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Abstract

Coding theory deals with the design of error-correcting codes for the reliable
transmission of information across noisy channels. An error-correcting code
(or code) is a process, which consists on expressing a sequence of elements
over an alphabet in such a way that any introduced error can be detected and
corrected (with limitation), and it is based on adding redundancy elements.
This process includes encoding, transmitting and decoding the sequence of
elements. Most of the used codes are block codes and most of them have a
linear structure, which facilitates the process of encoding and decoding. In
this dissertation, nonlinear error-correcting codes are studied. Despite non-
linear codes do not have the same good properties for encoding and decoding
as linear ones, they have interest because some of best codes are nonlinear.

The �rst question that arises when we use nonlinear codes is their repre-
sentation. Linear codes can be represented by using a generator or parity-
check matrix. The best way to represent a nonlinear code is by using the
kernel/coset representation, which allows us to represent it through some
representative codewords instead of all codewords. In this dissertation, this
representation is studied and e�cient algorithms to compute the kernel and
coset representatives from the list of codewords are given. In addition, prop-
erties such as equality, inclusion, intersection and union between nonlinear
codes are given in terms of this representation. Also, some well known code
constructions (extended, punctured,...) are described by manipulating di-
rectly the kernel and coset representatives of the constituent nonlinear codes.

In order to identify a code (linear or nonlinear), the length n, number of
codewords M and minimum distance d are the most important parameters.
The length n and size M are comparatively easy to compute. On the other
hand, to determine the minimum distance of a code is not so easy. As a mat-
ter of fact, it has been proven to be an NP-hard problem [37]. However, some
algorithms have been developed to compute the minimum distance for linear
codes using di�erent approaches: Gröbner bases [7], tree structure [25], prob-
abilistic algorithms [13, 23] and vector enumeration [39]. For nonlinear codes,
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except for some special families, no general algorithms have been developed
to compute their minimum distance. Using the kernel/coset representation
and the Brouwer-Zimmermann's algorithm to compute the minimum dis-
tance for linear codes, new algorithms to compute the minimum distance for
nonlinear codes are described.

The hardest problem in the process of transmitting information is de-
coding. For linear codes, a general decoding algorithm is the syndrome de-
coding. However, there is not any general decoding method for nonlinear
codes. Based on the kernel/coset representation and the minimum distance
computation, new general algorithms to decode linear and nonlinear codes
are proposed. For some linear codes (codes with a big codimension), the
proposed algorithms have better performance than the syndrome decoding
algorithm. For nonlinear codes, this is the �rst general method for decoding,
which is comparable to syndrome decoding for linear ones.

Finally, most of these algorithms have been evaluated using the Magma

software, and a new Magma package to deal with binary nonlinear codes
has been developed, based in the results given in this dissertation.



Resum

La teoria de codis estudia el disseny de codis correctors d'errors per a la
transmisió �dedigne d'informació per un canal amb soroll. Un codi corrector
d'errors (o simplement codi) és un procés que consisteix en expressar una
seqüència d'elements sobre un alfabet de tal manera que qualsevol error que
sigui introduït pot ser detactat i corregit (amb limitacions), i està basat en
la tècnica d'afegir elements redundants. Aquest procés inclou la codi�cació,
la transmisió i la descodi�cació de la seqüència d'elements. La majoria dels
codis utilitzat són codis bloc i la majoria d'ells tenen una estructura lineal,
que facilita el procés de codi�cació i descodi�cació.

En aquesta memòria, estudiarem codis correctors d'errors no lineals. Mal-
grat els codis no lineals no tenen les mateixes bones propietats per codi�car
i descodi�car com els lineals, el codis no lineals tenen interès atès que alguns
dels millors codis no són lineals.

La primera qüestió que apareix quan s'utilitzen codis no lineals és la seva
representació. Els codis lineals poden ser representats utilitzant una matriu
generadora o una matriu de control. La millor manera de representar un
codi no lineal és utilitzar la representació kernel/coset, que permet represen-
tar un codi mitjançant unes quantes paraules-codi representatives del codi
en lloc de totes les paraules-codi. En aquesta memòria, s'estudia aquesta
representació i es proposen algorismes e�cients per calcular el kernel i els
representants dels cosets a partir de la llista de totes les paraules-codi. A
més, s'utilitza aquesta representació per estudiar algunes propietats com la
igualtat, inclusió, intersecció i unió de codis no lineals. També són anal-
itzades algunes construccions ben conegudes (codi estès, codi punctured,...)
manipulant directament el kernel i els representants dels cosets dels codis no
lineals que en formen part.

Per identi�car un codi (lineal o no lineal), els paràmetres més importants
són la longitud n, el nombre de paraules-codi M i la distància mínima d.
La longitud n i la mida M són comparativament fàcils de calcular. Però,
calcular la distància mínima d'un codi no és tant fàcil. De fet, s'ha demostrat
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que és un problema NP-hard [37]. No obstant, alguns algorismes han estat
desenvolupats per calcular la distància mínima dels codis lineals utilitzant
diversos mètodes: bases de Gröbner [7], arbres [25], algorismes probabilístics
[13, 23] i enumeració de vectors [39]. Però, per als codis no lineals, excepte
per a algunes famílies, no s'han desenvolupat algorismes generals per calcular
la distància mínima. Utilitzant la representació kernel/coset i l'algorisme
Brouwer-Zimmermann per calcular la distància mínima dels codis lineals,
s'han descrit nous algorismes per calcular la distància mínima dels codis no
lineals.

El problema més costós en el procés de transmisió de la informació és
la descodi�cació. Per als codis lineals, la descodi�cació via síndrome és el
mètode més general. No obstant, no existeix un algorisme de descodi�cació
general per a codis no lineals. Basats en la representació kernel/coset i en el
càlcul de la distància mínima, es proposen nous algorismes per descodi�car
codis lineals i no lineals. Per a alguns codis lineals (codis amb una codimensió
gran) els algorismes proposats tenen un comportament millor que la descodi-
�cació via síndrome. Per als codis no lineals, és el primer mètode general de
descodi�cació proposat comparable amb la descodi�cació via síndrome per a
codis lineals.

Finalment, la majoria d'aquests algorismes han estat avaluats usant el
sistema Magma i s'ha desenvolupat un nou mòdul de Magma basat en els
resultats d'aquesta tesis.
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Chapter 1

Introduction

Coding theory is focused on the study of methods for e�cient and accurate
transfer of information from one place to another. This theory has been
developed for the needs of minimizing noises during the transfer of informa-
tion, which includes compact disc recordings, the transmission of information
across telephone lines, data transfer from one computer to another or from
memory to CPU, and information transmission from a distant source such
as a weather or communication satellites.

The physical medium through which the information is transmitted is
called a channel. Telephone lines and the atmosphere are examples of chan-
nels. Undesirable disturbances, called noise, may cause the received informa-
tion to di�er from what was transmitted. Noise can be caused by sunspots,
lightning, folds in a magnetic tape, competing telephone messages, poor typ-
ing, poor hearing, or many other things.

Coding theory deals with the problem of detecting and correcting trans-
mission errors caused by noise on the channel. The fundamental problem in
coding theory is to determine which message was sent based on what is re-
ceived. Figure 1.1 provides a rough idea of a general information transmission
system.

Unlike source coding, which deals with data compression or bit-rate re-
duction and involves encoding information using fewer bits than the original
representation, channel coding is focused on applying techniques to control
the errors during the transmission process. These techniques are studied
within the coding theory. The most important part of the diagram, as far
as we are concerned, is the noise, for without it there would be no need for
the development of the coding theory. In practice, the control we have over
this noise is the choice of a good channel to use for transmission and the use
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Figure 1.1: A general information transmission system.

of various noise �lters to combat certain types of interference which may be
encountered. These are engineering problems and will not be discussed in
this dissertation.

In many cases, the information to be sent is transmitted by a sequence of
1's and 0's. We call any of the two values 0 or 1 a bit. A word is a sequence
of bits. The length of a word is the number of bits in the word. For example,
0110101 is a word of length seven. A word is transmitted by sending its bits,
one after another, across a binary channel. The term �binary� refers to the
fact that only 0 and 1 are used in the channel.

In a perfect, or noiseless, channel, the bit sent is always the bit received.
But unfortunately (or fortunately) no channel is perfect. It is just the matter
of some channels are less noisy, or more reliable, than others. A binary
channel is called symmetric if 0 and 1 are transmitted with equal accuracy;
that is, the probability of receiving the correct bit is independent of which
bit, 0 or 1, is being transmitted. The reliability of a binary symmetric channel
(BSC) is a real number p, 0 ≤ p ≤ 1, where p is the probability that the
bit sent is the bit received. Any channel with 0 < p ≤ 1/2 can be easily
converted into a channel with 1/2 ≤ p < 1. Hence forth we will always
assume that we are using a BSC with probability p satisfying 1/2 ≤ p < 1.
If p is the probability that the bit received is the same as the bit sent, then
1− p is the probability that the bit received is not the same as the bit sent.
Figure 1.2 may clarify how a BSC operates. In most cases, it may be hard to
estimate the actual value of p for a given channel. However, the actual value
of p does not in�uence signi�cantly the development of coding techniques
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Figure 1.2: A binary symmetric channel (BSC).

within the coding theory.
The BSC is a special case of a general, discrete input, discrete output

channel. In practice, the information may contain more than two char-
acters. Generally, an input to the channel is a symbol from a set X =

{x0, x1, . . . , xq−1} with q elements, and an output at the receiving end of the
channel consist of a symbol from a set Y = {y0, y1, . . . , yQ−1} with Q ele-
ments. We assume that the channel is memoryless. This channel is known
as a discrete memoryless channel (DMC) and is represented as shown in Fig-
ure 1.3. The inputs and the outputs can then be related by a set of qQ
conditional probabilities

P (Y = yi | X = xj) = P (yi|xj),

where i ∈ {0, 1, . . . , Q− 1} and j ∈ {0, 1, . . . , q− 1}. The conditional proba-
bility P (yi|xj) is de�ned as the channel transition probability and is denoted
by pji. The set of conditional probabilities {P (yi|xj)} that characterises a
DMC can be arranged as a matrix of the form Π = (pji), which is called the
probability transition matrix [8].

In order to transmit an information through a channel, a code must be
chosen according to the channel. For example, in order to transfer a para-
graph in English, 26 + 10 characters are needed. Other languages normally
need more characters. For example, more than 2500 characters are needed
for the daily used Chinese language. In order to represent all languages in
a computer, a Unicode system is build to handling the text expressed in the
most of the world's writing systems. The latest version of Unicode contains
a collection of more than 110000 characters with each of them represented
by a 16-bit code unit to be transmitted using the binary channel of computer
system.

A code C is a set of words in a certain alphabet. A block code is a code
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Figure 1.3: A discrete memoryless channel (DMC).

C having all its words of the same length; this number is called the length of
the code. For example, the Unicode system is a binary block code of length
16. From now on, we will only consider block codes. Therefore, for us, the
term code will always mean a block code. The words belonging to a given
code C, will be called codewords. We shall denote the number of codewords
in a code C by M = |C|.

In order to transmit a message through a channel, the message needs to
be encoded at the sending end and decoded at the receiving end. For example,
if we want to transmit a simple sentence �Hi!� using a Unicode system, we
need to encode �H� to 0048, �i� to 0069, and �!� to FF01; transfer it through a
hexadecimal channel; and luckily, if no errors occur during the transmission,
we obtain 00480069FF01. By dividing it into 3 blocks of length 4, and by
looking into the Unicode table, we can decode it back as sent. If one error
occurs and 00480065FF01 is received (with an error on the 8th entry), the
decode result would be "He!".

To correct possible errors, some redundancies have to be included in every
codeword in such a way that all codewords of the code are separated as much
as possible. Let c denote the codeword sent through the channel and w the
received word. Then, decode w means to �nd the codeword c′ closest to w.
For example, if we have two messages, 0 and 1, encoded as 000 and 111,
respectively; and we send c = 000 through a BSC, the receiver obtains one
of the following sequences: 000, 001, 010, 100, 011, 101, 110, or 111. If
w = 001 is received, we decode w as 000 because it would be the codeword
more similar to w. If w = 110 is received, 111 would be the most similar one.

The concept of similarity can be de�ned according to a metric. The Ham-
ming distance between two codewords is the number of coordinates where
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they di�er. The smallest Hamming distance between any two distinct code-
words of a code is called the minimum distance of the code and is denoted
by d. The minimum distance, together with the length and the number of
codewords of a code, are the three most important parameters of a code.
The Hamming weight of a codeword is the number of its nonzero coordinates
and the minimum weight of a code is the smallest weight of all its nonzero
codewords. The computation of the minimum weight and minimum distance
of a code is a fundamental topic in coding theory.

For more information on the topic on which this dissertation is based, refer
to the books [18, 19, 24]. More speci�cally, we have mainly used reference
[18] for the brief introduction to this topic given in this chapter.

Among all kinds of codes, linear codes are studied the most for their lin-
earity, which helps to simplify their representation using a generator matrix
and to compute their parameters (length, number of codewords and minimum
distance). Moreover, for linear codes, the minimum distance coincides with
the minimum weight, which is easier to compute. However, some nonlinear
codes are better than any linear code with the same parameters. For exam-
ple, Kerdock and Preparata codes are binary nonlinear codes that contain
more codewords than any comparable binary linear code presently known
[29, 21].

Due to the lack of linearity, the representation of nonlinear codes is usually
hard. A �rst solution would be to �nd whether they have another structure or
not. For example, there are binary nonlinear codes which have a Z4-linear or
Z2Z4-linear structure and, therefore, they can also be compactly represented
using a quaternary generator matrix [6, 16]. In general, nonlinear codes
without any known structure can also be compactly represented. Speci�cally,
they can be seen as a union of cosets of a linear subcode of the code [1, 28].
This allows us to represent a code as a set of representative codewords instead
of as a set with all codewords. Moreover, these representative codewords
can be organized as a matrix, called parity-check system [17], which is a
generalization of the parity-check matrix for linear codes [24].

The main objectives of this dissertation are the following:

• The �rst objective is to describe and analyze the complexity of some
algorithms to compute the kernel and coset representatives, in order to
represent nonlinear codes in a more e�cient way.

• The second objective is to establish some properties and describe some
constructions of new codes from given ones in terms of the kernel and
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coset representatives.

• The third objective is to propose and analyze algorithms to compute the
minimum weight and minimum distance of nonlinear codes, based on
the coset structure and the known Brouwer-Zimmermann's algorithm
for linear codes.

• The forth objective is to design new general decoding algorithms for
linear codes based on the previous algorithms, and then generalize these
decoding methods into nonlinear codes using also the coset structure.

• The �fth objective is to implement functions to construct nonlinear
codes, compute their minimum weight and minimum distance, and sim-
ulate the decoding process, using the results and algorithms given in
the previous chapters. This will mean to extend the functionality of a
new package in Magma to work with binary nonlinear codes.

All results in this dissertation are written in such a way that they can be
easily transformed into algorithms. The performance of these algorithms is
evaluated and an estimation of the number of enumerated codewords needed
in the computations is given.

The overview of this dissertation is the following:

• Chapter 2 exposes de�nitions and known results on coding theory.
Speci�cally, about the construction of new linear codes from old, the
computation of the minimum weight of linear codes, and the syndrome
decoding for linear codes. These results will be generalized into non-
linear codes in later chapters.

• Chapter 3 describe and analyze algorithms to compute the kernel and
coset representatives of nonlinear codes in an e�cient way. Then, it
generalizes those known constructions given in Chapter 2 for linear
codes into nonlinear codes, in terms of the kernel and coset represen-
tatives.

• Chapter 4 describes and analyzes algorithms to compute the minimum
weight and minimum distance of nonlinear codes. The performance of
these algorithms is studied by giving an estimation of the number of
enumerated codewords needed in the computations.
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• Chapter 5 describes new general decoding methods for linear codes
based on the algorithms described in Chapter 4, and then generalizes
these methods to decode nonlinear codes.

• Chapter 6 gives an introduction to a Magma package to deal with
nonlinear codes, describing the main functions implemented to con-
struct nonlinear codes, compute their minimum weight and minimum
distance, and simulate the decoding process, using the algorithms dis-
cussed in the previous chapters.

• Chapter 7 exposes our conclusions and proposes some future lines of
research on this topic.

Finally, mention that all the work included in this dissertation has been
presented to several international conferences [31, 32, 33, 35], published in the
proceedings of two of these conferences [33, 35], and submitted to a journal
[36]. Moreover, all this work has been partially supported by the Spanish
MICINN under Grants TIN2010-17358 and TIN2013-40524-P, and by the
Catalan AGAUR under Grants 2009SGR-1224 and 2014SGR-691.
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Chapter 2

Introduction to coding theory

Among all kinds of codes, linear codes are the most studied, since their linear-
ity property allows to simplify their representation using a generator matrix
and to compute their parameters (length, number of codewords and mini-
mum distance) in an e�cient way. Moreover, it allows to describe e�cient
methods to construct new linear codes from old, and to encode and decode
them. On the other hand, nonlinear codes are less studied because of their
lack of linearity, although some nonlinear codes are better than any linear
code with the same parameters.

In this chapter, some of the basic de�nitions and properties of linear
codes are presented. All these properties are then generalized into nonlinear
codes in the later chapters. For more information on these results on linear
codes, refer to [18, 24, 2, 28, 19, 39]. More speci�cally, we have mainly used
reference [18] for Sections 2.3 and 2.4, and reference [39] for Section 2.7.

2.1 Finite �elds

A �eld is an algebraic structure consisting of a set together with two oper-
ations, usually called addition (denoted by +) and multiplication (denoted
by · but often omitted), which satisfy certain axioms [3, 12]. A �nite �eld
is a �eld with a �nite order (i.e. a �nite number of elements), also called a
Galois �eld. The order of a �nite �eld is always a prime number or a power
of a prime number [3, 12]. For each prime power, pn (n ≥ 1, and p prime),
there exists exactly one (up to an isomorphism) �nite �eld with pn elements,
denoted by GF (pn) or Fpn .

The simplest �nite �elds are the prime �elds GF (p), where p is a prime
number. The �nite �eld GF (p) is isomorphic to the �nite set of integers

9
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modulo p, denoted by Zp. In other words, the set of integers modulo p forms
a �eld of order p, denoted by GF (p) or Fp. Note that a = b in GF (p) means
the same as a ≡ b (mod p). The elements of GF (p) are {0, 1, 2, . . . , p − 1},
and the operations + and · are carried out mod p. For example, F2 is the
binary �eld F2 = {0, 1}; F3 is the ternary �eld F3 = {0, 1, 2}, where for
example, 1 + 2 = 3 ≡ 0 (mod 3), 2 · 2 = 4 ≡ 1 (mod 3), 1− 2 = −1 ≡ 2 (mod
3), etc [24]. Note that 2 · 2 ≡ 0 (mod 4) in the ring of integers modulo 4, so
2 has no inverse, and the ring of integers modulo 4, denoted by Z4, is not a
�nite �eld with 4 elements.

The �nite �eld GF (pn), n > 1, p prime, can be de�ned in the following
way. Let Fp[x] be the set of polynomials in the indeterminate x with coef-
�cients in Fp. This set, along with the usual addition and multiplication of
polynomials, forms a commutative ring with unity. Recall that a polynomial
d(x) ∈ Fp[x] is a divisor or factor of f(x) ∈ Fp[x] if there is g(x) ∈ Fp[x]

such that f(x) = g(x)d(x). Note that f(x) and 1 are trivial divisors of f(x),
and any other divisor is said to be a nontrivial or proper divisor of f(x). A
nonconstant polynomial f(x) ∈ Fp[x] is said to be irreducible over Fp if it has
no proper divisors in Fp[x]; otherwise it is said to be reducible over Fp. To
construct a �eld of characteristic p, we begin with a irreducible polynomial
f(x) ∈ Fp[x]. If f(x) has degree n, then the residue class ring Fp[x]/(f(x))

is a �nite �eld with pn elements, that is GF (pn). An element α ∈ GF (pn)

is primitive if αm 6= 1 for all 1 ≤ m ≤ pn − 2. Equivalently, α is primitive
if every nonzero element in GF (pn) can be expressed as a power of α. For
example, a �nite �eld with 4 elements, denoted by F4, can be constructed as
F4 = F2[x]/(1 + x + x2), where f(x) = 1 + x + x2 is irreducible. Therefore,
F4 = {[0], [1], [x], [1+x]}, where [g(x)] denotes the residue class of g(x). Since
α = [x] is primitive, we can also write F4 = {0, 1, α, α2}, where 1 + α = α2.

In this dissertation, we will study codes whose alphabet is a �nite �eld
Fq with q elements (q = pn, n ≥ 1, and p prime). Although we will present
our general results over arbitrary �elds, we will often specialize to the �eld
F2 with two elements and F3 with three elements.

2.2 Codes over �nite �elds

Let Fnq denote the vector space that consists of all vectors of length n over
the �nite �eld Fq. We will sometimes write the vectors (a1, a2, . . . , an) ∈ Fnq
in the form a1a2a3 · · · an. An (n,M) code C over Fq is a subset of Fnq of size
M . The vectors that belong to C are called codewords, and n is referred as
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the length of the code.
The �eld F2 has had a very special place in the history of coding theory,

and codes over F2 are called binary codes. Similarly, codes over F3 are termed
ternary codes, while codes over F4 are called quaternary codes. The term
�quaternary� has also been used to refer to codes over the ring of integers
modulo 4 [19, 16, 38]. In general, codes over Fq are also called q-ary codes.

A q-ary code C is called to be an [n, k] linear code over Fq if C is a
k-dimensional subspace of Fnq . An [n, k] linear code C over Fq has M = qk

codewords. Because of their algebraic structure, they are easier to describe,
encode, and decode than nonlinear codes. The code alphabet for linear codes
is usually a �nite �eld, although sometimes other algebraic structures (such
as the integers modulo 4) can be used to de�ne codes that are also called
�linear� [19, 16, 38]. The two most common ways to represent a linear code
are with either a generator matrix or a parity check matrix.

A generator matrix for an [n, k] linear code C is any k×n matrix G whose
rows forms a basis of C. In general, there are many generator matrices for
a linear code C. For any set of k linear independent column vectors of a
generator matrix G, the corresponding set of coordinate positions forms an
information set for C. The remaining r = n − k coordinate positions are
termed a redundancy set and r is called the redundancy of C. If the �rst k
coordinate positions form an information set, the linear code has an unique
generator matrix of the form (Ik|A), where Ik is the k × k identity matrix
and A is a k × (n − k) matrix. Such a generator matrix is said to be in
standard form. A generator matrix G is systematic if among its columns can
be found the columns of a k×k identity matrix, in which case G is said to be
systematic on those columns or the corresponding coordinate positions. Note
that a standard generator matrix is a special type of systematic generator
matrix.

Example 2.2.1. The code C1 = {00000, 11000, 01111, 10111} is a [5, 2] bi-
nary linear code with 4 codewords. Since it is linear and 4 = 22, it is easy to
see that it is a subspace of F5

2 of dimension 2. For example, G1 is a genera-
tor matrix for the code C1, and G′1 is the generator matrix in standard form,
where

G1 =

(
11000

01111

)
and G′1 =

(
10111

01111

)
.

The �rst two coordinate positions form an information set for C1 and G′1
is said to be systematic on the �rst two columns. The last three coordinate
positions form a redundancy set for C1, so the redundancy of C1 is 3.
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Example 2.2.2. The code C2 = {0000, α20αα, αα00, 1ααα, α2111, 1α211,

α011, 10α2α2, α1αα, 0α11, 0α2αα, α2αα2α2, 01α2α2, 1100, αα2α2α2, α2α200}
over F4 = F2[x]/(x2 + x + 1) is a [4, 2] quaternary linear code with 16 code-
words, where α = [x]. Since it is linear and 16 = 42, it is easy to see that it
is a subspace of F4

4 of dimension 2. For example, G2 is a generator matrix
for the code C2, and G′2 is the generator matrix in standard form, where

G2 =

(
1 0 α2 α2

1 1 0 0

)
and G′2 =

(
1 0 α2 α2

0 1 α2 α2

)
.

