application of a tensile strain in planar C/BN heterostructures increases the e�ective in-

plane polarization of BN domains and consequently the bound (polarization) charge at the

interface. To compensate this bound charge, electrons are transferred from B to N edges.

Figure 6.2(a) plots the Hirshfeld population analysis for the C, B and N atoms at the C/BN

interfaces, as a function of the applied uniaxial strain for the system C4/BN10. Boron

and nitrogen atoms have positive and negative charges, respectively, and under strain their

values increase almost linearly due to the direct piezoelectric response in h-BN. Changes in

the polarization due to the strain, result in changes in the bound charge at the same rate.

Thus, the evolution of the charge at the interface can be described as

γ("yy) = γ0 + eyy"yy; (6.4)

where γ0 is the interfacial charge in the unstrained system. As all the charge redistribution

takes place within the edge electronic states which are very localized, the total edge charges

can be de�ned as the sum of the Hirshfeld populations for the B atom at the edge and CB,

and the N atom at the edge and CN. As seen in Figure 6.2(a), these total charges (diamond

symbols) nicely follow the curve predicted by eyy (red dashed lines). Notice that CB (CN),
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Figure 6.1: (a) Model geometry for planar C6/BN6 (nC = 6, nBN = 6) superlattice. Simula-
tion unit cell is shown as a dashed green box. Number of graphene and h-BN zigzag chains
are marked on top. (b) Lateral view of the C6BN6 monolayer under compressive strain per-
pendicular to the interface. (c) Lateral view of a monolayer with four cells repeated along
the x direction and compressive strain parallel to the interface. (d) Geometry for the (8,8)
hybrid C/BN armchair nanotube, composed of a C strip with 5 zigzag chain and a BN strip
with 11 zigzag chains.
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edge (filled symbols), as a function of tensile strain field perpendicular to the interface
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is negatively (positively) charged and its net charge decreases for increasing strains, because

free electrons (negatively charged) in the carbon strip are transferred from B-edge to N-edge.

This results in an increased stabilization of the β�N state. Figure 6.4 shows the evolution

of the band structure for a half-metallic phase under strain, and how the lowering of the

β�N band with �-spin comes at the expense of the depopulation of the βB band with the

same spin. This translates into an increase in the edge magnetization, that is characterized

in terms of the Mulliken populations on the C atoms at the edges, CB and CN, plotted in

Figure 6.5(a). For large strain �elds however, the �-spin β�N band becomes fully occupied

(βB empty) and a gap opens. At this point, the occupied bands close to the Fermi level are

localized at the N-edge for �-spin and the B-edge for �-spin, while the empty bands are B-

and N-edge localized (for �- and �-spins, respectively).

Interestingly, one can use strain not only to tune the gaps in systems that are originally half-

metallic, but also to induce such state for systems that, unstrained, are semiconducting.

This is illustrated in Figure 6.6, where the band gaps for each spin component, as well

as the inter-atomic distances for C{N and C{B at the edges are plotted as a function of

tensile strain for a variety of chemical compositions. For the semiconducting systems, the

increased polarization of BN domain under strain triggers the half-metallic instability in the

graphene domain. Under extreme strain loads, the nanosheet breaks at the C{B junction,
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as illustrated by the dramatic increase in the interatomic distances (striped region). The

strain threshold needed to close the gap depends on the width of both, C and BN ribbons.

Once the system becomes half-metallic, further strain will open the gap for both spins as

in previously analysed C4/BN10 case. Consequently, there is a range of strain values under

which one could tune half-metallic properties in these hybrid C/BN heterostructures (white

regions in the �gure).

Graphene/BC2N hybrids

Recently, ultrathin graphene nanoribbons segregated from boron-carbon-nitride domains

have been experimentally observed. [106] Scanning tunnelling microscopy imaging found two

dominant con�gurations for stoichiometrically percolated BC2N, that correspond to the

type I and type II polymorphic structures theoretically predicted in the late 80's. [254] The

structure of the di�erent types of BC2N proposed by Liu et al. [254] are shown in Figure 6.7.