The �rst two coordinate positions form an information set for C2 and G′2
is said to be systematic on the �rst two columns. The last three coordinate
positions form a redundancy set for C2, so the redundancy of C2 is 2.

Let C be any code over Fq. The dual code of C, denoted by C⊥, is the
code

C⊥ = {x ∈ Fnq | x · c = 0, for all c ∈ C},
where x · c denote the ordinary inner product between the two vectors x =

(x1, x2, . . . , xn) and c = (c1, c2, . . . , cn), that is

x · c =
n∑
i=1

xici.

Note that C⊥ is a linear code even if C is nonlinear. In case that C is an
[n, k] linear code over Fq, then C⊥ is an [n, n−k] linear code. Moreover, it is
easy to see that a generator matrix H of C⊥ is an (n−k)×n matrix, which is
called a parity check matrix for the [n, k] linear code C. In general, there are
also several possible parity check matrices for C. If C has a generator matrix
in standard form (Ik|A), then a parity check matrix for C can be computed
as (−AT |In−k). Using a parity check matrix H, we can also see the [n, k]

linear code C as
C = {x ∈ Fnq | HxT = 0},

where 0 is the all-zero vector.

Example 2.2.3. Let C1 be the same binary linear code given in Example
2.2.1. Let

H1 =

11001

00101

00011

 and H ′1 =

11100

11010

11001

 .

The matrix H1 is a parity check matrix for the code C1 and a generator matrix
for the dual code C⊥1 , which is a [5, 3] linear code. Since G′1 is in standard
form, another parity check matrix H ′1 for C1 can be computed from G′1.
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Example 2.2.4. Let C2 be the same quaternary linear code given in Example
2.2.2. Let

H2 =

(
1 1 0 α

0 0 1 1

)
and H ′2 =

(
α2 α2 1 0

α2 α2 0 1

)
.

The matrix H2 is a parity check matrix for the code C2 and a generator matrix
for the dual code C⊥2 , which is a [4, 2] linear code. Since G′2 is in standard
form, another parity check matrix H ′2 for C2 can be computed from G′2.

Let us assume we are at the receiving end of a channel and we want to
receive a message sent from the transmitter at the other end. The transmitter
is, of course, one we have ourselves previously designed. There are two
quantities over which we have no control. The �rst one is the probability p
that our channel will transmit a symbol correctly. In case we consider a BSC,
it would be the reliability p, 1/2 ≤ p < 1. The second one is the number of
possible messagesM that might be transmitted. The actual messages are not
as important as the number of possible messages. The two main problems
on coding theory are the following:

• Encoding: In the process of encoding, we have to determine a code over
Fq to use for sending our messages. We must make some choices. If we
only consider linear codes, �rst of all, we select a positive integer k such
thatM ≤ qk. Next, we decide how many coordinates we need to add to
each information vector of length k to ensure that as many errors can be
corrected or detected as we require; this is the choice of the codewords
and the length of the code, n. To transmit a particular message, the
transmitter �nds the information vector of length k assigned to that
message, then transmits the codeword of length n corresponding to
that information vector of length k.

If we use an [n, k] linear code C over Fq, we can encode using the gen-
erator matrix G of C by mapping an information vector x ∈ Fkq to
the codeword xG ∈ Fnq . By matrix multiplication, xG is a codeword
consisting of a linear combination of the rows of G. If G is a stan-
dard generator matrix, then the �rst k coordinates of the transmitted
codeword xG contain the information vector x.

• Decoding: The process of decoding, that is, determining which code-
word c (and thus which message) was sent when a vector w is received,
is more complex. Finding e�cient (fast) decoding algorithms is a major
area of research in coding theory because of their practical applications.
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H 101000 e 000101 o 001111 W 110111 r 010010
l 001100 d 000100 111011 ! 111110 , 111100

Table 2.1: A (partial) map to encode English letters into binary vectors.

Example 2.2.5. In the case we want to transmit an English sentence, con-
sidering lowercase and uppercase letters, at least 52 messages to represent all
letters are needed. Moreover, if we want to transmit it through a binary chan-
nel, since 25 < 52 < 26, then k = 6 is chosen and some extra messages can
be assigned to punctuations. Table 2.1 shows the corresponding vectors for
some letters, from a complete map between English letters and binary vectors
of length 6. Then, for example, the sentence �Hello, World!� is transformed
into the vectors: 101000, 000101, 001100, 001100, 001111, 111100, 111011,
110111, 001111, 010010, 001100, 000100, 111110.

To correct possible errors during the transmission, we can add two extra
coordinates to each vector of length k = 6, obtaining vectors of length n = 8,
which will be the codewords of the code. Let C3 be the binary linear code of
length 8 and dimension 6, given by the generator matrix

G3 =



10000010

01000011

00100010

00010010

00001011

00000111

 .

An information vector of length 6 can be encoded into a vector of length 8
by multiply it by the generator matrix G3. For example, (101000) · G3 =

(10100000) and (111011) ·G3 = (11101111). As G3 is in standard form, the
�rst 6 coordinates of the resulting vector are exactly the ones of the informa-
tion vector.

The encoded vectors are then transmitted through the channel. If luckily,
no errors occur during the transmission, we obtain the same sent vectors, and
the original information can be treated as the �rst 6 coordinates of the received
vectors. However, a real channel is always noisy, and a decoding process is
needed. A general decoding method for linear codes is the syndrome decoding,
which can be found described in Section 2.4.

If we choose to transmit an English sentence through a ternary channel,
since 33 < 52 < 34, then only 4 coordinates are needed, so we take k = 4.
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H 1002 e 2010 o 1000 W 0021 r 2121
l 1111 d 2211 1221 ! 2112 , 1122

Table 2.2: A (partial) map to encode English letters into ternary vectors.

Table 2.2 shows the corresponding vectors for some letters, from a complete
map between English letters and ternary vectors of length 4. According to
the table, �Hello, World!� is transformed into the vectors: 1002, 2010, 1111,
1111, 1000, 1122, 1221, 0021, 1000, 2121, 1111, 2211, 2112.

Again, to correct possible errors during the transmission, we add two extra
coordinates to each vector of length k = 4, obtaining vectors of length n = 6.
Let C4 be the ternary linear code of length 6 and dimension 4, given by the
generator matrix

G4 =


100010

010020

001020

000112

 .

An information vector of length 4 can be encoded into a vector of length 6 by
multiply it by the generator matrix G4. For example, (1002) · G3 = (10021)

and (1111) ·G3 = (111102). As G3 is in standard form, the �rst 4 coordinates
of the resulting vector are exactly the ones of the information vector. The
decoding process can be found described in Section 2.4.

When a vector w is received at the output side of a channel, we have to
determine which codeword c was sent. Among all possible sent codewords,
we choose the most �similar� codeword to w. The concept of similarity is
de�ned according to a metric. The Hamming distance dH(u, v), or simply
the distance, between two vectors u, v ∈ Fnq is the number of coordinates in
which u and v di�er. The Hamming weight wtH(u), or simply the weight, of
a vector u ∈ Fnq is the number of coordinates which are nonzero, or equivalent
wtH(u) = dH(u,0), where 0 is the all-zero vector of length n. Note also that
the distance between u and v is the same as the weight of their di�erence,
that is, dH(u, v) = wtH(u− v).

For a code C containing at least two codewords, theminimum (Hamming)
weight wt(C) of C is the smallest weight of all the nonzero codewords in C.
The smallest Hamming distance between any two distinct codewords in C

is called the minimum (Hamming) distance d(C) of C. Note that since
dH(u, v) = wtH(u− v), the minimum distance of a code is the smallest value
of wtH(u−v) as u and v, u 6= v, range over all possible codewords. Therefore,
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for linear codes, the minimum distance coincides with the minimum weight.
If C is an [n, k] linear code with minimum distance d, then it is also referred
as an [n, k, d] linear code. In a similar way, if C is an (n,M) code, not
necessarily linear, with minimum distance d, then it is also referred as an
(n,M, d) code.

Example 2.2.6. For the linear codes C1 and C2, given in Example 2.2.1 and
2.2.2, respectively, it is easy to see that wt(C1) = d(C1) = 2 and wt(C2) =

d(C2) = 2. For the linear codes C3 and C4, given in Example 2.2.5, we have
that wt(C3) = d(C3) = 2 and wt(C4) = d(C4) = 2. Finally, for the small
ternary nonlinear code C = {0000, 1212, 2121, 1122, 2211}, wt(C) = 4 and
d(C) = 2.

Two codes C1 and C2 of length n over Fq are said to be equivalent if there
is a vector a ∈ Fnq , a monomial matrix M and an automorphism Γ of the
�eld Fq such that C2 = {MΓ(c) + a : c ∈ C1}. Note that two equivalent
codes have the same minimum distance. In the binary case, two codes C1

and C2 of length n are said to be permutation equivalent if there exists a
coordinate permutation π such that C2 = {π(c) : c ∈ C1}. They are said to
be equivalent if there exists a vector a ∈ Fn2 and a coordinate permutation π
such that C2 = {a+ π(c) : c ∈ C1}.

If C is a linear code over Fq, then 0 ∈ C; but if C is nonlinear, then 0

does not need to belong to C. In this case, we can always consider a new
code C ′ = C − c for any c ∈ C, which is equivalent to C, such that 0 ∈ C ′.
Therefore, from now on, we assume that 0 ∈ C.

2.3 Error detection and error correction

As we mentioned in the previous section, the main focus of coding theory is
to detect and correct errors during the transmission of information through
the channel. We start with an example to help us understanding the concept
of detecting and correcting errors.

Example 2.3.1. Let C1 = {00, 01, 10, 11}. Since every vector in the space
F2

2 is a codeword of C1, any error added to a codeword will result to another
codeword, so C1 cannot detect any error.

Let C2 = {000000, 010101, 101010, 111111}, which can be constructed
from C1 by repeating each codeword three times. This is an example of a
repetition code. Suppose that 110101 is received, since this is not a codeword,
we can detect that at least one error has occurred. The codeword 010101
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can be formed by changing one bit, but all other codewords can be formed
by changing more bits. Therefore, we expect that 010101 is the most likely
codeword transmitted, so we correct 110101 to 010101. In fact if any of the
codewords, c ∈ C2, is transmitted and one error occurs during the transmis-
sion, then the unique closest codeword to the received vector is c.

It is apparent that the addition of bits to codewords may improve the error
correction and detection capabilities of the code. However, clearly the longer
the codewords, the longer it takes to transmit each message. The information
rate (or just rate) of a code is a number that is designed to measure the
proportion of each codeword that is carrying the message. Speci�cally, the
information rate of a code C over Fq of length n is de�ned as

R =
1

n
logq |C|.

Since 1 ≤ |C| ≤ qn, it is clear that the information rate ranges between 0

and 1. It is 1 if every vector is a codeword and 0 if |C| = 1.

Let C be a code over Fq of length n. If c ∈ C is sent and w ∈ Fnq is
received, then e = w − c is the error vector. Any vector e ∈ Fnq can occur as
an error vector, and we wish to know which error vectors can be detected or
corrected by C. We say that the code C detects the error vector e if and only
if c+ e is not a codeword, for every c ∈ C. In other words, e is detected if for
any transmitted codeword c, the decoder, upon receiving c+ e can recognize
that it is not a codeword and hence that some error has occurred. We say
that the code C corrects the error vector e if and only if, for all c ∈ C, c+e is
closer to c than to any other codeword in C. Moreover, the code C is said to
be a t-error correcting code if it corrects all error vectors of weight at most t
and does not correct at least one error vector of weight t+1. If C is a t-error
correcting code, then t is called the error correcting capability of C.

To examine vectors closest to a given codeword, we bring in the concept
of spheres around codewords. The sphere of radius r centered at a vector
c ∈ Fnq is de�ned to be the set

Sr(c) = {v ∈ Fnq | dH(c, v) ≤ r}

of all vectors whose distance from c is less than or equal to r. The number
of vectors in Sr(c) is equal to

r∑
i=0

(
n

i

)
(q − 1)i.
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These spheres considered around all codewords of a code C are pairwise
disjoint provided their radius is chosen small enough.

Theorem 2.3.2. [19] If d is the minimum distance of a code C (linear or
nonlinear) and t = b(d− 1)/2c, then the spheres of radius t around distinct
codewords are disjoint.

Theorem 2.3.3. [19] If d is the minimum distance of a code C (linear or
nonlinear), t = b(d − 1)/2c, a codeword c is sent and w is received where t
or fewer errors have occurred, then c is the unique codeword closest to w.

Find the codeword c closest to the received vector w according to the
Hamming distance and decode w as c is called nearest neighbor decoding.
Nearest neighbor decoding uniquely and correctly decodes any received vector
in which at most t errors have occurred in transmission. Since the minimum
distance of a code C is d, there exist two distinct codewords such that the
spheres of radius t + 1 around them are not disjoint. Therefore, if more
than t errors occur, nearest neighbor decoding may yield more than one
nearest codeword. Thus C is a t-error correcting code, but not a (t+1)-error
correcting code.

For purposes of decoding as many errors as possible, for given n and M ,
we wish to �nd an (n,M) code C with as high a minimum distance d as
possible. Alternately, given n and d, one wish is to send as many messages
as possible; thus we want to �nd a code with the largest number of codewords
M , or, in the linear case, the highest dimension k.

The nearest neighbor decoding de�nes a decoding scheme. In general,
given a decoding scheme, the probability of error, Perr, is the probability
that the decoder outputs a vector c′ distinct from the sent codeword c. For a
given information rate R, Shannon's Theorem shows how small we can make
Perr using an error correcting code.

For a BSC with reliability p, the capacity of the channel is

C(p) = 1 + p log2 p+ (1− p) log2(1− p).

Theorem 2.3.4 (Shannon's Theorem). [24] For any ε > 0, if R < C(p)

and n is su�ciently large, there is a binary code of information rate R with
probability of error Perr < ε.

A similar result holds for any discrete memoryless channel.
The goal of research in coding theory is to produce codes that ful�ll the

conditions of Shannon's Theorem. Once the code is chosen for application,
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encoding is usually rather straightforward. On the other hand, decoding
e�ciently can be a much more di�cult task.

Suppose that we have an overall view of the transmission process, knowing
both the codeword c that is transmitted and the vector w that is received.
For any given c and w, let φp(c, w) be the probability that if the codeword c
is sent over a BSC with reliability p then a vector w is received. Since we are
assuming that noise is distributed randomly, we can treat the transmission
of each bit as an independent event. Therefore, if c and w disagree in d

positions, then we have n − d bits correctly transmitted and d incorrectly
transmitted and thus,

φp(c, w) = pn−d(1− p)d.

In practice, we know w, the vector received, but we do not know the
actual codeword c that was sent. However, each codeword c determines an
assignment of probabilities φp(c, w) to vectors, w. Each such assignment is
a mathematical model and we choose the model (that is, the codeword c)
which agrees most with observation, in this case, which makes the vector
received most likely. That is, assume c is sent when w is received if

φp(c, w) = max{φp(u,w) | u ∈ C}.

This formally establishes the procedure for correcting vectors which until
now we had adopted as being an intuitively sensible procedure: correct w to
a codeword which disagrees with w in as few positions as possible, since such
a codeword is the most likely to have been sent, given that w was received.
Theorem 2.3.5 provides a criterion for �nding such a codeword c.

Theorem 2.3.5. [18] Suppose we have a BSC with reliability p such that
1/2 < p < 1. Let c1 and c2 be two codewords and w a vector, each of length
n. Suppose that c1 and w disagree in d1 positions and c2 and w disagree in
d2 position. Then

φp(c1, w) ≤ φp(c2, w) if and only if d1 ≥ d2.

2.4 Maximum likelihood decoding

According to the last theorem, we can describe a procedure, called maximum
likelihood decoding (MLD), for deciding which codeword c in C was sent,
when a vector w in Fnq is received. There are actually two kinds of MLD.
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(1) Complete Maximum Likelihood Decoding (CMLD). If there is one and
only one codeword c ∈ C closer to w than any other codeword in C, we
decode w as c. That is, if dH(c, w) < dH(c′, w) for any c′ ∈ C, c′ 6= c, then
decode w as c. If there are several codewords in C close to w, i.e, at the same
distance from w, then we select arbitrarily one of them and conclude that it
was the codeword sent.

(2) Incomplete Maximum Likelihood Decoding (IMLD). Again, if there is a
unique codeword c ∈ C closest to w, then we decode w as c. However, if there
are several codewords in C at the same distance from w, then we request a
retransmission. In some cases, we might even ask for a retransmission if the
receiver vector w is too far away from any codeword in the code.

The decoding problem now becomes one of �nding an e�cient algorithm
that will correct up to t errors, where t is the error correcting capability of
the code. One of the most obvious decoding algorithms is to examine all
codewords until one is found at distance t or less from the received vector.
But obviously this is a realistic decoding algorithm only for codes with a
small number of codewords. Another obvious algorithm is to make a table
consisting of a nearest codeword for each of the qn vectors in Fnq and then
look up a received vector in the table in order to decode it. This is also
impractical when qn is large.

For an [n, k, d] linear code C over Fq, we can, however, devise an algorithm
using a table with qn−k rather than qn entries where one can �nd the nearest
codeword by looking up one of these qn−k entries. This general decoding
algorithm for linear codes is called syndrome decoding. Since a linear code
C is an elementary abelian subgroup of the additive group of Fnq , its distinct
cosets C + v partition Fnq into qn−k sets of size qk [24]. Two vectors v1 and
v2 belong to the same coset of C if and only if v1 − v2 ∈ C. The weight
of a coset is the smallest weight of a vector in the coset, and any vector of
this smallest weight in the coset is called coset leader. The all-zero vector is
the unique coset leader of the linear code C. More generally, every coset of
weight at most t = b(d− 1)/2c has a unique coset leader.

The syndrome of a vector v ∈ Fnq , with respect to a parity check matrix
H for the linear code C, is the vector in Fn−kq de�ned as

Syn(v) = HvT .

The linear code C consists of all vectors whose syndrome is equal to the
all-zero vector. As H has rank n− k, every vector in Fn−kq is a syndrome.
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Lemma 2.4.1. [19] v1, v2 ∈ Fnq are in the same coset of C if and only if
Syn(v1) = Syn(v2).

Since two vectors belonging to the same coset have the same syndrome,
then there exists a one-to-one correspondence between cosets of C and its
syndromes. We denote by Cs the coset of C consisting of all vectors in Fnq
with syndrome s.

Suppose a codeword sent over a communication channel is received as a
vector w. Since in nearest neighbor decoding we seek a vector e of smallest
weight such that w−e ∈ C, nearest neighbor decoding is equivalent to �nding
a vector e of smallest weight in the coset containing w, that is, a coset leader
of the coset containing w.

Syndrome decoding requires a table with only qn−k entries, which may
be a vast improvement over a table of qn vectors showing which codeword
is closet to each of these. However, there is a cost for shortening the table:
before looking in the table of syndromes, one must perform a matrix-vector
multiplication in order to determine the syndrome of the received vector.
Then the table is used to look up the syndrome and �nd the coset leader.

2.5 Covering radius

The minimum distance d is a simple measure of the goodness of a code.
For a given length n and number of codewords M , a fundamental problem
in coding theory is to produce a (n,M, d) code with the largest possible d.
Alternatively, given n and d, determine the maximum number Aq(n, d) of
codewords in a code over Fq of length n and minimum distance at least d.
For linear codes, the maximum number of codewords is denoted by Bq(n, d).
Clearly, Bq(n, d) ≤ Aq(n, d). For modest values of n and d, A2(n, d) and
B2(n, d) have been determined and tabulated [11].

According to the de�nition of the spheres of radius t = b(d−1)/2c around
codewords, which are pairwise disjoint, we can have the following inequality,
commonly referred to as the Sphere Packing Bound or the Hamming Bound.

Theorem 2.5.1. [24]

Bq(n, d) ≤ Aq(n, d) ≤ qn∑t
i=0

(
n
i

)
(q − 1)i

, where t = b(d− 1)/2c.
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When we obtain equality in the Hamming Bound, we actually �ll the
space Fnq with disjoint spheres of radius t. In other words, every vector in Fnq
is contained in precisely one sphere of radius t centered around a codeword.
When we have a code for which this is true, the code is called perfect.

When we do not have a perfect code, in order to �ll the space Fnq with
spheres centered at codewords, the sphere must have radius larger than t. It
is easy to see that when we increase the sphere size, some spheres will not
be pairwise disjoint. The covering radius of a code C, denoted by ρ(C), is
the smallest integer s such that Fnq is the union of the spheres of radius s
centered at the codewords of C. Equivalently,

ρ(C) = max{dH(x,C) | x ∈ Fnq },

where dH(x,C) = min{dH(x, c) | c ∈ C}.
Obviously, t ≤ ρ(C) and t = ρ(C) if and only if C is perfect. Therefore,

a code is perfect if and only if its covering radius equals its error correcting
capability. If the code is not perfect, its covering radius is larger than its
error correcting capability.

If C is a code with error correcting capability t and covering radius t+ 1,
then C is called quasi-perfect. There are many known linear and nonlinear
quasi-perfect codes (e.g. certain double error correcting BCH codes and
some punctured Preparata codes). However, unlike perfect codes, there is no
general classi�cation [19].

2.6 Constructing new codes from old

As it is known, many interesting and important codes arise by modifying
or combining existing codes. In this section, we will discuss �ve di�erent
known techniques to construct new linear codes from given linear codes.
Speci�cally, we will describe how to construct extended codes, punctured
codes, shortened codes, direct sums, and Plotkin sums from linear codes
over a �nite �eld. However, all these descriptions can also be applied to
nonlinear codes [19, 24].

2.6.1 Punctured codes

Let C be an [n, k, d] linear code over Fq. The punctured code of C in the
jth coordinate, denoted by Cj, is the code consisting of the codewords of C
after deleting the jth coordinate in each codeword. The punctured code of
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a linear code is also linear and its length is n− 1. If G is a generator matrix
for C, then a generator matrix for Cj is obtained from G by deleting the
column j (and omitting a all-zero or duplicate row that may occur). Since C
contains qk codewords, the only way that Cj could contain fewer codewords
is if two codewords of C agree in all by coordinate j. In that case, C has
minimum distance d = 1 and a codeword of weight 1 whose nonzero entry
is in coordinate j. The minimum distance decrease by 1 only if a minimum
weight codeword of C has a nonzero jth coordinate. Summarizing, we have
Theorem 2.6.1.

Theorem 2.6.1. [19] Let C be an [n, k, d] linear code over Fq, and let Cj be
the code C punctured on the jth coordinate.

(i) If d > 1, Cj is an [n − 1, k, d′] linear code where d′ = d − 1 if C has
a minimum weight codeword with a nonzero jth coordinate and d′ = d

otherwise.

(ii) If d = 1, Cj is an [n−1, k, 1] linear code if C has no codeword of weight
1 whose nonzero entry is in coordinate j; otherwise, if k > 1, Cj is an
[n− 1, k − 1, d′] linear code with d′ ≥ 1.

Example 2.6.2. Let C be the [7, 3, 3] binary linear code, de�ned by the below
generator matrix G. The punctured code C5 is the code consisting of the
codewords of C after deleting the 5th coordinate. Therefore, since C is linear,
C5 is also a linear code of length 6, dimension 3, and minimum distance 2,
with generator matrix G5.

G =

 1001111

0100101

0011100

 G5 =

 100111

010001

001100


2.6.2 Extended codes

It is possible to create longer codes by adding a coordinate. There are many
possible ways to extend a code, but the most common is to choose the ex-
tension so that the sum of all coordinates is 0.

Let C be an [n, k, d] linear code over Fq. The extended code of C, denoted
by Ĉ, is de�ned as

Ĉ = {x1x2 · · ·xn+1 ∈ Fn+1
q | x1x2 · · ·xn ∈ C with

n+1∑
i=1

xi = 0}.
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Since C is linear, the extended code Ĉ is also linear. Moreover, Ĉ is an
[n+ 1, k, d̂] linear code, where d̂ = d or d+ 1. Let G and H be generator and
parity check matrices, respectively, for C. Then, a generator matrix Ĝ for Ĉ
can be obtained from G by adding an extra column to G so that the sum of
the coordinates of each row of Ĝ is 0. A parity check matrix Ĥ for Ĉ is the
matrix

Ĥ =


1 · · · 1 1

0

H
...
0

 .

This construction is also referred to as adding an overall parity check coor-
dinate.

If C is an [n, k, d] binary linear code, then the extended code Ĉ contains
only even weight vectors and is an [n+ 1, k, d̂] code, where d̂ equals d if d is
even and equals d+ 1 if d is odd. In the nonbinary case, however, whether or
not d̂ is d or d+1 is not so straightforward. For an [n, k, d] linear code C over
Fq, denote by de the minimum distance between pairs of codewords having
the same overall parity check coordinate and by do the minimum distance
between pairs of codewords having di�erent overall parity check coordinate.
Therefore, d = min{de, do}. If de ≤ do, then Ĉ has minimum distance d̂ = de;
otherwise d̂ = do + 1 [24].

Example 2.6.3. Let C be the [7, 3, 3] binary linear code, de�ned by the below
generator matrix G. The extended code Ĉ is the linear code of length 8,
dimension 3, and minimum distance 4, with generator matrix Ĝ.

G =

 1001111

0100101

0011100

 Ĝ =

 10011111

01001011

00111001


2.6.3 Shortened codes

Let C be an [n, k, d] linear code over Fq and C0 ⊆ C be the subset of C
containing the codewords having 0 in the jth coordinate. The shortened
code of C in the jth coordinate, denoted by Cj

0 , is the code consisting of the
codewords of C having 0 in the jth coordinate and deleting this coordinate.
That is, Cj

0 can be seen as the punctured code of C0 in the jth coordinate.
The shortened code Cj

0 is an [n− 1, k′, d′] linear code with k− 1 ≤ k′ ≤ k

and d ≤ d′. Note that the shortened code Cj
0 is a subcode of the punctured

code Cj (i.e. Cj
0 ⊆ Cj).
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Example 2.6.4. Let C be the [7, 3, 3] binary linear code, de�ned by the below
generator matrix G. The shortened code C5

0 is the linear code of length 6,
dimension 2, and minimum distance 4, with generator G5

0.

G =

 1001111

0100101

0011100

 G5
0 =

(
101011

011101

)

2.6.4 Direct sum construction

Let Ci be an [ni, ki, di] linear code for i ∈ {1, 2}, both over the same �nite
�eld Fq. Then, their direct sum is the [n1 + n2, k1 + k2,min{d1, d2}] linear
code

C1 ⊕ C2 = {(c1, c2) | c1 ∈ C1, c2 ∈ C2}.

If Ci has generator matrix Gi and parity check matrix Hi, then

G1 ⊕G2 =

[
G1 0

0 G2

]
and H1 ⊕H2 =

[
H1 0

0 H2

]
are a generator matrix and parity check matrix for C1 ⊕ C2, respectively.

Since the minimum distance of the direct sum of two codes does not
exceed the minimum distance of either of the codes, the direct sum of two
codes is generally of little use in applications and is primarily of theoretical
interest.

Example 2.6.5. Let C1 be the [7, 3, 3] binary linear code and C2 be the
[5, 3, 2] binary linear code with generator matrices G1 and G2, respectively,
where

G1 =

 1001111

0100101

0011100

 and G2 =

 10100

01101

00011

 .

The direct sum C1 ⊕ C2 is the [12, 6, 2] binary linear code with generator
matrix

G1 ⊕G2 =



1001111 00000

0100101 00000

0011100 00000

0000000 10100

0000000 01101

0000000 00011


.
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2.6.5 Plotkin sum construction

Let Ci be an [n, ki, di] linear code for i ∈ {1, 2}, both over the same �nite
�eld Fq. Then, their Plotkin sum is the [2n, k1 +k2,min{2d1, d2}] linear code

C1 ⊕ (C1 + C2) = {(c1, c1 + c2) | c1 ∈ C1, c2 ∈ C2}.

If Ci has generator matrix Gi and parity check matrix Hi, then a generator
matrix and parity check matrix for C1 ⊕ (C1 + C2) are[

G1 G1

0 G2

]
and

[
H1 0

−H2 H2

]
, respectively.

Unlike the direct sum construction given in the previous subsection, the
Plotkin sum construction can produce codes that are important for reasons
other than theoretical. For example, di�erent families of Reed-Muller codes
can be constructed in this way [24, 30].

Example 2.6.6. Let C1 be the [7, 3, 3] binary linear code and C2 be the
[7, 2, 4] binary linear code with generator matrices G1 and G2, respectively,
where

G1 =

 1001111

0100101

0011100

 and G2 =

(
1010110

0110101

)
.

The Plotkin sum C1 ⊕ (C1 + C2) is the [14, 5, 4] binary linear code with
generator matrix 

1001111 1001111

0100101 0100101

0011100 0011100

0000000 1010110

0000000 0110101

 .

2.7 Minimum distance computation

Computing the minimum distance of a code over a �nite �eld is necessary in
order to establish its error correcting capability. However, it is computation-
ally di�cult, and has been proven to be an NP-hard problem [37].

Recall that the minimum distance coincides with the minimum weight
when the code is linear. In this section, we will describe the brute force
algorithm, Brouwer's algorithm and Brouwer-Zimmermann's algorithm to
compute the minimum weight for linear codes over �nite �elds [39, 41, 2]. The
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Brouwer-Zimmermann's algorithm is the best known enumerative algorithm
for linear codes, and can be found implemented in the computational algebra
system Magma [9, 14, 39]. To write the next subsections, we have mainly
used reference [39]. For more information on these algorithms, refer to [39,
41, 2].

Other algorithms related to the problem of computing the minimum
weight for linear codes can be found in [7] where Gröbner bases are used, [25]
where a tree structure is used, and [10] where an e�cient method to compute
the number of codewords of �xed weights is described. Probabilistic algo-
rithms on computing the minimum weight of linear codes are described in
[13, 23]. Another algorithm based on Gröbner bases to compute the distance
distribution for systematic nonlinear codes can be found in [15].

2.7.1 Work factor

In order to establish the complexity of the algorithms described in this sec-
tion, a criterion is needed. All the algorithms are based on the enumeration
of vectors, adding vectors and computing the weight of vectors. In most
circumstances, the enumeration is structured such that a single vector addi-
tion is performed for each time the weight of a vector is determined. This
gives rise to a natural performance measure, which is referred to as work [20].
Despite of the fact that there are certain ways to speed up the computation
on vectors, we will use the concept of work to compare the performance of
di�erent algorithms. One unit of work represents both the addition and the
subsequent weight determination of a single coordinate. An estimate of the
total work an algorithm performs is called work factor. Note that since CPU
operations typically deal with either 32 or 64 bits at once, a single unit of
work costs less than one CPU operation [39].

Work factor gives accurate estimation of run times and is a good tool for
comparing the performance of enumeration-based algorithms. Throughout
this dissertation, we will use the work factor as the primary measure to
evaluate the performance of algorithms related to the minimum weight and
minimum distance computation. Along with the theoretical estimation of
work factor, some real tests on some algorithms are performed on Magma

version V2.18-3, running on a server with an Intel Xeon processor (clock
speed 2.40GHz) and 32GB of memory.
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2.7.2 Brute force algorithm

The most straightforward method to compute the minimum weight and min-
imum distance is called brute force, which consists in checking the weight of
every codeword to compute the minimum weight, and checking the distance
between any pair of codewords to compute the minimum distance. Therefore,
the work factors for computing the minimum weight and minimum distance
of an (n,M, d) code over Fq using the brute force algorithm are

log2(q) · n ·M and log2(q) · n ·
(
M

2

)
, (2.1)

respectively.
The brute force method to compute the minimum weight or minimum

distance can be satisfactory for codes with small cardinality, but it is really
impractical for those with a large cardinality. However, for linear codes, there
exist other algorithms that allow to reduce the proportion of codewords that
need to be enumerated in the process of computing the minimum weight,
which is the same as computing the minimum distance. There are two main
approaches used to compute the minimum weight of an [n, k, d] linear code
over Fq: algorithms based on enumeration of codewords [39, 41, 2] and prob-
abilistic algorithms [13, 23].

2.7.3 Brouwer's algorithm

The algorithm to compute the minimum weight of a linear code given by
Brouwer dates from the 1980s, though it has never been published [39, 40].
Comparing with the brute force method, Brouwer's algorithm reduces the
proportion of codewords of the linear code to be enumerated, by obtaining
a lower bound on the weight of those codewords which have not been enu-
merated and an upper bound on the weight of those codewords which have
been enumerated. When the upper bound is equal or smaller than the lower
bound, we obtain the minimum weight of the linear code without enumerat-
ing necessarily all its codewords.

Lower bounds are obtained by enumerating codewords from systematic
generator matrices of the linear code. More speci�cally, Brouwer's algorithm
is based on Lemma 2.7.1 and Theorem 2.7.2, which give the lower bounds.
The information weight of a codeword v ∈ C, denoted by wtI(v), is the
Hamming weight of v restricted to the coordinate positions included in the
information set I for C.



2.7. Minimum distance computation 29

Lemma 2.7.1. [39] Let G be a systematic generator matrix of a [n, k, d]

linear code C over Fq, with information set I. For any r < k, if

S = {mG | m ∈ Fkq , wtH(m) ≤ r},

then the information weights of all v ∈ C\S satisfy

wtI(v) ≥ r + 1.

Note that Lemma 2.7.1 only gives a lower bound on the information
weight of unenumerated codewords. In other words, only the weight re-
stricted to a set of k coordinate positions is considered, while any weight on
the remaining n− k coordinate positions is being neglected.

By manipulating a generator matrix G of a linear code C, we can obtain
a sequence of systematic generator matrices G1, . . . , Gh of C with pairwise
disjoint information sets. These matrices can be obtained applying Gaus-
sian elimination to the coordinate positions which are not contained in the
information sets of the previous computed matrices. For an [n, k, d] linear
code, we can obtain at most h = bn/kc such generator matrices, which use
h · k columns of the generator matrix in the the process of computing the
minimum weight.

Theorem 2.7.2. [39] Let G1, . . . , Gh be a sequence of systematic generator
matrices for a [n, k, d] linear code C over Fq, with pairwise disjoint informa-
tion sets. For any r < k, if

Si = {mGi | m ∈ Fkq , wtH(m) ≤ r},

for each matrix Gi, then all v ∈ C\
⋃h
i=1 Si satisfy

wtH(v) ≥ h(r + 1).

Brouwer's algorithm follows naturally from Theorem 2.7.2. In Brouwer's
algorithm, the enumeration process consists of several steps given by r ∈
{1, . . . , k}. In the rth step, all linear combinations of r rows from the h
generator matrices are enumerated, each one with the information coordi-
nates deleted. Then, we obtain a lower bound given by h(r + 1), and a
upper bound given by the minimum weight of the enumerated codewords.
The enumeration process is terminated as soon as the upper bound is equal
or smaller than the lower bound. Figure 2.1 illustrates the process involved
in Brouwer's algorithm. The step r in which the process �nishes is called
termination step and denoted by r̄. Then, we have that the work factor of
Brouwer's algorithm is given by the following Proposition 2.7.3.
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I1

I2

Ii

Ih

G′
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(
κ
r

)
Minimum weight of enumerated vectors

Minimum weight

Lower bound of enumerated vectors

h · (r + 1)

Figure 2.1: Illustration of the Brouwer's algorithm.

Proposition 2.7.3. [39] The work factor for computing the minimum weight
of an [n, k, d] linear code over Fq using Brouwer's algorithm is

WBrouwer(n, k, d; q) = log2(q)(n− k)bn/kc
r̄∑
r=1

(
k

r

)
(q − 1)r−1,

where r̄ is the smallest integer such that

bn/kc(r̄ + 1) ≥ d.

2.7.4 Zimmermann's improvement

The lower bounds on the minimum weight given by Brouwer's algorithm
consist on the summation of bounds from the h pairwise disjoint information
sets. Note that there are at most bn/kc disjoint information sets, but actually,
due to linear dependencies between columns, it is usually di�cult to �nd
exactly bn/kc disjoint information sets, which means that probably h <

bn/kc. In these cases, several columns do not contribute in the growing of
the lower bounds.

An improvement of Brouwer's algorithm by Zimmermann [41] enables us
to use all the columns during the computation of the minimum weight by
allowing overlaps in the coordinate positions of the information sets. This
means that every column can contribute to the lower bound, which may allow
the lower bound to grow faster. According to Zimmermann's improvement,
if an information set of a generator matrix is introduced with some overlaps
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Figure 2.2: Illustration of the Zimmermann's algorithm.

with the information sets of the preceding generator matrices, then its contri-
bution to the lower bound can simply be reduced by the size of the overlap.
Let G1, . . . , Gh be the sequence of systematic generator matrices with in-
formation sets I1, . . . , Ih, respectively, not necessarily pairwise disjoint. The
number of overlapped coordinate positions between one information set Ii
and its preceding, I1, I2, . . . , Ii−1, is called the rank de�cit and is denoted by
δi for i ∈ {1, . . . , h}. Note that δ1 = 0.

Theorem 2.7.4. [39] Let G1, . . . , Gh be a sequence of systematic generator
matrices for a [n, k, d] linear code C over Fq, with rank de�cits δ1, . . . , δh.
For any r < k, if

Si = {mGi | m ∈ Fkq , wtH(m) ≤ r},

for each matrix Gi, then all v ∈ C\
⋃h
i=1 Si satisfy

wtH(v) ≥
h∑
i=1

max{0, r + 1− δi}.

Along with this generalized lower bound given by Theorem 2.7.4, Zim-
mermann also described a linear algebra process to obtain the sequence of
systematic generator matrices G1, . . . , Gh. Gaussian elimination is repeated
until all coordinate positions have been included in at least one information
set. Figure 2.2 illustrates the process involved in Zimmermann's algorithm.
Note that Brouwer's lower bound can be considered to be an special case of
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this generalized lower bound of Zimmermann, in which every information set
has a rank de�cit of 0.

The process of enumeration of Zimmermman's improvement is the same
as Brouwer's algorithm. In the most usual situations, when it is possible to
�nd the maximal number of disjoint information sets, Zimmermann's algo-
rithm allows to use an extra generator matrix whose information set includes
the �left-over� coordinate positions [39]. The rank de�cit of this �nal matrix
is k − (n mod k). Then, we have that the work factor of Zimmermann's al-
gorithm is given by the following Proposition 2.7.5. Note that, in this case,
if k | n, then Brouwer's and Zimmermann's algorithms are identical.

Proposition 2.7.5. [39] The work factor for computing the minimum weight
of an [n, k, d] linear code over Fq using Zimmermann's improvement is

WZimm(n, k, d; q) = log2(q)(n− k)dn/ke
r̄∑
r=1

(
k

r

)
(q − 1)r−1,

where r̄ is the smallest integer such that

bn/kc(r̄ + 1) + max{0, r̄ + 1− (k − n mod k)} ≥ d.

In fact, although Zimmermann's improvement uses more generator ma-
trices, the growth rate of the lower bound is not always faster than Brouwer's
algorithm. A selection of the fastest one for a given code is needed. In this
dissertation, the term Brouwer-Zimmermann's algorithm refers to the opti-
mal choice between Brouwer's and Zimmermann's version of the algorithm.
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Representation and constructions

In coding theory, linear codes are studied the most for their practical advan-
tages given by the linearity property. For example, they can be compactly
represented by its generator matrices or parity-check matrices. On the other
hand, comparing with linear codes, nonlinear codes are less studied partially
because of the hardness of having a compact representation which allows to
encode and decode also in an e�cient way. However, it is known that some
nonlinear codes have more codewords than any linear one with the same pa-
rameters, length and minimum distance, so they are better than any linear
code. It is also known that nonlinear codes can be seen as a union of cosets
of a linear subcode of the code, called kernel.

In this chapter, �rstly, we show that this representation allows to store
nonlinear codes more e�ciently. Then, we describe and analyze the complex-
ity of some algorithms to e�ciently compute the kernel and coset representa-
tives from a given nonlinear code, �rst for binary codes and then generalized
to q-ary codes (q > 2). Finally, we give some properties and describe con-
structions of new codes from given ones in terms of this representation.

3.1 Representation of nonlinear codes

3.1.1 Representation of binary nonlinear codes

Given a binary code C, the problem of storing C in memory is a well known
problem. If C is linear, that is, it is a subgroup of Fn2 , then it can be com-
pactly represented using a binary generator matrix. On the other hand, if
C is nonlinear, then a solution would be to know whether it has another
structure or not. For example, there are nonlinear binary codes which have

33
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a Z4-linear or Z2Z4-linear structure and, therefore, they can also be com-
pactly represented using a quaternary generator matrix [6, 16]. In general,
binary codes without any of these structures can be represented as a union
of cosets of a binary linear subcode of C [1]. This allows us to represent
a binary code as a set of representative codewords instead of as a set with
all codewords. Moreover, these representative codewords can be organized
as a matrix, called parity-check system [17], which is a generalization of the
parity-check matrix for linear codes [24].

Two structural properties of binary codes are the rank and dimension
of the kernel. The rank of a binary code C, denoted by %, is simply the
dimension of the linear span, 〈C〉, of C. The kernel of a binary code C is
de�ned as KC = {x ∈ C : x + C = C} [1]. Since 0 ∈ C, KC is a binary
linear subcode of C. We denote by κ the dimension of KC . In general, C
can be written as a union of cosets of KC , and KC is the largest such linear
code for which this is true [1]. Therefore,

C =
t⋃
i=0

(
KC + vi

)
, (3.1)

where v0 = 0, t + 1 = M/2κ, M = |C|, and v1, . . . , vt are representatives of
the cosets of KC . Note that t 6= 1, because if t = 1, C = KC ∪ (KC + v1),
but then C would be linear, so C = KC . It is also important to emphasize
that the coset representatives are not necessarily the ones having minimum
weight in each coset. The parameters % and κ can be used to distinguish
between nonequivalent binary codes, since equivalent ones have the same %
and κ.

Let C be a binary code of length n with kernel KC of dimension κ and
t coset representatives given by the set L = {v1, . . . , vt}. Note that we can
represent C as the kernel KC plus the coset representatives L. Since KC is
linear, it can be compactly represented by its binary generator matrix G of
size κ× n. Therefore, considering L as the matrix where in the t rows there
are the coset representatives, the binary code C can be also represented by
the matrix

(
G
L

)
. Since the kernel takes up a memory space of order O(nκ),

the kernel plus the t coset representatives take up a memory space of order
O(n(κ+ t)). For the case t = 0, that is, when the binary code C is linear, we
have that C = KC and the code can be represented by its binary generator
matrix, so the memory space is of order O(nκ). On the other hand, for the
case t + 1 = M , this solution is as bad as representing the code as a set of
all its codewords, so it takes up a memory space of order O(nM).
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For example, applying this representation to the set of all completely
classi�ed binary perfect codes of length 15 and extended perfect codes of
length 16, we obtain very signi�cant compression rates. It is known that
there are exactly 5983 binary perfect codes of length 15 and 2165 binary
extended perfect codes of length 16, each one having 2048 codewords [26].
The binary perfect codes of length 15 have kernels of di�erent dimensions,
distributed as it is shown in Table 3.1 [26]. Therefore, instead of taking up
5983 · 2048 · 4 = 49012736 hexadecimal numbers by encoding each codeword
in hexadecimal notation, it only takes 3677928 hexadecimal numbers by stor-
ing the codewords of a generator matrix of the kernel and the set of coset
representatives for each binary code. This gives a compression rate of 92.5%.
Similarly, the extended perfect codes of length 16 can be compressed from
2165 · 2048 · 4 = 17735680 hexadecimal numbers to 1439336, which gives a
compression rate of 91.9%. Note that although most of these codes have ker-
nels with small dimension, that is, they are far from being linear, we obtain
a high compression.

Dimension of kernel 1 2 3 4 5 6 7 8 9 11
Number of codes 19 177 1295 2896 1222 305 48 17 3 1

Table 3.1: Dimension of the kernels for the binary perfect codes of length 15.

As we have seen, the above matrix
(
G
L

)
gives us a compact representation

for binary codes. Equivalently, a binary code C can also be represented in a
compact way using an (n− κ)× (n+ t) binary matrix (H S), where H is a
generator matrix of the dual code K⊥C and S = (HvT1 HvT2 . . . HvTt ). This
matrix is called the parity-check system of the binary code C, and the binary
linear code generated by (H S) is called the super dual of C [17]. Unlike the
matrix

(
G
L

)
, any matrix equivalent to the parity-check system (H S) can be

used to represent the binary code C. Note that if C is a linear code, the
super dual is the dual code C⊥ and the parity-check system is a parity-check
matrix of C [17].

Algorithm 1 describes a straightforward algorithm to compute the kernel
and coset representatives of a binary code C, by using just the de�nition of
the kernel. This algorithm requires the classi�cation of the M codewords of
C. Moreover, if we assume that the codewords are sorted, then M2 logM

operations (additions and searches) would need to be executed. Since M =

2κ(t + 1), Algorithm 1 is exponential in κ, the dimension of KC . Despite of
the exponential behaviour, using some well known properties of the kernel,
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algorithm 1 Kernel and coset representatives computation.
Data: A sorted binary code C.
Result: The kernel KC and coset representatives L = {v1, . . . , vt}.
begin

KC ← ∅
L← ∅
for c ∈ C do

if C + c ⊆ C then
KC ← KC ∪ {c}

R← C\KC

while R 6= ∅ do
v ← First(R)

L← L ∪ {v}
R← R\(KC + v)

return KC, L

in most cases, it is possible to improve Algorithm 1 in order to compute the
kernel in a more e�cient way.

An improvement of Algorithm 1 is described in Algorithm 2. This new
algorithm uses the following three properties of the kernel. LetK ′ be a subset
of the kernel of a binary code C, K ′ ⊆ KC ,

(1) if k ∈ KC , then K ′ + k ⊆ KC ;

(2) if c ∈ C and (C\K ′) + c ⊆ C, then c ∈ KC ;

(3) if c /∈ KC , then (K ′ + c) ∩KC = ∅.

Therefore, depending on κ, the complexity can be reduced. To analyze Al-
gorithm 2 we study the worst and best case. In the worst case, κ = 0 and we
still need M2 logM operations as Algorithm 1. The best case is when C is
linear, that is, C = KC . Then, in each iteration the cardinality of the kernel
is duplicated. Thus, we need 2κ − 2i additions and searches in each step i,
i ∈ {0, . . . , κ−1}. This means that we need

∑κ−1
i=0 (2κ−2i) = 2κ(κ−1)+1 ad-

ditions and searches. Hence, the number of operations is (M(κ−1)+1) logM ,
where M = 2κ.

A partial kernel of the kernel KC is a linear subcode of KC . Note that in
Algorithm 2 a partial kernel is built in each step. Therefore, in the general
case, the number of operations depends strongly on how the partial kernel is
growing. If the kernel is small or the partial kernel grows slowly up to the
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algorithm 2 Kernel and coset representatives computation.
Data: A sorted binary code C.
Result: The kernel KC and coset representatives L = {v1, . . . , vt}.
begin

KC ← {0}
C∗ ← C\{0}
L← ∅
R← ∅
while |C∗| > 0 do

c← First(C∗)

if C∗ + c ⊆ C then
C∗ ← C∗\(KC + c)

KC ← KC ∪ (KC + c)

else
R← R ∪ (KC + c)

C∗ ← C∗\(KC + c)

while R 6= ∅ do
v ← First(R)

L← L ∪ {v}
R← R\(KC + v)

return KC, L
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kernel, the number of operations is close to the worst case. Otherwise, the
number of operations can be reduced signi�cantly using also the following
property given by Proposition 3.1.1.