From the isomers found experimentally, type II does not have inversion symmetry (nor 3-fold

symmetries) making it a piezoelectric material. The calculated piezoelectric coe�cient is

eyy = 3:89� 10�10 C/m, which is found to be larger than that for h-BN, and in fact, unlike

h-BN, type II BC2N has a formal in-plane polarization of 0:713�10�10 C/m pointing along

the armchair direction.

Strain-induced half-metallicity is possible for C-domains broader than 5 zigzag chains, while

the band gaps in ultra-narrow graphene ribbons are too large to experience the Zener-

breakdown mechanism induced by the polarization discontinuity. The strain-evolution of

the atomic charges at the interface are again in agreement with the prediction obtained from

the piezoelectric response (Equation 6.4), as shown in Figure 6.2(b) for the C5/(BC2N)12

system. The edge magnetization plotted in Figure 6.5(b) reveals the critical strain to develop

half-metallicity in the system (around 8%), and the steep increase in the edge magnetization

unravels a piezo-antiferromagnetic e�ect.

Remarkably, strain-engineering the electronic properties at zigzag-interfaces is not limited

to the C/BN hybrid monolayers discussed here, but could also be applicable to other bidi-

mensional dielectric materials and interfaces, and we suggest that ultra-narrow graphene

ribbons embedded in BC2N would be an excellent playground to explore the experimental

realization of these e�ects.
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of tensile strain for (a)-(d) semiconducting, (e) semimetalic and (f) half-metallic C/BN
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Type II

Type I

Type III

Figure 6.7: Atomic structure of the di�erent types of BC2N proposed in Ref. [254].

6.4 Compressive strain

Uniaxial compressive strains applied perpendicularly to the C/BN interface results in an

armchair-oriented corrugation of the monolayer, and a locally induced polarization pointing

in the opposite direction to the formal polarization, [51] hence reducing the value of the bound

charge at the interface. However, a compressive strain parallel to the C/BN interface, as that

shown in Figure 6.1(c), would result into an increase in the polarization-induced interfacial

charge, and a tunability of the bandstructure. The e�ects of this strain are characterized

by the factor f = A=γk. The amplitude A is measured in the relaxed structure and has

di�erent values for the graphene and BN parts due to the di�erent lattice parameters, being

A always larger in the h-BN region. The C/BN superlattice is repeated four times in the x

direction and di�erent wavelengths γk are imposed to induce di�erent strains.

In Figure 6.8(a), the band structures considering di�erent strains are shown for the system

C5/BN5. Although the system remains as a half-semimetal under all strains considered, the

enlargement of the gap for the � spin is noticeable. While tensile strain perpendicular to the

interface increases the charge at the edges with a very localized e�ect, for compressive strain

along the x axis, the e�ect is more delocalized. The Hirshfeld charge population for each

atom in the hybrid C5/BN5 under di�erent strains is shown in Figure 6.8(b). The charge

at the interfacial atoms varies very little, with the changes being comparable to those of

other bulk atoms. In C atoms, the changes are negligible, while the charge in B (N) atoms

tend to decrease (increase) with the applied strain. Remarkably, there are changes in the

charge of B and N that not depend in the position with respect to the interface, but with

respect to the curvature of the sheet, as in the case of BN nanotubes. [255,256] For fBN = 0:2,

it can be seen in Figure 6.8(b) that atoms at the same distance from the interface have
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Figure 6.8: (a) Evolution of the band structure with the applied compressive strain. The
factors f = A=γ for the graphene and BN strips are indicated on top. (b) Hirshfeld charges
plotted in dependence with the position along the y axis for di�erent strains with fBN = 0
(black), 0.14 (red) and 0.20 (blue). Green arrows denote cases where a clear dependence of
the charge with the curvature of the sheet is observed for fBN = 0:2.

di�erent charges (green arrows), with the largest charge corresponding to atoms at zones

with maximum curvature.

Considering larger values of γk (by repeating the superlattice in the x direction) could

produce a modulation of the bound charges along the interface, and a stronger compression

would increase the curvature, and hence induce larger charge di�erences. More work is

needed in this respect, and interesting phenomena may rise in hybrid systems due to variable

polarizations and magnetization at the interface.