Proposition 3.1.1. Let K ′ be a partial kernel of a binary code C and
L′ = {v′1, . . . , v′t′} be the corresponding coset representatives, that is, C =⋃t′

i=0(K ′ + v′i), where v
′
0 = 0. Then, for each v′j ∈ L′, K ′ + v′j ⊆ KC if and

only if v′j + v′i ∈ C for all i ∈ {1, . . . , t′}.

Proof. IfK ′+v′j ⊆ KC , then v′j ∈ KC and, by the kernel de�nition, v′j+v
′
i ∈ C

for all i ∈ {1, . . . , t′}. Suppose that v′j + v′i ∈ C for all i ∈ {1, . . . , t′}. To
prove that K ′ + v′j ⊆ KC , it is enough to show that v′j ∈ KC . For any
c ∈ C, there exist k′ ∈ K ′ and v′i ∈ L′ such that c = k′ + v′i. Then,
v′j + c = v′j + k′ + v′i ∈ K ′ + v′j + v′i ⊆ C, since K ′ ⊆ KC and v′j + v′i ∈ C.

Note that if C is binary nonlinear andM = 2r (r ≥ 2), then |KC | ≤ 2r−2;
and if M = 2r · s (r ≥ 0, s ≥ 3 odd), then |KC | ≤ 2r. Hence, in Algorithm
2, when M = 2r and the dimension of a partial kernel K ′ is r − 1, the code
C is linear, so KC = C; and when M = 2r · s and the dimension of a partial
kernel K ′ is r, KC = K ′.

For large M , the computation of the kernel and coset representatives of a
binary nonlinear code C using Algorithm 2 can still be ine�cient. However,
some well known code constructions allow to compute the kernel and coset
representatives of new codes in a very e�cient way, as can be seen in Section
3.2.

3.1.2 Representation of q-ary nonlinear codes

The representation for binary nonlinear codes can be generalized into q-ary
nonlinear codes with some small modi�cations. As for binary nonlinear codes,
we also have that any q-ary nonlinear code can be represented as a union of
cosets of a linear subcode of C. The kernel of a q-ary code C is de�ned as
KC = {x ∈ C : λx + C = C, ∀λ ∈ Fq} [28]. Like in the binary case, since
0 ∈ C, KC is a linear subcode of C and κ denotes its dimension. In general,
C can be written as a union of cosets of KC , and KC is the largest such linear
code for which this is true [28]. Therefore,

C =
t⋃
i=0

(
KC + vi

)
, (3.2)
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algorithm 3 Kernel and coset representatives computation.
Data: A sorted q-ary code C.
Result: The kernel KC and coset representatives L = {v1, . . . , vt}.
begin

KC ← ∅
L← ∅
for c ∈ C do

if {C + λc : λ ∈ Fq\{0}} ⊆ C then
KC ← KC ∪ {λc : λ ∈ Fq}

R← C\KC

while R 6= ∅ do
v ← First(R)

L← L ∪ {v}
R← R\{KC + v}

return KC, L

where v0 = 0, t + 1 = M/qκ, M = |C|, and v1, . . . , vt are representatives of
the cosets of KC .

As for binary nonlinear codes, any q-ary nonlinear code C can be repre-
sented by a matrix

(
G
L

)
, where G is a generator matrix of KC of size κ × n

and L = {v1, . . . , vt} is a set of coset representatives considered as the matrix
where in the rows there are the coset representatives. Again, since the kernel
takes up a memory space of order O(nκ), the kernel plus the t coset repre-
sentatives take up a memory space of order O(n(κ+ t)). Moreover, another
matrix, the parity-check system and the super dual of a q-ary code can also
be de�ned in the same way as for binary codes.

Algorithm 3 describes a straightforward algorithm to compute the kernel
and coset representatives of a q-ary code C, by using just the de�nition of the
kernel. The main di�erence with Algorithm 1 lies in the fact that if c ∈ KC ,
then λc ∈ KC for all λ ∈ Fq. Again, if we assume that the codewords are
sorted, then (q−1)M2 logM operations (additions and searches) would need
to be executed. Since M = qκ(t + 1), Algorithm 3 is also exponential in κ,
the dimension of KC .

Algorithm 3 can be improved by using the same properties used to im-
prove Algorithm 1 into Algorithm 2. Let K ′ be a subset of the kernel of a
q-ary code C, K ′ ⊆ KC ,

(1) if k ∈ KC , then K ′ + λk ⊆ KC for all λ ∈ Fq;
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(2) if c ∈ C and (C\K ′) + λc ⊆ C for all λ ∈ Fq, then c ∈ KC ;

(3) if c /∈ KC , then (K ′ + λc) ∩KC = ∅ for all λ ∈ Fq\{0}.

Therefore, depending on κ, the complexity can be reduced. These improve-
ments have been used to describe Algorithm 4. The analysis of this new
algorithm is similar to the analysis of Algorithm 2. In the worst case, κ = 0

and we still need (q − 1)M2 logM operations as Algorithm 3. The best case
is when C is linear, that is, C = KC . Then, in each iteration the cardinal-
ity of the kernel grows q times. Thus, we need (q − 1)(qκ − qi) additions
and searches in each step i, i ∈ {0, . . . , κ − 1}. This means that we need∑κ−1

i=0 (q − 1)(qκ − qi) = qκ(κ(q − 1)− 1) + 1 additions and searches. Hence,
the number of operations is (M(κ(q − 1)− 1) + 1) logM , where M = qκ.

As in Algorithm 2 for binary codes, in Algorithm 4, a partial kernel is
built in each step. Therefore, in the general case, the number of operations
depends strongly on how the partial kernel is growing. Also, in some cases,
the algorithm can be improved by using Proposition 3.1.2, which is a gener-
alization of Proposition 3.1.1.

Proposition 3.1.2. Let K ′ be a partial kernel of a q-ary code C and L′ =

{v′1, . . . , v′t′} be the corresponding coset representatives, that is, C =
⋃t′

i=0(K ′+

v′i), where v
′
0 = 0. Then, for each v′j ∈ L′, K ′ + v′j ⊆ KC if and only if

λv′j + v′i ∈ C for all λ ∈ Fq and i ∈ {1, . . . , t′}.

Proof. If K ′+v′j ⊆ KC , then v′j ∈ KC and, by the kernel de�nition, λv′j+v
′
i ∈

C for all λ ∈ Fq and i ∈ {1, . . . , t′}.
Suppose that λv′j + v′i ∈ C for all λ ∈ Fq and i ∈ {1, . . . , t′}. To prove

that K ′ + v′j ⊆ KC , it is enough to show that v′j ∈ KC . For any c ∈ C, there
exist k′ ∈ K ′ and v′i ∈ L′ such that c = k′+v′i. Then, λv

′
j+c = λv′j+k′+v′i ∈

K ′ + λv′j + v′i ⊆ C, since K ′ ⊆ KC and λv′j + v′i ∈ C.

Note that if M = qr · s (r ≥ 0, s ≥ 1, gcd(s, q) = 1), then |KC | ≤ qr;
so when the dimension of a partial kernel K ′ is r, KC = K ′. For the binary
case, that is when q = 2, as have seen in Subsection 3.1.1, we can improve
the bound on the cardinality of the kernel, KC . If C is binary nonlinear and
M = 2r (r ≥ 2), then |KC | ≤ 2r−2. Hence, in Algorithm 4, when M = 2r

and the dimension of a partial kernel K ′ is r − 1, the code C is linear, so
KC = C.

Also note that when q = pt (t ≥ 2, p prime) Algorithm 4 can be improved
by considering only the t generators of the vector space Fq of dimension t

over Fp for λ, instead of all elements in Fq.
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algorithm 4 Kernel and coset representatives computation.
Data: A sorted q-ary code C.
Result: The kernel KC and coset representatives L = {v1, . . . , vt}.
begin

KC ← {0}
C∗ ← C\{0}
L← ∅
R← ∅
while |C∗| > 0 do

c← First(C∗)

if {C∗ + λc : λ ∈ Fq\{0}} ⊆ C then
C∗ ← C∗\{KC + λc : λ ∈ Fq\{0}}
KC ← {KC + λc : λ ∈ Fq}

else

for λ ∈ Fq\{0} such that λc ∈ C do
R← R ∪ {KC + λc}
C∗ ← C∗\{KC + λc}

while R 6= ∅ do
v ← First(R)

L← L ∪ {v}
R← R\{KC + v}

return KC, L
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For large M , the computation of the kernel and coset representatives of
a q-ary code C using Algorithm 4 can still be ine�cient. However, some
well known code constructions allow to compute the kernel and coset rep-
resentatives of new codes in a very e�cient way, as can be seen in Section
3.2.

3.2 Constructions of nonlinear codes

Using the coset representation given in Section 3.1, rather than using the
list of all codewords, we can manipulate and construct new q-ary nonlinear
codes from old ones in a more e�cient way. Speci�cally, in this section, we
show how to establish the equality and inclusion of two given nonlinear codes
from their kernels and coset representatives, and how to compute the kernel
and coset representatives of new codes (union, intersection, extended code,
punctured code, shortened code, direct sum, Plotkin sum) from given ones,
which are already represented in this way. Note that all these results are
written to be implemented easily as algorithms.

3.2.1 Properties of nonlinear codes

Let col(S) denote the set of columns of the matrix S.

Proposition 3.2.1. [17] Let C be a q-ary code of length n with parity-check
system (H S). Then, c ∈ C if and only if HcT ∈ {0} ∪ col(S).

Proposition 3.2.2. [17] Let C be a q-ary code of length n with rank %,
dimension of the kernel κ and parity-check system (H S). Then, % = n −
rank(H) + rank(S) and κ = n− rank(H).

Let C1 and C2 be two q-ary codes of length n1 and n2, respectively. Let
(H1 S1) and (H2 S2) be the parity-check systems of C1 and C2, respectively.
The matrices H1 and H2 are the generator matrices of the dual codes K⊥C1

and K⊥C2
, and κ1 and κ2 the dimension of the kernel of C1 and C2, respec-

tively. The coset representatives for C1 and C2 are the sets {v1, . . . , vt1} and
{w1, . . . , wt2}, which give us the matrices S1 = (H1v

T
1 H1v

T
2 . . . H1v

T
t1

) and
S2 = (H2w

T
1 H2w

T
2 . . . H2w

T
t2

), respectively. Finally, the super duals of C1

and C2 are the linear codes generated by (H1 S1) and (H2 S2), respectively.

Proposition 3.2.3 (Equality). Let C1 and C2 be two q-ary codes of length
n. Then, C1 = C2 if and only if KC1 = KC2, t1 = t2, and H2v

T
i ∈ col(S2) for

all i ∈ {1, . . . , t1}.
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Proof. It is clear that if C1 = C2, then KC1 = KC2 , t1 = t2 and vi ∈ C2\KC2

for all i ∈ {1, . . . , t1}. By Proposition 3.2.1, vi ∈ C2\KC2 if and only if
H2v

T
i ∈ col(S2).
On the other hand, if KC1 = KC2 and t1 = t2, then |C1| = |C2|. Moreover,

given a codeword c ∈ C1, c = k + vi for some i ∈ {0, 1, . . . , t1} and k ∈ KC1 ,
where v0 = 0. If i = 0, then c ∈ KC1 = KC2 ⊆ C2. If i ∈ {1, . . . , t1}, then
H2c

T = H2(k+vi)
T = H2k

T +H2v
T
i = H2v

T
i ∈ col(S2), since k ∈ KC1 = KC2 .

Therefore, by Proposition 3.2.1, we have that c ∈ C2. Since C1 ⊆ C2 and
|C1| = |C2|, we obtain that C1 = C2.

Proposition 3.2.4 (Inclusion). Let C1 and C2 be two q-ary codes of length
n. Let K = KC1 ∩ KC2 of dimension κ and KC1 =

⋃h1
j=0(K + xj), where

h1 = qκ1−κ − 1. Then, C1 ⊆ C2 if and only if H2(xj + vi)
T ∈ {0} ∪ col(S2),

for all i ∈ {0, 1, . . . , t1} and j ∈ {0, 1, . . . , h1}, where v0 = x0 = 0.

Proof. Note that C1 =
⋃t1
i=0(KC1 + vi) =

⋃t1
i=0

⋃h1
j=0(K + xj + vi). It is clear

that if C1 ⊆ C2, then xj + vi ∈ C2, which is equivalent to H2(xj + vi)
T ∈

{0} ∪ col(S2) for all i ∈ {0, 1, . . . , t1} and j ∈ {0, 1, . . . , h1}, by Proposition
3.2.1.

On the other hand, given a codeword c ∈ C1, c = k + xj + vi for some
i ∈ {0, 1, . . . , t1}, j ∈ {0, 1, . . . , h1} and k ∈ K. Thus, H2c

T = H2(k +

xj + vi)
T = H2k

T + H2(xj + vi)
T = H2(xj + vi)

T ∈ {0} ∪ col(S2), since
k ∈ K ⊆ KC2 . Finally, by Proposition 3.2.1, we can assure that c ∈ C2, so
C1 ⊆ C2.

Proposition 3.2.5 (Intersection). Let C1 and C2 be two q-ary codes of length
n. Let K = KC1 ∩KC2 of dimension κ and KC1 =

⋃h1
j=0(K + xj) and KC2 =⋃h2

j=0(K + yj), where h1 = qκ1−κ − 1, h2 = qκ2−κ − 1 and x0 = y0 = 0. Let
C = C1 ∩C2. Then, K ⊆ KC and C =

⋃
v∈LI

(K + v), where LI = {xj + vi :

j ∈ {0, 1, . . . , h1}, i ∈ {0, 1, . . . , t1} and H2(xj + vi)
T ∈ {0} ∪ col(S2)}.

Proof. First, we show that K ⊆ KC . Given a k ∈ K = KC1 ∩KC2 , for any
v ∈ C = C1 ∩ C2, we have that k + v ∈ C1 since v ∈ C1 and k ∈ KC1 , and
equivalently, we have that k + v ∈ C2 since v ∈ C2 and k ∈ KC1 . Therefore,
k + v ∈ C for any v ∈ C, and we obtain that k ∈ KC .

Note that C1 =
⋃t1
i=0(KC1 + vi) =

⋃t1
i=0

⋃h1
j=0(K + xj + vi). For any

j ∈ {0, 1, . . . , h1} and i ∈ {0, 1, . . . , t1}, K + xj + vi ⊆ C2 if and only if
xj+vi ∈ C2, since K ⊆ KC2 . By Proposition 3.2.1, the condition xj+vi ∈ C2

is equivalent toH2(xj+vi)
T ∈ {0}∪col(S2). Therefore, the result follows.
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Proposition 3.2.6 (Union). Let C1 and C2 be two q-ary codes of length
n. Let K = KC1 ∩ KC2 of dimension κ and KC1 =

⋃h1
j=0(K + xj) and

KC2 =
⋃h2
j=0(K + yj), where h1 = qκ1−κ− 1, h2 = qκ2−κ− 1 and x0 = y0 = 0.

Let C = C1 ∪ C2. Then, K ⊆ KC and C =
⋃
v∈LU

(K + v), where LU =

{xj + vi : j ∈ {0, 1, . . . , h1}, i ∈ {0, 1, . . . , t1}}\LI ∪ {yj + wi : j ∈
{0, 1, . . . , h2}, i ∈ {0, 1, . . . , t2}}.

Proof. Using the same arguments as in Proposition 3.2.5, we can see that
K ⊆ KC . We have that C = C1∪C2 =

⋃t1
i=0

⋃h1
j=0(K+xj+vi)∪

⋃t2
i=0

⋃h2
j=0(K+

yj + wi). Again, by the same arguments as in the proof of Proposition
3.2.5, C =

⋃
v∈LU

(K + v), where LU = {xj + vi : j ∈ {0, 1, . . . , h1}, i ∈
{0, 1, . . . , t1}}\LI ∪ {yj + wi : j ∈ {0, 1, . . . , h2}, i ∈ {0, 1, . . . , t2}}.

3.2.2 Extended codes

Let C be a q-ary code of length n. The extended code of C, denoted by Ĉ, is
de�ned as the set of codewords constructed by adding to each codeword of
C a coordinate so that the sum of all coordinates is 0, that is,

Ĉ = {(x1, x2, . . . , xn+1) ∈ Fn+1
q : (x1, x1, . . . , xn) ∈ C with

n+1∑
i=1

xi = 0}.

The (n + 1)th coordinate in the above construction is called overall parity-
check coordinate, or just parity coordinate if C is a binary code.

Proposition 3.2.7 (Extended Code). Let C be a q-ary code of length n

with kernel KC and t coset representatives given by the set L = {v1, . . . , vt}.
Then, the extended q-ary code Ĉ has kernel K̂C and t coset representatives
given by the set {v̂1, . . . , v̂t}, where v̂i is vi after adding an overall parity-check
coordinate for i ∈ {1, . . . , t}.

Proof. Obviously, the extended code Ĉ can be written as Ĉ =
⋃t
i=0(K̂C+ v̂i),

where v0 = 0 and v̂i is vi after adding an overall parity-check coordinate for
i ∈ {0, . . . , t}. Therefore, K̂C ⊆ K(Ĉ), and we only need to prove that
K(Ĉ) ⊆ K̂C .

Let k̂ = (k1, k2, . . . , kn,−
∑n

j=1 kj) ∈ K(Ĉ) ⊆ Ĉ. For any λ ∈ Fq and

ĉ = (c1, c2, . . . , cn,−
∑n

j=1 cj) ∈ Ĉ, we have that λk̂ + ĉ = (λk1 + c1, λk2 +

c2, . . . , λkn + cn,−
∑n

j=1(λkj + cj)) ∈ Ĉ. Since Ĉ is the extended code of
C, k = (k1, k2, . . . , kn) ∈ C, c = (c1, c2, . . . , cn) ∈ C and λk + c = (λk1 +

c1, λk2 + c2, . . . , λkn + cn) ∈ C for any c ∈ C and λ ∈ Fq, so k ∈ KC , which
means that k̂ ∈ K̂C and K(Ĉ) ⊆ K̂C .
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Example 3.2.8. Let C be the (7, 24, 2) binary nonlinear code with kernel
K generated by G and 2 coset representatives v1 = (0101011) and v2 =

(1010100).

G =

 1001111

0100101

0011100

 Ĝ =

 10011111

01001011

00111001


The extended code Ĉ of C can be obtained by adding an overall parity-

check coordinate to the kernel K and coset representatives v1, v2. The kernel
of the extended code Ĉ is the extended code of the kernel, K̂, which is gener-
ated by the matrix Ĝ; and the coset representatives of the extended code are
v̂1 = (01010110) and v̂2 = (10101001). Therefore, Ĉ = K̂∪(K̂+v̂1)∪(K̂+v̂2).
Note that the resulting code is a (8, 24, 2) binary nonlinear code.

If C is an (n, |C|, d) binary code, then the extended code Ĉ contains only
even weight codewords and is an (n + 1, |C|, d̂) binary code, where d̂ equals
d if d is even and equals d + 1 if d is odd. It is known that this is true if
C is linear [19], and it can be easily generalized into binary nonlinear codes.
Note that if the distance between two codewords in C is even, after adding
a parity coordinate, both codewords are at the same distance, and if the
distance between them is odd, the distance increases by 1, after adding a
parity coordinate.

In general, for an (n, |C|, d) q-ary code C, denote by de the minimum
distance between pairs of codewords of C having the same overall parity-check
coordinate and by do the minimum distance between pairs of codewords of C
having di�erent overall parity-check coordinate. Therefore, d = min{de, do}.
If de ≤ do, then Ĉ has minimum distance d̂ = de = d; otherwise d̂ = do + 1 =

d + 1. For q-ary linear codes this result is given for example in [19]. The
generalization to q-ary nonlinear codes is straightforward considering the
minimum distances instead of the minimum weights of codewords of C.

3.2.3 Punctured codes

Let C be a q-ary code of length n. The punctured code of C in the jth
coordinate, denoted by Cj, is the code consisting of the codewords of C after
deleting the jth coordinate.

Proposition 3.2.9 (Punctured Code). Let C be an (n, |C|, d) q-ary code
with kernel KC and t coset representatives given by the set L = {v1, . . . , vt}.
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Let Kj be the punctured code of KC in the jth coordinate. Then, the punc-
tured code Cj in the jth coordinate is Cj =

⋃
v∈Lj(Kj + v), where Lj ⊆

{0, vj1, . . . , v
j
t} and v

j
i is vi after deleting the jth coordinate for i ∈ {1, . . . , t}.

(i) If d > 1, Cj is an (n − 1, |C|, d′) q-ary code, where d′ = d − 1 if C
has two codewords at distance d which di�er at the jth coordinate and
d′ = d otherwise.

(ii) If d = 1, Cj is an (n − 1, |C|, 1) q-ary code if the codewords in C

at distance 1 do not di�er at the jth coordinate; otherwise, Cj is an
(n− 1, |Cj|, d′) q-ary code with d′ ≥ 1 and |Cj| < |C|.

Proof. Let vj be the vector v after deleting the jth coordinate. Given any
codeword c ∈ C, c = k + vi for some k ∈ KC and i ∈ {0, 1, . . . , t}. Since
cj = kj + vji , C

j ⊆
⋃
v∈Lj(Kj + v), where Lj = {0, vj1, . . . , v

j
t}.

If d > 1, or d = 1 but the codewords at distance 1 do not di�er at the jth
coordinate, then |Cj| = |C|. Since Cj ⊆

⋃
v∈Lj(Kj + v) and |Cj| = |C| =

|
⋃
v∈Lj(Kj + v)|, we obtain that Cj =

⋃
v∈Lj(Kj + v). Moreover, it is clear

that if d > 1, Cj is an (n − 1, |C|, d′) q-ary code, where d′ = d − 1 if C has
two codewords at distance d which di�er at the jth coordinate and d′ = d

otherwise.
Finally, if there exist c, u ∈ C such that they only di�er at the jth coor-

dinate, then c−u = λej, where λ ∈ Fq\{0} and ej is the vector with 1 in the
jth coordinate and zero elsewhere. Now, we have two possibilities. Firstly,
if λej ∈ KC , then c and u are in the same coset, and the same happens with
any such pair c, u since KC is linear. In this case, Kj has dimension κ − 1,
and the result follows with Lj = {0, vj1, . . . , v

j
t}. Secondly, if λej /∈ KC , then

c and u are in di�erent cosets, that is, c 6∈ KC + u. However, after deleting
the jth coordinate, Kj + cj = Kj + uj (or equivalently, cj ∈ Kj + uj) and
the result follows with Lj ( {0, vj1, . . . , v

j
t}. Note that in both cases we have

that d′ ≥ 1 and |Cj| < |C|.

Example 3.2.10. Let C be the (7, 24, 2) binary nonlinear code with kernel
K generated by G and 2 coset representatives v1 = (0101011) and v2 =

(1010100).

G =

 1001111

0100101

0011100

 G5 =

 100111

010001

001100


By puncturing the kernel K and coset representatives of C, we can obtain

the punctured code C5 as C5 = K5 ∪ (K5 + v5
1) ∪ (K5 + v5

2), where the
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punctured code of the kernel, K5, is generated by the matrix G5; and the
coset representatives are v5

1 = (010111) and v5
2 = (101000). Note that the

punctured code C5 is a (6, 24, 2) binary nonlinear code. In Table 3.2, we can
see that we obtain the same codewords in C5 as puncturing directly from the
list of codewords of C.

3.2.4 Shortened codes

Let C be a q-ary code of length n. The shortened code of C in the jth
coordinate, denoted by Cj

0 , is the code consisting of the codewords of C
having 0 in the jth coordinate and deleting this coordinate.

Proposition 3.2.11 (Shortened Code). Let C be an (n, |C|, d) q-ary code
with kernel KC and t coset representatives given by the set L = {v1, . . . , vt}.
Let Kj

0 be the shortened code of KC in the jth coordinate. Then, the short-
ened code Cj

0 in the jth coordinate is Cj
0 =

⋃
v∈Lj(K

j
0 + v), where Lj =

{0} ∪ {vji : i ∈ I}, I = {i ∈ {1, . . . , t} : there exists v′i ∈ KC +

vi such that has 0 in the jth coordinate} and vji is v′i after deleting the jth
coordinate for i ∈ I. Moreover, Cj

0 is an (n − 1, |Cj
0 |, d′) q-ary code with

d′ ≥ d and |Cj
0 | ≤ |C|.

Proof. Let C0 ⊆ C and K0 ⊆ KC be the subsets of C and KC , respectively,
containing the codewords having 0 in the jth coordinate.

IfK0 ( KC , then I = {1, . . . , t}. Therefore, we have that
⋃
v∈Lj(K

j
0+v) ⊆

Cj
0 , where L

j = {0, vj1, . . . , v
j
t}. Moreover, for any c0 ∈ C0 ⊆ C, since c0 ∈ C,

there exist k ∈ KC and i ∈ {1, . . . , t} such that c0 = k + v′i. Since c0 and v′i
have 0 in the jth coordinate, we have that k ∈ K0. Therefore, after deleting
the jth coordinate, Cj

0 =
⋃
v∈Lj(K

j
0 + v).

If K0 = KC , then any k ∈ KC has 0 in the jth coordinate. In this case, if
vi has a nonzero entry in the jth coordinate, does not exist any v′i ∈ KC + vi
such that has 0 in the jth coordinate. Therefore, Cj

0 =
⋃
v∈Lj(K

j
0 + v),

where Lj = {0} ∪ {vji : i ∈ I}, I = {i ∈ {1, . . . , t} : there exists v′i ∈
KC +vi such that has 0 in the jth coordinate} and vji is v′i after deleting the
jth coordinate for i ∈ I. Note that, in this case, the number of cosets in Cj

0

may be smaller than the number of cosets t in C.
Finally, it is straightforward to see that d′ ≥ d and |Cj

0 | ≤ |C|.

Example 3.2.12. Let C be the (7, 24, 2) binary nonlinear code with kernel
K generated by G and 2 coset representatives v1 = (0101011) and v2 =
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K =

C

(0000000),

(1101010),

(1001111),

(1010011),

(1110110),

(0111001),

(0100101),

(0011100).

→

C5

(000000),

(110110),

(100111),

(101011),

(111010),

(011101),

(010001),

(001100).

← K5

K + v1 =

(0101011),

(1000001),

(1100100),

(1111000),

(1011101),

(0010010),

(0001110),

(0110111).

→

(010111),

(100001),

(110000),

(111100),

(101101),

(001010),

(000110),

(011011).

← K5 + v5
1

K + v2 =

(1010100),

(0111110),

(0011011),

(0000111),

(0100010),

(1101101),

(1110001),

(1001000).

→

(101000),

(011110),

(001111),

(000011),

(010010),

(110101),

(111001),

(100100).

← K5 + v5
2

Table 3.2: An example of puncturing a nonlinear code.
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(1010100).

G =

 1001111

0100101

0011100

 G5
0 =

(
101011

011101

)
In order to obtain the shortened code C5

0 , we shorten the kernel K and
an appropriate set of coset representatives of C. The shortened code of the
kernel, K5

0 , is generated by the matrix G5
0. Since v2 = (1010100) does not

have a zero at the 5th coordinate, we choose another coset representative of
the same coset, for example v′2 = (0011011) ∈ K + v2. Then, a set of coset
representatives for C5

0 is {v5
1, v

5
2}, where v5

1 = (010111) and v5
2 = (001111).

Therefore, the shortened code C5
0 = K5

0 ∪ (K5
0 + v5

1)∪ (K5
0 + v5

1) is a (6, 12, 2)

binary nonlinear code.

3.2.5 Direct sum construction

Another way to construct new codes is to combine two codes together in a
proper way. The most known such constructions are called direct sum and
Plotkin sum. In this subsection, we focus on the direct sum construction and,
in the next subsection, on the Plotkin sum construction.

For i ∈ {1, 2}, let Ci be a q-ary code of length ni. The direct sum of C1

and C2 is the q-ary code C1 ⊕ C2 = {(c1|c2) : c1 ∈ C1, c2 ∈ C2}.

Proposition 3.2.13 (Direct Sum). Let C1 and C2 be two (n1, |C1|, d1) and
(n2, |C2|, d2) q-ary codes with kernels KC1 and KC2, and coset representatives
L1 = {v1, . . . , vt1} and L2 = {w1, . . . , wt2}, respectively. The direct sum C1⊕
C2 is the (n1 + n2, |C1| · |C2|,min{d1, d2}) q-ary code with kernel KC1 ⊕KC2,
and (t1 + 1)(t2 + 1) − 1 coset representatives given by the set {(v|w) : v ∈
L1 ∪ {0}, w ∈ L2 ∪ {0}}\{(0,0)}.

Proof. Firstly, we prove that KC1 ⊕KC2 is the kernel of C1 ⊕ C2. For k⊕ =

(k1|k2) ∈ KC1⊕C2 and any c⊕ = (c1|c2) ∈ C1 ⊕ C2, where k1, c1 ∈ C1 and
k2, c2 ∈ C2, we have λk⊕ + c⊕ = (λk1 + c1|λk2 + c2) ∈ C1 ⊕ C2 for all
λ ∈ Fq. Since λk1 + c1 ∈ C1 and λk2 + c2 ∈ C2, we have that k1 ∈ KC1 and
k2 ∈ KC2 , soKC1⊕C2 ⊆ KC1⊕KC2 . On the other hand, for any k⊕ = (k1|k2) ∈
KC1 ⊕ KC2 and c⊕ = (c1|c2) ∈ C1 ⊕ C2, since k1 ∈ KC1 and k2 ∈ KC2 , we
have λk⊕+ c⊕ = (λk1 + c1|λk2 + c2) ∈ C1⊕C2 for all λ ∈ Fq, so k⊕ ∈ KC1⊕C2

and KC1 ⊕KC2 ⊆ KC1⊕C2 . Therefore, we have KC1⊕C2 = KC1 ⊕KC2 .
For any c⊕ ∈ C1 ⊕ C2, c⊕ = (k1 + v|k2 + w) = (k1|k2) + (v|w), where

k1 ∈ KC1 , k2 ∈ KC2 , v ∈ L1 ∪ {0} and w ∈ L2 ∪ {0}. Let L⊕ = {(v|w) : v ∈
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L1 ∪ {0}, w ∈ L2 ∪ {0}}. Since (k1|k2) ∈ KC1 ⊕ KC2 and (v|w) ∈ L⊕, we
have that C1⊕C2 ⊆

⋃
`⊕∈L⊕((KC1 ⊕KC2) + `⊕). On the other hand, for any

`⊕, `
′
⊕ ∈ L⊕ such that `⊕ 6= `′⊕, we need to prove that `⊕ and `′⊕ belong to two

di�erent cosets. If two cosets are partly joint, there exists k⊕ ∈ KC1 ⊕KC2

such that k⊕ + `⊕ = `′⊕, which means that (k1|k2) + (v|w) = (v′|w′). Then
k1 + v = v′ and k2 + w = w′, which is impossible because the cosets of C1

and C2 are disjoint and `⊕ 6= `′⊕. Therefore, |
⋃
`⊕∈L⊕((KC1 ⊕KC2) + `⊕)| =

(t1 +1)(t2 +1) · |KC1⊕KC2| = (t1 +1)(t2 +1) ·qκ1+κ2 = |C1| · |C2| = |C1⊕C2|,
where κ1, κ2 are the dimensions of KC1 , KC2 , respectively. Then, C1 ⊕ C2 =⋃
`⊕∈L⊕((KC1 ⊕KC2) + `⊕).
Finally, in order to establish the minimum distance of C1 ⊕ C2, let c⊕ =

(c1|c2) and c′⊕ = (c′1|c′2), where c1, c
′
1 ∈ C1, c2, c

′
2 ∈ C2. Then d(c⊕, c

′
⊕) =

d((c1|c2), (c′1|c′2)) = d(c1, c
′
1) + d(c2, c

′
2). If c1 = c′1, d(c⊕, c

′
⊕) = d(c2, c

′
2) ≥ d2;

if c2 = c′2, d(c⊕, c
′
⊕) = d(c1, c

′
1) ≥ d1; and if c1 6= c′1, c2 6= c′2, d(c⊕, c

′
⊕) ≥

d1 + d2. Therefore, the minimum distance of C1 ⊕ C2 is min{d1, d2}.

Example 3.2.14. Let C1 be the binary nonlinear code of length n = 7, min-
imum distance d = 2, kernel K1 generated by G1 and 2 coset representatives
v1 = (0101011) and v2 = (1010100). Let C2 be the binary nonlinear code of
length n = 5, minimum distance d = 1, kernel K2 generated by G2 and 2

coset representatives w1 = (00100) and w2 = (00010).

G1 =

 1001111

0100101

0011100

 G2 =

 10100

01101

00011


According to Proposition 3.2.13, the direct sum C1 ⊕ C2 is a (12, 576, 1)

binary nonlinear code with kernel K1 ⊕K2 generated by G1 ⊕ G2 and coset
representatives given by L, where

G1 ⊕G2 =



1001111 00000

0100101 00000

0011100 00000

0000000 10100

0000000 01101

0000000 00011


and L =



0101011 00000

0101011 00010

0101011 00100

1010100 00000

1010100 00010

1010100 00100

0000000 00010

0000000 00100


.
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3.2.6 Plotkin sum construction

For i ∈ {1, 2}, let Ci be a q-ary code of length n. The Plotkin sum of C1 and
C2 is the q-ary code C1 ⊕ (C1 + C2) = {(c1|c1 + c2) : c1 ∈ C1, c2 ∈ C2}.

Proposition 3.2.15 (Plotkin Sum). [4] Let C1 and C2 be two (n, |C1|, d1)

and (n, |C2|, d2) q-ary codes with kernels KC1 and KC2, and coset represen-
tatives L1 = {v1, . . . , vt1} and L2 = {w1, . . . , wt2}, respectively. The Plotkin
sum C1⊕ (C1 +C2) is the (2n, |C1| · |C2|,min{2d1, d2}) q-ary code with kernel
KC1 ⊕ (KC1 + KC2), and (t1 + 1)(t2 + 1) − 1 coset representatives given by
the set {(v|v + w) : v ∈ L1 ∪ {0}, w ∈ L2 ∪ {0}}\{(0,0)}.

Proof. Straightforward using the same arguments as in Proposition 3.2.13
[4].

Example 3.2.16. Let C1 be the binary nonlinear code of length n = 7, min-
imum distance d = 2, kernel K1 generated by G1 and 2 coset representatives
v1 = (0101011) and v2 = (1010100). Let C2 be the binary nonlinear code of
length n = 7, minimum distance d = 3, kernel K2 generated by G2 and 2

coset representatives w1 = (1101110) and w2 = (1011000).

G1 =

 1001111

0100101

0011100

 G2 =

(
1010110

0110101

)

According to Proposition 3.2.15, the Plotkin sum C1 ⊕ (C1 + C2) is a
(14, 288, 3) binary nonlinear code with kernel K⊕ = K1⊕(K1 +K2) generated
by G⊕ and coset representatives given by L⊕, where

G⊕ =


1001111 1001111

0100101 0100101

0011100 0011100

0000000 1010110

0000000 0110101

 and L⊕ =



0101011 0101011

0101011 1000101

0101011 1110011

0000000 1101110

0000000 1011000

1010100 1010100

1010100 0111010

1010100 0001100


.

Note that we can obtain the kernel and coset representatives of an ex-
tended code directly from the kernel and coset representatives of the code.
The same happens for the direct sum and Plotkin sum constructions. For all
other constructions, we obtain a partial kernel and the corresponding coset
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representatives. Although we can not assure which are the �nal kernel and
coset representatives in these cases, we can speed up the kernel computation
by starting from a partial kernel and using the algorithms shown in Section
3.1.



Chapter 4

Minimum distance computation

In general, computing the minimum weight and minimum distance of a code
is usually computationally di�cult. Actually, it has been proven to be NP-
hard [37]. For linear codes, the Brouwer-Zimmermann's algorithm is the best
known enumerative algorithm to compute the minimum weight (see [39] or
Section 2.7). For systematic nonlinear codes, an algorithm based on Gröbner
bases to compute the distance distribution is described in [15]. However, in
general, for nonlinear codes, as far as we know, there is not any algorithm to
compute these parameters comparable to Brouwer-Zimmermann's algorithm
for linear codes.

In this chapter, using the coset representation given in Section 3.1, we
describe new algorithms to compute the minimum weight and minimum dis-
tance of an arbitrary q-ary nonlinear code. Speci�cally, we present new
algorithms based on computing the minimum weight of linear subcodes, us-
ing the known Brouwer-Zimmermann's algorithm. Note that, for nonlinear
codes, the minimum weight and minimum distance do not coincide like for
linear code. Moreover, we study the performance of these algorithms by
giving an estimation of the number of enumerated codewords needed in the
computations. In this sense, we give the work factors of the new algorithms,
based on the work factors given for the Brouwer-Zimmermann's algorithm
(see [39] or Section 2.7). Finally, we also show the results of some tests,
which have been performed in Magma version V2.18-3, running on a server
with an Intel Xeon processor (clock speed 2.40GHz) and 32GB of memory.
For a better time comparison among the di�erent methods, we have used the
same internal Magma functions.

53
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4.1 Minimum distance of binary nonlinear codes

Given a binary linear codeK and a vector v ∈ Fn2\K, we callKv = K∪(K+v)

an extended coset. Since K is linear, Kv is also linear and Kv = 〈K, v〉.
Proposition 4.1.1. Let C =

⋃t
i=0

(
KC + vi

)
with t ≥ 2. The minimum

weight of C can be computed as min{wt(Kvi) : i ∈ {1, . . . , t}}.
Proof. The linear codes Kvi include exactly all codewords of KC and KC +vi
for all i ∈ {1, . . . , t}. Therefore, wt(C) can be computed by �nding the
smallest value among all minimum weights of the linear codes Kvi .

Proposition 4.1.2. Let C =
⋃t
i=0

(
KC + vi

)
with t ≥ 2. The minimum

distance of C can be computed as min{wt(Kvi+vj) : i ∈ {0, 1, . . . , t−1}, j ∈
{i+ 1, . . . , t}},where v0 = 0.

Proof. In order to compute the minimum distance between any pair of code-
words, c1 and c2, we consider di�erent cases. If c1, c2 ∈ KC , then dH(c1, c2) =

wtH(c1 + c2) = wtH(k), where k ∈ KC . If c1 ∈ KC and c2 ∈ KC + vi, then
dH(c1, c2) = wtH(c1 + c2) = wtH(k + vi), where k ∈ KC . If c1, c2 ∈ KC + vi,
then dH(c1, c2) = wtH(k), where k ∈ KC . Finally, if c1 ∈ KC + vi and
c2 ∈ KC + vj with i 6= j, then dH(c1, c2) = wtH(k + vi + vj), where k ∈ KC .
Therefore, the statement follows.

Using Propositions 4.1.1, 4.1.2 and applying the Brouwer-Zimmermann's
algorithm to compute the minimum weight of a linear code, we can de�ne
Algorithms 5 (MinW) and 6 (MinD) to compute the minimum weight and
minimum distance of a binary nonlinear code, respectively. Note that the
complexity of these two algorithms depends strongly on the number of coset
representatives t and the complexity of the Brouwer-Zimmermann's algo-
rithm. For the minimum weight, we compute t times the minimum weight
of a linear code Kv, and for the minimum distance,

(
t+1

2

)
times. In order

to study the e�ciency of these algorithms, we compare them with the brute
force method.

Example 4.1.3. Let K be the binary linear code of length n = 31, dimension
5, and minimum distance 16, constructed as the dual of the binary Hamming
code of length n = 31. Let C31 =

⋃3
i=0

(
KC31 + vi

)
, where the kernel KC31 =

K, v0 = 0, and the coset representatives are

v1 = (0010001110011010011110001011110),

v2 = (0101101010111100101110100111101),

v3 = (0000011100011101101000111101011).
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algorithm 5 Minimum weight computation (MinW)
Data: A binary code C given by the kernel KC and coset representatives

L = {v1, . . . , vt}.
Result: The minimum weight wt(C).
begin

wt(C)← Length(C)

for i ∈ [1, . . . , t] do
Kvi ← 〈KC , vi〉
wt(C)← min(wt(Kvi), wt(C))

return wt(C)

algorithm 6 Minimum distance computation (MinD)
Data: A binary code C given by the kernel KC and coset representatives

L = {v1, . . . , vt}.
Result: The minimum distance d(C).
begin

d(C)← Length(C)

for i ∈ [0, . . . , t− 1] do

for j ∈ [i+ 1, . . . , t] do
Kvj−vi ← 〈KC , vj − vi〉
d(C)← min(wt(Kvj+vi), d(C))

return d(C)



56 Chapter 4. Minimum distance computation

It is easy to check that the minimum weight of C31 is wt(C31) = 10 and
its minimum distance d(C31) = 8. The time of computing wt(C31) using
brute force and Algorithm 5 (MinW) are 1.8 × 10−4 and 6 × 10−4 seconds,
respectively. Note that sometimes a brute force calculation can be a faster way
to obtain the minimum weight. On the other hand, the time of computing
d(C31) using brute force and Algorithm 6 (MinD) are 8.4× 10−3 and 1.26×
10−3 seconds, respectively, so it is much faster to use Algorithm 6 (MinD)
than brute force.

Propositions 4.1.4 and 4.1.5 give us the work factors of computing the
minimum weight and minimum distance by using the new Algorithms 5
(MinW) and 6 (MinD), respectively. Recall that a binary nonlinear code
of length n with a kernel of dimension κ and t coset representatives has
M = 2κ(t + 1) codewords. Therefore, as we have already mentioned in Sec-
tion 2.7, it is easy to see that the work factor for computing wt(C) and d(C)

using brute force is, respectively,

n2κ(t+ 1) and n

(
2κ(t+ 1)

2

)
. (4.1)

Proposition 4.1.4. Let C be a binary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing wt(C) using Algorithm 5 (MinW) is

t∑
i=1

(
(n− κ− 1)dn/(κ+ 1)e

r̄i∑
r=1

(
κ+ 1

r

))
(4.2)

where r̄i is the smallest integer such that

bn/(κ+ 1)c(r̄i + 1) + max(0, r̄i + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(Kvi).

Proof. By Proposition 4.1.1, the work factor of computing wt(C) is equal to
the sum of the work factors of computing wt(Kvi) for all i ∈ {1, . . . , t}. Then,
the result follows by Proposition 2.7.5, since the dimension of any linear code
Kvi is κ+ 1.

Proposition 4.1.5. Let C be a binary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing d(C) using Algorithm 6 (MinD) is

t−1∑
i=0

( t∑
j=i+1

(
(n− κ− 1)dn/(κ+ 1)e

r̄i,j∑
r=1

(
κ+ 1

r

)))
(4.3)
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where r̄i,j is the smallest integer such that

bn/(κ+ 1)c(r̄i,j +1)+max(0, r̄i,j +1− (κ+1−n mod (κ+1))) ≥ wt(Kvj−vi).

Proof. By Proposition 4.1.2, to compute d(C) we need to compute the mini-
mum weight of the binary linear codes Kvi+vj for all i, j ∈ {0, 1, . . . , t}. The
work factor of computing d(C) is equal to the sum of the work factors of
computing wt(Kvi+vj) for all i, j ∈ {0, 1, . . . , t}. By Proposition 2.7.5, since
the dimension of any Kvi+vj is κ+ 1 the result follows.

Example 4.1.6. Let us consider random (100, 215 · 31) binary codes C, with
kernels of dimension κ ∈ {8, . . . , 15}, and random (100, 27 · 31) binary codes
C, with kernels of dimension κ ∈ {3, . . . , 7}. Figure 4.1 shows the work
factors given by Proposition 4.1.4 and (4.1), and the real time cost, for
computing wt(C) using Algorithm 5 (MinW) and brute force, respectively.
Equivalently, Figure 4.2 shows the work factors given by Proposition 4.1.5
and (4.1), and the real time cost, for computing d(C) using Algorithm 6
(MinD) and brute force, respectively.

It can be seen from these �gures that the work factors and real time cost
follow the same trend. Moreover, keeping the same length and number of
codewords, the time cost of using Algorithms 5 (MinW) and 6 (MinD) de-
creases sharply while the dimension of the kernel increases (or equivalently,
while the number of cosets decreases). Note that when κ is large, Algorithms
5 (MinW) and 6 (MinD) save a lot of time. More speci�cally, Algorithm 5
(MinW) when κ = 15 and Algorithm 6 (MinD) when κ = 7 use only 1/31

and 1/21 time compared with brute force, respectively.

From Propositions 4.1.4 and 4.1.5, it can be seen that the work factor
for computing wt(C) and d(C) of a binary code C relies on the parameters
r̄i and r̄i,j, which depend on wt(Kvi) and wt(Kvi+vj), respectively, and they
may be di�erent for any i, j. Therefore, it is impossible to estimate the
work factor if only the values n, κ and t of the binary code C are given.
However, we can consider an upper bound of the work factor, and from
that be able to estimate easily the work factor for computing the minimum
weight and minimum distance. Since for any extended coset Kv we have
that wt(Kv) ≤ wt(KC), we can obtain an upper bound for the previous
given work factors by replacing wt(Kv) with wt(KC). Then, we obtain the
following propositions.
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Figure 4.1: Work factor and time comparison on computing wt(C) using
Algorithm 5 (MinW) and brute force, for (100, 215 · 31) binary codes, with
kernels of dimension κ ∈ {8, . . . , 15}.
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Figure 4.2: Work factor and time comparison on computing d(C) using Al-
gorithm 6 (MinD) and brute force, for (100, 27 ·31) binary codes, with kernels
of dimension κ ∈ {3, . . . , 7}.
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Proposition 4.1.7. Let C be a binary nonlinear code of length n with kernel
KC of dimension κ and coset representatives L = {v1, . . . , vt}. An upper
bound for the work factor of computing wt(C) using Algorithm 5 (MinW) is
given by

t(n− κ− 1)dn/(κ+ 1)e
r̄∑
r=1

(
κ+ 1

r

)
(4.4)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(KC).

Proof. Given n and κ, f(r) = bn/(κ+ 1)c(r + 1) + max(0, r + 1− (κ + 1−
n mod (κ + 1))) is an increasing function. Let r̄i be the smallest integer r
such that f(r) ≥ wt(Kvi), that is, de�ned as in Proposition 4.1.4. Let r̄ be
the smallest integer r such that f(r) ≥ wt(KC). Since wt(Kvi) ≤ wt(KC),
we have that r̄i ≤ r̄. Therefore, the result follows by Proposition 4.1.4.

Proposition 4.1.8. Let C be a binary nonlinear code of length n with kernel
KC of dimension κ and coset representatives L = {v1, . . . , vt}. An upper
bound for the work factor of computing d(C) using Algorithm 6 (MinD) is
given by (

t+ 1

2

)
(n− κ− 1)dn/(κ+ 1)e

r̄∑
r=1

(
κ+ 1

r

)
(4.5)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(KC).

Proof. Straightforward using Proposition 4.1.5 and the same arguments as
in Proposition 4.1.7.

Example 4.1.9. Considering the same binary codes as in Example 4.1.6,
Figures 4.3 and 4.4 show the di�erences between the work factors and their
upper bounds for computing the minimum weight and minimum distance.
Note that the upper bound of work factor is quite close to the work factor and
is much easier to estimate, since we just need wt(KC) along with the values
of n, κ and t of C.