6.5 Magnetoelectric e�ect

Now, possible magnetoelectric e�ects are explored. Tubular geometries are considered with

transversal electric �elds applied along the C strip and perpendicular to the periodic tube

axis, as shown in Figure 6.1(d). With this geometry, the di�culties to simulate electric

�elds under periodic boundary conditions, due to the intrinsic non-periodic nature of the

position operator, [257] are avoided. Algo aqui, molecular dynamics simulation had shown

that GNR and BNNR placed one atop the other can spontaneously bind forming a hybrid

NT. [87] The nanotube considered is the armchair (8,8) nanotube with zigzag-edged C/BN

domains composed of nC zigzag chains of C and nBN zigzag chains of BN along the tube axis

following the geometries discussed in the literature. [87–89,241,242]. The values of nC and nBN

considered, cover several types of systems including semiconducting (nC = 3, nBN = 13),

metallic (nC = 11, nBN = 5) and half-metallic (nC = 5, nBN = 11) nanotubes. An additional
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positions. The notation is the same as in Figure 6.2.

set of ghost orbitals (s- and p-like) cylindrically distributed around the tube axis are used to

improve the description of nearly free electron states known to exist in BN nanotubes. [258]

The system with nC = 5 and nBN = 11, for this particular chirality results in a half-metallic

ground state. [242] Without electric field, CB and CN have ∼ 0.1 µ B aligned antiparallel at

each interface. When an electric field is applied in the positive (negative) x direction of

the C/BN nanotube, electrons in the C-ribbon are pushed towards the N-edge (B edge),

and depleted at the B edge (N edge). The change in CN (CB) charge Hirshfeld population

increases (decreases) linearly with the external field strength (Figure 6.10). This charge

reorganization has a direct effect on the edge magnetic properties. For fields below −0.3 V/Å

edge magnetism is killed, as shown in Figure 6.5(c). The linear magnetoresistance at low-

field, defined as:

αL = µ 0
∆ML

E
, (6.5)

where ∆ML denotes the change in linear magnetization at the C/BN interface, can be

obtained from this figure, and is four times larger than the value obtained for bilayer GNR

on silicon substrates. [248] The bulk magnetoelectric coefficient (considering the volume of

the whole hybrid C/BN nanotube) would be ∼ 1 ps/m, comparable to that of prototypical

98



Chapter 6. Strain engineering interfacial properties in coplanar C/BN hybrids

magnetoelectric material Cr2O3. Notice that the dependence of the edge magnetism on the

external electric �eld is completely di�erent to that observed in graphene nanoribbons. [248]

To understand this behavior the nature of the edge bands must be considered.

Figure 6.12 shows the band structure close to the Fermi level for both spin orientations,

as a function of the electric �eld. As for tensile uniaxial strains, an electric �elds pointing

in the positive x direction, stabilizes the β�N band, and conducting electrons (� spin) are

transferred to the N-edge from the B-edge (βB band moves to higher energies), increasing

the magnetization at the former interface. At approximately +0:4 V/�A, a small gap opens

and the edge magnetization reaches a maximum. Stronger electric �elds move the �-bands

(βB up and β�N down) closer to the Fermi level, and for E � 0:9 V/�A,the gap closes and

the system becomes again half-semimetallic, with a spin-inversion from the original state.

An electric �eld pointing in the negative x direction would give a response similar to that

of a compressive uniaxial strain, shifting the βB valence band towards lower energies (and

moving up β�N), so that extra electrons populate the �-spin metallic levels. Eventually, the

βB �-band becomes completely �lled (as was its �-spin counterpart), edge magnetization

disappears, and a gap opens below �0.3 V/�A.

Electric �elds oriented along the y axis do not have a large e�ect on the edge-state popula-

tions. This is because the conducting electrons, localized at both C{N and C{B interfaces

are equally perturbed by the electric �eld, and no, or very little, charge-reorganization takes

place at the edge C atoms for �elds below j0:5j V/�A. Most of the changes a�ect the charge

populations at the nanotube's top (center of BN strip) and bottom (center of C strip),

although some charge redistribution takes place at the interfacial B atoms, that linearly

increase with the electric �eld.