From Algorithms 5 (MinW) and 6 (MinD), it is easy to see that the weight
of some codewords in the kernel KC is computed several times, speci�cally,
once for each Kvi+vj = KC ∪ (KC + vi + vj), where i, j ∈ {0, 1, . . . , t} and
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Figure 4.4: Work factor and work fac-
tor upper bound on computing d(C)

for (100, 27 · 31) binary codes.

i < j. However, we will show that we can make a little adjustment to these
algorithms, in order to avoid this repetition.

In Brouwer-Zimmermann's algorithm, the enumerating process is divided
into several steps. In the rth step, it enumerates all linear combinations of
r rows of the generator matrix of Kvi+vj of dimension κ + 1, examines the
minimum weight of each combination and compares it with the lower bound.
In order to avoid enumerate some codewords several times, we can modify
the previous algorithms and enumerate only the codewords in each coset
KC + vi + vj. Then, in the rth step, we enumerate all linear combinations
of r rows of the generator matrix of KC of dimension κ and compute the
weight of each combination adding the vector vi + vj. The codewords in
the kernel are considered by adding the all-zero vector to the set of coset
representatives. After this adjustment, the work factor using the improved
Algorithms 7 and 8, which are referred as Algorithm IMinW and IMinD,
respectively, is reduced as it is shown in the following propositions.

Proposition 4.1.10. Let C be a binary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing wt(C) using improved Algorithm 7 (IMinW) is

t+1∑
i=1

(
(n− κ)dn/κe

r̄i∑
r=1

(
κ

r

))
(4.6)

where r̄i is the smallest integer such that

bn/κc(r̄i + 1) + max(0, r̄i + 1− (κ− n mod κ)) ≥ wt(Kvi).
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algorithm 7 Improved minimum weight (IMinW).
Data: A binary code C given by the kernel KC and coset representatives

L = {v1, . . . , vt}.
Result: The minimum weight wt(C).
begin

Let G1, . . . , Gh be a sequence of systematic generator matrices ofKC with
rank de�cits δ1, . . . , δh, respectively.
L′ ← L ∪ {0}
for u ∈ L′ do

for j ∈ [1, . . . , h] do
Let uj ∈ KC + u having 0 in the information set of Gj.

for r ∈ [1, . . . , κ] do

wtlow ←
∑h

j=1 max{0, r + 1− δj}
for j ∈ [1, . . . , h] do

wtuup ← min{wtH(mGj + uj) | m ∈ Fκ2 , wtH(m) = r}
if wtuup ≤ wtlow then

break

wt(C)← min{wtuup | u ∈ L′}
return wt(C)
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algorithm 8 Improved minimum distance (IMinD).
Data: A binary code C given by the kernel KC and coset representatives

L = {v1, . . . , vt}.
Result: The minimum distance d(C).
begin

Let G1, . . . , Gh be a sequence of systematic generator matrices ofKC with
rank de�cits δ1, . . . , δh, respectively.
L′ ← {vj − vi | 0 ≤ i < j ≤ t}
for u ∈ L′ do

for j ∈ [1, . . . , h] do
Let uj ∈ KC + u having 0 in the information set of Gj.

for r ∈ [1, . . . , κ] do

wtlow ←
∑h

j=1 max{0, r + 1− δj}
for j ∈ [1, . . . , h] do

wtuup ← min{wtH(mGj + uj) | m ∈ Fκ2 , wtH(m) = r}
if wtuup ≤ wtlow then

break

d(C)← min{wtuup | u ∈ L′}
return d(C).
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Proposition 4.1.11. Let C be a binary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing d(C) using improved Algorithm 8 (IMinD) is

t−1∑
i=0

( t∑
j=i+1

(
(n− κ)dn/κe

r̄i,j∑
r=1

(
κ

r

)))
+ (n− κ)dn/κe

r̄0,0∑
r=1

(
κ

r

)
(4.7)

where r̄i,j is the smallest integer such that

bn/κc(r̄i,j + 1) + max(0, r̄i,j + 1− (κ− n mod κ)) ≥ wt(Kvi+vj).

Note that r̄0,0 = r̄ given in Proposition 2.7.5. As before, we can also
establish an upper bound for the work factors given by Propositions 4.1.10
and 4.1.11 by using the same arguments as in Propositions 4.1.7 and 4.1.8.
Using these upper bounds, again it is possible to estimate the work factor
for computing wt(C) and d(C) from the parameters n, κ, t and wt(KC) of a
binary nonlinear code C.

Proposition 4.1.12. Let C be a binary nonlinear code of length n with kernel
KC of dimension κ and coset representatives L = {v1, . . . , vt}. An upper
bound for the work factor of computing wt(C) using improved Algorithm 7
(IMinW) is given by

(t+ 1)(n− κ)dn/κe
r̄∑
r=1

(
κ

r

)
(4.8)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ wt(KC).

Proposition 4.1.13. Let C be a binary nonlinear code of length n with
kernel KC of dimension κ and coset representatives L = {v1, . . . , vt}. An
upper bound for the work factor of computing d(C) using improved Algorithm
8 (IMinD) is given by

((t+ 1

2

)
+ 1
)

(n− κ)dn/κe
r̄∑
r=1

(
κ

r

)
(4.9)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ wt(KC).
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Figure 4.5: Work factor upper bounds
on computing wt(C) for (100, 215 · 31)

binary codes.
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Figure 4.6: Work factor upper bounds
on computing d(C) for (100, 27 ·31) bi-
nary codes.

Example 4.1.14. Figures 4.5 and 4.6 show these upper bounds for the work
factors for both algorithms presented in the dissertation and brute force, using
(100, 215 ·31) and (100, 27 ·31) binary codes, respectively. Through these exam-
ples, we can see the improvement on Algorithms 7 (IMinW) and 8 (IMinD).

Note that the results on these upper bounds for the work factors allow
to establish from which parameters of the given code, it is better to use the
new presented algorithms instead of the brute force method.

4.2 Minimum distance of q-ary nonlinear codes

The results for binary nonlinear code can be generalized into q-ary nonlinear
codes with a few adjustments.

For binary nonlinear codes C =
⋃t
i=0(KC + vi), since KC is linear, the

subcodes KC ∪ (KC + vi) are linear for all i ∈ {1, . . . , t}. However, for q-ary
nonlinear codes with q > 2, KC ∪ (KC + vi) is not a linear code, so we need
another strategy to apply the Brouwer-Zimmermann's algorithm.

Given a q-ary linear code K of dimension κ and a vector v ∈ Fnq \K, the
linear span Kv = 〈K, v〉 =

⋃
λ∈Fq

(K + λv) of dimension κ + 1 is called an
extended coset.

Proposition 4.2.1. Let K be a q-ary linear code and v ∈ Fnq \K. The
minimum weight of the extended coset Kv is equal to the minimum weight of
K ∪ (K + v).
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Proof. Let e be a codeword of minimum weight in Kv. Then, e = k + λv,
where k ∈ K and λ ∈ Fq. Let λ′ = 1/λ if λ ∈ Fq\{0}. Note that wtH(λ′e) =

wtH(e) for all λ′ ∈ Fq\{0}.
If wt(K ∪ (K + v)) = wt(K), then wt(K + v) ≥ wt(K). Since λ′e =

λ′k + v ∈ K + v, wtH(λ′e) ≥ wt(K), which is the same as wt(Kv) ≥ wt(K).
Since K ⊆ Kv, wt(Kv) ≤ wt(K), so wt(Kv) = wt(K) = wt(K ∪ (K + v)).

If wt(K ∪ (K + v)) < wt(K), e′ ∈ K + v, where e′ is a codeword of
minimum weight in K ∪ (K + v). Since K ∪ (K + v) ⊆ Kv, wt(Kv) ≤
wt(K ∪ (K + v)). Then, since λ′e = λ′k + v ∈ K + v, wtH(λ′e) ≤ wtH(e′).
Finally, wtH(e′) = wt(K + v), so wtH(λ′e) = wtH(e′), and the statement
follows.

Proposition 4.2.2. Let C =
⋃t
i=0

(
K + vi

)
be a q-ary nonlinear code with

kernel K and coset representatives L = {v1, . . . , vt}. The minimum weight
of C can be computed as min{wt(Kvi) : i ∈ {1, . . . , t}}.

Proof. According to Proposition 4.2.1, wt(Kvi) = wt(K ∪ (K + vi)) for all
i ∈ {1, . . . , t}. Moreover, note that the linear code Kvi includes all codewords
of K ∪ (K + vi). Therefore, wt(C) can be computed by �nding the smallest
value among all minimum weights of the linear codes Kvi .

Proposition 4.2.3. Let C =
⋃t
i=0

(
K + vi

)
be a q-ary nonlinear code with

kernel K and coset representatives L = {v1, . . . , vt}. The minimum distance
of C can be computed as min{wt(Kvj−vi) : i ∈ {0, 1, . . . , t − 1}, j ∈ {i +

1, . . . , t}}, where v0 = 0.

Proof. In order to compute the minimum distance between any pair of code-
words, c1 and c2, we consider di�erent cases. If c1, c2 ∈ K, then dH(c1, c2) =

wtH(c2 − c1) = wtH(k), where k ∈ K. If c1 ∈ K and c2 ∈ K + vi, then
dH(c1, c2) = wtH(c2 − c1) = wtH(k + vi), where k ∈ K. If c1, c2 ∈ K + vi,
then dH(c1, c2) = wtH(k), where k ∈ K. Finally, if c1 ∈ K+vi and c2 ∈ K+vj
with i 6= j, then dH(c1, c2) = wtH(k + vj − vi), where k ∈ K. Therefore, the
statement follows.

Recall that a q-ary nonlinear code of length n with a kernel of dimension
κ and t coset representatives has M = qκ(t + 1) codewords. Therefore, it is
easy to see that the work factor for computing wt(C) and d(C) using a brute
force algorithm is, respectively,

log2(q)nqκ(t+ 1) and log2(q)n

(
qκ(t+ 1)

2

)
. (4.10)
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Using the representation of q-ary nonlinear codes given in Section 3.1.2,
Propositions 4.2.2, 4.2.3 and the known Brouwer-Zimmermann's algorithm
to compute the minimum weight of a q-ary linear code, we can see that
Algorithms 5 (MinW) and 6 (MinD) can be generalized into q-ary nonlinear
codes without any change.

Propositions 4.2.4 and 4.2.5 give us the work factors of computing the
minimum weight and minimum distance by using Algorithms 5 (MinW) and
6 (MinD) applied to q-ary nonlinear codes, respectively.

Proposition 4.2.4. Let C be a q-ary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing wt(C) using Algorithm 5 (MinW) is

t∑
i=1

(
log2(q)(n− κ− 1)dn/(κ+ 1)e

r̄i∑
r=1

(
κ+ 1

r

)
(q − 1)r−1

)
(4.11)

where r̄i is the smallest integer such that

bn/(κ+ 1)c(r̄i + 1) + max(0, r̄i + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(Kvi).

Proof. By Proposition 4.2.2, the work factor of computing wt(C) is equal
to the sum of the work factors of computing wt(Kvi) for all i ∈ {1, . . . , t}.
Then, the result follows by Proposition 2.7.5, since the dimension of any
q-ary linear code Kvi is κ+ 1.

Proposition 4.2.5. Let C be a q-ary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing d(C) using Algorithm 6 (MinD) is

t−1∑
i=0

( t∑
j=i+1

(
log2(q)(n− κ− 1)dn/(κ+ 1)e

r̄i,j∑
r=1

(
κ+ 1

r

)
(q − 1)r−1

))
(4.12)

where r̄i,j is the smallest integer such that

bn/(κ+ 1)c(r̄i,j +1)+max(0, r̄i,j +1− (κ+1−n mod (κ+1))) ≥ wt(Kvj−vi).

Proof. By Proposition 4.2.3, to compute d(C) we need to compute the min-
imum weight of the q-ary linear codes Kvj−vi for all i, j ∈ {0, 1, . . . , t}. The
work factor of computing d(C) is equal to the sum of the work factors of
computing wt(Kvj−vi) for all i, j ∈ {0, 1, . . . , t}. By Proposition 2.7.5, since
the dimension of any Kvj−vi is κ+ 1 the result follows.
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Figure 4.7: Work factor and time comparison on computing wt(C) using
Algorithm 5 (MinW) and brute force, for (30, 37 · 4) ternary codes, with
kernels of dimension κ ∈ {3, . . . , 7}.

Example 4.2.6. Let us consider random (30, 37 · 4) ternary codes C, with
kernels of dimension κ ∈ {3, . . . , 7}. Figure 4.7 shows the work factors given
by Proposition 4.2.4 and (4.10), and the real time cost, for computing wt(C)

using Algorithm 5 (MinW) and brute force, respectively. Equivalently, Figure
4.8 shows the work factors given by Proposition 4.2.5 and (4.10), and the real
time cost, for computing d(C) using Algorithm 6 (MinD) and brute force,
respectively. In all �gures, the work factors are expressed in logarithmic scale.

It can be seen from these �gures that the work factors and real time cost
follow the same trend. Moreover, keeping the same length and number of
codewords, the time cost of using Algorithms 5 (MinW) and 6 (MinD) de-
creases sharply while the dimension of the kernel increases (or equivalently,
while the number of cosets decreases). Note that when κ is large, Algorithms
5 (MinW) and 6 (MinD) save a lot of time.

Similarly as for binary codes, from Propositions 4.2.4 and 4.2.4, it can be
seen that the work factor for computing wt(C) and d(C) of a q-ary code C
relies on the parameters r̄i and r̄i,j, which depend on wt(Kvi) and wt(Kvj−vi),
respectively, and they may be di�erent for any i, j. Since for any extended
coset Kv we have that wt(Kv) ≤ wt(KC), we can obtain an upper bound for
the previous given work factors by replacing wt(Kv) with wt(KC). That is,
we have also the following propositions.

Proposition 4.2.7. Let C be a q-ary nonlinear code of length n with kernel
KC of dimension κ and t coset representatives. An upper bound for the work
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Figure 4.8: Work factor and time comparison on computing d(C) using Al-
gorithm 6 (MinD) and brute force, for (30, 37 · 4) ternary codes, with kernels
of dimension κ ∈ {3, . . . , 7}.

factor of computing wt(C) using Algorithm 5 (MinW) is given by

t · log2(q)(n− κ− 1)dn/(κ+ 1)e
r̄∑
r=1

(
κ+ 1

r

)
(q − 1)r−1 (4.13)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(KC).

Proof. Given n and κ, f(r) = bn/(κ+ 1)c(r + 1) + max(0, r + 1− (κ + 1−
n mod (κ + 1))) is an increasing function. Let r̄i be the smallest integer r
such that f(r) ≥ wt(Kvi), that is, de�ned as in Proposition 4.2.4. Let r̄ be
the smallest integer r such that f(r) ≥ wt(KC). Since wt(Kvi) ≤ wt(KC),
we have that r̄i ≤ r̄. Therefore, the result follows by Proposition 4.2.4.

Proposition 4.2.8. Let C be a q-ary nonlinear code of length n with kernel
KC of dimension κ and t coset representatives. An upper bound for the work
factor of computing d(C) using Algorithm 6 (MinD) is given by(

t+ 1

2

)
· log2(q)(n− κ− 1)dn/(κ+ 1)e

r̄∑
r=1

(
κ+ 1

r

)
(q − 1)r−1 (4.14)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(KC).

Proof. Straightforward using Proposition 4.2.5 and the same arguments as
in Proposition 4.2.7.
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tor upper bound on computing wt(C)

for (30, 37 · 4) ternary codes.
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Figure 4.10: Work factor and work fac-
tor upper bound on computing d(C)

for (30, 37 · 4) ternary codes.

Example 4.2.9. Considering the same random ternary codes C as in Exam-
ple 4.2.6, Figures 4.9 and 4.10 show the di�erences between the work factors
and their upper bounds for computing the minimum weight and minimum
distance. Note that the upper bound of work factor is quite close to the work
factor and is much easier to estimate, since we just need wt(KC) along with
the values of n, κ and t of C. In both �gures, the work factors are expressed
in logarithmic scale.

Like for binary codes, from Algorithms 5 (MinW) and 6 (MinD) applied
to q-ary nonlinear codes, it can be seen that the weight of some codewords in
the kernel KC is computed several times, speci�cally, once for each Kvj−vi ,
where i, j ∈ {0, 1, . . . , t} and i < j. Moreover, we need to compute the
weight of extra vectors which belong to KC +λ(vj−vi), where λ ∈ Fq\{0, 1}.
The same improvements as we considered for binary codes in Algorithms
7 (IMinW) and 8 (IMinD), can be considered for computing the minimum
weight and minimum distance of q-ary codes. Therefore, again, we can see
that Algorithms 7 (IMinW) and 8 (IMinD) can be generalized into q-ary
nonlinear codes without any change.

After this adjustment, the work factor using the improved Algorithms 7
and 8 applied to q-ary nonlinear codes, which are also referred as Algorithms
IMinW and IMinD, respectively, can be reduced as it is shown in the following
propositions.

Proposition 4.2.10. Let C be a q-ary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
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for computing wt(C) using improved Algorithm 7 (IMinW) is

t+1∑
i=1

(
log2(q)(n− κ)dn/κe

r̄i∑
r=1

(
κ

r

)
(q − 1)r−1

)
(4.15)

where r̄i is the smallest integer such that

bn/κc(r̄i + 1) + max(0, r̄i + 1− (κ− n mod κ)) ≥ wt(Kvi).

Proposition 4.2.11. Let C be a q-ary nonlinear code of length n with kernel
of dimension κ and coset representatives L = {v1, . . . , vt}. The work factor
for computing d(C) using improved Algorithm 8 (IMinD) is

t−1∑
i=0

( t∑
j=i+1

(
log2(q)(n− κ)dn/κe

r̄i,j∑
r=1

(
κ

r

)
(q − 1)r−1

))
+ log2(q)(n− κ)dn/κe

r̄0,0∑
r=1

(
κ

r

)
(q − 1)r−1

(4.16)

where r̄i,j is the smallest integer such that

bn/κc(r̄i,j + 1) + max(0, r̄i,j + 1− (κ− n mod κ)) ≥ wt(Kvj−vi).

Note that r̄0,0 = r̄ given in Proposition 2.7.5. As before, we can also
establish an upper bound for the work factors given by Propositions 4.2.10
and 4.2.11 by using the same arguments as in Propositions 4.2.7 and 4.2.8.
Using these upper bounds, again it is possible to estimate the work factor
for computing wt(C) and d(C) from the parameters n, κ, t and wt(KC) of a
q-ary nonlinear code C.

Proposition 4.2.12. Let C be a q-ary nonlinear code of length n with kernel
KC of dimension κ and t coset representatives. An upper bound for the work
factor of computing wt(C) using improved Algorithm 7 (IMinW) is given by

(t+ 1) · log2(q)(n− κ)dn/κe
r̄∑
r=1

(
κ

r

)
(q − 1)r−1 (4.17)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ wt(KC).
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Figure 4.11: Work factors and upper bounds on computing wt(C) for (30, 37 ·
4) ternary codes.

Proposition 4.2.13. Let C be a q-ary nonlinear code of length n with kernel
KC of dimension κ and t coset representatives. An upper bound for the work
factor of computing d(C) using improved Algorithm 8 (IMinD) is given by

((t+ 1

2

)
+ 1
)
· log2(q)(n− κ)dn/κe

r̄∑
r=1

(
κ

r

)
(q − 1)r−1 (4.18)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ wt(KC).

Example 4.2.14. Figures 4.11 and 4.12 show the work factors (and the work
factors upper bounds) for both algorithms presented in the dissertation and
brute force, using (30, 37 · 4) ternary codes. Through these examples, we can
see the improvement on Algorithms 7 (IMinW) and 8 (IMinD). In all �gures,
the work factors are expressed in logarithmic scale.

Note that the results on these upper bounds for the work factors allow
to establish from which parameters of the given code, it is better to use the
new presented algorithms instead of the brute force method.
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Chapter 5

Application to decoding

In this chapter, we show how to apply the previous algorithms to decode
linear and nonlinear codes. Speci�cally, we �rst focus on the binary case,
that is, we show how to decode binary linear and nonlinear codes using the
algorithms described in Chapter 4 to compute the minimum weight of a linear
code or a coset of a linear code. Then, we generalize the description of these
new decoding algorithms from binary codes to q-ary codes, distinguishing
between q-ary linear codes and q-ary nonlinear codes.

For linear codes, the most known general decoding method is the syn-
drome decoding, where a syndrome table is computed before starting the
decoding process. For linear codes, we compare the new methods of de-
coding using the minimum weight algorithms with the syndrome decoding,
although it is a text book algorithm and rarely used in application; and
for nonlinear codes in general, as far as we know they are the �rst general
decoding methods.

5.1 Decoding binary linear codes

Let K be an [n, κ, d] binary linear code. The general decoding algorithm for
linear codes is the syndrome decoding (see Section 2.4). We recall that using
this method, before the decoding process starts, it is necessary to compute
a syndrome table pairing each syndrome s ∈ Fn−κ2 with an error vector e
of minimum weight in the coset associated to that syndrome. Although
creating the syndrome table is a one-time task, which is carried out before
decoding the received vectors, sometimes it can be di�cult to create and
store it. Moreover, if it contains many elements, it can also be di�cult to
�nd the corresponding error vector from a given syndrome. In these cases,

73
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other methods can be more e�cient.

Extended coset decoding for binary linear codes

In general, as we have seen in Section 2.4, to decode a received vector u =

c + e, where c ∈ K and e is an error vector, we need to �nd a codeword
c′ ∈ K such that

dH(c, u) = dH(c′, u) = min{dH(c̄, u) | c̄ ∈ K},

and decode u as c′. Since dH(c̄, u) = wtH(u− c̄), this is the same as �nding a
vector e′ = u− c′ of minimum weight wtH(e′) = wtH(e) in the coset u−K.
Moreover, since K is linear, −K = K, so the decoding process is equivalent
to �nd a vector of minimum weight in K + u. Note that, in general, it is
di�cult to �nd a vector of minimum weight in a coset K +u of a linear code
K.

In order to �nd a vector of minimum weight in a coset K + u of a binary
linear codeK, we can consider the linear extended cosetKu = K∪(K+u) and
apply the Brouwer-Zimmermann's algorithm for binary linear codes. If the
number of errors is less than the minimum weight d of K, which means that
dH(c, u) = wtH(e) < d, then an error vector e′ such that wtH(e′) = wtH(e)

can be found as a codeword of minimum weight, which is called minimum
word, in the linear extended coset Ku.

Proposition 5.1.1. Let K be a binary linear code with minimum weight d.
For a received vector u = c+ e 6∈ K, where c ∈ K, let Ku = K ∪ (K + u). If
wtH(e) < d, then u can be decoded as c′ = u− e′ ∈ K, where e′ is a vector of
minimum weight in Ku, so wtH(e) = wtH(e′). Note that if wtH(e) ≤ bd−1

2
c,

then e′ = e and c′ = c.

Proof. For a received vector u = c + e ∈ Fn2\K, where c ∈ K, in order to
decode it, we look for a vector e′ of minimum weight such that c′ = u− e′ ∈
K. This is equivalent to �nd a vector e′ of minimum weight in the coset
containing u, which is K + u.

Considering the linear extended coset Ku = K ∪ (K+u), if the minimum
weight of the coset K + u is less than d, we can �nd a vector e′ of minimum
weight in the coset K+u such that wtH(e′) = wtH(e) < d by �nding a vector
of minimum weight in the linear extended cosetKu. Then, the received vector
u can be decoded as c′ = u− e′ ∈ K.
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In this way, we can decode a received vector as long as less than d errors
have been added to the transmitted codeword. When d or more than d errors
occurs during the transmission, a vector of minimum weight inKu could come
from K, and then an error vector e′ can not be found by Proposition 5.1.1.
Therefore, this method, called extended coset decoding, provides a complete
decoding but only up to d−1 errors. Note that if ρ(K) ≤ d−1, that is when
K is a maximal code, we actually obtain a complete decoding.

The extended coset decoding consists on �nding a minimum word of the
linear extended coset Ku, which is similar to computing the minimum weight
of Ku. Thus, we can apply the Brouwer-Zimmermann's algorithm. However,
in order to obtain a minimum word using this algorithm, the columns of the
generator matrices corresponding to the information sets can not be removed,
as it happens to simplify the computation of the weight of a codeword while
the minimum weight is computed. In addition, to get the original minimum
word, it maybe necessary to reverse the column permutation done to the gen-
erator matrices, but this is negligible comparing to the enumeration process.
Finally, note that before �nding a minimum word, the minimum weight of
the linear extended coset Ku is unknown. Therefore, in order to estimate the
work factor, we can use the minimum weight d = wt(K) instead of wt(Ku),
and obtain an upper bound of the work factor, since d ≥ wt(Ku).

Therefore, in conclusion, using the extended coset decoding, a work factor
upper bound of decoding a received vector u encoded using an [n, κ, d] binary
linear code K is

ndn/(κ+ 1)e
r̄∑
r=1

(
κ+ 1

r

)
, (5.1)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ d.

Example 5.1.2. Let K be the [31, 5, 16] simplex code [24]. Figure 5.1 shows
the time in seconds to decode random received vectors by using the extended
coset decoding and comparing it with the syndrome decoding implemented in
Magma. Note that ρ(K) = 15 = d − 1, so K is a maximal code and both
decoding methods perform a complete decoding. According to the implemen-
tation in Magma, the syndrome decoding uses 2836 MB of memory, and the
extended coset decoding method uses a negligible amount of memory.

Apparently, the extended coset decoding has a big advantage if the num-
ber of received vectors to be decoded is small. Since the syndrome table
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Figure 5.1: Time for decoding using the [31, 5, 16] binary simplex code.

needs to be computed at the �rst decode procedure, it costs much time on
preparation. However, the biggest advantage of the extended coset decod-
ing is on the memory usage. For the syndrome decoding, it is necessary to
store a syndrome table in the memory to be used in the decoding process.
If this syndrome table is too big to be stored, which will happen when the
codimension of the code is moderately large, it will be impossible to decode
by syndrome decoding. By contrast, the extended coset decoding based on
computing the minimum weight of a linear code does not need to store any-
thing signi�cant, but the very few data needed for the enumeration, which
makes the decoding useful for codes with a big error correcting capability, or
with a large possible codimension.

Example 5.1.3. Let K be the [63, 6, 32] simplex code [24]. As the code in
Example 5.1.2, ρ(K) = 31 = d − 1, so it is a maximal code and both decod-
ing methods allow to perform a complete decoding. By using the syndrome
decoding, Magma returns �Runtime error in 'Decode': Code has too many
cosets�. However, in this case, we can still perform a complete decoding by
using the extended coset decoding method, which takes 11.83 seconds to decode
5000 random received vectors and uses a negligible amount of memory.

Coset decoding for binary linear codes

Using the improvement from Algorithm 5 (MinW) to Algorithm 7 (IMinW),
shown in Section 4.1, which allows to compute directly the minimum weight
of a coset of a linear code, we can describe another decoding method, called
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coset decoding.
For a binary linear code K, we decode a received vector u = c+ e, where

c ∈ K and e is an error vector, as c = u− e′, where e′ is a vector of minimum
weight in the coset K + u. A vector e′ of minimum weight in K + u can be
found by using an algorithm similar to Algorithm 7 (IMinW), but returning
a minimum word of the coset K + u instead of its minimum weight.

Using the coset decoding, the work factor of decoding a received vector
u encoded using an [n, κ, d] binary linear code K is similar to computing the
minimum weight of K + u. Again, in order to estimate the work factor, we
can use the minimum weight d = wt(K) instead of wt(Ku), and obtain an
upper bound of the work factor, since d ≥ wt(Ku). Therefore, a work factor
upper bound is

ndn/κe
r̄∑
r=1

(
κ

r

)
, (5.2)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ d.

Example 5.1.4. In order to see how both decoding methods perform, we
compare their corresponding work factor upper bounds. In all these tests,
only the parameters of the codes are considered, which means that the codes
have not been constructed, and some of them with certain parameters may
not exist.

We compare the performance of both decoding methods for di�erent [n, κ, d]

binary linear codes. The advantage of the coset decoding is obvious according
to Figures 5.2, 5.3 and 5.4. Note that by increasing the dimension of the code
in Figure 5.2, we are in fact increasing the size of the code. In all �gures,
the work factors are expressed in logarithmic scale.

5.2 Decoding binary nonlinear codes

Both decoding methods, the extended coset decoding and coset decoding,
seen for binary linear codes in the previous section, can be generalized to
decode nonlinear codes using their coset representation given in Section 3.1.

Extended coset decoding for binary nonlinear codes

Let C be an (n,M, d) binary code, C =
⋃t
i=0(KC + vi), with kernel KC of

dimension κ, t coset representatives given by the set L = {v1, . . . , vt}, and
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Figure 5.2: Decoding [20, κ, 5] binary linear codes, where κ ∈ {5, . . . , 14}.
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Figure 5.3: Decoding [20, 10, d] binary linear codes, where d ∈ {2, . . . , 11}.



5.2. Decoding binary nonlinear codes 79

15 16 17 18 19 20 21 22 23 24

11

12

13

14

n

W
or
k
fa
ct
or

(2
y
) Extended Coset Decoding

Coset Decoding

Figure 5.4: Decoding [n, 10, 5] binary linear codes, where n ∈ {15, . . . , 24}.

v0 = 0. In general, according to the nearest neighbor decoding seen in Section
2.4, to decode a received vector u = c + e, where c ∈ C and e is an error
vector, we need to �nd a codeword c′ ∈ C which has the minimum distance
to the received vector u. This is the same as �nding a vector e′ = u − c′ of
minimum weight in u− C, or equivalently in C + u, since C is binary. Note
that the set C + u can be written as C + u =

⋃t
i=0(KC + vi + u).

In order to �nd a vector of minimum weight in the binary set C + u =⋃t
i=0(KC + vi + u), we can consider the linear extended cosets Kvi+u =

KC ∪ (KC + vi + u) for all i ∈ {0, . . . , t}, de�ne Cu =
⋃t
i=0Kvi+u, and

apply the Brouwer-Zimmermann's algorithm for binary linear codes. If the
number of errors is less than the minimum weight of KC , that is dH(c, u) =

wtH(e) < wt(KC), then an error vector e′ such that wtH(e′) = wtH(e) can
be found as a minimum word in Cu. Such codeword e′ can be obtained
by applying the Brouwer-Zimmermann's algorithm to each one of the linear
extended cosets Kvi+u to get a codeword of minimum weight, denoted by
e′i for all i ∈ {0, . . . , t}, and choosing the one having the minimum weight
among them. The following proposition summarizes this decoding process
for nonlinear codes, also called extended coset decoding.

Proposition 5.2.1. Let C be a binary nonlinear code with minimum distance
d, kernel KC and coset representatives {v1, . . . , vt}. For a received vector
u = c+ e /∈ C, where c ∈ C, let Cu =

⋃t
i=0Kvi+u. If wtH(e) < d, then u can

be decoded as c′ = u− e′ ∈ C, where e′ is a vector of minimum weight in Cu,
so wtH(e) = wtH(e′). Note that if wtH(e) ≤ bd−1

2
c, then e′ = e and c′ = c.

Proof. For a received vector u ∈ Fn2 , in order to decode it, we look for a vector
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e′ ∈ Fn2 of minimum weight such that u− e′ ∈ C. This is equivalent to �nd a
vector e′ of minimum weight in C+u. We have that C+u =

⋃t
i=0(KC+vi+u).

Let e′i be a vector of minimum weight in the linear extended coset Kvi+u for
all i ∈ {0, . . . , t}. If wtH(e) < d, then we can take e′ as the vector of minimum
weight in {e′i | i ∈ {0, . . . , t}}, since it is also a vector of minimum weight
in C + u such that wtH(e) = wtH(e′). Then, the received vector u can be
decoded as c′ = u− e′ ∈ C.

Using the extended coset decoding, the work factor of decoding a received
vector u encoded using a binary nonlinear code C is similar to computing
the minimum weight of Cu =

⋃t
i=0 Kvi+u, so it is

t∑
i=0

(
ndn/(κ+ 1)e

r̄i∑
r=1

(
κ+ 1

r

))
, (5.3)

where r̄i is the smallest integer such that

bn/(κ+ 1)c(r̄i + 1) + max(0, r̄i + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(Kvi+u).

Taking into account that wt(Kvi+u) ≤ wt(KC) for all i ∈ {0, . . . , t}, an upper
bound of the previous work factor is

(t+ 1)ndn/(κ+ 1)e
r̄∑
r=1

(
κ+ 1

r

)
, (5.4)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(KC).

Note that the performance of the extended coset decoding for nonlinear
codes highly depends on the number of coset representatives.

Example 5.2.2. Let Cκ be a (31, 29 ·5, 5) binary nonlinear code with a kernel
of dimension κ, for κ ∈ {5, . . . , 9}, and number of cosets t listed in the
following table. The following table also shows the time in seconds to decode
5000 random received vectors using the extended coset decoding for each one
of the codes Cκ, κ ∈ {5, . . . , 9}.

κ 5 6 7 8 9
Number of cosets: t 79 39 19 9 4

Time: s 63.30 30.35 18.53 12.57 10.82
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Coset decoding for binary nonlinear codes

As for binary linear codes, using the improvement from Algorithm 5 (MinW)
to Algorithm 7 (IMinW), shown in Section 4.1, which allows to compute
directly the minimum weight of a coset of a linear code, we can also describe
another method, the coset decoding for binary nonlinear codes. In this case,
for a binary nonlinear code C, a vector e′ of minimum weight in C + u =⋃t
i=0(KC + vi + u) is obtained as the vector of minimum weight in {ei | i ∈
{0, . . . , t}}, where ei is a vector of minimum weight in KC +vi+u, computed
using this improvement of the algorithm, but returning a minimum word
instead of the minimum weight.

Using the coset decoding, the work factor of decoding a received vec-
tor u encoded using a binary nonlinear code C is similar to computing the
minimum weight of C + u =

⋃t
i=0(KC + vi + u), so it is

t∑
i=0

(
ndn/κe

r̄i∑
r=1

(
κ

r

))
, (5.5)

where r̄i is the smallest integer such that

bn/κc(r̄i + 1) + max(0, r̄i + 1− (κ− n mod κ)) ≥ wt(Kvi+u).

Again, taking into account that wt(Kvi+u) ≤ wt(KC) for all i ∈ {0, . . . , t},
an upper bound of the previous work factor is

(t+ 1)ndn/κe
r̄∑
r=1

(
κ

r

)
, (5.6)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ wt(KC).

Example 5.2.3. As in Example 5.1.4, in order to see how both decoding
methods perform, we compare their corresponding work factor upper bounds.
We compare the performance of both decoding methods for di�erent (n, 214 ·
3, d) binary nonlinear codes with a kernel of dimension κ. The advantage
of the coset decoding is also obvious according to Figure 5.5, 5.6 and 5.7.
Note that, unlike Example 5.1.4, by changing the dimension of the kernel in
Figure 5.5, we are only changing the linearity of the code, but the size of
the code remains the same. In all �gures, the work factors are expressed in
logarithmic scale.
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Figure 5.5: Decoding (20, 214 · 3, 5) binary nonlinear codes with kernels of
dimension κ ∈ {5, . . . , 14}.
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Figure 5.6: Decoding (20, 214 · 3, d) binary nonlinear codes, where d ∈
{2, . . . , 11}, and with kernels of dimension κ = 10.
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Figure 5.7: Decoding (n, 214 · 3, 5) binary nonlinear codes, where n ∈
{15, . . . , 24}, and with kernels of dimension κ = 10.

5.3 Decoding q-ary linear codes

The decoding methods seen for binary linear codes in Section 5.1 can be
generalized into q-ary linear codes.

Extended coset decoding for q-ary linear codes

Let K be an [n, κ, d] q-ary linear code. Let v ∈ Fnq \K. Recall that the linear
span Kv = 〈K, v〉 =

⋃
λ∈Fq

(K + λv) of dimension κ+ 1 is called an extended
coset of K respect to v.

Proposition 5.3.1. Let Kv =
⋃
λ∈Fq

(K + λv) be an extended coset of K
respect to a vector v ∈ Fnq \K. If d(Kv) < d(K), where d(Kv) is the minmum
distance of Kv and d(K) is the minimnum distance of K, there is at least
one vector eλ ∈ K + λv such that wtH(eλ) = d(Kv), for all λ ∈ Fq\{0}.

Proof. If d(Kv) < d(K), the vector e of minimum weight in Kv satis�es that
wtH(e) = d(Kv) and e 6∈ K. Assume that e = k + λ1v ∈ K + λ1v, where
k ∈ K and λ1 ∈ Fq\{0}. For any λ ∈ Fq\{0}, there is λ2 = λ/λ1 such that
eλ = λ2e = λ2k + λ1λ2v = λ2k + λv ∈ K + λv. Since wtH(eλ) = wtH(λ2e) =

wtH(e), the result follows.

As mentioned in Section 5.1, according to the nearest neighbor decoding,
in order to decode a received vector u = c+ e, where c ∈ K and e is an error
vector, we need to �nd a codeword c′ ∈ K having the minimum distance
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algorithm 9 Extended coset decoding of q-ary linear codes.
Data: A q-ary linear code K and a received vector u.
Result: The decoded codeword c′ ∈ K.
begin

Ku ← 〈K, u〉
e′ ← MinWord(Ku)

for λ ∈ Fq do
if λe′ − u ∈ K then

c′ ← u− λe′
break

return c′.

to the received vector u, which is equivalent to �nd a vector e′ = u − c′ of
minimum weight in u−K. Since K is linear, K = −K, so as for linear codes,
the decoding process is equivalent to �nd a minimum word in K + u.

Again, as for binary linear codes, in order to �nd a vector of minimum
weight in a coset K + u of a linear code K, we can consider the linear
extended coset Ku = 〈K, u〉 =

⋃
λ∈Fq

(K + λu), of K respect to u, and apply
the Brouwer-Zimmermann's algorithm for linear codes. If the number of
errors is less than d(K) = d, that is, wtH(e) < d, according to Proposition
5.3.1, we can �nd an error vector e′ ∈ K + u such that wtH(e′) = wtH(e).
This decoding process, also called extended coset decoding, is explained in
Proposition 5.3.2 and described in Algorithm 9.

Proposition 5.3.2. Let K be a q-ary linear code with minimum distance d.
For a received vector u = c+ e 6∈ K, where c ∈ K, let Ku =

⋃
λ∈Fq

(K + λu).
If wtH(e) < d, then u can be decoded as c′ = u− e′ ∈ K, where e′ is a vector
of minimum weight in Ku such that e′ ∈ K + u, so wtH(e) = wtH(e′). Note
that if wtH(e) ≤ bd−1

2
c, then e′ = e and c′ = c.

Proof. For a received vector u = c + e ∈ Fnq \K, where c ∈ K, in order to
decode it, we look for a vector e′ of minimum weight such that c′ = u− e′ ∈
K. This is equivalent to �nd a vector e′ of minimum weight in the coset
containing u, which is K + u.

Let e′′ be a vector of minimum weight in the linear extended coset Ku =⋃
λ∈Fq

(K +λu). Since the minimum weight of the coset K +u is less than d,
by Proposition 5.3.1, there is a λ ∈ Fq\{0} such that e′ = λe′′ ∈ K + u. We
have that d(Ku) = wtH(λe′′) = wtH(e′) = wtH(e) < d. Then, the received
vector u can be decoded as c′ = u− e′ ∈ K.
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Example 5.3.3. Let K be a random [20, 5, 3] ternary linear code. Figure
5.8 shows the time in seconds to decode random received vectors by using
the extended coset decoding and comparing it with the syndrome decoding
implemented in Magma. According to the implementation in Magma, the
syndrome decoding uses 1620 MB of memory, and the extended coset decoding
method uses a negligible amount of memory.
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Figure 5.8: Time for decoding using a random [20, 5, 3] ternary linear code.

Example 5.3.4. Let Cn be a random [n, 5] ternary linear code, for n ∈
{15, . . . , 20}. Figure 5.9 shows the time in seconds to decode 5000 random
received vectors by using the extended coset decoding and comparing it with
the syndrome decoding implemented in Magma. It is clear that as the length
grows, the time cost grows signi�cantly by using the syndrome decoding, so the
extended coset decoding is more e�cient for linear codes with bigger length.

Using the extended coset decoding, the work factor of decoding a received
vector u encoded using an [n, κ, d] q-ary linear codeK is similar to computing
the minimum weight ofKu. Since d ≥ wt(Ku), we can obtain an upper bound
of the work factor, which is

log2(q)ndn/(κ+ 1)e
r̄∑
r=1

(
κ+ 1

r

)
(q − 1)r−1, (5.7)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ d.
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Figure 5.9: Time for decoding 5000 vectors using random [n, 5] ternary codes
for n ∈ {15, . . . , 20}.

Coset decoding for q-ary linear codes

Using the coset decoding, as it is described in Section 5.1 for binary linear
codes, we can �nd directly an error vector in the coset K + u. In this case,
the work factor of decoding a received vector u encoded using an [n, κ, d]

q-ary linear code K is similar to computing the minimum weight of K + u.
Again, since d ≥ wt(Ku), we can obtain an upper bound of the work factor,
which is

log2(q)ndn/κe
r̄∑
r=1

(
κ

r

)
(q − 1)r−1, (5.8)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ d.

Example 5.3.5. As in Example 5.1.4, in order to see how both decoding
methods perform, we compare their corresponding work factor upper bounds.
Speci�cally, we compare the performance of both decoding methods for di�er-
ent [n, κ, d] ternary linear codes, and di�erent [20, 10, 5] q-ary linear codes.
Again, the advantage of the coset decoding is obvious according to Figures
5.10, 5.11, 5.12 and 5.13. Note that by changing the cardinality q of the �eld
in Figure 5.13, the size of the code M = q10 varies since it depends on q. In
all �gures, the work factors are expressed in logarithmic scale.
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Figure 5.10: Decoding [20, κ, 5] ternary linear codes, where κ ∈ {5, . . . , 14}.
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Figure 5.11: Decoding [20, 10, d] ternary linear codes, where d ∈ {2, . . . , 11}.
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Figure 5.12: Decoding [n, 10, 5] ternary linear codes, where n ∈ {15, . . . , 24}.
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Figure 5.13: Decoding [20, 10, 5] q-ary linear codes for q ∈ {2, . . . , 11}.
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5.4 Decoding q-ary nonlinear codes

As for the binary linear case, the decoding methods seen for binary nonlinear
codes in Section 5.2 can also be generalized into q-ary nonlinear codes.

Extended coset decoding for q-ary nonlinear codes

Let C be an (n,M, d) q-ary code, C =
⋃t
i=0(KC + vi), with kernel KC of

dimension κ, t coset representatives given by the set L = {v1, . . . , vt}, and
v0 = 0. As we have mentioned before, according to the nearest neighbor
decoding, in order to decode a received vector u = c+ e, where c ∈ C and e
is an error vector, we need to �nd a codeword c′ ∈ C having the minimum
distance to the received vector u, which is equivalent to �nd a vector e′ = u−c′
of minimum weight in u − C, as for binary nonlinear codes. Note that the
set u− C can be written as u− C =

⋃t
i=0(KC + u− vi), since −KC = KC .

Again, as for binary nonlinear codes, in order to �nd a vector of minimum
weight in the set u − C =

⋃t
i=0(KC + u − vi), we can consider the linear

extended cosets Ku−vi = 〈KC , u − vi〉 =
⋃
λ∈Fq

(KC + λ(u − vi)) for all i ∈
{0, . . . , t}, de�ne Cu =

⋃t
i=0Ku−vi , and apply the Brouwer-Zimmermann's

algorithm for linear codes. If the number of errors is less than the minimum
weight of KC , that is dH(c, u) = wtH(e) < wt(KC), then an error vector e′

such that wtH(e′) = wtH(e) can be found as a codeword of minimum weight
in Cu such that e′ ∈ u − C =

⋃t
i=0(KC + u − vi). Such codeword e′ can

be obtained by applying the Brouwer-Zimmermann's algorithm to each one
of the linear extended cosets Ku−vi to get �rst a codeword e′′i of minimum
weight, for all i ∈ {0, . . . , t}. Then, a codeword e′i ∈ KC + u − vi such that
wtH(e′′i ) = wtH(e′i) can be generated from e′′i , by Proposition 5.3.1. Finally,
e′ is chosen as a vector of minimum weight in {e′i | i ∈ {0, . . . , t}}. This
decoding process for nonlinear codes, also called extended coset decoding, is
explained in Proposition 5.4.1 and described in Algorithm 10.

Proposition 5.4.1. Let C be a q-ary nonlinear code with minimum distance
d, kernel KC and coset representatives {v1, . . . , vt}. For a received vector
u = c+ e /∈ C, where c ∈ C, let Cu =

⋃t
i=0Ku−vi. If wtH(e) < d, then u can

be decoded as c′ = u− e′ ∈ C, where e′ is a vector of minimum weight in Cu
such that e′ ∈ u − C =

⋃t
i=0(KC + u − vi), so wtH(e) = wtH(e′). Note that

if wtH(e) ≤ bd−1
2
c, then e′ = e and c′ = c.

Proof. For a received vector u ∈ Fnq , in order to decode it, we look for a vector
e′ ∈ Fnq of minimum weight such that u− e′ ∈ C. This is equivalent to �nd a
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algorithm 10 Extended coset decoding of q-ary nonlinear codes.
Data: A q-ary nonlinear code C given by the kernel KC and coset represen-

tatives L = {v1, . . . , vt}, and a received vector u.
Result: The decoded codeword c′ ∈ C.
begin

minWeight← Length(C)

for vi ∈ L ∪ {0} do
Ku−vi ← 〈KC , u− vi〉
e′ ← MinWord(Ku−vi)

if wtH(e′) < minWeight then
minWeight← wtH(e′)

for λ ∈ Fq do
if λe′ − (u− vi) ∈ KC then

c′ ← u− λe′
break

return c′

vector e′ of minimum weight in u−C. We have that u−C =
⋃t
i=0(u−KC−vi).

Since KC is linear, −KC = KC . Therefore, u−C =
⋃t
i=0(KC+u−vi). Let e′i

be a vector of minimum weight in the linear extended coset Ku−vi such that
e′i ∈ KC+u+vi for all i ∈ {0, . . . , t}. The vector e′i exists by Proposition 5.3.1
and because wtH(e) < d. Finally, we can take e′ as the vector of minimum
weight in {e′i | i ∈ {0, . . . , t}}, since it is also a vector of minimum weight
in u − C such that wtH(e) = wtH(e′). Then, the received vector u can be
decoded as c′ = u− e′ ∈ C.

Example 5.4.2. Let Cκ be a (20, 310, 3) ternary nonlinear code with a kernel
of dimension κ, for κ ∈ {5, . . . , 9}, and number of cosets t listed in the
following table. The following table also shows the time in seconds to decode
5000 random received vectors using the extended coset decoding for each one
of the codes Cκ, κ ∈ {5, . . . , 9}.

κ 5 6 7 8 9
Number of cosets: t 242 80 26 8 2

Time: s 280.680 96.830 33.700 14.800 8.420

Using the extended coset decoding, the work factor of decoding a received
vector u encoded using a q-ary nonlinear code C is similar to computing the
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minimum weight of Cu =
⋃t
i=0Ku−vi , so it is

t∑
i=0

(
log2(q)ndn/(κ+ 1)e

r̄i∑
r=1

(
κ+ 1

r

)
(q − 1)r−1

)
, (5.9)

where r̄i is the smallest integer such that

bn/(κ+ 1)c(r̄i + 1) + max(0, r̄i + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(Ku−vi).