6.6 Conclusions

Using �rst-principles electronic structure calculations, we have shown that the electronic

properties of hybrid C/BN nanostructures can be tuned taking advantage of the dielectric

properties in the BN domains. In particular, for zigzag-shaped interfaces, uniaxial strains

or external electric �elds, can regulate the edge magnetism (piezomagnetic, 
exomagnetic,

or magnetoelectric response) and tune half-metallicity through control of the polarization-

induced interfacial bound charges.

Although only the �eld-response of CBN nanotubes has been studied, some results can

be extrapolated to planar geometries. In particular, similar ME e�ects can be expected

for hybrid CBN nanosheets when an in-plane electric �eld is applied perpendicular to the

C/BN interface. In this con�guration, the piezoelectric response of BN and the edge-state
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Figure 6.12: Bandstructure close to the Fermi level for the C3/BN13 nanotube with applied
electric �elds along the x direction. Thin black solid, and red dotted line correspond to �
and � spins. Energies are given in eV. Field strengths are given (in V/�A) on top of each
panel.
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spin polarization at the interfaces will be similar to that reported here for �elds along the

x-axis. Hence, the changes in the bandstructure and edge population are expected to give

a surface ME coe�cient comparable to that of GNR on silicon, though di�erent in nature.

Notice also that the surface ME constant for these half-metallic heterostructures would be

two orders of magnitude larger than the universal constant predicted at the surface of bulk

half-metals. [259]

It has been shown that the relative composition and sizes of C and BN domains determine

the band gaps of C/BN heterostructures [88,90,91,211,241]. Very low concentrations of C give

rise to semiconducting or insulating properties, while large concentrations suppress potential

half-metallic properties. This, of course will change the strengths of the threshold �elds, but

the ME e�ect will remain, and the results presented here will hold. The systems studied here

represent an alternative approach to tune the electronic properties allowing to dynamically

move from one electronic behavior to another. Interestingly, He et. al. showed that half-

metallicity could also be obtained when a few C zigzag chains (GNR) are attached to a

BNNR. [211] Considering that the edges of BN monolayers are relatively smooth, this could

also be an interesting path for the experimental realization of spintronic devices based in

hybrid C/BN nanostructures.
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CHAPTER 7

Summary

The importance of graphene in many scienti�c and technological �elds was recognized by

the award of the Nobel prize to A. Geim and K. Novoselov merely 6 years after its discovery.

It was clear that to exploit all the potentiality of this novel material a devoted scienti�c

research was much needed. On the one hand, the synthesis methods have to improve in order

to have control over the quality, size (including the thickness), functionalization, doping and

reactivity of graphene samples. The synthesised graphene sample can be used directly in

the substrate where it was grown, deposited in other material to sustain it or isolated

to form suspended graphene, hence avoiding any undesired substrate interaction. Due to

its two-dimensional (2D) nature, graphene behaves like a 
exible membrane, and the use

of substrates were important for mechanical stabilization. On the other hand, a better

knowledge of the properties of graphene was important to model and predict its behaviour.

This can be done by experimental characterizations or theoretical approaches. By joining the

expertise in synthesising suitable samples with the understanding of its properties, graphene-

based devices were expected to excel over other materials in many applications.

After graphene was isolated and observed for the �rst time, an avalanche of new 2D materials

arose, each one with di�erent promising features. The compatibility of graphene with h-BN

helps in the formation of hybrid systems that can lead to new properties. In this thesis, we

present the study of stacked and co-planar heterostructures formed from graphene and h-BN.

The main methods used here were density functional theory (DFT) and tight binding (TB),

which were described in chapter 2. Both were used to calculate electronic structure, with the
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di�erence that each one acts at di�erent levels of accuracy, being DFT more accurate, but

also more computationally demanding. While each method was more suitable for di�erent

systems, depending on the number of atoms, both were compatible and complementary. In

this work, simple TB models were proposed based in our observations of DFT calculations

for hybrid C/BN systems. Our parametrized TB Hamiltonians were �tted to DFT data to

properly describe large scale systems that can reach millions of atoms.