Taking into account that wt(Ku−vi) ≤ wt(KC) for all i ∈ {0, . . . , t}, an upper
bound of the previous work factor is

(t+ 1) log2(q)ndn/(κ+ 1)e
r̄∑
r=1

(
κ+ 1

r

)
(q − 1)r−1, (5.10)

where r̄ is the smallest integer such that

bn/(κ+ 1)c(r̄ + 1) + max(0, r̄ + 1− (κ+ 1− n mod (κ+ 1))) ≥ wt(KC).

Coset decoding for q-ary nonlinear codes

Using the coset decoding, as it is described in Section 5.2 for binary nonlinear
codes, we can �nd directly an error vector in u − C. In this case, the work
factor of decoding a received vector u encoded using a q-ary nonlinear code
C is similar to computing the minimum weight of u−C =

⋃t
i=0(KC +u−vi),

so it is
t∑
i=0

(
log2(q)ndn/κe

r̄i∑
r=1

(
κ

r

)
(q − 1)r−1

)
, (5.11)

where r̄i is the smallest integer such that

bn/κc(r̄i + 1) + max(0, r̄i + 1− (κ− n mod κ)) ≥ wt(Ku−vi).

Again, taking into account that wt(Ku−vi) ≤ wt(KC) for all i ∈ {0, . . . , t},
an upper bound of the previous work factor is

(t+ 1) log2(q)ndn/κe
r̄∑
r=1

(
κ

r

)
(q − 1)r−1, (5.12)

where r̄ is the smallest integer such that

bn/κc(r̄ + 1) + max(0, r̄ + 1− (κ− n mod κ)) ≥ wt(KC).
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Figure 5.14: Decoding (20, 314 · 2, 5) ternary nonlinear codes with kernels of
dimension κ ∈ {5, . . . , 14}.

Example 5.4.3. As in Example 5.1.4, in order to see how both decoding
methods perform, we compare their corresponding work factor upper bounds.
Speci�cally, we compare the performance of both decoding methods for di�er-
ent (n, 314 · 2, d) ternary nonlinear codes with kernels of dimension κ, and
di�erent (20, q5 ·60, 3) q-ary nonlinear codes with kernels of dimension κ = 5.
Again, the advantage of the coset decoding is obvious according to Figures
5.14, 5.15, 5.16 and 5.17. Note that, unlike Example 5.1.4, by changing the
dimension of the kernel in Figure 5.14, we are only changing the linearity
of the code, but the size of the code remains the same. Also note that by
changing the cardinality q of the �eld in Figure 5.17, the size of the code
M = q5 · 60 varies since it depends on q. In all �gures, the work factors are
expressed in logarithmic scale.



5.4. Decoding q-ary nonlinear codes 93

2 3 4 5 6 7 8 9 10 11
16

20

24

28

d

W
or
k
fa
ct
or

(2
y
) Extended Coset Decoding

Coset Decoding

Figure 5.15: Decoding (20, 314 · 2, d) ternary nonlinear codes, where d ∈
{2, . . . , 11}, and with kernels of dimension κ = 10.
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Figure 5.16: Decoding (n, 314 · 2, 3) ternary nonlinear codes, where n ∈
{11, . . . , 20}, and with kernels of dimension κ = 5.
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Figure 5.17: Decoding (20, q5 · 60, 3) q-ary nonlinear codes with kernels of
dimension κ = 5, for q ∈ {2, . . . , 11}.



Chapter 6

Magma package implementation

Magma is a software system designed to solve computationally hard prob-
lems in algebra, number theory, geometry and combinatorics [9]. Magma

currently supports the basic facilities for codes over �nite �elds and codes
over integer residue rings and Galois rings, all that are linear codes.

The Combinatoric, Coding and Security Group (CCSG) [34] has been
working on extending the Magma system implementing new packages to
work e�ciently with Z2Z4-linear codes, completely regular codes, and non-
linear codes in general [27, 5]. This dissertation is focused on the latter
research area, that is, on extending the functionality of a new package to
work with nonlinear codes in general.

In this chapter, we describe the main characteristics of the package im-
plementation, related to the representation of binary nonlinear codes, con-
structions, minimum distance computation and decoding. The last version
of the package for binary codes can be downloaded from the CCSG web site
http://ccsg.uab.cat together with a manual describing all functions. For
q-ary codes, only some functions have been implemented and the package is
far to be �nished.

6.1 Enumeration of vectors

All algorithms based on Brouwer-Zimmermann's algorithm for linear codes
make extensively use of the enumeration of vectors in Fn2 ordered by their
Hamming weight. Thus, we must generate the 2n vectors v0, v1, v2, . . . of Fn2
in such a way that wtH(vi) ≤ wtH(vi+1). In order to do that, we need to
generate step by step the sequence of all combinations of t elements from
a set of n natural numbers. Each combination of t elements represents a

95
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vector v ∈ Fn2 such that wtH(v) = t, given by its support. This algorithm
implemented in the package, called resolving-door algorithm, is based in a
research paper of W.H. Payne and explained in the book of D.E. Knuth [22].
Moreover, given a combination L, we need to know the position of L within
the sequence of all combinations of size less than or equal to t.

InitializeComb(n, t)

Initialize a t + 1 (1 < t < n) sequence of natural numbers in increas-
ing order. The t + 1 position is the sentinel. Returns the sequence L =

[0, 1, . . . , t− 1, n].

NextComb(L, n, t, R3)

Compute the next combination from a current combination L of param-
eters n and t. R3 is false for the �rst step and true for the following. This
is an iterative implementation of the resolving-door algorithm.

PositionComb(L)

Given a combination L, return the position of L in the sequence of
combinations obtained from the resolving-door algorithm. The combination
c1c2 · · · ct is visited by the revolving-door algorithm exactly in the position∑t

i=1(−1)i(−1)t+1
(
ci+1
i

)
) + 1 if t+ 1 is even, and

∑t
i=1(−1)i(−1)t+1

(
ci+1
i

)
) if

t+ 1 is odd.

6.2 Kernel computation

Another set of functions in the package is the one related to the kernel compu-
tation. The kernel and coset representatives of a code are computed whenever
we construct a code from the list of its codewords, or we construct a new
code from existing ones. For example, the package contains the following
functions:

BinaryCode(L)

Create a binary code C given by its superdual, where L is a sequence of
elements of Zn2 , a subspace of Zn2 , a m× n matrix A over Z2, a binary linear
code, a quaternary linear code or a Z2Z4-additive code. The kernel and coset
representatives are computed using Algorithm 2, described in Section 3.1, in
the cases where it is necessary.

This constructor appends �ve attributes to the code category:
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• Length: The length n of the binary code.

• Kernel: The kernel of the binary code as a binary linear subcode.

• CosetLeaders: The sequence of coset leaders [v1, . . . , vt].

• MinimumDistance: The minimum (Hamming) distance.

• IsLinear: It is true if and only if C is a binary linear code.

BinaryCode(L,K,Lids)

Create a binary code C given by its superdual, where L is a sequence
of elements of Zn2 , a partial kernel K, and the corresponding sequence of
partial coset representatives Lids. In this case, the �nal kernel and coset
representatives are computed using Algorithm 2 and Proposition 3.1.1, shown
in Section 3.1.

This constructor appends �ve attributes to the code category:

• Length: The length n of the binary code.

• Kernel: The kernel of the binary code as a binary linear subcode.

• CosetLeaders: The sequence of coset leaders [v1, . . . , vt].

• MinimumDistance: The minimum (Hamming) distance.

• IsLinear: It is true if and only if C is a binary linear code.

Example 6.2.1. We can de�ne a binary code by giving a sequence of el-
ements of a vector space V = Zn2 , or a matrix over Z2. Note that the
BinaryCode function returns the super dual of a binary code C and the code-
words of C can be generated as the union of the cosets of its kernel.

> V := VectorSpace(GF(2),4);

> L := [V!0,V![1,0,0,0],V![0,1,0,1],V![1,1,1,1]];

> C1 := BinaryCode(L);

> C1;

[7, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1]

[0 1 0 0 0 1 1]

[0 0 1 0 0 0 1]
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[0 0 0 1 0 1 1]

> IsBinaryLinearCode(C1);

false

> A := Matrix(L);

> C2 := BinaryCode(A);

> C2;

[7, 4, 2] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 1 0 1]

[0 1 0 0 0 1 1]

[0 0 1 0 0 0 1]

[0 0 0 1 0 1 1]

> IsBinaryEqual(C1, C2);

true

A binary linear code C can be generated as a binary code with this constructor.
Note that in this case the BinaryCode function returns the dual of C.

> C := LinearCode(sub<V|[[0,0,1,1],[1,0,1,1]]>);

> D := BinaryCode(sub<V|[[0,0,1,1],[1,0,1,1]]>);

> D;

[4, 2, 1] Linear Code over GF(2)

Generator matrix:

[0 1 0 0]

[0 0 1 1]

> IsBinaryLinearCode(D);

true

> Dual(C) eq D;

true

6.3 Construction of binary codes

Using the above functions to compute the kernel and coset representatives,
and the results given in Section 3.2, we have implemented new functions to
construct new binary nonlinear codes from existing ones. Speci�cally, the
package contains the following functions:
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BinaryIntersection(C,D)

Create the intersection of two binary codes C and D, both of the same
length. The binary codes C and D are given by their kernels and coset
representatives. Proposition 3.2.5 is used in the implementation.

BinaryUnion(C,D)

Create the union of two binary codes C and D, both of the same length.
The binary codes C and D are given by their kernels and coset representa-
tives. Proposition 3.2.6 is used in the implementation.

Example 6.3.1. We verify some simple results from the union and intersec-
tion of binary codes.

> C1 := BinaryRandomCode(5,4);

> C2 := BinaryRandomCode(5,4);

> C1UnionC2 := BinaryUnion(C1,C2);

> C1InterC2 := BinaryIntersection(C1,C2);

> BinaryCardinal(C1) + BinaryCardinal(C2) eq

> BinaryCardinal(C1UnionC2) + BinaryCardinal(C1InterC2);

true

> U := BinaryUniverseCode(5);

> IsBinaryEqual(BinaryUnion(C1,U),U);

true

> IsBinaryEqual(BinaryIntersection(C1,U),C1);

true

> Z := BinaryZeroCode(5);

> IsBinaryEqual(BinaryUnion(C1,Z),C1);

true

> IsBinaryEqual(BinaryIntersection(C1,Z),Z);

true

BinaryExtendedCode(C)

Given a binary code C form a new binary code C ′ from C by adding the
appropriate extra coordinate to each vector of C such that the sum of the
coordinates of the extended vector is zero. Proposition 3.2.7 is used in the
implementation.
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BinaryPuncturedCode(C, i)

Given a binary code C of length n and an integer i, 1 ≤ i ≤ n, construct
a new binary code C ′ by deleting the i-th coordinate from each codeword of
C. Proposition 3.2.9 is used in the implementation.

BinaryShortenedCode(C, i)

Given a binary code C of length n and an integer i, 1 ≤ i ≤ n, construct
a new binary code from C by selecting only those codewords of C having
a zero as their i-th component and deleting the i-th component from these
codewords. Thus, the resulting code will have length n − 1. Proposition
3.2.11 is used in the implementation.

BinaryDirectSum(C,D)

Given binary codes C and D, construct the direct sum of C and D. The
direct sum is a binary code that consists of all vectors of the form (u, v),
where u ∈ C and v ∈ D. Proposition 3.2.13 is used in the implementation.

BinaryPlotkinSum(C,D)

Given binary codes C and D both of the same length, construct the
Plotkin sum of C and D. The Plotkin sum is a binary code that consists of
all vectors of the form (u, u+v), where u ∈ C and v ∈ D. Proposition 3.2.15
is used in the implementation.

Example 6.3.2. We combine binary codes in di�erent ways and look at the
length of the new binary codes.

> C1 := BinaryRandomCode(5,4);

> C2 := BinaryRandomCode(7,3);

> BinaryLength(C1);

5

> BinaryLength(C2);

7

> C3 := BinaryDirectSum(C1,C2);

> BinaryLength(C3);

12

> C4 := BinaryDirectSum([C1,C2,C3]);

> BinaryLength(C4);

24

> C5 := BinaryExtendCode(C2);
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> BinaryLength(C5);

8

> C6 := BinaryPunctureCode(C2,4);

> BinaryLength(C6);

6

> C7 := BinaryShortenCode(C2,{4,5});

> BinaryLength(C7);

5

> C8 := BinaryPlotkinSum(C2,C2);

> BinaryLength(C8);

14

6.4 Minimum distance of binary codes

Using the algorithms described in Section 4.1, we have implemented new
functions to compute the minimum weight and minimum distance of binary
nonlinear codes.

BinaryMinimumWeight(C : parameter)

AlgMethod MonStgElt Default : �MinWeightCoset�
Compute the minimum weight of a binary code C given by the kernel

and coset representatives. The accessible algorithms are: �MinWeightEx-
tendCoset� (Algorithm 5) and �MinWeightCoset� (Algorithm 7). The �Min-
WeightCoset� algorithm is used by default, and the �MinWeightExtendCoset�
will be used if the parameter AlgMethod is assigned the value �MinWeigh-
tExtendCoset�.

Note that the �MinWeightExtendCoset� algorithm can be faster than the
�MinWeightCoset� algorithm, since it uses functions already integrated into
the Magma system.

BinaryMinimumDistance(C : parameter)

AlgMethod MonStgElt Default : �MinWeightCoset�
Compute the minimum distance of a binary code C given by the ker-

nel and coset representatives. The accessible algorithms are: �MinDistance-
ExtendCoset� (Algorithm 6) and �MinDistanceCoset" (Algorithm 8). The
�MinDistanceCoset� algorithm is used by default, and the �MinDistanceEx-
tendCoset� will be used if the parameter AlgMethod is assigned the value
�MinDistanceExtendCoset�.



102 Chapter 6. Magma package implementation

Note that the �MinDistanceExtendCoset� algorithm can be faster than
the �MinDistanceCoset� algorithm, since it uses functions already integrated
into the Magma system.

Example 6.4.1.

> V := VectorSpace(GF(2),31);

> C_kernel := SimplexCode(5);

> C_leaders := [

V![ 0,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,0],

V![ 0,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1],

V![ 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,1]

];

> C := BinaryCode(C_kernel, C_leaders);

> w := BinaryMinimumWeight(C);

> w;

10;

> d := BinaryMinimumDistance(C);

> d;

8

6.5 Decoding binary codes

Using the algorithms described in Section 5.1 and Section 5.2, we have im-
plemented new functions to simulate the decoding process for binary codes.

BinaryCosetDecode(C, d, u : parameter)

AlgMethod MonStgElt Default : �MinWeightCoset�
MinWeigthKernel RngIntElt Default : -
Given a binary code C, its minimum distance d and a vector u from the

ambient space V of C, attempt to decode u with respect to C. The accessible
algorithms are: �MinWeightExtendCoset� (Algorithm 5) and �MinWeight-
Coset� (Algorithm 7). The �MinWeightCoset� algorithm is used by default,
and the �MinWeightExtendCoset" will be used if the parameter AlgMethod is
assigned the value "MinWeightExtendCoset". If the decoding algorithm suc-
ceeds in computing a vector u′ as the decoded version of u, then the function
returns true and u′. If the decoding algorithm does not succeed in decoding
u, then the function returns false and the zero vector.
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The �MinWeightExtendCoset� algorithm consists of consider the linear
code Cu = C∪(C+u) when C is linear, or the linear codes K0 = K∪(K+u),
K1 = K∪(K+v1 +u), . . ., Kt = K∪(K+vt+u), where K is the kernel of C
and C =

⋃t
i=0(K + vi), when C is nonlinear. If C is linear and the minimum

weight of Cu is less than d, then u′ = u + e, where e is a word of minimum
weight of Cu; otherwise, the decoding algorithm returns false. On the other
hand, if C is nonlinear and the minimum weight of ∪ti=0Ki is less than the
minimum weight of K, then u′ = u + e, where e is a word of minimum
weight of ∪ti=0Ki; otherwise, the decoding algorithm returns false. If the
parameter MinWeightKernel is not assigned, then the minimum weight of K
is computed.

The �MinWeightCoset� algorithm consists of just consider the coset C+u

when C is linear, or the cosets K + u, K + v1 + u, . . ., K + vt + u, where K
is the kernel of C and C =

⋃t
i=0(K + vi), when C is nonlinear. In this case,

the decoding algorithm always will return true and u′ = u+ e, where e is a
word of minimum weight of C+u or ∪ti=0(K+ vi +u) depending on whether
C is linear or not, respectively.

Note that the �MinWeightExtendCoset� algorithm can be faster than the
�MinWeightCoset� algorithm, since it uses functions already integrated into
the Magma system. However, it may correct less errors than the default
method.

Propositions 5.1.1 and 5.2.1, and Algorithms 9 and 10 for binary codes,
are used in the implementation.

Example 6.5.1. We create a binary nonlinear code C and a vector c of C
and then perturb c to a new vector u. We then decode u to �nd c again.

> V := VectorSpace(GF(2),31);

> C_kernel := SimplexCode(5);

> C_leaders := [

V![ 0,0,1,0,0,0,1,1,1,0,0,1,1,0,1,0,0,1,1,1,1,0,0,0,1,0,1,1,1,1,0],

V![ 0,1,0,1,1,0,1,0,1,0,1,1,1,1,0,0,1,0,1,1,1,0,1,0,0,1,1,1,1,0,1],

V![ 0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,1]

];

> C := BinaryCode(C_kernel, C_leaders);

> d := BinaryMinimumDistance(C);

> d;

8
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> c := V ! [0,1,1,1,0,1,1,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,1,1,0,0,1,1,1,0,0];

> IsInBinaryCode(C, c);

true

> u := c;

> u[5] := u[5] + 1;

> u[12] := u[12] + 1;

> c;

(0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0)

> u;

(0 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0)

> c-u;

(0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

> isDecoded, cDecoded := BinaryCosetDecode(C, d, u);

> isDecoded;

true

> cDecoded;

(0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0)

> cDecoded eq c;

true

6.6 Package for q-ary nonlinear codes

Using the algorithms described in Section 5.3 and Section 5.4, we have im-
plemented new functions to simulate the decoding process for q-ary codes.

QaryDecode(C, u)

Decode the received vector u respect to the q-ary code C using extended
coset decoding. Decoding linear q-ary codes and decoding nonlinear q-ary
codes are united in one function. During the decoding process, the minimum
weight of some cosets are computed, currently for q-ary codes, only Min-
WeightExtendCoset are implemented. Algorithms 9 and 10 are used in the
implementation.

For q-ary nonlinear codes, only some functions have been implemented.
For example, the improved versions of algorithms IMinW, IMinD, CosetDe-
code for q-ary codes have not been implemented yet. Next package versions
will include these improvements and new results.
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Conclusions

Coding theory was introduced with the publication of the paper �A math-
ematical theory of communication� by C. Shannon in 1948. In the last 60
years, this theory has grown as a mathematical discipline with applications
to sciences and engineering. Perhaps the most eminent of Shannon's results
was the concept that every communication channel had a speed limit, mea-
sured in binary digits per second. Mathematically, this means that it is
impossible to obtain an error free communication above this limit but, below
the Shannon limit, it is possible to transmit information without errors. In
order to do this, we need to encode the information, by introducing redun-
dancy into the digital representation. Coding theory deals with the design
of good error-correcting codes for the reliable transmission of information
across noisy channels, according to Shannon's laws.

Most of the codes used in coding theory are linear. However, it is known
that some nonlinear codes have more codewords than any linear one with the
same parameters, length and minimum distance, so they are better than any
linear code. Using a nonlinear code is not as easy as using a linear one. The
lack of linearity implies that it is not possible to represent them in a compact
way by using a generator o parity-check matrix, and the process of encoding
and decoding can not be performed in an e�cient way. The main goal of
this dissertation is to discuss a general representation of nonlinear codes, the
kernel/coset representation, suitable to represent a nonlinear code without
storing all its codewords. We have seen how to construct nonlinear codes
from other ones using this representation, how to compute their minimum
weight and minimum distance in a more e�cient way than by brute force,
and how to apply the minimum distance computation to describe a general
decoding method for nonlinear codes.

105
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7.1 Main results

In this dissertation, an algorithm to obtain the kernel/coset representation
of a nonlinear code is described and improved. The complexity of computing
the kernel and coset representatives of a nonlinear code is determined by the
dimension of its kernel, or say, how far it is from being linear.

Although for codes with large size, the computation of the kernel and
coset representatives is not e�cient enough, some known constructions allow
us to construct new nonlinear codes from old ones by manipulating directly
their kernel and coset representatives. More speci�cally, properties such as
equality, inclusion, intersection and union between nonlinear codes are given
in terms of this representation. Also, some well known code constructions
(extended code, punctured code, shortened code, direct sum, Plotkin sum)
are described by manipulating directly the kernel and coset representatives
of the constituent nonlinear codes.

When the kernel/coset representation of a nonlinear code is already com-
puted, the nonlinear code can be stored more e�ciently. Moreover, some new
algorithms designed to compute the minimum weight and minimum distance
of a nonlinear code represented using this structure can be applied. These
algorithms are based on computing the minimum weight of a union of some
linear codes which include all codewords of the nonlinear code. Further-
more, these algorithms are improved by modifying the enumeration process
of Brouwer-Zimmermann's algorithm in such a way that unnecessary vectors,
which are not codewords of the nonlinear code, are excluded.

As an application of the algorithm to compute the minimum weight of a
nonlinear code, a new algorithm to decode linear codes is given and compared
with the traditional syndrome decoding. Instead of computing a syndrome
table, the new decoding method can decode a received vector by �nding the
minimum word of a coset of the linear code. This decoding method can also
be used for nonlinear codes, and it is the only decoding general method for
nonlinear code as far as we know.

Some of the algorithms given in the dissertation are evaluated by real test
and theoretical results. All the test are performed in the Magma system
and the algorithms are written into standard Magma functions, which will
be released within a new package to work with nonlinear codes. This new
package will be useful to support further research on this area.
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7.2 Further research and development

By using the kernel/coset representation, we generalized some well-known
results and algorithms suitable for linear codes into nonlinear codes over Fq.
Further research on this topic can be the following:

• To design new e�cient algorithms to compute the weight distribution
for q-ary nonlinear codes, considering the kernel/coset representation.

• To design new e�cient algorithms to compute the covering radius for
q-ary nonlinear codes, considering the kernel/coset representation.

• To adapt the probabilistic methods to compute the minimum distance
for linear codes into the computation for q-ary nonlinear codes.

• To study the application of the general algorithms for computing the
minimum distance to some families of nonlinear codes, such as Z4-
linear codes, or Z2Z4-linear codes; and to establish which method is
more suitable depending maybe on the parameters of the code.

• To �nd new optimal nonlinear codes for some given parameters, by
using the new Magma package on binary nonlinear codes.

Based in the results given in this dissertation, and in order to evaluate
most of the algorithms described, we have developed a new Magma package
to deal with binary nonlinear codes. The last version of the package can be
downloaded from the CCSG web site http://ccsg.uab.cat together with
a manual describing all functions. For q-ary codes, so far, we have only
implemented some functions. Further development on this topic can be the
following:

• To extend the functionality of the package for binary nonlinear codes,
according to new algorithms developed for computing other parameters,
such as the weight distribution and covering radius.

• To improve some of the functions already implemented in the package
in order to be more e�cient.

• To generalize the implementation of the package to deal with binary
nonlinear codes, in order to deal with any q-ary nonlinear code.

• To generate a database of nonlinear perfect codes storing the codes
using the kernel/coset representation.
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• To generate a database of optimal nonlinear codes storing the codes
using the kernel/coset representation.
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