Chapter 3 dealt with the study of moir�e patterns formed by graphene on top of h-BN. DFT

calculations were performed for di�erent superlattices with di�erent sizes. The density of

states (DOS) was obtained for each system using a large number of k -points to sample the

Brillouin zone. The dense grid was needed to clearly observe the dips appearing in the DOS

as an e�ect of the h-BN substrate reported in previous STS experiments. The position in

energy of these dips was found to be in agreement with perturbative predictions. A discussion

was presented about di�erent features in the band structure, such as the opening of gaps at

non-zero energy that cause the appearance of the dips. The analysis of lattice distortions

was then presented. It was found that the largest moir�es have stronger o�-plane and in-plane

modulations. Is remarkable the fact that even with the large o�-plane modulation found

for one of the largest systems, no gap was opened at the Fermi level. Systems formed of by

graphene sandwiched between two monolayers of h-BN were also considered in the thesis, in

order to study the e�ect of graphene encapsulation. It was found that the dips in the DOS

can be enhanced, and the in-plane distortions increased, while the o�-plane displacements

were decreased. This work allowed us to enlighten many e�ects that the superlattice moir�e

potential induce in graphene. The behaviour of largest systems can be then inferred by

extrapolating of the characteristics of the systems studied here.

We then moved to the study of transport properties of the stacked graphene/h-BN het-

erostructures using the information of our previous DFT calculations. In chapter 4, the

conductivity was calculated using the Kubo formalism of electronic transport within the

TB description. The e�ect of the h-BN substrate was modelled with the simple expression

proposed by Sachs et al. [139] where an additional mass term was included in the Hamiltonian

to represent a local breaking of the sublattice symmetry. From the DFT calculations done in

chapter 3, the local atomic energies were obtained to estimate the strength of the potential.

This strength was used as the amplitude of the modulation of the substrate potential. Ad-

ditional to the superlattice potential, disorder was added to graphene by randomly changing

the on-site energies of C atoms. Two types of disorder were considered: short range An-

derson disorder, and long range Gaussian potential. We observed that the mean free path

and the resistivity were obtained for both types of disorder. The mean free path tends to

decrease compared to the case where no substrate potential was considered. The signature

of the moir�e potential was a peak in the mean free path at the same energy as the dip in
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the DOS. The same happens in the resistivity in good agreement with experiments. [62,63] As

the strength of the disorder was increased, the characteristic features of the moir�e potential

were blurred to the point where they were completely dimmed. At this strong disorder,

quantum interferences become important and localization e�ects can be observed. Also, the

e�ect of a gap opening at the main Dirac point was analysed. While the resistivity at zero

energy increased substantially, the secondary peaks were not a�ected. Finally, the inter-

esting e�ect of a magnetic �eld acting in the moir�e superlattice was treated. Apart from

the well known Landau levels present in pristine graphene, other sets of Landau levels can

be observed. While the main Landau levels have a quadratic behaviour, the Landau levels

coming from the superlattice have a linear dependence with the magnetic �eld. As a future

work, several improvements to the model can be done to describe in a more faithful way

the stacked graphene/h-BN systems. This could include the electron-hole asymmetry of the

dips present in the experiments, and the consideration of lattice strain that was considered

to open a gap in graphene. [134]

In chapter 5 the electronic properties of in-plane hybrids were studied. After a DFT analysis

of di�erent systems with zigzag and armchair interfaces a model was proposed to describe

these heterostructures within TB. The model was mainly based in the properties of polar-

ization of h-BN. The polarization discontinuity that appears when h-BN was cut along the

zigzag direction gives place to a induced electric �eld that acts in the graphene region. A

simple electrostatic model of point charges at the interface was considered, which represent

the physical bound charge accumulated at the edge of h-BN. The parameters of the TB

model were �tted to zigzag systems, but were proven to work with armchair and chiral

interfaces. The inclusion of the spin degree of freedom was also considered. The spin was

very important in zigzag edged systems for two reasons: �rst, a half-metallic state can be

induced for certain compositions, and second, magnetic ordering can appear at the interface.

These two characteristics make graphene/h-BN heterostructures promising for spintronics

applications. The TB model of hybrid systems was also useful to study theoretically systems

like the ones obtained experimentally with large domains of each component. Electronic and

transport properties can be obtained for realistic systems using very large simulation cells

and considering interfacial e�ects.

Besides being able to change the gap of graphene in hybrid systems by considering di�erent

compositions and edge terminations, it was possible to dynamically tune its electronic prop-

erties taking advantage of the electromechanical response of h-BN. This was the topic of

study in chapter 6. The piezoelectric constant of h-BN was calculated within DFT using the

Berry-phase theory of polarization. In C/BN superlattices with zigzag interfaces, the piezo-

electric tuning of the polarization induced bond charge, and was studied by applying tensile

strain perpendicular to the interface. The behaviour of these systems was well described by

105



Chapter 7. Summary

the piezoelectric response of pristine h-BN. Interestingly, graphene/BC2N heterostructures,

also studied, have a larger piezoelectric response than the hybrids with h-BN. This becomes

useful for applications with experimentally synthesised systems of graphene/BC2N. [106] The


exoelectric e�ect was also discussed, but now by application of compressive strains par-

allel to the zigzag interface. Tuning of the gap for one of the spins was found, along with

curvature induced charge redistribution in the BN part of the hybrid system. Finally, the

magnetoelectric response in hybrid nanotubes was probed to have an important e�ect. It

was expected that the same e�ect remains in co-planar hybrids. The electric �eld-dependent

spin redistribution of these systems could be useful for spintronics applications.
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APPENDIX A

Wannier Functions

The electronic ground state in periodic solids is usually described by Bloch states  nk, n and

k being quantum numbers denoting the band index, and the crystal momentum, respectively.

These Bloch states can be represented as

 nk(r) = unk(r)eik�r; (A.1)

where unk has the periodicity of the crystal. Wannier functions (WFs) are a representation

in real-space of a set of Bloch eigenstates  nk(r), related by a Fourier transformation [260,261]

wn(r�RI) =

cell

(2β)3

Z
BZ
 nk(r)e�ik�RId3k; (A.2)

where RI are lattice vectors and 
cell is the volume of the unit cell. These functions form

an orthonormal set and can be used as a minimal basis for many theoretical studies. A

more general form of this expression includes a unitary matrix transformation that mixes

the bands at wave-vector k

wn(r�R) =

cell

(2β)3

Z
BZ

NX
m=1

Umn(k) mk(r)e�ik�Rd3k; (A.3)

with Umn(k) the unitary matrix of dimension N that de�nes the gauge transformation. The

speci�c shape and range of the WFs depend on the choice of the unitary matrix. This,

in addition to the arbitrariness of the phase factor, make WFs non-unique. From all the
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possible ways of obtaining the WFs, the most common method is the one by Marzari and

Vanderbilt [262] for �nding Maximally Localised WFs (MLWF) by minimising the sum of the

quadratic spreads of the WFs about their centres de�ned by


 =
NX
n

�
hr2in � hrni2

�
: (A.4)

The quantities hr2i and hrni are computed through the Berry-phase theory of polarization,

using a discretized k-space mesh. [261] The expressions for the expected values are: [262]

hrni = � 1

N

X
k;b

wbb Im lnMnn(k;b) (A.5)

and

hr2in =
1

N

X
k;b

wb

nh
1� jMnn(k;b)j2

i
+ [Im lnMnn(k;b)]2

o
; (A.6)

where Mmn(k;b) = humkjun;k+bi is the overlap matrix between Bloch orbitals, b are vectors

connecting a mesh point to its near neighbours and wb are weight factors associated with

each shell of neighbours b = jbj. Furthermore, the spread can be decomposed into two parts


 = 
I + ~
; (A.7)

being 
I gauge-invariant and ~
 gauge-dependent. The minimisation of the spread can be

done with steepest-descents or conjugate-gradient algorithms. For this, a reference set of

Bloch orbitals are needed as starting point. Using trial functions gn(r) as initial guess for

the Wannier functions, these are projected onto the set of Bloch bands and orthonormalized,

being necessary to provide the coe�cients of the projection

Amn(k) = h mkjgni: (A.8)

The trial functions considered in Wannier90 [235] are hydrogenic orbitals with the ra-

dial part, Rn(r), being equal to the Schr•odinger solution of the hydrogen atom, and the

angular dependence taken into account as the real spherical harmonics, �lmr(�; λ), so

gn(r) = Rn(r)�lmr(�; λ). With this construction of the initial guess linear combinations

of atomic orbitals can be used to represent hybrid orbitals.

In some cases, entangled energy bands should be considered, being necessary to use a disen-

tanglement procedure [234] by de�ning an energy window (the outer window) such that for

each k-point there are Nk
win � N states within the window. With these Nk

win states, a set of
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N Bloch states is obtained by performing a unitary transformation

ju�nki =

Nk
winX
m

Udis
mn(k)jumki; (A.9)

and minimising 
I with respect to Udis(k). With this transformation, the energy bands

obtained may not correspond to any of the original energy bands. For this reason, a second

energy window (the inner or frozen window) is introduced within which the properties of

the system are preserved exactly.
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APPENDIX B

Electric polarization

The modern theory of polarization [119] de�nes the electric polarization of an insulator as a

bulk quantity with ionic and electronic contributions, Pbulk = Pion + Pe. The ionic part,

Pion, is simply

Pion =
e


cell

NX
�=1

Z�R�; (B.1)

where e is the electron charge, 
cell is the volume of the cell, N the number of atoms in

the cell, Z� the charge of the ionic core �, and R� its position. The electronic part can be

expressed in terms of Wannier functions [262] as:

Pe = � 2e


cell

Nel=2X
j=1

hrji; (B.2)

where Nel is the number of electrons in the cell, and hrji are the Wannier centres (for more

on Wannier functions see Appendix A).

The interface theorem, formulated by Vanderbilt and King-Smith, [119,213] establish the po-

larization bound charge γ, in absence of lattice strains, that appears at the interface of two

dielectric materials. This interfacial charge is given by the di�erence in bulk polarization

between both materials

(P1 �P2) � n̂ = γ; (B.3)

where n̂ is a vector normal to the interface.
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Atomic population analysis

In DFT calculations the electronic density of any system is always readily available, but a

problem may rise when trying to partition the electronic density among the di�erent atoms

in the system. To assign a charge to each atom is an useful tool to determine how the charge

is redistributing and the characteristics of chemical bonds between atoms. A well known

method to obtain such atomic charges is the one proposed by Mulliken. [167] This method to

obtain the electronic population of atoms is straightforward to implement when using linear

combinations of atomic orbitals (LCAO) as basis. Having a system represented in terms of

basis functions λ�(r) centred on atoms A, the wave function is expanded as

 i(r) =
X
A

X
�2A

c�iλ�(r): (C.1)

The total number of electrons in the system, N , is then given by

N =
X
A;B

X
�2A
�2B

D�;�S�;� ; (C.2)

where S�;� is the overlap matrix, de�ned as in Equation 2.22. D is the density matrix

D�;� =
occ:X
i

fic�ic�i; (C.3)

where fi is the orbital occupation and the sum is over all occupied orbitals.
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The Mulliken population associated to the orbital λ� is

Q� = D�;�S�;� +
1

2

X
� 6=�

(D�;�S�;� + D�;�S�;�) ; (C.4)

and the atomic population of atom A is obtained by summing up all the Mulliken charges

of the orbitals centred on that atom

QMulliken
A = ZA �

X
�2A

Q�; (C.5)

where ZA is the atomic charge.

The Hirshfeld approach [237] is based in the de�nition of a promolecule charge obtained as

the sum of the ground state atomic densities disposed as in the total system

αpromolecule(r) =
X
A

αA(r): (C.6)

At each point, a deformation density can be associated to each atom from the total charge

density αtotal:

αmolecule
A (r) =

αA(r)

αpromolecule(r)
αtotal(r): (C.7)

Finally, the Hirshfeld atomic charge is given by integrating the deformation density and

subtracting it from the nuclear charge

QHirshfeld
A = ZA �

Z
αA(r)

αpromolecule(r)
αtotal(r)dr: (C.8)
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